Science.gov

Sample records for activation monitoring solution

  1. Monitoring Solution Structures of Peroxisome Proliferator-Activated Receptor β/δ upon Ligand Binding

    PubMed Central

    Schwarz, Rico; Tänzler, Dirk; Ihling, Christian H.; Sinz, Andrea

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) have been intensively studied as drug targets to treat type 2 diabetes, lipid disorders, and metabolic syndrome. This study is part of our ongoing efforts to map conformational changes in PPARs in solution by a combination of chemical cross-linking and mass spectrometry (MS). To our best knowledge, we performed the first studies addressing solution structures of full-length PPAR-β/δ. We monitored the conformations of the ligand-binding domain (LBD) as well as full-length PPAR-β/δ upon binding of two agonists. (Photo-) cross-linking relied on (i) a variety of externally introduced amine- and carboxyl-reactive linkers and (ii) the incorporation of the photo-reactive amino acid p-benzoylphenylalanine (Bpa) into PPAR-β/δ by genetic engineering. The distances derived from cross-linking experiments allowed us to monitor conformational changes in PPAR-β/δ upon ligand binding. The cross-linking/MS approach proved highly advantageous to study nuclear receptors, such as PPARs, and revealed the interplay between DBD (DNA-binding domain) and LDB in PPAR-β/δ. Our results indicate the stabilization of a specific conformation through ligand binding in PPAR-β/δ LBD as well as full-length PPAR-β/δ. Moreover, our results suggest a close distance between the N- and C-terminal regions of full-length PPAR-β/δ in the presence of GW1516. Chemical cross-linking/MS allowed us gaining detailed insights into conformational changes that are induced in PPARs when activating ligands are present. Thus, cross-linking/MS should be added to the arsenal of structural methods available for studying nuclear receptors. PMID:26992147

  2. Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties

    NASA Technical Reports Server (NTRS)

    Jeevarajan, A.S.; Wallace, W.T.

    2009-01-01

    During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 m in diameter) was found to produce several problems with astronaut s suits and helmets, mechanical seals and equipment, and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent of the lunar module from the lunar surface to rendezvous with the command module, much of the major portions of the contaminating soil and dust began to float, irritating the astronaut s eyes and being inhaled into their lungs. Our goal has been to understand some of the properties of lunar dust that could lead to possible hazards for humans. Due to the lack of an atmosphere, there is nothing to protect the lunar soil from ultraviolet radiation, solar wind, and meteorite impacts. These processes could all serve to activate the soil, or produce reactive surface species. In order to understand the possible toxic effects of the reactive dust, it is necessary to reactivate the dust, as samples returned during the Apollo missions were exposed to the atmosphere of the Earth. We have used grinding and UV exposure to mimic some of the processes occurring on the Moon. The level of activation has been monitored using two methods: fluorescence spectroscopy and electron paramagnetic resonance spectroscopy (EPR). These techniques allow the monitoring of hydroxyl radical production in solution. We have found that grinding of lunar dust produces 2-3 times the concentration of hydroxyl radicals as lunar simulant and 10 times that of quartz. Exposure

  3. Embedded fall and activity monitoring for a wearable ambient assisted living solution for older adults.

    PubMed

    Bourke, Alan K; Prescher, Sandra; Koehler, Friedrich; Cionca, Victor; Tavares, Carlos; Gomis, Sergi; Garcia, Virginia; Nelson, John

    2012-01-01

    With the rapidly increasing over 60 and over 80 age groups in society, greater emphasis will be put on technology to detect emergency situations, such as falls, in order to promote independent living. This paper describes the development and deployment of fall-detection, activity classification and energy expenditure algorithms, deployed in a tele-monitoring system. These algorithms were successfully tested in an end-user trial involving 9 elderly volunteers using the system for 28 days.

  4. Experiment Dashboard - a generic, scalable solution for monitoring of the LHC computing activities, distributed sites and services

    NASA Astrophysics Data System (ADS)

    Andreeva, J.; Cinquilli, M.; Dieguez, D.; Dzhunov, I.; Karavakis, E.; Karhula, P.; Kenyon, M.; Kokoszkiewicz, L.; Nowotka, M.; Ro, G.; Saiz, P.; Sargsyan, L.; Schovancova, J.; Tuckett, D.

    2012-12-01

    The Experiment Dashboard system provides common solutions for monitoring job processing, data transfers and site/service usability. Over the last seven years, it proved to play a crucial role in the monitoring of the LHC computing activities, distributed sites and services. It has been one of the key elements during the commissioning of the distributed computing systems of the LHC experiments. The first years of data taking represented a serious test for Experiment Dashboard in terms of functionality, scalability and performance. And given that the usage of the Experiment Dashboard applications has been steadily increasing over time, it can be asserted that all the objectives were fully accomplished.

  5. Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties

    NASA Technical Reports Server (NTRS)

    Wallace, William; Jeevarajan, A. S.

    2009-01-01

    During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 microns in diameter) was found to produce several problems with mechanical equipment and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent from the lunar surface, much of the finer fraction of this dust began to float and was inhaled by the astronauts. The short visits tothe Moon during Apollo lessened exposure to the dust, but the plan for future lunar stays of up to six months demands that methods be developed to minimize the risk of dust inhalation. The guidelines for what constitutes "safe" exposure will guide the development of engineering controls aimed at preventing the presence of dust in the lunar habitat. This work has shown the effects of grinding on the activation level of lunar dust, the changes in dissolution properties of lunar simulant, and the production of cytokines by cellular systems. Grinding of lunar dust leads to the production of radicals in solution and increased dissolution of lunar simulant in buffers of different pH. Additionally, ground lunar simulant has been shown to promote the production of IL-6 and IL-8, pro-inflammatory cytokines, by alveolar epithelial cells. These results provide evidence of the need for further studies on these materials prior to returning to the lunar surface.

  6. Osmosis with active solutes

    NASA Astrophysics Data System (ADS)

    Lion, Thomas W.; Allen, Rosalind J.

    2014-05-01

    Despite much current interest in active matter, little is known about osmosis in active systems. Using molecular dynamics simulations, we investigate how active solutes perturb osmotic steady states. We find that solute activity increases the osmotic pressure, and can also expel solvent from the solution —i.e. cause reverse osmosis. The latter effect cannot be described by an effective temperature, but can be reproduced by mapping the active solution onto a passive one with the same degree of local structuring as the passive solvent component. Our results provide a basic framework for understanding active osmosis, and suggest that activity-induced structuring of the passive component may play a key role in the physics of active-passive mixtures.

  7. Sound solutions for habitat monitoring

    Treesearch

    Mary M. Rowland; Lowell H. Suring; Christina D. Vojta

    2015-01-01

    For agencies and organizations to effectively manage wildlife, knowledge about the status and trend of wildlife habitat is critical. Traditional wildlife monitoring, however, has focused on populations rather than habitat, because ultimately population status drives long-term species viability. Still, habitat loss has contributed to the decline of nearly all at-risk...

  8. MCO Monitoring activity description

    SciTech Connect

    SEXTON, R.A.

    1998-11-09

    Spent Nuclear Fuel remaining from Hanford's N-Reactor operations in the 1970s has been stored under water in the K-Reactor Basins. This fuel will be repackaged, dried and stored in a new facility in the 200E Area. The safety basis for this process of retrieval, drying, and interim storage of the spent fuel has been established. The monitoring of MCOS in dry storage is a currently identified issue in the SNF Project. This plan outlines the key elements of the proposed monitoring activity. Other fuel stored in the K-Reactor Basins, including SPR fuel, will have other monitoring considerations and is not addressed by this activity description.

  9. Active Job Monitoring in Pilots

    NASA Astrophysics Data System (ADS)

    Kuehn, Eileen; Fischer, Max; Giffels, Manuel; Jung, Christopher; Petzold, Andreas

    2015-12-01

    Recent developments in high energy physics (HEP) including multi-core jobs and multi-core pilots require data centres to gain a deep understanding of the system to monitor, design, and upgrade computing clusters. Networking is a critical component. Especially the increased usage of data federations, for example in diskless computing centres or as a fallback solution, relies on WAN connectivity and availability. The specific demands of different experiments and communities, but also the need for identification of misbehaving batch jobs, requires an active monitoring. Existing monitoring tools are not capable of measuring fine-grained information at batch job level. This complicates network-aware scheduling and optimisations. In addition, pilots add another layer of abstraction. They behave like batch systems themselves by managing and executing payloads of jobs internally. The number of real jobs being executed is unknown, as the original batch system has no access to internal information about the scheduling process inside the pilots. Therefore, the comparability of jobs and pilots for predicting run-time behaviour or network performance cannot be ensured. Hence, identifying the actual payload is important. At the GridKa Tier 1 centre a specific tool is in use that allows the monitoring of network traffic information at batch job level. This contribution presents the current monitoring approach and discusses recent efforts and importance to identify pilots and their substructures inside the batch system. It will also show how to determine monitoring data of specific jobs from identified pilots. Finally, the approach is evaluated.

  10. Small Active Radiation Monitor

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2004-01-01

    A device, named small active radiation monitor, allows on-orbit evaluations during periods of increased radiation, after extravehicular activities, or at predesignated times for crews on such long-duration space missions as on the International Space Station. It also permits direct evaluation of biological doses, a task now performed using a combination of measurements and potentially inaccurate simulations. Indeed the new monitor can measure a full array of radiation levels, from soft x-rays to hard galactic cosmic-ray particles. With refinement, it will benefit commercial (nuclear power-plant workers, airline pilots, medical technicians, physicians/dentists, and others) and military personnel as well as the astronauts for whom thermoluminescent dosimeters are inadequate. Civilian and military personnel have long since graduated from film badges to thermoluminescent dosimeters. Once used, most dosimeters must be returned to a central facility for processing, a step that can take days or even weeks. While this suffices for radiation workers for whom exposure levels are typically very low and of brief duration, it does not work for astronauts. Even in emergencies and using express mail, the results can often be delayed by as much as 24 hours. Electronic dosimeters, which are the size of electronic oral thermometers, and tattlers, small electronic dosimeters that sound an alarm when the dose/dose rate exceeds preset values, are also used but suffer disadvantages similar to those of thermoluminescent dosimeters. None of these devices fully answers the need of rapid monitoring during the space missions. Instead, radiation is monitored by passive detectors, which are read out after the missions. Unfortunately, these detectors measure only the absorbed dose and not the biologically relevant dose equivalent. The new monitor provides a real-time readout, a time history of radiation exposures (both absorbed dose and biologically relevant dose equivalent), and a count of the

  11. An autonomous structural health monitoring solution

    NASA Astrophysics Data System (ADS)

    Featherston, Carol A.; Holford, Karen M.; Pullin, Rhys; Lees, Jonathan; Eaton, Mark; Pearson, Matthew

    2013-05-01

    Combining advanced sensor technologies, with optimised data acquisition and diagnostic and prognostic capability, structural health monitoring (SHM) systems provide real-time assessment of the integrity of bridges, buildings, aircraft, wind turbines, oil pipelines and ships, leading to improved safety and reliability and reduced inspection and maintenance costs. The implementation of power harvesting, using energy scavenged from ambient sources such as thermal gradients and sources of vibration in conjunction with wireless transmission enables truly autonomous systems, reducing the need for batteries and associated maintenance in often inaccessible locations, alongside bulky and expensive wiring looms. The design and implementation of such a system however presents numerous challenges. A suitable energy source or multiple sources capable of meeting the power requirements of the system, over the entire monitoring period, in a location close to the sensor must be identified. Efficient power management techniques must be used to condition the power and deliver it, as required, to enable appropriate measurements to be taken. Energy storage may be necessary, to match a continuously changing supply and demand for a range of different monitoring states including sleep, record and transmit. An appropriate monitoring technique, capable of detecting, locating and characterising damage and delivering reliable information, whilst minimising power consumption, must be selected. Finally a wireless protocol capable of transmitting the levels of information generated at the rate needed in the required operating environment must be chosen. This paper considers solutions to some of these challenges, and in particular examines SHM in the context of the aircraft environment.

  12. Monitoring international nuclear activity

    SciTech Connect

    Firestone, R.B.

    2006-05-19

    The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

  13. Automated iodine monitor system. [for aqueous solutions

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The feasibility of a direct spectrophotometric measurement of iodine in water was established. An iodine colorimeter, was built to demonstrate the practicality of this technique. The specificity of this method was verified when applied to an on-line system where a reference solution cannot be used, and a preliminary design is presented for an automated iodine measuring and controlling system meeting the desired specifications. An Automated iodine monitor/controller system based on this preliminary design was built, tested, and delivered to the Johnson Space Center.

  14. Ant-App-DB: a smart solution for monitoring arthropods activities, experimental data management and solar calculations without GPS in behavioral field studies.

    PubMed

    Ahmed, Zeeshan; Zeeshan, Saman; Fleischmann, Pauline; Rössler, Wolfgang; Dandekar, Thomas

    2014-01-01

    Field studies on arthropod ecology and behaviour require simple and robust monitoring tools, preferably with direct access to an integrated database. We have developed and here present a database tool allowing smart-phone based monitoring of arthropods. This smart phone application provides an easy solution to collect, manage and process the data in the field which has been a very difficult task for field biologists using traditional methods. To monitor our example species, the desert ant Cataglyphis fortis, we considered behavior, nest search runs, feeding habits and path segmentations including detailed information on solar position and azimuth calculation, ant orientation and time of day. For this we established a user friendly database system integrating the Ant-App-DB with a smart phone and tablet application, combining experimental data manipulation with data management and providing solar position and timing estimations without any GPS or GIS system. Moreover, the new desktop application Dataplus allows efficient data extraction and conversion from smart phone application to personal computers, for further ecological data analysis and sharing. All features, software code and database as well as Dataplus application are made available completely free of charge and sufficiently generic to be easily adapted to other field monitoring studies on arthropods or other migratory organisms. The software applications Ant-App-DB and Dataplus described here are developed using the Android SDK, Java, XML, C# and SQLite Database.

  15. Ant-App-DB: a smart solution for monitoring arthropods activities, experimental data management and solar calculations without GPS in behavioral field studies

    PubMed Central

    Ahmed, Zeeshan; Zeeshan, Saman; Fleischmann, Pauline; Rössler, Wolfgang; Dandekar, Thomas

    2015-01-01

    Field studies on arthropod ecology and behaviour require simple and robust monitoring tools, preferably with direct access to an integrated database. We have developed and here present a database tool allowing smart-phone based monitoring of arthropods. This smart phone application provides an easy solution to collect, manage and process the data in the field which has been a very difficult task for field biologists using traditional methods. To monitor our example species, the desert ant Cataglyphis fortis, we considered behavior, nest search runs, feeding habits and path segmentations including detailed information on solar position and azimuth calculation, ant orientation and time of day. For this we established a user friendly database system integrating the Ant-App-DB with a smart phone and tablet application, combining experimental data manipulation with data management and providing solar position and timing estimations without any GPS or GIS system. Moreover, the new desktop application Dataplus allows efficient data extraction and conversion from smart phone application to personal computers, for further ecological data analysis and sharing. All features, software code and database as well as Dataplus application are made available completely free of charge and sufficiently generic to be easily adapted to other field monitoring studies on arthropods or other migratory organisms. The software applications Ant-App-DB and Dataplus described here are developed using the Android SDK, Java, XML, C# and SQLite Database. PMID:25977753

  16. Functional activity monitoring from wearable sensor data.

    PubMed

    Nawab, S Hamid; Roy, Serge H; De Luca, Carlo J

    2004-01-01

    A novel approach is presented for the interpretation and use of EMG and accelerometer data to monitor, identify, and categorize functional motor activities in individuals whose movements are unscripted, unrestrained, and take place in the "real world". Our proposed solution provides a novel and practical way of conceptualizing physical activities that facilitates the deployment of modern signal processing and interpretation techniques to carry out activity monitoring. A hierarchical approach is adopted that is based upon: 1) blackboard and rule-based technology from artificial intelligence to support a process in which coarse-grained activity partitioning forms the context for finer-grained activity partitioning; 2) neural network technology to support initial activity classification; and 3) integrated processing and understanding of signals (IPUS) technology for revising the initial classifications to account for the high degrees of anticipated signal variability and overlap during freeform activity.

  17. Modular Subsea Monitoring Network (MSM) - Realizing Integrated Environmental Monitoring Solutions

    NASA Astrophysics Data System (ADS)

    Mosch, Thomas; Fietzek, Peer

    2016-04-01

    In a variety of scientific and industrial application areas, ranging i.e. from the supervision of hydrate fields over the detection and localization of fugitive emissions from subsea oil and gas production to fish farming, fixed point observatories are useful and applied means. They monitor the water column and/or are placed at the sea floor over long periods of time. They are essential oceanographic platforms for providing valuable long-term time series data and multi-parameter measurements. Various mooring and observatory endeavors world-wide contribute valuable data needed for understanding our planet's ocean systems and biogeochemical processes. Continuously powered cabled observatories enable real-time data transmission from spots of interest close to the shore or to ocean infrastructures. Independent of the design of the observatories they all rely on sensors which demands for regular maintenance. This work is in most cases associated with cost-intensive maintenance on a regular time basis for the entire sensor carrying fixed platform. It is mandatory to encounter this asset for long-term monitoring by enhancing hardware efficiency. On the basis of two examples of use from the area of hydrate monitoring (off Norway and Japan) we will present the concept of the Modular Subsea Monitoring Network (MSM). The modular, scalable and networking capabilities of the MSM allow for an easy adaptation to different monitoring tasks. Providing intelligent power management, combining chemical and acoustical sensors, adaptation of the payload according to the monitoring tasks, autonomous powering, modular design for easy transportation, storage and mobilization, Vessel of Opportunity-borne launching and recovery capability with a video-guided launcher system and a rope recovery system are key facts addressed during the development of the MSM. Step by step the MSM concept applied to the observatory hardware will also be extended towards the gathered data to maximize the

  18. Monitoring Malware Activity on the LAN Network

    NASA Astrophysics Data System (ADS)

    Skrzewski, Mirosław

    Many security related organizations periodically publish current network and systems security information, with the lists of top malware programs. These lists raises the question how these threats spreads out, if the worms (the only threat with own communication abilities) are low or missing on these lists. The paper discuss the research on malware network activity, aimed to deliver the answer to the question, what is the main infection channel of modern malware, done with the usage of virtual honeypot systems on dedicated, unprotected network. Systems setup, network and systems monitoring solutions, results of over three months of network traffic and malware monitoring are presented, along with the proposed answer to our research question.

  19. STIS MAMA Dispersion SolutionsMonitor

    NASA Astrophysics Data System (ADS)

    Sonnentrucker, Paule

    2013-10-01

    Internal wavecals will be obtained at primary and secondary central wavelengths chosen to cover Cycle 21 use. There is also overlap with choices of configurations used with previous calibration programs which will enable long-term monitoring. This program uses the LINE lamp for a total of approximately 1.5 hours, typically at a lamp current of 10 mA.

  20. Monitoring active volcanoes

    USGS Publications Warehouse

    Tilling, Robert I.

    1987-01-01

    One of the most spectacular, awesomely beautiful, and at times destructive displays of natural energy is an erupting volcano, belching fume and ash thousands of meters into the atmosphere and pouring out red-hot molten lava in fountains and streams. Countless eruptions in the geologic past have produced volcanic rocks that form much of the Earth's present surface. The gradual disintegration and weathering of these rocks have yielded some of the richest farmlands in the world, and these fertile soils play a significant role in sustaining our large and growing population. Were it not for volcanic activity, the Hawaiian Islands with their sugar cane and pineapple fields and magnificent landscapes and seascapes would not exist to support their residents and to charm their visitors. Yet, the actual eruptive processes are catastrophic and can claim life and property.

  1. Spectroscopic active IVFe3+-VIFe3+ clusters in spinel-magnesioferrite solid solution crystals: a potential monitor for ordering in oxide spinels

    NASA Astrophysics Data System (ADS)

    Andreozzi, G. B.; Hålenius, U.; Skogby, H.

    Optical absorption spectra (OAS) of synthetic single crystals of the solid solution spinel sensu stricto (s.s.)-magnesioferrite, Mg(Fe3+Al1-y)2O4 (0Al substitution. Prominent and relatively sharp absorption bands are observed at 25 300 and 21 300cm-1, while less intense bands occur at 22 350, 18 900, 17 900 and 15 100cm-1. On the basis of band energies, band intensities and the compositional effect on band intensity, as well as structural considerations, we assign the observed bands to electronic transitions in IVFe3+-VIFe3+clusters. A linear relationship (R2= 0.99) between the αnet value of the absorption band at 21 300cm-1 and [IVFe3+].[VIFe3+] concentration product has been defined: αnet=2.2+15.8 [IVFe3+].[VIFe3+]. Some of the samples have been heat-treated between 700 and 1000°C to investigate the relation between Fe3+ ordering and absorption spectra. Increase of cation disorder with temperature is observed, which corresponds to a 4% reduction in the number of active clusters. Due to the high spatial resolution ( 10μm), the OAS technique may be used as a microprobe for determination of Fe3+ concentration or site partitioning. Potential applications of the technique include analysis of small crystals and of samples showing zonation with respect to total Fe3+ and/or ordering.

  2. Middle infrared optoelectronic absorption systems for monitoring physiological glucose solutions

    NASA Astrophysics Data System (ADS)

    Martin, W. Blake

    Tight monitoring of the glucose levels for diabetic individuals is essential to control long-term complications. A definitive diabetes management system has yet to be developed for the diabetic. This research investigates the application of middle infrared absorption frequencies for monitoring glucose levels in biological solutions. Three frequencies were identified using a Fourier transform infrared spectrometer and correlated to changes in glucose concentrations. The 1035 +/- 1 cm-1 frequency was determined to be the best representative frequency. Other biological molecules contributed no significant interference to monitoring glucose absorption. A second frequency at 1193 cm-1 was suggested as a representative background absorption frequency, which could be used for more accurate glucose absorption values. Next, a quantum cascade laser optoelectronic absorption system was designed and developed to monitor glucose. After careful alignment and design, the system was used to monitor physiological glucose concentrations. Correlation at 1036 cm-1 with glucose changes was comparable to the previous results. The use of the background absorption frequency was verified. This frequency essentially acts as a calibrating frequency to adjust in real-time to any changes in the background absorption that may alter the accuracy of the predicted glucose value. An evanescent wave cavity ring-down spectroscopy technique was explored to monitor molecules in a biological solution. Visible light at 425 nm was used to monitor hemoglobin in control urine samples. An adsorption isotherm for hemoglobin was detectable to limit of 5.8 nM. Evanescent wave cavity ring-down spectroscopy would be useful for a glucose solution. Given an equivalent system designed for the middle infrared, the molar extinction coefficient of glucose allows for a detectable limit of 45 mg/dl for a free-floating glucose solution, which is below normal physiological concentrations. The future use of a hydrophobic

  3. Mycobactericidal activity of glutaraldehyde solutions.

    PubMed Central

    Collins, F M; Montalbine, V

    1976-01-01

    Aqueous solutions of alkaline glutaraldehyde (buffered at pH 8.5) inactivated a standard suspension of Mycobacterium tuberculosis H37Rv faster than the corresponding acid (pH 3.7 preparation. Quantitative differences in the rate of inactivation of eight other species of Mycobacterium were determined using a 1% solution of alkaline glutaraldehyde and inactivation of residual glutaraldehyde with 1% sodium bisulfite solution. Variations in the rate of kill were observed between the various mycobacterial species tested, but such differences were probably not sufficiently large to be of practical importance. A 2% alkaline glutaraldehyde solution inactivated 10(5) viable M. tuberculosis cells present on the surface of porcelain penicylinders within 5 min at 18 degrees C. This rate of inactivation was faster than in the acidic solution. PMID:11227

  4. Anatahan Activity and Monitoring, 2005

    NASA Astrophysics Data System (ADS)

    Lockhart, A.; White, R.; Koyanagi, S.; Trusdell, F.; Kauahikaua, J.; Marso, J.; Ewert, J.

    2005-12-01

    Anatahan volcano began erupting in 2003 and continued with a second eruptive phase in 2004. In January 2005 the volcano began a sequence of eruptions and unrest that continues as of September 2005. The activity has been characterized by punctuated episodes of very steamy strombolian activity and vigorous ash emission. Some of the ash emissions have reached 50,000-foot elevations, with VOG and ash occasionally reaching the Philippines and southernmost Japan, over 1000 miles away. Vigorous ash emission has been almost continuous since June 2005. A M4.8 long-period earthquake (LP) occurred in mid-August, one of the largest LPs recorded on the planet in the last quarter-century. Real-time monitoring consisting of a few telemetered short-period seismometers and acoustic sensors has been severely hampered by ashfall on the small island. Monitoring efforts have been focused on the aircraft/ash hazard, with the goal of providing the FAA and airline industry with rapid notice of seismic signatures that may indicate ash columns rising to the altitude of airline traffic, or nominally above 20,000-30,000 ft.

  5. Monitoring the Impact of Solution Concepts within a Given Problematic

    NASA Astrophysics Data System (ADS)

    Cavallucci, Denis; Rousselot, François; Zanni, Cecilia

    It is acknowledged that one of the most critical issues facing today’s organizations concerns the substantial leaps required to methodologically structure innovation. Among other published work, some suggest that a complete rethinking of current practices is required. In this article, we propose a methodology aiming at providing controlled R&D choices based on a monitoring of the impact Solution Concepts provoke on a problematic situation. Initially this problematic situation is modeled in a graph form, namely a Problem Graph. It has the objective to assists R&D managers when choosing which activities to support and bring them concrete arguments to defend their choices. We postulate that by improving the robustness of such approaches we help deciders to switch from intuitive decisions (mostly built upon their past experiences, fear regarding risks, and awareness of the company’s level of acceptance of novelties) to thoroughly constructed inventive problem solving strategies. Our approach will be discussed using a computer application that illustrates our hypothesis after being tested in several industrial applications.

  6. Real-time monitoring of a salt solution mining cavern: view from microseismic and levelling monitoring

    NASA Astrophysics Data System (ADS)

    Contrucci, Isabelle; Cao, Ngoc-Tuyen; Klein, Emmanuelle; Daupley, Xavier; Bigarre, Pascal

    2010-05-01

    In 2004, in order to better understand processes involved in large-scale mine collapse, an instrumentation was settled in the surrounding of a salt cavern located at a depth of 180 m in NE France. The cavern was mined by solution mining until the large-scale ground failure occurred. A high resolution multi-parameter monitoring system was deployed in the framework of the GISOS (Scientific Interest Group on the Impact and Safety of Underground Structures formed by INERIS, BRGM, INPL and ENSG). Instrumentation, installed by INERIS, consisted of a microseismic network, coupled to automatic-measurement system for levelling (Tacheometer and RTK GPS). Quasi real time transmission of the data to INERIS, at Nancy, enabled rock mass activity of the site to be monitored on a few hours basis. Also, the various recorded observations, in the beginning of spring 2008, led the operator to cause the collapse in February 2009. This was done by intensive extraction of the brine contained in the cavern, which was considered to be at limit equilibrium. On the second day of pumping sudden increase in microseismic activity indicated the start of collapse, followed by manifestation of a surface crater about 35 hours later. All the data and information collected during this experiment are now being processed and back-analysed aimed at ensuring high quality of interpretation. In particular, the space-time distribution of the failures and the evolution of the waveforms enlighten the changing conditions in the geological overburden. When correlated with the measurements of the movement and the known geology, the microseismic data enable a precise description of the failure mechanism(s), and especially of the complex and major role of the overlying bedrock. Similarly, feedback from this experience should lead to practical recommendations concerning collapse phenomena monitoring in such a mining context. While the preliminary results already indicate the exceptional quality of this data set

  7. Monitoring by Control Technique - Activated Carbon Adsorber

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Activated Carbon Adsorber control techniques used to reduce pollutant emissions.

  8. Increased Ribozyme Activity in Crowded Solutions*

    PubMed Central

    Desai, Ravi; Kilburn, Duncan; Lee, Hui-Ting; Woodson, Sarah A.

    2014-01-01

    Noncoding RNAs must function in the crowded environment of the cell. Previous small-angle x-ray scattering experiments showed that molecular crowders stabilize the structure of the Azoarcus group I ribozyme, allowing the ribozyme to fold at low physiological Mg2+ concentrations. Here, we used an RNA cleavage assay to show that the PEG and Ficoll crowder molecules increased the biochemical activity of the ribozyme, whereas sucrose did not. Crowding lowered the Mg2+ threshold at which activity was detected and increased total RNA cleavage at high Mg2+ concentrations sufficient to fold the RNA in crowded or dilute solution. After correcting for solution viscosity, the observed reaction rate was proportional to the fraction of active ribozyme. We conclude that molecular crowders stabilize the native ribozyme and favor the active structure relative to compact inactive folding intermediates. PMID:24337582

  9. Big Data Solution for CTBT Monitoring Using Global Cross Correlation

    NASA Astrophysics Data System (ADS)

    Gaillard, P.; Bobrov, D.; Dupont, A.; Grenouille, A.; Kitov, I. O.; Rozhkov, M.

    2014-12-01

    Due to the mismatch between data volume and the performance of the Information Technology infrastructure used in seismic data centers, it becomes more and more difficult to process all the data with traditional applications in a reasonable elapsed time. To fulfill their missions, the International Data Centre of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO/IDC) and the Département Analyse Surveillance Environnement of Commissariat à l'Energie atomique et aux énergies alternatives (CEA/DASE) collect, process and produce complex data sets whose volume is growing exponentially. In the medium term, computer architectures, data management systems and application algorithms will require fundamental changes to meet the needs. This problem is well known and identified as a "Big Data" challenge. To tackle this major task, the CEA/DASE takes part during two years to the "DataScale" project. Started in September 2013, DataScale gathers a large set of partners (research laboratories, SMEs and big companies). The common objective is to design efficient solutions using the synergy between Big Data solutions and the High Performance Computing (HPC). The project will evaluate the relevance of these technological solutions by implementing a demonstrator for seismic event detections thanks to massive waveform correlations. The IDC has developed an expertise on such techniques leading to an algorithm called "Master Event" and provides a high-quality dataset for an extensive cross correlation study. The objective of the project is to enhance the Master Event algorithm and to reanalyze 10 years of waveform data from the International Monitoring System (IMS) network thanks to a dedicated HPC infrastructure operated by the "Centre de Calcul Recherche et Technologie" at the CEA of Bruyères-le-Châtel. The dataset used for the demonstrator includes more than 300,000 seismic events, tens of millions of raw detections and more than 30 terabytes of continuous seismic data

  10. Assessing physical activity using wearable monitors: measures of physical activity.

    PubMed

    Butte, Nancy F; Ekelund, Ulf; Westerterp, Klaas R

    2012-01-01

    Physical activity may be defined broadly as "all bodily actions produced by the contraction of skeletal muscle that increase energy expenditure above basal level." Physical activity is a complex construct that can be classified into major categories qualitatively, quantitatively, or contextually. The quantitative assessment of physical activity using wearable monitors is grounded in the measurement of energy expenditure. Six main categories of wearable monitors are currently available to investigators: pedometers, load transducers/foot-contact monitors, accelerometers, HR monitors, combined accelerometer and HR monitors, and multiple sensor systems. Currently available monitors are capable of measuring total physical activity as well as components of physical activity that play important roles in human health. The selection of wearable monitors for measuring physical activity will depend on the physical activity component of interest, study objectives, characteristics of the target population, and study feasibility in terms of cost and logistics. Future development of sensors and analytical techniques for assessing physical activity should focus on the dynamic ranges of sensors, comparability for sensor output across manufacturers, and the application of advanced modeling techniques to predict energy expenditure and classify physical activities. New approaches for qualitatively classifying physical activity should be validated using direct observation or recording. New sensors and methods for quantitatively assessing physical activity should be validated in laboratory and free-living populations using criterion methods of calorimetry or doubly labeled water.

  11. Review of Trackside Monitoring Solutions: From Strain Gages to Optical Fibre Sensors

    PubMed Central

    Kouroussis, Georges; Caucheteur, Christophe; Kinet, Damien; Alexandrou, Georgios; Verlinden, Olivier; Moeyaert, Véronique

    2015-01-01

    A review of recent research on structural monitoring in railway industry is proposed in this paper, with a special focus on stress-based solutions. After a brief analysis of the mechanical behaviour of ballasted railway tracks, an overview of the most common monitoring techniques is presented. A special attention is paid on strain gages and accelerometers for which the accurate mounting position on the track is requisite. These types of solution are then compared to another modern approach based on the use of optical fibres. Besides, an in-depth discussion is made on the evolution of numerical models that investigate the interaction between railway vehicles and tracks. These models are used to validate experimental devices and to predict the best location(s) of the sensors. It is hoped that this review article will stimulate further research activities in this continuously expanding field. PMID:26287207

  12. Monitoring solute fluxes: Integrating electrical resistivity with multi-compartment sampler techniques

    NASA Astrophysics Data System (ADS)

    Bloem, Esther; Fernandez, Perrine; French, Helen K.

    2016-04-01

    The impact of agriculture, industry, airport activities on soil and water quality is strongly influenced by soil heterogeneity. To improve risk assessment, monitoring, and treatment strategies, we require a better understanding of the effect of soil heterogeneity on contaminant movement and better methods for monitoring heterogeneous contaminated transport. Sufficient characterization of spatial and temporal distribution of contaminant transport requires measurements of water and solute fluxes at multiple locations with a high temporal resolution. During this presentation, we will show a newly developed instrument, which combines multi-compartment sampling with electrical resistivity measurements, to observe spatial and temporal fluxes of contaminants. Solute monitoring is often limited to observations of resident concentrations, while flux concentrations govern the movement of solutes in soils. Bloem et al. (2010) developed a multi-compartment sampler (MCS) which is capable of measuring fluxes at a high spatial resolution under natural conditions. The sampler is divided into 100 separate compartments of 31 by 31 mm. Flux data can be recorded at a high time resolution (every 5 minutes). Tracer leaching can be monitored by frequently sampling the collected leachate while leaving the sampler buried in situ. To optimize the monitoring of tracer leaching and measure real solute fluxes the multi-compartment sampler has been extended with 121 electrodes. The electrodes are mounted at each corner of each compartment to measure the electrical conductivity above each compartment while water percolates through the compartments. By using different electrode couples, the setup can also be used to image above the multi-compartment sampler. The instrument can be used for detailed studies both in the laboratory and in the field. For laboratory experiments a transparent column is used which fits perfect on top of the MCS. We present a selection of the integrated electrical

  13. Wearable and implantable wireless sensor network solutions for healthcare monitoring.

    PubMed

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper.

  14. Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    PubMed Central

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper. PMID:22163914

  15. Monitoring Biological Activity at Geothermal Power Plants

    SciTech Connect

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  16. Active personal radiation monitor for lunar EVA

    NASA Astrophysics Data System (ADS)

    Straume, Tore; Borak, Tom; Braby, L. A.; Lusby, Terry; Semones, Edward J.; Vazquez, Marcelo E.

    As astronauts return to the Moon-and this time, work for extended periods-there will be a critical need for crew personnel radiation monitoring as they operate lunar rovers or otherwise perform a myriad of extravehicular activities (EVAs). Our focus is on development of a small personal radiation monitor for lunar EVA that responds to the complex radiation quality and changing dose rates on the Moon. Of particular concern are active monitoring capabilities that provide both early warning and radiation dosimetry information during solar particle events (SPEs). To accomplish this, we are developing small detectors integrated with modern high speed, low power microelectronics to measure dose-rate and dose-mean lineal energy in real time. The monitor is designed to perform over the range of dose rates and LETs expected from both GCR and SPE radiations during lunar EVA missions. The monitor design provides simultaneous measurement of dose-equivalent rates at two tissue-equivalent depths simulating skin and marrow. The compact personal monitor is estimated to be the size of a cell phone and would fit on an EVA spacesuit (e.g., in backpack) or in a toolbox. The four-year development effort (which began December 2007) will result in a prototype radiation monitor field tested and characterized for the major radiations expected on the surface of the Moon. We acknowledge support from NSBRI through grants to NASA Ames Research Center (T. Straume, PI) and Colorado State University (T. Borak, PI).

  17. Stability and bactericidal activity of chlorine solutions.

    PubMed

    Rutala, W A; Cole, E C; Thomann, C A; Weber, D J

    1998-05-01

    To determine the stability of sodium hypochlorite (diluted household bleach) when stored for 30 days in various types of containers and to determine the efficacy of low concentrations of free available chlorine to inactivate test bacteria. Laboratory-based study. Solutions of standard household bleach were prepared using tap water or sterile distilled water at dilutions of 1:100, 1:50, and 1:5. Chlorine concentrations were measured, and then the solutions were placed into five polyethylene containers and left at room temperature (20 degrees C) under various conditions (translucent containers with light exposure and with or without air; brown opaque container without light or air exposure). Samples for chlorine and pH determinations were taken at time 0 and on days 7, 14, 21, 30, and 40. Bactericidal activity of chlorine solutions was assessed using the Association of Official Analytical Chemists Use-Dilution Method. Test bacteria included Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella choleraesuis. Chlorine concentrations at 30 days varied from the 40% to 50% range for 1:50 or 1:100 dilutions stored in containers other than closed brown containers to 83% to 85% for the 1:5 dilution stored in closed but non-opaque containers to 97% to 100% for 1:50 or 1:5 solutions stored in closed brown containers. The lowest concentration of sodium hypochlorite solution that reliably inactivated all the test organisms was 100 ppm. These data suggest that chlorine solutions do not need to be prepared fresh daily, as is recommended currently, and the lowest concentration of chlorine that reliably inactivates S aureus, S choleraesuis, and P aeruginosa is 100 ppm.

  18. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1990-10-01

    DOE Order 5820.2A requires that low-level waste (LLW) disposal sites active on or after September 1988 and all transuranic (TRU) waste storage sites be monitored periodically to assure that radioactive contamination does not escape from the waste sites and pose a threat to the public or to the environment. This plan describes such a monitoring program for the active LLW disposal sites in SWSA 6 and the TRU waste storage sites in SWSA 5 North. 14 refs., 8 figs.

  19. Solute-mediated interactions between active droplets

    NASA Astrophysics Data System (ADS)

    Moerman, Pepijn G.; Moyses, Henrique W.; van der Wee, Ernest B.; Grier, David G.; van Blaaderen, Alfons; Kegel, Willem K.; Groenewold, Jan; Brujic, Jasna

    2017-09-01

    Concentration gradients play a critical role in embryogenesis, bacterial locomotion, as well as the motility of active particles. Particles develop concentration profiles around them by dissolution, adsorption, or the reactivity of surface species. These gradients change the surface energy of the particles, driving both their self-propulsion and governing their interactions. Here, we uncover a regime in which solute gradients mediate interactions between slowly dissolving droplets without causing autophoresis. This decoupling allows us to directly measure the steady-state, repulsive force, which scales with interparticle distance as F ˜1 /r2 . Our results show that the dissolution process is diffusion rather than reaction rate limited, and the theoretical model captures the dependence of the interactions on droplet size and solute concentration, using a single fit parameter, l =16 ±3 nm , which corresponds to the length scale of a swollen micelle. Our results shed light on the out-of-equilibrium behavior of particles with surface reactivity.

  20. Development of a potassium-selective optode for hydroponic nutrient solution monitoring.

    PubMed

    Bamsey, Matthew; Berinstain, Alain; Dixon, Michael

    2012-08-06

    Highly efficient and reliable plant growth such as that required in biological life support systems for future space-based missions can be better achieved with knowledge of ion concentrations within the hydroponic nutrient solution. This paper reports on the development and application of ion-selective bulk optodes to plant growth systems. Membranes for potassium-selective sensing are reported that have been tailored so that their dynamic range is centred on potassium activities within typical nutrient solution recipes. The developed sensors have been shown to exhibit a potassium activity measuring range from 0.134 to 117 mM at pH 6.0. These bulk optodes show full scale response on the order of several minutes. They show minimal interference to other cations and meet worst-case selectivity requirements for potassium monitoring in the considered half strength Hoagland solution. When continuously immersed in nutrient solution, these sensors demonstrated predicable lifetimes on the order of 50h. The developed instrument for absorption-based measurements including light source, mini-spectrometer and optode probe is presented. Custom instrument control and monitoring software including a spectral normalization procedure, use of a dual-wavelength absorbance ratio technique and automatic adjustment for pH variation result in an instrument that is self-calibrating and one that can account for effects such as light source fluctuations, membrane thickness variations and a variety of other factors. The low mass, low volume nature of bulk optode sensing systems, make them a promising technology for future space-based plant production systems. Their low-cost and technology transfer potential suggest that they could provide terrestrial growers a new and reliable mechanism to obtain ion-selective knowledge of their nutrient solution, improving yields, reducing costs and aiding in compliance to continually more stringent environmental regulation. Crown Copyright © 2012. Published

  1. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false Monitoring activities. 300.120 Section 300.120 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  2. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Monitoring activities. 300.120 Section 300.120 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION OF CHILDREN...

  3. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Monitoring activities. 300.120 Section 300.120 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  4. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false Monitoring activities. 300.120 Section 300.120 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  5. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true Monitoring activities. 300.120 Section 300.120 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION OF CHILDREN...

  6. Spectrum Monitoring Using SpectrumAnalysis LabVIEW Software, Nanoceptors, and Various Digitizing Solutions

    DTIC Science & Technology

    2015-02-01

    Spectrum Monitoring Using SpectrumAnalysis LabVIEW Software, Nanoceptors, and Various Digitizing Solutions by Joshua Smith ARL-TR-7217...1138 ARL-TR-7217 February 2015 Spectrum Monitoring Using SpectrumAnalysis LabVIEW Software, Nanoceptors, and Various Digitizing Solutions...REPORT TYPE Final 3. DATES COVERED (From - To) 06/2014–07/2014 4. TITLE AND SUBTITLE Spectrum Monitoring Using Spectrum Analysis LabVIEW

  7. Active Monitoring Complex-Envelope Processing

    NASA Astrophysics Data System (ADS)

    Unger, R.

    2011-12-01

    Pseudo-random 3-D signal transmission followed by quadrature signal processing significantly enhances seismic Active Monitoring (AM). The algorithm produces complex-envelope seismograms consisting of the dual time series of instantaneous amplitude and phase. Minimum-standard-deviation signal arrival detection and timing from coherent instantaneous-phase seismogram ensembles yields signal time errors inversely proportional to frequency and signal-to-noise ratio. In particular, application to piezo-electric acoustic cross well monitoring as in SAFOD experiments should result in nano-second multiple-signal detection and timing precision. The method is applicable to all types (seismic, EM, acoustic) of AM.

  8. Reporters to monitor cellular MMP12 activity

    NASA Astrophysics Data System (ADS)

    Cobos-Correa, Amanda; Mall, Marcus A.; Schultz, Carsten

    2010-02-01

    Macrophage elastase, also called MMP12, belongs to a family of proteolytic enzymes whose best known physiological function is the remodeling of the extracellular matrix. Under certain pathological conditions, including inflammation, chronic overexpression of MMP12 has been observed and its elevated proteolytic activity has been suggested to be the cause of pulmonary emphysema. However, it was until recently impossible to monitor the activity of MMP12 under disease conditions, mainly due to a lack of detection methods. Recent development of new reporters for monitoring MMP12 activity in living cells, such as LaRee1, provided novel insights into the pathobiology of MMP12 in pulmonary inflammation.1 In the future, these reporters might contribute to improved diagnosis and in finding better treatments for chronic inflammatory lung diseases and emphysema. Our approach for visualizing MMP12 activity is based on peptidic, membrane-targeted FRET (Foerster Resonance Energy Transfer) reporters. Here we describe a set of new reporters containing different fluorophore pairs as well as modifications in the membrane-targeting lipid moiety. We studied the influence of these modifications on reporter performance and the reporter mobility on live cell membranes by FRAP (fluorescence recovery after photobleaching). Finally, we generated several new fluorescently labeled MMP inhibitors based on the peptidic reporter structures as prototypes for future tools to inhibit and monitor MMP activity at the same time.

  9. Devices for monitoring content of microparticles and bacterium in injection solutions in pharmaceutical production

    NASA Astrophysics Data System (ADS)

    Bilyi, Olexander I.; Getman, Vasyl B.; Konyev, Fedir A.; Sapunkov, Olexander; Sapunkov, Pavlo G.

    2001-06-01

    The devices for monitoring of parameters of efficiency of water solutions filtration, which are based on the analysis of scattered light by microparticles are considered in this article. The efficiency of using of devices in pharmaceutics in technological processes of manufacturing medical injection solutions is shown. The examples of monitoring of contents of bacterial cultures Pseudomonas aeruginosa, Escherichia coli, and Micrococcus luteus in water solutions of glucose are indicated.

  10. Multiwavelength Monitoring of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2001-01-01

    By intensive monitoring of AGN variability over a large range in wavelength, we can probe the structure and physics of active galactic nuclei on microarcsecond angular scales. For example, multi-wavelength variability data allow us (a) to establish causal relationships between variations in different wavebands, and thus determine which physical processes are primary and which spectral changes are induced by variations at other wavelengths, and (b) through reverberation mapping of the UV/optical emission lines, to determine the structure and kinematics of the line-emitting region, and thus accurately determine the central masses in AGNs. Multiwavelength monitoring is resource-intensive, and is difficult to implement with general-purpose facilities. As a result, virtually all programs undertaken to date have been either sparsely sampled, or short in duration, or both. The potentially high return on this type of investigation, however, argues for dedicated facilities for multiwavelength monitoring programs.

  11. In Situ Monitoring of Soil Solution Nitrate in Saturated and Unsaturated Sandy Soil

    NASA Astrophysics Data System (ADS)

    Tuli, A.; Wei, J.; Shaw, B. D.; Hopmans, J. W.

    2008-12-01

    A lack of in-situ instrumentation limits continuous monitoring of soil solution concentration to evaluate environmental (contaminants) and agricultural management (plant nutrients) practices. We developed a prototype soil solution monitoring technique, to measure long-term in-situ nitrate concentration, consisting of an in-situ stainless-steel porous cup, with real time concentration measurements using a UV fiber-optic sensor. The measurement technique does not require soil solution extraction, but is based on in-situ soil solution equilibration by diffusion between the porous cup and the surrounding medium. The technique is presented for nitrate solution at different soil moisture status using new designed of solution samplers. Analytical solutions are presented to evaluate solute diffusion coefficients, as controlled by a variety of soil water contents. The principles of operation are demonstrated for diffusion a saturated and unsaturated Oso Flaco Sand, illustrating the potential application solution samplers in a soil environment

  12. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  13. Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Volpi, Michele; Copa, Loris

    2010-05-01

    The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of

  14. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  15. Regenerable activated bauxite adsorbent alkali monitor probe

    SciTech Connect

    Lee, S.H.D.

    1991-01-22

    This invention relates to a regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor 5 concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC 10 exhaust gases.

  16. [A monitor of the biomechanical cardiac activity].

    PubMed

    Masloboev, Iu P; Okhritskiĭ, A A; Prilutskiĭ, D A; Selishchev, S V

    2004-01-01

    A monitor of the biomechanical cardiac activity is described, which was elaborated on the basis of the accelerometer sensor and sigma-delta ADC for the purpose of registering the ballistocardiograms and seismocardiograms. The device ensures a non-stop signal recording for as long as 8 hours with the data being preserved in an inbuilt memory. Data are fed to the computer through the USB port. An algorithm is suggested for recordings processing by using the neuron-net technologies.

  17. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  18. Activity monitor accuracy in persons using canes.

    PubMed

    Wendland, Deborah Michael; Sprigle, Stephen H

    2012-01-01

    The StepWatch activity monitor has not been validated on multiple indoor and outdoor surfaces in a population using ambulation aids. The aims of this technical report are to report on strategies to configure the StepWatch activity monitor on subjects using a cane and to report the accuracy of both leg-mounted and cane-mounted StepWatch devices on people ambulating over different surfaces while using a cane. Sixteen subjects aged 67 to 85 yr (mean 75.6) who regularly use a cane for ambulation participated. StepWatch calibration was performed by adjusting sensitivity and cadence. Following calibration optimization, accuracy was tested on both the leg-mounted and cane-mounted devices on different surfaces, including linoleum, sidewalk, grass, ramp, and stairs. The leg-mounted device had an accuracy of 93.4% across all surfaces, while the cane-mounted device had an aggregate accuracy of 84.7% across all surfaces. Accuracy of the StepWatch on the stairs was significantly less accurate (p < 0.001) when comparing surfaces using repeated measures analysis of variance. When monitoring community mobility, placement of a StepWatch on a person and his/her ambulation aid can accurately document both activity and device use.

  19. Sentinel-1 Contribution to Monitoring Maritime Activity in the Arctic

    NASA Astrophysics Data System (ADS)

    Santamaria, Carlos; Greidanus, Harm; Fournier, Melanie; Eriksen, Torkild; Vespe, Michele; Alvarez, Marlene; Arguedas, Virginia Fernandez; Delaney, Conor; Argentieri, Pietro

    2016-08-01

    This paper presents results on the use of Sentinel-1 combined with satellite AIS to monitor maritime activity in the Arctic. Such activities are expected to increase, even if not uniformly across the Arctic, as the ice cover in the region retreats due to changes in climate. The objectives of monitoring efforts in the region can vary from country to country, but are generally related to increasing awareness on non- cooperative, small and cruise ships, fisheries, safety at sea, and Search and Rescue. A ship monitoring study has been conducted, involving more than 2,000 Sentinel-1 images acquired during one year in the central Arctic, where the ship densities are high. The main challenges to SAR-based monitoring in this area are described, solutions for some of them are proposed, and analyses of the results are shown. With the high detection thresholds needed to prevent false alarms from sea ice, 16% of the ships detected overall in the Sentinel-1 images have not been correlated to AIS- transmitting ships, and 48% of the AIS-transmitting ships are not correlated to ships detected in the images.

  20. A real time monitoring system of ringer's solution residual amount for automatic nursing in hopsitals

    NASA Astrophysics Data System (ADS)

    Kwon, Jong-Won; Ha, Kwan-Yong; Nam, Chul; Ayurzana, Odgelral; Kim, Hie-Sik

    2005-12-01

    A real-time embedded system was developed for remote monitoring and checking the residual quantity and changing of Ringer's solution. It is monitored nurses' room. A Load Cell was applied as a sensor to check the residual quantity of Ringer's solution. This Load Cell detects the physical changes of Ringer's solution and transfers electronic signal to the amplifier. Amplified analog signal is converted into digital signal by A/D converter. Developed Embedded system, which computes these data with microprocess (8052) then makes it possible to monitor the residual quantity of Ringer's solution real-time on a server computer. A Checking system on Residual Quantity of Ringer's Solution Using Load cell cut costs using a simple design for a circuit.

  1. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2004-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  2. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2002-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  3. Solution of magnetometry problems related to monitoring remote pipeline systems

    NASA Astrophysics Data System (ADS)

    Sergeev, Andrey V.; Denisov, Alexey Y.; Narkhov, Eugene D.; Sapunov, Vladimir A.

    2016-09-01

    The purpose of this paper is to solve two fundamental tasks, i.e., to design the pipeline model with sufficient adequacy and reproducibility, and to solve the inverse problem for the transition from the experimental data on the magnetic field in the measurement area directly to the pipeline characteristics, which are necessary for mapping pipes location and finding coordinates of welds. The paper presents a mathematical ideal pipeline model in the geomagnetic field without considering the pipe material. The solution of the direct and inverse problems are described, and the directions of the model development and methods of data interpretation are presented.

  4. Accelerometer's position independent physical activity recognition system for long-term activity monitoring in the elderly.

    PubMed

    Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung; Kim, Tae-Seong

    2010-12-01

    Mobility is a good indicator of health status and thus objective mobility data could be used to assess the health status of elderly patients. Accelerometry has emerged as an effective means for long-term physical activity monitoring in the elderly. However, the output of an accelerometer varies at different positions on a subject's body, even for the same activity, resulting in high within-class variance. Existing accelerometer-based activity recognition systems thus require firm attachment of the sensor to a subject's body. This requirement makes them impractical for long-term activity monitoring during unsupervised free-living as it forces subjects into a fixed life pattern and impede their daily activities. Therefore, we introduce a novel single-triaxial-accelerometer-based activity recognition system that reduces the high within-class variance significantly and allows subjects to carry the sensor freely in any pocket without its firm attachment. We validated our system using seven activities: resting (lying/sitting/standing), walking, walking-upstairs, walking-downstairs, running, cycling, and vacuuming, recorded from five positions: chest pocket, front left trousers pocket, front right trousers pocket, rear trousers pocket, and inner jacket pocket. Its simplicity, ability to perform activities unimpeded, and an average recognition accuracy of 94% make our system a practical solution for continuous long-term activity monitoring in the elderly.

  5. Multiwavelength monitoring of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Urry, C. M.

    1993-01-01

    Recent multiwavelength monitoring of active galactic nuclei (AGN), particularly with the IUE satellite, has produced extraordinay advances in our understanding of the energy-generation mechanism(s) in the central engine and of the structure of the surrounding material. Examples discussed here include both ordinary AGN and blazars (the collective name for highly variable, radio-loud AGN like BL Lac objects and Optically Violently Variable quasars). In the last decade, efforts to obtain single-epoch multiwavelength spectra led to fundamentally new models for the structure of AGN, involving accretion disks for AGN and relativistic jets for blazars. Recent extensions of multiwavelength spectroscopy into the temporal domain have shown that while these general pictures may be correct, the details were probably wrong. Campaigns to monitor Seyfert 1 galaxies like NGC 4151, NGC 5548 and Fairall 9 at infrared, optical, ultraviolet and X-ray wavelengths indicate that broad-emission line regions are stratified by ionization, density, and velocity; argue against a standard thin accretion disk model; and suggest that X-rays represent primary rather than reprocessed radiation. For blazars, years of radio monitoring indicated emission from an inhomogeneous synchrotron-emitting plasma, which could also produce at least some of the shorter-wavelength emission. The recent month-long campaign to observe the BL Lac object PKS 2155-304 has revealed remarkably rapid variability that extends from the infrared through the X-ray with similar amplitude and little or no discernible lag. This lends strong support to relativistic jet models and rules out the proposed accretion disk model for the ultraviolet-X-ray continuum.

  6. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    SciTech Connect

    Frazier, T.P.

    1994-10-20

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans.

  7. Monitoring of Crew Activity with FAMOS

    NASA Astrophysics Data System (ADS)

    Wolf, L.; Cajochen, C.; Bromundt, V.

    2007-10-01

    The success of long duration space missions, such as manned missions to Mars, depends on high and sustained levels of vigilance and performance of astronauts and operators working in the technology rich environment of a spacecraft. Experiment 'Monitoring of Crew Activity with FAMOS' was set up to obtain operational experience with complimentary methods / technologies to assess the alertness / sleepiness status of selected AustroMars crewmembers on a daily basis. We applied a neurobehavioral test battery consisting of 1) Karolinska Sleepiness Scale KSS, 2) Karolinska Drowsiness Test KDT, 3) Psychomotor Vigilance Task PVT, combined with 4) left eye video recordings with an early prototype of the FAMOS Fatigue Monitoring System headset currently being developed by Sowoon Technologies (CH), and 5) Actiwatches that were worn continuously. A test battery required approximately 15 minutes and was repeated up to 4 times daily by 2 to 4 subjects. Here we present the data analysis of methods 1, 2, 3, and 5, while data analysis of method 4 is still in progress.

  8. Active chaotic excitation for bolted joint monitoring

    NASA Astrophysics Data System (ADS)

    Fasel, Timothy R.; Todd, Michael D.; Park, Gyuhae

    2006-03-01

    Recent research has shown that high frequency chaotic excitation and state space reconstruction may be used to identify incipient damage (loss of preload) in a bolted joint. In this study, a new experiment is undertaken with updated test equipment, including a piezostack actuator that allows for precise control of bolt preload. The excitation waveform is applied to a macro-fiber composite (MFC) patch that is bonded to the test structure and is sensed in an active manner using a second MFC patch. A novel prediction error algorithm, based on comparing filtered properties of the guided chaotic waves, is used to determine the damage state of a frame structure and is shown to be highly sensitive to small levels of bolt preload loss. The performance of the prediction error method is compared with standard structural health monitoring damage features that are based on time series analysis using auto-regressive (AR) models.

  9. Antimicrobial activity of sodium hypochlorite-based irrigating solutions.

    PubMed

    Poggio, Claudio; Arciola, Carla Renata; Dagna, Alberto; Chiesa, Marco; Sforza, Dario; Visai, Livia

    2010-09-01

    The objective of the present study was the in vitro evaluation of the antimicrobial activity of three different NaOCl-based endodontic irrigating solutions: a 5.25% conventional sodium hypochlorite solution; and two new irrigating solutions, a 5.25% sodium hypochlorite solution with the addition of a proteolytic enzyme and a surfactant; and a 5.25% sodium hypochlorite gel with inorganic silicate. Enterococcus faecalis, Staphylococcus aureus and Streptococcus mutans strains were selected to evaluate the antimicrobial activity of the endodontic irrigating solutions by the agar disc diffusion test. Paper disks were saturated with each one of the tested solutions (at room temperature and pre-warmed at 45°C) and placed onto culture agar-plates pre-adsorbed with bacterial cells and further incubated for 24 h at 37°C. The growth inhibition zones around each irrigating solution were recorded and compared for each bacterial strain. The results were significantly different among the tested irrigating solutions: 5.25% sodium hypochlorite solution produced the highest inhibition areas; 5.25% sodium hypochlorite solution with a proteolytic enzyme and a surfactant, and 5.25% sodium hypochlorite gel with inorganic silicate showed the lowest zones of inhibition. Even if all tested irrigating solution possessed antibacterial activity versus all tested bacterial strains, 5.25% sodium hypochlorite solution with a proteolytic enzyme and a surfactant, and 5.25% sodium hypochlorite gel with inorganic silicate showed lower in vitro efficacy than 5.25% conventional sodium hypochlorite solution.

  10. WFSD fault monitoring using active seismic source

    NASA Astrophysics Data System (ADS)

    Yang, W.; Ge, H.; Wang, B.; Yuan, S.; Song, L.

    2010-12-01

    The Wenchuan Fault Scientific Drilling(WFSD)is a rapid response drilling project to the great Wenchuan earthquake. It focuses on the fault structure, earthquake physical mechanism, fluid and in-situ stress, energy budget and so on. Temporal variation of stress and physical property in the fault zone is important information for understanding earthquake physics, especially when the fault is still under the post-seismic recovery or stress modification. Seismic velocity is a good indicator of the medium mechanics, stress state within the fault zone. After the great Wenchuan Ms 8.0 earthquake, May 12, 2008, we built up a fault dynamic monitoring system using active seismic source cross the WFSD fault. It consists of a 10 ton accurately controlled eccentric mass source and eight receivers to continuously monitor the seismic velocity cross the fault zone. Combining the aftershock data, we try to monitor the fault recovery and some aftershock physical process. The observatory is located at the middle of the Longmenshan range-front fault, Mianzhu, Sichuan Province. The No.3 hole of WFSD is on the survey line near the No.4 receiver. The source and receiver site were carefully treated. All instruments were well installed to ensure the system's repeatability. Seismic velocity across the fault zone was monitored with continuous observation. The recording system consists of Guralp-40T short period seismometer and RefTek-130B recorder which was continuously GPS timed up to 20us. The active source ran since June 20, 2009. It was operated routinely at night and working continuously from 21:00 to 02:00 of the next day. So far, we have gotten almost one year recording. The seismic velocity variation may be caused by changes of the fault zone medium mechanical property, fault stress, fluid, and earth tide, barometric pressure and rainfall. Deconvolution, stacking and cross-correlation analysis were used for the velocity analysis. Results show that the relationship between seismic

  11. A Polymer "Pollution Solution" Classroom Activity.

    ERIC Educational Resources Information Center

    Helser, Terry L.

    1996-01-01

    Explains an approach to presenting polymer chemistry to nonmajors that employs polystyrene foam, foam peanuts made from water soluble starch, and water soluble plastic bags. Students are presented with a pollution scenario and are guided to the discovery of solutions. (DDR)

  12. A Polymer "Pollution Solution" Classroom Activity.

    ERIC Educational Resources Information Center

    Helser, Terry L.

    1996-01-01

    Explains an approach to presenting polymer chemistry to nonmajors that employs polystyrene foam, foam peanuts made from water soluble starch, and water soluble plastic bags. Students are presented with a pollution scenario and are guided to the discovery of solutions. (DDR)

  13. New seismic array solution for earthquake observations and hydropower plant health monitoring

    NASA Astrophysics Data System (ADS)

    Antonovskaya, Galina N.; Kapustian, Natalya K.; Moshkunov, Alexander I.; Danilov, Alexey V.; Moshkunov, Konstantin A.

    2017-09-01

    We present the novel fusion of seismic safety monitoring data of the hydropower plant in Chirkey (Caucasus Mountains, Russia). This includes new hardware solutions and observation methods, along with technical limitations for three types of applications: (a) seismic monitoring of the Chirkey reservoir area, (b) structure monitoring of the dam, and (c) monitoring of turbine vibrations. Previous observations and data processing for health monitoring do not include complex data analysis, while the new system is more rational and less expensive. The key new feature of the new system is remote monitoring of turbine vibration. A comparison of the data obtained at the test facilities and by hydropower plant inspection with remote sensors enables early detection of hazardous hydrodynamic phenomena.

  14. New seismic array solution for earthquake observations and hydropower plant health monitoring

    NASA Astrophysics Data System (ADS)

    Antonovskaya, Galina N.; Kapustian, Natalya K.; Moshkunov, Alexander I.; Danilov, Alexey V.; Moshkunov, Konstantin A.

    2017-03-01

    We present the novel fusion of seismic safety monitoring data of the hydropower plant in Chirkey (Caucasus Mountains, Russia). This includes new hardware solutions and observation methods, along with technical limitations for three types of applications: (a) seismic monitoring of the Chirkey reservoir area, (b) structure monitoring of the dam, and (c) monitoring of turbine vibrations. Previous observations and data processing for health monitoring do not include complex data analysis, while the new system is more rational and less expensive. The key new feature of the new system is remote monitoring of turbine vibration. A comparison of the data obtained at the test facilities and by hydropower plant inspection with remote sensors enables early detection of hazardous hydrodynamic phenomena.

  15. Passive and Active Sensing Technologies for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Do, Richard

    A combination of passive and active sensing technologies is proposed as a structural health monitoring solution for several applications. Passive sensing is differentiated from active sensing in that with the former, no energy is intentionally imparted into the structure under test; sensors are deployed in a pure detection mode for collecting data mined for structural health monitoring purposes. In this thesis, passive sensing using embedded fiber Bragg grating optical strain gages was used to detect varying degrees of impact damage using two different classes of features drawn from traditional spectral analysis and auto-regressive time series modeling. The two feature classes were compared in detail through receiver operating curve performance analysis. The passive detection problem was then augmented with an active sensing system using ultrasonic guided waves (UGWs). This thesis considered two main challenges associated with UGW SHM including in-situ wave propagation property determination and thermal corruption of data. Regarding determination of wave propagation properties, of which dispersion characteristics are the most important, a new dispersion curve extraction method called sparse wavenumber analysis (SWA) was experimentally validated. Also, because UGWs are extremely sensitive to ambient temperature changes on the structure, it significantly affects the wave propagation properties by causing large errors in the residual error in the processing of the UGWs from an array. This thesis presented a novel method that compensates for uniform temperature change by considering the magnitude and phase of the signal separately and applying a scalable transformation.

  16. Supplemental Report: Technetium-99 On-Line Monitoring by Beta Counting for Hanford Supernate Waste Solutions

    SciTech Connect

    Sigg, R.A.

    2000-08-23

    SRTC is investigating approaches for near-real-time monitoring of 99Tc at selected points in the proposed pretreatment process for Hanford supernate waste solutions. The desired monitoring points include both the feed to and decontaminated product from a technetium-removal column. A Cs-removal column precedes technetium decontamination in the proposed process. Our earlier report (Ref. 1) showed that a simple flow-through beta counting system can easily meet 99Tc detection limit goals for solutions that do not contain interfering radionuclides; however, concentrations of residual interferences were too high in process solutions at the desired monitoring points. That is, technetium can not be measured without additional purification. In this supplement, ADS evaluated ion exchange cartridges to remove radionuclides that interfere with 99Tc beta measurements. Tests on radioactive standard solutions and on Hanford Envelope B (AZ-102) pretreated process solutions show that 99Tc passes through the cation removal cartridge to an on-line beta counter, and that interfering radionuclides were nearly totally removed. Envelope B solutions included both the process's Cs-removed feed to the Tc-removal column and product from the column. Analyses of these solutions before and after the cation exchange cartridge show that the concentration of the primary interference, 137Cs, was reduced to about 1/250th of the feed concentration.

  17. Status and progress in on-line spectrometric monitoring and control of plant nutrient solutions

    NASA Astrophysics Data System (ADS)

    Schlager, K. J.

    Biotronics has been involved, under NASA sponsorship, in a wide ranging research and development program for instrumentation used in the monitoring and control of controlled environment agriculture. This program has embraced both chemical monitoring of plant nutrient solutions as well as microbiological monitoring of bacteria and fungi in these same solutions. This paper emphasizes the microbiological monitoring aspects of this program. In contrast to traditional methods of microbiological analysis based on culturing, staining and microscopic observation, the development described here is based on spectroscopic measurements, more specifically spectral fluorometry. The rationale, objectives, analytical methods and new instrumentation employed in the development of an on-line microbiological analyzer (MBA) are presented in some detail. Finally, the signal processing/pattern recognition methods used to evaluate the spectral data and produce estimates of microbial populations are described along with experimental test results to conclude the paper.

  18. Integration of structural health monitoring solutions onto commercial aircraft via the Federal Aviation Administration structural health monitoring research program

    NASA Astrophysics Data System (ADS)

    Swindell, Paul; Doyle, Jon; Roach, Dennis

    2017-02-01

    The Federal Aviation Administration (FAA) started a research program in structural health monitoring (SHM) in 2011. The program's goal was to understand the technical gaps of implementing SHM on commercial aircraft and the potential effects on FAA regulations and guidance. The program evolved into a demonstration program consisting of a team from Sandia National Labs Airworthiness Assurance NDI Center (AANC), the Boeing Corporation, Delta Air Lines, Structural Monitoring Systems (SMS), Anodyne Electronics Manufacturing Corp (AEM) and the FAA. This paper will discuss the program from the selection of the inspection problem, the SHM system (Comparative Vacuum Monitoring-CVM) that was selected as the inspection solution and the testing completed to provide sufficient data to gain the first approved use of an SHM system for routine maintenance on commercial US aircraft.

  19. An Automatic Tremor Activity Monitoring System (TAMS)

    NASA Astrophysics Data System (ADS)

    Kao, H.; Thompson, P. J.; Rogers, G.; Dragert, H.; Spence, G.

    2006-12-01

    We have developed an algorithm that quantitatively characterizes the level of seismic tremors from recorded seismic waveforms. For each hour of waveform at a given station, the process begins with the calculation of scintillation index and moving average with various time lengths. The scintillation index (essentially the `normalized variance of intensity of the signal') is adapted from the studies of pulses in radio waves and is an efficient tool to identify the energy bursts of tremor signals. Both scintillation index and moving average values are fed into a series of logic gates to determine if tremor activity exists. This algorithm is implemented in the Tremor Activity Monitoring System (TAMS) to provide automatic early alerts for episodic tremor and slip (ETS) events in the northern Cascadia margin. Currently, TAMS retrieves the digital waveforms recorded during the previous day from the Canadian National Seismographic Network (CNSN) archive server at 1 AM every morning. The detecting process is repeated for all stations and hours to determine the level of tremor activity of the previous day. If a sufficient number of stations within a radius of 100 km are determined to have tremor patterns and coherent tremor arrivals can be found at more than 3 stations, TAMS automatically sends out alert emails to a list of subscribers with a figure summarizing the hours and locations of coherent tremors. TAMS outputs are very consistent with the work done by visual inspection, especially for major ETS events. It is straightforward to configure TAMS into a near-real-time system that can send out hourly (or shorter) reports if necessary.

  20. A Systematic Review for Mobile Monitoring Solutions in M-Health.

    PubMed

    Villarreal, Vladimir; Hervás, Ramón; Bravo, José

    2016-09-01

    A systematic review allows us to identify, assess, and interpret all possible relevant work associated with a question in particular or the subject of an area. Different authors can use several methodologies to learn about research related to their own research in different fields. The main objective of this review is to identify work, research and publications made in the field of the mobile monitoring of patients through some application or commercial or non-commercial solutions in m-Health. Next, we compare the different solutions with our solution, MoMo (Mobile Monitoring) Framework. MoMo is a solution that allows for patient mobile monitoring through mobile phones and biometric devices (blood pressure meter, glucometer and others). Our systematic review is based on the methodology of B. Kitchenham. She proposed specific guidelines for carrying out a systematic review in software engineering. We prepare our systematic review base in the selection of primary and secondary research related to mobile monitoring solutions following criteria with a specific weight to compare with each part of our research.

  1. Application of refractometry to quality assurance monitoring of parenteral nutrition solutions.

    PubMed

    Chang, Wei-Kuo; Chao, You-Chen; Yeh, Ming-Kung

    2008-01-01

    Parenteral nutrition (PN) solution contains various concentrations of dextrose, amino acids, lipids, vitamins, electrolytes, and trace elements. Incorrect preparation of PN solution could lead to patient death. In this study we used the refractive index as a quality assurance tool to monitor the preparation of PN solution. Refractive indices of single nutrient components and PN solutions consisting of various concentrations of dextrose, amino acids, electrolytes, and lipids were measured. A mathematical equation and its linear plot were generated then used to predict the refractive index of the PN solution. The best-fit refractive index for PN solution (i.e., the predicted refractive index)=0.9798x(% dextrose)+1.2889x(% amino acids)+1.1017x(% lipids)+0.9440x(% sum of the electrolytes)+0.5367 (r2=0.99). This equation was validated by comparing the measured refractive indices of 500 clinical PN solutions to their predicted refractive indices. We found that 2 of the 500 prepared samples (0.4%) had less than the predicted refractive index (<95%). Refractive index can be used as a reliable quality assurance tool for monitoring PN preparation. Such information can be obtained at the bedside and used to confirm the accuracy of the PN solution composition.

  2. How consumer physical activity monitors could transform human physiology research.

    PubMed

    Wright, Stephen P; Hall Brown, Tyish S; Collier, Scott R; Sandberg, Kathryn

    2017-03-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O2, and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing.

  3. A System for Monitoring Posture and Physical Activity Using Accelerometers

    DTIC Science & Technology

    2007-11-02

    Abstract- Accelerometers can be used to monitor physical activity in the home over prolonged periods. We describe a novel system for...processing schema in which these parameters are extracted is described. Keywords - physical activity , accelerometers, congestive heart failure, chronic...When monitoring the condition of patients with neurodegenerative or chronic diseases, a knowledge of their body movement and physical activity

  4. Geothermal solute flux monitoring and the source and fate of solutes in the Snake River, Yellowstone National Park, WY

    USGS Publications Warehouse

    McCleskey, R. Blaine; Lowenstern, Jacob B.; Schaper, Jonas; Nordstrom, D. Kirk; Heasler, Henry P.; Mahony, Dan

    2016-01-01

    The combined geothermal discharge from over 10,000 features in Yellowstone National Park (YNP) can be can be estimated from the Cl flux in the Madison, Yellowstone, Falls, and Snake Rivers. Over the last 30 years, the Cl flux in YNP Rivers has been calculated using discharge measurements and Cl concentrations determined in discrete water samples and it has been determined that approximately 12% of the Cl flux exiting YNP is from the Snake River. The relationship between electrical conductivity and concentrations of Cl and other geothermal solutes was quantified at a monitoring site located downstream from the thermal inputs in the Snake River. Beginning in 2012, continuous (15 min) electrical conductivity measurements have been made at the monitoring site. Combining continuous electrical conductivity and discharge data, the Cl and other geothermal solute fluxes were determined. The 2013–2015 Cl fluxes (5.3–5.8 kt/yr) determined using electrical conductivity are comparable to historical data. In addition, synoptic water samples and discharge data were obtained from sites along the Snake River under low-flow conditions of September 2014. The synoptic water study extended 17 km upstream from the monitoring site. Surface inflows were sampled to identify sources and to quantify solute loading. The Lewis River was the primary source of Cl, Na, K, Cl, SiO2, Rb, and As loads (50–80%) in the Snake River. The largest source of SO4 was from the upper Snake River (50%). Most of the Ca and Mg (50–55%) originate from the Snake Hot Springs. Chloride, Ca, Mg, Na, K, SiO2, F, HCO3, SO4, B, Li, Rb, and As behave conservatively in the Snake River, and therefore correlate well with conductivity (R2 ≥ 0.97).

  5. Microsoft Business Solutions-Axapta as a basis for automated monitoring of high technology products competitiveness

    NASA Astrophysics Data System (ADS)

    Tashchiyan, G. O.; Sushko, A. V.; Grichin, S. V.

    2015-09-01

    One of the conditions of normal performance of the Russian economy is the problem of high technology products competitiveness. Different tools of these products estimation are used nowadays, one of them is automated monitoring of the high technology products in mechanical engineering. This system is developed on the basis of “Innovator" software integrated in Microsoft Business Solutions-Axapta.

  6. Stress monitoring versus microseismic ruptures in an active deep mine

    NASA Astrophysics Data System (ADS)

    Tonnellier, Alice; Bouffier, Christian; Bigarré, Pascal; Nyström, Anders; Österberg, Anders; Fjellström, Peter

    2015-04-01

    monitoring data coming from the mine in quasi-real time and facilitates information exchanges and decision making for experts and stakeholders. On the basis of these data acquisition and sharing, preliminary analysis has been started to highlight whether stress variations and seismic sources behaviour might be directly bound with mine working evolution and could improve the knowledge on the equilibrium states inside the mine. Knowing such parameters indeed will be a potential solution to understand better the response of deep mining activities to the exploitation solicitations and to develop, if possible, methods to prevent from major hazards such as rock bursts and other ground failure phenomena.

  7. Isotherm-Based Thermodynamic Model for Solute Activities of Asymmetric Electrolyte Aqueous Solutions.

    PubMed

    Nandy, Lucy; Dutcher, Cari S

    2017-08-04

    Adsorption isotherm-based statistical thermodynamic models can be used to determine solute concentration and solute and solvent activities in aqueous solutions. Recently, the number of adjustable parameters in the isotherm model of Dutcher et al. J. Phys. Chem. A/C 2011, 2012, 2013 were reduced for neutral solutes as well as symmetric 1:1 electrolytes by using a Coulombic model to describe the solute - solvent energy interactions (Ohm et al. J. Phys. Chem. A 2015, Nandy et al. J. Phys. Chem. A 2016). Here, the Coulombic treatment for symmetric electrolytes is extended to establish improved isotherm model equations for asymmetric 1-2 and 1-3 electrolyte systems. The Coulombic model developed here results in prediction of activities and other thermodynamic properties in multicomponent systems containing ions of arbitrary charge. The model is found to accurately calculate osmotic coefficient over the entire solute concentration range with two model parameters, related to intermolecular solute-solute and solute-solvent spacing. The inorganic salts and acids treated here are generally considered to be fully dissociated. However, there are certain weak acids that do not dissociate completely, such as the bisulfate ion. In this work, partial dissociation of the bisulfate ion from sulfuric acid is treated as a mixture, with an additional model parameter which accounts for dissociation ratio of the dissociated ions to non-dissociated ions.

  8. Deformation Monitoring of AN Active Fault

    NASA Astrophysics Data System (ADS)

    Ostapchuk, A.

    2015-12-01

    The discovery of low frequency earthquakes, slow slip events and other deformation phenomena, new for geophysics, change our understanding of how the energy accumulated in the Earth's crust do release. The new geophysical data make one revise the underlying mechanism of geomechanical processes taking place in fault zones. Conditions for generating different slip modes are still unclear. The most vital question is whether a certain slip mode is intrinsic for a fault or may be controlled by external factors. This work presents the results of two and a half year deformation monitoring of a discontinuity in the zone of the Main Sayanskiy Fault. Main Sayanskiy Fault is right-lateral strike-slip fault. Observations were performed in the tunnel of Talaya seismic station (TLY), Irkutsk region, Russia. Measurements were carried out 70 m away from the entrance of the tunnel, the thickness of overlying rock was about 30 m. Inductive sensors of displacement were mounted at the both sides of a discontinuity, which recorded three components of relative fault side displacement with the accuracy of 0.2 mcm. Temperature variation inside the tunnel didn't exceed 0.5oC during the all period of observations. Important information about deformation properties of an active fault was obtained. A pronounced seasonality of deformation characteristics of discontinuity is observed in the investigated segment of rock. A great number of slow slip events with durations from several hours to several weeks were registered. Besides that alterations of fault deformation characteristics before the megathrust earthquake M9.0 Tohoku Oki 11 March 2011 and reaction to the event itself were detected. The work was supported by the Russian Science Foundation (grant no. 14-17-00719).

  9. Using electrical conductivity to monitor geothermal solute flux in major rivers of Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    McCleskey, R. B.; Mahony, D.; Lowenstern, J. B.; Heasler, H.; Nordstrom, D. K.

    2014-12-01

    Thermal output from the magma chamber underlying Yellowstone National Park (YNP) can be estimated by monitoring Cl flux in major rivers draining the park. The U.S. Geological Survey (USGS) and the National Park Service have collaborated on Cl flux monitoring towards this end since the 1970s. Researchers collected water samples from the major rivers in YNP, but funding restrictions, winter travel, and the great distances between sites limits the number of samples collected annually. The use of electrical conductivity, which is relatively easy to measure and can be automated, as a proxy for Cl enables a more consistent monitoring of thermal output. To accomplish this, it is crucial to accurately quantify the relationship between electrical conductivity, Cl, and other geothermal solutes (SO4, F, HCO3, SiO2, K, Li, B, and As) along the Madison, Firehole, Gibbon, Snake, Gardner, and Yellowstone Rivers. Conductivity measurements were made every 15 minutes adjacent to USGS stream gages, allowing for the determination of solute fluxes. In addition, continuous conductivity measurements can be used to identify changes in river chemistry as a result of geysers eruptions, rain events, or changes in thermal inputs as a result of earthquakes or other natural events. Depending on the site, we have collected 2 to 5 years of conductivity measurements. Except for some trace elements (Fe and Hg), most solutes behave conservatively, and the ratio of geothermal solute concentrations are constant. Hence, dissolved concentrations of Cl, SO4, F, HCO3, SiO2, K, Li, Ca, B, and As correlate well with conductivity (R2 > 0.96). The use of conductivity to estimate solute concentrations and fluxes will provide a greater understanding of the systematics of the Yellowstone thermal output and allow for monitoring of many more solutes at a much higher temporal frequency.

  10. Geophysical Mapping and Monitoring of Active Planets (GMAP)

    NASA Astrophysics Data System (ADS)

    McGovern, P. J.; Goossens, S. J.; Lemoine, F. G.

    2017-02-01

    Recent findings require a strongly upward revision of volcano-tectonic activity rate estimates for Venus and Mars. We propose a program of Geophysical Mapping and Monitoring of Active Planets (GMAP) including seismology, gravimetry, InSAR, and GPS.

  11. Employing Magnetic Levitation to Monitor Reaction Kinetics and Measure Activation Energy

    ERIC Educational Resources Information Center

    Benz, Lauren; Cesafsky, Karen E.; Le, Tran; Park, Aileen; Malicky, David

    2012-01-01

    This article describes a simple and inexpensive undergraduate-level kinetics experiment that uses magnetic levitation to monitor the progress and determine the activation energy of a condensation reaction on a polymeric solid support. The method employs a cuvette filled with a paramagnetic solution positioned between two strong magnets. The…

  12. Employing Magnetic Levitation to Monitor Reaction Kinetics and Measure Activation Energy

    ERIC Educational Resources Information Center

    Benz, Lauren; Cesafsky, Karen E.; Le, Tran; Park, Aileen; Malicky, David

    2012-01-01

    This article describes a simple and inexpensive undergraduate-level kinetics experiment that uses magnetic levitation to monitor the progress and determine the activation energy of a condensation reaction on a polymeric solid support. The method employs a cuvette filled with a paramagnetic solution positioned between two strong magnets. The…

  13. Instructional physical activity monitor video in english and spanish

    USDA-ARS?s Scientific Manuscript database

    The ActiGraph activity monitor is a widely used method for assessing physical activity. Compliance with study procedures in critical. A common procedure is for the research team to meet with participants and demonstrate how and when to attach and remove the monitor and convey how many wear-days are ...

  14. Enhancement of sub-daily positioning solutions for surface deformation monitoring at Deception volcano (South Shetland Islands, Antarctica)

    NASA Astrophysics Data System (ADS)

    Prates, G.; Berrocoso, M.; Fernández-Ros, A.; García, A.

    2013-02-01

    Deception Island is one of the most visited places in Antarctica. There are biological, geological, and archeological features that are major attractions within Port Foster, its horse shoe-shaped natural inner bay, and two scientific bases that are occupied during austral summers. Deception Island is an active volcano, however, and needs to be monitored in order to reduce risk to people on the island. Surface deformation in response to fluid pressure is one of the main volcanic activities to observe. Automated data acquisition and processing using the global navigation satellite systems allow measurements of surface deformation in near real time. Nevertheless, the positioning repeatability in sub-daily solutions is affected by geophysical influences such as ocean tidal loading, among others. Such periodic influences must be accurately modeled to achieve similar repeatability as daily solutions that average them. However, a single solution each 24 h will average out the deformation suffered during that period, and the position update waiting time can be a limitation for near real-time purposes. Throughout the last five austral summer campaigns in Deception, using simultaneous wireless communications between benchmarks, a processing strategy was developed to achieve millimeter-level half-hourly positioning solutions that have similar repeatability as those given by 24-h solutions. For these half-hourly solutions, a tidal analysis was performed to assess any mismodeling of ocean tide loading, and a discrete Kalman filter was designed and implemented to enhance the sub-daily positioning repeatability. With these solutions, the volcano-dynamic activity resulting in localized surface deformation for the last five austral summer campaigns is addressed. Although based on only three carefully located benchmarks, it is shown that Deception has been shortening and subsiding during these last 4 years. The method's accuracy in baselines up to a few hundred kilometers assures

  15. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    SciTech Connect

    Nickels, J.M.

    1991-06-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs.

  16. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review

    PubMed Central

    Block, Valerie A. J.; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A. C.; Allen, Diane D.; Gelfand, Jeffrey M.

    2016-01-01

    Objective To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Methods Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. Results 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. Conclusions These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability. PMID:27124611

  17. Active filter solutions for utility interface of industrial loads

    SciTech Connect

    Bhattacharya, S.; Divan, D.

    1995-12-31

    Active filters are an effective means for harmonic compensation of non-linear power electronic loads, of particular importance as utilities enforce harmonic standards such as IEEE 519. Harmonic compensation is an extremely cost sensitive application since the value-added to the user is not apparent. This paper addresses the cost effectiveness of various active filter topologies for utility interface of industrial loads and their application. Pure active filter solutions and hybrid active filter solutions are both seen to have merit in realizing a harmonic free utility interface for industrial loads rated at 100 kW to 100 MW. The objective of this paper is to present a methodology, for both the industrial user and the utility, to match the optimal active filter solution to their application.

  18. Adsorption of EDTA on activated carbon from aqueous solutions.

    PubMed

    Zhu, Hai-song; Yang, Xiao-juan; Mao, Yan-peng; Chen, Yu; Long, Xiang-li; Yuan, Wei-kang

    2011-01-30

    In this study, the adsorption of EDTA on activated carbon from aqueous solutions has been investigated in a batch stirred cell. Experiments have been carried out to investigate the effects of temperature, EDTA concentration, pH, activated carbon mass and particle size on EDTA adsorption. The experimental results manifest that the EDTA adsorption rate increases with its concentration in the aqueous solutions. EDTA adsorption also increases with temperature. The EDTA removal from the solution increases as activated carbon mass increases. The Langmuir and Freundlich equilibrium isotherm models are found to provide a good fitting of the adsorption data, with R(2) = 0.9920 and 0.9982, respectively. The kinetic study shows that EDTA adsorption on the activated carbon is in good compliance with the pseudo-second-order kinetic model. The thermodynamic parameters (E(a), ΔG(0), ΔH(0), ΔS(0)) obtained indicate the endothermic nature of EDTA adsorption on activated carbon.

  19. Label-free monitoring of interaction between DNA and oxaliplatin in aqueous solution by terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojun; E, Yiwen; Xu, Xinlong; Wang, Li

    2012-07-01

    We demonstrated the feasibility of applying terahertz time-domain spectroscopy (THz-TDS) to monitor the molecular reactions in aqueous solutions of anticancer drug oxaliplatin with λ-DNA and macrophages DNA. The reaction time dependent refractive index and absorption coefficient were extracted and analyzed. The reaction half-decaying time of about 4.0 h for λ-DNA and 12.9 h for M-DNA was established. The results suggest that the THz-TDS detection could be an effective label-free technique to sense the molecular reaction in aqueous solutions and could be very useful in biology, medicine, and pharmacy industry.

  20. Comprehensive Monitoring of a Student's Activities.

    ERIC Educational Resources Information Center

    Rubovits, Donald F.; Mulberry, Jay F.

    Individualized instruction and the associated accountability mean more documentation for teachers. How can teacher productivity be increased to handle the heavier workload? The solution for the Jacqueline Vaughn Occupational High School, a special education school in Chicago, was a networked local school computer linked to each teacher's personal…

  1. Solute and geothermal flux monitoring using electrical conductivity in the Madison, Firehole, and Gibbon Rivers, Yellowstone National Park

    USGS Publications Warehouse

    McCleskey, R. Blaine; Clor, Laura; Lowenstern, Jacob B.; Evans, William C.; Nordstrom, D. Kirk; Heasler, Henry; Huebner, Mark

    2012-01-01

    The thermal output from the Yellowstone magma chamber can be estimated from the Cl flux in the major rivers in Yellowstone National Park; and by utilizing continuous discharge and electrical conductivity measurements the Cl flux can be calculated. The relationship between electrical conductivity and concentrations of Cl and other geothermal solutes (Na, SO4, F, HCO3, SiO2, K, Li, B, and As) was quantified at monitoring sites along the Madison, Gibbon, and Firehole Rivers, which receive discharge from some of the largest and most active geothermal areas in Yellowstone. Except for some trace elements, most solutes behave conservatively and the ratios between geothermal solute concentrations are constant in the Madison, Gibbon, and Firehole Rivers. Hence, dissolved concentrations of Cl, Na, SO4, F, HCO3, SiO2, K, Li, Ca, B and As correlate well with conductivity (R2 > 0.9 for most solutes) and most exhibit linear trends. The 2011 flux for Cl, SO4, F and HCO3 determined using automated conductivity sensors and discharge data from nearby USGS gaging stations is in good agreement with those of previous years (1983–1994 and 1997–2008) at each of the monitoring sites. Continuous conductivity monitoring provides a cost- and labor-effective alternative to existing protocols whereby flux is estimated through manual collection of numerous water samples and subsequent chemical analysis. Electrical conductivity data also yield insights into a variety of topics of research interest at Yellowstone and elsewhere: (1) Geyser eruptions are easily identified and the solute flux quantified with conductivity data. (2) Short-term heavy rain events can produce conductivity anomalies due to dissolution of efflorescent salts that are temporarily trapped in and around geyser basins during low-flow periods. During a major rain event in October 2010, 180,000 kg of additional solute was measured in the Madison River. (3) The output of thermal water from the Gibbon River appears to have

  2. Modeling Activity: Ions to Hydrophobics in Crowded Biological Solutions

    NASA Astrophysics Data System (ADS)

    Pettitt, Montgomery

    2006-03-01

    Nonideal solutions play a role in many aspects of chemistry. As concentrations increase, concentration itself becomes a less useful quantity to understand equilibria. Industrial and medicinal chemistry often fail due to the difference between concentration and activity. An understanding of the impact of the crowded conditions in the cytoplasm on its biomolecules is of clear importance to biochemical, medical and pharmaceutical science. Work on the use of small biochemical compounds to crowd protein solutions indicates that a quantitative description of their non-ideal behavior is possible and straightforward. Here, we will show what the structural origin of this non-ideal solution behavior is from expression derived from a semi grand ensemble approach. We discuss the consequences of these findings regarding protein folding stability and solvation in crowded solutions through a structural analysis of the m-value or the change in free energy difference of a macromolecule in solution with respect to the concentration of a third component.

  3. Direct NMR Monitoring of Phase Separation Behavior of Highly Supersaturated Nifedipine Solution Stabilized with Hypromellose Derivatives.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu

    2017-07-03

    We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution (1)H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.

  4. Design, Synthesis, and Monitoring of Light-Activated Motorized Nanomachines

    NASA Astrophysics Data System (ADS)

    Chiang, Pinn-Tsong

    Our group has developed a family of single molecules termed nanocars, which are aimed at performing controllable motion on surfaces. In this work, a series of light-activated motorized nanomachines incorporated with a MHz frequency light-activated unidirectional rotary motor were designed and synthesized. We hope the light-activated motor can serve as the powering unit for the nanomachines, and perform controllable translational motion on surfaces or in solution. A series of motorized nanovehicles intended for scanning tunneling microscopy (STM) imaging were designed and synthesized. A p-carborane-wheeled motorized nanocar was synthesized and monitored by STM. Single-molecule imaging was accomplished on a Cu(111) surface. However, further manipulations did lead to motor induced lateral motion. We attributed this result to the strong molecule-surface interactions between the p-carborane-wheeled nanocar and the Cu(111) surface and possible energy transfer between the rotary motor and the Cu(111) surface. To fine-tune the molecule-surface interactions, an adamantane-wheeled motorized nanocar and a three-wheel nanoroadster were designed and synthesized. In addition, the STM substrates will be varied and different combinations of molecule-surface interactions will be studied. As a complimentary imaging method to STM, single-molecule fluorescence microscopy (SMFM) also provides single-molecule level resolution. Unlike STM experiment requires ultra-high vacuum and conductive substrate, SMFM experiment is conducted at ambient conditions and uses non-conductive substrate. This imaging method allows us to study another category of molecule-surface interactions. We plan to design a fluorescent motorized nanocar that is suitable for SMFM studies. However, both the motor and fluorophore are photochemically active molecules. In proximity, some undesired energy transfer or interference could occur. A cyanine 5- (cy5-) tagged motorized nanocar incorporated with the MHz motor was

  5. Comparative study on ATR-FTIR calibration models for monitoring solution concentration in cooling crystallization

    NASA Astrophysics Data System (ADS)

    Zhang, Fangkun; Liu, Tao; Wang, Xue Z.; Liu, Jingxiang; Jiang, Xiaobin

    2017-02-01

    In this paper calibration model building based on using an ATR-FTIR spectroscopy is investigated for in-situ measurement of the solution concentration during a cooling crystallization process. The cooling crystallization of L-glutamic Acid (LGA) as a case is studied here. It was found that using the metastable zone (MSZ) data for model calibration can guarantee the prediction accuracy for monitoring the operating window of cooling crystallization, compared to the usage of undersaturated zone (USZ) spectra for model building as traditionally practiced. Calibration experiments were made for LGA solution under different concentrations. Four candidate calibration models were established using different zone data for comparison, by using a multivariate partial least-squares (PLS) regression algorithm for the collected spectra together with the corresponding temperature values. Experiments under different process conditions including the changes of solution concentration and operating temperature were conducted. The results indicate that using the MSZ spectra for model calibration can give more accurate prediction of the solution concentration during the crystallization process, while maintaining accuracy in changing the operating temperature. The primary reason of prediction error was clarified as spectral nonlinearity for in-situ measurement between USZ and MSZ. In addition, an LGA cooling crystallization experiment was performed to verify the sensitivity of these calibration models for monitoring the crystal growth process.

  6. Micro-scale NMR Experiments for Monitoring the Optimization of Membrane Protein Solutions for Structural Biology

    PubMed Central

    Horst, Reto; Wüthrich, Kurt

    2016-01-01

    Reconstitution of integral membrane proteins (IMP) in aqueous solutions of detergent micelles has been extensively used in structural biology, using either X-ray crystallography or NMR in solution. Further progress could be achieved by establishing a rational basis for the selection of detergent and buffer conditions, since the stringent bottleneck that slows down the structural biology of IMPs is the preparation of diffracting crystals or concentrated solutions of stable isotope labeled IMPs. Here, we describe procedures to monitor the quality of aqueous solutions of [2H, 15N]-labeled IMPs reconstituted in detergent micelles. This approach has been developed for studies of β-barrel IMPs, where it was successfully applied for numerous NMR structure determinations, and it has also been adapted for use with α-helical IMPs, in particular GPCRs, in guiding crystallization trials and optimizing samples for NMR studies (Horst et al., 2013). 2D [15N, 1H]-correlation maps are used as “fingerprints” to assess the foldedness of the IMP in solution. For promising samples, these “inexpensive” data are then supplemented with measurements of the translational and rotational diffusion coefficients, which give information on the shape and size of the IMP/detergent mixed micelles. Using microcoil equipment for these NMR experiments enables data collection with only micrograms of protein and detergent. This makes serial screens of variable solution conditions viable, enabling the optimization of parameters such as the detergent concentration, sample temperature, pH and the composition of the buffer. PMID:27077076

  7. Micro-scale NMR Experiments for Monitoring the Optimization of Membrane Protein Solutions for Structural Biology.

    PubMed

    Horst, Reto; Wüthrich, Kurt

    2015-07-20

    Reconstitution of integral membrane proteins (IMP) in aqueous solutions of detergent micelles has been extensively used in structural biology, using either X-ray crystallography or NMR in solution. Further progress could be achieved by establishing a rational basis for the selection of detergent and buffer conditions, since the stringent bottleneck that slows down the structural biology of IMPs is the preparation of diffracting crystals or concentrated solutions of stable isotope labeled IMPs. Here, we describe procedures to monitor the quality of aqueous solutions of [(2)H, (15)N]-labeled IMPs reconstituted in detergent micelles. This approach has been developed for studies of β-barrel IMPs, where it was successfully applied for numerous NMR structure determinations, and it has also been adapted for use with α-helical IMPs, in particular GPCRs, in guiding crystallization trials and optimizing samples for NMR studies (Horst et al., 2013). 2D [(15)N, (1)H]-correlation maps are used as "fingerprints" to assess the foldedness of the IMP in solution. For promising samples, these "inexpensive" data are then supplemented with measurements of the translational and rotational diffusion coefficients, which give information on the shape and size of the IMP/detergent mixed micelles. Using microcoil equipment for these NMR experiments enables data collection with only micrograms of protein and detergent. This makes serial screens of variable solution conditions viable, enabling the optimization of parameters such as the detergent concentration, sample temperature, pH and the composition of the buffer.

  8. Impedance spectroscopy of micro-Droplets reveals activation of Bacterial Mechanosensitive Channels in Hypotonic Solutions

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Aida; Alam, Muhammad A.

    Rapid detection of bacterial pathogens is of great importance in healthcare, food safety, environmental monitoring, and homeland security. Most bacterial detection platforms rely on binary fission (i.e. cell growth) to reach a threshold cell population that can be resolved by the sensing method. Since cell division depends on the bacteria type, the detection time of such methods can vary from hours to days. In contrast, in this work, we show that bacteria cells can be detected within minutes by relying on activation of specific protein channels, i.e. mechanosensitive channels (MS channels). When cells are exposed to hypotonic solutions, MS channels allow efflux of solutes to the external solution which leads to release the excessive membrane tension. Release of the cytoplasmic solutes, in turn, results in increase of the electrical conductance measured by droplet-based impedance sensing. The approach can be an effective technique for fast, pre-screening of bacterial contamination at ultra-low concentration.

  9. Recovery of rhenium from sulfuric acid solutions with activated coals

    SciTech Connect

    Troshkina, I.D.; Naing, K.Z.; Ushanova, O.N.; P'o, V.; Abdusalomov, A.A.

    2006-09-15

    Equilibrium and kinetic characteristics of rhenium sorption from sulfuric acid solutions (pH 2) by activated coals produced from coal raw materials (China) were studied. Constants of the Henry equation describing isotherms of rhenium sorption by activated coals were calculated. The effective diffusion coefficients of rhenium in the coals were determined. The dynamic characteristics of rhenium sorption and desorption were determined for the activated coal with the best capacity and kinetic characteristics.

  10. Promise of Wearable Physical Activity Monitors in Oncology Practice.

    PubMed

    Beg, Muhammad S; Gupta, Arjun; Stewart, Tyler; Rethorst, Chad D

    2017-02-01

    Commercially available physical activity monitors provide clinicians an opportunity to obtain oncology patient health measures to an unprecedented degree. These devices can provide objective and quantifiable measures of physical activity, which are not subject to errors or bias of self-reporting or shorter duration of formal testing. Prior work on so-called quantified-self data was based on older-generation, research-grade accelerometers, which laid the foundation for consumer-based physical activity monitoring devices to be validated as a feasible and reliable tool in patients with cancer. Physical activity monitors are being used in chronic conditions including chronic obstructive pulmonary disease, congestive heart failure, diabetes mellitus, and obesity. Differing demographics, compounded with higher symptom and treatment burdens in patients with cancer, imply that additional work is needed to understand the unique strengths and weaknesses of physical activity monitors in this population. Oncology programs can systematically implement these tools into their workflows in an adaptable and iterative manner. Translating large amounts of data collected from an individual physical activity monitoring device into clinically relevant information requires sophisticated data compilation and reduction. In this article, we summarize the characteristics of older- and newer-generation physical activity monitors, review the validation of physical activity monitors with respect to health-related quality-of-life assessments, and describe the current role of these devices for the practicing oncologist. We also highlight the challenges and next steps needed for physical activity monitors to provide relevant information that can change the current state of oncology practice.

  11. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks.

    PubMed

    Navia, Marlon; Campelo, Jose C; Bonastre, Alberto; Ors, Rafael; Capella, Juan V; Serrano, Juan J

    2015-09-18

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature.

  12. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    PubMed Central

    Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  13. Passive and active structural monitoring experience: Civil engineering applications

    NASA Astrophysics Data System (ADS)

    Thompson, L. D.; Westermo, B. D.; Crum, D. B.; Law, W. R.; Trombi, R. G.

    2000-05-01

    State Departments of Transportation and regional city government officials are beginning to view the long-term monitoring of infrastructure as being beneficial for structural damage accumulation assessment, condition based maintenance, life extension, and post-earthquake or -hurricane (-tornado, -typhoon, etc.) damage assessment. Active and passive structural monitoring systems were installed over the last few years to monitor concerns in a wide range of civil infrastructure applications. This paper describes the monitoring technologies and systems employed for such applications. Bridge system applications were directed at monitoring corrosion damage accumulation, composite reinforcements for life extension, general service cracking damage related to fatigue and overloads, and post-earthquake damage. Residential system applications were directed primarily at identifying damage accumulation and post-earthquake damage assessment. A professional sports stadium was monitored for isolated ground instability problems and for post-earthquake damage assessment. Internet-based, remote, data acquisition system experience is discussed with examples of long-term passive and active system data collected from many of the individual sites to illustrate the potential for both passive and active structural health monitoring. A summary of system-based operating characteristics and key engineering recommendations are provided to achieve specific structural monitoring objectives for a wide range of civil infrastructure applications.

  14. Photocardiography: a novel method for monitoring cardiac activity in fish.

    PubMed

    Yoshida, Masayuki; Hirano, Ruriko; Shima, Takao

    2009-05-01

    A non-invasive technique to monitor cardiac activity in small fish, such as goldfish, zebrafish, and medaka, is needed. In the present study, we developed photocardiography (PCG), a non-invasive optical method, to record cardiac activity in small fish. The method monitors changes in near-infrared light transmission through the heart using a phototransistor located outside the body. With this technique, heartbeats in fish of various sizes (14-218 mm) were stably recorded. PCG was applied to monitor the heartbeat during fear-related classical heart rate conditioning in goldfish wherein an electrical shock was used as an unconditioned stimulus. The heartbeats were continuously monitored, even when the beat coincided with the electrical shock, showing that PCG is robust even in an electrically noisy environment. This technique is particularly useful when monitoring the heartbeats of fish of small size or in the presence of ambient electrical noise, conditions in which the use of conventional electrocardiography (ECG) is difficult.

  15. Construction monitoring activities in the ESF starter tunnel

    SciTech Connect

    Pott, J.; Carlisle, S.

    1994-05-01

    In situ design verification activities am being conducted in the North Ramp Starter Tunnel of the Yucca Mountain Project Exploratory Studies Facility. These activities include: monitoring the peak particle velocities and evaluating the damage to the rock mass associated with construction blasting, assessing the rock mass quality surrounding the tunnel, monitoring the performance of the installed ground support, and monitoring the stability of the tunnel. In this paper, examples of the data that have been collected and preliminary conclusions from the data are presented.

  16. Active subjects of passive monitoring: responses to a passive monitoring system in low-income independent living

    PubMed Central

    BERRIDGE, CLARA

    2016-01-01

    Passive monitoring technology is beginning to be reimbursed by third-party payers in the United States of America. Given the low voluntary uptake of these technologies on the market, it is important to understand the concerns and perspectives of users, former users and non-users. In this paper, the range of ways older adults relate to passive monitoring in low-income independent-living residences is presented. This includes experiences of adoption, non-adoption, discontinuation and creative ‘misuse’. The analysis of interviews reveals three key insights. First, assumptions built into the technology about how older adults live present a problem for many users who experience unwanted disruptions and threats to their behavioural autonomy. Second, resident response is varied and challenges the dominant image of residents as passive subjects of a passive monitoring system. Third, the priorities of older adults (e.g. safety, autonomy, privacy, control, contact) are more diverse and multi-faceted than those of the housing organisation staff and family members (e.g. safety, efficiency) who drive the passive monitoring intervention. The tension between needs, desires and the daily lives of older adults and the technological solutions offered to them is made visible by their active responses, including resistance to them. This exposes the active and meaningful qualities of older adults’ decisions and practices. PMID:28239211

  17. Active subjects of passive monitoring: responses to a passive monitoring system in low-income independent living.

    PubMed

    Berridge, Clara

    2017-03-01

    Passive monitoring technology is beginning to be reimbursed by third-party payers in the United States of America. Given the low voluntary uptake of these technologies on the market, it is important to understand the concerns and perspectives of users, former users and non-users. In this paper, the range of ways older adults relate to passive monitoring in low-income independent-living residences is presented. This includes experiences of adoption, non-adoption, discontinuation and creative 'misuse'. The analysis of interviews reveals three key insights. First, assumptions built into the technology about how older adults live present a problem for many users who experience unwanted disruptions and threats to their behavioural autonomy. Second, resident response is varied and challenges the dominant image of residents as passive subjects of a passive monitoring system. Third, the priorities of older adults (e.g. safety, autonomy, privacy, control, contact) are more diverse and multi-faceted than those of the housing organisation staff and family members (e.g. safety, efficiency) who drive the passive monitoring intervention. The tension between needs, desires and the daily lives of older adults and the technological solutions offered to them is made visible by their active responses, including resistance to them. This exposes the active and meaningful qualities of older adults' decisions and practices.

  18. Bigelow Expandable Activity Module (BEAM) Monitoring System

    NASA Technical Reports Server (NTRS)

    Wells, Nathan

    2017-01-01

    What is Bigelow Expandable Activity Module (BEAM)? The Bigelow Expandable Activity Module (BEAM) is an expandable habitat technology demonstration on ISS; increase human-rated inflatable structure Technology Readiness Level (TRL) to level 9. NASA managed ISS payload project in partnership with Bigelow Aerospace. Launched to ISS on Space X 8 (April 8th, 2016). Fully expanded on May 28th, 2016. Jeff Williams/Exp. 48 Commander first entered BEAM on June 5th, 2016.

  19. Use of a consumer market activity monitoring and feedback device improves exercise capacity and activity levels in COPD.

    PubMed

    Caulfield, Brian; Kaljo, Indira; Donnelly, Seamas

    2014-01-01

    COPD is associated with a gradual decline in physical activity, which itself contributes to a worsening of the underlying condition. Strategies that improve physical activity levels are critical to halt this cycle. Wearable sensor based activity monitoring and persuasive feedback might offer a potential solution. However it is not clear just how much intervention might be needed in this regard - i.e. whether programmes need to be tailored specifically for the target clinical population or whether more simple activity monitoring and feedback solutions, such as that offered in consumer market devices, might be sufficient. This research was carried out to investigate the impact of 4 weeks of using an off the shelf consumer market activity monitoring and feedback application on measures of physical activity, exercise capacity, and health related quality of life in a population of 10 Stage I and II COPD patients. Results demonstrate a significant and positive effect on exercise capacity (measured using a 6-minute walk test) and activity levels (measured in terms of average number of steps per hour) yet no impact on health related quality of life (St Georges Respiratory Disease Questionnaire).

  20. Chemical sensor platform for non-invasive monitoring of activity and dehydration.

    PubMed

    Solovei, Dmitry; Žák, Jaromír; Majzlíková, Petra; Sedláček, Jiří; Hubálek, Jaromír

    2015-01-14

    A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN) was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes' coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed.

  1. Chemical Sensor Platform for Non-Invasive Monitoring of Activity and Dehydration

    PubMed Central

    Solovei, Dmitry; Žák, Jaromír; Majzlíková, Petra; Sedláček, Jiří; Hubálek, Jaromír

    2015-01-01

    A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN) was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes' coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed. PMID:25594591

  2. Monitoring volcano activity through Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Cassisi, C.; Montalto, P.; Prestifilippo, M.; Aliotta, M.; Cannata, A.; Patanè, D.

    2013-12-01

    During 2011-2013, Mt. Etna was mainly characterized by cyclic occurrences of lava fountains, totaling to 38 episodes. During this time interval Etna volcano's states (QUIET, PRE-FOUNTAIN, FOUNTAIN, POST-FOUNTAIN), whose automatic recognition is very useful for monitoring purposes, turned out to be strongly related to the trend of RMS (Root Mean Square) of the seismic signal recorded by stations close to the summit area. Since RMS time series behavior is considered to be stochastic, we can try to model the system generating its values, assuming to be a Markov process, by using Hidden Markov models (HMMs). HMMs are a powerful tool in modeling any time-varying series. HMMs analysis seeks to recover the sequence of hidden states from the observed emissions. In our framework, observed emissions are characters generated by the SAX (Symbolic Aggregate approXimation) technique, which maps RMS time series values with discrete literal emissions. The experiments show how it is possible to guess volcano states by means of HMMs and SAX.

  3. Monitoring dressing activity failures through RFID and video.

    PubMed

    Matic, A; Mehta, P; Rehg, J M; Osmani, V; Mayora, O

    2012-01-01

    Monitoring and evaluation of Activities of Daily Living in general, and dressing activity in particular, is an important indicator in the evaluation of the overall cognitive state of patients. In addition, the effectiveness of therapy in patients with motor impairments caused by a stroke, for example, can be measured through long-term monitoring of dressing activity. However, automatic monitoring of dressing activity has not received significant attention in the current literature. Considering the importance of monitoring dressing activity, the main goal of this work was to investigate the possibility of recognizing dressing activities and automatically identifying common failures exhibited by patients suffering from motor or cognitive impairments. The system developed for this purpose comprised analysis of RFID (radio frequency identification) tracking and computer vision processing. Eleven test subjects, not connected to the research, were recruited and asked to perform the dressing task by choosing any combination of clothes without further assistance. Initially the test subjects performed correct dressing and then they were free to choose from a set of dressing failures identified from the current research literature. The developed system was capable of automatically recognizing common dressing failures. In total, there were four dressing failures observed for upper garments and three failures for lower garments, in addition to recognizing successful dressing. The recognition rate for identified dressing failures was between 80% and 100%. We developed a robust system to monitor the dressing activity. Given the importance of monitoring the dressing activity as an indicator of both cognitive and motor skills the system allows for the possibility of long term tracking and continuous evaluation of the dressing task. Long term monitoring can be used in rehabilitation and cognitive skills evaluation.

  4. Management plan for Facility Effluent Monitoring Plan activities

    SciTech Connect

    Nickels, J.M.; Pratt, D.R.

    1991-08-01

    The DOE/RL 89-19, United States Department of Energy-Richland Operations Office Environmental Protection Implementation Plan (1989), requires the Hanford Site to prepare an Environmental Monitoring Plan (EMP) by November 9, 1991. The DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (1991), provides additional guidance and requires implementation of the EMP within 36 months of the effective data of the rule. DOE Order 5400.1, General Environmental Protection Program, requires each US Department of Energy (DOE) site, facility, or activity that uses, generates, releases, or manages significant quantities of hazardous materials to prepare an EMP. This EMP is to identify and discuss two major activities: (1) effluent monitoring and (2) environmental surveillance. At the Hanford Site, the site-wide EMP will consist of the following elements: (1) A conceptual plan addressing effluent monitoring and environmental surveillance; (2) Pacific Northwest Laboratory (PNL) site-wide environmental surveillance program; (3) Westinghouse Hanford Company (Westinghouse Hanford) effluent monitoring program consisting of the near-field operations environmental monitoring activities and abstracts of each Facility Effluent Monitoring Plan (FEMP). This management plan addresses the third of these three elements of the EMP, the FEMPs.

  5. Vadose Zone Monitoring of Dairy Green Water Lagoons using Soil Solution Samplers.

    SciTech Connect

    Brainard, James R.; Coplen, Amy K

    2005-11-01

    Over the last decade, dairy farms in New Mexico have become an important component to the economy of many rural ranching and farming communities. Dairy operations are water intensive and use groundwater that otherwise would be used for irrigation purposes. Most dairies reuse their process/green water three times and utilize lined lagoons for temporary storage of green water. Leakage of water from lagoons can pose a risk to groundwater quality. Groundwater resource protection infrastructures at dairies are regulated by the New Mexico Environment Department which currently relies on monitoring wells installed in the saturated zone for detecting leakage of waste water lagoon liners. Here we present a proposal to monitor the unsaturated zone beneath the lagoons with soil water solution samplers to provide early detection of leaking liners. Early detection of leaking liners along with rapid repair can minimize contamination of aquifers and reduce dairy liability for aquifer remediation. Additionally, acceptance of vadose zone monitoring as a NMED requirement over saturated zone monitoring would very likely significantly reduce dairy startup and expansion costs. Acknowledgment Funding for this project was provided by the Sandia National Laboratories Small Business Assistance Program

  6. Coherent spectroscopic methods for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution

    NASA Astrophysics Data System (ADS)

    Moguilnaya, T.; Suminov, Y.; Botikov, A.; Ignatov, S.; Kononenko, A.; Agibalov, A.

    2017-01-01

    We developed the new automatic method that combines the method of forced luminescence and stimulated Brillouin scattering. This method is used for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution. We carried out the statistical spectral analysis of pathogens, genetically modified soy and nano-particles of silver in water from different regions in order to determine the statistical errors of the method. We studied spectral characteristics of these objects in water to perform the initial identification with 95% probability. These results were used for creation of the model of the device for monitor of pathogenic organisms and working model of the device to determine the genetically modified soy in meat.

  7. Sensing Solutions for Collecting Spatio-Temporal Data for Wildlife Monitoring Applications: A Review

    PubMed Central

    Baratchi, Mitra; Meratnia, Nirvana; Havinga, Paul J. M.; Skidmore, Andrew K.; Toxopeus, Bert A. G.

    2013-01-01

    Movement ecology is a field which places movement as a basis for understanding animal behavior. To realize this concept, ecologists rely on data collection technologies providing spatio-temporal data in order to analyze movement. Recently, wireless sensor networks have offered new opportunities for data collection from remote places through multi-hop communication and collaborative capability of the nodes. Several technologies can be used in such networks for sensing purposes and for collecting spatio-temporal data from animals. In this paper, we investigate and review technological solutions which can be used for collecting data for wildlife monitoring. Our aim is to provide an overview of different sensing technologies used for wildlife monitoring and to review their capabilities in terms of data they provide for modeling movement behavior of animals. PMID:23666132

  8. TRANSFoRm eHealth solution for quality of life monitoring.

    PubMed

    Saganowski, Stanisław; Misiaszek, Andrzej; Bródka, Piotr; Andreasson, Anna; Curcin, Vasa; Delaney, Brendan; Frączkowski, Kazimierz

    2016-01-01

    Patient Recorded Outcome Measures (PROMs) are an essential part of quality of life monitoring, clinical trials, improvement studies and other medical tasks. Recently, web and mobile technologies have been explored as means of improving the response rates and quality of data collected. Despite the potential benefit of this approach, there are currently no widely accepted standards for developing or implementing PROMs in CER (Comparative Effectiveness Research). Within the European Union project Transform (Translational Research and Patient Safety in Europe) an eHealth solution for quality of life monitoring has been developed and validated. This paper presents the overall architecture of the system as well as a detailed description of the mobile and web applications.

  9. Coherent spectroscopic methods for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution

    NASA Astrophysics Data System (ADS)

    Moguilnaya, T.; Suminov, Y.; Botikov, A.; Ignatov, S.; Kononenko, A.; Agibalov, A.

    2016-12-01

    We developed the new automatic method that combines the method of forced luminescence and stimulated Brillouin scattering. This method is used for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution. We carried out the statistical spectral analysis of pathogens, genetically modified soy and nano-particles of silver in water from different regions in order to determine the statistical errors of the method. We studied spectral characteristics of these objects in water to perform the initial identification with 95% probability. These results were used for creation of the model of the device for monitor of pathogenic organisms and working model of the device to determine the genetically modified soy in meat.

  10. TRANSFoRm eHealth solution for quality of life monitoring.

    PubMed Central

    Saganowski, Stanisław; Misiaszek, Andrzej; Bródka, Piotr; Andreasson, Anna; Curcin, Vasa; Delaney, Brendan; Frączkowski, Kazimierz

    2016-01-01

    Patient Recorded Outcome Measures (PROMs) are an essential part of quality of life monitoring, clinical trials, improvement studies and other medical tasks. Recently, web and mobile technologies have been explored as means of improving the response rates and quality of data collected. Despite the potential benefit of this approach, there are currently no widely accepted standards for developing or implementing PROMs in CER (Comparative Effectiveness Research). Within the European Union project Transform (Translational Research and Patient Safety in Europe) an eHealth solution for quality of life monitoring has been developed and validated. This paper presents the overall architecture of the system as well as a detailed description of the mobile and web applications. PMID:27570677

  11. Lunar Dust and Lunar Simulant Activation and Monitoring

    NASA Technical Reports Server (NTRS)

    Wallace, W. T.; Hammond, D. K.; Jeevarajan, A. S.

    2008-01-01

    . Respir. Dis. 138 (1988) 1213-1219). The size and cost of these instruments makes them unattractive for the monitoring of lunar dust activity. A more suitable technique is based on the change in fluorescence of a molecule upon reaction with a hydroxyl radical (or other radical species). Fluorescence instruments are much less costly and bulky than ESR spectrometers, and small fluorescence sensors for space missions have already been developed (F. Gao, et al., J. Biomed. Opt. 10 (2005) 054005). For the current fluorescence studies, the terephthalate molecule has been chosen for monitoring the production of hydroxyl radicals in solution. As shown in Scheme 1, the reaction between the non-fluorescent terephthalate molecule and a hydroxyl radical produces the highly-fluorescent 2-hydroxyterephthalate molecule.

  12. IMIS desktop & smartphone software solutions for monitoring spacecrafts' payload from anywhere

    NASA Astrophysics Data System (ADS)

    Baroukh, J.; Queyrut, O.; Airaud, J.

    In the past years, the demand for satellite remote operations has increased guided by on one hand, the will to reduce operations cost (on-call operators out of business hours), and on the other hand, the development of cooperation space missions resulting in a world wide distribution of engineers and science team members. Only a few off-the-shelf solutions exist to fulfill the need of remote payload monitoring, and they mainly use proprietary devices. The recent advent of mobile technologies (laptops, smartphones and tablets) as well as the worldwide deployment of broadband networks (3G, Wi-Fi hotspots), has opened up a technical window that brings new options. As part of the Mars Science Laboratory (MSL) mission, the Centre National D'Etudes Spatiales (CNES, the French space agency) has developed a new software solution for monitoring spacecraft payloads. The Instrument Monitoring Interactive Software (IMIS) offers state-of-the-art operational features for payload monitoring, and can be accessed remotely. It was conceived as a generic tool that can be used for heterogeneous payloads and missions. IMIS was designed as a classical client/server architecture. The server is hosted at CNES and acts as a data provider while two different kinds of clients are available depending on the level of mobility required. The first one is a rich client application, built on Eclipse framework, which can be installed on usual operating systems and communicates with the server through the Internet. The second one is a smartphone application for any Android platform, connected to the server thanks to the mobile broadband network or a Wi-Fi connection. This second client is mainly devoted to on-call operations and thus only contains a subset of the IMIS functionalities. This paper describes the operational context, including security aspects, that led IMIS development, presents the selected software architecture and details the various features of both clients: the desktop and the sm

  13. Unscented Kalman filter assimilation of time-lapse self-potential data for monitoring solute transport

    NASA Astrophysics Data System (ADS)

    Cui, Yi-an; Liu, Lanbo; Zhu, Xiaoxiong

    2017-08-01

    Monitoring the extent and evolution of contaminant plumes in local and regional groundwater systems from existing landfills is critical in contamination control and remediation. The self-potential survey is an efficient and economical nondestructive geophysical technique that can be used to investigate underground contaminant plumes. Based on the unscented transform, we have built a Kalman filtering cycle to conduct time-lapse data assimilation for monitoring the transport of solute based on the solute transport experiment using a bench-scale physical model. The data assimilation was formed by modeling the evolution based on the random walk model and observation correcting based on the self-potential forward. Thus, monitoring self-potential data can be inverted by the data assimilation technique. As a result, we can reconstruct the dynamic process of the contaminant plume instead of using traditional frame-to-frame static inversion, which may cause inversion artifacts. The data assimilation inversion algorithm was evaluated through noise-added synthetic time-lapse self-potential data. The result of the numerical experiment shows validity, accuracy and tolerance to the noise of the dynamic inversion. To validate the proposed algorithm, we conducted a scaled-down sandbox self-potential observation experiment to generate time-lapse data that closely mimics the real-world contaminant monitoring setup. The results of physical experiments support the idea that the data assimilation method is a potentially useful approach for characterizing the transport of contamination plumes using the unscented Kalman filter (UKF) data assimilation technique applied to field time-lapse self-potential data.

  14. Monitoring of acoustic emission activity using thin wafer piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Trujillo, Blaine; Zagrai, Andrei; Meisner, Daniel; Momeni, Sepand

    2014-03-01

    Acoustic emission (AE) is a well-known technique for monitoring onset and propagation of material damage. The technique has demonstrated utility in assessment of metallic and composite materials in applications ranging from civil structures to aerospace vehicles. While over the course of few decades AE hardware has changed dramatically with the sensors experiencing little changes. A traditional acoustic emission sensor solution utilizes a thickness resonance of the internal piezoelectric element which, coupled with internal amplification circuit, results in relatively large sensor footprint. Thin wafer piezoelectric sensors are small and unobtrusive, but they have seen limited AE applications due to low signal-to-noise ratio and other operation difficulties. In this contribution, issues and possible solutions pertaining to the utility of thin wafer piezoelectrics as AE sensors are discussed. Results of AE monitoring of fatigue damage using thin wafer piezoelectric and conventional AE sensors are presented.

  15. Open source hardware solutions for low-cost, do-it-yourself environmental monitoring, citizen science, and STEM education

    NASA Astrophysics Data System (ADS)

    Hicks, S. D.; Aufdenkampe, A. K.; Horsburgh, J. S.; Arscott, D. B.; Muenz, T.; Bressler, D. W.

    2016-12-01

    The explosion in DIY open-source hardware and software has resulted in the development of affordable and accessible technologies, like drones and weather stations, that can greatly assist the general public in monitoring environmental health and its degradation. It is widely recognized that education and support of audiences in pursuit of STEM literacy and the application of emerging technologies is a challenge for the future of citizen science and for preparing high school graduates to be actively engaged in environmental stewardship. It is also clear that detecting environmental change/degradation over time and space will be greatly enhanced with expanded use of networked, remote monitoring technologies by watershed organizations and citizen scientists if data collection and reporting are properly carried out and curated. However, there are few focused efforts to link citizen scientists and school programs with these emerging tools. We have started a multi-year program to develop hardware and teaching materials for training students and citizen scientists about the use of open source hardware in environmental monitoring. Scientists and educators around the world have started building their own dataloggers and devices using a variety of boards based on open source electronics. This new hardware is now providing researchers with an inexpensive alternative to commercial data logging and transmission hardware. We will present a variety of hardware solutions using the Arduino-compatible EnviroDIY Mayfly board (http://envirodiy.org/mayfly) that can be used to build and deploy a rugged environmental monitoring station using a wide variety of sensors and options, giving the users a fully customizable device for making measurements almost anywhere. A database and visualization system is being developed that will allow the users to view and manage the data their devices are collecting. We will also present our plan for developing curricula and leading workshops to various

  16. Active Sites Environmental Monitoring Program FY 1996 annual report

    SciTech Connect

    Morrissey, C.M.; Marshall, D.S.; Cunningham, G.R.

    1997-11-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1995 through September 1996. The Radioactive Solid Waste Operations Group (RSWOG) of the Waste Management and Remedial Action Division (WMRAD) and the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) established ASEMP in 1989. The purpose of the program is to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 North as required by Chapters 2 and 3 of US Department of Energy Order 5820.2A.

  17. Predicting Activity Energy Expenditure Using the Actical[R] Activity Monitor

    ERIC Educational Resources Information Center

    Heil, Daniel P.

    2006-01-01

    This study developed algorithms for predicting activity energy expenditure (AEE) in children (n = 24) and adults (n = 24) from the Actical[R] activity monitor. Each participant performed 10 activities (supine resting, three sitting, three house cleaning, and three locomotion) while wearing monitors on the ankle, hip, and wrist; AEE was computed…

  18. Predicting Activity Energy Expenditure Using the Actical[R] Activity Monitor

    ERIC Educational Resources Information Center

    Heil, Daniel P.

    2006-01-01

    This study developed algorithms for predicting activity energy expenditure (AEE) in children (n = 24) and adults (n = 24) from the Actical[R] activity monitor. Each participant performed 10 activities (supine resting, three sitting, three house cleaning, and three locomotion) while wearing monitors on the ankle, hip, and wrist; AEE was computed…

  19. Some solutions to on-line radiological monitoring of difficult streams

    SciTech Connect

    Bauer, M.L.; Ramsey, J.A.

    1987-01-01

    On-line monitoring for radiological contamination of dirty, but normally not radioactive, streams is difficult. Described are several new, low-fouling units that are intended to replace the existing sensors that monitor both beta and gamma activity. A sensor was designed, using a thin-wall Geiger-Mueller tube for beta and gamma sensitivity, to monitor the influent of the sanitary sewage treatment plant. The new design eliminates dead volumes inherent in the old unit by use of a double-layer, helically wound solenoid made of 5/16-in.-OD thin-wall (0.02-in.) Teflon tubing. A 4-L Marinelli beaker-based system that used a 3 x 3 NaI(Tl) scintillator was replaced with a multilayer solenoid of 5/8-in.-OD Teflon. Two units for the detection of beta radiation are also described. 1 ref., 6 figs., 1 tab.

  20. A new mathematical solution for predicting char activation reactions

    USGS Publications Warehouse

    Rafsanjani, H.H.; Jamshidi, E.; Rostam-Abadi, M.

    2002-01-01

    The differential conservation equations that describe typical gas-solid reactions, such as activation of coal chars, yield a set of coupled second-order partial differential equations. The solution of these coupled equations by exact analytical methods is impossible. In addition, an approximate or exact solution only provides predictions for either reaction- or diffusion-controlling cases. A new mathematical solution, the quantize method (QM), was applied to predict the gasification rates of coal char when both chemical reaction and diffusion through the porous char are present. Carbon conversion rates predicted by the QM were in closer agreement with the experimental data than those predicted by the random pore model and the simple particle model. ?? 2002 Elsevier Science Ltd. All rights reserved.

  1. Dashboard applications to monitor experiment activities at sites

    NASA Astrophysics Data System (ADS)

    Andreeva, Julia; Belforte, Stefano; Boehm, Max; Casajus, Adrian; Flix, Josep; Gaidioz, Benjamin; Grigoras, Costin; Kokoszkiewicz, Lukasz; Lanciotti, Elisa; Rocha, Ricardo; Saiz, Pablo; Santinelli, Roberto; Sidorova, Irina; Sciabà, Andrea; Tsaregorodtsev, Andrei

    2010-04-01

    In the framework of a distributed computing environment, such as WLCG, monitoring has a key role in order to keep under control activities going on in sites located in different countries and involving people based in many different sites. To be able to cope with such a large scale heterogeneous infrastructure, it is necessary to have monitoring tools providing a complete and reliable view of the overall performance of the sites. Moreover, the structure of a monitoring system critically depends on the object to monitor and on the users it is addressed to. In this article we will describe two different monitoring systems both aimed to monitor activities and services provided in the WLCG framework, but designed in order to meet the requirements of different users: Site Status Board has an overall view of the services available in all the sites supporting an experiment, whereas Siteview provides a complete view of all the activities going on at a site, for all the experiments supported by the site.

  2. Activity monitoring in sleep research, medicine and psychopharmacology.

    PubMed

    Klösch, G; Gruber, G; Anderer, P; Saletu, B

    2001-04-17

    Motor activity as a diagnostic parameter has become an important feature in many fields of medicine and psychology. The concept of mobility and immobility implies the assumption that mental and behaviour disorders involve abnormal activity that can be measured to characterise the disorder itself, to diagnose its presence and to document the impact of treatment. In sleep research, activity monitoring by wrist actigraphs has proven its usefulness as an efficient method to assess the rest-activity cycle over long time periods and to estimate sleep-related features such as sleep efficiency and total sleep time. But like many other techniques and devices, activity monitoring has some limitations and drawbacks. This paper describes the basic features of wrist actigraphy in measuring nocturnal and daytime motor activity.

  3. Monitoring Neural Activity with Bioluminescence during Natural Behavior

    PubMed Central

    Naumann, Eva A.; Kampff, Adam R.; Prober, David A.; Schier, Alexander F.; Engert, Florian

    2010-01-01

    Existing techniques for monitoring neural activity in awake, freely behaving vertebrates are invasive and difficult to target to genetically identified neurons. Here we describe the use of bioluminescence to non-invasively monitor the activity of genetically specified neurons in freely behaving zebrafish. Transgenic fish expressing the Ca2+-sensitive photoprotein GFP-apoAequorin (GA) in most neurons generated large and fast bioluminescent signals related to neural activity, neuroluminescence, that could be recorded continuously for many days. To test the limits of this technique, GA was specifically targeted to the hypocretin-positive neurons of the hypothalamus. We found that neuroluminescence generated by this group of ~20 neurons was associated with periods of increased locomotor activity and identified two classes of neural activity corresponding to distinct swim latencies. Thus, our neuroluminescence assay can report, with high temporal resolution and sensitivity, the activity of small subsets of neurons during unrestrained behavior. PMID:20305645

  4. Combination of Tide Gauge Benchmark Monitoring (TIGA) Analysis Center from repro2 solutions

    NASA Astrophysics Data System (ADS)

    Hunegnaw, Addisu; Teferle, Felix Norman

    2016-04-01

    Recently the International GNSS Service (IGS) Tide Gauge Benchmark Monitoring (TIGA) Working Group (WG) has completed their repro2 solutions by re-analyzing the full history of all relevant Global Positioning System (GPS) observations from 1995 to 2015. This re-processed data set will provide high-quality estimates of vertical land movements for more than 500 stations, enabling regional and global high-precision geophysical/geodetic studies. All the TIGA Analysis Centres (TACs) have processed the observations recorded by GPS stations at or close to tide gauges, which are available from the TIGA Data Center at the University of La Rochelle (www.sonel.org) besides those of the global IGS core network used for its reference frame implementations. Following the recent improvements in processing models, strategies (http://acc.igs.org/reprocess2.html), this is the first complete re-processing attempt by the TIGA WG to provide homogeneous position time series relevant to sea level changes. In this study we report on a first multi-year daily combined solution from the TIGA Combination Centre (TCC) at the University of Luxembourg (UL) with respect to the latest International Terrestrial Reference Frame (ITRF2014). Using two independent combination software packages, CATREF and GLOBK, we have computed a first daily combined solution from TAC solutions already available to the TIGA WG. These combinations allow an evaluation of any effects from the combination software and of the individual TAC parameters and their influences on the combined solution with respect to the latest ITRF2014. Some results of the UL TIGA multi-year combinations in terms of geocentric sea level changes will be presented and discussed.

  5. Near real-time GRACE gravity field solutions for hydrological monitoring applications

    NASA Astrophysics Data System (ADS)

    Kvas, Andreas; Gouweleeuw, Ben; Mayer-Gürr, Torsten; Güntner, Andreas

    2016-04-01

    Within the EGSIEM (European Gravity Service for Improved Emergency Management) project, a demonstrator for a near real-time (NRT) gravity field service which provides daily GRACE gravity field solutions will be established. Compared to the official GRACE gravity products, these NRT solutions will increase the temporal resolution from one month to one day and reduce the latency from currently two months to five days. This fast availability allows the monitoring of total water storage variations and of hydrological extreme events as they occur, in contrast to a 'confirmation after occurrence' as is the situation today. The service will be jointly run by GFZ (German Research Centre for Geosciences) and Graz University of Technology, with each analysis center providing an independent solution. A Kalman filter framework, in which GRACE data is combined with prior information, serves as basis for the gravity field recovery in order to increase the redundancy of the gravity field estimates. The on-line nature of the NRT service necessitates a tailored smoothing algorithm as opposed to post-processing applications, where forward-backward smoothing can be applied. This contribution gives an overview on the near real-time processing chain and highlights differences between the computed NRT solutions and the standard GRACE products. We discuss the special characteristics of the Kalman filtered gravity field models as well as derived products and give an estimate of the expected error levels. Additionally, we show the added value of the NRT solutions through comparison of the first results of the pre-operational phase with in-situ data and monthly GRACE gravity field models.

  6. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  7. Towards near-real time daily GRACE gravity field solutions for global monitoring of hydrological extremes

    NASA Astrophysics Data System (ADS)

    Gouweleeuw, B.; Kvas, A.; Gruber, C.; Schumacher, M.; Mayer-Gürr, T.; Flechtner, F.; Kusche, J.; Guntner, A.

    2016-12-01

    Water storage anomalies from the Gravity Recovery and Climate Experiment (GRACE) satellite mission (2002-present) have been shown to be a unique descriptor of large-scale hydrological extreme events. However, possibly due to its coarse temporal (weekly to monthly), spatial (> 150.000 km2) resolution and the latency of standard products of about 2 months, the comprehensive information from GRACE on total water storage variations has rarely been evaluated for near-real time flood or drought monitoring or forecasting so far. The Horizon 2020 funded EGSIEM (European Gravity Service for Improved Emergency Management) project is scheduled to launch a near-real time test run of GRACE gravity field data, which will provide daily solutions with a latency of 5 days. This fast availability allows the monitoring of total water storage variations related to hydrological extreme events as they occur, as opposed to a 'confirmation after occurrence', which is the current situation. A first hydrological evaluation of daily GRACE gravity field solutions for floods in the Ganges-Brahmaputra Delta in 2004 and 2007 confirms their potential for gravity-based large-scale flood monitoring. This particularly applies to short-lived, high-volume floods, as they occur in Bangladesh with a 4-5 year return period. The subsequent assimilation of daily GRACE data into a (global) hydrological model - carried out jointly within the framework of the Belmont Forum funded BanD-AID project - decomposes total water storage into its individual components (e.g., surface water), increases the spatial resolution and opens up the possibility of flood early warning and forecasting.

  8. Is Fluorescence Valid to Monitor Removal of Protein Bound Uremic Solutes in Dialysis?

    PubMed Central

    Luman, Merike; Uhlin, Fredrik; Tanner, Risto; Fridolin, Ivo

    2016-01-01

    The aim of this study was to evaluate the contribution and removal dynamics of the main fluorophores during dialysis by analyzing the spent dialysate samples to prove the hypothesis whether the fluorescence of spent dialysate can be utilized for monitoring removal of any of the protein bound uremic solute. A high performance liquid chromatography system was used to separate and quantify fluorophoric solutes in the spent dialysate sampled at the start and the end of 99 dialysis sessions, including 57 hemodialysis and 42 hemodiafiltration treatments. Fluorescence was acquired at excitation 280 nm and emission 360 nm. The main fluorophores found in samples were identified as indole derivatives: tryptophan, indoxyl glucuronide, indoxyl sulfate, 5-hydroxy-indoleacetic acid, indoleacetyl glutamine, and indoleacetic acid. The highest contribution (35 ± 11%) was found to arise from indoxyl sulfate. Strong correlation between contribution values at the start and end of dialysis (R2 = 0.90) indicated to the stable contribution during the course of the dialysis. The reduction ratio of indoxyl sulfate was very close to the decrease of the total fluorescence signal of the spent dialysate (49 ± 14% vs 51 ± 13% respectively, P = 0.30, N = 99) and there was strong correlation between these reduction ratio values (R2 = 0.86). On-line fluorescence measurements were carried out to illustrate the technological possibility for real-time dialysis fluorescence monitoring reflecting the removal of the main fluorophores from blood into spent dialysate. In summary, since a predominant part of the fluorescence signal at excitation 280 nm and emission 360 nm in the spent dialysate originates from protein bound derivatives of indoles, metabolites of tryptophan and indole, the fluorescence signal at this wavelength region has high potential to be utilized for monitoring the removal of slowly dialyzed uremic toxin indoxyl sulfate. PMID:27228162

  9. High speed optical metrology solution for after etch process monitoring and control

    NASA Astrophysics Data System (ADS)

    Charley, Anne-Laure; Leray, Philippe; Pypen, Wouter; Cheng, Shaunee; Verma, Alok; Mattheus, Christine; Wisse, Baukje; Cramer, Hugo; Niesing, Henk; Kruijswijk, Stefan

    2014-04-01

    Monitoring and control of the various processes in the semiconductor require precise metrology of relevant features. Optical Critical Dimension metrology (OCD) is a non-destructive solution, offering the capability to measure profiles of 2D and 3D features. OCD has an intrinsic averaging over a larger area, resulting in good precision and suppression of local variation. We have studied the feasibility of process monitoring and control in AEI (after etch inspection) applications, using the same angular resolved scatterometer as used for CD, overlay and focus metrology in ADI (after develop inspection) applications1. The sensor covers the full azimuthal-angle range and a large angle-of-incidence range in a single acquisition. The wavelength can be selected between 425nm and 700nm, to optimize for sensitivity for the parameters of interest and robustness against other process variation. In this paper we demonstrate the validity of the OCD data through the measurement and comparison with the reference metrology of multiple wafers at different steps of the imec N14 fabrication process in order to show that this high precision OCD tool can be used for process monitoring and control.

  10. Activation energy and entropy for viscosity of wormlike micelle solutions.

    PubMed

    Chandler, H D

    2013-11-01

    The viscosities of two surfactant solutions which form wormlike micelles (WLMs) were studied over a range of temperatures and strain rates. WLM solutions appear to differ from many other shear thinning systems in that, as the shear rate increases, stress-shear rate curves tend to converge with temperature rather than diverge and this can sometimes lead to higher temperature curves crossing those at lower. Behaviour was analysed in terms of activation kinetics. It is suggested that two mechanisms are involved: Newtonian flow, following an Arrhenius law superimposed on a non-Newtonian flow described by a stress assisted kinetic law, this being a more general form of the Arrhenius law. Anomalous flow is introduced into the kinetic equation via a stress dependent activation entropy term.

  11. [Sorption of amino acids from aqueous solutions on activated charcoal].

    PubMed

    Nekliudov, A D; Tsibanov, V V

    1985-03-01

    Various methods for quantitative description of amino acid sorption from solutions for parenteral nutrition on activated charcoal were studied under dynamic and static conditions. With the use of the well-known Freindlich and Langmuir absorption isotherms it was shown to be possible to describe in a simplified way the complex multicomponent process of sorption of the amino acids and to estimate their loss at the filtration stage.

  12. Diagnostic Solution Assistant cornerstone for intelligent system monitoring, management, analysis and administration

    NASA Astrophysics Data System (ADS)

    Aaseng, Gordon; Holland, Courtney; Nelson, Bill

    2000-01-01

    The Diagnostic Solution Assistant (DSA) provides diagnostics for space hardware and subsystems. Advanced Honewell `smart' model-based technology performs the real-time fault detection, isolation and diagnostics. This model-based technology provides 24-hour access to the operational knowledge of the system experts. The complexity of the International Space Station (ISS) and other manned space vehicles requires that a full staff of ground based system diagnosis experts be trained and available at all times. Response to critical situations must be immediate no matter what time of the day or night. Installation of new systems plus normal staff turnover cause personnel to be in training constantly. Domain knowledge lost due to staff attrition may also never be regained. All of these factors lead to higher cost ground based flight system monitoring stations and sub-optimal efficiency. The Diagnostic Solution Assistant (DSA) provides a solution to these issues. The DSA can be deployed into the ISS Mission Control Center to enhance Flight Controller awareness and decision making. DSA can be utilized onboard the vehicle to enhance crew awareness and potentially offload the crew in time- or safety-critical situations. The DSA can be used to isolate and diagnose faults during flight preparation, thus reducing the overall vehicle turn-around time. In addition to having diagnostic capability, DSA is a tremendous requirements and operations knowledge capture tool that could streamline training for the flight controller and crew, and facilitate the rapid location of important information. .

  13. Active Batch Selection via Convex Relaxations with Guaranteed Solution Bounds.

    PubMed

    Chakraborty, Shayok; Balasubramanian, Vineeth; Sun, Qian; Panchanathan, Sethuraman; Ye, Jieping

    2015-10-01

    Active learning techniques have gained popularity to reduce human effort in labeling data instances for inducing a classifier. When faced with large amounts of unlabeled data, such algorithms automatically identify the exemplar instances for manual annotation. More recently, there have been attempts towards a batch mode form of active learning, where a batch of data points is simultaneously selected from an unlabeled set. In this paper, we propose two novel batch mode active learning (BMAL) algorithms: BatchRank and BatchRand. We first formulate the batch selection task as an NP-hard optimization problem; we then propose two convex relaxations, one based on linear programming and the other based on semi-definite programming to solve the batch selection problem. Finally, a deterministic bound is derived on the solution quality for the first relaxation and a probabilistic bound for the second. To the best of our knowledge, this is the first research effort to derive mathematical guarantees on the solution quality of the BMAL problem. Our extensive empirical studies on 15 binary, multi-class and multi-label challenging datasets corroborate that the proposed algorithms perform at par with the state-of-the-art techniques, deliver high quality solutions and are robust to real-world issues like label noise and class imbalance.

  14. Methylene blue adsorption from aqueous solution by activated carbon: effect of acidic and alkaline solution treatments.

    PubMed

    Ijagbemi, Christianah O; Chun, Ji I; Han, Da H; Cho, Hye Y; O, Se J; Kim, Dong S

    2010-01-01

    The removal of Methylene Blue (MB) from aqueous solution using activated carbon (AC) has been investigated. Adsorption experiments were conducted and the maximum adsorption capacity was determined. The effect of experimental parameters such as pH, dye concentration and temperature were studied on the adsorption process. Equilibrium data were mathematically modeled using the Langmuir and Freundlich adsorption models to describe the equilibrium isotherms at different dye concentrations and temperature. Parameters of best-fit model were calculated and discussed. To understand the mechanism of adsorption, kinetic models were employed to follow the adsorption processes; the pseudo-first-order best described the adsorption of MB onto AC. It was found that pH plays a major role in the adsorption process; adsorption capacity was influenced by the physical and surface chemical properties of carbon and the pH of the solution. 99.0% MB removal was achieved at equilibrium.

  15. Preference for Sucrose Solutions Modulates Taste Cortical Activity in Humans.

    PubMed

    Jacquin-Piques, Agnès; Mouillot, Thomas; Gigot, Vincent; Meillon, Sophie; Leloup, Corinne; Penicaud, Luc; Brondel, Laurent

    2016-09-01

    High time resolution is required to reliably measure neuronal activity in the gustatory cortex in response to taste stimuli. Hedonic aspects of gustatory processing have never been explored using gustatory evoked potentials (GEPs), a high-time-resolution technique. Our aim was to study cerebral processing of hedonic taste in humans using GEPs in response to sucrose solutions in subjects with different ratings of pleasantness regarding sucrose. In this exploratory study, 30 healthy volunteers were randomly stimulated with 3 sucrose solutions. The sucrose stimulus was presented to the tongue for 1s 20 times. GEPs were recorded from 9 cortical sites with EEG sensors at Cz, Fz, Pz, C3, C4, F3, F4, Fp1, and Fp2 (10/20 system). The main result was that subjects who preferred the high-concentration (20g/100mL) sucrose solution had higher GEP amplitudes on the Pz, Cz, and Fz electrodes than did subjects who preferred the low-concentration (5g/100mL) or the moderate-concentration (10g/100mL) solutions regardless of stimulus intensity. The difference in P1N1 amplitude on the Pz, Cz, and Fz electrodes according to sucrose preference of the subjects was described with stronger significance with stimulation by the 20 g-sucrose solution than by the 5 and 10g sucrose solutions. Using the reliable and safe GEP technique, we provide an original demonstration of variability of the gustatory response on the Pz, Cz, and Fz electrodes according to a sweet preference in humans. Further studies are needed to correlate the electric signal recorded by surface electrodes to the neural generator. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. EarthScope Content Module for IRIS Active Earth Monitor

    NASA Astrophysics Data System (ADS)

    McQuillan, P. J.; Welti, R.; Johnson, J. A.; Shiffman, C. R.; Olds, S. E.

    2012-12-01

    The Active Earth Monitor (AEM) is an interactive computer-based display for university lobbies, museums, visitor centers, schools and libraries. AEM runs in a standard Internet web browser in full screen mode. The display consists of a customizable set of content pages about plate tectonics, earthquakes, volcanoes and tsunamis. Low-cost and simple-to-implement, the Active Earth Monitor provides a way to engage audiences with earth science information without spending resources on a large exhibit. The EarthScope Active Earth Monitor content set highlights the connections between the landscape and the research and monitoring being conducted by EarthScope in partnership with regional monitoring networks. Modules consist of chapters that focus on What is EarthScope?, EarthScope Observatories, and EarthScope Research Results. Content topics are easily explored using a web page button type navigation interface via a touch screen or mouse. A formative evaluation of general public users informed the interface design. Chapters in the modules start with a general overview and proceed to detailed specifics. Each chapter utilizes at least one set of live or near real-time research data (often more than one). This exposes the general public to active ongoing research that is engaging, relevant to the individual user, and explained in easy to understand terms. All live content is updated each time a user accesses the individual page displaying the live data. Leading questions are presented allowing the user to examine the content before accessing the answer via pop-up box. Diagrams and charts of research data have explanatory keys that allow users to self explore all content. Content pages can be created and inserted in the Active Earth Monitor by utilizing the simple HTML/CSS coding.;

  17. Assessing Human Activity in Elderly People Using Non-Intrusive Load Monitoring.

    PubMed

    Alcalá, José M; Ureña, Jesús; Hernández, Álvaro; Gualda, David

    2017-02-11

    The ageing of the population, and their increasing wish of living independently, are motivating the development of welfare and healthcare models. Existing approaches based on the direct heath-monitoring using body sensor networks (BSN) are precise and accurate. Nonetheless, their intrusiveness causes non-acceptance. New approaches seek the indirect monitoring through monitoring activities of daily living (ADLs), which proves to be a suitable solution. ADL monitoring systems use many heterogeneous sensors, are less intrusive, and are less expensive than BSN, however, the deployment and maintenance of wireless sensor networks (WSN) prevent them from a widespread acceptance. In this work, a novel technique to monitor the human activity, based on non-intrusive load monitoring (NILM), is presented. The proposal uses only smart meter data, which leads to minimum intrusiveness and a potential massive deployment at minimal cost. This could be the key to develop sustainable healthcare models for smart homes, capable of complying with the elderly people' demands. This study also uses the Dempster-Shafer theory to provide a daily score of normality with regard to the regular behavior. This approach has been evaluated using real datasets and, additionally, a benchmarking against a Gaussian mixture model approach is presented.

  18. Assessing Human Activity in Elderly People Using Non-Intrusive Load Monitoring

    PubMed Central

    Alcalá, José M.; Ureña, Jesús; Hernández, Álvaro; Gualda, David

    2017-01-01

    The ageing of the population, and their increasing wish of living independently, are motivating the development of welfare and healthcare models. Existing approaches based on the direct heath-monitoring using body sensor networks (BSN) are precise and accurate. Nonetheless, their intrusiveness causes non-acceptance. New approaches seek the indirect monitoring through monitoring activities of daily living (ADLs), which proves to be a suitable solution. ADL monitoring systems use many heterogeneous sensors, are less intrusive, and are less expensive than BSN, however, the deployment and maintenance of wireless sensor networks (WSN) prevent them from a widespread acceptance. In this work, a novel technique to monitor the human activity, based on non-intrusive load monitoring (NILM), is presented. The proposal uses only smart meter data, which leads to minimum intrusiveness and a potential massive deployment at minimal cost. This could be the key to develop sustainable healthcare models for smart homes, capable of complying with the elderly people’ demands. This study also uses the Dempster-Shafer theory to provide a daily score of normality with regard to the regular behavior. This approach has been evaluated using real datasets and, additionally, a benchmarking against a Gaussian mixture model approach is presented. PMID:28208672

  19. Influence of Activity Monitor Location and Bout Duration on Free-Living Physical Activity

    ERIC Educational Resources Information Center

    Heil, Daniel P.; Bennett, Gary G.; Bond, Kathleen S.; Webster, Michael D.; Wolin, Kathleen Y.

    2009-01-01

    The purpose of this study was to evaluate the influence of the location (ankle, hip, wrist) where an activity monitor (AM) is worn and of the minimum bout duration (BD) on physical activity (PA) variables during free-living monitoring. Study 1 participants wore AMs at three locations for 1 day while wearing the Intelligent Device for Energy…

  20. Influence of Activity Monitor Location and Bout Duration on Free-Living Physical Activity

    ERIC Educational Resources Information Center

    Heil, Daniel P.; Bennett, Gary G.; Bond, Kathleen S.; Webster, Michael D.; Wolin, Kathleen Y.

    2009-01-01

    The purpose of this study was to evaluate the influence of the location (ankle, hip, wrist) where an activity monitor (AM) is worn and of the minimum bout duration (BD) on physical activity (PA) variables during free-living monitoring. Study 1 participants wore AMs at three locations for 1 day while wearing the Intelligent Device for Energy…

  1. Freezing activities of flavonoids in solutions containing different ice nucleators.

    PubMed

    Kuwabara, Chikako; Wang, Donghui; Kasuga, Jun; Fukushi, Yukiharu; Arakawa, Keita; Koyama, Toshie; Inada, Takaaki; Fujikawa, Seizo

    2012-06-01

    In this study, we examined the effects on freezing of 26 kinds of flavonoid compounds, which were randomly selected as compounds with structures similar to those of flavonoid compounds existing in deep supercooling xylem parenchyma cells (XPCs) in trees, in solutions containing different kinds of ice nucleators, including the ice nucleation bacterium (INB) Erwinia ananas, INB Xanthomonas campestris, silver iodide, phloroglucinol and unidentified airborne impurities in buffered Milli-Q water (BMQW). Cumulative freezing spectra were obtained in each solution by cooling 2 μL droplets at 0.2 °C/min by a droplet freezing assay. Freezing temperature of 50% droplets (FT(50)) was obtained from each spectra in a separate analysis with more than 20 droplets and mean FT(50) were obtained from more than five separate analyses using more than 100 droplets in total in each flavonoid. Supercooling-promoting activities (SCA) or ice nucleation-enhancing activities (INA) of these flavonoids were determined by the difference in FT(50) between control solutions without flavonoids and experimental solutions with flavonoids. In mean values, most of the compounds examined exhibited SCA in solutions containing the INB E. ananas, INB X. campestris, silver iodide, and phloroglucinol although the magnitudes of their activities were different depending on the ice nucleator. In solutions containing the INB E. ananas, 10 compounds exhibited SCAs with significant differences (p<0.05) in the range of 1.4-4.2 °C. In solutions containing silver iodide, 23 compounds exhibited SCAs with significant differences in the range of 2.0-7.1 °C. In solutions containing phloroglucinol, six compounds exhibited SCAs with significant differences in the range of 2.4-3.5 °C. In solutions containing the INB X. campestris, only three compounds exhibited SCAs with significant differences in the range of 0.9-2.3 °C. In solutions containing unidentified airborne impurities (BMQW alone), on the other hand, many

  2. Active air vs. passive air (settle plate) monitoring in routine environmental monitoring programs.

    PubMed

    Andon, Barbara M

    2006-01-01

    This article discusses the utility of active air versus passive air settle plate monitoring in a routine environmental monitoring program with an emphasis on the monitoring of the critical Grade A environments. It is recognized that there has been a long-standing historical use of settle plates in the pharmaceutical industry, and that European regulatory agencies have supported their use. However, current active air sampling technology can be more advantageous and effective in assessing airborne viable contamination in cleanrooms than settle plate monitoring. Given that both methods are designed to assess viable airborne contamination in cleanrooms, there may be no advantage in performing these two parallel methods for the detection of airborne contamination, especially if doing so increases the number of interventions into critical areas, which may in turn increase the risk of contamination without providing any added benefit in terms of data collection and/or process control. Therefore, the best use of settle plate monitoring may be as an optional test method for those applications where other, more efficient sampling methods may not be possible or may have limited applicability.

  3. Autonomous thermal camera system for monitoring the active lava lake at Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Peters, N.; Oppenheimer, C.; Kyle, P.

    2014-02-01

    In December 2012, the Mount Erebus Volcano Observatory installed a thermal infrared camera system to monitor the volcano's active lava lake. The new system is designed to be autonomous, and capable of capturing images of the lava lake continuously throughout the year. This represents a significant improvement over previous systems which required the frequent attention of observatory researchers and could therefore only be operated during a few weeks of the annual field campaigns. The extreme environmental conditions at the summit of Erebus pose significant challenges for continuous monitoring equipment, and a custom-made system was the only viable solution. Here we describe the hardware and software of the new system in detail and report on a publicly available online repository where data will be archived. Aspects of the technical solutions we had to find in order to overcome the challenges of automating this equipment may be relevant in other environmental science domains where remote instrument operation is involved.

  4. Autonomous thermal camera system for monitoring the active lava lake at Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Peters, N.; Oppenheimer, C.; Kyle, P.

    2013-10-01

    In December 2012, the Mount Erebus Volcano Observatory installed a thermal infrared camera system to monitor the volcano's active lava lake. The new system is designed to be autonomous, and capable of capturing images of the lava lake continuously throughout the year. This represents a significant improvement over previous systems which required the frequent attention of observatory researchers and could therefore only be operated during a few weeks of the annual field campaigns. The extreme environmental conditions at the summit of Erebus pose significant challenges for continuous monitoring equipment, and a custom made system was the only viable solution. Here we describe the hardware and software of the new system in detail and report on a publicly-available online repository where data will be archived. Aspects of the technical solutions we had to find in order to overcome the challenges of automating this equipment may be relevant in other environmental science domains where remote instrument operation is involved.

  5. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Home uterine activity monitor. 884.2730 Section 884.2730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... previous preterm delivery to aid in the detection of preterm labor. (b) Classification. Class II (special...

  6. Embedded Triboelectric Active Sensors for Real-Time Pneumatic Monitoring.

    PubMed

    Fu, Xian Peng; Bu, Tian Zhao; Xi, Feng Ben; Cheng, Ting Hai; Zhang, Chi; Wang, Zhong Lin

    2017-09-20

    Pneumatic monitoring sensors have great demands for power supply in cylinder systems. Here, we present an embedded sliding triboelectric nanogenerator (TENG) in air cylinder as active sensors for position and velocity monitoring. The embedded TENG is composed of a circular poly(tetrafluoroethylene) polymer and a triangular copper electrode. The working mechanism as triboelectric active sensors and electric output performance are systematically investigated. By integrating into the pneumatic system, the embedded triboelectric active sensors have been used for real-time air pressure/flow monitoring and energy storage. Air pressures are measured from 0.04 to 0.12 MPa at a step of 0.02 MPa with a sensitivity of 49.235 V/MPa, as well as airflow from 50 to 250 L/min at a step of 50 L/min with a sensitivity of 0.002 μA·min/L. This work has first demonstrated triboelectric active sensors for pneumatic monitoring and may promote the development of TENG in intelligent pneumatic system.

  7. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Home uterine activity monitor. 884.2730 Section 884.2730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... the clinic. The HUAM system comprises a tocotransducer, an at-home recorder, a modem, and a...

  8. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Home uterine activity monitor. 884.2730 Section 884.2730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... the clinic. The HUAM system comprises a tocotransducer, an at-home recorder, a modem, and a...

  9. Copper activity in soil solutions of calcareous soils.

    PubMed

    Ponizovsky, Alexander A; Allen, Herbert E; Ackerman, Amanda J

    2007-01-01

    Copper partitioning was studied in seven calcareous soils at moisture content corresponding to 1.2 times the field moisture content (soil water potential 7.84 J kg(-1)). Copper retention was accompanied by the release in soil solution of Ca(2+), Mg(2+), Na(+), and H(+), and the total amount of these cations released was 0.8 to 1.09 times the amount of Cu sorbed (mol(c):mol(c)). The relationships between Cu activity and pH, and the balance of cations in soils correspond with the surface precipitation of CuCO(3) as the main mechanism of Cu retention. The values of ion activity product of surface precipitate were close for all studied soils with the average log(IAP(CuCO(3)))=-15.51. The relationship between copper activity in soil solutions and soil properties is well fit by a regression relating pCu (-log copper ion activity) with soil pH, total Cu, and carbonate content.

  10. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  11. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  12. Permanent Infrasound Monitoring of Active Volcanoes in Ecuador

    NASA Astrophysics Data System (ADS)

    Ruiz, M. C.; Yepes, H. A.; Steele, A.; Segovia, M.; Vaca, S.; Cordova, A.; Enriquez, W.; Vaca, M.; Ramos, C.; Arrais, S.; Tapa, I.; Mejia, F.; Macias, C.

    2013-12-01

    Since 2006, infrasound monitoring has become a permanent tool for observing, analyzing and understanding volcanic activity in Ecuador. Within the framework of a cooperative project between the Japanese International Cooperation Agency (JICA) and the Instituto Geofísico to enhance volcano monitoring capabilities within the country, 10 infrasound sensors were deployed in conjunction with broadband seismic stations at Cotopaxi and Tungurahua volcanoes. Each station comprises 1 ACO microphone (model 7144) and an amplifier with a flat response down to 0.1 Hz. At Tungurahua, between July 2006 and July 2013, the network recorded more than 5,500 explosion events with peak-to-peak pressure amplitudes larger than 45 Pa at station Mason (BMAS) which is located ~ 5.5 km from the active crater. This includes 3 explosions with pressure amplitudes larger than 1,000 Pa and which all have exhibited clear shock wave components. Two seismic and infrasound arrays were also installed in 2006 under the Acoustic Surveillance for Hazardous Eruptions (ASHE) project, used in volcano monitoring at Tungurahua, Sangay, and Reventador. This venture was led by the Geological Survey of Canada and the University of Hawaii. Through the SENESCYT-IGEPN project, the Instituto Geofísico is currently installing a regional network of MB2005 microbarometers with the aim to enhance monitoring of active and potentially active volcanoes that include Reventador, Guagua Pichincha, Chimborazo, Antisana, Sangay, and Volcán Chico in the Galapagos Islands. Through the infrasound monitoring station at Volcán Chico it is also possible to extend observations to any activity initiated from Sierra Negra, Fernandina, Cerro Azul, and Alcedo volcanoes. During the past decade, a series of temporary acoustic arrays have also been deployed around Ecuador's most active volcanoes, helping to aid in short term volcanic monitoring and/or used in a series of research projects aimed at better understanding volcanic systems

  13. Fabric-based integrated energy devices for wearable activity monitors.

    PubMed

    Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2014-09-01

    A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. [Structure and Activity of Fungal Lipases in Bile Salt Solutions].

    PubMed

    Bogdanova, L R; Bakirova, D R; Valiullina, Yu A; Idiyatullin, B Z; Faizullin, D A; Zueva, O S; Zuev, Yu F

    2016-01-01

    The changes in structure and catalytic properties of fungal lipases (Candida rugosa, Rhizomucor miehei, Mucor javanicus) were investigated in micellar solutions of bile salts that differ in hydrophilic-lypophilic balance and reaction medium properties. The methods of circular dichroism and tryptophan fluorescence were applied to estimate the changes in peptide structure within complexes with bile salt micelles. Bile salts do not exert a significant influence on the structure of the enzymes under study: in Rh. miehei and M. javanicus lipases the alpha helix content slightly decreased, the influence of bile salts on the C. rugosa structure was not revealed. Despite negligible structural modifications in the enzymes, in bile salt solutions a considerable change in their catalytic properties was observed: an abrupt decrease in catalytic effectiveness. Substrate-bile salts micelles complex formation was demonstrated by the NMR self-diffusion method. The model of a regulation of fungal lipase activity was proposed.

  15. Electromagnetic interference in intraoperative monitoring of motor evoked potentials and a wireless solution.

    PubMed

    Farajidavar, Aydin; Seifert, Jennifer L; Delgado, Mauricio R; Sparagana, Steven; Romero-Ortega, Mario I; Chiao, J-C

    2016-02-01

    Intraoperative neurophysiological monitoring (IONM) is utilized to minimize neurological morbidity during spine surgery. Transcranial motor evoked potentials (TcMEPs) are principal IONM signals in which the motor cortex of the subject is stimulated with electrical pulses and the evoked potentials are recorded from the muscles of interest. Currently available monitoring systems require the connection of 40-60 lengthy lead wires to the patient. These wires contribute to a crowded and cluttered surgical environment, and limit the maneuverability of the surgical team. In this work, it was demonstrated that the cumbersome wired system is vulnerable to electromagnetic interference (EMI) produced by operating room (OR) equipment. It was hypothesized that eliminating the lengthy recording wires can remove the EMI induced in the IONM signals. Hence, a wireless system to acquire TcMEPs was developed and validated through bench-top and animal experiments. Side-by-side TcMEPs acquisition from the wired and wireless systems in animal experiments under controlled conditions (absence of EMI from OR equipment) showed comparable magnitudes and waveforms, thus demonstrating the fidelity in the signal acquisition of the wireless solution. The robustness of the wireless system to minimize EMI was compared with a wired-system under identical conditions. Unlike the wired-system, the wireless system was not influenced by the electromagnetic waves from the C-Arm X-ray machine and temperature management system in the OR. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. A SOA-Based Solution to Monitor Vaccination Coverage Among HIV-Infected Patients in Liguria.

    PubMed

    Giannini, Barbara; Gazzarata, Roberta; Sticchi, Laura; Giacomini, Mauro

    2016-01-01

    Vaccination in HIV-infected patients constitutes an essential tool in the prevention of the most common infectious diseases. The Ligurian Vaccination in HIV Program is a proposed vaccination schedule specifically dedicated to this risk group. Selective strategies are proposed within this program, employing ICT (Information and Communication) tools to identify this susceptible target group, to monitor immunization coverage over time and to manage failures and defaulting. The proposal is to connect an immunization registry system to an existing regional platform that allows clinical data re-use among several medical structures, to completely manage the vaccination process. This architecture will adopt a Service Oriented Architecture (SOA) approach and standard HSSP (Health Services Specification Program) interfaces to support interoperability. According to the presented solution, vaccination administration information retrieved from the immunization registry will be structured according to the specifications within the immunization section of the HL7 (Health Level 7) CCD (Continuity of Care Document) document. Immunization coverage will be evaluated through the continuous monitoring of serology and antibody titers gathered from the hospital LIS (Laboratory Information System) structured into a HL7 Version 3 (v3) Clinical Document Architecture Release 2 (CDA R2).

  17. Data mining spacecraft telemetry: towards generic solutions to automatic health monitoring and status characterisation

    NASA Astrophysics Data System (ADS)

    Royer, P.; De Ridder, J.; Vandenbussche, B.; Regibo, S.; Huygen, R.; De Meester, W.; Evans, D. J.; Martinez, J.; Korte-Stapff, M.

    2016-07-01

    We present the first results of a study aimed at finding new and efficient ways to automatically process spacecraft telemetry for automatic health monitoring. The goal is to reduce the load on the flight control team while extending the "checkability" to the entire telemetry database, and provide efficient, robust and more accurate detection of anomalies in near real time. We present a set of effective methods to (a) detect outliers in the telemetry or in its statistical properties, (b) uncover and visualise special properties of the telemetry and (c) detect new behavior. Our results are structured around two main families of solutions. For parameters visiting a restricted set of signal values, i.e. all status parameters and about one third of all the others, we focus on a transition analysis, exploiting properties of Poincare plots. For parameters with an arbitrarily high number of possible signal values, we describe the statistical properties of the signal via its Kernel Density Estimate. We demonstrate that this allows for a generic and dynamic approach of the soft-limit definition. Thanks to a much more accurate description of the signal and of its time evolution, we are more sensitive and more responsive to outliers than the traditional checks against hard limits. Our methods were validated on two years of Venus Express telemetry. They are generic for assisting in health monitoring of any complex system with large amounts of diagnostic sensor data. Not only spacecraft systems but also present-day astronomical observatories can benefit from them.

  18. Prediction of adsorption from multicomponent solutions by activated carbon using single-solute parameters.

    PubMed

    Wurster, D E; Alkhamis, K A; Matheson, L E

    2000-08-31

    The adsorption of 3 barbiturates--phenobarbital, mephobarbital, and primidone--from simulated intestinal fluid (SIF), without pancreatin, by activated carbon was studied using the rotating bottle method. The concentrations of each drug remaining in solution at equilibrium were determined with the aid of a high-performance liquid chromatography (HPLC) system employing a reversed-phase column. The competitive Langmuir-like model, the modified competitive Langmuir-like model, and the LeVan-Vermeulen model were each fit to the data. Excellent agreement was obtained between the experimental and predicted data using the modified competitive Langmuir-like model and the LeVan-Vermeulen model. The agreement obtained from the original competitive Langmuir-like model was less satisfactory. These observations are not surprising because the competitive Langmuir-like model assumes that the capacities of the adsorbates are equal, while the other 2 models take into account the differences in the capacities of the components. The results of these studies indicate that the adsorbates employed are competing for the same binding sites on the activated carbon surface. The results also demonstrate that it is possible to accurately predict multicomponent adsorption isotherms using only single-solute isotherm parameters. Such prediction is likely to be useful for improving in vivo/in vitro correlations.

  19. New solutions for standardization, monitoring and quality management of fluorescence-based imaging systems (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Royon, Arnaud; Papon, Gautier

    2016-03-01

    Fluorescence microscopes have become ubiquitous in life sciences laboratories, including those focused on pharmaceuticals, diagnosis, and forensics. For the past few years, the need for both performance guarantees and quantifiable results has driven development in this area. However, the lack of appropriate standards and reference materials makes it difficult or impossible to compare the results of two fluorescence microscopes, or to measure performance fluctuations of one microscope over time. Therefore, the operation of fluorescence microscopes is not monitored as often as their use warrants - an issue that is recognized by both systems manufacturers and national metrology institutes. We have developed a new process that enables the etching of long-term stable fluorescent patterns with sub-micrometer sizes in three dimensions inside glass. In this paper, we present, based on this new process, a fluorescent multi-dimensional ruler and a dedicated software that are suitable for monitoring and quality management of fluorescence-based imaging systems (wide-field, confocal, multiphoton, high content machines). In addition to fluorescence, the same patterns exhibit bright- and dark-field contrast, DIC, and phase contrast, which make them also relevant to monitor these types of microscopes. Non-exhaustively, this new solution enables the measurement of: The stage repositioning accuracy; The illumination and detection homogeneities; The field flatness; The detectors' characteristics; The lateral and axial spatial resolutions; The spectral response (spectrum, intensity and lifetime) of the system. Thanks to the stability of the patterns, microscope performance assessment can be carried out as well in a daily basis as in the long term.

  20. Physical Activity and Food Environments: Solutions to the Obesity Epidemic

    PubMed Central

    Sallis, James F; Glanz, Karen

    2009-01-01

    Context: Environmental, policy, and societal changes are important contributors to the rapid rise in obesity over the past few decades, and there has been substantial progress toward identifying environmental and policy factors related to eating and physical activity that can point toward solutions. This article is a status report on research on physical activity and food environments, and it suggests how these findings can be used to improve diet and physical activity and to control or reduce obesity. Methods: This article summarizes and synthesizes recent reviews and provides examples of representative studies. It also describes ongoing innovative interventions and policy change efforts that were identified through conference presentations, media coverage, and websites. Findings: Numerous cross-sectional studies have consistently demonstrated that some attributes of built and food environments are associated with physical activity, healthful eating, and obesity. Residents of walkable neighborhoods who have good access to recreation facilities are more likely to be physically active and less likely to be overweight or obese. Residents of communities with ready access to healthy foods also tend to have more healthful diets. Disparities in environments and policies that disadvantage low-income communities and racial minorities have been documented as well. Evidence from multilevel studies, prospective research, and quasi-experimental evaluations of environmental changes are just beginning to emerge. Conclusions: Environment, policy, and multilevel strategies for improving diet, physical activity, and obesity control are recommended based on a rapidly growing body of research and the collective wisdom of leading expert organizations. A public health imperative to identify and implement solutions to the obesity epidemic warrants the use of the most promising strategies while continuing to build the evidence base. PMID:19298418

  1. Physical activity and food environments: solutions to the obesity epidemic.

    PubMed

    Sallis, James F; Glanz, Karen

    2009-03-01

    Environmental, policy, and societal changes are important contributors to the rapid rise in obesity over the past few decades, and there has been substantial progress toward identifying environmental and policy factors related to eating and physical activity that can point toward solutions. This article is a status report on research on physical activity and food environments, and it suggests how these findings can be used to improve diet and physical activity and to control or reduce obesity. This article summarizes and synthesizes recent reviews and provides examples of representative studies. It also describes ongoing innovative interventions and policy change efforts that were identified through conference presentations, media coverage, and websites. Numerous cross-sectional studies have consistently demonstrated that some attributes of built and food environments are associated with physical activity, healthful eating, and obesity. Residents of walkable neighborhoods who have good access to recreation facilities are more likely to be physically active and less likely to be overweight or obese. Residents of communities with ready access to healthy foods also tend to have more healthful diets. Disparities in environments and policies that disadvantage low-income communities and racial minorities have been documented as well. Evidence from multilevel studies, prospective research, and quasi-experimental evaluations of environmental changes are just beginning to emerge. Environment, policy, and multilevel strategies for improving diet, physical activity, and obesity control are recommended based on a rapidly growing body of research and the collective wisdom of leading expert organizations. A public health imperative to identify and implement solutions to the obesity epidemic warrants the use of the most promising strategies while continuing to build the evidence base.

  2. Increasing the reliability of solution exchanges by monitoring solenoid valve actuation.

    PubMed

    Auzmendi, Jerónimo Andrés; Moffatt, Luciano

    2010-01-15

    Solenoid valves are a core component of most solution perfusion systems used in neuroscience research. As they open and close, they control the flow of solution through each perfusion line, thereby modulating the timing and sequence of chemical stimulation. The valves feature a ferromagnetic plunger that moves due to the magnetization of the solenoid and returns to its initial position with the aid of a spring. The delays between the time of voltage application or removal and the actual opening or closing of the valve are difficult to predict beforehand and have to be measured experimentally. Here we propose a simple method for monitoring whether and when the solenoid valve opens and closes. The proposed method detects the movement of the plunger as it generates a measurable signal on the solenoid that surrounds it. Using this plunger signal, we detected the opening and closing of diaphragm and pinch solenoid valves with a systematic error of less than 2ms. After this systematic error is subtracted, the trial-to-trial error was below 0.2ms.

  3. Monitoring cell concentration and activity by multiple excitation fluorometry.

    PubMed

    Li, J K; Asali, E C; Humphrey, A E; Horvath, J J

    1991-01-01

    Four key cellular metabolic fluorophores--tryptophan, pyridoxine, NAD(P)H, and riboflavin--were monitored on-line by a multiple excitation fluorometric system (MEFS) and a modified SLM 8000C scanning spectrofluorometer in three model yeast fermentation systems--bakers' yeast growing on glucose, Candida utilis growing on ethanol, and Saccharomyces cerevisiae RTY110/pRB58 growing on glucose. The measured fluorescence signals were compared with cell concentration, protein concentration, and cellular activity. The results indicate that the behavior and fluorescence intensity of various fluorophores differ in the various fermentation systems. Tryptophan fluorescence is the best signal for the monitoring of cell concentration in bakers' yeast and C. utilis fermentations. Pyridoxine fluoresce is the best signal for the monitoring of cell concentration in the S. cerevisiae RTY110/pRB58 fermentation. In bakers' yeast fermentations the pyridoxine fluorescence signal can be used to monitor cellular activity. The NAD(P)H fluorescence signal is a good indicator of cellular activity in the C. utilis fermentation. For this fermentation NAD(P)H fluorescence can be used to control ethanol feeding in a fed-batch process.

  4. Limited activity monitoring in toddlers with autism spectrum disorder.

    PubMed

    Shic, Frederick; Bradshaw, Jessica; Klin, Ami; Scassellati, Brian; Chawarska, Katarzyna

    2011-03-22

    This study used eye-tracking to examine how 20-month-old toddlers with autism spectrum disorder (ASD) (n=28), typical development (TD) (n=34), and non-autistic developmental delays (DD) (n=16) monitored the activities occurring in a context of an adult-child play interaction. Toddlers with ASD, in comparison to control groups, showed less attention to the activities of others and focused more on background objects (e.g., toys). In addition, while all groups spent the same time overall looking at people, toddlers with ASD looked less at people's heads and more at their bodies. In ASD, these patterns were associated with cognitive deficits and greater autism severity. These results suggest that the monitoring of the social activities of others is disrupted early in the developmental progression of autism, limiting future avenues for observational learning.

  5. Monitoring and evaluating school nutrition and physical activity policies.

    PubMed

    Taylor, Jennifer P; McKenna, Mary L; Butler, Gregory P

    2010-01-01

    Given the increase in the number of Canadian jurisdictions with school nutrition and/or physical activity policies, there is a need to assess the effectiveness of such policies. The objectives of this paper are to 1) provide an overview of key issues in monitoring and evaluating school nutrition and physical activity policies in Canada and 2) identify areas for further research needed to strengthen the evidence base and inform the development of effective approaches to monitoring and evaluation. Evaluation indicators, data sources and existing tools for evaluating nutrition and physical activity are reviewed. This paper has underscored the importance of identifying common indicators and approaches, using a comprehensive approach based on the WHO framework and ensuring that research capacity and funding is in place to facilitate high-quality evaluation efforts in the future.

  6. GridICE: monitoring the user/application activities on the grid

    NASA Astrophysics Data System (ADS)

    Aiftimiei, C.; Pra, S. D.; Andreozzi, S.; Fattibene, E.; Misurelli, G.; Cuscela, G.; Donvito, G.; Dudhalkar, V.; Maggi, G.; Pierro, A.; Fantinel, S.

    2008-07-01

    The monitoring of the grid user activity and application performance is extremely useful to plan resource usage strategies particularly in cases of complex applications. Large VOs, such as the LHC VOs, do their monitoring by means of dashboards. Other VOs or communities, like for example the BioinfoGRID one, are characterized by a greater diversification of the application types: so the effort to provide a dashboard like monitor is particularly heavy. The main theme of this paper is to show the improvements introduced in GridICE, a web tool built to provides an almost complete grid monitoring. These recent improvements allows GridICE to provide new reports on the resources usage with details of the VOMS groups, roles and users. By accessing the GridICE web pages, the grid user can get all information that is relevant to keep track of his activity on the grid. In the same way, the activity of a VOMS group can be distinguished from the activity of the entire VO. In this paper we briefly talk about the features and advantages of this approach and, after discussing the requirements, we describe the software solutions, middleware and prerequisite to manage and retrieve the user's credentials.

  7. Monitoring Phospholipase A2 Activity with Gd-encapsulated Phospholipid Liposomes

    PubMed Central

    Cheng, Zhiliang; Tsourkas, Andrew

    2014-01-01

    To date, numerous analytical methods have been developed to monitor phospholipase A2 (PLA2) activity. However, many of these methods require the use of unnatural PLA2 substrates that may alter enzyme kinetics, and probes that cannot be extended to applications in more complex environments. It would be desirable to develop a versatile assay that monitors PLA2 activity based on interactions with natural phospholipids in complex biological samples. Here, we developed an activatable T1 magnetic resonance (MR) imaging contrast agent to monitor PLA2 activity. Specifically, the clinically approved gadolinium (Gd)-based MR contrast agent, gadoteridol, was encapsulated within nanometer-sized phospholipid liposomes. The encapsulated Gd exhibited a low T1-weighted signal, due to low membrane permeability. However, when the phospholipids within the liposomal membrane were hydrolyzed by PLA2, encapsulated Gd was released into bulk solution, resulting in a measureable change in the T1-relaxation time. These activatable MR contrast agents can potentially be used as nanosensors for monitoring of PLA2 activity in biological samples with minimal sample preparation. PMID:25376186

  8. Adsorption of phosphate from aqueous solution using activated red mud

    SciTech Connect

    Pradhan, J.; Das, J.; Das, S.; Thakur, R.S.

    1998-08-01

    Adsorption of phosphate (PO{sub 4}{sup 3{minus}}) from aqueous solution on activated red mud (ARM) was studied as a function of time, pH, temperature, concentration of adsorbent and adsorbate in acetic acid-sodium acetate buffer medium. The adsorption of phosphate follows Langmuir as well as Freundlich adsorption isotherms. The process efficiency was found to be 80--90% at room temperature. This can be extended to the treatment of industrial effluents containing phosphates like that from phosphatic fertilizer plants.

  9. The value to the anaesthetist of monitoring cerebral activity.

    PubMed

    Langford, R M; Thomsen, C E

    1994-03-01

    The administration rate of general anaesthetic drugs is at present guided by clinical experience, and indirect indicators such as haemodynamic parameters. In the presence of muscle relaxants most of the clinical signs of inadequate anaesthesia are lost and accidental awareness may occur. A number of monitoring modalities, primarily based on analysis of the electroencephalogram (EEG), have been proposed for measurement of the anaesthetic depth. Moreover intraoperative cerebral monitoring may also provide the anaesthetist with early warning of cerebral ischaemia, or information on specific neurological pathways. To facilitate this, it is essential to combine analysis of the spontaneous EEG with recording of evoked potentials, to assess both cortical and subcortical activity/events. None of the reviewed methods, however promising, can alone meet all of the requirements for intraoperative monitoring of cerebral function. We suggest that the future direction should be to integrate several modalities in a single device, to provide valuable new information, upon which to base clinical management decisions.

  10. Soil solid-phase controls lead activity in soil solution.

    PubMed

    Badawy, S H; Helal, M I D; Chaudri, A M; Lawlor, K; McGrath, S P

    2002-01-01

    Lead pollution of the environment is synonymous with civilization. It has no known biological function, and is naturally present in soil, but its presence in food crops is deemed undesirable. The concern regarding Pb is mostly due to chronic human and animal health effects, rather then phytotoxicity. However, not much is known about the chemistry and speciation of Pb in soils. We determined the activity of Pb2+, in near neutral and alkaline soils, representative of alluvial, desertic and calcareous soils of Egypt, using the competitive chelation method. Lead activity ranged from 10(-6.73) to 10(-4.83) M, and was negatively correlated with soil and soil solution pH (R2 = -0.92, P < 0.01 and R2 = -0.89, P < 0.01, respectively). It could be predicted in soil solution from the equation: log(Pb2+) = 9.9 - 2pH. A solubility diagram for the various Pb minerals found in soil was constructed using published thermodynamic data obtained from the literature, and our measured Pb2+ activities compared with this information. The measured Pb2+ activities were undersaturated with regard to the solubility of PbSiO3 in equilibrium with SiO2 (soil). However, they were supersaturated with regard to the solubilities of the Pb carbonate minerals PbCO3 (cerussite) and Pb3(CO3)2(OH)2 in equilibrium with atmospheric CO2 and hydroxide Pb(OH)2. They were also supersaturated with regard to the solubilities of the Pb phosphate minerals Pb3(PO4)2, Pb5(PO4)3OH, and Pb4O(PO4)2 in equilibrium with tricalcium phosphate and CaCO3. The activity of Pb2+ was not regulated by any mineral of known solubility in our soils, but possibly by a mixture of Pb carbonate and phosphate minerals.

  11. An overview of existing raptor contaminant monitoring activities in Europe.

    PubMed

    Gómez-Ramírez, P; Shore, R F; van den Brink, N W; van Hattum, B; Bustnes, J O; Duke, G; Fritsch, C; García-Fernández, A J; Helander, B O; Jaspers, V; Krone, O; Martínez-López, E; Mateo, R; Movalli, P; Sonne, C

    2014-06-01

    Biomonitoring using raptors as sentinels can provide early warning of the potential impacts of contaminants on humans and the environment and also a means of tracking the success of associated mitigation measures. Examples include detection of heavy metal-induced immune system impairment, PCB-induced altered reproductive impacts, and toxicity associated with lead in shot game. Authorisation of such releases and implementation of mitigation is now increasingly delivered through EU-wide directives but there is little established pan-European monitoring to quantify outcomes. We investigated the potential for EU-wide coordinated contaminant monitoring using raptors as sentinels. We did this using a questionnaire to ascertain the current scale of national activity across 44 European countries. According to this survey, there have been 52 different contaminant monitoring schemes with raptors over the last 50years. There were active schemes in 15 (predominantly western European) countries and 23 schemes have been running for >20years; most monitoring was conducted for >5years. Legacy persistent organic compounds (specifically organochlorine insecticides and PCBs), and metals/metalloids were monitored in most of the 15 countries. Fungicides, flame retardants and anticoagulant rodenticides were also relatively frequently monitored (each in at least 6 countries). Common buzzard (Buteo buteo), common kestrel (Falco tinnunculus), golden eagle (Aquila chrysaetos), white-tailed sea eagle (Haliaeetus albicilla), peregrine falcon (Falco peregrinus), tawny owl (Strix aluco) and barn owl (Tyto alba) were most commonly monitored (each in 6-10 countries). Feathers and eggs were most widely analysed although many schemes also analysed body tissues. Our study reveals an existing capability across multiple European countries for contaminant monitoring using raptors. However, coordination between existing schemes and expansion of monitoring into Eastern Europe is needed. This would enable

  12. Automated monitoring: a potential solution for achieving sustainable improvement in hand hygiene practices.

    PubMed

    Levchenko, Alexander I; Boscart, Veronique M; Fernie, Geoff R

    2014-08-01

    Adequate hand hygiene is often considered as the most effective method of reducing the rates of hospital-acquired infections, which are one of the major causes of increased cost, morbidity, and mortality in healthcare. Electronic monitoring technologies provide a promising direction for achieving sustainable hand hygiene improvement by introducing the elements of automated feedback and creating the possibility to automatically collect individual hand hygiene performance data. The results of the multiphase testing of an automated hand hygiene reminding and monitoring system installed in a complex continuing care setting are presented. The study included a baseline Phase 1, with the system performing automated data collection only, a preintervention Phase 2 with hand hygiene status indicator enabled, two intervention Phases 3 and 4 with the system generating hand hygiene reminding signals and periodic performance feedback sessions provided, and a postintervention Phase 5 with only hand hygiene status indicator enabled and no feedback sessions provided. A significant increase in hand hygiene performance observed during the first intervention Phase 3 was sustained over the second intervention Phase 4, with the postintervention phase also indicating higher hand hygiene activity rates compared with the preintervention and baseline phases. The overall trends observed during the multiphase testing, the factors affecting acceptability of the automated hand hygiene monitoring system, and various strategies of technology deployment are discussed.

  13. On-line Monitoring and Active Control for Transformer Noise

    NASA Astrophysics Data System (ADS)

    Liang, Jiabi; Zhao, Tong; Tian, Chun; Wang, Xia; He, Zhenhua; Duan, Lunfeng

    This paper introduces the system for on-line monitoring and active noise control towards the transformer noise based on LabVIEW and the hardware equipment including the hardware and software. For the hardware part, it is mainly focused on the composition and the role of hardware devices, as well as the mounting location in the active noise control experiment. And the software part introduces the software flow chats, the measurement and analysis module for the sound pressure level including A, B, C weighting methods, the 1/n octave spectrum and the power spectrum, active noise control module and noise data access module.

  14. Remote monitoring of biodynamic activity using electric potential sensors

    NASA Astrophysics Data System (ADS)

    Harl, C. J.; Prance, R. J.; Prance, H.

    2008-12-01

    Previous work in applying the electric potential sensor to the monitoring of body electrophysiological signals has shown that it is now possible to monitor these signals without needing to make any electrical contact with the body. Conventional electrophysiology makes use of electrodes which are placed in direct electrical contact with the skin. The electric potential sensor requires no cutaneous electrical contact, it operates by sensing the displacement current using a capacitive coupling. When high resolution body electrophysiology is required a strong (capacitive) coupling is used to maximise the collected signal. However, in remote applications where there is typically an air-gap between the body and the sensor only a weak coupling can be achieved. In this paper we demonstrate that the electric potential sensor can be successfully used for the remote sensing and monitoring of bioelectric activity. We show examples of heart-rate measurements taken from a seated subject using sensors mounted in the chair. We also show that it is possible to monitor body movements on the opposite side of a wall to the sensor. These sensing techniques have biomedical applications for non-contact monitoring of electrophysiological conditions and can be applied to passive through-the-wall surveillance systems for security applications.

  15. Active Sites Environmental Monitoring Program: Program plan. Revision 1

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  16. Active sites environmental monitoring program. Annual report FY 1992

    SciTech Connect

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.

    1994-04-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) at ORNL from October 1991 through September 1992. Solid Waste Operations and the Environmental Sciences Division established ASEMP in 1989 to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by Chapter 2 and 3 of US Department of Energy Order 5820.2A. The Interim Waste Management Facility (IWMF) began operation in December 1991. Monitoring results from the tumulus and IWMF disposal pads continue to indicate that no LLW is leaching from the storage vaults. Storm water falling on the IWMF active pad was collected and transported to the Process Waste Treatment Plant while operators awaited approval of the National Pollutant Discharge Elimination System (NPDES) permit. Several of the recent samples collected from the active IWMF pad had pH levels above the NPDES limit of 9.0 because of alkali leached from the concrete. The increase in gross beta activity has been slight; only 1 of the 21 samples collected contained activity above the 5.0 Bq/L action level. Automated sample-collection and flow-measurement equipment has been installed at IWMF and is being tested. The flume designed to electronically measure flow from the IWMF pads and underpads is too large to be of practical value for measuring most flows at this site. Modification of this system will be necessary. A CO{sub 2} bubbler system designed to reduce the pH of water from the pads is being tested at IWMF.

  17. Energy monitoring system based on human activity in the workplace

    NASA Astrophysics Data System (ADS)

    Mustafa, Nur Hanim; Husain, Mohd Nor; Aziz, Mohamad Zoinol Abidin Abdul; Othman, Mohd Azlishah; Malek, Fareq

    2015-05-01

    Human behaviors always related to day routine activities in a smart house directly give the significant factor to manage energy usage in human life. An Addition that, the factor will contribute to the best efficiency of the system. This paper will focus on the monitoring efficiency based on duration time in office hours around 8am until 5pm which depend on human behavior at working place. Besides that, the correlation coefficient method is used to show the relation between energy consumption and energy saving based on the total hours of time energy spent. In future, the percentages of energy monitoring system usage will be increase to manage energy saving based on human behaviors. This scenario will help to see the human activity in the workplace in order to get the energy saving and support world green environment.

  18. Active Cavity Irradiance Monitor Satellite ACRIMSAT Artist Concept

    NASA Image and Video Library

    1999-12-21

    The Active Cavity Irradiance Monitor Satellite, or ACRIMSAT, mission is a climate change investigation that measures changes in how much of the sun's energy reaches Earth's atmosphere. This energy, called solar irradience, creates winds, heats the land and drives ocean currents, and therefore contains significant data that climatologists can use to improve predictions of climate change and global warming. The satellite's Active Cavity Irradiance Monitor III instrument, now in its third generation, has been used since the 1980s to study solar irradiance and its impacts on global warming. Scientists, using data from the instrument, now theorize that there is a significant correlation between solar radiation and global warming. ACRIMSAT completed its five-year primary mission in 2005 when it began operating under its extended mission. http://photojournal.jpl.nasa.gov/catalog/PIA18157

  19. Method for monitoring stack gases for uranium activity

    DOEpatents

    Beverly, C.R.; Ernstberger, E.G.

    1985-07-03

    A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

  20. Method for monitoring stack gases for uranium activity

    DOEpatents

    Beverly, Claude R.; Ernstberger, Harold G.

    1988-01-01

    A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

  1. Toward Active Monitoring of Piping Using Ultrasonic Guided Waves

    SciTech Connect

    Park, Joon-Soo; Kim, Young H.; Song, Sung-Jin; Kim, Jae-Hee; Eom, Heung-Seop; Im, Kwang-Hee

    2004-02-26

    Piping in nuclear power plants is exposed to severe environmental conditions so that it is very susceptible to failure caused by the growth of defects. Thus, it is necessary to have thorough inspection of piping in order to detect defects before failure. Unfortunately, however, inspection of piping in nuclear power plants is not easy in practice because of its long length as well as the radioactive environment. To take care of this difficulty, a research endeavor to develop techniques to monitor piping in nuclear power plants continuously and actively using ultrasonic guided wave is currently undertaken. This paper reports initial results of our endeavor including design of an ultrasonic array system for active monitoring of piping.

  2. Active Geophysical Monitoring in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Bakulin, A.; Calvert, R.

    2005-12-01

    Effective reservoir management is a Holy Grail of the oil and gas industry. Quest for new technologies is never ending but most often they increase effectiveness and decrease the costs. None of the newcomers proved to be a silver bullet in such a key metric of the industry as average oil recovery factor. This factor is still around 30 %, meaning that 70 % of hydrocarbon reserves are left in the ground in places where we already have expensive infrastructure (platforms, wells) to extract them. Main reason for this inefficiency is our inability to address realistic reservoir complexity. Most of the time we fail to properly characterize our reservoirs before production. As a matter of fact, one of the most important parameters -- permeability -- can not be mapped from remote geophysical methods. Therefore we always start production blind even though reservoir state before production is the simplest one. Once first oil is produced, we greatly complicate the things and quickly become unable to estimate the state and condition of the reservoir (fluid, pressures, faults etc) or oilfield hardware (wells, platforms, pumps) to make a sound next decision in the chain of reservoir management. Our modeling capabilities are such that if we know true state of the things - we can make incredibly accurate predictions and make extremely efficient decisions. Thus the bottleneck is our inability to properly describe the state of the reservoirs in real time. Industry is starting to recognize active monitoring as an answer to this critical issue. We will highlight industry strides in active geophysical monitoring from well to reservoir scale. It is worth noting that when one says ``monitoring" production technologists think of measuring pressures at the wellhead or at the pump, reservoir engineers think of measuring extracted volumes and pressures, while geophysicist may think of change in elastic properties. We prefer to think of monitoring as to measuring those parameters of the

  3. Feasibility of Automating FIWC Website Noncompliance Monitoring and Enforcement Activities

    DTIC Science & Technology

    2003-06-01

    At the outset, we had only a general idea of the problem we were attacking , and little notion of the form our final implementation would take. But...access, and to verify security procedures, survivability, and operational security. Monitoring includes active attacks by authorized DoD entities to test...Original Message ----- From: "Vickie" < Seahorse @Redshift.com> To: <clarion@attryde.com> Sent: Saturday, May 31, 2003 20:14 Subject: Clarion

  4. A new approach to monitoring seismic activity: California case study

    NASA Astrophysics Data System (ADS)

    Dzeboev, B. A.

    2017-03-01

    Preliminary work on the creation of a method for monitoring of seismic activity, on the basis of discrete mathematical analysis for further seismic hazard assessment of a territory, is presented. The method developed is tested for the territory of California and adjacent areas of the United States. The results obtained are analyzed for the period of 1980-2015. The nonrandomness of the results is shown by means of an error chart.

  5. Fabric-based active electrode design and fabrication for health monitoring clothing.

    PubMed

    Merritt, Carey R; Nagle, H Troy; Grant, Edward

    2009-03-01

    In this paper, two versions of fabric-based active electrodes are presented to provide a wearable solution for ECG monitoring clothing. The first version of active electrode involved direct attachment of surface-mountable components to a textile screen-printed circuit using polymer thick film techniques. The second version involved attaching a much smaller, thinner, and less obtrusive interposer containing the active electrode circuitry to a simplified textile circuit. These designs explored techniques for electronic textile interconnection, chip attachment to textiles, and packaging of circuits on textiles for durability. The results from ECG tests indicate that the performance of each active electrode is comparable to commercial Ag/AgCl electrodes. The interposer-based active electrodes survived a five-cycle washing test while maintaining good signal integrity.

  6. Speciation and chemical activities in superheated sodium borate solutions

    SciTech Connect

    Weres, O. )

    1993-06-01

    The system H[sub 2]O-B[sub 2]O[sub 3]-Na[sub 2]O has been studied experimentally at 277[degrees] and 317[degrees]C. The activities of water and boric acid have been determined at mole ratios Na/B from 0 to 1.5, and total dissolved solids 3 to 80 weight percent. The activity of boric acid has been fitted to within experimental error using a speciation model with eight complex species. This model is consistent with the model previously published by Mesmer et al. The electrolyte properties of the liquid are modelled using the Pitzer-Simonson Model of very concentrated electrolyte solutions. The calculated values of water activity agree with experiment, and the activity of NaOH and pOH have also been calculated. These data will allow prediction of the composition and chemical behavior of sodium borate liquids that may accumulate in the superheated crevices within a steam generator. A modified form of the model is provided for use with MULTEQ. The potassium borate system also was briefly studied at 317[degrees]C, and is adequately described by a model with five complex species. The potassium borate liquid is more alkaline at K/B = 1 than a sodium borate liquid at the same mole ratio, but pOH in the two systems is the same at lower mole ratios.

  7. Integrated active sensor system for real time vibration monitoring

    NASA Astrophysics Data System (ADS)

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-01

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  8. Integrated active sensor system for real time vibration monitoring.

    PubMed

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  9. Integrated active sensor system for real time vibration monitoring

    PubMed Central

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-01-01

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0–60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems. PMID:26538293

  10. Novel label-free biosensing technology for monitoring of aqueous solutions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kehl, Florian; Bielecki, Robert; Follonier, Stephane; Dorokhin, Denis

    2016-03-01

    Waste water, drinking water and other industrial water sources are more and more/increasingly polluted with a large variety of contaminants, such as pesticides or residuals of pharmaceuticals. These compounds can impact human and animal organisms and lead to serious health issues. Today, in order to analyze the presence and quantity of the abovementioned micropollutants, samples are typically sent to specialized centralized laboratories and their processing may take up to several days. In order to meet the demand for continuous and consistent monitoring of aqueous solutions we propose a novel label-free technology system comprising proprietary chip and reader device designs. The core of the system is constituted by a planar-grated-waveguide (PGW) chip. Label-free biosensors, based on PGWs are sensitive to effective refractive index changes caused by the adsorption of biomolecules (micropollutants) onto the sensor surface or due to refractive index changes of the bulk solution. The presented reader device operates with a novel readout concept based on a scanning MEMS mirror for the angular interrogation of input grating couplers at a high repetition rate. The reader has fully integrated optics, electronics and fluidics and at the same time consumes limited energy (portable, field use ready). In the recent experiments, the effectiveness of the technology has been demonstrated with various liquids and bioassays showing (i) an excellent refractometric sensitivity with a limit of detection towards effective refractive index changes of ▵neff < 2 x 10-7, and (ii) the capability to perform affinity measurements for large (<150 kDa) and small (<250 Da) molecules.

  11. Active landslide monitoring using remote sensing data, GPS measurements and cameras on board UAV

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos G.; Kavoura, Katerina; Depountis, Nikolaos; Argyropoulos, Nikolaos; Koukouvelas, Ioannis; Sabatakakis, Nikolaos

    2015-10-01

    An active landslide can be monitored using many different methods: Classical geotechnical measurements like inclinometer, topographical survey measurements with total stations or GPS and photogrammetric techniques using airphotos or high resolution satellite images. As the cost of the aerial photo campaign and the acquisition of very high resolution satellite data is quite expensive the use of cameras on board UAV could be an identical solution. Small UAVs (Unmanned Aerial Vehicles) have started their development as expensive toys but they currently became a very valuable tool in remote sensing monitoring of small areas. The purpose of this work is to demonstrate a cheap but effective solution for an active landslide monitoring. We present the first experimental results of the synergistic use of UAV, GPS measurements and remote sensing data. A six-rotor aircraft with a total weight of 6 kg carrying two small cameras has been used. Very accurate digital airphotos, high accuracy DSM, DGPS measurements and the data captured from the UAV are combined and the results are presented in the current study.

  12. Human psychophysiological activity monitoring methods using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Uzieblo-Zyczkowska, B.

    2010-10-01

    The paper presents the concept of fiber optic sensor system for human psycho-physical activity detection. A fiber optic sensor that utilizes optical phase interferometry or intensity in modalmetric to monitor a patient's vital signs such as respiration cardiac activity, blood pressure and body's physical movements. The sensor, which is non-invasive, comprises an optical fiber interferometer that includes an optical fiber proximately situated to the patient so that time varying acusto-mechanical signals from the patient are coupled into the optical fiber. The system can be implemented in embodiments ranging form a low cost in-home to a high end product for in hospital use.

  13. Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Mononucleotides

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia

    1997-01-01

    Phosphoimidazolide activated ribomononucleotides (*pN) are useful substrates for the non-enzymatic synthesis of polynucleotides. However, dilute neutral aqueous solutions of *pN typically yield small amounts of dimers and traces of polymers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate. Here we report the self-condensation of nucleoside 5'-phosphate 2- methylimidazolide (2-MeImpN with N = cytidine, uridine or guanosine) in the presence of Mg2(+) in concentrated solutions, such as might have been found in an evaporating lagoon on prebiotic Earth. The product distribution indicates that oligomerization is favored at the expense of hydrolysis. At 1.0 M, 2-MelmpU and 2-MelmpC produce about 65% of oligomers including 4% of the 3',5'-Iinked dimer. Examination of the product distribution of the three isomeric dimers in a self-condensation allows identification of reaction pathways that lead to dimer formation. Condensations in a concentrated mixture of all three nucleotides (U,C,G mixtures) is made possible by the enhanced solubility of 2-MeImpG in such mixtures. Although percent yield of intemucleotide linked dimers is enhanced as a function of initial monomer concentration, pyrophosphate dimer yields remain practically unchanged at about 20% for 2-MelmpU, 16% for 2-MeImpC and 25% of the total pyrophosphate in the U,C,G mixtures. The efficiency by which oligomers are produced in these concentrated solutions makes the evaporating lagoon scenario a potentially interesting medium for the prebiotic synthesis of dimers and short RNAs.

  14. Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Monomucleotides

    NASA Astrophysics Data System (ADS)

    Kanavarioti, Anastassia

    1997-08-01

    Phosphoimidazolide activated ribomononucleotides (*pN) are useful substrates for the non-enzymatic synthesis of polynucleotides. However, dilute neutral aqueous solutions of *pN typically yield small amounts of dimers and traces of polymers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate. Here we report the self-condensation of nucleoside 5'-phosphate 2-methylimidazolide (2-MeImpN with N = cytidine, uridine or guanosine) in the presence of Mg2+ in concentrated solutions, such as might have been found in an evaporating lagoon on prebiotic Earth. The product distribution indicates that oligomerization is favored at the expense of hydrolysis. At 1.0 M, 2-MeImpU and 2-MeImpC produce about 65% of oligomers including 4% of the 3',5'-linked dimer. Examination of the product distribution of the three isomeric dimers in a self-condensation allows identification of reaction pathways that lead to dimer formation. Condensations in a concentrated mixture of all three nucleotides (U,C,G mixtures) is made possible by the enhanced solubility of 2-MeImpG in such mixtures. Although percent yield of internucleotide linked dimers is enhanced as a function of initial monomer concentration, pyrophosphate dimer yields remain practically unchanged at about 20% for 2-MeImpU, 16% for 2-MeImpC and 25% of the total pyrophosphate in the U,C,G mixtures. The efficiency by which oligomers are produced in these concentrated solutions makes the evaporating lagoon scenario a potentially interesting medium for the prebiotic synthesis of dimers and short RNAs.

  15. Real-time monitoring and manipulation of single bio-molecules in free solution

    SciTech Connect

    Li, Hung-Wing

    2005-01-01

    The observation and manipulation of single biomolecules allow their dynamic behaviors to be studied to provide insight into molecular genetics, biochip assembly, biosensor design, DNA biophysics. In a PDMS/glass microchannel, a nonuniform electroosmotic flow (EOF) was created. By using a scanning confocal fluorescence microscope and total internal-reflection fluorescence microscope (TIRFM), we demonstrated that negatively charged DNA molecules were focused by the nonuniform EOF into a thin layer at the glass surface. This phenomenon was applied to selectively detect target DNA molecules without requiring the separation of excessive probes and can be applied continuously to achieve high throughput. A variable-angle-TIRFM was constructed for imaging single DNA molecule dynamics at a solid/liquid interface. Implications we have are that the measured intensities cannot be used directly to determine the distances of molecules from the surface and the experimental counting results depict the distance-dependent dynamics of molecules near the surface; Molecules at low ionic strengths experience electrostatic repulsion at distances much further away from the surface than the calculated thickness of the electrical double layer. {delta}-DNA was employed as a nanoprobe for different functionalized surfaces to elucidate adsorption in chromatography. The 12-base unpaired ends of this DNA provide exposed purine and pyrimidine groups for adsorption. Patterns of self-assembled monolayers (SAMs) and patterns of metal oxides are generated. By recording the real-time dynamic motion of DNA molecules at the SAMs/aqueous interface, the various parameters governing the retention of an analyte during chromatographic separation can be studied. Even subtle differences among adsorptive forces can be revealed. Dynamic conformational changes of the prosthetic group, flavin adenine dinucleotide (FAD), in flavoprotein NADH peroxidase, in thioredoxin reductase, and in free solution were monitored

  16. In-vessel activation monitors in JET: Progress in modeling

    SciTech Connect

    Bonheure, Georges; Lengar, I.; Syme, B.; Popovichev, S.; Arnold, Dirk; Laubenstein, Matthias

    2008-10-15

    Activation studies were performed in JET with new in-vessel activation monitors. Though primarily dedicated to R and D in the challenging issue of lost {alpha} diagnostics for ITER, which is being addressed at JET with several techniques, these monitors provide for both neutron and charged particle fluences. A set of samples with different orientation with respect to the magnetic field is transported inside the torus by means of a manipulator arm (in contrast with the conventional JET activation system with pneumatic transport system). In this case, radionuclides with longer half-life were selected and ultralow background gamma-ray measurements were needed. The irradiation was closer to the plasma and this potentially reduces the neutron scattering problem. This approach could also be of interest for ITER, where the calibration methods have yet to be developed. The MCNP neutron transport model for JET was modified to include the activation probe and so provide calculations to help assess the new data. The neutron induced activity on the samples are well reproduced by the calculations.

  17. Dynamic depth-dependent osmotic swelling and solute diffusion in articular cartilage monitored using real-time ultrasound.

    PubMed

    Zheng, Y P; Shi, J; Qin, L; Patil, S G; Mow, V C; Zhou, K Y

    2004-06-01

    The objective of this study was to investigate the feasibility of ultrasonic monitoring for the transient depth-dependent osmotic swelling and solute diffusion in normal and degenerated articular cartilage (artC) tissues. Full-thickness artC specimens were collected from fresh bovine patellae. The artC specimens were continuously monitored using a focused beam of 50 MHz ultrasound (US) during sequential changes of the bathing solution from 0.15 mol/L to 2 mol/L saline, 0.15 mol/L saline, 1 mg/mL trypsin solution, 0.15 mol/L saline, 2 mol/L saline and back to 0.15 mol/L saline. The transient displacements of US echoes from the artC tissues at different depths were used to represent the tissue deformation and the NaCl diffusion. The trypsin solution was used selectively to digest the proteoglycans in artC. It was demonstrated that high-frequency US was feasible for monitoring the transient osmotic swelling, solute transport and progressive degeneration of artC in real-time. Preliminary results showed that the normal bovine patellar artC shrank during the first several minutes and then recovered to its original state in approximately 1 h when the solution was changed from 0.15 mol/L to 2 mol/L saline. Degenerated artC showed neither shrinkage nor recovery during the same process. In addition, a dehydrated-hydrated artC specimen showed much stronger shrinkage and it resumed the original state when the solution was changed from 2 mol/L back to 0.15 mol/L saline. The diffusion of NaCl and the digestion process of proteoglycans induced by trypsin were also successfully monitored in real-time.

  18. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler-Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges.

  19. Sorption of cobalt on activated carbons from aqueous solutions

    SciTech Connect

    Paajanen, A.; Lehto, J.; Santapakka, T.; Morneau, J.P.

    1997-01-01

    The efficiencies of 15 commercially available activated carbons were tested for the separation of trace cobalt ({sup 60}Co) in buffer solutions at pH 5.0, 6.7, and 9.1. On the basis of the results four carbon products, Diahope-006, Eurocarb TN5, Hydraffin DG47, and Norit ROW Supra, were selected for further study. These carbons represented varying (low, medium and high) cobalt removal efficiencies and were prepared of three typical raw materials: peat, coconut shell, or coal. Study was made of the effects on sorption efficiencies of factors of interest in metal/radionuclide-bearing waste effluents. These factors were pH, sodium ions, borate, and citrate.

  20. Advanced Performance Modeling with Combined Passive and Active Monitoring

    SciTech Connect

    Dovrolis, Constantine; Sim, Alex

    2015-04-15

    To improve the efficiency of resource utilization and scheduling of scientific data transfers on high-speed networks, the "Advanced Performance Modeling with combined passive and active monitoring" (APM) project investigates and models a general-purpose, reusable and expandable network performance estimation framework. The predictive estimation model and the framework will be helpful in optimizing the performance and utilization of networks as well as sharing resources with predictable performance for scientific collaborations, especially in data intensive applications. Our prediction model utilizes historical network performance information from various network activity logs as well as live streaming measurements from network peering devices. Historical network performance information is used without putting extra load on the resources by active measurement collection. Performance measurements collected by active probing is used judiciously for improving the accuracy of predictions.

  1. Antimicrobial activity and acute toxicity of ozonated lomefloxacin solution.

    PubMed

    de Oliveira, Amanda Marchi Duarte; Maniero, Milena Guedes; Rodrigues-Silva, Caio; Guimarães, José Roberto

    2017-03-01

    Lomefloxacin (LOM) is a synthetic antimicrobial from the fluoroquinolone family (FQ) used as a veterinary and human drug. Once in the environment, LOM may pose a risk to aquatic and terrestrial microorganisms due to its antimicrobial activity. This study evaluated the effect of ozonation of LOM (500 μg L(-1)), the residual antimicrobial activity against Escherichia coli and acute toxicity against Vibrio fischeri. In addition, degradation products were investigated by UHPLC-MS/MS and proposed. Ozonation was carried out varying the applied ozone dose from 0 to 54.0 mg L(-1) O3 and pH values of 3, 7, and 11. Ozonation was most efficient at pH 11 and led to 92.8% abatement of LOM in a 9-min reaction time (54.0 mg L(-1) O3 applied ozone dose). Ozonation at pH 3 was able to degrade 80.4% of LOM. At pH 7, 74.3% of LOM was degraded. Although the LOM concentration and the antimicrobial activity of the solution dropped as ozone dose increased (antimicrobial activity reduction of 95% at pH 11), toxicity to V. fischeri increased for pH 7 and 11 (i.e., 65% at pH 7 and 75% at pH 11). The reduction in antimicrobial activity may be related to the oxidation of piperazinyl and the quinolone moiety. The formation of intermediates depended on the oxidant (hydroxyl radicals or/and molecular O3) that acted the most in the process.

  2. Heavy metal removal from aqueous solutions by activated phosphate rock.

    PubMed

    Elouear, Z; Bouzid, J; Boujelben, N; Feki, M; Jamoussi, F; Montiel, A

    2008-08-15

    The use of natural adsorbent such as phosphate rock to replace expensive imported synthetic adsorbent is particularly appropriate for developing countries such as Tunisia. In this study, the removal characteristics of lead, cadmium, copper and zinc ions from aqueous solution by activated phosphate rock were investigated under various operating variables like contact time, solution pH, initial metal concentration and temperature. The kinetic and the sorption process of these metal ions were compared for phosphate rock (PR) and activated phosphate rock (APR). To accomplish this objective we have: (a) characterized both (PR) and (APR) using different techniques (XRD, IR) and analyses (EDAX, BET-N(2)); and, (b) qualified and quantified the interaction of Pb(2+), Cd(2+), Cu(2+) and Zn(2+) with these sorbents through batch experiments. Initial uptake of these metal ions increases with time up to 1h for (PR) and 2h for (APR), after then, it reaches equilibrium. The maximum sorption obtained for (PR) and (APR) is between pH 2 and 3 for Pb(2+) and 4 and 6 for Cd(2+), Cu(2+) and Zn(2+). The effect of temperature has been carried out at 10, 20 and 40 degrees C. The data obtained from sorption isotherms of metal ions at different temperatures fit to linear form of Langmuir sorption equation. The heat of sorption (DeltaH degrees), free energy (DeltaG degrees) and change in entropy (DeltaS degrees) were calculated. They show that sorption of Pb(2+), Cd(2+), Cu(2+) and Zn(2+) on (PR) and (APR) an endothermic process. These findings are significant for future using of (APR) for the removal of heavy metal ions from wastewater under realistic competitive conditions in terms of initial heavy metals, concentrations and pH.

  3. Optical sensor based system to monitor caries activity

    NASA Astrophysics Data System (ADS)

    Shrestha, A.; Tahir, R.; Kishen, A.

    2007-07-01

    The aim of the study is to evaluate the ability of a visible light based spectroscopic sensor system to monitor caries activity in saliva. In this study an optical sensor is utilized to monitor the bacterial-mediated acidogenic profile of stimulated saliva using a photosensitive pH indicator. Microbiological assessment of the saliva samples were carried out using the conventional culture methods. In addition, the shifts in the pH of saliva-sucrose samples were recorded using a pH meter. The absorption spectra obtained from the optical sensor showed peak maxima at 595nm, which decreased as a function of time. The microbiological assessment showed increase in the bacterial count as a function of time. A strong positive correlation was also observed between the rates of decrease in the absorption intensity measured using the optical sensor and the decrease in pH measured using the pH meter. This study highlights the potential advantages of using the optical sensor as a sensitive and rapid chairside system for monitoring caries activity by quantification of the acidogenic profile of saliva.

  4. ELVIS: Multi-Electrolyte Aqueous Activity Model for Geothermal Solutions

    NASA Astrophysics Data System (ADS)

    Hingerl, F. F.; Wagner, T.; Driesner, T.; Kulik, D. A.; Kosakowski, G.

    2011-12-01

    High temperature, pressure, and fluid salinities render geochemical modeling of fluid-rock interactions in Enhanced Geothermal Systems a demanding task. Accurate prediction of fluid-mineral equilibria strongly depends on the availability of thermodynamic data and activity models. Typically, the Pitzer activity model is applied for geothermal fluids. A drawback of this model is the large number of parameters required to account for temperature and pressure dependencies, which significantly reduces computational efficiency of reactive transport simulations. In addition, most available parameterizations are valid only at vapor-saturated conditions. As an alternative we implemented the EUNIQUAC local composition model [2] that needs substantially fewer fitting parameters. However, the current EUNIQUAC model design does not include provision for high temperature (>150°C) applications and lacks a formulation for pressure dependence. Therefore, its application to geothermal conditions requires a re-formulation and re-fitting of the model. We developed a new tool termed GEMSFIT that allows generic fitting of activity models (for aqueous electrolyte and non-electrolyte solutions) and equations of state implemented in our geochemical equilibrium solver GEM-Selektor (http://gems.web.psi.ch). GEMSFIT combines a PostgreSQL database for storing and managing the datasets of experimental measurements and interaction parameters, the parallelized genetic algorithm toolbox of MATLAB° for the parameter fitting, and an interface to the numerical kernel of GEM-Selektor to access activity models and perform chemical equilibrium calculations. Benchmarking of the partly re-parameterized EUNIQUAC model against Pitzer revealed that the former is less accurate, which can result in incorrect predictions of mineral precipitation/dissolution. Consequently, we modified the EUNIQUAC model and concurrently introduced a pressure dependence to be able to fit experimental data over wide ranges of

  5. Landslide Activity Monitoring with the Help of Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Peterman, V.

    2015-08-01

    This paper presents a practical example of a landslide monitoring through the use of a UAV - tracking and monitoring the movements of the Potoska Planina landslide located above the village of Koroska Bela in the western Karavanke Mountains in north-western Slovenia. Past geological research in this area indicated slope landmass movement of more than 10 cm per year. However, much larger movements have been detected since - significant enough to be observed photogrammetrically with the help of a UAV. With the intention to assess the dynamics of the landslide we have established a system of periodic observations carried out twice per year - in mid-spring and mid-autumn. This paper offers an activity summary along with the presentation of data acquisition, data processing and results.

  6. Ambulation monitoring of transtibial amputation subjects with patient activity monitor versus pedometer.

    PubMed

    Dudek, Nancy L; Khan, Omar D; Lemaire, Edward D; Marks, Meridith B; Saville, Leyana

    2008-01-01

    Our study aimed to compare the accuracy of step count and ambulation distance determined with the Yamax Digi-Walker SW-700 pedometer (DW) and the Ossur patient activity monitor (PAM) in 20 transtibial amputation subjects who were functioning at the K3 Medicare Functional Classification Level. Subjects completed four simulated household tasks in an apartment setup and a gymnasium walking course designed to simulate outdoor walking without the presence of environmental barriers or varied terrain. The mean step count accuracy of the DW and the PAM was equivalent for both the household activity (75.3% vs 70.6%) and the walking course (93.8% vs 94.0%). The mean distance measurement accuracy was better with the DW than with the PAM (household activity: 72.8% vs 0%, walking course: 92.5% vs 86.3%; p < 0.05). With acceptable step count accuracy, both devices are appropriate for assessing relatively continuous ambulation. The DW may be preferred for its more accurate distance measurements. Neither device is ideal for monitoring in-home ambulation.

  7. Design considerations in an active medical product safety monitoring system.

    PubMed

    Gagne, Joshua J; Fireman, Bruce; Ryan, Patrick B; Maclure, Malcolm; Gerhard, Tobias; Toh, Sengwee; Rassen, Jeremy A; Nelson, Jennifer C; Schneeweiss, Sebastian

    2012-01-01

    Active medical product monitoring systems, such as the Sentinel System, will utilize electronic healthcare data captured during routine health care. Safety signals that arise from these data may be spurious because of chance or bias, particularly confounding bias, given the observational nature of the data. Applying appropriate monitoring designs can filter out many false-positive and false-negative associations from the outset. Designs can be classified by whether they produce estimates based on between-person or within-person comparisons. In deciding which approach is more suitable for a given monitoring scenario, stakeholders must consider the characteristics of the monitored product, characteristics of the health outcome of interest (HOI), and characteristics of the potential link between these. Specifically, three factors drive design decisions: (i) strength of within-person and between-person confounding; (ii) whether circumstances exist that may predispose to misclassification of exposure or misclassification of the timing of the HOI; and (iii) whether the exposure of interest is predominantly transient or sustained. Additional design considerations include whether to focus on new users, the availability of appropriate active comparators, the presence of an exposure time trend, and the measure of association of interest. When the key assumptions of self-controlled designs are fulfilled (i.e., lack of within-person, time-varying confounding; abrupt HOI onset; and transient exposure), within-person comparisons are preferred because they inherently avoid confounding by fixed factors. The cohort approach generally is preferred in other situations and particularly when timing of exposure or outcome is uncertain because cohort approaches are less vulnerable to biases resulting from misclassification.

  8. Anti-Mastigina activities of eight contact lens solutions.

    PubMed Central

    Niszl, I A; Markus, M B; van Deventer, J M

    1995-01-01

    The effects of eight contact lens solutions on a Mastigina sp., which was associated with the infected eye of a patient, were studied. The solutions which killed the organism promptly were those which are used for gas-permeable and hard contact lenses. Some solutions for soft contact lenses were more effective than others. PMID:8619600

  9. Physical Activity Parenting Measurement and Research: Challenges, Explanations, and Solutions

    PubMed Central

    Mâsse, Louise C.; Timperio, Anna; Frenn, Marilyn D.; Saunders, Julie; Mendoza, Jason A.; Gobbi, Erica; Hanson, Phillip; Trost, Stewart G.

    2013-01-01

    Abstract Physical activity (PA) parenting research has proliferated over the past decade, with findings verifying the influential role that parents play in children's emerging PA behaviors. This knowledge, however, has not translated into effective family-based PA interventions. During a preconference workshop to the 2012 International Society for Behavioral Nutrition and Physical Activity annual meeting, a PA parenting workgroup met to: (1) Discuss challenges in PA parenting research that may limit its translation, (2) identify explanations or reasons for such challenges, and (3) recommend strategies for future research. Challenges discussed by the workgroup included a proliferation of disconnected and inconsistently measured constructs, a limited understanding of the dimensions of PA parenting, and a narrow conceptualization of hypothesized moderators of the relationship between PA parenting and child PA. Potential reasons for such challenges emphasized by the group included a disinclination to employ theory when developing measures and examining predictors and outcomes of PA parenting as well as a lack of agreed-upon measurement standards. Suggested solutions focused on the need to link PA parenting research with general parenting research, define and adopt rigorous standards of measurement, and identify new methods to assess PA parenting. As an initial step toward implementing these recommendations, the workgroup developed a conceptual model that: (1) Integrates parenting dimensions from the general parenting literature into the conceptualization of PA parenting, (2) draws on behavioral and developmental theory, and (3) emphasizes areas which have been neglected to date including precursors to PA parenting and effect modifiers. PMID:23944918

  10. Ferroelectric thin-film active sensors for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Lin, Bin; Giurgiutiu, Victor; Yuan, Zheng; Liu, Jian; Chen, Chonglin; Jiang, Jiechao; Bhalla, Amar S.; Guo, Ruyan

    2007-04-01

    Piezoelectric wafer active sensors (PWAS) have been proven a valuable tool in structural health monitoring. Piezoelectric wafer active sensors are able to send and receive guided Lamb/Rayleigh waves that scan the structure and detect the presence of incipient cracks and structural damage. In-situ thin-film active sensor deposition can eliminate the bonding layer to improve the durability issue and reduce the acoustic impedance mismatch. Ferroelectric thin films have been shown to have piezoelectric properties that are close to those of single-crystal ferroelectrics but the fabrication of ferroelectric thin films on structural materials (steel, aluminum, titanium, etc.) has not been yet attempted. In this work, in-situ fabrication method of piezoelectric thin-film active sensors arrays was developed using the nano technology approach. Specification for the piezoelectric thin-film active sensors arrays was based on electro-mechanical-acoustical model. Ferroelectric BaTiO3 (BTO) thin films were successfully deposited on Ni tapes by pulsed laser deposition under the optimal synthesis conditions. Microstructural studies by X-ray diffractometer and transmission electron microscopy reveal that the as-grown BTO thin films have the nanopillar structures with an average size of approximately 80 nm in diameter and the good interface structures with no inter-diffusion or reaction. The dielectric and ferroelectric property measurements exhibit that the BTO films have a relatively large dielectric constant, a small dielectric loss, and an extremely large piezoelectric response with a symmetric hysteresis loop. The research objective is to develop the fabrication and optimum design of thin-film active sensor arrays for structural health monitoring applications. The short wavelengths of the micro phased arrays will permit the phased-array imaging of smaller parts and smaller damage than is currently not possible with existing technology.

  11. FRET-based optical assay for monitoring riboswitch activation.

    PubMed

    Harbaugh, Svetlana; Kelley-Loughnane, Nancy; Davidson, Molly; Narayanan, Latha; Trott, Sandra; Chushak, Yaroslav G; Stone, Morley O

    2009-05-11

    Riboswitches are regulatory RNAs located in the 5'-untranslated region of mRNA sequences that recognize and bind to small molecules and regulate the expression of downstream genes. Creation of synthetic riboswitches to novel ligands depends on the ability to monitor riboswitch activation in the presence of analyte. In our work, we have coupled a synthetic riboswitch to an optical reporter assay based on fluorescence resonance energy transfer (FRET) between two genetically encoded fluorescent proteins. The theophylline-sensitive riboswitch was placed upstream of the Tobacco Etch Virus (TEV) protease coding sequence. Our FRET construct was composed of eGFP and a nonfluorescent yellow fluorescent protein mutant called REACh (for resonance energy-accepting chromoprotein) connected with a peptide linker containing a TEV protease cleavage site. Addition of theophylline to the E. coli cells activates the riboswitch and initiates the translation of mRNA. Synthesized protease cleaves the linker in the FRET-based fusion protein causing a change in the fluorescence signal. By this method, we observed an 11-fold increase in cellular extract fluorescence in the presence of theophylline. The advantage of using an eGFP-REACh pair is the elimination of acceptor fluorescence. This leads to an improved detection of FRET via better signal-to-noise ratio, allowing us to monitor riboswitch activation in a wide range of analyte concentrations from 0.01 to 2.5 mM.

  12. Potential of multisyringe chromatography for the on-line monitoring of the photocatalytic degradation of antituberculosis drugs in aqueous solution.

    PubMed

    Guevara-Almaraz, E; Hinojosa-Reyes, L; Caballero-Quintero, A; Ruiz-Ruiz, E; Hernández-Ramírez, A; Guzmán-Mar, J L

    2015-02-01

    In this study, a multisyringe chromatography system (MSC) using a C18 monolithic column was proposed for the on-line monitoring of the photocatalytic degradation of isoniazid (INH, 10 mg L(-1)) and pyrazinamide (PYRA, 5mgL(-1)) mixtures in aqueous solution using a small sample volume (200 μL) with an on-line filtration device in a fully automated approach. During the photocatalytic oxidation using TiO2 or ZnO semiconductor materials, total organic carbon (TOC) and the formed intermediates were analyzed off-line using ion chromatography, ion exclusion HPLC, and ESI-MS/MS. The results showed that TiO2 exhibits a better photocatalytic activity than ZnO under UV irradiation (365 nm) for the degradation of INH and PYRA mixtures, generating 97% and 92% degradation, respectively. The optimal oxidation conditions were identified as pH 7 and 1.0 g L(-1) of TiO2 as catalyst. The mineralization of the initial organic compounds was confirmed by the regular decrease in TOC, which indicated 63% mineralization, and the quantitative release of nitrate and nitrite ions, which represent 33% of the nitrogen in these compounds. The major intermediates of INH degradation included isonicotinamide, isonicotinic acid, and pyridine, while the ESI-MS/MS analysis of PYRA aqueous solution after photocatalytic treatment showed the formation of pyrazin-2-ylmethanol, pyrazin-2-ol, and pyrazine. Three low-molecular weight compounds, acetamide, acetic acid and formic acid, were detected during INH and PYRA decomposition. PYRA was more resistant to photocatalytic degradation due to the presence of the pyrazine ring, which provides greater stability against OH attack. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Carbohydrate Electrolyte Solutions Enhance Endurance Capacity in Active Females

    PubMed Central

    Sun, Feng-Hua; Wong, Stephen Heung-Sang; Chen, Shi-Hui; Poon, Tsz-Chun

    2015-01-01

    The purpose of the present study was to investigate the effects of supplementation with a carbohydrate-electrolyte solution (CES) in active females during a prolonged session of submaximal running to exhaustion. Eight healthy active females volunteered to perform a session of open-ended running to exhaustion at 70% of their maximal oxygen consumption on a treadmill during the follicular phase of their menstrual cycle on two occasions. During each run, the subjects consumed either 3mL·kg−1 body mass of a 6% CES or a placebo drink (PL) every 20 min during exercise. The trials were administered in a randomized double-blind, cross-over design. During the run, the subjects ingested similar volumes of fluid in two trials (CES: 644 ± 75 mL vs. PL: 593 ± 66 mL, p > 0.05). The time to exhaustion was 16% longer during the CES trial (106.2 ± 9.4 min) than during the PL trial (91.6 ± 5.9 min) (p < 0.05). At 45 min during exercise, the plasma glucose concentration in the CES trial was higher than that in PL trial. No differences were observed in the plasma lactate level, respiratory exchange ratio, heart rate, perceived rate of exertion, sensation of thirst, or abdominal discomfort between the two trials (p > 0.05). The results of the present study confirm that CES supplementation improves the moderate intensity endurance capacity of active females during the follicular phases of the menstrual cycle. However, the exogenous oxidation of carbohydrate does not seem to explain the improved capacity after CES supplementation. PMID:25988766

  14. Seismic monitoring instrumentation needs of a building owner and the solution - A cooperative effort

    USGS Publications Warehouse

    Celebi, M.; Sanli, A.; Sinclair, M.; Gallant, S.; Radulescu, D.; ,

    2003-01-01

    A specific case whereby the owner of a building, in collaboration with another federal agency with expertise in seismic monitoring of buildings, private consulting engineers, and a supplier, facilitated development of a seismic monitoring system for a 24-story building in San Francisco, California. The unique aspects of this monitoring systems include: the monitoring system must relate to rapid assessment of the building following an earthquake and the monitoring system must deliver the data in relatively short time, if not in real-time. The system has the standard recording capability at the site server PC. It has the capability to calculate select number of drift ratios, specific to the building.

  15. Monitoring Heparin Therapy with the Activated Partial Thromboplastin Time

    PubMed Central

    Stuart, R. K.; Michel, A.

    1971-01-01

    Difficulties associated with the whole blood clotting time (W.B.C.T.) as a method of monitoring heparin therapy have led to the investigation of the activated partial thromboplastin time (A.P.T.T.) as an alternative. The conclusion is reached that the latter procedure possesses several advantages. Using the method described and a citrate-preserved blood sample collected just prior to the administration of the next serial dose of heparin, the suggested therapeutic duration of the A.P.T.T. is 70 seconds or twice the mean control value. A practical range for this method is 60 to 70 seconds. PMID:5557913

  16. Monitoring rice farming activities in the Mekong Delta region

    NASA Astrophysics Data System (ADS)

    Nguyen, S. T.; Chen, C. F.; Chen, C. R.; Chiang, S. H.; Chang, L. Y.; Khin, L. V.

    2015-12-01

    Half of the world's population depends on rice for survival. Rice agriculture thus plays an important role in the developing world's economy. Vietnam is one of the largest rice producers and suppliers on earth and more than 80% of the exported rice was produced from the Mekong Delta region, which is situated in the southwestern Vietnam and encompasses approximately 40,000 km2. Changes in climate conditions could likely trigger the increase of insect populations and rice diseases, causing the potential loss of rice yields. Monitoring rice-farming activities through crop phenology detection can provide policymakers with timely strategies to mitigate possible impacts on the potential yield as well as rice grain exports to ensure food security for the region. The main objective of this study is to develop a logistic-based algorithm to investigate rice sowing and harvesting activities from the multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS)-Landsat fusion data. We processed the data for two main cropping seasons (i.e., winter-spring and summer-autumn seasons) through a three-step procedure: (1) MODIS-Landsat data fusion, (2) construction of the time-series enhanced vegetation index 2 (EVI2) data, (3) rice crop phenology detection. The EVI2 data derived from the fusion results between MODIS and Landsat data were compared with that of Landsat data indicated close correlation between the two datasets (R2 = 0.93). The time-series EVI2 data were processed using the double logistic method to detect the progress of sowing and harvesting activities in the region. The comparisons between the estimated sowing and harvesting dates and the field survey data revealed the root mean squared error (RMSE) values of 8.4 and 5.5 days for the winter-spring crop and 9.4 and 12.8 days for the summer-autumn crop, respectively. This study demonstrates the effectiveness of the double logistic-based algorithm for rice crop monitoring from temporal MODIS-Landsat fusion data

  17. Monitoring Residual Solvent Additives and Their Effects in Solution Processed Solar Cells

    NASA Astrophysics Data System (ADS)

    Fogel, Derek M.; Basham, James I.; Engmann, Sebastian; Pookpanratana, Sujitra J.; Bittle, Emily G.; Jurchescu, Oana D.; Gundlach, David J.

    2015-03-01

    High boiling point solvent additives are a widely adopted approach for increasing bulk heterojunction (BHJ) solar cell efficiency. However, experiments show residual solvent can persist for hours after film deposition, and certain common additives are unstable or reactive. We report here on the effects of residual 1,8-diiodooctane on the electrical performance of poly(3-hexylthiophene-2,5-diyl) (P3HT): phenyl-C71-butyric acid methyl ester (PC[71]BM) BHJ photovoltaic cells. We optimized our fabrication process for efficiency at an active layer thickness of 220 nm, and all devices were processed in parallel to minimize unintentional variations between test structures. The one variable in this study is the active layer post spin drying time. Immediately following the cathode deposition, we measured the current-voltage characteristics at one sun equivalent illumination intensity, and performed impedance spectroscopy to quantify charge density, lifetime, and recombination process. Spectroscopic ellipsometry, FTIR, and XPS are also used to monitor residual solvent and correlated with electrical performance. We find that residual additive degrades performance by increasing the series resistance and lowering efficiency, fill factor, and free carrier lifetime.

  18. Ultrafast studies of organometallic photochemistry: The mechanism of carbon-hydrogen bond activation in solution

    SciTech Connect

    Bromberg, S.E.

    1998-05-01

    When certain organometallic compounds are photoexcited in room temperature alkane solution, they are able to break or activate the C-H bonds of the solvent. Understanding this potentially practical reaction requires a detailed knowledge of the entire reaction mechanism. Because of the dynamic nature of chemical reactions, time-resolved spectroscopy is commonly employed to follow the important events that take place as reactants are converted to products. For the organometallic reactions examined here, the electronic/structural characteristics of the chemical systems along with the time scales for the key steps in the reaction make ultrafast UV/Vis and IR spectroscopy along with nanosecond Step-Scan FTIR spectroscopy the ideal techniques to use for this study. An initial study of the photophysics of (non-activating) model metal carbonyls centering on the photodissociation of M(CO){sub 6} (M = Cr, W, Mo) was carried out in alkane solutions using ultrafast IR spectroscopy. Next, picosecond UV/vis studies of the C-H bond activation reaction of Cp{sup *}M(CO){sub 2} (M = Rh, Ir), conducted in room temperature alkane solution, are described in an effort to investigate the origin of the low quantum yield for bond cleavage ({approximately}1%). To monitor the chemistry that takes place in the reaction after CO is lost, a system with higher quantum yield is required. The reaction of Tp{sup *}Rh(CO){sub 2} (Tp{sup *} = HB-Pz{sub 3}{sup *}, Pz{sup *} = 3,5-dimethylpyrazolyl) in alkanes has a quantum yield of {approximately}30%, making time resolved spectroscopic measurements possible. From ultrafast IR experiments, two subsequently formed intermediates were observed. The nature of these intermediates are discussed and the first comprehensive reaction mechanism for a photochemical C-H activating organometallic complex is presented.

  19. [TCD monitoring during intravenous administration of recombinant tissue plasminogen activator].

    PubMed

    Aoki, Junya; Iguchi, Yasuyuki; Kobayashi, Kazuto; Sakai, Kenichiro; Shibazaki, Kensaku; Sakamoto, Yuki; Kimura, Kazumi

    2010-08-01

    Our aim is to investigate the utility of transcranial Doppler (TCD) monitoring during intravenous administration of 0.6 mg/kg recombinant tissue plasminogen activator (IV rt-PA) which is governmental approved in Japan. Acute ischemic stroke patients with M1 portion of the middle cerebral artery (M1) occlusion treated with IV rt-PA were prospectively enrolled. M1 occlusion was diagnosed before IV rt-PA using magnetic resonance angiography (MRA). Patients without sufficient temporal window of TCD were excluded. TCD monitoring was conducted for 1 hour (h) during IV rt-PA. Recanalization on TCD was defined using thrombolysis in brain ischemia (TIBI) flow grades. After all patients were classified into two groups according to the presence of TCD recanalization (TCD recanalization and TCD non-recanalization group), three-month patients outcome, recanalization rate on MRA 1 h of IV rt-PA, and symptomatic cerebral hemorrhage within 24 h were compared between two groups. We enrolled 16 patients. Eight patients (50%, 7 men [88%]; age, 70 years [interquartile range. 55-81]; NIHSS score, 18 [12-22]) were in the TCD recanalization group and 8 (50%, 6 men [75%]; age, 72 years [62-79]; NIHSS score 19 [15-23] were in the TCD non-recanalization group. Symptomatic cerebral hemorrhage was not seen in both groups at all. MRA 1 h of IV rt-PA revealed recanalization in all 8 (100%) patients with TCD recanalization group and 2 (25%) with TCD non-recanalization group (agreement, 88%; and kappa value, 0.75, P = 0.002). At three months, 5 (63%) of 8 patients in the TCD recanalization group had favorable outcome, and 0 (0%) of 8 in the TCD non-recanalization group (P = 0.026). TCD monitoring for 1 h during IV rt-PA can diagnose the recanalization based on MRA. TCD monitoring should predict good clinical outcome at three months.

  20. Comparability of measured acceleration from accelerometry-based activity monitors.

    PubMed

    Rowlands, Alex V; Fraysse, FranÇois; Catt, Mike; Stiles, Victoria H; Stanley, Rebecca M; Eston, Roger G; Olds, Tim S

    2015-01-01

    Accelerometers that provide triaxial measured acceleration data are now available. However, equivalence of output between brands cannot be assumed and testing is necessary to determine whether features of the acceleration signal are interchangeable. This study aimed to establish the equivalence of output between two brands of monitor in a laboratory and in a free-living environment. For part 1, 38 adults performed nine laboratory-based activities while wearing an ActiGraph GT3X+ and GENEActiv (Gravity Estimator of Normal Everyday Activity) at the hip. For part 2, 58 children age 10-12 yr wore a GT3X+ and GENEActiv at the hip for 7 d in a free-living setting. For part 1, the magnitude of time domain features from the GENEActiv was greater than that from the GT3X+. However, frequency domain features compared well, with perfect agreement of the dominant frequency for 97%-100% of participants for most activities. For part 2, mean daily acceleration measured by the two brands was correlated (r = 0.93, P < 0.001, respectively) but the magnitude was approximately 15% lower for the GT3X+ than that for the GENEActiv at the hip. Frequency domain-based classification algorithms should be transferable between monitors, and it should be possible to apply time domain-based classification algorithms developed for one device to the other by applying an affine conversion on the measured acceleration values. The strong relation between accelerations measured by the two brands suggests that habitual activity level and activity patterns assessed by the GENE and GT3X+ may compare well if analyzed appropriately.

  1. Li2MoO4 crystal growth from solution activated by low-frequency vibrations

    NASA Astrophysics Data System (ADS)

    Barinova, Olga; Sadovskiy, Andrey; Ermochenkov, Ivan; Kirsanova, Svetlana; Sukhanova, Ekaterina; Kostikov, Vladimir; Belov, Stanislav; Mozhevitina, Elena; Khomyakov, Andrew; Kuchuk, Zhanna; Zharikov, Eugeny; Avetissov, Igor

    2017-01-01

    The possibility of Li2MoO4 crystal growth from aqueous solutions activated by axial vibrational control (AVC) technique was investigated. It was found out that a low-frequency mechanical activation of the solution led to an increase of Li2MoO4 equilibrium solubility in aqueous solution for 11 rel% in the 25-29 °C temperature range. The changes in solution structure were analyzed in situ by Raman study of the solution. The AVC activation of solution resulted in a re-faceting of growing crystals, a smoothing of a face surface morphology and reduction of water content in the crystal.

  2. Actively Heated Fiber Optic Method for Distributed Soil Moisture Monitoring

    NASA Astrophysics Data System (ADS)

    Sayde, C.; Selker, J. S.; Rodriguez-Sinobas, L.; Gil-Rodriguez, M.; Cuenca, R. H.; Tyler, S. W.; English, M.

    2010-12-01

    The temporal and spatial distribution of soil water at scales from 1 to 10,000m is both poorly understood and critical to terrestrial processes. Areas of great uncertainty include the spatio-temporal patterns of: soil water; evapo-transpiration; recharge during and following rainfalls. Observation of dynamics at these scales requires an innovative measurement approach. A novel in-situ distributed measurement of soil water content using temperature measured with Raman scattering in fiber optic cables is presented. This technology, called “Actively Heated Fiber Optic Method,” demonstrated in the lab setting by Sayde et al. 2010 in Water Resources Research involves use of a heat pulse method with fiber optic temperature sensing to obtain precise, distributed measurements of soil water content, with high temporal resolution and sub-meter scale spatial resolution, along a fiber optic cable that can exceed several km in length. The method is based on the influence of water content on soil thermal properties as observed with a buried fiber optical cable monitored by a laser Raman backscatter DTS system. The buried fiber optic is actively heated via electrical resistance, using the steel elements that surround the fiber, and the optical fiber is used as a sub-meter scale thermal sensor to monitor the changes in soil thermal responses every meter along the fiber optic cable. A response metric that has not been previously employed “the time integral of temperature deviation” is used as a simple interpretation of heat data that takes advantage of the characteristics of fiber optic measurements. Validation of the method based on large-column laboratory tests, and field testing results using and 750 m of fiber optic cable buried at 30, 60, and 90 cm depth in the field are presented. The results indicate the feasibility of using the actively heated fiber optic method to monitor soil water content at temporal resolution well under one hour and spatial resolution of 1 m

  3. A process activity monitor for AOS/VS

    NASA Technical Reports Server (NTRS)

    Mckosky, R. A.; Lindley, S. W.; Chapman, J. S.

    1986-01-01

    With the ever increasing concern for computer security, users of computer systems are becoming more sensitive to unauthorized access. One of the initial security concerns for the Shuttle Management Information System was the problem of users leaving their workstations unattended while still connected to the system. This common habit was a concern for two reasons: it ties up resources unnecessarily and it opens the way for unauthorized access to the system. The Data General MV/10000 does not come equipped with an automatic time-out option on interactive peripherals. The purpose of this memorandum is to describe a system which monitors process activity on the system and disconnects those users who show no activity for some time quantum.

  4. Nitroimidazoles adsorption on activated carbon cloth from aqueous solution.

    PubMed

    Ocampo-Pérez, R; Orellana-Garcia, F; Sánchez-Polo, M; Rivera-Utrilla, J; Velo-Gala, I; López-Ramón, M V; Alvarez-Merino, M A

    2013-07-01

    The objective of this study was to analyze the equilibrium and adsorption kinetics of nitroimidazoles on activated carbon cloth (ACC), determining the main interactions responsible for the adsorption process and the diffusion mechanism of these compounds on this material. The influence of the different operational variables, such as ionic strength, pH, temperature, and type of water (ultrapure, surface, and waste), was also studied. The results obtained show that the ACC has a high capacity to adsorb nitroimidazoles in aqueous solution. Electrostatic interactions play an important role at pH<3, which favors the repulsive forces between dimetridazole or metronidazole and the ACC surface. The formation of hydrogen bonds and dispersive interactions play the predominant role at higher pH values. Modifications of the ACC with NH3, K2S2O8, and O3 demonstrated that its surface chemistry plays a predominant role in nitroimidazole adsorption on this material. The adsorption capacity of ACC is considerably high in surface waters and reduced in urban wastewater, due to the levels of alkalinity and dissolved organic matter present in the different types of water. Finally, the results of applying kinetic models revealed that the global adsorption rate of dimetridazole and metronidazole is controlled by intraparticle diffusion.

  5. Active sensors for health monitoring of aging aerospace structures

    SciTech Connect

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-02-29

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  6. Differential actigraphy for monitoring asymmetry in upper limb motor activities.

    PubMed

    Rabuffetti, M; Meriggi, P; Pagliari, C; Bartolomeo, P; Ferrarin, M

    2016-09-21

    Most applications of accelerometry-based actigraphy require a single sensor, properly located onto the body, to estimate, for example, the level of activity or the energy expenditure. Some approaches adopt a multi-sensor setup to improve those analyses or to classify different types of activity. The specific case of two symmetrically placed actigraphs allowing, by some kind of differential analysis, for the assessment of asymmetric motor behaviors, has been considered in relatively few studies. This article presents a novel method for differential actigraphy, which requires the synchronized measurements of two triaxial accelerometers (programmable eZ430-Chronos, Texas Instruments, USA) placed symmetrically on both wrists. The method involved the definition of a robust epoch-related activity index and its implementation on-board the adopted programmable platform. Finally, the activity recordings from both sensors allowed us to define a novel asymmetry index AR24 h ranging from  -100% (only the left arm moves) to  +100% (only the right arm moves) with null value marking a perfect symmetrical behavior. The accuracy of the AR24 h index was 1.3%. Round-the-clock monitoring on 31 healthy participants (20-79 years old, 10 left handed) provided for the AR24 h reference data (range  -5% to 21%) and a fairly good correlation to the clinical handedness index (r  =  0.66, p  <  0.001). A subset of 20 participants repeated the monitoring one week apart evidencing an excellent test-retest reliability (r  =  0.70, p  <  0.001). Such figures support future applications of the methodology for the study of pathologies involving motor asymmetries, such as in patients with motor hemisyndromes and, in general, for those subjects for whom a quantification of the asymmetry in daily motor performances is required to complement laboratory tests.

  7. Active sensors for health monitoring of aging aerospace structures

    SciTech Connect

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-03-08

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (NM) impedance technique are sighted and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency EIM impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acoustic-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  8. Active Volcano Monitoring using a Space-based Hyperspectral Imager

    NASA Astrophysics Data System (ADS)

    Cipar, J. J.; Dunn, R.; Cooley, T.

    2010-12-01

    Active volcanoes occur on every continent, often in close proximity to heavily populated areas. While ground-based studies are essential for scientific research and disaster mitigation, remote sensing from space can provide rapid and continuous monitoring of active and potentially active volcanoes [Ramsey and Flynn, 2004]. In this paper, we report on hyperspectral measurements of Kilauea volcano, Hawaii. Hyperspectral images obtained by the US Air Force TacSat-3/ARTEMIS sensor [Lockwood et al, 2006] are used to obtain estimates of the surface temperatures for the volcano. ARTEMIS measures surface-reflected light in the visible, near-infrared, and short-wave infrared bands (VNIR-SWIR). The SWIR bands are known to be sensitive to thermal radiation [Green, 1996]. For example, images from the NASA Hyperion hyperspectral sensor have shown the extent of wildfires and active volcanoes [Young, 2009]. We employ the methodology described by Dennison et al, (2006) to obtain an estimate of the temperature of the active region of Kilauea. Both day and night-time images were used in the analysis. To improve the estimate, we aggregated neighboring pixels. The active rim of the lava lake is clearly discernable in the temperature image, with a measured temperature exceeding 1100o C. The temperature decreases markedly on the exterior of the summit crater. While a long-wave infrared (LWIR) sensor would be ideal for volcano monitoring, we have shown that the thermal state of an active volcano can be monitored using the SWIR channels of a reflective hyperspectral imager. References: Dennison, Philip E., Kraivut Charoensiri, Dar A. Roberts, Seth H. Peterson, and Robert O. Green (2006). Wildfire temperature and land cover modeling using hyperspectral data, Remote Sens. Environ., vol. 100, pp. 212-222. Green, R. O. (1996). Estimation of biomass fire temperature and areal extent from calibrated AVIRIS spectra, in Summaries of the 6th Annual JPL Airborne Earth Science Workshop, Pasadena, CA

  9. Micro-earthquakes monitoring at the Irpinia active fault zone by micro-arrays

    NASA Astrophysics Data System (ADS)

    Adinolfi, Guido Maria; Picozzi, Matteo; Zollo, Aldo; Parolai, Stefano

    2017-04-01

    The micro-seismicity monitoring requires the use of local dense network with an optimum azimuthal coverage. In the case of natural seismicity, different stations should be employed around a fault structure in order to characterize at first sights its dimensions, geometry and seismic activity. For induced seismicity, it is necessary to monitor the spatio-temporal evolution of earthquakes in order to follow the fluid migration and the fracture pattern of the reservoir. We propose the use of seismic arrays as alternative solution to dense and expensive seismic network to monitor and study the micro-seismicity. We designed a field experiment in the Irpinia region (Southern Italy) with seismic micro-arrays and tested its performance to record natural micro-seismicity. In particular, the experiment consisted of three seismic arrays at few tens of kilometers distance installed around one segment activated during the Ms 6.9 Irpinia earthquake in 1980. Each array is made up of seven stations, with three components sensor, small aperture (few hundred meters) and irregular geometries. Natural seismicity of the area, arranged occasionally in small seismic sequences, was recorded with magnitude (Ml) ranging between 0.5 and 1.6. Through the f-k analysis on three components, we derive for each earthquake apparent velocity and back-azimuth at each array of the incoming wavefront and, combining the information of the three arrays, we try to triangulate the ipocenter for a better estimate of the earthquake location. The results of the experiment are compared with the earthquake locations derived by ISNet, the local operating network that monitors the Irpinia faults system. We discuss our preliminary results and the seismic arrays performance to monitor the micro-seismicity, as valid and alternative tool to study natural or induced seismicity.

  10. Context-dependent olfactory learning monitored by activities of salivary neurons in cockroaches.

    PubMed

    Matsumoto, Chihiro Sato; Matsumoto, Yukihisa; Watanabe, Hidehiro; Nishino, Hiroshi; Mizunami, Makoto

    2012-01-01

    Context-dependent discrimination learning, a sophisticated form of nonelemental associative learning, has been found in many animals, including insects. The major purpose of this research is to establish a method for monitoring this form of nonelemental learning in rigidly restrained insects for investigation of underlying neural mechanisms. We report context-dependent olfactory learning (occasion-setting problem solving) of salivation, which can be monitored as activity changes of salivary neurons in immobilized cockroaches, Periplaneta americana. A group of cockroaches was trained to associate peppermint odor (conditioned stimulus, CS) with sucrose solution reward (unconditioned stimulus, US) while vanilla odor was presented alone without pairing with the US under a flickering light condition (1.0 Hz) and also trained to associate vanilla odor with sucrose reward while peppermint odor was presented alone under a steady light condition. After training, the responses of salivary neurons to the rewarded peppermint odor were significantly greater than those to the unrewarded vanilla odor under steady illumination and those to the rewarded vanilla odor was significantly greater than those to the unrewarded peppermint odor in the presence of flickering light. Similar context-dependent responses were observed in another group of cockroaches trained with the opposite stimulus arrangement. This study demonstrates context-dependent olfactory learning of salivation for the first time in any vertebrate and invertebrate species, which can be monitored by activity changes of salivary neurons in restrained cockroaches.

  11. Evaluation of activity monitors in manual wheelchair users with paraplegia

    PubMed Central

    Hiremath, Shivayogi V.; Ding, Dan

    2011-01-01

    Objective The aim of this study was to evaluate the performance of SenseWear® (SW) and RT3 activity monitors (AMs) in estimating energy expenditure (EE) in manual wheelchair users (MWUs) with paraplegia for a variety of physical activities. Methods Twenty-four subjects completed four activities including resting, wheelchair propulsion, arm-ergometry exercise, and deskwork. The criterion EE was measured by a K4b2 portable metabolic cart. The EE estimated by the SW and RT3 were compared with the criterion EE by the absolute differences and absolute percentage errors. Intraclass correlations and the Bland and Altman plots were also used to assess the agreements between the two AMs and the metabolic cart. Correlations between the criterion EE and the estimated EE and sensors data from the AMs were evaluated. Results The EE estimation errors for the AMs varied from 24.4 to 125.8% for the SW and from 22.0 to 52.8% for the RT3. The intraclass correlation coefficients (ICCs) between the criterion EE and the EE estimated by the two AMs for each activity and all activities as a whole were considered poor with all the ICCs smaller than 0.75. Except for deskwork, the EE from the SW was more correlated to the criterion EE than the EE from the RT3. Conclusion The results indicate that neither of the AMs is an appropriate tool for quantifying physical activity in MWUs with paraplegia. However, the accuracy of EE estimation could be potentially improved by building new regression models based on wheelchair-related activities. PMID:21528634

  12. Passive and Active Monitoring on a High Performance Research Network.

    SciTech Connect

    Matthews, Warren

    2001-05-01

    The bold network challenges described in ''Internet End-to-end Performance Monitoring for the High Energy and Nuclear Physics Community'' presented at PAM 2000 have been tackled by the intrepid administrators and engineers providing the network services. After less than a year, the BaBar collaboration has collected almost 100 million particle collision events in a database approaching 165TB (Tera=10{sup 12}). Around 20TB has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, for processing and around 40 TB of simulated events have been imported to SLAC from Lawrence Livermore National Laboratory (LLNL). An unforseen challenge has arisen due to recent events and highlighted security concerns at DoE funded labs. New rules and regulations suggest it is only a matter of time before many active performance measurements may not be possible between many sites. Yet, at the same time, the importance of understanding every aspect of the network and eradicating packet loss for high throughput data transfers has become apparent. Work at SLAC to employ passive monitoring using netflow and OC3MON is underway and techniques to supplement and possibly replace the active measurements are being considered. This paper will detail the special needs and traffic characterization of a remarkable research project, and how the networking hurdles have been resolved (or not!) to achieve the required high data throughput. Results from active and passive measurements will be compared, and methods for achieving high throughput and the effect on the network will be assessed along with tools that directly measure throughput and applications used to actually transfer data.

  13. Clinical value of monitoring eosinophil activity in asthma.

    PubMed Central

    Koller, D Y; Herouy, Y; Götz, M; Hagel, E; Urbanek, R; Eichler, I

    1995-01-01

    To evaluate the use of eosinophil cationic protein (ECP) in monitoring disease activity in childhood asthma, serum ECP in 175 asthmatic children was assessed. Forty five patients with cystic fibrosis, 23 with lower respiratory tract infections (LRTI), and 87 healthy children were used as controls. Serum ECP concentrations (34.3 micrograms/l v 9.8 micrograms/l) were significantly higher in children with bronchial asthma than in healthy control subjects. In symptomatic patients with asthma serum ECP concentrations were increased compared with those from asymptomatic patients (40.2 micrograms/l v 14.4 micrograms/l), irrespective of treatment modalities (that is steroids, beta 2 agonists, or sodium cromoglycate). Moreover, atopy and infection appeared to be factors enhancing eosinophil activity in bronchial asthma as measured by serum ECP (58.4 micrograms/l v 36.8 micrograms/l and 68.8 micrograms/l v 42.2 micrograms/l, respectively). In a longitudinal trial, antiasthmatic treatment modalities (that is steroids) reduced serum ECP within four weeks (42.2 micrograms/l v 19.0 micrograms/l). In conclusion, the data indicate that (1) eosinophils also play a central part in childhood asthma; (2) serum concentrations of ECP in children with bronchial asthma are related to the disease severity and may thus be used for monitoring inflammation in childhood asthma; (3) eosinophil activity appears to be enhanced by atopy and infection; and (4) longitudinal measurements of serum ECP concentrations may be useful for optimising anti-inflammatory treatment in children with bronchial asthma. PMID:8554357

  14. Steel corrosion monitoring in normal and total-lightweight concretes exposed to chloride and sulphate solutions. Part 1: Potential measurements

    SciTech Connect

    Baronio, G.; Bertolini, L.; Berra, M.

    1996-05-01

    The paper reports on long time testing of reinforcement corrosion in normal and total-lightweight concretes exposed to cycles consisting of 4 phases: chloride salt fog, drying, sulphate solution immersion, drying. Potential monitoring evidenced a passive condition for all reinforcements embedded in normalweight concretes. The initiation of the corrosive attack in total-lightweight concretes could not be evidenced, although low potential values were found on corroding reinforcements.

  15. Drought monitoring with soil moisture active passive (SMAP) measurements

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok; Vu, Tue; Veettil, Anoop Valiya; Entekhabi, Dara

    2017-09-01

    Recent launch of space-borne systems to estimate surface soil moisture may expand the capability to map soil moisture deficit and drought with global coverage. In this study, we use Soil Moisture Active Passive (SMAP) soil moisture geophysical retrieval products from passive L-band radiometer to evaluate its applicability to forming agricultural drought indices. Agricultural drought is quantified using the Soil Water Deficit Index (SWDI) based on SMAP and soil properties (field capacity and available water content) information. The soil properties are computed using pedo-transfer function with soil characteristics derived from Harmonized World Soil Database. The SMAP soil moisture product needs to be rescaled to be compatible with the soil parameters derived from the in situ stations. In most locations, the rescaled SMAP information captured the dynamics of in situ soil moisture well and shows the expected lag between accumulations of precipitation and delayed increased in surface soil moisture. However, the SMAP soil moisture itself does not reveal the drought information. Therefore, the SMAP based SWDI (SMAP_SWDI) was computed to improve agriculture drought monitoring by using the latest soil moisture retrieval satellite technology. The formulation of SWDI does not depend on longer data and it will overcome the limited (short) length of SMAP data for agricultural drought studies. The SMAP_SWDI is further compared with in situ Atmospheric Water Deficit (AWD) Index. The comparison shows close agreement between SMAP_SWDI and AWD in drought monitoring over Contiguous United States (CONUS), especially in terms of drought characteristics. The SMAP_SWDI was used to construct drought maps for CONUS and compared with well-known drought indices, such as, AWD, Palmer Z-Index, sc-PDSI and SPEI. Overall the SMAP_SWDI is an effective agricultural drought indicator and it provides continuity and introduces new spatial mapping capability for drought monitoring. As an

  16. Single-Molecule Electronic Monitoring of DNA Polymerase Activity

    NASA Astrophysics Data System (ADS)

    Marushchak, Denys O.; Pugliese, Kaitlin M.; Turvey, Mackenzie W.; Choi, Yongki; Gul, O. Tolga; Olsen, Tivoli J.; Rajapakse, Arith J.; Weiss, Gregory A.; Collins, Philip G.

    Single-molecule techniques can reveal new spatial and kinetic details of the conformational changes occurring during enzymatic catalysis. Here, we investigate the activity of DNA polymerases using an electronic single-molecule technique based on carbon nanotube transistors. Single molecules of the Klenow fragment (KF) of polymerase I were conjugated to the transistors and then monitored via fluctuations in electrical conductance. Continuous, long-term monitoring recorded single KF molecules incorporating up to 10,000 new bases into single-stranded DNA templates. The duration of individual incorporation events was invariant across all analog and native nucleotides, indicating that the precise structure of different base pairs has no impact on the timing of incorporation. Despite similar timings, however, the signal magnitudes generated by certain analogs reveal alternate conformational states that do not occur with native nucleotides. The differences induced by these analogs suggest that the electronic technique is sensing KF's O-helix as it tests the stability of nascent base pairs.

  17. Multi-level continuous active source seismic monitoring (ML-CASSM): Application to shallow hydrofracture monitoring

    NASA Astrophysics Data System (ADS)

    Ajo Franklin, J. B.; Daley, T. M.; Butler-Veytia, B.; Peterson, J.; Gasperikova, E.; Hubbard, S. S.

    2010-12-01

    Induced subsurface processes occur over a wide variety of time scales ranging from seconds (e.g. fracture initiation) to days (e.g. unsteady multiphase flow) and weeks (e.g. induced mineral precipitation). Active source seismic monitoring has the potential to dynamically characterize such alterations and allow estimation of spatially localized rates. However, even optimal timelapse seismic surveys have limited temporal resolution due to both the time required to acquire a survey and the cost of continuous field deployment of instruments and personnel. Traditional timelapse surveys are also limited by experimental repeatability due to a variety of factors including geometry replication and near-surface conditions. Recent research has demonstrated the value of semi-permanently deployed seismic systems with fixed sources and receivers for use in monitoring a variety of processes including near-surface stress changes (Silver et.al. 2007), subsurface movement of supercritical CO2 (Daley et.al. 2007), and preseismic velocity changes in fault regions (Niu et. al. 2008). This strategy, referred to as continuous active source seismic monitoring (CASSM), allows both precise quantification of traveltime changes on the order of 1.1 x 10-7 s and temporal sampling on the order of minutes. However, as previously deployed, CASSM often sacrifices spatial resolution for temporal resolution with previous experiments including only a single source level. We present results from the first deployment of CASSM with a large number of source levels under automated control. Our system is capable of autonomously acquiring full tomographic datasets (10 sources, 72 receivers) in 3 minutes without human intervention, thus allowing active source seismic imaging (rather than monitoring) of processes with short durations. Because no sources or receivers are moved in the acquisition process, signal repeatability is excellent and subtle waveform changes can be interpreted with increased confidence

  18. IDEEA activity monitor: validity of activity recognition for lying, reclining, sitting and standing.

    PubMed

    Jiang, Yuyu; Larson, Janet L

    2013-03-01

    Recent evidence demonstrates the independent negative effects of sedentary behavior on health, but there are few objective measures of sedentary behavior. Most instruments measure physical activity and are not validated as measures of sedentary behavior. The purpose of this study was to evaluate the validity of the IDEEA system's measures of sedentary and low-intensity physical activities: lying, reclining, sitting and standing. Thirty subjects, 14 men and 16 women, aged 23 to 77 years, body mass index (BMI) between 18 to 34 kg/m(2), participated in the study. IDEEA measures were compared to direct observation for 27 activities: 10 lying in bed, 3 lying on a sofa, 1 reclining in a lawn chair, 10 sitting and 3 standing. Two measures are reported, the percentage of activities accurately identified and the percentage of monitored time that was accurately labeled by the IDEEA system for all subjects. A total of 91.6% of all observed activities were accurately identified and 92.4% of the total monitored time was accurately labeled. The IDEEA system did not accurately differentiate between lying and reclining so the two activities were combined for calculating accuracy. Using this approach the IDEEA system accurately identified 96% of sitting activities for a total of 97% of the monitored sitting time, 99% and 99% for standing, 87% and 88% for lying in bed, 87% and 88% for lying on the sofa, and 83% and 83% for reclining on a lawn chair. We conclude that the IDEEA system accurately recognizes sitting and standing positions, but it is less accurate in identifying lying and reclining positions. We recommend combining the lying and reclining activities to improve accuracy. The IDEEA system enables researchers to monitor lying, reclining, sitting and standing with a reasonable level of accuracy and has the potential to advance the science of sedentary behaviors and low-intensity physical activities.

  19. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano.

    PubMed

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-02-19

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards.

  20. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano

    PubMed Central

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-01-01

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards. PMID:26892716

  1. Automatic Video System for Continues Monitoring of the Meteor Activity

    NASA Astrophysics Data System (ADS)

    Koten, Pavel; Fliegel, Karel; Vítek, Stanislav; Páta, Petr

    2011-05-01

    In this paper we present current progress in development of new observational instruments for the double station video experiment. The Meteor Automatic Imager and Analyser (MAIA) system is based on digital monochrome camera JAI CM-040 and well proved image intensifier XX1332. Both the observations as well as the data processing will be fully automatic. We are expecting the recorded data of better quality and both spatial and time resolution in comparison with currently used analogue system. The main goal of the MAIA project is to monitor activity of the meteor showers and sporadic meteor each night for the period of at least 3 years. First version of the system was already assembled and has been intensively tested in the optical laboratory. Optical properties were measured and the result confirmed our expectations according to image quality and resolution. First night sky observation was already carried out.

  2. Use of Small Fluorescent Molecules to Monitor Channel Activity

    NASA Astrophysics Data System (ADS)

    Jones, Sharon; Stringer, Sarah; Naik, Rajesh; Stone, Morley

    2001-03-01

    The Mechanosensitive channel of Large conductance (MscL) allows bacteria to rapidly adapt to changing environmental conditions such as osmolarity. The MscL channel opens in response to increases in membrane tension, which allows for the efflux of cytoplasmic constituents. Here we describe the cloning and expression of Salmonella typhimurium MscL (St-MscL). Using a fluorescence efflux assay, we demonstrate that efflux through the MscL channel during hypoosmotic shock can be monitored using endogenously produced fluorophores. In addition, we observe that thermal stimulation, i.e., heat shock, can also induce efflux through MscL. We present the first evidence of thermal activation of MscL efflux by heat shocking cells expressing the S. typhimurium protein variant. This finding has significant biosensor implications, especially for investigators exploring the use of channel proteins in biosensor applications. Thermal biosensors are relatively unexplored, but would have considerable commercial and military utility.

  3. Detailed methods for the quantification of nitric oxide in aqueous solutions using either an oxygen monitor or EPR.

    PubMed

    Venkataraman, S; Martin, S M; Schafer, F Q; Buettner, G R

    2000-09-15

    The interest in nitric oxide has grown with the discovery that it has many biological functions. This has heightened the need for methods to quantify nitric oxide. Here we report two separate methods for the quantification of aqueous stock solutions of nitric oxide. The first is a new method based on the reaction of nitric oxide with oxygen in liquid phase (*NO + O2 + 2H2O --> 4HNO2); an oxygen monitor is used to measure the consumption of oxygen by nitric oxide. This method offers the advantages of being both simple and direct. The presence of nitrite or nitrate, frequent contaminants in nitric oxide stock solutions, does not interfere with the quantification of nitric oxide. Measuring the disappearance of dissolved oxygen, a reactant, in the presence of known amounts of nitric oxide has provided verification of the 4:1 stoichiometry of the reaction. The second method uses electron paramagnetic resonance spectroscopy (EPR) and the nitric oxide trap [Fe2+-(MGD)2], (MGD = N-methyl-D-glucamine dithiocarbamate). The nitrosyl complex is stable and easily quantitated as a room temperature aqueous solution. These two methods are validated with Sievers 280 Nitric Oxide Analyzer and cross-checked with standards using UV-Vis spectroscopy. The practical lower limits for measuring the concentration of nitric oxide using the oxygen monitor approach and EPR are approximately 3 microM and 500 nM, respectively. Both methods provide straightforward approaches for the standardization of nitric oxide in solution.

  4. Closed-form analytical solutions of the time difference of arrival source location problem for minimal element monitoring arrays.

    PubMed

    Spencer, Steven J

    2010-05-01

    Closed-form analytical solutions are found for the time difference of arrival (TDOA) source location problem. Solutions are found for both two-dimensional (2D) and three-dimensional (3D) source location by formulating the TDOA equations in, respectively, polar and spherical coordinate systems, with the radial direction coincident with the assumed geodesic path of signal propagation to a reference sensor. Quadratic equations for TDOA 2D and 3D source location based on the spherical intersection (SX) scheme, in some cases permitting dual physical solutions, are found for three and four sensor element monitoring arrays, respectively. A method of spherical intersection subarrays (SXSAs) is developed to derive from these quadratic equations globally unique closed-form analytical solutions for TDOA 2D and 3D source location, for four and five sensor element monitoring arrays, respectively. Errors in 2D source location for introduced bias in time differences of arrival are shown to have a strong geometrical dependence. The SXSA and SX methods perform well in terms of accuracy and precision at high levels of arrival time bias for both 2D and 3D source location and are much more efficient than nonlinear least-squares schemes. The SXSA scheme may have particular applicability to accurately solving source location problems in demanding real-time situations.

  5. Aerial monitoring in active mud volcano by UAV technique

    NASA Astrophysics Data System (ADS)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  6. Mathematics Learning with Multiple Solution Methods: Effects of Types of Solutions and Learners' Activity

    ERIC Educational Resources Information Center

    Große, Cornelia S.

    2014-01-01

    It is commonly suggested to mathematics teachers to present learners different methods in order to solve one problem. This so-called "learning with multiple solution methods" is also recommended from a psychological point of view. However, existing research leaves many questions unanswered, particularly concerning the effects of…

  7. Fast calcium sensor proteins for monitoring neural activity

    PubMed Central

    Badura, Aleksandra; Sun, Xiaonan Richard; Giovannucci, Andrea; Lynch, Laura A.; Wang, Samuel S.-H.

    2014-01-01

    Abstract. A major goal of the BRAIN Initiative is the development of technologies to monitor neuronal network activity during active information processing. Toward this goal, genetically encoded calcium indicator proteins have become widely used for reporting activity in preparations ranging from invertebrates to awake mammals. However, slow response times, the narrow sensitivity range of Ca2+ and in some cases, poor signal-to-noise ratio still limit their usefulness. Here, we review recent improvements in the field of neural activity-sensitive probe design with a focus on the GCaMP family of calcium indicator proteins. In this context, we present our newly developed Fast-GCaMPs, which have up to 4-fold accelerated off-responses compared with the next-fastest GCaMP, GCaMP6f. Fast-GCaMPs were designed by destabilizing the association of the hydrophobic pocket of calcium-bound calmodulin with the RS20 binding domain, an intramolecular interaction that protects the green fluorescent protein chromophore. Fast-GCaMP6f-RS06 and Fast-GCaMP6f-RS09 have rapid off-responses in stopped-flow fluorimetry, in neocortical brain slices, and in the intact cerebellum in vivo. Fast-GCaMP6f variants should be useful for tracking action potentials closely spaced in time, and for following neural activity in fast-changing compartments, such as axons and dendrites. Finally, we discuss strategies that may allow tracking of a wider range of neuronal firing rates and improve spike detection. PMID:25558464

  8. Monitoring eruption activity from temporal stress changes at Mt. Ontake volcano, Japan

    NASA Astrophysics Data System (ADS)

    Terakawa, T.; Kato, A.; Yamanaka, Y.; Maeda, Y.; Horikawa, S.; Matsuhiro, K.; Okuda, T.

    2015-12-01

    On 27 September 2014, Mt. Ontake in Japan produced a phreatic (steam type) eruption with a Volcanic Explosivity Index value of 2 after being dormant for seven years. The local stress field around volcanoes is the superposition of the regional stress field and stress perturbations related to volcanic activity. Temporal stress changes over periods of weeks to months are generally attributed to volcanic processes. Here we show that monitoring temporal changes in the local stress field beneath Mt. Ontake, using focal mechanism solutions of volcano-tectonic (VT) earthquakes, is an effective tool for assessing the state of volcanic activity. We estimated focal mechanism solutions of 157 VT earthquakes beneath Mt. Ontake from August 2014 to March 2015, assuming that the source was double-couple. Pre-eruption seismicity was dominated by normal faulting with east-west tension, whereas most post-eruption events were reverse faulting with east-west compression. The misfit angle between observed slip vectors and those derived theoretically from the regional (i.e., background) stress pattern is used to evaluate the deviation of the local stress field, or the stress perturbation related to volcanic activity. The moving average of misfit angles tended to exceed 90° before the eruption, and showed a marked decrease immediately after the eruption. This indicates that during the precursory period the local stress field beneath Mt. Ontake was rotated by stress perturbations caused by the inflation of magmatic/hydrothermal fluids. Post-eruption events of reverse faulting acted to shrink the volcanic edifice after expulsion of volcanic ejecta, controlled by the regional stress field. The misfit angle is a good indicator of the state of volcanic activity. The monitoring method by using this indicator is applicable to other volcanoes and may contribute to the mitigation of volcanic hazards.

  9. Real-time electrochemical monitoring of covalent bond formation in solution via nanoparticle-electrode collisions.

    PubMed

    Li, Da; Kong, Na; Liu, Jingquan; Wang, Hongbin; Barrow, Colin J; Zhang, Shusheng; Yang, Wenrong

    2015-11-25

    We describe an alternative electrochemical technique to monitor covalent bond formation in real-time using nanoparticle-electrode collisions. The method is based on recognising the redox current when MP-11 functionalised chemical reduced graphene oxide (rGO) nanosheets collide with Lomant's reagent modified gold microelectrode. This facile and highly sensitive monitoring method can be useful for investigating the fundamental of single-molecule reactions.

  10. INDIRECT MEASUREMENT OF BIOLOGICAL ACTIVITY TO MONITOR NATURAL ATTENUATION

    EPA Science Inventory

    The remediation of ground water contamination by natural attenuation, specifically biodegradation, requires continual monitoring. This research is aimed at improving methods for evaluating the long-term performance of Monitored Natural Attenuation (MNA), specifically changes in ...

  11. INDIRECT MEASUREMENT OF BIOLOGICAL ACTIVITY TO MONITOR NATURAL ATTENUATION

    EPA Science Inventory

    The remediation of ground water contamination by natural attenuation, specifically biodegradation, requires continual monitoring. This research is aimed at improving methods for evaluating the long-term performance of Monitored Natural Attenuation (MNA), specifically changes in ...

  12. Detection of physical activities using a physical activity monitor system for wheelchair users.

    PubMed

    Hiremath, Shivayogi V; Intille, Stephen S; Kelleher, Annmarie; Cooper, Rory A; Ding, Dan

    2015-01-01

    Availability of physical activity monitors for wheelchair users can potentially assist these individuals to track regular physical activity (PA), which in turn could lead to a healthier and more active lifestyle. Therefore, the aim of this study was to develop and validate algorithms for a physical activity monitoring system (PAMS) to detect wheelchair based activities. The PAMS consists of a gyroscope based wheel rotation monitor (G-WRM) and an accelerometer device (wocket) worn on the upper arm or on the wrist. A total of 45 persons with spinal cord injury took part in the study, which was performed in a structured university-based laboratory environment, a semi-structured environment at the National Veterans Wheelchair Games, and in the participants' home environments. Participants performed at least ten PAs, other than resting, taken from a list of PAs. The classification performance for the best classifiers on the testing dataset for PAMS-Arm (G-WRM and wocket on upper arm) and PAMS-Wrist (G-WRM and wocket on wrist) was 89.26% and 88.47%, respectively. The outcomes of this study indicate that multi-modal information from the PAMS can help detect various types of wheelchair-based activities in structured laboratory, semi-structured organizational, and unstructured home environments.

  13. Active System for Electromagnetic Perturbation Monitoring in Vehicles

    NASA Astrophysics Data System (ADS)

    Matoi, Adrian Marian; Helerea, Elena

    Nowadays electromagnetic environment is rapidly expanding in frequency domain and wireless services extend in terms of covered area. European electromagnetic compatibility regulations refer to limit values regarding emissions, as well as procedures for determining susceptibility of the vehicle. Approval procedure for a series of cars is based on determining emissions/immunity level for a few vehicles picked randomly from the entire series, supposing that entire vehicle series is compliant. During immunity assessment, the vehicle is not subjected to real perturbation sources, but exposed to electric/magnetic fields generated by laboratory equipment. Since current approach takes into account only partially real situation regarding perturbation sources, this paper proposes an active system for determining electromagnetic parameters of vehicle's environment, that implements a logical diagram for measurement, satisfying the imposed requirements. This new and original solution is useful for EMC assessment of hybrid and electrical vehicles.

  14. Monitors.

    ERIC Educational Resources Information Center

    Powell, David

    1984-01-01

    Provides guidelines for selecting a monitor to suit specific applications, explains the process by which graphics images are produced on a CRT monitor, and describes four types of flat-panel displays being used in the newest lap-sized portable computers. A comparison chart provides prices and specifications for over 80 monitors. (MBR)

  15. Estimation of free-living energy expenditure using a novel activity monitor designed to minimize obtrusiveness.

    PubMed

    Bonomi, Alberto G; Plasqui, Guy; Goris, Annelies H C; Westerterp, Klass R

    2010-09-01

    The aim of this study was to investigate the ability of a novel activity monitor designed to be minimally obtrusive in predicting free-living energy expenditure. Subjects were 18 men and 12 women (age: 41 +/- 11 years, BMI: 24.4 +/- 3 kg/m(2)). The habitual physical activity was monitored for 14 days using a DirectLife triaxial accelerometer for movement registration (Tracmor(D)) (Philips New Wellness Solutions, Lifestyle Incubator, the Netherlands). Tracmor(D) output was expressed as activity counts per day (Cnts/d). Simultaneously, total energy expenditure (TEE) was measured in free living conditions using doubly labeled water (DLW). Activity energy expenditure (AEE) and the physical activity level (PAL) were determined from TEE and sleeping metabolic rate (SMR). A multiple-linear regression model predicted 76% of the variance in TEE, using as independent variables SMR (partial-r(2) = 0.55, P < 0.001), and Cnts/d (partial r(2) = 0.21, P < 0.001). The s.e. of TEE estimates was 0.9 MJ/day or 7.4% of the average TEE. A model based on body mass (partial-r(2) = 0.31, P < 0.001) and Cnts/d (partial-r(2) = 0.23, P < 0.001) predicted 54% of the variance in TEE. Cnts/d were significantly and positively associated with AEE (r = 0.54, P < 0.01), PAL (r = 0.68, P < 0.001), and AEE corrected by body mass (r = 0.71, P < 0.001). This study showed that the Tracmor(D) is a highly accurate instrument for predicting free-living energy expenditure. The miniaturized design did not harm the ability of the instrument in measuring physical activity and in determining outcome parameters of physical activity such as TEE, AEE, and PAL.

  16. Anti-Acanthamoeba activity of contact lens solutions

    PubMed Central

    Niszl, I.; Markus, M.

    1998-01-01

    AIMS—This study was undertaken to investigate the effects of contact lens disinfecting solutions on strains of Acanthamoeba from the United Kingdom and southern Africa and to compare the results with those of other researchers. No information was previously available for southern African isolates.
METHODS—11 contact lens solutions were tested on cysts of 10 strains of Acanthamoeba.
RESULTS—Not all solutions used in the study were effective, with some for hard and gas permeable contact lenses being more satisfactory than those for soft contact lenses. The most effective of the gas permeable and hard contact lens solutions tested was Transoak (0.01% (wt/vol) benzalkonium chloride), which killed cysts of all strains within 4 hours of exposure. Oxysept 1 (31 mg hydrogen peroxide/ml) was the best soft contact lens solution tested. It eliminated cysts of certain strains within 4 hours, whereas cysts of other strains were only inactivated within either 8 or 72 hours.
CONCLUSIONS—Manufacturers should be aware of the killing time for Acanthamoeba by contact lens solutions and should provide appropriate guidelines for the use thereof. The killing time for cysts of the African and UK isolates studied is, in general, similar. Therefore, it must in the present state of knowledge be assumed that usage guidelines suggested in the UK are also appropriate for travellers to South Africa and for local residents in South Africa.

 Keywords: contact lenses; Acanthamoeba; keratitis PMID:9893594

  17. Using VHF Lightning Observations to Monitor Explosive Volcanic Activity

    NASA Astrophysics Data System (ADS)

    Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Krehbiel, P. R.; Rison, W.; Edens, H. E.

    2011-12-01

    Lightning is an integral part of explosive volcanic eruptions and volcanic lightning measurements are a useful tool for volcano monitoring. VHF measurements of volcanic lightning can be made remotely, at distances of up to 100 km. A strategically placed network of 6 or more VHF ground stations could locate lightning in eruption columns from several regional volcanoes, and a minimum of two stations could be used to monitor a single volcano. Such a network would be particularly useful for detection or confirmation of explosive activity in situations where volcanoes are remotely located, and thus lack visual observations, or are not well instrumented with seismic networks. Furthermore, clouds are fully transparent to VHF signals, making lightning detection possible even when weather obscures visual observations. Recent VHF observations of volcanic lightning at Augustine Volcano (Alaska, USA, 2006), Redoubt Volcano (Alaska, USA, 2009) and Eyjafjallajökull (Iceland, 2010) have shown that two basic types of VHF signals are observed during volcanic eruptions, one of which is unique to volcanic activity. The unique signal, referred to as a 'continual RF' signal, was caused by very high rates of small 'vent discharges' occurring directly above the vent in the eruption column and was unlike any observations of lightning in meteorological thunderstorms. Vent discharges were observed to begin immediately following an explosive eruption. The second type of signal is from conventional lightning discharges, such as upward directed 'near-vent lightning' and isolated 'plume lightning.' Near-vent lightning was observed to begin 1-2 minutes following the onset of an explosive eruption while plume lightning began 4 or more minutes after the onset. At Redoubt the plume lightning occurred at such high rates that it rivaled lightning rates of supercell thunderstorms on the Great Plains of the United States. While both types of lightning signals can be used as indicators that explosive

  18. [Development of a wearable electrocardiogram monitor with recognition of physical activity scene].

    PubMed

    Wang, Zihong; Wu, Baoming; Yin, Jian; Gong, Yushun

    2012-10-01

    To overcome the problems of current electrocardiogram (ECG) tele-monitoring devices used for daily life, according to information fusion thought and by means of wearable technology, we developed a new type of wearable ECG monitor with the capability of physical activity recognition in this paper. The ECG monitor synchronously detected electrocardiogram signal and body acceleration signal, and recognized the scene information of physical activity, and finally determined the health status of the heart. With the advantages of accuracy for measurement, easy to use, comfort to wear, private feelings and long-term continuous in monitoring, this ECG monitor is quite fit for the heart-health monitoring in daily life.

  19. Performance of a coincidence based blood activity monitor

    SciTech Connect

    Moses, W.W.

    1989-12-01

    A new device has been constructed that measures the positron emitting radio-tracer concentration in arterial blood by extracting blood with a peristaltic pump, then measuring the activity concentration by detecting coincident pairs of 511 keV photons with a pair of heavy inorganic scintillators attached to photomultiplier tubes. The sensitivity of this device is experimentally determined to be 610 counts/second per {mu}Ci/ml, and has a paralyzing dead time of 1.2 {mu}s, so is capable of measuring blood activity concentration as high as 1 mCi/ml. Its performance is compared to two other blood monitoring methods: discrete blood samples counted with a well counter and device that uses a plastic scintillator to directly detect positrons. The positron detection efficiency of this device for {sup 18}F is greater than the plastic scintillation counter, and also eliminates the radioisotope dependent correction factors necessary to convert count rate to absolute concentration. Coincident photon detection also has the potential of reducing the background compared to direct positron detection, thereby increasing the minimum detectable isotope concentration. 10 refs., 6 figs.

  20. Smart helmet: Monitoring brain, cardiac and respiratory activity.

    PubMed

    von Rosenberg, Wilhelm; Chanwimalueang, Theerasak; Goverdovsky, Valentin; Mandic, Danilo P

    2015-01-01

    The timing of the assessment of the injuries following a road-traffic accident involving motorcyclists is absolutely crucial, particularly in the events with head trauma. Standard apparatus for monitoring cardiac activity is usually attached to the limbs or the torso, while the brain function is routinely measured with a separate unit connected to the head-mounted sensors. In stark contrast to these, we propose an integrated system which incorporates the two functionalities inside an ordinary motorcycle helmet. Multiple fabric electrodes were mounted inside the helmet at positions featuring good contact with the skin at different sections of the head. The experimental results demonstrate that the R-peaks (and therefore the heart rate) can be reliably extracted from potentials measured with electrodes on the mastoids and the lower jaw, while the electrodes on the forehead enable the observation of neural signals. We conclude that various vital sings and brain activity can be readily recorded from the inside of a helmet in a comfortable and inconspicuous way, requiring only a negligible setup effort.

  1. Active Learning Framework for Non-Intrusive Load Monitoring: Preprint

    SciTech Connect

    Jin, Xin

    2016-05-16

    Non-Intrusive Load Monitoring (NILM) is a set of techniques that estimate the electricity usage of individual appliances from power measurements taken at a limited number of locations in a building. One of the key challenges in NILM is having too much data without class labels yet being unable to label the data manually for cost or time constraints. This paper presents an active learning framework that helps existing NILM techniques to overcome this challenge. Active learning is an advanced machine learning method that interactively queries a user for the class label information. Unlike most existing NILM systems that heuristically request user inputs, the proposed method only needs minimally sufficient information from a user to build a compact and yet highly representative load signature library. Initial results indicate the proposed method can reduce the user inputs by up to 90% while still achieving similar disaggregation performance compared to a heuristic method. Thus, the proposed method can substantially reduce the burden on the user, improve the performance of a NILM system with limited user inputs, and overcome the key market barriers to the wide adoption of NILM technologies.

  2. Targeted Proteomics Approaches To Monitor Microbial Activity In Basalt Aquifer

    NASA Astrophysics Data System (ADS)

    Paszczynski, A. J.; Paidisetti, R.

    2007-12-01

    Microorganisms play a major role in biogeochemical cycles of the Earth. Information regarding microbial community composition can be very useful for environmental monitoring since the short generation times of microorganisms allows them to respond rapidly to changing environmental conditions. Microbial mediated attenuation of toxic chemicals offers great potential for the restoration of contaminated environments in an ecologically acceptable manner. Current knowledge regarding the structure and functional activities of microbial communities is limited, but more information is being acquired every day through many genomic- and proteomic- based methods. As of today, only a small fraction of the Earth's microorganisms has been cultured, and so most of the information regarding the biodegradation and therapeutic potentials of these uncultured microorganisms remains unknown. Sequence analysis of DNA and/or RNA has been used for identifying specific microorganisms, to study the community composition, and to monitor gene expression providing limited information about metabolic state of given microbial system. Proteomic studies can reveal information regarding the real-time metabolic state of the microbial communities thereby aiding in understanding their interaction with the environment. In research described here the involvement of microbial communities in the degradation of anthropogenic contaminants such as trichloroethylene (TCE) was studied using mass spectrometry-based proteomics. The co- metabolic degradation of TCE in the groundwater of the Snake River Plain Aquifer at the Test Area North (TAN) site of Idaho National Laboratory (INL) was monitored by the characterization of peptide sequences of enzymes such as methane monooxygenases (MMOs). MMOs, expressed by methanotrophic bacteria are involved in the oxidation of methane and non-specific co-metabolic oxidation of TCE. We developed a time- course cell lysis method to release proteins from complex microbial

  3. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution.

    PubMed

    Hung, Chang-Mao

    2009-07-30

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h(-1).

  4. Quantum dot-NBD-liposome luminescent probes for monitoring phospholipase A2 activity.

    PubMed

    Kethineedi, Venkata R; Crivat, Georgeta; Tarr, Matthew A; Rosenzweig, Zeev

    2013-12-01

    In this paper we describe the fabrication and characterization of new liposome encapsulated quantum dot-fluorescence resonance energy transfer (FRET)-based probes for monitoring the enzymatic activity of phospholipase A2. To fabricate the probes, luminescent CdSe/ZnS quantum dots capped with trioctylphosphine oxide (TOPO) ligands were incorporated into the lipid bilayer of unilamellar liposomes with an average diameter of approximately 100 nm. Incorporating TOPO capped quantum dots in liposomes enabled their use in aqueous solution while maintaining their hydrophobicity and excellent photophysical properties. The phospholipid bilayer was labeled with the fluorophore NBD C6-HPC (2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl-1-hexa decanoyl-sn-glycero-3-phosphocholine). The luminescent quantum dots acted as FRET donors and the NBD dye molecules acted as FRET acceptors. The probe response was based on FRET interactions between the quantum dots and the NBD dye molecules. The NBD dye molecules were cleaved and released to the solution in the presence of the enzyme phospholipase A2. This led to an increase of the luminescence of the quantum dots and to a corresponding decrease in the fluorescence of the NBD molecules, because of a decrease in FRET efficiency between the quantum dots and the NBD dye molecules. Because the quantum dots were not attached covalently to the phospholipids, they did not hinder the enzyme activity as a result of steric effects. The probes were able to detect amounts of phospholipase A2 as low as 0.0075 U mL(-1) and to monitor enzyme activity in real time. The probes were also used to screen phospholipase A2 inhibitors. For example, we found that the inhibition efficiency of MJ33 (1-hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol) was higher than that of OBAA (3-(4-octadecyl)benzoylacrylic acid).

  5. Real-time seismic monitoring needs of a building owner - And the solution: A cooperative effort

    USGS Publications Warehouse

    Celebi, M.; Sanli, A.; Sinclair, M.; Gallant, S.; Radulescu, D.

    2004-01-01

    A recently implemented advanced seismic monitoring system for a 24-story building facilitates recording of accelerations and computing displacements and drift ratios in near-real time to measure the earthquake performance of the building. The drift ratio is related to the damage condition of the specific building. This system meets the owner's needs for rapid quantitative input to assessments and decisions on post-earthquake occupancy. The system is now successfully working and, in absence of strong shaking to date, is producing low-amplitude data in real time for routine analyses and assessment. Studies of such data to date indicate that the configured monitoring system with its building specific software can be a useful tool in rapid assessment of buildings and other structures following an earthquake. Such systems can be used for health monitoring of a building, for assessing performance-based design and analyses procedures, for long-term assessment of structural characteristics, and for long-term damage detection.

  6. Monitoring daily function in persons with transfemoral amputations using a commercial activity monitor: a feasibility study.

    PubMed

    Albert, Mark V; Deeny, Sean; McCarthy, Cliodhna; Valentin, Juliana; Jayaraman, Arun

    2014-12-01

    To assess in a feasibility study the mobility of persons with transfemoral amputations using data collected from a popular, consumer-oriented activity monitor (Fitbit). Observational cohort study. Research hospital outpatient evaluation. Nine subjects with transfemoral amputations (4 women and 5 men, ages 21-64 years) and Medicare functional assessments (K level) of K3 (n = 7), K2 (n = 1), and K4 (n = 1). One-week monitoring of physical activity using the Fitbit One activity monitor. Daily estimates of step counts, distance walked, floors/stairs climbed, calories burned, and proprietary Fitbit activity scores. For each day, the amount of time in each of the following levels of activity was also reported: sedentary, lightly active, fairly active, and highly active. The percentage of movement time above the fairly active level had a predictable relationship to the designated K level. The average activity measures show decreased levels of activity for obese subjects (body mass index >30). Estimated step counts were highly predictive/redundant with estimated miles walked without setting individual stride lengths. Using linear regression prediction models, calorie estimates were found to be highly dependent on subject age, height, and weight, whereas the proprietary activity score was independent of all 3 demographic factors. This feasibility study demonstrates that the Fitbit activity monitor estimates the activity of subjects with transfemoral amputations, producing results that correlate with their K-level functional activity classifications. The Fitbit activity score is independent of individual variations in age, weight, and height compared with estimated calories for this small sample size. These tools may provide useful insights into prosthetic use in an at-home environment. Copyright © 2014 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  7. A bioluminescent caspase-1 activity assay rapidly monitors inflammasome activation in cells.

    PubMed

    O'Brien, Martha; Moehring, Danielle; Muñoz-Planillo, Raúl; Núñez, Gabriel; Callaway, Justin; Ting, Jenny; Scurria, Mike; Ugo, Tim; Bernad, Laurent; Cali, James; Lazar, Dan

    2017-03-04

    Inflammasomes are protein complexes induced by diverse inflammatory stimuli that activate caspase-1, resulting in the processing and release of cytokines, IL-1β and IL-18, and pyroptosis, an immunogenic form of cell death. To provide a homogeneous method for detecting caspase-1 activity, we developed a bioluminescent, plate-based assay that combines a substrate, Z-WEHD-aminoluciferin, with a thermostable luciferase in an optimized lytic reagent added directly to cultured cells. Assay specificity for caspase-1 is conferred by inclusion of a proteasome inhibitor in the lytic reagent and by use of a caspase-1 inhibitor to confirm activity. This approach enables a specific and rapid determination of caspase-1 activation. Caspase-1 activity is stable in the reagent thereby providing assay convenience and flexibility. Using this assay system, caspase-1 activation has been determined in THP-1 cells following treatment with α-hemolysin, LPS, nigericin, gramicidin, MSU, R848, Pam3CSK4, and flagellin. Caspase-1 activation has also been demonstrated in treated J774A.1 mouse macrophages, bone marrow-derived macrophages (BMDMs) from mice, as well as in human primary monocytes. Caspase-1 activity was not detected in treated BMDMs derived from Casp1(-/-) mice, further confirming the specificity of the assay. Caspase-1 activity can be measured directly in cultured cells using the lytic reagent, or caspase-1 activity released into medium can be monitored by assay of transferred supernatant. The caspase-1 assay can be multiplexed with other assays to monitor additional parameters from the same cells, such as IL-1β release or cell death. The caspase-1 assay in combination with a sensitive real-time monitor of cell death allows one to accurately establish pyroptosis. This assay system provides a rapid, convenient, and flexible method to specifically and quantitatively monitor caspase-1 activation in cells in a plate-based format. This will allow a more efficient and effective

  8. REMOTES: reliable and modular telescope solution for seamless operation and monitoring of various observation facilities

    NASA Astrophysics Data System (ADS)

    Jakubec, M.; Skala, P.; Sedlacek, M.; Nekola, M.; Strobl, J.; Blazek, M.; Hudec, R.

    2012-09-01

    Astronomers often need to put several pieces of equipment together and have to deploy them at a particular location. This task could prove to be a really tough challenge, especially for distant observing facilities with intricate operating conditions, poor communication infrastructure and unreliable power source. To have this task even more complicated, they also expect secure and reliable operation in both attended and unattended mode, comfortable software with user-friendly interface and full supervision over the observation site at all times. During reconstruction of the D50 robotic telescope facility, we faced many of the issues mentioned above. To get rid of them, we based our solution on a flexible group of hardware modules controlling the equipment of the observation site, connected together by the Ethernet network and orchestrated by our management software. This approach is both affordable and powerful enough to fulfill all of the observation requirements at the same time. We quickly figured out that the outcome of this project could also be useful for other observation facilities, because they are probably facing the same issues we have solved during our project. In this contribution, we will point out the key features and benefits of the solution for observers. We will demonstrate how the solution works at our observing location. We will also discuss typical management and maintenance scenarios and how we have supported them in our solution. Finally, the overall architecture and technical aspects of the solution will be presented and particular design and technology decisions will be clarified.

  9. Geophysical Monitoring of Microbial Activity within a Wetland Soil

    NASA Astrophysics Data System (ADS)

    O'Brien, M.; Zhang, C.; Ntarlagiannis, D.; Slater, L.; Yee, N.

    2007-05-01

    We performed Induced Polarization (IP) and Self Potential (SP) measurements to record the geoelectrical signatures of microbial activity within a wetland soil. The experiment was conducted in laboratory, utilizing an open flow column set up. Soil samples from Kearny Marsh (KM), a shallow water wetland, were collected and stored at 4o Celsius prior to the start of the experiment. Two columns were dry packed with a mix of KM soil and sterile Ottawa sand (50% by weight). One column was sterilized and used as a control while the other column retained the biologically active soil sample. Both columns were saturated with a minimal salts medium capable of supporting microbial life; after saturation, a steady flow rate of one pore volume per day was maintained throughout the experiment. Ambient temperature and pressure changes (at the inflow and outflow of each column) were continuously monitored throughout the experiment. Common geochemical parameters, such as Eh, pH, and fluid conductivity were measured at the inflow and outflow of each column at regular intervals. IP and SP responses were continuously recorded on both columns utilizing a series of electrodes along the column length; additionally for the SP measurements we used a reference electrode at the inflow tube. Strong SP anomalies were observed for all the locations along the active column. Black visible mineral precipitant also formed in the active column. The observed precipitation coincided with the times that SP anomalies developed at each electrode position. These responses are associated with microbial induced sulfide mineralization. We interpret the SP signal as the result of redox processes associated with this mineralization driven by gradients in ionic concentration and mobility within the column, similar to a galvanic cell mechanism. IP measurements show no correlation with these visual and SP responses. Destructive analysis of the samples followed the termination of the experiment. Scanning electron

  10. A comprehensive study on technologies of tyre monitoring systems and possible energy solutions.

    PubMed

    Kubba, Ali E; Jiang, Kyle

    2014-06-11

    This article presents an overview on the state of the art of Tyre Pressure Monitoring System related technologies. This includes examining the latest pressure sensing methods and comparing different types of pressure transducers, particularly their power consumption and measuring range. Having the aim of this research to investigate possible means to obtain a tyre condition monitoring system (TCMS) powered by energy harvesting, various approaches of energy harvesting techniques were evaluated to determine which approach is the most applicable for generating energy within the pneumatic tyre domain and under rolling tyre dynamic conditions. This article starts with an historical review of pneumatic tyre development and demonstrates the reasons and explains the need for using a tyre condition monitoring system. Following this, different tyre pressure measurement approaches are compared in order to determine what type of pressure sensor is best to consider in the research proposal plan. Then possible energy harvesting means inside land vehicle pneumatic tyres are reviewed. Following this, state of the art battery-less tyre pressure monitoring systems developed by individual researchers or by world leading tyre manufacturers are presented. Finally conclusions are drawn based on the reviewed documents cited in this article and a research proposal plan is presented.

  11. A Comprehensive Study on Technologies of Tyre Monitoring Systems and Possible Energy Solutions

    PubMed Central

    Kubba, Ali E.; Jiang, Kyle

    2014-01-01

    This article presents an overview on the state of the art of Tyre Pressure Monitoring System related technologies. This includes examining the latest pressure sensing methods and comparing different types of pressure transducers, particularly their power consumption and measuring range. Having the aim of this research to investigate possible means to obtain a tyre condition monitoring system (TCMS) powered by energy harvesting, various approaches of energy harvesting techniques were evaluated to determine which approach is the most applicable for generating energy within the pneumatic tyre domain and under rolling tyre dynamic conditions. This article starts with an historical review of pneumatic tyre development and demonstrates the reasons and explains the need for using a tyre condition monitoring system. Following this, different tyre pressure measurement approaches are compared in order to determine what type of pressure sensor is best to consider in the research proposal plan. Then possible energy harvesting means inside land vehicle pneumatic tyres are reviewed. Following this, state of the art battery-less tyre pressure monitoring systems developed by individual researchers or by world leading tyre manufacturers are presented. Finally conclusions are drawn based on the reviewed documents cited in this article and a research proposal plan is presented. PMID:24922457

  12. Microwave-Based Microfluidic Sensor for Non-Destructive and Quantitative Glucose Monitoring in Aqueous Solution

    PubMed Central

    Chretiennot, Thomas; Dubuc, David; Grenier, Katia

    2016-01-01

    This paper presents a reliable microwave and microfluidic miniature sensor dedicated to the measurement of glucose concentration in aqueous solution. The device; which is integrated with microtechnologies; is made of a bandstop filter implemented in a thin film microstrip technology combined with a fluidic microchannel. Glucose aqueous solutions have been characterized for concentration ranging from 80 g/L down to 0.3 g/L and are identified with the normalized insertion loss at optimal frequency. The sensitivity of the sensor has consequently been estimated at 7.6 × 10−3 dB/(g/L); together with the experimental uncertainty; the resolution of the sensor comes to 0.4 g/L. These results demonstrate the potentialities of such a sensor for the quantitative analysis of glucose in aqueous solution. PMID:27775555

  13. Enhanced active liposomal loading of a poorly soluble ionizable drug using supersaturated drug solutions.

    PubMed

    Modi, Sweta; Xiang, Tian-Xiang; Anderson, Bradley D

    2012-09-10

    Nanoparticulate drug carriers such as liposomal drug delivery systems are of considerable interest in cancer therapy because of their ability to passively accumulate in solid tumors. For liposomes to have practical utility for antitumor therapy in patients, however, optimization of drug loading, retention, and release kinetics are necessary. Active loading is the preferred method for optimizing loading of ionizable drugs in liposomes as measured by drug-to-lipid ratios, but the extremely low aqueous solubilities of many anticancer drug candidates may limit the external driving force, thus slowing liposomal uptake during active loading. This report demonstrates the advantages of maintaining drug supersaturation during active loading. A novel method was developed for creating and maintaining supersaturation of a poorly soluble camptothecin analogue, AR-67 (7-t-butyldimethylsilyl-10-hydroxycamptothecin), using a low concentration of a cyclodextrin (sulfobutylether-β-cyclodextrin) to inhibit crystallization over a 48 h period. Active loading into liposomes containing high concentrations of entrapped sodium or calcium acetate was monitored using drug solutions at varying degrees of supersaturation. Liposomal uptake rates increased linearly with the degree of supersaturation of drug in the external loading solution. A mathematical model was developed to predict the rate and extent of drug loading versus time, taking into account the chemical equilibria inside and outside of the vesicles and the transport kinetics of various permeable species across the lipid bilayer and the dialysis membrane. Intraliposomal sink conditions were maintained by the high internal pH caused by the efflux of acetic acid and exchange with AR-67, which undergoes lactone ring-opening, ionization, and membrane binding in the interior of the vesicles. The highest drug to lipid ratio achieved was 0.17 from a supersaturated solution at a total drug concentration of 0.6 mg/ml. The rate and extent of

  14. Sustainable Energy Solutions Task 1.0: Networked Monitoring and Control of Small Interconnected Wind Energy Systems

    SciTech Connect

    edu, Janet. twomey@wichita.

    2010-04-30

    This report presents accomplishments, results, and future work for one task of five in the Wichita State University Sustainable Energy Solutions Project: To develop a scale model laboratory distribution system for research into questions that arise from networked control and monitoring of low-wind energy systems connected to the AC distribution system. The lab models developed under this task are located in the Electric Power Quality Lab in the Engineering Research Building on the Wichita State University campus. The lab system consists of four parts: 1. A doubly-fed induction generator 2. A wind turbine emulator 3. A solar photovoltaic emulator, with battery energy storage 4. Distribution transformers, lines, and other components, and wireless and wired communications and control These lab elements will be interconnected and will function together to form a complete testbed for distributed resource monitoring and control strategies and smart grid applications testing. Development of the lab system will continue beyond this project.

  15. Validation of a two-axis accelerometer for monitoring patient activity during blood pressure or ECG holter monitoring.

    PubMed

    Wetzler, Marie-Laure; Borderies, Jean René; Bigaignon, Odile; Guillo, Pascal; Gosse, Philippe

    2003-12-01

    The aim of the study was to evaluate the efficiency of a position/activity monitoring system based on a dual-axis accelerometer strapped to the subject's thigh and a position sensor located within a monitor placed on the subject's belt. Twenty-six subjects wearing two monitors (one accelerometer on each thigh) were submitted to various activities and positions under the control of an observer. An analysis of each tracing was performed both manually by a technician and automatically by dedicated software before being compared with the information gathered during the study. The accelerometer allowed accurate discrimination between the standing versus the sitting and lying positions. The sitting and lying positions were correctly detected by the built-in position sensor provided the unit was firmly attached. Walking was adequately detected by the accelerometer. The activity score was well correlated with treadmill speed. Changes in position and activity were detected with a mean error of less than 3 s. The combination of an accelerometer placed on the subject's thigh and a position sensor located at the subject's waist appeared to be a suitable system for position/activity monitoring during ambulatory ECG and blood pressure monitoring.

  16. Physical Activity Measured by Physical Activity Monitoring System Correlates with Glucose Trends Reconstructed from Continuous Glucose Monitoring

    PubMed Central

    Zecchin, Chiara; Facchinetti, Andrea; Sparacino, Giovanni; Dalla Man, Chiara; Manohar, Chinmay; Levine, James A.; Basu, Ananda; Kudva, Yogish C.

    2013-01-01

    Abstract Background In type 1 diabetes mellitus (T1DM), physical activity (PA) lowers the risk of cardiovascular complications but hinders the achievement of optimal glycemic control, transiently boosting insulin action and increasing hypoglycemia risk. Quantitative investigation of relationships between PA-related signals and glucose dynamics, tracked using, for example, continuous glucose monitoring (CGM) sensors, have been barely explored. Subjects and Methods In the clinic, 20 control and 19 T1DM subjects were studied for 4 consecutive days. They underwent low-intensity PA sessions daily. PA was tracked by the PA monitoring system (PAMS), a system comprising accelerometers and inclinometers. Variations on glucose dynamics were tracked estimating first- and second-order time derivatives of glucose concentration from CGM via Bayesian smoothing. Short-time effects of PA on glucose dynamics were quantified through the partial correlation function in the interval (0, 60 min) after starting PA. Results Correlation of PA with glucose time derivatives is evident. In T1DM, the negative correlation with the first-order glucose time derivative is maximal (absolute value) after 15 min of PA, whereas the positive correlation is maximal after 40–45 min. The negative correlation between the second-order time derivative and PA is maximal after 5 min, whereas the positive correlation is maximal after 35–40 min. Control subjects provided similar results but with positive and negative correlation peaks anticipated of 5 min. Conclusions Quantitative information on correlation between mild PA and short-term glucose dynamics was obtained. This represents a preliminary important step toward incorporation of PA information in more realistic physiological models of the glucose–insulin system usable in T1DM simulators, in development of closed-loop artificial pancreas control algorithms, and in CGM-based prediction algorithms for generation of hypoglycemic alerts. PMID

  17. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons.

    PubMed

    Rakić, Vesna; Rac, Vladislav; Krmar, Marija; Otman, Otman; Auroux, Aline

    2015-01-23

    In this study, the adsorption of pharmaceutically active compounds - salicylic acid, acetylsalicylic acid, atenolol and diclofenac-Na onto activated carbons has been studied. Three different commercial activated carbons, possessing ∼650, 900 or 1500m(2)g(-1) surface areas were used as solid adsorbents. These materials were fully characterized - their textural, surface features and points of zero charge have been determined. The adsorption was studied from aqueous solutions at 303K using batch adsorption experiments and titration microcalorimetry, which was employed in order to obtain the heats evolved as a result of adsorption. The maximal adsorption capacities of investigated solids for all target pharmaceuticals are in the range of 10(-4)molg(-1). The obtained maximal retention capacities are correlated with the textural properties of applied activated carbon. The roles of acid/base features of activated carbons and of molecular structures of adsorbate molecules have been discussed. The obtained results enabled to estimate the possibility to use the activated carbons in the removal of pharmaceuticals by adsorption. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Novel Flexible Wearable Sensor Materials and Signal Processing for Vital Sign and Human Activity Monitoring.

    PubMed

    Servati, Amir; Zou, Liang; Wang, Z Jane; Ko, Frank; Servati, Peyman

    2017-07-13

    Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology.

  19. Jovian dust streams: A monitor of Io's volcanic plume activity

    USGS Publications Warehouse

    Kruger, H.; Geissler, P.; Horanyi, M.; Graps, A.L.; Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Moissl, R.; Johnson, T.V.; Grun, E.

    2003-01-01

    Streams of high speed dust particles originate from Jupiter's moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter's magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over 200 km s-1. The Galileo spacecraft has continuously monitored the dust streams during 34 revolutions about Jupiter between 1996 and 2002. The observed dust fluxes exhibit large orbit-to-orbit variability due to systematic and stochastic changes. After removal of the systematic variations, the total dust emission rate of Io has been calculated. It varies between 10-3 and 10 kg s-1, and is typically in the range of 0.1 to 1 kg s-1. We compare the dust emission rate with other markers of volcanic activity on Io like large-area surface changes caused by volcanic deposits and sightings of volcanic plumes. Copyright 2003 by the American Geophysical Union.

  20. Apollo Director Phillips Monitors Apollo 11 Pre-Launch Activities

    NASA Technical Reports Server (NTRS)

    1969-01-01

    From the Kennedy Space Flight Center (KSC) control room, Apollo Program Director Lieutenant General Samuel C. Phillips monitors pre-launch activities for Apollo 11. The Apollo 11 mission, the first lunar landing mission, launched from the KSC in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  1. Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova, Ekaterina; Shnip, Alexander; Zheltov, George; Potapnev, Michail; Savitsky, Valeriy; Klimovich, Olga; Oraevsky, Alexander

    2005-04-01

    We are developing new diagnostic and therapeutic technologies for leukemia based on selective targeting of leukemia cells with gold nanoparticles and thermomechanical destruction of the tumor cells with laser-induced microbubbles. Clusters of spherical gold nanoparticles that have strong optical absorption of laser pulses at 532 nm served as nucleation sites of vapor microbubbles. The nanoparticles were targeted selectively to leukemia cells using leukemia-specific surface receptors and a set of two monoclonal antibodies. Application of a primary myeloid-specific antibody to tumor cells followed by targeting the cells with 30-nm nanoparticles conjugated with a secondary antibody (IgG) resulted in formation of nanoparticulate clusters due to aggregation of IgGs. Formation of clusters resulted in substantial decrease of the damage threshold for target cells. The results encourage development of Laser Activated Nanothermolysis as a Cell Elimination Therapy (LANCET) for leukemia. The proposed technology can be applied separately or in combination with chemotherapy for killing leukemia cells without damage to other blood cells. Potential applications include initial reduction of concentration of leukemia cells in blood prior to chemotherapy and treatment of residual tumor cells after the chemotherapy. Laser-induced bubbles in individual cells and cell damage were monitored by analyzing profile of photothermal response signals over the entire cell after irradiation with a single 10-ns long laser pulse. Photothermal microscopy was utilized for imaging formation of microbubbles around nanoparticulate clusters.

  2. Home uterine activity monitoring: the role of medical evidence.

    PubMed

    Reichmann, James P

    2008-08-01

    The current paradigm in obstetrics has shifted toward evidence-based medicine, and yet in clinical practice physicians continue to use interventions for which there exists no credible evidence. This article examines the U.S. Food and Drug Administration (FDA) status of home uterine activity monitoring (HUAM) and the published clinical trials examining HUAM for the management of current preterm labor. The use of HUAM was introduced into clinical practice and heavily marketed without benefit of scientific rigor. Gradually, HUAM use migrated primarily for patients diagnosed (or misdiagnosed) with preterm labor in the current pregnancy who are stabilized and sent home with or without a tocolytic. This clinical intervention has not been cleared by the FDA, has virtually no scientific support, and constitutes a gross deviation from evidence-based medicine. As obstetricians accept the role of medical evidence steering clinical practice, HUAM clearly has no clinical value and therefore should not be used to manage patients outside of a randomized controlled clinical trial.

  3. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.

  4. Chill activation of compatible solute transporters in Corynebacterium glutamicum at the level of transport activity.

    PubMed

    Ozcan, Nuran; Krämer, Reinhard; Morbach, Susanne

    2005-07-01

    The gram-positive soil bacterium Corynebacterium glutamicum harbors four osmoregulated secondary uptake systems for compatible solutes, BetP, EctP, LcoP, and ProP. When reconstituted in proteoliposomes, BetP was shown to sense hyperosmotic conditions via the increase in luminal K(+) and to respond by instant activation. To study further putative ways of stimulus perception and signal transduction, we have investigated the responses of EctP, LcoP, and BetP, all belonging to the betaine-carnitine-choline transporter family, to chill stress at the level of activity. When fully activated by hyperosmotic stress, they showed the expected increase of activity at increasing temperature. In the absence of osmotic stress, EctP was not activated by chill and LcoP to only a very low extent, whereas BetP was significantly stimulated at low temperature. BetP was maximally activated at 10 degrees C, reaching the same transport rate as that observed under hyperosmotic conditions at this temperature. A role of cytoplasmic K(+) in chill-dependent activation of BetP was ruled out, since (i) the cytoplasmic K(+) concentration did not change significantly at lower temperatures and (ii) a mutant BetP lacking the C-terminal 25 amino acids, which was previously shown to have lost the ability to be activated by luminal K(+), was fully competent in chill sensing. When heterologously expressed in Escherichia coli, BetP did not respond to chill stress. This may indicate that the membrane in which BetP is inserted plays an important role in chill activation and thus in signal transduction by BetP, different from the previously established K(+)-mediated process.

  5. Comparison of two experimental speciation methods with a theoretical approach to monitor free and labile Cd fractions in soil solutions.

    PubMed

    Parat, C; Cornu, J-Y; Schneider, A; Authier, L; Sapin-Didier, V; Denaix, L; Potin-Gautier, M

    2009-08-26

    This work focused on the suitability of two techniques to monitor cadmium speciation in soil solutions collected during a 7-day incubation of a contaminated soil. Anodic stripping voltammetry (ASV) and ion exchange were performed on soil solutions collected daily and results were compared with calculations obtained with the speciation software Visual MINTEQ. The electrochemically labile Cd fraction was greater than the exchange-estimated free Cd fraction during the first 6 days, after which it decreased sharply during the last 2 days to reach values close to the exchange-estimated free Cd fraction. Further investigations showed that the increase in pH was mainly responsible for the reduction. However, calculations performed with Visual MINTEQ software clearly demonstrated that a change in the nature of organic matter and/or its complexing capacity also needed to be taken into consideration.

  6. Antimicrobial Activity of Common Mouthwash Solutions on Multidrug-Resistance Bacterial Biofilms

    PubMed Central

    Masadeh, Majed M.; Gharaibeh, Shadi F.; Alzoubi, Karem H.; Al-Azzam, Sayer I.; Obeidat, Wasfi M.

    2013-01-01

    Background Periodontal bacteria occur in both planktonic and biofilm forms. While poor oral hygiene leads to accumulation of bacteria, reducing these microbes is the first step toward good oral hygiene. This is usually achieved through the use of mouthwash solutions. However, the exact antibacterial activity of mouthwash solution, especially when bacteria form biofilms, is yet to be determined. In this study, we evaluated the antibacterial activity of common mouthwash solutions against standard bacteria in their planktonic and biofilm states. Methods Standard bacterial strains were cultured, and biofilm were formrd. Thereafter, using standard method for determination of minimum inhibitory concentrations (MIC) values of various mouthwash solutions were determined. Results Results show that common mouthwash solutions have variable antibacterial activity depending on their major active components. Only mouthwash solutions containing chlorohexidine gluconate or cetylpyridinum chloride exhibited activity against majority, but not all tested bacterial strains in their biofilm state. Additionally, bacteria are generally less susceptible to all mouthwash solutions in their biofilm as compared to planktonic state. Conclusions While mouthwash solutions have variable antibacterial activity, bacteria in their biofilm state pose a challenge to dental hygiene/care where bacteria become not susceptible to majority of available mouthwash solutions. PMID:23976912

  7. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... August 30, 1999 Other Monitoring Requirements § 62.15275 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans...

  8. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... August 30, 1999 Other Monitoring Requirements § 62.15275 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans...

  9. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... August 30, 1999 Other Monitoring Requirements § 62.15275 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans...

  10. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... August 30, 1999 Other Monitoring Requirements § 62.15275 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans...

  11. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... August 30, 1999 Other Monitoring Requirements § 62.15275 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans...

  12. The Piranha Solution: Monitoring and Protection of Proprietary System Intangible Assets

    ERIC Educational Resources Information Center

    Ladwig, Christine; Schwieger, Dana; Clayton, Donald

    2017-01-01

    The "Piranha Solution"® is a complex and valuable integrated chemical supply inventory management system protected as a trade secret by its asset holder, the Confluence Corporation. The "Piranha" program is the lifeblood of the corporation's growth and success in the chemical supply industry. A common definition of "trade…

  13. The thermodynamic activity of proline in ternary solutions of different water potentials.

    PubMed

    Pahlich, E; Stadermann, T

    1984-06-01

    The particular colligative properties of proline caused us to investigate the thermodynamic activity of this amino acid in detail. The dependence of the activity coefficients γ of proline (γ = thermodynamic activity/molality) on the pH of the solutions, the composition of the solution and the water potential has been measured. The results show that the activity coefficient of proline varies according to the solute milieu. The most pronounced alterations of the activity coefficient could be observed in polyethylene glycol solutions in contrast to KCl- and saccharose solutions where the effect was less distinct. The results described provide a basis for discussing water stress induced metabolic alterations in terms of thermodynamic entities. Changed rates of proline metabolizing sequences and changed ratios of the vacuole/extravacuole distribution of this amino acid in stressed and un-stressed plants may partially be explained by thermodynamic causes.

  14. Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity

    PubMed Central

    Ardic, Fusun; Göcer, Esra

    2016-01-01

    Abstract The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer. A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n = 10), overweight (n = 10), and obese (n = 10). After the submaximal exercise test on a treadmill, the moderate intensity for walking was determined by using YX200 pedometer and then the number of steps taken in a minute was measured. Lower and upper limits of steps per minute (cadence) were recorded in ECE PEDO providing audible feedback when the person's walking speed gets out of the limits. Volunteers walked for 30 minutes in the individual step count range by attaching the ECE PEDO and YX200 pedometer on both sides of the waist belt in the same session. Step counts of the volunteers were recorded. Wilcoxon, Spearman correlation, and Bland–Altman analyses were performed to show the relationship and agreement between the results of 2 devices. Subjects took an average of 3511 ± 426 and 3493 ± 399 steps during 30 minutes with ECE PEDO and criterion pedometer, respectively. About 3500 steps taken by ECE PEDO reflected that this pedometer has capability of identifying steps per minute to meet moderate intensity of physical activity. There was a strong correlation between step counts of both devices (P < 0.001, r = 0.96). Correlations across all three BMI categories and both sex remained consistently high ranging from 0.92 to 0.95. There was a high level of agreement between the ECE PEDO and YX200 pedometer in the Bland–Altman analysis. Although both devices showed a strong similarity in counting steps, the ECE PEDO provides monitoring of intensity such that a person can walk in a specified time with a

  15. Physical activity - a neat solution to an impending crisis.

    PubMed

    McManus, Alison M

    2007-09-01

    Childhood obesity is arguably the most significant global public health threat, yet effective strategies to contain or prevent the disease are not available. This review examines the physical activity patterns of children and the role physical activity plays in daily energy expenditure. The prevailing focus on moderate to vigorous activity in childhood means there is limited objective information on either sedentary behaviour or non-exercise activity thermogenesis (NEAT), the energy expended during the activities of daily living. Most strategies targeting the prevention of childhood obesity have focused upon adding moderate to vigorous activity and have not been particularly successful. The low efficacy of more purposeful activity is perhaps not surprising because of the small variance in children's physical activity levels explained by moderate to vigorous activity. Subtle changes in NEAT have in contrast been shown to account for differences in fat-mass gain or resistance in adults. Theoretically, manipulating a child's living environment to enhance NEAT would create a positive gain in TDEE, a gain that could lead to the prevention of excess fat-mass. More careful consideration of the specific aspects of physical activity that are most influential in the maintenance of body weight in childhood is a priority. Appreciating the role NEAT may play in the variation of total daily energy expenditure in children is a future challenge for physical activity research. Key pointsExcessive weight gain affects children in both developed and developing countries alike, and results initially from small energy imbalances. Increasing the energy expended in daily living has the potential to re-adjust energy balance and prevent initial excess weight gain.Sedentary behaviour and light intensity movement, as opposed to moderate or vigorous movement, dominate a child's day. We need to understand more about which aspects of activity account for variance in total daily energy

  16. Monitoring of Landslides with Mass Market Gps: AN Alternative Low Cost Solution

    NASA Astrophysics Data System (ADS)

    Cina, A.; Piras, M.; Bendea, H. I.

    2013-01-01

    The territory of Italy is seriously afflicted by hydrological risk, with 82% of its area affected by this phenomenon. In recent years, technologies and advanced research have played an important role in realizing complex automatic systems devoted to landslide monitoring and to alerting the population. Sometimes, the cost of these systems (communications network, sensors, software, technologies) prevents their use, and in particular the cost of sensors has a large impact on the final investment. For example, geodetic GNSS receivers are usually employed to conduct landslide monitoring, but they are costly. Nowadays, new technologies make it possible to use small and efficient low cost single frequency GPS receivers, which are able to achieve a centimetric or better level of accuracy, in static positioning. The rapid development and diffusion of the GNSS network to provide a positioning service has made it possible to use single frequency receivers, thanks to the use of virtual RINEX. This product is generated by a network of permanent stations. In this research, the actual performance of a mass market GPS receiver was tested, with the purpose of verifying if these sensors can be used for landslide monitoring. A special slide was realized, in order to conduct a dedicated test of the detection of displacements. Tests were carried out considering two factors: acquisition time and distance from the Virtual Station. The accuracy and precision of movement determination were evaluated and compared, for each test, considering the different factors. The tests and results are described in this contribution.

  17. Technology Solutions Case Study: Advanced Boiler Load Monitoring Controls, Chicago, Illinois

    SciTech Connect

    2014-09-01

    Most of Chicago’s older multifamily housing stock is heated by centrally metered steam or hydronic systems. The cost of heat is typically absorbed into the owner’s operating cost and is then passed to tenants. Central boilers typically have long service lifetimes; the incentive for retrofit system efficiency upgrades is greater than equipment replacement for the efficiency-minded owner. System improvements as the “low-hanging fruit” are familiar, from improved pipe insulation to aftermarket controls such as outdoor temperature reset (OTR) or lead/lag controllers for sites with multiple boilers. Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. In this project, the Building America team Partnership for Advanced Residential Retrofit (PARR) installed and monitored an ALM aftermarket controller, the M2G from Greffen Systems, at two Chicago area multifamily buildings with existing OTR control. Results show that energy savings depend on the degree to which boilers are oversized for their load, represented by cycling rates. Also, savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, oversized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less oversized boilers at another site showed muted savings.

  18. Sedimentation and erosion in Lake Diefenbaker, Canada: solutions for shoreline retreat monitoring.

    PubMed

    Sadeghian, Amir; de Boer, Dirk; Lindenschmidt, Karl-Erich

    2017-09-15

    This study looks into sedimentation and erosion rates in Lake Diefenbaker, a prairie reservoir, in Saskatchewan, Canada, which has been in operation since 1968. First, we looked at the historical data in all different formats over the last 70 years, which includes data from more than 20 years before the formation of the lake. The field observations indicate high rates of shoreline erosion, especially in the upstream portion as a potential region for shoreline retreat. Because of the great importance of this waterbody to the province, monitoring sedimentation and erosion rates is necessary for maintaining the quality of water especially after severe floods which are more common due to climate change effects. Second, we used Google Maps Elevation API, a new tool from Google that provides elevation data for cross sections drawn between two points, by drawing 24 cross sections in the upstream area extending 250 m from each bank. This feature from Google can be used as an easy and fast monitoring tool, is free of charge, and provides excellent control capabilities for monitoring changes in cross-sectional profiles.

  19. Using Commercial Activity Monitors to Measure Gait in Patients with Suspected iNPH: Implications for Ambulatory Monitoring.

    PubMed

    Gaglani, Shiv; Moore, Jessica; Haynes, M Ryan; Hoffberger, Jamie B; Rigamonti, Daniele

    2015-11-17

    This study seeks to validate the use of activity monitors to detect and record gait abnormalities, potentially identifying patients with idiopathic normal pressure hydrocephalus (iNPH) prior to the onset of cognitive or urinary symptoms. This study compared the step counts of four common activity monitors (Omron Step Counter HJ-113, New Lifestyles 2000, Nike Fuelband, and Fitbit Ultra) to an observed step count in 17 patients with confirmed iNPH. Of the four devices, the Fitbit Ultra (Fitbit, Inc., San Francisco, CA) provided the most accurate step count. The correlation with the observed step count was significantly higher (p<0.009) for the Fitbit Ultra than for any of the other three devices. These preliminary findings suggest that existing activity monitors have variable efficacy in the iNPH patient population and that the MEMS tri-axial accelerometer and algorithm of the Fitbit Ultra provides the most accurate gait measurements of the four devices tested.

  20. Step Detection and Activity Recognition Accuracy of Seven Physical Activity Monitors

    PubMed Central

    Storm, Fabio A.; Heller, Ben W.; Mazzà, Claudia

    2015-01-01

    The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications. PMID:25789630

  1. Step detection and activity recognition accuracy of seven physical activity monitors.

    PubMed

    Storm, Fabio A; Heller, Ben W; Mazzà, Claudia

    2015-01-01

    The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications.

  2. Monitoring snowmelt and solute transport at Oslo airport by combining time-lapse electrical resistivity, soil water sampling and tensiometer measurements

    NASA Astrophysics Data System (ADS)

    Bloem, E.; French, H. K.

    2013-12-01

    Monitoring contaminant transport at contaminated sites requires optimization of the configuration of a limited number of samplings points combined with heterogeneous flow and preferential flowpaths. Especially monitoring processes in the unsaturated zone is a major challenge due to the limited volume monitored by for example suction cups and their risk to clog in a highly active degradation zone. To make progress on soil contamination assessment and site characterization there is a strong need to integrate field-sale extensively instrumented tools, with non-invasive (geophysical) methods which provide spatially integrated measurements also in the unsaturated zone. Examples of sites that might require monitoring activities in the unsaturated zone are airports with winter frost where large quantities of de-icing chemicals are used each winter; salt and contaminant infiltration along roads; constructed infiltration systems for treatment of sewerage or landfill seepage. Electrical resistivity methods have proved to be useful as an indirect measurement of subsurface properties and processes at the field-scale. The non-uniqueness of the interpretation techniques can be reduced by constraining the inversion through the addition of independent geophysical measurements along the same profile. Or interpretation and understanding of geophysical images can be improved by the combination with classical measurements of soil physical properties, soil suction, contaminant concentration and temperatures. In our experiment, at the research field station at Gardermoen, Oslo airport, we applied a degradable de-icing chemical and an inactive tracer to the snow cover prior to snowmelt. To study the solute transport processes in the unsaturated zone time-lapse cross borehole electrical resistivity tomography (ERT) measurements were conducted at the same time as soil water samples were extracted at multiple depths with suction cups. Measurements of soil temperature, and soil tension were

  3. Multifunctional and biologically active matrices from multicomponent polymeric solutions

    NASA Technical Reports Server (NTRS)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor); Rabolt, John (Inventor); Casper, Cheryl (Inventor)

    2012-01-01

    A functionalized electrospun matrix for the controlled-release of biologically active agents, such as growth factors, is presented. The functionalized matrix comprises a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin.

  4. Active cooling solutions for high power laser diodes stacks

    NASA Astrophysics Data System (ADS)

    Karni, Yoram; Klumel, Genady; Levy, Moshe; Berk, Yuri; Openhaim, Yaki; Gridish, Yaakov; Elgali, Asher; Avisar, Meir; Blonder, Moshe; Sagy, Hila; Gertsenshtein, Alex

    2008-02-01

    High power water cooled diode lasers find increasing demand in biomedical, cosmetic and industrial applications, where very high brightness and power are required. The high brightness is achieved either by increasing the power of each bar or by reducing the emitting area of the stacks. Two new products will be presented: Horizontal CW stacks with output power as high as 1kW using 80 W bars with emitting area width as low as 50 μm Vertical QCW stacks with output power as high as 1.2kW using 120 W bars. Heat removal from high power laser stacks often requires microchannel coolers operated with finely filtered deionized (DI) water. However, for certain industrial applications the reliability of this cooling method is widely considered insufficient due to leakage failures caused the highly corrosive DI water. Two solutions to the above problem will be discussed. A microchannel cooler-based package, which vastly reduces the corrosion problem, and a novel high-power laser diode stack that completely eliminates it. The latter solution is especially effective for pulsed applications in high duty cycle range.

  5. Monitoring proton dissociation and solution conformation of chiral ytterbium complexes with near-IR CD.

    PubMed

    Lelli, Moreno; Pintacuda, Guido; Cuzzola, Angela; Di Bari, Lorenzo

    2005-05-05

    The ytterbium complex [Yb((S)-THP)](3+) ((S)-THP = (1S,4S,7S,10S-tetrakis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane) is investigated in solution through NMR, near-IR absorption, and CD spectroscopy. Quantitative analysis of the paramagnetic pseudocontact NMR shift shows Lambda helicity of the ligand cage around the metal. The NIR CD spectrum recorded at acidic pH is found to be very similar to that of [Yb((R)-DOTMA)](-) ((R)-DOTMA = (1R,4R,7R,10R)-alpha,alpha',alpha'',alpha'''-tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), which in solution assumes a twisted square antiprism (TSA) conformation. The similarity of the NIR CD spectra is discussed, and it is the first proof of the Lambda(lambda,lambda,lambda,lambda) conformation of [Yb((S)-THP)](3+). NIR CD spectra recorded in the pH range of 2-9 allow one to easily follow proton dissociation and to calculate the pK of this equilibrium in water (pK(A) = 6.4 +/- 0.1). This value agrees well with that determined for [Lu((S)-THP)](3+) using potentiometric methods. This demonstrates once again that NIR CD spectroscopy is a powerful technique for investigating the solution structure and dynamics of these complexes.

  6. Dataset of water activity measurements of alcohol:water solutions using a Tunable Diode Laser.

    PubMed

    Allan, Matthew; Mauer, Lisa J

    2017-06-01

    The data presented in this article are related to the research article entitled "RH-temperature phase diagrams of hydrate forming deliquescent crystalline ingredients" (Allan and Mauer, 2017) [1]. The data are water activity measurements of alcohol:water solutions (methanol:water and ethanol:water solutions at varying molar ratios) at different temperatures collected using the Tunable Diode Laser by Decagon Devices. The measured water activities of ethanol:water solutions were correlated to the initial volumetric ratios to produce polynomial equations that can be used to calculate the needed initial volumetric ratios for water activity controlled solutions. The data sets and polynomial equations are provided to enable extended analyses and applications of the data and calculations for generating and using controlled water activity solutions containing alcohol. An example application of these data is described in the research article mentioned above.

  7. Measurement of activity in older adults: reliability and validity of the Step Activity Monitor.

    PubMed

    Resnick, B; Nahm, E S; Orwig, D; Zimmerman, S S; Magaziner, J

    2001-01-01

    The purpose of this study was to test the reliability and validity of the Step Activity Monitor (SAM) when used with older adults. A total of 30 subjects with a mean age of 86 +/- 6.1 participated in the study. Sixty one-minute walks were measured with the SAM, and two observers visually counted steps. Four participants wore the SAM for 6 to 48 hours and maintained activity diaries. The intraclass correlation for the SAM recordings was R = .84. There was an overall step counting accuracy of 96%. The diaries supported the SAM data for those who wore the SAM for extended periods. The SAM is an easy to use, comfortable, valid, and reliable measure of activity in older adults and particularly may be useful to triangulate measurement of activity in these individuals.

  8. Common Problems and Solutions for Being Physically Active

    MedlinePlus

    ... such as walking, dancing and tennis. Do your stretching, balance and flexibility activities while you watch TV. ... a nearby health club. Print and take the Stretching and Flexibility and Strengthening sheets with you. All ...

  9. Multifunctional and biologically active matrices from multicomponent polymeric solutions

    NASA Technical Reports Server (NTRS)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2010-01-01

    The present invention relates to a biologically active functionalized electrospun matrix to permit immobilization and long-term delivery of biologically active agents. In particular the invention relates to a functionalized polymer matrix comprising a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin. Examples of active molecules that may be used with the multicomponent polymer of the invention include, for example, a drug, a biopolymer, for example a growth factor, a protein, a peptide, a nucleotide, a polysaccharide, a biological macromolecule or the like. The invention is further directed to the formation of functionalized crosslinked matrices, such as hydrogels, that include at least one functionalized compatibilizing polymer capable of assembly.

  10. Geophysical monitoring of solute transport in dual-domain environments through laboratory experiments, field-scale solute tracer tests, and numerical simulation

    NASA Astrophysics Data System (ADS)

    Swanson, Ryan David

    The advection-dispersion equation (ADE) fails to describe non-Fickian solute transport breakthrough curves (BTCs) in saturated porous media in both laboratory and field experiments, necessitating the use of other models. The dual-domain mass transfer (DDMT) model partitions the total porosity into mobile and less-mobile domains with an exchange of mass between the two domains, and this model can reproduce better fits to BTCs in many systems than ADE-based models. However, direct experimental estimation of DDMT model parameters remains elusive and model parameters are often calculated a posteriori by an optimization procedure. Here, we investigate the use of geophysical tools (direct-current resistivity, nuclear magnetic resonance, and complex conductivity) to estimate these model parameters directly. We use two different samples of the zeolite clinoptilolite, a material shown to demonstrate solute mass transfer due to a significant internal porosity, and provide the first evidence that direct-current electrical methods can track solute movement into and out of a less-mobile pore space in controlled laboratory experiments. We quantify the effects of assuming single-rate DDMT for multirate mass transfer systems. We analyze pore structures using material characterization methods (mercury porosimetry, scanning electron microscopy, and X-ray computer tomography), and compare these observations to geophysical measurements. Nuclear magnetic resonance in conjunction with direct-current resistivity measurements can constrain mobile and less-mobile porosities, but complex conductivity may have little value in relation to mass transfer despite the hypothesis that mass transfer and complex conductivity lengths scales are related. Finally, we conduct a geoelectrical monitored tracer test at the Macrodispersion Experiment (MADE) site in Columbus, MS. We relate hydraulic and electrical conductivity measurements to generate a 3D hydraulic conductivity field, and compare to

  11. Activated sludge monitoring with combined respirometric-titrimetric measurements.

    PubMed

    Krist Gernaey, A; Petersen, B; Ottoy, J P; Vanrolleghem, P

    2001-04-01

    A short review of different respirometric methods is presented, and advantages and disadvantages of different principles are discussed. In this study a combined respirometric-titrimetric set-up was applied to monitor the degradation processes during batch experiments with activated sludge. The respirometer consists of an open aerated vessel and a closed non-aerated respiration chamber. It is operated with two oxygen probes resulting in two sources of information on the oxygen uptake rate; both collected at a high frequency. The respirometer is combined with a titrimetric unit that keeps the pH of the activated sludge sample at a constant value through the addition of acid and/or base. The cumulative amount of added acid and base serves as a complementary information source on the degradation processes. Interpretation of respirometric data resulting from validation experiments (additions of acetate and urea as ammonium source) showed that the set-up provided reliable data. Data interpretation was approached in two ways: (1) via a basic calculation procedure, in which the oxygen uptake rates were obtained by an oxygen mass balance over the respiration chamber, and (2) via a model-based procedure in which substrate transport was included for a more accurate data interpretation. Simulation examples showed that the presence of substrate transport in the model may be crucial for a correct data interpretation, since experimental conditions (e.g. low flow rate) and/or the biodegradation kinetic parameters (e.g. high Ks) may otherwise lead to data interpretation errors. Earlier studies already pointed out that titrimetric data can be related to nitrification, and this was also confirmed in this study. However, in addition, it was shown here for experiments with acetate that the amount of acid dosed was clearly related to the amount of acetate degraded. This indicates that the titrimetric data can be used to study the carbon source degradation. For the titrimetric data in

  12. Multidimensional Ultrasound Doppler Signal Analysis for Fetal Activity Monitoring.

    PubMed

    Ribes, Sophie; Girault, Jean-Marc; Perrotin, Franck; Kouamé, Denis

    2015-12-01

    Fetal activity parameters such as movements, heart rate and the related parameters are essential indicators of fetal wellbeing, and no device provides simultaneous access to and sufficient estimation of all of these parameters to evaluate fetal health. This work was aimed at collecting these parameters to automatically separate healthy from compromised fetuses. To achieve this goal, we first developed a multi-sensor-multi-gate Doppler system. Then we recorded multidimensional Doppler signals and estimated the fetal activity parameters via dedicated signal processing techniques. Finally, we combined these parameters into four sets of parameters (or four hyper-parameters) to determine the set of parameters that is able to separate healthy from other fetuses. To validate our system, a data set consisting of two groups of fetal signals (normal and compromised) was established and provided by physicians. From the estimated parameters, an instantaneous Manning-like score, referred to as the ultrasonic score, was calculated and was used together with movements, heart rate and the associated parameters in a classification process employing the support vector machine method. We investigated the influence of the sets of parameters and evaluated the performance of the support vector machine using the computation of sensibility, specificity, percentage of support vectors and total classification error. The sensitivity of the four sets ranged from 79% to 100%. Specificity was 100% for all sets. The total classification error ranged from 0% to 20%. The percentage of support vectors ranged from 33% to 49%. Overall, the best results were obtained with the set of parameters consisting of fetal movement, short-term variability, long-term variability, deceleration and ultrasound score. The sensitivity, specificity, percentage of support vectors and total classification error of this set were respectively 100%, 100%, 35% and 0%. This indicated our ability to separate the data into two

  13. Solutions Network Formulation Report. The Potential Contribution of the International GPM Program to the NOAA Estuarine Reserves Division's System-wide Monitoring Program

    NASA Technical Reports Server (NTRS)

    Hilbert, Kent; Anderson, Daniel; Lewis, David

    2007-01-01

    Data collected via the International GPM Program could be used to provide a solution for the NOAA Estuarine Reserves Division s System-wide Monitoring Program by augmenting in situ rainfall measurements with data acquired via future satellite-acquired precipitation data. This Candidate Solution is in alignment with the Coastal Management National Application and will benefit society by assisting in estuary preservation.

  14. An IoT-Based Solution for Monitoring a Fleet of Educational Buildings Focusing on Energy Efficiency.

    PubMed

    Amaxilatis, Dimitrios; Akrivopoulos, Orestis; Mylonas, Georgios; Chatzigiannakis, Ioannis

    2017-10-10

    Raising awareness among young people and changing their behaviour and habits concerning energy usage is key to achieving sustained energy saving. Additionally, young people are very sensitive to environmental protection so raising awareness among children is much easier than with any other group of citizens. This work examines ways to create an innovative Information & Communication Technologies (ICT) ecosystem (including web-based, mobile, social and sensing elements) tailored specifically for school environments, taking into account both the users (faculty, staff, students, parents) and school buildings, thus motivating and supporting young citizens' behavioural change to achieve greater energy efficiency. A mixture of open-source IoT hardware and proprietary platforms on the infrastructure level, are currently being utilized for monitoring a fleet of 18 educational buildings across 3 countries, comprising over 700 IoT monitoring points. Hereon presented is the system's high-level architecture, as well as several aspects of its implementation, related to the application domain of educational building monitoring and energy efficiency. The system is developed based on open-source technologies and services in order to make it capable of providing open IT-infrastructure and support from different commercial hardware/sensor vendors as well as open-source solutions. The system presented can be used to develop and offer new app-based solutions that can be used either for educational purposes or for managing the energy efficiency of the building. The system is replicable and adaptable to settings that may be different than the scenarios envisioned here (e.g., targeting different climate zones), different IT infrastructures and can be easily extended to accommodate integration with other systems. The overall performance of the system is evaluated in real-world environment in terms of scalability, responsiveness and simplicity.

  15. Solution-phase monitoring of the structural evolution of a Molybdenum Blue nanoring.

    PubMed

    Miras, Haralampos N; Richmond, Craig J; Long, De-Liang; Cronin, Leroy

    2012-02-29

    The inorganic host-guest complex Na(22){[Mo(VI)(36)O(112)(H(2)O)(16)]⊂[Mo(VI)(130)Mo(V)(20)O(442)(OH)(10)(H(2)O)(61)]}·180H(2)O ≡ {Mo(36)}⊂{Mo(150)}, compound 1, has been isolated in its solid crystalline state via unconventional synthesis in a custom flow reactor. Carrying out the reaction under controlled flow conditions selected for the generation of {Mo(36)}⊂{Mo(150)} as the major product, allowing it to be reproducibly isolated in a moderate yield, as opposed to traditional "one-pot" batch syntheses that typically lead to crystallization of the {Mo(36)} and {Mo(150)} species separately. Structural and spectroscopic studies of compound 1 and the archetypal Molybdenum Blue (MB) wheel, {Mo(150)}, identified compound 1 as a likely intermediate in the {Mo(36)} templated synthesis of MB wheels. Further evidence illustrating the template effect of {Mo(36)} to MB wheel synthesis was indicated by an increase in the yield and rate of production of {Mo(150)} as a direct result of the addition of preformed {Mo(36)} to the reaction mixture. Dynamic light scattering (DLS) techniques were also used to corroborate the mechanism of formation of the MB wheels through observation of the individual cluster species in solution. DLS measurement of the reaction solutions from which {Mo(36)} and {Mo(150)} crystallized gave particle size distribution curves averaging 1.9 and 3.9 nm, consistent with the dimensions of the discrete clusters, which allowed the use of size as a possible distinguishing feature of these key species in the reduced acidified molybdate solutions and to observe the templation of the MB wheel by {Mo(36)} directly.

  16. State monitoring activities related to Pfiesteria-like organisms.

    PubMed Central

    Magnien, R E

    2001-01-01

    In response to potential threats to human health and fish populations, six states along the east coast of the United States initiated monitoring programs related to Pfiesteria-like organisms in 1998. These actions were taken in the wake of toxic outbreaks of Pfiesteria piscicida Steidinger & Burkholder in Maryland during 1997 and previous outbreaks in North Carolina. The monitoring programs have two major purposes. The first, rapid response, is to ensure public safety by responding immediately to conditions that may indicate the presence of Pfiesteria or related organisms in a toxic state. The second, comprehensive assessment, is to provide a more complete understanding of where Pfiesteria-like organisms may become a threat, to understand what factors may stimulate their growth and toxicity, and to evaluate the impacts of these organisms upon fish and other aquatic life. In states where human health studies are being conducted, the data from both types of monitoring are used to provide information on environmental exposure. The three elements included in each monitoring program are identification of Pfiesteria-like organisms, water quality measurements, and assessments of fish health. Identification of Pfiesteria-like organisms is a particularly difficult element of the monitoring programs, as these small species cannot be definitively identified using light microscopy; newly applied molecular techniques, however, are starting to provide alternatives to traditional methods. State monitoring programs also offer many opportunities for collaborations with research initiatives targeting both environmental and human health issues related to Pfiesteria-like organisms. PMID:11677180

  17. State monitoring activities related to Pfiesteria-like organisms.

    PubMed

    Magnien, R E

    2001-10-01

    In response to potential threats to human health and fish populations, six states along the east coast of the United States initiated monitoring programs related to Pfiesteria-like organisms in 1998. These actions were taken in the wake of toxic outbreaks of Pfiesteria piscicida Steidinger & Burkholder in Maryland during 1997 and previous outbreaks in North Carolina. The monitoring programs have two major purposes. The first, rapid response, is to ensure public safety by responding immediately to conditions that may indicate the presence of Pfiesteria or related organisms in a toxic state. The second, comprehensive assessment, is to provide a more complete understanding of where Pfiesteria-like organisms may become a threat, to understand what factors may stimulate their growth and toxicity, and to evaluate the impacts of these organisms upon fish and other aquatic life. In states where human health studies are being conducted, the data from both types of monitoring are used to provide information on environmental exposure. The three elements included in each monitoring program are identification of Pfiesteria-like organisms, water quality measurements, and assessments of fish health. Identification of Pfiesteria-like organisms is a particularly difficult element of the monitoring programs, as these small species cannot be definitively identified using light microscopy; newly applied molecular techniques, however, are starting to provide alternatives to traditional methods. State monitoring programs also offer many opportunities for collaborations with research initiatives targeting both environmental and human health issues related to Pfiesteria-like organisms.

  18. The Feasibility of Using a Galvanic Cell Array for Corrosion Detection and Solution Monitoring

    NASA Technical Reports Server (NTRS)

    Kolody, Mark; Calle, Luz-Marina; Zeitlin, Nancy P. (Technical Monitor)

    2003-01-01

    An initial investigation into the response of the individual galvanic couples was conducted using potentiodynamic polarization measurements of solutions under conditions of varying corrosivity. It is hypothesized that the differing electrodes may provide a means to further investigate the corrosive nature of the analyte through genetic algorithms and pattern recognition techniques. The robust design of the electrochemical sensor makes its utilization in space exploration particularly attractive. Since the electrodes are fired on a ceramic substrate at 900 C, they may be one of the most rugged sensors available for the anticipated usage.

  19. GRID based Thermal Images Processing for volcanic activity monitoring

    NASA Astrophysics Data System (ADS)

    Mangiagli, S.; Coco, S.; Drago, L.; Laudani, A.,; Lodato, L.; Pollicino, G.; Torrisi, O.

    2009-04-01

    Since 2001, the Catania Section of the National Institute of Geophysics and Volcanology (INGV) has been running the video stations recording the volcanic activity of Mount Etna, Stromboli and the Fossa Crater of Vulcano island. The video signals of 11 video cameras (seven operating in the visible band and four in infrared) are sent in real time to INGV Control Centre where they are visualized on monitors and archived on a dedicated NAS storage. The video surveillance of the Sicilian volcanoes, situated near to densely populated areas, helps the volcanologists providing the Civil Protection authorities with updates in real time on the on-going volcanic activity. In particular, five video cameras are operating on Mt. Etna and they record the volcano from the south and east sides 24 hours a day. During emergencies, mobile video stations may also be used to better film the most important phases of the activity. Single shots are published on the Catania Section intranet and internet websites. On June 2006 a A 40 thermal camera was installed in Vulcano La Fossa Crater. The location was in the internal and opposite crater flank (S1), 400 m distant from the fumarole field. The first two-year of data on temperature distribution frequency were recorded with this new methodology of acquisition, and automatically elaborated by software at INGV Catania Section. In fact a dedicated software developed in IDL, denominated Volcano Thermo Analysis (VTA), was appositely developed in order to extract a set of important features, able to characterize with a good approssimation the volcanic activity. In particular the program first load and opportunely convert the thermal images, then according to the Region Of Interest (ROI) and the temperature ranges defined by the user provide to automatic spatial and statistic analysis. In addition the VTA is able to analysis all the temporal series of images available in order to achieve the time-event analysis and the dynamic of the volcanic

  20. A Bayesian approach to optimal sensor placement for structural health monitoring with application to active sensing

    NASA Astrophysics Data System (ADS)

    Flynn, Eric B.; Todd, Michael D.

    2010-05-01

    This paper introduces a novel approach for optimal sensor and/or actuator placement for structural health monitoring (SHM) applications. Starting from a general formulation of Bayes risk, we derive a global optimality criterion within a detection theory framework. The optimal configuration is then established as the one that minimizes the expected total presence of either type I or type II error during the damage detection process. While the approach is suitable for many sensing/actuation SHM processes, we focus on the example of active sensing using guided ultrasonic waves by implementing an appropriate statistical model of the wave propagation and feature extraction process. This example implements both pulse-echo and pitch-catch actuation schemes and takes into account line-of-site visibility and non-uniform damage probabilities over the monitored structure. The optimization space is searched using a genetic algorithm with a time-varying mutation rate. We provide three actuator/sensor placement test problems and discuss the optimal solutions generated by the algorithm.

  1. Behavior Change Techniques Implemented in Electronic Lifestyle Activity Monitors: A Systematic Content Analysis

    PubMed Central

    Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-01-01

    Background Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. Objective The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Methods Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. Results All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Conclusions Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which

  2. Behavior change techniques implemented in electronic lifestyle activity monitors: a systematic content analysis.

    PubMed

    Lyons, Elizabeth J; Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-08-15

    Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which these interventions could be translated for

  3. Big Data solution for CTBT monitoring: CEA-IDC joint global cross correlation project

    NASA Astrophysics Data System (ADS)

    Bobrov, Dmitry; Bell, Randy; Brachet, Nicolas; Gaillard, Pierre; Kitov, Ivan; Rozhkov, Mikhail

    2014-05-01

    Waveform cross-correlation when applied to historical datasets of seismic records provides dramatic improvements in detection, location, and magnitude estimation of natural and manmade seismic events. With correlation techniques, the amplitude threshold of signal detection can be reduced globally by a factor of 2 to 3 relative to currently standard beamforming and STA/LTA detector. The gain in sensitivity corresponds to a body wave magnitude reduction by 0.3 to 0.4 units and doubles the number of events meeting high quality requirements (e.g. detected by three and more seismic stations of the International Monitoring System (IMS). This gain is crucial for seismic monitoring under the Comprehensive Nuclear-Test-Ban Treaty. The International Data Centre (IDC) dataset includes more than 450,000 seismic events, tens of millions of raw detections and continuous seismic data from the primary IMS stations since 2000. This high-quality dataset is a natural candidate for an extensive cross correlation study and the basis of further enhancements in monitoring capabilities. Without this historical dataset recorded by the permanent IMS Seismic Network any improvements would not be feasible. However, due to the mismatch between the volume of data and the performance of the standard Information Technology infrastructure, it becomes impossible to process all the data within tolerable elapsed time. To tackle this problem known as "BigData", the CEA/DASE is part of the French project "DataScale". One objective is to reanalyze 10 years of waveform data from the IMS network with the cross-correlation technique thanks to a dedicated High Performance Computer (HPC) infrastructure operated by the Centre de Calcul Recherche et Technologie (CCRT) at the CEA of Bruyères-le-Châtel. Within 2 years we are planning to enhance detection and phase association algorithms (also using machine learning and automatic classification) and process about 30 terabytes of data provided by the IDC to

  4. Activities of the components in a spinel solid solution of the Fe-Al-O system

    NASA Astrophysics Data System (ADS)

    Lykasov, A. A.; Kimyashev, A. A.

    2011-09-01

    The conditions of the equilibrium between the Fe3O4-FeAl2O4 solution and wustite are determined by measuring the EMF of galvanic cells containing a solid electrolyte, and the activities of the components in the Fe3O4-FeAl2O4 solution are calculated by treating the results of the experiment on the equilibrium between the spinel solution and wustite. Their properties are found to be different from those of ideal solutions at temperatures of 1000-1300 K. A significant positive deviation from the Raoult's law is believed to indicate the tendency of the solution to decompose. The experimental data are treated in terms of the theory of regular solutions, assuming the energy of mixing to be a function of temperature only. The critical temperature of decomposition for the Fe3O4-FeAl2O4 solution is found to be 1084 K.

  5. Physical activity parenting measurement and research: Challenges, explanations, and solutions

    USDA-ARS?s Scientific Manuscript database

    Physical activity (PA) parenting research has proliferated over the past decade, with findings verifying the influential role that parents play in children's emerging PA behaviors. This knowledge, however, has not translated into effective family-based PA interventions. During a preconference worksh...

  6. Pigc - a Low Cost Solution for Air Quality Monitoring and Methane Detection

    NASA Astrophysics Data System (ADS)

    Gordley, L. L.; Fritts, D. C.; Marshall, B. T.; Lachance, R.

    2014-12-01

    We have demonstrated the ability to accurately measure key greenhouse and pollutant gasses with low cost solar observations using Pupil Imaging Gas Correlation (PIGC™) spectrometry. A methane abundance sensitivity of 0.5% or better of ambient column with uncooled microbolometers has been demonstrated with 1 second direct solar observations. These under $3k sensors can be deployed in precisely balanced autonomous grids to quasi-continuously monitor the flow of chosen gasses, and infer their source locations. Measureable gases include CH4, 13CO2, N2O, NO, NH3, CO, H2S, HCN, HCl, HF, HDO and others. This paper reviews the measurement technique, performance demonstration and grid deployment strategy.

  7. [Biological activity of electrochemically activated solutions obtained in a diaphragm electrolyser].

    PubMed

    Miroshnikov, A I; Konovalov, V F; Serikov, I S

    2006-01-01

    The biological activity of the catholyte and anolyte of bidistilled water in experiments with the germination of wheat grains in the period from March to May has been studied. The activity of solutions, which was characterized by the grain germination index, was high at the beginning of the period, then it gradually decreased and was equal to zero at the middle of the period; at the end of the period it gradually increased almost to initial values. It has been established that the effectiveness of bidistilled water anolyte was as a rule higher than that of catholyte throughout the observation period. At the beginning and end, the stimulating effect of anolyte was 5-5.5 times greater than that of catholyte. The seasonal changes in the biological activity of M 9 medium catholyte were compared with those of bidistilled water anolyte and catholyte. The stimulating effect of M 9 catholyte was estimated by changes in the growth of E. coli cells. The stimulating effect, which was estimated from an increase in the optical density of cell suspension in the initial period at a cultivation temperature of 20 degrees C was 55-60% relative to control (untreated medium). Then it decreased almost to zero in the middle of the period to increase again approximately to the initial values. The assumption has been made that the physicochemical causes of the influence of catholyte and anolyte of bidistilled water on wheat grains and of the culture medium catholyte on E. coli cells are of different nature.

  8. Degradation of bisphenol A in aqueous solution by persulfate activated with ferrous ion.

    PubMed

    Jiang, Xiaoxuan; Wu, Yanlin; Wang, Peng; Li, Hongjing; Dong, Wenbo

    2013-07-01

    Degradation of bisphenol A (BPA) in aqueous solution was studied with high-efficiency sulfate radical (SO4(-·)), which was generated by the activation of persulfate (S2O8(2-)) with ferrous ion (Fe(2+)). S2O8(2-) was activated by Fe(2+) to produce SO4(-·), and iron powder (Fe(0)) was used as a slow-releasing source of dissolved Fe(2+). The major oxidation products of BPA were determined by liquid chromatography-mass spectrometer. The mineralization efficiency of BPA was monitored by total organic carbon (TOC) analyzer. BPA removal efficiency was improved by the increase of initial S2O8(2-) or Fe(2+) concentrations and then decreased with excess Fe(2+) concentration. The adding mode of Fe(2+) had significant impact on BPA degradation and mineralization. BPA removal rates increased from 49 to 97% with sequential addition of Fe(2+), while complete degradation was observed with continuous diffusion of Fe(2+), and the latter achieved higher TOC removal rate. When Fe(0) was employed as a slow-releasing source of dissolved Fe(2+), 100% of BPA degradation efficiency was achieved, and the highest removal rate of TOC (85%) was obtained within 2 h. In the Fe(0)-S2O8(2-) system, Fe(0) as the activator of S2O8(2-) could offer sustainable oxidation for BPA, and higher TOC removal rate was achieved. It was proved that Fe(0)-S2O8(2-) system has perspective for future works.

  9. Understanding the Activation and Solution Properties of Lunar Dust for Future Lunar Habitation

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Jeevarajan, Antony S.

    2009-01-01

    The decision to return humans to the moon by 2020 makes it imperative to understand the effects of lunar dust on human and mechanical systems.( Bush 2004; Gaier 2005; Mendell 2005) During the Apollo missions, dust was found to cause numerous problems for various instruments and systems. Additionally, the dust may have caused health issues for some of the astronauts.(Gaier 2005; Rowe 2007) It is necessary, therefore, for studies to be carried out in a variety of disciplines in order to mitigate the effects of the dust as completely as possible. Due to the lack of an atmosphere, there is nothing to protect the lunar soil from ultraviolet radiation, solar wind, and meteorite impacts. These processes could all serve to "activate" the soil, or produce reactive surface species. In order to understand the possible toxic effects of the reactive dust, it is necessary to "reactivate" the dust, as samples returned during the Apollo missions were exposed to the atmosphere of the Earth. We have used grinding and exposure to UV radiation in order to mimic some of the processes occurring on the lunar surface. To monitor the reactivity of the dust, we have measured the ability of the dust to produce hydroxyl radicals in solution. These radicals have been measured using a novel fluorescent technique developed in our laboratory,(Wallace et al. 2008) as well as using electron paramagnetic resonance (EPR).

  10. Monitoring seismic wave speed by an active seismic source

    NASA Astrophysics Data System (ADS)

    Yokoyama, K.; Kawakata, H.; Doi, I.; Okubo, M.; Saiga, A.

    2012-12-01

    Decreases in elastic wave speed around cracked zones prior to faulting in rock fracture experiments have been reported (e.g., Yukutake, 1989; Yoshimitsu et al., 2009). These decreases in wave speed have been considered to be associated with crack and fault growth based on non-destructive observation using X-ray CT scan (Kawakata et al., 1999). Meanwhile, there were some reports on the decreases in seismic wave speed along paths that cross the hypocentral area in periods including some large earthquakes. Uchida et al. (2002) analyzed seismic waveform with explosive sources before and after the 1998 northern Iwate prefecture earthquake, and they showed that the decrease in seismic wave speed approximately 0.1-0.9 % by the earthquake occurrence. Justin et al. (2007) reported the reduction in seismic wave speed accompanied with the 2003 Tokachi oki earthquake around the rupture area by using the four repeating earthquakes that occurred before and after the 2003 Tokachi oki earthquake. However, seismograms of explosive sources or repeating earthquakes are hard to be frequently recorded, which makes the time intervals of estimated seismic wave speed be too long to distinguish preseismic changes from coseismic and post seismic changes. In order to monitor crustal structures and detecting the variation of rock properties in the crust, a kind of active seismic source systems ACROSS (Accurately Controlled Routinely Operated Signal System) has been developed(e.g., Kunitomo and Kumazawa, 2004). We used the controlled seismic source ACROSS, which installed at the Tono mine, Gifu prefecture, central Japan and has been routinely operated by Tono Geoscience center of JAEA (Japan Atomic Energy Agency), automatically. Frequency modulated seismic waves are continuously radiated from approximately 10-20 Hz by eccentric rotation of the source. In order to investigate the stability of ACROSS signals, we used seismograms recorded at the 110m depth of Shobasama observing site, which is

  11. Real-time monitoring of matrix metalloproteinase-9 collagenolytic activity with a surface plasmon resonance biosensor.

    PubMed

    Shoji, Atsushi; Kabeya, Mitsutaka; Sugawara, Masao

    2011-12-01

    We describe a simple method for real-time monitoring of matrix metalloproteinase-9 (MMP-9) collagenolytic activity for native triple helical collagen IV with a surface plasmon resonance (SPR) biosensor. The proteolytic activity of MMP-9 is measured as a decrease in the SPR signal resulting from the cleavage of collagen IV immobilized on the sensor surface. The kinetic parameters of full-length MMP-9 and its catalytic domain-catalytic constant (k(cat)), association rate constant (k(a)), and dissociation rate constant (k(d))-were estimated by the SPR method. The presence of sodium chloride and a nonionic detergent Brij-35 in a reaction solution led to the lower collagenolytic activity of MMP-9, whereas they suppressed the nonspecific interaction between MMP-9 and a cysteamine-modified chip. The comparison of kinetic parameters between MMP-9 and its catalytic domain revealed that the association constant of MMP-9 is much larger than that of the catalytic domain, suggesting that the interplay among hemopexin-like domain, fibronectin type II repeats motif, and linker region (O-glycosylated domain) plays an important role in recognizing collagen IV.

  12. Embedded ARM System for Volcano Monitoring in Remote Areas: Application to the Active Volcano on Deception Island (Antarctica)

    PubMed Central

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-01

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis. PMID:24451461

  13. Embedded ARM system for volcano monitoring in remote areas: application to the active volcano on Deception Island (Antarctica).

    PubMed

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-02

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis.

  14. Solution Dependence of the Collisional Activation of Ubiquitin [M+7H]7+ Ions

    PubMed Central

    Shi, Huilin; Atlasevich, Natalya; Merenbloom, Samuel I.; Clemmer, David E.

    2014-01-01

    The solution dependence of gas-phase unfolding for ubiquitin [M+7H]7+ ions has been studied by ion mobility spectrometry-mass spectrometry (IMS-MS). Different acidic water:methanol solutions are used to favor the native (N), more helical (A), or unfolded (U) solution states of ubiquitin. Unfolding of gas-phase ubiquitin ions is achieved by collisional heating and newly formed structures are examined by IMS. With an activation voltage of 100 V, a selected distribution of compact structures unfolds, forming three resolvable elongated states (E1-E3). The relative populations of these elongated structures depend strongly on the solution composition. Activation of compact ions from aqueous solutions known to favor N-state ubiquitin produces mostly the E1 type elongated state, whereas, activation of compact ions from methanol containing solutions that populate A-state ubiquitin favors the E3 elongated state. Presumably, this difference arises because of differences in precursor ion structures emerging from solution. Thus, it appears that information about solution populations can be retained after ionization, selection, and activation to produce the elongated states. These data as well as others are discussed. PMID:24658799

  15. Embedded Ultrasonic Transducers for Active and Passive Concrete Monitoring

    PubMed Central

    Niederleithinger, Ernst; Wolf, Julia; Mielentz, Frank; Wiggenhauser, Herbert; Pirskawetz, Stephan

    2015-01-01

    Recently developed new transducers for ultrasonic transmission, which can be embedded right into concrete, are now used for non-destructive permanent monitoring of concrete. They can be installed during construction or thereafter. Large volumes of concrete can be monitored for changes of material properties by a limited number of transducers. The transducer design, the main properties as well as installation procedures are presented. It is shown that compressional waves with a central frequency of 62 kHz are mainly generated around the transducer’s axis. The transducer can be used as a transmitter or receiver. Application examples demonstrate that the transducers can be used to monitor concrete conditions parameters (stress, temperature, …) as well as damages in an early state or the detection of acoustic events (e.g., crack opening). Besides application in civil engineering our setups can also be used for model studies in geosciences. PMID:25923928

  16. Monitoring

    SciTech Connect

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  17. Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs).

    PubMed

    Wheelock, Craig E; Phillips, Bryn M; Anderson, Brian S; Miller, Jeff L; Miller, Mike J; Hammock, Bruce D

    2008-01-01

    This review has examined a number of issues surrounding the use of carboxylesterase activity in environmental monitoring. It is clear that carboxylesterases are important enzymes that deserve increased study. This class of enzymes appears to have promise for employment in environmental monitoring with a number of organisms and testing scenarios, and it is appropriate for inclusion in standard monitoring assays. Given the ease of most activity assays, it is logical to report carboxylesterase activity levels as well as other esterases (e.g., acetylcholinesterase). Although it is still unclear as to whether acetylcholinesterase or carboxylesterase is the most "appropriate" biomarker, there are sufficient data to suggest that at the very least further studies should be performed with carboxylesterases. Most likely, data will show that it is optimal to measure activity for both enzymes whenever possible. Acetylcholinesterase has the distinct advantage of a clear biological function, whereas the endogenous role of carboxylesterases is still unclear. However, a combination of activity measurements for the two enzyme systems will provide a much more detailed picture of organism health and insecticide exposure. The main outstanding issues are the choice of substrate for activity assays and which tissues/organisms are most appropriate for monitoring studies. Substrate choice is very important, because carboxylesterase activity consists of multiple isozymes that most likely fluctuate on an organism- and tissue-specific basis. It is therefore difficult to compare work in one organism with a specific substrate with work performed in a different organism with a different substrate. An attempt should therefore be made to standardize the method. The most logical choice is PNPA (p-nitrophenyl acetate), as this substrate is commercially available, requires inexpensive optics for assay measurements, and has been used extensively in the literature. However, none of these beneficial

  18. Relation between the adsorbed quantity and the immersion enthalpy in catechol aqueous solutions on activated carbons.

    PubMed

    Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2012-01-01

    An activated carbon, Carbochem(TM)-PS230, was modified by chemical and thermal treatment in flow of H(2), in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pK(a). The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g(-1) for catechol aqueous solutions in a range of 20 at 1500 mg·L(-1).

  19. Relation Between the Adsorbed Quantity and the Immersion Enthalpy in Catechol Aqueous Solutions on Activated Carbons

    PubMed Central

    Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2012-01-01

    An activated carbon, CarbochemTM—PS230, was modified by chemical and thermal treatment in flow of H2, in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pKa. The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g−1 for catechol aqueous solutions in a range of 20 at 1500 mg·L−1. PMID:22312237

  20. Interaction design challenges and solutions for ALMA operations monitoring and control

    NASA Astrophysics Data System (ADS)

    Pietriga, Emmanuel; Cubaud, Pierre; Schwarz, Joseph; Primet, Romain; Schilling, Marcus; Barkats, Denis; Barrios, Emilio; Vila Vilaro, Baltasar

    2012-09-01

    The ALMA radio-telescope, currently under construction in northern Chile, is a very advanced instrument that presents numerous challenges. From a software perspective, one critical issue is the design of graphical user interfaces for operations monitoring and control that scale to the complexity of the system and to the massive amounts of data users are faced with. Early experience operating the telescope with only a few antennas has shown that conventional user interface technologies are not adequate in this context. They consume too much screen real-estate, require many unnecessary interactions to access relevant information, and fail to provide operators and astronomers with a clear mental map of the instrument. They increase extraneous cognitive load, impeding tasks that call for quick diagnosis and action. To address this challenge, the ALMA software division adopted a user-centered design approach. For the last two years, astronomers, operators, software engineers and human-computer interaction researchers have been involved in participatory design workshops, with the aim of designing better user interfaces based on state-of-the-art visualization techniques. This paper describes the process that led to the development of those interface components and to a proposal for the science and operations console setup: brainstorming sessions, rapid prototyping, joint implementation work involving software engineers and human-computer interaction researchers, feedback collection from a broader range of users, further iterations and testing.

  1. Fiber Bragg Grating Sensors toward Structural Health Monitoring in Composite Materials: Challenges and Solutions

    PubMed Central

    Kinet, Damien; Mégret, Patrice; Goossen, Keith W.; Qiu, Liang; Heider, Dirk; Caucheteur, Christophe

    2014-01-01

    Nowadays, smart composite materials embed miniaturized sensors for structural health monitoring (SHM) in order to mitigate the risk of failure due to an overload or to unwanted inhomogeneity resulting from the fabrication process. Optical fiber sensors, and more particularly fiber Bragg grating (FBG) sensors, outperform traditional sensor technologies, as they are lightweight, small in size and offer convenient multiplexing capabilities with remote operation. They have thus been extensively associated to composite materials to study their behavior for further SHM purposes. This paper reviews the main challenges arising from the use of FBGs in composite materials. The focus will be made on issues related to temperature-strain discrimination, demodulation of the amplitude spectrum during and after the curing process as well as connection between the embedded optical fibers and the surroundings. The main strategies developed in each of these three topics will be summarized and compared, demonstrating the large progress that has been made in this field in the past few years. PMID:24763215

  2. Technology Solutions Case Study: Monitoring of Double Stud Wall Moisture Conditions in the Northeast, Devens, Massachusetts

    SciTech Connect

    2015-03-01

    Double stud walls have a higher risk of interior-sourced condensation moisture damage when compared with high-R approaches using exterior insulating sheathing. In this project, Building Science Corporation monitored moisture conditions in double-stud walls from 2011 through 2014 at a new production house located in Devens, Massachusetts. The builder, Transformations, Inc., has been using double-stud walls insulated with 12 in. of open cell polyurethane spray foam (ocSPF); however, the company has been considering a change to netted and blown cellulose insulation for cost reasons. Cellulose is a common choice for double-stud walls because of its lower cost (in most markets). However, cellulose is an air-permeable insulation, unlike spray foams, which increases interior moisture risks. The team compared three double-stud assemblies: 12 in. of ocSPF, 12 in. of cellulose, and 5-½ in. of ocSPF at the exterior of a double-stud wall (to approximate conventional 2 × 6 wall construction and insulation levels, acting as a control wall). These assemblies were repeated on the north and south orientations, for a total of six assemblies.

  3. Deterministic submanifolds and analytic solution of the quantum stochastic differential master equation describing a monitored qubit

    NASA Astrophysics Data System (ADS)

    Sarlette, Alain; Rouchon, Pierre

    2017-06-01

    This paper studies the stochastic differential equation (SDE) associated with a two-level quantum system (qubit) subject to Hamiltonian evolution as well as unmonitored and monitored decoherence channels. The latter imply a stochastic evolution of the quantum state (density operator), whose associated probability distribution we characterize. We first show that for two sets of typical experimental settings, corresponding either to weak quantum non-demolition measurements or to weak fluorescence measurements, the three Bloch coordinates of the qubit remain confined to a deterministically evolving surface or curve inside the Bloch sphere. We explicitly solve the deterministic evolution, and we provide a closed-form expression for the probability distribution on this surface or curve. Then we relate the existence in general of such deterministically evolving submanifolds to an accessibility question of control theory, which can be answered with an explicit algebraic criterion on the SDE. This allows us to show that, for a qubit, the above two sets of weak measurements are essentially the only ones featuring deterministic surfaces or curves.

  4. Continuous monitoring of a large active earth flow using an integrated GPS - automatic total station approach

    NASA Astrophysics Data System (ADS)

    Corsini, A.

    2009-04-01

    Landslide monitoring has evolved as a crucial tool in civil protection to mitigate and prevent disasters. The research presents an approach to continuous monitoring of a large-scale active earth flow using a system that integrates surface measurements obtained by a GPS and an automatic total station. With the data obtained from the system the landslide can be monitored in near-real-time and surface displacements can be directly utilized to provide early warning of slope movements and to study the behavior of the landslide, e.g. to predict timing and mechanisms of future failure. The Valoria landslide located in the northern Apennines of Italy was reactivated in 2001, 2005 and 2007 damaging roads and endangering houses. A monitoring system was installed in 2007-2008 in the frame of a civil protection plan aimed at risk mitigation. The system consists of an automatic total station measuring about 40 prisms located in the landslide to a maximum distance of 1.800 km; one double-frequency GPS receiver connects in streaming by wireless communication with 4 single-frequency GPS in side the flow. Until December 2007 the monitoring network was operated with periodic static surveying followed by the data post-processing. From September 2007 until March 2008 the landslide deformation was evaluated by periodic surveys with the total station and the GPS system. This first measure showed that the displacements were influenced by the rainfall events and by the snow melting. The total displacements measured vary from centimeter scale in the crown zone, where retrogressive movements were in progress, to over 50 m in the flow track zone. Starting in March 2008 data acquisition by the total station system and GPS were automated in order to allow continuous and near-real-time data processing. The displacement data collected in one and a half year of continuous operation show different acceleration and deceleration phases as a result of the pore water pressure distribution inside the

  5. Overview of acid rain monitoring activities in North America

    SciTech Connect

    Wisniewski, J.; Kinsman, J.D.

    1982-06-01

    Acid rain is known to acidify natural waters, resulting in damage to fish and other components of the aquatic ecosystem, degradation of drinking water supplies, deterioration of man-made structures, erosion of soils and damage to forests and crops. Recent monitoring devices and 71 studies conducted or on-going in North America are surveyed. Tables are presented that describe the name or title of the study, the organization or agency that funds each study, the chemical parameters monitored, the geographic extent and location of the study, the time period of operation, the types of samples used, where samples are analyzed, and a contact for further information. The Aerochem metrics wet-dry collector is the most widely used instrument for collection of wet deposition and appears to be reliable in collecting precipitation samples for chemical analysis. Much of the wet deposition monitoring focuses on the between-year differences in precipitation acidity. No simple method for monitoring dry deposition is available on an experimental or commercial basis. The frequency of special events needs to be analyzed using existing climatological data. 32 references, 3 tables.

  6. Ratiometric and turn-on monitoring for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor.

    PubMed

    Joshi, Bishnu Prasad; Park, Junwon; Lee, Wan In; Lee, Keun-Hyeung

    2009-05-15

    A novel fluorescent peptide sensor containing tryptophan (donor) and dansyl fluorophore (acceptor) was synthesized for monitoring heavy and transition metal (HTM) ions on the basis of metal ion binding motif (Cys-X-X-X-Cys). The peptide probe successfully exhibited a turn on and ratiometric response for several heavy metal ions such as Hg(2+), Cd(2+), Pb(2+), Zn(2+), and Ag(+) in aqueous solution. The enhancements of emission intensity were achieved in the presence of the HTM ions by fluorescent resonance energy transfer (FRET) and chelation enhanced fluorescence (CHEF) effects. The detection limits of the sensor for Cd(2+), Pb(2+), Zn(2+), and Ag(+) were lower than the EPA's drinking water maximum contaminant levels (MCL). We described the fluorescent enhancement, binding affinity, and detection limit of the peptide probe for HTM ions.

  7. A Promising Solution to Enhance the Sensocompatibility of Biosensors in Continuous Glucose Monitoring Systems

    PubMed Central

    van den Bosch, Edith E.M.; de Bont, Nik H.M.; Qiu, Jun; Gelling, Onko-Jan

    2013-01-01

    Background Continuous glucose monitors (CGMs) measure glucose in real time, making it possible to improve glycemic control. A promising technique involves glucose sensors implanted in subcutaneous tissue measuring glucose concentration in interstitial fluid. A major drawback of this technique is sensor bioinstability, which can lead to unpredictable drift and reproducibility. The bioinstability is partly due to sensor design but is also affected by naturally occurring subcutaneous inflammations. Applying a nonbiofouling coating to the sensor membrane could be a means to enhancing sensocompatibility. Methods This study evaluates the suitability of a polyethylene-glycol-based coating on sensors in CGMs. Methods used include cross hatch, wet paper rub, paper double rub, bending, hydrophilicity, protein adsorption, bio-compatibility, hemocompatibility, and glucose/oxygen permeability testing. Results Results demonstrate that coating homogeneity, adhesion, integrity, and scratch resistance are good. The coating repels lysozyme and bovine serum albumin, and only a low level of fibrin and blood platelet adsorption to the coating was recorded when testing in whole human blood. Cytotoxicity, irritation, sensitization, and hemolysis were assessed, and levels suggested good biocompatibility of the coating in subcutaneous tissue. Finally, it was shown that the coating can be applied to cellulose acetate membranes of different porosity without changing their permeability for glucose and oxygen. Conclusions These results suggest that the mechanical properties of the coating are sufficient for the given application, that the coating is effective in preventing protein adsorption and blood clot formation on the sensor surface, and that the coating can be applied to membranes without hindering their glucose and oxygen transport. PMID:23567005

  8. Characteristics of Zinc Phosphate Coating Activated by Different Concentrations of Nickel Acetate Solution

    NASA Astrophysics Data System (ADS)

    Abdalla, Khalid; Zuhailawati, H.; Rahmat, Azmi; Azizan, A.

    2017-02-01

    Activation pretreatment with nickel acetate solution at various concentrations was performed prior to the phosphating step to enhance the corrosion resistance of carbon steel substrates. The activation solution was studied over various concentrations: 10, 50, and 100 g/L. The effects of these concentrations on surface characteristics and microstructural evolution of the coated samples were characterized by scanning electron microscopy and energy-dispersive spectroscopy. The electrochemical behavior was evaluated using potentiodynamic polarization curves, electrochemical impedance spectroscopy, and immersion test in a 3.5 pct NaCl solution. Significant increases in the nucleation sites and surface coverage of zinc phosphate coating were observed as the concentration of activation solution reached 50 g/L. The electrochemical analysis revealed that the activation treatment with 50 g/L nickel acetate solution significantly improved the protection ability of the zinc phosphate coating. The corrosion current density of activated phosphate coating with 50 g/L was reduced by 64.64 and 13.22 pct, compared to the coatings obtained with activation solutions of 10 and 100 g/L, respectively.

  9. Adsorption of organic acids from dilute aqueous solution onto activated carbon

    SciTech Connect

    Wang, S.W.

    1980-06-01

    The radioisotope technique was used to study the removal of organic acid contaminants from dilute aqueous solutions onto activated carbon. Acetic acid, propionic acid, n-butyric acid, n-hexanoic acid and n-heptanoic acid were studied at 278, 298, and 313/sup 0/K. Three bi-solute acid mixtures (acetic and propionic acids, acetic and butanoic acids, and propionic and butanoic acids) were studied at 278 and 298/sup 0/K. Isotherms of the single-solute systems were obtained at three different temperatures in the very dilute concentration region (less than 1% by weight). These data are very important in the prediction of bi-solute equilibrium data. A Polanyi-based competitive adsorption potential theory was used to predict the bi-solute equilibrium uptakes. Average errors between calculated and experimental data ranges from 4% to 14%. It was found that the competitive adsorption potential theory gives slightly better results than the ideal adsorbed solution theory.

  10. Preliminary microwave irradiation of water solutions changes their channel-modifying activity.

    PubMed

    Fesenko, E E; Geletyuk, V I; Kazachenko, V N; Chemeris, N K

    1995-06-05

    Earlier we have shown that millimetre microwaves (42.25 GHz) of non-thermal power, upon direct admittance into an experiment bath, greatly influence activation characteristics of single Ca(2+)-dependent K+ channels (in particular, the channel open state probability, Po). Here we present new data showing that similar changes in Po arise due to the substitution of a control bath solution for a preliminary microwave irradiated one of the same composition (100 mmol/l KCl with Ca2+ added), with irradiation time being 20-30 min. Therefore, due to the exposure to the field the solution acquires some new properties that are important for the channel activity. The irradiation terminated, the solution retains a new state for at least 10-20 min (solution memory). The data suggest that the effects of the field on the channels are mediated, at least partially, by changes in the solution properties.

  11. Bactericidal efficacy of electrochemically activated solutions and of commercially available hypochlorite.

    PubMed

    Helme, A J; Ismail, M N; Scarano, F J; Yang, C L

    2010-01-01

    Electrochemical activation (ECA) has been developed as a quick and efficient method of hypochlorite production, and many claim increased efficacy when compared to conventional disinfectant solutions. Numerous potential applications, including hospital disinfection, waste-water treatment, routine drinking water disinfection and biological decontamination have been suggested. In this study, three solutions were produced by electrochemical activation of 0.5% NaCl and compared to commercially available NaOCl. The NaOCl concentration and pH of each solution was measured, and the minimum bactericidal concentration of each was determined using seven common microbial pathogens. All solutions were effective, the most significant of which was the ECA anolyte solution. This is notable due to its neutral pH and antimicrobial efficacy that is four times that of commercially available NaOCl. This process may lead to production of a highly effective yet non-caustic disinfectant that would have countless scientific, medical, military and public health applications.

  12. Solution-reactor-produced Mo-99 using activated carbon to remore I-131

    SciTech Connect

    Kitten, S.; Cappiello, C.

    1998-06-01

    The production of {sup 99}Mo in a solution reactor was explored. Activated charcoal was used to filter the {sup 131}I contaminant from an irradiated fuel solution. Gamma spectroscopy confirmed that the activated carbon trapped a significant amount of {sup 131}I, as well as notable amounts of {sup 133}Xe, {sup 105}Rb, and {sup 140}Ba; the carbon trapped a diminutive amount of {sup 99}Mo. The results promote the idea of solution-reactor-produced {sup 99}Mo. Solution reactors are favorable both energetically and environmentally. A solution reactor could provide enough {sup 99}Mo/{sup 99m}Te to support both the current and future radiopharmaceutical needs of the U.S.

  13. Exercise Sensing and Pose Recovery Inference Tool (ESPRIT) - A Compact Stereo-based Motion Capture Solution For Exercise Monitoring

    NASA Technical Reports Server (NTRS)

    Lee, Mun Wai

    2015-01-01

    Crew exercise is important during long-duration space flight not only for maintaining health and fitness but also for preventing adverse health problems, such as losses in muscle strength and bone density. Monitoring crew exercise via motion capture and kinematic analysis aids understanding of the effects of microgravity on exercise and helps ensure that exercise prescriptions are effective. Intelligent Automation, Inc., has developed ESPRIT to monitor exercise activities, detect body markers, extract image features, and recover three-dimensional (3D) kinematic body poses. The system relies on prior knowledge and modeling of the human body and on advanced statistical inference techniques to achieve robust and accurate motion capture. In Phase I, the company demonstrated motion capture of several exercises, including walking, curling, and dead lifting. Phase II efforts focused on enhancing algorithms and delivering an ESPRIT prototype for testing and demonstration.

  14. Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse.

    PubMed

    Demiral, Hakan; Gündüzoğlu, Gül

    2010-03-01

    In this study, activated carbons were prepared from sugar beet bagasse by chemical activation and the prepared activated carbons were used to remove nitrate from aqueous solutions. In chemical activation, ZnCl(2) was used as chemical agent. The effects of impregnation ratio and activation temperature were investigated. The produced activated carbons were characterized by measuring their porosities and pore size distributions. The microstructure of the activated carbons was examined by scanning electron microscopy (SEM). The maximum specific surface area of the activated carbon was about 1826m(2)/g at 700 degrees C and at an impregnation ratio of 3:1. The resulting activated carbon was used for removal of nitrate from aqueous solution. The effects of pH, temperature and contact time were investigated. Isotherm studies were carried out and the data were analyzed by Langmuir, Freundlich and Temkin equations. Three simplified kinetic models were tested to investigate the adsorption mechanism.

  15. When a Step Is Not a Step! Specificity Analysis of Five Physical Activity Monitors

    PubMed Central

    O’Connell, Sandra; ÓLaighin, Gearóid

    2017-01-01

    Introduction Physical activity is an essential aspect of a healthy lifestyle for both physical and mental health states. As step count is one of the most utilized measures for quantifying physical activity it is important that activity-monitoring devices be both sensitive and specific in recording actual steps taken and disregard non-stepping body movements. The objective of this study was to assess the specificity of five activity monitors during a variety of prescribed non-stepping activities. Methods Participants wore five activity monitors simultaneously for a variety of prescribed activities including deskwork, taking an elevator, taking a bus journey, automobile driving, washing and drying dishes; functional reaching task; indoor cycling; outdoor cycling; and indoor rowing. Each task was carried out for either a specific duration of time or over a specific distance. Activity monitors tested were the ActivPAL micro™, NL-2000™ pedometer, Withings Smart Activity Monitor Tracker (Pulse O2)™, Fitbit One™ and Jawbone UP™. Participants were video-recorded while carrying out the prescribed activities and the false positive step count registered on each activity monitor was obtained and compared to the video. Results All activity monitors registered a significant number of false positive steps per minute during one or more of the prescribed activities. The Withings™ activity performed best, registering a significant number of false positive steps per minute during the outdoor cycling activity only (P = 0.025). The Jawbone™ registered a significant number of false positive steps during the functional reaching task and while washing and drying dishes, which involved arm and hand movement (P < 0.01 for both). The ActivPAL™ registered a significant number of false positive steps during the cycling exercises (P < 0.001 for both). Conclusion As a number of false positive steps were registered on the activity monitors during the non-stepping activities, the

  16. Evaluation of the effect of signalment and body conformation on activity monitoring in companion dogs.

    PubMed

    Brown, Dorothy Cimino; Michel, Kathryn E; Love, Molly; Dow, Caitlin

    2010-03-01

    To evaluate the effect of signalment and body conformation on activity monitoring in companion dogs. 104 companion dogs. While wearing an activity monitor, each dog was led through a series of standard activities: lying down, walking laps, trotting laps, and trotting up and down stairs. Linear regression analysis was used to determine which signalment and body conformation factors were associated with activity counts. There was no significant effect of signalment or body conformation on activity counts when dogs were lying down, walking laps, and trotting laps. However, when dogs were trotting up and down stairs, there was a significant effect of age and body weight such that, for every 1-kg increase in body weight, there was a 1.7% (95% confidence interval, 1.1% to 2.4%) decrease in activity counts and for every 1-year increase in age, there was a 4.2% (95% confidence interval, 1.4% to 6.9%) decrease in activity counts. When activity was well controlled, there was no significant effect of signalment or body conformation on activity counts recorded by the activity monitor. However, when activity was less controlled, older dogs and larger dogs had lower activity counts than younger and smaller dogs. The wide range in body conformation (eg, limb or body length) among dogs did not appear to significantly impact the activity counts recorded by the monitor, but age and body weight did and must be considered in analysis of data collected from the monitors.

  17. Project Catch: A space based solution to combat illegal, unreported and unregulated fishing. Part I: Vessel monitoring system

    NASA Astrophysics Data System (ADS)

    Detsis, Emmanouil; Brodsky, Yuval; Knudtson, Peter; Cuba, Manuel; Fuqua, Heidi; Szalai, Bianca

    2012-11-01

    Space assets have a unique opportunity to play a more active role in global resource management. There is a clear need to develop resource management tools in a global framework. Illegal, Unregulated and Unreported (IUU) fishing is placing pressure on the health and size of fishing stocks around the world. Earth observation systems can provide fishery management organizations with cost effective monitoring of large swaths of ocean. Project Catch is a fisheries management project based upon the complimentary, but independent Catch-VMS and Catch-GIS systems. Catch-VMS is a Vessel Monitoring System with increased fidelity over existing offerings. Catch-GIS is a Geographical Information System that combines VMS information with existing Earth Observation data and other data sources to identify Illegal, Unregulated and Unreported (IUU) fishing. Project Catch was undertaken by 19 Masters students from the 2010 class of the International Space University. In this paper, the space-based system architecture of Project Catch is presented and analyzed. The rationale for the creation of the system, as well as the engineering trade-off studies in its creation, are discussed. The Catch-VMS proposal was envisaged in order to address two specific problems: (1) the expansion of illegal fishing to high-latitude regions where existing satellite systems coverage is an issue and (2) the lack of coverage in remote oceanic regions due to reliance on coastal-based monitoring. Catch-VMS utilizes ship-borne transponders and hosted-payload receivers on a Global Navigation Satellite System in order to monitor the position and activity of compliant fishing vessels. Coverage is global and continuous with multiple satellites in view providing positional verification through multilateration techniques. The second part of the paper briefly describes the Catch-GIS system and investigates its cost of implementation.

  18. Relationship between balance and physical activity measured by an activity monitor in elderly COPD patients

    PubMed Central

    Iwakura, Masahiro; Okura, Kazuki; Shibata, Kazuyuki; Kawagoshi, Atsuyoshi; Sugawara, Keiyu; Takahashi, Hitomi; Shioya, Takanobu

    2016-01-01

    Background Little is known regarding the relationship between balance impairments and physical activity in COPD. There has been no study investigating the relationship between balance and objectively measured physical activity. Here we investigated the association between balance and physical activity measured by an activity monitor in elderly COPD patients. Materials and methods Twenty-two outpatients with COPD (mean age, 72±7 years; forced expiratory volume in 1 second, 53%±21% predicted) and 13 age-matched healthy control subjects (mean age, 72±6 years) participated in the study. We assessed all 35 subjects’ balance (one-leg standing test [OLST] times, Short Physical Performance Battery total scores, standing balance test scores, 4 m gait speed, and five-times sit-to-stand test [5STST]) and physical activity (daily steps and time spent in moderate-to-vigorous physical activity per day [MV-PA]). Possible confounders were assessed in the COPD group. The between-group differences in balance test scores and physical activity were analyzed. A correlation analysis and multivariate regression analysis were conducted in the COPD group. Results The COPD patients exhibited significant reductions in OLST times (P=0.033), Short Physical Performance Battery scores (P=0.013), 4 m gait speed (P<0.001), five-times sit-to-stand times (P=0.002), daily steps (P=0.003), and MV-PA (P=0.022) compared to the controls; the exception was the standing balance test scores. The correlation and multivariate regression analyses revealed significant independent associations between OLST times and daily steps (P<0.001) and between OLST times and MV-PA (P=0.014) in the COPD group after adjusting for possible confounding factors. Conclusion Impairments in balance and reductions in physical activity were observed in the COPD group. Deficits in balance are independently associated with physical inactivity. PMID:27445470

  19. Relationship between balance and physical activity measured by an activity monitor in elderly COPD patients.

    PubMed

    Iwakura, Masahiro; Okura, Kazuki; Shibata, Kazuyuki; Kawagoshi, Atsuyoshi; Sugawara, Keiyu; Takahashi, Hitomi; Shioya, Takanobu

    2016-01-01

    Little is known regarding the relationship between balance impairments and physical activity in COPD. There has been no study investigating the relationship between balance and objectively measured physical activity. Here we investigated the association between balance and physical activity measured by an activity monitor in elderly COPD patients. Twenty-two outpatients with COPD (mean age, 72±7 years; forced expiratory volume in 1 second, 53%±21% predicted) and 13 age-matched healthy control subjects (mean age, 72±6 years) participated in the study. We assessed all 35 subjects' balance (one-leg standing test [OLST] times, Short Physical Performance Battery total scores, standing balance test scores, 4 m gait speed, and five-times sit-to-stand test [5STST]) and physical activity (daily steps and time spent in moderate-to-vigorous physical activity per day [MV-PA]). Possible confounders were assessed in the COPD group. The between-group differences in balance test scores and physical activity were analyzed. A correlation analysis and multivariate regression analysis were conducted in the COPD group. The COPD patients exhibited significant reductions in OLST times (P=0.033), Short Physical Performance Battery scores (P=0.013), 4 m gait speed (P<0.001), five-times sit-to-stand times (P=0.002), daily steps (P=0.003), and MV-PA (P=0.022) compared to the controls; the exception was the standing balance test scores. The correlation and multivariate regression analyses revealed significant independent associations between OLST times and daily steps (P<0.001) and between OLST times and MV-PA (P=0.014) in the COPD group after adjusting for possible confounding factors. Impairments in balance and reductions in physical activity were observed in the COPD group. Deficits in balance are independently associated with physical inactivity.

  20. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions

    PubMed Central

    Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C.

    2015-01-01

    This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper. PMID:26230694

  1. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions.

    PubMed

    Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C

    2015-07-29

    This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper.

  2. Rapid monitoring of sulfur mustard degradation in solution by headspace solid-phase microextraction sampling and gas chromatography mass spectrometry.

    PubMed

    Creek, Jo-Anne M; McAnoy, Andrew M; Brinkworth, Craig S

    2010-12-15

    A method using headspace solid-phase microextraction (HS-SPME) followed by gas chromatography/mass spectrometry (GC/MS) analysis has been developed to gain insight into the degradation of the chemical warfare agent sulfur mustard in solution. Specifically, the described approach simplifies the sample preparation for GC/MS analysis to provide a rapid determination of changes in sulfur mustard abundance. These results were found to be consistent with those obtained using liquid-liquid extraction (LLE) GC/MS. The utility of the described approach was further demonstrated by the investigation of the degradation process in a complex matrix with surfactant added to assist solvation of sulfur mustard. A more rapid reduction in sulfur mustard abundance was observed using the HS-SPME approach with surfactant present and was similar to results from LLE experiments. Significantly, this study demonstrates that HS-SPME can simplify the sample preparation for GC/MS analysis to monitor changes in sulfur mustard abundance in solution more rapidly, and with less solvent and reagent usage than LLE.

  3. Initial Findings from an Improved GNSS Solution for Long Term Monitoring of New Zealand's Secular and Earthquake Induced Deformation

    NASA Astrophysics Data System (ADS)

    Hansen, D. N.; Crook, C.

    2016-12-01

    New Zealand's unique position straddling the Australian and Pacific plate boundary ensures that it experiences both secular tectonic plate motion, and non-secular motions associated with earthquakes. The purpose of the 39 PositioNZ network CORS sites, jointly operated by Land Information New Zealand and GeoNet, are to maintain the national datum as these sporadic and ongoing events occur. Positions and velocities from these sites are integrated into the deformation model which translates between the present ITRF coordinates from GNSS into New Zealand's national datum NZGD2000. The Long Term Monitoring of land movements in New Zealand is carried out through a homogeneous reprocessing of the historical data for 39 CORS sites and 194 IGB08 global reference sites using a double difference strategy. This global solution is computed using Bernese GNSS software and CODE's reprocessed EGSIEM products and Final orbits and earth rotation parameters. A priori troposphere values are interpolated from gridded VMF1G files based on the ECMWF values, and these are mapped using the Vienna Mapping function. The network is aligned to the IGB08 reference frame through the 194 core reference stations using minimal constraints. The results of this reprocessing solution will be presented and discussed. The time series effects of various types of earthquakes will be shown as well as various methods of modelling these time series for datum maintenance. Additionally, the impacts of the new homogeneous processing strategy on the noise, position, and computed velocities will be outlined.

  4. Ultrasonic Monitoring of the Interaction between Cement Matrix and Alkaline Silicate Solution in Self-Healing Systems

    PubMed Central

    Ait Ouarabi, Mohand; Antonaci, Paola; Boubenider, Fouad; Gliozzi, Antonio S.; Scalerandi, Marco

    2017-01-01

    Alkaline solutions, such as sodium, potassium or lithium silicates, appear to be very promising as healing agents for the development of encapsulated self-healing concretes. However, the evolution of their mechanical and acoustic properties in time has not yet been completely clarified, especially regarding their behavior and related kinetics when they are used in the form of a thin layer in contact with a hardened cement matrix. This study aims to monitor, using linear and nonlinear ultrasonic methods, the evolution of a sodium silicate solution interacting with a cement matrix in the presence of localized cracks. The ultrasonic inspection via linear methods revealed that an almost complete recovery of the elastic and acoustic properties occurred within a few days of healing. The nonlinear ultrasonic measurements contributed to provide further insight into the kinetics of the recovery due to the presence of the healing agent. A good regain of mechanical performance was ascertained through flexural tests at the end of the healing process, confirming the suitability of sodium silicate as a healing agent for self-healing cementitious systems. PMID:28772405

  5. Ultrasonic Monitoring of the Interaction between Cement Matrix and Alkaline Silicate Solution in Self-Healing Systems.

    PubMed

    Ait Ouarabi, Mohand; Antonaci, Paola; Boubenider, Fouad; Gliozzi, Antonio S; Scalerandi, Marco

    2017-01-07

    Alkaline solutions, such as sodium, potassium or lithium silicates, appear to be very promising as healing agents for the development of encapsulated self-healing concretes. However, the evolution of their mechanical and acoustic properties in time has not yet been completely clarified, especially regarding their behavior and related kinetics when they are used in the form of a thin layer in contact with a hardened cement matrix. This study aims to monitor, using linear and nonlinear ultrasonic methods, the evolution of a sodium silicate solution interacting with a cement matrix in the presence of localized cracks. The ultrasonic inspection via linear methods revealed that an almost complete recovery of the elastic and acoustic properties occurred within a few days of healing. The nonlinear ultrasonic measurements contributed to provide further insight into the kinetics of the recovery due to the presence of the healing agent. A good regain of mechanical performance was ascertained through flexural tests at the end of the healing process, confirming the suitability of sodium silicate as a healing agent for self-healing cementitious systems.

  6. A mobile system for active otpical pollution monitoring

    NASA Technical Reports Server (NTRS)

    Sunesson, A.; Edner, H.; Svanberg, S.; Uneus, L.; Wendt, W.; Fredriksson, K.

    1986-01-01

    The remote monitoring of atmospheric pollutants can now be performed in several ways. Laser radar techniques have proven their ability to reveal the spatial distribution of different species or particles. Classical optical techniques can also be used, but yield the average concentration over a given path and hence no range resolution. One such technique is Differential Optical Absorption Spectroscopy, DOAS. Such schemes can be used to monitor paths that a preliminary lidar investigation has shown to be of interest. Having previously had access to a mobile lidar system, a new system has been completed. The construction builds on experience from using the other system and it is meant to be more of a mobile optical laboratory than just a lidar system. A complete system description is given along with some preliminary usage. Future uses are contemplated.

  7. Cable condition monitoring research activities at Sandia National Laboratories

    SciTech Connect

    Jacobus, M.J.; Zigler, G.L.; Bustard, L.D.

    1988-01-01

    Sandia National Laboratories is currently conducting long-term aging research on representative samples of nuclear power plant cables. The objectives of the program are to determine the suitability of these cables for extended life (beyond 40 year design basis) and to assess various cable condition monitoring techniques for predicting remaining cable life. The cables are being aged for long times at relatively mild exposure conditions with various condition monitoring techniques to be employed during the aging process. Following the aging process, the cables will be exposed to a sequential accident profile consisting of high dose rate irradiation followed by a simulated design basis loss-of-coolant accident (LOCA) steam exposure. 12 refs., 1 fig., 1 tab.

  8. Energy monitoring based on human activity in the workplace

    NASA Astrophysics Data System (ADS)

    Mustafa, N. H.; Husain, M. N.; Abd Aziz, M. Z. A.; Othman, M. A.; Malek, F.

    2014-04-01

    Human behavior is the most important factor in order to manage energy usage. Nowadays, smart house technology offers a better quality of life by introducing automated appliance control and assistive services. However, human behaviors will contribute to the efficiency of the system. This paper will focus on monitoring efficiency based on duration time in office hours around 8am until 5pm which depend on human behavior atb the workplace. Then, the correlation coefficient method is used to show the relation between energy consumption and energy saving based on the total hours of time energy spent. In future, the percentages of energy monitoring system usage will be increase to manage energy in efficient ways based on human behaviours. This scenario will lead to the positive impact in order to achieve the energy saving in the building and support the green environment.

  9. Development and Integration of Hardware and Software for Active-Sensors in Structural Monitoring

    SciTech Connect

    Overly, Timothy G.S.

    2007-01-01

    Structural Health Monitoring (SHM) promises to deliver great benefits to many industries. Primarily among them is a potential for large cost savings in maintenance of complex structures such as aircraft and civil infrastructure. However, several large obstacles remain before widespread use on structures can be accomplished. The development of three components would address many of these obstacles: a robust sensor validation procedure, a low-cost active-sensing hardware and an integrated software package for transition to field deployment. The research performed in this thesis directly addresses these three needs and facilitates the adoption of SHM on a larger scale, particularly in the realm of SHM based on piezoelectric (PZT) materials. The first obstacle addressed in this thesis is the validation of the SHM sensor network. PZT materials are used for sensor/actuators because of their unique properties, but their functionality also needs to be validated for meaningful measurements to be recorded. To allow for a robust sensor validation algorithm, the effect of temperature change on sensor diagnostics and the effect of sensor failure on SHM measurements were classified. This classification allowed for the development of a sensor diagnostic algorithm that is temperature invariant and can indicate the amount and type of sensor failure. Secondly, the absence of a suitable commercially-available active-sensing measurement node is addressed in this thesis. A node is a small compact measurement device used in a complete system. Many measurement nodes exist for conventional passive sensing, which does not actively excite the structure, but there are no measurement nodes available that both meet the active-sensing requirements and are useable outside the laboratory. This thesis develops hardware that is low-power, active-sensing and field-deployable. This node uses the impedance method for SHM measurements, and can run the sensor diagnostic algorithm also developed here

  10. Activity Monitors Help Users Get Optimum Sun Exposure

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Goddard scientist Shahid Aslam was investigating alternative methods for measuring extreme ultraviolet radiation on the Solar Dynamics Observatory when he hit upon semiconductors that measured wavelengths pertinent to human health. As a result, he and a partner established College Park, Maryland-based Sensor Sensor LLC and developed UVA+B SunFriend, a wrist monitor that lets people know when they've received their optimal amounts of sunlight for the day.

  11. A Step Towards Seascape Scale Conservation: Using Vessel Monitoring Systems (VMS) to Map Fishing Activity

    PubMed Central

    Witt, Matthew J.; Godley, Brendan J.

    2007-01-01

    Background Conservation of marine ecosystems will require a holistic understanding of fisheries with concurrent spatial patterns of biodiversity. Methodology/Principal Findings Using data from the UK Government Vessel Monitoring System (VMS) deployed on UK-registered large fishing vessels we investigate patterns of fisheries activity on annual and seasonal scales. Analysis of VMS data shows that regions of the UK European continental shelf (i.e. Western Channel and Celtic Sea, Northern North Sea and the Goban Spur) receive consistently greater fisheries pressure than the rest of the UK continental shelf fishing zone. Conclusions/Significance VMS provides a unique and independent method from which to derive patterns of spatially and temporally explicit fisheries activity. Such information may feed into ecosystem management plans seeking to achieve sustainable fisheries while minimising putative risk to non-target species (e.g. cetaceans, seabirds and elasmobranchs) and habitats of conservation concern. With multilateral collaboration VMS technologies may offer an important solution to quantifying and managing ecosystem disturbance, particularly on the high-seas. PMID:17971874

  12. Post-marketing safety monitoring of shenqifuzheng injection: a solution made of dangshen (Radix Codonopsis) and huangqi (Radix Astragali Mongolici).

    PubMed

    Ai, Qinghua; Zhang, Wen; Xie, Yanming; Huang, Wenhua; Liang, Hong; Cao, Hui

    2014-08-01

    To identify the potential risk factors associated with Shenqifuzheng injection (SFI), a solution made of Dangshen (Radix Codonopsis) and Huangqi (Radix Astragali Mongolici), for the timely provision of information to regulatory authorities. A comprehensive analysis of the production process, quality standards, pharmacology, post-marketing clinical studies, and safety evaluation using the primary literature of adverse reactions (ADR), case analyses, and systematic reviews, intensive hospital safety monitoring of post-marketing drugs, and data provided by the hospital information system (HIS). Sub-acute toxicity tests suggesting that a dose of 15 mL/kg (concentrated solution) had specific biological effects, whereas a smaller dose engendered no observable effects. Long-term toxicity testing in domestic rabbits showed that after SFI was administered for 90 days, the animals in each dosing group showed no chronic toxic reactions. Among 20 100 cases observed, the incidence of an ADR was 1.85 per thousand. From March to November 2013, of the leading institutions and 22 sub-centers involved in the post-marketing clinical safety intensive hospital monitoring, 21 units completed 8484 cases of monitoring, and reported 23 cases of adverse reactions. No damage to renal function was found using SFI at a dosage and a treatment course larger and longer than that recommended for the adjuvant treatment of tumors. This could reduce the mortality rate of admitted patients based on the analysis of the data provided by the HIS. A total of 16 clinical case reports of adverse reactions related to SFI in 1999-2012 were obtained through literature retrieval. These reports contained information concerning 17 cases, with adverse reaction symptoms including thrombocytopenia, rash, chills, feeling cold, palpitation, dyspnea, edema of a lower extremity, palpebral edema, and superficial vein inflammation, among others. This study introduces "get full access" to the flow of information on

  13. Monitoring and modeling of water flow and solute transport in the soil-plant-atmosphere system of poplar trees to evaluate the effectiveness of phytoremediation techniques.

    NASA Astrophysics Data System (ADS)

    Palladino, Mario; Di Fiore, Paola; Speranza, Giuseppe; Sica, Benedetto; Romano, Nunzio

    2015-04-01

    This work is part of a series of studies being carried out within the EU-Life+ project ECOREMED (Implementation of eco-compatible protocols for agricultural soil remediation in Litorale Domizio-Agro Aversano NIPS). The project refers to Litorale Domitio-Agro Aversano that has been identified as National Interest Priority Site (NIPS) and includes some polluted agricultural land belonging to more than 61 municipalities in the Naples and Caserta provinces of the Campania Region. The major aim of the project is to define an operating protocol for agriculture-based bioremediation of contaminated agricultural soils, also including the use of plant extracting pollutants to be used as biomasses for renewable energy production. This contribution specifically address the question of evaluating the effectiveness of phytoremediation actions selected by the project in the pilot area of Trentola-Ducenta and will provide some preliminary results of monitoring and modeling activities. A physical and hydraulic characterization has been carried out in this area where poplar trees were planted. Monitoring of water flow, root water uptake and solute transport in the soil-plant-atmosphere is under way with reference to two trees using capacitance soil moisture and matric potential sensors located at three different soil depths, whereas plant water status and evapotranspiration fluxes are indirectly estimated using fast-responding stem dendrometers.

  14. Activity monitoring and motion classification of the lizard Chamaeleo jacksonii using multiple Doppler radars.

    PubMed

    Singh, Aditya; Lee, Scott S K; Butler, Marguerite; Lubecke, Victor

    2012-01-01

    We describe a simple, non-contact and efficient tool for monitoring the natural activity of a small lizard (Chamaeleo jacksonii) to yield valuable information about their metabolic activity and energy expenditure. It allows monitoring in a non-confined laboratory environment and uses multiple Doppler radars operating at 10.525 GHz. We developed a classification algorithm that can differentiate between fidgeting and locomotion by processing the quadrature baseband signals from the radars. The results have been verified by visual inspection and indicate that the tool could also be used for automated monitoring of the activities of reptiles and other small animals.

  15. Activity Monitoring and Motion Classification of the Lizard Chamaeleo jacksonii Using Multiple Doppler Radars

    PubMed Central

    Singh, Aditya; Lee, Scott SK; Butler, Marguerite; Lubecke, Victor

    2016-01-01

    We describe a simple, non-contact and efficient tool for monitoring the natural activity of a small lizard (Chamaeleo jacksonii) to yield valuable information about their metabolic activity and energy expenditure. It allows monitoring in a non-confined laboratory environment and uses multiple Doppler radars operating at 10.525 GHz. We developed a classification algorithm that can differentiate between fidgeting and locomotion by processing the quadrature baseband signals from the radars. The results have been verified by visual inspection and indicate that the tool could also be used for automated monitoring of the activities of reptiles and other small animals. PMID:23366934

  16. Validity of Activity Monitor Step Detection Is Related to Movement Patterns.

    PubMed

    Hickey, Amanda; John, Dinesh; Sasaki, Jeffer E; Mavilia, Marianna; Freedson, Patty

    2016-02-01

    There is a need to examine step-counting accuracy of activity monitors during different types of movements. The purpose of this study was to compare activity monitor and manually counted steps during treadmill and simulated free-living activities and to compare the activity monitor steps to the StepWatch (SW) in a natural setting. Fifteen participants performed laboratory-based treadmill (2.4, 4.8, 7.2 and 9.7 km/h) and simulated free-living activities (eg, cleaning room) while wearing an activPAL, Omron HJ720-ITC, Yamax Digi- Walker SW-200, 2 ActiGraph GT3Xs (1 in "low-frequency extension" [AGLFE] and 1 in "normal-frequency" mode), an ActiGraph 7164, and a SW. Participants also wore monitors for 1-day in their free-living environment. Linear mixed models identified differences between activity monitor steps and the criterion in the laboratory/free-living settings. Most monitors performed poorly during treadmill walking at 2.4 km/h. Cleaning a room had the largest errors of all simulated free-living activities. The accuracy was highest for forward/rhythmic movements for all monitors. In the free-living environment, the AGLFE had the largest discrepancy with the SW. This study highlights the need to verify step-counting accuracy of activity monitors with activities that include different movement types/directions. This is important to understand the origin of errors in step-counting during free-living conditions.

  17. Radioactivity of Potassium Solutions: A Comparison of Calculated Activity to Measured Activity from Gross Beta Counting and Gamma Spectroscopy

    SciTech Connect

    Gaylord, R F

    2005-07-26

    In order to determine if the measured beta activity for a solution containing potassium was exactly as predicted, particularly since the CES gas counter is not calibrated specifically with K-40, an experiment was conducted to compare measured activities from two radioanalytical methods (gamma spectroscopy and gas proportional counting) to calculated activities across a range of potassium concentrations. Potassium, being ubiquitous and naturally radioactive, is a well-known and common interference in gross beta counting methods. By measuring the observed beta activity due to K-40 in potassium-containing solutions across a wide range of concentrations, it was found that the observed beta activity agrees well with the beta activity calculated from the potassium concentration measured by standard inorganic analytical techniques, such as ICP-OES, and that using the measured potassium concentration to calculate the expected beta activity, and comparing this to the observed beta activity to determine if potassium can account for all the observed activity in a sample, is a valid technique. It was also observed that gamma spectroscopy is not an effective means of measuring K-40 activity below approximately 700 pCi/L, which corresponds to a solution with approximately 833 mg/L total potassium. Gas proportional counting for gross beta activity has a much lower detection limit, typically 20-50 picoCi/L for a liquid low in total dissolved solids, which corresponds to a potassium concentration of approximately 30-70 ppm K.

  18. Causes and consequences of timing errors associated with global positioning system collar accelerometer activity monitors

    Treesearch

    Adam J. Gaylord; Dana M. Sanchez

    2014-01-01

    Direct behavioral observations of multiple free-ranging animals over long periods of time and large geographic areas is prohibitively difficult. However, recent improvements in technology, such as Global Positioning System (GPS) collars equipped with motion-sensitive activity monitors, create the potential to remotely monitor animal behavior. Accelerometer-equipped...

  19. 30 CFR 280.29 - Will MMS monitor the environmental effects of my activity?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Obligations Under This Part Environmental Issues § 280.29 Will MMS monitor the environmental effects of my... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Will MMS monitor the environmental effects of my activity? 280.29 Section 280.29 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF...

  20. Active monitoring as cognitive control of grinders design

    NASA Astrophysics Data System (ADS)

    Flizikowski, Jozef B.; Mrozinski, Adam; Tomporowski, Andrzej

    2017-03-01

    A general monitoring methodology applicable to plastics recyclates grinding processes development for energy engineering, has been presented in this work. The method includes two beings: mathematical aiding an invention and working of a novelty. The common set is composed of characteristics, structure, relationships of knowledge about states and transformations, effectiveness and progress of the devices and machinery engineering, e.g. breaking up in the energy-materials recycling process. This innovations theory is identified by the valuation, estimation, testing and creative archiving the elaborated character and structure of the invention and grinders construction development.

  1. Component Analysis of Multipurpose Contact Lens Solutions To Enhance Activity against Pseudomonas aeruginosa and Staphylococcus aureus

    PubMed Central

    Lin, Leo; Kim, Janie; Chen, Hope; Kowalski, Regis

    2016-01-01

    More than 125 million people wear contact lenses worldwide, and contact lens use is the single greatest risk factor for developing microbial keratitis. We tested the antibacterial activity of multipurpose contact lens solutions and their individual component preservatives against the two most common pathogens causing bacterial keratitis, Pseudomonas aeruginosa and Staphylococcus aureus. The in vitro antibacterial activity of five multipurpose contact lens solutions (Opti-Free GP, Boston Simplus, Boston Advance, Menicare GP, and Lobob) was assayed by the standard broth dilution method. Synergy between the preservative components found in the top performing solutions was assayed using checkerboard and time-kill assays. The ISO 14729 criteria and the standard broth dilution method were used to define an optimized contact lens solution formulation against a clinical panel of drug-susceptible and drug-resistant P. aeruginosa and S. aureus strains. Preservatives with the biguanide function group, chlorhexidine and polyaminopropylbiguanide (PAPB), had the best antistaphylococcal activity, while EDTA was the best antipseudomonal preservative. The combination of chlorhexidine and EDTA had excellent synergy against P. aeruginosa. A solution formulation containing chlorhexidine (30 ppm), PAPB (5 ppm), and EDTA (5,000 ppm) had three to seven times more antipseudomonal activity than anything available to consumers today. A multipurpose contact lens solution containing a combination of chlorhexidine, PAPB, and EDTA could help to reduce the incidence of microbial keratitis for contact lens users worldwide. PMID:27139484

  2. Solutions Network Formulation Report. Visible/Infrared Imager/Radiometer Suite and Advanced Microwave Scanning Radiometer Data Products for National Drought Monitor Decision Support

    NASA Technical Reports Server (NTRS)

    Estep, Leland

    2007-01-01

    Drought effects are either direct or indirect depending on location, population, and regional economic vitality. Common direct effects of drought are reduced crop, rangeland, and forest productivity; increased fire hazard; reduced water levels; increased livestock and wildlife mortality rates; and damage to wildlife and fish habitat. Indirect impacts follow on the heels of direct impacts. For example, a reduction in crop, rangeland, and forest productivity may result in reduced income for farmers and agribusiness, increased prices for food and timber, unemployment, reduced tax revenues, increased crime, foreclosures on bank loans to farmers and businesses, migration, and disaster relief programs. In the United States alone, drought is estimated to result in annual losses of between $6 - 8 billion. Recent sustained drought in the United States has made decision-makers aware of the impacts of climate change on society and environment. The eight major droughts that occurred in the United States between 1980 and 1999 accounted for the largest percentage of weather-related monetary losses. Monitoring drought and its impact that occurs at a variety of scales is an important government activity -- not only nationally but internationally as well. The NDMC (National Drought Mitigation Center) and the USDA (U.S. Department of Agriculture) RMA (Risk Management Agency) have partnered together to develop a DM-DSS (Drought Monitoring Decision Support System). This monitoring system will be an interactive portal that will provide users the ability to visualize and assess drought at all levels. This candidate solution incorporates atmospherically corrected VIIRS data products, such as NDVI (Normalized Difference Vegetation Index) and Ocean SST (sea surface temperature), and AMSR-E soil moisture data products into two NDMC vegetation indices -- VegDRI (Vegetation Drought Response Index) and VegOUT (Vegetation Outlook) -- which are then input into the DM-DSS.

  3. Factors Influencing the Activity of Sterile Filtered and Heat-Sterilized Trypsin Solutions

    PubMed Central

    Cook, R. A.; Poole, G. M.

    1974-01-01

    The mode of sterilization (filtration or heat) was found to significantly affect the activity of trypsin solutions. Trypsin activity was substantially reduced in the initial fractions of filtrate passed through asbestos filter pads; heat-sterilized trypsin was satisfactory for transfer of cell cultures grown on glass. Heat-sterilized trypsin may be useful when elimination of filterable organisms is required. PMID:4844278

  4. Investigating the Effectiveness of an Analogy Activity in Improving Students' Conceptual Change for Solution Chemistry Concepts

    ERIC Educational Resources Information Center

    Calik, Muammer; Ayas, Alipasa; Coll, Richard K.

    2009-01-01

    This paper reports on an investigation on the use of an analogy activity and seeks to provide evidence of whether the activity enables students to change alternative conceptions towards views more in accord with scientific views for aspects of solution chemistry. We were also interested in how robust any change was and whether these changes in…

  5. Investigating the Effectiveness of an Analogy Activity in Improving Students' Conceptual Change for Solution Chemistry Concepts

    ERIC Educational Resources Information Center

    Calik, Muammer; Ayas, Alipasa; Coll, Richard K.

    2009-01-01

    This paper reports on an investigation on the use of an analogy activity and seeks to provide evidence of whether the activity enables students to change alternative conceptions towards views more in accord with scientific views for aspects of solution chemistry. We were also interested in how robust any change was and whether these changes in…

  6. Permafrost and Active Layer Monitoring in the Maritime Antarctic: A Contribution to TSP and ANTPAS projects

    NASA Astrophysics Data System (ADS)

    Vieira, G.; Ramos, M.; Batista, V.; Caselli, A.; Correia, A.; Fragoso, M.; Gruber, S.; Hauck, C.; Kenderova, R.; Lopez-Martinez, J.; Melo, R.; Mendes-Victor, L. A.; Miranda, P.; Mora, C.; Neves, M.; Pimpirev, C.; Rocha, M.; Santos, F.; Blanco, J. J.; Serrano, E.; Trigo, I.; Tome, D.; Trindade, A.

    2008-12-01

    Permafrost and active layer monitoring in the Maritime Antarctic (PERMANTAR) is a Portuguese funded International Project that, in cooperation with the Spanish project PERMAMODEL, will assure the installation and the maintenance of a network of boreholes and active layer monitoring sites, in order to characterize the spatial distribution of the physical and thermal properties of permafrost, as well as the periglacial processes in Livingston and Deception Islands (South Shetlands). The project is part of the International Permafrost Association IPY projects Thermal State of Permafrost (TSP) and Antarctic and Sub-Antarctic Permafrost, Soils and Periglacial Environments (ANTPAS). It contributes to GTN-P and CALM-S networks. The PERMANTAR-PERMAMODEL permafrost and active layer monitoring network includes several boreholes: Reina Sofia hill (since 2000, 1.1m), Incinerador (2000, 2.3m), Ohridski 1 (2008, 5m), Ohridski 2 (2008, 6m), Gulbenkian-Permamodel 1 (2008, 25m) and Gulbenkian- Permamodel 2 (2008, 15m). For active layer monitoring, several CALM-S sites have been installed: Crater Lake (2006), Collado Ramos (2007), Reina Sofia (2007) and Ohridski (2007). The monitoring activities are accompanied by detailed geomorphological mapping in order to identify and map the geomorphic processes related to permafrost or active layer dynamics. Sites will be installed in early 2009 for monitoring rates of geomorphological activity in relation to climate change (e.g. solifluction, rockglaciers, thermokarst). In order to analyse the spatial distribution of permafrost and its ice content, electrical resistivity tomography (ERT), and seismic refraction surveys have been performed and, in early 2009, continuous ERT surveying instrumentation will be installed for monitoring active layer evolution. The paper presents a synthesis of the activities, as well as the results obtained up to the present, mainly relating to ground temperature monitoring and from permafrost characteristics and

  7. Nanosensor system for monitoring brain activity and drowsiness

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Varadan, Vijay K.; Harbaugh, Robert

    2015-04-01

    Detection of drowsiness in drivers to avoid on-road collisions and accidents is one of the most important applications that can be implemented to avert loss of life and property caused by accidents. A statistical report indicates that drowsy driving is equally harmful as driving under influence of alcohol. This report also indicates that drowsy driving is the third most influencing factor for accidents and 30% of the commercial vehicle accidents are caused because of drowsy driving. With a motivation to avoid accidents caused by drowsy driving, this paper proposes a technique of correlating EEG and EOG signals to detect drowsiness. Feature extracts of EEG and blink variability from EOG is correlated to detect the sleepiness/drowsiness of a driver. Moreover, to implement a more pragmatic approach towards continuous monitoring, a wireless real time monitoring approach has been incorporated using textile based nanosensors. Thereby, acquired bio potential signals are transmitted through GSM communication module to the receiver continuously. In addition to this, all the incorporated electronics are equipped in a flexible headband which can be worn by the driver. With this flexible headband approach, any intrusiveness that may be experienced by other cumbersome hardware is effectively mitigated. With the continuous transmission of data from the head band, the signals are processed on the receiver side to determine the condition of the driver. Early warning of driver's drowsiness will be displayed in the dashboard of the vehicle as well as alertness voice and sound alarm will be sent via the vehicle radio.

  8. Physical Activity Monitoring in Extremely Obese Adolescents from the Teen-LABS Study

    PubMed Central

    Jeffries, Renee M.; Inge, Thomas H.; Jenkins, Todd M; King, Wendy; Oruc, Vedran; Douglas, Andrew D.

    2016-01-01

    Background The accuracy of physical activity (PA) monitors to discriminate between PA, sedentary behavior, and non-wear in extremely obese (EO) adolescents is unknown. Methods Twenty-five subjects (9 male/16 female; age=16.5±2.0 y; BMI=51±8 kg/m2) wore three activity monitors (StepWatch [SAM], Actical [AC], Actiheart [AH]) during a 400 meter walk test (400MWT), two standardized PA bouts of varying duration, and one sedentary bout. Results For the 400MWT, percent error between observed and monitor recorded steps was 5.5±7.1% and 82.1±38.6% for the SAM and AC steps, respectively (observed vs. SAM steps: −17.2±22.2 steps; observed vs. AC steps: −264.5±124.8 steps). All activity monitors were able to differentiate between PA and sedentary bouts but only SAM steps and AH heart rate were significantly different between sedentary behavior and non-wear (p<0.001). For all monitors, sedentary behavior was characterized by bouts of zero steps/counts punctuated by intermittent activity steps/counts; non-wear was represented almost exclusively by zero steps/counts. Conclusion Of all monitors tested, the SAM was most accurate in terms of counting steps and differentiating levels of PA, and thus, most appropriate for EO adolescents. The ability to accurately characterize PA intensity in EO adolescents critically depends on activity monitor selection. PMID:25205688

  9. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    USDA-ARS?s Scientific Manuscript database

    Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and ...

  10. Monitoring Activity of Taking Medicine by Incorporating RFID and Video Analysis

    PubMed Central

    Hasanuzzaman, Faiz M.; Yang, Xiaodong; Tian, YingLi; Liu, Qingshan; Capezuti, Elizabeth

    2013-01-01

    In this paper, we present a new framework to monitor medication intake for elderly individuals by incorporating a video camera and Radio Frequency Identification (RFID) sensors. The proposed framework can provide a key function for monitoring activities of daily living (ADLs) of elderly people at their own home. In an assistive environment, RFID tags are applied on medicine bottles located in a medicine cabinet so that each medicine bottle will have a unique ID. The description of the medicine data for each tag is manually input to a database. RFID readers will detect if any of these bottles are taken away from the medicine cabinet and identify the tag attached on the medicine bottle. A video camera is installed to continue monitoring the activity of taking medicine by integrating face detection and tracking, mouth detection, background subtraction, and activity detection. The preliminary results demonstrate that 100% detection accuracy for identifying medicine bottles and promising results for monitoring activity of taking medicine. PMID:23914344

  11. Home uterine activity monitoring: an evidence review of its utility in multiple gestations.

    PubMed

    Reichmann, James P

    2009-09-01

    To examine the medical evidence regarding the application of home uterine activity monitoring for multiple gestations. All of the published peer-reviewed articles on the topic were assembled and assigned a level of evidence based on research design. The search uncovered 9 articles, including 3 Level I randomized, controlled trials; 1 level II matched cohort trial; and 5 level III case series. The first 5 trials all showed promising results for home uterine activity monitoring applied to multiple gestations. Ultimately, however, 14 years after the introduction of home uterine activity monitoring, the largest randomized, controlled trial was published, and it demonstrated that pregnancy outcomes were identical for patients with home uterine activity monitoring and patients receiving weekly calls from a nurse. A subsequent National Institute of Child Health and Human Development published trial may provide a clue as to why the large, randomized, controlled trial demonstrated no difference. Contractions in multiple gestations are not predictive of preterm birth.

  12. Probes to monitor activity of the paracaspase MALT1.

    PubMed

    Hachmann, Janna; Edgington-Mitchell, Laura E; Poreba, Marcin; Sanman, Laura E; Drag, Marcin; Bogyo, Matthew; Salvesen, Guy S

    2015-01-22

    The human paracaspase mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) plays a central role in nuclear factor-κB (NF-κB) signaling as both a protease and scaffolding protein. Knocking out MALT1 leads to impaired NF-κB signaling and failure to mount an effective immune response. However, it is unclear to which degree it is the scaffolding function versus the proteolytic activity of MALT1 that is essential. Previous work involving a MALT1 inhibitor with low selectivity suggests that the enzymatic function plays an important role in different cell lines. To help elucidate this proteolytic role of MALT1, we have designed activity-based probes that inhibit its proteolytic activity. The probes selectively label active enzyme and can be used to inhibit MALT1 and trace its activity profile, helping to create a better picture of the significance of the proteolytic function of MALT1.

  13. Probes to monitor activity of the paracaspase MALT1

    PubMed Central

    Hachmann, Janna; Edgington-Mitchell, Laura E.; Poreba, Marcin; Sanman, Laura E.; Drag, Marcin; Bogyo, Matthew; Salvesen, Guy S.

    2014-01-01

    Summary The human paracaspase MALT1 plays a central role in NF-κB signaling both as a protease and scaffolding protein. Knocking out MALT1 leads to impaired NF-κB signaling and failure to mount an effective immune response. However, it is unclear to which degree it is the scaffolding function versus the proteolytic activity of MALT1 that is essential. Previous work involving a MALT1 inhibitor with low selectivity suggests that the enzymatic function plays an important role in different cell lines. To help elucidate this proteolytic role of MALT1 we have designed activity-based probes that inhibit its proteolytic activity. The probes selectively label active enzyme and can be used to inhibit MALT1 and trace its activity profile helping to create a better picture of the significance of the proteolytic function of MALT1. PMID:25556944

  14. Non-thermal atmospheric pressure plasma activates lactate in Ringer's solution for anti-tumor effects.

    PubMed

    Tanaka, Hiromasa; Nakamura, Kae; Mizuno, Masaaki; Ishikawa, Kenji; Takeda, Keigo; Kajiyama, Hiroaki; Utsumi, Fumi; Kikkawa, Fumitaka; Hori, Masaru

    2016-11-08

    Non-thermal atmospheric pressure plasma is a novel approach for wound healing, blood coagulation, and cancer therapy. A recent discovery in the field of plasma medicine is that non-thermal atmospheric pressure plasma not only directly but also indirectly affects cells via plasma-treated liquids. This discovery has led to the use of non-thermal atmospheric pressure plasma as a novel chemotherapy. We refer to these plasma-treated liquids as plasma-activated liquids. We chose Ringer's solutions to produce plasma-activated liquids for clinical applications. In vitro and in vivo experiments demonstrated that plasma-activated Ringer's lactate solution has anti-tumor effects, but of the four components in Ringer's lactate solution, only lactate exhibited anti-tumor effects through activation by non-thermal plasma. Nuclear magnetic resonance analyses indicate that plasma irradiation generates acetyl and pyruvic acid-like groups in Ringer's lactate solution. Overall, these results suggest that plasma-activated Ringer's lactate solution is promising for chemotherapy.

  15. Effects of ionic and non-ionic solutions on intradental nerve activity in the cat.

    PubMed

    Bilotto, G; Markowitz, K; Kim, S

    1988-02-01

    Intradental nerve activity (INA) was recorded from cat canine teeth to determine whether solutions altering intradental nerve sensitivity were strongly correlated to the osmotic concentration of the solution or via a more direct action on intradental nerve excitability. The effects of various ionic and non-ionic solutions were tested in both deep and shallow dentinal cavities. With saline in the deep dentinal cavity a very low firing rate or resting nerve spike (action potentials) activity was recorded. When 3 M NaCl was placed in the same or similar cavity a high discharge rate of nerve spike activity was obtained. This 3 M NaCl elicited activity was utilized to determine the inhibitory or excitatory effects of various test agents on the intradental nerves. The following agents: MgCl2, MgSO4, and CaCl2 were inhibitory to the INA response elicited by 3 M NaCl. Non-ionic solutions of urea or sucrose failed to evoke INA and they were also minimally effective in altering 3 M NaCl elicited activity. Shallow cavities were utilized to maintain the tubular structure of dentin relatively intact. In the shallow cavity preparations hypertonic sucrose or urea failed to evoke INA, even when dentin was etched with 50% citric acid for 2 min. The results suggest that the osmolarity of these solutions is a poor indicator of the INA.

  16. Total phenolic content and antimicrobial activity of different lithuanian propolis solutions.

    PubMed

    Ramanauskienė, Kristina; Inkėnienė, Asta Marija; Petrikaitė, Vilma; Briedis, Vitalis

    2013-01-01

    The manufacture of ethanol-free propolis solutions offers a broader application. A few trials with Lithuanian propolis have been conducted. The aims of the study are to manufacture propolis water and water-free solutions and evaluate the quality and antimicrobial activity of these solutions. The studied solutions containing 2.5%, 5%, and 10% propolis are prepared. As solvents, purified water, 70% v/v ethanol, 96.3% v/v ethanol, propylene glycol, and their systems were used. Determination of total levels of phenolic compounds (FAE mg/g) is based on colour oxidation-reduction reaction using Folin-Ciocalteu reagent under alkaline conditions and performed at 765 nm wavelength using UV spectrophotometer. The highest content of phenolic compounds was determined in solutions containing 10% propolis extracts, and the lowest amounts in 2.5% propolis extracts. The water extracted the lowest amount of phenolic compounds from crude propolis, ethanol extracted the highest amount, and propylene glycol ranked the middle position. It is determined that technological parameters (stirring, temperature) contribute to content of phenolic compounds. During microbiological study, MICs were determined. The studies showed that water extracted propolis solutions and solvents mixture did not inhibit the growth of the studied microorganisms, and propolis solutions in propylene glycol were found to have antimicrobial activity.

  17. Total Phenolic Content and Antimicrobial Activity of Different Lithuanian Propolis Solutions

    PubMed Central

    Ramanauskienė, Kristina; Inkėnienė, Asta Marija; Petrikaitė, Vilma; Briedis, Vitalis

    2013-01-01

    The manufacture of ethanol-free propolis solutions offers a broader application. A few trials with Lithuanian propolis have been conducted. The aims of the study are to manufacture propolis water and water-free solutions and evaluate the quality and antimicrobial activity of these solutions. The studied solutions containing 2.5%, 5%, and 10% propolis are prepared. As solvents, purified water, 70% v/v ethanol, 96.3% v/v ethanol, propylene glycol, and their systems were used. Determination of total levels of phenolic compounds (FAE mg/g) is based on colour oxidation-reduction reaction using Folin-Ciocalteu reagent under alkaline conditions and performed at 765 nm wavelength using UV spectrophotometer. The highest content of phenolic compounds was determined in solutions containing 10% propolis extracts, and the lowest amounts in 2.5% propolis extracts. The water extracted the lowest amount of phenolic compounds from crude propolis, ethanol extracted the highest amount, and propylene glycol ranked the middle position. It is determined that technological parameters (stirring, temperature) contribute to content of phenolic compounds. During microbiological study, MICs were determined. The studies showed that water extracted propolis solutions and solvents mixture did not inhibit the growth of the studied microorganisms, and propolis solutions in propylene glycol were found to have antimicrobial activity. PMID:23573156

  18. Synthesis of the bismuth oxyhalide solid solutions with tunable band gap and photocatalytic activities.

    PubMed

    Ren, Kuaixia; Liu, Jie; Liang, Jie; Zhang, Kun; Zheng, Xiao; Luo, Hongde; Huang, Yunbo; Liu, Pujun; Yu, Xibin

    2013-07-14

    Three series of BiOM(x)R(1-x) (M, R = Cl, Br, I) solid solutions were systematically synthesized through a low-temperature precipitation. These solid solutions were characterized by XRD, FESEM, TEM, EDS, UV-vis spectra, nitrogen sorption/desorption, and PL. The tunable band gaps of the as-prepared solid solutions were realized via only changing the molar ratio of two halide ions. Meanwhile, the influence of citric acid in the formations of controllable morphological structures was discussed to study the growth mechanism of solid solutions. The photocatalytic activities of the bismuth oxyhalide solid solutions have also been investigated by the degradation of Rhodamine-B (RhB) under visible light irradiation. The optimized solid solutions possess higher photocatalytic activity than pure ones [BiOM (M = Cl, Br, I)] due to the broadened range of visible light response and the reduced recombination rate of electron-holes pairs. The results show that the synthesis of BiOM(x)R(1-x) (M, R = Cl, Br, I) solid solutions have profound significance for the design of the novel photocatalyst materials.

  19. Migration of concentrated radionuclide solutions in water-saturated soil investigation of a hypothetical high activity waste solution discharge accident

    SciTech Connect

    Schwarzer, K.; Katscher, W.; Thelen, J.

    1983-01-01

    For the case of postulated leakage from a tank containing a high activity nuclear waste solution, as planned for the German reprocessing plant at Gorleben, the migration of radionuclides in the groundwater current has been examined. As the nuclide migration velocity is strongly influenced by sorption processes, which for a given soil are concentration dependent, adsorption and desorption coefficients for strontium, cesium, ruthenium, and cerium were measured over a wide concentration range in sandy subsoil taken from the Gorleben site. Using the results from the adsorption experiments and neglecting the fact that the sorption coefficients in the case of desorption turn out to be significantly higher, migration velocities and concentration profiles for strontium, cesium, ruthenium, and cerium were calculated with the MOFIS code. The results show significant delay and concentration decrease of the radionuclides with strontium being the ''critical'' element.

  20. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... activated carbon? 60.1330 Section 60.1330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements § 60.1330 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet...

  1. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... activated carbon? 60.1330 Section 60.1330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements § 60.1330 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet...

  2. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... activated carbon? 60.1330 Section 60.1330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements § 60.1330 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet...

  3. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... activated carbon? 60.1330 Section 60.1330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements § 60.1330 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet...

  4. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... activated carbon? 60.1330 Section 60.1330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements § 60.1330 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet...

  5. Validation of an activity monitor for children who are partly or completely wheelchair-dependent.

    PubMed

    Nooijen, Carla Fj; de Groot, Janke F; Stam, Henk J; van den Berg-Emons, Rita Jg; Bussmann, Hans Bj

    2015-02-06

    Children who are wheelchair-dependent are at risk for developing unfavorable physical behavior; therefore, assessment, monitoring and efforts to improve physical behavior should start early in life. VitaMove is an accelerometer-based activity monitor and can be used to detect and distinguish different categories of physical behavior, including activities performed in a wheelchair and activities using the legs. The purpose of this study was to assess the validity of the VitaMove activity monitor to quantify physical behavior in children who are partly or completely wheelchair-dependent. Twelve children with spina bifida (SB) or cerebral palsy (CP) (mean age, 14 ± 4 years) performed a series of wheelchair activities (wheelchair protocol) and, if possible, activities using their legs (n = 5, leg protocol). Activities were performed at their own home or school. In children who were completely wheelchair-dependent, VitaMove monitoring consisted of one accelerometer-based recorder attached to the sternum and one to each wrist. For children who were partly ambulatory, an additional recorder was attached to each thigh. Using video-recordings as a reference, primary the total duration of active behavior, including wheeled activity and leg activity, and secondary agreement, sensitivity and specificity scores were determined. Detection of active behaviour with the VitaMove activity monitor showed absolute percentage errors of 6% for the wheelchair protocol and 10% for the leg protocol. For the wheelchair protocol, the mean agreement was 84%, sensitivity was 80% and specificity was 85%. For the leg protocol, the mean agreement was 83%, sensitivity was 78% and specificity was 90%. Validity scores were lower in severely affected children with CP. The VitaMove activity monitor is a valid device to quantify physical behavior in children who are partly or completely wheelchair-dependent, except for severely affected children and for bicycling.

  6. Seismic activity monitoring in the Izvorul Muntelui dam region

    NASA Astrophysics Data System (ADS)

    Borleanu, Felix; Otilia Placinta, Anca; Popa, Mihaela; Adelin Moldovan, Iren; Popescu, Emilia

    2016-04-01

    Earthquakes occurrences near the artificial water reservoirs are caused by stress variation due to the weight of water, weakness of fractures or faults and increasing of pore pressure in crustal rocks. In the present study we aim to investigate how Izvorul Muntelui dam, located in the Eastern Carpathians influences local seismicity. For this purpose we selected from the seismic bulletins computed within National Data Center of National Institute for Earth Physics, Romania, crustal events occurred between 984 and 2015 in a range of 0.3 deg around the artificial lake. Subsequently to improve the seismic monitoring of the region we applied a cross-correlation detector on the continuous recordings of Bicaz (BIZ) seismic stations. Besides the tectonic events we detected sources within this region that periodically generate artificial evens. We couldn't emphasize the existence of a direct correlation between the water level variations and natural seismicity of the investigated area.

  7. Activity density map visualization and dissimilarity comparison for eldercare monitoring.

    PubMed

    Wang, Shuang; Skubic, Marjorie; Zhu, Yingnan

    2012-07-01

    In this paper, we present a methodology for analyzing passive infrared motion sensor data logged in the homes of seniors. The objective is to capture activity patterns that represent different health conditions. Recognizing changes in the activity patterns can then be used to provide early detection of health changes. A visualization of motion sensor data is introduced in the form of a density map that uses different colors to show varying levels of activity. For evaluating the activity density level accurately, time away from home is determined first using a system of fuzzy rules. In addition, a dissimilarity between two density maps is computed using texture features for automatically determining changes in activity patterns, which may indicate a health problem. The activity density maps are being used in an aging in place senior housing community to aid clinicians in early illness detection. Three case studies of elderly residents are included to illustrate how the density map and dissimilarity measure can be used to track general activity level and daily patterns over time, showing changes in physical, cognitive, and mental health.

  8. A portable multi-channel wireless NIRS device for muscle activity real-time monitoring.

    PubMed

    Yao, Pengfei; Guo, Weichao; Sheng, Xinjun; Zhang, Dingguo; Zhu, Xiangyang

    2014-01-01

    Near-infrared spectroscopy (NIRS) is a relative new technology in monitoring muscle oxygenation and hemo-dynamics. This paper presents a portable multi-channel wireless NIRS device for real-time monitoring of muscle activity. The NIRS sensor is designed miniaturized and modularized, to make multi-site monitoring convenient. Wireless communication is applied to data transmission avoiding of cumbersome wires and the whole system is highly integrated. Special care is taken to eliminate motion artifact when designing the NIRS sensor and attaching it to human skin. Besides, the system is designed with high sampling rate so as to monitor rapid oxygenation changes during muscle activities. Dark noise and long-term drift tests have been carried out, and the result indicates the device has a good performance of accuracy and stability. In vivo experiments including arterial occlusion and isometric voluntary forearm muscle contraction were performed, demonstrating the system has the ability to monitor muscle oxygenation parameters effectively even in exercise.

  9. The MOSQUITO: a new sampler for monitoring fluid and solute fluxes between the sediment and the ocean

    NASA Astrophysics Data System (ADS)

    Weinstein, Y.; Kastner, M.; Jannasch, H.

    2003-04-01

    Long-term monitoring of flow rates across the sediment into the ocean has always been a challenge to oceanographers. The MOSQUITO (Multiple Orifice Sampler and Quantitative Injection Tracer Observer) is a new sampler, which uses the osmotic pumping methodology to continuously monitor the chemistry and flow rate of fluids emanating from porous sediment via diffuse flow into the water column. The Osmo-Sampler is the heart of the MOSQUITO. It is composed of two cells containing solutions of different salinity (typically a saturated salt solution and distilled water) and separated by an osmotic membrane. The flow across the membrane creates a negative pressure gradient, which is pulling fluid through a sample capillary tube connected to the distilled water cell. A constant osmotic pressure and flow is maintained by using a constant salinity gradient across the osmotic membrane. The MOSQUITO includes a network of Osmo-Samplers and an injection device, each connected to a Ti tube that intrudes the sediment. Flow rates as low as few cm/yr are determined using tracers injected as a point source, and by continuously sampling the sediment pore water and studying variability in tracer concentrations with time. Sampling is conducted at various depths in the sediment and distances from the injection port, thereby allowing determination of the flow field in the shallow sub-seafloor sediments. The continuously sampled pore fluids are also analyzed for their chemistry which, combined with the flow rate data, yields the fluxes of chemical species from the sediment into the ocean. An 11-month record from the sedimented eastern flank of the Juan de Fuca Ridge, (ODP site 1025C) indicates a significant variability of flow rate that changes in a non-periodic mode between 120 cm/yr into the sediment and 70 cm/yr into the ocean. Assuming isotropy, this results in a net flow of 5-6 cm/yr into the sediment. However, profiles of pore water chemistry that indicate a net flow of no more than

  10. Chitinase activity on amorphous chitin thin films: a quartz crystal microbalance with dissipation monitoring and atomic force microscopy study.

    PubMed

    Wang, Chao; Kittle, Joshua D; Qian, Chen; Roman, Maren; Esker, Alan R

    2013-08-12

    Chitinases are widely distributed in nature and have wide-ranging pharmaceutical and biotechnological applications. This work highlights a real-time and label-free method to assay Chitinase activity via a quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM). The chitin substrate was prepared by spincoating a trimethylsilyl chitin solution onto a silica substrate, followed by regeneration to amorphous chitin (RChi). The QCM-D and AFM results clearly showed that the hydrolysis rate of RChi films increased as Chitinase (from Streptomyces griseus) concentrations increased, and the optimal temperature and pH for Chitinase activity were around 37 °C and 6-8, respectively. The Chitinase showed greater activity on chitin substrates, having a high degree of acetylation, than on chitosan substrates, having a low degree of acetylation.

  11. [Telomerase activity in esophageal carcinoma and lesions unstained with Lugol's solution].

    PubMed

    Yoneyama, K; Aoyama, N; Koizumi, H; Tamai, S

    1998-05-01

    Telomerase is a specific enzyme required for the replication of telomeres. Its activity is detected in almost human cancers. We examined in esophageal carcinoma and lesions unstained with Lugol's solution telomerase activity by using telomeric repeat amplification protocol (TRAP) assay. Telomerase activity was detected in all 22 esophageal carcinomas, regardless of histopathological findings. In unstained lesions, telomerase activity was detected in 15 of 22; 10 squamous cell carcinomas, four dysplasia, one regenerative epithelium, no telomerase activity was found in seven; four normal esophageal epithelia, two Barrett's esophagi, one regenerative epithelium. These results suggest that telomerase activity may be a useful molecular marker for the diagnosis of esophageal carcinoma and of the early esophageal carcinoma in area unstained with Lugol's solution.

  12. Fluorescence-Based Sensor for Monitoring Activation of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Jeevarajan, Antony S.

    2012-01-01

    This sensor unit is designed to determine the level of activation of lunar dust or simulant particles using a fluorescent technique. Activation of the surface of a lunar soil sample (for instance, through grinding) should produce a freshly fractured surface. When these reactive surfaces interact with oxygen and water, they produce hydroxyl radicals. These radicals will react with a terephthalate diluted in the aqueous medium to form 2-hydroxyterephthalate. The fluorescence produced by 2-hydroxyterephthalate provides qualitative proof of the activation of the sample. Using a calibration curve produced by synthesized 2-hydroxyterephthalate, the amount of hydroxyl radicals produced as a function of sample concentration can also be determined.

  13. Monitoring the Activation of the DNA Damage Response Pathway in a 3D Spheroid Model.

    PubMed

    Mondesert, Odile; Frongia, Céline; Clayton, Olivia; Boizeau, Marie-Laure; Lobjois, Valérie; Ducommun, Bernard

    2015-01-01

    Monitoring the DNA-Damage Response (DDR) activated pathway in multicellular tumor spheroid models is an important challenge as these 3D models have demonstrated their major relevance in pharmacological evaluation. Herein we present DDR-Act-FP, a fluorescent biosensor that allows detection of DDR activation through monitoring of the p21 promoter p53-dependent activation. We show that cells expressing the DDR-Act-FP biosensor efficiently report activation of the DDR pathway after DNA damage and its pharmacological manipulation using ATM kinase inhibitors. We also report the successful use of this assay to screen a small compound library in order to identify activators of the DDR response. Finally, using multicellular spheroids expressing the DDR-Act-FP we demonstrate that DDR activation and its pharmacological manipulation with inhibitory and activatory compounds can be efficiently monitored in live 3D spheroid model. This study paves the way for the development of innovative screening and preclinical evaluation assays.

  14. Monitoring the activity of the Be star OT Geminorum

    NASA Astrophysics Data System (ADS)

    Arellano Ferro, A.; Sareyan, J. P.; Avila, J. J.; Gonzalez, F.; Dumont, M.; Geos

    1998-02-01

    Observations obtained in 1995-1996 of the Be star OT Geminorum are reported and show that in october 1995 the star reached a very active phase with large variations around a bright plateau, a phase of activity we have also distinguished in previous observations dating from 1960. The time scales involved are discussed and suggest that the violent variations of the activity propagate very quickly on the whole surface of the star or on a huge portion of it. No likely pulsation periods were found. The assumption that the detected activity is due to the effects of an hypothetical companion leads to conclude that such companion could not be detected by the present interferometric techniques. Partly based on observations obtained at the La Luz Observatory of the University of Guanajuato, Mexico.

  15. Physiorack: an integrated MRI safe/conditional, gas delivery, respiratory gating, and subject monitoring solution for structural and functional assessments of pulmonary function.

    PubMed

    Halaweish, Ahmed F; Charles, H Cecil

    2014-03-01

    To evaluate the use of a modular MRI conditional respiratory monitoring and gating solution, designed to facilitate proper monitoring of subjects' vital signals and their respiratory efforts, during free-breathing and breathheld 19F, oxygen-enhanced, and Fourier-decomposition MRI-based acquisitions. All Imaging was performed on a Siemens TIM Trio 3 Tesla MRI scanner, following Institutional Review Board approval. Gas delivery is accomplished through the use of an MR compatible pneumotachometer, in conjunction with two three-way pneumatically controlled Hans Rudolph Valves. The pneumatic valves are connected to Douglas bags used as the gas source. A mouthpiece (+nose clip) or an oro-nasal Hans Rudolph disposable mask is connected following the pneumatic valve to minimize dead-space and provide an airtight seal. Continuous monitoring/sampling of inspiratory and expiratory oxygen and carbon dioxide levels at the mouthpiece/mask is achieved through the use of an Oxigraf gas analyzer. Forty-four imaging sessions were successfully monitored, during Fourier-decomposition (n=3), fluorine-enhanced (n=29), oxygen-enhanced, and ultra short echo (n=12) acquisitions. The collected waveforms, facilitated proper monitoring and coaching of the subjects. We demonstrate an inexpensive, off-the-shelf solution for monitoring these signals, facilitating assessments of lung function. Monitoring of respiratory efforts and exhaled gas concentrations assists in understanding the heterogeneity of lung function visualized by gas imaging. Copyright © 2013 Wiley Periodicals, Inc.

  16. Anion-activated, thermoreversible gelation system for the capture, release, and visual monitoring of CO2

    PubMed Central

    Zhang, Xin; Lee, Songyi; Liu, Yifan; Lee, Minji; Yin, Jun; Sessler, Jonathan L.; Yoon, Juyoung

    2014-01-01

    Carbon dioxide (CO2) is an important green house gas. This is providing an incentive to develop new strategies to detect and capture CO2. Achieving both functions within a single molecular system represents an unmet challenge in terms of molecular design and could translate into enhanced ease of use. Here, we report an anion-activated chemosensor system, NAP-chol 1, that permits dissolved CO2 to be detected in organic media via simple color changes or through ratiometric differences in fluorescence intensity. NAP-chol 1 also acts as a super gelator for DMSO. The resulting gel is transformed into a homogeneous solution upon exposure to fluoride anions. Bubbling with CO2 regenerates the gel. Subsequent flushing with N2 or heating serves to release the CO2 and reform the sol form. This series of transformations is reversible and can be followed by easy-to-discern color changes. Thus, NAP-chol 1 allows for the capture and release of CO2 gas while acting as a three mode sensing system. In particular, it permits CO2 to be detected through reversible sol-gel transitions, simple changes in color, or ratiometric monitoring of the differences in the fluorescence features. PMID:24699626

  17. Anion-activated, thermoreversible gelation system for the capture, release, and visual monitoring of CO2

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Lee, Songyi; Liu, Yifan; Lee, Minji; Yin, Jun; Sessler, Jonathan L.; Yoon, Juyoung

    2014-04-01

    Carbon dioxide (CO2) is an important green house gas. This is providing an incentive to develop new strategies to detect and capture CO2. Achieving both functions within a single molecular system represents an unmet challenge in terms of molecular design and could translate into enhanced ease of use. Here, we report an anion-activated chemosensor system, NAP-chol 1, that permits dissolved CO2 to be detected in organic media via simple color changes or through ratiometric differences in fluorescence intensity. NAP-chol 1 also acts as a super gelator for DMSO. The resulting gel is transformed into a homogeneous solution upon exposure to fluoride anions. Bubbling with CO2 regenerates the gel. Subsequent flushing with N2 or heating serves to release the CO2 and reform the sol form. This series of transformations is reversible and can be followed by easy-to-discern color changes. Thus, NAP-chol 1 allows for the capture and release of CO2 gas while acting as a three mode sensing system. In particular, it permits CO2 to be detected through reversible sol-gel transitions, simple changes in color, or ratiometric monitoring of the differences in the fluorescence features.

  18. Novel Flexible Wearable Sensor Materials and Signal Processing for Vital Sign and Human Activity Monitoring

    PubMed Central

    Servati, Amir; Wang, Z. Jane; Ko, Frank; Servati, Peyman

    2017-01-01

    Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology. PMID:28703744

  19. Monitoring Brain Activity with Protein Voltage and Calcium Sensors

    PubMed Central

    Storace, Douglas A.; Braubach, Oliver R.; Jin, Lei; Cohen, Lawrence B.; Sung, Uhna

    2015-01-01

    Understanding the roles of different cell types in the behaviors generated by neural circuits requires protein indicators that report neural activity with high spatio-temporal resolution. Genetically encoded fluorescent protein (FP) voltage sensors, which optically report the electrical activity in distinct cell populations, are, in principle, ideal candidates. Here we demonstrate that the FP voltage sensor ArcLight reports odor-evoked electrical activity in the in vivo mammalian olfactory bulb in single trials using both wide-field and 2-photon imaging. ArcLight resolved fast odorant-responses in individual glomeruli, and distributed odorant responses across a population of glomeruli. Comparisons between ArcLight and the protein calcium sensors GCaMP3 and GCaMP6f revealed that ArcLight had faster temporal kinetics that more clearly distinguished activity elicited by individual odorant inspirations. In contrast, the signals from both GCaMPs were a saturating integral of activity that returned relatively slowly to the baseline. ArcLight enables optical electrophysiology of mammalian neuronal population activity in vivo. PMID:25970202

  20. Effect of laser irradiation of nanoparticles in aqueous uranium salt solutions on nuclide activity

    SciTech Connect

    Simakin, Aleksandr V; Shafeev, Georgii A

    2011-07-31

    This paper presents an experimental study of the effect of laser irradiation of aqueous uranyl chloride solutions containing gold nanoparticles on the activity of the uranium series radionuclides {sup 234}Th, {sup 234m}Pa, and {sup 235}U. The solutions were exposed to femtosecond Ti:sapphire laser pulses and to the second or third harmonic of a Nd:YAG laser (150-ps pulses) at a peak intensity in the medium of {approx}10{sup 12} W cm{sup -2}. The activities of the radionuclides in the irradiated solutions were shown to differ markedly from their equilibrium values. The sign of the deviation depends on the laser wavelength. The measured activity deviations can be interpreted as evidence that laser exposure of nanoparticles accelerates the alpha and beta decays of the radionuclides. The observed effects are accounted for in terms of a mechanism that involves resonant enhancement of optical waves by metallic nanoparticles. (interaction of laser radiation with matter)

  1. Effect of membrane filtration of antimalarial drug solutions on in vitro activity against Plasmodium falciparum*

    PubMed Central

    Baird, J. K.; Lambros, C.

    1984-01-01

    Antimalarial activities of chloroquine, mefloquine, amodiaquine, and quinine in vitro against Plasmodium falciparum were diminished as a consequence of membrane filtration. Filtered drug solutions gave ID50 values up to 25-fold greater than those of non-filtered (ethanol-sterilized) drug solutions. Loss of activity by filtration was overcome by increasing the drug concentration prior to filtration. Water solutions filtered through Millex-GS filter units consistently showed an absorbance maximum at 277 nm, accompanied by a lesser peak at 225 nm. Water filtrates from Nucleopore and Millex-GV filters showed no absorbance at 277 nm and only slight absorbance was evident for the Gelman filter unit. Activity losses were attributed to extractable contaminating moieties in the membrane filters and/or drug binding to the membrane filters. PMID:6380786

  2. Methodology for Using Long-Term Accelerometry Monitoring to Describe Daily Activity Patterns in COPD

    PubMed Central

    Hecht, Ariel; Ma, Shuyi; Porszasz, Janos; Casaburi, Richard

    2010-01-01

    We sought to develop procedures for computerized analysis of long-term, high-resolution activity monitoring data that allow accurate assessment of the time course of activity levels suitable for use in chronic obstructive pulmonary disease (COPD) patients. Twenty-two COPD patients utilizing long-term oxygen recruited from 5 sites of the COPD Clinical Research Network wore a triaxial accelerometer (RT3, Stayhealthy, Monrovia, CA) during waking hours over a14 day period. Computerized algorithms were composed allowing minute-by-minute activity data to be analyzed to determine, for each minute, whether the monitor was being worn. Temporal alignment allowed determination of average time course of activity level, expressed as average vector magnitude units (VMU, the vectorial sum of activity counts in three orthogonal directions) per minute, for each hour of the day. Mid-day activity was quantified as average VMU/minute between 10AM and 4PM for minutes the monitor was worn. Over the 14 day monitoring period, subjects wore the monitor an average of 11.4±3.0 hours·day−1. During midday hours, subjects wore the monitor 76.3% of the time and generated an average activity level of 112±55 VMU·min−1. Increase in precision of activity estimates with longer monitoring periods was demonstrated. This analysis scheme allows a detailed temporal pattern of activity to be defined from triaxial accelerometer recordings and has the potential to facilitate comparisons among subjects and between subject groups. This trial is registered at ClinicalTrials.gov (NCT00325754). PMID:19378225

  3. Monitoring leptin activity using the chicken leptin receptor.

    PubMed

    Hen, Gideon; Yosefi, Sera; Ronin, Ana; Einat, Paz; Rosenblum, Charles I; Denver, Robert J; Friedman-Einat, Miriam

    2008-05-01

    We report on the construction of a leptin bioassay based on the activation of chicken leptin receptor in cultured cells. A human embryonic kidney (HEK)-293 cell line, stably transfected with the full-length cDNA of chicken leptin receptor together with a STAT3-responsive reporter gene specifically responded to recombinant human and Xenopus leptins. The observed higher sensitivity of chicken leptin receptor to the former is in agreement with the degree of sequence similarity among these species (about 60 and 38% identical amino acids between humans and chickens, and between humans and Xenopus respectively). The specific activation of signal transduction through the chicken leptin receptor, shown here for the first time, suggests that the transition of Gln269 (implicated in the Gln-to-Pro Zucker fatty mutation in rats) to Glu in chickens does not impair its activity. Analysis of leptin-like activity in human serum samples of obese and lean subjects coincided well with leptin levels determined by RIA. Serum samples of pre- and post partum cows showed a tight correlation with the degree of adiposity. However, specific activation of the chicken leptin receptor in this assay was not observed with serum samples from broiler or layer chickens (representing fat and lean phenotypes respectively) or with those from turkey. Similar leptin receptor activation profiles were observed with cells transfected with human leptin receptor. Further work is needed to determine whether the lack of leptin-like activity in the chicken serum samples is due to a lack of leptin in this species or simply to a serum level of leptin that is below the detection threshold.

  4. Remote monitoring of cardiovascular devices: a time and activity analysis.

    PubMed

    Cronin, Edmond M; Ching, Elizabeth A; Varma, Niraj; Martin, David O; Wilkoff, Bruce L; Lindsay, Bruce D

    2012-12-01

    Expanding indications for cardiovascular implantable electronic devices are accompanied by an increasing burden of device clinic follow-up. Remote monitoring (RM) may be less time-consuming compared to in-office follow-up; however, its effect on the device clinic workflow has not been clarified. To determine the impact of RM on device clinic workflow. Detailed workflow data were prospectively collected over a 2-week period in a busy device clinic. Five hundred remote transmissions were received from 434 patients between March 1 and March 16, 2011--346 implantable cardioverter-defibrillator, 84 pacemaker, and 70 implantable loop recorder transmissions--on 4 RM platforms (CareLink 56.4%, Merlin.net 21.4%, LATITUDE 17.8%, and Home Monitoring 4.4%). The mean time spent per transmission was 11.5 ± 7.7 minutes, which was less than in-person interrogations (27.7 ± 9.9 minutes; P <.01). Of 500 transmissions, 135 (27.0%) demonstrated clinically important findings; however, only 41 (8.2%) were forwarded for physician review. Of 500 transmissions, 138 (27.6%) were unscheduled, and these were more likely to contain a clinically important event (56 of 138 [40.6%] vs 79 of 362 [21.8%]; P = .0001). A total of 5.8% of the transmissions were duplicate. Transmissions that revealed clinically important findings took longer to process than those that did not (21.0 ± 7.4 minutes vs 10.1 ± 2.1 minutes; P <.05). A total of 49.2% of the scheduled remote transmissions were missed because of patient noncompliance. Telephone follow-up of patients (mean 21 patients/d) who missed scheduled remote transmissions took a mean of 55.1 (range 20-98) min/d. Analysis of RM transmissions has significant implications for the device clinic workflow. Nonactionable transmissions are rapidly processed, allowing clinicians to focus on clinically important findings. However, poor patient compliance complicates the workflow efficiency of currently available systems. Copyright © 2012 Heart Rhythm Society

  5. Solid-, solution-, and gas-state NMR monitoring of ¹³C-cellulose degradation in an anaerobic microbial ecosystem.

    PubMed

    Yamazawa, Akira; Iikura, Tomohiro; Shino, Amiu; Date, Yasuhiro; Kikuchi, Jun

    2013-07-29

    Anaerobic digestion of biomacromolecules in various microbial ecosystems is influenced by the variations in types, qualities, and quantities of chemical components. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for characterizing the degradation of solids to gases in anaerobic digestion processes. Here we describe a characterization strategy using NMR spectroscopy for targeting the input solid insoluble biomass, catabolized soluble metabolites, and produced gases. ¹³C-labeled cellulose produced by Gluconacetobacter xylinus was added as a substrate to stirred tank reactors and gradually degraded for 120 h. The time-course variations in structural heterogeneity of cellulose catabolism were determined using solid-state NMR, and soluble metabolites produced by cellulose degradation were monitored using solution-state NMR. In particular, cooperative changes between the solid NMR signal and ¹³C-¹³C/¹³C-¹²C isotopomers in the microbial degradation of ¹³C-cellulose were revealed by a correlation heat map. The triple phase NMR measurements demonstrated that cellulose was anaerobically degraded, fermented, and converted to methane gas from organic acids such as acetic acid and butyric acid.

  6. Solutions Network Formulation Report. Using NASA Sensors to Perform Crop Type Assessment for Monitoring Insect Resistance in Corn

    NASA Technical Reports Server (NTRS)

    Lewis, David; Copenhaver, Ken; Anderson, Daniel; Hilbert, Kent

    2007-01-01

    The EPA (U.S. Environmental Protection Agency) is tasked to monitor for insect pest resistance to transgenic crops. Several models have been developed to understand the resistance properties of insects. The Population Genetics Simulator model is used in the EPA PIRDSS (Pest Infestation and Resistance Decision Support System). The EPA Office of Pesticide Programs uses the DSS to help understand the potential for insect pest resistance development and the likelihood that insect pest resistance will negatively affect transgenic corn. Once the DSS identifies areas of concern, crews are deployed to collect insect pest samples, which are tested to identify whether they have developed resistance to the toxins in transgenic corn pesticides. In this candidate solution, VIIRS (Visible/Infrared Imager/Radiometer Suite) vegetation index products will be used to build hypertemporal layerstacks for crop type and phenology assessment. The current phenology attribute is determined by using the current time of year to index the expected growth stage of the crop. VIIRS might provide more accurate crop type assessment and also might give a better estimate on the crop growth stage.

  7. Smolt Monitoring Activities at Little Goose Dam; 1996 Annual Report.

    SciTech Connect

    Setter, Ann

    1997-07-01

    The juvenile fish facility at Little Goose Dam is operated seasonally to collect and bypass downstream migrating smolts and keep them from passing through the turbine blades. Fish are diverted from turbines by traveling screens as they sound in the forebay to pass the dam. A small percentage of the passing fish are sampled on a daily basis to provide information on fish condition, species composition, migration timing, and size distribution. Oregon Department of Fish and Wildlife personnel perform daily fish sampling and data collection. Physical operation of the facility is the responsibility of the US Army Corps of Engineers. Data is reported to the Fish Passage Center daily by means of electronic data transfer. Funding for this project was provided through the Smolt Monitoring Program administered by the Fish Passage Center. Overall, the number of fish collected and sampled in 1996 was a reduction from the previous years of operation. The 1996 migration season was characterized by higher than average flows and greater spill frequency at the dam. It was the first year that coho salmon were obtained in the sample. The predominant species collected was steelhead with hatchery fish outnumbering wild fish by a ratio of 8:1. An increased emphasis was placed on gas bubble trauma examination and a routine, consistent effort was implemented using a protocol established by the Fish Passage Center. The objective of the gas bubble trauma (GBT) examinations was to document the relative incidence of symptoms throughout the migration season.

  8. Subsidence monitoring network: an Italian example aimed at a sustainable hydrocarbon E&P activity

    NASA Astrophysics Data System (ADS)

    Dacome, M. C.; Miandro, R.; Vettorel, M.; Roncari, G.

    2015-11-01

    According to the Italian law in order to start-up any new hydrocarbon exploitation activity, an Environmental Impact Assessment study has to be presented, including a monitoring plan, addressed to foresee, measure and analyze in real time any possible impact of the project on the coastal areas and on those ones in the close inland located. The occurrence of subsidence, that could partly be related to hydrocarbon production, both on-shore and off-shore, can generate great concern in those areas where its occurrence may have impacts on the local environment. ENI, following the international scientific community recommendations on the matter, since the beginning of 90's years, implemented a cutting-edge monitoring network, with the aim to prevent, mitigate and control geodynamics phenomena generated in the activity areas, with a particular attention to conservation and protection of environmental and territorial equilibrium, taking care of what is known as "sustainable development". The current ENI implemented monitoring surveys can be divided as: - Shallow monitoring: spirit levelling surveys, continuous GPS surveys in permanent stations, SAR surveys, assestimeter subsurface compaction monitoring, ground water level monitoring, LiDAR surveys, bathymetrical surveys. - Deep monitoring: reservoir deep compaction trough radioactive markers, reservoir static (bottom hole) pressure monitoring. All the information, gathered through the monitoring network, allow: 1. to verify if the produced subsidence is evolving accordingly with the simulated forecast. 2. to provide data to revise and adjust the prediction compaction models 3. to put in place the remedial actions if the impact exceeds the threshold magnitude originally agreed among the involved parties. ENI monitoring plan to measure and monitor the subsidence process, during field production and also after the field closure, is therefore intended to support a sustainable field development and an acceptable exploitation

  9. Solution-Processed Large-Area Nanocrystal Arrays of Metal-Organic Frameworks as Wearable, Ultrasensitive, Electronic Skin for Health Monitoring.

    PubMed

    Fu, Xiaolong; Dong, Huanli; Zhen, Yonggang; Hu, Wenping

    2015-07-15

    Pressure sensors based on solution-processed metal-organic frameworks nanowire arrays are fabricated with very low cost, flexibility, high sensitivity, and ease of integration into sensor arrays. Furthermore, the pressure sensors are suitable for monitoring and diagnosing biomedical signals such as radial artery pressure waveforms in real time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hemispheric Asymmetries in the Activation and Monitoring of Memory Errors

    ERIC Educational Resources Information Center

    Giammattei, Jeannette; Arndt, Jason

    2012-01-01

    Previous research on the lateralization of memory errors suggests that the right hemisphere's tendency to produce more memory errors than the left hemisphere reflects hemispheric differences in semantic activation. However, all prior research that has examined the lateralization of memory errors has used self-paced recognition judgments. Because…

  11. Monitoring Affect States during Effortful Problem Solving Activities

    ERIC Educational Resources Information Center

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  12. Monitoring Social Media: Students Satisfaction with University Administration Activities

    ERIC Educational Resources Information Center

    Koshkin, Andrey Petrovich; Rassolov, Ilya Mihajlovich; Novikov, Andrey Vadimovich

    2017-01-01

    The paper presents an original method of identifying satisfaction of students with the activities of their university administration based on studying the content of comments on the social networks. The analysis of student opinions revealed areas of concern and priority areas in the work of the university administration. The paper characterizes…

  13. Hemispheric Asymmetries in the Activation and Monitoring of Memory Errors

    ERIC Educational Resources Information Center

    Giammattei, Jeannette; Arndt, Jason

    2012-01-01

    Previous research on the lateralization of memory errors suggests that the right hemisphere's tendency to produce more memory errors than the left hemisphere reflects hemispheric differences in semantic activation. However, all prior research that has examined the lateralization of memory errors has used self-paced recognition judgments. Because…

  14. Monitoring activity in neural circuits with genetically encoded indicators

    PubMed Central

    Broussard, Gerard J.; Liang, Ruqiang; Tian, Lin

    2014-01-01

    Recent developments in genetically encoded indicators of neural activity (GINAs) have greatly advanced the field of systems neuroscience. As they are encoded by DNA, GINAs can be targeted to genetically defined cellular populations. Combined with fluorescence microscopy, most notably multi-photon imaging, GINAs allow chronic simultaneous optical recordings from large populations of neurons or glial cells in awake, behaving mammals, particularly rodents. This large-scale recording of neural activity at multiple temporal and spatial scales has greatly advanced our understanding of the dynamics of neural circuitry underlying behavior—a critical first step toward understanding the complexities of brain function, such as sensorimotor integration and learning. Here, we summarize the recent development and applications of the major classes of GINAs. In particular, we take an in-depth look at the design of available GINA families with a particular focus on genetically encoded calcium indicators (GCaMPs), sensors probing synaptic activity, and genetically encoded voltage indicators. Using the family of the GCaMP as an example, we review established sensor optimization pipelines. We also discuss practical considerations for end users of GINAs about experimental methods including approaches for gene delivery, imaging system requirements, and data analysis techniques. With the growing toolbox of GINAs and with new microscopy techniques pushing beyond their current limits, the age of light can finally achieve the goal of broad and dense sampling of neuronal activity across time and brain structures to obtain a dynamic picture of brain function. PMID:25538558

  15. Monitoring Affect States during Effortful Problem Solving Activities

    ERIC Educational Resources Information Center

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  16. A review of market monitoring activities at U.S. independent system operators

    SciTech Connect

    Lesieutre, Bernard C.; Goldman, Charles; Bartholomew, Emily

    2004-01-01

    Policymakers have increasingly recognized the structural impediments to effective competition in electricity markets, which has resulted in a renewed emphasis on the need for careful market design and market monitoring in wholesale and retail electricity markets. In this study, we review the market monitoring activities of four Independent System Operators in the United States, focusing on such topics as the organization of an independent market monitoring unit (MMU), the role and value of external market monitors, performance metrics and indices to aid in market analysis, issues associated with access to confidential market data, and market mitigation and investigation authority. There is consensus across the four ISOs that market monitoring must be organizationally independent from market participants and that ISOs should have authority to apply some degree of corrective actions on the market, though scope and implementation differ across the ISOs. Likewise, current practices regarding access to confidential market data by state energy regulators varies somewhat by ISO. Drawing on our interviews and research, we present five examples that illustrate the impact and potential contribution of ISO market monitoring activities to enhance functioning of wholesale electricity markets. We also discuss several key policy and implementation issues that Western state policymakers and regulators should consider as market monitoring activities evolve in the West.

  17. A comparison of energy expenditure estimation of several physical activity monitors.

    PubMed

    Dannecker, Kathryn L; Sazonova, Nadezhda A; Melanson, Edward L; Sazonov, Edward S; Browning, Raymond C

    2013-11-01

    Accurately and precisely estimating free-living energy expenditure (EE) is important for monitoring energy balance and quantifying physical activity. Recently, single and multisensor devices have been developed that can classify physical activities, potentially resulting in improved estimates of EE. This study aimed to determine the validity of EE estimation of a footwear-based physical activity monitor and to compare this validity against a variety of research and consumer physical activity monitors. Nineteen healthy young adults (10 men, 9 women) completed a 4-h stay in a room calorimeter. Participants wore a footwear-based physical activity monitor as well as Actical, ActiGraph, IDEEA, DirectLife, and Fitbit devices. Each individual performed a series of postures/activities. We developed models to estimate EE from the footwear-based device, and we used the manufacturer's software to estimate EE for all other devices. Estimated EE using the shoe-based device was not significantly different than measured EE (mean ± SE; 476 ± 20 vs 478 ± 18 kcal, respectively) and had a root-mean-square error of 29.6 kcal (6.2%). The IDEEA and the DirectLlife estimates of EE were not significantly different than the measured EE, but the ActiGraph and the Fitbit devices significantly underestimated EE. Root-mean-square errors were 93.5 (19%), 62.1 kcal (14%), 88.2 kcal (18%), 136.6 kcal (27%), 130.1 kcal (26%), and 143.2 kcal (28%) for Actical, DirectLife, IDEEA, ActiGraph, and Fitbit, respectively. The shoe-based physical activity monitor provides a valid estimate of EE, whereas the other physical activity monitors tested have a wide range of validity when estimating EE. Our results also demonstrate that estimating EE based on classification of physical activities can be more accurate and precise than estimating EE based on total physical activity.

  18. Solvent activity in electrolyte solutions from molecular simulation of the osmotic pressure

    NASA Astrophysics Data System (ADS)

    Kohns, Maximilian; Reiser, Steffen; Horsch, Martin; Hasse, Hans

    2016-02-01

    A method for determining the activity of the solvent in electrolyte solutions by molecular dynamics simulations is presented. The electrolyte solution is simulated in contact with the pure solvent. Between the two phases, there is a virtual membrane, which is permeable only for the solvent. In the simulation, this is realized by an external field which acts only on the solutes and confines them to a part of the simulation volume. The osmotic pressure, i.e., the pressure difference between both phases, is obtained with high accuracy from the force on the membrane, so that reliable data on the solvent activity can be determined. The acronym of the new method is therefore OPAS (osmotic pressure for activity of solvents). The OPAS method is verified using tests of varying complexity. This includes a comparison of results from the OPAS method for aqueous NaCl solutions to results from the literature which were obtained with other molecular simulation methods. Favorable agreement is observed not only for the solvent activity but also for the activity coefficient of NaCl, which is obtained by application of the Gibbs-Duhem equation.

  19. Isotherm-Based Thermodynamic Models for Solute Activities of Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Nandy, Lucy; Ohm, Peter B; Dutcher, Cari S

    2016-06-23

    Organic acids make up a significant fraction of the organic mass in atmospheric aerosol particles. The calculation of gas-liquid-solid equilibrium partitioning of the organic acid is therefore critical for accurate determination of atmospheric aerosol physicochemical properties and processes such as new particle formation and activation to cloud condensation nuclei. Previously, an adsorption isotherm-based statistical thermodynamic model was developed for capturing solute concentration-activity relationships for multicomponent aqueous solutions over the entire concentration range (Dutcher et al. J. Phys. Chem. C/A 2011, 2012, 2013), with model parameters for energies of adsorption successfully related to dipole-dipole electrostatic forces in solute-solvent and solvent-solvent interactions for both electrolytes and organics (Ohm et al. J. Phys. Chem. A 2015). However, careful attention is needed for weakly dissociating semivolatile organic acids. Dicarboxylic acids, such as malonic acid and glutaric acid are treated here as a mixture of nondissociated organic solute (HA) and dissociated solute (H(+) + A(-)). It was found that the apparent dissociation was greater than that predicted by known dissociation constants alone, emphasizing the effect of dissociation on osmotic and activity coefficient predictions. To avoid additional parametrization from the mixture approach, an expression was used to relate the Debye-Hückel hard-core collision diameter to the adjustable solute-solvent intermolecular distance. An improved reference state treatment for electrolyte-organic aqueous mixtures, such as that observed here with partial dissociation, has also been proposed. This work results in predictive correlations for estimation of organic acid and water activities for which there is little or no activity data.

  20. Monitoring Monitoring Evolving Activity at Popocatepetl Volcano, Mexico, 2000-2001

    NASA Astrophysics Data System (ADS)

    Martin-DelPozzo, A.; Aceves, F.; Bonifaz, R.; Humberto, S.

    2001-12-01

    After 6 years of small eruptions, activity at Mexico's 5,452m high Popocatepetl Volcano in central Mexico, peaked in the December 2000-January 2001 eruptions. Precursors included an important increase in seismicity as well as in magmatic components of spring water and small scale deformation which resulted in growth of a new crater dome from January 16 on. Evacuation of the towns nearest the volcano over Christmas was decided because of the possibility of pyroclastic flows. During the previous years, crater dome growth, contraction and explosive clearing has dominated the activity. The January 22 eruption produced an eruption column approximately 17km high with associated pyroclastic flows. Ejecta was composed of both basic and evolved scoria and pumice and dome lithics. A large proportion of the juvenile material was intermediate between these 2 endmenbers (59-63percent SiO2 and 3.5 to 5.5 MgO) consistent with a small basic pulse entering a more evolved larger batch of magma. The January eruption left a large pit which has been partially infilled by another crater dome this August 2001.

  1. An empirical model to estimate density of sodium hydroxide solution: An activator of geopolymer concretes

    NASA Astrophysics Data System (ADS)

    Rajamane, N. P.; Nataraja, M. C.; Jeyalakshmi, R.; Nithiyanantham, S.

    2016-02-01

    Geopolymer concrete is zero-Portland cement concrete containing alumino-silicate based inorganic polymer as binder. The polymer is obtained by chemical activation of alumina and silica bearing materials, blast furnace slag by highly alkaline solutions such as hydroxide and silicates of alkali metals. Sodium hydroxide solutions of different concentrations are commonly used in making GPC mixes. Often, it is seen that sodium hydroxide solution of very high concentration is diluted with water to obtain SHS of desired concentration. While doing so it was observed that the solute particles of NaOH in SHS tend to occupy lower volumes as the degree of dilution increases. This aspect is discussed in this paper. The observed phenomenon needs to be understood while formulating the GPC mixes since this influences considerably the relationship between concentration and density of SHS. This paper suggests an empirical formula to relate density of SHS directly to concentration expressed by w/w.

  2. New sensitizers and rapid monitoring of their photodynamic activity

    NASA Astrophysics Data System (ADS)

    Torshina, Nadezgda L.; Posypanova, Anna M.; Volkova, Anna I.

    1996-04-01

    At present, there are lots and lots of chemical compounds that are, to a certain extent, photodynamically active. Therefore, the task of carrying out the expressive screening of such compounds has been raised sharply enough. The primary screening in vitro of compounds, with the help of biological liquids, is notable for quickness and cheapness at the same time, it is possible to determine the comparative characteristics of compounds by their photodynamical activity. Decomposition of albumins of a mixture of photosensitizer and biological liquid when irradiating with light is the basis of this method. Efficiency of decomposition of components of biological liquids is determined using biochemical reactions (e.g., those for determining the total albumins or blood hemoglobin). Subsequently, with a sufficient efficiency of a photosensitizer, it will be possible to carry out a study in vivo, with the purpose of establishing accumulation of preparations in tumor.

  3. Phosphate-Modified Nucleotides for Monitoring Enzyme Activity.

    PubMed

    Ermert, Susanne; Marx, Andreas; Hacker, Stephan M

    2017-04-01

    Nucleotides modified at the terminal phosphate position have been proven to be interesting entities to study the activity of a variety of different protein classes. In this chapter, we present various types of modifications that were attached as reporter molecules to the phosphate chain of nucleotides and briefly describe the chemical reactions that are frequently used to synthesize them. Furthermore, we discuss a variety of applications of these molecules. Kinase activity, for instance, was studied by transfer of a phosphate modified with a reporter group to the target proteins. This allows not only studying the activity of kinases, but also identifying their target proteins. Moreover, kinases can also be directly labeled with a reporter at a conserved lysine using acyl-phosphate probes. Another important application for phosphate-modified nucleotides is the study of RNA and DNA polymerases. In this context, single-molecule sequencing is made possible using detection in zero-mode waveguides, nanopores or by a Förster resonance energy transfer (FRET)-based mechanism between the polymerase and a fluorophore-labeled nucleotide. Additionally, fluorogenic nucleotides that utilize an intramolecular interaction between a fluorophore and the nucleobase or an intramolecular FRET effect have been successfully developed to study a variety of different enzymes. Finally, also some novel techniques applying electron paramagnetic resonance (EPR)-based detection of nucleotide cleavage or the detection of the cleavage of fluorophosphates are discussed. Taken together, nucleotides modified at the terminal phosphate position have been applied to study the activity of a large diversity of proteins and are valuable tools to enhance the knowledge of biological systems.

  4. A transgenic zebrafish model for monitoring glucocorticoid receptor activity

    PubMed Central

    Krug, Randall G.; Poshusta, Tanya L.; Skuster, Kimberly J.; Berg, MaKayla R.; Gardner, Samantha L.; Clark, Karl J.

    2014-01-01

    Gene regulation resulting from glucocorticoid receptor and glucocorticoid response element interactions is a hallmark feature of stress response signaling. Imbalanced glucocorticoid production and glucocorticoid receptor activity have been linked to socio-economically crippling neuropsychiatric disorders, and accordingly there is a need to develop in vivo models to help understand disease progression and management. Therefore, we developed the transgenic SR4G zebrafish reporter line with six glucocorticoid response elements used to promote expression of a short half-life green fluorescent protein following glucocorticoid receptor activation. Herein, we document the ability of this reporter line to respond to both chronic and acute exogenous glucocorticoid treatment. The green fluorescent protein expression in response to transgene activation was high in a variety of tissues including the brain, and provided single cell resolution in the effected regions. The specificity of these responses is demonstrated using the partial agonist mifepristone and mutation of the glucocorticoid receptor. Importantly, the reporter line also modeled the temporal dynamics of endogenous stress response signaling, including the increased production of the glucocorticoid cortisol following hyperosmotic stress and the fluctuations of basal cortisol concentrations with the circadian rhythm. Taken together, these results characterize our newly developed reporter line for elucidating environmental or genetic modifiers of stress response signaling, which may provide insights to the neuronal mechanisms underlying neuropsychiatric disorders such as major depressive disorder. PMID:24679220

  5. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  6. Ebola active monitoring system for travelers returning from West Africa—Georgia, 2014-2015.

    PubMed

    Parham, Mary; Edison, Laura; Soetebier, Karl; Feldpausch, Amanda; Kunkes, Audrey; Smith, Wendy; Guffey, Taylor; Fetherolf, Romana; Sanlis, Kathryn; Gabel, Julie; Cowell, Alex; Drenzek, Cherie

    2015-04-10

    The Ebola virus disease (Ebola) epidemic in West Africa has so far produced approximately 25,000 cases, more than 40 times the number in any previously documented Ebola outbreak. Because of the risk for imported disease from infected travelers, in October 2014 CDC recommended that all travelers to the United States from Ebola-affected countries receive enhanced entry screening and postarrival active monitoring for Ebola signs or symptoms until 21 days after their departure from an Ebola-affected country. The state of Georgia began its active monitoring program on October 25, 2014. The Georgia Department of Public Health (DPH) modified its existing, web-based electronic notifiable disease reporting system to create an Ebola Active Monitoring System (EAMS). DPH staff members developed EAMS from conceptualization to implementation in 6 days. In accordance with CDC recommendations, "low (but not zero) risk" travelers are required to report their daily health status to DPH, and the EAMS dashboard enables DPH epidemiologists to track symptoms and compliance with active monitoring. Through March 31, 2015, DPH monitored 1,070 travelers, and 699 (65%) used their EAMS traveler login instead of telephone or e-mail to report their health status. Medical evaluations were performed on 30 travelers, of whom three were tested for Ebola. EAMS has enabled two epidemiologists to monitor approximately 100 travelers daily, and to rapidly respond to travelers reporting signs and symptoms of potential Ebola virus infection. Similar electronic tracking systems might be useful for other jurisdictions.

  7. Applicability of consumer activity monitor data in marathon events: an exploratory study.

    PubMed

    Constantinou, Valentino; Felber, Ashley E; Chan, Jennifer L

    2017-09-28

    Emerging opportunities to measure individual and population-level health data with activity monitors during recreational running activities may set the stage for new research possibilities in mass participation running events and marathon medicine. This study explores the applicability of consumer activity monitor data in a preliminary study for future marathon health research with a cohort of 12 (n = 12) participants completing a 3.379 km walking or running course. This study explored the feasibility of collecting pace and distance data from Fitbit brand consumer activity monitors, from access to user data to reporting of data characteristics and data analysis. We show that a large percentage of participant data can be successfully retrieved from Fitbit consumer activity monitor devices for analysis in marathon health research, and that identifying variations in pace across participants is a practical possibility. We note a mean absolute percentage error of 13% over the true distance of 3.379 km, a higher error than that reported by other studies. We also observe a Pearson correlation coefficient between participant variation in pace and absolute distance error of 0.61. This study provides preliminary evidence to support the applicability of consumer activity monitor data in marathon health research.

  8. Monitoring Thermal Activity of Eastern Anatolian Volcanoes Using MODIS Images

    NASA Astrophysics Data System (ADS)

    Diker, Caner; Ulusoy, Inan

    2014-05-01

    T data. Determination of a threshold value for STA/LTA curve has a potential for volcano monitoring. This method could be a useful and low cost tool to detect low temperature anomalies on volcanoes. Keywords: Eastern Anatolia, MODIS, thermal, volcano, surface temperature, Turkey

  9. Prescribing of Electronic Activity Monitors in Cardiometabolic Diseases: Qualitative Interview-Based Study.

    PubMed

    Bellicha, Alice; Macé, Sandrine; Oppert, Jean-Michel

    2017-09-23

    The prevalence of noncommunicable diseases, including those such as type 2 diabetes, obesity, dyslipidemia, and hypertension, so-called cardiometabolic diseases, is high and is increasing worldwide. Strong evidence supports the role of physical activity in management of these diseases. There is general consensus that mHealth technology, including electronic activity monitors, can potentially increase physical activity in patients, but their use in clinical settings remains limited. Practitioners' requirements when prescribing electronic activity monitors have been poorly described. The aims of this qualitative study were (1) to explore how specialist physicians prescribe electronic activity monitors to patients presenting with cardiometabolic conditions, and (2) to better understand their motivation for and barriers to prescribing such monitors. We conducted qualitative semistructured interviews in March to May 2016 with 11 senior physicians from a public university hospital in France with expertise in management of cardiometabolic diseases (type 1 and type 2 diabetes, obesity, hypertension, and dyslipidemia). Interviews lasted 45 to 60 minutes and were audiotaped, transcribed verbatim, and analyzed using directed content analysis. We report our findings following the Consolidated Criteria for Reporting Qualitative Research (COREQ) checklist. Most physicians we interviewed had never prescribed electronic activity monitors, whereas they frequently prescribed blood glucose or blood pressure self-monitoring devices. Reasons for nonprescription included lack of interest in the data collected, lack of evidence for data accuracy, concern about work overload possibly resulting from automatic data transfer, and risk of patients becoming addicted to data. Physicians expected future marketing of easy-to-use monitors that will accurately measure physical activity duration and intensity and provide understandable motivating feedback. Features of electronic activity monitors

  10. Experimental determination of the temperature dependence of water activities for a selection of aqueous organic solutions

    NASA Astrophysics Data System (ADS)

    Ganbavale, G.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Stratmann, G.; Peter, T.

    2014-05-01

    This work presents experimental data of the temperature dependence of water activity in aqueous organic solutions relevant for tropospheric conditions (200-273 K). Water activity (aw) at low temperatures (T) is a crucial parameter for predicting homogeneous ice nucleation. We investigated temperature dependent water activities, ice freezing and melting temperatures of solutions, and vapour pressures of a selection of atmospherically relevant aqueous organic systems. To measure aw over a wide composition range and with a focus on low temperatures, we use various aw measurement techniques and instruments: a dew point water activity meter, an electrodynamic balance (EDB), differential scanning calorimetry (DSC), and a setup to measure the total gas phase pressure at equilibrium over aqueous solutions. Water activity measurements were performed for aqueous multicomponent and multifunctional organic mixtures containing the functional groups typically found in atmospheric organic aerosols, such as hydroxyl, carboxyl, ketone, ether, ester, and aromatic groups. The aqueous organic systems studied at several fixed compositions over a considerable temperature range differ significantly in their temperature dependence. Aqueous organic systems of 1,4-butanediol and methoxyacetic acid show a moderate decrease in aw with decreasing temperature. The aqueous M5 system (a multicomponent system containing five different dicarboxylic acids) and aqueous 2-(2-ethoxyethoxy)ethanol solutions both show a strong increase of water activity with decreasing temperature at high solute concentrations for T<270 K and T<260 K, respectively. These measurements show that the temperature trend of aw can be reversed at low temperatures and that linear extrapolations of high temperature data may lead to erroneous predictions. To avoid this, experimentally determined aw at low temperature are needed to improve thermodynamic models towards lower temperatures and for improved predictions of the ice

  11. Experimental determination of the temperature dependence of water activities for a selection of aqueous organic solutions

    NASA Astrophysics Data System (ADS)

    Ganbavale, G.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Stratmann, G.; Peter, T.

    2014-09-01

    This work presents experimental data of the temperature dependence of water activity in aqueous organic solutions relevant for tropospheric conditions (200-273 K). Water activity (aw) at low temperatures (T) is a crucial parameter for predicting homogeneous ice nucleation. We investigated temperature-dependent water activities, ice freezing and melting temperatures of solutions, and vapour pressures of a selection of atmospherically relevant aqueous organic systems. To measure aw over a wide composition range and with a focus on low temperatures, we use various aw measurement techniques and instruments: a dew point water activity meter, an electrodynamic balance (EDB), differential scanning calorimetry (DSC), and a setup to measure the total gas phase pressure at equilibrium over aqueous solutions. Water activity measurements were performed for aqueous multicomponent and multifunctional organic mixtures containing the functional groups typically found in atmospheric organic aerosols, such as hydroxyl, carboxyl, ketone, ether, ester, and aromatic groups. The aqueous organic systems studied at several fixed compositions over a considerable temperature range differ significantly in their temperature dependence. Aqueous organic systems of 1,4-butanediol and methoxyacetic acid show a moderate decrease in aw with decreasing temperature. The aqueous M5 system (a multicomponent system containing five different dicarboxylic acids) and aqueous 2-(2-ethoxyethoxy)ethanol solutions both show a strong increase of water activity with decreasing temperature at high solute concentrations for T < 270 K and T < 260 K, respectively. These measurements show that the temperature trend of aw can be reversed at low temperatures and that linear extrapolations of high-temperature data may lead to erroneous predictions. To avoid this, experimentally determined aw at low temperature are needed to improve thermodynamic models towards lower temperatures and for improved predictions of the ice

  12. Continued monitoring of aeolian activity within Herschel Crater, Mars

    NASA Astrophysics Data System (ADS)

    Cardinale, Marco; Pozzobon, Riccardo; Michaels, Timothy; Bourke, Mary C.; Okubo, Chris H.; Chiara Tangari, Anna; Marinangeli, Lucia

    2017-04-01

    In this work, we study a dark dune field on the western side of Herschel crater, a 300 km diameter impact basin located near the Martian equator (14.4°S, 130°E), where the ripple and dune motion reflects the actual atmospheric wind conditions. We develop an integrated analysis using (1) automated ripple mapping that yields ripple orientations and evaluates the spatial variation of actual atmospheric wind conditions within the dunes, (2) an optical cross-correlation that allows us to quantify an average ripple migration rate of 0.42 m per Mars year, and (3) mesoscale climate modeling with which we compare the observed aeolian changes with modeled wind stresses and directions. Our observations are consistent with previous work [1] [2] that detected aeolian activity in the western part of the crater. It also demonstrates that not only are the westerly Herschel dunes movable, but that predominant winds from the north are able to keep the ripples and dunes active within most (if not all) of Herschel crater in the current atmospheric conditions. References: [1] Cardinale, M., Silvestro, S., Vaz, D.A., Michaels, T., Bourke, M.C., Komatsu, G., Marinangeli, L., 2016. Present-day aeolian activity in Herschel Crater, Mars. Icarus 265, 139-148. doi:10.1016/j.icarus.2015.10.022. [2] Runyon, K.D., Bridges, N.T., Ayoub, F., Newman, C.E. and Quade, J.J., 2017. An integrated model for dune morphology and sand fluxes on Mars. Earth and Planetary Science Letters, 457, pp.204-212.

  13. Dutch experience of monitoring active ending of life for newborns.

    PubMed

    Buiting, Hilde M; Karelse, Maartje A C; Brouwers, Hens A A; Onwuteaka-Philipsen, Bregje D; van der Heide, Agnes; van Delden, Johannes J M

    2010-04-01

    In 2007, a national review committee was instituted in The Netherlands to review cases of active ending of life for newborns. It was expected that 15-20 cases would be reported. To date, however, only one case has been reported to this committee. Reporting is essential to obtain societal control and transparency; the possible explanations for this lack of reporting were therefore explored. Data on end-of-life decision-making were scrutinised from Dutch nation-wide studies (1995, 2001 and 2005), before institution of the committee. Physicians received a questionnaire about their medical decision-making for stratified samples of deceased infants up to 1 year, drawn from the central death registry. In 2005, 58% of all deaths were preceded by an end-of-life decision, compared with 68% in 2001 and 62% in 1995. The use of drugs with a possible life-shortening effect tended to be lower. In 2005, all four cases in the study in which an infants' life was actively ended were preceded by a decision to forego life-prolonging treatment. In three cases, the infant's life expectancy was short; one case involved a longer life expectancy. The expected number of cases is probably an overestimation due to changes in medical practice such as the tendency to attribute less life-shortening effects to opioids. The lack of reports is probably also associated with requirements in the regulation; it may be difficult to fulfil them due either to time constraints or the nature of the suffering that is addressed. If societal control of active ending of life is considered useful, changes in the regulation may be needed.

  14. Technical note: Validation of a commercial system for the continuous and automated monitoring of dairy cow activity.

    PubMed

    Tullo, E; Fontana, I; Gottardo, D; Sloth, K H; Guarino, M

    2016-09-01

    Current farm sizes do not allow the precise identification and tracking of individual cows and their health and behavioral records. Currently, the application of information technology within intensive dairy farming takes a key role in proper routine management to improve animal welfare and to enhance the comfort of dairy cows. An existing application based on information technology is represented by the GEA CowView system (GEA Farm Technologies, Bönen, Germany). This system is able to detect and monitor animal behavioral activities based on positioning, through the creation of a virtual map of the barn that outlines all the areas where cows have access. The aim of this study was to validate the accuracy, sensitivity, and specificity of data provided by the CowView system. The validation was performed by comparing data automatically obtained from the CowView system with those obtained by a manual labeling procedure performed on video recordings. Data used for the comparisons were represented by the zone-related activities performed by the selected dairy cows and were classified into 2 categories: activity and localization. The duration in seconds of each of the activities/localizations detected both with the manual labeling and with the automated system were used to evaluate the correlation coefficients among data; and subsequently the accuracy, sensitivity, specificity, and positive and negative predictive values of the automated monitoring system were calculated. The results of this validation study showed that the CowView automated monitoring system is able to identify the cow localization/position (alley, trough, cubicles) with high reliability in relation to the zone-related activities performed by dairy cows (accuracy higher than 95%). The results obtained support the CowView system as an innovative potential solution for the easier management of dairy cows.

  15. Size-selective QD@MOF core-shell nanocomposites for the highly sensitive monitoring of oxidase activities.

    PubMed

    Wang, Ke; Li, Nan; Zhang, Jing; Zhang, Zhiqi; Dang, Fuquan

    2017-01-15

    In this work, we proposed a novel and facile method to monitor oxidase activities based on size-selective fluorescent quantum dot (QD)@metal-organic framework (MOF) core-shell nanocomposites (CSNCPs). The CSNCPs were synthesized from ZIF-8 and CdTe QDs in aqueous solution in 40min at room temperature with stirring. The prepared CdTe@ZIF-8 CSNCPs , which have excellent water dispersibility and stability, displays distinct fluorescence responses to hole scavengers of different molecular sizes (e.g., H2O2, substrate, and oxidase) due to the aperture limitation of the ZIF-8 shell. H2O2 can efficiently quench the fluorescence of CdTe@ZIF-8 CSNCPs over a linearity range of 1-100nM with a detection limit of 0.29nM, whereas large molecules such as substrate and oxidase have very little effect on its fluorescence. Therefore, the highly sensitive detection of oxidase activities was achieved by monitoring the fluorescence quenching of CdTe@ZIF-8 CSNCPs by H2O2 produced in the presence of substrate and oxidase, which is proportional to the oxidase activities. The linearity ranges of the uricase and glucose oxidase activity are 0.1-50U/L and 1-100U/L, respectively, and their detection limits are 0.024U/L and 0.26U/L, respectively. Therefore, the current QD@MOF CSNCPs based sensing system is a promising, widely applicable means of monitoring oxidase activities in biochemical research.

  16. Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations

    SciTech Connect

    Mester, Zoltan; Panagiotopoulos, Athanassios Z.

    2015-01-28

    The mean ionic activity coefficients of aqueous NaCl solutions of varying concentrations at 298.15 K and 1 bar have been obtained from molecular dynamics simulations by gradually turning on the interactions of an ion pair inserted into the solution. Several common non-polarizable water and ion models have been used in the simulations. Gibbs-Duhem equation calculations of the thermodynamic activity of water are used to confirm the thermodynamic consistency of the mean ionic activity coefficients. While the majority of model combinations predict the correct trends in mean ionic activity coefficients, they overestimate their values at high salt concentrations. The solubility predictions also suffer from inaccuracies, with all models underpredicting the experimental values, some by large factors. These results point to the need for further ion and water model development.

  17. The study of the antimicrobial activity of colloidal solutions of silver nanoparticles prepared using food stabilizers.

    PubMed

    Balandin, G V; Suvorov, O A; Shaburova, L N; Podkopaev, D O; Frolova, Yu V; Ermolaeva, G A

    2015-06-01

    The bactericidal effect of colloidal solutions of silver nanoparticles based on food stabilizers, gum arabic and chitosan, against bacterial cultures of microorganisms in food production is described. The antibacterial activity of nanotechnology products containing different amounts of stabilizing additives when applied to solid pH-neutral substrates is studied. For its evaluation a method making it possible to take into account the capability of nanoparticles to diffuse in solid media was applied. Minimal inhibitory concentrations of nanoparticles used against Erwinia herbicola, Pseudomonas fluorescens, Bacillus subtilis, Sarcina flava were found. A suggestion was made concerning the influence of the spatial structure of bacteria on the antibacterial activity of colloidal solutions of silver nanoparticles. The data concerning the antibacterial activity and minimal inhibiting concentrations of nanoparticles may be used for development of products suppressing activity of microorganisms hazardous for food production.

  18. An Activity-Based Dissolution Model for Solute-Containing Microdroplets.

    PubMed

    Bitterfield, Deborah L; Utoft, Anders; Needham, David

    2016-12-06

    When a solute is present in an aqueous droplet, the water activity in the droplet and the rate of droplet dissolution are both decreased (as compared to a pure water droplet). One of the main parameters that controls this effect is the dynamically changing solute concentration, and therefore water activity and chemical potential, at the droplet interface. This work addresses the importance of understanding how water activity changes during solution droplet dissolution. A model for dissolution rate is presented that accounts for the kinetic effects of changing water activity at the droplet interface during the dissolution of an aqueous salt solution microdroplet into a second immiscible liquid phase. The important underlying question in this model is whether the dissolving component can be considered in local equilibrium on both sides of the droplet interface and whether this assumption is sufficient to account for the kinetics of dissolution. The dissolution model is based on the Epstein-Plesset equation, which has previously been applied to pure gas (bubble) and liquid (droplet) dissolution into liquid phases, but not to salt solutions. The model is tested by using the micropipet technique to form and observe the dehydration of single NaCl solution microdroplets in octanol or butyl acetate. The model successfully predicts the droplet diameter as a function of time in both organic solvents. The NaCl concentration in water is measured well into the supersaturated area >5.4 M, and the supersaturation limit at which NaCl nucleation happens is reported to be 10.24 ± 0.31 M.

  19. Accuracy of 2 activity monitors in detecting steps in people with stroke and traumatic brain injury.

    PubMed

    Fulk, George D; Combs, Stephanie A; Danks, Kelly A; Nirider, Coby D; Raja, Bhavana; Reisman, Darcy S

    2014-02-01

    Advances in sensor technologies and signal processing techniques provide a method to accurately measure walking activity in the home and community. Activity monitors geared toward consumer or patient use may be an alternative to more expensive monitors designed for research to measure stepping activity. The objective of this study was to examine the accuracy of 2 consumer/patient activity monitors, the Fitbit Ultra and the Nike+ Fuelband, in identifying stepping activity in people with stroke and traumatic brain injury (TBI). Secondarily, the study sought to compare the accuracy of these 2 activity monitors with that of the StepWatch Activity Monitor (SAM) and a pedometer, the Yamax Digi-Walker SW-701 pedometer (YDWP). A cross-sectional design was used for this study. People with chronic stroke and TBI wore the 4 activity monitors while they performed the Two-Minute Walk Test (2MWT), during which they were videotaped. Activity monitor estimated steps taken were compared with actual steps taken counted from videotape. Accuracy and agreement between activity monitor estimated steps and actual steps were examined using intraclass correlation coefficients (ICC [2,1]) and the Bland-Altman method. The SAM demonstrated the greatest accuracy (ICC [2,1]=.97, mean difference between actual steps and SAM estimated steps=4.7 steps) followed by the Fitbit Ultra (ICC [2,1]=.73, mean difference between actual steps and Fitbit Ultra estimated steps=-9.7 steps), the YDWP (ICC [2,1]=.42, mean difference between actual steps and YDWP estimated steps=-28.8 steps), and the Nike+ Fuelband (ICC [2,1]=.20, mean difference between actual steps and Nike+ Fuelband estimated steps=-66.2 steps). Walking activity was measured over a short distance in a closed environment, and participants were high functioning ambulators, with a mean gait speed of 0.93 m/s. The Fitbit Ultra may be a low-cost alternative to measure the stepping activity in level, predictable environments of people with stroke

  20. Sorption of metal ions from multicomponent aqueous solutions by activated carbons produced from waste

    SciTech Connect

    Tikhonova, L.P.; Goba, V.E.; Kovtun, M.F.; Tarasenko, Y.A.; Khavryuchenko, V.D.; Lyubchik, S.B.; Boiko, A.N.

    2008-08-15

    Activated carbons produced by thermal treatment of a mixture of sunflower husks, low-grade coal, and refinery waste were studied as adsorbents of transition ion metals from aqueous solutions of various compositions. The optimal conditions and the mechanism of sorption, as well as the structure of the sorbents, were studied.

  1. Fluid replacement during sustained activity in the heat: nutrient solution vs. water.

    PubMed

    Levine, L; Rose, M S; Francesconi, P; Neufer, P D; Sawka, M N

    1991-06-01

    This study examined the thermoregulatory and hydrational status of men during sustained activity in a hot-dry (37 degrees C, 20% rh) environment while they consumed only a nutrient solution (nutrient), or consumed only colored, flavored water (control). Eleven heat acclimated young men attempted 24-h sustained activity experiments. These experiments consisted of alternating 45-min bouts of treadmill walking (410 W, approximately 30% VO2max) and rest (including sedentary activity). Data were analyzed through 13 h (after 13 h subjects began to discontinue testing). No significant differences between trials were observed for metabolic rate, fluid intake, skin or rectal temperature, sweating rate, plasma volume (as indicated by hemoglobin concentration) or plasma glucose concentrations. By the 8th h plasma osmolality was higher and by the 11th h plasma free fatty acids were lower during the nutrient trial compared to the control. In separate experiments with nine different men, the gastric emptying rates of the nutrient solution and water were compared during exercise (55% VO2max) in the heat (35 degrees C, 20% rh). The gastric emptying rates of the nutrient solution and water were similar (approximately 20 ml.min-1). These data indicate that during 13 h of sustained activity in a hot environment, the nutrient solution and water provided similar thermoregulatory and hydrational benefits.

  2. Activity Coefficients of Acetone-Chloroform Solutions: An Undergraduate Experiment. Undergraduate Experiment.

    ERIC Educational Resources Information Center

    Ozog, J. Z.; Morrison, J. A.

    1983-01-01

    Presents information, laboratory procedures, and results of an undergraduate experiment in which activity coefficients for a two-component liquid-vapor system are determined. Working in pairs, students can perform the experiment with 10 solutions in a given three-hour laboratory period. (Author/JN)

  3. The Effect of Storage at Three Different Temperatures on the Activity of Lipase Solution.

    ERIC Educational Resources Information Center

    Bradley, Karen; Mathewman, David

    1984-01-01

    Presented are procedures used to assay the activity of lipase during storage at three different temperatures. Since lipase solutions can decay even when refrigerated, it is recommended that the enzyme be freshly prepared prior to laboratory sessions in which they are used. (JN)

  4. The Effect of Storage at Three Different Temperatures on the Activity of Lipase Solution.

    ERIC Educational Resources Information Center

    Bradley, Karen; Mathewman, David

    1984-01-01

    Presented are procedures used to assay the activity of lipase during storage at three different temperatures. Since lipase solutions can decay even when refrigerated, it is recommended that the enzyme be freshly prepared prior to laboratory sessions in which they are used. (JN)

  5. 30 CFR 580.29 - Will BOEM monitor the environmental effects of my activity?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Will BOEM monitor the environmental effects of my activity? 580.29 Section 580.29 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF... environmental effects of my activity? We will evaluate the potential of proposed prospecting or...

  6. 30 CFR 580.29 - Will BOEM monitor the environmental effects of my activity?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Will BOEM monitor the environmental effects of my activity? 580.29 Section 580.29 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF... environmental effects of my activity? We will evaluate the potential of proposed prospecting or...

  7. 30 CFR 580.29 - Will BOEM monitor the environmental effects of my activity?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Will BOEM monitor the environmental effects of my activity? 580.29 Section 580.29 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF... environmental effects of my activity? We will evaluate the potential of proposed prospecting or...

  8. Microscale loop-mediated isothermal amplification of viral DNA with real-time monitoring on solution-gated graphene FET microchip.

    PubMed

    Han, Dawoon; Chand, Rohit; Kim, Yong-Sang

    2017-07-15

    Rapid and reliable molecular analysis of DNA for disease diagnosis is highly sought-after. FET-based sensors fulfill the demands of future point-of-care devices due to its sensitive charge sensing and possibility of integration with electronic instruments. However, most of the FETs are unstable in aqueous conditions, less sensitive and requires conventional Ag/AgCl electrode for gating. In this work, we propose a solution-gated graphene FET (SG-FET) for real-time monitoring of microscale loop-mediated isothermal amplification of DNA. The SG-FET was fabricated effortlessly with graphene as an active layer, on-chip co-planar electrodes, and polydimethylsiloxane-based microfluidic reservoir. A linear response of about 0.23V/pH was seen when the buffers from pH 5-9 were analyzed on the SG-FET. To evaluate the performance of SG-FET, we monitored the amplification of Lambda phage gene as a proof-of-concept. During amplification, protons are released, which gradually alters the Dirac point voltage (VDirac) of SG-FET. The resulting device was highly sensitive with a femto-level limit of detection. The SG-FET could easily produce a positive signal within 16.5min of amplification. An amplification of 10ng/μl DNA for 1h produced a ∆VDirac of 0.27V. The sensor was tested within a range of 2×10(2) copies/μl (10 fg/μl) to 2×10(8) copies/μl (10ng/μl) of target DNA. Development of this sensing technology could significantly lower the time, cost, and complications of DNA detection.

  9. Magneto-impedance sensor for quasi-noncontact monitoring of breathing, pulse rate and activity status

    NASA Astrophysics Data System (ADS)

    Corodeanu, S.; Chiriac, H.; Radulescu, L.; Lupu, N.

    2014-05-01

    Results on the development and testing of a novel magnetic sensor based on the detection of the magneto-impedance variation due to changes in the permeability of an amorphous wire are reported. The proposed application is the quasi-noncontact monitoring of the breathing frequency and heart rate for diagnosing sleep disorders. Patient discomfort is significantly decreased by transversally placing the sensitive element onto the surface of a flexible mattress in order to detect its deformation associated with cardiorespiratory activity and body movements. The developed sensor has a great application potential in monitoring the vital signs during sleep, with special advantages for children sleep monitoring.

  10. Monitoring gross alpha and beta activity in liquids by using ZnS(Ag) scintillation detectors

    SciTech Connect

    Stevanato, L.; Cester, D.; Filippi, D.; Lunardon, M.; Mistura, G.; Moretto, S.; Viesti, G.; Badocco, D.; Pastore, P.; Romanini, F.

    2015-07-01

    In this work the possibility of monitoring gross alpha and beta activity in liquids using EJ-444 was investigated. Specific tests were carried out to determine the change of the detector properties in water tests. Possible protecting coating is also proposed and tested. Alpha/beta real-time monitoring in liquids is a goal of the EU project TAWARA{sub R}TM. (authors)

  11. Wireless integrated microsystems for monitoring brain chemical and electrical activity

    NASA Astrophysics Data System (ADS)

    Roham, Masoud; Garris, Paul A.; Mohseni, Pedram

    2008-08-01

    A 16-channel chip for wireless in vivo recording of chemical and electrical neural activity is described. The 7.83-mm2 IC is fabricated using a 0.5-μm CMOS process and incorporates a 71-μW, 3rd-order, reconfigurable, ΔΣ modulator per channel, achieving an input-referred noise of 4.69 μVrms in 4-kHz BW and 94.1 pArms in 5-kHz BW for electrical and fast-scan voltammetric chemical neurosensing, respectively. The chip has been externally interfaced with carbon-fiber microelectrodes implanted acutely in the caudate-putamen of an anesthetized rat, and, for the first time, extracellular levels of dopamine elicited by electrical stimulation of the medial forebrain bundle have been successfully recorded wirelessly across multiple channels using 300-V/s fast-scan cyclic voltammetry.

  12. Monitoring Criminal Activity through Invisible Fluorescent "Peptide Coding" Taggants.

    PubMed

    Gooch, James; Goh, Hilary; Daniel, Barbara; Abbate, Vincenzo; Frascione, Nunzianda

    2016-04-19

    Complementing the demand for effective crime reduction measures are the increasing availability of commercial forensic "taggants", which may be used to physically mark an object in order to make it uniquely identifiable. This study explores the use of a novel "peptide coding" reagents to establish evidence of contact transfer during criminal activity. The reagent, containing a fluorophore dispersed within an oil-based medium, also includes a unique synthetic peptide sequence that acts as a traceable "code" to identify the origin of the taggant. The reagent is detectable through its fluorescent properties, which then allows the peptide to be recovered by swabbing and extracted for electrospray ionization-mass spectrometry (ESI-MS) analysis via a simple liquid-liquid extraction procedure. The performance of the reagent in variable conditions that mimic the limits of a real world use are investigated.

  13. Individual differences in epistemic motivation and brain conflict monitoring activity.

    PubMed

    Kossowska, Małgorzata; Czarnek, Gabriela; Wronka, Eligiusz; Wyczesany, Miroslaw; B