Science.gov

Sample records for activation motif itam

  1. Platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling and vascular integrity.

    PubMed

    Boulaftali, Yacine; Hess, Paul R; Kahn, Mark L; Bergmeier, Wolfgang

    2014-03-28

    Platelets are well-known for their critical role in hemostasis, that is, the prevention of blood loss at sites of mechanical vessel injury. Inappropriate platelet activation and adhesion, however, can lead to thrombotic complications, such as myocardial infarction and stroke. To fulfill its role in hemostasis, the platelet is equipped with various G protein-coupled receptors that mediate the response to soluble agonists such as thrombin, ADP, and thromboxane A2. In addition to G protein-coupled receptors, platelets express 3 glycoproteins that belong to the family of immunoreceptor tyrosine-based activation motif receptors: Fc receptor γ chain, which is noncovalently associated with the glycoprotein VI collagen receptor, C-type lectin 2, the receptor for podoplanin, and Fc receptor γII A, a low-affinity receptor for immune complexes. Although both genetic and chemical approaches have documented a critical role for platelet G protein-coupled receptors in hemostasis, the contribution of immunoreceptor tyrosine-based activation motif receptors to this process is less defined. Studies performed during the past decade, however, have identified new roles for platelet immunoreceptor tyrosine-based activation motif signaling in vascular integrity in utero and at sites of inflammation. The purpose of this review is to summarize recent findings on how platelet immunoreceptor tyrosine-based activation motif signaling controls vascular integrity, both in the presence and absence of mechanical injury. PMID:24677237

  2. Platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling and vascular integrity.

    PubMed

    Boulaftali, Yacine; Hess, Paul R; Kahn, Mark L; Bergmeier, Wolfgang

    2014-03-28

    Platelets are well-known for their critical role in hemostasis, that is, the prevention of blood loss at sites of mechanical vessel injury. Inappropriate platelet activation and adhesion, however, can lead to thrombotic complications, such as myocardial infarction and stroke. To fulfill its role in hemostasis, the platelet is equipped with various G protein-coupled receptors that mediate the response to soluble agonists such as thrombin, ADP, and thromboxane A2. In addition to G protein-coupled receptors, platelets express 3 glycoproteins that belong to the family of immunoreceptor tyrosine-based activation motif receptors: Fc receptor γ chain, which is noncovalently associated with the glycoprotein VI collagen receptor, C-type lectin 2, the receptor for podoplanin, and Fc receptor γII A, a low-affinity receptor for immune complexes. Although both genetic and chemical approaches have documented a critical role for platelet G protein-coupled receptors in hemostasis, the contribution of immunoreceptor tyrosine-based activation motif receptors to this process is less defined. Studies performed during the past decade, however, have identified new roles for platelet immunoreceptor tyrosine-based activation motif signaling in vascular integrity in utero and at sites of inflammation. The purpose of this review is to summarize recent findings on how platelet immunoreceptor tyrosine-based activation motif signaling controls vascular integrity, both in the presence and absence of mechanical injury.

  3. Impact of the PI3-kinase/Akt pathway on ITAM and hemITAM receptors: haemostasis, platelet activation and antithrombotic therapy.

    PubMed

    Moroi, Alyssa J; Watson, Steve P

    2015-04-01

    Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that are activated in response to various stimulants, and they regulate many processes including inflammation; the stress response; gene transcription; and cell proliferation, differentiation, and death. Increasing reports have shown that the PI3Ks and their downstream effector Akt are activated by several platelet receptors that regulate platelet activation and haemostasis. Platelets express two immunoreceptor tyrosine based activation motif (ITAM) receptors, collagen receptor glycoprotein VI (GPVI) and Fcγ receptor IIA (FcγRIIA), which are characterized by two YxxL sequences separated by 6-12 amino acids. Activation of an ITAM receptor initiates a reaction cascade via its YxxL sequence in which signaling molecules such as spleen tyrosine kinase (Syk), linker for activation of T cells (LAT) and phospholipase C γ2 (PLCγ2) become activated, leading to platelet activation. Platelets also express another receptor, C-type lectin 2 (CLEC-2), which has a single YxxL sequence, so it is appropriately called a hemITAM receptor. ITAM receptors and the hemITAM receptor share many signaling features. Here we will summarize our current knowledge about how the PI3K/Akt pathway regulates (hem)ITAM receptor-mediated platelet activation and haemostasis and discuss the possible benefits of targeting PI3K/Akt as an antithrombotic therapy.

  4. Shifting FcγRIIA-ITAM from activation to inhibitory configuration ameliorates arthritis

    PubMed Central

    Ben Mkaddem, Sanae; Hayem, Gilles; Jönsson, Friederike; Rossato, Elisabetta; Boedec, Erwan; Boussetta, Tarek; El Benna, Jamel; Launay, Pierre; Goujon, Jean-Michel; Benhamou, Marc; Bruhns, Pierre; Monteiro, Renato C.

    2014-01-01

    Rheumatoid arthritis–associated (RA-associated) inflammation is mediated through the interaction between RA IgG immune complexes and IgG Fc receptors on immune cells. Polymorphisms within the gene encoding the human IgG Fc receptor IIA (hFcγRIIA) are associated with an increased risk of developing RA. Within the hFcγRIIA intracytoplasmic domain, there are 2 conserved tyrosine residues arranged in a noncanonical immunoreceptor tyrosine–based activation motif (ITAM). Here, we reveal that inhibitory engagement of the hFcγRIIA ITAM either with anti-hFcγRII F(ab′)2 fragments or intravenous hIgG (IVIg) ameliorates RA-associated inflammation, and this effect was characteristic of previously described inhibitory ITAM (ITAMi) signaling for hFcαRI and hFcγRIIIA, but only involves a single tyrosine. In hFcγRIIA-expressing mice, arthritis induction was inhibited following hFcγRIIA engagement. Moreover, hFcγRIIA ITAMi-signaling reduced ROS and inflammatory cytokine production through inhibition of guanine nucleotide exchange factor VAV-1 and IL-1 receptor–associated kinase 1 (IRAK-1), respectively. ITAMi signaling was mediated by tyrosine 304 (Y304) within the hFcγRIIA ITAM, which was required for recruitment of tyrosine kinase SYK and tyrosine phosphatase SHP-1. Anti-hFcγRII F(ab′)2 treatment of inflammatory synovial cells from RA patients inhibited ROS production through induction of ITAMi signaling. These data suggest that shifting constitutive hFcγRIIA-mediated activation to ITAMi signaling could ameliorate RA-associated inflammation. PMID:25061875

  5. The conundrum of inhibitory signaling by ITAM-containing immunoreceptors: potential molecular mechanisms

    PubMed Central

    Waterman, Paul M.; Cambier, John C.

    2010-01-01

    Immunoreceptor signals must be appropriately transduced and regulated to achieve effective immunity while controlling inflammation and autoimmunity. It is generally held that these processes are mediated by the interplay of distinct activating and inhibitory receptors via conserved activating (ITAM) and inhibitory (ITIM) signaling motifs. However, recent evidence indicates that under certain conditions incomplete phosphorylation of ITAM tyrosines leads to inhibitory signals. This new regulatory function of ITAMs has been termed ITAMi (inhibitory ITAM). Here we discuss the potential molecular mechanisms of inhibitory signaling by ITAM-containing receptors. PMID:20875413

  6. Retroviral Retention Activates a Syk-Dependent HemITAM in Human Tetherin

    PubMed Central

    Galão, Rui Pedro; Pickering, Suzanne; Curnock, Rachel; Neil, Stuart J.D.

    2014-01-01

    Summary Tetherin (BST2/CD317) restricts the release of enveloped viral particles from infected cells. Coupled to this virion retention, hominid tetherins induce proinflammatory gene expression via activating NF-κB. We investigated the events initiating this tetherin-induced signaling and show that physical retention of retroviral particles induces the phosphorylation of conserved tyrosine residues in the cytoplasmic tails of tetherin dimers. This phosphorylation induces the recruitment of spleen tyrosine kinase (Syk), which is required for downstream NF-κB activation, indicating that the tetherin cytoplasmic tail resembles the hemi-immunoreceptor tyrosine-based activation motifs (hemITAMs) found in C-type lectin pattern recognition receptors. Retroviral-induced tetherin signaling is coupled to the cortical actin cytoskeleton via the Rac-GAP-containing protein RICH2 (ARHGAP44), and a naturally occurring tetherin polymorphism with reduced RICH2 binding exhibits decreased phosphorylation and NF-κB activation. Thus, upon virion retention, this linkage to the actin cytoskeleton likely triggers tetherin phosphorylation and subsequent signal transduction to induce an antiviral state. PMID:25211072

  7. Cell permeable ITAM constructs for the modulation of mediator release in mast cells.

    PubMed

    Kuil, Joeri; Fischer, Marcel J E; de Mol, Nico J; Liskamp, Rob M J

    2011-02-01

    Spleen tyrosine kinase (Syk) is essential for high affinity IgE receptor (FcεRI) mediated mast cell degranulation. Once FcεRI is stimulated, intracellular ITAM motifs of the receptor are diphosphorylated (dpITAM) and Syk is recruited to the receptor by binding of the Syk tandem SH2 domain to dpITAM, resulting in activation of Syk and, eventually, degranulation. To investigate intracellular effects of ITAM mimics, constructs were synthesized with ITAM mimics conjugated to different cell penetrating peptides, i.e. Tat, TP10, octa-Arg and K(Myr)KKK, or a lipophilic C(12)-chain. In most constructs the cargo and carrier were linked to each other through a disulfide bridge, which is convenient for combining different cargos with different carriers and has the advantage that the cargo and the carrier may be separated by reduction of the disulfide once it is intracellular. The ability of these ITAM constructs to label RBL-2H3 cells was assessed using flow cytometry. Fluorescence microscopy showed that the octa-Arg-SS-Flu-ITAM construct was present in various parts of the cells, although it was not homogeneously distributed. In addition, cell penetrating constructs without fluorescent labels were synthesized to examine degranulation in RBL-2H3 cells. Octa-Arg-SS-ITAM stimulated the mediator release up to 140%, indicating that ITAM mimics may have the ability to activate non-receptor bound Syk.

  8. TCR ITAM multiplicity is required for the generation of follicular helper T-cells.

    PubMed

    Hwang, SuJin; Palin, Amy C; Li, LiQi; Song, Ki-Duk; Lee, Jan; Herz, Jasmin; Tubo, Noah; Chu, Hamlet; Pepper, Marion; Lesourne, Renaud; Zvezdova, Ekaterina; Pinkhasov, Julia; Jenkins, Marc K; McGavern, Dorian; Love, Paul E

    2015-01-01

    The T-cell antigen receptor (TCR) complex contains 10 copies of a di-tyrosine Immunoreceptor-Tyrosine-based-Activation-Motif (ITAM) that initiates TCR signalling by recruiting protein tyrosine kinases. ITAM multiplicity amplifies TCR signals, but the importance of this capability for T-cell responses remains undefined. Most TCR ITAMs (6 of 10) are contributed by the CD3ζ subunits. We generated 'knock-in' mice that express non-signalling CD3ζ chains in lieu of wild-type CD3ζ. Here we demonstrate that ITAM multiplicity is important for the development of innate-like T-cells and follicular helper T-cells, events that are known to require strong/sustained TCR-ligand interactions, but is not essential for 'general' T-cell responses including proliferation and cytokine production or for the generation of a diverse antigen-reactive TCR repertoire. PMID:25959494

  9. TCR ITAM multiplicity is required for the generation of follicular helper T-cells.

    PubMed

    Hwang, SuJin; Palin, Amy C; Li, LiQi; Song, Ki-Duk; Lee, Jan; Herz, Jasmin; Tubo, Noah; Chu, Hamlet; Pepper, Marion; Lesourne, Renaud; Zvezdova, Ekaterina; Pinkhasov, Julia; Jenkins, Marc K; McGavern, Dorian; Love, Paul E

    2015-05-11

    The T-cell antigen receptor (TCR) complex contains 10 copies of a di-tyrosine Immunoreceptor-Tyrosine-based-Activation-Motif (ITAM) that initiates TCR signalling by recruiting protein tyrosine kinases. ITAM multiplicity amplifies TCR signals, but the importance of this capability for T-cell responses remains undefined. Most TCR ITAMs (6 of 10) are contributed by the CD3ζ subunits. We generated 'knock-in' mice that express non-signalling CD3ζ chains in lieu of wild-type CD3ζ. Here we demonstrate that ITAM multiplicity is important for the development of innate-like T-cells and follicular helper T-cells, events that are known to require strong/sustained TCR-ligand interactions, but is not essential for 'general' T-cell responses including proliferation and cytokine production or for the generation of a diverse antigen-reactive TCR repertoire.

  10. The CD3 gamma epsilon/delta epsilon signaling module provides normal T cell functions in the absence of the TCR zeta immunoreceptor tyrosine-based activation motifs.

    PubMed

    Pitcher, Lisa A; Mathis, Meredith A; Young, Jennifer A; DeFord, Laura M; Purtic, Bozidar; Wulfing, Christoph; van Oers, Nicolai S C

    2005-12-01

    T cell receptor (TCR) signal transduction is mediated by the immunoreceptor tyrosine-based activation motifs (ITAM). The ten ITAM in the TCR complex are distributed in two distinct signaling modules termed TCR zetazeta and CD3 gammaepsilon/deltaepsilon. To delineate the specific role of the zeta ITAM in T cell development and TCR signal transmission, we compared the properties of T cells from different TCR zeta-transgenic lines wherein tyrosine-to-phenylalanine substitutions had been introduced in the zeta subunit. These lines lack selected phosphorylated forms of TCR zeta including just p23, both p21 and p23, or all phospho-zeta derivatives. We report herein that the efficiency of positive selection in HY TCR-transgenic female mice was directly related to the number of zeta ITAM in the TCR. In contrast, TCR-mediated signal transmission and T cell proliferative responses following agonist peptide stimulation were similar and independent of the zeta ITAM. Only the duration of MAPK activation was affected by multiple zeta ITAM substitutions. These results strongly suggest that the ITAM in the CD3 gammaepsilon/deltaepsilon module can provide normal TCR signal transmission, with zeta ITAM providing a secondary function facilitating MAPK activation and positive selection.

  11. RBP-J imposes a requirement for ITAM-mediated costimulation of osteoclastogenesis.

    PubMed

    Li, Susan; Miller, Christine H; Giannopoulou, Eugenia; Hu, Xiaoyu; Ivashkiv, Lionel B; Zhao, Baohong

    2014-11-01

    Osteoclastogenesis requires activation of RANK signaling as well as costimulatory signals from immunoreceptor tyrosine-based activation motif-containing (ITAM-containing) receptors/adaptors, predominantly tyrosine kinase-binding proteins DAP12 and FcRγ, in osteoclast precursors. It is not well understood how costimulatory signals are regulated and integrated with RANK signaling. Here, we found that osteopetrotic bone phenotypes in mice lacking DAP12 or DAP12 and FcRγ are mediated by the transcription factor RBP-J, as deletion of Rbpj in these mice substantially rescued the defects of bone remodeling. Using a TNF-α-induced model of inflammatory bone resorption, we determined that RBP-J deficiency enables TNF-α to induce osteoclast formation and bone resorption in DAP12-deficient animals. Thus, RBP-J imposes a requirement for ITAM-mediated costimulation of RANKL or TNF-α-induced osteoclastogenesis. Mechanistically, RBP-J suppressed induction of key osteoclastogenic factors NFATc1, BLIMP1, and c-FOS by inhibiting ITAM-mediated expression and function of PLCγ2 and activation of downstream calcium-CaMKK/PYK2 signaling. Moreover, RBP-J suppressed Plcg2 expression and downstream calcium oscillations indirectly by a TGF-β/PLCγ2/calcium axis. Together, our findings indicate that RBP-J suppresses ITAM-mediated costimulation, thereby limiting crosstalk between ITAM and RANK/TNFR signaling and allowing fine tuning of osteoclastogenesis during bone homeostasis and under inflammatory conditions. Furthermore, these data suggest that environmental cues that regulate RBP-J expression/function potentially modulate the requirement for costimulatory signaling for osteoclast differentiation and bone remodeling.

  12. RBP-J imposes a requirement for ITAM-mediated costimulation of osteoclastogenesis

    PubMed Central

    Li, Susan; Miller, Christine H.; Giannopoulou, Eugenia; Hu, Xiaoyu; Ivashkiv, Lionel B.; Zhao, Baohong

    2014-01-01

    Osteoclastogenesis requires activation of RANK signaling as well as costimulatory signals from immunoreceptor tyrosine-based activation motif-containing (ITAM-containing) receptors/adaptors, predominantly tyrosine kinase–binding proteins DAP12 and FcRγ, in osteoclast precursors. It is not well understood how costimulatory signals are regulated and integrated with RANK signaling. Here, we found that osteopetrotic bone phenotypes in mice lacking DAP12 or DAP12 and FcRγ are mediated by the transcription factor RBP-J, as deletion of Rbpj in these mice substantially rescued the defects of bone remodeling. Using a TNF-α–induced model of inflammatory bone resorption, we determined that RBP-J deficiency enables TNF-α to induce osteoclast formation and bone resorption in DAP12-deficient animals. Thus, RBP-J imposes a requirement for ITAM-mediated costimulation of RANKL or TNF-α–induced osteoclastogenesis. Mechanistically, RBP-J suppressed induction of key osteoclastogenic factors NFATc1, BLIMP1, and c-FOS by inhibiting ITAM-mediated expression and function of PLCγ2 and activation of downstream calcium-CaMKK/PYK2 signaling. Moreover, RBP-J suppressed Plcg2 expression and downstream calcium oscillations indirectly by a TGF-β/PLCγ2/calcium axis. Together, our findings indicate that RBP-J suppresses ITAM-mediated costimulation, thereby limiting crosstalk between ITAM and RANK/TNFR signaling and allowing fine tuning of osteoclastogenesis during bone homeostasis and under inflammatory conditions. Furthermore, these data suggest that environmental cues that regulate RBP-J expression/function potentially modulate the requirement for costimulatory signaling for osteoclast differentiation and bone remodeling. PMID:25329696

  13. ITAM signaling in dendritic cells controls T helper cell priming by regulating MHC class II recycling

    PubMed Central

    Graham, Daniel B.; Akilesh, Holly M.; Gmyrek, Grzegorz B.; Piccio, Laura; Gilfillan, Susan; Sim, Julia; Belizaire, Roger; Carrero, Javier A.; Wang, Yinan; Blaufuss, Gregory S.; Sandoval, Gabriel; Fujikawa, Keiko; Cross, Anne H.; Russell, John H.; Cella, Marina

    2010-01-01

    Immature dendritic cells (DCs) specialize in antigen capture and maintain a highly dynamic pool of intracellular major histocompatibility complex class II (MHCII) that continuously recycles from peptide loading compartments to the plasma membrane and back again. This process facilitates sampling of environmental antigens for presentation to T helper cells. Here, we show that a signaling pathway mediated by the DC immunoreceptor tyrosine-based activation motif (ITAM)–containing adaptors (DAP12 and FcRγ) and Vav family guanine nucleotide exchange factors controls the half-life of surface peptide-MHCII (pMHCII) complexes and is critical for CD4 T-cell triggering in vitro. Strikingly, mice with disrupted DC ITAMs show defective T helper cell priming in vivo and are protected from experimental autoimmune encephalitis. Mechanistically, we show that deficiency in ITAM signaling results in increased pMHCII internalization, impaired recycling, and an accumulation of ubiquitinated MHCII species that are prematurely degraded in lysosomes. We propose a novel mechanism for control of T helper cell priming. PMID:20634378

  14. SLAP/SLAP2 prevent excessive platelet (hem)ITAM signaling in thrombosis and ischemic stroke in mice.

    PubMed

    Cherpokova, Deya; Bender, Markus; Morowski, Martina; Kraft, Peter; Schuhmann, Michael K; Akbar, Sarah M; Sultan, Cheryl S; Hughes, Craig E; Kleinschnitz, Christoph; Stoll, Guido; Dragone, Leonard L; Watson, Steve P; Tomlinson, Michael G; Nieswandt, Bernhard

    2015-01-01

    Glycoprotein VI and C-type lectin-like receptor 2 are essential platelet activating receptors in hemostasis and thrombo-inflammatory disease, which signal through a (hem)immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway. The adapter molecules Src-like adapter proteins (SLAP and SLAP2) are involved in the regulation of immune cell surface expression and signaling, but their function in platelets is unknown. In this study, we show that platelets expressed both SLAP isoforms and that overexpression of either protein in a heterologous cell line almost completely inhibited glycoprotein VI and C-type lectin-like receptor 2 signaling. In mice, single deficiency of SLAP or SLAP2 had only moderate effects on platelet function, whereas double deficiency of both adapters resulted in markedly increased signal transduction, integrin activation, granule release, aggregation, procoagulant activity, and thrombin generation in response to (hem)ITAM-coupled, but not G protein-coupled, receptor activation. In vivo, constitutive SLAP/SLAP2 knockout mice displayed accelerated occlusive arterial thrombus formation and a dramatically worsened outcome after focal cerebral ischemia. This was attributed to the absence of both adapter proteins in platelets, as demonstrated by adoptive transfer of Slap(-/-)/Slap2(-/-) platelets into wild-type mice. Our results establish SLAP and SLAP2 as critical inhibitors of platelet (hem)ITAM signaling in the setting of arterial thrombosis and ischemic stroke.

  15. MHC-I Molecules Selectively Inhibit Cell-Mediated Cytotoxicity Triggered by ITAM-Coupled Activating Receptors and 2B4

    PubMed Central

    Corral-San Miguel, Rubén; Hernández-Caselles, Trinidad; Ruiz Alcaraz, Antonio José; Martínez-Esparza, María; García-Peñarrubia, Pilar

    2014-01-01

    NK cell effector functions are controlled by a combination of inhibitory receptors, which modulate NK cell activation initiated by stimulatory receptors. Most of the canonical NK cell inhibitory receptors recognize allelic forms of classical and non-classical MHC class I molecules. Furthermore, high expression of MHC-I molecules on effector immune cells is also associated with reverse signaling, giving rise to several immune-regulatory functions. Consequently, the inhibitory function of MHC class I expressed on a human NKL cell line and activated primary NK and T cells on different activating receptors are analyzed in this paper. Our results reveal that MHC-I molecules display specific patterns of “selective” inhibition over cytotoxicity and cytokine production induced by ITAM-dependent receptors and 2B4, but not on NKG2D. This contrasts with the best known “canonical” inhibitory receptors, which constitutively inhibit both functions, regardless of the activating receptor involved. Our results support the existence of a new fine-tuner inhibitory function for MHC-I molecules expressed on cytotoxic effector cells that could be involved in establishing self-tolerance in mature activated NK cells, and could also be important in tumor and infected cell recognition. PMID:25226085

  16. Cooperative integrin/ITAM signaling in platelets enhances thrombus formation in vitro and in vivo

    PubMed Central

    Zhi, Huiying; Rauova, Lubica; Hayes, Vincent; Gao, Cunji; Boylan, Brian; Newman, Debra K.; McKenzie, Steven E.; Cooley, Brian C.; Poncz, Mortimer; Newman, Peter J.

    2013-01-01

    The integrin family is composed of a series of 24 αβ heterodimer transmembrane adhesion receptors that mediate cell-cell and cell-extracellular matrix interactions. Adaptor molecules bearing immunoreceptor tyrosine-based activation motifs (ITAMs) have recently been shown to cooperate with specific integrins to increase the efficiency of transmitting ligand-binding–induced signals into cells. In human platelets, Fc receptor γ-chain IIa (FcγRIIa) has been identified as an ITAM-bearing transmembrane receptor responsible for mediating “outside-in” signaling through αIIbβ3, the major adhesion receptor on the platelet surface. To explore the importance of FcγRIIa in thrombosis and hemostasis, we subjected FcγRIIa-negative and FcγRIIa-positive murine platelets to a number of well-accepted models of platelet function. Compared with their FcγRIIa-negative counterparts, FcγRIIa-positive platelets exhibited increased tyrosine phosphorylation of Syk and phospholipase Cγ2 and increased spreading upon interaction with immobilized fibrinogen, retracted a fibrin clot faster, and showed markedly enhanced thrombus formation when perfused over a collagen-coated flow chamber under conditions of arterial and venous shear. They also displayed increased thrombus formation and fibrin deposition in in vivo models of vascular injury. Taken together, these data establish FcγRIIa as a physiologically important functional conduit for αIIbβ3-mediated outside-in signaling, and suggest that modulating the activity of this novel integrin/ITAM pair might be effective in controlling thrombosis. PMID:23264598

  17. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation

    SciTech Connect

    Zawawi, M.S.F.; Dharmapatni, A.A.S.S.K.; Cantley, M.D.; McHugh, K.P.; Haynes, D.R.; Crotti, T.N.

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Calcineurin/NFAT inhibitors FK506 and VIVIT treated human PBMC derived osteoclasts in vitro. Black-Right-Pointing-Pointer Differential regulation of ITAM receptors and adaptor molecules by calcineurin/NFAT inhibitors. Black-Right-Pointing-Pointer FK506 and VIVIT suppress ITAM factors during late phase osteoclast differentiation. -- Abstract: Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcR{gamma}) and DNAX-activating protein 12 kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin ({beta}3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10 days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real

  18. Immunoreceptor tyrosine-based activation motif phosphorylation during engulfment of Neisseria gonorrhoeae by the neutrophil-restricted CEACAM3 (CD66d) receptor.

    PubMed

    McCaw, Shannon E; Schneider, Jutta; Liao, Edward H; Zimmermann, Wolfgang; Gray-Owen, Scott D

    2003-08-01

    Gonorrhea is characterized by a purulent urethral or cervical discharge consisting primarily of neutrophils associated with Neisseria gonorrhoeae. These interactions are facilitated by gonococcal colony opacity-associated (Opa) protein binding to host cellular CEACAM receptors. Of these, CEACAM3 is restricted to neutrophils and contains an immunoreceptor tyrosine-based activation motif (ITAM) reminiscent of that found within certain phagocytic Fc receptors. CEACAM3 was tyrosine phosphorylated by a Src family kinase-dependent process upon infection by gonococci expressing CEACAM-specific Opa proteins. This phosphorylation was necessary for efficient bacterial uptake; however, a less efficient uptake process became evident when kinase inhibitors or mutagenesis of the ITAM were used to prevent phosphorylation. Ligated CEACAM3 was recruited to a cytoskeleton-containing fraction, intense foci of polymerized actin were evident where bacteria attached to HeLa-CEACAM3, and disruption of polymerized actin by cytochalasin D blocked all bacterial uptake by these cells. These data support a model whereby CEACAM3 can mediate the Opa-dependent uptake of N. gonorrhoeae via either an efficient, ITAM phosphorylation-dependent process that resembles phagocytosis or a less efficient, tyrosine phosphorylation-independent mechanism. PMID:12864848

  19. Redox active motifs in selenoproteins

    PubMed Central

    Li, Fei; Lutz, Patricia B.; Pepelyayeva, Yuliya; Arnér, Elias S. J.; Bayse, Craig A.; Rozovsky, Sharon

    2014-01-01

    Selenoproteins use the rare amino acid selenocysteine (Sec) to act as the first line of defense against oxidants, which are linked to aging, cancer, and neurodegenerative diseases. Many selenoproteins are oxidoreductases in which the reactive Sec is connected to a neighboring Cys and able to form a ring. These Sec-containing redox motifs govern much of the reactivity of selenoproteins. To study their fundamental properties, we have used 77Se NMR spectroscopy in concert with theoretical calculations to determine the conformational preferences and mobility of representative motifs. This use of 77Se as a probe enables the direct recording of the properties of Sec as its environment is systematically changed. We find that all motifs have several ring conformations in their oxidized state. These ring structures are most likely stabilized by weak, nonbonding interactions between the selenium and the amide carbon. To examine how the presence of selenium and ring geometric strain governs the motifs’ reactivity, we measured the redox potentials of Sec-containing motifs and their corresponding Cys-only variants. The comparisons reveal that for C-terminal motifs the redox potentials increased between 20–25 mV when the selenenylsulfide bond was changed to a disulfide bond. Changes of similar magnitude arose when we varied ring size or the motifs’ flanking residues. This suggests that the presence of Sec is not tied to unusually low redox potentials. The unique roles of selenoproteins in human health and their chemical reactivities may therefore not necessarily be explained by lower redox potentials, as has often been claimed. PMID:24769567

  20. SHIP-1 couples to the Dectin-1 hemITAM and selectively modulates reactive oxygen species production in dendritic cells in response to C. albicans

    PubMed Central

    Fernandes, Sandra; Calvo, Enrique; Conde-Garrosa, Ruth; Kerr, William G.; Sancho, David

    2015-01-01

    Dectin-1 (Clec7a) is a paradigmatic C-type lectin receptor that binds Syk through a hemITAM motif and couples sensing of pathogens such as fungi to induction of innate responses. Dectin-1 engagement triggers a plethora of activating events but little is known about the modulation of such pathways. Trying to define a more precise picture of early Dectin-1 signaling, we explored the interactome of the intracellular tail of the receptor in mouse dendritic cells. We found unexpected binding of SHIP-1 phosphatase to the phosphorylated hemITAM. SHIP-1 co-localized with Dectin-1 during phagocytosis of zymosan in a hemITAM-dependent fashion. Moreover, endogenous SHIP-1 relocated to live or heat-killed Candida albicans (HKC)-containing phagosomes in a Dectin-1-dependent fashion in GM-CSF-derived bone marrow cells (GM-BM). However, SHIP-1 absence in GM-BM did not affect activation of MAPK or production of cytokines and readouts dependent on NF-κB and NFAT. Notably, ROS production was enhanced in SHIP-1-deficient GM-BM treated with HKC, live C. albicans or the specific Dectin-1 agonists curdlan or whole glucan particles. This increased oxidative burst was dependent on Dectin-1, Syk, PI3K, PDK1 and NADPH oxidase. GM-BM from CD11cΔSHIP-1 mice also showed increased killing activity against live C. albicans that was dependent on Dectin-1, Syk and NADPH oxidase. These results illustrate the complexity of myeloid CLR signaling, and how an activating hemITAM can also couple to intracellular inositol phosphatases to modulate selected functional responses and tightly regulate processes such as ROS production that could be deleterious to the host. PMID:26416276

  1. Immunoreceptor tyrosine-based inhibitory motif (ITIM)-mediated inhibitory signaling is regulated by sequential phosphorylation mediated by distinct nonreceptor tyrosine kinases: a case study involving PECAM-1.

    PubMed

    Tourdot, Benjamin E; Brenner, Michelle K; Keough, Kathleen C; Holyst, Trudy; Newman, Peter J; Newman, Debra K

    2013-04-16

    The activation state of many blood and vascular cells is tightly controlled by a delicate balance between receptors that contain immunoreceptor tyrosine-based activation motifs (ITAMs) and those that contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Precisely how the timing of cellular activation by ITAM-coupled receptors is regulated by ITIM-containing receptors is, however, poorly understood. Using platelet endothelial cell adhesion molecule 1 (PECAM-1) as a prototypical ITIM-bearing receptor, we demonstrate that initiation of inhibitory signaling occurs via a novel, sequential process in which Src family kinases phosphorylate the C-terminal ITIM, thereby enabling phosphorylation of the N-terminal ITIM of PECAM-1 by other Src homology 2 domain-containing nonreceptor tyrosine kinases (NRTKs). NRTKs capable of mediating the second phosphorylation event include C-terminal Src kinase (Csk) and Bruton's tyrosine kinase (Btk). Btk and Csk function downstream of phosphatidylinositol 3-kinase (PI3K) activation during ITAM-dependent platelet activation. In ITAM-activated platelets that were treated with a PI3K inhibitor, PECAM-1 was phosphorylated but did not bind the tandem SH2 domain-containing tyrosine phosphatase SHP-2, indicating that it was not phosphorylated on its N-terminal ITIM. Csk bound to and phosphorylated PECAM-1 more efficiently than did Btk and required its SH2 domain to perform these functions. Additionally, the phosphorylation of the N-terminal ITIM of Siglec-9 by Csk is enhanced by the prior phosphorylation of its C-terminal ITIM, providing evidence that the ITIMs of other dual ITIM-containing receptors are also sequentially phosphorylated. On the basis of these findings, we propose that sequential ITIM phosphorylation provides a general mechanism for precise temporal control over the recruitment and activation of tandem SH2 domain-containing tyrosine phosphatases that dampen ITAM-dependent signals. PMID:23418871

  2. Automated discovery of active motifs in multiple RNA secondary structures

    SciTech Connect

    Wang, J.T.L.; Chang, Chia-Yo; Shapiro, B.A.

    1996-12-31

    In this paper we present a method for discovering approximately common motifs (also known as active motifs) in multiple RNA secondary structures. The secondary structures can be represented as ordered trees (i.e., the order among siblings matters). Motifs in these trees are connected subgraphs that can differ in both substitutions and deletions/insertions. The proposed method consists of two steps: (1) find candidate motifs in a small sample of the secondary structures; (2) search all of the secondary structures to determine how frequently these motifs occur (within the allowed approximation) in the secondary structures. To reduce the running time, we develop two optimization heuristics based on sampling and pattern matching techniques. Experimental results obtained by running these algorithms on both generated data and RNA secondary structures show the good performance of the algorithms. To demonstrate the utility of our algorithms, we discuss their applications to conducting the phylogenetic study of RNA sequences obtained from GenBank.

  3. CLEC-2 expression is maintained on activated platelets and on platelet microparticles.

    PubMed

    Gitz, Eelo; Pollitt, Alice Y; Gitz-Francois, Jerney J; Alshehri, Osama; Mori, Jun; Montague, Samantha; Nash, Gerard B; Douglas, Michael R; Gardiner, Elizabeth E; Andrews, Robert K; Buckley, Christopher D; Harrison, Paul; Watson, Steve P

    2014-10-01

    The C-type lectin-like receptor CLEC-2 mediates platelet activation through a hem-immunoreceptor tyrosine-based activation motif (hemITAM). CLEC-2 initiates a Src- and Syk-dependent signaling cascade that is closely related to that of the 2 platelet ITAM receptors: glycoprotein (GP)VI and FcγRIIa. Activation of either of the ITAM receptors induces shedding of GPVI and proteolysis of the ITAM domain in FcγRIIa. In the present study, we generated monoclonal antibodies against human CLEC-2 and used these to measure CLEC-2 expression on resting and stimulated platelets and on other hematopoietic cells. We show that CLEC-2 is restricted to platelets with an average copy number of ∼2000 per cell and that activation of CLEC-2 induces proteolytic cleavage of GPVI and FcγRIIa but not of itself. We further show that CLEC-2 and GPVI are expressed on CD41+ microparticles in megakaryocyte cultures and in platelet-rich plasma, which are predominantly derived from megakaryocytes in healthy donors, whereas microparticles derived from activated platelets only express CLEC-2. Patients with rheumatoid arthritis, an inflammatory disease associated with increased microparticle production, had raised plasma levels of microparticles that expressed CLEC-2 but not GPVI. Thus, CLEC-2, unlike platelet ITAM receptors, is not regulated by proteolysis and can be used to monitor platelet-derived microparticles.

  4. A molecule in teleost fish, related with human MHC-encoded G6F, has a cytoplasmic tail with ITAM and marks the surface of thrombocytes and in some fishes also of erythrocytes.

    PubMed

    Ohashi, Ken; Takizawa, Fumio; Tokumaru, Norihiro; Nakayasu, Chihaya; Toda, Hideaki; Fischer, Uwe; Moritomo, Tadaaki; Hashimoto, Keiichiro; Nakanishi, Teruyuki; Dijkstra, Johannes Martinus

    2010-08-01

    In teleost fish, a novel gene G6F-like was identified, encoding a type I transmembrane molecule with four extracellular Ig-like domains and a cytoplasmic tail with putative tyrosine phosphorylation motifs including YxN and an immunoreceptor tyrosine-based activation motif (ITAM). G6F-like maps to a teleost genomic region where stretches corresponding to human chromosomes 6p (with the MHC), 12p (with CD4 and LAG-3), and 19q are tightly linked. This genomic organization resembles the ancestral "Ur-MHC" proposed for the jawed vertebrate ancestor. The deduced G6F-like molecule shows sequence similarity with members of the CD4/LAG-3 family and with the human major histocompatibility complex-encoded thrombocyte marker G6F. Despite some differences in molecular organization, teleost G6F-like and tetrapod G6F seem orthologous as they map to similar genomic location, share typical motifs in transmembrane and cytoplasmic regions, and are both expressed by thrombocytes/platelets. In the crucian carps goldfish (Carassius auratus auratus) and ginbuna (Carassius auratus langsdorfii), G6F-like was found expressed not only by thrombocytes but also by erythrocytes, supporting that erythroid and thromboid cells in teleost fish form a hematopoietic lineage like they do in mammals. The ITAM-bearing of G6F-like suggests that the molecule plays an important role in cell activation, and G6F-like expression by erythrocytes suggests that these cells have functional overlap potential with thrombocytes.

  5. The kinase, SH3, and SH2 domains of Lck play critical roles in T-cell activation after ZAP-70 membrane localization.

    PubMed Central

    Yamasaki, S; Takamatsu, M; Iwashima, M

    1996-01-01

    Antigenic stimulation of the T-cell antigen receptor initiates signal transduction through the immunoreceptor tyrosine-based activation motifs (ITAMs). When its two tyrosines are phosphorylated, ITAM forms a binding site for ZAP-70, one of the cytoplasmic protein tyrosine kinases essential for T-cell activation. The signaling process that follows ZAP-70 binding to ITAM has been analyzed by the construction of fusion proteins that localize ZAP-70 to the plasma membrane. We found that membrane-localized forms of ZAP-70 induce late signaling events such as activation of nuclear factor of activated T cells without any stimulation. This activity was observed only when Lck was expressed and functional. In addition, each mutation that affects the function of Lck in the kinase, Src homology 2 (SH2), and SH3 domains greatly impaired the signaling ability of the chimeric protein. Therefore, Lck functions in multiple manners in T-cell activation for the steps following ZAP-70 binding to ITAM. PMID:8943371

  6. Defense-Inducing Volatiles: In Search of the Active Motif

    PubMed Central

    Lion, Ulrich; Boland, Wilhelm

    2008-01-01

    Herbivore-induced volatile organic compounds (VOCs) are widely appreciated as an indirect defense mechanism since carnivorous arthropods use VOCs as cues for host localization and then attack herbivores. Another function of VOCs is plant–plant signaling. That VOCs elicit defensive responses in neighboring plants has been reported from various species, and different compounds have been found to be active. In order to search for a structural motif that characterizes active VOCs, we used lima bean (Phaseolus lunatus), which responds to VOCs released from damaged plants with an increased secretion of extrafloral nectar (EFN). We exposed lima bean to (Z)-3-hexenyl acetate, a substance naturally released from damaged lima bean and known to induce EFN secretion, and to several structurally related compounds. (E)-3-hexenyl acetate, (E)-2-hexenyl acetate, 5-hexenyl acetate, (Z)-3-hexenylisovalerate, and (Z)-3-hexenylbutyrate all elicited significant increases in EFN secretion, demonstrating that neither the (Z)-configuration nor the position of the double-bond nor the size of the acid moiety are critical for the EFN-inducing effect. Our result is not consistent with previous concepts that postulate reactive electrophile species (Michael-acceptor-systems) for defense-induction in Arabidopsis. Instead, we postulate that physicochemical processes, including interactions with odorant binding proteins and resulting in changes in transmembrane potentials, can underlie VOCs-mediated signaling processes. PMID:18408973

  7. The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors.

    PubMed

    Tiwari, Shiv B; Belachew, Alemu; Ma, Siu Fong; Young, Melinda; Ade, Jules; Shen, Yu; Marion, Colleen M; Holtan, Hans E; Bailey, Adina; Stone, Jeffrey K; Edwards, Leslie; Wallace, Andreah D; Canales, Roger D; Adam, Luc; Ratcliffe, Oliver J; Repetti, Peter P

    2012-06-01

    In plants, the ERF/EREBP family of transcriptional regulators plays a key role in adaptation to various biotic and abiotic stresses. These proteins contain a conserved AP2 DNA-binding domain and several uncharacterized motifs. Here, we describe a short motif, termed 'EDLL', that is present in AtERF98/TDR1 and other clade members from the same AP2 sub-family. We show that the EDLL motif, which has a unique arrangement of acidic amino acids and hydrophobic leucines, functions as a strong activation domain. The motif is transferable to other proteins, and is active at both proximal and distal positions of target promoters. As such, the EDLL motif is able to partly overcome the repression conferred by the AtHB2 transcription factor, which contains an ERF-associated amphiphilic repression (EAR) motif. We further examined the activation potential of EDLL by analysis of the regulation of flowering time by NF-Y (nuclear factor Y) proteins. Genetic evidence indicates that NF-Y protein complexes potentiate the action of CONSTANS in regulation of flowering in Arabidopsis; we show that the transcriptional activation function of CONSTANS can be substituted by direct fusion of the EDLL activation motif to NF-YB subunits. The EDLL motif represents a potent plant activation domain that can be used as a tool to confer transcriptional activation potential to heterologous DNA-binding proteins.

  8. Fission Yeast Hotspot Sequence Motifs Are Also Active in Budding Yeast

    PubMed Central

    Steiner, Walter W.; Steiner, Estelle M.

    2012-01-01

    In most organisms, including humans, meiotic recombination occurs preferentially at a limited number of sites in the genome known as hotspots. There has been substantial progress recently in elucidating the factors determining the location of meiotic recombination hotspots, and it is becoming clear that simple sequence motifs play a significant role. In S. pombe, there are at least five unique sequence motifs that have been shown to produce hotspots of recombination, and it is likely that there are more. In S. cerevisiae, simple sequence motifs have also been shown to produce hotspots or show significant correlations with hotspots. Some of the hotspot motifs in both yeasts are known or suspected to bind transcription factors (TFs), which are required for the activity of those hotspots. Here we show that four of the five hotspot motifs identified in S. pombe also create hotspots in the distantly related budding yeast S. cerevisiae. For one of these hotspots, M26 (also called CRE), we identify TFs, Cst6 and Sko1, that activate and inhibit the hotspot, respectively. In addition, two of the hotspot motifs show significant correlations with naturally occurring hotspots. The conservation of these hotspots between the distantly related fission and budding yeasts suggests that these sequence motifs, and others yet to be discovered, may function widely as hotspots in many diverse organisms. PMID:23300865

  9. Miz-1 activates gene expression via a novel consensus DNA binding motif.

    PubMed

    Barrilleaux, Bonnie L; Burow, Dana; Lockwood, Sarah H; Yu, Abigail; Segal, David J; Knoepfler, Paul S

    2014-01-01

    The transcription factor Miz-1 can either activate or repress gene expression in concert with binding partners including the Myc oncoprotein. The genomic binding of Miz-1 includes both core promoters and more distal sites, but the preferred DNA binding motif of Miz-1 has been unclear. We used a high-throughput in vitro technique, Bind-n-Seq, to identify two Miz-1 consensus DNA binding motif sequences--ATCGGTAATC and ATCGAT (Mizm1 and Mizm2)--bound by full-length Miz-1 and its zinc finger domain, respectively. We validated these sequences directly as high affinity Miz-1 binding motifs. Competition assays using mutant probes indicated that the binding affinity of Miz-1 for Mizm1 and Mizm2 is highly sequence-specific. Miz-1 strongly activates gene expression through the motifs in a Myc-independent manner. MEME-ChIP analysis of Miz-1 ChIP-seq data in two different cell types reveals a long motif with a central core sequence highly similar to the Mizm1 motif identified by Bind-n-Seq, validating the in vivo relevance of the findings. Miz-1 ChIP-seq peaks containing the long motif are predominantly located outside of proximal promoter regions, in contrast to peaks without the motif, which are highly concentrated within 1.5 kb of the nearest transcription start site. Overall, our results indicate that Miz-1 may be directed in vivo to the novel motif sequences we have identified, where it can recruit its specific binding partners to control gene expression and ultimately regulate cell fate. PMID:24983942

  10. A conserved motif mediates both multimer formation and allosteric activation of phosphoglycerate mutase 5.

    PubMed

    Wilkins, Jordan M; McConnell, Cyrus; Tipton, Peter A; Hannink, Mark

    2014-09-01

    Phosphoglycerate mutase 5 (PGAM5) is an atypical mitochondrial Ser/Thr phosphatase that modulates mitochondrial dynamics and participates in both apoptotic and necrotic cell death. The mechanisms that regulate the phosphatase activity of PGAM5 are poorly understood. The C-terminal phosphoglycerate mutase domain of PGAM5 shares homology with the catalytic domains found in other members of the phosphoglycerate mutase family, including a conserved histidine that is absolutely required for catalytic activity. However, this conserved domain is not sufficient for maximal phosphatase activity. We have identified a highly conserved amino acid motif, WDXNWD, located within the unique N-terminal region, which is required for assembly of PGAM5 into large multimeric complexes. Alanine substitutions within the WDXNWD motif abolish the formation of multimeric complexes and markedly reduce phosphatase activity of PGAM5. A peptide containing the WDXNWD motif dissociates the multimeric complex and reduces but does not fully abolish phosphatase activity. Addition of the WDXNWD-containing peptide in trans to a mutant PGAM5 protein lacking the WDXNWD motif markedly increases phosphatase activity of the mutant protein. Our results are consistent with an intermolecular allosteric regulation mechanism for the phosphatase activity of PGAM5, in which the assembly of PGAM5 into multimeric complexes, mediated by the WDXNWD motif, results in maximal activation of phosphatase activity. Our results suggest the possibility of identifying small molecules that function as allosteric regulators of the phosphatase activity of PGAM5. PMID:25012655

  11. Pyrimidone-based series of glucokinase activators with alternative donor-acceptor motif.

    PubMed

    Filipski, Kevin J; Guzman-Perez, Angel; Bian, Jianwei; Perreault, Christian; Aspnes, Gary E; Didiuk, Mary T; Dow, Robert L; Hank, Richard F; Jones, Christopher S; Maguire, Robert J; Tu, Meihua; Zeng, Dongxiang; Liu, Shenping; Knafels, John D; Litchfield, John; Atkinson, Karen; Derksen, David R; Bourbonais, Francis; Gajiwala, Ketan S; Hickey, Michael; Johnson, Theodore O; Humphries, Paul S; Pfefferkorn, Jeffrey A

    2013-08-15

    Glucokinase activators are a class of experimental agents under investigation as a therapy for Type 2 diabetes mellitus. An X-ray crystal structure of a modestly potent agent revealed the potential to substitute the common heterocyclic amide donor-acceptor motif for a pyridone moiety. We have successfully demonstrated that both pyridone and pyrimidone heterocycles can be used as a potent donor-acceptor substituent. Several sub-micromolar analogs that possess the desired partial activator profile were synthesized and characterized. Unfortunately, the most potent activators suffered from sub-optimal pharmacokinetic properties. Nonetheless, these donor-acceptor motifs may find utility in other glucokinase activator series or beyond.

  12. Subtle Changes in Motif Positioning Cause Tissue-Specific Effects on Robustness of an Enhancer's Activity

    PubMed Central

    Erceg, Jelena; Saunders, Timothy E.; Girardot, Charles; Devos, Damien P.; Hufnagel, Lars; Furlong, Eileen E. M.

    2014-01-01

    Deciphering the specific contribution of individual motifs within cis-regulatory modules (CRMs) is crucial to understanding how gene expression is regulated and how this process is affected by sequence variation. But despite vast improvements in the ability to identify where transcription factors (TFs) bind throughout the genome, we are limited in our ability to relate information on motif occupancy to function from sequence alone. Here, we engineered 63 synthetic CRMs to systematically assess the relationship between variation in the content and spacing of motifs within CRMs to CRM activity during development using Drosophila transgenic embryos. In over half the cases, very simple elements containing only one or two types of TF binding motifs were capable of driving specific spatio-temporal patterns during development. Different motif organizations provide different degrees of robustness to enhancer activity, ranging from binary on-off responses to more subtle effects including embryo-to-embryo and within-embryo variation. By quantifying the effects of subtle changes in motif organization, we were able to model biophysical rules that explain CRM behavior and may contribute to the spatial positioning of CRM activity in vivo. For the same enhancer, the effects of small differences in motif positions varied in developmentally related tissues, suggesting that gene expression may be more susceptible to sequence variation in one tissue compared to another. This result has important implications for human eQTL studies in which many associated mutations are found in cis-regulatory regions, though the mechanism for how they affect tissue-specific gene expression is often not understood. PMID:24391522

  13. MICU1 motifs define mitochondrial calcium uniporter binding and activity.

    PubMed

    Hoffman, Nicholas E; Chandramoorthy, Harish C; Shamugapriya, Santhanam; Zhang, Xueqian; Rajan, Sudarsan; Mallilankaraman, Karthik; Gandhirajan, Rajesh Kumar; Vagnozzi, Ronald J; Ferrer, Lucas M; Sreekrishnanilayam, Krishnalatha; Natarajaseenivasan, Kalimuthusamy; Vallem, Sandhya; Force, Thomas; Choi, Eric T; Cheung, Joseph Y; Madesh, Muniswamy

    2013-12-26

    Resting mitochondrial matrix Ca(2+) is maintained through a mitochondrial calcium uptake 1 (MICU1)-established threshold inhibition of mitochondrial calcium uniporter (MCU) activity. It is not known how MICU1 interacts with MCU to establish this Ca(2+) threshold for mitochondrial Ca(2+) uptake and MCU activity. Here, we show that MICU1 localizes to the mitochondrial matrix side of the inner mitochondrial membrane and MICU1/MCU binding is determined by a MICU1 N-terminal polybasic domain and two interacting coiled-coil domains of MCU. Further investigation reveals that MICU1 forms homo-oligomers, and this oligomerization is independent of the polybasic region. However, the polybasic region confers MICU1 oligomeric binding to MCU and controls mitochondrial Ca(2+) current (IMCU). Moreover, MICU1 EF hands regulate MCU channel activity, but do not determine MCU binding. Loss of MICU1 promotes MCU activation leading to oxidative burden and a halt to cell migration. These studies establish a molecular mechanism for MICU1 control of MCU-mediated mitochondrial Ca(2+) accumulation, and dysregulation of this mechanism probably enhances vascular dysfunction.

  14. Function-based classification of carbohydrate-active enzymes by recognition of short, conserved peptide motifs.

    PubMed

    Busk, Peter Kamp; Lange, Lene

    2013-06-01

    Functional prediction of carbohydrate-active enzymes is difficult due to low sequence identity. However, similar enzymes often share a few short motifs, e.g., around the active site, even when the overall sequences are very different. To exploit this notion for functional prediction of carbohydrate-active enzymes, we developed a simple algorithm, peptide pattern recognition (PPR), that can divide proteins into groups of sequences that share a set of short conserved sequences. When this method was used on 118 glycoside hydrolase 5 proteins with 9% average pairwise identity and representing four characterized enzymatic functions, 97% of the proteins were sorted into groups correlating with their enzymatic activity. Furthermore, we analyzed 8,138 glycoside hydrolase 13 proteins including 204 experimentally characterized enzymes with 28 different functions. There was a 91% correlation between group and enzyme activity. These results indicate that the function of carbohydrate-active enzymes can be predicted with high precision by finding short, conserved motifs in their sequences. The glycoside hydrolase 61 family is important for fungal biomass conversion, but only a few proteins of this family have been functionally characterized. Interestingly, PPR divided 743 glycoside hydrolase 61 proteins into 16 subfamilies useful for targeted investigation of the function of these proteins and pinpointed three conserved motifs with putative importance for enzyme activity. Furthermore, the conserved sequences were useful for cloning of new, subfamily-specific glycoside hydrolase 61 proteins from 14 fungi. In conclusion, identification of conserved sequence motifs is a new approach to sequence analysis that can predict carbohydrate-active enzyme functions with high precision. PMID:23524681

  15. Function-based classification of carbohydrate-active enzymes by recognition of short, conserved peptide motifs.

    PubMed

    Busk, Peter Kamp; Lange, Lene

    2013-06-01

    Functional prediction of carbohydrate-active enzymes is difficult due to low sequence identity. However, similar enzymes often share a few short motifs, e.g., around the active site, even when the overall sequences are very different. To exploit this notion for functional prediction of carbohydrate-active enzymes, we developed a simple algorithm, peptide pattern recognition (PPR), that can divide proteins into groups of sequences that share a set of short conserved sequences. When this method was used on 118 glycoside hydrolase 5 proteins with 9% average pairwise identity and representing four characterized enzymatic functions, 97% of the proteins were sorted into groups correlating with their enzymatic activity. Furthermore, we analyzed 8,138 glycoside hydrolase 13 proteins including 204 experimentally characterized enzymes with 28 different functions. There was a 91% correlation between group and enzyme activity. These results indicate that the function of carbohydrate-active enzymes can be predicted with high precision by finding short, conserved motifs in their sequences. The glycoside hydrolase 61 family is important for fungal biomass conversion, but only a few proteins of this family have been functionally characterized. Interestingly, PPR divided 743 glycoside hydrolase 61 proteins into 16 subfamilies useful for targeted investigation of the function of these proteins and pinpointed three conserved motifs with putative importance for enzyme activity. Furthermore, the conserved sequences were useful for cloning of new, subfamily-specific glycoside hydrolase 61 proteins from 14 fungi. In conclusion, identification of conserved sequence motifs is a new approach to sequence analysis that can predict carbohydrate-active enzyme functions with high precision.

  16. Identifying repeating motifs in the activation of synchronized bursts in cultured neuronal networks.

    PubMed

    Raichman, Nadav; Ben-Jacob, Eshel

    2008-05-15

    Cultured neuronal networks cultivated on micro-electrode arrays are a widely used tool for the investigation of network mechanisms, providing structural framework for long-term recordings of network electrical activity, as well as the network reaction to electrical or chemical stimulations. The typical activity pattern of the culture takes the form of synchronized bursting events (SBEs), in which a large fraction of the recorded neurons simultaneously fire trains of action potentials in short bursts of several hundreds of a millisecond. We developed a method that identifies clusters of bursts that share a similar activation motif throughout the culture based on the fact that the culture morphology remains relatively unchanged for an extended time interval and that neurons fire in a recognizable and precise manner during a burst initiation. Our method compares accuracies in time delays that occurred between the activation of spike-trains of different neurons. Three culture architectures were studied and analyzed: a large network of 2 million cells, a smaller network limited in size of 100,000 cells, and a large network divided into 4 clusters. In each of the morphologies we identified cultures that showed more than one activation motif. Clustered networks showed more motifs on average than uniform cultures. The algorithm was able to show high fidelity to artificial noise. We also compare the results of our method with another method based on a correlation measure.

  17. DNAM-1 controls NK cell activation via an ITT-like motif

    PubMed Central

    Zhang, Zhanguang; Wu, Ning; Lu, Yan; Davidson, Dominique; Colonna, Marco

    2015-01-01

    DNAM-1 (CD226) is an activating receptor expressed on natural killer (NK) cells, CD8+ T cells, and other immune cells. Upon recognition of its ligands, CD155 and CD112, DNAM-1 promotes NK cell–mediated elimination of transformed and virus-infected cells. It also has a key role in expansion and maintenance of virus-specific memory NK cells. Herein, the mechanism by which DNAM-1 controls NK cell–mediated cytotoxicity and cytokine production was elucidated. Cytotoxicity and cytokine production triggered by DNAM-1 were mediated via a conserved tyrosine- and asparagine-based motif in the cytoplasmic domain of DNAM-1. Upon phosphorylation by Src kinases, this motif enabled binding of DNAM-1 to adaptor Grb2, leading to activation of enzymes Vav-1, phosphatidylinositol 3′ kinase, and phospholipase C-γ1. It also promoted activation of kinases Erk and Akt, and calcium fluxes. Although, as reported, DNAM-1 promoted adhesion, this function was signal-independent and insufficient to promote cytotoxicity. DNAM-1 signaling was also required to enhance cytotoxicity, by increasing actin polymerization and granule polarization. We propose that DNAM-1 promotes NK cell activation via an immunoreceptor tyrosine tail (ITT)–like motif coupling DNAM-1 to Grb2 and other downstream effectors. PMID:26552706

  18. Mitogen-activated protein kinase 4-like carrying an MEY motif instead of a TXY motif is involved in ozone tolerance and regulation of stomatal closure in tobacco.

    PubMed

    Yanagawa, Yuki; Yoda, Hiroshi; Osaki, Kohei; Amano, Yuta; Aono, Mitsuko; Seo, Shigemi; Kuchitsu, Kazuyuki; Mitsuhara, Ichiro

    2016-05-01

    The mitogen-activated protein kinases (MAPKs/MPKs) are important factors in the regulation of signal transduction in response to biotic and abiotic stresses. Previously, we characterized a MAPK from tobacco, Nicotiana tabacum MPK4 (NtMPK4). Here, we found a highly homologous gene, NtMPK4-like (NtMPK4L), in tobacco as well as other species in Solanaceae and Gramineae. Deduced amino acid sequences of their translation products carried MEY motifs instead of conserved TXY motifs of the MAPK family. We isolated the full length NtMPK4L gene and examined the physiological functions of NtMPK4L. We revealed that NtMPK4L was activated by wounding, like NtMPK4. However, a constitutively active salicylic acid-induced protein kinase kinase (SIPKK(EE)), which phosphorylates NtMPK4, did not phosphorylate NtMPK4L. Moreover, a tyrosine residue in the MEY motif was not involved in NtMPK4L activation. We also found that NtMPK4L-silenced plants showed rapid transpiration caused by remarkably open stomata. In addition, NtMPK4L-silenced plants completely lost the ability to close stomata upon ozone treatment and were highly sensitive to ozone, suggesting that this atypical MAPK plays a role in ozone tolerance through stomatal regulation. PMID:27126796

  19. Multiple Binding Modes between HNF4[alpha] and the LXXLL Motifs of PGC-1[alpha] Lead to Full Activation

    SciTech Connect

    Rha, Geun Bae; Wu, Guangteng; Shoelson, Steven E.; Chi, Young-In

    2010-04-15

    Hepatocyte nuclear factor 4{alpha} (HNF4{alpha}) is a novel nuclear receptor that participates in a hierarchical network of transcription factors regulating the development and physiology of such vital organs as the liver, pancreas, and kidney. Among the various transcriptional coregulators with which HNF4{alpha} interacts, peroxisome proliferation-activated receptor {gamma} (PPAR{gamma}) coactivator 1{alpha} (PGC-1{alpha}) represents a novel coactivator whose activation is unusually robust and whose binding mode appears to be distinct from that of canonical coactivators such as NCoA/SRC/p160 family members. To elucidate the potentially unique molecular mechanism of PGC-1{alpha} recruitment, we have determined the crystal structure of HNF4{alpha} in complex with a fragment of PGC-1{alpha} containing all three of its LXXLL motifs. Despite the presence of all three LXXLL motifs available for interactions, only one is bound at the canonical binding site, with no additional contacts observed between the two proteins. However, a close inspection of the electron density map indicates that the bound LXXLL motif is not a selected one but an averaged structure of more than one LXXLL motif. Further biochemical and functional studies show that the individual LXXLL motifs can bind but drive only minimal transactivation. Only when more than one LXXLL motif is involved can significant transcriptional activity be measured, and full activation requires all three LXXLL motifs. These findings led us to propose a model wherein each LXXLL motif has an additive effect, and the multiple binding modes by HNF4{alpha} toward the LXXLL motifs of PGC-1{alpha} could account for the apparent robust activation by providing a flexible mechanism for combinatorial recruitment of additional coactivators and mediators.

  20. A Conserved GPG-Motif in the HIV-1 Nef Core Is Required for Principal Nef-Activities.

    PubMed

    Martínez-Bonet, Marta; Palladino, Claudia; Briz, Veronica; Rudolph, Jochen M; Fackler, Oliver T; Relloso, Miguel; Muñoz-Fernandez, Maria Angeles; Madrid, Ricardo

    2015-01-01

    To find out new determinants required for Nef activity we performed a functional alanine scanning analysis along a discrete but highly conserved region at the core of HIV-1 Nef. We identified the GPG-motif, located at the 121-137 region of HIV-1 NL4.3 Nef, as a novel protein signature strictly required for the p56Lck dependent Nef-induced CD4-downregulation in T-cells. Since the Nef-GPG motif was dispensable for CD4-downregulation in HeLa-CD4 cells, Nef/AP-1 interaction and Nef-dependent effects on Tf-R trafficking, the observed effects on CD4 downregulation cannot be attributed to structure constraints or to alterations on general protein trafficking. Besides, we found that the GPG-motif was also required for Nef-dependent inhibition of ring actin re-organization upon TCR triggering and MHCI downregulation, suggesting that the GPG-motif could actively cooperate with the Nef PxxP motif for these HIV-1 Nef-related effects. Finally, we observed that the Nef-GPG motif was required for optimal infectivity of those viruses produced in T-cells. According to these findings, we propose the conserved GPG-motif in HIV-1 Nef as functional region required for HIV-1 infectivity and therefore with a potential interest for the interference of Nef activity during HIV-1 infection. PMID:26700863

  1. A Conserved GPG-Motif in the HIV-1 Nef Core Is Required for Principal Nef-Activities

    PubMed Central

    Martínez-Bonet, Marta; Palladino, Claudia; Briz, Veronica; Rudolph, Jochen M.; Fackler, Oliver T.; Relloso, Miguel; Muñoz-Fernandez, Maria Angeles; Madrid, Ricardo

    2015-01-01

    To find out new determinants required for Nef activity we performed a functional alanine scanning analysis along a discrete but highly conserved region at the core of HIV-1 Nef. We identified the GPG-motif, located at the 121–137 region of HIV-1 NL4.3 Nef, as a novel protein signature strictly required for the p56Lck dependent Nef-induced CD4-downregulation in T-cells. Since the Nef-GPG motif was dispensable for CD4-downregulation in HeLa-CD4 cells, Nef/AP-1 interaction and Nef-dependent effects on Tf-R trafficking, the observed effects on CD4 downregulation cannot be attributed to structure constraints or to alterations on general protein trafficking. Besides, we found that the GPG-motif was also required for Nef-dependent inhibition of ring actin re-organization upon TCR triggering and MHCI downregulation, suggesting that the GPG-motif could actively cooperate with the Nef PxxP motif for these HIV-1 Nef-related effects. Finally, we observed that the Nef-GPG motif was required for optimal infectivity of those viruses produced in T-cells. According to these findings, we propose the conserved GPG-motif in HIV-1 Nef as functional region required for HIV-1 infectivity and therefore with a potential interest for the interference of Nef activity during HIV-1 infection. PMID:26700863

  2. Potentiation of TRAIL killing activity by multimerization through isoleucine zipper hexamerization motif

    PubMed Central

    Han, Ji Hye; Moon, Ae Ran; Chang, Jeong Hwan; Bae, Jeehyeon; Choi, Jin Myung; Lee, Sung Haeng; Kim, Tae-Hyoung

    2016-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a homo-trimeric cytotoxic ligand. Several studies have demonstrated that incorporation of artificial trimerization motifs into the TRAIL protein leads to the enhancement of biological activity. Here, we show that linkage of the isoleucine zipper hexamerization motif to the N-terminus of TRAIL, referred as ILz(6):TRAIL, leads to multimerization of its trimeric form, which has higher cytotoxic activity compared to its native state. Size exclusion chromatography of ILz(6):TRAIL revealed possible existence of various forms such as trimeric, hexameric, and multimeric (possibly containing one-, two-, and multi-units of trimeric TRAIL, respectively). Increased number of multimerized ILz(6):TRAIL units corresponded with enhanced cytotoxic activity. Further, a high degree of ILz(6):TRAIL multimerization triggered rapid signaling events such as activation of caspases, tBid generation, and chromatin condensation. Taken together, these results indicate that multimerization of TRAIL significantly enhances its cytotoxic activity. [BMB Reports 2016; 49(5): 282-287] PMID:26674343

  3. A role for the ITAM signaling module in specifying cytokine-receptor functions

    PubMed Central

    Bezbradica, Jelena S; Rosenstein, Rachel K; DeMarco, Richard A; Brodsky, Igor; Medzhitov, Ruslan

    2014-01-01

    Diverse cellular responses to external cues are controlled by a small number of signal-transduction pathways, but how the specificity of functional outcomes is achieved remains unclear. Here we describe a mechanism for signal integration based on the functional coupling of two distinct signaling pathways widely used in leukocytes: the ITAM pathway and the Jak-STAT pathway. Through the use of the receptor for interferon-γ (IFN-γR) and the ITAM adaptor Fcγ as an example, we found that IFN-γ modified responses of the phagocytic antibody receptor FcγRI (CD64) to specify cell-autonomous antimicrobial functions. Unexpectedly, we also found that in peritoneal macrophages, IFN-γR itself required tonic signaling from Fcγ through the kinase PI(3)K for the induction of a subset of IFN-γ-specific antimicrobial functions. Our findings may be generalizable to other ITAM and Jak-STAT signaling pathways and may help explain signal integration by those pathways. PMID:24608040

  4. Novel DNA Motif Binding Activity Observed In Vivo With an Estrogen Receptor α Mutant Mouse

    PubMed Central

    Li, Leping; Grimm, Sara A.; Winuthayanon, Wipawee; Hamilton, Katherine J.; Pockette, Brianna; Rubel, Cory A.; Pedersen, Lars C.; Fargo, David; Lanz, Rainer B.; DeMayo, Francesco J.; Schütz, Günther; Korach, Kenneth S.

    2014-01-01

    Estrogen receptor α (ERα) interacts with DNA directly or indirectly via other transcription factors, referred to as “tethering.” Evidence for tethering is based on in vitro studies and a widely used “KIKO” mouse model containing mutations that prevent direct estrogen response element DNA- binding. KIKO mice are infertile, due in part to the inability of estradiol (E2) to induce uterine epithelial proliferation. To elucidate the molecular events that prevent KIKO uterine growth, regulation of the pro-proliferative E2 target gene Klf4 and of Klf15, a progesterone (P4) target gene that opposes the pro-proliferative activity of KLF4, was evaluated. Klf4 induction was impaired in KIKO uteri; however, Klf15 was induced by E2 rather than by P4. Whole uterine chromatin immunoprecipitation-sequencing revealed enrichment of KIKO ERα binding to hormone response elements (HREs) motifs. KIKO binding to HRE motifs was verified using reporter gene and DNA-binding assays. Because the KIKO ERα has HRE DNA-binding activity, we evaluated the “EAAE” ERα, which has more severe DNA-binding domain mutations, and demonstrated a lack of estrogen response element or HRE reporter gene induction or DNA-binding. The EAAE mouse has an ERα null–like phenotype, with impaired uterine growth and transcriptional activity. Our findings demonstrate that the KIKO mouse model, which has been used by numerous investigators, cannot be used to establish biological functions for ERα tethering, because KIKO ERα effectively stimulates transcription using HRE motifs. The EAAE-ERα DNA-binding domain mutant mouse demonstrates that ERα DNA-binding is crucial for biological and transcriptional processes in reproductive tissues and that ERα tethering may not contribute to estrogen responsiveness in vivo. PMID:24713037

  5. The protein tyrosine phosphatase PTPN4/PTP-MEG1, an enzyme capable of dephosphorylating the TCR ITAMs and regulating NF-κB, is dispensable for T cell development and/or T cell effector functions

    PubMed Central

    Young, Jennifer A.; Becker, Amy M.; Medeiros, Jennifer J.; Shapiro, Virginia S.; Wang, Andrew; Farrar, J. David; Quill, Timothy A.; van Huijsduijnen, Rob Hooft; van Oers, Nicolai S.C.

    2008-01-01

    T cell receptor signaling processes are controlled by the integrated actions of families of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPases). Several distinct cytosolic protein tyrosine phosphatases have been described that are able to negatively regulate TCR signaling pathways, including SHP-1, SHP-2, PTPH1, and PEP. Using PTPase substrate-trapping mutants and wild type enzymes, we determined that PTPN4/PTP-MEG1, a PTPH1-family member, could complex and dephosphorylate the ITAMs of the TCR ζ subunit. In addition, the substrate-trapping derivative augmented basal and TCR-induced activation of NF-κB in T cells. To characterize the contribution of this PTPase in T cells, we developed PTPN4-deficient mice. T cell development and TCR signaling events were comparable between wild type and PTPN4-deficient animals. The magnitude and duration of TCR-regulated ITAM phosphorylation, as well as overall protein phosphorylation, was unaltered in the absence of PTPN4. Finally, Th1- and Th2-derived cytokines and in vivo immune responses to Listeria monocytogeneswere equivalent between wild type and PTPN4-deficient mice. These findings suggest that additional PTPases are involved in controlling ITAM phosphorylations. PMID:18614237

  6. The ABBA motif binds APC/C activators and is shared by APC/C substrates and regulators

    PubMed Central

    Hagting, Anja; Izawa, Daisuke; Mansfeld, Jörg; Gibson, Toby J.; Pines, Jonathon

    2016-01-01

    The APC/C is the ubiquitin ligase that regulates mitosis by targeting specific proteins for degradation at specific times under the control of the Spindle Assembly Checkpoint (SAC). How the APC/C recognises its different substrates is a key problem in the control of cell division. Here, we have identified the ABBA motif in Cyclin A, BUBR1, BUB1 and Acm1, and show that it binds to the APC/C co-activator CDC20. The ABBA motif in Cyclin A is required for its proper degradation in prometaphase through competing with BUBR1 for the same site on CDC20. Moreover, the ABBA motifs in BUBR1 and BUB1 are necessary for the SAC to work at full strength and to recruit CDC20 to kinetochores. Thus, we have identified a conserved motif integral to the proper control of mitosis that connects APC/C substrate recognition with the SAC. PMID:25669885

  7. Probing the active site loop motif of murine ferrochelatase by random mutagenesis.

    PubMed

    Shi, Zhen; Ferreira, Gloria C

    2004-05-01

    Ferrochelatase catalyzes the terminal step of the heme biosynthetic pathway by inserting ferrous iron into protoporphyrin IX. A conserved loop motif was shown to form part of the active site and contact the bound porphyrin by molecular dynamics calculations and structural analysis. We applied a random mutagenesis approach and steady-state kinetic analysis to assess the role of the loop motif in murine ferrochelatase function, particularly with respect to porphyrin interaction. Functional substitutions in the 10 consecutive loop positions Gln(248)-Leu(257) were identified by genetic complementation in Escherichia coli strain Deltavis. Lys(250), Val(251), Pro(253), Val(254), and Pro(255) tolerated a variety of replacements including single substitutions and contained low informational content. Gln(248), Ser(249), Gly(252), Trp(256), and Leu(257) possessed high informational content, since permissible replacements were limited and only observed in multiply substituted mutants. Selected active loop variants exhibited k(cat) values comparable with or higher than that of wild-type murine ferrochelatase. The K(m) values for porphyrin increased, except for the single mutant V251L. Other than a moderate increase observed in the triple mutant S249A/K250Q/V251C, the K(m) values for Fe(2+) were lowered. The k(cat)/K(m) for porphyrin remained largely unchanged, with the exception of a 10-fold reduction in the triple mutant K250M/V251L/W256Y. The k(cat)/K(m) for Fe(2+) was improved. Molecular modeling of these active loop variants indicated that loop mutations resulted in alterations of the active site architecture. However, despite the plasticity of the loop primary structure, the relative spatial positioning of the loop in the active site appeared to be maintained in functional variants, supporting a role for the loop in ferrochelatase function. PMID:14981080

  8. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    SciTech Connect

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun Nishina, Hiroshi

    2014-01-17

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription.

  9. Homology modeling studies of yeast Mitogen-Activated Protein Kinases (MAPKS): structural motifs as a basis for specificity.

    PubMed

    Smith, D L; Nilar, S H

    2010-06-01

    Mitogen-activated protein kinases (MAPKs) are key components of cellular signal transduction. It is the objective of this communication to demonstrate that insight into protein-protein interactions in the Common Docking motif of yeast mitogen-activated protein kinases can be obtained based on homology models. Homology models for four yeast MAPKs, FUS3, KSS1, HOG1 and MPK1 were built based on the X-ray structures of active and inactive rat ERK2. The structural motifs required for the basis of specificity were rationalized based on these structures. PMID:19995338

  10. Signaling pathways activated by a protease allergen in basophils

    PubMed Central

    Rosenstein, Rachel K.; Bezbradica, Jelena S.; Yu, Shuang; Medzhitov, Ruslan

    2014-01-01

    Allergic diseases represent a significant burden in industrialized countries, but why and how the immune system responds to allergens remain largely unknown. Because many clinically significant allergens have proteolytic activity, and many helminths express proteases that are necessary for their life cycles, host mechanisms likely have evolved to detect the proteolytic activity of helminth proteases, which may be incidentally activated by protease allergens. A cysteine protease, papain, is a prototypic protease allergen that can directly activate basophils and mast cells, leading to the production of cytokines, including IL-4, characteristic of the type 2 immune response. The mechanism of papain’s immunogenic activity remains unknown. Here we have characterized the cellular response activated by papain in basophils. We find that papain-induced IL-4 production requires calcium flux and activation of PI3K and nuclear factor of activated T cells. Interestingly, papain-induced IL-4 production was dependent on the immunoreceptor tyrosine-based activation motif (ITAM) adaptor protein Fc receptor γ-chain, even though the canonical ITAM signaling was not activated by papain. Collectively, these data characterize the downstream signaling pathway activated by a protease allergen in basophils. PMID:25369937

  11. The PP-motif in luminal loop 2 of ZnT transporters plays a pivotal role in TNAP activation.

    PubMed

    Fujimoto, Shigeyuki; Tsuji, Tokuji; Fujiwara, Takashi; Takeda, Taka-Aki; Merriman, Chengfeng; Fukunaka, Ayako; Nishito, Yukina; Fu, Dax; Hoch, Eitan; Sekler, Israel; Fukue, Kazuhisa; Miyamae, Yusaku; Masuda, Seiji; Nagao, Masaya; Kambe, Taiho

    2016-09-01

    Secretory and membrane-bound zinc-requiring enzymes are thought to be activated by binding zinc in the early secretory pathway. One such enzyme, tissue-non-specific alkaline phosphatase (TNAP), is activated through a two-step mechanism, via protein stabilization and subsequent enzyme activation through metalation, by ZnT5-ZnT6 heterodimers or ZnT7 homodimers. However, little is known about the molecular basis underlying the activation process. In the present study, we found that the di-proline motif (PP-motif) in luminal loop 2 of ZnT5 and ZnT7 is important for TNAP activation. TNAP activity was significantly reduced in cells lacking ZnT5-ZnT6 heterodimers and ZnT7 homodimers [triple knockout (TKO) cells]. The decreased TNAP activity was restored by expressing hZnT5 with hZnT6 or hZnT7, but significantly less so (almost 90% less) by expressing mutants thereof in which the PP-motif was mutated to alanine (PP-AA). In TKO cells, overexpressed hTNAP was not completely activated, and it was converted less efficiently into the holo form by expressing a PP-AA mutant of hZnT5 with hZnT6, whose defects were not restored by zinc supplementation. The zinc transport activity of hZnT7 was not significantly impaired by the PP-AA mutation, indicating that the PP-motif is involved in the TNAP maturation process, although it does not control zinc transport activity. The PP-motif is highly conserved in ZnT5 and ZnT7 orthologues, and its importance for TNAP activation is conserved in the Caenorhabditis elegans hZnT5 orthologue CDF5. These results provide novel molecular insights into the TNAP activation process in the early secretory pathway. PMID:27303047

  12. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity.

    PubMed

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun; Nishina, Hiroshi

    2014-01-17

    YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP's functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP's co-activation of TEAD-mediated CTGF transcription.

  13. Synthesis, anti-mycobacterial activity and DNA sequence-selectivity of a library of biaryl-motifs containing polyamides.

    PubMed

    Brucoli, Federico; Guzman, Juan D; Maitra, Arundhati; James, Colin H; Fox, Keith R; Bhakta, Sanjib

    2015-07-01

    The alarming rise of extensively drug-resistant tuberculosis (XDR-TB) strains, compel the development of new molecules with novel modes of action to control this world health emergency. Distamycin analogues containing N-terminal biaryl-motifs 2(1-5)(1-7) were synthesised using a solution-phase approach and evaluated for their anti-mycobacterial activity and DNA-sequence selectivity. Thiophene dimer motif-containing polyamide 2(2,6) exhibited 10-fold higher inhibitory activity against Mycobacterium tuberculosis compared to distamycin and library member 2(5,7) showed high binding affinity for the 5'-ACATAT-3' sequence.

  14. Shrinkage activates a nonselective conductance: involvement of a Walker-motif protein and PKC.

    PubMed

    Nelson, D J; Tien, X Y; Xie, W; Brasitus, T A; Kaetzel, M A; Dedman, J R

    1996-01-01

    The ability of all cells to maintain their volume during an osmotic challenge is dependent on the regulated movement of salt and water across the plasma membrane. We demonstrate the phosphorylation-dependent gating of a nonselective conductance in Caco-2 cells during cellular shrinkage. Intracellular application of exogenous purified rat brain protein kinase C (PKC) resulted in the activation of a current similar to that activated during shrinkage with a Na(+)-to-Cl- permeability ratio of approximately 1.7:1. To prevent possible PKC- and/or shrinkage-dependent activation of cystic fibrosis transmembrane regulator (CFTR), which is expressed at high levels in Caco-2 cells, a functional anti-peptide antibody, anti-CFTR505-511, was introduced into the cells via the patch pipette. Anti-CFTR505-511, which is directed against the Walker motif in the first nucleotide binding fold of CFTR, prevented the PKC/shrink-age current activation. The peptide CFTR505-511 also induced current inhibition, suggesting the possible involvement of a regulatory element in close proximity to the channel that shares sequence homology with the first nucleotide binding fold of CFTR and whose binding to the channel is required for channel gating. PMID:8772443

  15. Large scale organization of rat sensorimotor cortex based on a motif of large activation spreads

    PubMed Central

    Frostig, Ron D.; Xiong, Ying; Chen-Bee, Cynthia H.; Kvašňák, Eugen; Stehberg, Jimmy

    2008-01-01

    Parcellation according to function (e.g., visual, somatosensory, auditory, motor) is considered a fundamental property of sensorimotor cortical organization, traditionally defined from cytoarchitectonics and mapping studies relying on peak evoked neuronal activity. In the adult rat, stimulation of single whiskers evokes peak activity at topographically appropriate locations within somatosensory cortex and provides an example of cortical functional specificity. Here, we show that single whisker stimulation also evokes symmetrical areas of supra- and sub-threshold neuronal activation that spread extensively away from peak activity, effectively ignoring cortical borders by spilling deeply into multiple cortical territories of different modalities (auditory, visual and motor), where they were blocked by localized neuronal activity blocker injections and thus ruled out as possibly due to ‘volume conductance’. These symmetrical activity spreads were supported by underlying border-crossing, long-range horizontal connections as confirmed with transection experiments and injections of anterograde neuronal tracer experiments. We found such large evoked activation spreads and their underlying connections irrespective of whisker identity, cortical layer, or axis of recorded responses, thereby revealing a large scale nonspecific organization of sensorimotor cortex based on a motif of large symmetrical activation spreads. Because the large activation spreads and their underlying horizontal connections ignore anatomical borders between cortical modalities, sensorimotor cortex could therefore be viewed as a continuous entity rather than a collection of discrete, delineated unimodal regions – an organization that could co-exist with established specificity of cortical organization and that could serve as a substrate for associative learning, direct multimodal integration and recovery of function following injury. PMID:19052219

  16. Development of a salicylic acid inducible minimal sub-genomic transcript promoter from Figwort mosaic virus with enhanced root- and leaf-activity using TGACG motif rearrangement.

    PubMed

    Kumar, Deepak; Patro, Sunita; Ghosh, Jayasish; Das, Abhimanyu; Maiti, Indu B; Dey, Nrisingha

    2012-07-15

    In Figwort mosaic virus sub-genomic transcript promoter (F-Sgt), function of the TGACG-regulatory motif, was investigated in the background of artificially designed promoter sequences. The 131bp (FS, -100 to +31) long F-Sgt promoter sequence containing one TGACG motif [FS-(TGACG)] was engineered to generate a set of three modified promoter constructs: [FS-(TGACG)(2), containing one additional TGACG motif at 7 nucleotides upstream of the original one], [FS-(TGACG)(3), containing two additional TGACG motifs at 7 nucleotides upstream and two nucleotides downstream of the original one] and [FS-(TGCTG)(mu), having a mutated TGACG motif]. EMSA and foot-printing analysis confirmed binding of tobacco nuclear factors with modified TGACG motif/s. The transcription-activation of the GUS gene by the TGACG motif/s in above promoter constructs was examined in transgenic tobacco and Arabidopsis plants and observed that the transcription activation was affected by the spacing/s and number/s of the TGACG motif/s. The FS-(TGACG)(2) promoter showed strongest root-activity compared to other modified and CaMV35S promoters. Also under salicylic acid (SA) stress, the leaf-activity of the said promoter was further enhanced. All above findings were confirmed by real-time and semi-qRT PCR analysis. Taken together, these results clearly demonstrated that the TGACG motif plays an important role in inducing the root-specific expression of the F-Sgt promoter. This study advocates the importance of genetic manipulation of functional cis-motif for amending the tissue specificity of a plant promoter. SA inducible FS-(TGACG)(2) promoter with enhanced activity could be a useful candidate promoter for developing plants with enhanced crop productivity.

  17. A Functional EXXEK Motif is Essential for Proton Coupling and Active Glucosinolate Transport by NPF2.11.

    PubMed

    Jørgensen, Morten Egevang; Olsen, Carl Erik; Geiger, Dietmar; Mirza, Osman; Halkier, Barbara Ann; Nour-Eldin, Hussam Hassan

    2015-12-01

    The proton-dependent oligopeptide transporter (POT/PTR) family shares a highly conserved E1X1X2E2RFXYY (E1X1X2E2R) motif across all kingdoms of life. This motif is suggested to have a role in proton coupling and active transport in bacterial homologs. For the plant POT/PTR family, also known as the NRT1/PTR family (NPF), little is known about the role of the E1X1X2E2R motif. Moreover, nothing is known about the role of the X1 and X2 residues within the E1X1X2E2R motif. We used NPF2.11-a proton-coupled glucosinolate (GLS) symporter from Arabidopsis thaliana-to investigate the role of the E1X1X2E2K motif variant in a plant NPF transporter. Using liquid chromatography-mass spectrometry (LC-MS)-based uptake assays and two-electrode voltage clamp (TEVC) electrophysiology, we demonstrate an essential role for the E1X1X2E2K motif for accumulation of substrate by NPF2.11. Our data suggest that the highly conserved E1, E2 and K residues are involved in translocation of protons, as has been proposed for the E1X1X2E2R motif in bacteria. Furthermore, we show that the two residues X1 and X2 in the E1X1X2E2[K/R] motif are conserved as uncharged amino acids in POT/PTRs from bacteria to mammals and that introducing a positive or negative charge in either position hampers the ability to overaccumulate substrate relative to the assay medium. We hypothesize that introducing a charge at X1 and X2 interferes with the function of the conserved glutamate and lysine residues of the E1X1X2E2K motif and affects the mechanism behind proton coupling. PMID:26443378

  18. A Functional EXXEK Motif is Essential for Proton Coupling and Active Glucosinolate Transport by NPF2.11.

    PubMed

    Jørgensen, Morten Egevang; Olsen, Carl Erik; Geiger, Dietmar; Mirza, Osman; Halkier, Barbara Ann; Nour-Eldin, Hussam Hassan

    2015-12-01

    The proton-dependent oligopeptide transporter (POT/PTR) family shares a highly conserved E1X1X2E2RFXYY (E1X1X2E2R) motif across all kingdoms of life. This motif is suggested to have a role in proton coupling and active transport in bacterial homologs. For the plant POT/PTR family, also known as the NRT1/PTR family (NPF), little is known about the role of the E1X1X2E2R motif. Moreover, nothing is known about the role of the X1 and X2 residues within the E1X1X2E2R motif. We used NPF2.11-a proton-coupled glucosinolate (GLS) symporter from Arabidopsis thaliana-to investigate the role of the E1X1X2E2K motif variant in a plant NPF transporter. Using liquid chromatography-mass spectrometry (LC-MS)-based uptake assays and two-electrode voltage clamp (TEVC) electrophysiology, we demonstrate an essential role for the E1X1X2E2K motif for accumulation of substrate by NPF2.11. Our data suggest that the highly conserved E1, E2 and K residues are involved in translocation of protons, as has been proposed for the E1X1X2E2R motif in bacteria. Furthermore, we show that the two residues X1 and X2 in the E1X1X2E2[K/R] motif are conserved as uncharged amino acids in POT/PTRs from bacteria to mammals and that introducing a positive or negative charge in either position hampers the ability to overaccumulate substrate relative to the assay medium. We hypothesize that introducing a charge at X1 and X2 interferes with the function of the conserved glutamate and lysine residues of the E1X1X2E2K motif and affects the mechanism behind proton coupling.

  19. Inhibitory activities of short linear motifs underlie Hox interactome specificity in vivo

    PubMed Central

    Baëza, Manon; Viala, Séverine; Heim, Marjorie; Dard, Amélie; Hudry, Bruno; Duffraisse, Marilyne; Rogulja-Ortmann, Ana; Brun, Christine; Merabet, Samir

    2015-01-01

    Hox proteins are well-established developmental regulators that coordinate cell fate and morphogenesis throughout embryogenesis. In contrast, our knowledge of their specific molecular modes of action is limited to the interaction with few cofactors. Here, we show that Hox proteins are able to interact with a wide range of transcription factors in the live Drosophila embryo. In this context, specificity relies on a versatile usage of conserved short linear motifs (SLiMs), which, surprisingly, often restrains the interaction potential of Hox proteins. This novel buffering activity of SLiMs was observed in different tissues and found in Hox proteins from cnidarian to mouse species. Although these interactions remain to be analysed in the context of endogenous Hox regulatory activities, our observations challenge the traditional role assigned to SLiMs and provide an alternative concept to explain how Hox interactome specificity could be achieved during the embryonic development. DOI: http://dx.doi.org/10.7554/eLife.06034.001 PMID:25869471

  20. Contribution of the DDDD motif of H. influenzae e (P4) to phosphomonoesterase activity and heme transport.

    PubMed

    Reilly, T J; Green, B A; Zlotnick, G W; Smith, A L

    2001-04-01

    Haemophilus influenzae lipoprotein e (P4) is a member of the DDDD phosphohydrolase superfamily and mediates heme transport. Each of the aspartate residues of the signature motif is required for phosphomonoesterase activity, as none of the e (P4) single D mutants (D64A, D66A, D181N, and D185A) possessed detectable phosphomonoesterase activity. These results suggest that the signature motif is essential to the phosphomonoesterase activity of lipoprotein e (P4). When assessed for phosphomonoesterase-dependent heme transport activity in Escherichia coli hemA strains, plasmids containing D181N and D185A retained heme transport as indicated by aerobic growth while D64A and D66A did not. We conclude that phosphomonoesterase activity is not required for heme transport.

  1. Frizzled-4 C-terminus Distal to KTXXXW Motif is Essential for Normal Dishevelled Recruitment and Norrin-stimulated Activation of Lef/Tcf-dependent Transcriptional Activation

    PubMed Central

    Pau, Milly S.; Gao, Shujuan; Malbon, Craig C.; Wang, Hsien-yu

    2016-01-01

    The carboxy (C)-termini of G protein coupled receptors (GPCR) dictate essential functions. The KTXXXW motif C-terminus of Frizzleds (FZD) has been implicated in recruitment of Dishevelled (DVL). Through study of FZD4 and its associated ligand Norrin, we report that a minimum of three residues distal to the KTXXXW motif in the C-terminal tail of Frizzled-4 are essential for DVL recruitment and robust Lef/Tcf-dependent transcriptional activation in response to Norrin. PMID:27096005

  2. Frizzled-4 C-terminus Distal to KTXXXW Motif is Essential for Normal Dishevelled Recruitment and Norrin-stimulated Activation of Lef/Tcf-dependent Transcriptional Activation.

    PubMed

    Bertalovitz, Alexander C; Pau, Milly S; Gao, Shujuan; Malbon, Craig C; Wang, Hsien-Yu

    2016-01-01

    The carboxy (C)-termini of G protein coupled receptors (GPCR) dictate essential functions. The KTXXXW motif C-terminus of Frizzleds (FZD) has been implicated in recruitment of Dishevelled (DVL). Through study of FZD4 and its associated ligand Norrin, we report that a minimum of three residues distal to the KTXXXW motif in the C-terminal tail of Frizzled-4 are essential for DVL recruitment and robust Lef/Tcf-dependent transcriptional activation in response to Norrin. PMID:27096005

  3. Structural analysis of effector functions related motifs, complement activation and hemagglutinating activities in Lama glama heavy chain antibodies.

    PubMed

    Saccodossi, Natalia; De Simone, Emilio A; Leoni, Juliana

    2012-01-15

    Heavy chain antibodies (HCAbs), devoid of the light chains and the CH(1) domain, are present in the serum of camelids. IgG(2) and IgG(3) are HCAbs; whereas IgG(1) has the conventional structure. In order to study the immunological properties of llama HCAbs, from which to date little is known, llamas (Lama glama) HCAbs cDNA were cloned, sequenced and compared with other mammalian Igs. The sequence analysis showed that llama HCAbs cDNA organization is similar to other mammalian Igs and the presence of conserved binding motifs to Protein A, Protein G, FcγRI, FcγRIII and C1q in HCAbs were observed. In a previous work, different IgG isotypes purified by Protein A and Protein G chromatography, were assayed for their ability to fix complement. Both IgG(1) and the total serum were able to fix complement, whereas IgG(2) and IgG(3) fixed complement even in the absence of antigen (anti-complementary activity). Therefore, in this work we performed the complement activating activity of the different IgG isotypes purified under physiological conditions using Sephadex G-150 and their ability to induce hemagglutination. Llamas were immunized with sheep red blood cells (RBC) stroma and the different isotypes were purified from sera. Whole serum and IgG(1) could activate complement; however, HCAbs (IgG(2)+IgG(3)) could not, despite the presence of the C1q binding motif in their primary sequence. Unlike IgG(1), the fraction corresponding to IgG(2)+IgG(3) did not display hemagglutinating activity. Our findings suggest that HCAbs cannot crosslink efficiently with different antigens and that the C1q binding site might be hindered by the proximity of the variable domains. PMID:22197565

  4. Motif Discovery on Seismic Amplitude Time Series: The Case Study of Mt Etna 2011 Eruptive Activity

    NASA Astrophysics Data System (ADS)

    Cassisi, Carmelo; Aliotta, Marco; Cannata, Andrea; Montalto, Placido; Patanè, Domenico; Pulvirenti, Alfredo; Spampinato, Letizia

    2013-04-01

    Algorithms searching for similar patterns are widely used in seismology both when the waveforms of the events of interest are known and when there is no a priori-knowledge. Such methods usually make use of the cross-correlation coefficient as a measure of similarity; if there is no a-priori knowledge, they behave as brute-force searching algorithms. The disadvantage of these methods, preventing or limiting their application to very large datasets, is computational complexity. The Mueen-Keogh (MK) algorithm overcomes this limitation by means of two optimization techniques—the early abandoning concept and space indexing. Here, we apply the MK algorithm to amplitude time series retrieved from seismic signals recorded during episodic eruptive activity of Mt Etna in 2011. By adequately tuning the input to the MK algorithm we found eight motif groups characterized by distinct seismic amplitude trends, each related to a different phenomenon. In particular, we observed that earthquakes are accompanied by sharp increases and decreases in seismic amplitude whereas lava fountains are accompanied by slower changes. These results demonstrate that the MK algorithm, because of its particular features, may have wide applicability in seismology.

  5. Signature motifs identify an Acinetobacter Cif virulence factor with epoxide hydrolase activity.

    PubMed

    Bahl, Christopher D; Hvorecny, Kelli L; Bridges, Andrew A; Ballok, Alicia E; Bomberger, Jennifer M; Cady, Kyle C; O'Toole, George A; Madden, Dean R

    2014-03-14

    Endocytic recycling of the cystic fibrosis transmembrane conductance regulator (CFTR) is blocked by the CFTR inhibitory factor (Cif). Originally discovered in Pseudomonas aeruginosa, Cif is a secreted epoxide hydrolase that is transcriptionally regulated by CifR, an epoxide-sensitive repressor. In this report, we investigate a homologous protein found in strains of the emerging nosocomial pathogens Acinetobacter nosocomialis and Acinetobacter baumannii ("aCif"). Like Cif, aCif is an epoxide hydrolase that carries an N-terminal secretion signal and can be purified from culture supernatants. When applied directly to polarized airway epithelial cells, mature aCif triggers a reduction in CFTR abundance at the apical membrane. Biochemical and crystallographic studies reveal a dimeric assembly with a stereochemically conserved active site, confirming our motif-based identification of candidate Cif-like pathogenic EH sequences. Furthermore, cif expression is transcriptionally repressed by a CifR homolog ("aCifR") and is induced in the presence of epoxides. Overall, this Acinetobacter protein recapitulates the essential attributes of the Pseudomonas Cif system and thus may facilitate airway colonization in nosocomial lung infections. PMID:24474692

  6. Tyrosine kinase BMX phosphorylates phosphotyrosine-primed motif mediating the activation of multiple receptor tyrosine kinases.

    PubMed

    Chen, Sen; Jiang, Xinnong; Gewinner, Christina A; Asara, John M; Simon, Nicholas I; Cai, Changmeng; Cantley, Lewis C; Balk, Steven P

    2013-05-28

    The nonreceptor tyrosine kinase BMX (bone marrow tyrosine kinase gene on chromosome X) is abundant in various cell types and activated downstream of phosphatidylinositol-3 kinase (PI3K) and the kinase Src, but its substrates are unknown. Positional scanning peptide library screening revealed a marked preference for a priming phosphorylated tyrosine (pY) in the -1 position, indicating that BMX substrates may include multiple tyrosine kinases that are fully activated by pYpY sites in the kinase domain. BMX phosphorylated focal adhesion kinase (FAK) at Tyr⁵⁷⁷ subsequent to its Src-mediated phosphorylation at Tyr⁵⁷⁶. Loss of BMX by RNA interference or by genetic deletion in mouse embryonic fibroblasts (MEFs) markedly impaired FAK activity. Phosphorylation of the insulin receptor in the kinase domain at Tyr¹¹⁸⁹ and Tyr¹¹⁹⁰, as well as Tyr¹¹⁸⁵, and downstream phosphorylation of the kinase AKT at Thr³⁰⁸ were similarly impaired by BMX deficiency. However, insulin-induced phosphorylation of AKT at Ser⁴⁷³ was not impaired in Bmx knockout MEFs or liver tissue from Bmx knockout mice, which also showed increased insulin-stimulated glucose uptake, possibly because of decreased abundance of the phosphatase PHLPP (PH domain leucine-rich repeat protein phosphatase). Thus, by identifying the pYpY motif as a substrate for BMX, our findings suggest that BMX functions as a central regulator among multiple signaling pathways mediated by tyrosine kinases. PMID:23716717

  7. Genome-Wide Identification of Mitogen-Activated Protein Kinase Gene Family across Fungal Lineage Shows Presence of Novel and Diverse Activation Loop Motifs

    PubMed Central

    Mohanta, Tapan Kumar; Mohanta, Nibedita; Parida, Pratap; Panda, Sujogya Kumar; Ponpandian, Lakshmi Narayanan; Bae, Hanhong

    2016-01-01

    The mitogen-activated protein kinase (MAPK) is characterized by the presence of the T-E-Y, T-D-Y, and T-G-Y motifs in its activation loop region and plays a significant role in regulating diverse cellular responses in eukaryotic organisms. Availability of large-scale genome data in the fungal kingdom encouraged us to identify and analyse the fungal MAPK gene family consisting of 173 fungal species. The analysis of the MAPK gene family resulted in the discovery of several novel activation loop motifs (T-T-Y, T-I-Y, T-N-Y, T-H-Y, T-S-Y, K-G-Y, T-Q-Y, S-E-Y and S-D-Y) in fungal MAPKs. The phylogenetic analysis suggests that fungal MAPKs are non-polymorphic, had evolved from their common ancestors around 1500 million years ago, and are distantly related to plant MAPKs. We are the first to report the presence of nine novel activation loop motifs in fungal MAPKs. The specificity of the activation loop motif plays a significant role in controlling different growth and stress related pathways in fungi. Hence, the presences of these nine novel activation loop motifs in fungi are of special interest. PMID:26918378

  8. The promoter competition assay (PCA): a new approach to identify motifs involved in the transcriptional activity of reporter genes.

    PubMed

    Hube, Florent; Myal, Yvonne; Leygue, Etienne

    2006-05-01

    Identifying particular motifs responsible for promoter activity is a crucial step toward the development of new gene-based preventive and therapeutic strategies. However, to date, experimental methods to study promoter activity remain limited. We present in this report a promoter competition assay designed to identify, within a given promoter region, motifs critical for its activity. This assay consists in co-transfecting the promoter to be analyzed and double-stranded oligonucleotides which will compete for the binding of transcription factors. Using the recently characterized SBEM promoter as model, we first delineated the feasibility of the method and optimized the experimental conditions. We then identified, within an 87-bp region responsible for a strong expression of the reporter gene, an octamer-binding site essential for its transcriptional regulation. The importance of this motif has been confirmed by site-directed mutagenesis. The promoter competition assay appears to be a fast and efficient approach to identify, within a given promoter sequence, sites critical for its activity.

  9. Interactions of noncanonical motifs with hnRNP A2 promote activity-dependent RNA transport in neurons

    PubMed Central

    Muslimov, Ilham A.; Tuzhilin, Aliya; Tang, Thean Hock; Wong, Robert K.S.; Bianchi, Riccardo

    2014-01-01

    A key determinant of neuronal functionality and plasticity is the targeted delivery of select ribonucleic acids (RNAs) to synaptodendritic sites of protein synthesis. In this paper, we ask how dendritic RNA transport can be regulated in a manner that is informed by the cell’s activity status. We describe a molecular mechanism in which inducible interactions of noncanonical RNA motif structures with targeting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 form the basis for activity-dependent dendritic RNA targeting. High-affinity interactions between hnRNP A2 and conditional GA-type RNA targeting motifs are critically dependent on elevated Ca2+ levels in a narrow concentration range. Dendritic transport of messenger RNAs that carry such GA motifs is inducible by influx of Ca2+ through voltage-dependent calcium channels upon β-adrenergic receptor activation. The combined data establish a functional correspondence between Ca2+-dependent RNA–protein interactions and activity-inducible RNA transport in dendrites. They also indicate a role of genomic retroposition in the phylogenetic development of RNA targeting competence. PMID:24841565

  10. Motif module map reveals enforcement of aging by continual NF-kappaB activity.

    PubMed

    Adler, Adam S; Sinha, Saurabh; Kawahara, Tiara L A; Zhang, Jennifer Y; Segal, Eran; Chang, Howard Y

    2007-12-15

    Aging is characterized by specific alterations in gene expression, but their underlying mechanisms and functional consequences are not well understood. Here we develop a systematic approach to identify combinatorial cis-regulatory motifs that drive age-dependent gene expression across different tissues and organisms. Integrated analysis of 365 microarrays spanning nine tissue types predicted fourteen motifs as major regulators of age-dependent gene expression in human and mouse. The motif most strongly associated with aging was that of the transcription factor NF-kappaB. Inducible genetic blockade of NF-kappaB for 2 wk in the epidermis of chronologically aged mice reverted the tissue characteristics and global gene expression programs to those of young mice. Age-specific NF-kappaB blockade and orthogonal cell cycle interventions revealed that NF-kappaB controls cell cycle exit and gene expression signature of aging in parallel but not sequential pathways. These results identify a conserved network of regulatory pathways underlying mammalian aging and show that NF-kappaB is continually required to enforce many features of aging in a tissue-specific manner.

  11. Peptides derived from central turn motifs within integrin αIIb and αV cytoplasmic tails inhibit integrin activation.

    PubMed

    Li, Xinlei; Liu, Yongqing; Haas, Thomas A

    2014-12-01

    We previously found that peptides derived from the full length of integrin αIIb and αV cytoplasmic tails inhibited their parent integrin activation, respectively. Here we showed that the cell-permeable peptides corresponding to the conserved central turn motif within αIIb and αV cytoplasmic tails, myr-KRNRPPLEED (αIIb peptide) and myr-KRVRPPQEEQ (αV peptide), similarly inhibited both αIIb and αV integrin activation. Pre-treatment with αIIb or αV peptides inhibited Mn(2+)-activated αIIbβ3 binding to soluble fibrinogen as well as the binding of αIIbβ3-expressing Chinese Hamster Ovary cells to immobilized fibrinogen. Our turn peptides also inhibited adhesion of two breast cancer cell lines (MDA-MB-435 and MCF7) to αV ligand vitronectin. These results suggest that αIIb and αV peptides share a same mechanism in regulating integrin function. Using αIIb peptide as a model, we found that replacement of RPP with AAA significantly attenuated the inhibitory activity of αIIb peptide. Furthermore, we found that αIIb peptide specifically bound to β-tubulin in cells. Our work suggests that the central motif of α tails is an anchoring point for cytoskeletons during integrin activation and integrin-mediated cell adhesion, and its function depends on the turn structure at RPP. However, post-treatment of peptides derived from the full-length tail or from the turn motif did not reverse αIIb and αV integrin activation.

  12. LAB/NTAL facilitates fungal/PAMP-induced IL-12 and IFN-γ production by repressing β-catenin activation in dendritic cells.

    PubMed

    Orr, Selinda J; Burg, Ashley R; Chan, Tim; Quigley, Laura; Jones, Gareth W; Ford, Jill W; Hodge, Deborah; Razzook, Catherine; Sarhan, Joseph; Jones, Yava L; Whittaker, Gillian C; Boelte, Kimberly C; Lyakh, Lyudmila; Cardone, Marco; O'Connor, Geraldine M; Tan, Cuiyan; Li, Hongchuan; Anderson, Stephen K; Jones, Simon A; Zhang, Weiguo; Taylor, Philip R; Trinchieri, Giorgio; McVicar, Daniel W

    2013-05-01

    Fungal pathogens elicit cytokine responses downstream of immunoreceptor tyrosine-based activation motif (ITAM)-coupled or hemiITAM-containing receptors and TLRs. The Linker for Activation of B cells/Non-T cell Activating Linker (LAB/NTAL) encoded by Lat2, is a known regulator of ITAM-coupled receptors and TLR-associated cytokine responses. Here we demonstrate that LAB is involved in anti-fungal immunity. We show that Lat2-/- mice are more susceptible to C. albicans infection than wild type (WT) mice. Dendritic cells (DCs) express LAB and we show that it is basally phosphorylated by the growth factor M-CSF or following engagement of Dectin-2, but not Dectin-1. Our data revealed a unique mechanism whereby LAB controls basal and fungal/pathogen-associated molecular patterns (PAMP)-induced nuclear β-catenin levels. This in turn is important for controlling fungal/PAMP-induced cytokine production in DCs. C. albicans- and LPS-induced IL-12 and IL-23 production was blunted in Lat2-/- DCs. Accordingly, Lat2-/- DCs directed reduced Th1 polarization in vitro and Lat2-/- mice displayed reduced Natural Killer (NK) and T cell-mediated IFN-γ production in vivo/ex vivo. Thus our data define a novel link between LAB and β-catenin nuclear accumulation in DCs that facilitates IFN-γ responses during anti-fungal immunity. In addition, these findings are likely to be relevant to other infectious diseases that require IL-12 family cytokines and an IFN-γ response for pathogen clearance. PMID:23675302

  13. LAB/NTAL Facilitates Fungal/PAMP-induced IL-12 and IFN-γ Production by Repressing β-Catenin Activation in Dendritic Cells

    PubMed Central

    Orr, Selinda J.; Burg, Ashley R.; Chan, Tim; Quigley, Laura; Jones, Gareth W.; Ford, Jill W.; Hodge, Deborah; Razzook, Catherine; Sarhan, Joseph; Jones, Yava L.; Whittaker, Gillian C.; Boelte, Kimberly C.; Lyakh, Lyudmila; Cardone, Marco; O'Connor, Geraldine M.; Tan, Cuiyan; Li, Hongchuan; Anderson, Stephen K.; Jones, Simon A.; Zhang, Weiguo; Taylor, Philip R.; Trinchieri, Giorgio; McVicar, Daniel W.

    2013-01-01

    Fungal pathogens elicit cytokine responses downstream of immunoreceptor tyrosine-based activation motif (ITAM)-coupled or hemiITAM-containing receptors and TLRs. The Linker for Activation of B cells/Non-T cell Activating Linker (LAB/NTAL) encoded by Lat2, is a known regulator of ITAM-coupled receptors and TLR-associated cytokine responses. Here we demonstrate that LAB is involved in anti-fungal immunity. We show that Lat2−/− mice are more susceptible to C. albicans infection than wild type (WT) mice. Dendritic cells (DCs) express LAB and we show that it is basally phosphorylated by the growth factor M-CSF or following engagement of Dectin-2, but not Dectin-1. Our data revealed a unique mechanism whereby LAB controls basal and fungal/pathogen-associated molecular patterns (PAMP)-induced nuclear β-catenin levels. This in turn is important for controlling fungal/PAMP-induced cytokine production in DCs. C. albicans- and LPS-induced IL-12 and IL-23 production was blunted in Lat2−/− DCs. Accordingly, Lat2−/− DCs directed reduced Th1 polarization in vitro and Lat2−/− mice displayed reduced Natural Killer (NK) and T cell-mediated IFN-γ production in vivo/ex vivo. Thus our data define a novel link between LAB and β-catenin nuclear accumulation in DCs that facilitates IFN-γ responses during anti-fungal immunity. In addition, these findings are likely to be relevant to other infectious diseases that require IL-12 family cytokines and an IFN-γ response for pathogen clearance. PMID:23675302

  14. A combined nuclear and nucleolar localization motif in activation-induced cytidine deaminase (AID) controls immunoglobulin class switching.

    PubMed

    Hu, Yi; Ericsson, Ida; Torseth, Kathrin; Methot, Stephen P; Sundheim, Ottar; Liabakk, Nina B; Slupphaug, Geir; Di Noia, Javier M; Krokan, Hans E; Kavli, Bodil

    2013-01-23

    Activation-induced cytidine deaminase (AID) is a DNA mutator enzyme essential for adaptive immunity. AID initiates somatic hypermutation and class switch recombination (CSR) by deaminating cytosine to uracil in specific immunoglobulin (Ig) gene regions. However, other loci, including cancer-related genes, are also targeted. Thus, tight regulation of AID is crucial to balance immunity versus disease such as cancer. AID is regulated by several mechanisms including nucleocytoplasmic shuttling. Here we have studied nuclear import kinetics and subnuclear trafficking of AID in live cells and characterized in detail its nuclear localization signal. Importantly, we find that the nuclear localization signal motif also directs AID to nucleoli where it colocalizes with its interaction partner, catenin-β-like 1 (CTNNBL1), and physically associates with nucleolin and nucleophosmin. Moreover, we demonstrate that release of AID from nucleoli is dependent on its C-terminal motif. Finally, we find that CSR efficiency correlates strongly with the arithmetic product of AID nuclear import rate and DNA deamination activity. Our findings suggest that directional nucleolar transit is important for the physiological function of AID and demonstrate that nuclear/nucleolar import and DNA cytosine deamination together define the biological activity of AID. This is the first study on subnuclear trafficking of AID and demonstrates a new level in its complex regulation. In addition, our results resolve the problem related to dissociation of deamination activity and CSR activity of AID mutants.

  15. The GPS Motif Is a Molecular Switch for Bimodal Activities of Adhesion Class G Protein-Coupled Receptors

    PubMed Central

    Prömel, Simone; Frickenhaus, Marie; Hughes, Samantha; Mestek, Lamia; Staunton, David; Woollard, Alison; Vakonakis, Ioannis; Schöneberg, Torsten; Schnabel, Ralf; Russ, Andreas P.; Langenhan, Tobias

    2012-01-01

    Summary Adhesion class G protein-coupled receptors (aGPCR) form the second largest group of seven-transmembrane-spanning (7TM) receptors whose molecular layout and function differ from canonical 7TM receptors. Despite their essential roles in immunity, tumorigenesis, and development, the mechanisms of aGPCR activation and signal transduction have remained obscure to date. Here, we use a transgenic assay to define the protein domains required in vivo for the activity of the prototypical aGPCR LAT-1/Latrophilin in Caenorhabditis elegans. We show that the GPCR proteolytic site (GPS) motif, the molecular hallmark feature of the entire aGPCR class, is essential for LAT-1 signaling serving in two different activity modes of the receptor. Surprisingly, neither mode requires cleavage but presence of the GPS, which relays interactions with at least two different partners. Our work thus uncovers the versatile nature of aGPCR activity in molecular detail and places the GPS motif in a central position for diverse protein-protein interactions. PMID:22938866

  16. N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel

    NASA Astrophysics Data System (ADS)

    Hynkova, Anna; Marsakova, Lenka; Vaskova, Jana; Vlachova, Viktorie

    2016-06-01

    Human transient receptor potential ankyrin channel 1 (TRPA1) is a polymodal sensor implicated in pain, inflammation and itching. An important locus for TRPA1 regulation is the cytoplasmic N-terminal domain, through which various exogenous electrophilic compounds such as allyl-isothiocyanate from mustard oil or cinnamaldehyde from cinnamon activate primary afferent nociceptors. This major region is comprised of a tandem set of 17 ankyrin repeats (AR1-AR17), five of them contain a strictly conserved T/SPLH tetrapeptide motif, a hallmark of an important and evolutionarily conserved contribution to conformational stability. Here, we characterize the functional consequences of putatively stabilizing and destabilizing mutations in these important structural units and identify AR2, AR6, and AR11-13 to be distinctly involved in the allosteric activation of TRPA1 by chemical irritants, cytoplasmic calcium, and membrane voltage. Considering the potential involvement of the T/SP motifs as putative phosphorylation sites, we also show that proline-directed Ser/Thr kinase CDK5 modulates the activity of TRPA1, and that T673 outside the AR-domain is its only possible target. Our data suggest that the most strictly conserved N-terminal ARs define the energetics of the TRPA1 channel gate and contribute to chemical-, calcium- and voltage-dependence.

  17. N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel.

    PubMed

    Hynkova, Anna; Marsakova, Lenka; Vaskova, Jana; Vlachova, Viktorie

    2016-01-01

    Human transient receptor potential ankyrin channel 1 (TRPA1) is a polymodal sensor implicated in pain, inflammation and itching. An important locus for TRPA1 regulation is the cytoplasmic N-terminal domain, through which various exogenous electrophilic compounds such as allyl-isothiocyanate from mustard oil or cinnamaldehyde from cinnamon activate primary afferent nociceptors. This major region is comprised of a tandem set of 17 ankyrin repeats (AR1-AR17), five of them contain a strictly conserved T/SPLH tetrapeptide motif, a hallmark of an important and evolutionarily conserved contribution to conformational stability. Here, we characterize the functional consequences of putatively stabilizing and destabilizing mutations in these important structural units and identify AR2, AR6, and AR11-13 to be distinctly involved in the allosteric activation of TRPA1 by chemical irritants, cytoplasmic calcium, and membrane voltage. Considering the potential involvement of the T/SP motifs as putative phosphorylation sites, we also show that proline-directed Ser/Thr kinase CDK5 modulates the activity of TRPA1, and that T673 outside the AR-domain is its only possible target. Our data suggest that the most strictly conserved N-terminal ARs define the energetics of the TRPA1 channel gate and contribute to chemical-, calcium- and voltage-dependence. PMID:27345869

  18. N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel

    PubMed Central

    Hynkova, Anna; Marsakova, Lenka; Vaskova, Jana; Vlachova, Viktorie

    2016-01-01

    Human transient receptor potential ankyrin channel 1 (TRPA1) is a polymodal sensor implicated in pain, inflammation and itching. An important locus for TRPA1 regulation is the cytoplasmic N-terminal domain, through which various exogenous electrophilic compounds such as allyl-isothiocyanate from mustard oil or cinnamaldehyde from cinnamon activate primary afferent nociceptors. This major region is comprised of a tandem set of 17 ankyrin repeats (AR1-AR17), five of them contain a strictly conserved T/SPLH tetrapeptide motif, a hallmark of an important and evolutionarily conserved contribution to conformational stability. Here, we characterize the functional consequences of putatively stabilizing and destabilizing mutations in these important structural units and identify AR2, AR6, and AR11-13 to be distinctly involved in the allosteric activation of TRPA1 by chemical irritants, cytoplasmic calcium, and membrane voltage. Considering the potential involvement of the T/SP motifs as putative phosphorylation sites, we also show that proline-directed Ser/Thr kinase CDK5 modulates the activity of TRPA1, and that T673 outside the AR-domain is its only possible target. Our data suggest that the most strictly conserved N-terminal ARs define the energetics of the TRPA1 channel gate and contribute to chemical-, calcium- and voltage-dependence. PMID:27345869

  19. Novel hinge-binding motifs for Janus kinase 3 inhibitors: a comprehensive structure-activity relationship study on tofacitinib bioisosteres.

    PubMed

    Gehringer, Matthias; Forster, Michael; Pfaffenrot, Ellen; Bauer, Silke M; Laufer, Stefan A

    2014-11-01

    The Janus kinases (JAKs) are a family of cytosolic tyrosine kinases crucially involved in cytokine signaling. JAKs have been demonstrated to be valid targets in the treatment of inflammatory and myeloproliferative disorders, and two inhibitors, tofacitinib and ruxolitinib, recently received their marketing authorization. Despite this success, selectivity within the JAK family remains a major issue. Both approved compounds share a common 7H-pyrrolo[2,3-d]pyrimidine hinge binding motif, and little is known about modifications tolerated at this heterocyclic core. In the current study, a library of tofacitinib bioisosteres was prepared and tested against JAK3. The compounds possessed the tofacitinib piperidinyl side chain, whereas the hinge binding motif was replaced by a variety of heterocycles mimicking its pharmacophore. In view of the promising expectations obtained from molecular modeling, most of the compounds proved to be poorly active. However, strategies for restoring activity within this series of novel chemotypes were discovered and crucial structure-activity relationships were deduced. The compounds presented may serve as starting point for developing novel JAK inhibitors and as a valuable training set for in silico models.

  20. Multiple Activities of the Plant Pathogen Type III Effector Proteins WtsE and AvrE1 require WxxxE Motifs

    PubMed Central

    Ham, Jong Hyun; Majerczak, Doris R.; Nomura, Kinya; Mecey, Christy; Uribe, Francisco; He, Sheng-Yang; Mackey, David; Coplin, David L.

    2009-01-01

    The broadly conserved AvrE-family of type III effectors from Gram-negative plant pathogenic bacteria includes important virulence factors, yet little is known about the mechanisms by which these effectors function inside plant cells to promote disease. We have identified two conserved motifs in AvrE-family effectors: a WxxxE motif and a putative C-terminal endoplasmic reticulum membrane retention/retrieval signal (ERMRS). The WxxxE and ERMRS motifs are both required for the virulence activities of WtsE and AvrE1, which are major virulence factors of the corn pathogen Pantoea stewartii subsp. stewartii and the tomato/Arabidopsis pathogen Pseudomonas syringae pv. tomato, respectively. The WxxxE and the predicted ERMRS motifs are also required for other biological activities of WtsE, including elicitation of the hypersensitive response in nonhost plants and suppression of defense responses in Arabidopsis. A family of type III effectors from mammalian bacterial pathogens requires WxxxE and sub-cellular targeting motifs for virulence functions that involve their ability to mimic activated G-proteins. The conservation of related motifs and their necessity for the function of type III effectors from plant pathogens indicates that disturbing host pathways by mimicking activated host G-proteins may be a virulence mechanism employed by plant pathogens as well. PMID:19445595

  1. Optimizations of siRNA design for the activation of gene transcription by targeting the TATA-box motif.

    PubMed

    Fan, Miaomiao; Zhang, Yijun; Huang, Zhuoqiong; Liu, Jun; Guo, Xuemin; Zhang, Hui; Luo, Haihua

    2014-01-01

    Small interfering RNAs (siRNAs) are widely used to repress gene expression by targeting mRNAs. Some reports reveal that siRNAs can also activate or inhibit gene expression through targeting the gene promoters. Our group has found that microRNAs (miRNAs) could activate gene transcription via interaction with the TATA-box motif in gene promoters. To investigate whether siRNA targeting the same region could upregulate the promoter activity, we test the activating efficiency of siRNAs targeting the TATA-box motif of 16 genes and perform a systematic analysis to identify the common features of the functional siRNAs for effective activation of gene promoters. Further, we try various modifications to improve the activating efficiency of siRNAs and find that it is quite useful to design the promoter-targeting activating siRNA by following several rules such as (a) complementary to the TATA-box-centered region; (b) UA usage at the first two bases of the antisense strand; (c) twenty-three nucleotides (nts) in length; (d) 2'-O-Methyl (2'-OMe) modification at the 3' terminus of the antisense strand; (e) avoiding mismatches at the 3' end of the antisense strand. The optimized activating siRNAs potently enhance the expression of interleukin-2 (IL-2) gene in human and mouse primary CD4+ T cells with a long-time effect. Taken together, our study provides a guideline for rational design the promoter-targeting siRNA to sequence-specifically enhance gene expression.

  2. A conserved CATTCCT motif is required for skeletal muscle-specific activity of the cardiac troponin T gene promoter.

    PubMed Central

    Mar, J H; Ordahl, C P

    1988-01-01

    Transcription of the cardiac troponin T (cTNT) gene is restricted to cardiac and embryonic skeletal muscle tissue. A DNA segment containing 129 nucleotides upstream from the cTNT transcription initiation site (cTNT-129) directs expression of a heterologous marker gene in transfected embryonic skeletal muscle cells but is inactive in embryonic cardiac or fibroblast cells. By using chimeric promoter constructions, in which distal and proximal segments of cTNT-129 are fused to reciprocal segments of the herpes simplex virus thymidine kinase (HSV tk) gene promoter, the DNA segment responsible for this cell specificity can be localized to the cTNT distal promoter region, located between 50 and 129 nucleotides upstream of the transcription initiation site. The ability of the cTNT distal promoter region to confer skeletal muscle-specific activity upon a heterologous promoter is abolished when it is displaced 60 nucleotides upstream, indicating that its ability to direct skeletal muscle-specific transcription probably requires proximity to other components of the transcription initiation region. Two copies of the heptamer, CATTCCT ("muscle-CAT" or "M-CAT" motif), reside within the 80-nucleotide cTNT distal promoter region. A 3-nucleotide mutation in one of these copies inactivates the cTNT promoter in skeletal muscle cells. Therefore, the M-CAT motif is a distal promoter element required for expression of the cTNT promoter in embryonic skeletal muscle cells. Since the M-CAT motif is found in other contractile protein gene promoters, it may represent one example of a muscle-specific promoter element. Images PMID:3413104

  3. Identification of a novel Stat3 recruitment and activation motif within the granulocyte colony-stimulating factor receptor.

    PubMed

    Chakraborty, A; Dyer, K F; Cascio, M; Mietzner, T A; Tweardy, D J

    1999-01-01

    Stat3 is essential for early embryonic development and for myeloid differentiation induced by the cytokines granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6). Two isoforms of Stat3 have been identified, (p92) and beta (p83), which have distinct transcriptional and biological functions. Activation of both Stat3 and Stat3beta requires the distal cytoplasmic domain of the G-CSFR, which contains four Tyr at positions 704, 729, 744, and 764. The studies reported here were undertaken to determine which, if any, of these tyrosine residues participated in Stat3/beta recruitment and activation. We showed that Stat3 and Stat3beta were affinity purified using phosphopeptides containing Y704 and Y744 but not by nonphosphorylated peptide analogues or by phosphopeptides containing Y729 and Y764. Complementary results were obtained in studies examining the ability of these peptides to destabilize and inhibit DNA binding of activated Stat3. Both Y704 and Y744 contributed to optimal activation of Stat3/beta in M1 murine myeloid leukemia cells containing wild-type and Y-to-F mutant G-CSFR constructs. Carboxy-terminal to Y704 at the +3 position is Gln; YXXQ represents a consensus Stat3 recruitment and activation motif. Y744 is followed at the +3 position by Cys (C); YXXC, represents a novel motif implicated in the recruitment and activation of Stat3. Modeling of the SH2 domain of Stat3 based on homologous SH2 domains of known structure revealed polar residues whose side chains contact the +3 position. This substitution may confer specificity for the Y704- and Y744-based ligands by allowing H-bond formation between the binding surface and the Gln or Cys found at the respective +3 position.

  4. Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras.

    PubMed

    Warren, Jeremy G; Lincoln, James E; Kirkpatrick, Bruce C

    2015-01-01

    Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or

  5. Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras

    PubMed Central

    Warren, Jeremy G.; Lincoln, James E.; Kirkpatrick, Bruce C.

    2015-01-01

    Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or

  6. Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras.

    PubMed

    Warren, Jeremy G; Lincoln, James E; Kirkpatrick, Bruce C

    2015-01-01

    Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or

  7. Gene switching rate determines response to extrinsic perturbations in the self-activation transcriptional network motif.

    PubMed

    de Franciscis, Sebastiano; Caravagna, Giulio; Mauri, Giancarlo; d'Onofrio, Alberto

    2016-01-01

    Gene switching dynamics is a major source of randomness in genetic networks, also in the case of large concentrations of the transcription factors. In this work, we consider a common network motif - the positive feedback of a transcription factor on its own synthesis - and assess its response to extrinsic noises perturbing gene deactivation in a variety of settings where the network might operate. These settings are representative of distinct cellular types, abundance of transcription factors and ratio between gene switching and protein synthesis rates. By investigating noise-induced transitions among the different network operative states, our results suggest that gene switching rates are key parameters to shape network response to external perturbations, and that such response depends on the particular biological setting, i.e. the characteristic time scales and protein abundance. These results might have implications on our understanding of irreversible transitions for noise-related phenomena such as cellular differentiation. In addition these evidences suggest to adopt the appropriate mathematical model of the network in order to analyze the system consistently to the reference biological setting. PMID:27256916

  8. Gene switching rate determines response to extrinsic perturbations in the self-activation transcriptional network motif

    PubMed Central

    de Franciscis, Sebastiano; Caravagna, Giulio; Mauri, Giancarlo; d’Onofrio, Alberto

    2016-01-01

    Gene switching dynamics is a major source of randomness in genetic networks, also in the case of large concentrations of the transcription factors. In this work, we consider a common network motif - the positive feedback of a transcription factor on its own synthesis - and assess its response to extrinsic noises perturbing gene deactivation in a variety of settings where the network might operate. These settings are representative of distinct cellular types, abundance of transcription factors and ratio between gene switching and protein synthesis rates. By investigating noise-induced transitions among the different network operative states, our results suggest that gene switching rates are key parameters to shape network response to external perturbations, and that such response depends on the particular biological setting, i.e. the characteristic time scales and protein abundance. These results might have implications on our understanding of irreversible transitions for noise-related phenomena such as cellular differentiation. In addition these evidences suggest to adopt the appropriate mathematical model of the network in order to analyze the system consistently to the reference biological setting. PMID:27256916

  9. SHP-2 Mediates C-type Lectin Receptors-induced Syk Activation and Anti-fungal TH17 Responses

    PubMed Central

    Deng, Zihou; Ma, Shixin; Zhou, Hao; Zang, Aiping; Fang, Yiyuan; Li, Tiantian; Shi, Huanjing; Liu, Mei; Du, Min; Taylor, Patricia R.; Zhu, Helen H.; Chen, Jiangye; Meng, Guangxun; Li, Fubin; Chen, Changbin; Zhang, Yan; Jia, Xin-Ming; Lin, Xin; Zhang, Xiaoming; Pearlman, Eric; Li, Xiaoxia; Feng, Gen-Sheng; Xiao, Hui

    2015-01-01

    SUMMARY Fungal infection stimulates the canonical C-type lectin receptors (CLRs) signaling pathway via Syk activation. Here we show that SHP-2 plays a crucial role in mediating CLRs-induced Syk activation. Genetic ablation of Shp-2 (Ptpn11) in dendritic cells (DCs) and macrophages impaired Syk-mediated signaling and abrogated pro-inflammatory gene expression following fungal stimulation. Mechanistically, SHP-2 operates as a scaffold facilitating the recruitment of Syk to dectin-1 or FcRγ, through its N-SH2 domain and a previously unrecognized C-terminal ITAM motif. We demonstrate that DC-derived SHP-2 is crucial for the induction of IL-1β, IL-6 and IL-23, and anti-fungal TH17 cell responses to control Candida albicans infection. Together, these data reveal a mechanism by which SHP-2 mediates Syk activation in response to fungal infections PMID:25915733

  10. Role of leucine zipper motif in apoE3 N-terminal domain lipid binding activity.

    PubMed

    Yamamoto, Taichi; Ryan, Robert O

    2006-09-01

    The N terminal domain of human apolipoprotein E3 (apoE3-NT) functions as a ligand for members of the low-density lipoprotein receptor (LDLR) family. Whereas lipid-free apoE3-NT adopts a stable four-helix bundle conformation, a lipid binding induced conformational change is required for LDLR recognition. To investigate the role of a leucine zipper motif identified in the helix bundle on lipid binding activity, three leucine residues in helix 2 (Leu63, Leu71 and Leu78) were replaced by alanine. Recombinant "leucine to alanine" (LA) apoE3-NT was produced in E. coli, isolated and characterized. Stability studies revealed a transition midpoint of guanidine hydrochloride induced denaturation of 2.7 M and 2.1 M for wild type (WT) and LA apoE3-NT, respectively. Results from fluorescent dye binding assays revealed that, compared to WT apoE3-NT, LA apoE3-NT has an increased content of solvent exposed hydrophobic surfaces. In phospholipid vesicle solubilization assays, LA apoE3-NT was more effective than WT apoE3-NT at inducing a time-dependent decrease in dimyristoylphosphatidylglycerol vesicle light scattering intensity. Likewise, in lipoprotein binding assays, LA apoE3-NT protected human low-density lipoprotein from phospholipase C induced aggregation to a greater extent than WT apoE3-NT. On the other hand, LA apoE3-NT and WT apoE3-NT were equivalent in terms of their ability to bind a soluble LDLR fragment. The results suggest that the leucine zipper motif confers stability to the apoE3-NT helix bundle state and may serve to modulate lipid binding activity of this domain and, thereby, influence the conformational transition associated with manifestation of LDLR binding activity.

  11. Identifying the activation motif in the N-terminal of rainbow trout and zebrafish melanocortin-2 receptor accessory protein 1 (MRAP1) orthologs.

    PubMed

    Dores, Robert M; Liang, Liang; Hollmann, Rebecca E; Sandhu, Navdeep; Vijayan, Mathilakath M

    2016-08-01

    The activation of mammalian melanocortin-2 receptor (MC2R) orthologs is dependent on a four-amino acid activation motif (LDYL/I) located in the N-terminal of mammalian MRAP1 (melanocortin-2 receptor accessory protein). Previous alanine substitution analysis had shown that the Y residue in this motif appears to be the most important for mediating the activation of mammalian MC2R orthologs. Similar, but not identical amino acid motifs were detected in rainbow trout MRAP1 (YDYL) and zebrafish MRAP1 (YDYV). To determine the importance of these residues in the putative activation motifs, rainbow trout and zebrafish MRAP1 orthologs were individually co-expressed in CHO cells with rainbow trout MC2R, and the activation of this receptor with either the wild-type MRAP1 ortholog or alanine-substituted analogs of the two teleost MRAP1s was analyzed. Alanine substitutions at all four amino acid positions in rainbow trout MRAP1 blocked activation of the rainbow trout MC2R. Single alanine substitutions of the D and Y residues in rainbow trout and zebrafish MRAP1 indicate that these two residues play a significant role in the activation of rainbow trout MC2R. These observations indicate that there are subtle differences in the way that teleost and mammalian MRAPs are involved in the activation of their corresponding MC2R orthologs.

  12. Stably integrated mouse mammary tumor virus long terminal repeat DNA requires the octamer motifs for basal promoter activity.

    PubMed Central

    Buetti, E

    1994-01-01

    In the mouse mammary tumor virus promoter, a tandem of octamer motifs, recognized by ubiquitous and tissue-restricted Oct transcription factors, is located upstream of the TATA box and next to a binding site for the transcription factor nuclear factor I (NF-I). Their function was investigated with mutant long terminal repeats under different transfection conditions in mouse Ltk- cells and quantitative S1 nuclease mapping of the transcripts. In stable transfectants, which are most representative of the state of proviral DNA with respect to both number of integrated DNA templates and chromatin organization, a long terminal repeat mutant of both octamer sites showed an average 50-fold reduction of the basal transcription level, while the dexamethasone-stimulated level was unaffected. DNase I in vitro footprinting assays with L-cell nuclear protein extracts showed that the mutant DNA was unable to bind octamer factors but had a normal footprint in the NF-I site. I conclude that mouse mammary tumor virus employs the tandem octamer motifs of the viral promoter, recognized by the ubiquitous transcription factor Oct-1, for its basal transcriptional activity and the NF-I binding site, as previously shown, for glucocorticoid-stimulated transcription. A deletion mutant with only one octamer site showed a marked base-level reduction at high copy number but little reduction at low copies of integrated plasmids. The observed transcription levels may depend both on the relative ratio of transcription factors to DNA templates and on the relative affinity of binding sites, as determined by oligonucleotide competition footprinting. Images PMID:8289800

  13. A WXW motif is required for the anticancer activity of the TAT-RasGAP317-326 peptide.

    PubMed

    Barras, David; Chevalier, Nadja; Zoete, Vincent; Dempsey, Rosemary; Lapouge, Karine; Olayioye, Monilola A; Michielin, Olivier; Widmann, Christian

    2014-08-22

    TAT-RasGAP317-326, a cell-permeable 10-amino acid-long peptide derived from the N2 fragment of p120 Ras GTPase-activating protein (RasGAP), sensitizes tumor cells to apoptosis induced by various anticancer therapies. This RasGAP-derived peptide, by targeting the deleted in liver cancer-1 (DLC1) tumor suppressor, also hampers cell migration and invasion by promoting cell adherence and by inhibiting cell movement. Here, we systematically investigated the role of each amino acid within the RasGAP317-326 sequence for the anticancer activities of TAT-RasGAP317-326. We report here that the first three amino acids of this sequence, tryptophan, methionine, and tryptophan (WMW), are necessary and sufficient to sensitize cancer cells to cisplatin-induced apoptosis and to reduce cell migration. The WMW motif was found to be critical for the binding of fragment N2 to DLC1. These results define the interaction mode between the active anticancer sequence of RasGAP and DLC1. This knowledge will facilitate the design of small molecules bearing the tumor-sensitizing and antimetastatic activities of TAT-RasGAP317-326.

  14. Palmitoylation of protease-activated receptor-1 regulates adaptor protein complex-2 and -3 interaction with tyrosine-based motifs and endocytic sorting.

    PubMed

    Canto, Isabel; Trejo, JoAnn

    2013-05-31

    Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor for the coagulant protease thrombin. Thrombin binds to and cleaves the N terminus of PAR1, generating a new N terminus that functions as a tethered ligand that cannot diffuse away. In addition to rapid desensitization, PAR1 trafficking is critical for the regulation of cellular responses. PAR1 displays constitutive and agonist-induced internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), which binds to a distal tyrosine-based motif localized within the C-terminal tail (C-tail) domain. Once internalized, PAR1 is sorted from endosomes to lysosomes via AP-3 interaction with a second C-tail tyrosine motif proximal to the transmembrane domain. However, the regulatory processes that control adaptor protein recognition of PAR1 C-tail tyrosine-based motifs are not known. Here, we report that palmitoylation of PAR1 is critical for regulating proper utilization of tyrosine-based motifs and endocytic sorting. We show that PAR1 is basally palmitoylated at highly conserved C-tail cysteines. A palmitoylation-deficient PAR1 mutant is competent to signal and exhibits a marked increase in constitutive internalization and lysosomal degradation compared with wild type receptor. Intriguingly, enhanced constitutive internalization of PAR1 is mediated by AP-2 and requires the proximal tyrosine-based motif rather than the distal tyrosine motif used by wild type receptor. Moreover, palmitoylation-deficient PAR1 displays increased degradation that is mediated by AP-3. These findings suggest that palmitoylation of PAR1 regulates appropriate utilization of tyrosine-based motifs by adaptor proteins and endocytic trafficking, processes that are critical for maintaining appropriate expression of PAR1 at the cell surface. PMID:23580642

  15. Palmitoylation of protease-activated receptor-1 regulates adaptor protein complex-2 and -3 interaction with tyrosine-based motifs and endocytic sorting.

    PubMed

    Canto, Isabel; Trejo, JoAnn

    2013-05-31

    Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor for the coagulant protease thrombin. Thrombin binds to and cleaves the N terminus of PAR1, generating a new N terminus that functions as a tethered ligand that cannot diffuse away. In addition to rapid desensitization, PAR1 trafficking is critical for the regulation of cellular responses. PAR1 displays constitutive and agonist-induced internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), which binds to a distal tyrosine-based motif localized within the C-terminal tail (C-tail) domain. Once internalized, PAR1 is sorted from endosomes to lysosomes via AP-3 interaction with a second C-tail tyrosine motif proximal to the transmembrane domain. However, the regulatory processes that control adaptor protein recognition of PAR1 C-tail tyrosine-based motifs are not known. Here, we report that palmitoylation of PAR1 is critical for regulating proper utilization of tyrosine-based motifs and endocytic sorting. We show that PAR1 is basally palmitoylated at highly conserved C-tail cysteines. A palmitoylation-deficient PAR1 mutant is competent to signal and exhibits a marked increase in constitutive internalization and lysosomal degradation compared with wild type receptor. Intriguingly, enhanced constitutive internalization of PAR1 is mediated by AP-2 and requires the proximal tyrosine-based motif rather than the distal tyrosine motif used by wild type receptor. Moreover, palmitoylation-deficient PAR1 displays increased degradation that is mediated by AP-3. These findings suggest that palmitoylation of PAR1 regulates appropriate utilization of tyrosine-based motifs by adaptor proteins and endocytic trafficking, processes that are critical for maintaining appropriate expression of PAR1 at the cell surface.

  16. [Personal motif in art].

    PubMed

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy.

  17. [Personal motif in art].

    PubMed

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy. PMID:26202617

  18. The quorum-sensing regulator ComA from Bacillus subtilis activates transcription using topologically distinct DNA motifs

    PubMed Central

    Wolf, Diana; Rippa, Valentina; Mobarec, Juan Carlos; Sauer, Patricia; Adlung, Lorenz; Kolb, Peter; Bischofs, Ilka B.

    2016-01-01

    ComA-like transcription factors regulate the quorum response in numerous Gram-positive bacteria. ComA proteins belong to the tetrahelical helix-turn-helix superfamily of transcriptional activators, which bind as homodimers to inverted sequence repeats in the DNA. Here, we report that ComA from Bacillus subtilis recognizes a topologically distinct motif, in which the binding elements form a direct repeat. We provide in vitro and in vivo evidence that the canonical and non-canonical site play an important role in facilitating type I and type II promoter activation, respectively, by interacting with different subunits of RNA polymerase. We furthermore show that there is a variety of contexts in which the non-canonical site can occur and identify new direct target genes that are located within the integrative and conjugative element ICEBs1. We therefore suggest that ComA acts as a multifunctional transcriptional activator and provides a striking example for complexity in protein–DNA interactions that evolved in the context of quorum sensing. PMID:26582911

  19. Adaptation of short-term plasticity parameters via error-driven learning may explain the correlation between activity-dependent synaptic properties, connectivity motifs and target specificity

    PubMed Central

    Esposito, Umberto; Giugliano, Michele; Vasilaki, Eleni

    2015-01-01

    The anatomical connectivity among neurons has been experimentally found to be largely non-random across brain areas. This means that certain connectivity motifs occur at a higher frequency than would be expected by chance. Of particular interest, short-term synaptic plasticity properties were found to colocalize with specific motifs: an over-expression of bidirectional motifs has been found in neuronal pairs where short-term facilitation dominates synaptic transmission among the neurons, whereas an over-expression of unidirectional motifs has been observed in neuronal pairs where short-term depression dominates. In previous work we found that, given a network with fixed short-term properties, the interaction between short- and long-term plasticity of synaptic transmission is sufficient for the emergence of specific motifs. Here, we introduce an error-driven learning mechanism for short-term plasticity that may explain how such observed correspondences develop from randomly initialized dynamic synapses. By allowing synapses to change their properties, neurons are able to adapt their own activity depending on an error signal. This results in more rich dynamics and also, provided that the learning mechanism is target-specific, leads to specialized groups of synapses projecting onto functionally different targets, qualitatively replicating the experimental results of Wang and collaborators. PMID:25688203

  20. Epsilon glutathione transferases possess a unique class-conserved subunit interface motif that directly interacts with glutathione in the active site.

    PubMed

    Wongsantichon, Jantana; Robinson, Robert C; Ketterman, Albert J

    2015-10-20

    Epsilon class glutathione transferases (GSTs) have been shown to contribute significantly to insecticide resistance. We report a new Epsilon class protein crystal structure from Drosophila melanogaster for the glutathione transferase DmGSTE6. The structure reveals a novel Epsilon clasp motif that is conserved across hundreds of millions of years of evolution of the insect Diptera order. This histidine-serine motif lies in the subunit interface and appears to contribute to quaternary stability as well as directly connecting the two glutathiones in the active sites of this dimeric enzyme.

  1. Epsilon glutathione transferases possess a unique class-conserved subunit interface motif that directly interacts with glutathione in the active site

    PubMed Central

    Wongsantichon, Jantana; Robinson, Robert C.; Ketterman, Albert J.

    2015-01-01

    Epsilon class glutathione transferases (GSTs) have been shown to contribute significantly to insecticide resistance. We report a new Epsilon class protein crystal structure from Drosophila melanogaster for the glutathione transferase DmGSTE6. The structure reveals a novel Epsilon clasp motif that is conserved across hundreds of millions of years of evolution of the insect Diptera order. This histidine-serine motif lies in the subunit interface and appears to contribute to quaternary stability as well as directly connecting the two glutathiones in the active sites of this dimeric enzyme. PMID:26487708

  2. Understanding the Role of Histidine in the GHSxG Acyltransferase Active Site Motif: Evidence for Histidine Stabilization of the Malonyl-Enzyme Intermediate

    PubMed Central

    Poust, Sean; Yoon, Isu; Adams, Paul D.; Katz, Leonard; Petzold, Christopher J.; Keasling, Jay D.

    2014-01-01

    Acyltransferases determine which extender units are incorporated into polyketide and fatty acid products. The ping-pong acyltransferase mechanism utilizes a serine in a conserved GHSxG motif. However, the role of the conserved histidine in this motif is poorly understood. We observed that a histidine to alanine mutation (H640A) in the GHSxG motif of the malonyl-CoA specific yersiniabactin acyltransferase results in an approximately seven-fold higher hydrolysis rate over the wildtype enzyme, while retaining transacylation activity. We propose two possibilities for the reduction in hydrolysis rate: either H640 structurally stabilizes the protein by hydrogen bonding with a conserved asparagine in the ferredoxin-like subdomain of the protein, or a water-mediated hydrogen bond between H640 and the malonyl moiety stabilizes the malonyl-O-AT ester intermediate. PMID:25286165

  3. Understanding the role of histidine in the GHSxG acyltransferase active site motif: Evidence for histidine stabilization of the malonyl-enzyme intermediate

    SciTech Connect

    Poust, Sean; Yoon, Isu; Adams, Paul D.; Katz, Leonard; Petzold, Christopher J.; Keasling, Jay D.

    2014-10-06

    Acyltransferases determine which extender units are incorporated into polyketide and fatty acid products. Thus, the ping-pong acyltransferase mechanism utilizes a serine in a conserved GHSxG motif. However, the role of the conserved histidine in this motif is poorly understood. We observed that a histidine to alanine mutation (H640A) in the GHSxG motif of the malonyl-CoA specific yersiniabactin acyltransferase results in an approximately seven-fold higher hydrolysis rate over the wildtype enzyme, while retaining transacylation activity. We propose two possibilities for the reduction in hydrolysis rate: either H640 structurally stabilizes the protein by hydrogen bonding with a conserved asparagine in the ferredoxin-like subdomain of the protein, or a water-mediated hydrogen bond between H640 and the malonyl moiety stabilizes the malonyl-O-AT ester intermediate.

  4. Understanding the role of histidine in the GHSxG acyltransferase active site motif: Evidence for histidine stabilization of the malonyl-enzyme intermediate

    DOE PAGES

    Poust, Sean; Yoon, Isu; Adams, Paul D.; Katz, Leonard; Petzold, Christopher J.; Keasling, Jay D.

    2014-10-06

    Acyltransferases determine which extender units are incorporated into polyketide and fatty acid products. Thus, the ping-pong acyltransferase mechanism utilizes a serine in a conserved GHSxG motif. However, the role of the conserved histidine in this motif is poorly understood. We observed that a histidine to alanine mutation (H640A) in the GHSxG motif of the malonyl-CoA specific yersiniabactin acyltransferase results in an approximately seven-fold higher hydrolysis rate over the wildtype enzyme, while retaining transacylation activity. We propose two possibilities for the reduction in hydrolysis rate: either H640 structurally stabilizes the protein by hydrogen bonding with a conserved asparagine in the ferredoxin-likemore » subdomain of the protein, or a water-mediated hydrogen bond between H640 and the malonyl moiety stabilizes the malonyl-O-AT ester intermediate.« less

  5. Extracting regulator activity profiles by integration of de novo motifs and expression data: characterizing key regulators of nutrient depletion responses in Streptomyces coelicolor

    PubMed Central

    Iqbal, Mudassar; Mast, Yvonne; Amin, Rafat; Hodgson, David A.; Wohlleben, Wolfgang; Burroughs, Nigel J.

    2012-01-01

    Determining transcriptional regulator activities is a major focus of systems biology, providing key insight into regulatory mechanisms and co-regulators. For organisms such as Escherichia coli, transcriptional regulator binding site data can be integrated with expression data to infer transcriptional regulator activities. However, for most organisms there is only sparse data on their transcriptional regulators, while their associated binding motifs are largely unknown. Here, we address the challenge of inferring activities of unknown regulators by generating de novo (binding) motifs and integrating with expression data. We identify a number of key regulators active in the metabolic switch, including PhoP with its associated directed repeat PHO box, candidate motifs for two SARPs, a CRP family regulator, an iron response regulator and that for LexA. Experimental validation for some of our predictions was obtained using gel-shift assays. Our analysis is applicable to any organism for which there is a reasonable amount of complementary expression data and for which motifs (either over represented or evolutionary conserved) can be identified in the genome. PMID:22406834

  6. The WSXWS motif in cytokine receptors is a molecular switch involved in receptor activation: insight from structures of the prolactin receptor.

    PubMed

    Dagil, Robert; Knudsen, Maiken J; Olsen, Johan G; O'Shea, Charlotte; Franzmann, Magnus; Goffin, Vincent; Teilum, Kaare; Breinholt, Jens; Kragelund, Birthe B

    2012-02-01

    The prolactin receptor (PRLR) is activated by binding of prolactin in a 2:1 complex, but the activation mechanism is poorly understood. PRLR has a conserved WSXWS motif generic to cytokine class I receptors. We have determined the nuclear magnetic resonance solution structure of the membrane proximal domain of the human PRLR and find that the tryptophans of the motif adopt a T-stack conformation in the unbound state. By contrast, in the hormone bound state, a Trp/Arg-ladder is formed. The conformational change is hormone-dependent and influences the receptor-receptor dimerization site 3. In the constitutively active, breast cancer-related receptor mutant PRLR(I146L), we observed a stabilization of the dimeric state and a change in the dynamics of the motif. Here we demonstrate a structural link between the WSXWS motif, hormone binding, and receptor dimerization and propose it as a general mechanism for class 1 receptor activation.

  7. RNA-binding motif protein 47 inhibits Nrf2 activity to suppress tumor growth in lung adenocarcinoma

    PubMed Central

    Sakurai, T; Isogaya, K; Sakai, S; Morikawa, M; Morishita, Y; Ehata, S; Miyazono, K; Koinuma, D

    2016-01-01

    RNA-binding proteins provide a new layer of posttranscriptional regulation of RNA during cancer progression. We identified RNA-binding motif protein 47 (RBM47) as a target gene of transforming growth factor (TGF)-β in mammary gland epithelial cells (NMuMG cells) that have undergone the epithelial-to-mesenchymal transition. TGF-β repressed RBM47 expression in NMuMG cells and lung cancer cell lines. Expression of RBM47 correlated with good prognosis in patients with lung, breast and gastric cancer. RBM47 suppressed the expression of cell metabolism-related genes, which were the direct targets of nuclear factor erythroid 2-related factor 2 (Nrf2; also known as NFE2L2). RBM47 bound to KEAP1 and Cullin 3 mRNAs, and knockdown of RBM47 inhibited their protein expression, which led to enhanced binding of Nrf2 to target genomic regions. Knockdown of RBM47 also enhanced the expression of some Nrf2 activators, p21/CDKN1A and MafK induced by TGF-β. Both mitochondrial respiration rates and the side population cells in lung cancer cells increased in the absence of RBM47. Our findings, together with the enhanced tumor formation and metastasis of xenografted mice by knockdown of the RBM47 expression, suggested tumor-suppressive roles for RBM47 through the inhibition of Nrf2 activity. PMID:26923328

  8. DndEi Exhibits Helicase Activity Essential for DNA Phosphorothioate Modification and ATPase Activity Strongly Stimulated by DNA Substrate with a GAAC/GTTC Motif.

    PubMed

    Zheng, Tao; Jiang, Pan; Cao, Bo; Cheng, Qiuxiang; Kong, Lingxin; Zheng, Xiaoqing; Hu, Qinghai; You, Delin

    2016-01-15

    Phosphorothioate (PT) modification of DNA, in which the non-bridging oxygen of the backbone phosphate group is replaced by sulfur, is governed by the DndA-E proteins in prokaryotes. To better understand the biochemical mechanism of PT modification, functional analysis of the recently found PT-modifying enzyme DndEi, which has an additional domain compared with canonical DndE, from Riemerella anatipestifer is performed in this study. The additional domain is identified as a DNA helicase, and functional deletion of this domain in vivo leads to PT modification deficiency, indicating an essential role of helicase activity in PT modification. Subsequent analysis reveals that the additional domain has an ATPase activity. Intriguingly, the ATPase activity is strongly stimulated by DNA substrate containing a GAAC/GTTC motif (i.e. the motif at which PT modifications occur in R. anatipestifer) when the additional domain and the other domain (homologous to canonical DndE) are co-expressed as a full-length DndEi. These results reveal that PT modification is a biochemical process with DNA strand separation and intense ATP hydrolysis.

  9. A basic motif in the N-terminal region of RAG1 enhances V(D)J recombination activity.

    PubMed Central

    McMahan, C J; Difilippantonio, M J; Rao, N; Spanopoulou, E; Schatz, D G

    1997-01-01

    The variable portions of antigen receptor genes are assembled from component gene segments by a site-specific recombination reaction known as V(D)J recombination. The RAG1 and RAG2 proteins are the critical lymphoid cell-specific components of the recombination enzymatic machinery and are responsible for site-specific DNA recognition and cleavage. Previous studies had defined a minimal, recombinationally active core region of murine RAG1 consisting of amino acids 384 to 1008 of the 1,040-residue RAG1 protein. No recombination function has heretofore been ascribed to any portion of the 383-amino-acid N-terminal region that is missing from the core, but it seems likely to be of functional significance, based on its evolutionary conservation. Using extrachromosomal recombination substrates, we demonstrate here that the N-terminal region enhances the recombination activity of RAG1 by up to an order of magnitude in a variety of cell lines. Deletion analysis localized a region of the N terminus critical for this effect to amino acids 216 to 238, and further mutagenesis demonstrated that a small basic amino acid motif (BIIa) in this region is essential for enhancing the activity of RAG1. Despite the fact that BIIa is important for the interaction of RAG1 with the nuclear localization factor Srp-1, it does not appear to enhance recombination by facilitating nuclear transport of RAG1. A variety of models for how this region stimulates the recombination activity of RAG1 are considered. PMID:9234712

  10. Molybdenum and tungsten oxygen transferases--and functional diversity within a common active site motif.

    PubMed

    Pushie, M Jake; Cotelesage, Julien J; George, Graham N

    2014-01-01

    Molybdenum and tungsten are the only second and third-row transition elements with a known function in living organisms. The molybdenum and tungsten enzymes show common structural features, with the metal being bound by a pyranopterin-dithiolene cofactor called molybdopterin. They catalyze a variety of oxygen transferase reactions coupled with two-electron redox chemistry in which the metal cycles between the +6 and +4 oxidation states usually with water, either product or substrate, providing the oxygen. The functional roles filled by the molybdenum and tungsten enzymes are diverse; for example, they play essential roles in microbial respiration, in the uptake of nitrogen in green plants, and in human health. Together, the enzymes form a superfamily which is among the most prevalent known, being found in all kingdoms of life. This review discusses what is known of the active site structures and the mechanisms, together with some recent insights into the evolution of these important enzyme systems.

  11. IQ Motif-Containing GTPase-Activating Protein 2 (IQGAP2) Is a Novel Regulator of Colonic Inflammation in Mice

    PubMed Central

    Ghaleb, Amr M.; Bialkowska, Agnieszka B.; Snider, Ashley J.; Gnatenko, Dmitri V.; Hannun, Yusuf A.; Yang, Vincent W.; Schmidt, Valentina A.

    2015-01-01

    IQ motif-containing GTPase-activating protein 2 (IQGAP2) is a multidomain scaffolding protein that plays a role in cytoskeleton regulation by juxtaposing Rho GTPase and Ca2+/calmodulin signals. While IQGAP2 suppresses tumorigenesis in liver, its role in pathophysiology of the gastrointestinal tract remains unexplored. Here we report that IQGAP2 is required for the inflammatory response in colon. Mice lacking Iqgap2 gene (Iqgap2-/- mice) were resistant to chemically-induced colitis. Unlike wild-type controls, Iqgap2-/- mice treated with 3% dextran sulfate sodium (DSS) in water for 13 days displayed no injury to colonic epithelium. Mechanistically, resistance to colitis was associated with suppression of colonic NF-κB signaling and IL-6 synthesis, along with diminished neutrophil and macrophage production and recruitment in Iqgap2-/- mice. Finally, alterations in IQGAP2 expression were found in colons of patients with inflammatory bowel disease (IBD). Our findings indicate that IQGAP2 promotes inflammatory response at two distinct levels; locally, in colonic epithelium through TLR4/NF-κB signaling pathway, and systemically, via control of maturation and recruitment of myeloid immune cells. This work identifies a novel mechanism of colonic inflammation mediated by signal transducing scaffolding protein IQGAP2. IQGAP2 domain-specific blocking agents may represent a conceptually novel strategy for therapy of IBD and other inflammation-associated disorders, including cancer. PMID:26047140

  12. Polycystin-2 activity is controlled by transcriptional coactivator with PDZ binding motif and PALS1-associated tight junction protein.

    PubMed

    Duning, Kerstin; Rosenbusch, Deike; Schlüter, Marc A; Tian, Yuemin; Kunzelmann, Karl; Meyer, Nina; Schulze, Ulf; Markoff, Arseni; Pavenstädt, Hermann; Weide, Thomas

    2010-10-29

    Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent monogenic cause of kidney failure, characterized by the development of renal cysts. ADPKD is caused by mutations of the polycystin-1 (PC1) or polycystin-2 (PC2) genes. PC2 encodes a Ca(2+)-permeable cation channel, and its dysfunction has been implicated in cyst development. The transcriptional coactivator with PDZ binding motif (TAZ) is required for the integrity of renal cilia. Its absence results in the development of renal cysts in a knock-out mouse model. TAZ directly interacts with PC2, and it has been suggested that another yet unidentified PDZ domain protein may be involved in the TAZ/PC2 interaction. Here we describe a novel interaction of TAZ with the multi-PDZ-containing PALS1-associated tight junction protein (PATJ). TAZ interacts with both the N-terminal PDZ domains 1-3 and the C-terminal PDZ domains 8-10 of PATJ, suggesting two distinct TAZ binding domains. We also show that the C terminus of PC2 strongly interacts with PDZ domains 8-10 and to a weaker extent with PDZ domains 1-3 of PATJ. Finally, we demonstrate that both TAZ and PATJ impair PC2 channel activity when co-expressed with PC2 in oocytes of Xenopus laevis. These results implicate TAZ and PATJ as novel regulatory elements of the PC2 channel and might thus be involved in ADPKD pathology.

  13. The disulfide oxidoreductase SdbA is active in Streptococcus gordonii using a single C-terminal cysteine of the CXXC motif.

    PubMed

    Davey, Lauren; Cohen, Alejandro; LeBlanc, Jason; Halperin, Scott A; Lee, Song F

    2016-01-01

    Recently, we identified a novel disulfide oxidoreductase, SdbA, in the oral bacterium Streptococcus gordonii. Disulfide oxidoreductases form disulfide bonds in nascent proteins using a CXXC catalytic motif. Typically, the N-terminal cysteine interacts with substrates, whereas the C-terminal cysteine is buried and only reacts with the first cysteine of the motif. In this study, we investigated the SdbA C(86) P(87) D(88) C(89) catalytic motif. In vitro, SdbA single cysteine variants at the N or C-terminal position (SdbAC86P and SdbAC89A ) were active but displayed different susceptibility to oxidation, and N-terminal cysteine was prone to sulfenylation. In S. gordonii, mutants with a single N-terminal cysteine were inactive and formed unstable disulfide adducts with other proteins. Activity was partially restored by inactivation of pyruvate oxidase, a hydrogen peroxide generator. Presence of the C-terminal cysteine alone (in the SdbAC86P variant) could complement the ΔsdbA mutant and restore disulfide bond formation in recombinant and natural protein substrates. These results provide evidence that certain disulfide oxidoreductases can catalyze disulfide bond formation using a single cysteine of the CXXC motif, including the buried C-terminal cysteine.

  14. Sequence specific protein binding to and activation of the TGF-beta 3 promoter through a repeated TCCC motif.

    PubMed Central

    Lafyatis, R; Denhez, F; Williams, T; Sporn, M; Roberts, A

    1991-01-01

    We have previously characterized the TGF-beta 3 promoter and shown that the activity of this promoter is highly variable in different cell types. Although the promoter contains a proximal cAMP responsive element, which is critical to basal and forskolin-induced promoter activity, this element is not responsible for the variable, cell-specific regulation of the promoter. In this paper, we identify a 25 base pair sequence in the proximal region of the TGF-beta 3 promoter that binds a novel DNA-binding protein. This region includes the sequence T-CCCTCCCTCCC, (3 x TCCC), and mutation of these T-CCC repeats inhibits protein binding. Further, we show that in the cell line A375, which we have previously shown expresses high levels of TGF-beta 3 mRNA, this region is responsible for mediating high level TGF-beta 3 promoter activity. Immediately 3' to the 3 x TCCC sequence is a consensus AP-2 binding site, however, we show that this region does not bind AP-2, and AP-2 does not transactivate the TGF-beta 3 promoter. Therefore, we provide strong evidence that high level expression of TGF-beta 3 in A375 cells results from transactivation of the TGF-beta 3 promoter by a protein that binds to a repeated TCCC motif in the promoter and suggest that this DNA-binding protein likely also regulates aspects of developmental and tissue-specific expression of this cytokine. Images PMID:1754378

  15. The Kaposi's Sarcoma-Associated Herpesvirus G Protein-Coupled Receptor Contains an Immunoreceptor Tyrosine-Based Inhibitory Motif That Activates Shp2 ▿

    PubMed Central

    Philpott, Nicola; Bakken, Thomas; Pennell, Christopher; Chen, Liwei; Wu, Jie; Cannon, Mark

    2011-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) G protein-coupled receptor (vGPCR) is a constitutively active, highly angiogenic homologue of the interleukin-8 (IL-8) receptors that signals in part via the cytoplasmic protein tyrosine phosphatase Shp2. We show that vGPCR contains a bona fide immunoreceptor tyrosine-based inhibitory motif (ITIM) that binds and constitutively activates Shp2. PMID:21047965

  16. Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness

    PubMed Central

    Cybulski, Larisa Estefanía; Ballering, Joost; Moussatova, Anastassiia; Inda, Maria Eugenia; Vazquez, Daniela B.; Wassenaar, Tsjerk A.; de Mendoza, Diego; Tieleman, D. Peter; Killian, J. Antoinette

    2015-01-01

    DesK is a bacterial thermosensor protein involved in maintaining membrane fluidity in response to changes in environmental temperature. Most likely, the protein is activated by changes in membrane thickness, but the molecular mechanism of sensing and signaling is still poorly understood. Here we aimed to elucidate the mode of action of DesK by studying the so-called “minimal sensor DesK” (MS-DesK), in which sensing and signaling are captured in a single transmembrane segment. This simplified version of the sensor allows investigation of membrane thickness-dependent protein–lipid interactions simply by using synthetic peptides, corresponding to the membrane-spanning parts of functional and nonfunctional mutants of MS-DesK incorporated in lipid bilayers with varying thicknesses. The lipid-dependent behavior of the peptides was investigated by circular dichroism, tryptophan fluorescence, and molecular modeling. These experiments were complemented with in vivo functional studies on MS-DesK mutants. Based on the results, we constructed a model that suggests a new mechanism for sensing in which the protein is present as a dimer and responds to an increase in bilayer thickness by membrane incorporation of a C-terminal hydrophilic motif. This results in exposure of three serines on the same side of the transmembrane helices of MS-DesK, triggering a switching of the dimerization interface to allow the formation of a serine zipper. The final result is activation of the kinase state of MS-DesK. PMID:25941408

  17. Is there any interaction between telomeric DNA structures, G-quadruplex and I-motif, with saffron active metabolites?

    PubMed

    Hoshyar, Reyhane; Bathaie, S Zahra; Kyani, Anahita; Mousavi, Mir Fazlollah

    2012-01-01

    Telomeric DNA contains some unique secondary structures, such as G-quadruplex and I-motif. These structures may be stabilized or changed by binding to specific proteins or small molecules. Herein, we report the in vitro effect of crocin, crocetin, picrocrocin, and safranal on these structures. Circular dichroism (CD) data indicate that crocetin has higher affinity for these structures. Safranal and crocin induce little change in the I-motif and G-quadruplex, respectively. The molecular docking confirms the experimental data and indicates the minor groove binding of ligands with G-quadruplex. The possibility for application of these ligands as sequence-specific drugs should be further investigated. PMID:23145950

  18. Consensus PP1 binding motifs regulate transcriptional corepression and alternative RNA splicing activities of the steroid receptor coregulators, p54nrb and PSF.

    PubMed

    Liu, Liangliang; Xie, Ning; Rennie, Paul; Challis, John R G; Gleave, Martin; Lye, Stephen J; Dong, Xuesen

    2011-07-01

    Originally identified as essential pre-mRNA splicing factors, non-POU-domain-containing, octamer binding protein (p54nrb) and PTB-associated RNA splicing factor (PSF) are also steroid receptor corepressors. The mechanisms by which p54nrb and PSF regulate gene transcription remain unclear. Both p54nrb and PSF contain protein phosphatase 1 (PP1) consensus binding RVxF motifs, suggesting that PP1 may regulate phosphorylation status of p54nrb and PSF and thus their function in gene transcription. In this report, we demonstrated that PP1 forms a protein complex with both p54nrb and PSF. PP1 interacts directly with the RVxF motif only in p54nrb, but not in PSF. Association with PP1 results in dephosphorylation of both p54nrb and PSF in vivo and the loss of their transcriptional corepressor activities. Using the CD44 minigene as a reporter, we showed that PP1 regulates p54nrb and PSF alternative splicing activities that determine exon skipping vs. inclusion in the final mature RNA for translation. In addition, changes in transcriptional corepression and RNA splicing activities of p54nrb and PSF are correlated with alterations in protein interactions of p54nrb and PSF with transcriptional corepressors such as Sin3A and histone deacetylase 1, and RNA splicing factors such as U1A and U2AF. Furthermore, we demonstrated a novel function of the RVxF motif within PSF that enhances its corepression and RNA splicing activities independent of PP1. We conclude that the RVxF motifs play an important role in controlling the multifunctional properties of p54nrb and PSF in the regulation of gene transcription.

  19. Mining Conditional Phosphorylation Motifs.

    PubMed

    Liu, Xiaoqing; Wu, Jun; Gong, Haipeng; Deng, Shengchun; He, Zengyou

    2014-01-01

    Phosphorylation motifs represent position-specific amino acid patterns around the phosphorylation sites in the set of phosphopeptides. Several algorithms have been proposed to uncover phosphorylation motifs, whereas the problem of efficiently discovering a set of significant motifs with sufficiently high coverage and non-redundancy still remains unsolved. Here we present a novel notion called conditional phosphorylation motifs. Through this new concept, the motifs whose over-expressiveness mainly benefits from its constituting parts can be filtered out effectively. To discover conditional phosphorylation motifs, we propose an algorithm called C-Motif for a non-redundant identification of significant phosphorylation motifs. C-Motif is implemented under the Apriori framework, and it tests the statistical significance together with the frequency of candidate motifs in a single stage. Experiments demonstrate that C-Motif outperforms some current algorithms such as MMFPh and Motif-All in terms of coverage and non-redundancy of the results and efficiency of the execution. The source code of C-Motif is available at: https://sourceforge. net/projects/cmotif/. PMID:26356863

  20. Key importance of small RNA binding for the activity of a glycine-tryptophan (GW) motif-containing viral suppressor of RNA silencing.

    PubMed

    Pérez-Cañamás, Miryam; Hernández, Carmen

    2015-01-30

    Viruses express viral suppressors of RNA silencing (VSRs) to counteract RNA silencing-based host defenses. Although virtually all stages of the antiviral silencing pathway can be inhibited by VSRs, small RNAs (sRNAs) and Argonaute (AGO) proteins seem to be the most frequent targets. Recently, GW/WG motifs of some VSRs have been proposed to dictate their suppressor function by mediating interaction with AGO(s). Here we have studied the VSR encoded by Pelargonium line pattern virus (family Tombusviridae). The results show that p37, the viral coat protein, blocks RNA silencing. Site-directed mutagenesis of some p37 sequence traits, including a conserved GW motif, allowed generation of suppressor-competent and -incompetent molecules and uncoupling of the VSR and particle assembly capacities. The engineered mutants were used to assess the importance of p37 functions for viral infection and the relative contribution of diverse molecular interactions to suppressor activity. Two main conclusions can be drawn: (i) the silencing suppression and encapsidation functions of p37 are both required for systemic Pelargonium line pattern virus infection, and (ii) the suppressor activity of p37 relies on the ability to bind sRNAs rather than on interaction with AGOs. The data also caution against potential misinterpretations of results due to overlap of sequence signals related to distinct protein properties. This is well illustrated by mutation of the GW motif in p37 that concurrently affects nucleolar localization, efficient interaction with AGO1, and sRNA binding capability. These concomitant effects could have been overlooked in other GW motif-containing suppressors, as we exemplify with the orthologous p38 of turnip crinkle virus. PMID:25505185

  1. Key importance of small RNA binding for the activity of a glycine-tryptophan (GW) motif-containing viral suppressor of RNA silencing.

    PubMed

    Pérez-Cañamás, Miryam; Hernández, Carmen

    2015-01-30

    Viruses express viral suppressors of RNA silencing (VSRs) to counteract RNA silencing-based host defenses. Although virtually all stages of the antiviral silencing pathway can be inhibited by VSRs, small RNAs (sRNAs) and Argonaute (AGO) proteins seem to be the most frequent targets. Recently, GW/WG motifs of some VSRs have been proposed to dictate their suppressor function by mediating interaction with AGO(s). Here we have studied the VSR encoded by Pelargonium line pattern virus (family Tombusviridae). The results show that p37, the viral coat protein, blocks RNA silencing. Site-directed mutagenesis of some p37 sequence traits, including a conserved GW motif, allowed generation of suppressor-competent and -incompetent molecules and uncoupling of the VSR and particle assembly capacities. The engineered mutants were used to assess the importance of p37 functions for viral infection and the relative contribution of diverse molecular interactions to suppressor activity. Two main conclusions can be drawn: (i) the silencing suppression and encapsidation functions of p37 are both required for systemic Pelargonium line pattern virus infection, and (ii) the suppressor activity of p37 relies on the ability to bind sRNAs rather than on interaction with AGOs. The data also caution against potential misinterpretations of results due to overlap of sequence signals related to distinct protein properties. This is well illustrated by mutation of the GW motif in p37 that concurrently affects nucleolar localization, efficient interaction with AGO1, and sRNA binding capability. These concomitant effects could have been overlooked in other GW motif-containing suppressors, as we exemplify with the orthologous p38 of turnip crinkle virus.

  2. Key Importance of Small RNA Binding for the Activity of a Glycine-Tryptophan (GW) Motif-containing Viral Suppressor of RNA Silencing*

    PubMed Central

    Pérez-Cañamás, Miryam; Hernández, Carmen

    2015-01-01

    Viruses express viral suppressors of RNA silencing (VSRs) to counteract RNA silencing-based host defenses. Although virtually all stages of the antiviral silencing pathway can be inhibited by VSRs, small RNAs (sRNAs) and Argonaute (AGO) proteins seem to be the most frequent targets. Recently, GW/WG motifs of some VSRs have been proposed to dictate their suppressor function by mediating interaction with AGO(s). Here we have studied the VSR encoded by Pelargonium line pattern virus (family Tombusviridae). The results show that p37, the viral coat protein, blocks RNA silencing. Site-directed mutagenesis of some p37 sequence traits, including a conserved GW motif, allowed generation of suppressor-competent and -incompetent molecules and uncoupling of the VSR and particle assembly capacities. The engineered mutants were used to assess the importance of p37 functions for viral infection and the relative contribution of diverse molecular interactions to suppressor activity. Two main conclusions can be drawn: (i) the silencing suppression and encapsidation functions of p37 are both required for systemic Pelargonium line pattern virus infection, and (ii) the suppressor activity of p37 relies on the ability to bind sRNAs rather than on interaction with AGOs. The data also caution against potential misinterpretations of results due to overlap of sequence signals related to distinct protein properties. This is well illustrated by mutation of the GW motif in p37 that concurrently affects nucleolar localization, efficient interaction with AGO1, and sRNA binding capability. These concomitant effects could have been overlooked in other GW motif-containing suppressors, as we exemplify with the orthologous p38 of turnip crinkle virus. PMID:25505185

  3. 2'-deoxy cyclic adenosine 5'-diphosphate ribose derivatives: importance of the 2'-hydroxyl motif for the antagonistic activity of 8-substituted cADPR derivatives.

    PubMed

    Zhang, Bo; Wagner, Gerd K; Weber, Karin; Garnham, Clive; Morgan, Anthony J; Galione, Antony; Guse, Andreas H; Potter, Barry V L

    2008-03-27

    The structural features needed for antagonism at the cyclic ADP-ribose (cADPR) receptor are unclear. Chemoenzymatic syntheses of novel 8-substituted 2'-deoxy-cADPR analogues, including 8-bromo-2'-deoxy-cADPR 7, 8-amino-2'-deoxy-cADPR 8, 8- O-methyl-2'-deoxy-cADPR 9, 8-phenyl-2'-deoxy-cADPR 10 and its ribose counterpart 8-phenyl-cADPR 5 are reported, including improved syntheses of established antagonists 8-amino-cADPR 2 and 8-bromo-cADPR 3. Aplysia californica ADP-ribosyl cyclase tolerates even the bulky 8-phenyl-nicotinamide adenine 5'-dinucleotide as a substrate. Structure-activity relationships of 8-substituted cADPR analogues in both Jurkat T-lymphocytes and sea urchin egg homogenate (SUH) were investigated. 2'-OH Deletion decreased antagonistic activity (at least for the 8-amino series), showing it to be an important motif. Some 8-substituted 2'-deoxy analogues showed agonist activity at higher concentrations, among which 8-bromo-2'-deoxy-cADPR 7 was, unexpectedly, a weak but almost full agonist in SUH and was membrane-permeant in whole eggs. Classical antagonists 2 and 3 also showed previously unobserved agonist activity at higher concentrations in both systems. The 2'-OH group, without effect on the Ca (2+)-mobilizing ability of cADPR itself, is an important motif for the antagonistic activities of 8-substituted cADPR analogues. PMID:18303825

  4. Unravelling daily human mobility motifs.

    PubMed

    Schneider, Christian M; Belik, Vitaly; Couronné, Thomas; Smoreda, Zbigniew; González, Marta C

    2013-07-01

    Human mobility is differentiated by time scales. While the mechanism for long time scales has been studied, the underlying mechanism on the daily scale is still unrevealed. Here, we uncover the mechanism responsible for the daily mobility patterns by analysing the temporal and spatial trajectories of thousands of persons as individual networks. Using the concept of motifs from network theory, we find only 17 unique networks are present in daily mobility and they follow simple rules. These networks, called here motifs, are sufficient to capture up to 90 per cent of the population in surveys and mobile phone datasets for different countries. Each individual exhibits a characteristic motif, which seems to be stable over several months. Consequently, daily human mobility can be reproduced by an analytically tractable framework for Markov chains by modelling periods of high-frequency trips followed by periods of lower activity as the key ingredient.

  5. Phosphorylation of the protein kinase C-theta activation loop and hydrophobic motif regulates its kinase activity, but only activation loop phosphorylation is critical to in vivo nuclear-factor-kappaB induction.

    PubMed Central

    Liu, Yin; Graham, Caroline; Li, Aiqun; Fisher, Robert J; Shaw, Stephen

    2002-01-01

    Protein kinase C (PKC)-theta, a member of the 'novel' subfamily of PKC isoforms, is of singular importance in transducing signals in T-lymphocytes. Since understanding of regulatory phosphorylation of novel PKCs is fragmentary and inconsistent with findings for 'classical' PKC isoforms, we investigated three potential phosphorylation sites on PKC-theta; in the activation loop (Thr(538)), turn motif (Ser(676)) and hydrophobic motif (Ser(695)). Combined evidence from phospho-specific antisera and MS demonstrates phosphorylation at all three sites. Unlike its closest paralogue, PKC-delta, lack of negative charge in the activation loop of PKC-theta results in a profound catalytic defect (>100-fold reduction in the T538A mutant); the high sequence similarity between PKC-theta and -delta assists in the formulation of structural hypotheses to account for this major difference. In contrast with mechanisms proposed for other PKC isoforms, phosphorylation at the other two sites does not reconstitute catalytic activity. Activation loop phosphorylation is critical in vivo, since the T538A mutant completely lost its capacity to mediate T-cell receptor-stimulation of nuclear factor kappaB (NF-kappaB) activation in Jurkat T-cells. Hydrophobic motif phosphorylation also substantially influences PKC-theta catalytic activity (5-fold reduction in the S695A mutant), but does not impair NF-kappaB activation in Jurkat T-cells. Its mechanism is independent of secondary effects on activation loop phosphorylation and cannot be explained by thermal instability. Turn motif phosphorylation has a limited effect on kinase activity, but negatively regulates other aspects of PKC-theta function, since the S676A mutant is more efficient than wild-type in inducing NF-kappaB activation in Jurkat T-cells. These findings expand our understanding of the roles of phosphorylation in novel PKCs, and indicate that PKC-theta is a constitutively competent kinase as a consequence of constitutive

  6. Repeating Spatial-Temporal Motifs of CA3 Activity Dependent on Engineered Inputs from Dentate Gyrus Neurons in Live Hippocampal Networks

    PubMed Central

    Bhattacharya, Aparajita; Desai, Harsh; DeMarse, Thomas B.; Wheeler, Bruce C.; Brewer, Gregory J.

    2016-01-01

    Anatomical and behavioral studies, and in vivo and slice electrophysiology of the hippocampus suggest specific functions of the dentate gyrus (DG) and the CA3 subregions, but the underlying activity dynamics and repeatability of information processing remains poorly understood. To approach this problem, we engineered separate living networks of the DG and CA3 neurons that develop connections through 51 tunnels for axonal communication. Growing these networks on top of an electrode array enabled us to determine whether the subregion dynamics were separable and repeatable. We found spontaneous development of polarized propagation of 80% of the activity in the native direction from DG to CA3 and different spike and burst dynamics for these subregions. Spatial-temporal differences emerged when the relationships of target CA3 activity were categorized with to the number and timing of inputs from the apposing network. Compared to times of CA3 activity when there was no recorded tunnel input, DG input led to CA3 activity bursts that were 7× more frequent, increased in amplitude and extended in temporal envelope. Logistic regression indicated that a high number of tunnel inputs predict CA3 activity with 90% sensitivity and 70% specificity. Compared to no tunnel input, patterns of >80% tunnel inputs from DG specified different patterns of first-to-fire neurons in the CA3 target well. Clustering dendrograms revealed repeating motifs of three or more patterns at up to 17 sites in CA3 that were importantly associated with specific spatial-temporal patterns of tunnel activity. The number of these motifs recorded in 3 min was significantly higher than shuffled spike activity and not seen above chance in control networks in which CA3 was apposed to CA3 or DG to DG. Together, these results demonstrate spontaneous input-dependent repeatable coding of distributed activity in CA3 networks driven by engineered inputs from DG networks. These functional configurations at measured times

  7. Repeating Spatial-Temporal Motifs of CA3 Activity Dependent on Engineered Inputs from Dentate Gyrus Neurons in Live Hippocampal Networks.

    PubMed

    Bhattacharya, Aparajita; Desai, Harsh; DeMarse, Thomas B; Wheeler, Bruce C; Brewer, Gregory J

    2016-01-01

    Anatomical and behavioral studies, and in vivo and slice electrophysiology of the hippocampus suggest specific functions of the dentate gyrus (DG) and the CA3 subregions, but the underlying activity dynamics and repeatability of information processing remains poorly understood. To approach this problem, we engineered separate living networks of the DG and CA3 neurons that develop connections through 51 tunnels for axonal communication. Growing these networks on top of an electrode array enabled us to determine whether the subregion dynamics were separable and repeatable. We found spontaneous development of polarized propagation of 80% of the activity in the native direction from DG to CA3 and different spike and burst dynamics for these subregions. Spatial-temporal differences emerged when the relationships of target CA3 activity were categorized with to the number and timing of inputs from the apposing network. Compared to times of CA3 activity when there was no recorded tunnel input, DG input led to CA3 activity bursts that were 7× more frequent, increased in amplitude and extended in temporal envelope. Logistic regression indicated that a high number of tunnel inputs predict CA3 activity with 90% sensitivity and 70% specificity. Compared to no tunnel input, patterns of >80% tunnel inputs from DG specified different patterns of first-to-fire neurons in the CA3 target well. Clustering dendrograms revealed repeating motifs of three or more patterns at up to 17 sites in CA3 that were importantly associated with specific spatial-temporal patterns of tunnel activity. The number of these motifs recorded in 3 min was significantly higher than shuffled spike activity and not seen above chance in control networks in which CA3 was apposed to CA3 or DG to DG. Together, these results demonstrate spontaneous input-dependent repeatable coding of distributed activity in CA3 networks driven by engineered inputs from DG networks. These functional configurations at measured times

  8. Structure-activity relationship of the peptide binding-motif mediating the BRCA2:RAD51 protein-protein interaction.

    PubMed

    Scott, Duncan E; Marsh, May; Blundell, Tom L; Abell, Chris; Hyvönen, Marko

    2016-04-01

    RAD51 is a recombinase involved in the homologous recombination of double-strand breaks in DNA. RAD51 forms oligomers by binding to another molecule of RAD51 via an 'FxxA' motif, and the same recognition sequence is similarly utilised to bind BRCA2. We have tabulated the effects of mutation of this sequence, across a variety of experimental methods and from relevant mutations observed in the clinic. We use mutants of a tetrapeptide sequence to probe the binding interaction, using both isothermal titration calorimetry and X-ray crystallography. Where possible, comparison between our tetrapeptide mutational study and the previously reported mutations is made, discrepancies are discussed and the importance of secondary structure in interpreting alanine scanning and mutational data of this nature is considered.

  9. Motifs in brain networks.

    PubMed

    Sporns, Olaf; Kötter, Rolf

    2004-11-01

    Complex brains have evolved a highly efficient network architecture whose structural connectivity is capable of generating a large repertoire of functional states. We detect characteristic network building blocks (structural and functional motifs) in neuroanatomical data sets and identify a small set of structural motifs that occur in significantly increased numbers. Our analysis suggests the hypothesis that brain networks maximize both the number and the diversity of functional motifs, while the repertoire of structural motifs remains small. Using functional motif number as a cost function in an optimization algorithm, we obtain network topologies that resemble real brain networks across a broad spectrum of structural measures, including small-world attributes. These results are consistent with the hypothesis that highly evolved neural architectures are organized to maximize functional repertoires and to support highly efficient integration of information.

  10. Motifs in Brain Networks

    PubMed Central

    2004-01-01

    Complex brains have evolved a highly efficient network architecture whose structural connectivity is capable of generating a large repertoire of functional states. We detect characteristic network building blocks (structural and functional motifs) in neuroanatomical data sets and identify a small set of structural motifs that occur in significantly increased numbers. Our analysis suggests the hypothesis that brain networks maximize both the number and the diversity of functional motifs, while the repertoire of structural motifs remains small. Using functional motif number as a cost function in an optimization algorithm, we obtain network topologies that resemble real brain networks across a broad spectrum of structural measures, including small-world attributes. These results are consistent with the hypothesis that highly evolved neural architectures are organized to maximize functional repertoires and to support highly efficient integration of information. PMID:15510229

  11. Activation of synoviocytes by the secreted phospholipase A2 motif in the VP1-unique region of parvovirus B19 minor capsid protein.

    PubMed

    Lu, Jun; Zhi, Ning; Wong, Susan; Brown, Kevin E

    2006-02-15

    Parvovirus B19 infection in adults is often associated with acute symmetrical polyarthropathy, but the mechanism is unknown. Recently, a secreted phospholipase A(2) (sPLA(2)) motif was identified in the VP1-unique region (VP1u) of the B19 minor capsid protein. To investigate the role of this motif, we expressed VP1u with and without point mutations in the critical amino acids of sPLA(2). Although high concentrations of B19 did not infect human fibroblast-like synoviocytes (HFLSs), there was a >3-fold increase in synoviocyte migration that could be blocked by phospholipase inhibitors. Recombinant proteins with intact VP1u demonstrated sPLA(2) activity and induced cell migration, whereas proteins with mutated VP1u were nonfunctional in both assays. The incubation of HFLSs with proteins that had intact VP1u, but not with proteins with mutated VP1u, increased the production of prostaglandin E(2) >100-fold. Expression of cyclooxygenase (COX)-2 mRNA transcripts, as determined by real-time reverse-transcription polymerase chain reaction, and COX-2 protein expression were both significantly increased after incubation with protein that had intact VP1u. Proteins with VP1u in noninfectious B19 may participate in the inflammatory response in the synovial compartment.

  12. Expression of conformationally constrained adhesion peptide in an antibody CDR loop and inhibition of natural killer cell cytotoxic activity by an antibody antigenized with the RGD motif.

    PubMed Central

    Zanetti, M; Filaci, G; Lee, R H; del Guercio, P; Rossi, F; Bacchetta, R; Stevenson, F; Barnaba, V; Billetta, R

    1993-01-01

    We report that an antibody engineered to express three Arg-Gly-Asp (RGD) repeats in the third complementarity-determining region of the heavy chain (antigenized antibody) efficiently inhibits the lysis of human erythroleukemia K-562 cells by natural killer (NK) cells. Synthetic peptides containing RGD did not inhibit. Inhibition was specific for the (RGD)3-containing loop and required simultaneous occupancy of the Fc receptor (CD16) on effector cells. The antigenized antibody inhibited other forms of cytotoxicity mediated by NK cells but not cytotoxicity mediated by major histocompatibility complex-restricted cytotoxic T lymphocytes (CTL). A three-dimensional model of the engineered antibody loop shows the structure and physicochemical characteristics probably required for the ligand activity. The results indicate that an RGD motif is involved in the productive interaction between NK and target cells. Moreover, they show that peptide expression in the hypervariable loops of an antibody molecule is an efficient procedure for stabilizing oligopeptides within a limited spectrum of tertiary structures. This is a new approach towards imparting ligand properties to antibody molecules and can be used to study the biological function and specificity of short peptide motifs, including those involved in cell adhesion. Images PMID:8223447

  13. Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity.

    PubMed

    Takayama, Sachiko; Dhahbi, Joseph; Roberts, Adam; Mao, Guanxiong; Heo, Seok-Jin; Pachter, Lior; Martin, David I K; Boffelli, Dario

    2014-05-01

    Cytosine methylation in the genome of Drosophila melanogaster has been elusive and controversial: Its location and function have not been established. We have used a novel and highly sensitive genomewide cytosine methylation assay to detect and map genome methylation in stage 5 Drosophila embryos. The methylation we observe with this method is highly localized and strand asymmetrical, limited to regions covering ∼1% of the genome, dynamic in early embryogenesis, and concentrated in specific 5-base sequence motifs that are CA- and CT-rich but depleted of guanine. Gene body methylation is associated with lower expression, and many genes containing methylated regions have developmental or transcriptional functions. The only known DNA methyltransferase in Drosophila is the DNMT2 homolog MT2, but lines deficient for MT2 retain genomic methylation, implying the presence of a novel methyltransferase. The association of methylation with a lower expression of specific developmental genes at stage 5 raises the possibility that it participates in controlling gene expression during the maternal-zygotic transition.

  14. Interlocked positive and negative feedback network motifs regulate β-catenin activity in the adherens junction pathway

    PubMed Central

    Klinke, David J.; Horvath, Nicholas; Cuppett, Vanessa; Wu, Yueting; Deng, Wentao; Kanj, Rania

    2015-01-01

    The integrity of epithelial tissue architecture is maintained through adherens junctions that are created through extracellular homotypic protein–protein interactions between cadherin molecules. Cadherins also provide an intracellular scaffold for the formation of a multiprotein complex that contains signaling proteins, including β-catenin. Environmental factors and controlled tissue reorganization disrupt adherens junctions by cleaving the extracellular binding domain and initiating a series of transcriptional events that aim to restore tissue homeostasis. However, it remains unclear how alterations in cell adhesion coordinate transcriptional events, including those mediated by β-catenin in this pathway. Here were used quantitative single-cell and population-level in vitro assays to quantify the endogenous pathway dynamics after the proteolytic disruption of the adherens junctions. Using prior knowledge of isolated elements of the overall network, we interpreted these data using in silico model-based inference to identify the topology of the regulatory network. Collectively the data suggest that the regulatory network contains interlocked network motifs consisting of a positive feedback loop, which is used to restore the integrity of adherens junctions, and a negative feedback loop, which is used to limit β-catenin–induced gene expression. PMID:26224311

  15. Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity

    PubMed Central

    Takayama, Sachiko; Dhahbi, Joseph; Roberts, Adam; Mao, Guanxiong; Heo, Seok-Jin; Pachter, Lior; Martin, David I.K.; Boffelli, Dario

    2014-01-01

    Cytosine methylation in the genome of Drosophila melanogaster has been elusive and controversial: Its location and function have not been established. We have used a novel and highly sensitive genomewide cytosine methylation assay to detect and map genome methylation in stage 5 Drosophila embryos. The methylation we observe with this method is highly localized and strand asymmetrical, limited to regions covering ∼1% of the genome, dynamic in early embryogenesis, and concentrated in specific 5-base sequence motifs that are CA- and CT-rich but depleted of guanine. Gene body methylation is associated with lower expression, and many genes containing methylated regions have developmental or transcriptional functions. The only known DNA methyltransferase in Drosophila is the DNMT2 homolog MT2, but lines deficient for MT2 retain genomic methylation, implying the presence of a novel methyltransferase. The association of methylation with a lower expression of specific developmental genes at stage 5 raises the possibility that it participates in controlling gene expression during the maternal-zygotic transition. PMID:24558263

  16. The Activity of Sendai Virus Genomic and Antigenomic Promoters Requires a Second Element Past the Leader Template Regions: a Motif (GNNNNN)3 Is Essential for Replication

    PubMed Central

    Tapparel, Caroline; Maurice, Diane; Roux, Laurent

    1998-01-01

    The paramyxovirus genome, a nonsegmented, negative-polarity, single-stranded RNA of ∼15 kb, contains six transcription units flanked at the 3′ and 5′ ends by a short (∼ 50- to 60-nucleotide) extracistronic sequence, dubbed the positive and negative leader regions. These leader template regions, present at the 3′ end of the genome and the antigenome, have been shown to contain essential signals governing RNA replication activity. Whether they are sufficient to promote replication is still open to question. By using a series of Sendai virus defective interfering RNAs carrying a nested set of deletions in the promoter regions, it is shown here that for both the genomic and antigenomic promoters, a 3′-end RNA sequence of 96 nucleotides is required to allow replication. Sequence comparison of active and inactive promoters led to the identification of a set of three nucleotide hexamers (nucleotides 79 to 84, 85 to 90, and 91 to 96) containing a repeated motif RXXYXX [shown as 5′-3′ positive-strand]. Sequential mutation of each hexamer into its complementary sequence confirmed their essential role. The three hexamers are required, and their relative positioning is important, since displacing them by 6 nucleotides destroyed promoter function. RNAs carrying degenerate nucleotides in the three hexamers were used as replication templates. They led to the selection of actively replicating RNA species exclusively carrying the basic motif (GNNNNN)3 from nucleotides 79 to 96. These results clearly show that, apart from the region from nucleotides 1 to 31, previously identified as governing Sendai virus replication activity, a second element, spanning at the most nucleotides 79 to 96, appears essential. Thus, the paramyxovirus replication promoters are not confined to the leader template regions, as seems to be the case for the rhabdoviruses. PMID:9525637

  17. PLCγ2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2

    PubMed Central

    Mao, Dailing; Epple, Holly; Uthgenannt, Brian; Novack, Deborah V.; Faccio, Roberta

    2006-01-01

    Excessive bone loss in arthritic diseases is mostly due to abnormal activation of the immune system leading to stimulation of osteoclasts. While phospholipase Cγ (PLCγ) isoforms are known modulators of T and B lymphocyte–mediated immune responses, we found that blockade of PLCγ enzymatic activity also blocks early osteoclast development and function. Importantly, targeted deletion of Plcg2 in mice led to an osteopetrotic phenotype. PLCγ2, independent of PLCγ1, was required for receptor activator of NF-κB ligand–induced (RANKL-induced) osteoclastogenesis by differentially regulating nuclear factor of activated T cells c1 (NFATc1), activator protein–1 (AP1), and NF-κB. Specifically, we show that NFATc1 upregulation is dependent on RANKL-mediated phosphorylation of PLCγ2 downstream of Dap12/Fc receptor γ (Dap12/FcRγ) receptors and is blocked by the PLCγ inhibitor U73122. In contrast, activation of JNK and NF-κB was not affected by U73122 or Dap12/FcRγ deletion. Interestingly, we found that in osteoclasts, PLCγ2 formed a complex with the regulatory adapter molecule GAB2, was required for GAB2 phosphorylation, and modulated GAB2 recruitment to RANK. Thus, PLCγ2 mediates RANKL-induced osteoclastogenesis and is a potential candidate for antiresorptive therapy. PMID:17053833

  18. Targeted mutations in a highly conserved motif of the nsp1β protein impair the interferon antagonizing activity of porcine reproductive and respiratory syndrome virus.

    PubMed

    Li, Yanhua; Zhu, Longchao; Lawson, Steven R; Fang, Ying

    2013-09-01

    Non-structural protein 1β (nsp1β) of porcine reproductive and respiratory syndrome virus (PRRSV) contains a papain-like cysteine protease (PLPβ) domain and has been identified as the main viral protein antagonizing the host innate immune response. In this study, nsp1β was determined to suppress the expression of reporter genes as well as to suppress 'self-expression' in transfected cells, and this activity appeared to be associated with its interferon (IFN) antagonist function. To knock down the effect of nsp1β on IFN activity, a panel of site-specific mutations in nsp1β was analysed. Double mutations K130A/R134A (type 1 PRRSV) or K124A/R128A (type 2 PRRSV) targeting a highly conserved motif of nsp1β, GKYLQRRLQ (in bold), impaired the ability of nsp1β to suppress IFN-β and reporter gene expression, as well as to suppress 'self-expression' in vitro. Subsequently, viable recombinant viruses vSD01-08-K130A/R134A and vSD95-21-K124A/R128A, containing double mutations in the GKYLQRRLQ motif were generated using reverse genetics. In comparison with WT viruses, these nsp1β mutants showed impaired growth ability in infected cells, but the PLPβ cleavage function was not directly affected. The expression of selected innate immune genes was determined in vSD95-21-K124A/R128A mutant-infected cells. The results consistently showed that gene expression levels of IFN-α, IFN-β and IFN-stimulated gene 15 were upregulated in cells that were infected with the vSD95-21-K124A/R128A compared with that of WT virus. These data suggest that PRRSV nsp1β may selectively suppress cellular gene expression, including expression of genes involved in the host innate immune function. Modifying the key residues in the highly conserved GKYLQRRLQ motif could attenuate virus growth and improve the cellular innate immune responses. PMID:23761406

  19. A membrane-associated movement protein of Pelargonium flower break virus shows RNA-binding activity and contains a biologically relevant leucine zipper-like motif.

    PubMed

    Martínez-Turiño, Sandra; Hernández, Carmen

    2011-05-10

    Two small viral proteins (DGBp1 and DGBp2) have been proposed to act in a concerted manner to aid intra- and intercellular trafficking of carmoviruses though the distribution of functions and mode of action of each protein partner are not yet clear. Here we have confirmed the requirement of the DGBps of Pelargonium flower break virus (PFBV), p7 and p12, for pathogen movement. Studies focused on p12 have shown that it associates to cellular membranes, which is in accordance to its hydrophobic profile and to that reported for several homologs. However, peculiarities that distinguish p12 from other DGBps2 have been found. Firstly, it contains a leucine zipper-like motif which is essential for virus infectivity in plants. Secondly, it has an unusually long and basic N-terminal region that confers RNA binding activity. The results suggest that PFBV p12 may differ mechanistically from related proteins and possible roles of PFBV DGBps are discussed.

  20. Targeting of TGF-β-activated protein kinase 1 inhibits chemokine (C-C motif) receptor 7 expression, tumor growth and metastasis in breast cancer

    PubMed Central

    Hung, Wen-Chun; Hou, Ming-Feng

    2015-01-01

    TGF-β-activated protein kinase 1 (TAK1) is a critical mediator in inflammation, immune response and cancer development. Our previous study demonstrated that activation of TAK1 increases the expression of chemokine (C-C motif) receptor 7 (CCR7) and promotes lymphatic invasion ability of breast cancer cells. However, the expression and association of activated TAK1 and CCR7 in breast tumor tissues is unknown and the therapeutic effect by targeting TAK1 is also unclear. We showed that activated TAK1 (as indicated by phospho-TAK1) and its binding protein TAB1 are strongly expressed in breast tumor tissues (77% and 74% respectively). In addition, increase of phospho-TAK1 or TAB1 is strongly associated with over-expression of CCR7. TAK1 inhibitor 5Z-7-Oxozeaenol (5Z-O) inhibited TAK1 activity, suppressed downstream signaling pathways including p38, IκB kinase (IKK) and c-Jun N-terminal kinase (JNK) and reduced CCR7 expression in metastatic MDA-MB-231 cells. In addition, 5Z-O repressed NF-κB- and c-JUN-mediated transcription of CCR7 gene. Knockdown of TAB1 attenuated CCR7 expression and tumor growth in an orthotopic animal study. More importantly, lymphatic invasion and lung metastasis were suppressed. Collectively, our results demonstrate that constitutive activation of TAK1 is frequently found in human breast cancer and this kinase is a potential therapeutic target for this cancer. PMID:25557171

  1. The serine protease motif of Pic mediates a dose-dependent mucolytic activity after binding to sugar constituents of the mucin substrate.

    PubMed

    Gutiérrez-Jiménez, Javier; Arciniega, Ivonne; Navarro-García, Fernando

    2008-08-01

    The pic gene is harbored on the chromosomes of three important pathogens: enteroaggregative Escherichia coli (EAEC), uropathogenic E. coli (UPEC), and Shigella flexneri. Since Pic is secreted into the intestinal lumen during EAEC infection, we sought to identify intestinal-mucosal substrates for Pic. Pic did not damage epithelial cells, cleave fodrin, or degrade host defense proteins embedded in the mucus layer (sIgA, lactoferrin and lysozyme). However, by using a solid-phase assay to evaluate the mucinolytic activity of EAEC Pic, we documented a specific, dose-dependent mucinolytic activity. A serine protease inhibitor and an enzymatically inactive variant of Pic were used to show that the Pic serine protease motif is required for mucinolytic activity. Pic binds mucin, and this binding was blocked in competition assays using monosaccharide constituents of the oligosaccharide side chains of mucin. Moreover, Pic mucinolytic activity decreased when sialic acid was removed from mucin. Thus, Pic is a mucinase with lectin-like activity that can be related to its reported hemagglutinin activity. Our results suggest that EAEC may secrete Pic into the intestinal lumen as a strategy for penetrating the gel-like mucus layer during EAEC colonization.

  2. [Psychopathological study of lie motif in schizophrenia].

    PubMed

    Otsuka, Koichiro; Kato, Satoshi

    2006-01-01

    present directive lie motif is told. Lie motifs are considered to have the effect of restoring the patient's own subjectivity by the following ways: (a) by actualizing the structural constituents elementary for the establishment of subjectivity, (b) by conducting a kind of speech act for declaring themselves as an active lying subject to co-presenting others for the resettlement in our inter-subjective world.

  3. N-Terminal Ile-Orn- and Trp-Orn-Motif Repeats Enhance Membrane Interaction and Increase the Antimicrobial Activity of Apidaecins against Pseudomonas aeruginosa

    PubMed Central

    Bluhm, Martina E. C.; Schneider, Viktoria A. F.; Schäfer, Ingo; Piantavigna, Stefania; Goldbach, Tina; Knappe, Daniel; Seibel, Peter; Martin, Lisandra L.; Veldhuizen, Edwin J. A.; Hoffmann, Ralf

    2016-01-01

    The Gram-negative bacterium Pseudomonas aeruginosa is a life-threatening nosocomial pathogen due to its generally low susceptibility toward antibiotics. Furthermore, many strains have acquired resistance mechanisms requiring new antimicrobials with novel mechanisms to enhance treatment options. Proline-rich antimicrobial peptides, such as the apidaecin analog Api137, are highly efficient against various Enterobacteriaceae infections in mice, but less active against P. aeruginosa in vitro. Here, we extended our recent work by optimizing lead peptides Api755 (gu-OIORPVYOPRPRPPHPRL-OH; gu = N,N,N′,N′-tetramethylguanidino, O = L-ornithine) and Api760 (gu-OWORPVYOPRPRPPHPRL-OH) by incorporation of Ile-Orn- and Trp-Orn-motifs, respectively. Api795 (gu-O(IO)2RPVYOPRPRPPHPRL-OH) and Api794 (gu-O(WO)3RPVYOPRPRPPHPRL-OH) were highly active against P. aeruginosa with minimal inhibitory concentrations of 8–16 and 8–32 μg/mL against Escherichia coli and Klebsiella pneumoniae. Assessed using a quartz crystal microbalance, these peptides inserted into a membrane layer and the surface activity increased gradually from Api137, over Api795, to Api794. This mode of action was confirmed by transmission electron microscopy indicating some membrane damage only at the high peptide concentrations. Api794 and Api795 were highly stable against serum proteases (half-life times >5 h) and non-hemolytic to human erythrocytes at peptide concentrations of 0.6 g/L. At this concentration, Api795 reduced the cell viability of HeLa cells only slightly, whereas the IC50 of Api794 was 0.23 ± 0.09 g/L. Confocal fluorescence microscopy revealed no colocalization of 5(6)-carboxyfluorescein-labeled Api794 or Api795 with the mitochondria, excluding interactions with the mitochondrial membrane. Interestingly, Api795 was localized in endosomes, whereas Api794 was present in endosomes and the cytosol. This was verified using flow cytometry showing a 50% higher uptake of Api794 in HeLa cells compared

  4. N-Terminal Ile-Orn- and Trp-Orn-Motif Repeats Enhance Membrane Interaction and Increase the Antimicrobial Activity of Apidaecins against Pseudomonas aeruginosa.

    PubMed

    Bluhm, Martina E C; Schneider, Viktoria A F; Schäfer, Ingo; Piantavigna, Stefania; Goldbach, Tina; Knappe, Daniel; Seibel, Peter; Martin, Lisandra L; Veldhuizen, Edwin J A; Hoffmann, Ralf

    2016-01-01

    The Gram-negative bacterium Pseudomonas aeruginosa is a life-threatening nosocomial pathogen due to its generally low susceptibility toward antibiotics. Furthermore, many strains have acquired resistance mechanisms requiring new antimicrobials with novel mechanisms to enhance treatment options. Proline-rich antimicrobial peptides, such as the apidaecin analog Api137, are highly efficient against various Enterobacteriaceae infections in mice, but less active against P. aeruginosa in vitro. Here, we extended our recent work by optimizing lead peptides Api755 (gu-OIORPVYOPRPRPPHPRL-OH; gu = N,N,N',N'-tetramethylguanidino, O = L-ornithine) and Api760 (gu-OWORPVYOPRPRPPHPRL-OH) by incorporation of Ile-Orn- and Trp-Orn-motifs, respectively. Api795 (gu-O(IO)2RPVYOPRPRPPHPRL-OH) and Api794 (gu-O(WO)3RPVYOPRPRPPHPRL-OH) were highly active against P. aeruginosa with minimal inhibitory concentrations of 8-16 and 8-32 μg/mL against Escherichia coli and Klebsiella pneumoniae. Assessed using a quartz crystal microbalance, these peptides inserted into a membrane layer and the surface activity increased gradually from Api137, over Api795, to Api794. This mode of action was confirmed by transmission electron microscopy indicating some membrane damage only at the high peptide concentrations. Api794 and Api795 were highly stable against serum proteases (half-life times >5 h) and non-hemolytic to human erythrocytes at peptide concentrations of 0.6 g/L. At this concentration, Api795 reduced the cell viability of HeLa cells only slightly, whereas the IC50 of Api794 was 0.23 ± 0.09 g/L. Confocal fluorescence microscopy revealed no colocalization of 5(6)-carboxyfluorescein-labeled Api794 or Api795 with the mitochondria, excluding interactions with the mitochondrial membrane. Interestingly, Api795 was localized in endosomes, whereas Api794 was present in endosomes and the cytosol. This was verified using flow cytometry showing a 50% higher uptake of Api794 in HeLa cells compared with Api

  5. (-)-Epicatechin gallate (ECG) stimulates osteoblast differentiation via Runt-related transcription factor 2 (RUNX2) and transcriptional coactivator with PDZ-binding motif (TAZ)-mediated transcriptional activation.

    PubMed

    Byun, Mi Ran; Sung, Mi Kyung; Kim, A Rum; Lee, Cham Han; Jang, Eun Jung; Jeong, Mi Gyeong; Noh, Minsoo; Hwang, Eun Sook; Hong, Jeong-Ho

    2014-04-01

    Osteoporosis is a degenerative bone disease characterized by low bone mass and is caused by an imbalance between osteoblastic bone formation and osteoclastic bone resorption. It is known that the bioactive compounds present in green tea increase osteogenic activity and decrease the risk of fracture by improving bone mineral density. However, the detailed mechanism underlying these beneficial effects has yet to be elucidated. In this study, we investigated the osteogenic effect of (-)-epicatechin gallate (ECG), a major bioactive compound found in green tea. We found that ECG effectively stimulates osteoblast differentiation, indicated by the increased expression of osteoblastic marker genes. Up-regulation of osteoblast marker genes is mediated by increased expression and interaction of the transcriptional coactivator with PDZ-binding motif (TAZ) and Runt-related transcription factor 2 (RUNX2). ECG facilitates nuclear localization of TAZ through PP1A. PP1A is essential for osteoblast differentiation because inhibition of PP1A activity was shown to suppress ECG-mediated osteogenic differentiation. Taken together, the results showed that ECG stimulates osteoblast differentiation through the activation of TAZ and RUNX2, revealing a novel mechanism for green tea-stimulated osteoblast differentiation.

  6. Enzymatic activity of poliovirus RNA polymerase mutants with single amino acid changes in the conserved YGDD amino acid motif.

    PubMed

    Jablonski, S A; Luo, M; Morrow, C D

    1991-09-01

    RNA-dependent RNA polymerases contain a highly conserved region of amino acids with a core segment composed of the amino acids YGDD which have been hypothesized to be at or near the catalytic active site of the molecule. Six mutations in this conserved YGDD region of the poliovirus RNA-dependent RNA polymerase were made by using oligonucleotide site-directed DNA mutagenesis of the poliovirus cDNA to substitute A, C, M, P, S, or V for the amino acid G. The mutant polymerase genes were expressed in Escherichia coli, and the purified RNA polymerases were tested for in vitro enzyme activity. Two of the mutant RNA polymerases (those in which the glycine residue was replaced with alanine or serine) exhibited in vitro enzymatic activity ranging from 5 to 20% of wild-type activity, while the remaining mutant RNA polymerases were inactive. Alterations in the in vitro reaction conditions by modification of temperature, metal ion concentration, or pH resulted in no significant differences in the activities of the mutant RNA polymerases relative to that of the wild-type enzyme. An antipeptide antibody directed against the wild-type core amino acid segment containing the YGDD region of the poliovirus polymerase reacted with the wild-type recombinant RNA polymerase and to a limited extent with the two enzymatically active mutant polymerases; the antipeptide antibody did not react with the mutant RNA polymerases which did not have in vitro enzyme activity. These results are discussed in the context of secondary-structure predictions for the core segment containing the conserved YGDD amino acids in the poliovirus RNA polymerase. PMID:1651402

  7. ZNF10 inhibits HIV-1 LTR activity through interaction with NF-κB and Sp1 binding motifs.

    PubMed

    Nishitsuji, Hironori; Sawada, Leila; Sugiyama, Ryuichi; Takaku, Hiroshi

    2015-07-01

    Kruppel-associated box-containing zinc finger (KRAB-ZNF) genes constitute the single largest gene family of transcriptional repressors in the genomes of higher organisms. In this study, we isolated 52 cDNA clones of KRAB-ZFPs from U1 cell lines and screened them to identify which were capable of regulating HIV-1 gene expression. We identified 5 KRAB-ZFPs that suppressed ⩾50% of HIV-1 LTR. Of the 5 identified KRAB-ZFPs, the expression of ZNF10 significantly enhanced the transcriptional repression activity of the LTR compared with other ZNFs. In addition, the depletion of endogenous ZNF10 led to the activation of HIV-1 LTR. The repressor activity of ZNF10 was required for TRIM28, SETDB1 and HP1-gamma binding. These results indicate that ZNF10 could be involved in a potent intrinsic antiretroviral defense. PMID:26096782

  8. Rate of hydrolysis in ATP synthase is fine-tuned by α-subunit motif controlling active site conformation

    PubMed Central

    Beke-Somfai, Tamás; Lincoln, Per; Nordén, Bengt

    2013-01-01

    Computer-designed artificial enzymes will require precise understanding of how conformation of active sites may control barrier heights of key transition states, including dependence on structure and dynamics at larger molecular scale. FoF1 ATP synthase is interesting as a model system: a delicate molecular machine synthesizing or hydrolyzing ATP using a rotary motor. Isolated F1 performs hydrolysis with a rate very sensitive to ATP concentration. Experimental and theoretical results show that, at low ATP concentrations, ATP is slowly hydrolyzed in the so-called tight binding site, whereas at higher concentrations, the binding of additional ATP molecules induces rotation of the central γ-subunit, thereby forcing the site to transform through subtle conformational changes into a loose binding site in which hydrolysis occurs faster. How the 1-Å-scale rearrangements are controlled is not yet fully understood. By a combination of theoretical approaches, we address how large macromolecular rearrangements may manipulate the active site and how the reaction rate changes with active site conformation. Simulations reveal that, in response to γ-subunit position, the active site conformation is fine-tuned mainly by small α-subunit changes. Quantum mechanics-based results confirm that the sub-Ångström gradual changes between tight and loose binding site structures dramatically alter the hydrolysis rate. PMID:23345443

  9. Rate of hydrolysis in ATP synthase is fine-tuned by α-subunit motif controlling active site conformation.

    PubMed

    Beke-Somfai, Tamás; Lincoln, Per; Nordén, Bengt

    2013-02-01

    Computer-designed artificial enzymes will require precise understanding of how conformation of active sites may control barrier heights of key transition states, including dependence on structure and dynamics at larger molecular scale. F(o)F(1) ATP synthase is interesting as a model system: a delicate molecular machine synthesizing or hydrolyzing ATP using a rotary motor. Isolated F(1) performs hydrolysis with a rate very sensitive to ATP concentration. Experimental and theoretical results show that, at low ATP concentrations, ATP is slowly hydrolyzed in the so-called tight binding site, whereas at higher concentrations, the binding of additional ATP molecules induces rotation of the central γ-subunit, thereby forcing the site to transform through subtle conformational changes into a loose binding site in which hydrolysis occurs faster. How the 1-Å-scale rearrangements are controlled is not yet fully understood. By a combination of theoretical approaches, we address how large macromolecular rearrangements may manipulate the active site and how the reaction rate changes with active site conformation. Simulations reveal that, in response to γ-subunit position, the active site conformation is fine-tuned mainly by small α-subunit changes. Quantum mechanics-based results confirm that the sub-Ångström gradual changes between tight and loose binding site structures dramatically alter the hydrolysis rate. PMID:23345443

  10. Manipulation of Mitogen-Activated Protein Kinase Kinase Signaling in the Arabidopsis Stomatal Lineage Reveals Motifs That Contribute to Protein Localization and Signaling Specificity[W][OPEN

    PubMed Central

    Lampard, Gregory R.; Wengier, Diego L.; Bergmann, Dominique C.

    2014-01-01

    When multiple mitogen-activated protein kinase (MAPK) components are recruited recurrently to transduce signals of different origins, and often opposing outcomes, mechanisms to enforce signaling specificity are of utmost importance. These mechanisms are largely uncharacterized in plant MAPK signaling networks. The Arabidopsis thaliana stomatal lineage was previously used to show that when rendered constitutively active, four MAPK kinases (MKKs), MKK4/5/7/9, are capable of perturbing stomatal development and that these kinases comprise two pairs, MKK4/5 and MKK7/9, with both overlapping and divergent functions. We characterized the contributions of specific structural domains of these four “stomatal” MKKs to MAPK signaling output and specificity both in vitro and in vivo within the three discrete cell types of the stomatal lineage. These results verify the influence of functional docking (D) domains of MKKs on MAPK signal output and identify novel regulatory functions for previously uncharacterized structures within the N termini of MKK4/5. Beyond this, we present a novel function of the D-domains of MKK7/9 in regulating the subcellular localization of these kinases. These results provide tools to broadly assess the extent to which these and additional motifs within MKKs function to regulate MAPK signal output throughout the plant. PMID:25172143

  11. Merging Allosteric and Active Site Binding Motifs: De novo Generation of Target Selectivity and Potency via Natural-Product-Derived Fragments

    PubMed Central

    Lanz, Jan; Riedl, Rainer

    2015-01-01

    The de novo design of molecules from scratch with tailored biological activity is still the major intellectual challenge in chemical biology and drug discovery. Herein we validate natural-product-derived fragments (NPDFs) as excellent molecular seeds for the targeted de novo discovery of lead structures for the modulation of therapeutically relevant proteins. The application of this de novo approach delivered, in synergy with the combination of allosteric and active site binding motifs, highly selective and ligand-efficient non-zinc-binding (3: 4-{[5-(2-{[(3-methoxyphenyl)methyl]carbamoyl}eth-1-yn-1-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl]methyl}benzoic acid) as well as zinc-binding (4: 4-({5-[2-({[3-(3-carboxypropoxy)phenyl]methyl}carbamoyl)eth-1-yn-1-yl]-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl}methyl)benzoic acid) uracil-based MMP-13 inhibitors presenting IC50 values of 11 nm (3: LE=0.35) and 6 nm (4: LE=0.31). PMID:25487909

  12. Merging allosteric and active site binding motifs: de novo generation of target selectivity and potency via natural-product-derived fragments.

    PubMed

    Lanz, Jan; Riedl, Rainer

    2015-03-01

    The de novo design of molecules from scratch with tailored biological activity is still the major intellectual challenge in chemical biology and drug discovery. Herein we validate natural-product-derived fragments (NPDFs) as excellent molecular seeds for the targeted de novo discovery of lead structures for the modulation of therapeutically relevant proteins. The application of this de novo approach delivered, in synergy with the combination of allosteric and active site binding motifs, highly selective and ligand-efficient non-zinc-binding (3: 4-{[5-(2-{[(3-methoxyphenyl)methyl]carbamoyl}eth-1-yn-1-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl]methyl}benzoic acid) as well as zinc-binding (4: 4-({5-[2-({[3-(3-carboxypropoxy)phenyl]methyl}carbamoyl)eth-1-yn-1-yl]-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl}methyl)benzoic acid) uracil-based MMP-13 inhibitors presenting IC50 values of 11 nM (3: LE=0.35) and 6 nM (4: LE=0.31).

  13. Mutation of Phe318 within the NPxxY(x)(5,6)F motif in melanin-concentrating hormone receptor 1 results in an efficient signaling activity.

    PubMed

    Hamamoto, Akie; Horikawa, Manabu; Saho, Tomoko; Saito, Yumiko

    2012-01-01

    Melanin-concentrating hormone receptor 1 (MCHR1) is a G-protein-coupled receptor (GPCR) that plays an important role in feeding by coupling to Gα(q)- and Gα(i)-mediated signal transduction pathways. To interrogate the molecular basis for MCHR1 activation, we analyzed the effect of a series of site-directed mutations on rat MCHR1 function. In the highly conserved NPxxY(x)(5,6)F domain of GPCRs, the phenylalanine residue is involved in structural constraints; replacement with alanine generally leads to impaired/lost GPCR function. However, Phe-to-Ala (F318A) mutation in MCHR1 had no significant effect on the level of cell surface expression and receptor signaling. By analyzing a further series of mutants, we found that Phe-to-Lys substitution (F318K) caused the most significant reduction in the EC(50) value of MCH for calcium mobilization without affecting receptor expression at the cell surface. Interestingly, GTPγS-binding, which monitors Gα(i) activation, was not modulated by F318K. Our results, combined with computer modeling, provide new insight into the role of Phe in the NPxxY(x)(5,6)F motif as a structurally critical site for receptor dynamics and a determinant of Gα protein interaction.

  14. Nuclear Magnetic Resonance Solution Structures of Lacticin Q and Aureocin A53 Reveal a Structural Motif Conserved among Leaderless Bacteriocins with Broad-Spectrum Activity.

    PubMed

    Acedo, Jeella Z; van Belkum, Marco J; Lohans, Christopher T; Towle, Kaitlyn M; Miskolzie, Mark; Vederas, John C

    2016-02-01

    Lacticin Q (LnqQ) and aureocin A53 (AucA) are leaderless bacteriocins from Lactococcus lactis QU5 and Staphylococcus aureus A53, respectively. These bacteriocins are characterized by the absence of an N-terminal leader sequence and are active against a broad range of Gram-positive bacteria. LnqQ and AucA consist of 53 and 51 amino acids, respectively, and have 47% identical sequences. In this study, their three-dimensional structures were elucidated using solution nuclear magnetic resonance and were shown to consist of four α-helices that assume a very similar compact, globular overall fold (root-mean-square deviation of 1.7 Å) with a highly cationic surface and a hydrophobic core. The structures of LnqQ and AucA resemble the shorter two-component leaderless bacteriocins, enterocins 7A and 7B, despite having low levels of sequence identity. Homology modeling revealed that the observed structural motif may be shared among leaderless bacteriocins with broad-spectrum activity against Gram-positive organisms. The elucidated structures of LnqQ and AucA also exhibit some resemblance to circular bacteriocins. Despite their similar overall fold, inhibition studies showed that LnqQ and AucA have different antimicrobial potency against the Gram-positive strains tested, suggesting that sequence disparities play a crucial role in their mechanisms of action.

  15. Transcriptional activation of human adult alpha-globin genes by hypersensitive site-40 enhancer: function of nuclear factor-binding motifs occupied in erythroid cells.

    PubMed Central

    Rombel, I; Hu, K Y; Zhang, Q; Papayannopoulou, T; Stamatoyannopoulos, G; Shen, C K

    1995-01-01

    The developmental stage- and erythroid lineage-specific activation of the human embryonic zeta- and fetal/adult alpha-globin genes is controlled by an upstream regulatory element [hypersensitive site (HS)-40] with locus control region properties, a process mediated by multiple nuclear factor-DNA complexes. In vitro DNase I protection experiments of the two G+C-rich, adult alpha-globin promoters have revealed a number of binding sites for nuclear factors that are common to HeLa and K-562 extracts. However, genomic footprinting analysis has demonstrated that only a subset of these sites, clustered between -130 and +1, is occupied in an erythroid tissue-specific manner. The function of these in vivo-occupied motifs of the alpha-globin promoters, as well as those previously mapped in the HS-40 region, is assayed by site-directed mutagenesis and transient expression in embryonic/fetal erythroid K-562 cells. These studies, together with our expression data on the human embryonic zeta-globin promoter, provide a comprehensive view of the functional roles of individual nuclear factor-DNA complexes in the final stages of transcriptional activation of the human alpha-like globin promoters by the HS-40 element. Images Fig. 2 Fig. 3 Fig. 5 Fig. 6 PMID:7604012

  16. Activation of p70s6k is associated with phosphorylation of four clustered sites displaying Ser/Thr-Pro motifs.

    PubMed

    Ferrari, S; Bannwarth, W; Morley, S J; Totty, N F; Thomas, G

    1992-08-01

    Partial amino acid sequences were obtained from 22 internal tryptic peptides of rat liver p70s6k (M(r) 70,000 ribosomal protein S6 kinase), 3 of which were found to contain phosphorylated residues. To determine whether these sites were associated with p70s6k activation, the kinase was labeled to high specific activity with 32P(i) in Swiss mouse 3T3 cells. By sequential cleavage with CNBr and endoproteinase Lys-C followed by two-dimensional tryptic peptide analysis, it could be shown that all of the sites were located in a small endoproteinase Lys-C peptide of M(r) 2400. Analysis of the p70s6k protein sequence revealed a single candidate that could represent this peptide. Three tryptic peptides derived from the endoproteinase Lys-C fragment were chosen by a newly described computer program as the most likely candidates to contain the in vivo sites of phosphorylation. Synthetic peptides based on these sequences were phosphorylated either chemically or enzymatically and found to comigrate by two-dimensional thin-layer electrophoresis/chromatography with the four major in vivo labeled tryptic phosphopeptides. Three of the phosphorylation sites in these peptides were equivalent to those sequenced in the rat liver p70s6k. In addition, all four sites display the motif Ser/Thr-Pro, typical of cell cycle-regulated sites, and are clustered in a putative autoinhibitory domain of the enzyme.

  17. The C-Type Lectin OCILRP2 Costimulates EL4 T Cell Activation via the DAP12-Raf-MAP Kinase Pathway

    PubMed Central

    Lou, Qiang; Zhang, Wei; Liu, Guangchao; Ma, Yuanfang

    2014-01-01

    OCILRP2 is a typical Type-II transmembrane protein that is selectively expressed in activated T lymphocytes, dendritic cells, and B cells and functions as a novel co-stimulator of T cell activation. However, the signaling pathways underlying OCILRP2 in T cell activation are still not completely understood. In this study, we found that the knockdown of OCILRP2 expression with shRNA or the blockage of its activity by an anti-OCILRP2 antagonist antibody reduced CD3/CD28-costimulated EL4 T cell viability and IL-2 production, inhibit Raf1, MAPK3, and MAPK8 activation, and impair NFAT and NF-κB transcriptional activities. Furthermore, immunoprecipitation results indicated that OCILRP2 could interact with the DAP12 protein, an adaptor containing an intracellular ITAM motif that can transduce signals to induce MAP kinase activation for T cell activation. Our data reveal that after binding with DAP12, OCILRP2 activates the Raf-MAP kinase pathways, resulting in T cell activation. PMID:25411776

  18. Histidine Triad-Like Motif of the Rotavirus NSP2 Octamer Mediates Both RTPase and NTPase Activities

    PubMed Central

    Carpio, Rodrigo Vasquez-Del; Gonzalez-Nilo, Fernando D.; Riadi, Gonzalo; Taraporewala, Zenobia F.; Patton., John T.

    2006-01-01

    SUMMARY Rotavirus NSP2 is an abundant nonstructural RNA-binding protein essential for forming the viral factories that support replication of the double-stranded RNA genome. NSP2 exists as stable doughnut-shaped octamers within the infected cell, representing the tail-to-tail interaction of two tetramers. Extending diagonally across the surface of each octamer are four highly basic grooves that function as binding sites for single-stranded RNA. Between the N and C-terminal domains of each monomer is a deep electropositive cleft containing a catalytic site that hydrolyzes the γ-β phosphoanhydride bond of any NTP. The catalytic site has similarity to those of the histidine triad (HIT) family of nucleotide-binding proteins. Due to the close proximity of the grooves and clefts, we investigated the possibility that the RNA-binding activity of the groove promoted the insertion of the 5′-triphosphate moiety of the RNA into the cleft, and the subsequent hydrolysis of its γ-β phosphoanhydride bond. Our results show that NSP2 hydrolyzes the γP from RNAs and NTPs through Mg2+-dependent activities that proceed with similar reaction velocities, that require the catalytic His225 residue, and that produce a phosphorylated intermediate. Competition assays indicate that although both substrates enter the active site, RNA is the preferred substrate due to its higher affinity for the octamer. The RTPase activity of NSP2 may account for the absence of 5′-terminal γP on the (−) strands of the dsRNA genome segments. This is the first report of a HIT-like protein with a multifunctional catalytic site, capable of accommodating both NTPs and RNAs during γP hydrolysis. PMID:16934294

  19. The integrin-binding motif RGDS induces protein tyrosine phosphorylation without activation in Bufo arenarum (Amphibia) oocytes.

    PubMed

    Mouguelar, Valeria S; Cabada, Marcelo O; Coux, Gabriela

    2011-05-01

    Integrins are cell adhesion molecules that are thought to be involved in sperm-oocyte interaction. Nevertheless, their function in mammalian fertilization is still controversial, as different species behave differently. In amphibians, their role is mainly supported by Xenopus laevis studies, where RGDS peptide induces oocyte activation. We recently provided evidence suggesting the presence and involvement of integrins in the interaction of the oocyte plasma membrane (PM) with sperm in the amphibian Bufo arenarum. In order to understand the role of integrin homologs in oocytes and their possible contribution to egg activation mechanisms, we examined the presence of integrin subunits and the effect of RGDS peptide on oocytes and during fertilization. Western blot studies detected integrin subunits α5, αV and β1 in oocytes. In sperm, we could detect only the αV integrin subunit. We found that RGDS peptide was unable to elicit egg activation or MAPK dephosphorylation, but can induce reversible inhibition of fertilization. A similar partial inhibition was produced by an anti-β1 integrin antibody. Using an anti-phosphotyrosine antibody we found major changes in phosphotyrosine-containing proteins in egg extracts minutes after fertilization. Cytosol and PMs isolated from oocytes and fertilized eggs showed additional fertilization-induced phosphorylated proteins. Some of these were also present in cytosol and PMs from RGDS-treated oocytes (partially mimicking fertilization). These findings suggest that B. arenarum fertilization involves integrins (e.g. β1 subunit) as adhesion proteins. Our data support the view that RGDS-binding receptors may function as signaling receptors in B. arenarum oocytes, but integrin engagement by RGDS is not sufficient for oocyte activation. PMID:21339287

  20. Regulatory motifs in Chk1

    PubMed Central

    Caparelli, Michael L.; O’Connell, Matthew J.

    2013-01-01

    Chk1 is the effector kinase of the G2 DNA damage checkpoint. Chk1 homologs possess a highly conserved N-terminal kinase domain and a less conserved C-terminal regulatory domain. In response to DNA damage, Chk1 is recruited to mediator proteins assembled at lesions on replication protein A (RPA)-coated single-stranded DNA (ssDNA). Chk1 is then activated by phosphorylation on S345 in the C-terminal regulatory domain by the PI3 kinase-related kinases ATM and ATR to enforce a G2 cell cycle arrest to allow time for DNA repair. Models have emerged in which this C-terminal phosphorylation relieves auto-inhibitory regulation of the kinase domain by the regulatory domain. However, experiments in fission yeast have shown that deletion of this putative auto-inhibitory domain actually inactivates Chk1 function. We show here that Chk1 homologs possess a kinase-associated 1 (KA1) domain that possesses residues previously implicated in Chk1 auto-inhibition. In addition, all Chk1 homologs have a small and highly conserved C-terminal extension (CTE domain). In fission yeast, both of these motifs are essential for Chk1 activation through interaction with the mediator protein Crb2, the homolog of human 53BP1. Thus, through different intra- and intermolecular interactions, these motifs explain why the regulatory domain exerts both positive and negative control over Chk1 activation. Such motifs may provide alternative targets to the ATP-binding pocket on which to dock Chk1 inhibitors as anticancer therapeutics. PMID:23422000

  1. Recognition of β-Strand Motifs by RseB Is Required for σE Activity in Escherichia coli ▿

    PubMed Central

    Kulp, Adam; Kuehn, Meta J.

    2011-01-01

    Gram-negative bacteria react to misfolded proteins in the envelope through a myriad of different stress response pathways. This cohort of pathways allows the bacteria to specifically respond to different types of damage, and many of these have been discovered to have key roles in the virulence of bacterial pathogens. Misfolded outer membrane proteins (OMPs) are typically recognized by the σE pathway, a highly conserved envelope stress response pathway. We examined the features of misfolded OMPs with respect to their ability to generate envelope stress responses. We determined that the secondary structure, particularly the potential to form β strands, is critical to inducing the σE response in an RseB-dependent manner. The sequence of the potential β-strand motif modulates the strength of the σE response generated by the constructs. By understanding the details of how such stress response pathways are activated, we can gain a greater understanding of how bacteria survive in harsh environments. PMID:21908666

  2. Sequence determinants spanning -35 motif and AT-rich spacer region impacting Ehrlichia chaffeensis Sigma 70-dependent promoter activity of two differentially expressed p28 outer membrane protein genes

    PubMed Central

    Liu, Huitao; Jakkula, Laxmi U. M. R.; Von Ohlen, Tonia; Ganta, Roman R.

    2016-01-01

    Ehrlichia chaffeensis is an obligate intracellular tick-borne bacterium which causes the disease, human monocytic ehrlichiosis. Ehrlichia chaffeensis contains only two sigma factors, σ32 and σ70. It is difficult to study E. chaffeensis gene regulation due to lack of a transformation system. We developed an Escherichia coli-based transcription system to study E. chaffeensis transcriptional regulation. An E. coli strain with its σ70 repressed with trp promoter is used to express E. chaffeensis σ70. The E. coli system and our previously established in vitro transcription system were used to map transcriptional differences of two Ehrlichia genes encoding p28-outer membrane proteins 14 and 19. We mapped the -10 and -35 motifs and the AT rich spacers located between the two motifs by performing detailed mutational analysis. Mutations within the -35 motif of the genes impacted transcription differently, while -10 motif deletions had no impact. The AT-rich spacers also contributed to transcriptional differences. We further demonstrated that the domain 4.2 of E. chaffeensis σ70 is important for regulating promoter activity and the deletion of region 1.1 of E. chaffeensis σ70 causes enhancement of the promoter activity. This is the first study defining the promoters of two closely related E. chaffeensis genes. PMID:27402867

  3. Site-1 protease-activated formation of lysosomal targeting motifs is independent of the lipogenic transcription control[S

    PubMed Central

    Klünder, Sarah; Heeren, Jörg; Markmann, Sandra; Santer, René; Braulke, Thomas; Pohl, Sandra

    2015-01-01

    Site-1 protease (S1P) cleaves membrane-bound lipogenic sterol regulatory element-binding proteins (SREBPs) and the α/β-subunit precursor protein of the N-acetylglucosamine-1-phosphotransferase forming mannose 6-phosphate (M6P) targeting markers on lysosomal enzymes. The translocation of SREBPs from the endoplasmic reticulum (ER) to the Golgi-resident S1P depends on the intracellular sterol content, but it is unknown whether the ER exit of the α/β-subunit precursor is regulated. Here, we investigated the effect of cholesterol depletion (atorvastatin treatment) and elevation (LDL overload) on ER-Golgi transport, S1P-mediated cleavage of the α/β-subunit precursor, and the subsequent targeting of lysosomal enzymes along the biosynthetic and endocytic pathway to lysosomes. The data showed that the proteolytic cleavage of the α/β-subunit precursor into mature and enzymatically active subunits does not depend on the cholesterol content. In either treatment, lysosomal enzymes are normally decorated with M6P residues, allowing the proper sorting to lysosomes. In addition, we found that, in fibroblasts of mucolipidosis type II mice and Niemann-Pick type C patients characterized by aberrant cholesterol accumulation, the proteolytic cleavage of the α/β-subunit precursor was not impaired. We conclude that S1P substrate-dependent regulatory mechanisms for lipid synthesis and biogenesis of lysosomes are different. PMID:26108224

  4. Restoration of the CCAAT box or insertion of the CACCC motif activates [corrected] delta-globin gene expression.

    PubMed

    Tang, D C; Ebb, D; Hardison, R C; Rodgers, G P

    1997-07-01

    Hemoglobin A2 (HbA2), which contains delta-globin as its non-alpha-globin, represents a minor fraction of the Hb found in normal adults. It has been shown recently that HbA2 is as potent as HbF in inhibiting intracellular deoxy-HbS polymerization, and its expression is therefore relevant to sickle cell disease treatment strategies. To elucidate the mechanisms responsible for the low-level expression of the delta-globin gene in adult erythroid cells, we first compared promoter sequences and found that the delta-globin gene differs from the beta-globin gene in the absence of an erythroid Krüppel-like factor (EKLF) binding site, the alteration of the CCAAT box to CCAAC, and the presence of a GATA-1 binding site. Second, serial deletions of the human delta-globin promoter sequence fused to a luciferase (LUC) reporter gene were transfected into K562 cells. We identified both positive and negative regulatory regions in the 5' flanking sequence. Furthermore, a plasmid containing a single base pair (bp) mutation in the CCAAC box of the delta promoter, restoring the CCAAT box, caused a 5.6-fold and 2.4-fold (P < .05) increase of LUC activity in transfected K562 cells and MEL cells, respectively, in comparison to the wild-type delta promoter. A set of substitutions that create an EKLF binding site centered at -85 bp increased the expression by 26.8-fold and 6.5-fold (P < .05) in K562 and MEL cells, respectively. These results clearly demonstrate that the restoration of either an EKLF binding site or the CCAAT box can increase delta-globin gene expression, with potential future clinical benefit.

  5. The adeno-associated virus major regulatory protein Rep78-c-Jun-DNA motif complex modulates AP-1 activity.

    PubMed

    Prasad, C Krishna; Meyers, Craig; Zhan, De-Jin; You, Hong; Chiriva-Internati, Maurizio; Mehta, Jawahar L; Liu, Yong; Hermonat, Paul L

    2003-09-15

    Multiple epidemiologic studies show that adeno-associated virus (AAV) is negatively associated with cervical cancer (CX CA), a cancer which is positively associated with human papillomavirus (HPV) infection. Mechanisms for this correlation may be by Rep78's (AAV's major regulatory protein) ability to bind the HPV-16 p97 promoter DNA and inhibit transcription, to bind and interfere with the functions of the E7 oncoprotein of HPV-16, and to bind a variety of HPV-important cellular transcription factors such as Sp1 and TBP. c-Jun is another important cellular factor intimately linked to the HPV life cycle, as well as keratinocyte differentiation and skin development. Skin is the natural host tissue for both HPV and AAV. In this article it is demonstrated that Rep78 directly interacts with c-Jun, both in vitro and in vivo, as analyzed by Western blot, yeast two-hybrid cDNA, and electrophoretic mobility shift-supershift assay (EMSA supershift). Addition of anti-Rep78 antibodies inhibited the EMSA supershift. Investigating the biological implications of this interaction, Rep78 inhibited the c-Jun-dependent c-jun promoter in transient and stable chloramphenicol acetyl-transferase (CAT) assays. Rep78 also inhibited c-Jun-augmented c-jun promoter as well as the HPV-16 p97 promoter activity (also c-Jun regulated) in in vitro transcription assays in T47D nuclear extracts. Finally, the Rep78-c-Jun interaction mapped to the amino-half of Rep78. The ability of Rep78 to interact with c-Jun and down-regulate AP-1-dependent transcription suggests one more mechanism by which AAV may modulate the HPV life cycle and the carcinogenesis process.

  6. The nuclear splicing factor RNA binding motif 5 promotes caspase activation in human neuronal cells, and increases after traumatic brain injury in mice

    PubMed Central

    Jackson, Travis C; Du, Lina; Janesko-Feldman, Keri; Vagni, Vincent A; Dezfulian, Cameron; Poloyac, Samuel M; Jackson, Edwin K; Clark, Robert SB; Kochanek, Patrick M

    2015-01-01

    Splicing factors (SFs) coordinate nuclear intron/exon splicing of RNA. Splicing factor disturbances can cause cell death. RNA binding motif 5 (RBM5) and 10 (RBM10) promote apoptosis in cancer cells by activating detrimental alternative splicing of key death/survival genes. The role(s) of RBM5/10 in neurons has not been established. Here, we report that RBM5 knockdown in human neuronal cells decreases caspase activation by staurosporine. In contrast, RBM10 knockdown augments caspase activation. To determine whether brain injury alters RBM signaling, we measured RBM5/10 protein in mouse cortical/hippocampus homogenates after controlled cortical impact (CCI) traumatic brain injury (TBI) plus hemorrhagic shock (CCI+HS). The RBM5/10 staining was higher 48  to 72 hours after injury and appeared to be increased in neuronal nuclei of the hippocampus. We also measured levels of other nuclear SFs known to be essential for cellular viability and report that splicing factor 1 (SF1) but not splicing factor 3A (SF3A) decreased 4  to 72 hours after injury. Finally, we confirm that RBM5/10 regulate protein expression of several target genes including caspase-2, cellular FLICE-like inhibitory protein (c-FLIP), LETM1 Domain-Containing Protein 1 (LETMD1), and amyloid precursor-like protein 2 (APLP2) in neuronal cells. Knockdown of RBM5 appeared to increase expression of c-FLIP(s), LETMD1, and APLP2 but decrease caspase-2. PMID:25586139

  7. A Secreted Protein with Plant-Specific Cysteine-Rich Motif Functions as a Mannose-Binding Lectin That Exhibits Antifungal Activity1[W

    PubMed Central

    Miyakawa, Takuya; Hatano, Ken-ichi; Miyauchi, Yumiko; Suwa, You-ichi; Sawano, Yoriko; Tanokura, Masaru

    2014-01-01

    Plants have a variety of mechanisms for defending against plant pathogens and tolerating environmental stresses such as drought and high salinity. Ginkbilobin2 (Gnk2) is a seed storage protein in gymnosperm that possesses antifungal activity and a plant-specific cysteine-rich motif (domain of unknown function26 [DUF26]). The Gnk2-homologous sequence is also observed in an extracellular region of cysteine-rich repeat receptor-like kinases that function in response to biotic and abiotic stresses. Here, we report the lectin-like molecular function of Gnk2 and the structural basis of its monosaccharide recognition. Nuclear magnetic resonance experiments showed that mannan was the only yeast (Saccharomyces cerevisiae) cell wall polysaccharide that interacted with Gnk2. Gnk2 also interacted with mannose, a building block of mannan, with a specificity that was similar to those of mannose-binding legume lectins, by strictly recognizing the configuration of the hydroxy group at the C4 position of the monosaccharide. The crystal structure of Gnk2 in complex with mannose revealed that three residues (asparagine-11, arginine-93, and glutamate-104) recognized mannose by hydrogen bonds, which defined the carbohydrate-binding specificity. These interactions were directly related to the ability of Gnk2 to inhibit the growth of fungi, including the plant pathogenic Fusarium spp., which were disrupted by mutation of arginine-93 or the presence of yeast mannan in the assay system. In addition, Gnk2 did not inhibit the growth of a yeast mutant strain lacking the α1,2-linked mannose moiety. These results provide insights into the molecular basis of the DUF26 protein family. PMID:25139159

  8. ISOLATION OF AN ACTIVE LV1 GENE FROM CATTLE INDICATES THAT TRIPARTITE MOTIF PROTEIN-MEDIATED INNATE IMMUNITY TO RETROVIRAL INFECTION IS WIDESPREAD AMONG MAMMALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lv1/TRIM5alpha (tripartite motif 5alpha) has recently emerged as an important factor influencing species-specific permissivity to retroviral infection in a range of primates, including humans. Old World monkey TRIM5alpha blocks human immunodeficiency virus type 1 (HIV-1) infectivity, and the human a...

  9. Aztec, Incan and Mayan Motifs...Lead to Distinctive Designs.

    ERIC Educational Resources Information Center

    Shields, Joanne

    2001-01-01

    Describes an art project for seventh-grade students in which they choose motifs based on Incan, Aztec, and Mayan Indian materials to incorporate into two-dimensional designs. Explains that the activity objective is to create a unified, balanced and pleasing composition using a minimum of three motifs. (CMK)

  10. The Fc receptor gamma-chain and the tyrosine kinase Syk are essential for activation of mouse platelets by collagen.

    PubMed Central

    Poole, A; Gibbins, J M; Turner, M; van Vugt, M J; van de Winkel, J G; Saito, T; Tybulewicz, V L; Watson, S P

    1997-01-01

    Activation of mouse platelets by collagen is associated with tyrosine phosphorylation of multiple proteins including the Fc receptor gamma-chain, the tyrosine kinase Syk and phospholipase Cgamma2, suggesting that collagen signals in a manner similar to that of immune receptors. This hypothesis has been tested using platelets from mice lacking the Fc receptor gamma-chain or Syk. Tyrosine phosphorylation of Syk and phospholipase Cgamma2 by collagen stimulation is absent in mice lacking the Fc receptor gamma-chain. Tyrosine phosphorylation of phospholipase Cgamma2 by collagen stimulation is also absent in mice platelets which lack Syk, although phosphorylation of the Fc receptor gamma-chain is maintained. In contrast, tyrosine phosphorylation of platelet proteins by the G protein-coupled receptor agonist thrombin is maintained in mouse platelets deficient in Fc receptor gamma-chain or Syk. The absence of Fc receptor gamma-chain or Syk is accompanied by a loss of secretion and aggregation responses in collagen- but not thrombin-stimulated platelets. These observations provide the first direct evidence of an essential role for the immunoreceptor tyrosine-based activation motif (ITAM) in signalling by a non-immune receptor stimulus. PMID:9171347

  11. The polarization of the G-protein activated potassium channel GIRK5 to the vegetal pole of Xenopus laevis oocytes is driven by a di-leucine motif.

    PubMed

    Díaz-Bello, Beatriz; Rangel-García, Claudia I; Salvador, Carolina; Carrisoza-Gaytán, Rolando; Escobar, Laura I

    2013-01-01

    The G protein-coupled inwardly-rectifying potassium channels (known as GIRK or Kir3) form functional heterotetramers gated by G-βγ subunits. GIRK channels participate in heart rate modulation and neuronal postsynaptic inhibition in mammals. In Xenopus laevis oocytes, GIRK5 is a functional homomultimer. Previously, we found that phosphorylation of a tyrosine (Y16) at its N-terminus downregulates the surface expression of GIRK5. In this work, we elucidated the subcellular localization and trafficking of GIRK5 in oocytes. Several EGFP-GIRK5 chimeras were produced and an ECFP construct was used to identify the endoplasmic reticulum (ER). Whereas GIRK5-WT was retained in the ER at the animal pole, the phospho-null GIRK5-Y16A was localized to the vegetal pole. Interestingly, a construct with an N-terminal Δ25 deletion produced an even distribution of the channel in the whole oocyte. Through an alanine-scan, we identified an acidic cluster/di-leucine sorting-signal recognition motif between E17 and I22. We quantified the effect of each amino acid residue within this di-leucine motif in determining the distribution of GIRK5 to the animal and vegetal poles. We found that Y16 and I22 contributed to functional expression and were dominant in the polarization of GIRK5. We thus conclude that the N-terminal acidic di-leucine motif of GIRK5 determines its retention and polarized trafficking within Xl oocytes.

  12. The Polarization of the G-Protein Activated Potassium Channel GIRK5 to the Vegetal Pole of Xenopus laevis Oocytes Is Driven by a Di-Leucine Motif

    PubMed Central

    Díaz-Bello, Beatriz; Rangel-García, Claudia I.; Salvador, Carolina; Carrisoza-Gaytán, Rolando; Escobar, Laura I.

    2013-01-01

    The G protein-coupled inwardly-rectifying potassium channels (known as GIRK or Kir3) form functional heterotetramers gated by G-βγ subunits. GIRK channels participate in heart rate modulation and neuronal postsynaptic inhibition in mammals. In Xenopus laevis oocytes, GIRK5 is a functional homomultimer. Previously, we found that phosphorylation of a tyrosine (Y16) at its N-terminus downregulates the surface expression of GIRK5. In this work, we elucidated the subcellular localization and trafficking of GIRK5 in oocytes. Several EGFP-GIRK5 chimeras were produced and an ECFP construct was used to identify the endoplasmic reticulum (ER). Whereas GIRK5-WT was retained in the ER at the animal pole, the phospho-null GIRK5-Y16A was localized to the vegetal pole. Interestingly, a construct with an N-terminal Δ25 deletion produced an even distribution of the channel in the whole oocyte. Through an alanine-scan, we identified an acidic cluster/di-leucine sorting-signal recognition motif between E17 and I22. We quantified the effect of each amino acid residue within this di-leucine motif in determining the distribution of GIRK5 to the animal and vegetal poles. We found that Y16 and I22 contributed to functional expression and were dominant in the polarization of GIRK5. We thus conclude that the N-terminal acidic di-leucine motif of GIRK5 determines its retention and polarized trafficking within Xl oocytes. PMID:23717539

  13. Ehrlichia chaffeensis TRP120 Binds a G+C-Rich Motif in Host Cell DNA and Exhibits Eukaryotic Transcriptional Activator Function ▿ †

    PubMed Central

    Zhu, Bing; Kuriakose, Jeeba A.; Luo, Tian; Ballesteros, Efren; Gupta, Sharu; Fofanov, Yuriy; McBride, Jere W.

    2011-01-01

    Ehrlichia chaffeensis is an obligately intracellular bacterium that modulates host cell gene transcription in the mononuclear phagocyte, but the host gene targets and mechanisms involved in transcriptional modulation are not well-defined. In this study, we identified a novel tandem repeat DNA-binding domain in the E. chaffeensis 120-kDa tandem repeat protein (TRP120) that directly binds host cell DNA. TRP120 was observed by immunofluorescent microscopy in the nucleus of E. chaffeensis-infected host cells and was detected in nuclear extracts by Western immunoblotting with TRP120-specific antibody. The TRP120 binding sites and associated host cell target genes were identified using high-throughput deep sequencing (Illumina) of immunoprecipitated DNA (chromatin immunoprecipitation and high-throughput DNA sequencing). Multiple em motif elicitation (MEME) analysis of the most highly enriched TRP120-bound sequences revealed a G+C-rich DNA motif, and recombinant TRP120 specifically bound synthetic oligonucleotides containing the motif. TRP120 target gene binding sites were mapped most frequently to intersecting regions (intron/exon; 49%) but were also identified in upstream regulatory regions (25%) and downstream locations (26%). Genes targeted by TRP120 were most frequently associated with transcriptional regulation, signal transduction, and apoptosis. TRP120 targeted inflammatory chemokine genes, CCL2, CCL20, and CXCL11, which were strongly upregulated during E. chaffeensis infection and were also upregulated by direct transfection with recombinant TRP120. This study reveals that TRP120 is a novel DNA-binding protein that is involved in a host gene transcriptional regulation strategy. PMID:21859854

  14. [Prediction of Promoter Motifs in Virophages].

    PubMed

    Gong, Chaowen; Zhou, Xuewen; Pan, Yingjie; Wang, Yongjie

    2015-07-01

    Virophages have crucial roles in ecosystems and are the transport vectors of genetic materials. To shed light on regulation and control mechanisms in virophage--host systems as well as evolution between virophages and their hosts, the promoter motifs of virophages were predicted on the upstream regions of start codons using an analytical tool for prediction of promoter motifs: Multiple EM for Motif Elicitation. Seventeen potential promoter motifs were identified based on the E-value, location, number and length of promoters in genomes. Sputnik and zamilon motif 2 with AT-rich regions were distributed widely on genomes, suggesting that these motifs may be associated with regulation of the expression of various genes. Motifs containing the TCTA box were predicted to be late promoter motif in mavirus; motifs containing the ATCT box were the potential late promoter motif in the Ace Lake mavirus . AT-rich regions were identified on motif 2 in the Organic Lake virophage, motif 3 in Yellowstone Lake virophage (YSLV)1 and 2, motif 1 in YSLV3, and motif 1 and 2 in YSLV4, respectively. AT-rich regions were distributed widely on the genomes of virophages. All of these motifs may be promoter motifs of virophages. Our results provide insights into further exploration of temporal expression of genes in virophages as well as associations between virophages and giant viruses. PMID:26524912

  15. Platelet 12-lipoxygenase activation via glycoprotein VI: involvement of multiple signaling pathways in agonist control of H(P)ETE synthesis.

    PubMed

    Coffey, Marcus J; Jarvis, Gavin E; Gibbins, Jonathan M; Coles, Barbara; Barrett, Natasha E; Wylie, Oliver R E; O'Donnell, Valerie B

    2004-06-25

    Lipoxygenases (LOX) contribute to vascular disease and inflammation through generation of bioactive lipids, including 12-hydro(pero)xyeicosatetraenoic acid (12-H(P)ETE). The physiological mechanisms that acutely control LOX product generation in mammalian cells are uncharacterized. Human platelets that contain a 12-LOX isoform (p12-LOX) were used to define pathways that activate H(P)ETE synthesis in the vasculature. Collagen and collagen-related peptide (CRP) (1 to 10 microg/mL) acutely induced platelet 12-H(P)ETE synthesis. This implicated the collagen receptor glycoprotein VI (GPVI), which signals via the immunoreceptor-based activatory motif (ITAM)-containing FcRgamma chain. Conversely, thrombin only activated at high concentrations (> 0.2 U/mL), whereas U46619 and ADP alone were ineffective. Collagen or CRP-stimulated 12-H(P)ETE generation was inhibited by staurosporine, PP2, wortmannin, BAPTA/AM, EGTA, and L-655238, implicating src-tyrosine kinases, PI3-kinase, Ca2+ mobilization, and p12-LOX translocation. In contrast, protein kinase C (PKC) inhibition potentiated 12-H(P)ETE generation. Finally, activation of the immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing platelet endothelial cell adhesion molecule (PECAM-1) inhibited p12-LOX product generation. This study characterizes a receptor-dependent pathway for 12-H(P)ETE synthesis via the collagen receptor GPVI, which is negatively regulated by PECAM-1 and PKC, and demonstrates a novel link between immune receptor signaling and lipid mediator generation in the vasculature. PMID:15142951

  16. Human papillomavirus type 16 E6 activates NF-kappaB, induces cIAP-2 expression, and protects against apoptosis in a PDZ binding motif-dependent manner.

    PubMed

    James, Michael A; Lee, John H; Klingelhutz, Aloysius J

    2006-06-01

    Infection with human papillomavirus (HPV) is a critical factor in the pathogenesis of most cervical cancers and some aerodigestive cancers. The HPV E6 oncoprotein from high-risk HPV types contributes to the immortalization and transformation of cells by multiple mechanisms, including degradation of p53, transcriptional activation of human telomerase reverse transcriptase (hTERT), and degradation of several proteins containing PDZ domains. The ability of E6 to bind PDZ domain-containing proteins is independent of p53 degradation or hTERT activation but does correlate with oncogenic potential (R. A. Watson, M. Thomas, L. Banks, and S. Roberts, J. Cell Sci. 116:4925-4934, 2003) and is essential for induction of epithelial hyperplasia in vivo (M. L. Nguyen, M. M. Nguyen, D. Lee, A. E. Griep, and P. F. Lambert, J. Virol. 77:6957-6964, 2003). In this study, we found that HPV type 16 E6 was able to activate NF-kappaB in airway epithelial cells through the induction of nuclear binding activity of p52-containing NF-kappaB complexes in a PDZ binding motif-dependent manner. Transcript accumulation for the NF-kappaB-responsive antiapoptotic gene encoding cIAP-2 and binding of nuclear factors to the proximal NF-kappaB binding site of the cIAP-2 gene promoter are induced by E6 expression. Furthermore, E6 is able to protect cells from TNF-induced apoptosis. All of these E6-dependent phenotypes are dependent on the presence of the PDZ binding motif of E6. Our results imply a role for targeting of PDZ proteins by E6 in NF-kappaB activation and protection from apoptosis in airway epithelial cells. PMID:16699010

  17. Human papillomavirus type 16 E6 activates NF-kappaB, induces cIAP-2 expression, and protects against apoptosis in a PDZ binding motif-dependent manner.

    PubMed

    James, Michael A; Lee, John H; Klingelhutz, Aloysius J

    2006-06-01

    Infection with human papillomavirus (HPV) is a critical factor in the pathogenesis of most cervical cancers and some aerodigestive cancers. The HPV E6 oncoprotein from high-risk HPV types contributes to the immortalization and transformation of cells by multiple mechanisms, including degradation of p53, transcriptional activation of human telomerase reverse transcriptase (hTERT), and degradation of several proteins containing PDZ domains. The ability of E6 to bind PDZ domain-containing proteins is independent of p53 degradation or hTERT activation but does correlate with oncogenic potential (R. A. Watson, M. Thomas, L. Banks, and S. Roberts, J. Cell Sci. 116:4925-4934, 2003) and is essential for induction of epithelial hyperplasia in vivo (M. L. Nguyen, M. M. Nguyen, D. Lee, A. E. Griep, and P. F. Lambert, J. Virol. 77:6957-6964, 2003). In this study, we found that HPV type 16 E6 was able to activate NF-kappaB in airway epithelial cells through the induction of nuclear binding activity of p52-containing NF-kappaB complexes in a PDZ binding motif-dependent manner. Transcript accumulation for the NF-kappaB-responsive antiapoptotic gene encoding cIAP-2 and binding of nuclear factors to the proximal NF-kappaB binding site of the cIAP-2 gene promoter are induced by E6 expression. Furthermore, E6 is able to protect cells from TNF-induced apoptosis. All of these E6-dependent phenotypes are dependent on the presence of the PDZ binding motif of E6. Our results imply a role for targeting of PDZ proteins by E6 in NF-kappaB activation and protection from apoptosis in airway epithelial cells.

  18. An autoinhibited conformation of LGN reveals a distinct interaction mode between GoLoco motifs and TPR motifs.

    PubMed

    Pan, Zhu; Zhu, Jinwei; Shang, Yuan; Wei, Zhiyi; Jia, Min; Xia, Caihao; Wen, Wenyu; Wang, Wenning; Zhang, Mingjie

    2013-06-01

    LGN plays essential roles in asymmetric cell divisions via its N-terminal TPR-motif-mediated binding to mInsc and NuMA. This scaffolding activity requires the release of the autoinhibited conformation of LGN by binding of Gα(i) to its C-terminal GoLoco (GL) motifs. The interaction between the GL and TPR motifs of LGN represents a distinct GL/target binding mode with an unknown mechanism. Here, we show that two consecutive GL motifs of LGN form a minimal TPR-motif-binding unit. GL12 and GL34 bind to TPR0-3 and TPR4-7, respectively. The crystal structure of a truncated LGN reveals that GL34 forms a pair of parallel α helices and binds to the concave surface of TPR4-7, thereby preventing LGN from binding to other targets. Importantly, the GLs bind to TPR motifs with a mode distinct from that observed in the GL/Gα(i)·GDP complexes. Our results also indicate that multiple and orphan GL motif proteins likely respond to G proteins with distinct mechanisms.

  19. Finding specific RNA motifs: Function in a zeptomole world?

    PubMed Central

    KNIGHT, ROB; YARUS, MICHAEL

    2003-01-01

    We have developed a new method for estimating the abundance of any modular (piecewise) RNA motif within a longer random region. We have used this method to estimate the size of the active motifs available to modern SELEX experiments (picomoles of unique sequences) and to a plausible RNA World (zeptomoles of unique sequences: 1 zmole = 602 sequences). Unexpectedly, activities such as specific isoleucine binding are almost certainly present in zeptomoles of molecules, and even ribozymes such as self-cleavage motifs may appear (depending on assumptions about the minimal structures). The number of specified nucleotides is not the only important determinant of a motif’s rarity: The number of modules into which it is divided, and the details of this division, are also crucial. We propose three maxims for easily isolated motifs: the Maxim of Minimization, the Maxim of Multiplicity, and the Maxim of the Median. These maxims together state that selected motifs should be small and composed of as many separate, equally sized modules as possible. For evenly divided motifs with four modules, the largest accessible activity in picomole scale (1–1000 pmole) pools of length 100 is about 34 nucleotides; while for zeptomole scale (1–1000 zmole) pools it is about 20 specific nucleotides (50% probability of occurrence). This latter figure includes some ribozymes and aptamers. Consequently, an RNA metabolism apparently could have begun with only zeptomoles of RNA molecules. PMID:12554865

  20. Sequential visibility-graph motifs

    NASA Astrophysics Data System (ADS)

    Iacovacci, Jacopo; Lacasa, Lucas

    2016-04-01

    Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of sequential visibility-graph motifs, smaller substructures of n consecutive nodes that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated with general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable of distinguishing among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification and description of physical, biological, and financial time series.

  1. Dynamic motifs in socio-economic networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Shao, Shuai; Stanley, H. Eugene; Havlin, Shlomo

    2014-12-01

    Socio-economic networks are of central importance in economic life. We develop a method of identifying and studying motifs in socio-economic networks by focusing on “dynamic motifs,” i.e., evolutionary connection patterns that, because of “node acquaintances” in the network, occur much more frequently than random patterns. We examine two evolving bi-partite networks: i) the world-wide commercial ship chartering market and ii) the ship build-to-order market. We find similar dynamic motifs in both bipartite networks, even though they describe different economic activities. We also find that “influence” and “persistence” are strong factors in the interaction behavior of organizations. When two companies are doing business with the same customer, it is highly probable that another customer who currently only has business relationship with one of these two companies, will become customer of the second in the future. This is the effect of influence. Persistence means that companies with close business ties to customers tend to maintain their relationships over a long period of time.

  2. Increasing the Receptor Tyrosine Kinase EphB2 Prevents Amyloid-β-induced Depletion of Cell Surface Glutamate Receptors by a Mechanism That Requires the PDZ-binding Motif of EphB2 and Neuronal Activity*

    PubMed Central

    Miyamoto, Takashi; Kim, Daniel; Knox, Joseph A.; Johnson, Erik; Mucke, Lennart

    2016-01-01

    Diverse lines of evidence suggest that amyloid-β (Aβ) peptides causally contribute to the pathogenesis of Alzheimer disease (AD), the most frequent neurodegenerative disorder. However, the mechanisms by which Aβ impairs neuronal functions remain to be fully elucidated. Previous studies showed that soluble Aβ oligomers interfere with synaptic functions by depleting NMDA-type glutamate receptors (NMDARs) from the neuronal surface and that overexpression of the receptor tyrosine kinase EphB2 can counteract this process. Through pharmacological treatments and biochemical analyses of primary neuronal cultures expressing wild-type or mutant forms of EphB2, we demonstrate that this protective effect of EphB2 depends on its PDZ-binding motif and the presence of neuronal activity but not on its kinase activity. We further present evidence that the protective effect of EphB2 may be mediated by the AMPA-type glutamate receptor subunit GluA2, which can become associated with the PDZ-binding motif of EphB2 through PDZ domain-containing proteins and can promote the retention of NMDARs in the membrane. In addition, we show that the Aβ-induced depletion of surface NMDARs does not depend on several factors that have been implicated in the pathogenesis of Aβ-induced neuronal dysfunction, including aberrant neuronal activity, tau, prion protein (PrPC), and EphB2 itself. Thus, although EphB2 does not appear to be directly involved in the Aβ-induced depletion of NMDARs, increasing its expression may counteract this pathogenic process through a neuronal activity- and PDZ-dependent regulation of AMPA-type glutamate receptors. PMID:26589795

  3. Partially Defective Store Operated Calcium Entry and Hem(ITAM) Signaling in Platelets of Serotonin Transporter Deficient Mice

    PubMed Central

    Wolf, Karen; Braun, Attila; Haining, Elizabeth J.; Tseng, Yu-Lun; Kraft, Peter; Schuhmann, Michael K.; Gotru, Sanjeev K.; Chen, Wenchun; Hermanns, Heike M.; Stoll, Guido; Lesch, Klaus-Peter; Nieswandt, Bernhard

    2016-01-01

    Background Serotonin (5-hydroxytryptamin, 5-HT) is an indolamine platelet agonist, biochemically derived from tryptophan. 5-HT is secreted from the enterochromaffin cells into the gastrointestinal tract and blood. Blood 5-HT has been proposed to regulate hemostasis by acting as a vasoconstrictor and by triggering platelet signaling through 5-HT receptor 2A (5HTR2A). Although platelets do not synthetize 5-HT, they take 5-HT up from the blood and store it in their dense granules which are secreted upon platelet activation. Objective To identify the molecular composite of the 5-HT uptake system in platelets and elucidate the role of platelet released 5-HT in thrombosis and ischemic stroke. Methods: 5-HT transporter knockout mice (5Htt-/-) were analyzed in different in vitro and in vivo assays and in a model of ischemic stroke. Results In 5Htt-/- platelets, 5-HT uptake from the blood was completely abolished and agonist-induced Ca2+ influx through store operated Ca2+ entry (SOCE), integrin activation, degranulation and aggregation responses to glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2) were reduced. These observed in vitro defects in 5Htt-/- platelets could be normalized by the addition of exogenous 5-HT. Moreover, reduced 5-HT levels in the plasma, an increased bleeding time and the formation of unstable thrombi were observed ex vivo under flow and in vivo in the abdominal aorta and carotid artery of 5Htt-/- mice. Surprisingly, in the transient middle cerebral artery occlusion (tMCAO) model of ischemic stroke 5Htt-/- mice showed nearly normal infarct volume and the neurological outcome was comparable to control mice. Conclusion Although secreted platelet 5-HT does not appear to play a crucial role in the development of reperfusion injury after stroke, it is essential to amplify the second phase of platelet activation through SOCE and plays an important role in thrombus stabilization. PMID:26800051

  4. Evolution of an insect-specific GROUCHO-interaction motif in the ENGRAILED selector protein.

    PubMed

    Hittinger, Chris Todd; Carroll, Sean B

    2008-01-01

    Animal morphology evolves through alterations in the genetic regulatory networks that control development. Regulatory connections are commonly added, subtracted, or modified via mutations in cis-regulatory elements, but several cases are also known where transcription factors have gained or lost activity-modulating peptide motifs. In order to better assess the role of novel transcription factor peptide motifs in evolution, we searched for synapomorphic motifs in the homeotic selectors of Drosophila melanogaster and related insects. Here, we describe an evolutionarily novel GROUCHO (GRO)-interaction motif in the ENGRAILED (EN) selector protein. This "ehIFRPF" motif is not homologous to the previously characterized "engrailed homology 1" (eh1) GRO-interaction motif of EN. This second motif is an insect-specific "WRPW"-type motif that has been maintained by purifying selection in at least the dipteran/lepidopteran lineage. We demonstrate that this motif contributes to in vivo repression of the wingless (wg) target gene and to interaction with GRO in vitro. The acquisition and conservation of this auxiliary peptide motif shows how the number and activity of short peptide motifs can evolve in transcription factors while existing regulatory functions are maintained.

  5. The N-terminus region of the putative C2H2 transcription factor Ada1 harbors a species-specific activation motif that regulates asexual reproduction in Fusarium verticillioides.

    PubMed

    Malapi-Wight, Martha; Kim, Jung-Eun; Shim, Won-Bo

    2014-01-01

    Fusarium verticillioides is an important plant pathogenic fungus causing maize ear and stalk rots. In addition, the fungus is directly associated with fumonisin contamination of food and feeds. Here, we report the functional characterization of Ada1, a putative Cys2-His2 zinc finger transcription factor with a high level of similarity to Aspergillus nidulans FlbC, which is required for the activation of the key regulator of conidiation brlA. ADA1 is predicted to encode a protein with two DNA binding motifs at the C terminus and a putative activator domain at the N terminus region. Deletion of the flbC gene in A. nidulans results in "fluffy" cotton-like colonies, with a defect in transition from vegetative growth to asexual development. In this study we show that Ada1 plays a key role in asexual development in F. verticillioides. Conidia production was significantly reduced in the knockout mutant (Δada1), in which aberrant conidia and conidiophores were also observed. We identified genes that are predicted to be downstream of ADA1, based on A. nidulans conidiation signaling pathway. Among them, the deletion of stuA homologue, FvSTUA, resulted in near absence of conidia production. To further investigate the functional conservation of this transcription factor, we complemented the Δada1 strain with A. nidulans flbC, F. verticillioides ADA1, and chimeric constructs. A. nidulans flbC failed to restore conidia production similar to the wild-type level. However, the Ada1N-terminal domain, which contains a putative activator, fused to A. nidulans FlbC C-terminal motif successfully complemented the Δada1 mutant. Taken together, Ada1 is an important transcriptional regulator of asexual development in F. verticillioides and that the N-terminus domain is critical for proper function of this transcription factor.

  6. Effect of D to E mutation of the RGD motif in rhodostomin on its activity, structure, and dynamics: importance of the interactions between the D residue and integrin.

    PubMed

    Chen, Chiu-Yueh; Shiu, Jia-Hau; Hsieh, Yao-Husn; Liu, Yu-Chen; Chen, Yen-Chin; Chen, Yi-Chun; Jeng, Wen-Yih; Tang, Ming-Jer; Lo, Szecheng J; Chuang, Woei-Jer

    2009-09-01

    Rhodostomin (Rho) is a snake venom protein containing an RGD motif that specifically inhibits the integrin-binding function. Rho produced in Pichia pastoris inhibits platelet aggregation with a K(I) of 78 nM as potent as native Rho. In contrast, its D51E mutant inhibits platelet aggregation with a K(I) of 49 muM. Structural analysis of Rho and its D51E mutant showed that they have the same tertiary fold with three two-stranded antiparallel beta-sheets. There are no structural backbone differences between the RG[D/E] loop which extends outward from the protein core and the RG[D/E] sequence at its apex in a four-residue RG[D/E]M type I turn. Two minor differences between Rho and its D51E mutant were only found from their backbone dynamics and 3D structures. The R(2) value of E51 is 13% higher than that of the D51 residue. A difference in the charge separation of 1.76 A was found between the sidechains of positive (R49) and negative residues (D51 or E51).The docking of Rho into integrin alphavbeta3 showed that the backbone amide and carbonyl groups of the D51 residue of Rho were formed hydrogen bonds with the integrin residues R216 and R214, respectively. In contrast, these hydrogen bonds were absent in the D51E mutant-integrin complex. Our findings suggest that the interactions between both the sidechain and backbone of the D residue of RGD-containing ligands and integrin are important for their binding. PMID:19280603

  7. Neural Circuits: Male Mating Motifs.

    PubMed

    Benton, Richard

    2015-09-01

    Characterizing microcircuit motifs in intact nervous systems is essential to relate neural computations to behavior. In this issue of Neuron, Clowney et al. (2015) identify recurring, parallel feedforward excitatory and inhibitory pathways in male Drosophila's courtship circuitry, which might explain decisive mate choice.

  8. Expression of PCNA-binding domain of CtIP, a motif required for CtIP localization at DNA replication foci, causes DNA damage and activation of DNA damage checkpoint.

    PubMed

    Gu, Bingnan; Chen, Phang-Lang

    2009-05-01

    CtIP, CtBP-interacting protein, is a nuclear protein that was identified as a cofactor for the transcriptional repressor CtBP. Our genetic studies in mice revealed that haploid insufficiency of CtIP leads to tumorigenesis and is associated with shortened life span. At the molecular level, CtIP is a multivalent adaptor. It interacts directly with pRB family members, the prototype tumor suppressor proteins, and contributes to G(1)/S regulation. It has also been implicated in DNA damage checkpoint control through its interaction with the breast cancer susceptibility gene product BRCA1. Recently, it was found to modulate the nuclease activity of the Mre11/Rad50/NBS1 complex. Here we report that CtIP is recruited to S-phase DNA replication foci through a novel motif functioning as replication foci targeting sequence (RFTS). This motif contains a consensus PCNA-interacting protein box that binds to PCNA both in vivo and in vitro. In support of the biological significance of this interaction, we detected arrest of the cell cycle at the S/G(2) phase transition, and suppression of cell proliferation in U2-OS cells upon the conditional expression of the wild type, but not a mutated RFTS using a tetracycline-inducible system. We found that cells expressing RFTS had excess DNA double strand breaks as demonstrated by formation of gamma-H2AX nuclear foci. Finally, G(2)/M checkpoint activation in response to the expression of the CtIP RFTS is abrogated by caffeine treatment. Our work suggests an intimate relationship between CtIP and PCNA may be important for the maintenance of genomic stability in higher eukaryotic organism.

  9. Automated protein motif generation in the structure-based protein function prediction tool ProMOL.

    PubMed

    Osipovitch, Mikhail; Lambrecht, Mitchell; Baker, Cameron; Madha, Shariq; Mills, Jeffrey L; Craig, Paul A; Bernstein, Herbert J

    2015-12-01

    ProMOL, a plugin for the PyMOL molecular graphics system, is a structure-based protein function prediction tool. ProMOL includes a set of routines for building motif templates that are used for screening query structures for enzyme active sites. Previously, each motif template was generated manually and required supervision in the optimization of parameters for sensitivity and selectivity. We developed an algorithm and workflow for the automation of motif building and testing routines in ProMOL. The algorithm uses a set of empirically derived parameters for optimization and requires little user intervention. The automated motif generation algorithm was first tested in a performance comparison with a set of manually generated motifs based on identical active sites from the same 112 PDB entries. The two sets of motifs were equally effective in identifying alignments with homologs and in rejecting alignments with unrelated structures. A second set of 296 active site motifs were generated automatically, based on Catalytic Site Atlas entries with literature citations, as an expansion of the library of existing manually generated motif templates. The new motif templates exhibited comparable performance to the existing ones in terms of hit rates against native structures, homologs with the same EC and Pfam designations, and randomly selected unrelated structures with a different EC designation at the first EC digit, as well as in terms of RMSD values obtained from local structural alignments of motifs and query structures. This research is supported by NIH grant GM078077. PMID:26573864

  10. Interconnected network motifs control podocyte morphology and kidney function.

    PubMed

    Azeloglu, Evren U; Hardy, Simon V; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y; Fang, Wei; Xiong, Huabao; Neves, Susana R; Jain, Mohit R; Li, Hong; Ma'ayan, Avi; Gordon, Ronald E; He, John Cijiang; Iyengar, Ravi

    2014-02-01

    Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3',5'-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element-binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor-driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease. PMID:24497609

  11. Observability of Neuronal Network Motifs

    PubMed Central

    Whalen, Andrew J.; Brennan, Sean N.; Sauer, Timothy D.; Schiff, Steven J.

    2014-01-01

    We quantify observability in small (3 node) neuronal networks as a function of 1) the connection topology and symmetry, 2) the measured nodes, and 3) the nodal dynamics (linear and nonlinear). We find that typical observability metrics for 3 neuron motifs range over several orders of magnitude, depending upon topology, and for motifs containing symmetry the network observability decreases when observing from particularly confounded nodes. Nonlinearities in the nodal equations generally decrease the average network observability and full network information becomes available only in limited regions of the system phase space. Our findings demonstrate that such networks are partially observable, and suggest their potential efficacy in reconstructing network dynamics from limited measurement data. How well such strategies can be used to reconstruct and control network dynamics in experimental settings is a subject for future experimental work. PMID:25909092

  12. Co-evolution of segregation guide DNA motifs and the FtsK translocase in bacteria: identification of the atypical Lactococcus lactis KOPS motif

    PubMed Central

    Nolivos, Sophie; Touzain, Fabrice; Pages, Carine; Coddeville, Michele; Rousseau, Philippe; El Karoui, Meriem; Le Bourgeois, Pascal; Cornet, François

    2012-01-01

    Bacteria use the global bipolarization of their chromosomes into replichores to control the dynamics and segregation of their genome during the cell cycle. This involves the control of protein activities by recognition of specific short DNA motifs whose orientation along the chromosome is highly skewed. The KOPS motifs act in chromosome segregation by orienting the activity of the FtsK DNA translocase towards the terminal replichore junction. KOPS motifs have been identified in γ-Proteobacteria and in Bacillus subtilis as closely related G-rich octamers. We have identified the KOPS motif of Lactococcus lactis, a model bacteria of the Streptococcaceae family harbouring a compact and low GC% genome. This motif, 5′-GAAGAAG-3, was predicted in silico using the occurrence and skew characteristics of known KOPS motifs. We show that it is specifically recognized by L. lactis FtsK in vitro and controls its activity in vivo. L. lactis KOPS is thus an A-rich heptamer motif. Our results show that KOPS-controlled chromosome segregation is conserved in Streptococcaceae but that KOPS may show important variation in sequence and length between bacterial families. This suggests that FtsK adapts to its host genome by selecting motifs with convenient occurrence frequencies and orientation skews to orient its activity. PMID:22373923

  13. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, P.; Ciszak, E.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits and two catalytic centers. Each catalytic center (PP:PYR) is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and amhopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core (PP:PYR)(sub 2) within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GXPhiX(sub 4)(G)PhiXXGQ and GDGX(sub 25-30)NN in the PP-domain, and the EX(sub 4)(G)PhiXXGPhi in the PYR-domain, where Phi corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  14. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, Paulina M.; Ciszak, Ewa M.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits, two catalytic centers, common amino acid sequence, and specific contacts to provide a flip-flop, or alternate site, mechanism of action. Each catalytic center [PP:PYR] is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and aminopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core [PP:PYR]* within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GX@&(G)@XXGQ, and GDGX25-30 within the PP- domain, and the E&(G)@XXG@ within the PYR-domain, where Q, corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  15. Synthetic Oligodeoxynucleotides Containing Multiple Telemeric TTAGGG Motifs Suppress Inflammasome Activity in Macrophages Subjected to Oxygen and Glucose Deprivation and Reduce Ischemic Brain Injury in Stroke-Prone Spontaneously Hypertensive Rats.

    PubMed

    Zhao, Jing; Mou, Yongshan; Bernstock, Joshua D; Klimanis, Dace; Wang, Sixian; Spatz, Maria; Maric, Dragan; Johnson, Kory; Klinman, Dennis M; Li, Xiaohong; Li, Xinhui; Hallenbeck, John M

    2015-01-01

    The immune system plays a fundamental role in both the development and pathobiology of stroke. Inflammasomes are multiprotein complexes that have come to be recognized as critical players in the inflammation that ultimately contributes to stroke severity. Inflammasomes recognize microbial and host-derived danger signals and activate caspase-1, which in turn controls the production of the pro-inflammatory cytokine IL-1β. We have shown that A151, a synthetic oligodeoxynucleotide containing multiple telemeric TTAGGG motifs, reduces IL-1β production by activated bone marrow derived macrophages that have been subjected to oxygen-glucose deprivation and LPS stimulation. Further, we demonstrate that A151 reduces the maturation of caspase-1 and IL-1β, the levels of both the iNOS and NLRP3 proteins, and the depolarization of mitochondrial membrane potential within such cells. In addition, we have demonstrated that A151 reduces ischemic brain damage and NLRP3 mRNA levels in SHR-SP rats that have undergone permanent middle cerebral artery occlusion. These findings clearly suggest that the modulation of inflammasome activity via A151 may contribute to a reduction in pro-inflammatory cytokine production by macrophages subjected to conditions that model brain ischemia and modulate ischemic brain damage in an animal model of stroke. Therefore, modulation of ischemic pathobiology by A151 may have a role in the development of novel stroke prevention and therapeutic strategies. PMID:26473731

  16. The Nuclear Protein IκBζ Forms a Transcriptionally Active Complex with Nuclear Factor-κB (NF-κB) p50 and the Lcn2 Promoter via the N- and C-terminal Ankyrin Repeat Motifs.

    PubMed

    Kohda, Akira; Yamazaki, Soh; Sumimoto, Hideki

    2016-09-23

    The nuclear protein IκBζ, comprising the N-terminal trans-activation domain and the C-terminal ankyrin repeat (ANK) domain composed of seven ANK motifs, activates transcription of a subset of nuclear factor-κB (NF-κB)-dependent innate immune genes such as Lcn2 encoding the antibacterial protein lipocalin-2. Lcn2 activation requires formation of a complex containing IκBζ and NF-κB p50, a transcription factor that harbors the DNA-binding Rel homology region but lacks a trans-activation domain, on the promoter with the canonical NF-κB-binding site (κB site) and its downstream cytosine-rich element. Here we show that IκBζ productively interacts with p50 via Asp-451 in the N terminus of ANK1, a residue that is evolutionarily conserved among IκBζ and the related nuclear IκB proteins Bcl-3 and IκBNS Threonine substitution for Asp-451 abrogates direct association with the κB-site-binding protein p50, complex formation with the Lcn2 promoter DNA, and activation of Lcn2 transcription. The basic residues Lys-717 and Lys-719 in the C-terminal region of ANK7 contribute to IκBζ binding to the Lcn2 promoter, probably via interaction with the cytosine-rich element required for Lcn2 activation; glutamate substitution for both lysines results in a loss of transcriptionally active complex formation without affecting direct contact of IκBζ with p50. Both termini of the ANK domain in Bcl-3 and IκBNS function in a manner similar to that of IκBζ to interact with promoter DNA, indicating a common mechanism in which the nuclear IκBs form a regulatory complex with NF-κB and promoter DNA via the invariant aspartate in ANK1 and the conserved basic residues in ANK7.

  17. Detecting correlations among functional-sequence motifs

    NASA Astrophysics Data System (ADS)

    Pirino, Davide; Rigosa, Jacopo; Ledda, Alice; Ferretti, Luca

    2012-06-01

    Sequence motifs are words of nucleotides in DNA with biological functions, e.g., gene regulation. Identification of such words proceeds through rejection of Markov models on the expected motif frequency along the genome. Additional biological information can be extracted from the correlation structure among patterns of motif occurrences. In this paper a log-linear multivariate intensity Poisson model is estimated via expectation maximization on a set of motifs along the genome of E. coli K12. The proposed approach allows for excitatory as well as inhibitory interactions among motifs and between motifs and other genomic features like gene occurrences. Our findings confirm previous stylized facts about such types of interactions and shed new light on genome-maintenance functions of some particular motifs. We expect these methods to be applicable to a wider set of genomic features.

  18. Structural characterizations of fusion peptide analogs of influenza virus hemagglutinin. Implication of the necessity of a helix-hinge-helix motif in fusion activity.

    PubMed

    Hsu, Chun-Hua; Wu, Shih-Hsiung; Chang, Ding-Kwo; Chen, Chinpan

    2002-06-21

    Infection by enveloped viruses initially involves membrane fusion between viral and host cell membranes. The fusion peptide plays a crucial role in triggering this reaction. To clarify how the fusion peptide exerts this specific function, we carried out biophysical studies of three fusion peptide analogs of influenza virus hemagglutinin HA2, namely E5, G13L, and L17A. E5 exhibits an activity similar to the native fusion peptide, whereas G13L and L17A, which are two point mutants of the E5 analog, possess much less fusion activity. Our CD data showed that the conformations of these three analogs in SDS micelles are pH-dependent, with higher alpha-helical contents at acidic pH. Tryptophan fluorescence emission experiments indicated that these three analogs insert deeper into lipid bilayers at acidic pH. The three-dimensional structure of the E5 analog in SDS micelles at pH 4.0 revealed that two segments, Leu(2)-Glu(11) and Trp(14)-Ile(18), form amphipathic helical conformations, with Gly(12)-Gly(13) forming a hinge. The hydrophobic residues in the N- and C-terminal helices form a hydrophobic cluster. At neutral pH, however, the C-terminal helix of Trp(14)-Ile(18) reduces dramatically, and the hydrophobic core observed at acidic pH is severely disrupted. We suggest that the disruption of the C-terminal helix renders the E5 analog fusion-inactive at neutral pH. Furthermore, the decrease of the hinge and the reduction of fusion activity in G13L reveal the importance of the hinge in fusion activity. Also, the decrease in the C-terminal helix and the reduction of fusion activity in L17A demonstrates the importance of the C-terminal helix in fusion activity. Based on these biophysical studies, we propose a model that illustrates the structural change of the HA2 fusion peptide analog and explains how the analog interacts with the lipid bilayer at different pH values.

  19. Sequence motifs of tissue inhibitor of metalloproteinases 2 (TIMP-2) determining progelatinase A (proMMP-2) binding and activation by membrane-type metalloproteinase 1 (MT1-MMP).

    PubMed Central

    Worley, Joanna R; Thompkins, Philip B; Lee, Meng H; Hutton, Mike; Soloway, Paul; Edwards, Dylan R; Murphy, Gillian; Knäuper, Vera

    2003-01-01

    Fundamental cellular processes including angiogenesis and cell migration require a proteolytic cascade driven by interactions of membrane-type matrix metalloproteinase 1 (MT1-MMP) and progelatinase A (proMMP-2) that are dependent on the presence of tissue inhibitor of metalloproteinases 2 (TIMP-2). There are unique interactions between TIMP-2 and MT1-MMP, which we have previously defined, and here we identify TIMP-2 sequence motifs specific for proMMP-2 binding in the context of its activation by MT1-MMP. A TIMP-2 mutant encoding the C-terminal domain of TIMP-4 showed loss of proMMP-2 activation, indicating that the C-terminal domain of TIMP-2 is important in establishing the trimolecular complex between MT1-MMP, TIMP-2 and proMMP-2. This was confirmed by analysis of a TIMP-4 mutant encoding the C-terminal domain of TIMP-2, which formed a trimolecular complex and promoted proMMP-2 processing to the intermediate form. Mutants encoding TIMP-4 from Cys(1) to Leu(185) and partial tail sequence of TIMP-2 showed some gain of activating capability relative to TIMP-4. The identified residues were subsequently mutated in TIMP-2 (E(192)-D(193) to I(192)-Q(193)) and this inhibitor showed a significantly reduced ability to facilitate proMMP-2 processing by MT1-MMP. Furthermore, the tail-deletion mutant Delta(186-194)TIMP-2 was completely incapable of promoting proMMP-2 activation by MT1-MMP. Thus the C-terminal tail residues of TIMP-2 are important determinants for stable trimolecular complex formation between TIMP-2, proMMP-2 and MT1-MMP and play an important role in MT1-MMP-mediated processing to the intermediate and final active forms of MMP-2 at the cell surface. PMID:12630911

  20. Structural Motifs of Gold Nanoparticles.

    NASA Astrophysics Data System (ADS)

    Cleveland, C. L.; Luedtke, W. D.; Landman, Uzi

    1996-03-01

    Through an extensive search, involving energy minimization using embedded atom potentials, we found(R.L. Whetten et al./), submitted to Nature (1995). that the energetically optimal sequence for AuN clusters (30 <= N <= 3000 atoms) consists of fcc crystallites, with a truncated-octahedral (TO) morphological motif, and variants thereof. These predictions for bare gold particles, and for particles coated by sef-assembled thiol monolayers, are discussed in light of recent experiments on the preparation and characterization (including mass spectrometry, electron microscopy, and X-ray diffraction) of nanocrystalline gold molecules (see Ref. 2).

  1. Insulin receptor binding motif tagged with IgG4 Fc (Yiminsu) works as an insulin sensitizer to activate Akt signaling in hepatocytes.

    PubMed

    Wang, J; Zou, T; Yang, H X; Gong, Y Z; Xie, X J; Liu, H Y; Liao, D F

    2015-01-01

    Insulin resistance is a key feature of obesity and type 2 diabetes mellitus (T2DM). Interaction of insulin with the insulin receptor (IR) leads to both its auto-phosphorylation and phosphorylation of tyrosine residues on the IR substrate (IRS) proteins, initiating the activation of intracellular signaling cascades. The metabolic effects of IRS are known to be mediated through pathways involving phosphatidyl-inositol 3-kinase (PI-3K), which result in the activation of Akt signaling. The C-terminal region of the IR ectodomain is required to facilitate the conformational changes that are required for high-affinity binding to insulin. Furthermore, the CH2 and CH3 domains in the Fc fragments of immunoglobulins are responsible for their binding to the Fc receptor, which triggers transcytosis. In this study, we created a fusion peptide of the C-terminal end of the human IR ectodomain with the IgG4 Fc fragment, including an intervening polyG fragment to ensure enough space for insulin binding. We named this new peptide "Yiminsu", meaning an insulin sensitizer. The results of our analyses show that Yiminsu significantly facilitates insulin signaling via the activation of Akt in hepatocytes in a dose- and time-dependent manner. Further studies are required to determine whether Yiminsu can act as an insulin sensitizer. PMID:26345813

  2. Regulatory role of suppressive motifs from commensal DNA.

    PubMed

    Bouladoux, N; Hall, J A; Grainger, J R; dos Santos, L M; Kann, M G; Nagarajan, V; Verthelyi, D; Belkaid, Y

    2012-11-01

    The microbiota contributes to the induction of both effector and regulatory responses in the gastrointestinal (GI) tract. However, the mechanisms controlling these distinct properties remain poorly understood. We previously showed that commensal DNA promotes intestinal immunity. Here, we find that the capacity of bacterial DNA to stimulate immune responses is species specific and correlated with the frequency of motifs known to exert immunosuppressive function. In particular, we show that the DNA of Lactobacillus species, including various probiotics, is enriched in suppressive motifs able to inhibit lamina propria dendritic cell activation. In addition, immunosuppressive oligonucleotides sustain T(reg) cell conversion during inflammation and limit pathogen-induced immunopathology and colitis. Altogether, our findings identify DNA-suppressive motifs as a molecular ligand expressed by commensals and support the idea that a balance between stimulatory and regulatory DNA motifs contributes to the induction of controlled immune responses in the GI tract and gut immune homeostasis. Further, our findings suggest that the endogenous regulatory capacity of DNA motifs enriched in some commensal bacteria could be exploited for therapeutic purposes. PMID:22617839

  3. An Algorithm for Motif Discovery with Iteration on Lengths of Motifs.

    PubMed

    Fan, Yetian; Wu, Wei; Yang, Jie; Yang, Wenyu; Liu, Rongrong

    2015-01-01

    Analysis of DNA sequence motifs is becoming increasingly important in the study of gene regulation, and the identification of motif in DNA sequences is a complex problem in computational biology. Motif discovery has attracted the attention of more and more researchers, and varieties of algorithms have been proposed. Most existing motif discovery algorithms fix the motif's length as one of the input parameters. In this paper, a novel method is proposed to identify the optimal length of the motif and the optimal motif with that length, through an iteration process on increasing length numbers. For each fixed length, a modified genetic algorithm (GA) is used for finding the optimal motif with that length. Three operators are used in the modified GA: Mutation that is similar to the one used in usual GA but is modified to avoid local optimum in our case, and Addition and Deletion that are proposed by us for the problem. A criterion is given for singling out the optimal length in the increasing motif's lengths. We call this method AMDILM (an algorithm for motif discovery with iteration on lengths of motifs). The experiments on simulated data and real biological data show that AMDILM can accurately identify the optimal motif length. Meanwhile, the optimal motifs discovered by AMDILM are consistent with the real ones and are similar with the motifs obtained by the three well-known methods: Gibbs Sampler, MEME and Weeder. PMID:26357084

  4. Circular code motifs in genomes of eukaryotes.

    PubMed

    El Soufi, Karim; Michel, Christian J

    2016-11-01

    A set X of 20 trinucleotides was identified in genes of bacteria, eukaryotes, plasmids and viruses, which has in average the highest occurrence in reading frame compared to its two shifted frames (Michel, 2015; Arquès and Michel, 1996). This set X has an interesting mathematical property as X is a circular code (Arquès and Michel, 1996). Thus, the motifs from this circular code X, called X motifs, have the property to always retrieve, synchronize and maintain the reading frame in genes. In this paper, we develop several statistical analyzes of X motifs in 138 available complete genomes of eukaryotes in which genes as well as non-gene regions are examined. Large X motifs (with lengths of at least 15 consecutive trinucleotides of X and compositions of at least 10 different trinucleotides of X among 20) have the highest occurrence in genomes of eukaryotes compared to its 23 large bijective motifs, its two large permuted motifs and large random motifs. The largest X motifs identified in eukaryotic genomes are presented, e.g. an X motif in a non-gene region of the genome Solanum pennellii with a length of 155 trinucleotides (465 nucleotides) and an expectation E=10(-71). In the human genome, the largest X motif occurs in a non-gene region of the chromosome 13 with a length of 36 trinucleotides and an expectation E=10(-11). X motifs in non-gene regions of genomes could be evolutionary relics of primitive genes using the circular code for translation. However, the proportion of X motifs (with lengths of at least 10 consecutive trinucleotides of X and compositions of at least 5 different trinucleotides of X among 20) in genes/non-genes of the 138 complete eukaryotic genomes is about 8. Thus, the X motifs occur preferentially in genes, as expected from the previous works of 20 years.

  5. A Minimal Cysteine Motif Required to Activate the SKOR K+ Channel of Arabidopsis by the Reactive Oxygen Species H2O2*

    PubMed Central

    Garcia-Mata, Carlos; Wang, Jianwen; Gajdanowicz, Pawel; Gonzalez, Wendy; Hills, Adrian; Donald, Naomi; Riedelsberger, Janin; Amtmann, Anna; Dreyer, Ingo; Blatt, Michael R.

    2010-01-01

    Reactive oxygen species (ROS) are essential for development and stress signaling in plants. They contribute to plant defense against pathogens, regulate stomatal transpiration, and influence nutrient uptake and partitioning. Although both Ca2+ and K+ channels of plants are known to be affected, virtually nothing is known of the targets for ROS at a molecular level. Here we report that a single cysteine (Cys) residue within the Kv-like SKOR K+ channel of Arabidopsis thaliana is essential for channel sensitivity to the ROS H2O2. We show that H2O2 rapidly enhanced current amplitude and activation kinetics of heterologously expressed SKOR, and the effects were reversed by the reducing agent dithiothreitol (DTT). Both H2O2 and DTT were active at the outer face of the membrane and current enhancement was strongly dependent on membrane depolarization, consistent with a H2O2-sensitive site on the SKOR protein that is exposed to the outside when the channel is in the open conformation. Cys substitutions identified a single residue, Cys168 located within the S3 α-helix of the voltage sensor complex, to be essential for sensitivity to H2O2. The same Cys residue was a primary determinant for current block by covalent Cys S-methioylation with aqueous methanethiosulfonates. These, and additional data identify Cys168 as a critical target for H2O2, and implicate ROS-mediated control of the K+ channel in regulating mineral nutrient partitioning within the plant. PMID:20605786

  6. The Thiamine-Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Dominiak, Paulina

    2004-01-01

    Thiamin pyrophosphate (TPP), a derivative of vitamin B1, is a cofactor for enzymes performing catalysis in pathways of energy production including the well known decarboxylation of a-keto acid dehydrogenases followed by transketolation. TPP-dependent enzymes constitute a structurally and functionally diverse group exhibiting multimeric subunit organization, multiple domains and two chemically equivalent catalytic centers. Annotation of functional TPP-dependcnt enzymes, therefore, has not been trivial due to low sequence similarity related to this complex organization. Our approach to analysis of structures of known TPP-dependent enzymes reveals for the first time features common to this group, which we have termed the TPP-motif. The TPP-motif consists of specific spatial arrangements of structural elements and their specific contacts to provide for a flip-flop, or alternate site, enzymatic mechanism of action. Analysis of structural elements entrained in the flip-flop action displayed by TPP-dependent enzymes reveals a novel definition of the common amino acid sequences. These sequences allow for annotation of TPP-dependent enzymes, thus advancing functional proteomics. Further details of three-dimensional structures of TPP-dependent enzymes will be discussed.

  7. Synthetic biology with RNA motifs.

    PubMed

    Saito, Hirohide; Inoue, Tan

    2009-02-01

    Structural motifs in naturally occurring RNAs and RNPs can be employed as new molecular parts for synthetic biology to facilitate the development of novel devices and systems that modulate cellular functions. In this review, we focus on the following: (i) experimental evolution techniques of RNA molecules in vitro and (ii) their applications for regulating gene expression systems in vivo. For experimental evolution, new artificial RNA aptamers and RNA enzymes (ribozymes) have been selected in vitro. These functional RNA molecules are likely to be applicable in the reprogramming of existing gene regulatory systems. Furthermore, they may be used for designing hypothetical RNA-based living systems in the so-called RNA world. For the regulation of gene expressions in living cells, the development of new riboswitches allows us to modulate the target gene expression in a tailor-made manner. Moreover, recently RNA-based synthetic genetic circuits have been reported by employing functional RNA molecules, expanding the repertory of synthetic biology with RNA motifs. PMID:18775792

  8. Themes or Motifs? Aiming for Coherence through Interdisciplinary Outlines.

    ERIC Educational Resources Information Center

    Barton, Keith C.; Smith Lynne A.

    2000-01-01

    Describes how "motif-units" undermine the potential benefits of integrated thematic instruction. Suggests replacing the term "thematic unit" with the concept of "interdisciplinary outline," which focus on meaningful content, authentic activities, students' needs, teacher mediation, and a variety of resources. Shows how one fourth-grade teacher…

  9. Motif3D: Relating protein sequence motifs to 3D structure.

    PubMed

    Gaulton, Anna; Attwood, Teresa K

    2003-07-01

    Motif3D is a web-based protein structure viewer designed to allow sequence motifs, and in particular those contained in the fingerprints of the PRINTS database, to be visualised on three-dimensional (3D) structures. Additional functionality is provided for the rhodopsin-like G protein-coupled receptors, enabling fingerprint motifs of any of the receptors in this family to be mapped onto the single structure available, that of bovine rhodopsin. Motif3D can be used via the web interface available at: http://www.bioinf.man.ac.uk/dbbrowser/motif3d/motif3d.html.

  10. Protein chaperones Q8ZP25_SALTY from Salmonella typhimurium and HYAE_ECOLI from Escherichia coli exhibit thioredoxin-like structures despite lack of canonical thioredoxin active site sequence motif.

    PubMed

    Parish, David; Benach, Jordi; Liu, Goahua; Singarapu, Kiran Kumar; Xiao, Rong; Acton, Thomas; Su, Min; Bansal, Sonal; Prestegard, James H; Hunt, John; Montelione, Gaetano T; Szyperski, Thomas

    2008-12-01

    The structure of the 142-residue protein Q8ZP25_SALTY encoded in the genome of Salmonella typhimurium LT2 was determined independently by NMR and X-ray crystallography, and the structure of the 140-residue protein HYAE_ECOLI encoded in the genome of Escherichia coli was determined by NMR. The two proteins belong to Pfam (Finn et al. 34:D247-D251, 2006) PF07449, which currently comprises 50 members, and belongs itself to the 'thioredoxin-like clan'. However, protein HYAE_ECOLI and the other proteins of Pfam PF07449 do not contain the canonical Cys-X-X-Cys active site sequence motif of thioredoxin. Protein HYAE_ECOLI was previously classified as a [NiFe] hydrogenase-1 specific chaperone interacting with the twin-arginine translocation (Tat) signal peptide. The structures presented here exhibit the expected thioredoxin-like fold and support the view that members of Pfam family PF07449 specifically interact with Tat signal peptides. PMID:19039680

  11. Protein Chaperones Q8ZP25_SALTY from Salmonella Typhimurium and HYAE_ECOLI from Escherichia coli Exhibit Thioredoxin-like Structures Despite Lack of Canonical Thioredoxin Active Site Sequence Motif

    SciTech Connect

    Parish, D.; Benach, J; Liu, G; Singarapu, K; Xiao, R; Acton, T; Hunt, J; Montelione, G; Szyperski, T; et. al.

    2008-01-01

    The structure of the 142-residue protein Q8ZP25 SALTY encoded in the genome of Salmonella typhimurium LT2 was determined independently by NMR and X-ray crystallography, and the structure of the 140-residue protein HYAE ECOLI encoded in the genome of Escherichia coli was determined by NMR. The two proteins belong to Pfam (Finn et al. 34:D247-D251, 2006) PF07449, which currently comprises 50 members, and belongs itself to the 'thioredoxin-like clan'. However, protein HYAE ECOLI and the other proteins of Pfam PF07449 do not contain the canonical Cys-X-X-Cys active site sequence motif of thioredoxin. Protein HYAE ECOLI was previously classified as a (NiFe) hydrogenase-1 specific chaperone interacting with the twin-arginine translocation (Tat) signal peptide. The structures presented here exhibit the expected thioredoxin-like fold and support the view that members of Pfam family PF07449 specifically interact with Tat signal peptides.

  12. Biological network motif detection: principles and practice.

    PubMed

    Wong, Elisabeth; Baur, Brittany; Quader, Saad; Huang, Chun-Hsi

    2012-03-01

    Network motifs are statistically overrepresented sub-structures (sub-graphs) in a network, and have been recognized as 'the simple building blocks of complex networks'. Study of biological network motifs may reveal answers to many important biological questions. The main difficulty in detecting larger network motifs in biological networks lies in the facts that the number of possible sub-graphs increases exponentially with the network or motif size (node counts, in general), and that no known polynomial-time algorithm exists in deciding if two graphs are topologically equivalent. This article discusses the biological significance of network motifs, the motivation behind solving the motif-finding problem, and strategies to solve the various aspects of this problem. A simple classification scheme is designed to analyze the strengths and weaknesses of several existing algorithms. Experimental results derived from a few comparative studies in the literature are discussed, with conclusions that lead to future research directions. PMID:22396487

  13. Responsive Fluorescent PNA Analogue as a Tool for Detecting G-quadruplex Motifs of Oncogenes and Activity of Toxic Ribosome-Inactivating Proteins.

    PubMed

    Sabale, Pramod M; Srivatsan, Seergazhi G

    2016-09-01

    Fluorescent oligomers that are resistant to enzymatic degradation and report their binding to target oligonucleotides (ONs) by changes in fluorescence properties are highly useful in developing nucleic-acid-based diagnostic tools and therapeutic strategies. Here, we describe the synthesis and photophysical characterization of fluorescent peptide nucleic acid (PNA) building blocks made of microenvironment-sensitive 5-(benzofuran-2-yl)- and 5-(benzothiophen-2-yl)-uracil cores. The emissive monomers, when incorporated into PNA oligomers and hybridized to complementary ONs, are minimally perturbing and are highly sensitive to their neighboring base environment. In particular, benzothiophene-modified PNA reports the hybridization process with significant enhancement in fluorescence intensity, even when placed in the vicinity of guanine residues, which often quench fluorescence. This feature was used in the turn-on detection of G-quadruplex-forming promoter DNA sequences of human proto-oncogenes (c-myc and c-kit). Furthermore, the ability of benzothiophene-modified PNA oligomer to report the presence of an abasic site in RNA enabled us to develop a simple fluorescence hybridization assay to detect and estimate the depurination activity of ribosome-inactivating protein toxins. Our results demonstrate that this approach with responsive PNA probes will provide new opportunities to develop robust tools to study nucleic acids. PMID:27271025

  14. Redemptive Rhetoric: The Continuity Motif in the Rhetoric of Right to Life.

    ERIC Educational Resources Information Center

    Solomon, Martha

    1980-01-01

    Traces the use of the "continuity" motif in the Right to Life movement's rhetoric and its influence on the depiction of the abortion controversy. Analyzes how the motif functions rhetorically to aid the movement in defining its activities and involvement. (PD)

  15. A motif within the N-terminal domain of TSP-1 specifically promotes the proangiogenic activity of endothelial colony-forming cells.

    PubMed

    Dias, Juliana Vieira; Benslimane-Ahmim, Zahia; Egot, Marion; Lokajczyk, Anna; Grelac, Françoise; Galy-Fauroux, Isabelle; Juliano, Luiz; Le-Bonniec, Bernard; Takiya, Cristina Maeda; Fischer, Anne-Marie; Blanc-Brude, Olivier; Morandi, Verônica; Boisson-Vidal, Catherine

    2012-10-15

    Thrombospondin-1 (TSP-1) gives rise to fragments that have both pro- and anti-angiogenic effects in vitro and in vivo. The TSP-HepI peptide (2.3 kDa), located in the N-terminal domain of TSP-1, has proangiogenic effects on endothelial cells. We have previously shown that TSP-1 itself exhibits a dual effect on endothelial colony-forming cells (ECFC) by enhancing their adhesion through its TSP-HepI fragment while reducing their proliferation and differentiation into vascular tubes (tubulogenesis) in vitro. This effect is likely mediated through CD47 binding to the TSP-1 C-terminal domain. Here we investigated the effect of TSP-HepI peptide on the angiogenic properties of ECFC in vitro and in vivo. TSP-HepI peptide potentiated FGF-2-induced neovascularisation by enhancing ECFC chemotaxis and tubulogenesis in a Matrigel plug assay. ECFC exposure to 20 μg/mL of TSP-HepI peptide for 18 h enhanced cell migration (p < 0.001 versus VEGF exposure), upregulated alpha 6-integrin expression, and enhanced their cell adhesion to activated endothelium under physiological shear stress conditions at levels comparable to those of SDF-1α. The adhesion enhancement appeared to be mediated by the heparan sulfate proteoglycan (HSPG) syndecan-4, as ECFC adhesion was significantly reduced by a syndecan-4-neutralising antibody. ECFC migration and tubulogenesis were stimulated neither by a TSP-HepI peptide with a modified heparin-binding site (S/TSP-HepI) nor when the glycosaminoglycans (GAGs) moieties were removed from the ECFC surface by enzymatic treatment. Ex vivo TSP-HepI priming could potentially serve to enhance the effectiveness of therapeutic neovascularisation with ECFC.

  16. A motif within the N-terminal domain of TSP-1 specifically promotes the proangiogenic activity of endothelial colony-forming cells.

    PubMed

    Dias, Juliana Vieira; Benslimane-Ahmim, Zahia; Egot, Marion; Lokajczyk, Anna; Grelac, Françoise; Galy-Fauroux, Isabelle; Juliano, Luiz; Le-Bonniec, Bernard; Takiya, Cristina Maeda; Fischer, Anne-Marie; Blanc-Brude, Olivier; Morandi, Verônica; Boisson-Vidal, Catherine

    2012-10-15

    Thrombospondin-1 (TSP-1) gives rise to fragments that have both pro- and anti-angiogenic effects in vitro and in vivo. The TSP-HepI peptide (2.3 kDa), located in the N-terminal domain of TSP-1, has proangiogenic effects on endothelial cells. We have previously shown that TSP-1 itself exhibits a dual effect on endothelial colony-forming cells (ECFC) by enhancing their adhesion through its TSP-HepI fragment while reducing their proliferation and differentiation into vascular tubes (tubulogenesis) in vitro. This effect is likely mediated through CD47 binding to the TSP-1 C-terminal domain. Here we investigated the effect of TSP-HepI peptide on the angiogenic properties of ECFC in vitro and in vivo. TSP-HepI peptide potentiated FGF-2-induced neovascularisation by enhancing ECFC chemotaxis and tubulogenesis in a Matrigel plug assay. ECFC exposure to 20 μg/mL of TSP-HepI peptide for 18 h enhanced cell migration (p < 0.001 versus VEGF exposure), upregulated alpha 6-integrin expression, and enhanced their cell adhesion to activated endothelium under physiological shear stress conditions at levels comparable to those of SDF-1α. The adhesion enhancement appeared to be mediated by the heparan sulfate proteoglycan (HSPG) syndecan-4, as ECFC adhesion was significantly reduced by a syndecan-4-neutralising antibody. ECFC migration and tubulogenesis were stimulated neither by a TSP-HepI peptide with a modified heparin-binding site (S/TSP-HepI) nor when the glycosaminoglycans (GAGs) moieties were removed from the ECFC surface by enzymatic treatment. Ex vivo TSP-HepI priming could potentially serve to enhance the effectiveness of therapeutic neovascularisation with ECFC. PMID:22796565

  17. Discriminative motif optimization based on perceptron training

    PubMed Central

    Patel, Ronak Y.; Stormo, Gary D.

    2014-01-01

    Motivation: Generating accurate transcription factor (TF) binding site motifs from data generated using the next-generation sequencing, especially ChIP-seq, is challenging. The challenge arises because a typical experiment reports a large number of sequences bound by a TF, and the length of each sequence is relatively long. Most traditional motif finders are slow in handling such enormous amount of data. To overcome this limitation, tools have been developed that compromise accuracy with speed by using heuristic discrete search strategies or limited optimization of identified seed motifs. However, such strategies may not fully use the information in input sequences to generate motifs. Such motifs often form good seeds and can be further improved with appropriate scoring functions and rapid optimization. Results: We report a tool named discriminative motif optimizer (DiMO). DiMO takes a seed motif along with a positive and a negative database and improves the motif based on a discriminative strategy. We use area under receiver-operating characteristic curve (AUC) as a measure of discriminating power of motifs and a strategy based on perceptron training that maximizes AUC rapidly in a discriminative manner. Using DiMO, on a large test set of 87 TFs from human, drosophila and yeast, we show that it is possible to significantly improve motifs identified by nine motif finders. The motifs are generated/optimized using training sets and evaluated on test sets. The AUC is improved for almost 90% of the TFs on test sets and the magnitude of increase is up to 39%. Availability and implementation: DiMO is available at http://stormo.wustl.edu/DiMO Contact: rpatel@genetics.wustl.edu, ronakypatel@gmail.com PMID:24369152

  18. Interaction of mitogen-activated protein kinases with the kinase interaction motif of the tyrosine phosphatase PTP-SL provides substrate specificity and retains ERK2 in the cytoplasm.

    PubMed

    Zúñiga, A; Torres, J; Ubeda, J; Pulido, R

    1999-07-30

    ERK1 and ERK2 associate with the tyrosine phosphatase PTP-SL through a kinase interaction motif (KIM) located in the juxtamembrane region of PTP-SL. A glutathione S-transferase (GST)-PTP-SL fusion protein containing the KIM associated with ERK1 and ERK2 as well as with p38/HOG, but not with the related JNK1 kinase or with protein kinase A or C. Accordingly, ERK2 showed in vitro substrate specificity to phosphorylate GST-PTP-SL in comparison with GST-c-Jun. Furthermore, tyrosine dephosphorylation of ERK2 by the PTP-SLDeltaKIM mutant was impaired. The in vitro association of ERK1/2 with GST-PTP-SL was highly stable; however, low concentrations of nucleotides partially dissociated the ERK1/2.PTP-SL complex. Partial deletions of the KIM abrogated the association of PTP-SL with ERK1/2, indicating that KIM integrity is required for interaction. Amino acid substitution analysis revealed that Arg and Leu residues within the KIM are essential for the interaction and suggested a regulatory role for Ser(231). Finally, coexpression of PTP-SL and ERK2 in COS-7 cells resulted in the retention of ERK2 in the cytoplasm in a KIM-dependent manner. Our results demonstrate that the noncatalytic region of PTP-SL associates with mitogen-activated protein kinases with high affinity and specificity, providing a mechanism for substrate specificity, and suggest a role for PTP-SL in the regulation of mitogen-activated protein kinase translocation to the nucleus upon activation.

  19. Mining, compressing and classifying with extensible motifs

    PubMed Central

    Apostolico, Alberto; Comin, Matteo; Parida, Laxmi

    2006-01-01

    Background Motif patterns of maximal saturation emerged originally in contexts of pattern discovery in biomolecular sequences and have recently proven a valuable notion also in the design of data compression schemes. Informally, a motif is a string of intermittently solid and wild characters that recurs more or less frequently in an input sequence or family of sequences. Motif discovery techniques and tools tend to be computationally imposing, however, special classes of "rigid" motifs have been identified of which the discovery is affordable in low polynomial time. Results In the present work, "extensible" motifs are considered such that each sequence of gaps comes endowed with some elasticity, whereby the same pattern may be stretched to fit segments of the source that match all the solid characters but are otherwise of different lengths. A few applications of this notion are then described. In applications of data compression by textual substitution, extensible motifs are seen to bring savings on the size of the codebook, and hence to improve compression. In germane contexts, in which compressibility is used in its dual role as a basis for structural inference and classification, extensible motifs are seen to support unsupervised classification and phylogeny reconstruction. Conclusion Off-line compression based on extensible motifs can be used advantageously to compress and classify biological sequences. PMID:16722593

  20. Pleiotropic functions of a conserved insect-specific Hox peptide motif.

    PubMed

    Hittinger, Chris Todd; Stern, David L; Carroll, Sean B

    2005-12-01

    The proteins that regulate developmental processes in animals have generally been well conserved during evolution. A few cases are known where protein activities have functionally evolved. These rare examples raise the issue of how highly conserved regulatory proteins with many roles evolve new functions while maintaining old functions. We have investigated this by analyzing the function of the ;QA' peptide motif of the Hox protein Ultrabithorax (Ubx), a motif that has been conserved throughout insect evolution since its establishment early in the lineage. We precisely deleted the QA motif at the endogenous locus via allelic replacement in Drosophila melanogaster. Although the QA motif was originally characterized as involved in the repression of limb formation, we have found that it is highly pleiotropic. Curiously, deleting the QA motif had strong effects in some tissues while barely affecting others, suggesting that QA function is preferentially required for a subset of Ubx target genes. QA deletion homozygotes had a normal complement of limbs, but, at reduced doses of Ubx and the abdominal-A (abd-A) Hox gene, ectopic limb primordia and adult abdominal limbs formed when the QA motif was absent. These results show that redundancy and the additive contributions of activity-regulating peptide motifs play important roles in moderating the phenotypic consequences of Hox protein evolution, and that pleiotropic peptide motifs that contribute quantitatively to several functions are subject to intense purifying selection.

  1. Sampling Motif-Constrained Ensembles of Networks

    NASA Astrophysics Data System (ADS)

    Fischer, Rico; Leitão, Jorge C.; Peixoto, Tiago P.; Altmann, Eduardo G.

    2015-10-01

    The statistical significance of network properties is conditioned on null models which satisfy specified properties but that are otherwise random. Exponential random graph models are a principled theoretical framework to generate such constrained ensembles, but which often fail in practice, either due to model inconsistency or due to the impossibility to sample networks from them. These problems affect the important case of networks with prescribed clustering coefficient or number of small connected subgraphs (motifs). In this Letter we use the Wang-Landau method to obtain a multicanonical sampling that overcomes both these problems. We sample, in polynomial time, networks with arbitrary degree sequences from ensembles with imposed motifs counts. Applying this method to social networks, we investigate the relation between transitivity and homophily, and we quantify the correlation between different types of motifs, finding that single motifs can explain up to 60% of the variation of motif profiles.

  2. Three distinct motifs within the C-terminus of acid-sensing ion channel 1a regulate its surface trafficking.

    PubMed

    Jing, L; Chu, X-P; Zha, X-M

    2013-09-01

    Various protein motifs play a key role in regulating protein biogenesis and trafficking. Here, we discovered that three distinct motifs regulate the trafficking of acid-sensing ion channel 1a (ASIC1a), the primary neuronal proton receptor which plays critical roles in neurological diseases including stroke, multiple sclerosis and seizures. Mutating the PDZ binding motif of ASIC1a increased its surface expression and current density. In contrast, mutating either a RRGK motif or a KEAKR motif reduced ASIC1a surface expression and acid-activated current density. Mutating or deleting the RRGK motif also reduced pH sensitivity and the rate of desensitization of ASIC1a. These changes were likely due to a change in ASIC1a biogenesis; mutating either the RRGK or KEAKR motif reduced N-glycosylation of ASIC1a while mutating the PDZ binding motif had the opposite effect. Our results demonstrate that these C-terminal motifs are important for ASIC1a trafficking and channel function. In addition, in contrast to multiple previous studies, which all show that K/R containing motifs lead to endoplasmic reticulum (ER) retention, our findings indicate that these motifs can also be required for efficient trafficking.

  3. DNA containing CpG motifs induces angiogenesis

    NASA Astrophysics Data System (ADS)

    Zheng, Mei; Klinman, Dennis M.; Gierynska, Malgorzata; Rouse, Barry T.

    2002-06-01

    New blood vessel formation in the cornea is an essential step in the pathogenesis of a blinding immunoinflammatory reaction caused by ocular infection with herpes simplex virus (HSV). By using a murine corneal micropocket assay, we found that HSV DNA (which contains a significant excess of potentially bioactive "CpG" motifs when compared with mammalian DNA) induces angiogenesis. Moreover, synthetic oligodeoxynucleotides containing CpG motifs attract inflammatory cells and stimulate the release of vascular endothelial growth factor (VEGF), which in turn triggers new blood vessel formation. In vitro, CpG DNA induces the J774A.1 murine macrophage cell line to produce VEGF. In vivo CpG-induced angiogenesis was blocked by the administration of anti-mVEGF Ab or the inclusion of "neutralizing" oligodeoxynucleotides that specifically oppose the stimulatory activity of CpG DNA. These findings establish that DNA containing bioactive CpG motifs induces angiogenesis, and suggest that CpG motifs in HSV DNA may contribute to the blinding lesions of stromal keratitis.

  4. Early illness recognition using frequent motif discovery.

    PubMed

    Hajihashemi, Zahra; Popescu, Mihail

    2015-08-01

    Living alone in their own residence, older adults are at risk for late assessment of physical or cognitive changes due to many factors such as their impression that such changes are simply a normal part of aging or their reluctance to admit to a problem. This paper describes an early illness recognition framework using sensor network technology to identify the health trajectory of older adults reflected in patterns of day-today activities. Describing the behavior of older adults could help clinicians to identify those at the greatest risk for functional decline and adverse events. The proposed framework, denoted as Abnormal Frequent Activity Pattern (AFAP), is based on the identification of known past abnormal frequent activities in current sensor data. More specifically, AFAP declares a day abnormal when past frequent abnormal behavior patterns, not found during normal days, are discovered in the current activity data. While AFAP requires the labeling of past days as normal/abnormal, it doesn't need specific activity identification. Frequent activity patterns (FAP) are found using MEME, a bioinformatics motif detection algorithm. To validate our approach, we used data obtained from TigerPlace, an aging in place community situated in Columbia, MO, where apartments are equipped with sensor networks (motion, bed and depth sensors). A retrospective multiple case study (N=3) design was used to quantify the in-home older adult's daily routines, over a period of two weeks. Within-person variability of routine activities may be used as a new predictor in the study of health trajectories of older adults. PMID:26737096

  5. Stochastic motif extraction using hidden Markov model

    SciTech Connect

    Fujiwara, Yukiko; Asogawa, Minoru; Konagaya, Akihiko

    1994-12-31

    In this paper, we study the application of an HMM (hidden Markov model) to the problem of representing protein sequences by a stochastic motif. A stochastic protein motif represents the small segments of protein sequences that have a certain function or structure. The stochastic motif, represented by an HMM, has conditional probabilities to deal with the stochastic nature of the motif. This HMM directive reflects the characteristics of the motif, such as a protein periodical structure or grouping. In order to obtain the optimal HMM, we developed the {open_quotes}iterative duplication method{close_quotes} for HMM topology learning. It starts from a small fully-connected network and iterates the network generation and parameter optimization until it achieves sufficient discrimination accuracy. Using this method, we obtained an HMM for a leucine zipper motif. Compared to the accuracy of a symbolic pattern representation with accuracy of 14.8 percent, an HMM achieved 79.3 percent in prediction. Additionally, the method can obtain an HMM for various types of zinc finger motifs, and it might separate the mixed data. We demonstrated that this approach is applicable to the validation of the protein databases; a constructed HMM b as indicated that one protein sequence annotated as {open_quotes}lencine-zipper like sequence{close_quotes} in the database is quite different from other leucine-zipper sequences in terms of likelihood, and we found this discrimination is plausible.

  6. Automated Motif Discovery from Glycan Array Data

    PubMed Central

    Cholleti, Sharath R.; Agravat, Sanjay; Morris, Tim; Saltz, Joel H.; Song, Xuezheng

    2012-01-01

    Abstract Assessing interactions of a glycan-binding protein (GBP) or lectin with glycans on a microarray generates large datasets, making it difficult to identify a glycan structural motif or determinant associated with the highest apparent binding strength of the GBP. We have developed a computational method, termed GlycanMotifMiner, that uses the relative binding of a GBP with glycans within a glycan microarray to automatically reveal the glycan structural motifs recognized by a GBP. We implemented the software with a web-based graphical interface for users to explore and visualize the discovered motifs. The utility of GlycanMotifMiner was determined using five plant lectins, SNA, HPA, PNA, Con A, and UEA-I. Data from the analyses of the lectins at different protein concentrations were processed to rank the glycans based on their relative binding strengths. The motifs, defined as glycan substructures that exist in a large number of the bound glycans and few non-bound glycans, were then discovered by our algorithm and displayed in a web-based graphical user interface (http://glycanmotifminer.emory.edu). The information is used in defining the glycan-binding specificity of GBPs. The results were compared to the known glycan specificities of these lectins generated by manual methods. A more complex analysis was also carried out using glycan microarray data obtained for a recombinant form of human galectin-8. Results for all of these lectins show that GlycanMotifMiner identified the major motifs known in the literature along with some unexpected novel binding motifs. PMID:22877213

  7. Automated motif discovery from glycan array data.

    PubMed

    Cholleti, Sharath R; Agravat, Sanjay; Morris, Tim; Saltz, Joel H; Song, Xuezheng; Cummings, Richard D; Smith, David F

    2012-10-01

    Assessing interactions of a glycan-binding protein (GBP) or lectin with glycans on a microarray generates large datasets, making it difficult to identify a glycan structural motif or determinant associated with the highest apparent binding strength of the GBP. We have developed a computational method, termed GlycanMotifMiner, that uses the relative binding of a GBP with glycans within a glycan microarray to automatically reveal the glycan structural motifs recognized by a GBP. We implemented the software with a web-based graphical interface for users to explore and visualize the discovered motifs. The utility of GlycanMotifMiner was determined using five plant lectins, SNA, HPA, PNA, Con A, and UEA-I. Data from the analyses of the lectins at different protein concentrations were processed to rank the glycans based on their relative binding strengths. The motifs, defined as glycan substructures that exist in a large number of the bound glycans and few non-bound glycans, were then discovered by our algorithm and displayed in a web-based graphical user interface ( http://glycanmotifminer.emory.edu ). The information is used in defining the glycan-binding specificity of GBPs. The results were compared to the known glycan specificities of these lectins generated by manual methods. A more complex analysis was also carried out using glycan microarray data obtained for a recombinant form of human galectin-8. Results for all of these lectins show that GlycanMotifMiner identified the major motifs known in the literature along with some unexpected novel binding motifs. PMID:22877213

  8. Networks of motifs from sequences of symbols.

    PubMed

    Sinatra, Roberta; Condorelli, Daniele; Latora, Vito

    2010-10-22

    We introduce a method to convert an ensemble of sequences of symbols into a weighted directed network whose nodes are motifs, while the directed links and their weights are defined from statistically significant co-occurences of two motifs in the same sequence. The analysis of communities of networks of motifs is shown to be able to correlate sequences with functions in the human proteome database, to detect hot topics from online social dialogs, to characterize trajectories of dynamical systems, and it might find other useful applications to process large amounts of data in various fields.

  9. Networks of Motifs from Sequences of Symbols

    NASA Astrophysics Data System (ADS)

    Sinatra, Roberta; Condorelli, Daniele; Latora, Vito

    2010-10-01

    We introduce a method to convert an ensemble of sequences of symbols into a weighted directed network whose nodes are motifs, while the directed links and their weights are defined from statistically significant co-occurences of two motifs in the same sequence. The analysis of communities of networks of motifs is shown to be able to correlate sequences with functions in the human proteome database, to detect hot topics from online social dialogs, to characterize trajectories of dynamical systems, and it might find other useful applications to process large amounts of data in various fields.

  10. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas.

    PubMed

    Petrov, Anton I; Zirbel, Craig L; Leontis, Neocles B

    2013-10-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson-Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access.

  11. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas

    PubMed Central

    Petrov, Anton I.; Zirbel, Craig L.; Leontis, Neocles B.

    2013-01-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson–Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access. PMID:23970545

  12. MotifMiner: A Table Driven Greedy Algorithm for DNA Motif Mining

    NASA Astrophysics Data System (ADS)

    Seeja, K. R.; Alam, M. A.; Jain, S. K.

    DNA motif discovery is a much explored problem in functional genomics. This paper describes a table driven greedy algorithm for discovering regulatory motifs in the promoter sequences of co-expressed genes. The proposed algorithm searches both DNA strands for the common patterns or motifs. The inputs to the algorithm are set of promoter sequences, the motif length and minimum Information Content. The algorithm generates subsequences of given length from the shortest input promoter sequence. It stores these subsequences and their reverse complements in a table. Then it searches the remaining sequences for good matches of these subsequences. The Information Content score is used to measure the goodness of the motifs. The algorithm has been tested with synthetic data and real data. The results are found promising. The algorithm could discover meaningful motifs from the muscle specific regulatory sequences.

  13. Chaotic motifs in gene regulatory networks.

    PubMed

    Zhang, Zhaoyang; Ye, Weiming; Qian, Yu; Zheng, Zhigang; Huang, Xuhui; Hu, Gang

    2012-01-01

    Chaos should occur often in gene regulatory networks (GRNs) which have been widely described by nonlinear coupled ordinary differential equations, if their dimensions are no less than 3. It is therefore puzzling that chaos has never been reported in GRNs in nature and is also extremely rare in models of GRNs. On the other hand, the topic of motifs has attracted great attention in studying biological networks, and network motifs are suggested to be elementary building blocks that carry out some key functions in the network. In this paper, chaotic motifs (subnetworks with chaos) in GRNs are systematically investigated. The conclusion is that: (i) chaos can only appear through competitions between different oscillatory modes with rivaling intensities. Conditions required for chaotic GRNs are found to be very strict, which make chaotic GRNs extremely rare. (ii) Chaotic motifs are explored as the simplest few-node structures capable of producing chaos, and serve as the intrinsic source of chaos of random few-node GRNs. Several optimal motifs causing chaos with atypically high probability are figured out. (iii) Moreover, we discovered that a number of special oscillators can never produce chaos. These structures bring some advantages on rhythmic functions and may help us understand the robustness of diverse biological rhythms. (iv) The methods of dominant phase-advanced driving (DPAD) and DPAD time fraction are proposed to quantitatively identify chaotic motifs and to explain the origin of chaotic behaviors in GRNs.

  14. Basic OSF/Motif programming and applications

    SciTech Connect

    Brooks, D. ); Novak, B. )

    1992-09-15

    When users refer to Motif, they are usually talking about mwm, the window manager. However, when programmers mention Motif they are usually discussing the programming toolkit. This toolkit is used to develop new or modify existing applications. In this presentation, the term Motif will refer to the toolkit. Motif comes with a number of features that help users effectively use the applications built with it. The term look and feel may be overused; nonetheless, a consistent and well designed look and feel assists the user in Teaming and using new applications. The term point and click generally refers to using a mouse to select program commands. While Motif supports point and click, the toolkit also supports using the keyboard as a substitute for many operations. This gives a good typist a distinct advantage when using a familiar application. We will give an overview of the toolkit, touching on the user interface features and general programming considerations. Since the source code for many useful Motif programs is readily available, we will explain how to get these sources and touch on derived benefits. We win also point to other sources of on-line help and documentation. Finally, we will present some practical experiences developing applications.

  15. Helix-packing motifs in membrane proteins.

    PubMed

    Walters, R F S; DeGrado, W F

    2006-09-12

    The fold of a helical membrane protein is largely determined by interactions between membrane-imbedded helices. To elucidate recurring helix-helix interaction motifs, we dissected the crystallographic structures of membrane proteins into a library of interacting helical pairs. The pairs were clustered according to their three-dimensional similarity (rmsd motifs whose structural features can be understood in terms of simple principles of helix-helix packing. Thus, the universe of common transmembrane helix-pairing motifs is relatively simple. The largest cluster, which comprises 29% of the library members, consists of an antiparallel motif with left-handed packing angles, and it is frequently stabilized by packing of small side chains occurring every seven residues in the sequence. Right-handed parallel and antiparallel structures show a similar tendency to segregate small residues to the helix-helix interface but spaced at four-residue intervals. Position-specific sequence propensities were derived for the most populated motifs. These structural and sequential motifs should be quite useful for the design and structural prediction of membrane proteins.

  16. iMotifs: an integrated sequence motif visualization and analysis environment

    PubMed Central

    Piipari, Matias; Down, Thomas A.; Saini, Harpreet; Enright, Anton; Hubbard, Tim J.P.

    2010-01-01

    Motivation: Short sequence motifs are an important class of models in molecular biology, used most commonly for describing transcription factor binding site specificity patterns. High-throughput methods have been recently developed for detecting regulatory factor binding sites in vivo and in vitro and consequently high-quality binding site motif data are becoming available for increasing number of organisms and regulatory factors. Development of intuitive tools for the study of sequence motifs is therefore important. iMotifs is a graphical motif analysis environment that allows visualization of annotated sequence motifs and scored motif hits in sequences. It also offers motif inference with the sensitive NestedMICA algorithm, as well as overrepresentation and pairwise motif matching capabilities. All of the analysis functionality is provided without the need to convert between file formats or learn different command line interfaces. The application includes a bundled and graphically integrated version of the NestedMICA motif inference suite that has no outside dependencies. Problems associated with local deployment of software are therefore avoided. Availability: iMotifs is licensed with the GNU Lesser General Public License v2.0 (LGPL 2.0). The software and its source is available at http://wiki.github.com/mz2/imotifs and can be run on Mac OS X Leopard (Intel/PowerPC). We also provide a cross-platform (Linux, OS X, Windows) LGPL 2.0 licensed library libxms for the Perl, Ruby, R and Objective-C programming languages for input and output of XMS formatted annotated sequence motif set files. Contact: matias.piipari@gmail.com; imotifs@googlegroups.com PMID:20106815

  17. Coagulase and Efb of Staphylococcus aureus Have a Common Fibrinogen Binding Motif

    PubMed Central

    Ko, Ya-Ping; Kang, Mingsong; Ganesh, Vannakambadi K.; Ravirajan, Dharmanand; Li, Bin

    2016-01-01

    ABSTRACT Coagulase (Coa) and Efb, secreted Staphylococcus aureus proteins, are important virulence factors in staphylococcal infections. Coa interacts with fibrinogen (Fg) and induces the formation of fibrin(ogen) clots through activation of prothrombin. Efb attracts Fg to the bacterial surface and forms a shield to protect the bacteria from phagocytic clearance. This communication describes the use of an array of synthetic peptides to identify variants of a linear Fg binding motif present in Coa and Efb which are responsible for the Fg binding activities of these proteins. This motif represents the first Fg binding motif identified for any microbial protein. We initially located the Fg binding sites to Coa’s C-terminal disordered segment containing tandem repeats by using recombinant fragments of Coa in enzyme-linked immunosorbent assay-type binding experiments. Sequence analyses revealed that this Coa region contained shorter segments with sequences similar to the Fg binding segments in Efb. An alanine scanning approach allowed us to identify the residues in Coa and Efb that are critical for Fg binding and to define the Fg binding motifs in the two proteins. In these motifs, the residues required for Fg binding are largely conserved, and they therefore constitute variants of a common Fg binding motif which binds to Fg with high affinity. Defining a specific motif also allowed us to identify a functional Fg binding register for the Coa repeats that is different from the repeat unit previously proposed. PMID:26733070

  18. Single-base pair differences in a shared motif determine differential Rhodopsin expression.

    PubMed

    Rister, Jens; Razzaq, Ansa; Boodram, Pamela; Desai, Nisha; Tsanis, Cleopatra; Chen, Hongtao; Jukam, David; Desplan, Claude

    2015-12-01

    The final identity and functional properties of a neuron are specified by terminal differentiation genes, which are controlled by specific motifs in compact regulatory regions. To determine how these sequences integrate inputs from transcription factors that specify cell types, we compared the regulatory mechanism of Drosophila Rhodopsin genes that are expressed in subsets of photoreceptors to that of phototransduction genes that are expressed broadly, in all photoreceptors. Both sets of genes share an 11-base pair (bp) activator motif. Broadly expressed genes contain a palindromic version that mediates expression in all photoreceptors. In contrast, each Rhodopsin exhibits characteristic single-bp substitutions that break the symmetry of the palindrome and generate activator or repressor motifs critical for restricting expression to photoreceptor subsets. Sensory neuron subtypes can therefore evolve through single-bp changes in short regulatory motifs, allowing the discrimination of a wide spectrum of stimuli.

  19. Single base pair differences in a shared motif determine differential Rhodopsin expression

    PubMed Central

    Rister, Jens; Razzaq, Ansa; Boodram, Pamela; Desai, Nisha; Tsanis, Cleopatra; Chen, Hongtao; Jukam, David; Desplan, Claude

    2016-01-01

    The final identity and functional properties of a neuron are specified by terminal differentiation genes, which are controlled by specific motifs in compact regulatory regions. To determine how these sequences integrate inputs from transcription factors that specify cell types, we compared the regulatory mechanism of Drosophila Rhodopsin genes that are expressed in subsets of photoreceptors to that of phototransduction genes that are expressed broadly, in all photoreceptors. Both sets of genes share an 11bp activator motif. Broadly expressed genes contain a palindromic version that mediates expression in all photoreceptors. In contrast, each Rhodopsin exhibits unique single bp substitutions that break the symmetry of the palindrome and generate activator or repressor motifs critical for restricting expression to photoreceptor subsets. Novel sensory neuron subtypes can therefore evolve through single base pair changes in short regulatory motifs, allowing the discrimination of a wide spectrum of stimuli. PMID:26785491

  20. Efficacy of function specific 3D-motifs in enzyme classification according to their EC-numbers.

    PubMed

    Rahimi, Amir; Madadkar-Sobhani, Armin; Touserkani, Rouzbeh; Goliaei, Bahram

    2013-11-01

    Due to the increasing number of protein structures with unknown function originated from structural genomics projects, protein function prediction has become an important subject in bioinformatics. Among diverse function prediction methods, exploring known 3D-motifs, which are associated with functional elements in unknown protein structures is one of the most biologically meaningful methods. Homologous enzymes inherit such motifs in their active sites from common ancestors. However, slight differences in the properties of these motifs, results in variation in the reactions and substrates of the enzymes. In this study, we examined the possibility of discriminating highly related active site patterns according to their EC-numbers by 3D-motifs. For each EC-number, the spatial arrangement of an active site, which has minimum average distance to other active sites with the same function, was selected as a representative 3D-motif. In order to characterize the motifs, various points in active site elements were tested. The results demonstrated the possibility of predicting full EC-number of enzymes by 3D-motifs. However, the discriminating power of 3D-motifs varies among different enzyme families and depends on selecting the appropriate points and features.

  1. MODA: an efficient algorithm for network motif discovery in biological networks.

    PubMed

    Omidi, Saeed; Schreiber, Falk; Masoudi-Nejad, Ali

    2009-10-01

    In recent years, interest has been growing in the study of complex networks. Since Erdös and Rényi (1960) proposed their random graph model about 50 years ago, many researchers have investigated and shaped this field. Many indicators have been proposed to assess the global features of networks. Recently, an active research area has developed in studying local features named motifs as the building blocks of networks. Unfortunately, network motif discovery is a computationally hard problem and finding rather large motifs (larger than 8 nodes) by means of current algorithms is impractical as it demands too much computational effort. In this paper, we present a new algorithm (MODA) that incorporates techniques such as a pattern growth approach for extracting larger motifs efficiently. We have tested our algorithm and found it able to identify larger motifs with more than 8 nodes more efficiently than most of the current state-of-the-art motif discovery algorithms. While most of the algorithms rely on induced subgraphs as motifs of the networks, MODA is able to extract both induced and non-induced subgraphs simultaneously. The MODA source code is freely available at: http://LBB.ut.ac.ir/Download/LBBsoft/MODA/

  2. Switch-like Transitions Insulate Network Motifs to Modularize Biological Networks.

    PubMed

    Atay, Oguzhan; Doncic, Andreas; Skotheim, Jan M

    2016-08-01

    Cellular decisions are made by complex networks that are difficult to analyze. Although it is common to analyze smaller sub-networks known as network motifs, it is unclear whether this is valid, because these motifs are embedded in complex larger networks. Here, we address the general question of modularity by examining the S. cerevisiae pheromone response. We demonstrate that the feedforward motif controlling the cell-cycle inhibitor Far1 is insulated from cell-cycle dynamics by the positive feedback switch that drives reentry to the cell cycle. Before cells switch on positive feedback, the feedforward motif model predicts the behavior of the larger network. Conversely, after the switch, the feedforward motif is dismantled and has no discernable effect on the cell cycle. When insulation is broken, the feedforward motif no longer predicts network behavior. This work illustrates how, despite the interconnectivity of networks, the activity of motifs can be insulated by switches that generate well-defined cellular states. PMID:27453443

  3. A motif present in the main cytoplasmic loop of nicotinic acetylcholine receptors and catalases.

    PubMed

    Morgado-Valle, C; García-Colunga, J; Miledi, R; Díaz-Muñoz, M

    2001-05-01

    A motif containing five conserved amino acids (RXPXTH(X)14P) was detected in 111 proteins, including 82 nicotinic acetylcholine receptor (nAChR) subunits and 20 catalases. To explore possible functional roles of this motif in nAChRs two approaches were used: first, the motif sequences in nAChR subunits and catalases were analysed and compared; and, second, deletions in the rat alpha2 and beta4 nAChR subunits expressed in Xenopus oocytes were analysed. Compared to the three-dimensional structure of bovine hepatic catalase, structural coincidences were found in the motif of catalases and nAChRs. On the other hand, partial deletions of the motif in the alpha2 or beta4 subunits and injection of the mutants into oocytes was followed by a very weak expression of functional nAChRs; oocytes injected with alpha2 and beta4 subunits in which the entire motif had been deleted failed to elicit any acetylcholine currents. The results suggest that the motif may play a role in the activation of nAChRs. PMID:11370971

  4. SVM2Motif--Reconstructing Overlapping DNA Sequence Motifs by Mimicking an SVM Predictor.

    PubMed

    Vidovic, Marina M-C; Görnitz, Nico; Müller, Klaus-Robert; Rätsch, Gunnar; Kloft, Marius

    2015-01-01

    Identifying discriminative motifs underlying the functionality and evolution of organisms is a major challenge in computational biology. Machine learning approaches such as support vector machines (SVMs) achieve state-of-the-art performances in genomic discrimination tasks, but--due to its black-box character--motifs underlying its decision function are largely unknown. As a remedy, positional oligomer importance matrices (POIMs) allow us to visualize the significance of position-specific subsequences. Although being a major step towards the explanation of trained SVM models, they suffer from the fact that their size grows exponentially in the length of the motif, which renders their manual inspection feasible only for comparably small motif sizes, typically k ≤ 5. In this work, we extend the work on positional oligomer importance matrices, by presenting a new machine-learning methodology, entitled motifPOIM, to extract the truly relevant motifs--regardless of their length and complexity--underlying the predictions of a trained SVM model. Our framework thereby considers the motifs as free parameters in a probabilistic model, a task which can be phrased as a non-convex optimization problem. The exponential dependence of the POIM size on the oligomer length poses a major numerical challenge, which we address by an efficient optimization framework that allows us to find possibly overlapping motifs consisting of up to hundreds of nucleotides. We demonstrate the efficacy of our approach on a synthetic data set as well as a real-world human splice site data set. PMID:26690911

  5. Defect Motifs for Constant Mean Curvature Surfaces

    NASA Astrophysics Data System (ADS)

    Kusumaatmaja, Halim; Wales, David J.

    2013-04-01

    The energy landscapes of electrostatically charged particles embedded on constant mean curvature surfaces are analyzed for a wide range of system size, curvature, and interaction potentials. The surfaces are taken to be rigid, and the basin-hopping method is used to locate the putative global minimum structures. The defect motifs favored by potential energy agree with experimental observations for colloidal systems: extended defects (scars and pleats) for weakly positive and negative Gaussian curvatures, and isolated defects for strongly negative Gaussian curvatures. Near the phase boundary between these regimes, the two motifs are in strong competition, as evidenced from the appearance of distinct funnels in the potential energy landscape. We also report a novel defect motif consisting of pentagon pairs.

  6. Armadillo motifs involved in vesicular transport.

    PubMed

    Striegl, Harald; Andrade-Navarro, Miguel A; Heinemann, Udo

    2010-02-01

    Armadillo (ARM) repeat proteins function in various cellular processes including vesicular transport and membrane tethering. They contain an imperfect repeating sequence motif that forms a conserved three-dimensional structure. Recently, structural and functional insight into tethering mediated by the ARM-repeat protein p115 has been provided. Here we describe the p115 ARM-motifs for reasons of clarity and nomenclature and show that both sequence and structure are highly conserved among ARM-repeat proteins. We argue that there is no need to invoke repeat types other than ARM repeats for a proper description of the structure of the p115 globular head region. Additionally, we propose to define a new subfamily of ARM-like proteins and show lack of evidence that the ARM motifs found in p115 are present in other long coiled-coil tethering factors of the golgin family.

  7. Polyrhythmic synchronization in bursting networking motifs

    NASA Astrophysics Data System (ADS)

    Shilnikov, Andrey; Gordon, René; Belykh, Igor

    2008-09-01

    We study the emergence of polyrhythmic dynamics of motifs which are the building block for small inhibitory-excitatory networks, such as central pattern generators controlling various locomotive behaviors of animals. We discover that the pacemaker determining the specific rhythm of such a network composed of realistic Hodgkin-Huxley-type neurons is identified through the order parameter, which is the ratio of the neurons' burst durations or of duty cycles. We analyze different configurations of the motifs and describe the universal mechanisms for synergetics of the bursting patterns. We discuss also the multistability of inhibitory networks that results in polyrhythmicity of its emergent synchronous behaviors.

  8. Targeting functional motifs of a protein family

    NASA Astrophysics Data System (ADS)

    Bhadola, Pradeep; Deo, Nivedita

    2016-10-01

    The structural organization of a protein family is investigated by devising a method based on the random matrix theory (RMT), which uses the physiochemical properties of the amino acid with multiple sequence alignment. A graphical method to represent protein sequences using physiochemical properties is devised that gives a fast, easy, and informative way of comparing the evolutionary distances between protein sequences. A correlation matrix associated with each property is calculated, where the noise reduction and information filtering is done using RMT involving an ensemble of Wishart matrices. The analysis of the eigenvalue statistics of the correlation matrix for the β -lactamase family shows the universal features as observed in the Gaussian orthogonal ensemble (GOE). The property-based approach captures the short- as well as the long-range correlation (approximately following GOE) between the eigenvalues, whereas the previous approach (treating amino acids as characters) gives the usual short-range correlations, while the long-range correlations are the same as that of an uncorrelated series. The distribution of the eigenvector components for the eigenvalues outside the bulk (RMT bound) deviates significantly from RMT observations and contains important information about the system. The information content of each eigenvector of the correlation matrix is quantified by introducing an entropic estimate, which shows that for the β -lactamase family the smallest eigenvectors (low eigenmodes) are highly localized as well as informative. These small eigenvectors when processed gives clusters involving positions that have well-defined biological and structural importance matching with experiments. The approach is crucial for the recognition of structural motifs as shown in β -lactamase (and other families) and selectively identifies the important positions for targets to deactivate (activate) the enzymatic actions.

  9. A systematic approach to identify functional motifs within vertebrate developmental enhancers

    PubMed Central

    Li, Qiang; Ritter, Deborah; Yang, Nan; Dong, Zhiqiang; Li, Hao; Chuang, Jeffrey H.; Guo, Su

    2012-01-01

    Uncovering the cis-regulatory logic of developmental enhancers is critical to understanding the role of non-coding DNA in development. However, it is cumbersome to identify functional motifs within enhancers, and thus few vertebrate enhancers have their core functional motifs revealed. Here we report a combined experimental and computational approach for discovering regulatory motifs in developmental enhancers. Making use of the zebrafish gene expression database, we computationally identified conserved non-coding elements (CNEs) likely to have a desired tissue-specificity based on the expression of nearby genes. Through a high throughput and robust enhancer assay, we tested the activity of ~100 such CNEs and efficiently uncovered developmental enhancers with desired spatial and temporal expression patterns in the zebrafish brain. Application of de novo motif prediction algorithms on a group of forebrain enhancers identified five top-ranked motifs, all of which were experimentally validated as critical for forebrain enhancer activity. These results demonstrate a systematic approach to discover important regulatory motifs in vertebrate developmental enhancers. Moreover, this dataset provides a useful resource for further dissection of vertebrate brain development and function. PMID:19850031

  10. Motifs and structural blocks retrieval by GHT

    NASA Astrophysics Data System (ADS)

    Cantoni, Virginio; Ferone, Alessio; Petrosino, Alfredo; Polat, Ozlem

    2014-06-01

    The structure of a protein gives more insight on the protein function than its amino acid sequence. Protein structure analysis and comparison are important for understanding the evolutionary relationships among proteins, predicting protein functions, and predicting protein folding. Proteins are formed by two basic regular 3D structural patterns, called Secondary Structures (SSs): helices and sheets. A structural motif is a compact 3D protein block referring to a small specific combination of secondary structural elements, which appears in a variety of molecules. In this paper we compare a few approaches for motif retrieval based on the Generalized Hough Transform (GHT). A primary technique is to adopt the single SS as structural primitives; alternatives are to adopt a SSs pair as primitive structural element, or a SSs triplet, and so on up-to an entire motif. The richer the primitive, the higher the time for pre-analysis and search, and the simpler the inspection process on the parameter space for analyzing the peaks. Performance comparisons, in terms of precision and computation time, are here presented considering the retrieval of motifs composed by three to five SSs for more than 15 million searches. The approach can be easily applied to the retrieval of greater blocks, up to protein domains, or even entire proteins.

  11. The Motif of Meeting in Digital Education

    ERIC Educational Resources Information Center

    Sheail, Philippa

    2015-01-01

    This article draws on theoretical work which considers the composition of meetings, in order to think about the form of the meeting in digital environments for higher education. To explore the motif of meeting, I undertake a "compositional interpretation" (Rose, 2012) of the default interface offered by "Collaborate", an…

  12. Subgraphs and network motifs in geometric networks

    NASA Astrophysics Data System (ADS)

    Itzkovitz, Shalev; Alon, Uri

    2005-02-01

    Many real-world networks describe systems in which interactions decay with the distance between nodes. Examples include systems constrained in real space such as transportation and communication networks, as well as systems constrained in abstract spaces such as multivariate biological or economic data sets and models of social networks. These networks often display network motifs: subgraphs that recur in the network much more often than in randomized networks. To understand the origin of the network motifs in these networks, it is important to study the subgraphs and network motifs that arise solely from geometric constraints. To address this, we analyze geometric network models, in which nodes are arranged on a lattice and edges are formed with a probability that decays with the distance between nodes. We present analytical solutions for the numbers of all three- and four-node subgraphs, in both directed and nondirected geometric networks. We also analyze geometric networks with arbitrary degree sequences and models with a bias for directed edges in one direction. Scaling rules for scaling of subgraph numbers with system size, lattice dimension, and interaction range are given. Several invariant measures are found, such as the ratio of feedback and feed-forward loops, which do not depend on system size, dimension, or connectivity function. We find that network motifs in many real-world networks, including social networks and neuronal networks, are not captured solely by these geometric models. This is in line with recent evidence that biological network motifs were selected as basic circuit elements with defined information-processing functions.

  13. DNA motif elucidation using belief propagation.

    PubMed

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-09-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k=8∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/∼wkc/kmerHMM. PMID:23814189

  14. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data

    PubMed Central

    2014-01-01

    Abstract ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data. Reviewers This article was reviewed by Prof. Sandor Pongor, Dr. Yuriy Gusev, and Dr. Shyam Prabhakar (nominated by Prof. Limsoon Wong). PMID:24555784

  15. CombiMotif: A new algorithm for network motifs discovery in protein-protein interaction networks

    NASA Astrophysics Data System (ADS)

    Luo, Jiawei; Li, Guanghui; Song, Dan; Liang, Cheng

    2014-12-01

    Discovering motifs in protein-protein interaction networks is becoming a current major challenge in computational biology, since the distribution of the number of network motifs can reveal significant systemic differences among species. However, this task can be computationally expensive because of the involvement of graph isomorphic detection. In this paper, we present a new algorithm (CombiMotif) that incorporates combinatorial techniques to count non-induced occurrences of subgraph topologies in the form of trees. The efficiency of our algorithm is demonstrated by comparing the obtained results with the current state-of-the art subgraph counting algorithms. We also show major differences between unicellular and multicellular organisms. The datasets and source code of CombiMotif are freely available upon request.

  16. Using SCOPE to identify potential regulatory motifs in coregulated genes.

    PubMed

    Martyanov, Viktor; Gross, Robert H

    2011-05-31

    SCOPE is an ensemble motif finder that uses three component algorithms in parallel to identify potential regulatory motifs by over-representation and motif position preference. Each component algorithm is optimized to find a different kind of motif. By taking the best of these three approaches, SCOPE performs better than any single algorithm, even in the presence of noisy data. In this article, we utilize a web version of SCOPE to examine genes that are involved in telomere maintenance. SCOPE has been incorporated into at least two other motif finding programs and has been used in other studies. The three algorithms that comprise SCOPE are BEAM, which finds non-degenerate motifs (ACCGGT), PRISM, which finds degenerate motifs (ASCGWT), and SPACER, which finds longer bipartite motifs (ACCnnnnnnnnGGT). These three algorithms have been optimized to find their corresponding type of motif. Together, they allow SCOPE to perform extremely well. Once a gene set has been analyzed and candidate motifs identified, SCOPE can look for other genes that contain the motif which, when added to the original set, will improve the motif score. This can occur through over-representation or motif position preference. Working with partial gene sets that have biologically verified transcription factor binding sites, SCOPE was able to identify most of the rest of the genes also regulated by the given transcription factor. Output from SCOPE shows candidate motifs, their significance, and other information both as a table and as a graphical motif map. FAQs and video tutorials are available at the SCOPE web site which also includes a "Sample Search" button that allows the user to perform a trial run. Scope has a very friendly user interface that enables novice users to access the algorithm's full power without having to become an expert in the bioinformatics of motif finding. As input, SCOPE can take a list of genes, or FASTA sequences. These can be entered in browser text fields, or read from

  17. CPI motif interaction is necessary for capping protein function in cells

    PubMed Central

    Edwards, Marc; McConnell, Patrick; Schafer, Dorothy A.; Cooper, John A.

    2015-01-01

    Capping protein (CP) has critical roles in actin assembly in vivo and in vitro. CP binds with high affinity to the barbed end of actin filaments, blocking the addition and loss of actin subunits. Heretofore, models for actin assembly in cells generally assumed that CP is constitutively active, diffusing freely to find and cap barbed ends. However, CP can be regulated by binding of the ‘capping protein interaction' (CPI) motif, found in a diverse and otherwise unrelated set of proteins that decreases, but does not abolish, the actin-capping activity of CP and promotes uncapping in biochemical experiments. Here, we report that CP localization and the ability of CP to function in cells requires interaction with a CPI-motif-containing protein. Our discovery shows that cells target and/or modulate the capping activity of CP via CPI motif interactions in order for CP to localize and function in cells. PMID:26412145

  18. Functional Motifs in Biochemical Reaction Networks

    PubMed Central

    Tyson, John J.; Novák, Béla

    2013-01-01

    The signal-response characteristics of a living cell are determined by complex networks of interacting genes, proteins, and metabolites. Understanding how cells respond to specific challenges, how these responses are contravened in diseased cells, and how to intervene pharmacologically in the decision-making processes of cells requires an accurate theory of the information-processing capabilities of macromolecular regulatory networks. Adopting an engineer’s approach to control systems, we ask whether realistic cellular control networks can be decomposed into simple regulatory motifs that carry out specific functions in a cell. We show that such functional motifs exist and review the experimental evidence that they control cellular responses as expected. PMID:20055671

  19. Anticipated synchronization in neuronal network motifs

    NASA Astrophysics Data System (ADS)

    Matias, F. S.; Gollo, L. L.; Carelli, P. V.; Copelli, M.; Mirasso, C. R.

    2013-01-01

    Two identical dynamical systems coupled unidirectionally (in a so called master-slave configuration) exhibit anticipated synchronization (AS) if the one which receives the coupling (the slave) also receives a negative delayed self-feedback. In oscillatory neuronal systems AS is characterized by a phase-locking with negative time delay τ between the spikes of the master and of the slave (slave fires before the master), while in the usual delayed synchronization (DS) regime τ is positive (slave fires after the master). A 3-neuron motif in which the slave self-feedback is replaced by a feedback loop mediated by an interneuron can exhibits both AS and DS regimes. Here we show that AS is robust in the presence of noise in a 3 Hodgkin-Huxley type neuronal motif. We also show that AS is stable for large values of τ in a chain of connected slaves-interneurons.

  20. Designing synthetic RNAs to determine the relevance of structural motifs in picornavirus IRES elements

    NASA Astrophysics Data System (ADS)

    Fernandez-Chamorro, Javier; Lozano, Gloria; Garcia-Martin, Juan Antonio; Ramajo, Jorge; Dotu, Ivan; Clote, Peter; Martinez-Salas, Encarnacion

    2016-04-01

    The function of Internal Ribosome Entry Site (IRES) elements is intimately linked to their RNA structure. Viral IRES elements are organized in modular domains consisting of one or more stem-loops that harbor conserved RNA motifs critical for internal initiation of translation. A conserved motif is the pyrimidine-tract located upstream of the functional initiation codon in type I and II picornavirus IRES. By computationally designing synthetic RNAs to fold into a structure that sequesters the polypyrimidine tract in a hairpin, we establish a correlation between predicted inaccessibility of the pyrimidine tract and IRES activity, as determined in both in vitro and in vivo systems. Our data supports the hypothesis that structural sequestration of the pyrimidine-tract within a stable hairpin inactivates IRES activity, since the stronger the stability of the hairpin the higher the inhibition of protein synthesis. Destabilization of the stem-loop immediately upstream of the pyrimidine-tract also decreases IRES activity. Our work introduces a hybrid computational/experimental method to determine the importance of structural motifs for biological function. Specifically, we show the feasibility of using the software RNAiFold to design synthetic RNAs with particular sequence and structural motifs that permit subsequent experimental determination of the importance of such motifs for biological function.

  1. Designing synthetic RNAs to determine the relevance of structural motifs in picornavirus IRES elements

    PubMed Central

    Fernandez-Chamorro, Javier; Lozano, Gloria; Garcia-Martin, Juan Antonio; Ramajo, Jorge; Dotu, Ivan; Clote, Peter; Martinez-Salas, Encarnacion

    2016-01-01

    The function of Internal Ribosome Entry Site (IRES) elements is intimately linked to their RNA structure. Viral IRES elements are organized in modular domains consisting of one or more stem-loops that harbor conserved RNA motifs critical for internal initiation of translation. A conserved motif is the pyrimidine-tract located upstream of the functional initiation codon in type I and II picornavirus IRES. By computationally designing synthetic RNAs to fold into a structure that sequesters the polypyrimidine tract in a hairpin, we establish a correlation between predicted inaccessibility of the pyrimidine tract and IRES activity, as determined in both in vitro and in vivo systems. Our data supports the hypothesis that structural sequestration of the pyrimidine-tract within a stable hairpin inactivates IRES activity, since the stronger the stability of the hairpin the higher the inhibition of protein synthesis. Destabilization of the stem-loop immediately upstream of the pyrimidine-tract also decreases IRES activity. Our work introduces a hybrid computational/experimental method to determine the importance of structural motifs for biological function. Specifically, we show the feasibility of using the software RNAiFold to design synthetic RNAs with particular sequence and structural motifs that permit subsequent experimental determination of the importance of such motifs for biological function. PMID:27053355

  2. Analyzing network reliability using structural motifs

    NASA Astrophysics Data System (ADS)

    Khorramzadeh, Yasamin; Youssef, Mina; Eubank, Stephen; Mowlaei, Shahir

    2015-04-01

    This paper uses the reliability polynomial, introduced by Moore and Shannon in 1956, to analyze the effect of network structure on diffusive dynamics such as the spread of infectious disease. We exhibit a representation for the reliability polynomial in terms of what we call structural motifs that is well suited for reasoning about the effect of a network's structural properties on diffusion across the network. We illustrate by deriving several general results relating graph structure to dynamical phenomena.

  3. Acidic/IQ Motif Regulator of Calmodulin*

    PubMed Central

    Putkey, John A.; Waxham, M. Neal; Gaertner, Tara R.; Brewer, Kari J.; Goldsmith, Michael; Kubota, Yoshihisa; Kleerekoper, Quinn K.

    2013-01-01

    The small IQ motif proteins PEP-19 (62 amino acids) and RC3 (78 amino acids) greatly accelerate the rates of Ca2+ binding to sites III and IV in the C-domain of calmodulin (CaM). We show here that PEP-19 decreases the degree of cooperativity of Ca2+ binding to sites III and IV, and we present a model showing that this could increase Ca2+ binding rate constants. Comparative sequence analysis showed that residues 28 to 58 from PEP-19 are conserved in other proteins. This region includes the IQ motif (amino acids 39–62), and an adjacent acidic cluster of amino acids (amino acids 28–40). A synthetic peptide spanning residues 28–62 faithfully mimics intact PEP-19 with respect to increasing the rates of Ca2+ association and dissociation, as well as binding preferentially to the C-domain of CaM. In contrast, a peptide encoding only the core IQ motif does not modulate Ca2+ binding, and binds to multiple sites on CaM. A peptide that includes only the acidic region does not bind to CaM. These results show that PEP-19 has a novel acidic/IQ CaM regulatory motif in which the IQ sequence provides a targeting function that allows binding of PEP-19 to CaM, whereas the acidic residues modify the nature of this interaction, and are essential for modulating Ca2+ binding to the C-domain of CaM. PMID:17991744

  4. Motifs emerge from function in model gene regulatory networks

    PubMed Central

    Burda, Z.; Krzywicki, A.; Martin, O. C.; Zagorski, M.

    2011-01-01

    Gene regulatory networks allow the control of gene expression patterns in living cells. The study of network topology has revealed that certain subgraphs of interactions or “motifs” appear at anomalously high frequencies. We ask here whether this phenomenon may emerge because of the functions carried out by these networks. Given a framework for describing regulatory interactions and dynamics, we consider in the space of all regulatory networks those that have prescribed functional capabilities. Markov Chain Monte Carlo sampling is then used to determine how these functional networks lead to specific motif statistics in the interactions. In the case where the regulatory networks are constrained to exhibit multistability, we find a high frequency of gene pairs that are mutually inhibitory and self-activating. In contrast, networks constrained to have periodic gene expression patterns (mimicking for instance the cell cycle) have a high frequency of bifan-like motifs involving four genes with at least one activating and one inhibitory interaction. PMID:21960444

  5. Application of the bicyclo[1.1.1]pentane motif as a nonclassical phenyl ring bioisostere in the design of a potent and orally active γ-secretase inhibitor.

    PubMed

    Stepan, Antonia F; Subramanyam, Chakrapani; Efremov, Ivan V; Dutra, Jason K; O'Sullivan, Theresa J; DiRico, Kenneth J; McDonald, W Scott; Won, Annie; Dorff, Peter H; Nolan, Charles E; Becker, Stacey L; Pustilnik, Leslie R; Riddell, David R; Kauffman, Gregory W; Kormos, Bethany L; Zhang, Liming; Lu, Yasong; Capetta, Steven H; Green, Michael E; Karki, Kapil; Sibley, Evelyn; Atchison, Kevin P; Hallgren, Andrew J; Oborski, Christine E; Robshaw, Ashley E; Sneed, Blossom; O'Donnell, Christopher J

    2012-04-12

    Replacement of the central, para-substituted fluorophenyl ring in the γ-secretase inhibitor 1 (BMS-708,163) with the bicyclo[1.1.1]pentane motif led to the discovery of compound 3, an equipotent enzyme inhibitor with significant improvements in passive permeability and aqueous solubility. The modified biopharmaceutical properties of 3 translated into excellent oral absorption characteristics (~4-fold ↑ C(max) and AUC values relative to 1) in a mouse model of γ-secretase inhibition. In addition, SAR studies into other fluorophenyl replacements indicate the intrinsic advantages of the bicyclo[1.1.1]pentane moiety over conventional phenyl ring replacements with respect to achieving an optimal balance of properties (e.g., γ-secretase inhibition, aqueous solubility/permeability, in vitro metabolic stability). Overall, this work enhances the scope of the [1.1.1]-bicycle beyond that of a mere "spacer" unit and presents a compelling case for its broader application as a phenyl group replacement in scenarios where the aromatic ring count impacts physicochemical parameters and overall drug-likeness. PMID:22420884

  6. ET-Motif: Solving the Exact (l, d)-Planted Motif Problem Using Error Tree Structure.

    PubMed

    Al-Okaily, Anas; Huang, Chun-Hsi

    2016-07-01

    Motif finding is an important and a challenging problem in many biological applications such as discovering promoters, enhancers, locus control regions, transcription factors, and more. The (l, d)-planted motif search, PMS, is one of several variations of the problem. In this problem, there are n given sequences over alphabets of size [Formula: see text], each of length m, and two given integers l and d. The problem is to find a motif m of length l, where in each sequence there is at least an l-mer at a Hamming distance of [Formula: see text] of m. In this article, we propose ET-Motif, an algorithm that can solve the PMS problem in [Formula: see text] time and [Formula: see text] space. The time bound can be further reduced by a factor of m with [Formula: see text] space. In case the suffix tree that is built for the input sequences is balanced, the problem can be solved in [Formula: see text] time and [Formula: see text] space. Similarly, the time bound can be reduced by a factor of m using [Formula: see text] space. Moreover, the variations of the problem, namely the edit distance PMS and edited PMS (Quorum), can be solved using ET-Motif with simple modifications but upper bands of space and time. For edit distance PMS, the time and space bounds will be increased by [Formula: see text], while for edited PMS the increase will be of [Formula: see text] in the time bound. PMID:27152692

  7. Signature motifs of GDP polyribonucleotidyltransferase, a non-segmented negative strand RNA viral mRNA capping enzyme, domain in the L protein are required for covalent enzyme-pRNA intermediate formation.

    PubMed

    Neubauer, Julie; Ogino, Minako; Green, Todd J; Ogino, Tomoaki

    2016-01-01

    The unconventional mRNA capping enzyme (GDP polyribonucleotidyltransferase, PRNTase; block V) domain in RNA polymerase L proteins of non-segmented negative strand (NNS) RNA viruses (e.g. rabies, measles, Ebola) contains five collinear sequence elements, Rx(3)Wx(3-8)ΦxGxζx(P/A) (motif A; Φ, hydrophobic; ζ, hydrophilic), (Y/W)ΦGSxT (motif B), W (motif C), HR (motif D) and ζxxΦx(F/Y)QxxΦ (motif E). We performed site-directed mutagenesis of the L protein of vesicular stomatitis virus (VSV, a prototypic NNS RNA virus) to examine participation of these motifs in mRNA capping. Similar to the catalytic residues in motif D, G1100 in motif A, T1157 in motif B, W1188 in motif C, and F1269 and Q1270 in motif E were found to be essential or important for the PRNTase activity in the step of the covalent L-pRNA intermediate formation, but not for the GTPase activity that generates GDP (pRNA acceptor). Cap defective mutations in these residues induced termination of mRNA synthesis at position +40 followed by aberrant stop-start transcription, and abolished virus gene expression in host cells. These results suggest that the conserved motifs constitute the active site of the PRNTase domain and the L-pRNA intermediate formation followed by the cap formation is essential for successful synthesis of full-length mRNAs.

  8. Occurrence probability of structured motifs in random sequences.

    PubMed

    Robin, S; Daudin, J-J; Richard, H; Sagot, M-F; Schbath, S

    2002-01-01

    The problem of extracting from a set of nucleic acid sequences motifs which may have biological function is more and more important. In this paper, we are interested in particular motifs that may be implicated in the transcription process. These motifs, called structured motifs, are composed of two ordered parts separated by a variable distance and allowing for substitutions. In order to assess their statistical significance, we propose approximations of the probability of occurrences of such a structured motif in a given sequence. An application of our method to evaluate candidate promoters in E. coli and B. subtilis is presented. Simulations show the goodness of the approximations. PMID:12614545

  9. Membrane-Mediated Regulation of the Intrinsically Disordered CD3ϵ Cytoplasmic Tail of the TCR

    PubMed Central

    López, Cesar A.; Sethi, Anurag; Goldstein, Byron; Wilson, Bridget S.; Gnanakaran, S.

    2015-01-01

    The regulation of T-cell-mediated immune responses depends on the phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) on T-cell receptors. Although many details of the signaling cascades are well understood, the initial mechanism and regulation of ITAM phosphorylation remains unknown. We used molecular dynamics simulations to study the influence of different compositions of lipid bilayers on the membrane association of the CD3ϵ cytoplasmic tails of the T-cell receptors. Our results show that binding of CD3ϵ to membranes is modulated by both the presence of negatively charged lipids and the lipid order of the membrane. Free-energy calculations reveal that the protein-membrane interaction is favored by the presence of nearby basic residues and the ITAM tyrosines. Phosphorylation minimizes membrane association, rendering the ITAM motif more accessible to binding partners. In systems mimicking biological membranes, the CD3ϵ chain localization is modulated by different facilitator lipids (e.g., gangliosides or phosphoinositols), revealing a plausible regulatory effect on activation through the regulation of lipid composition in cell membranes. PMID:25992726

  10. Residues within a lipid-associated segment of the PECAM-1 cytoplasmic domain are susceptible to inducible, sequential phosphorylation.

    PubMed

    Paddock, Cathy; Lytle, Betsy L; Peterson, Francis C; Holyst, Trudy; Newman, Peter J; Volkman, Brian F; Newman, Debra K

    2011-06-01

    Immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptors inhibit cellular responsiveness to immunoreceptor tyrosine-based activation motif (ITAM)-linked receptors. Although tyrosine phosphorylation is central to the initiation of both inhibitory ITIM and stimulatory ITAM signaling, the events that regulate receptor phosphorylation are incompletely understood. Previous studies have shown that ITAM tyrosines engage in structure-inducing interactions with the plasma membrane that must be relieved for phosphorylation to occur. Whether ITIM phosphorylation is similarly regulated and the mechanisms responsible for release from plasma membrane interactions to enable phosphorylation, however, have not been defined. PECAM-1 is a dual ITIM-containing receptor that inhibits ITAM-dependent responses in hematopoietic cells. We found that the PECAM-1 cytoplasmic domain is unstructured in an aqueous environment but adopts an α-helical conformation within a localized region on interaction with lipid vesicles that mimic the plasma membrane. The lipid-interacting segment contains the C-terminal ITIM tyrosine and a serine residue that undergo activation-dependent phosphorylation. The N-terminal ITIM is excluded from the lipid-interacting segment, and its phosphorylation is secondary to phosphorylation of the membrane-interacting C-terminal ITIM. On the basis of these findings, we propose a novel model for regulation of inhibitory signaling by ITIM-containing receptors that relies on reversible plasma membrane interactions and sequential ITIM phosphorylation. PMID:21464369

  11. A Conserved Motif Provides Binding Specificity to the PP2A-B56 Phosphatase.

    PubMed

    Hertz, Emil Peter Thrane; Kruse, Thomas; Davey, Norman E; López-Méndez, Blanca; Sigurðsson, Jón Otti; Montoya, Guillermo; Olsen, Jesper V; Nilsson, Jakob

    2016-08-18

    Dynamic protein phosphorylation is a fundamental mechanism regulating biological processes in all organisms. Protein phosphatase 2A (PP2A) is the main source of phosphatase activity in the cell, but the molecular details of substrate recognition are unknown. Here, we report that a conserved surface-exposed pocket on PP2A regulatory B56 subunits binds to a consensus sequence on interacting proteins, which we term the LxxIxE motif. The composition of the motif modulates the affinity for B56, which in turn determines the phosphorylation status of associated substrates. Phosphorylation of amino acid residues within the motif increases B56 binding, allowing integration of kinase and phosphatase activity. We identify conserved LxxIxE motifs in essential proteins throughout the eukaryotic domain of life and in human viruses, suggesting that the motifs are required for basic cellular function. Our study provides a molecular description of PP2A binding specificity with broad implications for understanding signaling in eukaryotes.

  12. A Conserved Motif Provides Binding Specificity to the PP2A-B56 Phosphatase.

    PubMed

    Hertz, Emil Peter Thrane; Kruse, Thomas; Davey, Norman E; López-Méndez, Blanca; Sigurðsson, Jón Otti; Montoya, Guillermo; Olsen, Jesper V; Nilsson, Jakob

    2016-08-18

    Dynamic protein phosphorylation is a fundamental mechanism regulating biological processes in all organisms. Protein phosphatase 2A (PP2A) is the main source of phosphatase activity in the cell, but the molecular details of substrate recognition are unknown. Here, we report that a conserved surface-exposed pocket on PP2A regulatory B56 subunits binds to a consensus sequence on interacting proteins, which we term the LxxIxE motif. The composition of the motif modulates the affinity for B56, which in turn determines the phosphorylation status of associated substrates. Phosphorylation of amino acid residues within the motif increases B56 binding, allowing integration of kinase and phosphatase activity. We identify conserved LxxIxE motifs in essential proteins throughout the eukaryotic domain of life and in human viruses, suggesting that the motifs are required for basic cellular function. Our study provides a molecular description of PP2A binding specificity with broad implications for understanding signaling in eukaryotes. PMID:27453045

  13. DXD motif-dependent and -independent effects of the chlamydia trachomatis cytotoxin CT166.

    PubMed

    Bothe, Miriam; Dutow, Pavel; Pich, Andreas; Genth, Harald; Klos, Andreas

    2015-02-01

    The Gram-negative, intracellular bacterium Chlamydia trachomatis causes acute and chronic urogenital tract infection, potentially leading to infertility and ectopic pregnancy. The only partially characterized cytotoxin CT166 of serovar D exhibits a DXD motif, which is important for the enzymatic activity of many bacterial and mammalian type A glycosyltransferases, leading to the hypothesis that CT166 possess glycosyltransferase activity. CT166-expressing HeLa cells exhibit actin reorganization, including cell rounding, which has been attributed to the inhibition of the Rho-GTPases Rac/Cdc42. Exploiting the glycosylation-sensitive Ras(27H5) antibody, we here show that CT166 induces an epitope change in Ras, resulting in inhibited ERK and PI3K signaling and delayed cell cycle progression. Consistent with the hypothesis that these effects strictly depend on the DXD motif, CT166 with the mutated DXD motif causes neither Ras-ERK inhibition nor delayed cell cycle progression. In contrast, CT166 with the mutated DXD motif is still capable of inhibiting cell migration, suggesting that CT166 with the mutated DXD motif cannot be regarded as inactive in any case. Taken together, CT166 affects various fundamental cellular processes, strongly suggesting its importance for the intracellular survival of chlamydia. PMID:25690695

  14. DXD Motif-Dependent and -Independent Effects of the Chlamydia trachomatis Cytotoxin CT166

    PubMed Central

    Bothe, Miriam; Dutow, Pavel; Pich, Andreas; Genth, Harald; Klos, Andreas

    2015-01-01

    The Gram-negative, intracellular bacterium Chlamydia trachomatis causes acute and chronic urogenital tract infection, potentially leading to infertility and ectopic pregnancy. The only partially characterized cytotoxin CT166 of serovar D exhibits a DXD motif, which is important for the enzymatic activity of many bacterial and mammalian type A glycosyltransferases, leading to the hypothesis that CT166 possess glycosyltransferase activity. CT166-expressing HeLa cells exhibit actin reorganization, including cell rounding, which has been attributed to the inhibition of the Rho-GTPases Rac/Cdc42. Exploiting the glycosylation-sensitive Ras(27H5) antibody, we here show that CT166 induces an epitope change in Ras, resulting in inhibited ERK and PI3K signaling and delayed cell cycle progression. Consistent with the hypothesis that these effects strictly depend on the DXD motif, CT166 with the mutated DXD motif causes neither Ras-ERK inhibition nor delayed cell cycle progression. In contrast, CT166 with the mutated DXD motif is still capable of inhibiting cell migration, suggesting that CT166 with the mutated DXD motif cannot be regarded as inactive in any case. Taken together, CT166 affects various fundamental cellular processes, strongly suggesting its importance for the intracellular survival of chlamydia. PMID:25690695

  15. CLIMP: Clustering Motifs via Maximal Cliques with Parallel Computing Design.

    PubMed

    Zhang, Shaoqiang; Chen, Yong

    2016-01-01

    A set of conserved binding sites recognized by a transcription factor is called a motif, which can be found by many applications of comparative genomics for identifying over-represented segments. Moreover, when numerous putative motifs are predicted from a collection of genome-wide data, their similarity data can be represented as a large graph, where these motifs are connected to one another. However, an efficient clustering algorithm is desired for clustering the motifs that belong to the same groups and separating the motifs that belong to different groups, or even deleting an amount of spurious ones. In this work, a new motif clustering algorithm, CLIMP, is proposed by using maximal cliques and sped up by parallelizing its program. When a synthetic motif dataset from the database JASPAR, a set of putative motifs from a phylogenetic foot-printing dataset, and a set of putative motifs from a ChIP dataset are used to compare the performances of CLIMP and two other high-performance algorithms, the results demonstrate that CLIMP mostly outperforms the two algorithms on the three datasets for motif clustering, so that it can be a useful complement of the clustering procedures in some genome-wide motif prediction pipelines. CLIMP is available at http://sqzhang.cn/climp.html. PMID:27487245

  16. CLIMP: Clustering Motifs via Maximal Cliques with Parallel Computing Design.

    PubMed

    Zhang, Shaoqiang; Chen, Yong

    2016-01-01

    A set of conserved binding sites recognized by a transcription factor is called a motif, which can be found by many applications of comparative genomics for identifying over-represented segments. Moreover, when numerous putative motifs are predicted from a collection of genome-wide data, their similarity data can be represented as a large graph, where these motifs are connected to one another. However, an efficient clustering algorithm is desired for clustering the motifs that belong to the same groups and separating the motifs that belong to different groups, or even deleting an amount of spurious ones. In this work, a new motif clustering algorithm, CLIMP, is proposed by using maximal cliques and sped up by parallelizing its program. When a synthetic motif dataset from the database JASPAR, a set of putative motifs from a phylogenetic foot-printing dataset, and a set of putative motifs from a ChIP dataset are used to compare the performances of CLIMP and two other high-performance algorithms, the results demonstrate that CLIMP mostly outperforms the two algorithms on the three datasets for motif clustering, so that it can be a useful complement of the clustering procedures in some genome-wide motif prediction pipelines. CLIMP is available at http://sqzhang.cn/climp.html.

  17. No tradeoff between versatility and robustness in gene circuit motifs

    NASA Astrophysics Data System (ADS)

    Payne, Joshua L.

    2016-05-01

    Circuit motifs are small directed subgraphs that appear in real-world networks significantly more often than in randomized networks. In the Boolean model of gene circuits, most motifs are realized by multiple circuit genotypes. Each of a motif's constituent circuit genotypes may have one or more functions, which are embodied in the expression patterns the circuit forms in response to specific initial conditions. Recent enumeration of a space of nearly 17 million three-gene circuit genotypes revealed that all circuit motifs have more than one function, with the number of functions per motif ranging from 12 to nearly 30,000. This indicates that some motifs are more functionally versatile than others. However, the individual circuit genotypes that constitute each motif are less robust to mutation if they have many functions, hinting that functionally versatile motifs may be less robust to mutation than motifs with few functions. Here, I explore the relationship between versatility and robustness in circuit motifs, demonstrating that functionally versatile motifs are robust to mutation despite the inherent tradeoff between versatility and robustness at the level of an individual circuit genotype.

  18. CLIMP: Clustering Motifs via Maximal Cliques with Parallel Computing Design

    PubMed Central

    Chen, Yong

    2016-01-01

    A set of conserved binding sites recognized by a transcription factor is called a motif, which can be found by many applications of comparative genomics for identifying over-represented segments. Moreover, when numerous putative motifs are predicted from a collection of genome-wide data, their similarity data can be represented as a large graph, where these motifs are connected to one another. However, an efficient clustering algorithm is desired for clustering the motifs that belong to the same groups and separating the motifs that belong to different groups, or even deleting an amount of spurious ones. In this work, a new motif clustering algorithm, CLIMP, is proposed by using maximal cliques and sped up by parallelizing its program. When a synthetic motif dataset from the database JASPAR, a set of putative motifs from a phylogenetic foot-printing dataset, and a set of putative motifs from a ChIP dataset are used to compare the performances of CLIMP and two other high-performance algorithms, the results demonstrate that CLIMP mostly outperforms the two algorithms on the three datasets for motif clustering, so that it can be a useful complement of the clustering procedures in some genome-wide motif prediction pipelines. CLIMP is available at http://sqzhang.cn/climp.html. PMID:27487245

  19. MISAE: a new approach for regulatory motif extraction.

    PubMed

    Sun, Zhaohui; Yang, Jingyi; Deogun, Jitender S

    2004-01-01

    The recognition of regulatory motifs of co-regulated genes is essential for understanding the regulatory mechanisms. However, the automatic extraction of regulatory motifs from a given data set of the upstream non-coding DNA sequences of a family of co-regulated genes is difficult because regulatory motifs are often subtle and inexact. This problem is further complicated by the corruption of the data sets. In this paper, a new approach called Mismatch-allowed Probabilistic Suffix Tree Motif Extraction (MISAE) is proposed. It combines the mismatch-allowed probabilistic suffix tree that is a probabilistic model and local prediction for the extraction of regulatory motifs. The proposed approach is tested on 15 co-regulated gene families and compares favorably with other state-of-the-art approaches. Moreover, MISAE performs well on "corrupted" data sets. It is able to extract the motif from a "corrupted" data set with less than one fourth of the sequences containing the real motif.

  20. RNA structural motif recognition based on least-squares distance.

    PubMed

    Shen, Ying; Wong, Hau-San; Zhang, Shaohong; Zhang, Lin

    2013-09-01

    RNA structural motifs are recurrent structural elements occurring in RNA molecules. RNA structural motif recognition aims to find RNA substructures that are similar to a query motif, and it is important for RNA structure analysis and RNA function prediction. In view of this, we propose a new method known as RNA Structural Motif Recognition based on Least-Squares distance (LS-RSMR) to effectively recognize RNA structural motifs. A test set consisting of five types of RNA structural motifs occurring in Escherichia coli ribosomal RNA is compiled by us. Experiments are conducted for recognizing these five types of motifs. The experimental results fully reveal the superiority of the proposed LS-RSMR compared with four other state-of-the-art methods.

  1. Chaotic motif sampler: detecting motifs from biological sequences by using chaotic neurodynamics

    NASA Astrophysics Data System (ADS)

    Matsuura, Takafumi; Ikeguchi, Tohru

    Identification of a region in biological sequences, motif extraction problem (MEP) is solved in bioinformatics. However, the MEP is an NP-hard problem. Therefore, it is almost impossible to obtain an optimal solution within a reasonable time frame. To find near optimal solutions for NP-hard combinatorial optimization problems such as traveling salesman problems, quadratic assignment problems, and vehicle routing problems, chaotic search, which is one of the deterministic approaches, has been proposed and exhibits better performance than stochastic approaches. In this paper, we propose a new alignment method that employs chaotic dynamics to solve the MEPs. It is called the Chaotic Motif Sampler. We show that the performance of the Chaotic Motif Sampler is considerably better than that of the conventional methods such as the Gibbs Site Sampler and the Neighborhood Optimization for Multiple Alignment Discovery.

  2. Structural basis for the binding of tryptophan-based motifs by δ-COP

    PubMed Central

    Suckling, Richard J.; Poon, Pak Phi; Travis, Sophie M.; Majoul, Irina V.; Hughson, Frederick M.; Evans, Philip R.; Duden, Rainer; Owen, David J.

    2015-01-01

    Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding βγδζ-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding αβ’ε-COP B-subcomplex. We present the structure of the C-terminal μ-homology domain of the yeast δ-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP μ subunits to bind YxxΦ cargo motifs with its two tryptophan residues sitting in compatible pockets. We also show that the Saccharomyces cerevisiae Arf GTPase-activating protein (GAP) homolog Gcs1p uses a related WxxF motif at its extreme C terminus to bind to δ-COP at the same site in the same way. Mutations designed on the basis of the structure in conjunction with isothermal titration calorimetry confirm the mode of binding and show that mammalian δ-COP binds related tryptophan-based motifs such as that from ArfGAP1 in a similar manner. We conclude that δ-COP subunits bind Wxn(1–6)[WF] motifs within unstructured regions of proteins that influence the lifecycle of COPI-coated vesicles; this conclusion is supported by the observation that, in the context of a sensitizing domain deletion in Dsl1p, mutating the tryptophan-based motif-binding site in yeast causes defects in both growth and carboxypeptidase Y trafficking/processing. PMID:26578768

  3. LRRCE: a leucine-rich repeat cysteine capping motif unique to the chordate lineage

    PubMed Central

    Park, Hosil; Huxley-Jones, Julie; Boot-Handford, Ray P; Bishop, Paul N; Attwood, Teresa K; Bella, Jordi

    2008-01-01

    Background The small leucine-rich repeat proteins and proteoglycans (SLRPs) form an important family of regulatory molecules that participate in many essential functions. They typically control the correct assembly of collagen fibrils, regulate mineral deposition in bone, and modulate the activity of potent cellular growth factors through many signalling cascades. SLRPs belong to the group of extracellular leucine-rich repeat proteins that are flanked at both ends by disulphide-bonded caps that protect the hydrophobic core of the terminal repeats. A capping motif specific to SLRPs has been recently described in the crystal structures of the core proteins of decorin and biglycan. This motif, designated as LRRCE, differs in both sequence and structure from other, more widespread leucine-rich capping motifs. To investigate if the LRRCE motif is a common structural feature found in other leucine-rich repeat proteins, we have defined characteristic sequence patterns and used them in genome-wide searches. Results The LRRCE motif is a structural element exclusive to the main group of SLRPs. It appears to have evolved during early chordate evolution and is not found in protein sequences from non-chordate genomes. Our search has expanded the family of SLRPs to include new predicted protein sequences, mainly in fishes but with intriguing putative orthologs in mammals. The chromosomal locations of the newly predicted SLRP genes would support the large-scale genome or gene duplications that are thought to have occurred during vertebrate evolution. From this expanded list we describe a new class of SLRP sequences that could be representative of an ancestral SLRP gene. Conclusion Given its exclusivity the LRRCE motif is a useful annotation tool for the identification and classification of new SLRP sequences in genome databases. The expanded list of members of the SLRP family offers interesting insights into early vertebrate evolution and suggests an early chordate evolutionary

  4. Structural basis for the binding of tryptophan-based motifs by δ-COP.

    PubMed

    Suckling, Richard J; Poon, Pak Phi; Travis, Sophie M; Majoul, Irina V; Hughson, Frederick M; Evans, Philip R; Duden, Rainer; Owen, David J

    2015-11-17

    Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding βγδζ-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding αβ'ε-COP B-subcomplex. We present the structure of the C-terminal μ-homology domain of the yeast δ-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP μ subunits to bind YxxΦ cargo motifs with its two tryptophan residues sitting in compatible pockets. We also show that the Saccharomyces cerevisiae Arf GTPase-activating protein (GAP) homolog Gcs1p uses a related WxxF motif at its extreme C terminus to bind to δ-COP at the same site in the same way. Mutations designed on the basis of the structure in conjunction with isothermal titration calorimetry confirm the mode of binding and show that mammalian δ-COP binds related tryptophan-based motifs such as that from ArfGAP1 in a similar manner. We conclude that δ-COP subunits bind Wxn(1-6)[WF] motifs within unstructured regions of proteins that influence the lifecycle of COPI-coated vesicles; this conclusion is supported by the observation that, in the context of a sensitizing domain deletion in Dsl1p, mutating the tryptophan-based motif-binding site in yeast causes defects in both growth and carboxypeptidase Y trafficking/processing.

  5. Structural Basis for WDR5 Interaction (Win) Motif Recognition in Human SET1 Family Histone Methyltransferases*

    PubMed Central

    Dharmarajan, Venkatasubramanian; Lee, Jeong-Heon; Patel, Anamika; Skalnik, David G.; Cosgrove, Michael S.

    2012-01-01

    Translocations and amplifications of the mixed lineage leukemia-1 (MLL1) gene are associated with aggressive myeloid and lymphocytic leukemias in humans. MLL1 is a member of the SET1 family of histone H3 lysine 4 (H3K4) methyltransferases, which are required for transcription of genes involved in hematopoiesis and development. MLL1 associates with a subcomplex containing WDR5, RbBP5, Ash2L, and DPY-30 (WRAD), which together form the MLL1 core complex that is required for sequential mono- and dimethylation of H3K4. We previously demonstrated that WDR5 binds the conserved WDR5 interaction (Win) motif of MLL1 in vitro, an interaction that is required for the H3K4 dimethylation activity of the MLL1 core complex. In this investigation, we demonstrate that arginine 3765 of the MLL1 Win motif is required to co-immunoprecipitate WRAD from mammalian cells, suggesting that the WDR5-Win motif interaction is important for the assembly of the MLL1 core complex in vivo. We also demonstrate that peptides that mimic SET1 family Win motif sequences inhibit H3K4 dimethylation by the MLL1 core complex with varying degrees of efficiency. To understand the structural basis for these differences, we determined structures of WDR5 bound to six different naturally occurring Win motif sequences at resolutions ranging from 1.9 to 1.2 Å. Our results reveal that binding energy differences result from interactions between non-conserved residues C-terminal to the Win motif and to a lesser extent from subtle variation of residues within the Win motif. These results highlight a new class of methylation inhibitors that may be useful for the treatment of MLL1-related malignancies. PMID:22665483

  6. Structural basis for WDR5 interaction (Win) motif recognition in human SET1 family histone methyltransferases.

    PubMed

    Dharmarajan, Venkatasubramanian; Lee, Jeong-Heon; Patel, Anamika; Skalnik, David G; Cosgrove, Michael S

    2012-08-10

    Translocations and amplifications of the mixed lineage leukemia-1 (MLL1) gene are associated with aggressive myeloid and lymphocytic leukemias in humans. MLL1 is a member of the SET1 family of histone H3 lysine 4 (H3K4) methyltransferases, which are required for transcription of genes involved in hematopoiesis and development. MLL1 associates with a subcomplex containing WDR5, RbBP5, Ash2L, and DPY-30 (WRAD), which together form the MLL1 core complex that is required for sequential mono- and dimethylation of H3K4. We previously demonstrated that WDR5 binds the conserved WDR5 interaction (Win) motif of MLL1 in vitro, an interaction that is required for the H3K4 dimethylation activity of the MLL1 core complex. In this investigation, we demonstrate that arginine 3765 of the MLL1 Win motif is required to co-immunoprecipitate WRAD from mammalian cells, suggesting that the WDR5-Win motif interaction is important for the assembly of the MLL1 core complex in vivo. We also demonstrate that peptides that mimic SET1 family Win motif sequences inhibit H3K4 dimethylation by the MLL1 core complex with varying degrees of efficiency. To understand the structural basis for these differences, we determined structures of WDR5 bound to six different naturally occurring Win motif sequences at resolutions ranging from 1.9 to 1.2 Å. Our results reveal that binding energy differences result from interactions between non-conserved residues C-terminal to the Win motif and to a lesser extent from subtle variation of residues within the Win motif. These results highlight a new class of methylation inhibitors that may be useful for the treatment of MLL1-related malignancies. PMID:22665483

  7. The RNA 3D Motif Atlas: Computational methods for extraction, organization and evaluation of RNA motifs.

    PubMed

    Parlea, Lorena G; Sweeney, Blake A; Hosseini-Asanjan, Maryam; Zirbel, Craig L; Leontis, Neocles B

    2016-07-01

    RNA 3D motifs occupy places in structured RNA molecules that correspond to the hairpin, internal and multi-helix junction "loops" of their secondary structure representations. As many as 40% of the nucleotides of an RNA molecule can belong to these structural elements, which are distinct from the regular double helical regions formed by contiguous AU, GC, and GU Watson-Crick basepairs. With the large number of atomic- or near atomic-resolution 3D structures appearing in a steady stream in the PDB/NDB structure databases, the automated identification, extraction, comparison, clustering and visualization of these structural elements presents an opportunity to enhance RNA science. Three broad applications are: (1) identification of modular, autonomous structural units for RNA nanotechnology, nanobiology and synthetic biology applications; (2) bioinformatic analysis to improve RNA 3D structure prediction from sequence; and (3) creation of searchable databases for exploring the binding specificities, structural flexibility, and dynamics of these RNA elements. In this contribution, we review methods developed for computational extraction of hairpin and internal loop motifs from a non-redundant set of high-quality RNA 3D structures. We provide a statistical summary of the extracted hairpin and internal loop motifs in the most recent version of the RNA 3D Motif Atlas. We also explore the reliability and accuracy of the extraction process by examining its performance in clustering recurrent motifs from homologous ribosomal RNA (rRNA) structures. We conclude with a summary of remaining challenges, especially with regard to extraction of multi-helix junction motifs. PMID:27125735

  8. Role of the LXXLL-motif and activation function 2 domain in subcellular localization of Dax-1 (dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1).

    PubMed

    Kawajiri, Kaname; Ikuta, Togo; Suzuki, Taiga; Kusaka, Masatomo; Muramatsu, Masami; Fujieda, Kenji; Tachibana, Masayoshi; Morohashi, Ken-Ichirou

    2003-06-01

    Dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (Dax-1, NR0B1) is an orphan nuclear receptor that represses transcription by Ad4 binding protein/steroidogenic factor 1 (Ad4BP/SF-1, NR5A1). Observations on human diseases and the phenotypes of mice, in which the corresponding genes have been disrupted, have elucidated essential roles of these two nuclear receptors in differentiation of steroidogenic tissues. However, little is known about how the functions of these factors are regulated. Here we have examined their subcellular localization and have clarified the molecular mechanisms regulating subcellular localization of Dax-1. Prompted by the finding that nuclear localization of Dax-1 correlates with the presence of Ad4BP/SF-1 in the early stages of pituitary development, we have tested the possibility that interaction between the two factors is essential for the nuclear localization of Dax-1. In vitro studies with cultured cells demonstrated that an interaction involving the LXXLL motifs in the N-terminal repeat region of Dax-1 plays a key role in its subcellular localization. In addition, we found that a mutant form of DAX-1 (L466R), from a patient with adrenal hypoplasia congenita, was defective in nuclear localization in spite of having an intact N terminus. Taken together, the results reveal that the subcellular localization of Dax-1 is influenced by the presence of Ad4BP/SF-1, and that two regions of Dax-1 have important roles for this process. PMID:12610109

  9. MINER: software for phylogenetic motif identification.

    PubMed

    La, David; Livesay, Dennis R

    2005-07-01

    MINER is web-based software for phylogenetic motif (PM) identification. PMs are sequence regions (fragments) that conserve the overall familial phylogeny. PMs have been shown to correspond to a wide variety of catalytic regions, substrate-binding sites and protein interfaces, making them ideal functional site predictions. The MINER output provides an intuitive interface for interactive PM sequence analysis and structural visualization. The web implementation of MINER is freely available at http://www.pmap.csupomona.edu/MINER/. Source code is available to the academic community on request.

  10. Intronic motif pairs cooperate across exons to promote pre-mRNA splicing

    PubMed Central

    2010-01-01

    Background A very early step in splice site recognition is exon definition, a process that is as yet poorly understood. Communication between the two ends of an exon is thought to be required for this step. We report genome-wide evidence for exons being defined through the combinatorial activity of motifs located in flanking intronic regions. Results Strongly co-occurring motifs were found to specifically reside in four intronic regions surrounding a large number of human exons. These paired motifs occur around constitutive and alternative exons but not pseudo exons. Most co-occurring motifs are limited to intronic regions within 100 nucleotides of the exon. They are preferentially associated with weaker exons. Their pairing is conserved in evolution and they exhibit a lower frequency of single nucleotide polymorphism when paired. Paired motifs display specificity with respect to distance from the exon borders and in constitutive versus alternative splicing. Many resemble binding sites for heterogeneous nuclear ribonucleoproteins. Specific pairs are associated with tissue-specific genes, the higher expression of which coincides with that of the pertinent RNA binding proteins. Tested pairs acted synergistically to enhance exon inclusion, and this enhancement was found to be exon-specific. Conclusions The exon-flanking sequence pairs identified here by genomic analysis promote exon inclusion and may play a role in the exon definition step in pre-mRNA splicing. We propose a model in which multiple concerted interactions are required between exonic sequences and flanking intronic sequences to effect exon definition. PMID:20704715

  11. Transcription factor motif quality assessment requires systematic comparative analysis

    PubMed Central

    Kibet, Caleb Kipkurui; Machanick, Philip

    2016-01-01

    Transcription factor (TF) binding site prediction remains a challenge in gene regulatory research due to degeneracy and potential variability in binding sites in the genome. Dozens of algorithms designed to learn binding models (motifs) have generated many motifs available in research papers with a subset making it to databases like JASPAR, UniPROBE and Transfac. The presence of many versions of motifs from the various databases for a single TF and the lack of a standardized assessment technique makes it difficult for biologists to make an appropriate choice of binding model and for algorithm developers to benchmark, test and improve on their models. In this study, we review and evaluate the approaches in use, highlight differences and demonstrate the difficulty of defining a standardized motif assessment approach. We review scoring functions, motif length, test data and the type of performance metrics used in prior studies as some of the factors that influence the outcome of a motif assessment. We show that the scoring functions and statistics used in motif assessment influence ranking of motifs in a TF-specific manner. We also show that TF binding specificity can vary by source of genomic binding data. We also demonstrate that information content of a motif is not in isolation a measure of motif quality but is influenced by TF binding behaviour. We conclude that there is a need for an easy-to-use tool that presents all available evidence for a comparative analysis. PMID:27092243

  12. RNA motif discovery: a computational overview.

    PubMed

    Achar, Avinash; Sætrom, Pål

    2015-01-01

    Genomic studies have greatly expanded our knowledge of structural non-coding RNAs (ncRNAs). These RNAs fold into characteristic secondary structures and perform specific-structure dependent biological functions. Hence RNA secondary structure prediction is one of the most well studied problems in computational RNA biology. Comparative sequence analysis is one of the more reliable RNA structure prediction approaches as it exploits information of multiple related sequences to infer the consensus secondary structure. This class of methods essentially learns a global secondary structure from the input sequences. In this paper, we consider the more general problem of unearthing common local secondary structure based patterns from a set of related sequences. The input sequences for example could correspond to 3(') or 5(') untranslated regions of a set of orthologous genes and the unearthed local patterns could correspond to regulatory motifs found in these regions. These sequences could also correspond to in vitro selected RNA, genomic segments housing ncRNA genes from the same family and so on. Here, we give a detailed review of the various computational techniques proposed in literature attempting to solve this general motif discovery problem. We also give empirical comparisons of some of the current state of the art methods and point out future directions of research.

  13. Annotating RNA motifs in sequences and alignments

    PubMed Central

    Gardner, Paul P.; Eldai, Hisham

    2015-01-01

    RNA performs a diverse array of important functions across all cellular life. These functions include important roles in translation, building translational machinery and maturing messenger RNA. More recent discoveries include the miRNAs and bacterial sRNAs that regulate gene expression, the thermosensors, riboswitches and other cis-regulatory elements that help prokaryotes sense their environment and eukaryotic piRNAs that suppress transposition. However, there can be a long period between the initial discovery of a RNA and determining its function. We present a bioinformatic approach to characterize RNA motifs, which are critical components of many RNA structure–function relationships. These motifs can, in some instances, provide researchers with functional hypotheses for uncharacterized RNAs. Moreover, we introduce a new profile-based database of RNA motifs—RMfam—and illustrate some applications for investigating the evolution and functional characterization of RNA. All the data and scripts associated with this work are available from: https://github.com/ppgardne/RMfam. PMID:25520192

  14. The network motif architecture of dominance hierarchies.

    PubMed

    Shizuka, Daizaburo; McDonald, David B

    2015-04-01

    The widespread existence of dominance hierarchies has been a central puzzle in social evolution, yet we lack a framework for synthesizing the vast empirical data on hierarchy structure in animal groups. We applied network motif analysis to compare the structures of dominance networks from data published over the past 80 years. Overall patterns of dominance relations, including some aspects of non-interactions, were strikingly similar across disparate group types. For example, nearly all groups exhibited high frequencies of transitive triads, whereas cycles were very rare. Moreover, pass-along triads were rare, and double-dominant triads were common in most groups. These patterns did not vary in any systematic way across taxa, study settings (captive or wild) or group size. Two factors significantly affected network motif structure: the proportion of dyads that were observed to interact and the interaction rates of the top-ranked individuals. Thus, study design (i.e. how many interactions were observed) and the behaviour of key individuals in the group could explain much of the variations we see in social hierarchies across animals. Our findings confirm the ubiquity of dominance hierarchies across all animal systems, and demonstrate that network analysis provides new avenues for comparative analyses of social hierarchies. PMID:25762649

  15. The network motif architecture of dominance hierarchies.

    PubMed

    Shizuka, Daizaburo; McDonald, David B

    2015-04-01

    The widespread existence of dominance hierarchies has been a central puzzle in social evolution, yet we lack a framework for synthesizing the vast empirical data on hierarchy structure in animal groups. We applied network motif analysis to compare the structures of dominance networks from data published over the past 80 years. Overall patterns of dominance relations, including some aspects of non-interactions, were strikingly similar across disparate group types. For example, nearly all groups exhibited high frequencies of transitive triads, whereas cycles were very rare. Moreover, pass-along triads were rare, and double-dominant triads were common in most groups. These patterns did not vary in any systematic way across taxa, study settings (captive or wild) or group size. Two factors significantly affected network motif structure: the proportion of dyads that were observed to interact and the interaction rates of the top-ranked individuals. Thus, study design (i.e. how many interactions were observed) and the behaviour of key individuals in the group could explain much of the variations we see in social hierarchies across animals. Our findings confirm the ubiquity of dominance hierarchies across all animal systems, and demonstrate that network analysis provides new avenues for comparative analyses of social hierarchies.

  16. Structural motifs and the stability of fullerenes

    SciTech Connect

    Austin, S.J.; Fowler, P.W.; Manolopoulos, D.E.; Orlandi, G.; Zerbetto, F.

    1995-05-18

    Full geometry optimization has been performed within the semiempirical QCFF/PI model for the 1812 fullerene structural isomers of C{sub 60} formed by 12 pentagons and 20 hexagons. All are local minima on the potential energy hypersurface. Correlations of total energy with many structural motifs yield highly scattered diagrams, but some exhibit linear trends. Penalty and merit functions can be assigned to certain motifs: inclusion of a fused pentagon pair entails an average penalty of 111 kJ mol{sup -1}; a generic hexagon triple costs 23 kJ mol{sup -1}; a triple (open or fused) comprising a pentagon between two hexagonal neighbors gives a stabilization of 19 kJ mol{sup -1}. These results can be understood in terms of the curved nature of fullerene molecules: pentagons should be isolated to avoid sharp local curvature, hexagon triples are costly because they enforce local planarity and hence imply high curvature in another part of the fullerene surface, but hexagon-pentagon-hexagon triples allow the surface to distribute steric strain by warping. The best linear fit is found for H, the second moment of the hexagon-neighbor-index signature, which fits the total energies with a standard deviation of only 53 kJ mol{sup -1} and must be minimized for stability; this index too can be interpreted in terms of curvature. 26 refs., 5 figs.

  17. The BsaHI restriction-modification system: Cloning, sequencing and analysis of conserved motifs

    PubMed Central

    Neely, Robert K; Roberts, Richard J

    2008-01-01

    Background Restriction and modification enzymes typically recognise short DNA sequences of between two and eight bases in length. Understanding the mechanism of this recognition represents a significant challenge that we begin to address for the BsaHI restriction-modification system, which recognises the six base sequence GRCGYC. Results The DNA sequences of the genes for the BsaHI methyltransferase, bsaHIM, and restriction endonuclease, bsaHIR, have been determined (GenBank accession #EU386360), cloned and expressed in E. coli. Both the restriction endonuclease and methyltransferase enzymes share significant similarity with a group of 6 other enzymes comprising the restriction-modification systems HgiDI and HgiGI and the putative HindVP, NlaCORFDP, NpuORFC228P and SplZORFNP restriction-modification systems. A sequence alignment of these homologues shows that their amino acid sequences are largely conserved and highlights several motifs of interest. We target one such conserved motif, reading SPERRFD, at the C-terminal end of the bsaHIR gene. A mutational analysis of these amino acids indicates that the motif is crucial for enzymatic activity. Sequence alignment of the methyltransferase gene reveals a short motif within the target recognition domain that is conserved among enzymes recognising the same sequences. Thus, this motif may be used as a diagnostic tool to define the recognition sequences of the cytosine C5 methyltransferases. Conclusion We have cloned and sequenced the BsaHI restriction and modification enzymes. We have identified a region of the R. BsaHI enzyme that is crucial for its activity. Analysis of the amino acid sequence of the BsaHI methyltransferase enzyme led us to propose two new motifs that can be used in the diagnosis of the recognition sequence of the cytosine C5-methyltransferases. PMID:18479503

  18. Network motifs: simple building blocks of complex networks.

    PubMed

    Milo, R; Shen-Orr, S; Itzkovitz, S; Kashtan, N; Chklovskii, D; Alon, U

    2002-10-25

    Complex networks are studied across many fields of science. To uncover their structural design principles, we defined "network motifs," patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks. We found such motifs in networks from biochemistry, neurobiology, ecology, and engineering. The motifs shared by ecological food webs were distinct from the motifs shared by the genetic networks of Escherichia coli and Saccharomyces cerevisiae or from those found in the World Wide Web. Similar motifs were found in networks that perform information processing, even though they describe elements as different as biomolecules within a cell and synaptic connections between neurons in Caenorhabditis elegans. Motifs may thus define universal classes of networks. This approach may uncover the basic building blocks of most networks. PMID:12399590

  19. A Gibbs sampler for motif detection in phylogenetically close sequences

    NASA Astrophysics Data System (ADS)

    Siddharthan, Rahul; van Nimwegen, Erik; Siggia, Eric

    2004-03-01

    Genes are regulated by transcription factors that bind to DNA upstream of genes and recognize short conserved ``motifs'' in a random intergenic ``background''. Motif-finders such as the Gibbs sampler compare the probability of these short sequences being represented by ``weight matrices'' to the probability of their arising from the background ``null model'', and explore this space (analogous to a free-energy landscape). But closely related species may show conservation not because of functional sites but simply because they have not had sufficient time to diverge, so conventional methods will fail. We introduce a new Gibbs sampler algorithm that accounts for common ancestry when searching for motifs, while requiring minimal ``prior'' assumptions on the number and types of motifs, assessing the significance of detected motifs by ``tracking'' clusters that stay together. We apply this scheme to motif detection in sporulation-cycle genes in the yeast S. cerevisiae, using recent sequences of other closely-related Saccharomyces species.

  20. Network Motifs: Simple Building Blocks of Complex Networks

    NASA Astrophysics Data System (ADS)

    Milo, R.; Shen-Orr, S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon, U.

    2002-10-01

    Complex networks are studied across many fields of science. To uncover their structural design principles, we defined ``network motifs,'' patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks. We found such motifs in networks from biochemistry, neurobiology, ecology, and engineering. The motifs shared by ecological food webs were distinct from the motifs shared by the genetic networks of Escherichia coli and Saccharomyces cerevisiae or from those found in the World Wide Web. Similar motifs were found in networks that perform information processing, even though they describe elements as different as biomolecules within a cell and synaptic connections between neurons in Caenorhabditis elegans. Motifs may thus define universal classes of networks. This approach may uncover the basic building blocks of most networks.

  1. The cysteine-cluster motif of c-Yes, Lyn and FAK as a suppressive module for the kinases.

    PubMed

    Rahman, Mohammad Aminur; Senga, Takeshi; Oo, Myat Lin; Hasegawa, Hitoki; Biswas, Md Helal Uddin; Mon, Naing Naing; Huang, Pengyu; Ito, Satoko; Yamamoto, Tadashi; Hamaguchi, Michinari

    2008-04-01

    The Src family of non-receptor protein tyrosine kinases plays a critical role in the progression of human cancers so that the development of its specific inhibitors is important as a therapeutic tool. We previously reported that cysteine residues in the cysteine-cluster (CC) motif of v-Src were critical for the kinase inactivation by the SH-alkylating agents such as N-(9-acridinyl) maleimide (NAM), whereas other cysteine residues were dispensable. We found similar CC-motifs in other Src-family kinases and a non-Src-family kinase, FAK. In this study, we explored the function of the CC-motif in Yes, Lyn and FAK. While Src has four cysteines in the CC-motif, c-Yes and Lyn have three and two of the four cysteines, respectively. Two conserved cysteines of the Src family kinases, corresponding to Cys487 and Cys498 of Src, were essential for the resistance to the inactivation of the kinase activity by NAM, whereas the first cysteine of c-Yes, which is absent in Lyn, was less important. FAK has similar CC-motifs with two cysteines and both cysteines were again essential for the resistance to the inactivation of the kinase activity by NAM. Taken together, modification of cysteine residues of the CC-motif causes a repressor effect on the catalytic activity of the Src family kinases and FAK.

  2. Detecting DNA regulatory motifs by incorporating positional trendsin information content

    SciTech Connect

    Kechris, Katherina J.; van Zwet, Erik; Bickel, Peter J.; Eisen,Michael B.

    2004-05-04

    On the basis of the observation that conserved positions in transcription factor binding sites are often clustered together, we propose a simple extension to the model-based motif discovery methods. We assign position-specific prior distributions to the frequency parameters of the model, penalizing deviations from a specified conservation profile. Examples with both simulated and real data show that this extension helps discover motifs as the data become noisier or when there is a competing false motif.

  3. STEME: a robust, accurate motif finder for large data sets.

    PubMed

    Reid, John E; Wernisch, Lorenz

    2014-01-01

    Motif finding is a difficult problem that has been studied for over 20 years. Some older popular motif finders are not suitable for analysis of the large data sets generated by next-generation sequencing. We recently published an efficient approximation (STEME) to the EM algorithm that is at the core of many motif finders such as MEME. This approximation allows the EM algorithm to be applied to large data sets. In this work we describe several efficient extensions to STEME that are based on the MEME algorithm. Together with the original STEME EM approximation, these extensions make STEME a fully-fledged motif finder with similar properties to MEME. We discuss the difficulty of objectively comparing motif finders. We show that STEME performs comparably to existing prominent discriminative motif finders, DREME and Trawler, on 13 sets of transcription factor binding data in mouse ES cells. We demonstrate the ability of STEME to find long degenerate motifs which these discriminative motif finders do not find. As part of our method, we extend an earlier method due to Nagarajan et al. for the efficient calculation of motif E-values. STEME's source code is available under an open source license and STEME is available via a web interface. PMID:24625410

  4. Motif content comparison between monocot and dicot species

    PubMed Central

    Cserhati, Matyas

    2015-01-01

    While a number of DNA sequence motifs have been functionally characterized, the full repertoire of motifs in an organism (the motifome) is yet to be characterized. The present study wishes to widen the scope of motif content analysis in different monocot and dicot species that include both rice species, Brachypodium, corn, wheat as monocots and Arabidopsis, Lotus japonica, Medicago truncatula, and Populus tremula as dicots. All possible existing motifs were analyzed in different regions of genomes such as were found in different sets of sequences in these species: the whole genome, core proximal and distal promoters, 5′ and 3′ UTRs, and the 1st introns. Due to the increased number of species involved in this study compared to previous works, species relationships were analyzed based on the similarity of common motif content. Certain secondary structure elements were inferred in the genomes of these species as well as new unknown motifs. The distribution of 20 motifs common to the studied species were found to have a significantly larger occurrence within the promoters and 3′ UTRs of genes, both being regulatory regions. Motifs common to the promoter regions of japonica rice, Brachypodium, and corn were also found in a number of orthologous and paralogous genes. Some of our motifs were found to be complementary to miRNA elements in Brachypodium distachyon and japonica rice. PMID:26484161

  5. Gibbs motif sampling: detection of bacterial outer membrane protein repeats.

    PubMed Central

    Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.

    1995-01-01

    The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488

  6. RNA Sociology: Group Behavioral Motifs of RNA Consortia

    PubMed Central

    Witzany, Guenther

    2014-01-01

    RNA sociology investigates the behavioral motifs of RNA consortia from the social science perspective. Besides the self-folding of RNAs into single stem loop structures, group building of such stem loops results in a variety of essential agents that are highly active in regulatory processes in cellular and non-cellular life. RNA stem loop self-folding and group building do not depend solely on sequence syntax; more important are their contextual (functional) needs. Also, evolutionary processes seem to occur through RNA stem loop consortia that may act as a complement. This means the whole entity functions only if all participating parts are coordinated, although the complementary building parts originally evolved for different functions. If complementary groups, such as rRNAs and tRNAs, are placed together in selective pressure contexts, new evolutionary features may emerge. Evolution initiated by competent agents in natural genome editing clearly contrasts with statistical error replication narratives. PMID:25426799

  7. The HET-S/s Prion Motif in the Control of Programmed Cell Death.

    PubMed

    Riek, Roland; Saupe, Sven J

    2016-01-01

    The [Het-s] prion of the fungus Podospora anserina is a well-studied model system to elucidate the action of prions and beyond. The [Het-s] prion works as an activation trigger of a cell death execution protein termed HET-S. Amyloid transconformation of the prion-forming region of HET-S induces activation of its pore-forming cell death execution HeLo domain. The prion motif functions in a signal transduction process by which a nucleotide-binding oligomerization domain (NOD)-like receptor termed NWD2 controls the HET-S cell death effector. This prion motif thus corresponds to a functional amyloid motif, allowing a conformational crosstalk between homologous motif domains in signal transduction processes that appears to be widespread from the fungal to the mammalian animal kingdoms. This review aims to establish a structure-activity relationship of the HET-S/s prion system and sets it in the context of its wider biological significance. PMID:27352624

  8. Multiplicity and plasticity of natural killer cell signaling pathways

    PubMed Central

    Chiesa, Sabrina; Mingueneau, Michael; Fuseri, Nicolas; Malissen, Bernard; Raulet, David H.; Malissen, Marie; Vivier, Eric; Tomasello, Elena

    2006-01-01

    Natural killer (NK) cells express an array of activating receptors that associate with DAP12 (KARAP), CD3ζ, and/or FcRγ ITAM (immunoreceptor tyrosine-based activation motif)–bearing signaling subunits. In T and mast cells, ITAM-dependent signals are integrated by critical scaffolding elements such as LAT (linker for activation of T cells) and NTAL (non–T-cell activation linker). Using mice that are deficient for ITAM-bearing molecules, LAT or NTAL, we show that NK cell cytotoxicity and interferon-γ secretion are initiated by ITAM-dependent and -independent as well as LAT/NTAL-dependent and -independent pathways. The role of these various signaling circuits depends on the target cell as well as on the activation status of the NK cell. The multiplicity and the plasticity of the pathways that initiate NK cell effector functions contrast with the situation in T cells and B cells and provide an explanation for the resiliency of NK cell effector functions to various pharmacologic inhibitors and genetic mutations in signaling molecules. PMID:16291591

  9. An RNA motif that binds ATP

    NASA Technical Reports Server (NTRS)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  10. Solution NMR characterization of Sgf73(1-104) indicates that Zn ion is required to stabilize zinc finger motif

    SciTech Connect

    Lai, Chaohua; Wu, Minhao; Li, Pan; Shi, Chaowei; Tian, Changlin; Zang, Jianye

    2010-07-02

    Zinc finger motif contains a zinc ion coordinated by several conserved amino acid residues. Yeast Sgf73 protein was identified as a component of SAGA (Spt/Ada/Gcn5 acetyltransferase) multi-subunit complex and Sgf73 protein was known to contain two zinc finger motifs. Sgf73(1-104), containing the first zinc finger motif, was necessary to modulate the deubiquitinase activity of SAGA complex. Here, Sgf73(1-104) was over-expressed using bacterial expression system and purified for solution NMR (nuclear magnetic resonance) structural studies. Secondary structure and site-specific relaxation analysis of Sgf73(1-104) were achieved after solution NMR backbone assignment. Solution NMR and circular dichroism analysis of Sgf73(1-104) after zinc ion removal using chelation reagent EDTA (ethylene-diamine-tetraacetic acid) demonstrated that zinc ion was required to maintain stable conformation of the zinc finger motif.

  11. Isolation of a potential anchoring motif based on proteome analysis of Escherichia coli and its use for cell surface display.

    PubMed

    Yim, Sung Sun; An, Seul Ji; Han, Mee-Jung; Choi, Jae Woong; Jeong, Ki Jun

    2013-06-01

    For bacterial cell surface display, the target protein needs to be linked to an anchoring motif, and it is essential to choose an appropriate anchoring motif for efficient and stable display of the protein on the cell surface. To isolate a potential anchoring motif that would allow a stable and enhanced display of target proteins on the surface of an Escherichia coli host, we analyzed the outer membrane proteome of E. coli. On the basis of this proteomic analysis, the outer membrane protein X (OmpX), which has a small, monomeric β-barrel structure and is highly expressed, was selected as a potential anchoring motif. The role of OmpX as an anchoring motif for cell surface display was demonstrated using three important industrial enzymes: endoxylanase, lipase, and alkaline phosphatase. Two different positions (Lys(122), Val(160)) in the extracellular loops of OmpX were examined for C-terminal fusion, and the biological activities and localization of the displayed enzymes were analyzed. All three enzymes examined were efficiently displayed on the E. coli cell surface with high activity. These results reveal that the use of OmpX as an anchoring motif is an efficient method to display functional enzymes on the surface of an E. coli host.

  12. Encoded expansion: an efficient algorithm to discover identical string motifs.

    PubMed

    Azmi, Aqil M; Al-Ssulami, Abdulrakeeb

    2014-01-01

    A major task in computational biology is the discovery of short recurring string patterns known as motifs. Most of the schemes to discover motifs are either stochastic or combinatorial in nature. Stochastic approaches do not guarantee finding the correct motifs, while the combinatorial schemes tend to have an exponential time complexity with respect to motif length. To alleviate the cost, the combinatorial approach exploits dynamic data structures such as trees or graphs. Recently (Karci (2009) Efficient automatic exact motif discovery algorithms for biological sequences, Expert Systems with Applications 36:7952-7963) devised a deterministic algorithm that finds all the identical copies of string motifs of all sizes [Formula: see text] in theoretical time complexity of [Formula: see text] and a space complexity of [Formula: see text] where [Formula: see text] is the length of the input sequence and [Formula: see text] is the length of the longest possible string motif. In this paper, we present a significant improvement on Karci's original algorithm. The algorithm that we propose reports all identical string motifs of sizes [Formula: see text] that occur at least [Formula: see text] times. Our algorithm starts with string motifs of size 2, and at each iteration it expands the candidate string motifs by one symbol throwing out those that occur less than [Formula: see text] times in the entire input sequence. We use a simple array and data encoding to achieve theoretical worst-case time complexity of [Formula: see text] and a space complexity of [Formula: see text] Encoding of the substrings can speed up the process of comparison between string motifs. Experimental results on random and real biological sequences confirm that our algorithm has indeed a linear time complexity and it is more scalable in terms of sequence length than the existing algorithms. PMID:24871320

  13. Encoded Expansion: An Efficient Algorithm to Discover Identical String Motifs

    PubMed Central

    Azmi, Aqil M.; Al-Ssulami, Abdulrakeeb

    2014-01-01

    A major task in computational biology is the discovery of short recurring string patterns known as motifs. Most of the schemes to discover motifs are either stochastic or combinatorial in nature. Stochastic approaches do not guarantee finding the correct motifs, while the combinatorial schemes tend to have an exponential time complexity with respect to motif length. To alleviate the cost, the combinatorial approach exploits dynamic data structures such as trees or graphs. Recently (Karci (2009) Efficient automatic exact motif discovery algorithms for biological sequences, Expert Systems with Applications 36:7952–7963) devised a deterministic algorithm that finds all the identical copies of string motifs of all sizes in theoretical time complexity of and a space complexity of where is the length of the input sequence and is the length of the longest possible string motif. In this paper, we present a significant improvement on Karci's original algorithm. The algorithm that we propose reports all identical string motifs of sizes that occur at least times. Our algorithm starts with string motifs of size 2, and at each iteration it expands the candidate string motifs by one symbol throwing out those that occur less than times in the entire input sequence. We use a simple array and data encoding to achieve theoretical worst-case time complexity of and a space complexity of Encoding of the substrings can speed up the process of comparison between string motifs. Experimental results on random and real biological sequences confirm that our algorithm has indeed a linear time complexity and it is more scalable in terms of sequence length than the existing algorithms. PMID:24871320

  14. Encoded expansion: an efficient algorithm to discover identical string motifs.

    PubMed

    Azmi, Aqil M; Al-Ssulami, Abdulrakeeb

    2014-01-01

    A major task in computational biology is the discovery of short recurring string patterns known as motifs. Most of the schemes to discover motifs are either stochastic or combinatorial in nature. Stochastic approaches do not guarantee finding the correct motifs, while the combinatorial schemes tend to have an exponential time complexity with respect to motif length. To alleviate the cost, the combinatorial approach exploits dynamic data structures such as trees or graphs. Recently (Karci (2009) Efficient automatic exact motif discovery algorithms for biological sequences, Expert Systems with Applications 36:7952-7963) devised a deterministic algorithm that finds all the identical copies of string motifs of all sizes [Formula: see text] in theoretical time complexity of [Formula: see text] and a space complexity of [Formula: see text] where [Formula: see text] is the length of the input sequence and [Formula: see text] is the length of the longest possible string motif. In this paper, we present a significant improvement on Karci's original algorithm. The algorithm that we propose reports all identical string motifs of sizes [Formula: see text] that occur at least [Formula: see text] times. Our algorithm starts with string motifs of size 2, and at each iteration it expands the candidate string motifs by one symbol throwing out those that occur less than [Formula: see text] times in the entire input sequence. We use a simple array and data encoding to achieve theoretical worst-case time complexity of [Formula: see text] and a space complexity of [Formula: see text] Encoding of the substrings can speed up the process of comparison between string motifs. Experimental results on random and real biological sequences confirm that our algorithm has indeed a linear time complexity and it is more scalable in terms of sequence length than the existing algorithms.

  15. Intrinsically disordered cytoplasmic domains of two cytokine receptors mediate conserved interactions with membranes.

    PubMed

    Haxholm, Gitte W; Nikolajsen, Louise F; Olsen, Johan G; Fredsted, Jacob; Larsen, Flemming H; Goffin, Vincent; Pedersen, Stine F; Brooks, Andrew J; Waters, Michael J; Kragelund, Birthe B

    2015-06-15

    Class 1 cytokine receptors regulate essential biological processes through complex intracellular signalling networks. However, the structural platform for understanding their functions is currently incomplete as structure-function studies of the intracellular domains (ICDs) are critically lacking. The present study provides the first comprehensive structural characterization of any cytokine receptor ICD and demonstrates that the human prolactin (PRL) receptor (PRLR) and growth hormone receptor (GHR) ICDs are intrinsically disordered throughout their entire lengths. We show that they interact specifically with hallmark lipids of the inner plasma membrane leaflet through conserved motifs resembling immuno receptor tyrosine-based activation motifs (ITAMs). However, contrary to the observations made for ITAMs, lipid association of the PRLR and GHR ICDs was shown to be unaccompanied by changes in transient secondary structure and independent of tyrosine phosphorylation. The results of the present study provide a new structural platform for studying class 1 cytokine receptors and may implicate the membrane as an active component regulating intracellular signalling.

  16. Interaction of Individual Structural Domains of hnRNP LL with the BCL2 Promoter i-Motif DNA.

    PubMed

    Roy, Basab; Talukder, Poulami; Kang, Hyun-Jin; Tsuen, Shujian S; Alam, Mohammad P; Hurley, Laurence H; Hecht, Sidney M

    2016-08-31

    The recently discovered role of the BCL2 (B-cell lymphoma 2 gene) promoter i-motif DNA in modulation of gene expression via interaction with the ribonucleoprotein hnRNP L-like (hnRNP LL) has prompted a more detailed study of the nature of this protein-DNA interaction. The RNA recognition motifs (RRMs) of hnRNP LL were expressed individually, and both RRM1 and RRM2 were found to bind efficiently to the BCL2 i-motif DNA, as well as being critical for transcriptional activation, whereas RRM3-4 bound only weakly to this DNA. Binding was followed by unfolding of the DNA as monitored by changes in the CD spectrum. Mutational analysis of the i-motif DNA revealed that binding involved primarily the lateral loops of the i-motif. The kinetics of binding of the DNA with RRM1 was explored by recording CD spectra at predetermined times following admixture of the protein and DNA. The change in molar ellipticity was readily apparent after 30 s and largely complete within 1 min. A more detailed view of protein-DNA interaction was obtained by introducing the fluorescence donor 6-CNTrp in RRM1 at position 137, and the acceptor 4-aminobenzo[g]quinazoline-2-one (Cf) in lieu of cytidine22 in the i-motif DNA. The course of binding of the two species was monitored by FRET, which reflected a steady increase in energy transfer over a period of several minutes. The FRET signal could be diminished by the further addition of (unlabeled) RRM2, no doubt reflecting competition for binding to the i-motif DNA. These experiments using the individual RRM domains from hnRNP LL confirm the role of this transcription factor in activation of BCL2 transcription via the i-motif in the promoter element. PMID:27483029

  17. The Q Motif Is Involved in DNA Binding but Not ATP Binding in ChlR1 Helicase.

    PubMed

    Ding, Hao; Guo, Manhong; Vidhyasagar, Venkatasubramanian; Talwar, Tanu; Wu, Yuliang

    2015-01-01

    Helicases are molecular motors that couple the energy of ATP hydrolysis to the unwinding of structured DNA or RNA and chromatin remodeling. The conversion of energy derived from ATP hydrolysis into unwinding and remodeling is coordinated by seven sequence motifs (I, Ia, II, III, IV, V, and VI). The Q motif, consisting of nine amino acids (GFXXPXPIQ) with an invariant glutamine (Q) residue, has been identified in some, but not all helicases. Compared to the seven well-recognized conserved helicase motifs, the role of the Q motif is less acknowledged. Mutations in the human ChlR1 (DDX11) gene are associated with a unique genetic disorder known as Warsaw Breakage Syndrome, which is characterized by cellular defects in genome maintenance. To examine the roles of the Q motif in ChlR1 helicase, we performed site directed mutagenesis of glutamine to alanine at residue 23 in the Q motif of ChlR1. ChlR1 recombinant protein was overexpressed and purified from HEK293T cells. ChlR1-Q23A mutant abolished the helicase activity of ChlR1 and displayed reduced DNA binding ability. The mutant showed impaired ATPase activity but normal ATP binding. A thermal shift assay revealed that ChlR1-Q23A has a melting point value similar to ChlR1-WT. Partial proteolysis mapping demonstrated that ChlR1-WT and Q23A have a similar globular structure, although some subtle conformational differences in these two proteins are evident. Finally, we found ChlR1 exists and functions as a monomer in solution, which is different from FANCJ, in which the Q motif is involved in protein dimerization. Taken together, our results suggest that the Q motif is involved in DNA binding but not ATP binding in ChlR1 helicase.

  18. Conserved sequence motifs among bacterial, eukaryotic, and archaeal phosphatases that define a new phosphohydrolase superfamily.

    PubMed

    Thaller, M C; Schippa, S; Rossolini, G M

    1998-07-01

    Members of a new molecular family of bacterial nonspecific acid phosphatases (NSAPs), indicated as class C, were found to share significant sequence similarities to bacterial class B NSAPs and to some plant acid phosphatases, representing the first example of a family of bacterial NSAPs that has a relatively close eukaryotic counterpart. Despite the lack of an overall similarity, conserved sequence motifs were also identified among the above enzyme families (class B and class C bacterial NSAPs, and related plant phosphatases) and several other families of phosphohydrolases, including bacterial phosphoglycolate phosphatases, histidinol-phosphatase domains of the bacterial bifunctional enzymes imidazole-glycerolphosphate dehydratases, and bacterial, eukaryotic, and archaeal phosphoserine phosphatases and threalose-6-phosphatases. These conserved motifs are clustered within two domains, separated by a variable spacer region, according to the pattern [FILMAVT]-D-[ILFRMVY]-D-[GSNDE]-[TV]-[ILVAM]-[AT S VILMC]-X-¿YFWHKR)-X-¿YFWHNQ¿-X( 102,191)-¿KRHNQ¿-G-D-¿FYWHILVMC¿-¿QNH¿-¿FWYGP¿-D -¿PSNQYW¿. The dephosphorylating activity common to all these proteins supports the definition of this phosphatase motif and the inclusion of these enzymes into a superfamily of phosphohydrolases that we propose to indicate as "DDDD" after the presence of the four invariant aspartate residues. Database searches retrieved various hypothetical proteins of unknown function containing this or similar motifs, for which a phosphohydrolase activity could be hypothesized.

  19. Structural basis for the indispensable role of a unique zinc finger motif in LNX2 ubiquitination

    PubMed Central

    Nayak, Digant; Sivaraman, J.

    2015-01-01

    LNX (Ligand of Numb Protein-X) proteins, LNX1 and LNX2, are RING- and PDZ-based E3-ubiquitin ligases known to interact with Numb. Silencing of LNX2 has been reported to down-regulate WNT and NOTCH, two key signaling pathways in tumorigenesis. Here we report the identification of the domain boundary of LNX2 to confer its ubiquitination activity, its crystal structure along with functional studies. We show that the RING domain in LNX2 is flanked by two Zinc-binding motifs (Zn-RING-Zn), in which the N-terminal Zinc-binding motif adopts novel conformation. Although this motif follows the typical Cys2His2-type zinc finger configuration, it is devoid of any secondary structure and forms an open circle conformation, which has not been reported yet. This unique N-terminal Zn-finger motif is indispensable for the activity and stability of LNX2, as verified using mutational studies. The Zn-RING-Zn domain of LNX2 is a dimer and assumes a rigid elongated structure that undergoes autoubiquitination and undergoes N-terminal polyubiquitination. The ubiquitin chains consist of all seven possible isopeptide linkages. These results were validated using full-length LNX2. Moreover we have demonstrated the ubiquitination of cell fate determinant protein, Numb by LNX2. Our study provides a structural basis for the functional machinery of LNX2 and thus provides the opportunity to investigate suitable drug targets against LNX2. PMID:26451611

  20. ELM: the status of the 2010 eukaryotic linear motif resource.

    PubMed

    Gould, Cathryn M; Diella, Francesca; Via, Allegra; Puntervoll, Pål; Gemünd, Christine; Chabanis-Davidson, Sophie; Michael, Sushama; Sayadi, Ahmed; Bryne, Jan Christian; Chica, Claudia; Seiler, Markus; Davey, Norman E; Haslam, Niall; Weatheritt, Robert J; Budd, Aidan; Hughes, Tim; Pas, Jakub; Rychlewski, Leszek; Travé, Gilles; Aasland, Rein; Helmer-Citterich, Manuela; Linding, Rune; Gibson, Toby J

    2010-01-01

    Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant, linear motifs are difficult to predict de novo in protein sequences due to the difficulty of obtaining robust statistical assessments. The ELM resource at http://elm.eu.org/ provides an expanding knowledge base, currently covering 146 known motifs, with annotation that includes >1300 experimentally reported instances. ELM is also an exploratory tool for suggesting new candidates of known linear motifs in proteins of interest. Information about protein domains, protein structure and native disorder, cellular and taxonomic contexts is used to reduce or deprecate false positive matches. Results are graphically displayed in a 'Bar Code' format, which also displays known instances from homologous proteins through a novel 'Instance Mapper' protocol based on PHI-BLAST. ELM server output provides links to the ELM annotation as well as to a number of remote resources. Using the links, researchers can explore the motifs, proteins, complex structures and associated literature to evaluate whether candidate motifs might be worth experimental investigation. PMID:19920119

  1. DETAIL VIEW, MAIN ENTRANCE GATES, SHOWING A WINGED HOURGLASS MOTIF, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW, MAIN ENTRANCE GATES, SHOWING A WINGED HOURGLASS MOTIF, WHICH REFERS TO THE QUICK PASSAGE OF TIME AND THE SHORTNESS OF HUMAN LIFE. USE OF THIS MOTIF WAS A CARRYOVER FROM THE MCARTHUR GATES. - Woodlands Cemetery, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  2. Role of GxxxG Motifs in Transmembrane Domain Interactions.

    PubMed

    Teese, Mark G; Langosch, Dieter

    2015-08-25

    Transmembrane (TM) helices of integral membrane proteins can facilitate strong and specific noncovalent protein-protein interactions. Mutagenesis and structural analyses have revealed numerous examples in which the interaction between TM helices of single-pass membrane proteins is dependent on a GxxxG or (small)xxx(small) motif. It is therefore tempting to use the presence of these simple motifs as an indicator of TM helix interactions. In this Current Topic review, we point out that these motifs are quite common, with more than 50% of single-pass TM domains containing a (small)xxx(small) motif. However, the actual interaction strength of motif-containing helices depends strongly on sequence context and membrane properties. In addition, recent studies have revealed several GxxxG-containing TM domains that interact via alternative interfaces involving hydrophobic, polar, aromatic, or even ionizable residues that do not form recognizable motifs. In multipass membrane proteins, GxxxG motifs can be important for protein folding, and not just oligomerization. Our current knowledge thus suggests that the presence of a GxxxG motif alone is a weak predictor of protein dimerization in the membrane. PMID:26244771

  3. The phenomenon of astral motifs on late mediaeval tombstones

    NASA Astrophysics Data System (ADS)

    Mijatović, V.; Ninković, S.; Vemić, D.

    2003-10-01

    The authors study astral motifs present on some mediaeval tombstones found in present-day Serbia and Montenegro and in the neighbouring countries (especially in Bosnia and Herzegovina). The authors discern some important astral motifs, explain them and present a short review concerning their frequency.

  4. Identifying novel sequence variants of RNA 3D motifs

    PubMed Central

    Zirbel, Craig L.; Roll, James; Sweeney, Blake A.; Petrov, Anton I.; Pirrung, Meg; Leontis, Neocles B.

    2015-01-01

    Predicting RNA 3D structure from sequence is a major challenge in biophysics. An important sub-goal is accurately identifying recurrent 3D motifs from RNA internal and hairpin loop sequences extracted from secondary structure (2D) diagrams. We have developed and validated new probabilistic models for 3D motif sequences based on hybrid Stochastic Context-Free Grammars and Markov Random Fields (SCFG/MRF). The SCFG/MRF models are constructed using atomic-resolution RNA 3D structures. To parameterize each model, we use all instances of each motif found in the RNA 3D Motif Atlas and annotations of pairwise nucleotide interactions generated by the FR3D software. Isostericity relations between non-Watson–Crick basepairs are used in scoring sequence variants. SCFG techniques model nested pairs and insertions, while MRF ideas handle crossing interactions and base triples. We use test sets of randomly-generated sequences to set acceptance and rejection thresholds for each motif group and thus control the false positive rate. Validation was carried out by comparing results for four motif groups to RMDetect. The software developed for sequence scoring (JAR3D) is structured to automatically incorporate new motifs as they accumulate in the RNA 3D Motif Atlas when new structures are solved and is available free for download. PMID:26130723

  5. Improved Bioactivity of Antimicrobial Peptides by Addition of Amino-Terminal Copper and Nickel (ATCUN) Binding Motifs

    PubMed Central

    Libardo, M. Daben; Cervantes, Jorge L.; Salazar, Juan C.; Angeles-Boza, Alfredo M.

    2015-01-01

    Antimicrobial peptides (AMPs) are promising candidates to help circumvent antibiotic resistance, which is an increasing clinical problem. Amino-terminal copper and nickel (ATCUN) binding motifs are known to actively form reactive oxygen species (ROS) upon metal binding. The combination of these two peptidic constructs could lead to a novel class of dual-acting antimicrobial agents. To test this hypothesis, a set of ATCUN binding motifs were screened for their ability to induce ROS formation, and the most potent were then used to modify AMPs with different modes of action. ATCUN binding motif-containing derivatives of anoplin (GLLKRIKTLL-NH2), pro-apoptotic peptide (PAP; KLAKLAKKLAKLAK-NH2), and sh-buforin (RAGLQFPVGRVHRLLRK-NH2) were synthesized and found to be more active than the parent AMPs against a panel of clinically relevant bacteria. The lower minimum inhibitory concentration (MIC) values for the ATCUN-anoplin peptides are attributed to the higher pore-forming activity along with their ability to cause ROS-induced membrane damage. The addition of the ATCUN motifs to PAP also increases its ability to disrupt membranes. DNA damage is the major contributor to the activity of the ATCUN-sh-buforin peptides. Our findings indicate that the addition of ATCUN motifs to AMPs is a simple strategy that leads to AMPs with higher antibacterial activity and possibly to more potent, usable antibacterial agents. PMID:24803240

  6. Structure-activity relationships in group 3 metal catalysts for asymmetric intramolecular alkene hydroamination. An investigation of ligands based on the axially chiral 1,1'-binaphthyl-2,2'-diamine motif.

    PubMed

    Lovick, Helena M; An, Duk K; Livinghouse, Thomas S

    2011-08-14

    From a series of N,N'-disubstituted-1,1'-binaphthyl-2,2'-diamines, several group 3 metal complexes were synthesized via an in situ procedure. These chiral complexes were subsequently applied to catalysis of intramolecular alkene hydroamination. Significant structure-activity relationships were observed, most notably a reversal of stereoselectivity for cyclopentyl versus diphenylmethyl substituents. PMID:21709913

  7. De Novo Regulatory Motif Discovery Identifies Significant Motifs in Promoters of Five Classes of Plant Dehydrin Genes

    PubMed Central

    Zolotarov, Yevgen; Strömvik, Martina

    2015-01-01

    Plants accumulate dehydrins in response to osmotic stresses. Dehydrins are divided into five different classes, which are thought to be regulated in different manners. To better understand differences in transcriptional regulation of the five dehydrin classes, de novo motif discovery was performed on 350 dehydrin promoter sequences from a total of 51 plant genomes. Overrepresented motifs were identified in the promoters of five dehydrin classes. The Kn dehydrin promoters contain motifs linked with meristem specific expression, as well as motifs linked with cold/dehydration and abscisic acid response. KS dehydrin promoters contain a motif with a GATA core. SKn and YnSKn dehydrin promoters contain motifs that match elements connected with cold/dehydration, abscisic acid and light response. YnKn dehydrin promoters contain motifs that match abscisic acid and light response elements, but not cold/dehydration response elements. Conserved promoter motifs are present in the dehydrin classes and across different plant lineages, indicating that dehydrin gene regulation is likely also conserved. PMID:26114291

  8. Binding of the Extracellular Eight-Cysteine Motif of Opy2 to the Putative Osmosensor Msb2 Is Essential for Activation of the Yeast High-Osmolarity Glycerol Pathway

    PubMed Central

    Yamamoto, Katsuyoshi

    2015-01-01

    To adapt to environmental high osmolarity, the budding yeast Saccharomyces cerevisiae activates the Hog1 mitogen-activated protein kinase, which regulates diverse osmoadaptive responses. Hog1 is activated through the high-osmolarity glycerol (HOG) pathway, which consists of independent upstream signaling routes termed the SLN1 branch and the SHO1 branch. Here, we report that the extracellular cysteine-rich (CR) domain of the transmembrane-anchor protein Opy2 binds to the Hkr1-Msb2 homology (HMH) domain of the putative osmosensor Msb2 and that formation of the Opy2-Msb2 complex is essential for osmotic activation of Hog1 through the MSB2 subbranch of the SHO1 branch. By analyzing the phenotypes of mutants with Opy2 cysteine-to-alanine mutations, we deduced that the CR domain forms four intramolecular disulfide bonds. To probe for the potential induction of conformational changes in the Opy2-Msb2 complex by osmostress, we constructed mutants with a site-specific Cys-to-Ala mutation of the Opy2 CR domain and mutants with a Cys substitution of the Msb2 HMH domain. Each of these mutants had a reduced cysteine. These mutants were then combinatorially cross-linked using chemical cross-linkers of different lengths. Cross-linking between Opy2 Cys48 and Msb2 Cys1023 was sensitive to osmotic changes, suggesting that osmostress induced a conformational change. We therefore propose that the Opy2-Msb2 complex might serve as an osmosensor. PMID:26598606

  9. Definition of a GC-rich motif as regulatory sequence of the human IL-3 gene: coordinate regulation of the IL-3 gene by CLE2/GC box of the GM-CSF gene in T cell activation.

    PubMed

    Nishida, J; Yoshida, M; Arai, K; Yokota, T

    1991-03-01

    The human IL-3 gene, located on chromosome 5, contains several cis-acting DNA sequences, i.e. CLE (conserved lymphokine element) and a GC-rich region, similar to the GM-CSF gene. To investigate the role of these elements, the 5' flanking region of the IL-3 gene was attached to a bacterial chloramphenicol acetyltransferase (CAT) gene. The fusion plasmids were analyzed by an in vitro transcription system using Jurkat cell nuclear extract prepared from cells stimulated with phorbol-12-myristate-13-acetate and calcium ionophore (PMA/A23187), introduced into Jurkat cells, expressed transiently, and stimulated by co-transfection of human T cell leukemia virus type I (HTLV-I) encoded transactivator, p40tax. The GC-rich region enhanced TATA-dependent transcription in the in vitro transcription system and also strongly responded to p40tax stimulation in the in vivo cotransfection assay. Using this GC-rich region as a probe, we identified a constitutive DNA-protein complex, alpha, whose binding specificity correlates with transcription activity. However, this element is not sufficient for the expression of the IL-3 gene in response to T cell activation signals (PMA/A23187) and no sequence was found within the IL-3 gene which mediates the response to PMA/A23187. The enhancer sequence which responds to T cell activation signals may be located outside the IL-3 gene and may be shared by other lymphokines, possibly by GM-CSF. We propose that the GM-CSF enhancer (CLE2/GC box) which mediates the response to T cell activation signals may stimulate the expression of the IL-3 gene. PMID:2049340

  10. Coregulator control of androgen receptor action by a novel nuclear receptor-binding motif.

    PubMed

    Jehle, Katja; Cato, Laura; Neeb, Antje; Muhle-Goll, Claudia; Jung, Nicole; Smith, Emmanuel W; Buzon, Victor; Carbó, Laia R; Estébanez-Perpiñá, Eva; Schmitz, Katja; Fruk, Ljiljana; Luy, Burkhard; Chen, Yu; Cox, Marc B; Bräse, Stefan; Brown, Myles; Cato, Andrew C B

    2014-03-28

    The androgen receptor (AR) is a ligand-activated transcription factor that is essential for prostate cancer development. It is activated by androgens through its ligand-binding domain (LBD), which consists predominantly of 11 α-helices. Upon ligand binding, the last helix is reorganized to an agonist conformation termed activator function-2 (AF-2) for coactivator binding. Several coactivators bind to the AF-2 pocket through conserved LXXLL or FXXLF sequences to enhance the activity of the receptor. Recently, a small compound-binding surface adjacent to AF-2 has been identified as an allosteric modulator of the AF-2 activity and is termed binding function-3 (BF-3). However, the role of BF-3 in vivo is currently unknown, and little is understood about what proteins can bind to it. Here we demonstrate that a duplicated GARRPR motif at the N terminus of the cochaperone Bag-1L functions through the BF-3 pocket. These findings are supported by the fact that a selective BF-3 inhibitor or mutations within the BF-3 pocket abolish the interaction between the GARRPR motif(s) and the BF-3. Conversely, amino acid exchanges in the two GARRPR motifs of Bag-1L can impair the interaction between Bag-1L and AR without altering the ability of Bag-1L to bind to chromatin. Furthermore, the mutant Bag-1L increases androgen-dependent activation of a subset of AR targets in a genome-wide transcriptome analysis, demonstrating a repressive function of the GARRPR/BF-3 interaction. We have therefore identified GARRPR as a novel BF-3 regulatory sequence important for fine-tuning the activity of the AR.

  11. Tripartite motif 32 prevents pathological cardiac hypertrophy

    PubMed Central

    Huang, Jia; Ji, Yanxiao; Zhang, Xiaojing; Wang, Pixiao; Deng, Keqiong; Jiang, Xi; Ma, Genshan

    2016-01-01

    TRIM32 (tripartite motif 32) is widely accepted to be an E3 ligase that interacts with and eventually ubiquitylates multiple substrates. TRIM32 mutants have been associated with LGMD-2H (limb girdle muscular dystrophy 2H). However, whether TRIM32 is involved in cardiac hypertrophy induced by biomechanical stresses and neurohumoral mediators remains unclear. We generated mice and isolated NRCMs (neonatal rat cardiomyocytes) that overexpressed or were deficient in TRIM32 to investigate the effect of TRIM32 on AB (aortic banding) or AngII (angiotensin II)-mediated cardiac hypertrophy. Echocardiography and both pathological and molecular analyses were used to determine the extent of cardiac hypertrophy and subsequent fibrosis. Our results showed that overexpression of TRIM32 in the heart significantly alleviated the hypertrophic response induced by pressure overload, whereas TRIM32 deficiency dramatically aggravated pathological cardiac remodelling. Similar results were also found in cultured NRCMs incubated with AngII. Mechanistically, the present study suggests that TRIM32 exerts cardioprotective action by interruption of Akt- but not MAPK (mitogen-dependent protein kinase)-dependent signalling pathways. Additionally, inactivation of Akt by LY294002 offset the exacerbated hypertrophic response induced by AB in TRIM32-deficient mice. In conclusion, the present study indicates that TRIM32 plays a protective role in AB-induced pathological cardiac remodelling by blocking Akt-dependent signalling. Therefore TRIM32 could be a novel therapeutic target for the prevention of cardiac hypertrophy and heart failure. PMID:26884348

  12. A motif for infinite metal atom wires.

    PubMed

    Yin, Xi; Warren, Steven A; Pan, Yung-Tin; Tsao, Kai-Chieh; Gray, Danielle L; Bertke, Jeffery; Yang, Hong

    2014-12-15

    A new motif for infinite metal atom wires with tunable compositions and properties is developed based on the connection between metal paddlewheel and square planar complex moieties. Two infinite Pd chain compounds, [Pd4(CO)4(OAc)4Pd(acac)2] 1 and [Pd4(CO)4(TFA)4Pd(acac)2] 2, and an infinite Pd-Pt heterometallic chain compound, [Pd4(CO)4(OAc)4Pt(acac)2] 3, are identified by single-crystal X-ray diffraction analysis. In these new structures, the paddlewheel moiety is a Pd four-membered ring coordinated by bridging carboxylic ligands and μ2 carbonyl ligands. The planar moiety is either Pd(acac)2 or Pt(acac)2 (acac = acetylacetonate). These moieties are connected by metallophilic interactions. The results showed that these one-dimensional metal wire compounds have photoluminescent properties that are tunable by changing ligands and metal ions. 3 can also serve as a single source precursor for making Pd4Pt bimetallic nanostructures with precise control of metal composition.

  13. Temporal motifs reveal collaboration patterns in online task-oriented networks.

    PubMed

    Xuan, Qi; Fang, Huiting; Fu, Chenbo; Filkov, Vladimir

    2015-05-01

    Real networks feature layers of interactions and complexity. In them, different types of nodes can interact with each other via a variety of events. Examples of this complexity are task-oriented social networks (TOSNs), where teams of people share tasks towards creating a quality artifact, such as academic research papers or software development in commercial or open source environments. Accomplishing those tasks involves both work, e.g., writing the papers or code, and communication, to discuss and coordinate. Taking into account the different types of activities and how they alternate over time can result in much more precise understanding of the TOSNs behaviors and outcomes. That calls for modeling techniques that can accommodate both node and link heterogeneity as well as temporal change. In this paper, we report on methodology for finding temporal motifs in TOSNs, limited to a system of two people and an artifact. We apply the methods to publicly available data of TOSNs from 31 Open Source Software projects. We find that these temporal motifs are enriched in the observed data. When applied to software development outcome, temporal motifs reveal a distinct dependency between collaboration and communication in the code writing process. Moreover, we show that models based on temporal motifs can be used to more precisely relate both individual developer centrality and team cohesion to programmer productivity than models based on aggregated TOSNs.

  14. The extended AT-hook is a novel RNA binding motif

    PubMed Central

    Filarsky, Michael; Zillner, Karina; Araya, Ingrid; Villar-Garea, Ana; Merkl, Rainer; Längst, Gernot; Németh, Attila

    2015-01-01

    The AT-hook has been defined as a DNA binding peptide motif that contains a glycine-arginine-proline (G-R-P) tripeptide core flanked by basic amino acids. Recent reports documented variations in the sequence of AT-hooks and revealed RNA binding activity of some canonical AT-hooks, suggesting a higher structural and functional variability of this protein domain than previously anticipated. Here we describe the discovery and characterization of the extended AT-hook peptide motif (eAT-hook), in which basic amino acids appear symmetrical mainly at a distance of 12–15 amino acids from the G-R-P core. We identified 80 human and 60 mouse eAT-hook proteins and biochemically characterized the eAT-hooks of Tip5/BAZ2A, PTOV1 and GPBP1. Microscale thermophoresis and electrophoretic mobility shift assays reveal the nucleic acid binding features of this peptide motif, and show that eAT-hooks bind RNA with one order of magnitude higher affinity than DNA. In addition, cellular localization studies suggest a role for the N-terminal eAT-hook of PTOV1 in nucleocytoplasmic shuttling. In summary, our findings classify the eAT-hook as a novel nucleic acid binding motif, which potentially mediates various RNA-dependent cellular processes. PMID:26156556

  15. Temporal motifs reveal collaboration patterns in online task-oriented networks.

    PubMed

    Xuan, Qi; Fang, Huiting; Fu, Chenbo; Filkov, Vladimir

    2015-05-01

    Real networks feature layers of interactions and complexity. In them, different types of nodes can interact with each other via a variety of events. Examples of this complexity are task-oriented social networks (TOSNs), where teams of people share tasks towards creating a quality artifact, such as academic research papers or software development in commercial or open source environments. Accomplishing those tasks involves both work, e.g., writing the papers or code, and communication, to discuss and coordinate. Taking into account the different types of activities and how they alternate over time can result in much more precise understanding of the TOSNs behaviors and outcomes. That calls for modeling techniques that can accommodate both node and link heterogeneity as well as temporal change. In this paper, we report on methodology for finding temporal motifs in TOSNs, limited to a system of two people and an artifact. We apply the methods to publicly available data of TOSNs from 31 Open Source Software projects. We find that these temporal motifs are enriched in the observed data. When applied to software development outcome, temporal motifs reveal a distinct dependency between collaboration and communication in the code writing process. Moreover, we show that models based on temporal motifs can be used to more precisely relate both individual developer centrality and team cohesion to programmer productivity than models based on aggregated TOSNs. PMID:26066218

  16. Temporal motifs reveal collaboration patterns in online task-oriented networks

    NASA Astrophysics Data System (ADS)

    Xuan, Qi; Fang, Huiting; Fu, Chenbo; Filkov, Vladimir

    2015-05-01

    Real networks feature layers of interactions and complexity. In them, different types of nodes can interact with each other via a variety of events. Examples of this complexity are task-oriented social networks (TOSNs), where teams of people share tasks towards creating a quality artifact, such as academic research papers or software development in commercial or open source environments. Accomplishing those tasks involves both work, e.g., writing the papers or code, and communication, to discuss and coordinate. Taking into account the different types of activities and how they alternate over time can result in much more precise understanding of the TOSNs behaviors and outcomes. That calls for modeling techniques that can accommodate both node and link heterogeneity as well as temporal change. In this paper, we report on methodology for finding temporal motifs in TOSNs, limited to a system of two people and an artifact. We apply the methods to publicly available data of TOSNs from 31 Open Source Software projects. We find that these temporal motifs are enriched in the observed data. When applied to software development outcome, temporal motifs reveal a distinct dependency between collaboration and communication in the code writing process. Moreover, we show that models based on temporal motifs can be used to more precisely relate both individual developer centrality and team cohesion to programmer productivity than models based on aggregated TOSNs.

  17. The extended AT-hook is a novel RNA binding motif.

    PubMed

    Filarsky, Michael; Zillner, Karina; Araya, Ingrid; Villar-Garea, Ana; Merkl, Rainer; Längst, Gernot; Németh, Attila

    2015-01-01

    The AT-hook has been defined as a DNA binding peptide motif that contains a glycine-arginine-proline (G-R-P) tripeptide core flanked by basic amino acids. Recent reports documented variations in the sequence of AT-hooks and revealed RNA binding activity of some canonical AT-hooks, suggesting a higher structural and functional variability of this protein domain than previously anticipated. Here we describe the discovery and characterization of the extended AT-hook peptide motif (eAT-hook), in which basic amino acids appear symmetrical mainly at a distance of 12-15 amino acids from the G-R-P core. We identified 80 human and 60 mouse eAT-hook proteins and biochemically characterized the eAT-hooks of Tip5/BAZ2A, PTOV1 and GPBP1. Microscale thermophoresis and electrophoretic mobility shift assays reveal the nucleic acid binding features of this peptide motif, and show that eAT-hooks bind RNA with one order of magnitude higher affinity than DNA. In addition, cellular localization studies suggest a role for the N-terminal eAT-hook of PTOV1 in nucleocytoplasmic shuttling. In summary, our findings classify the eAT-hook as a novel nucleic acid binding motif, which potentially mediates various RNA-dependent cellular processes.

  18. Triadic motifs in the dependence networks of virtual societies.

    PubMed

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-10

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  19. Triadic motifs in the dependence networks of virtual societies

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  20. Triadic motifs in the dependence networks of virtual societies.

    PubMed

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-01-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs. PMID:24912755

  1. The RXL motif of the African cassava mosaic virus Rep protein is necessary for rereplication of yeast DNA and viral infection in plants

    SciTech Connect

    Hipp, Katharina; Rau, Peter; Schäfer, Benjamin; Gronenborn, Bruno; Jeske, Holger

    2014-08-15

    Geminiviruses, single-stranded DNA plant viruses, encode a replication-initiator protein (Rep) that is indispensable for virus replication. A potential cyclin interaction motif (RXL) in the sequence of African cassava mosaic virus Rep may be an alternative link to cell cycle controls to the known interaction with plant homologs of retinoblastoma protein (pRBR). Mutation of this motif abrogated rereplication in fission yeast induced by expression of wildtype Rep suggesting that Rep interacts via its RXL motif with one or several yeast proteins. The RXL motif is essential for viral infection of Nicotiana benthamiana plants, since mutation of this motif in infectious clones prevented any symptomatic infection. The cell-cycle link (Clink) protein of a nanovirus (faba bean necrotic yellows virus) was investigated that activates the cell cycle by binding via its LXCXE motif to pRBR. Expression of wildtype Clink and a Clink mutant deficient in pRBR-binding did not trigger rereplication in fission yeast. - Highlights: • A potential cyclin interaction motif is conserved in geminivirus Rep proteins. • In ACMV Rep, this motif (RXL) is essential for rereplication of fission yeast DNA. • Mutating RXL abrogated viral infection completely in Nicotiana benthamiana. • Expression of a nanovirus Clink protein in yeast did not induce rereplication. • Plant viruses may have evolved multiple routes to exploit host DNA synthesis.

  2. Eukaryotic penelope-like retroelements encode hammerhead ribozyme motifs.

    PubMed

    Cervera, Amelia; De la Peña, Marcos

    2014-11-01

    Small self-cleaving RNAs, such as the paradigmatic Hammerhead ribozyme (HHR), have been recently found widespread in DNA genomes across all kingdoms of life. In this work, we found that new HHR variants are preserved in the ancient family of Penelope-like elements (PLEs), a group of eukaryotic retrotransposons regarded as exceptional for encoding telomerase-like retrotranscriptases and spliceosomal introns. Our bioinformatic analysis revealed not only the presence of minimalist HHRs in the two flanking repeats of PLEs but also their massive and widespread occurrence in metazoan genomes. The architecture of these ribozymes indicates that they may work as dimers, although their low self-cleavage activity in vitro suggests the requirement of other factors in vivo. In plants, however, PLEs show canonical HHRs, whereas fungi and protist PLEs encode ribozyme variants with a stable active conformation as monomers. Overall, our data confirm the connection of self-cleaving RNAs with eukaryotic retroelements and unveil these motifs as a significant fraction of the encoded information in eukaryotic genomes. PMID:25135949

  3. Notch signaling from the endosome requires a conserved dileucine motif

    PubMed Central

    Zheng, Li; Saunders, Cosmo A.; Sorensen, Erika B.; Waxmonsky, Nicole C.; Conner, Sean D.

    2013-01-01

    Notch signaling is reliant on γ-secretase–mediated processing, although the subcellular location where γ-secretase cleaves Notch to initiate signaling remains unresolved. Accumulating evidence demonstrates that Notch signaling is modulated by endocytosis and endosomal transport. In this study, we investigated the relationship between Notch transport itinerary and signaling capacity. In doing so, we discovered a highly conserved dileucine sorting signal encoded within the cytoplasmic tail that directs Notch to the limiting membrane of the lysosome for signaling. Mutating the dileucine motif led to receptor accumulation in cation-dependent mannose-phosphate receptor–positive tubular early endosomes and a reduction in Notch signaling capacity. Moreover, truncated receptor forms that mimic activated Notch were readily cleaved by γ-secretase within the endosome; however, the cleavage product was proteasome-sensitive and failed to contribute to robust signaling. Collectively these results indicate that Notch signaling from the lysosome limiting membrane is conserved and that receptor targeting to this compartment is an active process. Moreover, the data support a model in which Notch signaling in mammalian systems is initiated from either the plasma membrane or lysosome, but not the early endosome. PMID:23171551

  4. Eukaryotic Penelope-Like Retroelements Encode Hammerhead Ribozyme Motifs

    PubMed Central

    Cervera, Amelia; De la Peña, Marcos

    2014-01-01

    Small self-cleaving RNAs, such as the paradigmatic Hammerhead ribozyme (HHR), have been recently found widespread in DNA genomes across all kingdoms of life. In this work, we found that new HHR variants are preserved in the ancient family of Penelope-like elements (PLEs), a group of eukaryotic retrotransposons regarded as exceptional for encoding telomerase-like retrotranscriptases and spliceosomal introns. Our bioinformatic analysis revealed not only the presence of minimalist HHRs in the two flanking repeats of PLEs but also their massive and widespread occurrence in metazoan genomes. The architecture of these ribozymes indicates that they may work as dimers, although their low self-cleavage activity in vitro suggests the requirement of other factors in vivo. In plants, however, PLEs show canonical HHRs, whereas fungi and protist PLEs encode ribozyme variants with a stable active conformation as monomers. Overall, our data confirm the connection of self-cleaving RNAs with eukaryotic retroelements and unveil these motifs as a significant fraction of the encoded information in eukaryotic genomes. PMID:25135949

  5. Conserved motif of CDK5RAP2 mediates its localization to centrosomes and the Golgi complex.

    PubMed

    Wang, Zhe; Wu, Tao; Shi, Lin; Zhang, Lin; Zheng, Wei; Qu, Jianan Y; Niu, Ruifang; Qi, Robert Z

    2010-07-16

    As the primary microtubule-organizing centers, centrosomes require gamma-tubulin for microtubule nucleation and organization. Located in close vicinity to centrosomes, the Golgi complex is another microtubule-organizing organelle in interphase cells. CDK5RAP2 is a gamma-tubulin complex-binding protein and functions in gamma-tubulin attachment to centrosomes. In this study, we find that CDK5RAP2 localizes to the Golgi complex in an ATP- and centrosome-dependent manner and associates with Golgi membranes independently of microtubules. CDK5RAP2 contains a centrosome-targeting domain with its core region highly homologous to the Motif 2 (CM2) of centrosomin, a functionally related protein in Drosophila. This sequence, referred to as the CM2-like motif, is also conserved in related proteins in chicken and zebrafish. Therefore, CDK5RAP2 may undertake a conserved mechanism for centrosomal localization. Using a mutational approach, we demonstrate that the CM2-like motif plays a crucial role in the centrosomal and Golgi localization of CDK5RAP2. Furthermore, the CM2-like motif is essential for the association of the centrosome-targeting domain to pericentrin and AKAP450. The binding with pericentrin is required for the centrosomal and Golgi localization of CDK5RAP2, whereas the binding with AKAP450 is required for the Golgi localization. Although the CM2-like motif possesses the activity of Ca(2+)-independent calmodulin binding, binding of calmodulin to this sequence is dispensable for centrosomal and Golgi association. Altogether, CDK5RAP2 may represent a novel mechanism for centrosomal and Golgi localization. PMID:20466722

  6. Pioneer Transcription Factors Target Partial DNA Motifs on Nucleosomes to Initiate Reprogramming

    PubMed Central

    Soufi, Abdenour; Garcia, Meilin Fernandez; Jaroszewicz, Artur; Osman, Nebiyu; Pellegrini, Matteo; Zaret, Kenneth S.

    2015-01-01

    SUMMARY Pioneer transcription factors (TFs) access silent chromatin and initiate cell fate changes, using diverse types of DNA binding domains (DBDs). FoxA, the paradigm pioneer TF, has a winged helix DBD that resembles linker histone and thereby binds its target sites on nucleosomes and in compacted chromatin. Herein we compare the nucleosome and chromatin targeting activities of Oct4 (POU DBD), Sox2 (HMG box DBD), Klf4 (zinc finger DBD), and c-Myc (bHLH DBD), which together reprogram somatic cells to pluripotency. Purified Oct4, Sox2, and Klf4 proteins can bind nucleosomes in vitro, and in vivo they preferentially target silent sites enriched for nucleosomes. Pioneer activity relates simply to the ability of a given DBD to target partial motifs displayed on the nucleosome surface. Such partial motif recognition can occur by coordinate binding between factors. Our findings provide insight into how pioneer factors can target naïve chromatin sites. PMID:25892221

  7. A million peptide motifs for the molecular biologist.

    PubMed

    Tompa, Peter; Davey, Norman E; Gibson, Toby J; Babu, M Madan

    2014-07-17

    A molecular description of functional modules in the cell is the focus of many high-throughput studies in the postgenomic era. A large portion of biomolecular interactions in virtually all cellular processes is mediated by compact interaction modules, referred to as peptide motifs. Such motifs are typically less than ten residues in length, occur within intrinsically disordered regions, and are recognized and/or posttranslationally modified by structured domains of the interacting partner. In this review, we suggest that there might be over a million instances of peptide motifs in the human proteome. While this staggering number suggests that peptide motifs are numerous and the most understudied functional module in the cell, it also holds great opportunities for new discoveries. PMID:25038412

  8. Local graph alignment and motif search in biological networks

    NASA Astrophysics Data System (ADS)

    Berg, Johannes; Lässig, Michael

    2004-10-01

    Interaction networks are of central importance in postgenomic molecular biology, with increasing amounts of data becoming available by high-throughput methods. Examples are gene regulatory networks or protein interaction maps. The main challenge in the analysis of these data is to read off biological functions from the topology of the network. Topological motifs, i.e., patterns occurring repeatedly at different positions in the network, have recently been identified as basic modules of molecular information processing. In this article, we discuss motifs derived from families of mutually similar but not necessarily identical patterns. We establish a statistical model for the occurrence of such motifs, from which we derive a scoring function for their statistical significance. Based on this scoring function, we develop a search algorithm for topological motifs called graph alignment, a procedure with some analogies to sequence alignment. The algorithm is applied to the gene regulation network of Escherichia coli.

  9. DETAIL OF CORNICE MOULDING WITH RAM'S HEAD MOTIF. EIGHT SHADES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF CORNICE MOULDING WITH RAM'S HEAD MOTIF. EIGHT SHADES OF GOLD LEAF AND BURNISHED GOLD LEAF WERE USED FOR THE INTERIOR FINISHES. - Anaconda Historic District, Washoe Theater, 305 Main Street, Anaconda, Deer Lodge County, MT

  10. 10. DETAIL OF CORNICE MOULDING WITH RAM'S HEAD MOTIF. EIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL OF CORNICE MOULDING WITH RAM'S HEAD MOTIF. EIGHT SHADES OF GOLD LEAF AND BURNISHED GOLD LEAF WERE USED FOR THE INTERIOR FINISHES - Anaconda Historic District, Washoe Theater, 305 Main Street, Anaconda, Deer Lodge County, MT

  11. Transmembrane helix dimerization: beyond the search for sequence motifs.

    PubMed

    Li, Edwin; Wimley, William C; Hristova, Kalina

    2012-02-01

    Studies of the dimerization of transmembrane (TM) helices have been ongoing for many years now, and have provided clues to the fundamental principles behind membrane protein (MP) folding. Our understanding of TM helix dimerization has been dominated by the idea that sequence motifs, simple recognizable amino acid sequences that drive lateral interaction, can be used to explain and predict the lateral interactions between TM helices in membrane proteins. But as more and more unique interacting helices are characterized, it is becoming clear that the sequence motif paradigm is incomplete. Experimental evidence suggests that the search for sequence motifs, as mediators of TM helix dimerization, cannot solve the membrane protein folding problem alone. Here we review the current understanding in the field, as it has evolved from the paradigm of sequence motifs into a view in which the interactions between TM helices are much more complex. This article is part of a Special Issue entitled: Membrane protein structure and function.

  12. Macrocyclization of the ATCUN Motif Controls Metal Binding and Catalysis

    PubMed Central

    Neupane, Kosh P.; Aldous, Amanda R.; Kritzer, Joshua A.

    2013-01-01

    We report the design, synthesis and characterization of macrocyclic analogs of the amino-terminal copper and nickel binding (ATCUN) motif. These macrocycles have altered pH transitions for metal binding, and unlike linear ATCUN motifs, the optimal cyclic peptide 1 binds Cu(II) selectively over Ni(II) at physiological pH. UV-vis and EPR spectroscopy showed that cyclic peptide 1 can coordinate Cu(II) or Ni(II) in a square planar geometry. Metal binding titration and ESI-MS data revealed a 1:1 binding stoichiometry. Macrocyclization allows for coordination of Cu(II) or Ni(II) as in linear ATCUN motifs, but with enhanced DNA cleavage by the Cu(II)-1 complex relative to linear analogs. The Cu(II)-1 complex was also capable of producing diffusible hydroxyl radicals, which is unique among ATCUN motifs and most other common copper(II) chelators. PMID:23421754

  13. Direct vs 2-stage approaches to structured motif finding

    PubMed Central

    2012-01-01

    Background The notion of DNA motif is a mathematical abstraction used to model regions of the DNA (known as Transcription Factor Binding Sites, or TFBSs) that are bound by a given Transcription Factor to regulate gene expression or repression. In turn, DNA structured motifs are a mathematical counterpart that models sets of TFBSs that work in concert in the gene regulations processes of higher eukaryotic organisms. Typically, a structured motif is composed of an ordered set of isolated (or simple) motifs, separated by a variable, but somewhat constrained number of “irrelevant” base-pairs. Discovering structured motifs in a set of DNA sequences is a computationally hard problem that has been addressed by a number of authors using either a direct approach, or via the preliminary identification and successive combination of simple motifs. Results We describe a computational tool, named SISMA, for the de-novo discovery of structured motifs in a set of DNA sequences. SISMA is an exact, enumerative algorithm, meaning that it finds all the motifs conforming to the specifications. It does so in two stages: first it discovers all the possible component simple motifs, then combines them in a way that respects the given constraints. We developed SISMA mainly with the aim of understanding the potential benefits of such a 2-stage approach w.r.t. direct methods. In fact, no 2-stage software was available for the general problem of structured motif discovery, but only a few tools that solved restricted versions of the problem. We evaluated SISMA against other published tools on a comprehensive benchmark made of both synthetic and real biological datasets. In a significant number of cases, SISMA outperformed the competitors, exhibiting a good performance also in most of the cases in which it was inferior. Conclusions A reflection on the results obtained lead us to conclude that a 2-stage approach can be implemented with many advantages over direct approaches. Some of these

  14. Network motif-based method for identifying coronary artery disease

    PubMed Central

    LI, YIN; CONG, YAN; ZHAO, YUN

    2016-01-01

    The present study aimed to develop a more efficient method for identifying coronary artery disease (CAD) than the conventional method using individual differentially expressed genes (DEGs). GSE42148 gene microarray data were downloaded, preprocessed and screened for DEGs. Additionally, based on transcriptional regulation data obtained from ENCODE database and protein-protein interaction data from the HPRD, the common genes were downloaded and compared with genes annotated from gene microarrays to screen additional common genes in order to construct an integrated regulation network. FANMOD was then used to detect significant three-gene network motifs. Subsequently, GlobalAncova was used to screen differential three-gene network motifs between the CAD group and the normal control data from GSE42148. Genes involved in the differential network motifs were then subjected to functional annotation and pathway enrichment analysis. Finally, clustering analysis of the CAD and control samples was performed based on individual DEGs and the top 20 network motifs identified. In total, 9,008 significant three-node network motifs were detected from the integrated regulation network; these were categorized into 22 interaction modes, each containing a minimum of one transcription factor. Subsequently, 1,132 differential network motifs involving 697 genes were screened between the CAD and control group. The 697 genes were enriched in 154 gene ontology terms, including 119 biological processes, and 14 KEGG pathways. Identifying patients with CAD based on the top 20 network motifs provided increased accuracy compared with the conventional method based on individual DEGs. The results of the present study indicate that the network motif-based method is more efficient and accurate for identifying CAD patients than the conventional method based on individual DEGs. PMID:27347046

  15. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.

    PubMed

    Roy, Indranil; Aluru, Srinivas

    2016-01-01

    Finding approximately conserved sequences, called motifs, across multiple DNA or protein sequences is an important problem in computational biology. In this paper, we consider the (l, d) motif search problem of identifying one or more motifs of length l present in at least q of the n given sequences, with each occurrence differing from the motif in at most d substitutions. The problem is known to be NP-complete, and the largest solved instance reported to date is (26,11). We propose a novel algorithm for the (l,d) motif search problem using streaming execution over a large set of non-deterministic finite automata (NFA). This solution is designed to take advantage of the micron automata processor, a new technology close to deployment that can simultaneously execute multiple NFA in parallel. We demonstrate the capability for solving much larger instances of the (l, d) motif search problem using the resources available within a single automata processor board, by estimating run-times for problem instances (39,18) and (40,17). The paper serves as a useful guide to solving problems using this new accelerator technology. PMID:26886735

  16. An experimental test of a fundamental food web motif.

    PubMed

    Rip, Jason M K; McCann, Kevin S; Lynn, Denis H; Fawcett, Sonia

    2010-06-01

    Large-scale changes to the world's ecosystem are resulting in the deterioration of biostructure-the complex web of species interactions that make up ecological communities. A difficult, yet crucial task is to identify food web structures, or food web motifs, that are the building blocks of this baroque network of interactions. Once identified, these food web motifs can then be examined through experiments and theory to provide mechanistic explanations for how structure governs ecosystem stability. Here, we synthesize recent ecological research to show that generalist consumers coupling resources with different interaction strengths, is one such motif. This motif amazingly occurs across an enormous range of spatial scales, and so acts to distribute coupled weak and strong interactions throughout food webs. We then perform an experiment that illustrates the importance of this motif to ecological stability. We find that weak interactions coupled to strong interactions by generalist consumers dampen strong interaction strengths and increase community stability. This study takes a critical step by isolating a common food web motif and through clear, experimental manipulation, identifies the fundamental stabilizing consequences of this structure for ecological communities. PMID:20129988

  17. An experimental test of a fundamental food web motif

    PubMed Central

    Rip, Jason M. K.; McCann, Kevin S.; Lynn, Denis H.; Fawcett, Sonia

    2010-01-01

    Large-scale changes to the world's ecosystem are resulting in the deterioration of biostructure—the complex web of species interactions that make up ecological communities. A difficult, yet crucial task is to identify food web structures, or food web motifs, that are the building blocks of this baroque network of interactions. Once identified, these food web motifs can then be examined through experiments and theory to provide mechanistic explanations for how structure governs ecosystem stability. Here, we synthesize recent ecological research to show that generalist consumers coupling resources with different interaction strengths, is one such motif. This motif amazingly occurs across an enormous range of spatial scales, and so acts to distribute coupled weak and strong interactions throughout food webs. We then perform an experiment that illustrates the importance of this motif to ecological stability. We find that weak interactions coupled to strong interactions by generalist consumers dampen strong interaction strengths and increase community stability. This study takes a critical step by isolating a common food web motif and through clear, experimental manipulation, identifies the fundamental stabilizing consequences of this structure for ecological communities. PMID:20129988

  18. cWINNOWER Algorithm for Finding Fuzzy DNA Motifs

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan

    2003-01-01

    The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if multiple mutated copies of the motif (i.e., the signals) are present in the DNA sequence in sufficient abundance. The cWINNOWER algorithm substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a consensus constraint, enabling it to detect much weaker signals. We studied the minimum number of detectable motifs qc as a function of sequence length N for random sequences. We found that qc increases linearly with N for a fast version of the algorithm based on counting three-member sub-cliques. Imposing consensus constraints reduces qc, by a factor of three in this case, which makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of length N = 12000 for (l,d) = (15,4).

  19. Survey on the PABC recognition motif PAM2.

    PubMed

    Albrecht, Mario; Lengauer, Thomas

    2004-03-26

    The PABP-interacting motif PAM2 has been identified in various eukaryotic proteins as an important binding site for the PABC domain. This domain is contained in homologs of the poly(A)-binding protein PABP and the ubiquitin-protein ligase HYD. Despite the importance of the PAM2 motif, a comprehensive analysis of its occurrence in different proteins has been missing. Using iterated sequence profile searches, we obtained an extensive list of proteins carrying the PAM2 motif. We discuss their functional context and domain architecture, which often consists of RNA-binding domains. Our list of PAM2 motif proteins includes eukaryotic homologs of eRF3/GSPT1/2, PAIP1/2, Tob1/2, Ataxin-2, RBP37, RBP1, Blackjack, HELZ, TPRD, USP10, ERD15, C1D4.14, and the viral protease P29. The identification of the PAM2 motif in as yet uncharacterized proteins can give valuable hints with respect to their cellular function and potential interaction partners and suggests further experimentation. It is also striking that the PAM2 motif appears to occur solely outside globular protein domains.

  20. PRINTS--a database of protein motif fingerprints.

    PubMed

    Attwood, T K; Beck, M E; Bleasby, A J; Parry-Smith, D J

    1994-09-01

    PRINTS is a compendium of protein motif 'fingerprints'. A fingerprint is defined as a group of motifs excised from conserved regions of a sequence alignment, whose diagnostic power or potency is refined by iterative databasescanning (in this case the OWL composite sequence database). Generally, the motifs do not overlap, but are separated along a sequence, though they may be contiguous in 3D-space. The use of groups of independent, linearly- or spatially-distinct motifs allows protein folds and functionalities to be characterised more flexibly and powerfully than conventional single-component patterns or regular expressions. The current version of the database contains 200 entries (encoding 950 motifs), covering a wide range of globular and membrane proteins, modular polypeptides, and so on. The growth of the databaseis influenced by a number of factors; e.g. the use of multiple motifs; the maximisation of sequence information through iterative database scanning; and the fact that the database searched is a large composite. The information contained within PRINTS is distinct from, but complementary to the consensus expressions stored in the widely-used PROSITE dictionary of patterns.

  1. Homing in on the role of transition metals in the HNH motif of colicin endonucleases.

    PubMed

    Pommer, A J; Kühlmann, U C; Cooper, A; Hemmings, A M; Moore, G R; James, R; Kleanthous, C

    1999-09-17

    The cytotoxic domain of the bacteriocin colicin E9 (the E9 DNase) is a nonspecific endonuclease that must traverse two membranes to reach its cellular target, bacterial DNA. Recent structural studies revealed that the active site of colicin DNases encompasses the HNH motif found in homing endonucleases, and bound within this motif a single transition metal ion (either Zn(2+) or Ni(2+)) the role of which is unknown. In the present work we find that neither Zn(2+) nor Ni(2+) is required for DNase activity, which instead requires Mg(2+) ions, but binding transition metals to the E9 DNase causes subtle changes to both secondary and tertiary structure. Spectroscopic, proteolytic, and calorimetric data show that, accompanying the binding of 1 eq of Zn(2+), Ni(2+), or Co(2+), the thermodynamic stability of the domain increased substantially, and that the equilibrium dissociation constant for Zn(2+) was less than or equal to nanomolar, while that for Co(2+) and Ni (2+) was micromolar. Our data demonstrate that the transition metal is not essential for colicin DNase activity but rather serves a structural role. We speculate that the HNH motif has been adapted for use by endonuclease colicins because of its involvement in DNA recognition and because removal of the bound metal ion destabilizes the DNase domain, a likely prerequisite for its translocation across bacterial membranes.

  2. Motif mimetic of epsin perturbs tumor growth and metastasis

    PubMed Central

    Dong, Yunzhou; Wu, Hao; Rahman, H.N. Ashiqur; Liu, Yanjun; Pasula, Satish; Tessneer, Kandice L.; Cai, Xiaofeng; Liu, Xiaolei; Chang, Baojun; McManus, John; Hahn, Scott; Dong, Jiali; Brophy, Megan L.; Yu, Lili; Song, Kai; Silasi-Mansat, Robert; Saunders, Debra; Njoku, Charity; Song, Hoogeun; Mehta-D’Souza, Padmaja; Towner, Rheal; Lupu, Florea; McEver, Rodger P.; Xia, Lijun; Boerboom, Derek; Srinivasan, R. Sathish; Chen, Hong

    2015-01-01

    Tumor angiogenesis is critical for cancer progression. In multiple murine models, endothelium-specific epsin deficiency abrogates tumor progression by shifting the balance of VEGFR2 signaling toward uncontrolled tumor angiogenesis, resulting in dysfunctional tumor vasculature. Here, we designed a tumor endothelium–targeting chimeric peptide (UPI) for the purpose of inhibiting endogenous tumor endothelial epsins by competitively binding activated VEGFR2. We determined that the UPI peptide specifically targets tumor endothelial VEGFR2 through an unconventional binding mechanism that is driven by unique residues present only in the epsin ubiquitin–interacting motif (UIM) and the VEGFR2 kinase domain. In murine models of neoangiogenesis, UPI peptide increased VEGF-driven angiogenesis and neovascularization but spared quiescent vascular beds. Further, in tumor-bearing mice, UPI peptide markedly impaired functional tumor angiogenesis, tumor growth, and metastasis, resulting in a notable increase in survival. Coadministration of UPI peptide with cytotoxic chemotherapeutics further sustained tumor inhibition. Equipped with localized tumor endothelium–specific targeting, our UPI peptide provides potential for an effective and alternative cancer therapy. PMID:26571402

  3. Squash inhibitors: from structural motifs to macrocyclic knottins.

    PubMed

    Chiche, Laurent; Heitz, Annie; Gelly, Jean-Christophe; Gracy, Jérôme; Chau, Pham T T; Ha, Phan T; Hernandez, Jean-François; Le-Nguyen, Dung

    2004-10-01

    In this article, we will first introduce the squash inhibitor, a well established family of highly potent canonical serine proteinase inhibitors isolated from Cucurbitaceae. The squash inhibitors were among the first discovered proteins with the typical knottin fold shared by numerous peptides extracted from plants, animals and fungi. Knottins contain three knotted disulfide bridges, two of them arranged as a Cystine-Stabilized Beta-sheet motif. In contrast to cyclotides for which no natural linear homolog is known, most squash inhibitors are linear. However, Momordica cochinchinensis Trypsin Inhibitor-I and (MCoTI-I and -II), 34-residue squash inhibitors isolated from seeds of a common Cucurbitaceae from Vietnam, were recently shown to be macrocyclic. In these circular squash inhibitors, a short peptide linker connects residues that correspond to the N- and C-termini in homologous linear squash inhibitors. In this review we present the isolation, characterization, chemical synthesis, and activity of these macrocyclic knottins. The solution structure of MCoTI-II will be compared with topologically similar cyclotides, homologous linear squash inhibitors and other knottins, and potential applications of such scaffolds will be discussed. PMID:15551519

  4. Squash inhibitors: from structural motifs to macrocyclic knottins.

    PubMed

    Chiche, Laurent; Heitz, Annie; Gelly, Jean-Christophe; Gracy, Jérôme; Chau, Pham T T; Ha, Phan T; Hernandez, Jean-François; Le-Nguyen, Dung

    2004-10-01

    In this article, we will first introduce the squash inhibitor, a well established family of highly potent canonical serine proteinase inhibitors isolated from Cucurbitaceae. The squash inhibitors were among the first discovered proteins with the typical knottin fold shared by numerous peptides extracted from plants, animals and fungi. Knottins contain three knotted disulfide bridges, two of them arranged as a Cystine-Stabilized Beta-sheet motif. In contrast to cyclotides for which no natural linear homolog is known, most squash inhibitors are linear. However, Momordica cochinchinensis Trypsin Inhibitor-I and (MCoTI-I and -II), 34-residue squash inhibitors isolated from seeds of a common Cucurbitaceae from Vietnam, were recently shown to be macrocyclic. In these circular squash inhibitors, a short peptide linker connects residues that correspond to the N- and C-termini in homologous linear squash inhibitors. In this review we present the isolation, characterization, chemical synthesis, and activity of these macrocyclic knottins. The solution structure of MCoTI-II will be compared with topologically similar cyclotides, homologous linear squash inhibitors and other knottins, and potential applications of such scaffolds will be discussed.

  5. Motif types, motif locations and base composition patterns around the RNA polyadenylation site in microorganisms, plants and animals

    PubMed Central

    2014-01-01

    Background The polyadenylation of RNA is critical for gene functioning, but the conserved sequence motifs (often called signal or signature motifs), motif locations and abundances, and base composition patterns around mRNA polyadenylation [poly(A)] sites are still uncharacterized in most species. The evolutionary tendency for poly(A) site selection is still largely unknown. Results We analyzed the poly(A) site regions of 31 species or phyla. Different groups of species showed different poly(A) signal motifs: UUACUU at the poly(A) site in the parasite Trypanosoma cruzi; UGUAAC (approximately 13 bases upstream of the site) in the alga Chlamydomonas reinhardtii; UGUUUG (or UGUUUGUU) at mainly the fourth base downstream of the poly(A) site in the parasite Blastocystis hominis; and AAUAAA at approximately 16 bases and approximately 19 bases upstream of the poly(A) site in animals and plants, respectively. Polyadenylation signal motifs are usually several hundred times more abundant around poly(A) sites than in whole genomes. These predominant motifs usually had very specific locations, whether upstream of, at, or downstream of poly(A) sites, depending on the species or phylum. The poly(A) site was usually an adenosine (A) in all analyzed species except for B. hominis, and there was weak A predominance in C. reinhardtii. Fungi, animals, plants, and the protist Phytophthora infestans shared a general base abundance pattern (or base composition pattern) of “U-rich—A-rich—U-rich—Poly(A) site—U-rich regions”, or U-A-U-A-U for short, with some variation for each kingdom or subkingdom. Conclusion This study identified the poly(A) signal motifs, motif locations, and base composition patterns around mRNA poly(A) sites in protists, fungi, plants, and animals and provided insight into poly(A) site evolution. PMID:25052519

  6. Sequence Motifs in Transit Peptides Act as Independent Functional Units and Can Be Transferred to New Sequence Contexts.

    PubMed

    Lee, Dong Wook; Woo, Seungjin; Geem, Kyoung Rok; Hwang, Inhwan

    2015-09-01

    A large number of nuclear-encoded proteins are imported into chloroplasts after they are translated in the cytosol. Import is mediated by transit peptides (TPs) at the N termini of these proteins. TPs contain many small motifs, each of which is critical for a specific step in the process of chloroplast protein import; however, it remains unknown how these motifs are organized to give rise to TPs with diverse sequences. In this study, we generated various hybrid TPs by swapping domains between Rubisco small subunit (RbcS) and chlorophyll a/b-binding protein, which have highly divergent sequences, and examined the abilities of the resultant TPs to deliver proteins into chloroplasts. Subsequently, we compared the functionality of sequence motifs in the hybrid TPs with those of wild-type TPs. The sequence motifs in the hybrid TPs exhibited three different modes of functionality, depending on their domain composition, as follows: active in both wild-type and hybrid TPs, active in wild-type TPs but inactive in hybrid TPs, and inactive in wild-type TPs but active in hybrid TPs. Moreover, synthetic TPs, in which only three critical motifs from RbcS or chlorophyll a/b-binding protein TPs were incorporated into an unrelated sequence, were able to deliver clients to chloroplasts with a comparable efficiency to RbcS TP. Based on these results, we propose that diverse sequence motifs in TPs are independent functional units that interact with specific translocon components at various steps during protein import and can be transferred to new sequence contexts. PMID:26149569

  7. Combinations of various CpG motifs cloned into plasmid backbone modulate and enhance protective immunity of viral replicon DNA anthrax vaccines.

    PubMed

    Yu, Yun-Zhou; Ma, Yao; Xu, Wen-Hui; Wang, Shuang; Sun, Zhi-Wei

    2015-08-01

    DNA vaccines are generally weak stimulators of the immune system. Fortunately, their efficacy can be improved using a viral replicon vector or by the addition of immunostimulatory CpG motifs, although the design of these engineered DNA vectors requires optimization. Our results clearly suggest that multiple copies of three types of CpG motifs or combinations of various types of CpG motifs cloned into a viral replicon vector backbone with strong immunostimulatory activities on human PBMC are efficient adjuvants for these DNA vaccines to modulate and enhance protective immunity against anthrax, although modifications with these different CpG forms in vivo elicited inconsistent immune response profiles. Modification with more copies of CpG motifs elicited more potent adjuvant effects leading to the generation of enhanced immunity, which indicated a CpG motif dose-dependent enhancement of antigen-specific immune responses. Notably, the enhanced and/or synchronous adjuvant effects were observed in modification with combinations of two different types of CpG motifs, which provides not only a contribution to the knowledge base on the adjuvant activities of CpG motifs combinations but also implications for the rational design of optimal DNA vaccines with combinations of CpG motifs as "built-in" adjuvants. We describe an efficient strategy to design and optimize DNA vaccines by the addition of combined immunostimulatory CpG motifs in a viral replicon DNA plasmid to produce strong immune responses, which indicates that the CpG-modified viral replicon DNA plasmid may be desirable for use as vector of DNA vaccines.

  8. Crystallization and Preliminary X-ray Diffraction Analysis of motif N from Saccharomyces cerevisiae Dbf4

    SciTech Connect

    Matthews, L.; Duong, A; Prasad, A; Duncker, B; Guarne, A

    2009-01-01

    The Cdc7-Dbf4 complex plays an instrumental role in the initiation of DNA replication and is a target of replication-checkpoint responses in Saccharomyces cerevisiae. Cdc7 is a conserved serine/threonine kinase whose activity depends on association with its regulatory subunit, Dbf4. A conserved sequence near the N-terminus of Dbf4 (motif N) is necessary for the interaction of Cdc7-Dbf4 with the checkpoint kinase Rad53. To understand the role of the Cdc7-Dbf4 complex in checkpoint responses, a fragment of Saccharomyces cerevisiae Dbf4 encompassing motif N was isolated, overproduced and crystallized. A complete native data set was collected at 100 K from crystals that diffracted X-rays to 2.75 {angstrom} resolution and structure determination is currently under way.

  9. Edge usage, motifs, and regulatory logic for cell cycling genetic networks

    NASA Astrophysics Data System (ADS)

    Zagorski, M.; Krzywicki, A.; Martin, O. C.

    2013-01-01

    The cell cycle is a tightly controlled process, yet it shows marked differences across species. Which of its structural features follow solely from the ability to control gene expression? We tackle this question in silico by examining the ensemble of all regulatory networks which satisfy the constraint of producing a given sequence of gene expressions. We focus on three cell cycle profiles coming from baker's yeast, fission yeast, and mammals. First, we show that the networks in each of the ensembles use just a few interactions that are repeatedly reused as building blocks. Second, we find an enrichment in network motifs that is similar in the two yeast cell cycle systems investigated. These motifs do not have autonomous functions, yet they reveal a regulatory logic for cell cycling based on a feed-forward cascade of activating interactions.

  10. The TAGteam motif facilitates binding of 21 sequence-specific transcription factors in the Drosophila embryo

    PubMed Central

    Satija, Rahul; Bradley, Robert K.

    2012-01-01

    Highly overlapping patterns of genome-wide binding of many distinct transcription factors have been observed in worms, insects, and mammals, but the origins and consequences of this overlapping binding remain unclear. While analyzing chromatin immunoprecipitation data sets from 21 sequence-specific transcription factors active in the Drosophila embryo, we found that binding of all factors exhibits a dose-dependent relationship with “TAGteam” sequence motifs bound by the zinc finger protein Vielfaltig, also known as Zelda, a recently discovered activator of the zygotic genome. TAGteam motifs are present and well conserved in highly bound regions, and are associated with transcription factor binding even in the absence of canonical recognition motifs for these factors. Furthermore, levels of binding in promoters and enhancers of zygotically transcribed genes are correlated with RNA polymerase II occupancy and gene expression levels. Our results suggest that Vielfaltig acts as a master regulator of early development by facilitating the genome-wide establishment of overlapping patterns of binding of diverse transcription factors that drive global gene expression. PMID:22247430

  11. Role of conserved intracellular motifs in Serrate signalling, cis-inhibition and endocytosis

    PubMed Central

    Glittenberg, Marcus; Pitsouli, Chrysoula; Garvey, Clare; Delidakis, Christos; Bray, Sarah

    2006-01-01

    Notch is the receptor in a signalling pathway that operates in a diverse spectrum of developmental processes. Its ligands (e.g. Serrate) are transmembrane proteins whose signalling competence is regulated by the endocytosis-promoting E3 ubiquitin ligases, Mindbomb1 and Neuralized. The ligands also inhibit Notch present in the same cell (cis-inhibition). Here, we identify two conserved motifs in the intracellular domain of Serrate that are required for efficient endocytosis. The first, a dileucine motif, is dispensable for trans-activation and cis-inhibition despite the endocytic defect, demonstrating that signalling can be separated from bulk endocytosis. The second, a novel motif, is necessary for interactions with Mindbomb1/Neuralized and is strictly required for Serrate to trans-activate and internalise efficiently but not for it to inhibit Notch signalling. Cis-inhibition is compromised when an ER retention signal is added to Serrate, or when the levels of Neuralized are increased, and together these data indicate that cis-inhibitory interactions occur at the cell surface. The balance of ubiquitinated/unubiquitinated ligand will thus affect the signalling capacity of the cell at several levels. PMID:17006545

  12. Network-dosage compensation topologies as recurrent network motifs in natural gene networks

    PubMed Central

    2014-01-01

    Background Global noise in gene expression and chromosome duplication during cell-cycle progression cause inevitable fluctuations in the effective number of copies of gene networks in cells. These indirect and direct alterations of network copy numbers have the potential to change the output or activity of a gene network. For networks whose specific activity levels are crucial for optimally maintaining cellular functions, cells need to implement mechanisms to robustly compensate the effects of network dosage fluctuations. Results Here, we determine the necessary conditions for generalized N-component gene networks to be network-dosage compensated and show that the compensation mechanism can robustly operate over large ranges of gene expression levels. Furthermore, we show that the conditions that are necessary for network-dosage compensation are also sufficient. Finally, using genome-wide protein-DNA and protein-protein interaction data, we search the yeast genome for the abundance of specific dosage-compensation motifs and show that a substantial percentage of the natural networks identified contain at least one dosage-compensation motif. Conclusions Our results strengthen the hypothesis that the special network topologies that are necessary for network-dosage compensation may be recurrent network motifs in eukaryotic genomes and therefore may be an important design principle in gene network assembly in cells. PMID:24929807

  13. A comprehensive analysis of the La-motif protein superfamily.

    PubMed

    Bousquet-Antonelli, Cécile; Deragon, Jean-Marc

    2009-05-01

    The extremely well-conserved La motif (LAM), in synergy with the immediately following RNA recognition motif (RRM), allows direct binding of the (genuine) La autoantigen to RNA polymerase III primary transcripts. This motif is not only found on La homologs, but also on La-related proteins (LARPs) of unrelated function. LARPs are widely found amongst eukaryotes and, although poorly characterized, appear to be RNA-binding proteins fulfilling crucial cellular functions. We searched the fully sequenced genomes of 83 eukaryotic species scattered along the tree of life for the presence of LAM-containing proteins. We observed that these proteins are absent from archaea and present in all eukaryotes (except protists from the Plasmodium genus), strongly suggesting that the LAM is an ancestral motif that emerged early after the archaea-eukarya radiation. A complete evolutionary and structural analysis of these proteins resulted in their classification into five families: the genuine La homologs and four LARP families. Unexpectedly, in each family a conserved domain representing either a classical RRM or an RRM-like motif immediately follows the LAM of most proteins. An evolutionary analysis of the LAM-RRM/RRM-L regions shows that these motifs co-evolved and should be used as a single entity to define the functional region of interaction of LARPs with their substrates. We also found two extremely well conserved motifs, named LSA and DM15, shared by LARP6 and LARP1 family members, respectively. We suggest that members of the same family are functional homologs and/or share a common molecular mode of action on different RNA baits.

  14. MoD Tools: regulatory motif discovery in nucleotide sequences from co-regulated or homologous genes.

    PubMed

    Pavesi, Giulio; Mereghetti, Paolo; Zambelli, Federico; Stefani, Marco; Mauri, Giancarlo; Pesole, Graziano

    2006-07-01

    Understanding the complex mechanisms regulating gene expression at the transcriptional and post-transcriptional levels is one of the greatest challenges of the post-genomic era. The MoD (MOtif Discovery) Tools web server comprises a set of tools for the discovery of novel conserved sequence and structure motifs in nucleotide sequences, motifs that in turn are good candidates for regulatory activity. The server includes the following programs: Weeder, for the discovery of conserved transcription factor binding sites (TFBSs) in nucleotide sequences from co-regulated genes; WeederH, for the discovery of conserved TFBSs and distal regulatory modules in sequences from homologous genes; RNAProfile, for the discovery of conserved secondary structure motifs in unaligned RNA sequences whose secondary structure is not known. In this way, a given gene can be compared with other co-regulated genes or with its homologs, or its mRNA can be analyzed for conserved motifs regulating its post-transcriptional fate. The web server thus provides researchers with different strategies and methods to investigate the regulation of gene expression, at both the transcriptional and post-transcriptional levels. Available at http://www.pesolelab.it/modtools/ and http://www.beacon.unimi.it/modtools/.

  15. Sequence motifs of myelin membrane proteins: towards the molecular basis of diseases.

    PubMed

    Sedzik, Jan; Jastrzebski, Jan Pawel; Ikenaka, Kazuhiro

    2013-04-01

    The shortest sequence of amino acids in protein containing functional and structural information is a "motif." To understand myelin protein functions, we intensively searched for motifs that can be found in myelin proteins. Some myelin proteins had several different motifs or repetition of the same motif. The most abundant motif found among myelin proteins was a myristoylation motif. Bovine MAG held 11 myristoylation motifs and human myelin basic protein held as many as eight such motifs. PMP22 had the fewest myristoylation motifs, which was only one; rat PMP22 contained no such motifs. Cholesterol recognition/interaction amino-acid consensus (CRAC) motif was not found in myelin basic protein. P2 protein of different species contained only one CRAC motif, except for P2 of horse, which had no such motifs. MAG, MOG, and P0 were very rich in CRAC, three to eight motifs per protein. The analysis of motifs in myelin proteins is expected to provide structural insight and refinement of predicted 3D models for which structures are as yet unknown. Analysis of motifs in mutant proteins associated with neurological diseases uncovered that some motifs disappeared in P0 with mutation found in neurological diseases. There are 2,500 motifs deposited in a databank, but 21 were found in myelin proteins, which is only 1% of the total known motifs. There was great variability in the number of motifs among proteins from different species. The appearance or disappearance of protein motifs after gaining point mutation in the protein related to neurological diseases was very interesting. PMID:23339078

  16. Carbohydrate-binding motifs in a novel type lectin from the sea mussel Crenomytilus grayanus: Homology modeling study and site-specific mutagenesis.

    PubMed

    Kovalchuk, Svetlana N; Golotin, Vasily A; Balabanova, Larissa A; Buinovskaya, Nina S; Likhatskaya, Galina N; Rasskazov, Valery A

    2015-11-01

    The GalNAc/Gal-specific lectin from the sea mussel Crenomytilus grayanus (CGL) was shown to represent a novel family of lectins and to be characterized by three amino acid tandem repeats with high (up to 73%) sequence similarities to each other. We have used homology modeling approach to predict CGL sugar-binding sites. In silico analysis of CGL-GalNAc complexes showed that CGL contained three binding sites, each of which included conserved HPY(K)G motif. In silico substitutions of histidine, proline and glycine residues by alanine in the HPY(K)G motifs of the Sites 1-3 was shown to lead to loss of hydrogen bonds between His and GalNAc and to the increasing the calculated CGL-GalNAc binding energies. We have obtained recombinant CGL and used site-specific mutagenesis to experimentally examine the role of HPK(Y)G motifs in hemagglutinating and carbohydrate binding activities of CGL. Substitutions of histidine, proline and glycine residues by alanine in the HPYG motif of Site 1 and Site 2 was found to led to complete loss of CGL hemagglutinating and mucin-binding activities. The same mutations in HPKG motif of the Site 3 resulted in decreasing the mucin-binding activity in 6-folds in comparison with the wild type lectin. The mutagenesis and in silico analysis indicates the importance of the all three HPY(K)G motifs in the carbohydrate-binding and hemagglutinating activities of CGL. PMID:26439416

  17. Discovering motifs in ranked lists of DNA sequences.

    PubMed

    Eden, Eran; Lipson, Doron; Yogev, Sivan; Yakhini, Zohar

    2007-03-23

    Computational methods for discovery of sequence elements that are enriched in a target set compared with a background set are fundamental in molecular biology research. One example is the discovery of transcription factor binding motifs that are inferred from ChIP-chip (chromatin immuno-precipitation on a microarray) measurements. Several major challenges in sequence motif discovery still require consideration: (i) the need for a principled approach to partitioning the data into target and background sets; (ii) the lack of rigorous models and of an exact p-value for measuring motif enrichment; (iii) the need for an appropriate framework for accounting for motif multiplicity; (iv) the tendency, in many of the existing methods, to report presumably significant motifs even when applied to randomly generated data. In this paper we present a statistical framework for discovering enriched sequence elements in ranked lists that resolves these four issues. We demonstrate the implementation of this framework in a software application, termed DRIM (discovery of rank imbalanced motifs), which identifies sequence motifs in lists of ranked DNA sequences. We applied DRIM to ChIP-chip and CpG methylation data and obtained the following results. (i) Identification of 50 novel putative transcription factor (TF) binding sites in yeast ChIP-chip data. The biological function of some of them was further investigated to gain new insights on transcription regulation networks in yeast. For example, our discoveries enable the elucidation of the network of the TF ARO80. Another finding concerns a systematic TF binding enhancement to sequences containing CA repeats. (ii) Discovery of novel motifs in human cancer CpG methylation data. Remarkably, most of these motifs are similar to DNA sequence elements bound by the Polycomb complex that promotes histone methylation. Our findings thus support a model in which histone methylation and CpG methylation are mechanistically linked. Overall, we

  18. Finding regulatory elements and regulatory motifs: a general probabilistic framework

    PubMed Central

    van Nimwegen, Erik

    2007-01-01

    Over the last two decades a large number of algorithms has been developed for regulatory motif finding. Here we show how many of these algorithms, especially those that model binding specificities of regulatory factors with position specific weight matrices (WMs), naturally arise within a general Bayesian probabilistic framework. We discuss how WMs are constructed from sets of regulatory sites, how sites for a given WM can be discovered by scanning of large sequences, how to cluster WMs, and more generally how to cluster large sets of sites from different WMs into clusters. We discuss how 'regulatory modules', clusters of sites for subsets of WMs, can be found in large intergenic sequences, and we discuss different methods for ab initio motif finding, including expectation maximization (EM) algorithms, and motif sampling algorithms. Finally, we extensively discuss how module finding methods and ab initio motif finding methods can be extended to take phylogenetic relations between the input sequences into account, i.e. we show how motif finding and phylogenetic footprinting can be integrated in a rigorous probabilistic framework. The article is intended for readers with a solid background in applied mathematics, and preferably with some knowledge of general Bayesian probabilistic methods. The main purpose of the article is to elucidate that all these methods are not a disconnected set of individual algorithmic recipes, but that they are just different facets of a single integrated probabilistic theory. PMID:17903285

  19. BC1 RNA motifs required for dendritic transport in vivo

    PubMed Central

    Robeck, Thomas; Skryabin, Boris V.; Rozhdestvensky, Timofey S.; Skryabin, Anastasiya B.; Brosius, Jürgen

    2016-01-01

    BC1 RNA is a small brain specific non-protein coding RNA. It is transported from the cell body into dendrites where it is involved in the fine-tuning translational control. Due to its compactness and established secondary structure, BC1 RNA is an ideal model for investigating the motifs necessary for dendritic localization. Previously, microinjection of in vitro transcribed BC1 RNA mutants into the soma of cultured primary neurons suggested the importance of RNA motifs for dendritic targeting. These ex vivo experiments identified a single bulged nucleotide (U22) and a putative K-turn (GA motif) structure required for dendritic localization or distal transport, respectively. We generated six transgenic mouse lines (three founders each) containing neuronally expressing BC1 RNA variants on a BC1 RNA knockout mouse background. In contrast to ex vivo data, we did not find indications of reduction or abolition of dendritic BC1 RNA localization in the mutants devoid of the GA motif or the bulged nucleotide. We confirmed the ex vivo data, which showed that the triloop terminal sequence had no consequence on dendritic transport. Interestingly, changing the triloop supporting structure completely abolished dendritic localization of BC1 RNA. We propose a novel RNA motif important for dendritic transport in vivo. PMID:27350115

  20. BC1 RNA motifs required for dendritic transport in vivo.

    PubMed

    Robeck, Thomas; Skryabin, Boris V; Rozhdestvensky, Timofey S; Skryabin, Anastasiya B; Brosius, Jürgen

    2016-01-01

    BC1 RNA is a small brain specific non-protein coding RNA. It is transported from the cell body into dendrites where it is involved in the fine-tuning translational control. Due to its compactness and established secondary structure, BC1 RNA is an ideal model for investigating the motifs necessary for dendritic localization. Previously, microinjection of in vitro transcribed BC1 RNA mutants into the soma of cultured primary neurons suggested the importance of RNA motifs for dendritic targeting. These ex vivo experiments identified a single bulged nucleotide (U22) and a putative K-turn (GA motif) structure required for dendritic localization or distal transport, respectively. We generated six transgenic mouse lines (three founders each) containing neuronally expressing BC1 RNA variants on a BC1 RNA knockout mouse background. In contrast to ex vivo data, we did not find indications of reduction or abolition of dendritic BC1 RNA localization in the mutants devoid of the GA motif or the bulged nucleotide. We confirmed the ex vivo data, which showed that the triloop terminal sequence had no consequence on dendritic transport. Interestingly, changing the triloop supporting structure completely abolished dendritic localization of BC1 RNA. We propose a novel RNA motif important for dendritic transport in vivo. PMID:27350115

  1. cWINNOWER algorithm for finding fuzzy dna motifs

    NASA Technical Reports Server (NTRS)

    Liang, S.; Samanta, M. P.; Biegel, B. A.

    2004-01-01

    The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if a clique consisting of a sufficiently large number of mutated copies of the motif (i.e., the signals) is present in the DNA sequence. The cWINNOWER algorithm substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a consensus constraint, enabling it to detect much weaker signals. We studied the minimum detectable clique size qc as a function of sequence length N for random sequences. We found that qc increases linearly with N for a fast version of the algorithm based on counting three-member sub-cliques. Imposing consensus constraints reduces qc by a factor of three in this case, which makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of length N = 12,000 for (l, d) = (15, 4). Copyright Imperial College Press.

  2. MALISAM: a database of structurally analogous motifs in proteins.

    PubMed

    Cheng, Hua; Kim, Bong-Hyun; Grishin, Nick V

    2008-01-01

    MALISAM (manual alignments for structurally analogous motifs) represents the first database containing pairs of structural analogs and their alignments. To find reliable analogs, we developed an approach based on three ideas. First, an insertion together with a part of the evolutionary core of one domain family (a hybrid motif) is analogous to a similar motif contained within the core of another domain family. Second, a motif at an interface, formed by secondary structural elements (SSEs) contributed by two or more domains or subunits contacting along that interface, is analogous to a similar motif present in the core of a single domain. Third, an artificial protein obtained through selection from random peptides or in sequence design experiments not biased by sequences of a particular homologous family, is analogous to a structurally similar natural protein. Each analogous pair is superimposed and aligned manually, as well as by several commonly used programs. Applications of this database may range from protein evolution studies, e.g. development of remote homology inference tools and discriminators between homologs and analogs, to protein-folding research, since in the absence of evolutionary reasons, similarity between proteins is caused by structural and folding constraints. The database is publicly available at http://prodata.swmed.edu/malisam. PMID:17855399

  3. G-quadruplex forming structural motifs in the genome of Deinococcus radiodurans and their regulatory roles in promoter functions.

    PubMed

    Kota, Swathi; Dhamodharan, V; Pradeepkumar, P I; Misra, Hari S

    2015-11-01

    Deinococcus radiodurans displays compromised radioresistance in the presence of guanine quadruplex (G4)-binding drugs (G4 drugs). Genome-wide scanning showed islands of guanine runs (G-motif) in the upstream regions of coding sequences as well as in the structural regions of many genes, indicating a role for G4 DNA in the regulation of genome functions in this bacterium. G-motifs present upstream to some of the DNA damage-responsive genes like lexA, pprI, recF, recQ, mutL and radA were synthesized, and the formation of G4 DNA structures was probed in vitro. The G-motifs present at the 67th position upstream to recQ and at the 121st position upstream to mutL produced parallel and mixed G4 DNA structures, respectively. Expression of β-galactosidase under recQ and mutL promoters containing respective G-motifs was inhibited by G4 drugs under normal growth conditions in D. radiodurans. However, when such cells were exposed to γ radiation, mutL promoter activity was stimulated while recQ promoter activity was inhibited in the presence of G4 drugs. Deletion of the G-motif from the recQ promoter could relax it from G4 drug repression. D. radiodurans cells treated with G4 drug showed reduction in recQ expression and γ radiation resistance, indicating an involvement of G4 DNA in the radioresistance of this bacterium. These results suggest that G-motifs from D. radiodurans genome form different types of G4 DNA structures at least in vitro, and the recQ and mutL promoters seem to be differentially regulated at the levels of G4 DNA structures.

  4. Dectin-1 and Dectin-2 in innate immunity against fungi.

    PubMed

    Saijo, Shinobu; Iwakura, Yoichiro

    2011-08-01

    Dectin-1 and Dectin-2 are type II transmembrane proteins of the C-type lectin family with single carbohydrate recognition domains (CRDs) in their extracellular region. They are expressed mainly in dendritic cells and macrophages. Dectin-1 recognizes β-glucans with its CRD and transduces signals through its immunoreceptor tyrosine-based activation motif (ITAM)-like motif in the cytoplasmic domain, whereas Dectin-2 recognizes α-mannans and transduces its signal through association with the ITAM-containing Fc receptor γ chain. Upon ligand binding, spleen tyrosine kinase is recruited to the ITAM and activates the caspase recruitment domain family member 9 (CARD9)-nuclear factor-κB axis, resulting in the activation of various genes including those encoding pro-inflammatory cytokines. Both β-glucans and α-mannans are major cell wall components of fungi including Candida albicans and Pneumocystis carinii. Recently, it was reported that Dectin-1 is important in protection against P. carinii by inducing reactive oxygen species, whereas both Dectin-1 and Dectin-2 play important roles in defense against C. albicans by preferentially inducing T(h)17 cell differentiation. In this review, we briefly revisit the structures, ligands, signal transduction and functional roles of Dectin-1 and Dectin-2 in host defense against fungal infection.

  5. Modeling Small Noncanonical RNA Motifs with the Rosetta FARFAR Server.

    PubMed

    Yesselman, Joseph D; Das, Rhiju

    2016-01-01

    Noncanonical RNA motifs help define the vast complexity of RNA structure and function, and in many cases, these loops and junctions are on the order of only ten nucleotides in size. Unfortunately, despite their small size, there is no reliable method to determine the ensemble of lowest energy structures of junctions and loops at atomic accuracy. This chapter outlines straightforward protocols using a webserver for Rosetta Fragment Assembly of RNA with Full Atom Refinement (FARFAR) ( http://rosie.rosettacommons.org/rna_denovo/submit ) to model the 3D structure of small noncanonical RNA motifs for use in visualizing motifs and for further refinement or filtering with experimental data such as NMR chemical shifts. PMID:27665600

  6. Regulation of Airway Inflammation by G-protein Regulatory Motif Peptides of AGS3 protein.

    PubMed

    Choi, Il-Whan; Ahn, Do Whan; Choi, Jang-Kyu; Cha, Hee-Jae; Ock, Mee Sun; You, EunAe; Rhee, SangMyung; Kim, Kwang Chul; Choi, Yung Hyun; Song, Kyoung Seob

    2016-01-01

    Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung infections have critical consequences on mortality and morbidity in humans. The aims of the present study were to examine the mechanisms by which CXCL12 affects MUC1 transcription and airway inflammation, which depend on activator of G-protein signaling (AGS) 3 and to identify specific molecules that suppress CXCL12-induced airway inflammation by acting on G-protein-coupled receptors. Herein, AGS3 suppresses CXCL12-mediated upregulation of MUC1 and TNFα by regulating Gαi. We found that the G-protein regulatory (GPR) motif peptide in AGS3 binds to Gαi and downregulates MUC1 expression; in contrast, this motif upregulates TNFα expression. Mutated GPR Q34A peptide increased the expression of MUC1 and TGFβ but decreased the expression of TNFα and IL-6. Moreover, CXCR4-induced dendritic extensions in 2D and 3D matrix cultures were inhibited by the GPR Q34A peptide compared with a wild-type GPR peptide. The GPR Q34A peptide also inhibited CXCL12-induced morphological changes and inflammatory cell infiltration in the mouse lung, and production of inflammatory cytokines in bronchoalveolar lavage (BAL) fluid and the lungs. Our data indicate that the GPR motif of AGS3 is critical for regulating MUC1/Muc1 expression and cytokine production in the inflammatory microenvironment. PMID:27270970

  7. PH motifs in PAR1&2 endow breast cancer growth.

    PubMed

    Kancharla, A; Maoz, M; Jaber, M; Agranovich, D; Peretz, T; Grisaru-Granovsky, S; Uziely, B; Bar-Shavit, R

    2015-01-01

    Although emerging roles of protease-activated receptor1&2 (PAR1&2) in cancer are recognized, their underlying signalling events are poorly understood. Here we show signal-binding motifs in PAR1&2 that are critical for breast cancer growth. This occurs via the association of the pleckstrin homology (PH) domain with Akt/PKB as a key signalling event of PARs. Other PH-domain signal-proteins such as Etk/Bmx and Vav3 also associate with PAR1 and PAR2 through their PH domains. PAR1 and PAR2 bind with priority to Etk/Bmx. A point mutation in PAR2, H349A, but not in R352A, abrogates PH-protein association and is sufficient to markedly reduce PAR2-instigated breast tumour growth in vivo and placental extravillous trophoblast (EVT) invasion in vitro. Similarly, the PAR1 mutant hPar1-7A, which is unable to bind the PH domain, reduces mammary tumours and EVT invasion, endowing these motifs with physiological significance and underscoring the importance of these previously unknown PAR1 and PAR2 PH-domain-binding motifs in both pathological and physiological invasion processes. PMID:26600192

  8. Regulation of Airway Inflammation by G-protein Regulatory Motif Peptides of AGS3 protein

    PubMed Central

    Choi, IL-Whan; Ahn, Do Whan; Choi, Jang-Kyu; Cha, Hee-Jae; Ock, Mee Sun; You, EunAe; Rhee, SangMyung; Kim, Kwang Chul; Choi, Yung Hyun; Song, Kyoung Seob

    2016-01-01

    Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung infections have critical consequences on mortality and morbidity in humans. The aims of the present study were to examine the mechanisms by which CXCL12 affects MUC1 transcription and airway inflammation, which depend on activator of G-protein signaling (AGS) 3 and to identify specific molecules that suppress CXCL12-induced airway inflammation by acting on G-protein-coupled receptors. Herein, AGS3 suppresses CXCL12-mediated upregulation of MUC1 and TNFα by regulating Gαi. We found that the G-protein regulatory (GPR) motif peptide in AGS3 binds to Gαi and downregulates MUC1 expression; in contrast, this motif upregulates TNFα expression. Mutated GPR Q34A peptide increased the expression of MUC1 and TGFβ but decreased the expression of TNFα and IL-6. Moreover, CXCR4-induced dendritic extensions in 2D and 3D matrix cultures were inhibited by the GPR Q34A peptide compared with a wild-type GPR peptide. The GPR Q34A peptide also inhibited CXCL12-induced morphological changes and inflammatory cell infiltration in the mouse lung, and production of inflammatory cytokines in bronchoalveolar lavage (BAL) fluid and the lungs. Our data indicate that the GPR motif of AGS3 is critical for regulating MUC1/Muc1 expression and cytokine production in the inflammatory microenvironment. PMID:27270970

  9. Regulatory and structural motifs of chicken gizzard myosin light chain kinase.

    PubMed Central

    Olson, N J; Pearson, R B; Needleman, D S; Hurwitz, M Y; Kemp, B E; Means, A R

    1990-01-01

    The amino acid sequence for chicken smooth muscle myosin light chain kinase (smMLCK) was deduced from a full-length cDNA. This has allowed definition of both the complete sequence of the inactive 64-kDa proteolytic fragment, which contains the pseudosubstrate autoregulatory sequence, and of the active 61-kDa Ca2+/calmodulin-independent fragment, which lacks the autoregulatory domain. Comparison of the two sequences shows that the autoregulatory domain extends from Asn-780 to Arg-808. The peptide Leu-774 to Ser-787 does not inhibit smMLCK, whereas peptides of similar or shorter length from the pseudosubstrate region (Ser-787 to Val-807) are potent inhibitors. These data define the autoregulatory region as being contained within and probably identical to the pseudosubstrate domain. The catalytic and regulatory regions are flanked by several copies of 100-amino acid segments containing one of two consensus motifs. These motifs are absent from mammalian skeletal muscle MLCK or from Dictyostelium discoideum MLCK but are present in the Caenorhabditis elegans unc-22 gene product and the titin molecule of skeletal muscle myofibrils. These results indicate that the amino acid sequence of smMLCK encodes multiple functional motifs in addition to the catalytic domain. PMID:2315320

  10. Design of hyperthermophilic lipase chimeras by key motif-directed recombination.

    PubMed

    Zhou, Xiaoli; Gao, Le; Yang, Guangyu; Liu, Donglai; Bai, Aixi; Li, Binchun; Deng, Zixin; Feng, Yan

    2015-02-01

    Recombination of diverse natural evolved domains within a superfamily offers greater opportunity for enzyme function leaps. How to recombine protein modules from distant parents with less disruption in cross-interfaces is a challenging issue. Here, we identified the existence of a key motif, the sequence VVSVN(D)YR, within a structural motif ψ loop in the α/β-hydrolase fold superfamily, by using a MEME server and the PROMOTIF program. To obtain thermostable lipase-like enzymes, two chimeras were engineered at the key motif regions through recombination of domains from a mesophilic lipase and a hyperthermophilic esterase/peptidase with amino acid identity less than 21 %. The chimeras retained the desirable substrate preference of their mesophilic parent and exhibited more than 100-fold increased thermostability at 50 °C. Through site-directed mutation, we further improved activity of the chimera by 4.6-fold. The recombination strategy presented here enables the creation of novel catalysts. PMID:25530200

  11. Metal-binding and redox properties of substituted linear and cyclic ATCUN motifs.

    PubMed

    Neupane, Kosh P; Aldous, Amanda R; Kritzer, Joshua A

    2014-10-01

    The amino-terminal copper and nickel binding (ATCUN) motif is a short peptide sequence found in human serum albumin and other proteins. Synthetic ATCUN-metal complexes have been used to oxidatively cleave proteins and DNA, cross-link proteins, and damage cancer cells. The ATCUN motif consists of a tripeptide that coordinates Cu(II) and Ni(II) ions in a square planar geometry, anchored by chelation sites at the N-terminal amine, histidine imidazole and two backbone amides. Many studies have shown that the histidine is required for tight binding and square planar geometry. Previously, we showed that macrocyclization of the ATCUN motif can lead to high-affinity binding with altered metal ion selectivity and enhanced Cu(II)/Cu(III) redox cycling (Inorg. Chem. 2013, 52, 2729-2735). In this work, we synthesize and characterize several linear and cyclic ATCUN variants to explore how substitutions at the histidine alter the metal-binding and catalytic properties. UV-visible spectroscopy, EPR spectroscopy and mass spectrometry indicate that cyclization can promote the formation of ATCUN-like complexes even in the absence of imidazole. We also report several novel ATCUN-like complexes and quantify their redox properties. These findings further demonstrate the effects of conformational constraints on short, metal-binding peptides, and also provide novel redox-active metallopeptides suitable for testing as catalysts for stereoselective or regioselective oxidation reactions.

  12. PH motifs in PAR1&2 endow breast cancer growth

    PubMed Central

    Kancharla, A.; Maoz, M.; Jaber, M.; Agranovich, D.; Peretz, T.; Grisaru-Granovsky, S.; Uziely, B.; Bar-Shavit, R.

    2015-01-01

    Although emerging roles of protease-activated receptor1&2 (PAR1&2) in cancer are recognized, their underlying signalling events are poorly understood. Here we show signal-binding motifs in PAR1&2 that are critical for breast cancer growth. This occurs via the association of the pleckstrin homology (PH) domain with Akt/PKB as a key signalling event of PARs. Other PH-domain signal-proteins such as Etk/Bmx and Vav3 also associate with PAR1 and PAR2 through their PH domains. PAR1 and PAR2 bind with priority to Etk/Bmx. A point mutation in PAR2, H349A, but not in R352A, abrogates PH-protein association and is sufficient to markedly reduce PAR2-instigated breast tumour growth in vivo and placental extravillous trophoblast (EVT) invasion in vitro. Similarly, the PAR1 mutant hPar1-7A, which is unable to bind the PH domain, reduces mammary tumours and EVT invasion, endowing these motifs with physiological significance and underscoring the importance of these previously unknown PAR1 and PAR2 PH-domain-binding motifs in both pathological and physiological invasion processes. PMID:26600192

  13. Coordination of platinum therapeutic agents to met-rich motifs of human copper transport protein1.

    PubMed

    Crider, Sarah E; Holbrook, Robert J; Franz, Katherine J

    2010-01-01

    Platinum therapeutic agents are widely used in the treatment of several forms of cancer. Various mechanisms for the transport of the drugs have been proposed including passive diffusion across the cellular membrane and active transport via proteins. The copper transport protein Ctr1 is responsible for high affinity copper uptake but has also been implicated in the transport of cisplatin into cells. Human hCtr1 contains two methionine-rich Mets motifs on its extracellular N-terminus that are potential platinum-binding sites: the first one encompasses residues 7-14 with amino acid sequence Met-Gly-Met-Ser-Tyr-Met-Asp-Ser and the second one spans residues 39-46 with sequence Met-Met-Met-Met-Pro-Met-Thr-Phe. In these studies, we use liquid chromatography and mass spectrometry to compare the binding interactions between cisplatin, carboplatin and oxaliplatin with synthetic peptides corresponding to hCtr1 Mets motifs. The interactions of cisplatin and carboplatin with Met-rich motifs that contain three or more methionines result in removal of the carrier ligands of both platinum complexes. In contrast, oxaliplatin retains its cyclohexyldiamine ligand upon platinum coordination to the peptide.

  14. Identification of a pKa-regulating motif stabilizing imidazole-modified double-stranded DNA

    PubMed Central

    Buyst, Dieter; Gheerardijn, Vicky; Fehér, Krisztina; Van Gasse, Bjorn; Van Den Begin, Jos; Martins, José C.; Madder, Annemieke

    2015-01-01

    The predictable 3D structure of double-stranded DNA renders it ideally suited as a template for the bottom-up design of functionalized nucleic acid-based active sites. We here explore the use of a 14mer DNA duplex as a scaffold for the precise and predictable positioning of catalytic functionalities. Given the ubiquitous participation of the histidine-based imidazole group in protein recognition and catalysis events, single histidine-like modified duplexes were investigated. Tethering histamine to the C5 of the thymine base via an amide bond, allows the flexible positioning of the imidazole function in the major groove. The mutual interactions between the imidazole and the duplex and its influence on the imidazolium pKaH are investigated by placing a single modified thymine at four different positions in the center of the 14mer double helix. Using NMR and unrestrained molecular dynamics, a structural motif involving the formation of a hydrogen bond between the imidazole and the Hoogsteen side of the guanine bases of two neighboring GC base pairs is established. The motif contributes to a stabilization against thermal melting of 6°C and is key in modulating the pKaH of the imidazolium group. The general features, prerequisites and generic character of the new pKaH-regulating motif are described. PMID:25520197

  15. Metal-Binding and Redox Properties of Substituted Linear and Cyclic ATCUN Motifs

    PubMed Central

    Neupane, Kosh P.; Aldous, Amanda R.; Kritzer, Joshua A.

    2014-01-01

    The amino-terminal copper and nickel binding (ATCUN) motif is a short peptide sequence found in human serum albumin and other proteins. Synthetic ATCUN-metal complexes have been used to oxidatively cleave proteins and DNA, cross-link proteins, and damage cancer cells. The ATCUN motif consists of a tripeptide that coordinates Cu(II) and Ni(II) ions in a square planar geometry, anchored by chelation sites at the N-terminal amine, histidine imidazole and two backbone amides. Many studies have shown that the histidine is required for tight binding and square planar geometry. Previously, we showed that macrocyclization of the ATCUN motif can lead to high-affinity binding with altered metal ion selectivity and enhanced Cu(II)/Cu(III) redox cycling (Inorg. Chem. 2013, 52, 2729-2735). In this work, we synthesize and characterize several linear and cyclic ATCUN variants to explore how substitutions at the histidine alter the metal-binding and catalytic properties. UV-visible spectroscopy, EPR spectroscopy and mass spectrometry indicate that cyclization can promote the formation of ATCUN-like complexes even in the absence of imidazole. We also report several novel ATCUN-like complexes and quantify their redox properties. These findings further demonstrate the effects of conformational constraints on short, metal-binding peptides, and also provide novel redox-active metallopeptides suitable for testing as catalysts for stereoselective or regioselective oxidation reactions. PMID:24980953

  16. Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases.

    PubMed

    Zeke, András; Bastys, Tomas; Alexa, Anita; Garai, Ágnes; Mészáros, Bálint; Kirsch, Klára; Dosztányi, Zsuzsanna; Kalinina, Olga V; Reményi, Attila

    2015-11-01

    Mitogen-activated protein kinases (MAPK) are broadly used regulators of cellular signaling. However, how these enzymes can be involved in such a broad spectrum of physiological functions is not understood. Systematic discovery of MAPK networks both experimentally and in silico has been hindered because MAPKs bind to other proteins with low affinity and mostly in less-characterized disordered regions. We used a structurally consistent model on kinase-docking motif interactions to facilitate the discovery of short functional sites in the structurally flexible and functionally under-explored part of the human proteome and applied experimental tools specifically tailored to detect low-affinity protein-protein interactions for their validation in vitro and in cell-based assays. The combined computational and experimental approach enabled the identification of many novel MAPK-docking motifs that were elusive for other large-scale protein-protein interaction screens. The analysis produced an extensive list of independently evolved linear binding motifs from a functionally diverse set of proteins. These all target, with characteristic binding specificity, an ancient protein interaction surface on evolutionarily related but physiologically clearly distinct three MAPKs (JNK, ERK, and p38). This inventory of human protein kinase binding sites was compared with that of other organisms to examine how kinase-mediated partnerships evolved over time. The analysis suggests that most human MAPK-binding motifs are surprisingly new evolutionarily inventions and newly found links highlight (previously hidden) roles of MAPKs. We propose that short MAPK-binding stretches are created in disordered protein segments through a variety of ways and they represent a major resource for ancient signaling enzymes to acquire new regulatory roles. PMID:26538579

  17. Conserved Hydration Sites in Pin1 Reveal a Distinctive Water Recognition Motif in Proteins.

    PubMed

    Barman, Arghya; Smitherman, Crystal; Souffrant, Michael; Gadda, Giovanni; Hamelberg, Donald

    2016-01-25

    Structurally conserved water molecules are important for biomolecular stability, flexibility, and function. X-ray crystallographic studies of Pin1 have resolved a number of water molecules around the enzyme, including two highly conserved water molecules within the protein. The functional role of these localized water molecules remains unknown and unexplored. Pin1 catalyzes cis/trans isomerizations of peptidyl prolyl bonds that are preceded by a phosphorylated serine or threonine residue. Pin1 is involved in many subcellular signaling processes and is a potential therapeutic target for the treatment of several life threatening diseases. Here, we investigate the significance of these structurally conserved water molecules in the catalytic domain of Pin1 using molecular dynamics (MD) simulations, free energy calculations, analysis of X-ray crystal structures, and circular dichroism (CD) experiments. MD simulations and free energy calculations suggest the tighter binding water molecule plays a crucial role in maintaining the integrity and stability of a critical hydrogen-bonding network in the active site. The second water molecule is exchangeable with bulk solvent and is found in a distinctive helix-turn-coil motif. Structural bioinformatics analysis of nonredundant X-ray crystallographic protein structures in the Protein Data Bank (PDB) suggest this motif is present in several other proteins and can act as a water site, akin to the calcium EF hand. CD experiments suggest the isolated motif is in a distorted PII conformation and requires the protein environment to fully form the α-helix-turn-coil motif. This study provides valuable insights into the role of hydration in the structural integrity of Pin1 that can be exploited in protein engineering and drug design. PMID:26651388

  18. Selection against spurious promoter motifs correlates withtranslational efficiency across bacteria

    SciTech Connect

    Froula, Jeffrey L.; Francino, M. Pilar

    2007-05-01

    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the -10 promoter motifs that bind the {sigma}{sup 70} subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of -10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, -10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also implies that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria.

  19. A novel human AP endonuclease with conserved zinc-finger-like motifs involved in DNA strand break responses

    PubMed Central

    Kanno, Shin-ichiro; Kuzuoka, Hiroyuki; Sasao, Shigeru; Hong, Zehui; Lan, Li; Nakajima, Satoshi; Yasui, Akira

    2007-01-01

    DNA damage causes genome instability and cell death, but many of the cellular responses to DNA damage still remain elusive. We here report a human protein, PALF (PNK and APTX-like FHA protein), with an FHA (forkhead-associated) domain and novel zinc-finger-like CYR (cysteine–tyrosine–arginine) motifs that are involved in responses to DNA damage. We found that the CYR motif is widely distributed among DNA repair proteins of higher eukaryotes, and that PALF, as well as a Drosophila protein with tandem CYR motifs, has endo- and exonuclease activities against abasic site and other types of base damage. PALF accumulates rapidly at single-strand breaks in a poly(ADP-ribose) polymerase 1 (PARP1)-dependent manner in human cells. Indeed, PALF interacts directly with PARP1 and is required for its activation and for cellular resistance to methyl-methane sulfonate. PALF also interacts directly with KU86, LIGASEIV and phosphorylated XRCC4 proteins and possesses endo/exonuclease activity at protruding DNA ends. Various treatments that produce double-strand breaks induce formation of PALF foci, which fully coincide with γH2AX foci. Thus, PALF and the CYR motif may play important roles in DNA repair of higher eukaryotes. PMID:17396150

  20. Ribozyme motif structure mapped using random recombination and selection

    PubMed Central

    WANG, QING S.; UNRAU, PETER J.

    2005-01-01

    Isolating the core functional elements of an RNA is normally performed during the characterization of a new RNA in order to simplify further biochemical analysis. The removal of extraneous sequence is challenging and can lead to biases that result from the incomplete sampling of deletion variants. An impartial solution to this problem is to construct a library containing a large number of deletion constructs and to select functional RNA isolates that are at least as efficient as their full-length progenitors. Here, we use nonhomologous recombination and selection to isolate the catalytic core of a pyrimidine nucleotide synthase ribozyme. A variable-length pool of ~108 recombinant molecules that included deletions, inversions, and translocations of a 271-nucleotide-long ribozyme isolate was constructed by digesting and randomly religating its DNA genome. In vitro selection for functional ribozymes was then performed in a size-dependent and a size-independent manner. The final pools had nearly equivalent catalytic rates even though their length distributions were completely different, indicating that a diverse range of deletion constructs were functionally active. Four short sequence islands, requiring as little as 81 nt of sequence, were found within all of the truncated ribozymes and could be folded into a secondary structure consisting of three helix–loops. Our findings suggest that nonhomologous recombination is a highly efficient way to isolate a ribozyme’s core motif and could prove to be a useful method for evolving new ribozyme functions from pre-existing sequences in a manner that may have played an important role early in evolution. PMID:15703441

  1. The GTP binding motif: variations on a theme.

    PubMed

    Kjeldgaard, M; Nyborg, J; Clark, B F

    1996-10-01

    GTP binding proteins (G-proteins) have wide-ranging functions in biology, being involved in cell proliferation, signal transduction, protein synthesis, and protein targeting. Common to their functioning is that they are active in the GTP-bound form and inactive in the GDP-bound form. The protein synthesis elongation factor EF-Tu was the first G-protein whose nucleotide binding domain was solved structurally by X-ray crystallography to yield a structural definition of the GDP-bound form, but a still increasing number of new structures of G-proteins are appearing in the literature, in both GDP and GTP bound forms. A common structural core for nucleotide binding is present in all these structures, and this core has long been known to include common consensus sequence elements involved in binding of the nucleotide. Nevertheless, subtle changes in the common sequences reflect functional differences. Therefore, it becomes increasingly important to focus on how these differences are reflected in the structures, and how these structural differences are related to function. The aim of this review is to describe to what extent this structural motif for GDP/GTP binding is common to other known structures of this class of proteins. We first describe the common structural core of the G-proteins. Next, examples are based on information available on the Ras protein superfamily, the targeting protein ARF, elongation factors EF-Tu and EF-G, and the heterotrimeric G-proteins. Finally, we discuss the important structures of complexes between GTP binding proteins and their substrates that have appeared in the literature recently.

  2. A second Las17 monomeric actin-binding motif functions in Arp2/3-dependent actin polymerization during endocytosis.

    PubMed

    Feliciano, Daniel; Tolsma, Thomas O; Farrell, Kristen B; Aradi, Al; Di Pietro, Santiago M

    2015-04-01

    During clathrin-mediated endocytosis (CME), actin assembly provides force to drive vesicle internalization. Members of the Wiskott-Aldrich syndrome protein (WASP) family play a fundamental role stimulating actin assembly. WASP family proteins contain a WH2 motif that binds globular actin (G-actin) and a central-acidic motif that binds the Arp2/3 complex, thus promoting the formation of branched actin filaments. Yeast WASP (Las17) is the strongest of five factors promoting Arp2/3-dependent actin polymerization during CME. It was suggested that this strong activity may be caused by a putative second G-actin-binding motif in Las17. Here, we describe the in vitro and in vivo characterization of such Las17 G-actin-binding motif (LGM) and its dependence on a group of conserved arginine residues. Using the yeast two-hybrid system, GST-pulldown, fluorescence polarization and pyrene-actin polymerization assays, we show that LGM binds G-actin and is necessary for normal Arp2/3-mediated actin polymerization in vitro. Live-cell fluorescence microscopy experiments demonstrate that LGM is required for normal dynamics of actin polymerization during CME. Further, LGM is necessary for normal dynamics of endocytic machinery components that are recruited at early, intermediate and late stages of endocytosis, as well as for optimal endocytosis of native CME cargo. Both in vitro and in vivo experiments show that LGM has relatively lower potency compared to the previously known Las17 G-actin-binding motif, WH2. These results establish a second G-actin-binding motif in Las17 and advance our knowledge on the mechanism of actin assembly during CME.

  3. Pivotal role of the C-terminal DW-motif in mediating inhibition of pyruvate dehydrogenase kinase 2 by dichloroacetate.

    PubMed

    Li, Jun; Kato, Masato; Chuang, David T

    2009-12-01

    The mitochondrial pyruvate dehydrogenase complex (PDC) is down-regulated by phosphorylation catalyzed by pyruvate dehydrogenase kinase (PDK) isoforms 1-4. Overexpression of PDK isoforms and therefore reduced PDC activity prevails in cancer and diabetes. In the present study, we investigated the role of the invariant C-terminal DW-motif in inhibition of human PDK2 by dichloroacetate (DCA). Substitutions were made in the DW-motif (Asp-382 and Trp-383) and its interacting residues (Tyr-145 and Arg-149) in the other subunit of PDK2 homodimer. Single and double mutants show 20-60% residual activities that are not stimulated by the PDC core. The R149A and Y145F/R149A mutants show drastic increases in apparent IC(50) values for DCA, whereas binding affinities for DCA are comparable with wild-type PDK2. Both R149A and Y145F variants exhibit increased similar affinities for ADP and ATP, mimicking the effects of DCA. The R149A and the DW-motif mutations (D382A/W383A) forestall binding of the lipoyl domain of PDC to these mutants, analogous to wild-type PDK2 in the presence of DCA and ADP. In contrast, the binding of a dihydrolipoamide mimetic AZD7545 is largely unaffected in these PDK2 variants. Our results illuminate the pivotal role of the DW-motif in mediating communications between the DCA-, the nucleotide-, and the lipoyl domain-binding sites. This signaling network locks PDK2 in the inactive closed conformation, which is in equilibrium with the active open conformation without DCA and ADP. These results implicate the DW-motif anchoring site as a drug target for the inhibition of aberrant PDK activity in cancer and diabetes. PMID:19833728

  4. The RNA recognition motif domains of RBM5 are required for RNA binding and cancer cell proliferation inhibition

    SciTech Connect

    Zhang, Lei; Zhang, Qing; Yang, Yu; Wu, Chuanfang

    2014-02-14

    Highlights: • RNA recognition motif domains of RBM5 are essential for cell proliferation inhibition. • RNA recognition motif domains of RBM5 are essential for apoptosis induction. • RNA recognition motif domains of RBM5 are essential for RNA binding. • RNA recognition motif domains of RBM5 are essential for caspase-2 alternative splicing. - Abstract: RBM5 is a known putative tumor suppressor gene that has been shown to function in cell growth inhibition by modulating apoptosis. RBM5 also plays a critical role in alternative splicing as an RNA binding protein. However, it is still unclear which domains of RBM5 are required for RNA binding and related functional activities. We hypothesized the two putative RNA recognition motif (RRM) domains of RBM5 spanning from amino acids 98–178 and 231–315 are essential for RBM5-mediated cell growth inhibition, apoptosis regulation, and RNA binding. To investigate this hypothesis, we evaluated the activities of the wide-type and mutant RBM5 gene transfer in low-RBM5 expressing A549 cells. We found that, unlike wild-type RBM5 (RBM5-wt), a RBM5 mutant lacking the two RRM domains (RBM5-ΔRRM), is unable to bind RNA, has compromised caspase-2 alternative splicing activity, lacks cell proliferation inhibition and apoptosis induction function in A549 cells. These data provide direct evidence that the two RRM domains of RBM5 are required for RNA binding and the RNA binding activity of RBM5 contributes to its function on apoptosis induction and cell growth inhibition.

  5. A T-to-G transversion at nucleotide -567 upstream of HBG2 in a GATA-1 binding motif is associated with elevated hemoglobin F.

    PubMed

    Chen, Zhiyi; Luo, Hong-Yuan; Basran, Raveen K; Hsu, Tien-Huei; Mang, Daniel W H; Nuntakarn, Lalana; Rosenfield, Cathy G; Patrinos, George P; Hardison, Ross C; Steinberg, Martin H; Chui, David H K

    2008-07-01

    Increased fetal hemoglobin (Hb F; alpha(2)gamma(2)) production in adults can ameliorate the clinical severity of sickle cell disease and beta-thalassemia major. Thus, understanding the regulation of gamma-globin gene expression and its silencing in adults has potential therapeutic implications. We studied a father and son in an Iranian-American family who had elevated Hb F levels and found a novel T-to-G transversion at nucleotide (nt) -567 of the HBG2 promoter. This mutation alters a GATA-1 binding motif to a GAGA sequence located within a previously identified silencing element. DNA-protein binding assays showed that the GATA motif of interest is capable of binding GATA-1 transcription factor in vitro and in vivo. Truncation analyses of the HBG2 promoter linked to a luciferase reporter gene revealed a negative regulatory activity present between nt -675 and -526. In addition, the T-to-G mutation at the GATA motif increased the promoter activity by two- to threefold in transiently transfected erythroid cell lines. The binding motif is uniquely conserved in simian primates with a fetal pattern of gamma-globin gene expression. These results suggest that the GATA motif under study has a functional role in silencing gamma-globin gene expression in adults. The T-to-G mutation in this motif disrupts GATA-1 binding and the associated repressor complex, abolishing its silencing effect and resulting in the up-regulation of gamma-globin gene expression in adults.

  6. The SLiMDisc server: short, linear motif discovery in proteins.

    PubMed

    Davey, Norman E; Edwards, Richard J; Shields, Denis C

    2007-07-01

    Short, linear motifs (SLiMs) play a critical role in many biological processes, particularly in protein-protein interactions. Overrepresentation of convergent occurrences of motifs in proteins with a common attribute (such as similar subcellular location or a shared interaction partner) provides a feasible means to discover novel occurrences computationally. The SLiMDisc (Short, Linear Motif Discovery) web server corrects for common ancestry in describing shared motifs, concentrating on the convergently evolved motifs. The server returns a listing of the most interesting motifs found within unmasked regions, ranked according to an information content-based scoring scheme. It allows interactive input masking, according to various criteria. Scoring allows for evolutionary relationships in the data sets through treatment of BLAST local alignments. Alongside this ranked list, visualizations of the results improve understanding of the context of suggested motifs, helping to identify true motifs of interest. These visualizations include alignments of motif occurrences, alignments of motifs and their homologues and a visual schematic of the top-ranked motifs. Additional options for filtering and/or re-ranking motifs further permit the user to focus on motifs with desired attributes. Returned motifs can also be compared with known SLiMs from the literature. SLiMDisc is available at: http://bioware.ucd.ie/~slimdisc/.

  7. An Internally Translated MAVS Variant Exposes Its Amino-terminal TRAF-Binding Motifs to Deregulate Interferon Induction

    PubMed Central

    He, Shanping; Zhao, Jun; Zandi, Ebrahim; Saito, Takeshi; Liang, Chengyu; Feng, Pinghui

    2015-01-01

    Activation of pattern recognition receptors and proper regulation of downstream signaling are crucial for host innate immune response. Upon infection, the NF-κB and interferon regulatory factors (IRF) are often simultaneously activated to defeat invading pathogens. Mechanisms concerning differential activation of NF-κB and IRF are not well understood. Here we report that a MAVS variant inhibits interferon (IFN) induction, while enabling NF-κB activation. Employing herpesviral proteins that selectively activate NF-κB signaling, we discovered that a MAVS variant of ~50 kDa, thus designated MAVS50, was produced from internal translation initiation. MAVS50 preferentially interacts with TRAF2 and TRAF6, and activates NF-κB. By contrast, MAVS50 inhibits the IRF activation and suppresses IFN induction. Biochemical analysis showed that MAVS50, exposing a degenerate TRAF-binding motif within its N-terminus, effectively competed with full-length MAVS for recruiting TRAF2 and TRAF6. Ablation of the TRAF-binding motif of MAVS50 impaired its inhibitory effect on IRF activation and IFN induction. These results collectively identify a new means by which signaling events is differentially regulated via exposing key internally embedded interaction motifs, implying a more ubiquitous regulatory role of truncated proteins arose from internal translation and other related mechanisms. PMID:26221961

  8. Nephila clavipes Flagelliform silk-like GGX motifs contribute to extensibility and spacer motifs contribute to strength in synthetic spider silk fibers.

    PubMed

    Adrianos, Sherry L; Teulé, Florence; Hinman, Michael B; Jones, Justin A; Weber, Warner S; Yarger, Jeffery L; Lewis, Randolph V

    2013-06-10

    Flagelliform spider silk is the most extensible silk fiber produced by orb weaver spiders, though not as strong as the dragline silk of the spider. The motifs found in the core of the Nephila clavipes flagelliform Flag protein are GGX, spacer, and GPGGX. Flag does not contain the polyalanine motif known to provide the strength of dragline silk. To investigate the source of flagelliform fiber strength, four recombinant proteins were produced containing variations of the three core motifs of the Nephila clavipes flagelliform Flag protein that produces this type of fiber. The as-spun fibers were processed in 80% aqueous isopropanol using a standardized process for all four fiber types, which produced improved mechanical properties. Mechanical testing of the recombinant proteins determined that the GGX motif contributes extensibility and the spacer motif contributes strength to the recombinant fibers. Recombinant protein fibers containing the spacer motif were stronger than the proteins constructed without the spacer that contained only the GGX motif or the combination of the GGX and GPGGX motifs. The mechanical and structural X-ray diffraction analysis of the recombinant fibers provide data that suggests a functional role of the spacer motif that produces tensile strength, though the spacer motif is not clearly defined structurally. These results indicate that the spacer is likely a primary contributor of strength, with the GGX motif supplying mobility to the protein network of native N. clavipes flagelliform silk fibers. PMID:23646825

  9. Kalata B8, a novel antiviral circular protein, exhibits conformational flexibility in the cystine knot motif.

    PubMed

    Daly, Norelle L; Clark, Richard J; Plan, Manuel R; Craik, David J

    2006-02-01

    The cyclotides are a family of circular proteins with a range of biological activities and potential pharmaceutical and agricultural applications. The biosynthetic mechanism of cyclization is unknown and the discovery of novel sequences may assist in achieving this goal. In the present study, we have isolated a new cyclotide from Oldenlandia affinis, kalata B8, which appears to be a hybrid of the two major subfamilies (Möbius and bracelet) of currently known cyclotides. We have determined the three-dimensional structure of kalata B8 and observed broadening of resonances directly involved in the cystine knot motif, suggesting flexibility in this region despite it being the core structural element of the cyclotides. The cystine knot motif is widespread throughout Nature and inherently stable, making this apparent flexibility a surprising result. Furthermore, there appears to be isomerization of the peptide backbone at an Asp-Gly sequence in the region involved in the cyclization process. Interestingly, such isomerization has been previously characterized in related cyclic knottins from Momordica cochinchinensis that have no sequence similarity to kalata B8 apart from the six conserved cysteine residues and may result from a common mechanism of cyclization. Kalata B8 also provides insight into the structure-activity relationships of cyclotides as it displays anti-HIV activity but lacks haemolytic activity. The 'uncoupling' of these two activities has not previously been observed for the cyclotides and may be related to the unusual hydrophilic nature of the peptide. PMID:16207177

  10. Kalata B8, a novel antiviral circular protein, exhibits conformational flexibility in the cystine knot motif.

    PubMed

    Daly, Norelle L; Clark, Richard J; Plan, Manuel R; Craik, David J

    2006-02-01

    The cyclotides are a family of circular proteins with a range of biological activities and potential pharmaceutical and agricultural applications. The biosynthetic mechanism of cyclization is unknown and the discovery of novel sequences may assist in achieving this goal. In the present study, we have isolated a new cyclotide from Oldenlandia affinis, kalata B8, which appears to be a hybrid of the two major subfamilies (Möbius and bracelet) of currently known cyclotides. We have determined the three-dimensional structure of kalata B8 and observed broadening of resonances directly involved in the cystine knot motif, suggesting flexibility in this region despite it being the core structural element of the cyclotides. The cystine knot motif is widespread throughout Nature and inherently stable, making this apparent flexibility a surprising result. Furthermore, there appears to be isomerization of the peptide backbone at an Asp-Gly sequence in the region involved in the cyclization process. Interestingly, such isomerization has been previously characterized in related cyclic knottins from Momordica cochinchinensis that have no sequence similarity to kalata B8 apart from the six conserved cysteine residues and may result from a common mechanism of cyclization. Kalata B8 also provides insight into the structure-activity relationships of cyclotides as it displays anti-HIV activity but lacks haemolytic activity. The 'uncoupling' of these two activities has not previously been observed for the cyclotides and may be related to the unusual hydrophilic nature of the peptide.

  11. 5. DETAIL VIEW OF THE EGYPTIAN MOTIF DECORATIVE ELEMENTS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL VIEW OF THE EGYPTIAN MOTIF DECORATIVE ELEMENTS OF BUILDING 1'S MAIN ENTRY TOWER (INCLUDING THE ENGAGED COLUMN CAPITALS, PILASTERS & CAPITALS, CORNICES, AND TERRA COTTA EAGLES); LOOKING SW FROM THE E WING ROOF. (Ryan) - Veterans Administration Medical Center, Building No. 1, Old State Route 13 West, Marion, Williamson County, IL

  12. Insights into the motif preference of APOBEC3 enzymes.

    PubMed

    Ebrahimi, Diako; Alinejad-Rokny, Hamid; Davenport, Miles P

    2014-01-01

    We used a multivariate data analysis approach to identify motifs associated with HIV hypermutation by different APOBEC3 enzymes. The analysis showed that APOBEC3G targets G mainly within GG, TG, TGG, GGG, TGGG and also GGGT. The G nucleotides flanked by a C at the 3' end (in +1 and +2 positions) were indicated as disfavoured targets by APOBEC3G. The G nucleotides within GGGG were found to be targeted at a frequency much less than what is expected. We found that the infrequent G-to-A mutation within GGGG is not limited to the inaccessibility, to APOBEC3, of poly Gs in the central and 3'polypurine tracts (PPTs) which remain double stranded during the HIV reverse transcription. GGGG motifs outside the PPTs were also disfavoured. The motifs GGAG and GAGG were also found to be disfavoured targets for APOBEC3. The motif-dependent mutation of G within the HIV genome by members of the APOBEC3 family other than APOBEC3G was limited to GA→AA changes. The results did not show evidence of other types of context dependent G-to-A changes in the HIV genome. PMID:24498164

  13. Motifs in triadic random graphs based on Steiner triple systems

    NASA Astrophysics Data System (ADS)

    Winkler, Marco; Reichardt, Jörg

    2013-08-01

    Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade, the overabundance of certain subnetwork patterns, i.e., the so-called motifs, has attracted much attention. It has been hypothesized that these motifs, instead of links, serve as the building blocks of network structures. Although the relation between a network's topology and the general properties of the system, such as its function, its robustness against perturbations, or its efficiency in spreading information, is the central theme of network science, there is still a lack of sound generative models needed for testing the functional role of subgraph motifs. Our work aims to overcome this limitation. We employ the framework of exponential random graph models (ERGMs) to define models based on triadic substructures. The fact that only a small portion of triads can actually be set independently poses a challenge for the formulation of such models. To overcome this obstacle, we use Steiner triple systems (STSs). These are partitions of sets of nodes into pair-disjoint triads, which thus can be specified independently. Combining the concepts of ERGMs and STSs, we suggest generative models capable of generating ensembles of networks with nontrivial triadic Z-score profiles. Further, we discover inevitable correlations between the abundance of triad patterns, which occur solely for statistical reasons and need to be taken into account when discussing the functional implications of motif statistics. Moreover, we calculate the degree distributions of our triadic random graphs analytically.

  14. Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs.

    PubMed

    Senes, Alessandro; Engel, Donald E; DeGrado, William F

    2004-08-01

    Helical integral membrane proteins share several structural determinants that are widely conserved across their universe. The discovery of common motifs has furthered our understanding of the features that are important to stability in the membrane environment, while simultaneously providing clues about proteins that lack high-resolution structures. Motif analysis also helps to target mutagenesis studies, and other experimental and computational work. Three types of transmembrane motifs have recently seen interesting developments: the GxxxG motif and its like; polar and hydrogen bonding motifs; and proline motifs.

  15. Pentatricopeptide repeat motifs in the processing enzyme PRORP1 in Arabidopsis thaliana play a crucial role in recognition of nucleotide bases at TψC loop in precursor tRNAs.

    PubMed

    Imai, Takayoshi; Nakamura, Takahiro; Maeda, Taku; Nakayama, Kaoru; Gao, Xuzhu; Nakashima, Takashi; Kakuta, Yoshimitsu; Kimura, Makoto

    2014-08-01

    Proteinaceous RNase P (PRORP1) in Arabidopsis thaliana is an endoribonuclease that catalyzes hydrolysis to remove the 5'-leader sequence of precursor tRNAs (pre-tRNAs). PRORP1 is composed of pentatricopeptide repeat (PPR) motifs, a central linker region, and a metal nuclease domain, the NYN domain. The PPR motifs are single-stranded RNA-binding motifs that recognize bases in a modular fashion. To obtain insight into the mechanism by which the PPR motifs in PRORP1 recognize a target sequence in catalysis, N-terminal successive deletion mutants were overproduced in Escherichia coli, and the resulting proteins were characterized in terms of enzymatic activity using chloroplast pre-tRNA(Phe) as a substrate. Although Δ89, in which all PPR motifs are present, retained the pre-tRNA cleavage activity, Δ129 devoid of the first PPR motif (PPR1) had significantly reduced cleavage activity. Likewise, deletions of the second (PPR2) or third PPR (PPR3) motif abolished the cleavage activity, suggesting that PPR motifs play a crucial role in catalysis. A proposed recognition code for PPR motifs predicted that PPR2-PPR5 in PRORP1 recognize C, A/U, A, and U, respectively, whose sequence is in good agreement with C56-A57-A58-A59 in the TψC loop in pre-tRNA(Phe). Mutational analyses of nucleotide residues in the TψC loop as well as nucleotide-specifying residues (NSRs) in PPR motifs further suggested that PPR2 and PPR3 in PRORP1 favorably recognize nucleotide bases C56 and A57 at the TψC loop in pre-tRNA(Phe), respectively. This prediction and previous biochemical data were combined to construct a fitting model of tRNA onto PRORP1, showing that the mechanism by which PRORP1 recognizes pre-tRNAs appears to be distinct from that by bacterial RNase P.

  16. IL-4 and IL-13 induce SOCS-1 gene expression in A549 cells by three functional STAT6-binding motifs located upstream of the transcription initiation site.

    PubMed

    Hebenstreit, Daniel; Luft, Petra; Schmiedlechner, Angela; Regl, Gerhard; Frischauf, Anna-Maria; Aberger, Fritz; Duschl, Albert; Horejs-Hoeck, Jutta

    2003-12-01

    Proteins of the suppressors of cytokine signaling (SOCS) family have important functions as negative regulators of cytokine signaling. We show here that SOCS-1 expression can be induced in the human epithelial lung cell line A549 by IL-4 and IL-13. Analysis of reporter gene constructs under control of the SOCS-1 promoter provides evidence that IL-4- and IL-13-induced up-regulation is dependent on three IFN-gamma-activated sequence motifs of the sequence TTC(N)(4)GAA, which is known for binding STAT6. The three motifs are situated close to each other approximately 600 bp upstream of the transcriptional initiation site. When mutations were inserted into all three IFN-gamma-activated sequence motifs at the same time, IL-4-IL-13-induced luciferase activity was abrogated. With single and double mutants, promoter activity was diminished in comparison with the wild-type promoter. STAT6 is therefore required for IL-4-IL-13-dependent SOCS-1 expression in A549 cells, and the three identified binding motifs cooperate to induce maximal transcription. EMSAs conducted with nuclear extracts of IL-4- and IL-13-stimulated A549 cells showed that STAT6 was able to bind to each of the three binding motifs. Finally, cotransfection of a SOCS-1 expression vector inhibited activation of SOCS-1 promoter luciferase constructs. Thus, SOCS-1 is able to autoregulate its expression via a negative feedback loop.

  17. Application of Synthetic Peptide Arrays To Uncover Cyclic Di-GMP Binding Motifs

    PubMed Central

    Düvel, Juliane; Bense, Sarina; Möller, Stefan; Bertinetti, Daniela; Schwede, Frank; Morr, Michael; Eckweiler, Denitsa; Genieser, Hans-Gottfried; Jänsch, Lothar; Herberg, Friedrich W.; Frank, Ronald

    2015-01-01

    ABSTRACT High levels of the universal bacterial second messenger cyclic di-GMP (c-di-GMP) promote the establishment of surface-attached growth in many bacteria. Not only can c-di-GMP bind to nucleic acids and directly control gene expression, but it also binds to a diverse array of proteins of specialized functions and orchestrates their activity. Since its development in the early 1990s, the synthetic peptide array technique has become a powerful tool for high-throughput approaches and was successfully applied to investigate the binding specificity of protein-ligand interactions. In this study, we used peptide arrays to uncover the c-di-GMP binding site of a Pseudomonas aeruginosa protein (PA3740) that was isolated in a chemical proteomics approach. PA3740 was shown to bind c-di-GMP with a high affinity, and peptide arrays uncovered LKKALKKQTNLR to be a putative c-di-GMP binding motif. Most interestingly, different from the previously identified c-di-GMP binding motif of the PilZ domain (RXXXR) or the I site of diguanylate cyclases (RXXD), two leucine residues and a glutamine residue and not the charged amino acids provided the key residues of the binding sequence. Those three amino acids are highly conserved across PA3740 homologs, and their singular exchange to alanine reduced c-di-GMP binding within the full-length protein. IMPORTANCE In many bacterial pathogens the universal bacterial second messenger c-di-GMP governs the switch from the planktonic, motile mode of growth to the sessile, biofilm mode of growth. Bacteria adapt their intracellular c-di-GMP levels to a variety of environmental challenges. Several classes of c-di-GMP binding proteins have been structurally characterized, and diverse c-di-GMP binding domains have been identified. Nevertheless, for several c-di-GMP receptors, the binding motif remains to be determined. Here we show that the use of a synthetic peptide array allowed the identification of a c-di-GMP binding motif of a putative c

  18. A Comprehensive Review of Immunoreceptor Regulation of Osteoclasts.

    PubMed

    Humphrey, Mary Beth; Nakamura, Mary C

    2016-08-01

    Osteoclasts require coordinated co-stimulation by several signaling pathways to initiate and regulate their cellular differentiation. Receptor activator for NF-κB ligand (RANKL or TNFSF11), a tumor necrosis factor (TNF) superfamily member, is the master cytokine required for osteoclastogenesis with essential co-stimulatory signals mediated by immunoreceptor tyrosine-based activation motif (ITAM)-signaling adaptors, DNAX-associated protein 12 kDa size (DAP12) and FcεRI gamma chain (FcRγ). The ITAM-signaling adaptors do not have an extracellular ligand-binding domain and, therefore, must pair with ligand-binding immunoreceptors to interact with their extracellular environment. DAP12 pairs with a number of different immunoreceptors including triggering receptor expressed on myeloid cells 2 (TREM2), myeloid DAP12-associated lectin (MDL-1), and sialic acid-binding immunoglobulin-type lectin 15 (Siglec-15); while FcRγ pairs with a different set of receptors including osteoclast-specific activating receptor (OSCAR), paired immunoglobulin receptor A (PIR-A), and Fc receptors. The ligands for many of these receptors in the bone microenvironment remain unknown. Here, we will review immunoreceptors known to pair with either DAP12 or FcRγ that have been shown to regulate osteoclastogenesis. Co-stimulation and the effects of ITAM-signaling have turned out to be complex, and now include paradoxical findings that ITAM-signaling adaptor-associated receptors can inhibit osteoclastogenesis and immunoreceptor tyrosine-based inhibitory motif (ITIM) receptors can promote osteoclastogenesis. Thus, co-stimulation of osteoclastogenesis continues to reveal additional complexities that are important in the regulatory mechanisms that seek to maintain bone homeostasis.

  19. NK cell function triggered by multiple activating receptors is negatively regulated by glycogen synthase kinase-3β.

    PubMed

    Kwon, Hyung-Joon; Kwon, Soon Jae; Lee, Heejae; Park, Hye-Ran; Choi, Go-Eun; Kang, Sang-Wook; Kwon, Seog Woon; Kim, Nacksung; Lee, Soo Young; Ryu, Sangryeol; Kim, Sun Chang; Kim, Hun Sik

    2015-09-01

    Activation of NK cells is triggered by combined signals from multiple activating receptors that belong to different families. Several NK cell activating receptors have been identified, but their role in the regulation of effector functions is primarily understood in the context of their individual engagement. Therefore, little is known about the signaling pathways broadly implicated by the multiple NK cell activation cues. Here we provide evidence pointing to glycogen synthase kinase (GSK)-3β as a negative regulator of multiple NK cell activating signals. Using an activation model that combines NKG2D and 2B4 and tests different signaling molecules, we found that GSK-3 undergoes inhibitory phosphorylation at regulatory serine residues by the engagement of NKG2D and 2B4, either individually or in combination. The extent of such phosphorylation was closely correlated with the degree of NK cell activation. NK cell functions, such as cytokine production and cytotoxicity, were consistently enhanced by the knockdown of GSK-3β or its inhibition with different pharmacological inhibitors, whereas inhibition of the GSK-3α isoform had no effect. In addition, NK cell function was augmented by the overexpression of a catalytically inactive form of GSK-3β. Importantly, the regulation of NK cell function by GSK-3β was common to diverse activating receptors that signal through both ITAM and non-ITAM pathways. Thus, our results suggest that GSK-3β negatively regulates NK cell activation and that modulation of GSK-3β function could be used to enhance NK cell activation.

  20. Thaixylomolins A-C: limonoids featuring two new motifs from the Thai Xylocarpus moluccensis.

    PubMed

    Li, Jun; Li, Min-Yi; Bruhn, Torsten; Katele, Félix Zongwe; Xiao, Qiang; Pedpradab, Patchara; Wu, Jun; Bringmann, Gerhard

    2013-07-19

    Three limonoids named thaixylomolins A-C (1-3), featuring two new motifs, were isolated from the seeds of a Thai mangrove, Xylocarpus moluccensis. The absolute configurations of these limonoids were determined by extensive NMR investigations, single-crystal X-ray diffraction analysis, and circular-dichroism spectroscopy in combination with quantum-chemical calculations. Thaixylomolin B exhibited inhibitory activity against nitric oxide production in lipopolysaccharide and IFN-γ-induced RAW264.7 murine macrophages with an IC50 value of 84.3 μM.

  1. Vaccine-derived Mutation in Motif D of Poliovirus RNA-dependent RNA Polymerase Lowers Nucleotide Incorporation Fidelity*

    PubMed Central

    Liu, Xinran; Yang, Xiaorong; Lee, Cheri A.; Moustafa, Ibrahim M.; Smidansky, Eric D.; Lum, David; Arnold, Jamie J.; Cameron, Craig E.; Boehr, David D.

    2013-01-01

    All viral RNA-dependent RNA polymerases (RdRps) have a conserved structural element termed motif D. Studies of the RdRp from poliovirus (PV) have shown that a conformational change of motif D leads to efficient and faithful nucleotide addition by bringing Lys-359 into the active site where it serves as a general acid. The RdRp of the Sabin I vaccine strain has Thr-362 changed to Ile. Such a drastic change so close to Lys-359 might alter RdRp function and contribute in some way to the attenuated phenotype of Sabin type I. Here we present our characterization of the T362I RdRp. We find that the T362I RdRp exhibits a mutator phenotype in biochemical experiments in vitro. Using NMR, we show that this change in nucleotide incorporation fidelity correlates with a change in the structural dynamics of motif D. A recombinant PV expressing the T362I RdRp exhibits normal growth properties in cell culture but expresses a mutator phenotype in cells. For example, the T362I-containing PV is more sensitive to the mutagenic activity of ribavirin than wild-type PV. Interestingly, the T362I change was sufficient to cause a statistically significant reduction in viral virulence. Collectively, these studies suggest that residues of motif D can be targeted when changes in nucleotide incorporation fidelity are desired. Given the observation that fidelity mutants can serve as vaccine candidates, it may be possible to use engineering of motif D for this purpose. PMID:24085299

  2. A dileucine motif is involved in plasma membrane expression and endocytosis of rat sodium taurocholate cotransporting polypeptide (Ntcp).

    PubMed

    Stross, Claudia; Kluge, Stefanie; Weissenberger, Katrin; Winands, Elisabeth; Häussinger, Dieter; Kubitz, Ralf

    2013-11-15

    The sodium taurocholate cotransporting polypeptide (Ntcp) is the major uptake transporter for bile salts into liver parenchymal cells, and PKC-mediated endocytosis was shown to regulate the number of Ntcp molecules at the plasma membrane. In this study, mechanisms of Ntcp internalization were analyzed by flow cytometry, immunofluorescence, and Western blot analyses in HepG2 cells. PKC activation induced endocytosis of Ntcp from the plasma membrane by ~30%. Endocytosis of Ntcp was clathrin dependent and was followed by lysosomal degradation. A dileucine motif located in the third intracellular loop of Ntcp was essential for endocytosis but also for processing and plasma membrane targeting, suggesting a dual function of this motif for intracellular trafficking of Ntcp. Mutation of two of five potential phosphorylation sites surrounding the dileucine motif (Thr225 and Ser226) inhibited PKC-mediated endocytosis. In conclusion, we could identify a motif, which is critical for Ntcp plasma membrane localization. Endocytic retrieval protects hepatocytes from elevated bile salt concentrations and is of special interest, because NTCP has been identified as a receptor for the hepatitis B and D virus.

  3. C-terminal motif prediction in eukaryotic proteomes using comparative genomics and statistical over-representation across protein families

    PubMed Central

    Austin, Ryan S; Provart, Nicholas J; Cutler, Sean R

    2007-01-01

    Background The carboxy termini of proteins are a frequent site of activity for a variety of biologically important functions, ranging from post-translational modification to protein targeting. Several short peptide motifs involved in protein sorting roles and dependent upon their proximity to the C-terminus for proper function have already been characterized. As a limited number of such motifs have been identified, the potential exists for genome-wide statistical analysis and comparative genomics to reveal novel peptide signatures functioning in a C-terminal dependent manner. We have applied a novel methodology to the prediction of C-terminal-anchored peptide motifs involving a simple z-statistic and several techniques for improving the signal-to-noise ratio. Results We examined the statistical over-representation of position-specific C-terminal tripeptides in 7 eukaryotic proteomes. Sequence randomization models and simple-sequence masking were applied to the successful reduction of background noise. Similarly, as C-terminal homology among members of large protein families may artificially inflate tripeptide counts in an irrelevant and obfuscating manner, gene-family clustering was performed prior to the analysis in order to assess tripeptide over-representation across protein families as opposed to across all proteins. Finally, comparative genomics was used to identify tripeptides significantly occurring in multiple species. This approach has been able to predict, to our knowledge, all C-terminally anchored targeting motifs present in the literature. These include the PTS1 peroxisomal targeting signal (SKL*), the ER-retention signal (K/HDEL*), the ER-retrieval signal for membrane bound proteins (KKxx*), the prenylation signal (CC*) and the CaaX box prenylation motif. In addition to a high statistical over-representation of these known motifs, a collection of significant tripeptides with a high propensity for biological function exists between species, among

  4. Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions.

    PubMed

    Chemes, Lucía Beatriz; de Prat-Gay, Gonzalo; Sánchez, Ignacio Enrique

    2015-06-01

    Pathogen linear motif mimics are highly evolvable elements that facilitate rewiring of host protein interaction networks. Host linear motifs and pathogen mimics differ in sequence, leading to thermodynamic and structural differences in the resulting protein-protein interactions. Moreover, the functional output of a mimic depends on the motif and domain repertoire of the pathogen protein. Regulatory evolution mediated by linear motifs can be understood by measuring evolutionary rates, quantifying positive and negative selection and performing phylogenetic reconstructions of linear motif natural history. Convergent evolution of linear motif mimics is widespread among unrelated proteins from viral, prokaryotic and eukaryotic pathogens and can also take place within individual protein phylogenies. Statistics, biochemistry and laboratory models of infection link pathogen linear motifs to phenotypic traits such as tropism, virulence and oncogenicity. In vitro evolution experiments and analysis of natural sequences suggest that changes in linear motif composition underlie pathogen adaptation to a changing environment. PMID:25863584

  5. A Bioinformatics Approach for Detecting Repetitive Nested Motifs using Pattern Matching

    PubMed Central

    Romero, José R.; Carballido, Jessica A.; Garbus, Ingrid; Echenique, Viviana C.; Ponzoni, Ignacio

    2016-01-01

    The identification of nested motifs in genomic sequences is a complex computational problem. The detection of these patterns is important to allow the discovery of transposable element (TE) insertions, incomplete reverse transcripts, deletions, and/or mutations. In this study, a de novo strategy for detecting patterns that represent nested motifs was designed based on exhaustive searches for pairs of motifs and combinatorial pattern analysis. These patterns can be grouped into three categories, motifs within other motifs, motifs flanked by other motifs, and motifs of large size. The methodology used in this study, applied to genomic sequences from the plant species Aegilops tauschii and Oryza sativa, revealed that it is possible to identify putative nested TEs by detecting these three types of patterns. The results were validated through BLAST alignments, which revealed the efficacy and usefulness of the new method, which is called Mamushka. PMID:27812277

  6. FPGA implementation of motifs-based neuronal network and synchronization analysis

    NASA Astrophysics Data System (ADS)

    Deng, Bin; Zhu, Zechen; Yang, Shuangming; Wei, Xile; Wang, Jiang; Yu, Haitao

    2016-06-01

    Motifs in complex networks play a crucial role in determining the brain functions. In this paper, 13 kinds of motifs are implemented with Field Programmable Gate Array (FPGA) to investigate the relationships between the networks properties and motifs properties. We use discretization method and pipelined architecture to construct various motifs with Hindmarsh-Rose (HR) neuron as the node model. We also build a small-world network based on these motifs and conduct the synchronization analysis of motifs as well as the constructed network. We find that the synchronization properties of motif determine that of motif-based small-world network, which demonstrates effectiveness of our proposed hardware simulation platform. By imitation of some vital nuclei in the brain to generate normal discharges, our proposed FPGA-based artificial neuronal networks have the potential to replace the injured nuclei to complete the brain function in the treatment of Parkinson's disease and epilepsy.

  7. Histone H2B gene transcription during Xenopus early development requires functional cooperation between proteins bound to the CCAAT and octamer motifs.

    PubMed Central

    Hinkley, C; Perry, M

    1992-01-01

    The ubiquitously expressed transcription factor Oct-1 and several other members of the POU domain protein family bind to a site, termed the octamer motif, that functions in the promoter and enhancer regions of a variety of genes expressed under diverse conditions. An octamer motif present in a conserved histone H2B-specific promoter element is required for S-phase-specific transcription of mammalian histone H2B genes in cultured cells. We have previously shown that the octamer motif in a Xenopus histone H2B gene promoter was inactive in nondividing frog oocytes. Here we show that the octamer motif, in addition to regulatory elements (TATAA, CCAAT, and ATF motifs) that are active in oocytes, is required for maximal H2B gene transcription in developing frog embryos. Factors binding to each of the H2B upstream promoter elements are present in oocytes and increase slightly in abundance during early development. The activity of the H2B octamer motif in embryos is not specifically associated with increased binding by Oct-1 or the appearance of novel octamer-binding proteins but requires the presence of an intact CCAAT motif. Our results indicate that synergistic interactions among promoter-bound factors are important for octamer-dependent H2B transcription. We suggest that the activity of the H2B promoter is regulated primarily by changes in the interactions between proteins already bound to the promoter rather than by alterations in their intrinsic abilities to bind DNA. Images PMID:1406629

  8. Pierced Lasso Bundles Are a New Class of Knot-like Motifs

    PubMed Central

    Haglund, Ellinor; Sulkowska, Joanna I.; Noel, Jeffrey K.; Lammert, Heiko; Onuchic, José N.; Jennings, Patricia A.

    2014-01-01

    A four-helix bundle is a well-characterized motif often used as a target for designed pharmaceutical therapeutics and nutritional supplements. Recently, we discovered a new structural complexity within this motif created by a disulphide bridge in the long-chain helical bundle cytokine leptin. When oxidized, leptin contains a disulphide bridge creating a covalent-loop through which part of the polypeptide chain is threaded (as seen in knotted proteins). We explored whether other proteins contain a similar intriguing knot-like structure as in leptin and discovered 11 structurally homologous proteins in the PDB. We call this new helical family class the Pierced Lasso Bundle (PLB) and the knot-like threaded structural motif a Pierced Lasso (PL). In the current study, we use structure-based simulation to investigate the threading/folding mechanisms for all the PLBs along with three unthreaded homologs as the covalent loop (or lasso) in leptin is important in folding dynamics and activity. We find that the presence of a small covalent loop leads to a mechanism where structural elements slipknot to thread through the covalent loop. Larger loops use a piercing mechanism where the free terminal plugs through the covalent loop. Remarkably, the position of the loop as well as its size influences the native state dynamics, which can impact receptor binding and biological activity. This previously unrecognized complexity of knot-like proteins within the helical bundle family comprises a completely new class within the knot family, and the hidden complexity we unraveled in the PLBs is expected to be found in other protein structures outside the four-helix bundles. The insights gained here provide critical new elements for future investigation of this emerging class of proteins, where function and the energetic landscape can be controlled by hidden topology, and should be take into account in ab initio predictions of newly identified protein targets. PMID:24945798

  9. Contribution of the Myosin Binding Protein C Motif to Functional Effects in Permeabilized Rat Trabeculae

    PubMed Central

    Razumova, Maria V.; Bezold, Kristina L.; Tu, An-Yue; Regnier, Michael; Harris, Samantha P.

    2008-01-01

    Myosin binding protein C (MyBP-C) is a thick-filament protein that limits cross-bridge cycling rates and reduces myocyte power output. To investigate mechanisms by which MyBP-C affects contraction, we assessed effects of recombinant N-terminal domains of cardiac MyBP-C (cMyBP-C) on contractile properties of permeabilized rat cardiac trabeculae. Here, we show that N-terminal fragments of cMyBP-C that contained the first three immunoglobulin domains of cMyBP-C (i.e., C0, C1, and C2) plus the unique linker sequence termed the MyBP-C “motif” or “m-domain” increased Ca2+ sensitivity of tension and increased rates of tension redevelopment (i.e., ktr) at submaximal levels of Ca2+. At concentrations ≥20 μM, recombinant proteins also activated force in the absence of Ca2+ and inhibited maximum Ca2+-activated force. Recombinant proteins that lacked the combination of C1 and the motif did not affect contractile properties. These results suggest that the C1 domain plus the motif constitute a functional unit of MyBP-C that can activate the thin filament. PMID:18955596

  10. Functional consequences of mutations in the conserved SF2 motifs and post-translational phosphorylation of the CSB protein.

    PubMed

    Christiansen, Mette; Stevnsner, Tinna; Modin, Charlotte; Martensen, Pia M; Brosh, Robert M; Bohr, Vilhelm A

    2003-02-01

    The rare inherited human genetic disorder Cockayne syndrome (CS) is characterized by developmental abnormalities, UV sensitivity and premature aging. The cellular and molecular phenotypes of CS include increased sensitivity to UV-induced and oxidative DNA lesions. Two genes are involved: CSA and CSB. The CS group B (CSB) protein has roles in transcription, transcription-coupled repair, and base excision repair. It is a DNA stimulated ATPase and remodels chromatin in vitro. Here, we have analyzed wild-type (wt) and motif II, V and VI mutant CSB proteins. We find that the mutant proteins display different degrees of ATPase activity deficiency, and in contrast to the in vivo complementation studies, the motif II mutant is more defective than motif V and VI CSB mutants. Furthermore, CSB wt ATPase activity was studied with different biologically important DNA cofactors: DNA with different secondary structures and damaged DNA. The results indicate that the state of DNA secondary structure affects the level of CSB ATPase activity. We find that the CSB protein is phosphorylated in untreated cells and that UV irradiation leads to its dephosphorylation. Importantly, dephosphorylation of the protein in vitro results in increased ATPase activity of the protein, suggesting that the activity of the CSB protein is subject to phosphorylation control in vivo. These observations may have significant implications for the function of CSB in vivo. PMID:12560492

  11. Identifiability and inference of pathway motifs by epistasis analysis

    NASA Astrophysics Data System (ADS)

    Phenix, Hilary; Perkins, Theodore; Kærn, Mads

    2013-06-01

    The accuracy of genetic network inference is limited by the assumptions used to determine if one hypothetical model is better than another in explaining experimental observations. Most previous work on epistasis analysis—in which one attempts to infer pathway relationships by determining equivalences among traits following mutations—has been based on Boolean or linear models. Here, we delineate the ultimate limits of epistasis-based inference by systematically surveying all two-gene network motifs and use symbolic algebra with arbitrary regulation functions to examine trait equivalences. Our analysis divides the motifs into equivalence classes, where different genetic perturbations result in indistinguishable experimental outcomes. We demonstrate that this partitioning can reveal important information about network architecture, and show, using simulated data, that it greatly improves the accuracy of genetic network inference methods. Because of the minimal assumptions involved, equivalence partitioning has broad applicability for gene network inference.

  12. Identifiability and inference of pathway motifs by epistasis analysis.

    PubMed

    Phenix, Hilary; Perkins, Theodore; Kærn, Mads

    2013-06-01

    The accuracy of genetic network inference is limited by the assumptions used to determine if one hypothetical model is better than another in explaining experimental observations. Most previous work on epistasis analysis-in which one attempts to infer pathway relationships by determining equivalences among traits following mutations-has been based on Boolean or linear models. Here, we delineate the ultimate limits of epistasis-based inference by systematically surveying all two-gene network motifs and use symbolic algebra with arbitrary regulation functions to examine trait equivalences. Our analysis divides the motifs into equivalence classes, where different genetic perturbations result in indistinguishable experimental outcomes. We demonstrate that this partitioning can reveal important information about network architecture, and show, using simulated data, that it greatly improves the accuracy of genetic network inference methods. Because of the minimal assumptions involved, equivalence partitioning has broad applicability for gene network inference. PMID:23822501

  13. DMINDA: an integrated web server for DNA motif identification and analyses

    PubMed Central

    Ma, Qin; Zhang, Hanyuan; Mao, Xizeng; Zhou, Chuan; Liu, Bingqiang; Chen, Xin; Xu, Ying

    2014-01-01

    DMINDA (DNA motif identification and analyses) is an integrated web server for DNA motif identification and analyses, which is accessible at http://csbl.bmb.uga.edu/DMINDA/. This web site is freely available to all users and there is no login requirement. This server provides a suite of cis-regulatory motif analysis functions on DNA sequences, which are important to elucidation of the mechanisms of transcriptional regulation: (i) de novo motif finding for a given set of promoter sequences along with statistical scores for the predicted motifs derived based on information extracted from a control set, (ii) scanning motif instances of a query motif in provided genomic sequences, (iii) motif comparison and clustering of identified motifs, and (iv) co-occurrence analyses of query motifs in given promoter sequences. The server is powered by a backend computer cluster with over 150 computing nodes, and is particularly useful for motif prediction and analyses in prokaryotic genomes. We believe that DMINDA, as a new and comprehensive web server for cis-regulatory motif finding and analyses, will benefit the genomic research community in general and prokaryotic genome researchers in particular. PMID:24753419

  14. Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT.

    PubMed

    Kawano, Miyuki; Kumagai, Keigo; Nishijima, Masahiro; Hanada, Kentaro

    2006-10-01

    Ceramide is synthesized at the endoplasmic reticulum (ER) and transported to the Golgi apparatus by CERT for its conversion to sphingomyelin in mammalian cells. CERT has a pleck-strin homology (PH) domain for Golgi targeting and a START domain catalyzing the intermembrane transfer of ceramide. The region between the two domains contains a short peptide motif designated FFAT, which is supposed to interact with the ER-resident proteins VAP-A and VAP-B. Both VAPs were actually co-immunoprecipitated with CERT, and the CERT/VAP interaction was abolished by mutations in the FFAT motif. These mutations did not affect the Golgi targeting activity of CERT. Whereas mutations of neither the FFAT motif nor the PH domain inhibited the ceramide transfer activity of CERT in a cell-free system, they impaired the ER-to-Golgi transport of ceramide in intact and in semi-intact cells at near endogenous expression levels. By contrast, when overexpressed, both the FFAT motif and the PH domain mutants of CERT substantially supported the transport of ceramide from the ER to the site where sphingomyelin is produced. These results suggest that the Golgi-targeting PH domain and ER-interacting FFAT motif of CERT spatially restrict the random ceramide transfer activity of the START domain in cells.

  15. Characterization of two VQIXXK motifs for tau fibrillization in vitro.

    PubMed

    Li, Wenkai; Lee, Virginia M-Y

    2006-12-26

    Tau proteins are building blocks of the filaments that form neurofibrillary tangles of Alzheimer's disease (AD) and related neurodegenerative tauopathies. It was recently reported that two VQIXXK motifs in the microtubule (MT) binding region, named PHF6 and PHF6*, are responsible for tau fibrillization. However, the exact role each of these motifs plays in this process has not been analyzed in detail. Using a recombinant human tau fragment containing only the four MT-binding repeats (K18), we show that deletion of either PHF6 or PHF6* affected tau assembly but only PHF6 is essential for filament formation, suggesting a critical role of this motif. To determine the amino acid residues within PHF6 that are required for tau fibrillization, a series of deletion and mutation constructs targeting this motif were generated. Deletion of VQI in either PHF6 or PHF6* lessened but did not eliminate K18 fibrillization. However, removal of the single K311 residue from PHF6 completely abrogated the fibril formation of K18. K311D mutation of K18 inhibited tau filament formation, while K311A and K311R mutations had no effect. These data imply that charge change at position 311 is important in tau fibril formation. A similar requirement of nonnegative charge at this position for fibrillization was observed with the full-length human tau isoform (T40), and data from these studies indicate that the formation of fibrils by T40K311D and T40K311P mutants is repressed at the nucleation phase. These findings provide important insights into the mechanisms of tau fibrillization and suggest targets for AD drug discovery to ameliorate neurodegeneration mediated by filamentous tau pathologies.

  16. Graph animals, subgraph sampling, and motif search in large networks

    NASA Astrophysics Data System (ADS)

    Baskerville, Kim; Grassberger, Peter; Paczuski, Maya

    2007-09-01

    We generalize a sampling algorithm for lattice animals (connected clusters on a regular lattice) to a Monte Carlo algorithm for “graph animals,” i.e., connected subgraphs in arbitrary networks. As with the algorithm in [N. Kashtan , Bioinformatics 20, 1746 (2004)], it provides a weighted sample, but the computation of the weights is much faster (linear in the size of subgraphs, instead of superexponential). This allows subgraphs with up to ten or more nodes to be sampled with very high statistics, from arbitrarily large networks. Using this together with a heuristic algorithm for rapidly classifying isomorphic graphs, we present results for two protein interaction networks obtained using the tandem affinity purification (TAP) method: one of Escherichia coli with 230 nodes and 695 links, and one for yeast (Saccharomyces cerevisiae) with roughly ten times more nodes and links. We find in both cases that most connected subgraphs are strong motifs ( Z scores >10 ) or antimotifs ( Z scores <-10 ) when the null model is the ensemble of networks with fixed degree sequence. Strong differences appear between the two networks, with dominant motifs in E. coli being (nearly) bipartite graphs and having many pairs of nodes that connect to the same neighbors, while dominant motifs in yeast tend towards completeness or contain large cliques. We also explore a number of methods that do not rely on measurements of Z scores or comparisons with null models. For instance, we discuss the influence of specific complexes like the 26S proteasome in yeast, where a small number of complexes dominate the k cores with large k and have a decisive effect on the strongest motifs with 6-8 nodes. We also present Zipf plots of counts versus rank. They show broad distributions that are not power laws, in contrast to the case when disconnected subgraphs are included.

  17. Motif, the basics: an overview of the widget set

    SciTech Connect

    McClurg, F.R.

    1992-10-01

    The Motif library provides programmers with a rich set of tools for building a graphical user interface with a three-dimensional appearance and a consistent method of interaction for controlling an Unix application. This Xt-based, high-level library presents an ``object-oriented`` approach to program design for programmers and allows end-users the flexibility to modify attributes of the interface.

  18. Biosynthesis of caffeine underlying the diversity of motif B' methyltransferase.

    PubMed

    Nakayama, Fumiyo; Mizuno, Kouichi; Kato, Misako

    2015-05-01

    Caffeine (1,3,7-trimethylxanthine) and theobromine (3,7-dimethylxanthine) are well-known purine alkaloids in Camellia, Coffea, Cola, Paullinia, Ilex, and Theobroma spp. The caffeine biosynthetic pathway depends on the substrate specificity of N-methyltransferases, which are members of the motif B' methyl-transferase family. The caffeine biosynthetic pathways in purine alkaloid-containing plants might have evolved in parallel with one another, consistent with different catalytic properties of the enzymes involved in these pathways. PMID:26058161

  19. Biomolecular network motif counting and discovery by color coding.

    PubMed

    Alon, Noga; Dao, Phuong; Hajirasouliha, Iman; Hormozdiari, Fereydoun; Sahinalp, S Cenk

    2008-07-01

    Protein-protein interaction (PPI) networks of many organisms share global topological features such as degree distribution, k-hop reachability, betweenness and closeness. Yet, some of these networks can differ significantly from the others in terms of local structures: e.g. the number of specific network motifs can vary significantly among PPI networks. Counting the number of network motifs provides a major challenge to compare biomolecular networks. Recently developed algorithms have been able to count the number of induced occurrences of subgraphs with k < or = 7 vertices. Yet no practical algorithm exists for counting non-induced occurrences, or counting subgraphs with k > or = 8 vertices. Counting non-induced occurrences of network motifs is not only challenging but also quite desirable as available PPI networks include several false interactions and miss many others. In this article, we show how to apply the 'color coding' technique for counting non-induced occurrences of subgraph topologies in the form of trees and bounded treewidth subgraphs. Our algorithm can count all occurrences of motif G' with k vertices in a network G with n vertices in time polynomial with n, provided k = O(log n). We use our algorithm to obtain 'treelet' distributions for k < or = 10 of available PPI networks of unicellular organisms (Saccharomyces cerevisiae Escherichia coli and Helicobacter Pyloris), which are all quite similar, and a multicellular organism (Caenorhabditis elegans) which is significantly different. Furthermore, the treelet distribution of the unicellular organisms are similar to that obtained by the 'duplication model' but are quite different from that of the 'preferential attachment model'. The treelet distribution is robust w.r.t. sparsification with bait/edge coverage of 70% but differences can be observed when bait/edge coverage drops to 50%. PMID:18586721

  20. Biosynthesis of caffeine underlying the diversity of motif B' methyltransferase.

    PubMed

    Nakayama, Fumiyo; Mizuno, Kouichi; Kato, Misako

    2015-05-01

    Caffeine (1,3,7-trimethylxanthine) and theobromine (3,7-dimethylxanthine) are well-known purine alkaloids in Camellia, Coffea, Cola, Paullinia, Ilex, and Theobroma spp. The caffeine biosynthetic pathway depends on the substrate specificity of N-methyltransferases, which are members of the motif B' methyl-transferase family. The caffeine biosynthetic pathways in purine alkaloid-containing plants might have evolved in parallel with one another, consistent with different catalytic properties of the enzymes involved in these pathways.

  1. Motif, the basics: an overview of the widget set

    SciTech Connect

    McClurg, F.R.

    1992-10-01

    The Motif library provides programmers with a rich set of tools for building a graphical user interface with a three-dimensional appearance and a consistent method of interaction for controlling an Unix application. This Xt-based, high-level library presents an object-oriented'' approach to program design for programmers and allows end-users the flexibility to modify attributes of the interface.

  2. Maximum likelihood density modification by pattern recognition of structural motifs

    DOEpatents

    Terwilliger, Thomas C.

    2004-04-13

    An electron density for a crystallographic structure having protein regions and solvent regions is improved by maximizing the log likelihood of a set of structures factors {F.sub.h } using a local log-likelihood function: (x)+p(.rho.(x).vertline.SOLV)p.sub.SOLV (x)+p(.rho.(x).vertline.H)p.sub.H (x)], where p.sub.PROT (x) is the probability that x is in the protein region, p(.rho.(x).vertline.PROT) is the conditional probability for .rho.(x) given that x is in the protein region, and p.sub.SOLV (x) and p(.rho.(x).vertline.SOLV) are the corresponding quantities for the solvent region, p.sub.H (x) refers to the probability that there is a structural motif at a known location, with a known orientation, in the vicinity of the point x; and p(.rho.(x).vertline.H) is the probability distribution for electron density at this point given that the structural motif actually is present. One appropriate structural motif is a helical structure within the crystallographic structure.

  3. Binding cofactors with triplex-based DNA motifs.

    PubMed

    Kröner, Christoph; Göckel, Anja; Liu, Wenjing; Richert, Clemens

    2013-11-18

    Cofactors are pivotal compounds for the cell and many biotechnological processes. It is therefore interesting to ask how well cofactors can be bound by oligonucleotides designed not to convert but to store and release these biomolecules. Here we show that triplex-based DNA binding motifs can be used to bind nucleotides and cofactors, including NADH, FAD, SAM, acetyl CoA, and tetrahydrofolate (THF). Dissociation constants between 0.1 μM for SAM and 35 μM for THF were measured. A two-nucleotide gap still binds NADH. The selectivity for one ligand over the others can be changed by changing the sequence of the binding pocket. For example, a mismatch placed in one of the two triplets adjacent to the base-pairing site changes the selectivity, favoring the binding of FAD over that of ATP. Further, changing one of the two thymines of an A-binding motif to cytosine gives significant affinity for G, whereas changing the other does not. Immobilization of DNA motifs gives beads that store NADH. Exploratory experiments show that the beads release the cofactor upon warming to body temperature.

  4. MAR characteristic motifs mediate episomal vector in CHO cells.

    PubMed

    Lin, Yan; Li, Zhaoxi; Wang, Tianyun; Wang, Xiaoyin; Wang, Li; Dong, Weihua; Jing, Changqin; Yang, Xianjun

    2015-04-01

    An ideal gene therapy vector should enable persistent transgene expression without limitations in safety and reproducibility. Recent researches' insight into the ability of chromosomal matrix attachment regions (MARs) to mediate episomal maintenance of genetic elements allowed the development of a circular episomal vector. Although a MAR-mediated engineered vector has been developed, little is known on which motifs of MAR confer this function during interaction with the host genome. Here, we report an artificially synthesized DNA fragment containing only characteristic motif sequences that served as an alternative to human beta-interferon matrix attachment region sequence. The potential of the vector to mediate gene transfer in CHO cells was investigated. The short synthetic MAR motifs were found to mediate episomal vector at a low copy number for many generations without integration into the host genome. Higher transgene expression was maintained for at least 4 months. In addition, MAR was maintained episomally and conferred sustained EGFP expression even in nonselective CHO cells. All the results demonstrated that MAR characteristic sequence-based vector can function as stable episomes in CHO cells, supporting long-term and effective transgene expression.

  5. A novel swarm intelligence algorithm for finding DNA motifs

    PubMed Central

    Lei, Chengwei; Ruan, Jianhua

    2010-01-01

    Discovering DNA motifs from co-expressed or co-regulated genes is an important step towards deciphering complex gene regulatory networks and understanding gene functions. Despite significant improvement in the last decade, it still remains one of the most challenging problems in computational molecular biology. In this work, we propose a novel motif finding algorithm that finds consensus patterns using a population-based stochastic optimisation technique called Particle Swarm Optimisation (PSO), which has been shown to be effective in optimising difficult multidimensional problems in continuous domains. We propose to use a word dissimilarity graph to remap the neighborhood structure of the solution space of DNA motifs, and propose a modification of the naive PSO algorithm to accommodate discrete variables. In order to improve efficiency, we also propose several strategies for escaping from local optima and for automatically determining the termination criteria. Experimental results on simulated challenge problems show that our method is both more efficient and more accurate than several existing algorithms. Applications to several sets of real promoter sequences also show that our approach is able to detect known transcription factor binding sites, and outperforms two of the most popular existing algorithms. PMID:20090174

  6. Structure and ubiquitin binding of the ubiquitin-interacting motif

    SciTech Connect

    Fisher,R.; Wang, B.; Alam, S.; Higginson, D.; Robinson, H.; Sundquist, C.; Hill, C.

    2003-01-01

    Ubiquitylation is used to target proteins into a large number of different biological processes including proteasomal degradation, endocytosis, virus budding, and vacuolar protein sorting (Vps). Ubiquitylated proteins are typically recognized using one of several different conserved ubiquitin binding modules. Here, we report the crystal structure and ubiquitin binding properties of one such module, the ubiquitin-interacting motif (UIM). We found that UIM peptides from several proteins involved in endocytosis and vacuolar protein sorting including Hrs, Vps27p, Stam1, and Eps15 bound specifically, but with modest affinity (K{sub d} = 0.1-1 mM), to free ubiquitin. Full affinity ubiquitin binding required the presence of conserved acidic patches at the N and C terminus of the UIM, as well as highly conserved central alanine and serine residues. NMR chemical shift perturbation mapping experiments demonstrated that all of these UIM peptides bind to the I44 surface of ubiquitin. The 1.45 {angstrom} resolution crystal structure of the second yeast Vps27p UIM (Vps27p-2) revealed that the ubiquitin-interacting motif forms an amphipathic helix. Although Vps27p-2 is monomeric in solution, the motif unexpectedly crystallized as an antiparallel four-helix bundle, and the potential biological implications of UIM oligomerization are therefore discussed.

  7. An update on cell surface proteins containing extensin-motifs.

    PubMed

    Borassi, Cecilia; Sede, Ana R; Mecchia, Martin A; Salgado Salter, Juan D; Marzol, Eliana; Muschietti, Jorge P; Estevez, Jose M

    2016-01-01

    In recent years it has become clear that there are several molecular links that interconnect the plant cell surface continuum, which is highly important in many biological processes such as plant growth, development, and interaction with the environment. The plant cell surface continuum can be defined as the space that contains and interlinks the cell wall, plasma membrane and cytoskeleton compartments. In this review, we provide an updated view of cell surface proteins that include modular domains with an extensin (EXT)-motif followed by a cytoplasmic kinase-like domain, known as PERKs (for proline-rich extensin-like receptor kinases); with an EXT-motif and an actin binding domain, known as formins; and with extracellular hybrid-EXTs. We focus our attention on the EXT-motifs with the short sequence Ser-Pro(3-5), which is found in several different protein contexts within the same extracellular space, highlighting a putative conserved structural and functional role. A closer understanding of the dynamic regulation of plant cell surface continuum and its relationship with the downstream signalling cascade is a crucial forthcoming challenge.

  8. Event Networks and the Identification of Crime Pattern Motifs

    PubMed Central

    2015-01-01

    In this paper we demonstrate the use of network analysis to characterise patterns of clustering in spatio-temporal events. Such clustering is of both theoretical and practical importance in the study of crime, and forms the basis for a number of preventative strategies. However, existing analytical methods show only that clustering is present in data, while offering little insight into the nature of the patterns present. Here, we show how the classification of pairs of events as close in space and time can be used to define a network, thereby generalising previous approaches. The application of graph-theoretic techniques to these networks can then offer significantly deeper insight into the structure of the data than previously possible. In particular, we focus on the identification of network motifs, which have clear interpretation in terms of spatio-temporal behaviour. Statistical analysis is complicated by the nature of the underlying data, and we provide a method by which appropriate randomised graphs can be generated. Two datasets are used as case studies: maritime piracy at the global scale, and residential burglary in an urban area. In both cases, the same significant 3-vertex motif is found; this result suggests that incidents tend to occur not just in pairs, but in fact in larger groups within a restricted spatio-temporal domain. In the 4-vertex case, different motifs are found to be significant in each case, suggesting that this technique is capable of discriminating between clustering patterns at a finer granularity than previously possible. PMID:26605544

  9. A cost-aggregating integer linear program for motif finding.

    PubMed

    Kingsford, Carl; Zaslavsky, Elena; Singh, Mona

    2011-12-01

    In the motif finding problem one seeks a set of mutually similar substrings within a collection of biological sequences. This is an important and widely-studied problem, as such shared motifs in DNA often correspond to regulatory elements. We study a combinatorial framework where the goal is to find substrings of a given length such that the sum of their pairwise distances is minimized. We describe a novel integer linear program for the problem, which uses the fact that distances between substrings come from a limited set of possibilities allowing for aggregate consideration of sequence position pairs with the same distances. We show how to tighten its linear programming relaxation by adding an exponential set of constraints and give an efficient separation algorithm that can find violated constraints, thereby showing that the tightened linear program can still be solved in polynomial time. We apply our approach to find optimal solutions for the motif finding problem and show that it is effective in practice in uncovering known transcription factor binding sites.

  10. TOPDOM: database of conservatively located domains and motifs in proteins

    PubMed Central

    Varga, Julia; Dobson, László; Tusnády, Gábor E.

    2016-01-01

    Summary: The TOPDOM database—originally created as a collection of domains and motifs located consistently on the same side of the membranes in α-helical transmembrane proteins—has been updated and extended by taking into consideration consistently localized domains and motifs in globular proteins, too. By taking advantage of the recently developed CCTOP algorithm to determine the type of a protein and predict topology in case of transmembrane proteins, and by applying a thorough search for domains and motifs as well as utilizing the most up-to-date version of all source databases, we managed to reach a 6-fold increase in the size of the whole database and a 2-fold increase in the number of transmembrane proteins. Availability and implementation: TOPDOM database is available at http://topdom.enzim.hu. The webpage utilizes the common Apache, PHP5 and MySQL software to provide the user interface for accessing and searching the database. The database itself is generated on a high performance computer. Contact: tusnady.gabor@ttk.mta.hu. Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153630

  11. Motif structure and cooperation in real-world complex networks

    NASA Astrophysics Data System (ADS)

    Salehi, Mostafa; Rabiee, Hamid R.; Jalili, Mahdi

    2010-12-01

    Networks of dynamical nodes serve as generic models for real-world systems in many branches of science ranging from mathematics to physics, technology, sociology and biology. Collective behavior of agents interacting over complex networks is important in many applications. The cooperation between selfish individuals is one of the most interesting collective phenomena. In this paper we address the interplay between the motifs’ cooperation properties and their abundance in a number of real-world networks including yeast protein-protein interaction, human brain, protein structure, email communication, dolphins’ social interaction, Zachary karate club and Net-science coauthorship networks. First, the amount of cooperativity for all possible undirected subgraphs with three to six nodes is calculated. To this end, the evolutionary dynamics of the Prisoner’s Dilemma game is considered and the cooperativity of each subgraph is calculated as the percentage of cooperating agents at the end of the simulation time. Then, the three- to six-node motifs are extracted for each network. The significance of the abundance of a motif, represented by a Z-value, is obtained by comparing them with some properly randomized versions of the original network. We found that there is always a group of motifs showing a significant inverse correlation between their cooperativity amount and Z-value, i.e. the more the Z-value the less the amount of cooperativity. This suggests that networks composed of well-structured units do not have good cooperativity properties.

  12. iRegulon: From a Gene List to a Gene Regulatory Network Using Large Motif and Track Collections

    PubMed Central

    Imrichová, Hana; Van de Sande, Bram; Standaert, Laura; Christiaens, Valerie; Hulselmans, Gert; Herten, Koen; Naval Sanchez, Marina; Potier, Delphine; Svetlichnyy, Dmitry; Kalender Atak, Zeynep; Fiers, Mark; Marine, Jean-Christophe; Aerts, Stein

    2014-01-01

    Identifying master regulators of biological processes and mapping their downstream gene networks are key challenges in systems biology. We developed a computational method, called iRegulon, to reverse-engineer the transcriptional regulatory network underlying a co-expressed gene set using cis-regulatory sequence analysis. iRegulon implements a genome-wide ranking-and-recovery approach to detect enriched transcription factor motifs and their optimal sets of direct targets. We increase the accuracy of network inference by using very large motif collections of up to ten thousand position weight matrices collected from various species, and linking these to candidate human TFs via a motif2TF procedure. We validate iRegulon on gene sets derived from ENCODE ChIP-seq data with increasing levels of noise, and we compare iRegulon with existing motif discovery methods. Next, we use iRegulon on more challenging types of gene lists, including microRNA target sets, protein-protein interaction networks, and genetic perturbation data. In particular, we over-activate p53 in breast cancer cells, followed by RNA-seq and ChIP-seq, and could identify an extensive up-regulated network controlled directly by p53. Similarly we map a repressive network with no indication of direct p53 regulation but rather an indirect effect via E2F and NFY. Finally, we generalize our computational framework to include regulatory tracks such as ChIP-seq data and show how motif and track discovery can be combined to map functional regulatory interactions among co-expressed genes. iRegulon is available as a Cytoscape plugin from http://iregulon.aertslab.org. PMID:25058159

  13. Development of vascular tissue and stress inducible hybrid-synthetic promoters through dof-1 motifs rearrangement.

    PubMed

    Ranjan, Rajiv; Dey, Nrisingha

    2012-07-01

    A Caulimovirus-based hybrid-promoter, EFCFS, was derived by fusing the distal region (-227 to -54, FUAS) of Figwort mosaic virus full-length transcript promoter (F20) with the core promoter (-151 to +12, FS3CP) domain of Figwort mosaic virus sub-genomic transcript promoter (FS3). The hybrid-promoter (EFCFS) showed enhanced activity compared to the CaMV35S, F20 and FS3 promoters; while it showed equivalent activity with that of the CAMV35S(2) promoter in both transient protoplast (Nicotiana tabacum cv. Xanthi Brad) and transgenic plants (Nicotiana tabacum; Samsun NN). Further, we have engineered the EFCFS promoter sequence by inserting additional copies of the stress-inducible 'AAAG' cis-motif (Dof-1) to generate a set of three hybrid-synthetic promoters namely; EFCFS-HS-1, EFCFS-HS-2 and EFCFS-HS-3-containing 10, 11 and 13 'AAAG' motif, respectively. Transgenic plants expressing these hybrid synthetic promoters coupled to the GUS reporter were developed and their transcriptional activities were compared with F20, FS3, 35S and 35S(2) promoters, respectively. The relative levels of uidA-mRNA accumulation in transgenic plants driven by above promoters individually were compared by qRT-PCR. Localization of GUS reporter activity in plant tissue was assayed by histochemical approach. CLSM-based study revealed that hybrid-synthetic promoters namely; EFCFS-HS-1, EFCFS-HS-2 and EFCFS-HS-3 showed enhanced activity in vascular tissue compared to the CaMV35S promoter. In the presence of abiotic stress elicitors, salicylic acid and jasmonic acid, the EFCFS-HS-1 promoters showed enhanced activity compared to the 35S promoter. Newly derived hybrid-synthetic promoter/s with enhanced activity and stress inducibility could become efficient tools for advancement of plant biotechnology.

  14. An Intrinsically Disordered Motif Mediates Diverse Actions of Monomeric C-reactive Protein.

    PubMed

    Li, Hai-Yun; Wang, Jing; Meng, Fan; Jia, Zhe-Kun; Su, Yang; Bai, Qi-Feng; Lv, Ling-Ling; Ma, Fu-Rong; Potempa, Lawrence A; Yan, Yong-Bin; Ji, Shang-Rong; Wu, Yi

    2016-04-15

    Most proinflammatory actions of C-reactive protein (CRP) are only expressed following dissociation of its native pentameric assembly into monomeric form (mCRP). However, little is known about what underlies the greatly enhanced activities of mCRP. Here we show that a single sequence motif, i.e. cholesterol binding sequence (CBS; a.a. 35-47), is responsible for mediating the interactions of mCRP with diverse ligands. The binding of mCRP to lipoprotein component ApoB, to complement component C1q, to extracellular matrix components fibronectin and collagen, to blood coagulation component fibrinogen, and to membrane lipid component cholesterol, are all found to be markedly inhibited by the synthetic CBS peptide but not by other CRP sequences tested. Likewise, mutating CBS in mCRP also greatly impairs these interactions. Functional experiments further reveal that CBS peptide significantly reduces the effects of mCRP on activation of endothelial cells in vitro and on acute induction of IL-6 in mice. The potency and specificity of CBS are critically determined by the N-terminal residues Cys-36, Leu-37, and His-38; while the versatility of CBS appears to originate from its intrinsically disordered conformation polymorphism. Together, these data unexpectedly identify CBS as the major recognition site of mCRP and suggest that this motif may be exploited to tune the proinflammatory actions of mCRP.

  15. Analysis of protective antigen peptide binding motifs using bacterial display technology

    NASA Astrophysics Data System (ADS)

    Sarkes, Deborah A.; Dorsey, Brandi L.; Stratis-Cullum, Dimitra N.

    2015-05-01

    In today's fast-paced world, a new biological threat could emerge at any time, necessitating a prompt, reliable, inexpensive detection reagent in each case. Combined with magnetic-activated cell sorting (MACS), bacterial display technology makes it possible to isolate selective, high affinity peptide reagents in days to weeks. Utilizing the eCPX display scaffold is also a rapid way to screen potential peptide reagents. Peptide affinity reagents for protective antigen (PA) of the biothreat Bacillus anthracis were previously discovered using bacterial display. Bioinformatics analysis resulted in the consensus sequence WXCFTC. Additionally, we have discovered PA binding peptides with a WW motif, one of which, YGLHPWWKNAPIGQR, can pull down PA from 1% human serum. The strength of these two motifs combined, to obtain a WWCFTC consensus, is assessed here using Fluorescence Activated Cell Sorting (FACS). While monitoring binding to PA, overall expression of the display scaffold was assessed using the YPet Mona expression control tag (YPet), and specificity was assessed by binding to Streptavidin R-Phycoerythrin (SAPE). The importance of high YPet binding is highlighted as many of the peptides in one of the three replicate experiments fell below our 80% binding threshold. We demonstrate that it is preferable to discard this experiment, due to questionable expression of the peptide itself, than to try to normalize for relative expression. The peptides containing the WWCFTC consensus were of higher affinity and greater specificity than the peptides containing the WW consensus alone, validating further investigation to optimize known PA binders.

  16. Two RNA recognition motif-containing proteins are plant mitochondrial editing factors

    PubMed Central

    Shi, Xiaowen; Hanson, Maureen R.; Bentolila, Stéphane

    2015-01-01

    Post-transcriptional C-to-U RNA editing occurs in plant plastid and mitochondrial transcripts. Members of the Arabidopsis RNA-editing factor interacting protein (RIP) family and ORRM1 (Organelle RNA Recognition Motif-containing protein 1) have been recently characterized as essential components of the chloroplast RNA editing apparatus. ORRM1 belongs to a distinct clade of RNA Recognition Motif (RRM)-containing proteins, most of which are predicted to be organelle-targeted. Here we report the identification of two proteins, ORRM2 (organelle RRM protein 2) and ORRM3 (organelle RRM protein 3), as the first members of the ORRM clade to be identified as mitochondrial editing factors. Transient silencing of ORRM2 and ORRM3 resulted in reduced editing efficiency at ∼6% of the mitochondrial C targets. In addition to an RRM domain at the N terminus, ORRM3 carries a glycine-rich domain at the C terminus. The N-terminal RRM domain by itself provides the editing activity of ORRM3. In yeast-two hybrid assays, ORRM3 interacts with RIP1, ORRM2 and with itself. Transient silencing of ORRM2 in the orrm3 mutant further impairs the editing activity at sites controlled by both ORRM2 and ORRM3. Identification of the effect of ORRM2 and ORRM3 on RNA editing reveals a previously undescribed role of RRM-containing proteins as mitochondrial RNA editing factors. PMID:25800738

  17. The JAMM motif of human deubiquitinase Poh1 is essential for cell viability.

    PubMed

    Gallery, Melissa; Blank, Jonathan L; Lin, Yinghui; Gutierrez, Juan A; Pulido, Jacqueline C; Rappoli, David; Badola, Sunita; Rolfe, Mark; Macbeth, Kyle J

    2007-01-01

    Poh1 deubiquitinase activity is required for proteolytic processing of polyubiquitinated substrates by the 26S proteasome, linking deubiquitination to complete substrate degradation. Poh1 RNA interference (RNAi) in HeLa cells resulted in a reduction in cell viability and an increase in polyubiquitinated protein levels, supporting the link between Poh1 and the ubiquitin proteasome pathway. To more specifically test for any requirement of the zinc metalloproteinase motif of Poh1 to support cell viability and proteasome function, we developed a RNAi complementation strategy. Effects on cell viability and proteasome activity were assessed in cells with RNAi of endogenous Poh1 and induced expression of wild-type Poh1 or a mutant form of Poh1, in which two conserved histidines of the proposed catalytic site were replaced with alanines. We show that an intact zinc metalloproteinase motif is essential for cell viability and 26S proteasome function. As a required enzymatic component of the proteasome, Poh1 is an intriguing therapeutic drug target for cancer.

  18. Sequence motifs associated with hepatotoxicity of locked nucleic acid—modified antisense oligonucleotides

    PubMed Central

    Burdick, Andrew D.; Sciabola, Simone; Mantena, Srinivasa R.; Hollingshead, Brett D.; Stanton, Robert; Warneke, James A.; Zeng, Ming; Martsen, Elena; Medvedev, Alexander; Makarov, Sergei S.; Reed, Lori A.; Davis, John W.; Whiteley, Laurence O.

    2014-01-01

    Fully phosphorothioate antisense oligonucleotides (ASOs) with locked nucleic acids (LNAs) improve target affinity, RNase H activation and stability. LNA modified ASOs can cause hepatotoxicity, and this risk is currently not fully understood. In vitro cytotoxicity screens have not been reliable predictors of hepatic toxicity in non-clinical testing; however, mice are considered to be a sensitive test species. To better understand the relationship between nucleotide sequence and hepatotoxicity, a structure–toxicity analysis was performed using results from 2 week repeated-dose-tolerability studies in mice administered LNA-modified ASOs. ASOs targeting human Apolipoprotien C3 (Apoc3), CREB (cAMP Response Element Binding Protein) Regulated Transcription Coactivator 2 (Crtc2) or Glucocorticoid Receptor (GR, NR3C1) were classified based upon the presence or absence of hepatotoxicity in mice. From these data, a random-decision forest-classification model generated from nucleotide sequence descriptors identified two trinucleotide motifs (TCC and TGC) that were present only in hepatotoxic sequences. We found that motif containing sequences were more likely to bind to hepatocellular proteins in vitro and increased P53 and NRF2 stress pathway activity in vivo. These results suggest in silico approaches can be utilized to establish structure–toxicity relationships of LNA-modified ASOs and decrease the likelihood of hepatotoxicity in preclinical testing. PMID:24550163

  19. An Intrinsically Disordered Motif Mediates Diverse Actions of Monomeric C-reactive Protein.

    PubMed

    Li, Hai-Yun; Wang, Jing; Meng, Fan; Jia, Zhe-Kun; Su, Yang; Bai, Qi-Feng; Lv, Ling-Ling; Ma, Fu-Rong; Potempa, Lawrence A; Yan, Yong-Bin; Ji, Shang-Rong; Wu, Yi

    2016-04-15

    Most proinflammatory actions of C-reactive protein (CRP) are only expressed following dissociation of its native pentameric assembly into monomeric form (mCRP). However, little is known about what underlies the greatly enhanced activities of mCRP. Here we show that a single sequence motif, i.e. cholesterol binding sequence (CBS; a.a. 35-47), is responsible for mediating the interactions of mCRP with diverse ligands. The binding of mCRP to lipoprotein component ApoB, to complement component C1q, to extracellular matrix components fibronectin and collagen, to blood coagulation component fibrinogen, and to membrane lipid component cholesterol, are all found to be markedly inhibited by the synthetic CBS peptide but not by other CRP sequences tested. Likewise, mutating CBS in mCRP also greatly impairs these interactions. Functional experiments further reveal that CBS peptide significantly reduces the effects of mCRP on activation of endothelial cells in vitro and on acute induction of IL-6 in mice. The potency and specificity of CBS are critically determined by the N-terminal residues Cys-36, Leu-37, and His-38; while the versatility of CBS appears to originate from its intrinsically disordered conformation polymorphism. Together, these data unexpectedly identify CBS as the major recognition site of mCRP and suggest that this motif may be exploited to tune the proinflammatory actions of mCRP. PMID:26907682

  20. Serum DNA Motifs Predict Disease and Clinical Status in Multiple Sclerosis

    PubMed Central

    Beck, Julia; Urnovitz, Howard B.; Saresella, Marina; Caputo, Domenico; Clerici, Mario; Mitchell, William M.; Schütz, Ekkehard

    2010-01-01

    Using recently available mass sequencing and assembly technologies, we have been able to identify and quantify unique cell-free DNA motifs in the blood of patients with multiple sclerosis (MS). The most common MS clinical syndrome, relapsing-remitting MS (RRMS), is accompanied by a unique fingerprint of both inter- and intragenic cell-free circulating nucleic acids as specific DNA sequences that provide significant clinical sensitivity and specificity. Coding genes that are differentially represented in MS serum encode cytoskeletal proteins, brain-expressed regulators of growth, and receptors involved in nervous system signal transduction. Although coding genes distinguish RRMS and its clinical activity, several repeat sequences, such as the L1M family of LINE elements, are consistently different in all MS patients and clinical status versus the normal database. These data demonstrate that DNA motifs observed in serum are characteristic of RRMS and disease activity and are promising as a clinical tool in monitoring patient responses to treatment modalities. PMID:20228264

  1. More robust detection of motifs in coexpressed genes by using phylogenetic information

    PubMed Central

    Monsieurs, Pieter; Thijs, Gert; Fadda, Abeer A; De Keersmaecker, Sigrid CJ; Vanderleyden, Jozef; De Moor, Bart; Marchal, Kathleen

    2006-01-01

    Background Several motif detection algorithms have been developed to discover overrepresented motifs in sets of coexpressed genes. However, in a noisy gene list, the number of genes containing the motif versus the number lacking the motif might not be sufficiently high to allow detection by classical motif detection tools. To still recover motifs which are not significantly enriched but still present, we developed a procedure in which we use phylogenetic footprinting to first delineate all potential motifs in each gene. Then we mutually compare all detected motifs and identify the ones that are shared by at least a few genes in the data set as potential candidates. Results We applied our methodology to a compiled test data set containing known regulatory motifs and to two biological data sets derived from genome wide expression studies. By executing four consecutive steps of 1) identifying conserved regions in orthologous intergenic regions, 2) aligning these conserved regions, 3) clustering the conserved regions containing similar regulatory regions followed by extraction of the regulatory motifs and 4) screening the input intergenic sequences with detected regulatory motif models, our methodology proves to be a powerful tool for detecting regulatory motifs when a low signal to noise ratio is present in the input data set. Comparing our results with two other motif detection algorithms points out the robustness of our algorithm. Conclusion We developed an approach that can reliably identify multiple regulatory motifs lacking a high degree of overrepresentation in a set of coexpressed genes (motifs belonging to sparsely connected hubs in the regulatory network) by exploiting the advantages of using both coexpression and phylogenetic information. PMID:16549017

  2. Identification and characterization of an hnRNP E1 translational silencing motif

    PubMed Central

    Brown, Andrew S.; Mohanty, Bidyut K.; Howe, Philip H.

    2016-01-01

    Non-canonical transforming growth factor β (TGFβ) signaling through protein kinase B (Akt2) induces phosphorylation of heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1) at serine-43 (p-hnRNP E1). This post-translational modification (PTM) of hnRNP E1 promotes its dissociation from a 3′ untranslated region (UTR) nucleic acid regulatory motif, driving epithelial to mesenchymal transition (EMT) and metastasis. We have identified an hnRNP E1 consensus-binding motif and genomically resolved a subset of genes in which it is contained. This study characterizes the binding kinetics of the consensus-binding motif and hnRNP E1, its various K-homology (KH) domains and p-hnRNP E1. Levels of p-hnRNP E1 are highly upregulated in metastatic cancer cells and low in normal epithelial tissue. We show a correlation between this PTM and levels of Akt2 and its activated form, phosphorylated serine-474 (p-Akt2). Using cellular progression models of metastasis, we observed a signature high level of Akt2, p-Akt2 and p-hnRNP E1 protein expression, coupled to a significantly reduced level of total hnRNP E1 in metastatic cells. Genes that are translationally silenced by hnRNP E1 and expressed by its dissociation are highly implicated in the progression of EMT and metastasis. This study provides insight into a non-canonical TGFβ signaling cascade that is responsible for inducing EMT by aberrant expression of hnRNP E1 silenced targets. The relevance of this system in metastatic progression is clearly shown in cellular models by the high abundance of p-hnRNP E1 and low levels of hnRNP E1. New insights provided by the resolution of this molecular mechanism provide targets for therapeutic intervention and give further insight into the role of the TGFβ microenvironment. PMID:27067543

  3. LynA regulates an inflammation-sensitive signaling checkpoint in macrophages

    PubMed Central

    Freedman, Tanya S; Tan, Ying X; Skrzypczynska, Katarzyna M; Manz, Boryana N; Sjaastad, Frances V; Goodridge, Helen S; Lowell, Clifford A; Weiss, Arthur

    2015-01-01

    Clustering of receptors associated with immunoreceptor tyrosine-based activation motifs (ITAMs) initiates the macrophage antimicrobial response. ITAM receptors engage Src-family tyrosine kinases (SFKs) to initiate phagocytosis and macrophage activation. Macrophages also encounter nonpathogenic molecules that cluster receptors weakly and must tune their sensitivity to avoid inappropriate responses. To investigate this response threshold, we compared signaling in the presence and absence of receptor clustering using a small-molecule inhibitor of Csk, which increased SFK activation and produced robust membrane-proximal signaling. Surprisingly, receptor-independent SFK activation led to a downstream signaling blockade associated with rapid degradation of the SFK LynA. Inflammatory priming of macrophages upregulated LynA and promoted receptor-independent signaling. In contrast, clustering the hemi-ITAM receptor Dectin-1 induced signaling that did not require LynA or inflammatory priming. Together, the basal-state signaling checkpoint regulated by LynA expression and degradation and the signaling reorganization initiated by receptor clustering allow cells to discriminate optimally between pathogens and nonpathogens. DOI: http://dx.doi.org/10.7554/eLife.09183.001 PMID:26517880

  4. Mutational analysis of two highly conserved motifs in the silencing suppressor encoded by tomato spotted wilt virus (genus Tospovirus, family Bunyaviridae).

    PubMed

    Zhai, Ying; Bag, Sudeep; Mitter, Neena; Turina, Massimo; Pappu, Hanu R

    2014-06-01

    Tospoviruses cause serious economic losses to a wide range of field and horticultural crops on a global scale. The NSs gene encoded by tospoviruses acts as a suppressor of host plant defense. We identified amino acid motifs that are conserved in all of the NSs proteins of tospoviruses for which the sequence is known. Using tomato spotted wilt virus (TSWV) as a model, the role of these motifs in suppressor activity of NSs was investigated. Using site-directed point mutations in two conserved motifs, glycine, lysine and valine/threonine (GKV/T) at positions 181-183 and tyrosine and leucine (YL) at positions 412-413, and an assay to measure the reversal of gene silencing in Nicotiana benthamiana line 16c, we show that substitutions (K182 to A, and L413 to A) in these motifs abolished suppressor activity of the NSs protein, indicating that these two motifs are essential for the RNAi suppressor function of tospoviruses. PMID:24363189

  5. The brain's code and its canonical computational motifs. From sensory cortex to the default mode network: A multi-scale model of brain function in health and disease.

    PubMed

    Turkheimer, Federico E; Leech, Robert; Expert, Paul; Lord, Louis-David; Vernon, Anthony C

    2015-08-01

    A variety of anatomical and physiological evidence suggests that the brain performs computations using motifs that are repeated across species, brain areas, and modalities. The computational architecture of cortex, for example, is very similar from one area to another and the types, arrangements, and connections of cortical neurons are highly stereotyped. This supports the idea that each cortical area conducts calculations using similarly structured neuronal modules: what we term canonical computational motifs. In addition, the remarkable self-similarity of the brain observables at the micro-, meso- and macro-scale further suggests that these motifs are repeated at increasing spatial and temporal scales supporting brain activity from primary motor and sensory processing to higher-level behaviour and cognition. Here, we briefly review the biological bases of canonical brain circuits and the role of inhibitory interneurons in these computational elements. We then elucidate how canonical computational motifs can be repeated across spatial and temporal scales to build a multiplexing information system able to encode and transmit information of increasing complexity. We point to the similarities between the patterns of activation observed in primary sensory cortices by use of electrophysiology and those observed in large scale networks measured with fMRI. We then employ the canonical model of brain function to unify seemingly disparate evidence on the pathophysiology of schizophrenia in a single explanatory framework. We hypothesise that such a framework may also be extended to cover multiple brain disorders which are grounded in dysfunction of GABA interneurons and/or these computational motifs.

  6. Pentatricopeptide Repeat Proteins with the DYW Motif Have Distinct Molecular Functions in RNA Editing and RNA Cleavage in Arabidopsis Chloroplasts[W

    PubMed Central

    Okuda, Kenji; Chateigner-Boutin, Anne-Laure; Nakamura, Takahiro; Delannoy, Etienne; Sugita, Mamoru; Myouga, Fumiyoshi; Motohashi, Reiko; Shinozaki, Kazuo; Small, Ian; Shikanai, Toshiharu

    2009-01-01

    The plant-specific DYW subclass of pentatricopeptide repeat proteins has been postulated to be involved in RNA editing of organelle transcripts. We discovered that the DYW proteins CHLORORESPIRATORY REDUCTION22 (CRR22) and CRR28 are required for editing of multiple plastid transcripts but that their DYW motifs are dispensable for editing activity in vivo. Replacement of the DYW motifs of CRR22 and CRR28 by that of CRR2, which has been shown to be capable of endonucleolytic cleavage, blocks the editing activity of both proteins. In return, the DYW motifs of neither CRR22 nor CRR28 can functionally replace that of CRR2. We propose that different DYW family members have acquired distinct functions in the divergent processes of RNA maturation, including RNA cleavage and RNA editing. PMID:19182104

  7. Mutations in the 'DRY' motif of the CB1 cannabinoid receptor result in biased receptor variants.

    PubMed

    Gyombolai, Pál; Tóth, András D; Tímár, Dániel; Turu, Gábor; Hunyady, László

    2015-02-01

    The role of the highly conserved 'DRY' motif in the signaling of the CB1 cannabinoid receptor (CB1R) was investigated by inducing single-, double-, and triple-alanine mutations into this site of the receptor. We found that the CB1R-R3.50A mutant displays a partial decrease in its ability to activate heterotrimeric Go proteins (∼80% of WT CB1R (CB1R-WT)). Moreover, this mutant showed an enhanced basal β-arrestin2 (β-arr2) recruitment. More strikingly, the double-mutant CB1R-D3.49A/R3.50A was biased toward β-arrs, as it gained a robustly increased β-arr1 and β-arr2 recruitment ability compared with the WT receptor, while its G-protein activation was decreased. In contrast, the double-mutant CB1R-R3.50A/Y3.51A proved to be G-protein-biased, as it was practically unable to recruit β-arrs in response to agonist stimulus, while still activating G-proteins, although at a reduced level (∼70% of CB1R-WT). Agonist-induced ERK1/2 activation of the CB1R mutants showed a good correlation with their β-arr recruitment ability but not with their G-protein activation or inhibition of cAMP accumulation. Our results suggest that G-protein activation and β-arr binding of the CB1R are mediated by distinct receptor conformations, and the conserved 'DRY' motif plays different roles in the stabilization of these conformations, thus mediating both G-protein- and β-arr-mediated functions of CB1R.

  8. Motif-based analysis of large nucleotide data sets using MEME-ChIP.

    PubMed

    Ma, Wenxiu; Noble, William S; Bailey, Timothy L

    2014-01-01

    MEME-ChIP is a web-based tool for analyzing motifs in large DNA or RNA data sets. It can analyze peak regions identified by ChIP-seq, cross-linking sites identified by CLIP-seq and related assays, as well as sets of genomic regions selected using other criteria. MEME-ChIP performs de novo motif discovery, motif enrichment analysis, motif location analysis and motif clustering, providing a comprehensive picture of the DNA or RNA motifs that are enriched in the input sequences. MEME-ChIP performs two complementary types of de novo motif discovery: weight matrix-based discovery for high accuracy; and word-based discovery for high sensitivity. Motif enrichment analysis using DNA or RNA motifs from human, mouse, worm, fly and other model organisms provides even greater sensitivity. MEME-ChIP's interactive HTML output groups and aligns significant motifs to ease interpretation. This protocol takes less than 3 h, and it provides motif discovery approaches that are distinct and complementary to other online methods. PMID:24853928

  9. Multiple Weak Linear Motifs Enhance Recruitment and Processivity in SPOP-Mediated Substrate Ubiquitination.

    PubMed

    Pierce, Wendy K; Grace, Christy R; Lee, Jihun; Nourse, Amanda; Marzahn, Melissa R; Watson, Edmond R; High, Anthony A; Peng, Junmin; Schulman, Brenda A; Mittag, Tanja

    2016-03-27

    Primary sequence motifs, with millimolar affinities for binding partners, are abundant in disordered protein regions. In multivalent interactions, such weak linear motifs can cooperate to recruit binding partners via avidity effects. If linear motifs recruit modifying enzymes, optimal placement of weak motifs may regulate access to modification sites. Weak motifs may thus exert physiological relevance stronger than that suggested by their affinities, but molecular mechanisms of their function are still poorly understood. Herein, we use the N-terminal disordered region of the Hedgehog transcriptional regulator Gli3 (Gli3(1-90)) to determine the role of weak motifs encoded in its primary sequence for the recruitment of its ubiquitin ligase CRL3(SPOP) and the subsequent effect on ubiquitination efficiency. The substrate adaptor SPOP binds linear motifs through its MATH (meprin and TRAF homology) domain and forms higher-order oligomers through its oligomerization domains, rendering SPOP multivalent for its substrates. Gli3 has multiple weak SPOP binding motifs. We map three such motifs in Gli3(1-90), the weakest of which has a millimolar dissociation constant. Multivalency of ligase and substrate for each other facilitates enhanced ligase recruitment and stimulates Gli3(1-90) ubiquitination in in vitro ubiquitination assays. We speculate that the weak motifs enable processivity through avidity effects and by providing steric access to lysine residues that are otherwise not prioritized for polyubiquitination. Weak motifs may generally be employed in multivalent systems to act as gatekeepers regulating post-translational modification. PMID:26475525

  10. Motif-based analysis of large nucleotide data sets using MEME-ChIP

    PubMed Central

    Ma, Wenxiu; Noble, William S; Bailey, Timothy L

    2014-01-01

    MEME-ChIP is a web-based tool for analyzing motifs in large DNA or RNA data sets. It can analyze peak regions identified by ChIP-seq, cross-linking sites identified by cLIP-seq and related assays, as well as sets of genomic regions selected using other criteria. MEME-ChIP performs de novo motif discovery, motif enrichment analysis, motif location analysis and motif clustering, providing a comprehensive picture of the DNA or RNA motifs that are enriched in the input sequences. MEME-ChIP performs two complementary types of de novo motif discovery: weight matrix–based discovery for high accuracy; and word-based discovery for high sensitivity. Motif enrichment analysis using DNA or RNA motifs from human, mouse, worm, fly and other model organisms provides even greater sensitivity. MEME-ChIP’s interactive HTML output groups and aligns significant motifs to ease interpretation. this protocol takes less than 3 h, and it provides motif discovery approaches that are distinct and complementary to other online methods. PMID:24853928

  11. A generalization of substitution evolution models of nucleotides to genetic motifs.

    PubMed

    Benard, Emmanuel; Michel, Christian J

    2011-11-01

    We generalize here the classical stochastic substitution models of nucleotides to genetic motifs of any size. This generalized model gives the analytical occurrence probabilities of genetic motifs as a function of a substitution matrix containing up to three formal parameters (substitution rates) per motif site and of an initial occurrence probability vector of genetic motifs. The evolution direction can be direct (past-present) or inverse (present-past). This extension has been made due to the identification of a Kronecker relation between the nucleotide substitution matrices and the motif substitution matrices. The evolution models for motifs of size 4 (tetranucleotides) and 5 (pentanucleotides) are now included in the SEGM (Stochastic Evolution of Genetic Motifs) web server.

  12. Identification of a Natural Viral RNA Motif That Optimizes Sensing of Viral RNA by RIG-I

    PubMed Central

    Xu, Jie; Mercado-López, Xiomara; Grier, Jennifer T.; Kim, Won-keun; Chun, Lauren F.; Irvine, Edward B.; Del Toro Duany, Yoandris; Kell, Alison; Hur, Sun; Gale, Michael; Raj, Arjun

    2015-01-01

    ABSTRACT Stimulation of the antiviral response depends on the sensing of viral pathogen-associated molecular patterns (PAMPs) by specialized cellular proteins. During infection with RNA viruses, 5′-di- or -triphosphates accompanying specific single or double-stranded RNA motifs trigger signaling of intracellular RIG-I-like receptors (RLRs) and initiate the antiviral response. Although these molecular signatures are present during the replication of many viruses, it is unknown whether they are sufficient for strong activation of RLRs during infection. Immunostimulatory defective viral genomes (iDVGs) from Sendai virus (SeV) are among the most potent natural viral triggers of antiviral immunity. Here we describe an RNA motif (DVG70-114) that is essential for the potent immunostimulatory activity of 5′-triphosphate-containing SeV iDVGs. DVG70-114 enhances viral sensing by the host cell independently of the long stretches of complementary RNA flanking the iDVGs, and it retains its stimulatory potential when transferred to otherwise inert viral RNA. In vitro analysis showed that DVG70-114 augments the binding of RIG-I to viral RNA and promotes enhanced RIG-I polymerization, thereby facilitating the onset of the antiviral resp