Science.gov

Sample records for activation regulates microglial

  1. Comparative Analysis of Protein Tyrosine Phosphatases Regulating Microglial Activation

    PubMed Central

    Song, Gyun Jee; Kim, Jaehong; Kim, Jong-Heon; Song, Seungeun; Park, Hana; Zhang, Zhong-Yin

    2016-01-01

    Protein tyrosine phosphatases (PTPs) are key regulatory factors in inflammatory signaling pathways. Although PTPs have been extensively studied, little is known about their role in neuroinflammation. In the present study, we examined the expression of 6 different PTPs (PTP1B, TC-PTP, SHP2, MEG2, LYP, and RPTPβ) and their role in glial activation and neuroinflammation. All PTPs were expressed in brain and glia. The expression of PTP1B, SHP2, and LYP was enhanced in the inflamed brain. The expression of PTP1B, TC-PTP, and LYP was increased after treating microglia cells with lipopolysaccharide (LPS). To examine the role of PTPs in microglial activation and neuroinflammation, we used specific pharmacological inhibitors of PTPs. Inhibition of PTP1B, TC-PTP, SHP2, LYP, and RPTPβ suppressed nitric oxide production in LPS-treated microglial cells in a dose-dependent manner. Furthermore, intracerebroventricular injection of PTP1B, TC-PTP, SHP2, and RPTPβ inhibitors downregulated microglial activation in an LPS-induced neuroinflammation model. Our results indicate that multiple PTPs are involved in regulating microglial activation and neuroinflammation, with different expression patterns and specific functions. Thus, PTP inhibitors can be exploited for therapeutic modulation of microglial activation in neuroinflammatory diseases. PMID:27790059

  2. Isoflurane preconditioning provides neuroprotection against stroke by regulating the expression of the TLR4 signalling pathway to alleviate microglial activation

    PubMed Central

    Sun, Meiyan; Deng, Bin; Zhao, Xiaoyong; Gao, Changjun; Yang, Lu; Zhao, Hui; Yu, Daihua; Zhang, Feng; Xu, Lixian; Chen, Lei; Sun, Xude

    2015-01-01

    Excessive microglial activation often contributes to inflammation-mediated neurotoxicity in the ischemic penumbra during the acute stage of ischemic stroke. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation via the NF-κB pathway. Isoflurane preconditioning (IP) can provide neuroprotection and inhibit microglial activation. In this study, we investigated the roles of the TLR4 signalling pathway in IP to exert neuroprotection following ischemic stroke in vivo and in vitro. The results showed that 2% IP alleviated neurological deficits, reduced the infarct volume, attenuated apoptosis and weakened microglial activation in the ischemic penumbra. Furthermore, IP down-regulated the expression of HSP 60, TLR4 and MyD88 and up-regulated inhibitor of IκB-α expression compared with I/R group in vivo. In vitro, 2% IP and a specific inhibitor of TLR4, CLI-095, down-regulated the expression of TLR4, MyD88, IL-1β, TNF-α and Bax, and up-regulated IκB-α and Bcl-2 expression compared with OGD group. Moreover, IP and CLI-095 attenuated microglial activation-induced neuronal apoptosis, and overexpression of the TLR4 gene reversed the neuroprotective effects of IP. In conclusion, IP provided neuroprotection by regulating TLR4 expression directly, alleviating microglial activation and neuroinflammation. Thus, inhibiting the activation of microglial activation via TLR4 may be a new avenue for stroke treatment. PMID:26086415

  3. Regulation of rotenone-induced microglial activation by 5-lipoxygenase and cysteinyl leukotriene receptor 1.

    PubMed

    Zhang, Xiao-Yan; Chen, Lu; Yang, Yi; Xu, Dong-Min; Zhang, Si-Ran; Li, Chen-Tan; Zheng, Wei; Yu, Shu-Ying; Wei, Er-Qing; Zhang, Li-Hui

    2014-07-14

    The 5-lipoxygenase (5-LOX) products cysteinyl leukotrienes (CysLTs) are potent pro-inflammatory mediators. CysLTs mediate their biological actions through activating CysLT receptors (CysLT(1)R and CysLT(2)R). We have recently reported that 5-LOX and CysLT(1)R mediated PC12 cell injury induced by high concentrations of rotenone (0.3-10 μM), which was reduced by the selective 5-LOX inhibitor zileuton and CysLT(1)R antagonist montelukast. The purpose of this study was to examine the regulatory roles of the 5-LOX/CysLT(1)R pathway in microglial activation induced by low concentration rotenone. After mouse microglial BV2 cells were stimulated with rotenone (0.3-3 nM), phagocytosis and release of pro-inflammatory cytokine were assayed as indicators of microglial activation. We found that rotenone (1 and 3 nM) increased BV2 microglial phagocytosis and the release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Zileuton and montelukast prevented rotenone (3 nM)-induced phagocytosis and cytokine release. Furthermore, rotenone significantly up-regulated 5-LOX expression, induced 5-LOX translocation to the nuclear envelope, and increased the production of CysLTs. These responses were inhibited by zileuton. Rotenone also increased CysLT(1)R expression and induced nuclear translocation of CysLT(1)R. In primary rat microglia, rotenone (10 nM) increased release of IL-1β and TNF-α, whereas zileuton (0.1 μΜ) and montelukast (0.01 μΜ) significantly inhibited this response. These results indicated that 5-LOX and CysLT(1)R might be key regulators of microglial activation induced by low concentration of rotenone. Interference of 5-LOX/CysLT(1)R pathway may be an effective therapeutic strategy for microglial inflammation. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. CD200R/Foxp3-mediated signalling regulates microglial activation

    PubMed Central

    Yi, Min-Hee; Zhang, Enji; Kim, Jwa-Jin; Baek, Hyunjung; Shin, Nara; Kim, Sena; Kim, Sang Ryong; Kim, Hang-Rae; Lee, Sung Joong; Park, Jin Bong; Kim, Yonghyun; Kwon, O-Yu; Lee, Young Ho; Oh, Sang-Ha; Kim, Dong Woon

    2016-01-01

    The heterogeneity of microglial functions have either beneficial or detrimental roles in specific physiological or pathological environments. However, the details of what transcriptional mechanisms induce microglia to take beneficial phenotypes remain unknown. Here, we report that Foxp3 is essential for beneficial outcome of the microglial response and depends upon signalling by the immunoglobulin CD200 through its receptor (CD200R). Foxp3 expression was up-regulated in microglia activated by excitotoxicity-induced hippocampal neuroinflammation. Suppression of CD200R prevented anti-inflammatory phenotype of microglia, but over-expression of Foxp3 enhanced it. Phosphorylation of STAT6, a downstream effector of CD200R, modulated transcription of Foxp3. Finally, CD200R/Foxp3-mediated signalling enhanced hippocampal neuronal viability and conferred a degree of neuroprotection, presumably by counteracting inducible nitric oxide synthase. We conclude that enhancement of Foxp3 through CD200R could be neuroprotective by targeting the microglia. PMID:27731341

  5. Microglial phenotype is regulated by activity of the transcription factor, NFAT

    PubMed Central

    Nagamoto-Combs, Kumi

    2010-01-01

    The transcription factor family, nuclear factor of activated T cells (NFAT), regulates immune cell phenotype. Four different calcium/calmodulin-regulated isoforms have been identified in the periphery, but isoform expression in microglia, the resident immune cells of the central nervous system, has not been fully defined. In this study microglial NFAT isoform expression and involvement in regulating inflammatory responses in murine primary microglia culture was examined. Western blot analysis demonstrated robust detection of NFATc1 and c2 isoforms in microglia. Electrophoretic mobility shift assays demonstrated increased NFAT-DNA binding from nuclear extracts of lipopolysaccharide (LPS) stimulated microglia. Moreover, LPS-stimulated microglia behaved similarly to T cell receptor agonist antibody-stimulated Jurkat cells demonstrating a transient increase in NFAT-driven luciferase reporter gene expression. LPS-induced NFAT-luciferase activity in microglia was attenuated by pretreatment with tat-VIVIT, a cell-permeable NFAT inhibitory peptide. Furthermore, LPS-mediated secretion of microglial cytokines, TNF-α and MCP-1, was decreased by treatment with tat-VIVIT but not with tat-VEET, a negative control peptide. These results demonstrate that NFAT plays a role in regulating proinflammatory responses in cultured murine microglia. PMID:20631193

  6. TREM2 regulates microglial cell activation in response to demyelination in vivo

    PubMed Central

    Cantoni, Claudia; Bollman, Bryan; Licastro, Danilo; Xie, Mingqiang; Mikesell, Robert; Schmidt, Robert; Yuede, Carla M.; Galimberti, Daniela; Olivecrona, Gunilla; Klein, Robyn S.; Cross, Anne H.; Otero, Karel; Piccio, Laura

    2015-01-01

    Microglia are phagocytic cells that survey the brain and perform neuroprotective functions in response to tissue damage, but their activating receptors are largely unknown. Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial immunoreceptor whose loss-of-function mutations in humans cause presenile dementia, while genetic variants are associated with increased risk of neurodegenerative diseases. In myeloid cells, TREM2 has been involved in the regulation of phagocytosis, cell proliferation and inflammatory responses in vitro. However, it is unknown how TREM2 contributes to microglia function in vivo. Here, we identify a critical role for TREM2 in the activation and function of microglia during cuprizone (CPZ)-induced demyelination. TREM2-deficient (TREM2−/−) mice had defective clearance of myelin debris and more axonal pathology, resulting in impaired clinical performances compared to wild-type (WT) mice. TREM2−/− microglia proliferated less in areas of demyelination and were less activated, displaying a more resting morphology and decreased expression of the activation markers MHC II and inducible nitric oxide synthase as compared to WT. Mechanistically, gene expression and ultrastructural analysis of microglia suggested a defect in myelin degradation and phagosome processing during CPZ intoxication in TREM2−/− microglia. These findings place TREM2 as a key regulator of microglia activation in vivo in response to tissue damage. PMID:25631124

  7. Molecular mechanisms of microglial activation.

    PubMed

    Zielasek, J; Hartung, H P

    1996-01-01

    Microglial cells are brain macrophages which serve specific functions in the defense of the central nervous system (CNS) against microorganisms, the removal of tissue debris in neurodegenerative diseases or during normal development, and in autoimmune inflammatory disorders of the brain. In cultured microglial cells, several soluble inflammatory mediators such as cytokines and bacterial products like lipopolysaccharide (LPS) were demonstrated to induce a wide range of microglial activities, e.g. increased phagocytosis, chemotaxis, secretion of cytokines, activation of the respiratory burst and induction of nitric oxide synthase. Since heightened microglial activation was shown to play a role in the pathogenesis of experimental inflammatory CNS disorders, understanding the molecular mechanisms of microglial activation may lead to new treatment strategies for neurodegenerative disorders, multiple sclerosis and bacterial or viral infections of the nervous system.

  8. Brain Transforming Growth Factor-β Resists Hypertension Via Regulating Microglial Activation.

    PubMed

    Li, You; Shen, Xiao Z; Li, Liang; Zhao, Tuantuan V; Bernstein, Kenneth E; Johnson, Alan K; Lyden, Patrick; Fang, Jianmin; Shi, Peng

    2017-09-01

    Hypertension is the major risk factor for stroke. Recent work unveiled that hypertension is associated with chronic neuroinflammation; microglia are the major players in neuroinflammation, and the activated microglia elevate sympathetic nerve activity and blood pressure. This study is to understand how brain homeostasis is kept from hypertensive disturbance and microglial activation at the onset of hypertension. Hypertension was induced by subcutaneous delivery of angiotensin II, and blood pressure was monitored in conscious animals. Microglial activity was analyzed by flow cytometry and immunohistochemistry. Antibody, pharmacological chemical, and recombinant cytokine were administered to the brain through intracerebroventricular infusion. Microglial depletion was performed by intracerebroventricular delivering diphtheria toxin to CD11b-diphtheria toxin receptor mice. Gene expression profile in sympathetic controlling nucleus was analyzed by customized qRT-PCR array. Transforming growth factor-β (TGF-β) is constitutively expressed in the brains of normotensive mice. Removal of TGF-β or blocking its signaling before hypertension induction accelerated hypertension progression, whereas supplementation of TGF-β1 substantially suppressed neuroinflammation, kidney norepinephrine level, and blood pressure. By means of microglial depletion and adoptive transfer, we showed that the effects of TGF-β on hypertension are mediated through microglia. In contrast to the activated microglia in established hypertension, the resting microglia are immunosuppressive and important in maintaining neural homeostasis at the onset of hypertension. Further, we profiled the signature molecules of neuroinflammation and neuroplasticity associated with hypertension and TGF-β by qRT-PCR array. Our results identify that TGF-β-modulated microglia are critical to keeping brain homeostasis responding to hypertensive disturbance. © 2017 American Heart Association, Inc.

  9. BAG3 protein regulates caspase-3 activation in HIV-1-infected human primary microglial cells

    PubMed Central

    Rosati, Alessandra; Khalili, Kamel; Deshmane, Satish L.; Radhakrishnan, Sujatha; Pascale, Maria; Turco, M. Caterina; Marzullo, Liberato

    2015-01-01

    BAG3, a member of the BAG co-chaperones family, is expressed in several cell types subjected to stressful conditions, such as exposure to high temperature, heavy metals, drugs. Furthermore, it is constitutively expressed in some tumors. Among the biological activities of the protein, there is apoptosis downmodulation; this appears to be exerted through BAG3 interaction with the heat shock protein (Hsp) 70, that influences cell apoptosis at several levels. We recently reported that BAG3 protein was detectable in the cytoplasm of reactive astrocytes in HIV-1-associated encephalopathy biopsies. Here we report that downmodulation of BAG3 protein levels allows caspase-3 activation by HIV-1 infection in human primary microglial cells. This is the first reported evidence of a role for BAG3 in the balance of death versus survival during viral infection. PMID:18821563

  10. Fosb gene products contribute to excitotoxic microglial activation by regulating the expression of complement C5a receptors in microglia

    PubMed Central

    Nomaru, Hiroko; Sakumi, Kunihiko; Katogi, Atsuhisa; Ohnishi, Yoshinori N; Kajitani, Kosuke; Tsuchimoto, Daisuke; Nestler, Eric J.; Nakabeppu, Yusaku

    2014-01-01

    The Fosb gene encodes subunits of the activator protein-1 transcription factor complex. Two mature mRNAs, Fosb and ΔFosb, encoding full-length FOSB and ΔFOSB proteins respectively, are formed by alternative splicing of Fosb mRNA. Fosb products are expressed in several brain regions. Moreover, Fosb-null mice exhibit depressive-like behaviors and adult-onset spontaneous epilepsy, demonstrating important roles in neurological and psychiatric disorders. Study of Fosb products has focused almost exclusively on neurons; their function in glial cells remains to be explored. In this study, we found that microglia express equivalent levels of Fosb and ΔFosb mRNAs to hippocampal neurons and, using microarray analysis, we identified six microglial genes whose expression is dependent on Fosb products. Of these genes, we focused on C5ar1 and C5ar2, which encode receptors for complement C5a. In isolated Fosb-null microglia, chemotactic responsiveness toward the truncated form of C5a was significantly lower than that in wild-type cells. Fosb-null mice were significantly resistant to kainate-induced seizures compared with wild-type mice. C5ar1 mRNA levels and C5aR1 immunoreactivity were increased in wild-type hippocampus 24 hours after kainate administration; however, such induction was significantly reduced in Fosb-null hippocampus. Furthermore, microglial activation after kainate administration was significantly diminished in Fosb-null hippocampus, as shown by significant reductions in CD68 immunoreactivity, morphological change and reduced levels of Il6 and Tnf mRNAs, although no change in the number of Iba-1-positive cells was observed. These findings demonstrate that, under excitotoxicity, Fosb products contribute to a neuroinflammatory response in the hippocampus through regulation of microglial C5ar1 and C5ar2 expression. PMID:24771617

  11. Hippocampal microglial activation and glucocorticoid receptor down-regulation precipitate visceral hypersensitivity induced by colorectal distension in rats.

    PubMed

    Zhang, Gongliang; Zhao, Bing-Xue; Hua, Rong; Kang, Jie; Shao, Bo-Ming; Carbonaro, Theresa M; Zhang, Yong-Mei

    2016-03-01

    Visceral hypersensitivity is a common characteristic in patients suffering from irritable bowel syndrome (IBS) and other disorders with visceral pain. Although the pathogenesis of visceral hypersensitivity remains speculative due to the absence of pathological changes, the long-lasting sensitization in neuronal circuitry induced by early life stress may play a critical role beyond the digestive system even after complete resolution of the initiating event. The hippocampus integrates multiple sources of afferent inputs and sculpts integrated autonomic outputs for pain and analgesia regulation. Here, we examined the hippocampal mechanism in the pathogenesis of visceral hypersensitivity with a rat model induced by neonatal and adult colorectal distensions (CRDs). Neither neonatal nor adult CRD evoked behavioral abnormalities in adulthood; however, adult re-exposure to CRD induced persistent visceral hypersensitivity, depression-like behaviors, and spatial learning impairment in rats that experienced neonatal CRD. Rats that experienced neonatal and adult CRDs presented a decrease in hippocampal glucocorticoid receptor (GR) immunofluorescence staining and protein expression, and increases in hippocampal microglial activation and cytokine (IL-1β and TNF-α) accumulation. The decrease in hippocampal GR expression and increase in hippocampal IL-1β and TNF-α accumulation could be prevented by hippocampal local infusion of minocycline, a microglial inhibitor. These results suggest that neonatal CRD can increase the vulnerability of hippocampal microglia, and adult CRD challenge facilitates the hippocampal cytokine release from the sensitized microglia, which down-regulates hippocampal GR protein expression and, subsequently, precipitates visceral hypersensitivity.

  12. Peroxiredoxin 5 (Prx5) decreases LPS-induced microglial activation through regulation of Ca(2+)/calcineurin-Drp1-dependent mitochondrial fission.

    PubMed

    Park, Junghyung; Choi, Hoonsung; Kim, Bokyung; Chae, Unbin; Lee, Dong Gil; Lee, Sang-Rae; Lee, Seunghoon; Lee, Hyun-Shik; Lee, Dong-Seok

    2016-10-01

    Microglial activation is a hallmark of neurodegenerative diseases. ROS activates microglia by regulating transcription factors to express pro-inflammatory genes and is associated with disruption of Ca(2+) homeostasis through thiol redox modulation. Recently, we reported that Prx5 can regulate activation of microglia cells by governing ROS. In addition, LPS leads to excessive mitochondrial fission, and regulation of mitochondrial dynamics involved in a pro-inflammatory response is important for the maintenance of microglial activation. However, the precise relationship among these signals and the role of Prx5 in mitochondrial dynamics and microglial activation is still unknown. In this study, we demonstrated that Ca(2+)/calcineurin-dependent de-phosphorylation of Drp1 induces mitochondrial fission and regulates mitochondrial ROS production, which influences the expression of pro-inflammatory mediators in LPS-induced microglia cells. Moreover, it is likely that cytosolic and Nox-derived ROS were upstream of mitochondrial fission and mitochondrial ROS generation in activated microglia cells. Prx5 regulates LPS-induced mitochondrial fission through modulation of Ca(2+)/calcineurin-dependent Drp1 de-phosphorylation by eliminating Nox-derived and cytosolic ROS. Therefore, we suggest that mitochondrial dynamics may be essential for understanding pro-inflammatory responses and that Prx5 may be used as a new therapeutic target to prevent neuroinflammation and neurodegenerative diseases.

  13. Systemic inflammation regulates microglial responses to tissue damage in vivo

    PubMed Central

    Gyoneva, Stefka; Davalos, Dimitrios; Biswas, Dipankar; Swanger, Sharon A.; Garnier-Amblard, Ethel; Loth, Francis; Akassoglou, Katerina; Traynelis, Stephen F.

    2015-01-01

    Microglia, the resident immune cells of the central nervous system, exist in either a “resting” state associated with physiological tissue surveillance or an “activated” state in neuroinflammation. We recently showed that ATP is the primary chemoattractor to tissue damage in vivo and elicits opposite effects on the motility of activated microglia in vitro through activation of adenosine A2A receptors. However, whether systemic inflammation affects microglial responses to tissue damage in vivo remains largely unknown. Using in vivo two-photon imaging of mice, we show that injection of lipopolysaccharide (LPS) at levels that can produce both clear neuroinflammation and some features of sepsis significantly reduced the rate of microglial response to laser-induced ablation injury in vivo. Under pro-inflammatory conditions, microglial processes initially retracted from the ablation site, but subsequently moved toward and engulfed the damaged area. Analyzing the process dynamics in 3D cultures of primary microglia indicated that only A2A, but not A1 or A3 receptors, mediate process retraction in LPS-activated microglia. The A2A receptor antagonists caffeine and preladenant reduced adenosine-mediated process retraction in activated microglia in vitro. Finally, administration of preladenant before induction of laser ablation in vivo accelerated the microglial response to injury following systemic inflammation. The regulation of rapid microglial responses to sites of injury by A2A receptors could have implications for their ability to respond to the neuronal death occurring under conditions of neuroinflammation in neurodegenerative disorders. PMID:24807189

  14. Inhibitory effects of SSRIs on IFN-γ induced microglial activation through the regulation of intracellular calcium.

    PubMed

    Horikawa, Hideki; Kato, Takahiro A; Mizoguchi, Yoshito; Monji, Akira; Seki, Yoshihiro; Ohkuri, Takatoshi; Gotoh, Leo; Yonaha, Megumi; Ueda, Tadashi; Hashioka, Sadayuki; Kanba, Shigenobu

    2010-10-01

    Microglia, which are a major glial component of the central nervous system (CNS), have recently been suggested to mediate neuroinflammation through the release of pro-inflammatory cytokines and nitric oxide (NO). Microglia are also known to play a critical role as resident immunocompetent and phagocytic cells in the CNS. Immunological dysfunction has recently been demonstrated to be associated with the pathophysiology of depression. However, to date there have only been a few studies on the relationship between microglia and depression. We therefore investigated if antidepressants can inhibit microglial activation in vitro. Our results showed that the selective serotonin reuptake inhibitors (SSRIs) paroxetine and sertraline significantly inhibited the generation of NO and tumor necrosis factor (TNF)-α from interferon (IFN)-γ-activated 6-3 microglia. We further investigated the intracellular signaling mechanism underlying NO and TNF-α release from IFN-γ-activated 6-3 microglia. Our results suggest that paroxetine and sertraline may inhibit microglial activation through inhibition of IFN-γ-induced elevation of intracellular Ca(2+). Our results suggest that the inhibitory effect of paroxetine and sertraline on microglial activation may not be a prerequisite for antidepressant function, but an additional beneficial effect.

  15. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation.

    PubMed

    Ji, Rui; Tian, Shifu; Lu, Helen J; Lu, Qingjun; Zheng, Yan; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2013-12-15

    TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.

  16. The intrinsic microglial clock system regulates interleukin-6 expression.

    PubMed

    Nakazato, Ryota; Hotta, Shogo; Yamada, Daisuke; Kou, Miki; Nakamura, Saki; Takahata, Yoshifumi; Tei, Hajime; Numano, Rika; Hida, Akiko; Shimba, Shigeki; Mieda, Michihiro; Hinoi, Eiichi; Yoneda, Yukio; Takarada, Takeshi

    2017-01-01

    Similar to neurons, microglia have an intrinsic molecular clock. The master clock oscillator Bmal1 modulates interleukin-6 upregulation in microglial cells exposed to lipopolysaccharide. Bmal1 can play a role in microglial inflammatory responses. We previously demonstrated that gliotransmitter ATP induces transient expression of the clock gene Period1 via P2X7 purinergic receptors in cultured microglia. In this study, we further investigated mechanisms underlying the regulation of pro-inflammatory cytokine production by clock molecules in microglial cells. Several clock gene transcripts exhibited oscillatory diurnal rhythmicity in microglial BV-2 cells. Real-time luciferase monitoring also showed diurnal oscillatory luciferase activity in cultured microglia from Per1::Luciferase transgenic mice. Lipopolysaccharide (LPS) strongly induced the expression of pro-inflammatory cytokines in BV-2 cells, whereas an siRNA targeting Brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1), a core positive component of the microglial molecular clock, selectively inhibited LPS-induced interleukin-6 (IL-6) expression. In addition, LPS-induced IL-6 expression was attenuated in microglia from Bmal1-deficient mice. This phenotype was recapitulated by pharmacological disruption of oscillatory diurnal rhythmicity using the synthetic Rev-Erb agonist SR9011. Promoter analysis of the Il6 gene revealed that Bmal1 is required for LPS-induced IL-6 expression in microglia. Mice conditionally Bmal1 deficient in cells expressing CD11b, including microglia, exhibited less potent upregulation of Il6 expression following middle cerebral artery occlusion compared with that in control mice, with a significant attenuation of neuronal damage. These results suggest that the intrinsic microglial clock modulates the inflammatory response, including the positive regulation of IL-6 expression in a particular pathological situation in the brain, GLIA 2016. GLIA 2017;65:198-208.

  17. Sigma Receptors Suppress Multiple Aspects of Microglial Activation

    PubMed Central

    Hall Aaron, A.; Yelenis, Herrera; Ajmo Craig, T.; Javier, Cuevas; Pennypacker Keith, R.

    2009-01-01

    During brain injury, microglia become activated and migrate to areas of degenerating neurons. These microglia release pro-inflammatory cytokines and reactive oxygen species causing additional neuronal death. Microglia express high levels of sigma receptors, however, the function of these receptors in microglia and how they may affect the activation of these cells remain poorly understood. Using primary rat microglial cultures, it was found that sigma receptor activation suppresses the ability of microglia to rearrange their actin cytoskeleton, migrate, and release cytokines in response to the activators adenosine triphosphate (ATP), monocyte chemoattractant protein 1 (MCP-1), and lipopolysaccharide (LPS). Next, the role of sigma receptors in the regulation of calcium signaling during microglial activation was explored. Calcium fluorometry experiments in vitro show that stimulation of sigma receptors suppressed both transient and sustained intracellular calcium elevations associated with the microglial response to these activators. Further experiments showed that sigma receptors suppress microglial activation by interfering with increases in intracellular calcium. In addition, sigma receptor activation also prevented membrane ruffling in a calcium-independent manner, indicating that sigma receptors regulate the function of microglia via multiple mechanisms. PMID:19031439

  18. Regulatory effects of fisetin on microglial activation.

    PubMed

    Chuang, Jing-Yuan; Chang, Pei-Chun; Shen, Yi-Chun; Lin, Chingju; Tsai, Cheng-Fang; Chen, Jia-Hong; Yeh, Wei-Lan; Wu, Ling-Hsuan; Lin, Hsiao-Yun; Liu, Yu-Shu; Lu, Dah-Yuu

    2014-06-26

    Increasing evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play a key role in neurodegeneration. Fisetin, a plant flavonol commonly found in fruits and vegetables, is frequently added to nutritional supplements due to its antioxidant properties. In the present study, treatment with fisetin inhibited microglial cell migration and ROS (reactive oxygen species) production. Treatment with fisetin also effectively inhibited LPS plus IFN-γ-induced nitric oxide (NO) production, and inducible nitric oxide synthase (iNOS) expression in microglial cells. Furthermore, fisetin also reduced expressions of iNOS and NO by stimulation of peptidoglycan, the major component of the Gram-positive bacterium cell wall. Fisetin also inhibited the enhancement of LPS/IFN-γ- or peptidoglycan-induced inflammatory mediator IL (interlukin)-1 β expression. Besides the antioxidative and anti-inflammatory effects of fisetin, our study also elucidates the manner in fisetin-induced an endogenous anti-oxidative enzyme HO (heme oxygenase)-1 expression. Moreover, the regulatory molecular mechanism of fisetin-induced HO-1 expression operates through the PI-3 kinase/AKT and p38 signaling pathways in microglia. Notably, fisetin also significantly attenuated inflammation-related microglial activation and coordination deficit in mice in vivo. These findings suggest that fisetin may be a candidate agent for the development of therapies for inflammation-related neurodegenerative diseases.

  19. Transduced PEP-1-PON1 proteins regulate microglial activation and dopaminergic neuronal death in a Parkinson's disease model.

    PubMed

    Kim, Mi Jin; Park, Meeyoung; Kim, Dae Won; Shin, Min Jea; Son, Ora; Jo, Hyo Sang; Yeo, Hyeon Ji; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Kim, Duk-Soo; Kwon, Oh-Shin; Kim, Joon; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2015-09-01

    Parkinson's disease (PD) is an oxidative stress-mediated neurodegenerative disorder caused by selective dopaminergic neuronal death in the midbrain substantia nigra. Paraoxonase 1 (PON1) is a potent inhibitor of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) against oxidation by destroying biologically active phospholipids with potential protective effects against oxidative stress-induced inflammatory disorders. In a previous study, we constructed protein transduction domain (PTD) fusion PEP-1-PON1 protein to transduce PON1 into cells and tissue. In this study, we examined the role of transduced PEP-1-PON1 protein in repressing oxidative stress-mediated inflammatory response in microglial BV2 cells after exposure to lipopolysaccharide (LPS). Moreover, we identified the functions of transduced PEP-1-PON1 proteins which include, mitigating mitochondrial damage, decreasing reactive oxidative species (ROS) production, matrix metalloproteinase-9 (MMP-9) expression and protecting against 1-methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity in SH-SY5Y cells. Furthermore, transduced PEP-1-PON1 protein reduced MMP-9 expression and protected against dopaminergic neuronal cell death in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. Taken together, these results suggest a promising therapeutic application of PEP-1-PON1 proteins against PD and other inflammation and oxidative stress-related neuronal diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. (+)-Catechin Attenuates NF-κB Activation Through Regulation of Akt, MAPK, and AMPK Signaling Pathways in LPS-Induced BV-2 Microglial Cells.

    PubMed

    Syed Hussein, Sharifah Salwa; Kamarudin, Muhamad Noor Alfarizal; Kadir, Habsah Abdul

    2015-01-01

    (+)-Catechin is a flavanol that possesses various health and medicinal values, which include neuroprotection, anti-oxidation, antitumor and antihepatitis activities. This study investigated the modulatory effects of (+)-catechin on the lipopolysaccharides (LPS)-stimulated BV-2 cells. (+)-catechin attenuated LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and inhibited microglial NO and ROS production. Additionally, (+)-catechin suppressed the production of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, while augmenting IL-4. (+)-catechin attenuated LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation via the inhibition of IκB-α phosphorylation. Moreover, (+)-catechin blocked the activation of Akt and its inhibition was shown to play a crucial role in LPS-induced inflammation in BV-2 microglial cells. (+)-catechin also attenuated the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK1/2), and p-38 mitogen activated protein kinases (p38 MAPK) and specific inhibitors of ERK1/2 (UO126) and p38 MAPK (SB202190) subsequently down-regulated the expression of the proinflammatory mediators iNOS and COX-2. Further mechanistic study revealed that (+)-catechin acted through the amelioration of the LPS-induced suppression of adenosine monophosphate-activated protein kinase (AMPK) activity. Taken together, our data indicate that (+)-catechin exhibits anti-inflammatory effects in BV-2 cells by suppressing the production of proinflammatory mediators and mitigation of NF-κB through Akt, ERK, p38 MAPK, and AMPK pathways.

  1. TAM receptors regulate multiple features of microglial physiology

    PubMed Central

    Tufail, Yusuf; Leal-Bailey, Humberto; Lew, Erin D.; Burrola, Patrick G.; Callaway, Perri; Zagórska, Anna; Rothlin, Carla V.; Nimmerjahn, Axel; Lemke, Greg

    2016-01-01

    Microglia are damage sensors for the central nervous system (CNS), and the phagocytes responsible for the routine non-inflammatory clearance of dead brain cells1. Here we show that the TAM receptor tyrosine kinases Mer and Axl2 regulate these microglial functions. We find that mice deficient in microglial Mer and Axl exhibit a marked accumulation of apoptotic cells (ACs) specifically in neurogenic regions of the adult CNS, and that microglial phagocytosis of the ACs generated during adult neurogenesis3,4 is normally driven by both TAM receptor ligands – Gas6 and Protein S5. Live two-photon imaging demonstrates that the microglial response to brain damage is also TAM-regulated, as TAM-deficient microglia display reduced process motility and delayed convergence to sites of injury. Finally, we show that microglial expression of Axl is prominently up-regulated in the inflammatory environment that develops in a mouse model of Parkinson’s disease6. Together, these results establish TAM receptors as both controllers of microglial physiology and potential targets for therapeutic intervention in CNS disease. PMID:27049947

  2. Microglial Activation in Traumatic Brain Injury

    PubMed Central

    Donat, Cornelius K.; Scott, Gregory; Gentleman, Steve M.; Sastre, Magdalena

    2017-01-01

    Microglia have a variety of functions in the brain, including synaptic pruning, CNS repair and mediating the immune response against peripheral infection. Microglia rapidly become activated in response to CNS damage. Depending on the nature of the stimulus, microglia can take a number of activation states, which correspond to altered microglia morphology, gene expression and function. It has been reported that early microglia activation following traumatic brain injury (TBI) may contribute to the restoration of homeostasis in the brain. On the other hand, if they remain chronically activated, such cells display a classically activated phenotype, releasing pro-inflammatory molecules, resulting in further tissue damage and contributing potentially to neurodegeneration. However, new evidence suggests that this classification is over-simplistic and the balance of activation states can vary at different points. In this article, we review the role of microglia in TBI, analyzing their distribution, morphology and functional phenotype over time in animal models and in humans. Animal studies have allowed genetic and pharmacological manipulations of microglia activation, in order to define their role. In addition, we describe investigations on the in vivo imaging of microglia using translocator protein (TSPO) PET and autoradiography, showing that microglial activation can occur in regions far remote from sites of focal injuries, in humans and animal models of TBI. Finally, we outline some novel potential therapeutic approaches that prime microglia/macrophages toward the beneficial restorative microglial phenotype after TBI. PMID:28701948

  3. Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases.

    PubMed

    Carniglia, Lila; Ramírez, Delia; Durand, Daniela; Saba, Julieta; Turati, Juan; Caruso, Carla; Scimonelli, Teresa N; Lasaga, Mercedes

    2017-01-01

    Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.

  4. Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases

    PubMed Central

    2017-01-01

    Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity. PMID:28154473

  5. The Transcription Factor p53 Influences Microglial Activation Phenotype

    PubMed Central

    Jayadev, Suman; Nesser, Nicole K.; Hopkins, Stephanie; Myers, Scott J.; Case, Amanda; Lee, Rona J.; Seaburg, Luke A.; Uo, Takuma; Murphy, Sean P.; Morrison, Richard S.; Garden, Gwenn A.

    2011-01-01

    Several neurodegenerative diseases are influenced by the innate immune response in the central nervous system (CNS). Microglia, have pro-inflammatory and subsequently neurotoxic actions as well as anti-inflammatory functions that promote recovery and repair. Very little is known about the transcriptional control of these specific microglial behaviors. We have previously shown that in HIV associated neurocognitive disorders (HAND), the transcription factor p53 accumulates in microglia and that microglial p53 expression is required for the in vitro neurotoxicity of the HIV coat glycoprotein gp120. These findings suggested a novel function for p53 in regulating microglial activation. Here we report that in the absence of p53, microglia demonstrate a blunted response to interferon-γ, failing to increase expression of genes associated with classical macrophage activation or secrete pro-inflammatory cytokines. Microarray analysis of global gene expression profiles revealed increased expression of genes associated with anti-inflammatory functions, phagocytosis and tissue repair in p53 knockout (p53−/−) microglia compared with those cultured from strain matched p53 expressing (p53+/+) mice. We further observed that p53−/− microglia demonstrate increased phagocytic activity in vitro and expression of markers for alternative macrophage activation both in vitro and in vivo. In HAND brain tissue, the alternative activation marker CD163 was expressed in a separate subset of microglia than those demonstrating p53 accumulation. These data suggest that p53 influences microglial behavior, supporting the adoption of a pro-inflammatory phenotype, while p53 deficiency promotes phagocytosis and gene expression associated with alternative activation and anti-inflammatory functions. PMID:21598312

  6. Astrocytic Orosomucoid-2 Modulates Microglial Activation and Neuroinflammation.

    PubMed

    Jo, Myungjin; Kim, Jong-Heon; Song, Gyun Jee; Seo, Minchul; Hwang, Eun Mi; Suk, Kyoungho

    2017-03-15

    Orosomucoid (ORM) is an acute-phase protein that belongs to the immunocalin subfamily, a group of small-molecule-binding proteins with immunomodulatory functions. Little is known about the role of ORM proteins in the CNS. The aim of the present study was to investigate the brain expression of ORM and its role in neuroinflammation. Expression of Orm2, but not Orm1 or Orm3, was highly induced in the mouse brain after systemic injection of lipopolysaccharide (LPS). Plasma levels of ORM2 were also significantly higher in patients with cognitive impairment than in normal subjects. RT-PCR, Western blot, and immunofluorescence analyses revealed that astrocytes are the major cellular sources of ORM2 in the inflamed mouse brain. Recombinant ORM2 protein treatment decreased microglial production of proinflammatory mediators and reduced microglia-mediated neurotoxicity in vitro LPS-induced microglial activation, proinflammatory cytokines in hippocampus, and neuroinflammation-associated cognitive deficits also decreased as a result of intracerebroventricular injection of recombinant ORM2 protein in vivo Moreover, lentiviral shRNA-mediated Orm2 knockdown enhanced LPS-induced proinflammatory cytokine gene expression and microglial activation in the hippocampus. Mechanistically, ORM2 inhibited C-C chemokine ligand 4 (CCL4)-induced microglial migration and activation by blocking the interaction of CCL4 with C-C chemokine receptor type 5. Together, the results from our cultured glial cells, mouse neuroinflammation model, and patient studies suggest that ORM2 is a novel mediator of astrocyte-microglial interaction. We also report that ORM2 exerts anti-inflammatory effects by modulating microglial activation and migration during brain inflammation. ORM2 can be exploited therapeutically for the treatment of neuroinflammatory diseases.SIGNIFICANCE STATEMENT Neural cell interactions are important for brain physiology and pathology. Particularly, the interaction between non

  7. Microglial Acid Sensing Regulates Carbon Dioxide Evoked Fear

    PubMed Central

    Vollmer, Lauren Larke; Ghosal, Sriparna; McGuire, Jennifer L.; Ahlbrand, Rebecca L.; Li, Ke-Yong; Santin, Joseph M.; Ratliff-Rang, Christine A.; Patrone, Luis G. A.; Rush, Jennifer; Lewkowich, Ian P.; Herman, James P; Putnam, Robert W.; Sah, Renu

    2016-01-01

    Background Carbon dioxide (CO2) inhalation, a biological challenge and pathological marker in Panic Disorder, evokes intense fear and panic attacks in susceptible individuals. The molecular identity and anatomical location of CO2-sensing systems that translate CO2-evoked fear remains unclear. We investigated contributions of microglial acid sensor T cell death associated gene-8 (TDAG8) and microglial pro-inflammatory responses in CO2-evoked behavioral and physiological responses. Methods CO2-evoked freezing, autonomic and respiratory responses were assessed in TDAG8-deficient (−/−) and wildtype (+/+) mice. Involvement of TDAG8-dependent microglial activation and pro-inflammatory cytokine IL-1β with CO2-evoked responses was investigated using microglial blocker, minocycline and IL-1β antagonist, IL- 1RA. CO2-chemosensitive firing responses using single-cell patch clamping were measured in TDAG8−/− and +/+ mice to gain functional insights. Results; TDAG8 expression was localized in microglia enriched within the sensory circumventricular organs (CVOs). TDAG8−/− mice displayed attenuated CO2-evoked freezing and sympathetic responses. TDAG8 deficiency was associated with reduced microglial activation and pro-inflammatory cytokine, IL-1β within the subfornical organ (SFO). Central infusion of microglial activation blocker, minocycline and IL-1β antagonist, IL-1RA attenuated CO2-evoked freezing. Finally, CO2-evoked neuronal firing in patch clamped SFO neurons was dependent on acid sensor TDAG8 and IL-1β. Conclusions Our data identify TDAG8-dependent microglial acid-sensing as a unique chemosensor for detecting and translating hypercapnia to fear-associated behavioral and physiological responses, providing a novel mechanism for homeostatic threat detection of relevance to psychiatric conditions such as panic disorder. PMID:27422366

  8. Microglial Acid Sensing Regulates Carbon Dioxide-Evoked Fear.

    PubMed

    Vollmer, Lauren Larke; Ghosal, Sriparna; McGuire, Jennifer L; Ahlbrand, Rebecca L; Li, Ke-Yong; Santin, Joseph M; Ratliff-Rang, Christine A; Patrone, Luis G A; Rush, Jennifer; Lewkowich, Ian P; Herman, James P; Putnam, Robert W; Sah, Renu

    2016-10-01

    Carbon dioxide (CO2) inhalation, a biological challenge and pathologic marker in panic disorder, evokes intense fear and panic attacks in susceptible individuals. The molecular identity and anatomic location of CO2-sensing systems that translate CO2-evoked fear remain unclear. We investigated contributions of microglial acid sensor T cell death-associated gene-8 (TDAG8) and microglial proinflammatory responses in CO2-evoked behavioral and physiological responses. CO2-evoked freezing, autonomic, and respiratory responses were assessed in TDAG8-deficient ((-/-)) and wild-type ((+/+)) mice. Involvement of TDAG8-dependent microglial activation and proinflammatory cytokine interleukin (IL)-1β with CO2-evoked responses was investigated using microglial blocker, minocycline, and IL-1β antagonist IL-1RA. CO2-chemosensitive firing responses using single-cell patch clamping were measured in TDAG8(-/-) and TDAG8(+/+) mice to gain functional insights. TDAG8 expression was localized in microglia enriched within the sensory circumventricular organs. TDAG8(-/-) mice displayed attenuated CO2-evoked freezing and sympathetic responses. TDAG8 deficiency was associated with reduced microglial activation and proinflammatory cytokine IL-1β within the subfornical organ. Central infusion of microglial activation blocker minocycline and IL-1β antagonist IL-1RA attenuated CO2-evoked freezing. Finally, CO2-evoked neuronal firing in patch-clamped subfornical organ neurons was dependent on acid sensor TDAG8 and IL-1β. Our data identify TDAG8-dependent microglial acid sensing as a unique chemosensor for detecting and translating hypercapnia to fear-associated behavioral and physiological responses, providing a novel mechanism for homeostatic threat detection of relevance to psychiatric conditions such as panic disorder. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Inflammatory Regulation by Driving Microglial M2 Polarization: Neuroprotective Effects of Cannabinoid Receptor-2 Activation in Intracerebral Hemorrhage

    PubMed Central

    Lin, Li; Yihao, Tao; Zhou, Feng; Yin, Niu; Qiang, Tan; Haowen, Zheng; Qianwei, Chen; Jun, Tang; Yuan, Zhang; Gang, Zhu; Hua, Feng; Yunfeng, Yang; Zhi, Chen

    2017-01-01

    The cannabinoid receptor-2 (CB2R) was initially thought to be the “peripheral cannabinoid receptor.” Recent studies, however, have documented CB2R expression in the brain in both glial and neuronal cells, and increasing evidence suggests an important role for CB2R in the central nervous system inflammatory response. Intracerebral hemorrhage (ICH), which occurs when a diseased cerebral vessel ruptures, accounts for 10–15% of all strokes. Although surgical techniques have significantly advanced in the past two decades, ICH continues to have a high mortality rate. The aim of this study was to investigate the therapeutic effects of CB2R stimulation in acute phase after experimental ICH in rats and its related mechanisms. Data showed that stimulation of CB2R using a selective agonist, JWH133, ameliorated brain edema, brain damage, and neuron death and improved neurobehavioral outcomes in acute phase after ICH. The neuroprotective effects were prevented by SR144528, a selective CB2R inhibitor. Additionally, JWH133 suppressed neuroinflammation and upregulated the expression of microglial M2-associated marker in both gene and protein level. Furthermore, the expression of phosphorylated cAMP-dependent protein kinase (pPKA) and its downstream effector, cAMP-response element binding protein (CREB), were facilitated. Knockdown of CREB significantly inversed the increase of M2 polarization in microglia, indicating that the JWH133-mediated anti-inflammatory effects are closely associated with PKA/CREB signaling pathway. These findings demonstrated that CB2R stimulation significantly protected the brain damage and suppressed neuroinflammation by promoting the acquisition of microglial M2 phenotype in acute stage after ICH. Taken together, this study provided mechanism insight into neuroprotective effects by CB2R stimulation after ICH. PMID:28261199

  10. Inflammatory Regulation by Driving Microglial M2 Polarization: Neuroprotective Effects of Cannabinoid Receptor-2 Activation in Intracerebral Hemorrhage.

    PubMed

    Lin, Li; Yihao, Tao; Zhou, Feng; Yin, Niu; Qiang, Tan; Haowen, Zheng; Qianwei, Chen; Jun, Tang; Yuan, Zhang; Gang, Zhu; Hua, Feng; Yunfeng, Yang; Zhi, Chen

    2017-01-01

    The cannabinoid receptor-2 (CB2R) was initially thought to be the "peripheral cannabinoid receptor." Recent studies, however, have documented CB2R expression in the brain in both glial and neuronal cells, and increasing evidence suggests an important role for CB2R in the central nervous system inflammatory response. Intracerebral hemorrhage (ICH), which occurs when a diseased cerebral vessel ruptures, accounts for 10-15% of all strokes. Although surgical techniques have significantly advanced in the past two decades, ICH continues to have a high mortality rate. The aim of this study was to investigate the therapeutic effects of CB2R stimulation in acute phase after experimental ICH in rats and its related mechanisms. Data showed that stimulation of CB2R using a selective agonist, JWH133, ameliorated brain edema, brain damage, and neuron death and improved neurobehavioral outcomes in acute phase after ICH. The neuroprotective effects were prevented by SR144528, a selective CB2R inhibitor. Additionally, JWH133 suppressed neuroinflammation and upregulated the expression of microglial M2-associated marker in both gene and protein level. Furthermore, the expression of phosphorylated cAMP-dependent protein kinase (pPKA) and its downstream effector, cAMP-response element binding protein (CREB), were facilitated. Knockdown of CREB significantly inversed the increase of M2 polarization in microglia, indicating that the JWH133-mediated anti-inflammatory effects are closely associated with PKA/CREB signaling pathway. These findings demonstrated that CB2R stimulation significantly protected the brain damage and suppressed neuroinflammation by promoting the acquisition of microglial M2 phenotype in acute stage after ICH. Taken together, this study provided mechanism insight into neuroprotective effects by CB2R stimulation after ICH.

  11. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism.

    PubMed

    Morgan, John T; Chana, Gursharan; Pardo, Carlos A; Achim, Cristian; Semendeferi, Katerina; Buckwalter, Jody; Courchesne, Eric; Everall, Ian P

    2010-08-15

    In the neurodevelopmental disorder autism, several neuroimmune abnormalities have been reported. However, it is unknown whether microglial somal volume or density are altered in the cortex and whether any alteration is associated with age or other potential covariates. Microglia in sections from the dorsolateral prefrontal cortex of nonmacrencephalic male cases with autism (n = 13) and control cases (n = 9) were visualized via ionized calcium binding adapter molecule 1 immunohistochemistry. In addition to a neuropathological assessment, microglial cell density was stereologically estimated via optical fractionator and average somal volume was quantified via isotropic nucleator. Microglia appeared markedly activated in 5 of 13 cases with autism, including 2 of 3 under age 6, and marginally activated in an additional 4 of 13 cases. Morphological alterations included somal enlargement, process retraction and thickening, and extension of filopodia from processes. Average microglial somal volume was significantly increased in white matter (p = .013), with a trend in gray matter (p = .098). Microglial cell density was increased in gray matter (p = .002). Seizure history did not influence any activation measure. The activation profile described represents a neuropathological alteration in a sizeable fraction of cases with autism. Given its early presence, microglial activation may play a central role in the pathogenesis of autism in a substantial proportion of patients. Alternatively, activation may represent a response of the innate neuroimmune system to synaptic, neuronal, or neuronal network disturbances, or reflect genetic and/or environmental abnormalities impacting multiple cellular populations. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Up-regulation of brain cytokines and chemokines mediates neurotoxicity in early acute liver failure by a mechanism independent of microglial activation.

    PubMed

    Faleiros, Bruno E; Miranda, Aline S; Campos, Alline C; Gomides, Lindisley F; Kangussu, Lucas M; Guatimosim, Cristina; Camargos, Elizabeth R S; Menezes, Gustavo B; Rachid, Milene A; Teixeira, Antônio L

    2014-08-26

    The neurological involvement in acute liver failure (ALF) is characterized by arousal impairment with progression to coma. There is a growing body of evidence that neuroinflammatory mechanisms play a role in this process, including production of inflammatory cytokines and microglial activation. However, it is still uncertain whether brain-derived cytokines and glial cells are crucial to the pathophysiology of ALF at the early stage, before coma development. Here, we investigated the influence of cytokines and microglia in ALF-induced encephalopathy in mice as soon as neurological symptoms were identifiable. Behavior was assessed at 12, 24, 36 and 48 h post-injection of thioacetamide, a hepatotoxic drug, through locomotor activity by an open field test. Brain concentration of cytokines (TNF-α and IL-1β) and chemokines (CXCL1, CCL2, CCL3 and CCL5) were assessed by ELISA. Microglial activation in brain sections was investigated through immunohistochemistry, and cellular ultrastructural changes were observed by transmission electron microscopy. We found that ALF-induced animals presented a significant decrease in locomotor activity at 24 h, which was accompanied by an increase in IL-1β, CXCL1, CCL2, CCL3 and CCL5 in the brain. TNF-α level was significantly increased only at 36 h. Despite marked morphological changes in astrocytes and brain endothelial cells, no microglial activation was observed. These findings suggest an involvement of brain-derived chemokines and IL-1β in early pathophysiology of ALF by a mechanism independent of microglial activation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Divergent Neuroinflammatory Regulation of Microglial TREM Expression and Involvement of NF-κB

    PubMed Central

    Owens, Rosie; Grabert, Kathleen; Davies, Claire L.; Alfieri, Alessio; Antel, Jack P.; Healy, Luke M.; McColl, Barry W.

    2017-01-01

    The triggering receptor expressed on myeloid cells (TREM) family of proteins are cell surface receptors with important roles in regulation of myeloid cell inflammatory activity. In the central nervous system, TREM2 is implicated in further roles in microglial homeostasis, neuroinflammation and neurodegeneration. Different TREM receptors appear to have contrasting roles in controlling myeloid immune activity therefore the relative and co-ordinated regulation of their expression is important to understand but is currently poorly understood. We sought to determine how microglial TREM expression is affected under neuroinflammatory conditions in vitro and in vivo. Our data show that microglial Trem1 and Trem2 gene expression are regulated in an opposing manner by lipopolysaccharide (LPS) in vitro in both adult murine and human microglia. LPS caused a significant induction of Trem1 and a contrasting suppression of Trem2 expression. We also observed similar divergent Trem1 and Trem2 responses in vivo in response to acute brain inflammation and acute cerebral ischaemia. Our data show that inhibition of NF-κB activation prevents the LPS-induced alterations in both Trem1 and Trem2 expression in vitro indicating NF-κB as a common signaling intermediate controlling these divergent responses. Distinct patterns of microglial Trem1 induction and Trem2 suppression to different Toll-like receptor (TLR) ligands were also evident, notably with Trem1 induction restricted to those ligands activating TLRs signaling via TRIF. Our data show co-ordinated but divergent regulation of microglial TREM receptor expression with a central role for NF-κB. Neuroinflammatory conditions that alter the balance in TREM expression could therefore be an important influence on microglial inflammatory and homeostatic activity with implications for neuroinflammatory and neurodegenerative disease. PMID:28303091

  14. Resilience dysregulation in major depressive disorder: focus on glutamatergic imbalance and microglial activation.

    PubMed

    Réus, Gislaine Z; de Moura, Airam B; Silva, Ritele H; Resende, Wilson R; Quevedo, João

    2017-06-30

    Many studies have been shown an important role of glutamatergic system as well microglial activation in the pathophysiology of major depressive disorder (MDD). Experimental and clinical data suggest that attenuation of N-methyl-D-aspartate (NMDA) receptor function exerts antidepressant effects. Glutamatergic system is involved with memory establishment and function, and it regulates plasticity in the brain. Microglial cells play pivotal role to the brain functions; however, under chronic inflammation status microglial could be turn activated and increase the pro-inflammatory cytokines. In humans most resistant to the development of psychiatric disorders, including MDD, are observed a greater degree of resilience resulting from stress. Less resilience is associated with neuroendocrine and neuroinflammatory markers, as well as with glutamatergic system dysregulation. Thus, this review we highlighted findings from literature identifying the function of glutamatergic system, microglial activation and inflammation in resilience. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Trimethyltin-Induced Microglial Activation via NADPH Oxidase and MAPKs Pathway in BV-2 Microglial Cells

    PubMed Central

    Kim, Da Jung; Kim, Yong Sik

    2015-01-01

    Trimethyltin (TMT) is known as a potent neurotoxicant that causes neuronal cell death and neuroinflammation, particularly in the hippocampus. Microglial activation is one of the prominent pathological features of TMT neurotoxicity. Nevertheless, it remains unclear how microglial activation occurs in TMT intoxication. In this study, we aimed to investigate the signaling pathways in TMT-induced microglial activation using BV-2 murine microglial cells. Our results revealed that TMT generates reactive oxygen species (ROS) and increases the expression of CD11b and nuclear factor-κB- (NF-κB-) mediated nitric oxide (NO) and tumor necrosis factor- (TNF-) α in BV-2 cells. We also observed that NF-κB activation was controlled by p38 and JNK phosphorylation. Moreover, TMT-induced ROS generation occurred via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in BV-2 cells. Interestingly, treatment with the NADPH oxidase inhibitor apocynin significantly suppressed p38 and JNK phosphorylation and NF-κB activation and ultimately the production of proinflammatory mediators upon TMT exposure. These findings indicate that NADPH oxidase-dependent ROS generation activated p38 and JNK mitogen-activated protein kinases (MAPKs), which then stimulated NF-κB to release proinflammatory mediators in the TMT-treated BV-2 cells. PMID:26221064

  16. Peripheral viral infection induced microglial sensome genes and enhanced microglial cell activity in the hippocampus of neonatal piglets.

    PubMed

    Ji, Peng; Schachtschneider, Kyle M; Schook, Lawrence B; Walker, Frederick R; Johnson, Rodney W

    2016-05-01

    Although poorly understood, early-life infection is predicted to affect brain microglial cells, making them hypersensitive to subsequent stimuli. To investigate this, we assessed gene expression in hippocampal tissue obtained from a previously published study reporting increased microglial cell activity and reduced hippocampal-dependent learning in neonatal piglets infected with porcine reproductive and respiratory syndrome virus (PRRSV), a virus that induces interstitial pneumonia. Infection altered expression of 455 genes, of which 334 were up-regulated and 121 were down-regulated. Functional annotation revealed that immune function genes were enriched among the up-regulated differentially expressed genes (DEGs), whereas calcium binding and synaptic vesicle genes were enriched among the down-regulated DEGs. Twenty-six genes encoding part of the microglia sensory apparatus (i.e., the sensome) were up-regulated (e.g., IL1R1, TLR2, and TLR4), whereas 15 genes associated with the synaptosome and synaptic receptors (e.g., NPTX2, GABRA2, and SLC5A7) were down-regulated. As the sensome may foretell microglia reactivity, we next inoculated piglets with culture medium or PRRSV at PD 7 and assessed hippocampal microglia morphology and function at PD 28 when signs of infection were waning. Consistent with amplification of the sensome, microglia from PRRSV piglets had enhanced responsiveness to chemoattractants, increased phagocytic activity, and secreted more TNFα in response to lipopolysaccharide and Poly I:C. Immunohistochemical staining indicated PRRSV infection increased microglia soma length and length-to-width ratio. Bipolar rod-like microglia not evident in hippocampus of control piglets, were present in infected piglets. Collectively, this study suggests early-life infection alters the microglia sensome as well as microglial cell morphology and function.

  17. Role of orexin A signaling in dietary palmitic acid-activated microglial cells.

    PubMed

    Duffy, Cayla M; Yuan, Ce; Wisdorf, Lauren E; Billington, Charles J; Kotz, Catherine M; Nixon, Joshua P; Butterick, Tammy A

    2015-10-08

    Excess dietary saturated fatty acids such as palmitic acid (PA) induce peripheral and hypothalamic inflammation. Hypothalamic inflammation, mediated in part by microglial activation, contributes to metabolic dysregulation. In rodents, high fat diet-induced microglial activation results in nuclear translocation of nuclear factor-kappa B (NFκB), and increased central pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). The hypothalamic neuropeptide orexin A (OXA, hypocretin 1) is neuroprotective in brain. In cortex, OXA can also reduce inflammation and neurodegeneration through a microglial-mediated pathway. Whether hypothalamic orexin neuroprotection mechanisms depend upon microglia is unknown. To address this issue, we evaluated effects of OXA and PA on inflammatory response in immortalized murine microglial and hypothalamic neuronal cell lines. We demonstrate for the first time in microglial cells that exposure to PA increases gene expression of orexin-1 receptor but not orexin-2 receptor. Pro-inflammatory markers IL-6, TNF-α, and inducible nitric oxide synthase in microglial cells are increased following PA exposure, but are reduced by pretreatment with OXA. The anti-inflammatory marker arginase-1 is increased by OXA. Finally, we show hypothalamic neurons exposed to conditioned media from PA-challenged microglia have increased cell survival only when microglia were pretreated with OXA. These data support the concept that OXA may act as an immunomodulatory regulator of microglia, reducing pro-inflammatory cytokines and increasing anti-inflammatory factors to promote a favorable neuronal microenvironment.

  18. The Nogo/Nogo Receptor (NgR) Signal Is Involved in Neuroinflammation through the Regulation of Microglial Inflammatory Activation.

    PubMed

    Fang, Yinquan; Yan, Jun; Li, Chenhui; Zhou, Xiao; Yao, Lemeng; Pang, Tao; Yan, Ming; Zhang, Luyong; Mao, Lei; Liao, Hong

    2015-11-27

    Microglia have been proposed to play a pivotal role in the inflammation response of the CNS by expressing a range of proinflammatory enzymes and cytokines under pathological stimulus. Our previous study has confirmed that Nogo receptor (NgR), an axon outgrowth inhibition receptor, is also expressed on microglia and regulates cell adhesion and migration behavior in vitro. In the present study, we further investigated the proinflammatory effects and possible mechanisms of Nogo on microglia in vitro. In this study, Nogo peptide, Nogo-P4, a 25-amino acid core inhibitory peptide sequence of Nogo-66, was used. We found that Nogo-P4 was able to induce the expression of inducible nitric-oxide synthase and cyclooxygenase-2 and the release of proinflammatory cytokines, including IL-1β, TNF-α, NO, and prostaglandin E2 in microglia, which could be reversed by NEP1-40 (Nogo-66(1-40) antagonist peptide), phosphatidylinositol-specificphospholipase C, or NgR siRNA treatment. After Nogo-P4 stimulated microglia, the phosphorylation levels of NF-κB and STAT3 were increased obviously, which further mediated microglia expressing proinflammatory factors induced by Nogo-P4. Taken together, we concluded that Nogo peptide could directly take part in CNS inflammatory process by influencing the expression of proinflammatory factors in microglia, which were related to the NF-κB and STAT3 signal pathways. Besides neurite outgrowth restriction, the Nogo/NgR signal might be involved in multiple processes in various inflammation-associated CNS diseases.

  19. Dexmedetomidine Regulates 6-hydroxydopamine-Induced Microglial Polarization.

    PubMed

    Zhang, Pei; Li, Yu; Han, Xuechang; Xing, Qunzhi; Zhao, Lei

    2017-02-28

    Microglia have undergone extensive characterization and have been shown to present distinct phenotypes, such as the M1 or M2 phenotypes, depending on their stimuli. As a highly specific neurotoxin, 6-hydroxydopamine (6-OHDA) can be used to further our understanding of the immune response in Parkinson's disease (PD). Dexmedetomidine (DEX), a centrally selective α2-adrenoceptor agonist, performs very well as an anti-anxiety medication, sedative and analgesic. In the present study, we investigated the effects of DEX on 6-OHDA-induced microglial polarization. Our results indicate that treatment with 6-OHDA promotes microglial polarization toward the M1 state in BV2 microglia cells by increasing the release of interleukin (IL)-6, IL-1β, or tumor necrosis factor-α, which can be prevented by pretreatment with DEX. In addition, we found that 6-OHDA blocked IL-4-mediated microglial M2 polarization by suppressing expression of the microglial M2 markers arginase-1 (Arg-1), resistin-like α (Retnla/Fizz1), and chitinase 3-like 3 (Chi3l3/Ym1), which could be ameliorated by pretreatment with DEX. Notably, the inhibitory effects of 6-OHDA on IL-4-mediated induction of the anti-inflammatory marker genes IL-10, IL-13, and transforming growth factor-β2 could be significantly alleviated by pretreatment with DEX in a dose-dependent manner (P < 0.01). Mechanistically, alternations in the activation of signal transducer and activator of transcription 6 were involved in this process. These findings suggest that administration of DEX has the potential to interrupt the process of microgliosis in PD.

  20. The microglial "activation" continuum: from innate to adaptive responses

    PubMed Central

    Town, Terrence; Nikolic, Veljko; Tan, Jun

    2005-01-01

    Microglia are innate immune cells of myeloid origin that take up residence in the central nervous system (CNS) during embryogenesis. While classically regarded as macrophage-like cells, it is becoming increasingly clear that reactive microglia play more diverse roles in the CNS. Microglial "activation" is often used to refer to a single phenotype; however, in this review we consider that a continuum of microglial activation exists, with phagocytic response (innate activation) at one end and antigen presenting cell function (adaptive activation) at the other. Where activated microglia fall in this spectrum seems to be highly dependent on the type of stimulation provided. We begin by addressing the classical roles of peripheral innate immune cells including macrophages and dendritic cells, which seem to define the edges of this continuum. We then discuss various types of microglial stimulation, including Toll-like receptor engagement by pathogen-associated molecular patterns, microglial challenge with myelin epitopes or Alzheimer's β-amyloid in the presence or absence of CD40L co-stimulation, and Alzheimer disease "immunotherapy". Based on the wide spectrum of stimulus-specific microglial responses, we interpret these cells as immune cells that demonstrate remarkable plasticity following activation. This interpretation has relevance for neurodegenerative/neuroinflammatory diseases where reactive microglia play an etiological role; in particular viral/bacterial encephalitis, multiple sclerosis and Alzheimer disease. PMID:16259628

  1. Nitrated alpha-synuclein and microglial neuroregulatory activities

    PubMed Central

    Reynolds, Ashley D.; Kadiu, Irena; Garg, Sanjay K.; Glanzer, Jason G.; Nordgen, Tara; Ciborowski, Pawel; Banerjee, Ruma; Gendelman, Howard E.

    2008-01-01

    Microglial neuroinflammatory responses affect the onset and progression of Parkinson’s disease (PD). We posit that such neuroinflammatory responses are, in part, mediated by microglial interactions with nitrated and aggregated α-synuclein (α-syn) released from Lewy bodies as a consequence of dopaminergic neuronal degeneration. As disease progresses, secretions from α-syn activated microglia can engage neighboring glial cells in a cycle of autocrine and paracrine amplification of neurotoxic immune products. Such pathogenic processes affect the balance between a microglial neurotrophic and neurotoxic signature. We now report that microglia secrete both neurotoxic and neuroprotective factors following exposure to nitrated α-syn (N-α-syn). Proteomic [surface enhanced laser desorption-time of flight (SELDI-TOF), 1D SDS electrophoresis, and liquid chromatography-tandem mass spectrometry] and limited metabolomic profiling demonstrated that N-α-syn activated microglia secrete inflammatory, regulatory, redox-active, enzymes, and cytoskeletal proteins. Increased extracellular glutamate and cysteine, dimininshed intracellular glutathione and secreted exosomal proteins were also demonstrated. Increased redox active proteins suggest regulatory microglial responses to N-α-syn. These were linked to discontinuous cystatin expression, cathepsin activity, and NF-κB activation. Inhibition of cathepsin B attenuated, in part, N-α-syn-microglial neurotoxicity. These data support multifaceted microglia functions in PD-associated neurodegeneration. PMID:18202920

  2. Thrombin-induced regulation of CD95(Fas) expression in the N9 microglial cell line: evidence for involvement of proteinase-activated receptor(1) and extracellular signal-regulated kinase 1/2.

    PubMed

    Weinstein, Jonathan R; Zhang, Matthew; Kutlubaev, Mansur; Lee, Richard; Bishop, Caroline; Andersen, Henrik; Hanisch, Uwe-Karsten; Möller, Thomas

    2009-03-01

    Microglia are the immune cells of the CNS. Brain injury triggers phenotypic changes in microglia including regulation of surface antigens. The serine proteinase alpha-thrombin can induce profound changes in neural cell physiology via cleavage of proteinase-activated receptors (PARs). We recently demonstrated that pharmaceutical-grade recombinant human alpha-thrombin (rh-thr) induces a restricted set of proteolysis-dependent changes in microglia. CD95(Fas) is a cell-death receptor that is up-regulated in microglia by inflammatory stimuli. Here we characterized the effect of rh-thr on CD95(Fas) expression in the N9 microglial cell line. Dose-response and time course studies demonstrated maximal effects at 100 U/ml and 24 h, respectively. Regulation of expression was seen at both the surface protein and steady-state mRNA levels. The rh-thr-induced effects were mimicked by PAR(1) agonist peptides and blocked by pharmacologic inhibitors selective for extracellular signal-regulated kinase 1/2 (ERK 1/2). Rh-thr also induced a rapid and sustained phosphorylation of ERK 1/2. Thrombin-induced regulation of CD95(Fas) could modulate the neuroinflammatory response in a variety of neurological disorders.

  3. Imaging robust microglial activation after lipopolysaccharide administration in humans with PET

    PubMed Central

    Sandiego, Christine M.; Gallezot, Jean-Dominique; Pittman, Brian; Nabulsi, Nabeel; Lim, Keunpoong; Lin, Shu-Fei; Matuskey, David; Lee, Jae-Yun; O’Connor, Kevin C.; Huang, Yiyun; Carson, Richard E.; Hannestad, Jonas; Cosgrove, Kelly P.

    2015-01-01

    Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of the Escherichia coli lipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [11C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [11C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [11C]PBR28 scan. LPS administration significantly increased [11C]PBR28 binding 30–60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [11C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects. PMID:26385967

  4. Brain angiotensin regulates iron homeostasis in dopaminergic neurons and microglial cells.

    PubMed

    Garrido-Gil, Pablo; Rodriguez-Pallares, Jannette; Dominguez-Meijide, Antonio; Guerra, Maria J; Labandeira-Garcia, Jose L

    2013-12-01

    Dysfunction of iron homeostasis has been shown to be involved in ageing, Parkinson's disease and other neurodegenerative diseases. Increased levels of labile iron result in increased reactive oxygen species and oxidative stress. Angiotensin II, via type-1 receptors, exacerbates oxidative stress, the microglial inflammatory response and progression of dopaminergic degeneration. Angiotensin activates the NADPH-oxidase complex, which produces superoxide. However, it is not known whether angiotensin affects iron homeostasis. In the present study, administration of angiotensin to primary mesencephalic cultures, the dopaminergic cell line MES23.5 and to young adult rats, significantly increased levels of transferrin receptors, divalent metal transporter-1 and ferroportin, which suggests an increase in iron uptake and export. In primary neuron-glia cultures and young rats, angiotensin did not induce significant changes in levels of ferritin or labile iron, both of which increased in neurons in the absence of glia (neuron-enriched cultures, dopaminergic cell line) and in the N9 microglial cell line. In aged rats, which are known to display high levels of angiotensin activity, ferritin levels and iron deposits in microglial cells were enhanced. Angiotensin-induced changes were inhibited by angiotensin type-1 receptor antagonists, NADPH-oxidase inhibitors, antioxidants and NF-kB inhibitors. The results demonstrate that angiotensin, via type-1 receptors, modulates iron homeostasis in dopaminergic neurons and microglial cells, and that glial cells play a major role in efficient regulation of iron homeostasis in dopaminergic neurons.

  5. Nitrated Alpha Synuclein Induced Alterations in Microglial Immunity is Regulated by CD4+ T Cell Subsets1

    PubMed Central

    Reynolds, Ashley D.; Stone, David K.; Mosley, R. Lee; Gendelman, Howard E.

    2009-01-01

    Microglial inflammatory neuroregulatory activities affect the tempo of nigrostriatal degeneration during Parkinson's disease (PD). Such activities are induced, in part, by misfolded, nitrated alpha-synuclein (N-α-syn) within Lewy bodies released from dying or dead dopaminergic neurons. Such pathobiologic events initiate innate and adaptive immune responses affecting neurodegeneration. We posit that the neurobiological activities of activated microglia are affected by cell-protein and cell-cell contacts, in that microglial interactions with N-α-syn and CD4+ T cells substantively alter the microglial proteome. This leads to alterations in cell homeostatic functions and disease. CD4+CD25+ regulatory T cells (Treg) suppress N-α-syn microglial induced reactive oxygen species and nuclear factor kappa B activation by modulating redox-active enzymes, cell migration, phagocytosis, and bioenergetic protein expression and cell function. In contrast, CD4+CD25− effector T cells exacerbate microglial inflammation and induce “putative” neurotoxic responses. These data support the importance of adaptive immunity in the regulation of PD-associated microglial inflammation. PMID:19299711

  6. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation.

    PubMed

    Liu, Jie; Huang, Dongping; Xu, Jing; Tong, Jiabin; Wang, Zishan; Huang, Li; Yang, Yufang; Bai, Xiaochen; Wang, Pan; Suo, Haiyun; Ma, Yuanyuan; Yu, Mei; Fei, Jian; Huang, Fang

    2015-10-26

    Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson's disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD.

  7. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation

    PubMed Central

    Liu, Jie; Huang, Dongping; Xu, Jing; Tong, Jiabin; Wang, Zishan; Huang, Li; Yang, Yufang; Bai, Xiaochen; Wang, Pan; Suo, Haiyun; Ma, Yuanyuan; Yu, Mei; Fei, Jian; Huang, Fang

    2015-01-01

    Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson’s disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD. PMID:26499517

  8. Microglial activation and progressive brain changes in schizophrenia.

    PubMed

    Laskaris, L E; Di Biase, M A; Everall, I; Chana, G; Christopoulos, A; Skafidas, E; Cropley, V L; Pantelis, C

    2016-02-01

    Schizophrenia is a debilitating disorder that typically begins in adolescence and is characterized by perceptual abnormalities, delusions, cognitive and behavioural disturbances and functional impairments. While current treatments can be effective, they are often insufficient to alleviate the full range of symptoms. Schizophrenia is associated with structural brain abnormalities including grey and white matter volume loss and impaired connectivity. Recent findings suggest these abnormalities follow a neuroprogressive course in the earliest stages of the illness, which may be associated with episodes of acute relapse. Neuroinflammation has been proposed as a potential mechanism underlying these brain changes, with evidence of increased density and activation of microglia, immune cells resident in the brain, at various stages of the illness. We review evidence for microglial dysfunction in schizophrenia from both neuroimaging and neuropathological data, with a specific focus on studies examining microglial activation in relation to the pathology of grey and white matter. The studies available indicate that the link between microglial dysfunction and brain change in schizophrenia remains an intriguing hypothesis worthy of further examination. Future studies in schizophrenia should: (i) use multimodal imaging to clarify this association by mapping brain changes longitudinally across illness stages in relation to microglial activation; (ii) clarify the nature of microglial dysfunction with markers specific to activation states and phenotypes; (iii) examine the role of microglia and neurons with reference to their overlapping roles in neuroinflammatory pathways; and (iv) examine the impact of novel immunomodulatory treatments on brain structure in schizophrenia. © 2015 The British Pharmacological Society.

  9. Low-power laser irradiation (LPLI) attenuates microglial cytotoxicity through the activation of Src pathway

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.

    2014-02-01

    It has been known for a long time that microglial activation plays an important role in the pathology of neurodegenerative diseases. Once activated, they have macrophage-like capabilities, which can be detrimental by producing proinflammatory and neurotoxic factors including cytokines, reactive oxygen species (ROS) and nitric oxide that directly or indirectly cause neurodegeneration. Therefore, the regulation of microglial-induced neuroinflammation is considered a useful strategy in searching for neuroprotective treatments. In this study, our results showed that low power laser irradiation (LPLI) (20 J/cm2) could suppress microglial-induced neuroinflammation in LPS-activated microglia. We found that LPLI-mediated neuroprotection was achieved by activating tyrosine kinases Src, which led to MyD88 tyrosine phosphorylation, thus impairing MyD88-dependent proinflammatory signaling cascade. Our research may provide a feasible therapeutic approach to control the progression of neurodegenerative diseases.

  10. Identification of a fatty acid binding protein4-UCP2 axis regulating microglial mediated neuroinflammation.

    PubMed

    Duffy, Cayla M; Xu, Hongliang; Nixon, Joshua P; Bernlohr, David A; Butterick, Tammy A

    2017-02-16

    Hypothalamic inflammation contributes to metabolic dysregulation and the onset of obesity. Dietary saturated fats activate microglia via a nuclear factor-kappa B (NFκB) mediated pathway to release pro-inflammatory cytokines resulting in dysfunction or death of surrounding neurons. Fatty acid binding proteins (FABPs) are lipid chaperones regulating metabolic and inflammatory pathways in response to fatty acids. Loss of FABP4 in peripheral macrophages via either molecular or pharmacologic mechanisms results in reduced obesity-induced inflammation via a UCP2-redox based mechanism. Despite the widespread appreciation for the role of FABP4 in mediating peripheral inflammation, the expression of FABP4 and a potential FABP4-UCP2 axis regulating microglial inflammatory capacity is largely uncharacterized. To that end, we hypothesized that microglial cells express FABP4 and that inhibition would upregulate UCP2 and attenuate palmitic acid (PA)-induced pro-inflammatory response. Gene expression confirmed expression of FABP4 in brain tissue lysate from C57Bl/6J mice and BV2 microglia. Treatment of microglial cells with an FABP inhibitor (HTS01037) increased expression of Ucp2 and arginase in the presence or absence of PA. Moreover, cells exposed to HTS01037 exhibited attenuated expression of inducible nitric oxide synthase (iNOS) compared to PA alone indicating reduced NFκB signaling. Hypothalamic tissue from mice lacking FABP4 exhibit increased UCP2 expression and reduced iNOS, tumor necrosis factor-alpha (TNF-α), and ionized calcium-binding adapter molecule 1 (Iba1; microglial activation marker) expression compared to wild type mice. Further, this effect is negated in microglia lacking UCP2, indicating the FABP4-UCP2 axis is pivotal in obesity induced neuroinflammation. To our knowledge, this is the first report demonstrating a FABP4-UCP2 axis with the potential to modulate the microglial inflammatory response.

  11. Microglial immunoreceptor tyrosine-based activation and inhibition motif signaling in neuroinflammation.

    PubMed

    Linnartz, Bettina; Wang, Yiner; Neumann, Harald

    2010-06-22

    Elimination of extracellular aggregates and apoptotic neural membranes without inflammation is crucial for brain tissue homeostasis. In the mammalian central nervous system, essential molecules in this process are the Fc receptors and the DAP12-associated receptors which both trigger the microglial immunoreceptor tyrosine-based activation motif- (ITAM-) Syk-signaling cascade. Microglial triggering receptor expressed on myeloid cells-2 (TREM2), signal regulatory protein-beta1, and complement receptor-3 (CD11b/CD18) signal via the adaptor protein DAP12 and activate phagocytic activity of microglia. Microglial ITAM-signaling receptors are counter-regulated by immunoreceptor tyrosine-based inhibition motif- (ITIM-) signaling molecules such as sialic acid-binding immunoglobulin superfamily lectins (Siglecs). Siglecs can suppress the proinflammatory and phagocytic activity of microglia via ITIM signaling. Moreover, microglial neurotoxicity is alleviated via interaction of Siglec-11 with sialic acids on the neuronal glycocalyx. Thus, ITAM- and ITIM-signaling receptors modulate microglial phagocytosis and cytokine expression during neuroinflammatory processes. Their dysfunction could lead to impaired phagocytic clearance and neurodegeneration triggered by chronic inflammation.

  12. Microglial Regulation of Immunological and Neuroprotective Functions of Astroglia

    PubMed Central

    Chen, Shih-Heng; Oyarzabal, Esteban A.; Sung, Yueh-Feng; Chu, Chun-Hsien; Wang, Qingshan; Chen, Shiou-Lan; Lu, Ru-Band; Hong, Jau-Shyong

    2014-01-01

    Microglia and astroglia play critical roles in the development, function and survival of neurons in the CNS. However, under inflammatory conditions the role of astrogliosis in the inflammatory process and its effects on neurons remains unclear. Here, we used several types of cell cultures treated with the bacterial inflammogen LPS to address these questions. We found that the presence of astroglia reduced inflammation-driven neurotoxicity, suggesting that astrogliosis is principally neuroprotective. Neutralization of supernatant glial cell line-derived neurotrophic factor (GDNF) released from astroglia significantly reduced this neuroprotective effect during inflammation. To determine the immunological role of astroglia, we optimized a highly-enriched astroglial culture protocol and demonstrated that LPS failed to induce the synthesis and release of TNF-α and iNOS/NO. Instead we found significant enhancement of TNF-α and iNOS expression in highly-enriched astroglial cultures required the presence of 0.5 to 1% microglia, respectively. Thus suggesting that microglial-astroglial interactions are required for LPS to induce the expression of pro-inflammatory factors and GDNF from astroglia. Specifically, we found that microglia-derived TNF-α plays a pivotal role as a paracrine signal to regulate the neuroprotective functions of astrogliosis. Taken together, these findings suggest that astroglia may not possess the ability to directly recognize the innate immune stimuli LPS, but rather depend on cross-talk with microglia to elicit release of neurotrophic factors as a counterbalance to support neuronal survival from the collateral damage generated by activated microglia during neuroinflammation. PMID:25130274

  13. Tau oligomers and fibrils induce activation of microglial cells.

    PubMed

    Morales, Inelia; Jiménez, José M; Mancilla, Marcela; Maccioni, Ricardo B

    2013-01-01

    Neuroinflammation is a process related to the onset of several neurodegenerative disorders, including Alzheimer's disease (AD). Increasing sets of evidence support the major role of deregulation of the interaction patterns between glial cells and neurons in the pathway toward neuronal degeneration, a process we are calling neuroimmunomodulation in AD. On the basis of the hypothesis that pathological tau aggregates induce microglial activation with the subsequent events of the neuroinflammatory cascade, we have studied the effects of tau oligomeric species and filamentous structures over microglial cells in vitro. Tau oligomers and fibrils were induced by arachidonic acid and then their actions assayed upon addition to microglial cells. We showed activation of the microglia, with significant morphological alterations as analyzed by immunofluorescence. The augmentation of nitrites and the proinflammatory cytokine IL-6 was evaluated in ELISA assays. Furthermore, conditioned media of stimulated microglia cells were exposed to hippocampal neurons generating altered patterns in these cells, including shortening of neuritic processes and cytoskeleton reorganization.

  14. Autophagic flux regulates microglial phenotype according to the time of oxygen-glucose deprivation/reperfusion.

    PubMed

    Xia, Cong-Yuan; Zhang, Shuai; Chu, Shi-Feng; Wang, Zhen-Zhen; Song, Xiu-Yun; Zuo, Wei; Gao, Yan; Yang, Peng-Fei; Chen, Nai-Hong

    2016-10-01

    Microglial phenotype alternation is a potential novel pathogenic mechanism for cerebral ischemia. Cerebral ischemia induced autophagy aggravates inflammation and neural injury. However, the effect of autophagy in the modulation of microglial phenotype is still unknown. In this study, we investigated the role of autophagic flux in the alternation of microglial phenotype following oxygen glucose deprivation/reperfusion (OGD/R) in BV-2 cells. Inhibition of autophagic flux by NH4Cl exposure significantly increased the level of microtubule-associated protein 1 light chain 3 (LC3)-II and p62 in control and OGD/R (12h, 24h and 48h) groups, but did not change their expression in OGD/R 72h group, indicating that autophagic flux was inhibited at OGD/R 72h. Once autophagic flux was inhibited at OGD/R 72h or at OGD/R 24h (with NH4Cl), BV-2 cells mainly showed M1 phenotype with increased tumor necrosis factor alpha (TNF-α), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and decreased M2 markers including interleukin-10 (IL-10), Arginase 1 (Arg-1), and brain derived neurotrophic factor (BDNF). Further study indicated that inhibition of autophagic flux activated NF-κB pathway and decreased the activity of cAMP-response element binding protein (CREB), which contributed to the alternation of microglial phenotype. Therefore, inhibition of autophagic flux regulated the alternation of microglial phenotype by modulating the balance between NF-κB and CREB.

  15. Sesquiterpenes inhibiting the microglial activation from Laurus nobilis.

    PubMed

    Chen, Hongqiang; Xie, Chunfeng; Wang, Hao; Jin, Da-Qing; Li, Shen; Wang, Meicheng; Ren, Quanhui; Xu, Jing; Ohizumi, Yasushi; Guo, Yuanqiang

    2014-05-21

    The inhibitory reagents to inhibit the activation of microglial cells may be potentially useful for the treatment of neurodegenerative diseases. The leaves of the plant Laurus nobilis belonging to the family Lauraceae, namely, bay leaves, have been used as a popular spice, and their extract showed moderate inhibition on microglial activation. A further phytochemical investigation of the leaves led to the isolation of two new (1, 2) and eight known (3-10) sesquiterpenes. Their structures were elucidated on the basis of extensive 1D and 2D NMR (HMQC, HMBC, (1)H-(1)H COSY, and NOESY) spectroscopic data analyses and Chem3D modeling. The following biological studies disclosed that these isolated compounds showed inhibitory activities on LPS-induced microglial activation. The results of our phytochemical investigation, including two new sesquiterpenes (1 and 2) and the first report of two compounds (3 and 4) from this species, further revealed the chemical composition of bay leaves as a popular spice, and the biological studies implied that bay leaves, containing bioactive substances with the inhibition of microglial activation, were potentially beneficial to human health.

  16. Fyn Kinase Regulates Microglial Neuroinflammatory Responses in Cell Culture and Animal Models of Parkinson's Disease.

    PubMed

    Panicker, Nikhil; Saminathan, Hariharan; Jin, Huajun; Neal, Matthew; Harischandra, Dilshan S; Gordon, Richard; Kanthasamy, Kavin; Lawana, Vivek; Sarkar, Souvarish; Luo, Jie; Anantharam, Vellareddy; Kanthasamy, Anumantha G; Kanthasamy, Arthi

    2015-07-08

    Sustained neuroinflammation mediated by resident microglia is recognized as a key pathophysiological contributor to many neurodegenerative diseases, including Parkinson's disease (PD), but the key molecular signaling events regulating persistent microglial activation have yet to be clearly defined. In the present study, we examined the role of Fyn, a non-receptor tyrosine kinase, in microglial activation and neuroinflammatory mechanisms in cell culture and animal models of PD. The well-characterized inflammogens LPS and TNFα rapidly activated Fyn kinase in microglia. Immunocytochemical studies revealed that activated Fyn preferentially localized to the microglial plasma membrane periphery and the nucleus. Furthermore, activated Fyn phosphorylated PKCδ at tyrosine residue 311, contributing to an inflammogen-induced increase in its kinase activity. Notably, the Fyn-PKCδ signaling axis further activated the LPS- and TNFα-induced MAP kinase phosphorylation and activation of the NFκB pathway, implying that Fyn is a major upstream regulator of proinflammatory signaling. Functional studies in microglia isolated from wild-type (Fyn(+/+)) and Fyn knock-out (Fyn(-/-)) mice revealed that Fyn is required for proinflammatory responses, including cytokine release as well as iNOS activation. Interestingly, a prolonged inflammatory insult induced Fyn transcript and protein expression, indicating that Fyn is upregulated during chronic inflammatory conditions. Importantly, in vivo studies using MPTP, LPS, or 6-OHDA models revealed a greater attenuation of neuroinflammatory responses in Fyn(-/-) and PKCδ (-/-) mice compared with wild-type mice. Collectively, our data demonstrate that Fyn is a major upstream signaling mediator of microglial neuroinflammatory processes in PD. Parkinson's disease (PD) is a complex multifactorial disease characterized by the progressive loss of midbrain dopamine neurons. Sustained microglia-mediated neuroinflammation has been recognized as a major

  17. Influence of extracellular zinc on M1 microglial activation

    PubMed Central

    Higashi, Youichirou; Aratake, Takaaki; Shimizu, Shogo; Shimizu, Takahiro; Nakamura, Kumiko; Tsuda, Masayuki; Yawata, Toshio; Ueba, Tetuya; Saito, Motoaki

    2017-01-01

    Extracellular zinc, which is released from hippocampal neurons in response to brain ischaemia, triggers morphological changes in microglia. Under ischaemic conditions, microglia exhibit two opposite activation states (M1 and M2 activation), which may be further regulated by the microenvironment. We examined the role of extracellular zinc on M1 activation of microglia. Pre-treatment of microglia with 30–60 μM ZnCl2 resulted in dose-dependent increases in interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNFα) secretion when M1 activation was induced by lipopolysaccharide administration. In contrast, the cell-permeable zinc chelator TPEN, the radical scavenger Trolox, and the P2X7 receptor antagonist A438079 suppressed the effects of zinc pre-treatment on microglia. Furthermore, endogenous zinc release was induced by cerebral ischaemia–reperfusion, resulting in increased expression of IL-1β, IL-6, TNFα, and the microglial M1 surface marker CD16/32, without hippocampal neuronal cell loss, in addition to impairments in object recognition memory. However, these effects were suppressed by the zinc chelator CaEDTA. These findings suggest that extracellular zinc may prime microglia to enhance production of pro-inflammatory cytokines via P2X7 receptor activation followed by reactive oxygen species generation in response to stimuli that trigger M1 activation, and that these inflammatory processes may result in deficits in object recognition memory. PMID:28240322

  18. Neuroinflammation and Alzheimer's Disease: Implications for Microglial Activation.

    PubMed

    Regen, Francesca; Hellmann-Regen, Julian; Costantini, Erica; Reale, Marcella

    2017-02-03

    Microglial activation is a hallmark of neuroinflammation, seen in most acute and chronic neuropsychiatric conditions. With growing knowledge about microglia functions in surveying the brain for alterations, microglial activation is increasingly discussed in the context of disease progression and pathogenesis of Alzheimer's disease (AD). Underlying molecular mechanisms, however, remain largely unclear. While proper microglial function is essentially required for its scavenging duties, local activation of the brain's innate immune cells also brings about many less advantageous changes, such as reactive oxygen species (ROS) production, secretion of proinflammatory cytokines or degradation of neuroprotective retinoids, and may thus unnecessarily put surrounding healthy neurons in danger. In view of this dilemma, it is little surprising that both, AD vaccination trials, but also immunosuppressive strategies have consistently failed in AD patients. Nevertheless, epidemiological evidence has suggested a protective effect for anti-inflammatory agents, supporting the hypothesis that key processes involved in the pathogenesis of AD may take place rather early in the time course of the disorder, likely long before memory impairment becomes clinically evident. Activation of microglia results in a severely altered microenvironment. This is not only caused by the plethora of secreted cytokines, chemokines or ROS, but may also involve increased turnover of neuroprotective endogenous substances such as retinoic acid (RA), as recently shown in vitro. We discuss findings linking microglial activation and AD and speculate that microglial malfunction, which brings about changes in local RA concentrations in vitro, may underlie AD pathogenesis and precede or facilitate the onset of AD. Thus, chronic, "innate neuroinflammation" may provide a valuable target for preventive and therapeutic strategies.

  19. APP Regulates Microglial Phenotype in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Manocha, Gunjan D.; Floden, Angela M.; Rausch, Keiko; Kulas, Joshua A.; McGregor, Brett A.; Rojanathammanee, Lalida; Puig, Kelley R.; Puig, Kendra L.; Karki, Sanjib; Nichols, Michael R.; Darland, Diane C.; Porter, James E.

    2016-01-01

    Prior work suggests that amyloid precursor protein (APP) can function as a proinflammatory receptor on immune cells, such as monocytes and microglia. Therefore, we hypothesized that APP serves this function in microglia during Alzheimer's disease. Although fibrillar amyloid β (Aβ)-stimulated cytokine secretion from both wild-type and APP knock-out (mAPP−/−) microglial cultures, oligomeric Aβ was unable to stimulate increased secretion from mAPP−/− cells. This was consistent with an ability of oligomeric Aβ to bind APP. Similarly, intracerebroventricular infusions of oligomeric Aβ produced less microgliosis in mAPP−/− mice compared with wild-type mice. The mAPP−/− mice crossed to an APP/PS1 transgenic mouse line demonstrated reduced microgliosis and cytokine levels and improved memory compared with wild-type mice despite robust fibrillar Aβ plaque deposition. These data define a novel function for microglial APP in regulating their ability to acquire a proinflammatory phenotype during disease. SIGNIFICANCE STATEMENT A hallmark of Alzheimer's disease (AD) brains is the accumulation of amyloid β (Aβ) peptide within plaques robustly invested with reactive microglia. This supports the notion that Aβ stimulation of microglial activation is one source of brain inflammatory changes during disease. Aβ is a cleavage product of the ubiquitously expressed amyloid precursor protein (APP) and is able to self-associate into a wide variety of differently sized and structurally distinct multimers. In this study, we demonstrate both in vitro and in vivo that nonfibrillar, oligomeric forms of Aβ are able to interact with the parent APP protein to stimulate microglial activation. This provides a mechanism by which metabolism of APP results in possible autocrine or paracrine Aβ production to drive the microgliosis associated with AD brains. PMID:27511018

  20. Polymer brain-nanotherapeutics for multipronged inhibition of microglial α-synuclein aggregation, activation, and neurotoxicity.

    PubMed

    Bennett, Neal K; Chmielowski, Rebecca; Abdelhamid, Dalia S; Faig, Jonathan J; Francis, Nicola; Baum, Jean; Pang, Zhiping P; Uhrich, Kathryn E; Moghe, Prabhas V

    2016-12-01

    Neuroinflammation, a common neuropathologic feature of neurodegenerative disorders including Parkinson disease (PD), is frequently exacerbated by microglial activation. The extracellular protein α-synuclein (ASYN), whose aggregation is characteristic of PD, remains a key therapeutic target, but the control of synuclein trafficking and aggregation within microglia has been challenging. First, we established that microglial internalization of monomeric ASYN was mediated by scavenger receptors (SR), CD36 and SRA1, and was rapidly accompanied by the formation of ASYN oligomers. Next, we designed a nanotechnology approach to regulate SR-mediated intracellular ASYN trafficking within microglia. We synthesized mucic acid-derivatized sugar-based amphiphilic molecules (AM) with optimal stereochemistry, rigidity, and charge for enhanced dual binding affinity to SRs and fabricated serum-stable nanoparticles via flash nanoprecipitation comprising hydrophobe cores and amphiphile shells. Treatment of microglia with AM nanoparticles decreased monomeric ASYN internalization and intracellular ASYN oligomer formation. We then engineered composite deactivating NPs with dual character, namely shell-based SR-binding amphiphiles, and core-based antioxidant poly (ferrulic acid), to investigate concerted inhibition of oxidative activation. In ASYN-challenged microglia treated with NPs, we observed decreased ASYN-mediated acute microglial activation and diminished microglial neurotoxicity caused by exposure to aggregated ASYN. When the composite NPs were administered in vivo within the substantia nigra of fibrillar ASYN-challenged wild type mice, there was marked attenuation of activated microglia. Overall, SR-targeting AM nanotechnology represents a novel paradigm in alleviating microglial activation in the context of synucleinopathies like PD and other neurodegenerative diseases.

  1. The Role of Microglial Subsets in Regulating Traumatic Brain Injury

    DTIC Science & Technology

    2013-07-01

    CCR)2. J. Exp. Med. 2000. 192: 1075–1080. 9 Mahad, D. J. and Ransohoff, R. M., The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and...at multiple timepoints in vivo and establish the function of these microglial subtypes ex vivo. 2. Skew the microglial response to TBI towards... multiple aspects, most notably in their chemokine repertoires. Thus, the macrophage response to TBI ini- tially involves heterogeneous polarization

  2. Homology analysis detects topological changes of Iba1 localization accompanied by microglial activation.

    PubMed

    Sawano, Toshinori; Tsuchihashi, Ryo; Morii, Eiichi; Watanabe, Fumiya; Nakane, Kazuaki; Inagaki, Shinobu

    2017-03-27

    The state of microglial activation provides important information about the central nervous system. However, a reliable index of microglial activation in histological samples has yet to be established. Here, we show that microglial activation induces topological changes of Iba1 localization that can be detected by analysis based on homology theory. Analysis of homology was applied to images of Iba1-stained tissue sections, and the 0-dimentional Betti number (b0: the number of solid components) and the 1-dimentional Betti number (b1: the number of windows surrounded by solid components) were obtained. We defined b1/b0 as the Homology Value (HV), and investigated its validity as an index of microglial activation using cerebral ischemia model mice. Microglial activation was accompanied by changes to Iba1 localization and morphology of microglial processes. In single microglial cells, the change of Iba1 localization increased b1. Conversely, thickening or retraction of microglial processes decreased b0. Consequently, microglial activation increased the HV. The HV of a tissue area increased with proximity to the ischemic core and showed a high degree of concordance with the number of microglia expressing activation makers. Furthermore, the HV of human metastatic brain tumor tissue also increased with proximity to the tumor. These results suggest that our index, based on homology theory, can be used to correctly evaluate microglial activation in various tissue images. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Sinomenine inhibits microglial activation by Aβ and confers neuroprotection

    PubMed Central

    2011-01-01

    Background Neuroinflammation is an important contributor to the development of neurodegenerative diseases, including Alzheimer's disease. Thus, there is a keen interest in identifying compounds, especially from herbal sources, that can inhibit neuroinflammation. Amyloid-β (Aβ) is a major component of the amyloid plaques present in the brains of Alzheimer's disease patients. Here, we examined whether sinomenine, present in a Chinese medicinal plant, prevents oligomeric Aβ-induced microglial activation and confers protection against neurotoxicity. Methods Oligomeric amyloid-β was prepared from Aβ(1-42). Intracellular reactive oxygen species production was determined using the dye 2',7'-dichlorodihydrofluorescin diacetate. Nitric oxide level was assessed using the Griess reagent. Flow cytometry was used to examine the levels of inflammatory molecules. BV2-conditioned medium was used to treat hippocampal cell line (HT22) and primary hippocampal cells in indirect toxicity experiments. Toxicity was assessed using MTT reduction and TUNEL assays. Results We found that sinomenine prevents the oligomeric Aβ-induced increase in levels of reactive oxygen species and nitric oxide in BV2 microglial cells. In addition, sinomenine reduces levels of Aβ-induced inflammatory molecules. Furthermore, sinomenine protects hippocampal HT22 cells as well as primary hippocampal cells from indirect toxicity mediated by Aβ-treated microglial cells, but has no effect on Aβ-induced direct toxicity to HT22 cells. Finally, we found that conditioned medium from Aβ-treated BV2 cells contains increased levels of nitric oxide and inflammatory molecules, but the levels of these molecules are reduced by sinomenine. Conclusions Sinomenine prevents oligomeric Aβ-induced microglial activation, and confers protection against indirect neurotoxicity to hippocampal cells. These results raise the possibility that sinomenine may have therapeutic potential for the treatment of Alzheimer's diseases as

  4. The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain

    PubMed Central

    Varnum, Megan M.; Ikezu, Tsuneya

    2015-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive decline of cognitive function and memory formation. There is no therapeutic that can halt or reverse its progression. Contemporary research suggests that age-dependent neuroinflammatory changes may play a significant role in the decreased neurogenesis and cognitive impairments in AD. The innate immune response is characterized by pro-inflammatory (M1) activation of macrophages and subsequent production of specific cytokines, chemokines, and reactive intermediates, followed by resolution and alternative activation for anti-inflammatory signaling (M2a) and wound healing (M2c). We propose that microglial activation phenotypes are analogous to those of macrophages and that their activation plays a significant role in regulating neurogenesis in the brain. Microglia undergo a switch from an M2- to an M1-skewed activation phenotype during aging. This review will assess the neuroimmunological studies that led to characterization of the different microglial activation states using AD mouse models. It will also discuss the roles of microglial activation on neurogenesis in AD and propose anti-inflammatory molecules as exciting therapeutic targets for research. Molecules like interleukin-4 and CD200 have proven to be important anti-inflammatory molecules in the regulation of neuroinflammation in the brain, and they will be discussed in detail for their therapeutic potential. PMID:22710659

  5. The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer's disease brain.

    PubMed

    Varnum, Megan M; Ikezu, Tsuneya

    2012-08-01

    Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline of cognitive function. There is no therapy that can halt or reverse its progression. Contemporary research suggests that age-dependent neuroinflammatory changes may play a significant role in the decreased neurogenesis and cognitive impairments in AD. The innate immune response is characterized by pro-inflammatory (M1) activation of macrophages and subsequent production of specific cytokines, chemokines, and reactive intermediates, followed by resolution and alternative activation for anti-inflammatory signaling (M2a) and wound healing (M2c). We propose that microglial activation phenotypes are analogous to those of macrophages and that their activation plays a significant role in regulating neurogenesis in the brain. Microglia undergo a switch from an M2- to an M1-skewed activation phenotype during aging. This review will assess the neuroimmunological studies that led to characterization of the different microglial activation states in AD mouse models. It will also discuss the roles of microglial activation on neurogenesis in AD and propose anti-inflammatory molecules as exciting therapeutic targets for research. Molecules such as interleukin-4 and CD200 have proven to be important anti-inflammatory mediators in the regulation of neuroinflammation in the brain, which will be discussed in detail for their therapeutic potential.

  6. Mechanisms of microglial activation in models of inflammation and hypoxia: Implications for chronic intermittent hypoxia

    PubMed Central

    Kiernan, Elizabeth A.; Smith, Stephanie M. C.; Mitchell, Gordon S.

    2016-01-01

    Abstract Chronic intermittent hypoxia (CIH) is a hallmark of sleep apnoea, a condition associated with diverse clinical disorders. CIH and sleep apnoea are characterized by increased reactive oxygen species formation, peripheral and CNS inflammation, neuronal death and neurocognitive deficits. Few studies have examined the role of microglia, the resident CNS immune cells, in models of CIH. Thus, little is known concerning their direct contributions to neuropathology or the cellular mechanisms regulating their activities during or following pathological CIH. In this review, we identify gaps in knowledge regarding CIH‐induced microglial activation, and propose mechanisms based on data from related models of hypoxia and/or hypoxia–reoxygenation. CIH may directly affect microglia, or may have indirect effects via the periphery or other CNS cells. Peripheral inflammation may indirectly activate microglia via entry of pro‐inflammatory molecules into the CNS, and/or activation of vagal afferents that trigger CNS inflammation. CIH‐induced release of damage‐associated molecular patterns from injured CNS cells may also activate microglia via interactions with pattern recognition receptors expressed on microglia. For example, Toll‐like receptors activate mitogen‐activated protein kinase/transcription factor pathways required for microglial inflammatory gene expression. Although epigenetic effects from CIH have not yet been studied in microglia, potential epigenetic mechanisms in microglial regulation are discussed, including microRNAs, histone modifications and DNA methylation. Epigenetic effects can occur during CIH, or long after it has ended. A better understanding of CIH effects on microglial activities may be important to reverse CIH‐induced neuropathology in patients with sleep disordered breathing. PMID:26890698

  7. Fractalkine regulation of microglial physiology and consequences on the brain and behavior

    PubMed Central

    Paolicelli, Rosa Chiara; Bisht, Kanchan; Tremblay, Marie-Ève

    2014-01-01

    Neural circuits are constantly monitored and supported by the surrounding microglial cells, using finely tuned mechanisms which include both direct contact and release of soluble factors. These bidirectional interactions are not only triggered by pathological conditions as a S.O.S. response to noxious stimuli, but they rather represent an established repertoire of dynamic communication for ensuring continuous immune surveillance and homeostasis in the healthy brain. In addition, recent studies are revealing key tasks for microglial interactions with neurons during normal physiological conditions, especially in regulating the maturation of neural circuits and shaping their connectivity in an activity- and experience-dependent manner. Chemokines, a family of soluble and membrane-bound cytokines, play an essential role in mediating neuron-microglia crosstalk in the developing and mature brain. As part of this special issue on Cytokines as players of neuronal plasticity and sensitivity to environment in healthy and pathological brain, our review focuses on the fractalkine signaling pathway, involving the ligand CX3CL1 which is mainly expressed by neurons, and its receptor CX3CR1 that is exclusively found on microglia within the healthy brain. An extensive literature largely based on transgenic mouse models has revealed that fractalkine signaling plays a critical role in regulating a broad spectrum of microglial properties during normal physiological conditions, especially their migration and dynamic surveillance of the brain parenchyma, in addition to influencing the survival of developing neurons, the maturation, activity and plasticity of developing and mature synapses, the brain functional connectivity, adult hippocampal neurogenesis, as well as learning and memory, and the behavioral outcome. PMID:24860431

  8. Fibrillar amyloid plaque formation precedes microglial activation.

    PubMed

    Jung, Christian K E; Keppler, Kevin; Steinbach, Sonja; Blazquez-Llorca, Lidia; Herms, Jochen

    2015-01-01

    In Alzheimer's disease (AD), hallmark β-amyloid deposits are characterized by the presence of activated microglia around them. Despite an extensive characterization of the relation of amyloid plaques with microglia, little is known about the initiation of this interaction. In this study, the detailed investigation of very small plaques in brain slices in AD transgenic mice of the line APP-PS1(dE9) revealed different levels of microglia recruitment. Analysing plaques with a diameter of up to 10 μm we find that only the half are associated with clear morphologically activated microglia. Utilizing in vivo imaging of new appearing amyloid plaques in double-transgenic APP-PS1(dE9)xCX3CR1+/- mice further characterized the dynamic of morphological microglia activation. We observed no correlation of morphological microglia activation and plaque volume or plaque lifetime. Taken together, our results demonstrate a very prominent variation in size as well as in lifetime of new plaques relative to the state of microglia reaction. These observations might question the existing view that amyloid deposits by themselves are sufficient to attract and activate microglia in vivo.

  9. Increased microglial catalase activity in multiple sclerosis grey matter.

    PubMed

    Gray, Elizabeth; Kemp, Kevin; Hares, Kelly; Redondo, Julianna; Rice, Claire; Scolding, Neil; Wilkins, Alastair

    2014-04-22

    Chronic demyelination, on-going inflammation, axonal loss and grey matter neuronal injury are likely pathological processes that contribute to disease progression in multiple sclerosis (MS). Although the precise contribution of each process and their aetiological substrates is not fully known, recent evidence has implicated oxidative damage as a major cause of tissue injury in MS. The degree of tissue injury caused by oxidative molecules, such as reactive oxygen species (ROS), is balanced by endogenous anti-oxidant enzymes which detoxify ROS. Understanding endogenous mechanisms which protect the brain against oxidative injury in MS is important, since enhancing anti-oxidant responses is a major therapeutic strategy for preventing irreversible tissue injury in the disease. Our aims were to determine expression and activity levels of the hydrogen peroxide-reducing enzyme catalase in MS grey matter (GM). In MS GM, a catalase enzyme activity was elevated compared to control GM. We measured catalase protein expression by immune dot-blotting and catalase mRNA by a real-time polymerase chain reaction (RT-PCR). Protein analysis studies showed a strong positive correlation between catalase and microglial marker IBA-1 in MS GM. In addition, calibration of catalase mRNA level with reference to the microglial-specific transcript AIF-1 revealed an increase in this transcript in MS. This was reflected by the extent of HLA-DR immunolabeling in MS GM which was significantly elevated compared to control GM. Collectively, these observations provide evidence that microglial catalase activity is elevated in MS grey matter and may be an important endogenous anti-oxidant defence mechanism in MS.

  10. Progesterone Antagonism of Neurite Outgrowth Depends on Microglial Activation via Pgrmc1/S2R

    PubMed Central

    Bali, N; Arimoto, J. M.; Morgan, T. E.

    2013-01-01

    Neuronal plasticity is regulated by the ovarian steroids estradiol (E2) and progesterone (P4) in many normal brain functions, as well as in acute response to injury and chronic neurodegenerative disease. In a female rat model of axotomy, the E2-dependent compensatory neuronal sprouting is antagonized by P4. To resolve complex glial-neuronal cell interactions, we used the “wounding-in-a-dish” model of neurons cocultured with astrocytes or mixed glia (microglia to astrocytes, 1:3). Although both astrocytes and mixed glia supported E2-enhanced neurite outgrowth, P4 antagonized E2-induced neurite outgrowth only with mixed glia, but not astrocytes alone. We now show that P4-E2 antagonism of neurite outgrowth is mediated by microglial expression of progesterone receptor (Pgr) membrane component 1 (Pgrmc1)/S2R, a putative nonclassical Pgr mediator with multiple functions. The P4-E2 antagonism of neurite outgrowth was restored by add-back of microglia to astrocyte-neuron cocultures. Because microglia do not express the classical Pgr, we examined the role of Pgrmc1, which is expressed in microglia in vitro and in vivo. Knockdown by siRNA-Pgrmc1 in microglia before add-back to astrocyte-neuron cocultures suppressed the P4-E2 antagonism of neurite outgrowth. Conditioned media from microglia restored the P4-E2 activity, but only if microglia were activated by lipopolysaccharide or by wounding. Moreover, the microglial activation was blocked by Pgmrc1-siRNA knockdown. These findings explain why nonwounded cultures without microglial activation lack P4 antagonism of E2-induced neurite outgrowth. We suggest that microglial activation may influence brain responses to exogenous P4, which is a prospective therapy in traumatic brain injury. PMID:23653459

  11. Methamphetamine Causes Microglial Activation in the Brains of Human Abusers

    PubMed Central

    Sekine, Yoshimoto; Ouchi, Yasuomi; Sugihara, Genichi; Takei, Nori; Yoshikawa, Etsuji; Nakamura, Kazuhiko; Iwata, Yasuhide; Tsuchiya, Kenji J.; Suda, Shiro; Suzuki, Katsuaki; Kawai, Masayoshi; Takebayashi, Kiyokazu; Yamamoto, Shigeyuki; Matsuzaki, Hideo; Ueki, Takatoshi; Mori, Norio; Gold, Mark S.; Cadet, Jean L.

    2008-01-01

    Methamphetamine is a popular addictive drug whose use is associated with multiple neuropsychiatric adverse events and toxic to the dopaminergic and serotonergic systems of the brain. Methamphetamine-induced neuropathology is associated with increased expression of microglial cells that are thought to participate in either pro-toxic or protective mechanisms in the brain. Although reactive microgliosis has been observed in animal models of methamphetamine neurotoxicity, no study has reported on the status of microglial activation in human methamphetamine abusers. The present study reports on 12 abstinent methamphetamine abusers and 12 age-, gender-, education-matched control subjects who underwent positron emission tomography using a radiotracer for activated microglia, [11C](R)-(1-[2-chlorophenyl]-N-methyl-N-[1-methylpropyl]-3-isoquinoline carboxamide) ([11C](R)-PK11195). Compartment analysis was used to estimate quantitative levels of binding potentials of [11C](R)-PK11195 in brain regions with dopaminergic and/or serotonergic innervation. The mean levels of [11C](R)-PK11195 binding were higher in methamphetamine abusers than those in control subjects in all brain regions (> 250% higher, p < 0.01 for all). In addition, the binding levels in the midbrain, striatum, thalamus, and orbitofrontal and insular cortices (p < 0.05) correlated inversely with the duration of methamphetamine abstinence. These results suggest that chronic self-administration of methamphetamine can cause reactive microgliosis in the brains of human methamphetamine abusers, a level of activation that appears to subside over longer periods of abstinence. PMID:18509037

  12. The mitochondrial uncoupling protein-2 is a master regulator of both M1 and M2 microglial responses.

    PubMed

    De Simone, Roberta; Ajmone-Cat, Maria Antonietta; Pandolfi, Manuela; Bernardo, Antonietta; De Nuccio, Chiara; Minghetti, Luisa; Visentin, Sergio

    2015-10-01

    Microglial activation is a dynamic process, central to neuroinflammation, which can have beneficial or pathogenic effects to human health. Mitochondria are key players in neuroinflammatory and neurodegenerative processes, common to most brain diseases. To the best of our knowledge on the role of mitochondria in the modulation of neuroinflammation, we focused on the mitochondrial uncoupling protein-2 (UCP2), known to control mitochondrial functions and to be implicated in a variety of physiological and pathological processes. In primary microglial cultures, the M1 stimulus lipopolysaccharide induced an early and transitory decrease in UCP2 levels. The initial UCP2 down-regulation was paralleled by mitochondrial inner membrane potential (mMP) depolarization and increased mitochondrial reactive oxygen species production. The key role of UCP2 in controlling mMP and reactive oxygen species production was confirmed by both pharmacological inhibition and down-regulation by RNA interference. Additionally, UCP2-silenced microglia stimulated with lipopolysaccharide showed an enhanced inflammatory response, characterized by a greater production of nitric oxide and interleukin-6. UCP2 was differently regulated by M2 stimuli, as indicated by its persistent up-regulation by interleukin-4. In UCP2-silenced microglia, interleukin-4 failed to induce M2 genes (mannose receptor 1 and interleukin-10) and to reduce M1 genes (inducible nitric oxide synthase and tumour necrosis factor-α). Our findings indicate that UCP2 is central to the process of microglial activation, with opposite regulation of M1 and M2 responses, and point to UCP2 manipulation as a potential strategy for redirecting microglial response towards protective phenotypes in several brain diseases where neuroinflammation is recognized to contribute to neurodegeneration. We show that the mitochondrial uncoupling protein-2 (UCP2) is central to the process of microglial activation, with opposite regulation of M1 and M2

  13. Quetiapine Inhibits Microglial Activation by Neutralizing Abnormal STIM1-Mediated Intercellular Calcium Homeostasis and Promotes Myelin Repair in a Cuprizone-Induced Mouse Model of Demyelination

    PubMed Central

    Wang, Hanzhi; Liu, Shubao; Tian, Yanping; Wu, Xiyan; He, Yangtao; Li, Chengren; Namaka, Michael; Kong, Jiming; Li, Hongli; Xiao, Lan

    2015-01-01

    Microglial activation has been considered as a crucial process in the pathogenesis of neuroinflammation and psychiatric disorders. Several antipsychotic drugs (APDs) have been shown to display inhibitory effects on microglial activation in vitro, possibly through the suppression of elevated intracellular calcium (Ca2+) concentration. However, the exact underlying mechanisms still remain elusive. In this study, we aimed to investigate the inhibitory effects of quetiapine (Que), an atypical APD, on microglial activation. We utilized a chronic cuprizone (CPZ)-induced demyelination mouse model to determine the direct effect of Que on microglial activation. Our results showed that treatment with Que significantly reduced recruitment and activation of microglia/macrophage in the lesion of corpus callosum and promoted remyelination after CPZ withdrawal. Our in vitro studies also confirmed the direct effect of Que on lipopolysaccharide (LPS)-induced activation of microglial N9 cells, whereby Que significantly inhibited the release of nitric oxide (NO) and tumor necrosis factor α (TNF-α). Moreover, we demonstrated that pretreatment with Que, neutralized the up-regulation of STIM1 induced by LPS and declined both LPS and thapsigargin (Tg)-induced store-operated Ca2+ entry (SOCE). Finally, we found that pretreatment with Que significantly reduced the translocation of nuclear factor kappa B (NF-κB) p65 subunit from cytoplasm to nuclei in LPS-activated primary microglial cells. Overall, our data suggested that Que may inhibit microglial activation by neutralization of the LPS-induced abnormal STIM1-mediated intercellular calcium homeostasis. PMID:26732345

  14. Clk1 deficiency promotes neuroinflammation and subsequent dopaminergic cell death through regulation of microglial metabolic reprogramming.

    PubMed

    Gu, Ruinan; Zhang, Fali; Chen, Gang; Han, Chaojun; Liu, Jay; Ren, Zhaoxiang; Zhu, Yi; Waddington, John L; Zheng, Long Tai; Zhen, Xuechu

    2017-02-01

    Clock (Clk)1/COQ7 is a mitochondrial hydroxylase that is necessary for the biosynthesis of ubiquinone (coenzyme Q or UQ). Here, we investigate the role of Clk1 in neuroinflammation and consequentially dopaminergic (DA) neuron survival. Reduced expression of Clk1 in microglia enhanced the LPS-induced proinflammatory response and promoted aerobic glycolysis. Inhibition of glycolysis abolished Clk1 deficiency-induced hypersensitivity to the inflammatory stimulation. Mechanistic studies demonstrated that mTOR/HIF-1α and ROS/HIF-1α signaling pathways were involved in Clk1 deficiency-induced aerobic glycolysis. The increase in neuronal cell death was observed following treatment with conditioned media from Clk1 deficient microglia. Increased DA neuron loss and microgliosis were observed in Clk1(+/-) mice after treatment with MPTP, a rodent model of Parkinson's disease (PD). This increase in DA neuron loss was due to an exacerbated microglial inflammatory response, rather than direct susceptibility of Clk1(+/-) DA cells to MPP(+), the active species of MPTP. Exaggerated expressions of proinflammatory genes and loss of DA neurons were also observed in Clk1(+/-) mice after stereotaxic injection of LPS. Our results suggest that Clk1 regulates microglial metabolic reprogramming that is, in turn, involved in the neuroinflammatory processes and PD.

  15. Automatic counting of microglial cell activation and its applications

    PubMed Central

    Gallego, Beatriz I.; de Gracia, Pablo

    2016-01-01

    Glaucoma is a multifactorial optic neuropathy characterized by the damage and death of the retinal ganglion cells. This disease results in vision loss and blindness. Any vision loss resulting from the disease cannot be restored and nowadays there is no available cure for glaucoma; however an early detection and treatment, could offer neuronal protection and avoid later serious damages to the visual function. A full understanding of the etiology of the disease will still require the contribution of many scientific efforts. Glial activation has been observed in glaucoma, being microglial proliferation a hallmark in this neurodegenerative disease. A typical project studying these cellular changes involved in glaucoma often needs thousands of images - from several animals - covering different layers and regions of the retina. The gold standard to evaluate them is the manual count. This method requires a large amount of time from specialized personnel. It is a tedious process and prone to human error. We present here a new method to count microglial cells by using a computer algorithm. It counts in one hour the same number of images that a researcher counts in four weeks, with no loss of reliability. PMID:27651757

  16. Automatic counting of microglial cell activation and its applications.

    PubMed

    Gallego, Beatriz I; de Gracia, Pablo

    2016-08-01

    Glaucoma is a multifactorial optic neuropathy characterized by the damage and death of the retinal ganglion cells. This disease results in vision loss and blindness. Any vision loss resulting from the disease cannot be restored and nowadays there is no available cure for glaucoma; however an early detection and treatment, could offer neuronal protection and avoid later serious damages to the visual function. A full understanding of the etiology of the disease will still require the contribution of many scientific efforts. Glial activation has been observed in glaucoma, being microglial proliferation a hallmark in this neurodegenerative disease. A typical project studying these cellular changes involved in glaucoma often needs thousands of images - from several animals - covering different layers and regions of the retina. The gold standard to evaluate them is the manual count. This method requires a large amount of time from specialized personnel. It is a tedious process and prone to human error. We present here a new method to count microglial cells by using a computer algorithm. It counts in one hour the same number of images that a researcher counts in four weeks, with no loss of reliability.

  17. An early and late peak in microglial activation in Alzheimer's disease trajectory.

    PubMed

    Fan, Zhen; Brooks, David J; Okello, Aren; Edison, Paul

    2017-01-24

    Amyloid-β deposition, neuroinflammation and tau tangle formation all play a significant role in Alzheimer's disease. We hypothesized that there is microglial activation early on in Alzheimer's disease trajectory, where in the initial phase, microglia may be trying to repair the damage, while later on in the disease these microglia could be ineffective and produce proinflammatory cytokines leading to progressive neuronal damage. In this longitudinal study, we have evaluated the temporal profile of microglial activation and its relationship between fibrillar amyloid load at baseline and follow-up in subjects with mild cognitive impairment, and this was compared with subjects with Alzheimer's disease. Thirty subjects (eight mild cognitive impairment, eight Alzheimer's disease and 14 controls) aged between 54 and 77 years underwent (11)C-(R)PK11195, (11)C-PIB positron emission tomography and magnetic resonance imaging scans. Patients were followed-up after 14 ± 4 months. Region of interest and Statistical Parametric Mapping analysis were used to determine longitudinal alterations. Single subject analysis was performed to evaluate the individualized pathological changes over time. Correlations between levels of microglial activation and amyloid deposition at a voxel level were assessed using Biological Parametric Mapping. We demonstrated that both baseline and follow-up microglial activation in the mild cognitive impairment cohort compared to controls were increased by 41% and 21%, respectively. There was a longitudinal reduction of 18% in microglial activation in mild cognitive impairment cohort over 14 months, which was associated with a mild elevation in fibrillar amyloid load. Cortical clusters of microglial activation and amyloid deposition spatially overlapped in the subjects with mild cognitive impairment. Baseline microglial activation was increased by 36% in Alzheimer's disease subjects compared with controls. Longitudinally, Alzheimer's disease subjects

  18. The Receptor CMRF35-Like Molecule-1 (CLM-1) Enhances the Production of LPS-Induced Pro-Inflammatory Mediators during Microglial Activation.

    PubMed

    Ejarque-Ortiz, Aroa; Solà, Carme; Martínez-Barriocanal, Águeda; Schwartz, Simó; Martín, Margarita; Peluffo, Hugo; Sayós, Joan

    2015-01-01

    CMRF35-like molecule-1 (CLM-1) belongs to a receptor family mainly expressed in myeloid cells that include activating and inhibitory receptors. CLM-1 contains two ITIMs and a single immunoreceptor tyrosine-based switch motif (ITSM), although also displays a binding site for p85α regulatory subunit of PI3K. By using murine primary microglial cultures, we show the presence of all CLM members in microglial cells and characterize the expression of CLM-1 both in basal conditions and during microglial activation. The TLR4 agonist lipopolysaccharide (LPS) and the TLR3 agonist polyinosinic-polycytidylic acid (Poly I:C) induce an increase in microglial CLM-1 mRNA levels in vitro, whereas the TLR2/6 heterodimer agonist peptidoglycan (PGN) produces a marked decrease. In this study we also describe a new soluble isoform of CLM-1 that is detected at mRNA and protein levels in basal conditions in primary microglial cultures. Interestingly, CLM-1 engagement enhances the transcription of the pro-inflammatory mediators TNFα, COX-2 and NOS-2 in microglial cells challenged with LPS. These results reveal that CLM-1 can acts as a co-activating receptor and suggest that this receptor could play a key role in the regulation of microglial activation.

  19. The Receptor CMRF35-Like Molecule-1 (CLM-1) Enhances the Production of LPS-Induced Pro-Inflammatory Mediators during Microglial Activation

    PubMed Central

    Ejarque-Ortiz, Aroa; Solà, Carme; Martínez-Barriocanal, Águeda; Schwartz, Simó; Martín, Margarita; Peluffo, Hugo; Sayós, Joan

    2015-01-01

    CMRF35-like molecule-1 (CLM-1) belongs to a receptor family mainly expressed in myeloid cells that include activating and inhibitory receptors. CLM-1 contains two ITIMs and a single immunoreceptor tyrosine-based switch motif (ITSM), although also displays a binding site for p85α regulatory subunit of PI3K. By using murine primary microglial cultures, we show the presence of all CLM members in microglial cells and characterize the expression of CLM-1 both in basal conditions and during microglial activation. The TLR4 agonist lipopolysaccharide (LPS) and the TLR3 agonist polyinosinic–polycytidylic acid (Poly I:C) induce an increase in microglial CLM-1 mRNA levels in vitro, whereas the TLR2/6 heterodimer agonist peptidoglycan (PGN) produces a marked decrease. In this study we also describe a new soluble isoform of CLM-1 that is detected at mRNA and protein levels in basal conditions in primary microglial cultures. Interestingly, CLM-1 engagement enhances the transcription of the pro-inflammatory mediators TNFα, COX-2 and NOS-2 in microglial cells challenged with LPS. These results reveal that CLM-1 can acts as a co-activating receptor and suggest that this receptor could play a key role in the regulation of microglial activation. PMID:25927603

  20. Decreased microglial activation in MS patients treated with glatiramer acetate

    PubMed Central

    Ratchford, John N.; Endres, Christopher J.; Hammoud, Dima A.; Pomper, Martin G.; Shiee, Navid; McGready, John; Pham, Dzung L.; Calabresi, Peter A.

    2012-01-01

    Activated microglia are thought to be an important contributor to tissue damage in multiple sclerosis (MS). The level of microglial activation can be measured non-invasively using [11C]-R-PK11195, a radiopharmaceutical for positron emission tomography (PET). Prior studies have identified abnormalities in the level of [11C]-R-PK11195 uptake in patients with MS, but treatment effects have not been evaluated. Nine previously untreated relapsing-remitting MS patients underwent PET and magnetic resonance imaging (MRI) of the brain at baseline and after one year of treatment with glatiramer acetate. Parametric maps of [11C]-R-PK11195 uptake were obtained for baseline and post-treatment PET scans, and the change in [11C]-R-PK11195 uptake pre- to post-treatment was evaluated across the whole brain. Region of interest analysis was also applied to selected subregions. Whole brain [11C]-R-PK11195 binding potential per unit volume decreased 3.17% (95% CI: −0.74%, −5.53%) between baseline and one year (p = 0.018). A significant decrease was noted in cortical gray matter and cerebral white matter, and a trend towards decreased uptake was seen in the putamen and thalamus. The results are consistent with a reduction in inflammation due to treatment with glatiramer acetate, though a larger controlled study would be required to prove that association. Future research will focus on whether the level of baseline microglial activation predicts future tissue damage in MS and whether [11C]-R-PK11195 uptake in cortical gray matter correlates with cortical lesion load. PMID:22160466

  1. Experimental autoimmune prostatitis induces microglial activation in the spinal cord

    PubMed Central

    Wong, Larry; Done, Joseph D.; Schaeffer, Anthony J.; Thumbikat, Praveen

    2014-01-01

    Background The pathogenesis of chronic prostatitis/chronic pelvic pain syndrome is unknown and factors including the host’s immune response and the nervous system have been attributed to the development of CP/CPPS. We previously demonstrated that mast cells and chemokines such as CCL2 and CCL3 play an important role in mediating prostatitis. Here, we examined the role of neuroinflammation and microglia in the CNS in the development of chronic pelvic pain. Methods Experimental autoimmune prostatitis (EAP) was induced using a subcutaneous injection of rat prostate antigen. Sacral spinal cord tissue (segments S4–S5) was isolated and utilized for immunofluorescence or QRT-PCR analysis. Tactile allodynia was measured at baseline and at various points during EAP using Von Frey fibers as a function for pelvic pain. EAP mice were treated with minocycline after 30 days of prostatitis to test the efficacy of microglial inhibition on pelvic pain. Results Prostatitis induced the expansion and activation of microglia and the development of inflammation in the spinal cord as determined by increased expression levels of CCL3, IL-1β, Iba1, and ERK1/2 phosphorylation. Microglial activation in mice with prostatitis resulted in increased expression of P2X4R and elevated levels of BDNF, two molecular markers associated with chronic pain. Pharmacological inhibition of microglia alleviated pain in mice with prostatitis and resulted in decreased expression of IL-1β, P2X4R, and BDNF. Conclusion Our data shows that prostatitis leads to inflammation in the spinal cord and the activation and expansion of microglia, mechanisms that may contribute to the development and maintenance of chronic pelvic pain. PMID:25263093

  2. Regulation of microglial expression of integrins by poly(ADP-ribose) polymerase-1.

    PubMed

    Ullrich, O; Diestel, A; Eyüpoglu, I Y; Nitsch, R

    2001-12-01

    Excitotoxic brain lesions initially result in the primary destruction of brain parenchyma, after which microglial cells migrate towards the sites of injury. At these sites, the cells produce large quantities of oxygen radicals and cause secondary damage that accounts for most of the loss of brain function. Here we show that this microglial migration is strongly controlled in living brain tissue by expression of the integrin CD11a, regulated by the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) through the formation of a nuclear PARP-NF-kappaB-protein complex. Downregulation of PARP or CD11a by transfection with antisense DNA abrogated microglial migration almost completely and prevented neurons from secondary damage.

  3. Autophagy down regulates pro-inflammatory mediators in BV2 microglial cells and rescues both LPS and alpha-synuclein induced neuronal cell death

    PubMed Central

    Bussi, Claudio; Ramos, Javier Maria Peralta; Arroyo, Daniela S.; Gaviglio, Emilia A.; Gallea, Jose Ignacio; Wang, Ji Ming; Celej, Maria Soledad; Iribarren, Pablo

    2017-01-01

    Autophagy is a fundamental cellular homeostatic mechanism, whereby cells autodigest parts of their cytoplasm for removal or turnover. Neurodegenerative disorders are associated with autophagy dysregulation, and drugs modulating autophagy have been successful in several animal models. Microglial cells are phagocytes in the central nervous system (CNS) that become activated in pathological conditions and determine the fate of other neural cells. Here, we studied the effects of autophagy on the production of pro-inflammatory molecules in microglial cells and their effects on neuronal cells. We observed that both trehalose and rapamycin activate autophagy in BV2 microglial cells and down-regulate the production of pro-inflammatory cytokines and nitric oxide (NO), in response to LPS and alpha-synuclein. Autophagy also modulated the phosphorylation of p38 and ERK1/2 MAPKs in BV2 cells, which was required for NO production. These actions of autophagy modified the impact of microglial activation on neuronal cells, leading to suppression of neurotoxicity. Our results demonstrate a novel role for autophagy in the regulation of microglial cell activation and pro-inflammatory molecule secretion, which may be important for the control of inflammatory responses in the CNS and neurotoxicity. PMID:28256519

  4. Autophagy down regulates pro-inflammatory mediators in BV2 microglial cells and rescues both LPS and alpha-synuclein induced neuronal cell death.

    PubMed

    Bussi, Claudio; Ramos, Javier Maria Peralta; Arroyo, Daniela S; Gaviglio, Emilia A; Gallea, Jose Ignacio; Wang, Ji Ming; Celej, Maria Soledad; Iribarren, Pablo

    2017-03-03

    Autophagy is a fundamental cellular homeostatic mechanism, whereby cells autodigest parts of their cytoplasm for removal or turnover. Neurodegenerative disorders are associated with autophagy dysregulation, and drugs modulating autophagy have been successful in several animal models. Microglial cells are phagocytes in the central nervous system (CNS) that become activated in pathological conditions and determine the fate of other neural cells. Here, we studied the effects of autophagy on the production of pro-inflammatory molecules in microglial cells and their effects on neuronal cells. We observed that both trehalose and rapamycin activate autophagy in BV2 microglial cells and down-regulate the production of pro-inflammatory cytokines and nitric oxide (NO), in response to LPS and alpha-synuclein. Autophagy also modulated the phosphorylation of p38 and ERK1/2 MAPKs in BV2 cells, which was required for NO production. These actions of autophagy modified the impact of microglial activation on neuronal cells, leading to suppression of neurotoxicity. Our results demonstrate a novel role for autophagy in the regulation of microglial cell activation and pro-inflammatory molecule secretion, which may be important for the control of inflammatory responses in the CNS and neurotoxicity.

  5. Patterns of Microglial Cell Activation in Alzheimer Disease and Frontotemporal Lobar Degeneration.

    PubMed

    Taipa, Ricardo; Brochado, Paulo; Robinson, Andrew; Reis, Inês; Costa, Patrício; Mann, David M; Melo Pires, Manuel; Sousa, Nuno

    2017-01-01

    Microglia-driven neuroinflammation can play an important role in the pathophysiology of neurodegenerative disorders. In this study, we sought to characterize the distribution of microglial cell activation in 2 neurodegenerative dementias with distinct protein signatures, Alzheimer disease (AD) and frontotemporal lobar degeneration (FTLD) of the TDP subtype, and to determine if there was an anatomical correlation with the phenotypes most commonly associated with these conditions. The distribution and extent of microglial cell activation was assessed semiquantitatively in the hippocampal formation, cortical gray matter, and subcortical white matter of CD68-immunostained sections of the frontal, temporal, parietal, and occipital cortices from 15 pathologically confirmed cases of AD, 13 cases of FTLD, and 18 controls. Significantly higher levels of microglial cell activation occurred in the subiculum in AD and FTLD than in controls. Additionally, AD had higher microglial activation in the CA1 and FTLD in the hippocampal white matter than the controls. Microglial activation was greater in the dentate gyrus molecular layer in AD than in FTLD. In the cortical regions, the 2 pathological groups differed only in frontal white matter, with the FTLD group showing higher microglial scores. FTLD showed higher microglial activation in the white matter compared to the respective gray matter in the entorhinal, temporal, and frontal regions. Our work expands the knowledge of the distribution and magnitude of microglial activation in these disorders. Additionally, we found some microglial circuit-specific patterns that could help to explain some of the clinical overlap between AD and FTLD-TDP, namely in memory deficits. © 2017 S. Karger AG, Basel.

  6. Hormones and diet, but not body weight, control hypothalamic microglial activity.

    PubMed

    Gao, Yuanqing; Ottaway, Nickki; Schriever, Sonja C; Legutko, Beata; García-Cáceres, Cristina; de la Fuente, Esther; Mergen, Clarita; Bour, Susanne; Thaler, Joshua P; Seeley, Randy J; Filosa, Jessica; Stern, Javier E; Perez-Tilve, Diego; Schwartz, Michael W; Tschöp, Matthias H; Yi, Chun-Xia

    2014-01-01

    The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high-fat diet (HFD)-induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild-type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin-receptor mutation), and Type-4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1-ir), cluster of differentiation 68 (CD68-ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1-ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1-ir comparable with WT mice but had significantly lower CD68-ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1-ir, and db/db mice showed increase of CD68-ir. Obese MC4R KO mice fed a SC diet had comparable iba1-ir and CD68-ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon-like peptide-1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. Copyright © 2013 Wiley Periodicals, Inc.

  7. Hormones and Diet, but Not Body Weight, Control Hypothalamic Microglial Activity

    PubMed Central

    Gao, Yuanqing; Ottaway, Nickki; Schriever, Sonja C.; Legutko, Beata; García-Cáceres, Cristina; de la Fuente, Esther; Mergen, Clarita; Bour, Susanne; Thaler, Joshua P.; Seeley, Randy J.; Filosa, Jessica; Stern, Javier E.; Perez-Tilve, Diego; Schwartz, Michael W.; Tschöp, Matthias H.; Yi, Chun-Xia

    2014-01-01

    The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high-fat diet (HFD)-induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild-type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin-receptor mutation), and Type-4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1-ir), cluster of differentiation 68 (CD68-ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1-ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1-ir comparable with WT mice but had significantly lower CD68-ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1-ir, and db/db mice showed increase of CD68-ir. Obese MC4R KO mice fed a SC diet had comparable iba1-ir and CD68-ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon-like peptide-1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. PMID:24166765

  8. Microglial activation induces neuronal death in Chandipura virus infection

    PubMed Central

    Verma, Abhishek Kumar; Ghosh, Sourish; Pradhan, Sreeparna; Basu, Anirban

    2016-01-01

    Neurotropic viruses induce neurodegeneration either directly by activating host death domains or indirectly through host immune response pathways. Chandipura Virus (CHPV) belonging to family Rhabdoviridae is ranked among the emerging pathogens of the Indian subcontinent. Previously we have reported that CHPV induces neurodegeneration albeit the root cause of this degeneration is still an open question. In this study we explored the role of microglia following CHPV infection. Phenotypic analysis of microglia through lectin and Iba-1 staining indicated cells were in an activated state post CHPV infection in cortical region of the infected mouse brain. Cytokine Bead Array (CBA) analysis revealed comparatively higher cytokine and chemokine levels in the same region. Increased level of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), Nitric Oxide (NO) and Reactive Oxygen species (ROS) in CHPV infected mouse brain indicated a strong inflammatory response to CHPV infection. Hence it was hypothesized through our analyses that this inflammatory response may stimulate the neuronal death following CHPV infection. In order to validate our hypothesis supernatant from CHPV infected microglial culture was used to infect neuronal cell line and primary neurons. This study confirmed the bystander killing of neurons due to activation of microglia post CHPV infection. PMID:26931456

  9. Anti-neuroinflammatory activity of nobiletin on suppression of microglial activation.

    PubMed

    Cui, Yanji; Wu, Jinji; Jung, Sung-Cherl; Park, Deok-Bae; Maeng, Young-Hee; Hong, Jeong Yun; Kim, Se-Jae; Lee, Sun-Ryung; Kim, Soon-Jong; Kim, Sang Jeong; Eun, Su-Yong

    2010-01-01

    A growing body of evidence suggests that nobiletin (5,6,7,8,3',4'-hexamethoxy flavone) from the peel of citrus fruits, enhances the damaged cognitive function in disease animal models. However, the neuroprotective mechanism has not been clearly elucidated. Since nobiletin has shown anti-inflammatory effects in several tissues, we investigated whether nobiletin suppresses excessive microglial activation implicated in neurotoxicity in lipopolysaccharide (LPS)-stimulated BV-2 microglia cell culture models. Release of nitric oxide (NO), the major inflammatory mediator in microglia, was markedly suppressed in a dose-dependent manner following nobiletin treatment (1-50 µM) in LPS-stimulated BV-2 microglia cells. The inhibitory effect of nobiletin was similar to that of minocycline, a well-known microglial inactivator. Nobiletin significantly inhibited the release of the pro-inflammatory cytokine tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β). LPS-induced phosphorylations of extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), and p38 mitogen-activated protein kinases (MAPKs) were also significantly inhibited by nobiletin treatment. In addition, nobiletin markedly inhibited the LPS-induced pro-inflammatory transcription factor nuclear factor κB (NF-κB) signaling pathway by suppressing nuclear NF-κB translocation from the cytoplasm and subsequent expression of NF-κB in the nucleus. Taken together, these results may contribute to further exploration of the therapeutic potential and molecular mechanism of nobiletin in relation to neuroinflammation and neurodegenerative diseases.

  10. In Vitro Activation of Feline Immunodeficiency Virus in Ramified Microglial Cells from Asymptomatically Infected Cats

    PubMed Central

    Hein, Andreas; Martin, Jean-Pierre; Dörries, Rüdiger

    2001-01-01

    Intravenous infection of cats with feline immunodeficiency virus was used as a model system to study activation of virus replication in brain-resident microglial cells in vitro. Virus release by ramified microglial cells isolated from subclinically infected animals was detectable in cell-free tissue culture supernatant only by reverse transcription and nested PCR of gag-specific RNA sequences and not by virion-associated reverse transcriptase activity. In contrast, cocultivation of in vivo-infected microglial cells with mitogen-activated peripheral blood mononuclear cells (PBMC) regularly allows detection of high virus yields in cell-free tissue culture fluid. Besides uptake and multiplication of microglia-derived virus in PBMC, release of virus from microglia is stimulated by cell contact with PBMC. The data suggest that T lymphocytes patrolling the central nervous system could reactivate the semilatent state of lentiviruses in microglial cells in the course of clinically silent central nervous system infection. PMID:11483754

  11. Microglial cell activation in demyelinating canine distemper lesions.

    PubMed

    Stein, Veronika M; Czub, Markus; Schreiner, Nicole; Moore, Peter F; Vandevelde, Marc; Zurbriggen, Andreas; Tipold, Andrea

    2004-08-01

    Microglia cells are the principal immune effector elements of the brain responding to any pathological event. To elucidate the possible role of microglia in initial non-inflammatory demyelination in canine distemper virus (CDV) infection, microglia from experimentally CDV infected dogs were isolated ex vivo by density gradient centrifugation and characterized immunophenotypically and functionally using flow cytometry. Results from dogs with demyelinating lesions were compared to results from recovered dogs and two healthy controls. CDV antigen could be detected in microglia of dogs with histopathologically confirmed demyelination. Microglia of these dogs showed marked upregulation of the surface molecules CD18, CD11b, CD11c, CD1c, MHC class I and MHC class II and a tendency for increased expression intensity of ICAM-1 (CD54), B7-1 (CD80), B7-2 (CD86), whereas no increased expression was found for CD44 and CD45. Functionally, microglia exhibited distinctly enhanced phagocytosis and generation of reactive oxygen species (ROS). It was concluded that in CDV infection, there is a clear association between microglial activation and demyelination. This strongly suggests that microglia contribute to acute myelin destruction in distemper.

  12. Botanical Polyphenols Mitigate Microglial Activation and Microglia-Induced Neurotoxicity: Role of Cytosolic Phospholipase A2.

    PubMed

    Chuang, Dennis Y; Simonyi, Agnes; Cui, Jiankun; Lubahn, Dennis B; Gu, Zezong; Sun, Grace Y

    2016-09-01

    Microglia play a significant role in the generation and propagation of oxidative/nitrosative stress, and are the basis of neuroinflammatory responses in the central nervous system. Upon stimulation by endotoxins such as lipopolysaccharides (LPS), these cells release pro-inflammatory factors which can exert harmful effects on surrounding neurons, leading to secondary neuronal damage and cell death. Our previous studies demonstrated the effects of botanical polyphenols to mitigate inflammatory responses induced by LPS, and highlighted an important role for cytosolic phospholipase A2 (cPLA2) upstream of the pro-inflammatory pathways (Chuang et al. in J Neuroinflammation 12(1):199, 2015. doi: 10.1186/s12974-015-0419-0 ). In this study, we investigate the action of botanical compounds and assess whether suppression of cPLA2 in microglia is involved in the neurotoxic effects on neurons. Differentiated SH-SY5Y neuroblastoma cells were used to test the neurotoxicity of conditioned medium from stimulated microglial cells, and WST-1 assay was used to assess for the cell viability of SH-SY5Y cells. Botanicals such as quercetin and honokiol (but not cyanidin-3-O-glucoside, 3CG) were effective in inhibiting LPS-induced nitric oxide (NO) production and phosphorylation of cPLA2. Conditioned medium from BV-2 cells stimulated with LPS or IFNγ caused neurotoxicity to SH-SY5Y cells. Decrease in cell viability could be ameliorated by pharmacological inhibitors for cPLA2 as well as by down-regulating cPLA2 with siRNA. Botanicals effective in inhibition of LPS-induced NO and cPLA2 phosphorylation were also effective in ameliorating microglial-induced neurotoxicity. Results demonstrated cytotoxic factors from activated microglial cells to cause damaging effects to neurons and potential use of botanical polyphenols to ameliorate the neurotoxic effects.

  13. Delta-Opioid Receptor Analgesia Is Independent of Microglial Activation in a Rat Model of Neuropathic Pain

    PubMed Central

    Rojewska, Ewelina; Makuch, Wioletta; Starowicz, Katarzyna; Przewlocka, Barbara

    2014-01-01

    The analgesic effect of delta-opioid receptor (DOR) ligands in neuropathic pain is not diminished in contrast to other opioid receptor ligands, which lose their effectiveness as analgesics. In this study, we examine whether this effect is related to nerve injury-induced microglial activation. We therefore investigated the influence of minocycline-induced inhibition of microglial activation on the analgesic effects of opioid receptor agonists: morphine, DAMGO, U50,488H, DPDPE, Deltorphin II and SNC80 after chronic constriction injury (CCI) to the sciatic nerve in rats. Pre-emptive and repeated administration of minocycline (30 mg/kg, i.p.) over 7 days significantly reduced allodynia and hyperalgesia as measured on day 7 after CCI. The antiallodynic and antihyperalgesic effects of intrathecally (i.t.) administered morphine (10–20 µg), DAMGO (1–2 µg) and U50,488H (25–50 µg) were significantly potentiated in rats after minocycline, but no such changes were observed after DPDPE (10–20 µg), deltorphin II (1.5–15 µg) and SNC80 (10–20 µg) administration. Additionally, nerve injury-induced down-regulation of all types of opioid receptors in the spinal cord and dorsal root ganglia was not influenced by minocycline, which indicates that the effects of opioid ligands are dependent on other changes, presumably neuroimmune interactions. Our study of rat primary microglial cell culture using qRT-PCR, Western blotting and immunocytochemistry confirmed the presence of mu-opioid receptors (MOR) and kappa-opioid receptors (KOR), further we provide the first evidence for the lack of DOR on microglial cells. In summary, DOR analgesia is different from analgesia induced by MOR and KOR receptors because it does not dependent on injury-induced microglial activation. DOR agonists appear to be the best candidates for new drugs to treat neuropathic pain. PMID:25105291

  14. Delta-opioid receptor analgesia is independent of microglial activation in a rat model of neuropathic pain.

    PubMed

    Mika, Joanna; Popiolek-Barczyk, Katarzyna; Rojewska, Ewelina; Makuch, Wioletta; Starowicz, Katarzyna; Przewlocka, Barbara

    2014-01-01

    The analgesic effect of delta-opioid receptor (DOR) ligands in neuropathic pain is not diminished in contrast to other opioid receptor ligands, which lose their effectiveness as analgesics. In this study, we examine whether this effect is related to nerve injury-induced microglial activation. We therefore investigated the influence of minocycline-induced inhibition of microglial activation on the analgesic effects of opioid receptor agonists: morphine, DAMGO, U50,488H, DPDPE, Deltorphin II and SNC80 after chronic constriction injury (CCI) to the sciatic nerve in rats. Pre-emptive and repeated administration of minocycline (30 mg/kg, i.p.) over 7 days significantly reduced allodynia and hyperalgesia as measured on day 7 after CCI. The antiallodynic and antihyperalgesic effects of intrathecally (i.t.) administered morphine (10-20 µg), DAMGO (1-2 µg) and U50,488H (25-50 µg) were significantly potentiated in rats after minocycline, but no such changes were observed after DPDPE (10-20 µg), deltorphin II (1.5-15 µg) and SNC80 (10-20 µg) administration. Additionally, nerve injury-induced down-regulation of all types of opioid receptors in the spinal cord and dorsal root ganglia was not influenced by minocycline, which indicates that the effects of opioid ligands are dependent on other changes, presumably neuroimmune interactions. Our study of rat primary microglial cell culture using qRT-PCR, Western blotting and immunocytochemistry confirmed the presence of mu-opioid receptors (MOR) and kappa-opioid receptors (KOR), further we provide the first evidence for the lack of DOR on microglial cells. In summary, DOR analgesia is different from analgesia induced by MOR and KOR receptors because it does not dependent on injury-induced microglial activation. DOR agonists appear to be the best candidates for new drugs to treat neuropathic pain.

  15. Annexin-1 Mediates Microglial Activation and Migration via the CK2 Pathway during Oxygen–Glucose Deprivation/Reperfusion

    PubMed Central

    Liu, Shuangxi; Gao, Yan; Yu, Xiaoli; Zhao, Baoming; Liu, Lu; Zhao, Yin; Luo, Zhenzhao; Shi, Jing

    2016-01-01

    Annexin-1 (ANXA1) has shown neuroprotective effects and microglia play significant roles during central nervous system injury, yet the underlying mechanisms remain unclear. This study sought to determine whether ANXA1 regulates microglial response to oxygen–glucose deprivation/reperfusion (OGD/R) treatment and to clarify the downstream molecular mechanism. In rat hippocampal slices, OGD/R treatment enhanced the ANXA1 expression in neuron, the formyl peptide receptor (FPRs) expression in microglia, and the microglial activation in the CA1 region (cornu ammonis 1). These effects were reversed by the FPRs antagonist Boc1. The cell membrane currents amplitude of BV-2 microglia (the microglial like cell-line) was increased when treated with Ac2-26, the N-terminal peptide of ANXA1. Ac2-26 treatment enhanced BV-2 microglial migration whereas Boc1 treatment inhibited the migration. In BV-2 microglia, both the expression of the CK2 target phosphorylated α-E-catenin and the binding of casein kinase II (CK2) with α-E-catenin were elevated by Ac2-26, these effects were counteracted by the CK2 inhibitor TBB and small interfering (si) RNA directed against transcripts of CK2 and FPRs. Moreover, both TBB and siRNA-mediated inhibition of CK2 blocked Ac2-26-mediated BV-2 microglia migration. Our findings indicate that ANXA1 promotes microglial activation and migration during OGD/R via FPRs, and CK2 target α-E-catenin phosphorylation is involved in this process. PMID:27782092

  16. Allergy Enhances Neurogenesis and Modulates Microglial Activation in the Hippocampus

    PubMed Central

    Klein, Barbara; Mrowetz, Heike; Thalhamer, Josef; Scheiblhofer, Sandra; Weiss, Richard; Aigner, Ludwig

    2016-01-01

    Allergies and their characteristic TH2-polarized inflammatory reactions affect a substantial part of the population. Since there is increasing evidence that the immune system modulates plasticity and function of the central nervous system (CNS), we investigated the effects of allergic lung inflammation on the hippocampus—a region of cellular plasticity in the adult brain. The focus of the present study was on microglia, the resident immune cells of the CNS, and on hippocampal neurogenesis, i.e., the generation of new neurons. C57BL/6 mice were sensitized with a clinically relevant allergen derived from timothy grass pollen (Phl p 5). As expected, allergic sensitization induced high serum levels of allergen-specific immunoglobulins (IgG1 and IgE) and of TH2 cytokines (IL-5 and IL-13). Surprisingly, fewer Iba1+ microglia were found in the granular layer (GL) and subgranular zone (SGZ) of the hippocampal dentate gyrus and also the number of Iba1+MHCII+ cells was lower, indicating a reduced microglial surveillance and activation in the hippocampus of allergic mice. Neurogenesis was analyzed by labeling of proliferating cells with bromodeoxyuridine (BrdU) and determining their fate 4 weeks later, and by quantitative analysis of young immature neurons, i.e., cells expressing doublecortin (DCX). The number of DCX+ cells was clearly increased in the allergy animals. Moreover, there were more BrdU+ cells present in the hippocampus of allergic mice, and these newly born cells had differentiated into neurons as indicated by a higher number of BrdU+NeuN+ cells. In summary, allergy led to a reduced microglia presence and activity and to an elevated level of neurogenesis in the hippocampus. This effect was apparently specific to the hippocampus, as we did not observe these alterations in the subventricular zone (SVZ)/olfactory bulb (OB) system, also a region of high cellular plasticity and adult neurogenesis. PMID:27445696

  17. Activation of murine microglial N9 cells is attenuated through cannabinoid receptor CB2 signaling.

    PubMed

    Ma, Lei; Jia, Ji; Liu, Xiangyu; Bai, Fuhai; Wang, Qiang; Xiong, Lize

    2015-02-27

    Inhibition of microglial activation is effective in treating various neurological disorders. Activation of microglial cannabinoid CB2 receptor induces anti-inflammatory effects, and the mechanism, however, is still elusive. Microglia could be activated into the classic activated state (M1 state) or the alternative activated state (M2 state), the former is cytotoxic, and the latter is neurotrophic. In this study, we used lipopolysaccharide (LPS) plus interferon-γ (IFNγ) to activate N9 microglia and hypothesized the pretreatment with cannabinoid CB2 receptor agonist AM1241 attenuates microglial activation by shifting microglial M1 to M2 state. We found that pretreatment with 5 μM AM1241 at 1 h before microglia were exposed to LPS plus IFNγ decreased the expression of inducible nitric oxide synthase (iNOS) and the release of pro-inflammatory factors, increased the expression of arginase 1 (Arg-1) and the release of anti-inflammatory and neurotrophic factors in microglia. However, these effects induced by AM1241 pretreatment were significantly reversed in the presence of 10 μM cannabinoid CB2 receptor antagonist AM630 or 10 μM protein kinase C (PKC) inhibitor chelerythrine. These findings indicated that AM1241 pretreatment attenuates microglial activation by shifting M1 to M2 activated state via CB2 receptor, and the AM1241-induced anti-inflammatory effects may be mediated by PKC. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The impact of microglial activation on blood-brain barrier in brain diseases

    PubMed Central

    da Fonseca, Anna Carolina Carvalho; Matias, Diana; Garcia, Celina; Amaral, Rackele; Geraldo, Luiz Henrique; Freitas, Catarina; Lima, Flavia Regina Souza

    2014-01-01

    The blood-brain barrier (BBB), constituted by an extensive network of endothelial cells (ECs) together with neurons and glial cells, including microglia, forms the neurovascular unit (NVU). The crosstalk between these cells guarantees a proper environment for brain function. In this context, changes in the endothelium-microglia interactions are associated with a variety of inflammation-related diseases in brain, where BBB permeability is compromised. Increasing evidences indicate that activated microglia modulate expression of tight junctions, which are essential for BBB integrity and function. On the other hand, the endothelium can regulate the state of microglial activation. Here, we review recent advances that provide insights into interactions between the microglia and the vascular system in brain diseases such as infectious/inflammatory diseases, epilepsy, ischemic stroke and neurodegenerative disorders. PMID:25404894

  19. Suppression of Brain Mast Cells Degranulation Inhibits Microglial Activation and Central Nervous System Inflammation.

    PubMed

    Dong, Hongquan; Zhang, Xiang; Wang, Yiming; Zhou, Xiqiao; Qian, Yanning; Zhang, Shu

    2017-03-01

    Brain inflammation has a critical role in the pathophysiology of brain diseases. Microglia, the resident immune cells in the brain, play an important role in brain inflammation, while brain mast cells are the "first responder" in the injury rather than microglia. Functional aspects of mast cell-microglia interactions remain poorly understood. Our results demonstrated that site-directed injection of the "mast cell degranulator" compound 48/80 (C48/80) in the hypothalamus induced mast cell degranulation, microglial activation, and inflammatory factor production, which initiated the acute brain inflammatory response. "Mast cell stabilizer" disodium cromoglycate (cromolyn) inhibited this effect, including decrease of inflammatory cytokines, reduced microglial activation, inhibition of MAPK and AKT pathways, and repression of protein expression of histamine receptor 1 (H1R), histamine receptor 4 (H4R), protease-activated receptor 2 (PAR2), and toll-like receptor 4 (TLR4) in microglia. We also demonstrated that C48/80 had no effect on microglial activation in mast cell-deficient Kit(W-sh/W-sh) mice. These results implicate that activated brain mast cells trigger microglial activation and stabilization of mast cell inhibits microglial activation-induced central nervous system (CNS) inflammation. Interactions between mast cells and microglia could constitute a new and unique therapeutic target for CNS immune inflammation-related diseases.

  20. The forkhead transcription factor FOXO3a controls microglial inflammatory activation and eventual apoptotic injury through caspase 3.

    PubMed

    Shang, Yan Chen; Chong, Zhao Zhong; Hou, Jinling; Maiese, Kenneth

    2009-02-01

    Memory loss and cognitive failure are increasingly being identified as potential risks with the recognized increase in life expectancy of the general population. As a result, the development of novel therapeutic strategies for disorders such as Alzheimer's disease have garnered increased attention. The etiologies that can lead to Alzheimer's disease are extremely varied, but a number of therapeutic options are directed against amyloid-beta peptide and inflammatory cell regulation to prevent or halt progressive cognitive loss. In particular, inflammatory microglial cells may have disparate functions that in some scenarios lead to disability through the removal of functional neurovascular cells and in other circumstances foster tissue repair. Given the significance microglial cells hold for neurodegenerative disorders, we therefore examined the function that amyloid (Abeta(1-42)) has upon the microglial cell line EOC 2 and identified a novel role for the forkhead transcription factor FoxO3a and caspase 3. Here we show that Abeta(1-42) leads to progressive injury and apoptotic cell loss in microglial cells that involves both early phosphatidylserine (PS) externalization and late genomic DNA fragmentation over a 24 hour course. Prior to these injury programs, Abeta(1-42) results in the activation and proliferation of microglia as demonstrated by increased proliferating cell nuclear antigen (PCNA) expression and bromodeoxyuridine (BrdU) uptake. Both apoptotic injury as well as the prior activation and proliferation of microglial cells relies upon the presence of FoxO3a, since specific gene silencing of FoxO3a promotes microglial cell protection and prevents the early activation and proliferation of these cells. Furthermore, Abeta(1-42) exposure maintained FoxO3a in an unphosphorylated "active" state and facilitated the cellular trafficking of FoxO3a from the cytoplasm to the cell nucleus to potentially lead to "pro-apoptotic" programs by this transcription factor. One

  1. Regional differences of microglial accumulation within 72 hours of hypoxia-ischemia and the effect of acetylcholine receptor agonist on brain damage and microglial activation in newborn rats.

    PubMed

    Furukawa, Seishi; Sameshima, Hiroshi; Yang, Li; Harishkumar, Madhyastha; Ikenoue, Tsuyomu

    2014-05-08

    We examined regional specificity of microglial activation in the developing rat brain for 72 hours after hypoxia-ischemia (HI) and the effect of acetylcholine receptor (AChR) agonist on microglial activation. Seven-day-old Wistar rats were divided into two groups: one receiving a single dose of AChR agonist just before hypoxia (carbachol; 0.1mg/kg) to investigate the reducing effect on brain damage with decreasing activation of microglia and the other group receiving saline as a control. Rats were subjected to left carotid artery ligation followed by 8% hypoxia. Brains were analyzed immunohistochemically at 24, 48, and 72 hours after HI. TNFα production was measured at respective times after HI. Activation of microglia on the hippocampus of the control group was strong for the first 48 hours and then weakened. In contrast, activation of microglia on white matter and the cortex was weak at 24 hours and then became stronger. A single dose of carbachol significantly reduced brain damage with a marked reduction of microglial activation on the hippocampus, whereas it was less effective regarding microglial activation on white matter and the cortex. TNFα production was low in both groups. Regional specificity was observed for both microglial activation and susceptibility to carbachol for the first 72 hours after HI. Our data suggested that timely intervention along with region-specific microglial activation, apart from TNFα production, may be critical for the prevention of further brain damage after HI in the newborn. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. TLR4 signal ablation attenuated neurological deficits by regulating microglial M1/M2 phenotype after traumatic brain injury in mice.

    PubMed

    Yao, Xiaolong; Liu, Shengwen; Ding, Wei; Yue, Pengjie; Jiang, Qian; Zhao, Min; Hu, Feng; Zhang, Huaqiu

    2017-09-15

    Traumatic brain injury (TBI) initiates inflammatory responses that result in an enduring cascade of secondary neuronal loss and behavioural impairment. Toll-like receptor 4 (TLR4), predominantly expressed by microglia, recognizes damage-associated molecular patterns (DAMPs) and regulates inflammatory processes. Interestingly, the switch of microglial M1/M2 phenotypes after TBI is highly important regarding damage and restoration of neurological function. Therefore, we investigated the role and mechanisms of the TLR4 signalling pathway in regulating microglial M1/M2 phenotypes. Using a controlled cortical impact (CCI) model, we found that TLR4 knockout (KO) mice exhibited decreased infarct volumes and improved outcomes in behavioural tests. In addition, mice lacking TLR4 had higher expression of M2 phenotype biomarkers but lower expression of M1 phenotype biomarkers. Compared with microglia derived from wild-type (WT) mice, increased expression of M2 phenotype biomarkers and decreased expression of M1 phenotype biomarkers were also noted in primary cultures of microglia from TLR4 KO mice. In TLR4 KO mice, the expression levels of downstream signalling molecules of TLR4, such as active Rac-1 and phospho-AKT, were higher, while MyD88 and phospho-NF-κB p65 expression levels were lower than in WT mice. Our results demonstrate that the absence of TLR4 induces microglial polarization toward the M2 phenotype and promotes microglial migration and, in turn, alleviates the development of neuroinflammation, which indicates potential neuroprotective effects in the TBI mouse model. Furthermore, up-regulation of IL-4 expression in TLR4 KO mice could contribute to anti-inflammatory functions and promote microglial polarization toward the M2 phenotype, which might be mediated by active Rac-1 expression. Taken together, TLR4 deficiency contributes to regulating microglia to switch to the M2 phenotype, which ameliorates neurological impairment after TBI. Copyright © 2017 Elsevier B

  3. Unconventional role of voltage-gated proton channels (VSOP/Hv1) in regulation of microglial ROS production.

    PubMed

    Kawai, Takafumi; Okochi, Yoshifumi; Ozaki, Tomohiko; Imura, Yoshio; Koizumi, Schuichi; Yamazaki, Maya; Abe, Manabu; Sakimura, Kenji; Yamashita, Toshihide; Okamura, Yasushi

    2017-09-01

    It has been established that voltage-gated proton channels (VSOP/Hv1), encoded by Hvcn1, support reactive oxygen species (ROS) production in phagocytic activities of neutrophils (El Chemaly et al. ) and antibody production in B lymphocytes (Capasso et al. ). VSOP/Hv1 is a potential therapeutic target for brain ischemia, since Hvcn1 deficiency reduces microglial ROS production and protects brain from neuronal damage (Wu et al. ). In the present study, we report that VSOP/Hv1 has paradoxical suppressive role in ROS production in microglia. Extracellular ROS production was lower in neutrophils of Hvcn1(-/-) mice than WT mice as reported. In contrast, it was drastically enhanced in isolated Hvcn1(-/-) microglia as compared with cells from WT mice. Actin dynamics was altered in Hvcn1(-/-) microglia and intracellular distribution of cytosolic NADPH oxidase subunit, p67, was changed. When expression levels of oxidative stress responsive antioxidant genes were compared between WT and Hvcn1(-/-) in cerebral cortex at different ages of animals, they were slightly decreased in Hvcn1(-/-) mice at younger stage (1 day, 5 days, 3 weeks old), but drastically increased at aged stage (6 months old), suggesting that the regulation of microglial ROS production by VSOP/Hv1 is age-dependent. We also performed brain ischemic stroke experiments and found that the neuroprotective effect of VSOP/Hv1deficiency on infarct volume depended on the age of animals. Taken together, regulation of ROS production by VSOP/Hv1 is more complex than previously thought and significance of VSOP/Hv1 in microglial ROS production depends on age. © 2017 International Society for Neurochemistry.

  4. Attenuated microglial activation mediates tolerance to the neurotoxic effects of methamphetamine.

    PubMed

    Thomas, David M; Kuhn, Donald M

    2005-02-01

    Methamphetamine causes persistent damage to dopamine nerve endings of the striatum. Repeated, intermittent treatment of mice with low doses of methamphetamine leads to the development of tolerance to its neurotoxic effects. The mechanisms underlying tolerance are not understood but clearly involve more than alterations in drug bioavailability or reductions in the hyperthermia caused by methamphetamine. Microglia have been implicated recently as mediators of methamphetamine-induced neurotoxicity. The purpose of the present studies was to determine if a tolerance regimen of methamphetamine would attenuate the microglial response to a neurotoxic challenge. Mice treated with a low-dose methamphetamine tolerance regimen showed minor reductions in striatal dopamine content and low levels of microglial activation. When the tolerance regimen preceded a neurotoxic challenge of methamphetamine, the depletion of dopamine normally seen was significantly attenuated. The microglial activation that occurs after a toxic methamphetamine challenge was blunted likewise. Despite the induction of tolerance against drug-induced toxicity and microglial activation, a neurotoxic challenge with methamphetamine still caused hyperthermia. These results suggest that tolerance to methamphetamine neurotoxicity is associated with attenuated microglial activation and they further dissociate its neurotoxicity from drug-induced hyperthermia.

  5. Regulation of Microglial Phagocytosis by RhoA/ROCK-Inhibiting Drugs.

    PubMed

    Scheiblich, Hannah; Bicker, Gerd

    2017-04-01

    Inflammation within the central nervous system (CNS) is a major component of many neurodegenerative diseases. The underlying mechanisms of neuronal loss are not fully understood, but the activation of CNS resident phagocytic microglia seems to be a significant element contributing to neurodegeneration. At the onset of inflammation, high levels of microglial phagocytosis may serve as an essential prerequisite for creating a favorable environment for neuronal regeneration. However, the excessive and long-lasting activation of microglia and the augmented engulfment of neurons have been suggested to eventually govern widespread neurodegeneration. Here, we investigated in a functional assay of acute inflammation how the small GTPase RhoA and its main target the Rho kinase (ROCK) influence microglial phagocytosis of neuronal debris. Using BV-2 microglia and human NT2 model neurons, we demonstrate that the pain reliever Ibuprofen decreases RhoA activation and microglial phagocytosis of neuronal cell fragments. Inhibition of the downstream effector ROCK with the small-molecule agents Y-27632 and Fasudil reduces the engulfment of neuronal debris and attenuates the production of the inflammatory mediator nitric oxide during stimulation with lipopolysaccharide. Our results support a therapeutic potential for RhoA/ROCK-inhibiting agents as an effective treatment of excessive inflammation and the resulting progression of microglia-mediated neurodegeneration in the CNS.

  6. Licochalcone A Prevents the Loss of Dopaminergic Neurons by Inhibiting Microglial Activation in Lipopolysaccharide (LPS)-Induced Parkinson's Disease Models.

    PubMed

    Huang, Bingxu; Liu, Juxiong; Ju, Chen; Yang, Dongxue; Chen, Guangxin; Xu, Shiyao; Zeng, Yalong; Yan, Xuan; Wang, Wei; Liu, Dianfeng; Fu, Shoupeng

    2017-09-22

    The neuroprotective effects of Licochalcone A (Lico.A), a flavonoid isolated from the herb licorice, in Parkinson's disease (PD) have not been elucidated. The prominent pathological feature of PD is the loss of dopaminergic neurons. The crucial role of neuroinflammation induced by activated microglia in dopaminergic neurodegeneration has been validated. In this study, we explore the therapeutic effects of Lico.A in lipopolysaccharide (LPS)-induced PD models in vivo and in vitro. We find that Lico.A significantly inhibits LPS-stimulated production of pro-inflammatory mediators and microglial activation by blocking the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and nuclear factor κB (NF-κB) p65 in BV-2 cells. In addition, through cultured primary mesencephalic neuron-glia cell experiments, we illustrate that Lico.A attenuates the decrease in [³H] dopamine (DA) uptake and the loss of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in LPS-induced PD models in vitro. Furthermore, LPS intoxication in rats results in microglial activation, dopaminergic neurodegeneration and significant behavioral deficits in vivo. Lico.A treatment prevents microglial activation and reduction of dopaminergic neuron and ameliorates PD-like behavioral impairments. Thus, these results demonstrate for the first time that the neuroprotective effects of Lico.A are associated with microglia and anti-inflammatory effects in PD models.

  7. Neuropeptide Y protects cerebral cortical neurons by regulating microglial immune function

    PubMed Central

    Li, Qijun; Dong, Changzheng; Li, Wenling; Bu, Wei; Wu, Jiang; Zhao, Wenqing

    2014-01-01

    Neuropeptide Y has been shown to inhibit the immunological activity of reactive microglia in the rat cerebral cortex, to reduce N-methyl-D-aspartate current (INMDA) in cortical neurons, and protect neurons. In this study, after primary cultured microglia from the cerebral cortex of rats were treated with lipopolysaccharide, interleukin-1β and tumor necrosis factor-α levels in the cell culture medium increased, and mRNA expression of these cytokines also increased. After primary cultured cortical neurons were incubated with the lipopolysaccharide-treated microglial conditioned medium, peak INMDA in neurons increased. These effects of lipopolysaccharide were suppressed by neuropeptide Y. After addition of the neuropeptide Y Y1 receptor antagonist BIBP3226, the effects of neuropeptide Y completely disappeared. These results suggest that neuropeptide Y prevents excessive production of interleukin-1β and tumor necrosis factor-α by inhibiting microglial reactivity. This reduces INMDA in rat cortical neurons, preventing excitotoxicity, thereby protecting neurons. PMID:25206918

  8. Cannabinoid CB2 receptor attenuates morphine-induced inflammatory responses in activated microglial cells

    PubMed Central

    Merighi, Stefania; Gessi, Stefania; Varani, Katia; Fazzi, Debora; Mirandola, Prisco; Borea, Pier Andrea

    2012-01-01

    BACKGROUND AND PURPOSE Among several pharmacological properties, analgesia is the most common feature shared by either opioid or cannabinoid systems. Cannabinoids and opioids are distinct drug classes that have been historically used separately or in combination to treat different pain states. In the present study, we characterized the signal transduction pathways mediated by cannabinoid CB2 and µ-opioid receptors in quiescent and LPS-stimulated murine microglial cells. EXPERIMENTAL APPROACH We examined the effects of µ-opioid and CB2 receptor stimulation on phosphorylation of MAPKs and Akt and on IL-1β, TNF-α, IL-6 and NO production in primary mouse microglial cells. KEY RESULTS Morphine enhanced release of the proinflammatory cytokines, IL-1β, TNF-α, IL-6, and of NO via µ-opioid receptor in activated microglial cells. In contrast, CB2 receptor stimulation attenuated morphine-induced microglial proinflammatory mediator increases, interfering with morphine action by acting on the Akt-ERK1/2 signalling pathway. CONCLUSIONS AND IMPLICATIONS Because glial activation opposes opioid analgesia and enhances opioid tolerance and dependence, we suggest that CB2 receptors, by inhibiting microglial activity, may be potential targets to increase clinical efficacy of opioids. PMID:22428664

  9. Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation.

    PubMed

    Thomas, David M; Walker, Paul D; Benjamins, Joyce A; Geddes, Timothy J; Kuhn, Donald M

    2004-10-01

    Methamphetamine intoxication causes long-lasting damage to dopamine nerve endings in the striatum. The mechanisms underlying this neurotoxicity are not known but oxidative stress has been implicated. Microglia are the major antigen-presenting cells in brain and when activated, they secrete an array of factors that cause neuronal damage. Surprisingly, very little work has been directed at the study of microglial activation as part of the methamphetamine neurotoxic cascade. We report here that methamphetamine activates microglia in a dose-related manner and along a time course that is coincident with dopamine nerve ending damage. Prevention of methamphetamine toxicity by maintaining treated mice at low ambient temperature prevents drug-induced microglial activation. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), which damages dopamine nerve endings and cell bodies, causes extensive microglial activation in striatum as well as in the substantia nigra. In contrast, methamphetamine causes neither microglial activation in the substantia nigra nor dopamine cell body damage. Dopamine transporter antagonists (cocaine, WIN 35,428 [(-)-2-beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane 1,5-naphthalenedisulfonate], and nomifensine), selective D1 (SKF 82958 [(+/-)-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide]), D2 (quinpirole), or mixed D1/D2 receptor agonists (apomorphine) do not mimic the effect of methamphetamine on microglia. Hyperthermia, a prominent and dangerous clinical response to methamphetamine intoxication, was also ruled out as the cause of microglial activation. Together, these data suggest that microglial activation represents an early step in methamphetamine-induced neurotoxicity. Other neurochemical effects resulting from methamphetamine-induced overflow of DA into the synapse, but which are not neurotoxic, do not play a role in this response.

  10. SN79, a sigma receptor ligand, blocks methamphetamine-induced microglial activation and cytokine upregulation.

    PubMed

    Robson, Matthew J; Turner, Ryan C; Naser, Zachary J; McCurdy, Christopher R; Huber, Jason D; Matsumoto, Rae R

    2013-09-01

    Methamphetamine (METH) abuse is associated with several negative side effects including neurotoxicity in specific brain regions such as the striatum. The precise molecular mechanisms by which METH usage results in neurotoxicity remain to be fully elucidated, with recent evidence implicating the importance of microglial activation and neuroinflammation in damaged brain regions. METH interacts with sigma receptors which are found in glial cells in addition to neurons. Moreover, sigma receptor antagonists have been shown to block METH-induced neurotoxicity in rodents although the cellular mechanisms underlying their neuroprotection remain unknown. The purpose of the current study was to determine if the prototypic sigma receptor antagonist, SN79, mitigates METH-induced microglial activation and associated increases in cytokine expression in a rodent model of METH-induced neurotoxicity. METH increased striatal mRNA and protein levels of cluster of differentiation 68 (CD68), indicative of microglial activation. METH also increased ionized calcium binding adapter molecule 1 (IBA-1) protein expression, further confirming the activation of microglia. Along with microglial activation, METH increased striatal mRNA expression levels of IL-6 family pro-inflammatory cytokines, leukemia inhibitory factor (lif), oncostatin m (osm), and interleukin-6 (il-6). Pretreatment with SN79 reduced METH-induced increases in CD68 and IBA-1 expression, demonstrating its ability to prevent microglial activation. SN79 also attenuated METH-induced mRNA increases in IL-6 pro-inflammatory cytokine family members. The ability of a sigma receptor antagonist to block METH-induced microglial activation and cytokine production provides a novel mechanism through which the neurotoxic effects of METH may be mitigated.

  11. Intrathecal lidocaine pretreatment attenuates immediate neuropathic pain by modulating Nav1.3 expression and decreasing spinal microglial activation

    PubMed Central

    2011-01-01

    Background Intrathecal lidocaine reverses tactile allodynia after nerve injury, but whether neuropathic pain is attenuated by intrathecal lidocaine pretreatment is uncertain. Methods Sixty six adult male Sprague-Dawley rats were divided into three treatment groups: (1) sham (Group S), which underwent removal of the L6 transverse process; (2) ligated (Group L), which underwent left L5 spinal nerve ligation (SNL); and (3) pretreated (Group P), which underwent L5 SNL and was pretreated with intrathecal 2% lidocaine (50 μl). Neuropathic pain was assessed based on behavioral responses to thermal and mechanical stimuli. Expression of sodium channels (Nav1.3 and Nav1.8) in injured dorsal root ganglia and microglial proliferation/activation in the spinal cord were measured on post-operative days 3 (POD3) and 7 (POD7). Results Group L presented abnormal behavioral responses indicative of mechanical allodynia and thermal hyperalgesia, exhibited up-regulation of Nav1.3 and down-regulation of Nav1.8, and showed increased microglial activation. Compared with ligation only, pretreatment with intrathecal lidocaine before nerve injury (Group P), as measured on POD3, palliated both mechanical allodynia (p < 0.01) and thermal hyperalgesia (p < 0.001), attenuated Nav1.3 up-regulation (p = 0.003), and mitigated spinal microglial activation (p = 0.026) by inhibiting phosphorylation (activation) of p38 MAP kinase (p = 0.034). p38 activation was also suppressed on POD7 (p = 0.002). Conclusions Intrathecal lidocaine prior to SNL blunts the response to noxious stimuli by attenuating Nav1.3 up-regulation and suppressing activation of spinal microglia. Although its effects are limited to 3 days, intrathecal lidocaine pretreatment can alleviate acute SNL-induced neuropathic pain. PMID:21676267

  12. Regulation of Macrophage, Dendritic Cell, and Microglial Phenotype and Function by the SOCS Proteins

    PubMed Central

    McCormick, Sarah M.; Heller, Nicola M.

    2015-01-01

    Macrophages are innate immune cells of dynamic phenotype that rapidly respond to external stimuli in the microenvironment by altering their phenotype to respond to and to direct the immune response. The ability to dynamically change phenotype must be carefully regulated to prevent uncontrolled inflammatory responses and subsequently to promote resolution of inflammation. The suppressor of cytokine signaling (SOCS) proteins play a key role in regulating macrophage phenotype. In this review, we summarize research to date from mouse and human studies on the role of the SOCS proteins in determining the phenotype and function of macrophages. We will also touch on the influence of the SOCS on dendritic cell (DC) and microglial phenotype and function. The molecular mechanisms of SOCS function in macrophages and DCs are discussed, along with how dysregulation of SOCS expression or function can lead to alterations in macrophage/DC/microglial phenotype and function and to disease. Regulation of SOCS expression by microRNA is discussed. Novel therapies and unanswered questions with regard to SOCS regulation of monocyte–macrophage phenotype and function are highlighted. PMID:26579124

  13. The Role of Microglial Subsets in Regulating Brain Injury

    DTIC Science & Technology

    2009-07-01

    staurosporine (sts) or MPP+. The median fluores- cence intensity of TREM2-Fc or TREM1-Fc binding of each gate is shown. Apoptotic Neuro2A cells (Annexin Vhi ...boosts TREM2-Fc binding to Annexin Vhi cells by 7- to 10- fold (n = 3). (c) Neuronal cells activate TREM2/DAP12 signal trans- duction as assessed by...TREM2-L expression on the Annexin Vhi cells (Fig. 2a). These data indicate that apoptosis increases the expression of TREM2-L on neurons, presenting a

  14. Factors regulating microglia activation

    PubMed Central

    Kierdorf, Katrin; Prinz, Marco

    2013-01-01

    Microglia are resident macrophages of the central nervous system (CNS) that display high functional similarities to other tissue macrophages. However, it is especially important to create and maintain an intact tissue homeostasis to support the neuronal cells, which are very sensitive even to minor changes in their environment. The transition from the “resting” but surveying microglial phenotype to an activated stage is tightly regulated by several intrinsic (e.g., Runx-1, Irf8, and Pu.1) and extrinsic factors (e.g., CD200, CX3CR1, and TREM2). Under physiological conditions, minor changes of those factors are sufficient to cause fatal dysregulation of microglial cell homeostasis and result in severe CNS pathologies. In this review, we discuss recent achievements that gave new insights into mechanisms that ensure microglia quiescence. PMID:23630462

  15. Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines.

    PubMed

    Thomas, David M; Dowgiert, Jennifer; Geddes, Timothy J; Francescutti-Verbeem, Dina; Liu, Xiuli; Kuhn, Donald M

    2004-09-09

    Neurotoxic amphetamines cause damage to monoamine nerve terminals of the striatum by unknown mechanisms. Microglial activation contributes to the neuronal damage that accompanies injury, disease, and inflammation, but a role for these cells in amphetamine-induced neurotoxicity has received little attention. We show presently that D-methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), D-amphetamine, and p-chloroamphetamine, each of which has been linked to dopamine (DA) or serotonin nerve terminal damage, result in microglial activation in the striatum. The non-neurotoxic amphetamines l-methamphetamine, fenfluramine, and DOI do not have this effect. All drugs that cause microglial activation also increase expression of glial fibrillary acidic protein (GFAP). At a minimum, microglial activation serves as a pharmacologically specific marker for striatal nerve terminal damage resulting only from those amphetamines that exert neurotoxicity. Because microglia are known to produce many of the reactive species (e.g., nitric oxide, superoxide, cytokines) that mediate the neurotoxicity of the amphetamine-class of drugs, their activation could represent an early and essential event in the neurotoxic cascade associated with high-dose amphetamine intoxication.

  16. MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity.

    PubMed

    Thomas, David M; Kuhn, Donald M

    2005-07-19

    Methamphetamine causes long-term toxicity to dopamine nerve endings of the striatum. Evidence is emerging that microglia can contribute to the neuronal damage associated with disease, injury, or inflammation, but their role in methamphetamine-induced neurotoxicity has received relatively little attention. Lipopolysaccharide (LPS) and the neurotoxic HIV Tat protein, which cause dopamine neuronal toxicity after direct infusion into brain, cause activation of cultured mouse microglial cells as evidenced by increased expression of intracellular cyclooxygenase-2 and elevated secretion of tumor necrosis factor-alpha. MK-801, a non-competitive NMDA receptor antagonist that is known to protect against methamphetamine neurotoxicity, prevents microglial activation by LPS and HIV Tat. Dextromethorphan, an antitussive agent with NMDA receptor blocking properties, also prevents microglial activation. In vivo, MK-801 and dextromethorphan reduce methamphetamine-induced activation of microglia in striatum and they protect dopamine nerve endings against drug-induced nerve terminal damage. The present results indicate that the ability of MK-801 and dextromethorphan to protect against methamphetamine neurotoxicity is related to their common property as blockers of microglial activation.

  17. Prostaglandin E2 Receptor Subtype 2 Regulation of Scavenger Receptor CD36 Modulates Microglial Aβ42 Phagocytosis

    PubMed Central

    Li, Xianwu; Melief, Erica; Postupna, Nadia; Montine, Kathleen S.; Keene, C. Dirk; Montine, Thomas J.

    2016-01-01

    Recent studies underline the potential relevance of microglial innate immune activation in Alzheimer disease. Primary mouse microglia that lack prostaglandin E2 receptor subtype 2 (EP2) show decreased innate immune-mediated neurotoxicity and increased amyloid β (Aβ) peptide phagocytosis, features that were replicated in vivo. Here, we tested the hypothesis that scavenger receptor CD36 is an effector of EP2-regulated Aβ phagocytosis. CD36 expression was 143-fold greater in mouse primary microglia than in primary astrocytes. Three different means of suppressing EP2 signaling increased and an agonist of EP2 decreased CD36 expression in primary wild-type microglia. Activation of Toll-like receptor (TLR) 3, TLR4, and TLR7, but not TLR2 or TLR9, reduced primary microglial CD36 transcription and cell surface CD36 protein and reduced Aβ42 phagocytosis as well. At each step, the effects of innate immune activation on CD36 were reversed by at least 50% by an EP2 antagonist, and this partial rescue of microglia Aβ42 phagocytosis was largely mediated by CD36 activity. Finally, we showed in hippocampus of wild-type mice that innate immune activation suppressed CD36 expression by an EP2-dependent mechanism. Taken together with results of others that found brain clearance of Aβ peptides and behavioral improvements mediated by CD36 in mice, regulation of CD36-mediated Aβ phagocytosis by suppression of EP2 signaling may provide a new approach to suppressing some aspects of Alzheimer disease pathogenesis. PMID:25452117

  18. The age-related attenuation in long-term potentiation is associated with microglial activation.

    PubMed

    Griffin, Rebecca; Nally, Rachel; Nolan, Yvonne; McCartney, Yvonne; Linden, James; Lynch, Marina A

    2006-11-01

    It is well established that inflammatory changes contribute to brain ageing, and an increased concentration of proinflammatory cytokine, interleukin-1beta (IL-1beta), has been reported in the aged brain associated with a deficit in long-term potentiation (LTP) in rat hippocampus. The precise age at which changes are initiated is unclear. In this study, we investigate parallel changes in markers of inflammation and LTP in 3-, 9- and 15-month-old rats. We report evidence of increased hippocampal concentrations of the proinflammatory cytokines IL-1alpha, IL-18 and interferon-gamma (IFNgamma), which are accompanied by deficits in LTP in the older rats. We also show an increase in expression of markers of microglial activation, CD86, CD40 and intercellular adhesion molecules (ICAM). Associated with these changes, we observed a significant impairment of hippocampal LTP in the same rats. The importance of microglial activation in the attenuation of long-term potentiation (LTP) was demonstrated using an inhibitor of microglial activation, minocycline; partial restoration of LTP in 15-month-old rats was observed following administration of minocycline. We propose that signs of neuroinflammation are observed in middle age and that these changes, which are characterized by microglial activation, may be triggered by IL-18.

  19. NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION.

    EPA Science Inventory

    NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION. M.L. Block1,2, X. Wu1, P. Zhong1, G. Li1, T. Wang1, J.S. Hong1 & B.Veronesi.2
    1The Laboratory of Pharmacology and Chemistry, NIEHS, RTP, NC and 2 National Health and Envi...

  20. NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION.

    EPA Science Inventory

    NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION. M.L. Block1,2, X. Wu1, P. Zhong1, G. Li1, T. Wang1, J.S. Hong1 & B.Veronesi.2
    1The Laboratory of Pharmacology and Chemistry, NIEHS, RTP, NC and 2 National Health and Envi...

  1. Anti-inflammatory effects and antioxidant activity of dihydroasparagusic acid in lipopolysaccharide-activated microglial cells.

    PubMed

    Salemme, Adele; Togna, Anna Rita; Mastrofrancesco, Arianna; Cammisotto, Vittoria; Ottaviani, Monica; Bianco, Armandodoriano; Venditti, Alessandro

    2016-01-01

    The activation of microglia and subsequent release of toxic pro-inflammatory factors are crucially associated with neurodegenerative disease, characterized by increased oxidative stress and neuroinflammation, including Alzheimer and Parkinson diseases and multiple sclerosis. Dihydroasparagusic acid is the reduced form of asparagusic acid, a sulfur-containing flavor component produced by Asparagus plants. It has two thiolic functions able to coordinate the metal ions, and a carboxylic moiety, a polar function, which may enhance excretion of the complexes. Thiol functions are also present in several biomolecules with important physiological antioxidant role as glutathione. The aim of this study is to evaluate the anti-inflammatory and antioxidant potential effect of dihydroasparagusic acid on microglial activation in an in vitro model of neuroinflammation. We have used lipopolysaccharide to induce an inflammatory response in primary rat microglial cultures. Our results suggest that dihydroasparagusic acid significantly prevented lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators such as nitric oxide, tumor necrosis factor-α, prostaglandin E2, as well as inducible nitric oxide synthase and cyclooxygenase-2 protein expression and lipoxygenase activity in microglia cells. Moreover it effectively suppressed the level of reactive oxygen species and affected lipopolysaccharide-stimulated activation of mitogen activated protein kinase, including p38, and nuclear factor-kB pathway. These results suggest that dihydroasparagusic acid's neuroprotective properties may be due to its ability to dampen induction of microglial activation. It is a compound that can effectively inhibit inflammatory and oxidative processes that are important factors of the etiopathogenesis of neurodegenerative diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Methamphetamine-induced neurotoxicity and microglial activation are not mediated by fractalkine receptor signaling.

    PubMed

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2008-07-01

    Methamphetamine (METH) damages dopamine (DA) nerve endings by a process that has been linked to microglial activation but the signaling pathways that mediate this response have not yet been delineated. Cardona et al. [Nat. Neurosci. 9 (2006), 917] recently identified the microglial-specific fractalkine receptor (CX3CR1) as an important mediator of MPTP-induced neurodegeneration of DA neurons. Because the CNS damage caused by METH and MPTP is highly selective for the DA neuronal system in mouse models of neurotoxicity, we hypothesized that the CX3CR1 plays a role in METH-induced neurotoxicity and microglial activation. Mice in which the CX3CR1 gene has been deleted and replaced with a cDNA encoding enhanced green fluorescent protein (eGFP) were treated with METH and examined for striatal neurotoxicity. METH depleted DA, caused microglial activation, and increased body temperature in CX3CR1 knockout mice to the same extent and over the same time course seen in wild-type controls. The effects of METH in CX3CR1 knockout mice were not gender-dependent and did not extend beyond the striatum. Striatal microglia expressing eGFP constitutively show morphological changes after METH that are characteristic of activation. This response was restricted to the striatum and contrasted sharply with unresponsive eGFP-microglia in surrounding brain areas that are not damaged by METH. We conclude from these studies that CX3CR1 signaling does not modulate METH neurotoxicity or microglial activation. Furthermore, it appears that striatal-resident microglia respond to METH with an activation cascade and then return to a surveying state without undergoing apoptosis or migration.

  3. Blueberry Supplementation Attenuates Microglial Activation in Hippocampal Intraocular Grafts to aged hosts

    PubMed Central

    Willis, Lauren M.; Freeman, Linnea; Bickford, Paula C.; Quintero, E. Matthew; Umphlet, Claudia D.; Moore, Alfred B.; Goetzl, Laura; Granholm, Ann-Charlotte

    2010-01-01

    Transplantation of central nervous tissue has been proposed as a therapeutic intervention for age-related neurodegenerative diseases and stroke. However, survival of embryonic neuronal cells is hampered by detrimental factors in the aged host brain such as circulating inflammatory cytokines and oxidative stress. We have previously found that supplementation with 2% blueberry in the diet increases graft growth and neuronal survival in intraocular hippocampal grafts to aged hosts. In the present study we explored possible biochemical mechanisms for this increased survival, and we here report decreased microglial activation and astrogliosis in intraocular hippocampal grafts to middle-aged hosts fed a 2% blueberry diet. Markers for astrocytes and for activated microglial cells were both decreased long-term after grafting to blueberry-treated hosts compared to age-matched rats on a control diet. Similar findings were obtained in the host brain, with a reduction in OX-6 immunoreactive microglial cells in the hippocampus of those recipients treated with blueberry. In addition, immunoreactivity for the pro-inflammatory cytokine IL-6 was found to be significantly attenuated in intraocular grafts by the 2% blueberry diet. These studies demonstrate direct effects of blueberry upon microglial activation both during isolated conditions and in the aged host brain and suggest that this nutraceutical can attenuate age-induced inflammation. PMID:20014277

  4. The Distinct Role of ADAM17 in APP Proteolysis and Microglial Activation Related to Alzheimer's Disease.

    PubMed

    Qian, Meng; Shen, Xiaoqiang; Wang, Huanhuan

    2016-05-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease with the symptom of cognitive impairment. The deposition of amyloid β (Aβ) peptide is believed to be the primary cause to neuronal dystrophy and eventually dementia. Aβ is the proteolytic product from its precursor amyloid precursor protein (APP) by β- and γ- secretase. An optional cleavage by α-secretase happens inside the Aβ domain. ADAM17 is supposed to be the regulated α-secretase of APP. Enhanced activity of ADAM17 leads to the increasing secretion of neuroprotective soluble APP α fragment and reduction of Aβ generation, which may be benefit to the disease. ADAM17 is then considered the potential therapeutic target for AD. Microglia activation and neuroinflammation is another important event in AD pathogenesis. Interestingly, ADAM17 also participates in the cleavage of many other membrane-bound proteins, especially some inflammatory factors related to microglia activation. The facilitating role of ADAM17 in inflammation and further neuronal damage has also been illustrated. In results, the activation of ADAM17 as the solution to AD may be a tricky task. The comprehensive consideration and evaluation has to be carried out carefully before the final treatment. In the present review, the distinct role of ADAM17 in AD-related APP shedding and neuroinflammatory microglial activation will be carefully discussed.

  5. HIV-1 Tat Primes and Activates Microglial NLRP3 Inflammasome-Mediated Neuroinflammation.

    PubMed

    Chivero, Ernest T; Guo, Ming-Lei; Periyasamy, Palsamy; Liao, Ke; Callen, Shannon E; Buch, Shilpa

    2017-03-29

    Neuroinflammation associated with HIV-1 infection is a problem affecting ∼50% of HIV-infected individuals. NLR family pyrin domain containing 3 (NLRP3) inflammasome has been implicated in HIV-induced microglial activation, but the mechanism(s) remain unclear. Because HIV-1 Transactivator of Transcription (Tat) protein continues to be present despite antiretroviral therapy and activates NF-kB, we hypothesized that Tat could prime the NLRP3 inflammasome. We found a dose- and time-dependent induction of NLRP3 expression in microglia exposed to Tat compared with control. Tat exposure also time-dependently increased the mature caspase-1 and IL-1β levels and enhanced the IL-1β secretion. These in vitro findings were validated in archival brain tissues from Simian Immunodeficiency Virus (SIV)-infected and uninfected rhesus macaques. Further validation of NLRP3 priming in vivo involved administration of lipopolysaccharide (LPS) to HIV transgenic (Tg) rats followed by assessment of IL-1β mRNA expression and inflammasome activation (ASC oligomers and mature IL-1β). Intriguingly, LPS potentiated upregulation of IL-1β mRNA and inflammasome activation in HIV-Tg rats compared with the wild-type controls. Interestingly, we found an inverse relationship in the expression of NLRP3 and its negative regulator, miR-223, suggesting a miR-223-mediated mechanism for Tat-induced NLRP3 priming. Furthermore, blockade of NLRP3 resulted in decreased IL-1β secretion. Collectively, these findings suggest a novel role of Tat in priming and activating the NLRP3 inflammasome. Therefore, NLRP3 can be envisioned as a therapeutic target for ameliorating Tat-mediated neuroinflammation.SIGNIFICANCE STATEMENT Despite successful suppression of viremia with increased longevity in the era of combined antiretroviral therapy, chronic inflammation with underlying neurocognitive impairment continues to afflict almost 50% of infected individuals. Viral, bacterial, and cellular products have all been

  6. Radiation-Induced c-Jun Activation Depends on MEK1-ERK1/2 Signaling Pathway in Microglial Cells

    PubMed Central

    Deng, Zhiyong; Sui, Guangchao; Rosa, Paulo Mottin; Zhao, Weiling

    2012-01-01

    Radiation-induced normal brain injury is associated with acute and/or chronic inflammatory responses, and has been a major concern in radiotherapy. Recent studies suggest that microglial activation is a potential contributor to chronic inflammatory responses following irradiation; however, the molecular mechanism underlying the response of microglia to radiation is poorly understood. c-Jun, a component of AP-1 transcription factors, potentially regulates neural cell death and neuroinflammation. We observed a rapid increase in phosphorylation of N-terminal c-Jun (on serine 63 and 73) and MAPK kinases ERK1/2, but not JNKs, in irradiated murine microglial BV2 cells. Radiation-induced c-Jun phosphorylation is dependent on the canonical MEK-ERK signaling pathway and required for both ERK1 and ERK2 function. ERK1/2 directly interact with c-Jun in vitro and in cells; meanwhile, the JNK binding domain on c-Jun is not required for its interaction with ERK kinases. Radiation-induced reactive oxygen species (ROS) potentially contribute to c-Jun phosphorylation through activating the ERK pathway. Radiation stimulates c-Jun transcriptional activity and upregulates c-Jun-regulated proinflammatory genes, such as tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2. Pharmacologic blockade of the ERK signaling pathway interferes with c-Jun activity and inhibits radiation-stimulated expression of c-Jun target genes. Overall, our study reveals that the MEK-ERK1/2 signaling pathway, but not the JNK pathway, contributes to the c-Jun-dependent microglial inflammatory response following irradiation. PMID:22606284

  7. Radiation-induced c-Jun activation depends on MEK1-ERK1/2 signaling pathway in microglial cells.

    PubMed

    Deng, Zhiyong; Sui, Guangchao; Rosa, Paulo Mottin; Zhao, Weiling

    2012-01-01

    Radiation-induced normal brain injury is associated with acute and/or chronic inflammatory responses, and has been a major concern in radiotherapy. Recent studies suggest that microglial activation is a potential contributor to chronic inflammatory responses following irradiation; however, the molecular mechanism underlying the response of microglia to radiation is poorly understood. c-Jun, a component of AP-1 transcription factors, potentially regulates neural cell death and neuroinflammation. We observed a rapid increase in phosphorylation of N-terminal c-Jun (on serine 63 and 73) and MAPK kinases ERK1/2, but not JNKs, in irradiated murine microglial BV2 cells. Radiation-induced c-Jun phosphorylation is dependent on the canonical MEK-ERK signaling pathway and required for both ERK1 and ERK2 function. ERK1/2 directly interact with c-Jun in vitro and in cells; meanwhile, the JNK binding domain on c-Jun is not required for its interaction with ERK kinases. Radiation-induced reactive oxygen species (ROS) potentially contribute to c-Jun phosphorylation through activating the ERK pathway. Radiation stimulates c-Jun transcriptional activity and upregulates c-Jun-regulated proinflammatory genes, such as tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2. Pharmacologic blockade of the ERK signaling pathway interferes with c-Jun activity and inhibits radiation-stimulated expression of c-Jun target genes. Overall, our study reveals that the MEK-ERK1/2 signaling pathway, but not the JNK pathway, contributes to the c-Jun-dependent microglial inflammatory response following irradiation.

  8. Doxycycline Suppresses Microglial Activation by Inhibiting the p38 MAPK and NF-kB Signaling Pathways.

    PubMed

    Santa-Cecília, Flávia V; Socias, Benjamin; Ouidja, Mohand O; Sepulveda-Diaz, Julia E; Acuña, Leonardo; Silva, Rangel L; Michel, Patrick P; Del-Bel, Elaine; Cunha, Thiago M; Raisman-Vozari, Rita

    2016-05-01

    In neurodegenerative diseases, the inflammatory response is mediated by activated glial cells, mainly microglia, which are the resident immune cells of the central nervous system. Activated microglial cells release proinflammatory mediators and neurotoxic factors that are suspected to cause or exacerbate these diseases. We recently demonstrated that doxycycline protects substantia nigra dopaminergic neurons in an animal model of Parkinson's disease. This effect was associated with a reduction of microglial cell activation, which suggests that doxycycline may operate primarily as an anti-inflammatory drug. In the present study, we assessed the anti-inflammatory potential of doxycycline using lipopolysaccharide (LPS)-activated primary microglial cells in culture as a model of neuroinflammation. Doxycycline attenuated the expression of key activation markers in LPS-treated microglial cultures in a concentration-dependent manner. More specifically, doxycycline treatment lowered the expression of the microglial activation marker IBA-1 as well as the production of ROS, NO, and proinflammatory cytokines (TNF-α and IL-1β). In primary microglial cells, we also found that doxycycline inhibits LPS-induced p38 MAP kinase phosphorylation and NF-kB nuclear translocation. The present results indicate that the effect of doxycycline on LPS-induced microglial activation probably occurs via the modulation of p38 MAP kinase and NF-kB signaling pathways. These results support the idea that doxycycline may be useful in preventing or slowing the progression of PD and other neurodegenerative diseases that exhibit altered glia function.

  9. GLYCOGEN SYNTHASE KINASE-3 REGULATES MICROGLIAL MIGRATION, INFLAMMATION, AND INFLAMMATION-INDUCED NEUROTOXICITY

    PubMed Central

    Yuskaitis, Christopher J.; Jope, Richard S.

    2009-01-01

    Microglia play a prominent role in the brain’s inflammatory response to injury or infection by migrating to affected locations, secreting inflammatory molecules, and phagocytosing damaged tissue. However, because severe or chronic neuroinflammation exacerbates many neurological conditions, controlling microglia actions may provide therapeutic benefits in a diverse array of diseases. Since glycogen synthase kinase-3 (GSK3) promotes inflammatory responses in peripheral immune cells, we investigated if inhibitors of GSK3 attenuated microglia responses to inflammatory stimuli. Treatment of BV-2 microglia with GSK3 inhibitors greatly reduced the migration of microglia in both a scratch assay and in a transwell migration assay. Treatment of BV-2 microglia with lipopolysaccharide (LPS) stimulated the production of interleukin-6 and increased the expression of inducible nitric oxide synthase (iNOS) and NO production. Each of these microglia responses to inflammatory stimulation were greatly attenuated by GSK3 inhibitors. However, GSK3 inhibitors did not cause a general impairment of microglia functions, as the LPS-induced stimulated expression of cylcooxygenase-2 was unaltered. Regulation of microglia functions were also evident in cultured mouse hippocampal slices where GSK3 inhibitors reduced cytokine production and microglial migration, and provided protection from inflammation-induced neuronal toxicity. These findings demonstrate that GSK3 promotes microglial responses to inflammation and that the utilization of GSK3 inhibitors provides a means to limit the inflammatory actions of microglia. PMID:19007880

  10. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum.

    PubMed

    Ano, Yasuhisa; Kutsukake, Toshiko; Hoshi, Ayaka; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of dementia patients worldwide, fundamental therapeutic approaches to treat this disease remain to be established. Preventive approaches such as diet, exercise and learning attract attention. Several epidemiological studies suggest that ingestion of fermented dairy products prevents cognitive decline in the elderly. These reports indicate that specific ingredients in the fermented dairy products elicit an anti-inflammatory or anti-oxidative activity that facilitates neuroprotection. The responsible components remain to be investigated. A number of studies have shown that inflammation caused by microglia is closely related to exaggeration of the pathology and cognitive decline seen in the elderly. Many researchers have proposed that controlling microglial activities could be effective in preventing and possibly curing dementia. In the present study, to elucidate specific compounds that regulate microglial activity from dairy products, repeated purification by HPLC, combined with evaluation using primary microglia, facilitated the identification of dehydroergosterol (DHE) as a novel component of the extract that enhances microglial anti-inflammatory activity. DHE contains three conjugated double bonds in a steroid ring system and is an analogue of ergosterol. Despite their related chemical structures, the anti-inflammatory activity of DHE is markedly stronger than that of ergosterol. P. candidum for camembert cheese produces DHE, but P. Roqueforti for blue cheese and Aspergillus do not. DHE also induces CD11b-positive microglia cells into CD206-positive M2 type microglia. Neurotoxicity and neuronal cell death induced by excessively activated microglia is suppressed by treatment with DHE. Thus, this is the first report to demonstrate that DHE, identified as a responsible compound in dairy products, can induce microglia into a preferable phenotype for our brain environment and can be safely introduced into the body by consumption of

  11. Identification of a Novel Dehydroergosterol Enhancing Microglial Anti-Inflammatory Activity in a Dairy Product Fermented with Penicillium candidum

    PubMed Central

    Ano, Yasuhisa; Kutsukake, Toshiko; Hoshi, Ayaka; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of dementia patients worldwide, fundamental therapeutic approaches to treat this disease remain to be established. Preventive approaches such as diet, exercise and learning attract attention. Several epidemiological studies suggest that ingestion of fermented dairy products prevents cognitive decline in the elderly. These reports indicate that specific ingredients in the fermented dairy products elicit an anti-inflammatory or anti-oxidative activity that facilitates neuroprotection. The responsible components remain to be investigated. A number of studies have shown that inflammation caused by microglia is closely related to exaggeration of the pathology and cognitive decline seen in the elderly. Many researchers have proposed that controlling microglial activities could be effective in preventing and possibly curing dementia. In the present study, to elucidate specific compounds that regulate microglial activity from dairy products, repeated purification by HPLC, combined with evaluation using primary microglia, facilitated the identification of dehydroergosterol (DHE) as a novel component of the extract that enhances microglial anti-inflammatory activity. DHE contains three conjugated double bonds in a steroid ring system and is an analogue of ergosterol. Despite their related chemical structures, the anti-inflammatory activity of DHE is markedly stronger than that of ergosterol. P. candidum for camembert cheese produces DHE, but P. Roqueforti for blue cheese and Aspergillus do not. DHE also induces CD11b-positive microglia cells into CD206-positive M2 type microglia. Neurotoxicity and neuronal cell death induced by excessively activated microglia is suppressed by treatment with DHE. Thus, this is the first report to demonstrate that DHE, identified as a responsible compound in dairy products, can induce microglia into a preferable phenotype for our brain environment and can be safely introduced into the body by consumption of

  12. Microglial activation in multiple system atrophy: a potential role for NF-kappaB/rel proteins.

    PubMed

    Schwarz, S C; Seufferlein, T; Liptay, S; Schmid, R M; Kasischke, K; Foster, O J; Daniel, S; Schwarz, J

    1998-09-14

    Microglial activation is a prominent feature of affected brain areas in multiple system atrophy. Microglia express proinflammatory peptides, which may be a result of activation of nuclear factor-KB. We investigated the nuclear presence of RelA, the 65 kDa subunit of the NF-KB/RelA family in striatum and brain stem of patients with multiple system atrophy. Affected brain areas of patients with multiple system atrophy showed a marked immunoreactivity for nuclear Rel A p65, which was almost exclusively localized in activated microglia. Interestingly nuclear translocation of Rel A was not detected in striatal tissue of controls and Parkinson disease patients. Thus, NF-kappaB/Rel A complexes may play a role in mediating microglial activation in multiple system atrophy.

  13. tBHQ inhibits LPS-induced microglial activation via Nrf2-mediated suppression of p38 phosphorylation.

    PubMed

    Koh, Kyungmi; Cha, Youngnam; Kim, Sunyoung; Kim, Jiyoung

    2009-03-13

    Role of microglial Nrf2 activation in preventing neuronal death caused by microglial hyperactivation is investigated by using BV-2 microglial cells as modulator and primary neurons as target. Pretreatment of microglial cells with tBHQ, a phenolic antioxidant activating Nrf2, attenuated the LPS-derived overproduction of pro-inflammatory neurotoxic mediators like TNF-alpha, IL-1beta, IL-6, PGE(2), and NO as well as the morphological changes associated with microglial hyperactivation. Pretreatment of BV-2 cells with tBHQ suppressed LPS-induced phosphorylation of p38 required for overproduction of neurotoxic mediators. Results obtained using Nrf2-specific shRNA showed that expression of Nrf2 in microglia plays a critical role in tBHQ-derived suppression of LPS-induced p38 phosphorylation and microglial hyperactivation. Conditioned culture media taken from LPS-stimulated microglia cause neuronal death. However, the conditioned media taken from tBHQ-pretreated and LPS-stimulated microglia did not cause death of primary neurons. This suggested that prior activation of Nrf2 in microglia may inhibit microglial hyperactivation and prevent neuronal death.

  14. Mechanisms and Potential Therapeutic Applications of Microglial Activation after Brain Injury

    PubMed Central

    Kim, Jong Youl; Kim, Nuri; Yenari, Midori A.

    2014-01-01

    As the resident immune cells of the central nervous system, microglia rapidly respond to brain insults, including stroke and traumatic brain injury. Microglial activation plays a major role in neuronal cell damage and death by releasing a variety of inflammatory and neurotoxic mediators. Their activation is an early response that may exacerbate brain injury and many other stressors, especially in the acute stages, but are also essential to brain recovery and repair. The full range of microglial activities is still not completely understood, but there is accumulating knowledge about their role following brain injury. We review recent progress related to the deleterious and beneficial effects of microglia in the setting of acute neurological insults, and the current literature surrounding pharmacological interventions for intervention. PMID:25475659

  15. Modest amyloid deposition is associated with iron dysregulation, microglial activation, and oxidative stress.

    PubMed

    Gallagher, Joseph J; Finnegan, Mary E; Grehan, Belinda; Dobson, Jon; Collingwood, Joanna F; Lynch, Marina A

    2012-01-01

    There is a well-established literature indicating a relationship between iron in brain tissue and Alzheimer's disease (AD). More recently, it has become clear that AD is associated with neuroinflammatory and oxidative changes which probably result from microglial activation. In this study, we investigated the correlative changes in microglial activation, oxidative stress, and iron dysregulation in a mouse model of AD which exhibits early-stage amyloid deposition. Microfocus X-ray absorption spectroscopy analysis of intact brain tissue sections prepared from AβPP/PS1 transgenic mice revealed the presence of magnetite, a mixed-valence iron oxide, and local elevations in iron levels in tissue associated with amyloid-β-containing plaques. The evidence indicates that the expression of markers of microglial activation, CD11b and CD68, and astrocytic activation, GFAP, were increased, and were histochemically determined to be adjacent to amyloid-β-containing plaques. These findings support the contention that, in addition to glial activation and oxidative stress, iron dysregulation is an early event in AD pathology.

  16. Interleukin 4 induces the apoptosis of mouse microglial cells by a caspase-dependent mechanism.

    PubMed

    Soria, Javier A; Arroyo, Daniela S; Gaviglio, Emilia A; Rodriguez-Galan, Maria C; Wang, Ji Ming; Iribarren, Pablo

    2011-09-01

    Microglial cells are resident macrophages in the central nervous system (CNS) and become activated in many pathological conditions. Activation of microglial cells results in reactive microgliosis, manifested by an increase in cell number in the affected CNS regions. The control of microgliosis may be important to prevent pathological damage to the brain. The type 2 cytokine IL-4 has been reported to be protective in brain inflammation. However, its effect on microglial cell survival was not well understood. In this study, we report a dual effect of IL-4 on the survival of mouse microglial cells. In a 6h short term culture, IL-4 reduced the death of microglial cells induced by staurosporine. In contrast, in long term treatment (more than 48h), IL-4 increased the apoptotic death of both primary mouse microglial cells and a microglial cell line N9. Mechanistic studies revealed that, in microglial cells, IL-4 increased the levels of cleaved caspase 3 and PARP, which is down-stream of activated caspase 3. In addition, IL-4 down regulated the autophagy and the antiapoptotic protein Bcl-xL in microglial cells. On the other hand, the pre-incubation of microglial cells with IL-4 for 24h, attenuated the cell death induced by the neurotoxic peptide amyloid beta 1-42 (Aβ42). Our observations demonstrate a novel function of IL-4 in regulating the survival of microglial cells, which may have important significance in reduction of undesired inflammatory responses in the CNS.

  17. Coordinated role of voltage-gated sodium channels and the Na+/H+ exchanger in sustaining microglial activation during inflammation.

    PubMed

    Hossain, Muhammad M; Sonsalla, Patricia K; Richardson, Jason R

    2013-12-01

    Persistent neuroinflammation and microglial activation play an integral role in the pathogenesis of many neurological disorders. We investigated the role of voltage-gated sodium channels (VGSC) and Na(+)/H(+) exchangers (NHE) in the activation of immortalized microglial cells (BV-2) after lipopolysaccharide (LPS) exposure. LPS (10 and 100 ng/ml) caused a dose- and time-dependent accumulation of intracellular sodium [(Na(+))i] in BV-2 cells. Pre-treatment of cells with the VGSC antagonist tetrodotoxin (TTX, 1 μM) abolished short-term Na(+) influx, but was unable to prevent the accumulation of (Na(+))i observed at 6 and 24h after LPS exposure. The NHE inhibitor cariporide (1 μM) significantly reduced accumulation of (Na(+))i 6 and 24h after LPS exposure. Furthermore, LPS increased the mRNA expression and protein level of NHE-1 in a dose- and time-dependent manner, which was significantly reduced after co-treatment with TTX and/or cariporide. LPS increased production of TNF-α, ROS, and H2O2 and expression of gp91(phox), an active subunit of NADPH oxidase, in a dose- and time-dependent manner, which was significantly reduced by TTX or TTX+cariporide. Collectively, these data demonstrate a closely-linked temporal relationship between VGSC and NHE-1 in regulating function in activated microglia, which may provide avenues for therapeutic interventions aimed at reducing neuroinflammation.

  18. Anti-HIV-1 activity of propolis in CD4(+) lymphocyte and microglial cell cultures.

    PubMed

    Gekker, Genya; Hu, Shuxian; Spivak, Marla; Lokensgard, James R; Peterson, Phillip K

    2005-11-14

    An urgent need for additional agents to treat human immunodeficiency virus type 1 (HIV-1) infection led us to assess the anti-HIV-1 activity of the natural product propolis in CD4(+) lymphocytes and microglial cell cultures. Propolis inhibited viral expression in a concentration-dependent manner (maximal suppression of 85 and 98% was observed at 66.6 microg/ml propolis in CD4(+) and microglial cell cultures, respectively). Similar anti-HIV-1 activity was observed with propolis samples from several geographic regions. The mechanism of propolis antiviral property in CD4(+) lymphocytes appeared to involve, in part, inhibition of viral entry. While propolis had an additive antiviral effect on the reverse transcriptase inhibitor zidovudine, it had no noticeable effect on the protease inhibitor indinavir. The results of this in vitro study support the need for clinical trials of propolis or one or more of its components in the treatment of HIV-1 infection.

  19. CD200-CD200R dysfunction exacerbates microglial activation and dopaminergic neurodegeneration in a rat model of Parkinson's disease

    PubMed Central

    2011-01-01

    Background Increasing evidence suggests that microglial activation may participate in the aetiology and pathogenesis of Parkinson's disease (PD). CD200-CD200R signalling has been shown to be critical for restraining microglial activation. We have previously shown that expression of CD200R in monocyte-derived macrophages, induced by various stimuli, is impaired in PD patients, implying an intrinsic abnormality of CD200-CD200R signalling in PD brain. Thus, further in vivo evidence is needed to elucidate the role of malfunction of CD200-CD200R signalling in the pathogenesis of PD. Methods 6-hydroxydopamine (6-OHDA)-lesioned rats were used as an animal model of PD. CD200R-blocking antibody (BAb) was injected into striatum to block the engagement of CD200 and CD200R. The animals were divided into three groups, which were treated with 6-OHDA/Veh (PBS), 6-OHDA/CAb (isotype control antibody) or 6-OHDA/BAb, respectively. Rotational tests and immunohistochemistry were employed to evaluate motor deficits and dopaminergic neurodegeneration in animals from each group. HPLC analysis was used to measure monoamine levels in striatum. Morphological analysis and quantification of CD11b- (or MHC II-) immunoreactive cells were performed to investigate microglial activation and possible neuroinflammation in the substantia nigra (SN). Finally, ELISA was employed to assay protein levels of proinflammatory cytokines. Results Compared with 6-OHDA/CAb or 6-OHDA/Veh groups, rats treated with 6-OHDA/BAb showed a significant increase in counts of contralateral rotation and a significant decrease in TH-immunoreactive (TH-ir) neurons in SN. A marked decrease in monoamine levels was also detected in 6-OHDA/BAb-treated rats, in comparison to 6-OHDA/Veh-treated ones. Furthermore, remarkably increased activation of microglia as well as up-regulation of proinflammatory cytokines was found concomitant with dopaminergic neurodegeneration in 6-OHDA/BAb-treated rats. Conclusions This study shows that

  20. Nutritional and Pharmacological Strategies to Regulate Microglial Polarization in Cognitive Aging and Alzheimer’s Disease

    PubMed Central

    Peña-Altamira, Emiliano; Petralla, Sabrina; Massenzio, Francesca; Virgili, Marco; Bolognesi, Maria L.; Monti, Barbara

    2017-01-01

    The study of microglia, the immune cells of the brain, has experienced a renaissance after the discovery of microglia polarization. In fact, the concept that activated microglia can shift into the M1 pro-inflammatory or M2 neuroprotective phenotypes, depending on brain microenvironment, has completely changed the understanding of microglia in brain aging and neurodegenerative diseases. Microglia polarization is particularly important in aging since an increased inflammatory status of body compartments, including the brain, has been reported in elderly people. In addition, inflammatory markers, mainly derived from activated microglia, are widely present in neurodegenerative diseases. Microglial inflammatory dysfunction, also linked to microglial senescence, has been extensively demonstrated and associated with cognitive impairment in neuropathological conditions related to aging. In fact, microglia polarization is known to influence cognitive function and has therefore become a main player in neurodegenerative diseases leading to dementia. As the life span of human beings increases, so does the prevalence of cognitive dysfunction. Thus, therapeutic strategies aimed to modify microglia polarization are currently being developed. Pharmacological approaches able to shift microglia from M1 pro-inflammatory to M2 neuroprotective phenotype are actually being studied, by acting on many different molecular targets, such as glycogen synthase kinase-3 (GSK3) β, AMP-activated protein kinase (AMPK), histone deacetylases (HDACs), etc. Furthermore, nutritional approaches can also modify microglia polarization and, consequently, impact cognitive function. Several bioactive compounds normally present in foods, such as polyphenols, can have anti-inflammatory effects on microglia. Both pharmacological and nutritional approaches seem to be promising, but still need further development. Here we review recent data on these approaches and propose that their combination could have a

  1. Microglial activation by Citrobacter koseri is mediated by TLR4- and MyD88-dependent pathways.

    PubMed

    Liu, Shuliang; Kielian, Tammy

    2009-11-01

    Citrobacter koseri is a Gram-negative bacterium that can cause a highly aggressive form of neonatal meningitis, which often progresses to establish multifocal brain abscesses. Despite its tropism for the brain parenchyma, microglial responses to C. koseri have not yet been examined. Microglia use TLRs to recognize invading pathogens and elicit proinflammatory mediator expression important for infection containment. In this study, we investigated the importance of the LPS receptor TLR4 and MyD88, an adaptor molecule involved in the activation of the majority of TLRs in addition to the IL-1 and IL-18 receptors, for their roles in regulating microglial activation in response to C. koseri. Proinflammatory mediator release was significantly reduced in TLR4 mutant and MyD88 knockout microglia compared with wild-type cells following exposure to either live or heat-killed C. koseri, indicating a critical role for both TLR4- and MyD88-dependent pathways in microglial responses to this pathogen. However, residual proinflammatory mediator expression was still observed in TLR4 mutant and MyD88 KO microglia following C. koseri exposure, indicating a contribution of TLR4- and MyD88-independent pathway(s) for maximal pathogen recognition. Interestingly, C. koseri was capable of surviving intracellularly in both primary microglia and macrophages, suggesting that these cells may serve as a reservoir for the pathogen during CNS infections. These results demonstrate that microglia respond to C. koseri with the robust expression of proinflammatory molecules, which is dictated, in part, by TLR4- and MyD88-dependent signals.

  2. Microglial activatory (immunoreceptor tyrosine-based activation motif)- and inhibitory (immunoreceptor tyrosine-based inhibition motif)-signaling receptors for recognition of the neuronal glycocalyx.

    PubMed

    Linnartz, Bettina; Neumann, Harald

    2013-01-01

    Microglia sense intact or lesioned cells of the central nervous system (CNS) and respond accordingly. To fulfill this task, microglia express a whole set of recognition receptors. Fc receptors and DAP12 (TYROBP)-associated receptors such as microglial triggering receptor expressed on myeloid cells-2 (TREM2) and the complement receptor-3 (CR3, CD11b/CD18) trigger the immunoreceptor tyrosine-based activation motif (ITAM)-signaling cascade, resulting in microglial activation, migration, and phagocytosis. Those receptors are counter-regulated by immunoreceptor tyrosine-based inhibition motif (ITIM)-signaling receptors, such as sialic acid-binding immunoglobulin superfamily lectins (Siglecs). Siglecs recognize the sialic acid cap of healthy neurons thus leading to an ITIM signaling that turns down microglial immune responses and phagocytosis. In contrast, desialylated neuronal processes are phagocytosed by microglial CR3 signaling via an adaptor protein containing an ITAM. Thus, the aberrant terminal glycosylation of neuronal surface glycoproteins and glycolipids could serve as a flag for microglia, which display a multitude of diverse carbohydrate-binding receptors that monitor the neuronal physical condition and respond via their ITIM- or ITAM-signaling cascade accordingly.

  3. Treatment with polyamine oxidase inhibitor reduces microglial activation and limits vascular injury in ischemic retinopathy

    PubMed Central

    Patel, C.; Xu, Z.; Shosha, E.; Xing, J.; Lucas, R.; Caldwell, R.W.; Caldwell, R.B.; Narayanan, S.P.

    2016-01-01

    Retinal vascular injury is a major cause of vision impairment in ischemic retinopathies. Insults such as hyperoxia, oxidative stress and inflammation contribute to this pathology. Previously, we showed that hyperoxia-induced retinal neurodegeneration is associated with increased polyamine oxidation. Here, we are studying the involvement of polyamine oxidases in hyperoxia-induced injury and death of retinal vascular endothelial cells. Newborn C57BL6/J mice were exposed to hyperoxia (70% O2) from postnatal day (P) 7 to 12 and were treated with the polyamine oxidase inhibitor MDL 72527 or vehicle starting at P6. Mice were sacrificed after different durations of hyperoxia and their retinas were analyzed to determine the effects on vascular injury, microglial cell activation, and inflammatory cytokine profiling. The results of this analysis showed that MDL 72527 treatment significantly reduced hyperoxia-induced retinal vascular injury and enhanced vascular sprouting as compared with the vehicle controls. These protective effects were correlated with significant decreases in microglial activation as well as levels of inflammatory cytokines and chemokines. In order to model the effects of polyamine oxidation in causing microglial activation in vitro, studies were performed using rat brain microvascular endothelial cells treated with conditioned-medium from rat retinal microglia stimulated with hydrogen peroxide. Conditioned-medium from activated microglial cultures induced cell stress signals and cell death in microvascular endothelial cells. These studies demonstrate the involvement of polyamine oxidases in hyperoxia-induced retinal vascular injury and retinal inflammation in ischemic retinopathy, through mechanisms involving cross-talk between endothelial cells and resident retinal microglia. PMID:27239699

  4. Papaverine inhibits lipopolysaccharide-induced microglial activation by suppressing NF-κB signaling pathway

    PubMed Central

    Dang, Yalong; Mu, Yalin; Wang, Kun; Xu, Ke; Yang, Jing; Zhu, Yu; Luo, Bin

    2016-01-01

    Objective To investigate the effects of papaverine (PAP) on lipopolysaccharide (LPS)-induced microglial activation and its possible mechanisms. Materials and methods BV2 microglial cells were first pretreated with PAP (0, 0.4, 2, 10, and 50 μg/mL) and then received LPS stimulation. Transcription and production of proinflammatory factors (IL1β, TNFα, iNOS, and COX-2) were used to evaluate microglial activation. The transcriptional changes undergone by M1/M2a/M2b markers were used to evaluate phenotype transformation of BV2 cells. Immunofluorescent staining and Western blot were used to detect the location and expression of P65 and p-IKK in the presence or absence of PAP pretreatment. Results Pretreatment with PAP significantly inhibited the expression of IL1β and TNFα, and suppressed the transcription of M1/M2b markers Il1rn, Socs3, Nos2 and Ptgs2, but upregulated the transcription of M2a markers (Arg1 and Mrc1) in a dose-dependent manner. In addition, PAP pretreatment significantly decreased the expression of p-IKK and inhibited the nuclear translocation of P65 after LPS stimulation. Conclusion PAP not only suppressed the LPS-induced microglial activity by inhibiting transcription/production of proinflammatory factors, but also promoted the transformation of activated BV2 cells from cytotoxic phenotypes (M1/M2b) to a neuroprotective phenotype (M2a). These effects were probably mediated by NF-κB signaling pathway. Thus, it would be a promising candidate for the treatment of neurodegenerative diseases. PMID:27013863

  5. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease.

    PubMed

    Streit, Wolfgang J; Braak, Heiko; Xue, Qing-Shan; Bechmann, Ingo

    2009-10-01

    The role of microglial cells in the pathogenesis of Alzheimer's disease (AD) neurodegeneration is unknown. Although several works suggest that chronic neuroinflammation caused by activated microglia contributes to neurofibrillary degeneration, anti-inflammatory drugs do not prevent or reverse neuronal tau pathology. This raises the question if indeed microglial activation occurs in the human brain at sites of neurofibrillary degeneration. In view of the recent work demonstrating presence of dystrophic (senescent) microglia in aged human brain, the purpose of this study was to investigate microglial cells in situ and at high resolution in the immediate vicinity of tau-positive structures in order to determine conclusively whether degenerating neuronal structures are associated with activated or with dystrophic microglia. We used a newly optimized immunohistochemical method for visualizing microglial cells in human archival brain together with Braak staging of neurofibrillary pathology to ascertain the morphology of microglia in the vicinity of tau-positive structures. We now report histopathological findings from 19 humans covering the spectrum from none to severe AD pathology, including patients with Down's syndrome, showing that degenerating neuronal structures positive for tau (neuropil threads, neurofibrillary tangles, neuritic plaques) are invariably colocalized with severely dystrophic (fragmented) rather than with activated microglial cells. Using Braak staging of Alzheimer neuropathology we demonstrate that microglial dystrophy precedes the spread of tau pathology. Deposits of amyloid-beta protein (Abeta) devoid of tau-positive structures were found to be colocalized with non-activated, ramified microglia, suggesting that Abeta does not trigger microglial activation. Our findings also indicate that when microglial activation does occur in the absence of an identifiable acute central nervous system insult, it is likely to be the result of systemic infectious

  6. Cerium Oxide Nanoparticles Reduce Microglial Activation and Neurodegenerative Events in Light Damaged Retina

    PubMed Central

    Fiorani, Lavinia; Passacantando, Maurizio; Santucci, Sandro; Di Marco, Stefano; Bisti, Silvia; Maccarone, Rita

    2015-01-01

    The first target of any therapy for retinal neurodegeneration is to slow down the progression of the disease and to maintain visual function. Cerium oxide or ceria nanoparticles reduce oxidative stress, which is known to play a pivotal role in neurodegeneration. Our aim was to investigate whether cerium oxide nanoparticles were able to mitigate neurodegeneration including microglial activation and related inflammatory processes induced by exposure to high intensity light. Cerium oxide nanoparticles were injected intravitreally or intraveinously in albino Sprague-Dawley rats three weeks before exposing them to light damage of 1000 lux for 24 h. Electroretinographic recordings were performed a week after light damage. The progression of retinal degeneration was evaluated by measuring outer nuclear layer thickness and TUNEL staining to quantify photoreceptors death. Immunohistochemical analysis was used to evaluate retinal stress, neuroinflammatory cytokines and microglial activation. Only intravitreally injected ceria nanoparticles were detected at the level of photoreceptor outer segments 3 weeks after the light damage and electoretinographic recordings showed that ceria nanoparticles maintained visual response. Moreover, this treatment reduced neuronal death and “hot spot” extension preserving the outer nuclear layer morphology. It is noteworthy that in this work we demonstrated, for the first time, the ability of ceria nanoparticles to reduce microglial activation and their migration toward outer nuclear layer. All these evidences support ceria nanoparticles as a powerful therapeutic agent in retinal neurodegenerative processes. PMID:26469804

  7. Acupuncture inhibits microglial activation and inflammatory events in the MPTP-induced mouse model.

    PubMed

    Kang, Jun Mo; Park, Hi Joon; Choi, Yeong Gon; Choe, Il Hwan; Park, Jae Hyun; Kim, Yong Sik; Lim, Sabina

    2007-02-02

    Using a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD), this study investigated on the neuroprotective effects of acupuncture by examining whether acupuncture contributed to inhibiting microglial activation and inflammatory events. C57BL/6 mice were treated with MPTP (30 mg/kg, i.p.) for 5 consecutive days. Acupuncture was then applied to acupoints Yanglingquan (GB34) and Taichong (LR3) starting 2 h after the first MPTP administration and then at 48 h intervals until the mice were sacrificed for analyses at 1, 3, and 7 days after the last MPTP injection. These experiments demonstrated that acupuncture inhibited the decreased of the tyrosine hydroxylase (TH) immunoreactivity (IR) and generated a neuroprotective effects in the striatum (ST) and the substantia nigra (SN) on days 1, 3, and 7 post-MPTP injections. Acupuncture attenuated the increase of macrophage antigen complex-1 (MAC-1), a marker of microglial activation, at 1 and 3 days and reduced the increases in cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression on days 1, 3, and 7. In MPTP group, striatal dopamine (DA) was measured by 46% at 7 days, whereas DA in the acupuncture group was 78%. On the basis of these results, we suggest that acupuncture could be used as a neuroprotective intervention for the purpose of inhibiting microglial activation and inflammatory events in PD.

  8. Cerium Oxide Nanoparticles Reduce Microglial Activation and Neurodegenerative Events in Light Damaged Retina.

    PubMed

    Fiorani, Lavinia; Passacantando, Maurizio; Santucci, Sandro; Di Marco, Stefano; Bisti, Silvia; Maccarone, Rita

    2015-01-01

    The first target of any therapy for retinal neurodegeneration is to slow down the progression of the disease and to maintain visual function. Cerium oxide or ceria nanoparticles reduce oxidative stress, which is known to play a pivotal role in neurodegeneration. Our aim was to investigate whether cerium oxide nanoparticles were able to mitigate neurodegeneration including microglial activation and related inflammatory processes induced by exposure to high intensity light. Cerium oxide nanoparticles were injected intravitreally or intraveinously in albino Sprague-Dawley rats three weeks before exposing them to light damage of 1000 lux for 24 h. Electroretinographic recordings were performed a week after light damage. The progression of retinal degeneration was evaluated by measuring outer nuclear layer thickness and TUNEL staining to quantify photoreceptors death. Immunohistochemical analysis was used to evaluate retinal stress, neuroinflammatory cytokines and microglial activation. Only intravitreally injected ceria nanoparticles were detected at the level of photoreceptor outer segments 3 weeks after the light damage and electoretinographic recordings showed that ceria nanoparticles maintained visual response. Moreover, this treatment reduced neuronal death and "hot spot" extension preserving the outer nuclear layer morphology. It is noteworthy that in this work we demonstrated, for the first time, the ability of ceria nanoparticles to reduce microglial activation and their migration toward outer nuclear layer. All these evidences support ceria nanoparticles as a powerful therapeutic agent in retinal neurodegenerative processes.

  9. Abscisic acid activates the murine microglial cell line N9 through the second messenger cyclic ADP-ribose.

    PubMed

    Bodrato, Nicoletta; Franco, Luisa; Fresia, Chiara; Guida, Lucrezia; Usai, Cesare; Salis, Annalisa; Moreschi, Iliana; Ferraris, Chiara; Verderio, Claudia; Basile, Giovanna; Bruzzone, Santina; Scarfì, Sonia; De Flora, Antonio; Zocchi, Elena

    2009-05-29

    Abscisic acid (ABA) is a phytohormone regulating important functions in higher plants, notably responses to abiotic stress. Recently, chemical or physical stimulation of human granulocytes was shown to induce production and release of endogenous ABA, which activates specific cell functions. Here we provide evidence that ABA stimulates several functional activities of the murine microglial cell line N9 (NO and tumor necrosis factor-alpha production, cell migration) through the second messenger cyclic ADP-ribose and an increase of intracellular calcium. ABA production and release occur in N9 cells stimulated with bacterial lipopolysaccharide, phorbol myristate acetate, the chemoattractant peptide f-MLP, or beta-amyloid, the primary plaque component in Alzheimer disease. Finally, ABA priming stimulates N9 cell migration toward beta-amyloid. These results indicate that ABA is a pro-inflammatory hormone inducing autocrine microglial activation, potentially representing a new target for anti-inflammatory therapies aimed at limiting microglia-induced tissue damage in the central nervous system.

  10. Resveratrol suppresses calcium-mediated microglial activation and rescues hippocampal neurons of adult rats following acute bacterial meningitis.

    PubMed

    Sheu, Ji-Nan; Liao, Wen-Chieh; Wu, Un-In; Shyu, Ling-Yuh; Mai, Fu-Der; Chen, Li-You; Chen, Mei-Jung; Youn, Su-Chung; Chang, Hung-Ming

    2013-03-01

    Acute bacterial meningitis (ABM) is a serious disease with severe neurological sequelae. The intense calcium-mediated microglial activation and subsequently pro-inflammatory cytokine release plays an important role in eliciting ABM-related oxidative damage. Considering resveratrol possesses significant anti-inflammatory and anti-oxidative properties, the present study aims to determine whether resveratrol would exert beneficial effects on hippocampal neurons following ABM. ABM was induced by inoculating Klebsiella pneumoniae into adult rats intraventricularly. The time-of-flight secondary ion mass spectrometry (TOF-SIMS), Griffonia simplicifolia isolectin-B4 (GSA-IB4) and ionized calcium binding adaptor molecule 1 (Iba1) immunohistochemistry, enzyme-linked immunosorbent assay as well as malondialdehyde (MDA) measurement were used to examine the calcium expression, microglial activation, pro-inflammatory cytokine level, and extent of oxidative stress, respectively. In ABM rats, strong calcium signaling associated with enhanced microglial activation was observed in hippocampus. Increased microglial expression was coincided with intense production of pro-inflammatory cytokines and oxidative damage. However, in rats receiving resveratrol after ABM, the calcium intensity, microglial activation, pro-inflammatory cytokine and MDA levels were all significantly decreased. Quantitative data showed that much more hippocampal neurons were survived in resveratrol-treated rats following ABM. As resveratrol successfully rescues hippocampal neurons from ABM by suppressing the calcium-mediated microglial activation, therapeutic use of resveratrol may act as a promising strategy to counteract the ABM-induced neurological damage.

  11. Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway.

    PubMed

    Yang, Xinguang; Huo, Fuquan; Liu, Bei; Liu, Jing; Chen, Tao; Li, Junping; Zhu, Zhongqiao; Lv, Bochang

    2017-02-25

    Diabetic retinopathy (DR) is a serious microvascular complication of diabetes mellitus that is closely associated with the degeneration and loss of retinal ganglion cells (RGCs) caused by diabetic microangiopathy and subsequent oxidative stress and an inflammatory response. Microglial cells are classed as neurogliocytes and play a significant role in neurodegenerative diseases. Over-activated microglial cells may cause neurotoxicity and induce the death and apoptosis of RGCs. Crocin is one of the two most pharmacologically bioactive constituents in saffron. In the present study, we focused on the role of microglial cells in DR, suggesting that DR may cause the over-activation of microglial cells and induce oxidative stress and the release of pro-inflammatory factors. Microglial cells BV-2 and N9 were cultured, and high-glucose (HG) and free fatty acid (FFA) were used to simulate diabetes. The results showed that HG-FFA co-treatment caused the up-regulated expression of CD11b and Iba-1, indicating that BV-2 and N9 cells were over-activated. Moreover, oxidative stress markers and pro-inflammatory factors were significantly enhanced by HG-FFA treatment. We found that crocin prevented the oxidative stress and pro-inflammatory response induced by HG-FFA co-treatment. Moreover, using the PI3K/Akt inhibitor LY294002, we revealed that PI3K/Akt signaling plays a significant role in blocking oxidative stress, suppressing the pro-inflammatory response, and maintaining the neuroprotective effects of crocin. In total, these results provide a new insight into DR and DR-induced oxidative stress and the inflammatory response, which provide a potential therapeutic target for neuronal damage, vision loss, and other DR-induced complications.

  12. Longitudinal influence of microglial activation and amyloid on neuronal function in Alzheimer's disease.

    PubMed

    Fan, Zhen; Okello, Aren A; Brooks, David J; Edison, Paul

    2015-12-01

    Amyloid deposition, tangle formation, neuroinflammation and neuronal dysfunction are pathological processes involved in Alzheimer's disease. However, the relative role of these processes in driving disease progression is still unclear. The aim of this positron emission tomography study was to: (i) investigate longitudinal changes of microglial activation, amyloid and glucose metabolism; and (ii) assess the temporospatial relationship between these three processes in Alzheimer's disease. A group of eight patients with a diagnosis of Alzheimer's disease (66 ± 4.8 years) and 14 healthy controls (65 ± 5.5 years) underwent T1 and T2 magnetic resonance imaging, along with (11)C-(R)-PK11195, (11)C-Pittsburgh compound B and (18)F-fluorodeoxyglucose positron emission tomography scans for microglial activation, amyloid deposition and glucose metabolism. All patients were followed-up with repeated magnetic resonance imaging and three positron emission tomography scans after 16 months. Parametric maps were interrogated using region of interest analysis, Statistical Parametric Mapping, and between-group correlation analysis at voxel-level using Biological Parametric Mapping. At baseline, patients with Alzheimer's disease showed significantly increased microglial activation compared to the control subjects. During follow-up, for the first time, we found that while there is a progressive reduction of glucose metabolism, there was a longitudinal increase of microglial activation in the majority of the patients with Alzheimer's disease. Voxel-wise correlation analysis revealed that microglial activation in patients with Alzheimer's disease was positively correlated with amyloid deposition and inversely correlated with regional cerebral metabolic rate at voxel level over time. Even though one of the limitations of this study is the lack of longitudinal follow-up of healthy control subjects, this study demonstrates that there is persistent neuroinflammation throughout the Alzheimer

  13. MicroRNA 146a (miR-146a) Is Over-Expressed during Prion Disease and Modulates the Innate Immune Response and the Microglial Activation State

    PubMed Central

    Huzarewich, Rhiannon L. C. H.; Manguiat, Kathy; Medina, Sarah; Robertson, Catherine; Booth, Stephanie A.

    2012-01-01

    Increasing evidence supports the involvement of microRNAs (miRNAs) in inflammatory and immune processes in prion neuropathogenesis. MiRNAs are small, non-coding RNA molecules which are emerging as key regulators of numerous cellular processes. We established miR-146a over-expression in prion-infected mouse brain tissues concurrent with the onset of prion deposition and appearance of activated microglia. Expression profiling of a variety of central nervous system derived cell-lines revealed that miR-146a is preferentially expressed in cells of microglial lineage. Prominent up-regulation of miR-146a was evident in the microglial cell lines BV-2 following TLR2 or TLR4 activation and also EOC 13.31 via TLR2 that reached a maximum 24–48 hours post-stimulation, concomitant with the return to basal levels of transcription of induced cytokines. Gain- and loss-of-function studies with miR-146a revealed a substantial deregulation of inflammatory response pathways in response to TLR2 stimulation. Significant transcriptional alterations in response to miR-146a perturbation included downstream mediators of the pro-inflammatory transcription factor, nuclear factor-kappa B (NF-κB) and the JAK-STAT signaling pathway. Microarray analysis also predicts a role for miR-146a regulation of morphological changes in microglial activation states as well as phagocytic mediators of the oxidative burst such as CYBA and NOS3. Based on our results, we propose a role for miR-146a as a potent modulator of microglial function by regulating the activation state during prion induced neurodegeneration. PMID:22363497

  14. Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment.

    PubMed

    Mattei, D; Ivanov, A; Ferrai, C; Jordan, P; Guneykaya, D; Buonfiglioli, A; Schaafsma, W; Przanowski, P; Deuther-Conrad, W; Brust, P; Hesse, S; Patt, M; Sabri, O; Ross, T L; Eggen, B J L; Boddeke, E W G M; Kaminska, B; Beule, D; Pombo, A; Kettenmann, H; Wolf, S A

    2017-05-09

    Maternal immune activation (MIA) during pregnancy has been linked to an increased risk of developing psychiatric pathologies in later life. This link may be bridged by a defective microglial phenotype in the offspring induced by MIA, as microglia have key roles in the development and maintenance of neuronal signaling in the central nervous system. The beneficial effects of the immunomodulatory treatment with minocycline on schizophrenic patients are consistent with this hypothesis. Using the MIA mouse model, we found an altered microglial transcriptome and phagocytic function in the adult offspring accompanied by behavioral abnormalities. The changes in microglial phagocytosis on a functional and transcriptional level were similar to those observed in a mouse model of Alzheimer's disease hinting to a related microglial phenotype in neurodegenerative and psychiatric disorders. Minocycline treatment of adult MIA offspring reverted completely the transcriptional, functional and behavioral deficits, highlighting the potential benefits of therapeutic targeting of microglia in psychiatric disorders.

  15. Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment

    PubMed Central

    Mattei, D; Ivanov, A; Ferrai, C; Jordan, P; Guneykaya, D; Buonfiglioli, A; Schaafsma, W; Przanowski, P; Deuther-Conrad, W; Brust, P; Hesse, S; Patt, M; Sabri, O; Ross, T L; Eggen, B J L; Boddeke, E W G M; Kaminska, B; Beule, D; Pombo, A; Kettenmann, H; Wolf, S A

    2017-01-01

    Maternal immune activation (MIA) during pregnancy has been linked to an increased risk of developing psychiatric pathologies in later life. This link may be bridged by a defective microglial phenotype in the offspring induced by MIA, as microglia have key roles in the development and maintenance of neuronal signaling in the central nervous system. The beneficial effects of the immunomodulatory treatment with minocycline on schizophrenic patients are consistent with this hypothesis. Using the MIA mouse model, we found an altered microglial transcriptome and phagocytic function in the adult offspring accompanied by behavioral abnormalities. The changes in microglial phagocytosis on a functional and transcriptional level were similar to those observed in a mouse model of Alzheimer’s disease hinting to a related microglial phenotype in neurodegenerative and psychiatric disorders. Minocycline treatment of adult MIA offspring reverted completely the transcriptional, functional and behavioral deficits, highlighting the potential benefits of therapeutic targeting of microglia in psychiatric disorders. PMID:28485733

  16. Cannabidiol and Other Cannabinoids Reduce Microglial Activation In Vitro and In Vivo: Relevance to Alzheimer's Disease

    PubMed Central

    Martín-Moreno, Ana María; Reigada, David; Ramírez, Belén G.; Mechoulam, R.; Innamorato, Nadia; Cuadrado, Antonio

    2011-01-01

    Microglial activation is an invariant feature of Alzheimer's disease (AD). It is noteworthy that cannabinoids are neuroprotective by preventing β-amyloid (Aβ)-induced microglial activation both in vitro and in vivo. On the other hand, the phytocannabinoid cannabidiol (CBD) has shown anti-inflammatory properties in different paradigms. In the present study, we compared the effects of CBD with those of other cannabinoids on microglial cell functions in vitro and on learning behavior and cytokine expression after Aβ intraventricular administration to mice. CBD, (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo-[1,2,3-d,e]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone [WIN 55,212-2 (WIN)], a mixed CB1/CB2 agonist, and 1,1-dimethylbutyl-1-deoxy-Δ9-tetrahydrocannabinol [JWH-133 (JWH)], a CB2-selective agonist, concentration-dependently decreased ATP-induced (400 μM) increase in intracellular calcium ([Ca2+]i) in cultured N13 microglial cells and in rat primary microglia. In contrast, 4-[4-(1,1-dimethylheptyl)-2,6-dimethoxyphenyl]-6,6-dimethyl-bicyclo[3.1.1]hept-2-ene-2-methanol [HU-308 (HU)], another CB2 agonist, was without effect. Cannabinoid and adenosine A2A receptors may be involved in the CBD action. CBD- and WIN-promoted primary microglia migration was blocked by CB1 and/or CB2 antagonists. JWH and HU-induced migration was blocked by a CB2 antagonist only. All of the cannabinoids decreased lipopolysaccharide-induced nitrite generation, which was insensitive to cannabinoid antagonism. Finally, both CBD and WIN, after subchronic administration for 3 weeks, were able to prevent learning of a spatial navigation task and cytokine gene expression in β-amyloid-injected mice. In summary, CBD is able to modulate microglial cell function in vitro and induce beneficial effects in an in vivo model of AD. Given that CBD lacks psychoactivity, it may represent a novel therapeutic approach for this neurological disease. PMID:21350020

  17. Eupatilin exerts neuroprotective effects in mice with transient focal cerebral ischemia by reducing microglial activation

    PubMed Central

    Cho, Kyu Suk; Jeon, Se Jin; Kwon, Oh Wook; Jang, Dae Sik; Kim, Sun Yeou; Ryu, Jong Hoon; Choi, Ji Woong

    2017-01-01

    Microglial activation and its-driven neuroinflammation are characteristic pathogenetic features of neurodiseases, including focal cerebral ischemia. The Artemisia asiatica (Asteraceae) extract and its active component, eupatilin, are well-known to reduce inflammatory responses. But the therapeutic potential of eupatilin against focal cerebral ischemia is not known, along with its anti-inflammatory activities on activated microglia. In this study, we investigated the neuroprotective effect of eupatilin on focal cerebral ischemia through its anti-inflammation, particularly on activated microglia, employing a transient middle cerebral artery occlusion/reperfusion (tMCAO), combined with lipopolysaccharide-stimulated BV2 microglia. Eupatilin exerted anti-inflammatory responses in activated BV2 microglia, in which it reduced secretion of well-known inflammatory markers, including nitrite, IL-6, TNF-α, and PGE2, in a concentration-dependent manner. These observed in vitro effects of eupatilin led to in vivo neuroprotection against focal cerebral ischemia. Oral administration of eupatilin (10 mg/kg) in a therapeutic paradigm significantly reduced brain infarction and improved neurological functions in tMCAO-challenged mice. The same benefit was also observed when eupatilin was given even within 5 hours after MCAO induction. In addition, the neuroprotective effects of a single administration of eupatilin (10 mg/kg) immediately after tMCAO challenge persisted up to 3 days after tMCAO. Eupatilin administration reduced the number of Iba1-immunopositive cells across ischemic brain and induced their morphological changes from amoeboid into ramified in the ischemic core, which was accompanied with reduced microglial proliferation in ischemic brain. Eupatilin suppressed NF-κB signaling activities in ischemic brain by reducing IKKα/β phosphorylation, IκBα phosphorylation, and IκBα degradation. Overall, these data indicate that eupatilin is a neuroprotective agent against

  18. Inhibition of microglial activation contributes to propofol-induced protection against post-cardiac arrest brain injury in rats.

    PubMed

    Wang, Wei; Lu, Rui; Feng, Da-Yun; Liang, Li-Rong; Liu, Bing; Zhang, Hui

    2015-09-01

    It has been suggested that propofol can modulate microglial activity and hence may have potential roles against neuroinflammation following brain ischemic insult. However, whether and how propofol can inhibit post-cardiac arrest brain injury via inhibition of microglia activation remains unclear. A rat model of asphyxia cardiac arrest (CA) was created followed by cardiopulmonary resuscitation. CA induced marked microglial activation in the hippocampal CA1 region, revealed by increased OX42 and P2 class of purinoceptor 7 (P2X7R) expression, as well as p38 MAPK phosphorylation. Morris water maze showed that learning and memory deficits following CA could be inhibited or alleviated by pre-treatment with the microglial inhibitor minocycline or propofol. Microglial activation was significantly suppressed likely via the P2X7R/p-p38 pathway by propofol. Moreover, hippocampal neuronal injuries after CA were remarkably attenuated by propofol. In vitro experiment showed that propofol pre-treatment inhibited ATP-induced microglial activation and release of tumor necrosis factor-α and interleukin-1β. In addition, propofol protected neurons from injury when co-culturing with ATP-treated microglia. Our data suggest that propofol pre-treatment inhibits CA-induced microglial activation and neuronal injury in the hippocampus and ultimately improves cognitive function. We proposed a possible mechanism of propofol-mediated brain protection after cardiac arrest (CA). CA induces P2X7R upregulation and p38 phosphorylation in microglia, which induces release of TNF-α and IL-1β and consequent neuronal injury. Propofol could inhibit microglial activation and alleviate neuronal damage. Our results suggest propofol-induced anti-inflammatory treatment as a plausible strategy for therapeutic intervention in post-CA brain injury.

  19. NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration.

    PubMed

    Qin, Liya; Liu, Yuxin; Hong, Jau-Shyong; Crews, Fulton T

    2013-06-01

    Parkinson's disease is characterized by a progressive degeneration of substantia nigra (SN) dopaminergic neurons with age. We previously found that a single systemic lipopolysaccharide (LPS, 5 mg/kg, i.p.) injection caused a slow progressive loss of tyrosine hydroxylase immunoreactive (TH+IR) neurons in SN associated with increasing motor dysfunction. In this study, we investigated the role of NADPH oxidase (NOX) in inflammation-mediated SN neurotoxicity. A comparison of control (NOX2(+/+) ) mice with NOX subunit gp91(phox) -deficient (NOX2(-/-) ) mice 10 months after LPS administration (5 mg/kg, i.p.) resulted in a 39% (P < 0.01) loss of TH+IR neurons in NOX2(+/+) mice, whereas NOX2(-/-) mice did not show a significant decrease. Microglia (Iba1+IR) showed morphological activation in NOX2(+/+) mice, but not in NOX2(-/-) mice at 1 hr. Treatment of NOX2(+/+) mice with LPS resulted in a 12-fold increase in NOX2 mRNA in midbrain and 5.5-6.5-fold increases in NOX2 protein (+IR) in SN compared with the saline controls. Brain reactive oxygen species (ROS), determined using diphenyliodonium histochemistry, was increased by LPS in SN between 1 hr and 20 months. Diphenyliodonium (DPI), an NOX inhibitor, blocked LPS-induced activation of microglia and production of ROS, TNFα, IL-1β, and MCP-1. Although LPS increased microglial activation and ROS at all ages studied, saline control NOX2(+/+) mice showed age-related increases in microglial activation, NOX, and ROS levels at 12 and 22 months of age. Together, these results suggest that NOX contributes to persistent microglial activation, ROS production, and dopaminergic neurodegeneration that persist and continue to increase with age.

  20. NADPH oxidase and aging drive microglial activation, oxidative stress and dopaminergic neurodegeneration following systemic LPS administration

    PubMed Central

    Qin, Liya; Liu, Yuxin; Hong, Jau-Shyong; Crews, Fulton T.

    2013-01-01

    Parkinson’s disease is characterized by a progressive degeneration of substantia nigra (SN) dopaminergic neurons with age. We previously found that a single systemic lipopolysaccharide (LPS, 5 mg/kg, i.p.) injection caused a slow progressive loss of tyrosine hydroxylase immunoreactive (TH+IR) neurons in SN associated with increasing motor dysfunction. In this study, we investigated the role of NADPH oxidase (NOX) in inflammation-mediated SN neurotoxicity. A comparison of control (NOX2+/+) mice with NOX subunit gp91phox-deficient (NOX2−/−) mice 10 months after LPS administration (5 mg/kg, i.p.) resulted in a 39% (p<0.01) loss of TH+IR neurons in NOX2+/+ mice, whereas, NOX2−/− mice did not show a significant decrease. Microglia (Iba1+IR) showed morphological activation in NOX2+/+ mice, but not in NOX2−/− mice at 1 hour. Treatment of NOX2+/+ mice with LPS resulted in a 12 fold increase in NOX2 mRNA in midbrain and 5.5–6.5 fold increases in NOX2 protein (+IR) in SN compared to the saline controls. Brain reactive oxygen species (ROS), determined by hydroethidine histochemistry, was increased by LPS in SN between 1 hour and 20 months. Diphenyliodonium (DPI), a NOX inhibitor, blocked LPS-induced activation of microglia and production of ROS, TNFα, IL-1β, and MCP-1. Although LPS increased microglial activation and ROS at all ages studied, saline control NOX2+/+ mice showed age-related increases in microglial activation, NOX and ROS levels at 12 and 22 months of age. Together, these results suggest that NOX contributes to persistent microglial activation, ROS production and dopaminergic neurodegeneration that persist and continue to increase with age. PMID:23536230

  1. The PPARalpha Agonist Fenofibrate Preserves Hippocampal Neurogenesis and Inhibits Microglial Activation After Whole-Brain Irradiation

    SciTech Connect

    Ramanan, Sriram; Kooshki, Mitra; Zhao Weiling; Hsu, F.-C.; Riddle, David R.; Robbins, Mike E.

    2009-11-01

    Purpose: Whole-brain irradiation (WBI) leads to cognitive impairment months to years after radiation. Numerous studies suggest that decreased hippocampal neurogenesis and microglial activation are involved in the pathogenesis of WBI-induced brain injury. The goal of this study was to investigate whether administration of the peroxisomal proliferator-activated receptor (PPAR) alpha agonist fenofibrate would prevent the detrimental effect of WBI on hippocampal neurogenesis. Methods and Materials: For this study, 129S1/SvImJ wild-type and PPARalpha knockout mice that were fed either regular or 0.2% wt/wt fenofibrate-containing chow received either sham irradiation or WBI (10-Gy single dose of {sup 137}Cs gamma-rays). Mice were injected intraperitoneally with bromodeoxyuridine to label the surviving cells at 1 month after WBI, and the newborn neurons were counted at 2 months after WBI by use of bromodeoxyuridine/neuronal nuclei double immunofluorescence. Proliferation in the subgranular zone and microglial activation were measured at 1 week and 2 months after WBI by use of Ki-67 and CD68 immunohistochemistry, respectively. Results: Whole-brain irradiation led to a significant decrease in the number of newborn hippocampal neurons 2 months after it was performed. Fenofibrate prevented this decrease by promoting the survival of newborn cells in the dentate gyrus. In addition, fenofibrate treatment was associated with decreased microglial activation in the dentate gyrus after WBI. The neuroprotective effects of fenofibrate were abolished in the knockout mice, indicating a PPARalpha-dependent mechanism or mechanisms. Conclusions: These data highlight a novel role for PPARalpha ligands in improving neurogenesis after WBI and offer the promise of improving the quality of life for brain cancer patients receiving radiotherapy.

  2. LncRNA Gm4419 contributes to OGD/R injury of cerebral microglial cells via IκB phosphorylation and NF-κB activation.

    PubMed

    Wen, Yuanchao; Yu, Yunhu; Fu, Xiaohong

    2017-06-10

    Ischemic stroke is one of major causes of adult morbidity. Recent studies have shown that over-activated microglial cells play a critical role in aggravating cerebral oxygen glucose deprivation/reoxygenation (OGD/R) damage by releasing excessive inflammatory cytokines. However, the involving mechanisms are not distinct yet. Long non-coding RNAs (lncRNAs) have been reported to in participate in lots of complicated biological processes. Our understandings of the relationship between lncRNAs and OGD/R injury are largely limited. In this study, we demonstrated that a lncRNA Gm4419 functioned as a crucial mediator in the activation of NF-κB signaling pathway, causing neuroinflammation damage during OGD/R. Gm4419 was abnormally up-regulated in OGD/R-treated microglial cells. We found that the high level of Gm4419 promoted the phosphorylation of IκBα by physically associating with IκBα, therefore, led to increased nucleus NF-κB levels for the transcriptional activation of TNF-α, IL-1β and IL-6. In addition, we also demonstrated that knockdown of Gm4419 functioned as NF-κB inhibitor in OGD/R microglial cells, showing that down-regulation of Gm4419 had protective role against OGD/R injury. In summary, Gm4419 is required for microglial cell OGD/R injury though the activation of NF-κB signaling. Thus, Gm4419 appears to be a promising therapeutic target for ischemic stroke. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The antidepressant-like effects of pioglitazone in a chronic mild stress mouse model are associated with PPARγ-mediated alteration of microglial activation phenotypes.

    PubMed

    Zhao, Qiuying; Wu, Xiaohui; Yan, Shuo; Xie, Xiaofang; Fan, Yonghua; Zhang, Jinqiang; Peng, Cheng; You, Zili

    2016-10-04

    Discoveries that microglia-mediated neuroinflammation is involved in the pathological process of depression provided a new strategy for novel antidepressant therapy. Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor regulating inflammation and microglial polarization and, therefore, a potential target for resolving depressive disorders. Our hypothesis was that antidepressant effects could be achieved through anti-inflammatory and neuroprotective activities by PPARγ-dependent microglia-modulating agents. Chronic mild stress (CMS) treatment was performed on C57BL/6 mice for 6 weeks. After 3 weeks with the CMS procedure, depressive-like behaviors were evaluated by sucrose preference (SP), tail suspension test (TST), forced swimming test (FST), and locomotor activity. Pioglitazone was administered intragastrically once per day for 3 weeks at different doses. Neuroinflammatory cytokines were determined by real time-PCR (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and western blot. The activated microglial state was confirmed by immunohistochemistry. N9 microglial cells were subjected to lipopolysaccharide, pioglitazone, and GW9662 to discuss the phenotype of activated microglia by RT-PCR, ELISA, and western blot. It was demonstrated that the PPARγ agonist pioglitazone (2.5 mg/kg) ameliorated depression-like behaviors in CMS-treated mice, as indicated by body weight (BW), the SP test, the FST, and the TST. The amelioration of the depression was blocked by the PPARγ antagonist GW9662. The expression of M1 markers (IL-1β, IL-6, TNFα, iNOS, and CCL2) increased, and the gene expression of M2 markers (Ym1, Arg1, IL-4, IL-10, and TGFβ) decreased in the hippocampus of the stress-treated mice. Pioglitazone significantly inhibited the increased numbers and morphological alterations of microglia in the hippocampus, reduced the elevated expression of microglial M1 markers, and increased the downgraded expression of microglial M2 markers

  4. Aspirin down Regulates Hepcidin by Inhibiting NF-κB and IL6/JAK2/STAT3 Pathways in BV-2 Microglial Cells Treated with Lipopolysaccharide.

    PubMed

    Li, Wan-Ying; Li, Fei-Mi; Zhou, Yu-Fu; Wen, Zhong-Min; Ma, Juan; Ya, Ke; Qian, Zhong-Ming

    2016-12-16

    Aspirin down regulates transferrin receptor 1 (TfR1) and up regulates ferroportin 1 (Fpn1) and ferritin expression in BV-2 microglial cells treated without lipopolysaccharides (LPS), as well as down regulates hepcidin and interleukin 6 (IL-6) in cells treated with LPS. However, the relevant mechanisms are unknown. Here, we investigate the effects of aspirin on expression of hepcidin and iron regulatory protein 1 (IRP1), phosphorylation of Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3) and P65 (nuclear factor-κB), and the production of nitric oxide (NO) in BV-2 microglial cells treated with and without LPS. We demonstrated that aspirin inhibited hepcidin mRNA as well as NO production in cells treated with LPS, but not in cells without LPS, suppresses IL-6, JAK2, STAT3, and P65 (nuclear factor-κB) phosphorylation and has no effect on IRP1 in cells treated with or without LPS. These findings provide evidence that aspirin down regulates hepcidin by inhibiting IL6/JAK2/STAT3 and P65 (nuclear factor-κB) pathways in the cells under inflammatory conditions, and imply that an aspirin-induced reduction in TfR1 and an increase in ferritin are not associated with IRP1 and NO.

  5. Aspirin down Regulates Hepcidin by Inhibiting NF-κB and IL6/JAK2/STAT3 Pathways in BV-2 Microglial Cells Treated with Lipopolysaccharide

    PubMed Central

    Li, Wan-Ying; Li, Fei-Mi; Zhou, Yu-Fu; Wen, Zhong-Min; Ma, Juan; Ya, Ke; Qian, Zhong-Ming

    2016-01-01

    Aspirin down regulates transferrin receptor 1 (TfR1) and up regulates ferroportin 1 (Fpn1) and ferritin expression in BV-2 microglial cells treated without lipopolysaccharides (LPS), as well as down regulates hepcidin and interleukin 6 (IL-6) in cells treated with LPS. However, the relevant mechanisms are unknown. Here, we investigate the effects of aspirin on expression of hepcidin and iron regulatory protein 1 (IRP1), phosphorylation of Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3) and P65 (nuclear factor-κB), and the production of nitric oxide (NO) in BV-2 microglial cells treated with and without LPS. We demonstrated that aspirin inhibited hepcidin mRNA as well as NO production in cells treated with LPS, but not in cells without LPS, suppresses IL-6, JAK2, STAT3, and P65 (nuclear factor-κB) phosphorylation and has no effect on IRP1 in cells treated with or without LPS. These findings provide evidence that aspirin down regulates hepcidin by inhibiting IL6/JAK2/STAT3 and P65 (nuclear factor-κB) pathways in the cells under inflammatory conditions, and imply that an aspirin-induced reduction in TfR1 and an increase in ferritin are not associated with IRP1 and NO. PMID:27999284

  6. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase.

    PubMed

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin; Wei, Ling; Liu, Yutong; Liao, Jieying; Gao, Hui-Ming; Zhou, Hui

    2017-05-01

    Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100μg/cm(2) induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10μg/cm(2)) and rotenone (2nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91(phox), p47(phox) and p40(phox)); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47(phox) and p67(phox) translocation assembling active NADPH oxidase. ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to oxidative damage to DA neurons. Our findings delineated the potential role of

  7. CX3CR1 Protein Signaling Modulates Microglial Activation and Protects against Plaque-independent Cognitive Deficits in a Mouse Model of Alzheimer Disease*

    PubMed Central

    Cho, Seo-Hyun; Sun, Binggui; Zhou, Yungui; Kauppinen, Tiina M.; Halabisky, Brian; Wes, Paul; Ransohoff, Richard M.; Gan, Li

    2011-01-01

    Aberrant microglial activation has been proposed to contribute to the cognitive decline in Alzheimer disease (AD), but the underlying molecular mechanisms remain enigmatic. Fractalkine signaling, a pathway mediating the communication between microglia and neurons, is deficient in AD brains and down-regulated by amyloid-β. Although fractalkine receptor (CX3CR1) on microglia was found to regulate plaque load, no functional effects have been reported. Our study demonstrates that CX3CR1 deficiency worsens the AD-related neuronal and behavioral deficits. The effects were associated with cytokine production but not with plaque deposition. Ablation of CX3CR1 in mice overexpressing human amyloid precursor protein enhanced Tau pathology and exacerbated the depletion of calbindin in the dentate gyrus. The levels of calbindin in the dentate gyrus correlated negatively with those of tumor necrosis factor α and interleukin 6, suggesting neurotoxic effects of inflammatory factors. Functionally, removing CX3CR1 in human amyloid precursor protein mice worsened the memory retention in passive avoidance and novel object recognition tests, and their memory loss in the novel object recognition test is associated with high levels of interleukin 6. Our findings identify CX3CR1 as a key microglial pathway in protecting against AD-related cognitive deficits that are associated with aberrant microglial activation and elevated inflammatory cytokines. PMID:21771791

  8. CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease.

    PubMed

    Cho, Seo-Hyun; Sun, Binggui; Zhou, Yungui; Kauppinen, Tiina M; Halabisky, Brian; Wes, Paul; Ransohoff, Richard M; Gan, Li

    2011-09-16

    Aberrant microglial activation has been proposed to contribute to the cognitive decline in Alzheimer disease (AD), but the underlying molecular mechanisms remain enigmatic. Fractalkine signaling, a pathway mediating the communication between microglia and neurons, is deficient in AD brains and down-regulated by amyloid-β. Although fractalkine receptor (CX3CR1) on microglia was found to regulate plaque load, no functional effects have been reported. Our study demonstrates that CX3CR1 deficiency worsens the AD-related neuronal and behavioral deficits. The effects were associated with cytokine production but not with plaque deposition. Ablation of CX3CR1 in mice overexpressing human amyloid precursor protein enhanced Tau pathology and exacerbated the depletion of calbindin in the dentate gyrus. The levels of calbindin in the dentate gyrus correlated negatively with those of tumor necrosis factor α and interleukin 6, suggesting neurotoxic effects of inflammatory factors. Functionally, removing CX3CR1 in human amyloid precursor protein mice worsened the memory retention in passive avoidance and novel object recognition tests, and their memory loss in the novel object recognition test is associated with high levels of interleukin 6. Our findings identify CX3CR1 as a key microglial pathway in protecting against AD-related cognitive deficits that are associated with aberrant microglial activation and elevated inflammatory cytokines.

  9. Toll-like receptor 2 ligands promote microglial cell death by inducing autophagy.

    PubMed

    Arroyo, Daniela S; Soria, Javier A; Gaviglio, Emilia A; Garcia-Keller, Constanza; Cancela, Liliana M; Rodriguez-Galan, Maria C; Wang, Ji Ming; Iribarren, Pablo

    2013-01-01

    Microglial cells are phagocytes in the central nervous system (CNS) and become activated in pathological conditions, resulting in microgliosis, manifested by increased cell numbers and inflammation in the affected regions. Thus, controlling microgliosis is important to prevent pathological damage to the brain. Here, we evaluated the contribution of Toll-like receptor 2 (TLR2) to microglial survival. We observed that activation of microglial cells with peptidoglycan (PGN) from Staphylococcus aureus and other TLR2 ligands results in cell activation followed by the induction of autophagy and autophagy-dependent cell death. In C57BL/6J mice, intracerebral injection of PGN increased the autophagy of microglial cells and reduced the microglial/macrophage cell number in brain parenchyma. Our results demonstrate a novel role of TLRs in the regulation of microglial cell activation and survival, which are important for the control of microgliosis and associated inflammatory responses in the CNS.

  10. A Common Carcinogen Benzo[a]pyrene Causes Neuronal Death in Mouse via Microglial Activation

    PubMed Central

    Nazmi, Arshed; Kumawat, Kanhaiya Lal; Basu, Anirban

    2010-01-01

    Background Benzo[a]pyrene (B[a]P) belongs to a class of polycyclic aromatic hydrocarbons that serve as micropollutants in the environment. B[a]P has been reported as a probable carcinogen in humans. Exposure to B[a]P can take place by ingestion of contaminated (especially grilled, roasted or smoked) food or water, or inhalation of polluted air. There are reports available that also suggests neurotoxicity as a result of B[a]P exposure, but the exact mechanism of action is unknown. Methodology/Principal Findings Using neuroblastoma cell line and primary cortical neuron culture, we demonstrated that B[a]P has no direct neurotoxic effect. We utilized both in vivo and in vitro systems to demonstrate that B[a]P causes microglial activation. Using microglial cell line and primary microglial culture, we showed for the first time that B[a]P administration results in elevation of reactive oxygen species within the microglia thereby causing depression of antioxidant protein levels; enhanced expression of inducible nitric oxide synthase, that results in increased production of NO from the cells. Synthesis and secretion of proinflammatory cytokines were also elevated within the microglia, possibly via the p38MAP kinase pathway. All these factors contributed to bystander death of neurons, in vitro. When administered to animals, B[a]P was found to cause microglial activation and astrogliosis in the brain with subsequent increase in proinflammatory cytokine levels. Conclusions/Significance Contrary to earlier published reports we found that B[a]P has no direct neurotoxic activity. However, it kills neurons in a bystander mechanism by activating the immune cells of the brain viz the microglia. For the first time, we have provided conclusive evidence regarding the mechanism by which the micropollutant B[a]P may actually cause damage to the central nervous system. In today's perspective, where rising pollution levels globally are a matter of grave concern, our study throws light on

  11. Microglial Activation and Neuroinflammation in Alzheimer's Disease: A Critical Examination of Recent History

    PubMed Central

    Streit, Wolfgang J.

    2010-01-01

    The neurofibrillary degeneration that occurs in Alzheimer's disease (AD) is thought to be the result of a chronic and damaging neuroinflammatory response mediated by neurotoxic substances produced by activated microglial cells. This neuroinflammation hypothesis of AD pathogenesis has led to numerous clinical trials with anti-inflammatory drugs, none of which have shown clear benefits for slowing or preventing disease onset and progression. In this paper, I make the point that AD is not an inflammatory condition, and reconstruct the sequence of events during the 1980s and 1990s that I believe led to the development of this faulty theory. PMID:20577641

  12. Angiotensin Converting Enzyme Inhibitors Ameliorate Brain Inflammation Associated with Microglial Activation: Possible Implications for Alzheimer's Disease.

    PubMed

    Torika, Nofar; Asraf, Keren; Roasso, Ella; Danon, Abraham; Fleisher-Berkovich, Sigal

    2016-12-01

    Angiotensin converting enzyme (ACE) converts Angiotensin I to a potent vasoconstrictor angiotensin II (ANG II). ACE inhibitors (ACEIs) are widely used for the management of hypertension. All components of the renin-angiotensin system (RAS) have also been identified in the brain. In addition to cytokines, neuromodulators such as ANG II can induce neuroinflammation. Moreover, in Alzheimer's disease (AD) models, where neuroinflammation occurs and is thought to contribute to the propagation of the disease, increased levels of ANG II and ACE have been detected. However, the specific effect of ACEIs on neuroinflammation and AD remains obscure. The present study suggests that captopril and perindopril, centrally active ACEIs, may serve as modulators for microglial activation associated with AD. Our in vitro study investigated the effect of both ACEIs on nitric oxide (NO), tumor necrosis factor- α (TNF-α) release and inducible NO synthase (iNOS) expression in lipopolysaccharide (LPS)-induced BV2 microglia. Exposure of BV2 microglia to ACEIs significantly attenuated the LPS-induced NO and TNF-α release. In vivo, short term intranasal administration of perindopril or captopril to 5 Familial AD (5XFAD) mice significantly reduced amyloid burden and CD11b expression (a microglial marker) or only CD11b expression respectively, in the cortex of 5XFAD. Long-term intranasal administration of captopril to mice reduced amyloid burden with no effect on CD11b expression. We provide evidence that intranasal delivery of ACEI may serve as an efficient alternative for their systemic administration, as it results in the attenuation of microglial accumulation and even the reduction of Amyloid β (Aβ) plaques.

  13. Modulation of Microglial Activity by Rho-Kinase (ROCK) Inhibition as Therapeutic Strategy in Parkinson's Disease and Amyotrophic Lateral Sclerosis.

    PubMed

    Roser, Anna-Elisa; Tönges, Lars; Lingor, Paul

    2017-01-01

    Neurodegenerative diseases are characterized by the progressive degeneration of neurons in the central and peripheral nervous system (CNS, PNS), resulting in a reduced innervation of target structures and a loss of function. A shared characteristic of many neurodegenerative diseases is the infiltration of microglial cells into affected brain regions. During early disease stages microglial cells often display a rather neuroprotective phenotype, but switch to a more pro-inflammatory neurotoxic phenotype in later stages of the disease, contributing to the neurodegeneration. Activation of the Rho kinase (ROCK) pathway appears to be instrumental for the modulation of the microglial phenotype: increased ROCK activity in microglia mediates mechanisms of the inflammatory response and is associated with improved motility, increased production of reactive oxygen species (ROS) and release of inflammatory cytokines. Recently, several studies suggested inhibition of ROCK signaling as a promising treatment option for neurodegenerative diseases. In this review article, we discuss the contribution of microglial activity and phenotype switch to the pathophysiology of Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS), two devastating neurodegenerative diseases without disease-modifying treatment options. Furthermore, we describe how ROCK inhibition can influence the microglial phenotype in disease models and explore ROCK inhibition as a future treatment option for PD and ALS.

  14. Maternal immune activation evoked by polyinosinic:polycytidylic acid does not evoke microglial cell activation in the embryo

    PubMed Central

    Smolders, Silke; Smolders, Sophie M. T.; Swinnen, Nina; Gärtner, Annette; Rigo, Jean-Michel; Legendre, Pascal; Brône, Bert

    2015-01-01

    Several studies have indicated that inflammation during pregnancy increases the risk for the development of neuropsychiatric disorders in the offspring. Morphological brain abnormalities combined with deviations in the inflammatory status of the brain can be observed in patients of both autism and schizophrenia. It was shown that acute infection can induce changes in maternal cytokine levels which in turn are suggested to affect fetal brain development and increase the risk on the development of neuropsychiatric disorders in the offspring. Animal models of maternal immune activation reproduce the etiology of neurodevelopmental disorders such as schizophrenia and autism. In this study the poly (I:C) model was used to mimic viral immune activation in pregnant mice in order to assess the activation status of fetal microglia in these developmental disorders. Because microglia are the resident immune cells of the brain they were expected to be activated due to the inflammatory stimulus. Microglial cell density and activation level in the fetal cortex and hippocampus were determined. Despite the presence of a systemic inflammation in the pregnant mice, there was no significant difference in fetal microglial cell density or immunohistochemically determined activation level between the control and inflammation group. These data indicate that activation of the fetal microglial cells is not likely to be responsible for the inflammation induced deficits in the offspring in this model. PMID:26300736

  15. Rapamycin protects neurons from brain contusion-induced inflammatory reaction via modulation of microglial activation

    PubMed Central

    SONG, QI; XIE, DUJIANG; PAN, SHIYONG; XU, WEIJUN

    2015-01-01

    The inflammatory reaction is important in secondary injury following traumatic brain injury (TBI). Rapamycin has been demonstrated as a neuroprotective agent in a mouse model of TBI, however, there is a lack of data regarding the effects of rapamycin on the inflammatory reaction following TBI. Therefore, the present study was designed to assess the effects of treatment with rapamycin on inflammatory reactions and examine the possible involvement of microglial activation following TBI. Male imprinting control region mice were randomly divided into four groups: Sham group (n=23), TBI group (n=23), TBI + dimethyl sulfoxide (DMSO) group (n=31) and TBI + rapamycin group (n=31). Rapamycin was dissolved in DMSO (50 mg/ml) and injected 30 min after TBI (2 mg/Kg; intraperitoneally). A weight-drop model of TBI was induced, and the brain tissues were harvested 24 h after TBI. The findings indicated that the administration of rapamycin following TBI was associated with decreased levels of activated microglia and neuron degeneration at the peri-injury site, reduced levels of proinflammatory cytokines and increased neurobehavioral function, possibly mediated by inactivation of the mammalian target of rapamycin pathway. The results of the present study offer novel insight into the mechanisms responsible for the anti-neuroinflammatory effects of rapamycin, possibly involving the modulation of microglial activation. PMID:26458361

  16. Extracellular cytochrome c as an intercellular signaling molecule regulating microglial functions.

    PubMed

    Gouveia, Ayden; Bajwa, Ekta; Klegeris, Andis

    2017-09-01

    Cytochrome c is well known to be released from mitochondria into the cytosol where it can initiate apoptosis. Recent studies indicate that cytochrome c is also released into the extracellular space by both healthy and damaged cells, where its function is not well understood. We hypothesized that extracellular cytochrome c could function as an intercellular signaling molecule of the brain, which is recognized by brain microglia. These cells belong to the mononuclear phagocyte system and can be activated by endogenous substances associated with diverse pathologies including trauma, ischemic damage and neurodegenerative diseases. Three different cell types were used to model microglia. Respiratory burst activity, nitric oxide production and cytotoxic secretions were measured following exposure of microglial cells to cytochrome c. We showed that extracellular cytochrome c primed the respiratory burst response of differentiated HL-60 cells, enhanced nitric oxide secretion by BV-2 cells, and augmented cytotoxicity of differentiated THP-1 cells. We demonstrated that the effects of cytochrome c on microglia-like cells were at least partially mediated by the toll-like receptor 4 (TLR4) and c-Jun N-terminal kinases (JNK) signaling pathway. Extracellular cytochrome c can interact with microglia TLR4 and modulate select functions of these brain immune cells. Our data identifies extracellular cytochrome c as a potential intercellular signaling molecule, which may be recognized by microglia causing or enhancing their immune activation. The data obtained support targeting TLR4 and JNK signaling as potential treatment strategies for brain diseases characterized by excessive cellular death and activation of microglia. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. NG2 expression in microglial cells affects the expression of neurotrophic and proinflammatory factors by regulating FAK phosphorylation

    PubMed Central

    Zhu, Lie; Su, Qing; Jie, Xiang; Liu, Antang; Wang, Hui; He, Beiping; Jiang, Hua

    2016-01-01

    Neural/glial antigen 2 (NG2), a chondroitin sulfate proteoglycan, is significantly upregulated in a subset of glial cells in the facial motor nucleus (FMN) following CNS injury. NG2 is reported to promote the resulting inflammatory reaction, however, the mechanism by which NG2 mediates these effects is yet to be determined. In this study, we examined the changes in NG2 expressing microglial cells in the FMN in response to facial nerve axotomy (FNA) in mice. Our findings indicated that NG2 expression was progressively induced and upregulated specifically in the ipsilateral facial nucleus following FNA. To further investigate the effects of NG2 expression, in vivo studies in NG2-knockout mice and in vitro studies in rat microglial cells transfected with NG2 shRNAs were performed. Abolition of NG2 expression both in vitro and in vivo resulted in increased expression of neurotrophic factors (nerve growth factor and glial derived neurotrophic factor), decreased expression of inflammatory mediators (tumor necrosis factor-α and interleukin-1β) and decreased apoptosis in the ipsilateral facial nucleus in response to FNA. Furthermore, we demonstrated the role of FAK in these NG2-induced effects. Taken together, our findings suggest that NG2 expression mediates inflammatory reactions and neurodegeneration in microglial cells in response to CNS injury, potentially by regulating FAK phosphorylation. PMID:27306838

  18. Subneurotoxic copper(II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS

    SciTech Connect

    Hu, Zhuqin; Yu, Fengxiang; Gong, Ping; Qiu, Yu; Zhou, Wei; Cui, Yongyao; Li, Juan Chen, Hongzhuan

    2014-04-15

    Microglia-mediated neuroinflammation and the associated neuronal damage play critical roles in the pathogenesis of neurodegenerative disorders. Evidence shows an elevated concentration of extracellular copper(II) in the brains of these disorders, which may contribute to neuronal death through direct neurotoxicity. Here we explored whether extracellular copper(II) triggers microglial activation. Primary rat microglia and murine microglial cell line BV-2 cells were cultured and treated with copper(II). The content of tumor necrosis factor-α (TNF-α) and nitric oxide in the medium was determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was measured by MitoSOX oxidation. At subneurotoxic concentrations, copper(II) treatment induced a dose- and time-dependent release of TNF-α and nitric oxide from microglial cells, and caused an indirect, microglia-mediated neurotoxicity that was blocked by inhibition of TNF-α and nitric oxide production. Copper(II)-initiated microglial activation was accompanied with reduced IkB-α expression as well as phosphorylation and translocation of nuclear factor-κB (NF-κB) p65 and was blocked by NF-κB inhibitors (BAY11-7082 and SC-514). Moreover, copper(II) treatment evoked a rapid release of hydrogen peroxide from microglial cells, an effect that was not affected by NADPH oxidase inhibitors. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), abrogated copper(II)-elicited microglial release of TNF-α and nitric oxide and subsequent neurotoxicity. Importantly, mitochondrial production of superoxide, paralleled to extracellular release of hydrogen peroxide, was induced after copper(II) stimulation. Our findings suggest that extracellular copper(II) at subneurotoxic concentrations could trigger NF-κB-dependent microglial activation and subsequent neurotoxicity. NADPH oxidase-independent, mitochondria-derived ROS may be involved in this activation

  19. Substance P Exacerbates Dopaminergic Neurodegeneration through Neurokinin-1 Receptor-Independent Activation of Microglial NADPH Oxidase

    PubMed Central

    Chu, Chun-Hsien; Qian, Li; Chen, Shih-Heng; Wilson, Belinda; Oyarzabal, Esteban; Jiang, Lulu; Ali, Syed; Robinson, Bonnie; Kim, Hyoung-Chun

    2014-01-01

    Although dysregulated substance P (SP) has been implicated in the pathophysiology of Parkinson's disease (PD), how SP affects the survival of dopaminergic neurons remains unclear. Here, we found that mice lacking endogenous SP (TAC1−/−), but not those deficient in the SP receptor (neurokinin-1 receptor, NK1R), were more resistant to lipopolysaccharide (LPS)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigral dopaminergic neurodegeneration than wild-type controls, suggesting a NK1R-independent toxic action of SP. In vitro dose–response studies revealed that exogenous SP enhanced LPS- and 1-methyl-4-phenylpyridinium (MPP+)-induced dopaminergic neurodegeneration in a bimodal manner, peaking at submicromolar and subpicomolar concentrations, but was substantially less effective at intermediate concentrations. Mechanistically, the actions of submicromolar levels of SP were NK1R-dependent, whereas subpicomolar SP-elicited actions required microglial NADPH oxidase (NOX2), the key superoxide-producing enzyme, but not NK1R. Subpicomolar concentrations of SP activated NOX2 by binding to the catalytic subunit gp91phox and inducing membrane translocation of the cytosolic subunits p47phox and p67phox. The importance of NOX2 was further corroborated by showing that inhibition or disruption of NOX2 blocked subpicomolar SP-exacerbated neurotoxicity. Together, our findings revealed a critical role of microglial NOX2 in mediating the neuroinflammatory and dopaminergic neurodegenerative effects of SP, which may provide new insights into the pathogenesis of PD. PMID:25209287

  20. Essential roles of mitochondrial depolarization in neuron loss through microglial activation and attraction toward neurons.

    PubMed

    Nam, Min-Kyung; Shin, Hyun-Ah; Han, Ji-Hye; Park, Dae-Wook; Rhim, Hyangshuk

    2013-04-10

    As life spans increased, neurodegenerative disorders that affect aging populations have also increased. Progressive neuronal loss in specific brain regions is the most common cause of neurodegenerative disease; however, key determinants mediating neuron loss are not fully understood. Using a model of mitochondrial membrane potential (ΔΨm) loss, we found only 25% cell loss in SH-SY5Y (SH) neuronal mono-cultures, but interestingly, 85% neuronal loss occurred when neurons were co-cultured with BV2 microglia. SH neurons overexpressing uncoupling protein 2 exhibited an increase in neuron-microglia interactions, which represent an early step in microglial phagocytosis of neurons. This result indicates that ΔΨm loss in SH neurons is an important contributor to recruitment of BV2 microglia. Notably, we show that ΔΨm loss in BV2 microglia plays a crucial role in microglial activation and phagocytosis of damaged SH neurons. Thus, our study demonstrates that ΔΨm loss in both neurons and microglia is a critical determinant of neuron loss. These findings also offer new insights into neuroimmunological and bioenergetical aspects of neurodegenerative disease.

  1. Genistein attenuates retinal inflammation associated with diabetes by targeting of microglial activation

    PubMed Central

    Ibrahim, Ahmed S.; El-Shishtawy, Mamdouh M.; Peña, Alejandro

    2010-01-01

    Purpose Diabetic retinopathy (DR) is associated with microglial activation and increased levels of inflammatory cytokines. Genistein, a tyrosine kinase inhibitor, has been shown to possess anti-inflammatory potential that so far untested in animal models of diabetes. The aims of this study are to evaluate the efficacy of genistein for alleviation of diabetes-induced retinal inflammation and also to gain insight into the molecular mechanisms involved therein by analyzing the effect of genistein on concomitant microglia activation in the diabetic retina and in isolated cells. Methods Streptozotocin (STZ)-induced diabetic Sprague Dawley rats were used. After diabetes was established for two weeks a single intravitreal injection of genistein or vehicle was performed. Forty-eight hours later, rats were killed, their retinal and vitreal samples were processed for Quantitative Real Time-PCR (qRT–PCR) and Enzyme-linked immunosorbent assay (ELISA) analyses, respectively. For the in vitro study, isolated microglial cells from retinas of newborn rats were used. Results mRNA as well as protein levels for tumor necrosis factor α (TNF-α), a robust marker of inflammation, were increased in the retina early in the course of diabetes. Moreover, diabetes resulted in elevation of ionized calcium binding adaptor molecule-1 (Iba1) mRNA, known to be upregulated in activated microglia. These effects of diabetes in retina were all reduced by intervention treatment with genistein. Using an in vitro bioassay, we demonstrated the release of TNF-α from microglia activated by glycated albumin, a risk factor for diabetic disorders. This inflammatory signal involves the activation of tyrosine kinase and its subsequent events, ERK and P38 MAPKs. Genistein represses the release of TNF-α and significantly inhibits ERK and P38 phosphorylation in activated microglial cells by acting as a tyrosine kinase inhibitor. Conclusions These findings show genistein to be effective in dampening diabetes

  2. NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activation and neurodegeneration

    PubMed Central

    2012-01-01

    Background Activation of microglia causes the production of proinflammatory factors and upregulation of NADPH oxidase (NOX) that form reactive oxygen species (ROS) that lead to neurodegeneration. Previously, we reported that 10 daily doses of ethanol treatment induced innate immune genes in brain. In the present study, we investigate the effects of chronic ethanol on activation of NOX and release of ROS, and their contribution to ethanol neurotoxicity. Methods Male C57BL/6 and NF-κB enhanced GFP mice were treated intragastrically with water or ethanol (5 g/kg, i.g., 25% ethanol w/v) daily for 10 days. The effects of chronic ethanol on cell death markers (activated caspase-3 and Fluoro-Jade B), microglial morphology, NOX, ROS and NF-κB were examined using real-time PCR, immunohistochemistry and hydroethidine histochemistry. Also, Fluoro-Jade B staining and NOX gp91phox immunohistochemistry were performed in the orbitofrontal cortex (OFC) of human postmortem alcoholic brain and human moderate drinking control brain. Results Ethanol treatment of C57BL/6 mice showed increased markers of neuronal death: activated caspase-3 and Fluoro-Jade B positive staining with Neu-N (a neuronal marker) labeling in cortex and dentate gyrus. The OFC of human post-mortem alcoholic brain also showed significantly more Fluoro-Jade B positive cells colocalized with Neu-N, a neuronal marker, compared to the OFC of human moderate drinking control brain, suggesting increased neuronal death in the OFC of human alcoholic brain. Iba1 and GFAP immunohistochemistry showed activated morphology of microglia and astrocytes in ethanol-treated mouse brain. Ethanol treatment increased NF-κB transcription and increased NOX gp91phox at 24 hr after the last ethanol treatment that remained elevated at 1 week. The OFC of human postmortem alcoholic brain also had significant increases in the number of gp91phox + immunoreactive (IR) cells that are colocalized with neuronal, microglial and astrocyte markers

  3. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells. PMID:27169820

  4. CD200 attenuates methamphetamine-induced microglial activation and dopamine depletion.

    PubMed

    Yue, Xia; Qiao, Dongfang; Wang, Aifeng; Tan, Xiaohui; Li, Yanhong; Liu, Chao; Wang, Huijun

    2012-06-01

    This study examined the neuroprotective effect of cluster of differentiation molecule 200 (CD200) against methamphetamine (METH)-induced neurotoxicity. In the in vitro experiment, neuron-microglia cultures were treated with METH (20 μmol/L), METH (20 μmol/L)+CD200-Fc (10 μg/mL) or CD200-Fc (10 μg/mL). Those untreated served as control. Microglia activation expressed as the ratio of MHC-II/CD11b was assessed by flow cytometry. The cytokines (IL-1β, TNF-α) secreted by activated microglia were detected by enzyme-linked immunosorbent assay (ELISA). In the in vivo experiment, 40 SD rats were divided into control, METH, METH+CD200-Fc and CD200-Fc groups at random. Rats were intraperitoneally injected with METH (15 mg/kg 8 times at 12 h interval) in METH group, with METH (administered as the same dose and time as the METH group) and CD200-Fc (1 mg/kg at day 0, 2, 4 after METH injection) in METH+CD200-Fc group, with CD200-Fc (1 mg/kg injected as the same time as the METH+CD200-Fc group) or with physiological saline solution in the control group. The level of striatal dopamine (DA) in rats was measured by high-performance liquid chromatography (HPLC). The microglial cells were immunohistochemically detected for the expression of Iba-1, a marker for microglial activation. The results showed that METH could increase the microglia activation in the neuron-microglia cultures and elevate the secretion of IL-1β and TNF-α, which could be attenuated by CD200-Fc. Moreover, CD200-Fc could partially reverse the striatal DA depletion induced by METH and reduce the number of activated microglia, i.e. Iba-1-positive cells. It was concluded that CD200 may have neuroprotective effects against METH-induced neurotoxicity by inhibiting microglial activation and reversing DA depletion in striatum.

  5. Vitamin K2 suppresses rotenone-induced microglial activation in vitro.

    PubMed

    Yu, Yan-Xia; Li, Yi-Pei; Gao, Feng; Hu, Qing-Song; Zhang, Yan; Chen, Dong; Wang, Guang-Hui

    2016-09-01

    Increasing evidence has shown that environmental factors such as rotenone and paraquat induce neuroinflammation, which contributes to the pathogenesis of Parkinson's disease (PD). In this study, we investigated the molecular mechanisms underlying the repression by menaquinone-4 (MK-4), a subtype of vitamin K2, of rotenone-induced microglial activation in vitro. A microglial cell line (BV2) was exposed to rotenone (1 μmol/L) with or without MK-4 treatment. The levels of TNF-α or IL-1β in 100 μL of cultured media of BV2 cells were measured using ELISA kits. BV2 cells treated with rotenone with or without MK4 were subjected to mitochondrial membrane potential, ROS production, immunofluorescence or immunoblot assays. The neuroblastoma SH-SY5Y cells were treated with conditioned media (CM) of BV2 cells that were exposed to rotenone with or without MK-4 treatment, and the cell viability was assessed using MTT assay. In rotenone-treated BV2 cells, MK-4 (0.5-20 μmol/L) dose-dependently suppressed the upregulation in the expression of iNOS and COX-2 in the cells, as well as the production of TNF-α and IL-1β in the cultured media. MK-4 (5-20 μmol/L) significantly inhibited rotenone-induced nuclear translocation of NF-κB in BV2 cells. MK-4 (5-20 μmol/L) significantly inhibited rotenone-induced p38 activation, ROS production, and caspase-1 activation in BV2 cells. MK-4 (5-20 μmol/L) also restored the mitochondrial membrane potential that had been damaged by rotenone. Exposure to CM from rotenone-treated BV2 cells markedly decreased the viability of SH-SY5Y cells. However, this rotenone-activated microglia-mediated death of SH-SY5Y cells was significantly attenuated when the BV2 cells were co-treated with MK-4 (5-20 μmol/L). Vitamin K2 can directly suppress rotenone-induced activation of microglial BV2 cells in vitro by repressing ROS production and p38 activation.

  6. Vitamin K2 suppresses rotenone-induced microglial activation in vitro

    PubMed Central

    Yu, Yan-xia; Li, Yi-pei; Gao, Feng; Hu, Qing-song; Zhang, Yan; Chen, Dong; Wang, Guang-hui

    2016-01-01

    Aim: Increasing evidence has shown that environmental factors such as rotenone and paraquat induce neuroinflammation, which contributes to the pathogenesis of Parkinson's disease (PD). In this study, we investigated the molecular mechanisms underlying the repression by menaquinone-4 (MK-4), a subtype of vitamin K2, of rotenone-induced microglial activation in vitro. Methods: A microglial cell line (BV2) was exposed to rotenone (1 μmol/L) with or without MK-4 treatment. The levels of TNF-α or IL-1β in 100 μL of cultured media of BV2 cells were measured using ELISA kits. BV2 cells treated with rotenone with or without MK4 were subjected to mitochondrial membrane potential, ROS production, immunofluorescence or immunoblot assays. The neuroblastoma SH-SY5Y cells were treated with conditioned media (CM) of BV2 cells that were exposed to rotenone with or without MK-4 treatment, and the cell viability was assessed using MTT assay. Results: In rotenone-treated BV2 cells, MK-4 (0.5–20 μmol/L) dose-dependently suppressed the upregulation in the expression of iNOS and COX-2 in the cells, as well as the production of TNF-α and IL-1β in the cultured media. MK-4 (5–20 μmol/L) significantly inhibited rotenone-induced nuclear translocation of NF-κB in BV2 cells. MK-4 (5–20 μmol/L) significantly inhibited rotenone-induced p38 activation, ROS production, and caspase-1 activation in BV2 cells. MK-4 (5–20 μmol/L) also restored the mitochondrial membrane potential that had been damaged by rotenone. Exposure to CM from rotenone-treated BV2 cells markedly decreased the viability of SH-SY5Y cells. However, this rotenone-activated microglia-mediated death of SH-SY5Y cells was significantly attenuated when the BV2 cells were co-treated with MK-4 (5–20 μmol/L). Conclusion: Vitamin K2 can directly suppress rotenone-induced activation of microglial BV2 cells in vitro by repressing ROS production and p38 activation. PMID:27498777

  7. Microglial activation induced by factor(s) contained in sera from Alzheimer-related ApoE genotypes.

    PubMed

    Lombardi, V R; García, M; Cacabelos, R

    1998-11-15

    /4 genotype contain factor(s) which are able to induce morphological changes, as measured by an increase in the ameboid cell type. In addition, major histocompatibility complex (MHC) class II antigen expression, as measured by flow cytometric analysis, and interleukin-1beta (IL-1beta) release as measured by enzyme linked immunoadsorbent assay (ELISA), in comparison with control groups and lipopolysaccharide (LPS)-treated cells, clearly demonstrate a direct effect of ApoE 3/4 and 4/4 and/or an indirect effect mediated by the release of IL-1beta on microglia activation. These results strongly suggest that primary in vitro microglial cell cultures can be used as a screening model to test human sera as well as the effect of new potential drugs aimed at down-regulating microglia activation.

  8. Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum

    PubMed Central

    López-Pedrajas, Rosa; Ramírez-Lamelas, Dolores T.; Muriach, Borja; Sánchez-Villarejo, María V.; Almansa, Inmaculada; Vidal-Gil, Lorena; Romero, Francisco J.; Barcia, Jorge M.; Muriach, María

    2015-01-01

    Different mechanisms have been suggested for cocaine neurotoxicity, including oxidative stress alterations. Nuclear factor kappa B (NF-κB), considered a sensor of oxidative stress and inflammation, is involved in drug toxicity and addiction. NF-κB is a key mediator for immune responses that induces microglial/macrophage activation under inflammatory processes and neuronal injury/degeneration. Although cerebellum is commonly associated to motor control, muscular tone, and balance. Its relation with addiction is getting relevance, being associated to compulsive and perseverative behaviors. Some reports indicate that cerebellar microglial activation induced by cannabis or ethanol, promote cerebellar alterations and these alterations could be associated to addictive-related behaviors. After considering the effects of some drugs on cerebellum, the aim of the present work analyzes pro-inflammatory changes after cocaine exposure. Rats received daily 15 mg/kg cocaine i.p., for 18 days. Reduced and oxidized forms of glutathione (GSH) and oxidized glutathione (GSSG), glutathione peroxidase (GPx) activity and glutamate were determined in cerebellar homogenates. NF-κB activity, CD68, and GFAP expression were determined. Cerebellar GPx activity and GSH/GSSG ratio are significantly decreased after cocaine exposure. A significant increase of glutamate concentration is also observed. Interestingly, increased NF-κB activity is also accompanied by an increased expression of the lysosomal mononuclear phagocytic marker ED1 without GFAP alterations. Current trends in addiction biology are focusing on the role of cerebellum on addictive behaviors. Cocaine-induced cerebellar changes described herein fit with previosus data showing cerebellar alterations on addict subjects and support the proposed role of cerebelum in addiction. PMID:26283916

  9. Allelic difference in Mhc2ta confers altered microglial activation and susceptibility to α-synuclein-induced dopaminergic neurodegeneration.

    PubMed

    Jimenez-Ferrer, Itzia; Jewett, Michael; Tontanahal, Ashmita; Romero-Ramos, Marina; Swanberg, Maria

    2017-10-01

    Parkinson's Disease (PD) is a complex and heterogeneous neurodegenerative disease characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta and pathological intracellular accumulation of alpha-synuclein (α-syn). In the vast majority of PD patients, the disease has a complex etiology, defined by multiple genetic and environmental risk factors. Common genetic variants in the human leukocyte-antigen (HLA) region have been associated to PD risk and the carriage of these can double the risk to develop PD. Among these common genetic variants are the ones that modulate the expression of MHCII genes. MHCII molecules encoded in the HLA-region are responsible for antigen presentation to the adaptive immune system and have a key role in inflammatory processes. In addition to cis‑variants affecting MHCII expression, a transactivator encoded by the Mhc2ta gene is the major regulator of MHCII expression. We have previously identified variations in the promoter region of Mhc2ta, encoded in the VRA4 region, to regulate MHCII expression in rats. The expression of MHCII is known to be required in the response to α-syn. However, how the expression of MHCII affects the activation of microglial or the impact of physiological, differential Mhc2ta expression on degeneration of dopaminergic neurons has not previously been addressed. Here we addressed the implications of common genetic allelic variants of the major regulator of MHCII expression on α-syn-induced microglia activation and the severity of the dopaminergic neurodegeneration. We used a viral vector technology to overexpress α-syn in two rat strains; Dark agouti (DA) wild type and DA.VRA4-congenic rats. The congenic strain carries PVG alleles in the VRA4 locus and therefore displays lower Mhc2ta expression levels compared to DA rats. We analyzed the impact of this physiological differential Mhc2ta expression on gliosis, inflammation, degeneration of the nigro-striatal dopamine system

  10. Shizukaol B, an active sesquiterpene from Chloranthus henryi, attenuates LPS-induced inflammatory responses in BV2 microglial cells.

    PubMed

    Pan, Li-Long; Xu, Peng; Luo, Xiao-Ling; Wang, Li-Jun; Liu, Si-Yu; Zhu, Yi-Zhun; Hu, Jin-Feng; Liu, Xin-Hua

    2017-04-01

    The objective of the current study was to evaluate the anti-inflammatory effects of shizukaol B, a lindenane-type dimeric sesquiterpene isolated from the whole plant of Chloranthus henryi, on lipopolysaccharide (LPS)-induced activation of BV2 microglial cells in vitro. Our data showed that shizukaol B concentration-dependently suppressed expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), production of nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in LPS-stimulated BV2 microglia. Meanwhile, shizukaol B concentration- and time-dependently inhibited LPS-mediated c-Jun N-terminal kinase 1/2 (JNK) activation, but had little effect on extracellular signal-regulated kinase 1/2 or p38 phosphorylation. Furthermore, shizukaol B significantly blocked LPS-induced activator protein-1 (AP-1) activation, evidenced by reduced phosphorylation and nuclear translocation of c-Jun and DNA binding activity of AP-1. Taken together, our findings suggest that shizukaol B exerts anti-inflammatory effects in LPS-activated microglia partly by modulating JNK-AP-1 signaling pathway.

  11. Amphotericin B Increases Transglutaminase 2 Expression Associated with Upregulation of Endocytotic Activity in Mouse Microglial Cell Line BV-2.

    PubMed

    Kawabe, Kenji; Takano, Katsura; Moriyama, Mitsuaki; Nakamura, Yoichi

    2017-02-21

    Amphotericin B (AmB), a polyene antibiotic, is reported to cause the microglial activation to induce nitric oxide (NO) production and proinflammatory cytokines expression, and change neurotrophic factors expression in cultured microglia (Motoyoshi et al. in Neurochem Int 52:1290-1296, 2008). On the other hand, tissue-type transglutaminase (TG2) is involved in connection to phagocytes with apoptotic cells. Engulfment of neurons by activated microglia is thought to cause neurodegenerative diseases but detail is unclear, and involvement of TG2 in phagocytosis has been reported in our previous study using lipopolysaccharide-stimulated BV-2 cells (Kawabe et al. in Neuroimmunomodulation 22(4):243-249, 2015). In the present study, we examined the changes of TG2 expression, phagocytosis and pinocytosis in BV-2 cells stimulated by AmB. AmB stimulation increased TG2 expression and TG activity. Phagocytosis of dead cells and pinocytosis of fluorescent microbeads were also up-regulated by AmB stimulation in BV-2 cells. Blockade of TG activity by cystamine, an inhibitor of TGs, suppressed AmB-enhanced TG2 expression, TG activity, NO production, phagocytosis and pinocytosis. Excessive NO production from microglia and/or facilitation of phagocytosis might be involved in neuronal death. To control TG activity might make possible to protect neurons and care for CNS diseases.

  12. Administration of DHA Reduces Endoplasmic Reticulum Stress-Associated Inflammation and Alters Microglial or Macrophage Activation in Traumatic Brain Injury

    PubMed Central

    Harvey, Lloyd D.; Yin, Yan; Attarwala, Insiya Y.; Begum, Gulnaz; Deng, Julia; Yan, Hong Q.; Dixon, C. Edward

    2015-01-01

    We investigated the effects of the administration of docosahexaenoic acid (DHA) post-traumatic brain injury (TBI) on reducing neuroinflammation. TBI was induced by cortical contusion injury in Sprague Dawley rats. Either DHA (16 mg/kg in dimethyl sulfoxide) or vehicle dimethyl sulfoxide (1 ml/kg) was administered intraperitonially at 5 min after TBI, followed by a daily dose for 3 to 21 days. TBI triggered activation of microglia or macrophages, detected by an increase of Iba1 positively stained microglia or macrophages in peri-lesion cortical tissues at 3, 7, and 21 days post-TBI. The inflammatory response was further characterized by expression of the proinflammatory marker CD16/32 and the anti-inflammatory marker CD206 in Iba1+ microglia or macrophages. DHA-treated brains showed significantly fewer CD16/32+ microglia or macrophages, but an increased CD206+ phagocytic microglial or macrophage population. Additionally, DHA treatment revealed a shift in microglial or macrophage morphology from the activated, amoeboid-like state into the more permissive, surveillant state. Furthermore, activated Iba1+ microglial or macrophages were associated with neurons expressing the endoplasmic reticulum (ER) stress marker CHOP at 3 days post-TBI, and the administration of DHA post-TBI concurrently reduced ER stress and the associated activation of Iba1+ microglial or macrophages. There was a decrease in nuclear translocation of activated nuclear factor kappa-light-chain-enhancer of activated B cells protein at 3 days in DHA-treated tissue and reduced neuronal degeneration in DHA-treated brains at 3, 7, and 21 days after TBI. In summary, our study demonstrated that TBI mediated inflammatory responses are associated with increased neuronal ER stress and subsequent activation of microglia or macrophages. DHA administration reduced neuronal ER stress and subsequent association with microglial or macrophage polarization after TBI, demonstrating its therapeutic potential to

  13. Administration of DHA Reduces Endoplasmic Reticulum Stress-Associated Inflammation and Alters Microglial or Macrophage Activation in Traumatic Brain Injury.

    PubMed

    Harvey, Lloyd D; Yin, Yan; Attarwala, Insiya Y; Begum, Gulnaz; Deng, Julia; Yan, Hong Q; Dixon, C Edward; Sun, Dandan

    2015-01-01

    We investigated the effects of the administration of docosahexaenoic acid (DHA) post-traumatic brain injury (TBI) on reducing neuroinflammation. TBI was induced by cortical contusion injury in Sprague Dawley rats. Either DHA (16 mg/kg in dimethyl sulfoxide) or vehicle dimethyl sulfoxide (1 ml/kg) was administered intraperitonially at 5 min after TBI, followed by a daily dose for 3 to 21 days. TBI triggered activation of microglia or macrophages, detected by an increase of Iba1 positively stained microglia or macrophages in peri-lesion cortical tissues at 3, 7, and 21 days post-TBI. The inflammatory response was further characterized by expression of the proinflammatory marker CD16/32 and the anti-inflammatory marker CD206 in Iba1(+) microglia or macrophages. DHA-treated brains showed significantly fewer CD16/32(+) microglia or macrophages, but an increased CD206(+) phagocytic microglial or macrophage population. Additionally, DHA treatment revealed a shift in microglial or macrophage morphology from the activated, amoeboid-like state into the more permissive, surveillant state. Furthermore, activated Iba1(+) microglial or macrophages were associated with neurons expressing the endoplasmic reticulum (ER) stress marker CHOP at 3 days post-TBI, and the administration of DHA post-TBI concurrently reduced ER stress and the associated activation of Iba1(+) microglial or macrophages. There was a decrease in nuclear translocation of activated nuclear factor kappa-light-chain-enhancer of activated B cells protein at 3 days in DHA-treated tissue and reduced neuronal degeneration in DHA-treated brains at 3, 7, and 21 days after TBI. In summary, our study demonstrated that TBI mediated inflammatory responses are associated with increased neuronal ER stress and subsequent activation of microglia or macrophages. DHA administration reduced neuronal ER stress and subsequent association with microglial or macrophage polarization after TBI, demonstrating its therapeutic

  14. Cyclooxygenase-2 Directs Microglial Activation-Mediated Inflammation and Oxidative Stress Leading to Intrinsic Apoptosis in Zn-Induced Parkinsonism.

    PubMed

    Chauhan, Amit Kumar; Mittra, Namrata; Patel, Devendra Kumar; Singh, Chetna

    2017-03-13

    Inflammation is decisive in zinc (Zn)-induced nigrostriatal dopaminergic neurodegeneration; however, the contribution of cyclooxygenase-2 (COX-2) is not yet known. The present study aimed to explore the role of COX-2 in Zn-induced Parkinsonism and its association with the microglial activation. Male Wistar rats were treated intraperitoneally (i.p.) with Zn as zinc sulphate (20 mg/kg) along with respective controls for 2-12 weeks. In a few sets, animals were also treated with/without celecoxcib (CXB, 20 mg/kg, i.p.), a selective COX-2 inhibitor. Indexes of the nigrostriatal neurodegeneration, oxidative stress, inflammation and apoptosis were measured in the animals/nigrostriatal tissue. Zn induced time-dependent increase in the expression of COX-2 while COX-1 expression was unaltered. Zn reduced the neurobehavioral activities, striatal dopamine content, tyrosine hydroxylase (TH) expression and number of dopaminergic neurons. While oxidative stress; microglial activation; expression of microglial cell surface marker-CD11b; cytochrome c release; caspase-9/3 activation; level of pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6 and Bcl-2-associated protein x (Bax) translocation from the cytosol to mitochondria were induced in the Zn-treated group, expression of B-cell lymphoma-2 (Bcl-2) was found to be reduced. CXB significantly attenuated Zn-induced increase in COX-2 expression and restored TH-expression, dopamine content, level of inflammatory cytokines and neurobehavioral indexes towards normalcy. Moreover, CXB also attenuated Zn-induced increase in microglial activation, oxidative stress and apoptotic markers towards normal levels. Results of the study thus demonstrate that COX-2 induces microglial activation that provokes the release of inflammatory mediators, which in turn augments oxidative stress and intrinsic apoptosis leading to dopaminergic neurodegeneration in Zn-induced Parkinsonism.

  15. Phenotypic dysregulation of microglial activation in young offspring rats with maternal sleep deprivation-induced cognitive impairment

    PubMed Central

    Zhao, Qiuying; Xie, Xiaofang; Fan, Yonghua; Zhang, Jinqiang; Jiang, Wei; Wu, Xiaohui; Yan, Shuo; Chen, Yubo; Peng, Cheng; You, Zili

    2015-01-01

    Despite the potential adverse effects of maternal sleep deprivation (MSD) on physiological and behavioral aspects of offspring, the mechanisms remain poorly understood. The present study was intended to investigate the roles of microglia on neurodevelopment and cognition in young offspring rats with prenatal sleep deprivation. Pregnant Wistar rats received 72 h sleep deprivation in the last trimester of gestation, and their prepuberty male offspring were given the intraperitoneal injection with or without minocycline. The results showed the number of Iba1+ microglia increased, that of hippocampal neurogenesis decreased, and the hippocampus-dependent spatial learning and memory were impaired in MSD offspring. The classical microglial activation markers (M1 phenotype) IL-1β, IL-6, TNF-α, CD68 and iNOS were increased, while the alternative microglial activation markers (M2 phenotype) Arg1, Ym1, IL-4, IL-10 and CD206 were reduced in hippocampus of MSD offspring. After minocycline administration, the MSD offspring showed improvement in MWM behaviors and increase in BrdU+/DCX+ cells. Minocycline reduced Iba1+ cells, suppressed the production of pro-inflammatory molecules, and reversed the reduction of M2 microglial markers in the MSD prepuberty offspring. These results indicate that dysregulation in microglial pro- and anti-inflammatory activation is involved in MSD-induced inhibition of neurogenesis and impairment of spatial learning and memory. PMID:25830666

  16. Treadmill exercise ameliorates symptoms of Alzheimer disease through suppressing microglial activation-induced apoptosis in rats.

    PubMed

    Baek, Seung-Soo; Kim, Sang-Hoon

    2016-12-01

    Alzheimer disease (AD) is a most common form of dementia and eventually causes impairments of learning ability and memory function. In the present study, we investigated the effects of treadmill exercise on the symptoms of AD focusing on the microglial activation-induced apoptosis. AD was made by bilateral intracerebroventricular injection of streptozotocin. The rats in the exercise groups were made to run on a treadmill once a day for 30 min during 4 weeks. The distance and latency in the Morris water maze task and the latency in the step-down avoidance task were increased in the AD rats, in contrast, treadmill exercise shortened these parameters. The numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive and caspase-3-positive cells in the hippocampal dentate gyrus were decreased in the AD rats, in contrast, treadmill exercise suppressed these numbers. Expressions of glial fibrillary acidic protein (GFAP) and cluster of differentiation molecule 11B (CD11b) in the hippocampal dentate gyrus were increased in the AD rats, in contrast, treadmill exercise suppressed GFAP and CD11b expressions. Bax expression was increased and Bcl-2 expression was decreased in the hippocampus of AD rats, in contrast, treadmill exercise decreased Bax expression and increased Bcl-2 expression. The present results demonstrated that treadmill exercise ameliorated AD-induced impairments of spatial learning ability and short-term memory through suppressing apoptosis. The antiapoptotic effect of treadmill exercise might be ascribed to the inhibitory effect of treadmill exercise on microglial activation.

  17. Treadmill exercise ameliorates symptoms of Alzheimer disease through suppressing microglial activation-induced apoptosis in rats

    PubMed Central

    Baek, Seung-Soo; Kim, Sang-Hoon

    2016-01-01

    Alzheimer disease (AD) is a most common form of dementia and eventually causes impairments of learning ability and memory function. In the present study, we investigated the effects of treadmill exercise on the symptoms of AD focusing on the microglial activation-induced apoptosis. AD was made by bilateral intracerebroventricular injection of streptozotocin. The rats in the exercise groups were made to run on a treadmill once a day for 30 min during 4 weeks. The distance and latency in the Morris water maze task and the latency in the step-down avoidance task were increased in the AD rats, in contrast, treadmill exercise shortened these parameters. The numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive and caspase-3-positive cells in the hippocampal dentate gyrus were decreased in the AD rats, in contrast, treadmill exercise suppressed these numbers. Expressions of glial fibrillary acidic protein (GFAP) and cluster of differentiation molecule 11B (CD11b) in the hippocampal dentate gyrus were increased in the AD rats, in contrast, treadmill exercise suppressed GFAP and CD11b expressions. Bax expression was increased and Bcl-2 expression was decreased in the hippocampus of AD rats, in contrast, treadmill exercise decreased Bax expression and increased Bcl-2 expression. The present results demonstrated that treadmill exercise ameliorated AD-induced impairments of spatial learning ability and short-term memory through suppressing apoptosis. The antiapoptotic effect of treadmill exercise might be ascribed to the inhibitory effect of treadmill exercise on microglial activation. PMID:28119873

  18. Cocaine-mediated microglial activation involves the ER stress-autophagy axis.

    PubMed

    Guo, Ming-Lei; Liao, Ke; Periyasamy, Palsamy; Yang, Lu; Cai, Yu; Callen, Shannon E; Buch, Shilpa

    2015-01-01

    Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explored before. Herein, we demonstrate that cocaine exposure induced autophagy in both BV-2 and primary rat microglial cells as demonstrated by a dose- and time-dependent induction of autophagy-signature proteins such as BECN1/Beclin 1, ATG5, and MAP1LC3B. These findings were validated wherein cocaine treatment of BV-2 cells resulted in increased formation of puncta in cells expressing either endogenous MAP1LC3B or overexpressing GFP-MAP1LC3B. Specificity of cocaine-induced autophagy was confirmed by treating cells with inhibitors of autophagy (3-MA and wortmannin). Intriguingly, cocaine-mediated induction of autophagy involved upstream activation of 2 ER stress pathways (EIF2AK3- and ERN1-dependent), as evidenced by the ability of the ER stress inhibitor salubrinal to ameliorate cocaine-induced autophagy. In vivo validation of these findings demonstrated increased expression of BECN1, ATG5, and MAP1LC3B-II proteins in cocaine-treated mouse brains compared to untreated animals. Increased autophagy contributes to cocaine-mediated activation of microglia since pretreatment of cells with wortmannin resulted in decreased expression and release of inflammatory factors (TNF, IL1B, IL6, and CCL2) in microglial cells. Taken together, our findings suggest that cocaine exposure results in induction of autophagy that is closely linked with neuroinflammation. Targeting autophagic proteins could thus be considered as a therapeutic strategy for the treatment of cocaine-related neuroinflammation diseases.

  19. Inhibition of microglial activation by elderberry extracts and its phenolic components

    PubMed Central

    Simonyi, Agnes; Chen, Zihong; Jiang, Jinghua; Zong, Yijia; Chuang, Dennis Y.; Gu, Zezong; Lu, Chi-Hua; Fritsche, Kevin L.; Greenlief, C. Michael; Rottinghaus, George E.; Thomas, Andrew L.; Lubahn, Dennis B.; Sun, Grace Y.

    2015-01-01

    Aims Elderberry (Sambucus spp.) is one of the oldest medicinal plants noted for its cardiovascular, anti-inflammatory, and immune-stimulatory properties. In this study, we investigated the anti-inflammatory and anti-oxidant effects of the American elderberry (Sambucus nigra subsp. canadensis) pomace as well as some of the anthocyanins (cyanidin chloride and cyanidin 3-O-glucoside) and flavonols (quercetin and rutin) in bv-2 mouse microglial cells. Main methods The bv-2 cells were pretreated with elderberry pomace (extracted with ethanol or ethyl acetate) or its anthocyanins and flavonols and stimulated by either lipopolysaccharide (LPS) or interferon-γ (IFNγ). Reactive oxygen species (ROS) and nitric oxide (NO) production (indicating oxidative stress and inflammatory response) were measured using the ROS detection reagent DCF-DA and the Griess reaction, respectively. Key findings Analysis of total monomeric anthocyanin (as cyanidin 3-O-glucoside equivalents) indicated five-fold higher amount in the freeze-dried ethanol extract as compared to that of the oven-dried extract; anthocyanin was not detected in the ethyl acetate extracts. Elderberry ethanol extracts (freeze-dried or oven-dried) showed higher anti-oxidant activities and better ability to inhibit LPS or IFNγ-induced NO production as compared with the ethyl acetate extracts. The phenolic compounds strongly inhibited LPS or IFNγ-induced ROS production, but except for quercetin, they were relatively poor in inhibiting NO production. Significance These results demonstrated difference in anti-oxidative and anti-inflammatory effects of elderberry extracts depending on solvents used. Results further identified quercetin as the most active component in suppressing oxidative stress and inflammatory responses on microglial cells. PMID:25744406

  20. Cocaine-mediated microglial activation involves the ER stress-autophagy axis

    PubMed Central

    Guo, Ming-Lei; Liao, Ke; Periyasamy, Palsamy; Yang, Lu; Cai, Yu; Callen, Shannon E; Buch, Shilpa

    2015-01-01

    Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explored before. Herein, we demonstrate that cocaine exposure induced autophagy in both BV-2 and primary rat microglial cells as demonstrated by a dose- and time-dependent induction of autophagy-signature proteins such as BECN1/Beclin 1, ATG5, and MAP1LC3B. These findings were validated wherein cocaine treatment of BV-2 cells resulted in increased formation of puncta in cells expressing either endogenous MAP1LC3B or overexpressing GFP-MAP1LC3B. Specificity of cocaine-induced autophagy was confirmed by treating cells with inhibitors of autophagy (3-MA and wortmannin). Intriguingly, cocaine-mediated induction of autophagy involved upstream activation of 2 ER stress pathways (EIF2AK3- and ERN1-dependent), as evidenced by the ability of the ER stress inhibitor salubrinal to ameliorate cocaine-induced autophagy. In vivo validation of these findings demonstrated increased expression of BECN1, ATG5, and MAP1LC3B-II proteins in cocaine-treated mouse brains compared to untreated animals. Increased autophagy contributes to cocaine-mediated activation of microglia since pretreatment of cells with wortmannin resulted in decreased expression and release of inflammatory factors (TNF, IL1B, IL6, and CCL2) in microglial cells. Taken together, our findings suggest that cocaine exposure results in induction of autophagy that is closely linked with neuroinflammation. Targeting autophagic proteins could thus be considered as a therapeutic strategy for the treatment of cocaine-related neuroinflammation diseases. PMID:26043790

  1. Interference with Protease-activated Receptor 1 Alleviates Neuronal Cell Death Induced by Lipopolysaccharide-Stimulated Microglial Cells through the PI3K/Akt Pathway

    PubMed Central

    Li, Yuxin; Yang, Wuyang; Quinones-Hinojosa, Alfredo; Wang, Baocheng; Xu, Shujun; Zhu, Weijie; Yu, Feng; Yuan, Shaoji; Lu, Peigang

    2016-01-01

    Excessive microglial cells activation in response to inflammatory stimuli leads to synaptic loss, dysfunction, and neuronal cell death. Activated microglia are involved in the pathogenesis of neurological conditions and frequently contribute to several complications. Accumulating evidence suggests that signaling through PAR-1 is involved in inflammation, however, its function has yet to be fully elucidated. Here, we have demonstrated that the suppression of PAR-1 leads to down-regulation of inflammatory factors including IL-1β, IL-6, TNF-α, NO, as well as the prevention of activation of NF-κB in BV2 cells. In addition, we found that a PAR-1 antagonist, SCH, prevented LPS-induced excessive microglial activation in a dose-dependent manner. As a result of SCH treatment, neuronal cell death via up-regulation of Akt-mediated pathways was reduced. Our results demonstrate that the beneficial effects of SCH are linked to its ability to block an inflammatory response. Further, we found that SCH inhibited the death of PC12 neurons from the cytotoxicity of activated BV2 cells via activation of the PI3K/Akt pathway. These neuro-protective effects appear to be related to inhibition of PAR-1, and represents a novel neuroprotective strategy that could has potential for use in therapeutic interventions of neuroinflammatory disease. PMID:27910893

  2. The Antioxidant Effects of Thymoquinone in Activated BV-2 Murine Microglial Cells.

    PubMed

    Cobourne-Duval, Makini K; Taka, Equar; Mendonca, Patricia; Bauer, David; Soliman, Karam F A

    2016-12-01

    Both neuroinflammation and microglial activation are pathological markers of a number of central nervous system (CNS) diseases. During chronic activation of the microglial cells, the induced release of excessive amounts of reactive oxygen species (ROS) and pro-inflammatory cytokines have been implicated in several neurodegenerative diseases such as Alzheimer's disease. Thymoquinone (TQ), a major bioactive compound of the natural product Nigella sativa seed, has been shown to be effective against numerous oxidative stress-induced and inflammatory disorders as well as possess neuroprotective properties. In this study, we investigated the antioxidant effects of TQ on LPS/IFNγ or H2O2-activated BV-2 microglia by assessing the levels of specific oxidative stress markers, the activities of selected antioxidant enzymes, as well as profiling 84 key genes related to oxidative stress via real-time reverse transcription (RT(2)) PCR array. Our results showed that in the LPS/IFNγ-activated microglia TQ significantly decreased the cellular production of both superoxide and nitric oxide fourfold (p < 0.0001) and sixfold (p < 0.0001), respectfully. In the H2O2-activated microglia, TQ also significantly decreased the cellular production of superoxide threefold (p < 0.0001) and significantly decreased hydrogen peroxide levels ~20 % (p < 0.05). Moreover, ΤQ treatment significantly decreased the levels oxidative stress in the activated BV-2 as evidenced by the assessed levels of lipid hydroperoxides and glutathione. TQ significantly decreased the levels of lipid hydroperoxides twofold (p < 0.0001) and significantly increased the levels of antioxidant glutathione 2.5-fold (p < 0.0001) in the LPS/IFNγ-activated BV-2 cells. In the H2O2-activated microglia, TQ significantly decreased lipid hydroperoxides eightfold (p < 0.0001) and significantly increased glutathione 15 % (p < 0.05). Activities of antioxidant enzymes, superoxide dismutase (SOD) and

  3. Wnt1, FoxO3a, and NF-kappaB oversee microglial integrity and activation during oxidant stress.

    PubMed

    Shang, Yan Chen; Chong, Zhao Zhong; Hou, Jinling; Maiese, Kenneth

    2010-09-01

    Elucidating the underlying mechanisms that govern microglial activation and survival is essential for the development of new treatment strategies for neurodegenerative disorders, since microglia serve not only as guardian sentries of the nervous system, but also play a significant role in determining neuronal and vascular cell fate. Here we show that endogenous and exogenous Wnt1 in inflammatory microglial cells is necessary for the prevention of apoptotic early membrane phosphatidylserine exposure and later DNA degradation, since blockade of Wnt1 signaling abrogates cell survival during oxidative stress. Wnt1 prevents apoptotic demise through the post-translational phosphorylation and maintenance of FoxO3a in the cytoplasm to inhibit an apoptotic cascade that relies upon the loss of mitochondrial membrane permeability, cytochrome c release, Bad phosphorylation, and activation of caspase 3 and caspase 1 as demonstrated by complimentary gene knockdown studies of FoxO3a. Furthermore, subcellular trafficking and gene knockdown studies of NF-kappaB p65 illustrate that microglial cell survival determined by Wnt1 during oxidative stress requires NF-kappaB p65. Our work highlights Wnt1 and the control of novel downstream transcriptional pathways as critical components for the oversight of nervous system microglial cells.

  4. Puerarin suppresses production of nitric oxide and inducible nitric oxide synthase in lipopolysaccharide-induced N9 microglial cells through regulating MAPK phosphorylation, O-GlcNAcylation and NF-κB translocation.

    PubMed

    Zheng, Gao-Ming; Yu, Chao; Yang, Zhu

    2012-05-01

    Microglial cells play a critical role in mediating central nervous system inflammatory processes. Activated microglial cells induced by proinflammatory factor, such as lipopolysaccharide (LPS), release many kinds of neurotoxic cytokines including reactive oxygen species (ROS) which contributes to the pathogenesis of neurodegenerative diseases. Puerarin, extracted from kudzu root, possesses the characteristic of neuroprotection, antioxidation and anticancer. In the present study, we observed that LPS induced over-production of nitric oxide (NO) and increased the level of intracellular ROS in N9 microglial cells, but it was inhibited by puerarin. Furthermore, treatment with puerarin on N9 cells suppressed the over-expression of inducible nitric oxide synthase (iNOS) induced by LPS which is implicated in intracellular O-linked β-N-acetylglucosamine (O-GlcNAc) level, phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signaling pathway. We also observed that the enhanced phosphorylation of p38, JNK and ERK1/2 in N9 cells induced by LPS were inhibited by puerarin, otherwise the down-regulation of O-GlcNAcylation level of protein in N9 cell induced by LPS was up-regulated by pretreatment with puerarin. These results indicate that puerarin effectively inhibits microglia activation induced by LPS through inhibiting expression of iNOS, production of NO and ROS which was mediated via regulating O-GlcNAcylation, phosphorylation of MAPK and NF-κB translocation.

  5. Neurotoxicity effects of atrazine-induced SH-SY5Y human dopaminergic neuroblastoma cells via microglial activation.

    PubMed

    Ma, Kun; Wu, Hao-Yu; Zhang, Bo; He, Xi; Li, Bai-Xiang

    2015-11-01

    Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR) is a broad-spectrum herbicide with a wide range of applications worldwide. However, ATR is neurotoxic; it reduces dopamine levels in the substantia nigra and corpus striatum in the midbrain, affects the absorption of synaptic vesicles and synaptic bodies, and interferes with dopamine storage and uptake in synaptic vesicles, leading to neurodegenerative disorders. Microglia are resident immunocompetent and phagocytic cells that regulate and participate in the microenvironment in the central nervous system. They demonstrate macrophage characteristics after activation by releasing inflammatory cytokines and neurotoxic substances to increase the inflammatory response, and are thus involved in neurodegeneration. The aim of this study was to investigate the neurotoxic effects of ATR-activated microglia-mediated neuronal damage in terms of human dopaminergic neuroblastoma SH-SY5Y cell death. ATR was administered to BV-2 microglial cells at 12.5, 25, and 50 μM for 1, 6, 12, 24 and 48 h, respectively. ATR increased activated-microglia-induced overexpression of reactive oxygen species, inducible nitric oxide synthase, nitric oxide, gp91(phox), p47(phox), and the inflammatory cytokines tumor necrosis factor α and interleukin-1β, thus reducing SH-SY5Y cell viability. These results suggest that activated microglia may play a critical role in inflammation-mediated dopaminergic neuronal death, and provide the basis for further studies on the mechanisms of ATR-induced dopaminergic system toxicity.

  6. Glioma associated microglial MMP9 expression is up regulated by TLR2 signalling and sensitive to minocycline

    PubMed Central

    Hu, Feng; Ku, Min-Chi; Markovic, Darko; Dzaye, Omar Dildar a; Lehnardt, Seija; Synowitz, Michael; Wolf, Susanne A.; Kettenmann, Helmut

    2014-01-01

    The invasiveness of malignant gliomas is one of the major obstacles in glioma therapy and the reason for the poor survival of patients. Glioma cells infiltrate into the brain parenchyma and thereby escape surgical resection. Glioma associated microglia/macrophages support glioma infiltration into the brain parenchyma by increased expression and activation of extracellular matrix degrading proteases such as matrix-metalloprotease 2, matrix-metalloprotease 9 and membrane-type 1 matrix metalloprotease. In this work we demonstrate that, matrix-metalloprotease 9 is predominantly expressed by glioma associated microglia/macrophages in mouse and human glioma tissue but not by the glioma cells. Supernatant from glioma cells induced the expression of matrix-metalloprotease 9 in cultured microglial cells. Using mice deficient for different Toll-like receptors we identified Toll-like receptor 2/6 as the signalling pathway for the glioma induced upregulation of microglial matrix-metalloprotease 9. Also in an experimental mouse glioma model, Toll-like receptor 2 deficiency attenuated the upregulation of microglial matrix-metalloprotease 9. Moreover, glioma supernatant triggered an upregulation of Toll-like receptor 2 expression in microglia. Both, the upregulation of matrix-metalloprotease 9 and Toll-like receptor 2 were attenuated by the antibiotic minocycline and a p38 mitogen activated protein kinase antagonist in vitro. Minocycline also extended the survival rate of glioma bearing mice when given to the drinking water. Thus glioma cells change the phenotype of glioma associated microglia/macrophages in a complex fashion using Toll-like receptor 2 as an important signalling pathway and minocycline further proved to be a potential candidate for adjuvant glioma therapy. PMID:24752463

  7. Equol, a Dietary Daidzein Gut Metabolite Attenuates Microglial Activation and Potentiates Neuroprotection In Vitro

    PubMed Central

    Subedi, Lalita; Ji, Eunhee; Shin, Dongyun; Jin, Jongsik; Yeo, Joo Hong; Kim, Sun Yeou

    2017-01-01

    Estrogen deficiency has been well characterized in inflammatory disorders including neuroinflammation. Daidzein, a dietary alternative phytoestrogen found in soy (Glycine max) as primary isoflavones, possess anti-inflammatory activity, but the effect of its active metabolite Equol (7-hydroxy-3-(4′-hydroxyphenyl)-chroman) has not been well established. In this study, we investigated the anti-neuroinflammatory and neuroprotective effect of Equol in vitro. To evaluate the potential effects of Equol, three major types of central nervous system (CNS) cells, including microglia (BV-2), astrocytes (C6), and neurons (N2a), were used. Effects of Equol on the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), Mitogen activated protein kinase (MAPK) signaling proteins, and apoptosis-related proteins were measured by western blot analysis. Equol inhibited the lipopolysaccharide (LPS)-induced TLR4 activation, MAPK activation, NF-kB-mediated transcription of inflammatory mediators, production of nitric oxide (NO), release of prostaglandin E2 (PGE-2), secretion of tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6), in Lipopolysaccharide (LPS)-activated murine microglia cells. Additionally, Equol protects neurons from neuroinflammatory injury mediated by LPS-activated microglia through downregulation of neuronal apoptosis, increased neurite outgrowth in N2a cell and neurotrophins like nerve growth factor (NGF) production through astrocytes further supporting its neuroprotective potential. These findings provide novel insight into the anti-neuroinflammatory effects of Equol on microglial cells, which may have clinical significance in cases of neurodegeneration. PMID:28264445

  8. A2a and a2b adenosine receptors affect HIF-1α signaling in activated primary microglial cells.

    PubMed

    Merighi, Stefania; Borea, Pier Andrea; Stefanelli, Angela; Bencivenni, Serena; Castillo, Carlos Alberto; Varani, Katia; Gessi, Stefania

    2015-05-15

    Microglia are central nervous system (CNS)-resident immune cells, that play a crucial role in neuroinflammation. Hypoxia-inducible factor-1 (HIF-1), the main transcription factor of hypoxia-inducible genes, is also involved in the immune response, being regulated in normoxia by inflammatory mediators. Adenosine is an ubiquitous nucleoside that has an influence on many immune properties of microglia through interaction with four receptor subtypes. The aim of this study was to investigate whether adenosine may affect microglia functions by acting on HIF-1α modulation. Primary murine microglia were activated with lipopolysaccharide (LPS) with or without adenosine, adenosine receptor agonists and antagonists and HIF-1α accumulation and downstream genes regulation were determined. Adenosine increased LPS-induced HIF-1α accumulation leading to an increase in HIF-1α target genes involved in cell metabolism [glucose transporter-1 (GLUT-1)] and pathogens killing [inducible nitric-oxide synthase (iNOS)] but did not induce HIF-1α dependent genes related to angiogenesis [vascular endothelial growth factor (VEGF)] and inflammation [tumor necrosis factor-α (TNF-α)]. The stimulatory effect of adenosine on HIF-1α and its target genes was essentially exerted by activation of A2A through p44/42 and A2B subtypes via p38 mitogen-activated protein kinases (MAPKs) and Akt phosphorylation. Furthermore the nucleoside raised VEGF and decreased TNF-α levels, by activating A2B subtypes. In conclusion adenosine increases GLUT-1 and iNOS gene expression in a HIF-1α-dependent way, through A2A and A2B receptors, suggesting their role in the regulation of microglial cells function following injury. However, inhibition of TNF-α adds an important anti-inflammatory effect only for the A2B subtype. GLIA 2015.

  9. Lithium ameliorates lipopolysaccharide-induced microglial activation via inhibition of toll-like receptor 4 expression by activating the PI3K/Akt/FoxO1 pathway.

    PubMed

    Dong, Hongquan; Zhang, Xiang; Dai, Xiaonan; Lu, Shunmei; Gui, Bo; Jin, Wenjie; Zhang, Susu; Zhang, Shu; Qian, Yanning

    2014-08-14

    Lithium, an effective mood stabilizer for the treatment of bipolar disorders, has been recently suggested to have a role in neuroprotection during neurodegenerative diseases. The pathogenesis of neurological disorders often involves the activation of microglia and associated inflammatory processes. Thus, in this study, we aimed to understand the role of lithium in microglial activation and to elucidate the underlying mechanism(s). Primary microglial cells were pretreated with lithium and stimulated with lipopolysaccharide (LPS). The cells were assessed regarding the responses of pro-inflammatory cytokines, and the associated signaling pathways were evaluated. Lithium significantly inhibited LPS-induced microglial activation and pro-inflammatory cytokine production. Further analysis showed that lithium could activate PI3K/Akt signaling. Analyses of the associated signaling pathways demonstrated that the lithium pretreatment led to the suppression of LPS-induced toll-like receptor 4 (TLR4) expressions via the PI3K/Akt/FoxO1 pathway. This study demonstrates that lithium can inhibit LPS-induced TLR4 expression and microglial activation through the PI3K/Akt/FoxO1 signaling pathway. These results suggest that lithium plays an important role in microglial activation and neuroinflammation-related diseases, which may lead to a new therapeutic strategy for the treatment of neuroinflammation-related disorders.

  10. Amyloid-β Protein Oligomer at Low Nanomolar Concentrations Activates Microglia and Induces Microglial Neurotoxicity*

    PubMed Central

    Maezawa, Izumi; Zimin, Pavel I.; Wulff, Heike; Jin, Lee-Way

    2011-01-01

    Neuroinflammation and associated neuronal dysfunction mediated by activated microglia play an important role in the pathogenesis of Alzheimer disease (AD). Microglia are activated by aggregated forms of amyloid-β protein (Aβ), usually demonstrated in vitro by stimulating microglia with micromolar concentrations of fibrillar Aβ, a major component of amyloid plaques in AD brains. Here we report that amyloid-β oligomer (AβO), at 5–50 nm, induces a unique pattern of microglia activation that requires the activity of the scavenger receptor A and the Ca2+-activated potassium channel KCa3.1. AβO treatment induced an activated morphological and biochemical profile of microglia, including activation of p38 MAPK and nuclear factor κB. Interestingly, although increasing nitric oxide (NO) production, AβO did not increase several proinflammatory mediators commonly induced by lipopolyliposacharides or fibrillar Aβ, suggesting that AβO stimulates both common and divergent pathways of microglia activation. AβO at low nanomolar concentrations, although not neurotoxic, induced indirect, microglia-mediated damage to neurons in dissociated cultures and in organotypic hippocampal slices. The indirect neurotoxicity was prevented by (i) doxycycline, an inhibitor of microglia activation; (ii) TRAM-34, a selective KCa3.1 blocker; and (iii) two inhibitors of inducible NO synthase, indicating that KCa3.1 activity and excessive NO release are required for AβO-induced microglial neurotoxicity. Our results suggest that AβO, generally considered a neurotoxin, may more potently cause neuronal damage indirectly by activating microglia in AD. PMID:20971854

  11. CD14 and Toll-like receptors 2 and 4 are required for fibrillar Aβ-stimulated microglial activation

    PubMed Central

    Reed-Geaghan, Erin G.; Savage, Julie C.; Hise, Amy G.; Landreth, Gary E.

    2009-01-01

    Microglia are the brain's tissue macrophages and are found in an activated state surrounding β-amyloid plaques in the Alzheimer's disease brain. Microglia interact with fibrillar β-amyloid (fAβ) through an ensemble of surface receptors composed of the α6β1 integrin, CD36, CD47, and the class A scavenger receptor. These receptors act in concert to initiate intracellular signaling cascades and phenotypic activation of these cells. However, it is unclear how engagement of this receptor complex is linked to the induction of an activated microglial phenotype. We report that the response of microglial cells to fibrillar forms of Aβ requires the participation of Toll like receptors (TLRs) and the co-receptor CD14. The response of microglia to fAβ is reliant upon CD14, which act together with TLR4 and TLR2 to bind fAβ and to activate intracellular signaling. We find that cells lacking these receptors could not initiate a Src-Vav-Rac signaling cascade leading to reactive oxygen species production and phagocytosis. The fAβ-mediated activation of p38 MAPK also required CD14, TLR4, and TLR2. Inhibition of p38 abrogated fAβ-induced reactive oxygen species production and attenuated the induction of phagocytosis. Microglia lacking CD14, TLR4, and TLR2 showed no induction of phosphorylated IκBα following fAβ. These data indicate these innate immune receptors function as members of the microglial fAβ receptor complex and identify the signaling mechanisms whereby they contribute to microglial activation. PMID:19776284

  12. Microglial activation in regions related to cognitive function predicts disease onset in Huntington's disease: a multimodal imaging study.

    PubMed

    Politis, Marios; Pavese, Nicola; Tai, Yen F; Kiferle, Lorenzo; Mason, Sarah L; Brooks, David J; Tabrizi, Sarah J; Barker, Roger A; Piccini, Paola

    2011-02-01

    Huntington's disease (HD) is an inherited neurodegenerative disorder associated with motor, cognitive and psychiatric deficits. This study, using a multimodal imaging approach, aims to assess in vivo the functional and structural integrity of regions and regional networks linked with motor, cognitive and psychiatric function. Predicting disease onset in at risk individuals is problematic and thus we sought to investigate this by computing the 5-year probability of HD onset (p5 HD) and relating it to imaging parameters. Using MRI, (11)C-PK11195 and (11)C-raclopride PET, we have investigated volumes, levels of microglial activation and D2/D3 receptor binding in CAG repeat-matched groups of premanifest and symptomatic HD gene carriers. Findings were correlated with disease-burden and UHDRS scores. Atrophy was detected in sensorimotor striatum (SMST), substantia nigra, orbitofrontal and anterior prefrontal cortex in the premanifest HD. D2/D3 receptor binding was reduced and microglial activation increased in SMST and associative striatum (AST), bed nucleus of the stria terminalis, the amygdala and the hypothalamus. In symptomatic HD cases this extended to involve atrophy in globus pallidus, limbic striatum, the red nuclei, anterior cingulate cortex, and insula. D2/D3 receptor binding was additionally reduced in substantia nigra, globus pallidus, limbic striatum, anterior cingulate cortex and insula, and microglial activation increased in globus pallidus, limbic striatum and anterior prefrontal cortex. In premanifest HD, increased levels of microglial activation in the AST and in the regional network associated with cognitive function correlated with p5 HD onset. These data suggest that pathologically activated microglia in AST and other areas related to cognitive function, maybe better predictors of clinical onset and stresses the importance of early cognitive assessment in HD.

  13. Microglial activation enhances associative taste memory through purinergic modulation of glutamatergic neurotransmission.

    PubMed

    Delpech, Jean-Christophe; Saucisse, Nicolas; Parkes, Shauna L; Lacabanne, Chloe; Aubert, Agnes; Casenave, Fabrice; Coutureau, Etienne; Sans, Nathalie; Layé, Sophie; Ferreira, Guillaume; Nadjar, Agnes

    2015-02-18

    The cerebral innate immune system is able to modulate brain functioning and cognitive processes. During activation of the cerebral innate immune system, inflammatory factors produced by microglia, such as cytokines and adenosine triphosphate (ATP), have been directly linked to modulation of glutamatergic system on one hand and learning and memory functions on the other hand. However, the cellular mechanisms by which microglial activation modulates cognitive processes are still unclear. Here, we used taste memory tasks, highly dependent on glutamatergic transmission in the insular cortex, to investigate the behavioral and cellular impacts of an inflammation restricted to this cortical area in rats. We first show that intrainsular infusion of the endotoxin lipopolysaccharide induces a local inflammation and increases glutamatergic AMPA, but not NMDA, receptor expression at the synaptic level. This cortical inflammation also enhances associative, but not incidental, taste memory through increase of glutamatergic AMPA receptor trafficking. Moreover, we demonstrate that ATP, but not proinflammatory cytokines, is responsible for inflammation-induced enhancement of both associative taste memory and AMPA receptor expression in insular cortex. In conclusion, we propose that inflammation restricted to the insular cortex enhances associative taste memory through a purinergic-dependent increase of glutamatergic AMPA receptor expression at the synapse. Copyright © 2015 the authors 0270-6474/15/353022-12$15.00/0.

  14. Deep brain stimulation during early adolescence prevents microglial alterations in a model of maternal immune activation.

    PubMed

    Hadar, Ravit; Dong, Le; Del-Valle-Anton, Lucia; Guneykaya, Dilansu; Voget, Mareike; Edemann-Callesen, Henriette; Schweibold, Regina; Djodari-Irani, Anais; Goetz, Thomas; Ewing, Samuel; Kettenmann, Helmut; Wolf, Susanne A; Winter, Christine

    2016-12-07

    In recent years schizophrenia has been recognized as a neurodevelopmental disorder likely involving a perinatal insult progressively affecting brain development. The poly I:C maternal immune activation (MIA) rodent model is considered as a neurodevelopmental model of schizophrenia. Using this model we and others demonstrated the association between neuroinflammation in the form of altered microglia and a schizophrenia-like endophenotype. Therapeutic intervention using the anti-inflammatory drug minocycline affected altered microglia activation and was successful in the adult offspring. However, less is known about the effect of preventive therapeutic strategies on microglia properties. Previously we found that deep brain stimulation of the medial prefrontal cortex applied pre-symptomatically to adolescence MIA rats prevented the manifestation of behavioral and structural deficits in adult rats. We here studied the effects of deep brain stimulation during adolescence on microglia properties in adulthood. We found that in the hippocampus and nucleus accumbens, but not in the medial prefrontal cortex, microglial density and soma size were increased in MIA rats. Pro-inflammatory cytokine mRNA was unchanged in all brain areas before and after implantation and stimulation. Stimulation of either the medial prefrontal cortex or the nucleus accumbens normalized microglia density and soma size in main projection areas including the hippocampus and in the area around the electrode implantation. We conclude that in parallel to an alleviation of the symptoms in the rat MIA model, deep brain stimulation has the potential to prevent the neuroinflammatory component in this disease.

  15. Genetic deletion of P-glycoprotein alters stress responsivity and increases depression-like behavior, social withdrawal and microglial activation in the hippocampus of female mice.

    PubMed

    Brzozowska, Natalia I; Smith, Kristie L; Zhou, Cilla; Waters, Peter M; Cavalcante, Ligia Menezes; Abelev, Sarah V; Kuligowski, Michael; Clarke, David J; Todd, Stephanie M; Arnold, Jonathon C

    2017-10-01

    P-glycoprotein (P-gp) is an ABC transporter expressed at the blood brain barrier and regulates the brain uptake of various xenobiotics and endogenous mediators including glucocorticoid hormones which are critically important to the stress response. Moreover, P-gp is expressed on microglia, the brain's immune cells, which are activated by stressors and have an emerging role in psychiatric disorders. We therefore hypothesised that germline P-gp deletion in mice might alter the behavioral and microglial response to stressors. Female P-gp knockout mice displayed an unusual, frantic anxiety response to intraperitoneal injection stress in the light-dark test. They also tended to display reduced conditioned fear responses compared to wild-type (WT) mice in a paradigm where a single electric foot-shock stressor was paired to a context. Foot-shock stress reduced social interaction and decreased microglia cell density in the amygdala which was not varied by P-gp genotype. Independently of stressor exposure, female P-gp deficient mice displayed increased depression-like behavior, idiosyncratic darting behavior, age-related social withdrawal and hyperactivity, facilitated sensorimotor gating and altered startle reactivity. In addition, P-gp deletion increased microglia cell density in the CA3 region of the hippocampus, and the microglial cells exhibited a reactive, hypo-ramified morphology. Further, female P-gp KO mice displayed increased glucocorticoid receptor (GR) expression in the hippocampus. In conclusion, this research shows that germline P-gp deletion affected various behaviors of relevance to psychiatric conditions, and that altered microglial cell activity and enhanced GR expression in the hippocampus may play a role in mediating these behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Triggering receptor expressed in myeloid cells 2 (TREM2) trafficking in microglial cells: continuous shuttling to and from the plasma membrane regulated by cell stimulation.

    PubMed

    Prada, I; Ongania, G Naum; Buonsanti, C; Panina-Bordignon, P; Meldolesi, J

    2006-07-21

    Cell biology of triggering receptor expressed in myeloid cells 2, a receptor expressed in brain cells (microglia and possibly neurons and oligodendrocytes) which is responsible for a neurological and psychiatric genetic disease, polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy otherwise called the Nasu-Hakola disease, is still largely unknown. Using immortalized mouse N9 microglial cells we demonstrate that triggering receptor expressed in myeloid cells 2 is mostly distributed intracellularly in two pools: a deposit in the Golgi complex and a population of exocytic vesicles, distinct from endosomes and lysosomes, which is continuously translocated to, and recycled from the cell surface. Results with ionomycin and gamma-interferon, showing rapid and slow increases, respectively, of triggering receptor expressed in myeloid cells 2 surface density, documented that the exocytosis of the receptor-rich vesicles is regulated. Pulse labeling in the cold of surface triggering receptor expressed in myeloid cells 2 with its antibody (or Fab fragment) followed by chase at 37 degrees C showed internalization, with recovery of the antibody in endosomes and lysosomes. However, part of the receptor/antibody complex, internalized for up to 30 min chase, was recycled to the cell surface within 2 min of ionomycin stimulation, together with a fraction of the total biotinylated surface protein chased in parallel. The internalized receptor appears therefore to get access to exocytic organelles distinct from lysosomes which may resemble the exocytic vesicles of resting cells. These results document that, in microglial cells, the surface density of the triggering receptor expressed in myeloid cells 2 and thus, presumably, the response to its activation, is continuously adapted and can be greatly increased, even at rapid rate, as a function of cell activation.

  17. Imaging Microglial Activation in Untreated First-Episode Psychosis: A PET Study With [(18)F]FEPPA.

    PubMed

    Hafizi, Sina; Tseng, Huai-Hsuan; Rao, Naren; Selvanathan, Thiviya; Kenk, Miran; Bazinet, Richard P; Suridjan, Ivonne; Wilson, Alan A; Meyer, Jeffrey H; Remington, Gary; Houle, Sylvain; Rusjan, Pablo M; Mizrahi, Romina

    2017-02-01

    Neuroinflammation and abnormal immune responses are increasingly implicated in the pathophysiology of schizophrenia. Previous positron emission tomography (PET) studies targeting the translocator protein 18 kDa (TSPO) have been limited by high nonspecific binding of the first-generation radioligand, low-resolution scanners, small sample sizes, and psychotic patients being on antipsychotics or not being in the first episode of their illness. The present study uses the novel second-generation TSPO PET radioligand [(18)F]FEPPA to evaluate whether microglial activation is elevated in the dorsolateral prefrontal cortex and hippocampus of untreated patients with first-episode psychosis. Nineteen untreated patients with first-episode psychosis (14 of them antipsychotic naive) and 20 healthy volunteers underwent a high-resolution [(18)F]FEPPA PET scan and MRI. Dynamic PET data were analyzed using the validated two-tissue compartment model with arterial plasma input function with total volume of distribution (VT) as outcome measure. All analyses were corrected for TSPO rs6971 polymorphism (which is implicated in differential binding affinity). No significant differences were observed between patients and healthy volunteers in microglial activation, as indexed by [(18)F]FEPPA VT, in either the dorsolateral prefrontal cortex or the hippocampus. There were no significant correlations between [(18)F]FEPPA VT and duration of illness, clinical presentation, or neuropsychological measures after adjusting for multiple testing. The lack of significant differences in [(18)F]FEPPA VT between groups suggests that microglial activation is not present in first-episode psychosis.

  18. Onset of microglial entry into developing quail retina coincides with increased expression of active caspase-3 and is mediated by extracellular ATP and UDP.

    PubMed

    Martín-Estebané, María; Navascués, Julio; Sierra-Martín, Ana; Martín-Guerrero, Sandra M; Cuadros, Miguel A; Carrasco, María-Carmen; Marín-Teva, José L

    2017-01-01

    Microglial cell precursors located in the area of the base of the pecten and the optic nerve head (BP/ONH) start to enter the retina of quail embryos at the 7th day of incubation (E7), subsequently colonizing the entire retina by central-to-peripheral tangential migration, as previously shown by our group. The present study demonstrates a precise chronological coincidence of the onset of microglial cell entry into the retina with a striking increase in death of retinal cells, as revealed by their active caspase-3 expression and TUNEL staining, in regions dorsal to the BP/ONH area, suggesting that dying retinal cells would contribute to the microglial cell inflow into the retina. However, the molecular mechanisms involved in this inflow are currently unclear. Extracellular nucleotides, such as ATP and UDP, have previously been shown to favor migration of microglia towards brain injuries because they are released by apoptotic cells and stimulate both chemotaxis and chemokinesis in microglial cells via signaling through purinergic receptors. Hence, we tested here the hypothesis that ATP and UDP play a role in the entry and migration of microglial precursors into the developing retina. For this purpose, we used an experimental model system based on organotypic cultures of E6.5 quail embryo retina explants, which mimics the entry and migration of microglial precursors in the in situ developing retina. Inhibition of purinergic signaling by treating retina explants with either apyrase, a nucleotide-hydrolyzing enzyme, or suramin, a broad spectrum antagonist of purinergic receptors, significantly prevents the entry of microglial cells into the retina. In addition, treatment of retina explants with either exogenous ATP or UDP results in significantly increased numbers of microglial cells entering the retina. In light of these findings, we conclude that purinergic signaling by extracellular ATP and UDP is necessary for the entry and migration of microglial cells into the

  19. Mucopolysaccharide diseases: a complex interplay between neuroinflammation, microglial activation and adaptive immunity.

    PubMed

    Archer, Louise D; Langford-Smith, Kia J; Bigger, Brian W; Fildes, James E

    2014-01-01

    Mucopolysaccharide (MPS) diseases are lysosomal storage disorders (LSDs) caused by deficiencies in enzymes required for glycosaminoglycan (GAG) catabolism. Mucopolysaccharidosis I (MPS I), MPS IIIA, MPS IIIB and MPS VII are deficient in the enzymes α-L-Iduronidase, Heparan-N-Sulphatase, N-Acetylglucosaminidase and Beta-Glucuronidase, respectively. Enzyme deficiency leads to the progressive multi-systemic build-up of heparan sulphate (HS) and dermatan sulphate (DS) within cellular lysosomes, followed by cell, tissue and organ damage and in particular neurodegeneration. Clinical manifestations of MPS are well established; however as lysosomes represent vital components of immune cells, it follows that lysosomal accumulation of GAGs could affect diverse immune functions and therefore influence disease pathogenesis. Theoretically, MPS neurodegeneration and GAGs could be substantiating a threat of danger and damage to alert the immune system for cellular clearance, which due to the progressive nature of MPS storage would propagate disease pathogenesis. Innate immunity appears to have a key role in MPS; however the extent of adaptive immune involvement remains to be elucidated. The current literature suggests a complex interplay between neuroinflammation, microglial activation and adaptive immunity in MPS disease.

  20. The Relationship Between Serial [18F]PBR06 PET Imaging of Microglial Activation and Motor Function Following Stroke in Mice

    PubMed Central

    Lartey, Frederick M.; Ahn, G-One; Ali, Rehan; Rosenblum, Sahar; Miao, Zheng; Arksey, Natasha; Shen, Bin; Colomer, Marta Vilalta; Rafat, Marjan; Liu, Hongguang; Alejandre-Alcazar, Miguel A.; Chen, John W.; Palmer, Theo; Chin, Frederick T.; Guzman, Raphael; Loo, Billy W.; Graves, Edward

    2014-01-01

    Purpose Using [18F]PBR06 positron emission tomography (PET) to characterize the time course of stroke-associated neuroinflammation (SAN) in mice, to evaluate whether brain microglia influences motor function after stroke, and to demonstrate the use of [18F]PBR06 PET as a therapeutic assessment tool. Procedures Stroke was induced by transient middle cerebral artery occlusion (MCAO) in Balb/c mice (control, stroke, and stroke with poststroke minocycline treatment). [18 F]PBR06 PET/CT imaging, rotarod tests, and immunohistochemistry (IHC) were performed 3, 11, and 22 days poststroke induction (PSI). Results The stroke group exhibited significantly increased microglial activation, and impaired motor function. Peak microglial activation was 11 days PSI. There was a strong association between microglial activation, motor function, and microglial protein expression on IHC. Minocycline significantly reduced microglial activation and improved motor function by day 22 PSI. Conclusion [18 F]PBR06 PET imaging noninvasively characterizes the time course of SAN, and shows increased microglial activation is associated with decreased motor function. PMID:24865401

  1. Signalling mechanisms mediating Zn2+-induced TRPM2 channel activation and cell death in microglial cells

    PubMed Central

    Mortadza, Sharifah Syed; Sim, Joan A.; Stacey, Martin; Jiang, Lin-Hua

    2017-01-01

    Excessive Zn2+ causes brain damage via promoting ROS generation. Here we investigated the role of ROS-sensitive TRPM2 channel in H2O2/Zn2+-induced Ca2+ signalling and cell death in microglial cells. H2O2/Zn2+ induced concentration-dependent increases in cytosolic Ca2+ concentration ([Ca2+]c), which was inhibited by PJ34, a PARP inhibitor, and abolished by TRPM2 knockout (TRPM2-KO). Pathological concentrations of H2O2/Zn2+ induced substantial cell death that was inhibited by PJ34 and DPQ, PARP inhibitors, 2-APB, a TRPM2 channel inhibitor, and prevented by TRPM2-KO. Further analysis indicate that Zn2+ induced ROS production, PARP-1 stimulation, increase in the [Ca2+]c and cell death, all of which were suppressed by chelerythrine, a protein kinase C inhibitor, DPI, a NADPH-dependent oxidase (NOX) inhibitor, GKT137831, a NOX1/4 inhibitor, and Phox-I2, a NOX2 inhibitor. Furthermore, Zn2+-induced PARP-1 stimulation, increase in the [Ca2+]c and cell death were inhibited by PF431396, a Ca2+-sensitive PYK2 inhibitor, and U0126, a MEK/ERK inhibitor. Taken together, our study shows PKC/NOX-mediated ROS generation and PARP-1 activation as an important mechanism in Zn2+-induced TRPM2 channel activation and, TRPM2-mediated increase in the [Ca2+]c to trigger the PYK2/MEK/ERK signalling pathway as a positive feedback mechanism that amplifies the TRPM2 channel activation. Activation of these TRPM2-depenent signalling mechanisms ultimately drives Zn2+-induced Ca2+ overloading and cell death. PMID:28322340

  2. Size-Dependent Deposition, Translocation, and Microglial Activation of Inhaled Silver Nanoparticles in the Rodent Nose and Brain

    PubMed Central

    Patchin, Esther Shin; Anderson, Donald S.; Silva, Rona M.; Uyeminami, Dale L.; Scott, Grace M.; Guo, Ting; Van Winkle, Laura S.; Pinkerton, Kent E.

    2016-01-01

    Background: Silver nanoparticles (AgNP) are present in personal, commercial, and industrial products, which are often aerosolized. Current understanding of the deposition, translocation, and health-related impacts of AgNP inhalation is limited. Objectives: We determined a) the deposition and retention of inhaled Ag in the nasal cavity from nose-only exposure; b) the timing for Ag translocation to and retention/clearance in the olfactory bulb (OB); and c) whether the presence of Ag in the OB affects microglial activity. Methods: Male Sprague-Dawley rats were exposed nose-only to citrate-buffered 20- or 110-nm AgNP (C20 or C110, respectively) or citrate buffer alone for 6 hr. The nasal cavity and OB were examined for the presence of Ag and for biological responses up to 56 days post-exposure (8 weeks). Results: The highest nasal Ag deposition was observed on Day 0 for both AgNP sizes. Inhalation of aerosolized C20 resulted in rapid translocation of Ag to the OB and in microglial activation at Days 0, 1, and 7. In contrast, inhalation of C110 resulted in a gradual but progressive transport of Ag to and retention in the OB, with a trend for microglial activation to variably be above control. Conclusions: The results of this study show that after rats experienced a 6-hr inhalation exposure to 20- and 110-nm AgNP at a single point in time, Ag deposition in the nose, the rate of translocation to the brain, and subsequent microglial activation in the OB differed depending on AgNP size and time since exposure. Citation: Patchin ES, Anderson DS, Silva RM, Uyeminami DL, Scott GM, Guo T, Van Winkle LS, Pinkerton KE. 2016. Size-dependent deposition, translocation, and microglial activation of inhaled silver nanoparticles in the rodent nose and brain. Environ Health Perspect 124:1870–1875; http://dx.doi.org/10.1289/EHP234 PMID:27152509

  3. Cannabinoids Delta(9)-tetrahydrocannabinol and cannabidiol differentially inhibit the lipopolysaccharide-activated NF-kappaB and interferon-beta/STAT proinflammatory pathways in BV-2 microglial cells.

    PubMed

    Kozela, Ewa; Pietr, Maciej; Juknat, Ana; Rimmerman, Neta; Levy, Rivka; Vogel, Zvi

    2010-01-15

    Cannabinoids have been shown to exert anti-inflammatory activities in various in vivo and in vitro experimental models as well as ameliorate various inflammatory degenerative diseases. However, the mechanisms of these effects are not completely understood. Using the BV-2 mouse microglial cell line and lipopolysaccharide (LPS) to induce an inflammatory response, we studied the signaling pathways engaged in the anti-inflammatory effects of cannabinoids as well as their influence on the expression of several genes known to be involved in inflammation. We found that the two major cannabinoids present in marijuana, Delta(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD), decrease the production and release of proinflammatory cytokines, including interleukin-1beta, interleukin-6, and interferon (IFN)beta, from LPS-activated microglial cells. The cannabinoid anti-inflammatory action does not seem to involve the CB1 and CB2 cannabinoid receptors or the abn-CBD-sensitive receptors. In addition, we found that THC and CBD act through different, although partially overlapping, mechanisms. CBD, but not THC, reduces the activity of the NF-kappaB pathway, a primary pathway regulating the expression of proinflammatory genes. Moreover, CBD, but not THC, up-regulates the activation of the STAT3 transcription factor, an element of homeostatic mechanism(s) inducing anti-inflammatory events. Following CBD treatment, but less so with THC, we observed a decreased level of mRNA for the Socs3 gene, a main negative regulator of STATs and particularly of STAT3. However, both CBD and THC decreased the activation of the LPS-induced STAT1 transcription factor, a key player in IFNbeta-dependent proinflammatory processes. In summary, our observations show that CBD and THC vary in their effects on the anti-inflammatory pathways, including the NF-kappaB and IFNbeta-dependent pathways.

  4. Risperidone significantly inhibits interferon-gamma-induced microglial activation in vitro.

    PubMed

    Kato, Takahiro; Monji, Akira; Hashioka, Sadayuki; Kanba, Shigenobu

    2007-05-01

    Microglia has recently been regarded to be a mediator of neuroinflammation via the release of proinflammatory cytokines, nitric oxide (NO) and reactive oxygen species (ROS) in the central nervous system (CNS). Microglia has thus been reported to play an important role in the pathology of neurodegenerative disease, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The pathological mechanisms of schizophrenia remain unclear while some recent neuroimaging studies suggest even schizophrenia may be a kind of neurodegenerative disease. Risperidone has been reported to decrease the reduction of MRI volume during the clinical course of schizophrenia. Many recent studies have demonstrated that immunological mechanisms via such as interferon (IFN)-gamma and cytokines might be relevant to the pathophysiology of schizophrenia. In the present study, we thus investigated the effects of risperidone on the generation of nitric oxide, inducible NO synthase (iNOS) expression and inflammatory cytokines: interleukin (IL)-1beta, IL-6 and tumor necrosis factor (TNF)-alpha by IFN-gamma-activated microglia by using Griess assay, Western blotting and ELISA, respectively. In comparison with haloperidol, risperidone significantly inhibited the production of NO and proinflammatory cytokines by activated microglia. The iNOS levels of risperidone-treated cells were much lower than those of the haloperidol-treated cells. Antipsychotics, especially risperidone may have an anti-inflammatory effect via the inhibition of microglial activation, which is not only directly toxic to neurons but also has an inhibitory effect on neurogenesis and oligodendrogenesis, both of which have been reported to play a crucial role in the pathology of schizophrenia.

  5. Transcriptomic regulations in oligodendroglial and microglial cells related to brain damage following fetal growth restriction.

    PubMed

    Rideau Batista Novais, Aline; Pham, Hoa; Van de Looij, Yohan; Bernal, Miguel; Mairesse, Jerome; Zana-Taieb, Elodie; Colella, Marina; Jarreau, Pierre-Henri; Pansiot, Julien; Dumont, Florent; Sizonenko, Stéphane; Gressens, Pierre; Charriaut-Marlangue, Christiane; Tanter, Mickael; Demene, Charlie; Vaiman, Daniel; Baud, Olivier

    2016-12-01

    Fetal growth restriction (FGR) is a major complication of human pregnancy, frequently resulting from placental vascular diseases and prenatal malnutrition, and is associated with adverse neurocognitive outcomes throughout life. However, the mechanisms linking poor fetal growth and neurocognitive impairment are unclear. Here, we aimed to correlate changes in gene expression induced by FGR in rats and abnormal cerebral white matter maturation, brain microstructure, and cortical connectivity in vivo. We investigated a model of FGR induced by low-protein-diet malnutrition between embryonic day 0 and birth using an interdisciplinary approach combining advanced brain imaging, in vivo connectivity, microarray analysis of sorted oligodendroglial and microglial cells and histology. We show that myelination and brain function are both significantly altered in our model of FGR. These alterations, detected first in the white matter on magnetic resonance imaging significantly reduced cortical connectivity as assessed by ultrafast ultrasound imaging. Fetal growth retardation was found associated with white matter dysmaturation as shown by the immunohistochemical profiles and microarrays analyses. Strikingly, transcriptomic and gene network analyses reveal not only a myelination deficit in growth-restricted pups, but also the extensive deregulation of genes controlling neuroinflammation and the cell cycle in both oligodendrocytes and microglia. Our findings shed new light on the cellular and gene regulatory mechanisms mediating brain structural and functional defects in malnutrition-induced FGR, and suggest, for the first time, a neuroinflammatory basis for the poor neurocognitive outcome observed in growth-restricted human infants. GLIA 2016;64:2306-2320.

  6. Leptin is essential for microglial activation and neuropathic pain after preganglionic cervical root avulsion.

    PubMed

    Chang, Kai-Ting; Lin, Yi-Lo; Lin, Chi-Te; Hong, Chen-Jei; Tsai, May-Jywan; Huang, Wen-Cheng; Shih, Yang-Hsin; Lee, Yi-Yen; Cheng, Henrich; Huang, Ming-Chao

    2017-10-15

    Preganglionic cervical root avulsion (PCRA) affects both the peripheral and central nervous systems and is often associated with neuropathic pain. Unlike peripheral nerve injuries (PNI), central lesions caused by disruption of cervical roots from the spinal cord following PCRA contribute to the generation of neuropathic pain. Leptin is involved in the development of neuropathic pain after PNI by affecting neurons. However, whether leptin is involved in microglial activation leading to neuropathic pain after PCRA is unknown. Preganglionic avulsion of the left 6(th)-8(th) cervical roots was performed in C57B/6J mice and leptin-deficient mice. A leptin antagonist or leptin was administered to C57B/6J mice and leptin-deficient mice after injury, respectively. The expression pattern of spinal and supraspinal microglia was examined by immunofluorescent staining. Von Frey filaments were used to test pain sensitivity. Leptin is essential for the development of neuropathic pain after PCRA. Allodynia was absent in the leptin-deficient mice and the mice administered the leptin antagonist. We also found that leptin deficiency or the administration of its antagonist inhibited the development of microgliosis in the dorsal horn and brainstem. Furthermore, increase in the expression of CD86 and iNOS, and Wallerian degeneration were noted in the spinal cord. The administration of exogenous leptin to leptin-deficient mice reversed these effects. We concluded that leptin is involved in the proliferation and activation of microglia, which in turn enhances the development of neuropathic pain. Blocking the effects of leptin might be a target for the treatment of neuropathic pain after PCRA. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Monocyte and microglial activation in patients with mood-stabilized bipolar disorder

    PubMed Central

    Jakobsson, Joel; Bjerke, Maria; Sahebi, Sara; Isgren, Anniella; Ekman, Carl Johan; Sellgren, Carl; Olsson, Bob; Zetterberg, Henrik; Blennow, Kaj; Pålsson, Erik; Landén, Mikael

    2015-01-01

    Background Bipolar disorder is associated with medical comorbidities that have been linked to systemic inflammatory mechanisms. There is, however, limited evidence supporting a role of neuroinflammation in bipolar disorder. Here we tested whether microglial activation and associated tissue remodelling processes are related to bipolar disorder by analyzing markers in cerebrospinal fluid (CSF) and serum from patients and healthy controls. Methods Serum was sampled from euthymic patients with bipolar disorder and healthy controls, and CSF was sampled from a large subset of these individuals. The levels of monocyte chemoattractant protein-1 (MCP-1), YKL-40, soluble cluster of differentiation 14 (sCD14), tissue inhibitor of metalloproteinases-1 (TIMP-1) and tissue inhibitor of metalloproteinases-2 (TIMP-2), were measured, and we adjusted comparisons between patients and controls for confounding factors. Results We obtained serum samples from 221 patients and 112 controls and CSF samples from 125 patients and 87 controls. We found increased CSF levels of MCP-1 and YKL-40 and increased serum levels of sCD14 and YKL-40 in patients compared with controls; these differences remained after controlling for confounding factors, such as age, sex, smoking, blood–CSF barrier function, acute-phase proteins and body mass index. The CSF levels of MCP-1 and YKL-40 correlated with the serum levels, whereas the differences between patients and controls in CSF levels of MCP-1 and YKL-40 were independent of serum levels. Limitations The cross-sectional study design precludes conclusions about causality. Conclusion Our results suggest that both neuroinflammatory and systemic inflammatory processes are involved in the pathophysiology of bipolar disorder. Importantly, markers of immunological processes in the brain were independent of peripheral immunological activity. PMID:25768030

  8. The immunostimulatory activity of CpG oligonucleotides on microglial N9 cells is affected by a polyguanosine motif.

    PubMed

    Zhang, Zhiren; Guo, Ketai; Schluesener, Hermann J

    2005-04-01

    Oligonucleotides (ODN) with hexameric motifs containing central unmethylated CpG dinucleotides are immunostimulatory. Also ODN with continuous guanosines (polyG motif) show a wide range of immunological activity. Depending on the position, the chemical property of the ODN backbone and the cell type, polyG motifs have either an enhancing or a suppressing effect on the immunostimulatory activity of the CpG-ODN. Microglial cells are central components of the innate immune system of the brain and are activated by CpG-ODN in vitro and in vivo. Here we present the analysis of the immunomodulatory effects of CpG-ODN carrying a polyG motif on the microglial cell line N9. Our data show that N9 cells express Toll-like receptor 9 (TLR9) and are activated by CpG-ODN, which leads to expression of interleukin-12p40 (IL12p40), tumor necrosis factor-alpha (TNF-alpha) and inducible nitric oxide synthase (iNOS). A 3'-end polyG motif inhibits phosphothioate (PS) CpG-ODN immunostimulatory activity but enhances the immunostimulatory activity of phosphodiester (PE) CpG-ODN. Correspondingly, a 3'-end polyG motif improves the cellular uptake of PE CpG-ODN but does not change their cellular distribution pattern. Furthermore, PE CpG-ODN with a 3'-end polyG motif interact with a much higher number of cellular proteins than PE CpG-ODN. These data indicate that the 3'-end polyG motif could enhance the immunostimulatory activity of PE CpG-ODN in microglial N9 cells through increasing interaction with cellular proteins. Therefore PE CpG-ODN containing a 3'-end polyG motif resulting in increased immunostimulatory activity might be promising alternate analogues for studies in the central nervous system.

  9. Osteopontin Is a Blood Biomarker for Microglial Activation and Brain Injury in Experimental Hypoxic-Ischemic Encephalopathy

    PubMed Central

    Seyfried, Nicholas T.

    2017-01-01

    Abstract Clinical management of neonatal hypoxic-ischemic encephalopathy (HIE) suffers from the lack of reliable surrogate marker tests. Proteomic analysis may identify such biomarkers in blood, but there has been no proof-of-principle evidence to support this approach. Here we performed in-gel trypsin digestion of plasma proteins from four groups of 10-d-old mice [untouched and 24 h after low-dose lipopolysaccharide (LPS) exposure, hypoxia-ischemia (HI), or LPS/HI injury; n = 3 in each group) followed by liquid chromatography-tandem mass spectrometry and bioinformatics analysis to search for HI- and LPS/HI-associated brain injury biomarkers. This analysis suggested the induction of plasma osteopontin (OPN) by HI and LPS/HI, but not by sham and injury-free LPS exposure. Immunoblot confirmed post-HI induction of OPN protein in brain and blood, whereas Opn mRNA was induced in brain but not in blood. This disparity suggests brain-derived plasma OPN after HI injury. Similarly, immunostaining showed the expression of OPN by Iba1+ microglia/macrophages in HI-injured brains. Further, intracerebroventricular injection of LPS activated microglia and up-regulated plasma OPN protein. Importantly, the induction of plasma OPN after HI was greater than that of matrix metalloproteinase 9 or glial fibrillary acid protein. Plasma OPN levels at 48 h post-HI also parallel the severity of brain damage at 7-d recovery. Together, these results suggest that OPN may be a prognostic blood biomarker in HIE through monitoring brain microglial activation. PMID:28101531

  10. Sleep Deprivation Aggravates Median Nerve Injury-Induced Neuropathic Pain and Enhances Microglial Activation by Suppressing Melatonin Secretion

    PubMed Central

    Huang, Chun-Ta; Chiang, Rayleigh Ping-Ying; Chen, Chih-Li; Tsai, Yi-Ju

    2014-01-01

    Study Objectives: Sleep deprivation is common in patients with neuropathic pain, but the effect of sleep deprivation on pathological pain remains uncertain. This study investigated whether sleep deprivation aggravates neuropathic symptoms and enhances microglial activation in the cuneate nucleus (CN) in a median nerve chronic constriction injury (CCI) model. Also, we assessed if melatonin supplements during the sleep deprived period attenuates these effects. Design: Rats were subjected to sleep deprivation for 3 days by the disc-on-water method either before or after CCI. In the melatonin treatment group, CCI rats received melatonin supplements at doses of 37.5, 75, 150, or 300 mg/kg during sleep deprivation. Melatonin was administered at 23:00 once a day. Participants: Male Sprague-Dawley rats, weighing 180-250 g (n = 190), were used. Measurements: Seven days after CCI, behavioral testing was conducted, and immunohistochemistry, immunoblotting, and enzyme-linked immunosorbent assay were used for qualitative and quantitative analyses of microglial activation and measurements of proinflammatory cytokines. Results: In rats who underwent post-CCI sleep deprivation, microglia were more profoundly activated and neuropathic pain was worse than those receiving pre-CCI sleep deprivation. During the sleep deprived period, serum melatonin levels were low over the 24-h period. Administration of melatonin to CCI rats with sleep deprivation significantly attenuated activation of microglia and development of neuropathic pain, and markedly decreased concentrations of proinflammatory cytokines. Conclusions: Sleep deprivation makes rats more vulnerable to nerve injury-induced neuropathic pain, probably because of associated lower melatonin levels. Melatonin supplements to restore a circadian variation in melatonin concentrations during the sleep deprived period could alleviate nerve injury-induced behavioral hypersensitivity. Citation: Huang CT, Chiang RP, Chen CL, Tsai YJ. Sleep

  11. Gabapentin reduces CX3CL1 signaling and blocks spinal microglial activation in monoarthritic rats

    PubMed Central

    2012-01-01

    Background Spinal glia, particularly microglia and astrocytes, are of the utmost importance in the development and maintenance of chronic pain. A recent study from our laboratory revealed that gabapentin, a recommended first-line treatment for multiple neuropathic conditions, could also efficiently antagonize thermal hyperalgesia evoked by complete Freund's adjuvant (CFA)-induced monoarthritis (MA). In the present study, we investigated whether the spinal glia are involved in the anti-hyperalgesic effect of gabapentin and how this event occurs. Results Unilateral intra-articular injection of CFA produced a robust activation of microglia and astrocytes. These cells exhibited large cell bodies, thick processes and increases in the ionized calcium binding adapter molecule 1 (Iba-1, a microglial marker) or the glia fibrillary acidic protein (GFAP, an astrocytic marker). These cells also displayed immunoreactive signals, and an upregulation of the voltage-gated calcium channels (VGCCs) α2/δ-1 subunit, CX3CL1 and CX3CR1 expression levels in the spinal cord. These changes were associated with the development of thermal hyperalgesia. Immunofluorescence staining showed that VGCC α2/δ-1 subunit, a proposed gabapentin target of action, was widely distributed in primary afferent fibers terminals and dorsal horn neurons. CX3CL1, a potential trigger to activate microglia, colocalized with VGCC α2/δ-1 subunits in the spinal dorsal horn. However, its receptor CX3CR1 was mainly expressed in the spinal microglia. Multiple intraperitoneal (i.p.) gabapentin injections (100 mg/kg, once daily for 4 days with the first injection 60 min before intra-articular CFA) suppressed the activation of spinal microglia, downregulated spinal VGCC α2/δ-1 subunits decreased CX3CL1 levels and blocked the development of thermal hyperalgesia in MA rats. Conclusions Here we provide the first evidence that gabapentin diminishes CX3CL1 signaling and spinal microglia activation induced by joint

  12. Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity

    PubMed Central

    Gallina, Donika; Zelinka, Christopher Paul; Cebulla, Colleen; Fischer, Andy J.

    2015-01-01

    Reactive microglia and macrophages are prevalent in damaged retinas. Glucocorticoid signaling is known to suppress inflammation and the reactivity of microglia and macrophages. In the vertebrate retina, the glucocorticoid receptor (GCR) is known to be activated and localized to the nuclei of Müller glia (Gallina et al., 2014). Accordingly, we investigated how signaling through GCR influences the survival of neurons using the chick retina in vivo as a model system. We applied intraocular injections of GCR agonist or antagonist, assessed microglial reactivity, and the survival of retinal neurons following different damage paradigms. Microglial reactivity was increased in retinas from eyes that were injected with vehicle, and this reactivity was decreased by GCR-agonist dexamethasone (Dex) and increased by GCR-antagonist RU486. We found that activation of GCR suppresses the reactivity of microglia and inhibited the loss of retinal neurons resulting from excitotoxicity. We provide evidence that the protection-promoting effects of Dex were maintained when the microglia were selectively ablated. Similarly, intraocular injections of Dex protected ganglion cells from colchicine-treatment and protected photoreceptors from damage caused by retinal detachment. We conclude that activation of GCR promotes the survival of ganglion cells in colchicine-damaged retinas, promotes the survival of amacrine and bipolar cells in excitotoxin-damaged retinas, and promotes the survival of photoreceptors in detached retinas. We propose that suppression of microglial reactivity is secondary to activation of GCR in Müller glia, and this mode of signaling is an effective means to lessen the damage and vision loss resulting from different types of retinal damage. PMID:26272753

  13. Infant nerve injury induces delayed microglial polarization to the M1 phenotype, and exercise reduces delayed neuropathic pain by modulating microglial activity.

    PubMed

    Gong, Xingrui; Chen, Yongmei; Fu, Bao; Jiang, Jing; Zhang, Mazhong

    2017-05-04

    Neuropathic pain is absent in infants and emergent years after injury. Adult spinal cord microglia play a key role in initiating neuropathic pain, and modulation of microglia is a potential target for treating neuropathic pain. In this study, we evaluated the role of microglia after infant peripheral nerve injury and the effect of exercise on the delayed-onset neuropathic pain. Rat pups received spared nerve injury, and behavior tests were performed to evaluate their pain threshold. qPCR, immunohistochemistry, and Western blot were used for M1 and M2 marker expression analysis. In contrast to the microglial polarization to the M1 phenotype observed in the adult spinal cord, in infant nerve injury, microglial polarization immediately shifted to the M2 phenotype. In adolescence, microglia polarized to the M1 phenotype, which was concomitant with the emergence of neuropathic pain. Exercise shifted spinal cord microglia polarization to the M2 phenotype and reduced neuropathic pain. In addition, IL-10 increased and TNF-α decreased after exercise, and intrathecal injection of the IL-10 antibody reduced the exercise-induced analgesia. Our study found that infant nerve injury induced delayed spinal cord microglia polarization to the M1 phenotype and that exercise was effective in the treatment of delayed adolescent neuropathic pain via the modulation of microglial polarization. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. The Anti-Inflammatory Activity of Eucommia ulmoides Oliv. Bark. Involves NF-κB Suppression and Nrf2-Dependent HO-1 Induction in BV-2 Microglial Cells

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Hwang, Ji-Young; Ko, Yong-Hyun; Seo, Ji-Yeon; Lee, Bo-Ram; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    In the present study, we investigated the anti-inflammatory properties of Eucommia ulmoides Oliv. Bark. (EUE) in lipopolysaccharide (LPS)-stimulated microglial BV-2 cells and found that EUE inhibited LPS-mediated up-regulation of pro-inflammatory response factors. In addition, EUE inhibited the elevated production of pro-inflammatory cytokines, mediators, and reactive oxygen species (ROS) in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that EUE suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/Akt, glycogen synthase kinase-3β (GSK-3β), and their downstream transcription factor, nuclear factor-kappa B (NF-κB). EUE also blocked the nuclear translocation of NF-κB and inhibited its binding to DNA. We next demonstrated that EUE induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression. We determined that the significant up-regulation of HO-1 expression by EUE was a consequence of Nrf2 nuclear translocation; furthermore, EUE increased the DNA binding of Nrf2. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, blocked the ability of EUE to inhibit NO and PGE2 production, indicating the vital role of HO-1. Overall, our results indicate that EUE inhibits pro-inflammatory responses by modulating MAPKs, PI3K/Akt, and GSK-3β, consequently suppressing NF-κB activation and inducing Nrf2-dependent HO-1 activation. PMID:27068259

  15. Imaging Microglial Activation in Untreated First-Episode Psychosis: A PET Study With [18F]FEPPA

    PubMed Central

    Hafizi, Sina; Tseng, Huai-Hsuan; Rao, Naren; Selvanathan, Thiviya; Kenk, Miran; Bazinet, Richard P.; Suridjan, Ivonne; Wilson, Alan A.; Meyer, Jeffrey H.; Remington, Gary; Houle, Sylvain; Rusjan, Pablo M.; Mizrahi, Romina

    2017-01-01

    Objective Neuroinflammation and abnormal immune responses are increasingly implicated in the pathophysiology of schizophrenia. Previous positron emission tomography (PET) studies targeting the translocator protein 18 kDa (TSPO) have been limited by high nonspecific binding of the first-generation radioligand, low-resolution scanners, small sample sizes, and psychotic patients being on antipsychotics or not being in the first episode of their illness. The present study uses the novel second-generation TSPO PET radioligand [18F]FEPPA to evaluate whether microglial activation is elevated in the dorsolateral prefrontal cortex and hippocampus of untreated patients with first-episode psychosis. Method Nineteen untreated patients with first-episode psychosis (14 of them antipsychotic naive) and 20 healthy volunteers underwent a high-resolution [18F]FEPPA PET scan and MRI. Dynamic PET data were analyzed using the validated two-tissue compartment model with arterial plasma input function with total volume of distribution (VT) as outcome measure. All analyses were corrected for TSPO rs6971 polymorphism (which is implicated in differential binding affinity). Results No significant differences were observed between patients and healthy volunteers in microglial activation, as indexed by [18F]FEPPA VT, in either the dorsolateral prefrontal cortex or the hippocampus. There were no significant correlations between [18F]FEPPA VT and duration of illness, clinical presentation, or neuropsychological measures after adjusting for multiple testing. Conclusions The lack of significant differences in [18F]FEPPA VT between groups suggests that microglial activation is not present in first-episode psychosis. PMID:27609240

  16. Toll-like receptor 2 ligands promote microglial cell death by inducing autophagy

    PubMed Central

    Arroyo, Daniela S.; Soria, Javier A.; Gaviglio, Emilia A.; Garcia-Keller, Constanza; Cancela, Liliana M.; Rodriguez-Galan, Maria C.; Wang, Ji Ming; Iribarren, Pablo

    2013-01-01

    Microglial cells are phagocytes in the central nervous system (CNS) and become activated in pathological conditions, resulting in microgliosis, manifested by increased cell numbers and inflammation in the affected regions. Thus, controlling microgliosis is important to prevent pathological damage to the brain. Here, we evaluated the contribution of Toll-like receptor 2 (TLR2) to microglial survival. We observed that activation of microglial cells with peptidoglycan (PGN) from Staphylococcus aureus and other TLR2 ligands results in cell activation followed by the induction of autophagy and autophagy-dependent cell death. In C57BL/6J mice, intracerebral injection of PGN increased the autophagy of microglial cells and reduced the microglial/macrophage cell number in brain parenchyma. Our results demonstrate a novel role of TLRs in the regulation of microglial cell activation and survival, which are important for the control of microgliosis and associated inflammatory responses in the CNS.—Arroyo, D. S., Soria, J. A., Gaviglio, E. A., Garcia-Keller, C., Cancela, L. M., Rodriguez-Galan, M. C., Wang, J. M., Iribarren, P. Toll-like receptor 2 ligands promote microglial cell death by inducing autophagy. PMID:23073832

  17. CD74 indicates microglial activation in experimental diabetic retinopathy and exogenous methylglyoxal mimics the response in normoglycemic retina.

    PubMed

    Wang, Jing; Lin, Jihong; Schlotterer, Andreas; Wu, Liang; Fleming, Thomas; Busch, Stephanie; Dietrich, Nadine; Hammes, Hans-Peter

    2014-10-01

    Diabetes induces vasoregression, neurodegeneration and glial activation in the retina. Formation of advanced glycation endoproducts (AGEs) is increased in diabetes and contributes to the pathogenesis of diabetic retinopathy. CD74 is increased in activated microglia in a rat model developing both neurodegeneration and vasoregression. In this study, we aimed at investigating whether glucose and major AGE precursor methylglyoxal induce increased CD74 expression in the retina. Expression of CD74 in retinal microglia was analyzed in streptozotocin-diabetic rats by wholemount immunofluorescence. Nondiabetic mice were intravitreally injected with methylglyoxal. Expression of CD74 was studied by retinal wholemount immunofluorescence and quantitative real-time PCR, 48 h after the injection. CD74-positive cells were increased in diabetic 4-month retinas. These cells represented a subpopulation of CD11b-labeled activated microglia and were mainly located in the superficial vascular layer (13.7-fold increase compared to nondiabetic group). Methylglyoxal induced an 9.4-fold increase of CD74-positive cells in the superficial vascular layer and elevated gene expression of CD74 in the mouse retina 2.8-fold. In summary, we identified CD74 as a microglial activation marker in the diabetic retina. Exogenous methylglyoxal mimics the response in normoglycemic retina. This suggests that methylglyoxal is important in mediating microglial activation in the diabetic retina.

  18. Redox Control of Microglial Function: Molecular Mechanisms and Functional Significance

    PubMed Central

    McBean, Gethin; Cindric, Marina; Egea, Javier; López, Manuela G.; Rada, Patricia; Zarkovic, Neven

    2014-01-01

    Abstract Neurodegenerative diseases are characterized by chronic microglial over-activation and oxidative stress. It is now beginning to be recognized that reactive oxygen species (ROS) produced by either microglia or the surrounding environment not only impact neurons but also modulate microglial activity. In this review, we first analyze the hallmarks of pro-inflammatory and anti-inflammatory phenotypes of microglia and their regulation by ROS. Then, we consider the production of reactive oxygen and nitrogen species by NADPH oxidases and nitric oxide synthases and the new findings that also indicate an essential role of glutathione (γ-glutamyl-l-cysteinylglycine) in redox homeostasis of microglia. The effect of oxidant modification of macromolecules on signaling is analyzed at the level of oxidized lipid by-products and sulfhydryl modification of microglial proteins. Redox signaling has a profound impact on two transcription factors that modulate microglial fate, nuclear factor kappa-light-chain-enhancer of activated B cells, and nuclear factor (erythroid-derived 2)-like 2, master regulators of the pro-inflammatory and antioxidant responses of microglia, respectively. The relevance of these proteins in the modulation of microglial activity and the interplay between them will be evaluated. Finally, the relevance of ROS in altering blood brain barrier permeability is discussed. Recent examples of the importance of these findings in the onset or progression of neurodegenerative diseases are also discussed. This review should provide a profound insight into the role of redox homeostasis in microglial activity and help in the identification of new promising targets to control neuroinflammation through redox control of the brain. Antioxid. Redox Signal. 21, 1766–1801. PMID:24597893

  19. Redox control of microglial function: molecular mechanisms and functional significance.

    PubMed

    Rojo, Ana I; McBean, Gethin; Cindric, Marina; Egea, Javier; López, Manuela G; Rada, Patricia; Zarkovic, Neven; Cuadrado, Antonio

    2014-10-20

    Neurodegenerative diseases are characterized by chronic microglial over-activation and oxidative stress. It is now beginning to be recognized that reactive oxygen species (ROS) produced by either microglia or the surrounding environment not only impact neurons but also modulate microglial activity. In this review, we first analyze the hallmarks of pro-inflammatory and anti-inflammatory phenotypes of microglia and their regulation by ROS. Then, we consider the production of reactive oxygen and nitrogen species by NADPH oxidases and nitric oxide synthases and the new findings that also indicate an essential role of glutathione (γ-glutamyl-l-cysteinylglycine) in redox homeostasis of microglia. The effect of oxidant modification of macromolecules on signaling is analyzed at the level of oxidized lipid by-products and sulfhydryl modification of microglial proteins. Redox signaling has a profound impact on two transcription factors that modulate microglial fate, nuclear factor kappa-light-chain-enhancer of activated B cells, and nuclear factor (erythroid-derived 2)-like 2, master regulators of the pro-inflammatory and antioxidant responses of microglia, respectively. The relevance of these proteins in the modulation of microglial activity and the interplay between them will be evaluated. Finally, the relevance of ROS in altering blood brain barrier permeability is discussed. Recent examples of the importance of these findings in the onset or progression of neurodegenerative diseases are also discussed. This review should provide a profound insight into the role of redox homeostasis in microglial activity and help in the identification of new promising targets to control neuroinflammation through redox control of the brain.

  20. Estradiol attenuates spinal cord injury-induced pain by suppressing microglial activation in thalamic VPL nuclei of rats.

    PubMed

    Saghaei, Elham; Abbaszadeh, Fatemeh; Naseri, Kobra; Ghorbanpoor, Samar; Afhami, Mina; Haeri, Ali; Rahimi, Farzaneh; Jorjani, Masoumeh

    2013-04-01

    In our previous study we showed that central pain syndrome (CPS) induced by electrolytic injury caused in the unilateral spinothalamic tract (STT) is a concomitant of glial alteration at the site of injury. Here, we investigated the activity of glial cells in thalamic ventral posterolateral nuclei (VPL) and their contribution to CPS. We also examined whether post-injury administration of a pharmacological dose of estradiol can attenuate CPS and associated molecular changes. Based on the results,in the ipsilateral VPL the microglial phenotype switched o hyperactive mode and Iba1 expression was increased significantly on days 21 and 28 post-injury. The same feature was observed in contralateral VPL on day 28 (P<.05). These changes were strongly correlated with the onset of CPS (r(2)=0.670). STT injury did not induce significant astroglial response in both ipsilateral and contralateral VPL. Estradiol attenuated bilateral mechanical hypersensitivity 14 days after STT lesion (P<.05). Estradiol also suppressed microglial activation in the VPL. Taken together, these findings indicate that selective STT lesion induces bilateral microglia activation in VPL which might contribute to mechanical hypersensitivity. Furthermore, a pharmacological dose of estradiol reduces central pain possibly via suppression of glial activity in VPL region. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  1. Photoreceptor proteins initiate microglial activation via Toll-like receptor 4 in retinal degeneration mediated by all-trans-retinal.

    PubMed

    Kohno, Hideo; Chen, Yu; Kevany, Brian M; Pearlman, Eric; Miyagi, Masaru; Maeda, Tadao; Palczewski, Krzysztof; Maeda, Akiko

    2013-05-24

    Although several genetic and biochemical factors are associated with the pathogenesis of retinal degeneration, it has yet to be determined how these different impairments can cause similar degenerative phenotypes. Here, we report microglial/macrophage activation in both a Stargardt disease and age-related macular degeneration mouse model caused by delayed clearance of all-trans-retinal from the retina, and in a retinitis pigmentosa mouse model with impaired retinal pigment epithelium (RPE) phagocytosis. Mouse microglia displayed RPE cytotoxicity and increased production of inflammatory chemokines/cytokines, Ccl2, Il1b, and Tnf, after coincubation with ligands that activate innate immunity. Notably, phagocytosis of photoreceptor proteins increased the activation of microglia/macrophages and RPE cells isolated from model mice as well as wild-type mice. The mRNA levels of Tlr2 and Tlr4, which can recognize proteins as their ligands, were elevated in mice with retinal degeneration. Bone marrow-derived macrophages from Tlr4-deficient mice did not increase Ccl2 after coincubation with photoreceptor proteins. Tlr4(-/-)Abca4(-/-)Rdh8(-/-) mice displayed milder retinal degenerative phenotypes than Abca4(-/-)Rdh8(-/-) mice. Additionally, inactivation of microglia/macrophages by pharmacological approaches attenuated mouse retinal degeneration. This study demonstrates an important contribution of TLR4-mediated microglial activation by endogenous photoreceptor proteins in retinal inflammation that aggravates retinal cell death. This pathway is likely to represent an underlying common pathology in degenerative retinal disorders.

  2. Modulation of Microglial Activity by Rho-Kinase (ROCK) Inhibition as Therapeutic Strategy in Parkinson’s Disease and Amyotrophic Lateral Sclerosis

    PubMed Central

    Roser, Anna-Elisa; Tönges, Lars; Lingor, Paul

    2017-01-01

    Neurodegenerative diseases are characterized by the progressive degeneration of neurons in the central and peripheral nervous system (CNS, PNS), resulting in a reduced innervation of target structures and a loss of function. A shared characteristic of many neurodegenerative diseases is the infiltration of microglial cells into affected brain regions. During early disease stages microglial cells often display a rather neuroprotective phenotype, but switch to a more pro-inflammatory neurotoxic phenotype in later stages of the disease, contributing to the neurodegeneration. Activation of the Rho kinase (ROCK) pathway appears to be instrumental for the modulation of the microglial phenotype: increased ROCK activity in microglia mediates mechanisms of the inflammatory response and is associated with improved motility, increased production of reactive oxygen species (ROS) and release of inflammatory cytokines. Recently, several studies suggested inhibition of ROCK signaling as a promising treatment option for neurodegenerative diseases. In this review article, we discuss the contribution of microglial activity and phenotype switch to the pathophysiology of Parkinson’s disease (PD) and Amyotrophic lateral sclerosis (ALS), two devastating neurodegenerative diseases without disease-modifying treatment options. Furthermore, we describe how ROCK inhibition can influence the microglial phenotype in disease models and explore ROCK inhibition as a future treatment option for PD and ALS. PMID:28420986

  3. Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells.

    PubMed

    Lee, Ik-Soo; Lim, Juhee; Gal, Jiyeong; Kang, Jeen Chu; Kim, Hyun Jung; Kang, Bok Yun; Choi, Hyun Jin

    2011-02-01

    Xanthohumol (2',4',4-trihydroxy-6'-methoxy-3'-prenylchalcone) is a major chalcone derivative isolated from hop (Humulus lupulus L.) commonly used in brewing due to its bitter flavors. Xanthohumol has anti-carcinogenic, free radical-scavenging, and anti-inflammatory activities, but its precise mechanisms are not clarified yet. The basic leucine zipper (bZIP) protein NRF2 is a key transcription factor mediating the antioxidant and anti-inflammatory responses in animals. Therefore, we tested whether xanthohumol exerts anti-inflammatory activity in mouse microglial BV2 cells via NRF2 signaling. Xanthohumol significantly inhibited the excessive production of inflammatory mediators NO, IL-1β, and TNF-α, and the activation of NF-κB signaling in LPS-induced stimulated BV2 cells. Xanthohumol up-regulated the transcription of NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), and increased the level of the endogenous antioxidant GSH. In addition, xanthohumol induced nuclear translocation of NRF2 and further activation of ARE promoter-related transcription. The anti-inflammatory response of xanthohumol was attenuated by transfection with NRF2 siRNA and in the presence of the HO-1 inhibitor, ZnPP, but not the NQO1 inhibitor, dicoumarol. Taken together, our study suggests that xanthohumol exerts anti-inflammatory activity through NRF2-ARE signaling and up-regulation of downstream HO-1, and could be an attractive candidate for the regulation of inflammatory responses in the brain.

  4. Implicating Receptor Activator of NF-κB (RANK)/RANK Ligand Signalling in Microglial Responses to Toll-Like Receptor Stimuli.

    PubMed

    Kichev, Anton; Eede, Pascale; Gressens, Pierre; Thornton, Claire; Hagberg, Henrik

    2017-01-01

    Inflammation in the perinatal brain caused by maternal or intrauterine fetal infection is now well established as an important contributor to the development of perinatal brain injury. Exposure to inflammatory products can impair perinatal brain development and act as a risk factor for neurological dysfunction, cognitive disorders, cerebral palsy, or preterm birth. Pre-exposure to inflammation significantly exacerbates brain injury caused by hypoxic/ischaemic insult. Tumour necrosis factor (TNF) is a family of cytokines largely involved in inflammation signalling. In our previous study, we identified the importance of TNF-related apoptosis-inducing ligand (TRAIL) signalling in the development of perinatal brain injury. We observed a significant increase in the expression levels of a soluble decoy receptor for TRAIL, osteoprotegerin (OPG). Besides TRAIL, OPG is able to bind the receptor activator of the NF-κB (RANK) ligand (RANKL) and inhibit its signalling. The function of the RANK/RANKL/OPG system in the brain has not come under much scrutiny. The aim of this research study was to elucidate the role of RANK, RANKL, and OPG in microglial responses to the proinflammatory stimuli lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (Poly I:C). Here, we show that RANK signalling is important for regulating the activation of the BV2 microglial cell line. We found that LPS treatment causes a significant decrease in the expression of RANK in the BV2 cell line while significantly increasing the expression of OPG, Toll-like receptor (TLR)3, and the adaptor proteins MyD88 and TRIF. We found that pretreatment of BV2 cells with RANKL for 24 h before the LPS or Poly I:C exposure decreases the expression of inflammatory markers such as inducible nitric oxide synthase and cyclooxygenase. This is accompanied by a decreased expression of the TLR adaptor proteins MyD88 and TRIF, which we observed after RANKL treatment. Similar results were obtained in our experiments with

  5. Plexin-A1 is required for Toll-like receptor-mediated microglial activation in the development of lipopolysaccharide-induced encephalopathy

    PubMed Central

    ITO, TAKUJI; YOSHIDA, KENJI; NEGISHI, TAKAYUKI; MIYAJIMA, MASAYASU; TAKAMATSU, HYOTA; KIKUTANI, HITOSHI; KUMANOGOH, ATSUSHI; YUKAWA, KAZUNORI

    2014-01-01

    Recent investigations have suggested that semaphorins, which are known repulsive axon guidance molecules, may play a crucial role in maintaining brain homeostasis by regulating microglial activity. Sema3A, secreted in higher amounts from injured neurons, is considered to suppress excessive inflammatory responses by inducing microglial apoptosis through its binding to Plexin-A1 receptors on activated microglia. To clarify the in vivo role of Plexin-A1-mediated signaling in lipopolysaccharide (LPS)-induced injury in mouse brain, we examined the neuroinflammatory changes initiated by LPS administration to the cerebral ventricles of wild-type (WT) and Plexin-A1-deficient (−/−) mice. WT mice administered LPS exhibited a significantly higher expression of COX-2, iNOS, IL-1β and TNF-α in the hippocampus, and a significantly greater ventricular enlargement and intracerebral infiltration of leukocytes, as compared with the saline-treated group. By contrast, Plexin-A1−/− mice administered LPS did not exhibit a significantly increased expression of COX-2, iNOS, IL-1β or TNF-α in the hippocampus as compared with the saline-treated group. Plexin-A1−/− mice administered LPS did not show significant increases in ventricle size or infiltration of leukocytes into the brain, as compared with the saline-treated group. In WT, but not in the Plexin-A1−/− primary microglia treated with LPS, Sema3A induced significantly more nitric oxide production than in the immunoglobulin G control. These results revealed the crucial role of the Sema3A-Plexin-A1 interaction in the Toll-like receptor 4-mediated signaling of the LPS-induced activation of microglia. Thus, results of the present study revealed the essential role of Plexin-A1 in the development of LPS-induced neuroinflammation in mice, suggesting the possible application of microglial control of the semaphorin-plexin signaling system to the treatment of LPS-induced encephalopathy and other psychiatric diseases

  6. Autotaxin protects microglial cells against oxidative stress.

    PubMed

    Awada, Rana; Rondeau, Philippe; Grès, Sandra; Saulnier-Blache, Jean Sébastien; Lefebvre d'Hellencourt, Christian; Bourdon, Emmanuel

    2012-01-15

    Oxidative stress occurs when antioxidant defenses are overwhelmed by oxygen-reactive species and can lead to cellular damage, as seen in several neurodegenerative disorders. Microglia are specialized cells in the central nervous system that act as the first and main form of active immune defense in the response to pathological events. Autotaxin (ATX) plays an important role in the modulation of critical cellular functions, through its enzymatic production of lysophosphatidic acid (LPA). In this study, we investigated the potential role of ATX in the response of microglial cells to oxidative stress. We show that treatment of a microglial BV2 cell line with hydrogen peroxide (H(2)O(2)) stimulates ATX expression and LPA production. Stable overexpression of ATX inhibits microglial activation (CD11b expression) and protects against H(2)O(2)-treatment-induced cellular damage. This protective effect of ATX was partially reduced in the presence of the LPA-receptor antagonist Ki16425. ATX overexpression was also associated with a reduction in intracellular ROS formation, carbonylated protein accumulation, proteasomal activity, and catalase expression. Our results suggest that up-regulation of ATX expression in microglia could be a mechanism for protection against oxidative stress, thereby reducing inflammation in the nervous system. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Mechanisms Underlying Interferon-γ-Induced Priming of Microglial Reactive Oxygen Species Production

    PubMed Central

    Spencer, Nicholas G.; Schilling, Tom; Miralles, Francesc; Eder, Claudia

    2016-01-01

    Microglial priming and enhanced reactivity to secondary insults cause substantial neuronal damage and are hallmarks of brain aging, traumatic brain injury and neurodegenerative diseases. It is, thus, of particular interest to identify mechanisms involved in microglial priming. Here, we demonstrate that priming of microglia with interferon-γ (IFN γ) substantially enhanced production of reactive oxygen species (ROS) following stimulation of microglia with ATP. Priming of microglial ROS production was substantially reduced by inhibition of p38 MAPK activity with SB203580, by increases in intracellular glutathione levels with N-Acetyl-L-cysteine, by blockade of NADPH oxidase subunit NOX2 activity with gp91ds-tat or by inhibition of nitric oxide production with L-NAME. Together, our data indicate that priming of microglial ROS production involves reduction of intracellular glutathione levels, upregulation of NADPH oxidase subunit NOX2 and increases in nitric oxide production, and suggest that these simultaneously occurring processes result in enhanced production of neurotoxic peroxynitrite. Furthermore, IFNγ-induced priming of microglial ROS production was reduced upon blockade of Kir2.1 inward rectifier K+ channels with ML133. Inhibitory effects of ML133 on microglial priming were mediated via regulation of intracellular glutathione levels and nitric oxide production. These data suggest that microglial Kir2.1 channels may represent novel therapeutic targets to inhibit excessive ROS production by primed microglia in brain pathology. PMID:27598576

  8. Allograft-inflammatory factor-1 in rat experimental autoimmune encephalomyelitis, neuritis, and uveitis: expression by activated macrophages and microglial cells.

    PubMed

    Schluesener, H J; Seid, K; Kretzschmar, J; Meyermann, R

    1998-10-01

    Allograft inflammatory factor-1 (AIF-1) is a Ca2+ binding peptide expressed predominantly by activated monocytes. In order to investigate the role of AIF-1 in autoimmune lesions of the rat nervous system, we have used a synthetic gene to express AIF-1 in E. coli and have produced monoclonal antibodies against AIF-1. AIF-1 was localized to monocytes/macrophages with rather selective staining of a minor rat monocyte subpopulation of lymphoid tissue. We then investigated expression of AIF-1 in experimental autoimmune encephalomyelitis (EAE), neuritis (EAN), and uveitis (EAU). Within the local inflammatory lesions, infiltrating macrophages are prominently stained. In the diseased brain, AIF-1-positive microglial cells are not only found in the direct vicinity of the infiltrate, but widespread activation is seen in the parenchyma. This is the first demonstration that AIF-1 is present in autoimmune lesions. Immunostaining of microglial cells is noteworthy, as these cells are strategically placed regulatory elements of CNS immunosurveillance. Thus, AIF-1 might be a valuable marker to dissect the local monocyte heterogeneity in autoimmune disease.

  9. Andrographolide Activates Keap1/Nrf2/ARE/HO-1 Pathway in HT22 Cells and Suppresses Microglial Activation by Aβ42 through Nrf2-Related Inflammatory Response

    PubMed Central

    Seo, Ji Yeon; Pyo, Euisun; An, Jin-Pyo; Kim, Jinwoong; Sung, Sang Hyun

    2017-01-01

    Therapeutic approach of Alzheimer's disease (AD) has been gradually diversified. We examined the therapeutic and preventive potential of andrographolide, which is a lactone diterpenoid from Andrographis paniculata, and focused on the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated heme oxygenase (HO)-1-inducing effects and the inhibitory activity of amyloid beta (Aβ)42-induced microglial activation related to Nrf2 and nuclear factor κB (NF-κB)-mediated inflammatory responses. Andrographolide induced the expression and translocation of Nrf2 from the cytoplasm to the nucleus, thereby activating antioxidant response element (ARE) gene transcription and HO-1 expression in murine hippocampal HT22 cells. Andrographolide eliminated intracellular Aβ42 in BV-2 cells and decreased the production of interleukin (IL)-6, IL-1β, prostaglandin (PG)E2, and nitric oxide (NO) because of artificial phagocytic Aβ42. It decreased pNF-κB accumulation in the nucleus and the expression of inducible nitric oxide synthase (i-NOS) and cyclooxygenase II (COX-II) in the microglial BV-2 cell line. In summary, andrographolide activates Nrf2-mediated HO-1 expression and inhibits Aβ42-overexpressed microglial BV-2 cell activation. These results suggested that andrographolide might have the potential for further examination of the therapeutics of AD. PMID:28373747

  10. Aberrant production of tenascin-C in globoid cell leukodystrophy alters psychosine-induced microglial functions.

    PubMed

    Claycomb, Kumiko I; Winokur, Paige N; Johnson, Kasey M; Nicaise, Alexandra M; Giampetruzzi, Anthony W; Sacino, Anthony V; Snyder, Evan Y; Barbarese, Elisa; Bongarzone, Ernesto R; Crocker, Stephen J

    2014-10-01

    Globoid cell leukodystrophy (GLD), or Krabbe disease, is a rare and often fatal demyelinating disease caused by mutations in the galactocerebrosidase (galc) gene that result in accumulation of galactosylsphingosine (psychosine). We recently reported that the extracellular matrix (ECM) protease, matrix metalloproteinase-3, is elevated in GLD and that it regulates psychosine-induced microglial activation. Here, we examined central nervous system ECM component expression in human GLD patients and in the twitcher mouse model of GLD using immunohistochemistry. The influence of ECM proteins on primary murine microglial responses to psychosine was evaluated using ECM proteins as substrates and analyzed by quantitative real-time polymerase chain reaction, immunocytochemistry, and ELISA. Functional analysis of microglial cytotoxicity was performed on oligodendrocytes in coculture, and cell death was measured by lactose dehydrogenase assay. Tenascin-C (TnC) was expressed at higher levels in human GLD and in twitcher mice versus controls. Microglial responses to psychosine were enhanced by TnC, as determined by an increase in globoid-like cell formation, matrix metalloproteinase-3 mRNA expression, and higher toxicity toward oligodendrocytes in culture. These findings were consistent with a shift toward the M1 microglial phenotype in TnC-grown microglia. Thus, elevated TnC expression in GLD modified microglial responses to psychosine. These data offer a novel perspective and enhance understanding of the microglial contribution to GLD pathogenesis.

  11. Anti-inflammatory activity of a honey flavonoid extract on lipopolysaccharide-activated N13 microglial cells.

    PubMed

    Candiracci, Manila; Piatti, Elena; Dominguez-Barragán, María; García-Antrás, Daniel; Morgado, Bruno; Ruano, Diego; Gutiérrez, Juan F; Parrado, Juan; Castaño, Angélica

    2012-12-19

    Neuroinflammation is an important contributor to pathogenesis of age-related neurodegenerative disorders such as Alzheimer's or Parkinson's disease. Accumulating evidence indicates that inhibition of microglia-mediated neuroinflammation may become a reliable protective strategy for neurodegenerative processes. Flavonoids, widely distributed in the vegetable kingdom and in foods such as honey, have been suggested as novel therapeutic agents for the reduction of the deleterious effects of neuroinflammation. The present study investigated the potential protective effect of a honey flavonoid extract (HFE) on the production of pro-inflammatory mediators by lipopolysaccharide-stimulated N13 microglia. The results show that HFE significantly inhibited the release of pro-inflammatory cytokines such as TNF-α and IL-1β. The expressions of iNOS and the production of reactive oxygen intermediates (ROS) were also significantly inhibited. Accordingly, the present study demonstrates that HFE is a potent inhibitor of microglial activation and thus a potential preventive-therapeutic agent for neurodegenerative diseases involving neuroinflammation.

  12. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer's disease.

    PubMed

    Lucin, Kurt M; O'Brien, Caitlin E; Bieri, Gregor; Czirr, Eva; Mosher, Kira I; Abbey, Rachelle J; Mastroeni, Diego F; Rogers, Joseph; Spencer, Brian; Masliah, Eliezer; Wyss-Coray, Tony

    2013-09-04

    Phagocytosis controls CNS homeostasis by facilitating the removal of unwanted cellular debris. Accordingly, impairments in different receptors or proteins involved in phagocytosis result in enhanced inflammation and neurodegeneration. While various studies have identified extrinsic factors that modulate phagocytosis in health and disease, key intracellular regulators are less understood. Here we show that the autophagy protein beclin 1 is required for efficient phagocytosis in vitro and in mouse brains. Furthermore, we show that beclin 1-mediated impairments in phagocytosis are associated with dysfunctional recruitment of retromer to phagosomal membranes, reduced retromer levels, and impaired recycling of phagocytic receptors CD36 and Trem2. Interestingly, microglia isolated from human Alzheimer's disease (AD) brains show significantly reduced beclin 1 and retromer protein levels. These findings position beclin 1 as a link between autophagy, retromer trafficking, and receptor-mediated phagocytosis and provide insight into mechanisms by which phagocytosis is regulated and how it may become impaired in AD.

  13. Prenylated Flavonoids from Cudrania tricuspidata Suppress Lipopolysaccharide-Induced Neuroinflammatory Activities in BV2 Microglial Cells

    PubMed Central

    Kim, Dong-Cheol; Yoon, Chi-Su; Quang, Tran Hong; Ko, Wonmin; Kim, Jong-Su; Oh, Hyuncheol; Kim, Youn-Chul

    2016-01-01

    In Korea and China, Cudrania tricuspidata Bureau (Moraceae) is an important traditional medicinal plant used to treat lumbago, hemoptysis, and contusions. The C. tricuspidata methanol extract suppressed both production of NO and PGE2 in BV2 microglial cells. Cudraflavanone D (1), isolated from this extract, remarkably suppressed the protein expression of inducible NO synthase and cyclooxygenase-2, and decreased the levels of NO and PGE2 in BV2 microglial cells exposed to lipopolysaccharide. Cudraflavanone D (1) also decreased IL-6, TNF-α, IL-12, and IL-1β production, blocked nuclear translocation of NF-κB heterodimers (p50 and p65) by interrupting the degradation and phosphorylation of inhibitor of IκB-α, and inhibited NF-κB binding. In addition, cudraflavanone D (1) suppressed the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK pathways. This study indicated that cudraflavanone D (1) can be a potential drug candidate for the cure of neuroinflammation. PMID:26907256

  14. Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGluR5) attenuate microglial activation.

    PubMed

    Xue, Fengtian; Stoica, Bogdan A; Hanscom, Marie; Kabadi, Shruti V; Faden, Alan I

    2014-01-01

    Traumatic brain injury causes progressive neurodegeneration associated with chronic microglial activation. Recent studies show that neurodegeneration and neuroinflammation after traumatic brain injury can be inhibited as late as one month in animals by the activation of the metabotropic glutamate receptor 5 in microglia using (RS)-2-chloro-5- hydroxy-phenylglycine. However, the therapeutic potential of this agonist is limited due to its relatively weak potency and brain permeability. To address such concerns, we evaluated the anti-inflammatory activities of several positive allosteric modulators using various in vitro assays, and found that 3,3'-difluorobenzaldazine, 3-cyano-N-(1,3-diphenyl-1H-pyrazol- 5-yl)benzamide and 4-nitro-N-(1-(2-fluorophenyl)-3-phenyl-1H-pyrazol-5-yl)benzamide showed significantly improved potency which makes them potential lead compounds for further development of positive allosteric modulators for the treatment of traumatic brain injury.

  15. Microglial NLRP3 inflammasome activation mediates IL-1β-related inflammation in prefrontal cortex of depressive rats.

    PubMed

    Pan, Ying; Chen, Xu-Yang; Zhang, Qing-Yu; Kong, Ling-Dong

    2014-10-01

    Depression is an inflammatory disorder. Pro-inflammatory cytokine interleukin-1 beta (IL-1β) may play a pivotal role in the central nervous system (CNS) inflammation of depression. Here, we investigated IL-1β alteration in serum, cerebrospinal fluid (CSF) and prefrontal cortex (PFC) of chronic unpredictable mild stress (CUMS)-exposed rats, a well-documented model of depression, and further explored the molecular mechanism by which CUMS procedure induced IL-1β-related CNS inflammation. We showed that 12-week CUMS procedure remarkably increased PFC IL-1β mRNA and protein levels in depressive-like behavior of rats, without significant alteration of serum and CSF IL-1β levels. We found that CUMS procedure significantly caused PFC nuclear factor kappa B (NF-κB) inflammatory pathway activation in rats. The intriguing finding in this study was the induced activation of nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome with the increased IL-1β maturation in PFC of CUMS rats, suggesting a new grade of regulatory mechanism for IL-1β-related CNS inflammation. Moreover, microglial activation and astrocytic function impairment were observed in PFC of CUMS rats. The increased co-location of NLRP3 and ionized calcium binding adaptor molecule 1 (Iba1) protein expression supported that microglia in glial cells was the primary contributor for CUMS-induced PFC NLRP3 inflammasome activation in rats. These alterations in CUMS rats were restored by chronic treatment of the antidepressant fluoxetine, indicating that fluoxetine-mediated rat PFC IL-1β reduction involves both transcriptional and post-transcriptional regulatory mechanisms. These findings provide in vivo evidence that microglial NLRP3 inflammasome activation is a mediator of IL-1β-related CNS inflammation during chronic stress, and suggest a new therapeutic target for the prevention and treatment of depression. Copyright © 2014 Elsevier Inc. All rights

  16. Morphine mediates a proinflammatory phenotype via μ-opioid receptor-PKCɛ-Akt-ERK1/2 signaling pathway in activated microglial cells.

    PubMed

    Merighi, Stefania; Gessi, Stefania; Varani, Katia; Fazzi, Debora; Stefanelli, Angela; Borea, Pier Andrea

    2013-08-15

    Anti-nociceptive tolerance to opioids severely limits their clinical efficacy for the treatment of chronic pain syndromes. Glia has a central role in the development of morphine tolerance. Here, we characterized the receptor-proximal signaling events that link μ-opioid receptors to activation of Akt and ERKs in lipopolysaccharide (LPS)-stimulated murine microglial cells with the aim to define the molecular mechanism contributing to the ability of morphine to increase inflammatory mediators such as nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 in activated microglial cells. In particular, the role of PKCɛ isoform in μ-opioid-induced inflammatory response in microglia was investigated. The results indicate that morphine increases the LPS-induced expression and activation of PKCɛ and stimulates Akt pathway upstream of ERK1/2 and iNOS. Furthermore, we found that morphine enhanced the release of IL-1β, TNF-α, IL-6, and of NO via μ-opioid receptor-PKCɛ signaling pathway in activated microglial cells, mediating a proinflammatory phenotype in mouse microglial cells. Together, these data suggest that the modulation of μ-opioid receptor signaling on microglia through PKCɛ selective inhibition may provide a means to attenuate glial activation and, as a consequence, to treat opioid development of tolerance and dependence.

  17. Methylene blue exerts a neuroprotective effect against traumatic brain injury by promoting autophagy and inhibiting microglial activation

    PubMed Central

    ZHAO, MINGFEI; LIANG, FENG; XU, HANGDI; YAN, WEI; ZHANG, JIANMIN

    2016-01-01

    Traumatic brain injury (TBI) leads to permanent neurological impairment, and methylene blue (MB) exerts central nervous system neuroprotective effects. However, only one previous study has investigated the effectiveness of MB in a controlled cortical impact injury model of TBI. In addition, the specific mechanisms underlying the effect of MB against TBI remain to be elucidated. Therefore, the present study investigated the neuroprotective effect of MB on TBI and the possible mechanisms involved. In a mouse model of TBI, the animals were randomly divided into sham, vehicle (normal saline) or MB groups. The treatment time-points were 24 and 72 h (acute phase of TBI), and 14 days (chronic phase of TBI) post-TBI. The brain water content (BWC), and levels of neuronal death, and autophagy were determined during the acute phase, and neurological deficit, injury volume and microglial activation were assessed at all time-points. The injured hemisphere BWC was significantly increased 24 h post-TBI, and this was attenuated following treatment with MB. There was a significantly higher number of surviving neurons in the MB group, compared with the Vehicle group at 24 and 72 h post-TBI. In the acute phase, the MB-treated animals exhibited significantly upregulated expression of Beclin 1 and increased LC3-II to LC3-I ratios, compared with the vehicle group, indicating an increased rate of autophagy. Neurological functional deficits, measured using the modified neurological severity score, were significantly lower in the acute phase in the MB-treated animals and cerebral lesion volumes in the MB-treated animals were significantly lower, compared with the other groups at all time-points. Microglia were activated 24 h after TBI, peaked at 72 h and persisted until 14 days after TBI. Although the number of Iba-1-positive cells in the vehicle and MB groups 24 h post-TBI were not significantly different, marked microglial inhibition was observed in the MB group 72 h and 14 days after

  18. Early and protective microglial activation in Alzheimer's disease: a prospective study using 18F-DPA-714 PET imaging.

    PubMed

    Hamelin, Lorraine; Lagarde, Julien; Dorothée, Guillaume; Leroy, Claire; Labit, Mickael; Comley, Robert A; de Souza, Leonardo Cruz; Corne, Helene; Dauphinot, Luce; Bertoux, Maxime; Dubois, Bruno; Gervais, Philippe; Colliot, Olivier; Potier, Marie Claude; Bottlaender, Michel; Sarazin, Marie

    2016-04-01

    While emerging evidence suggests that neuroinflammation plays a crucial role in Alzheimer's disease, the impact of the microglia response in Alzheimer's disease remains a matter of debate. We aimed to study microglial activation in early Alzheimer's disease and its impact on clinical progression using a second-generation 18-kDa translocator protein positron emission tomography radiotracer together with amyloid imaging using Pittsburgh compound B positron emission tomography. We enrolled 96 subjects, 64 patients with Alzheimer's disease and 32 controls, from the IMABio3 study, who had both (11)C-Pittsburgh compound B and (18)F-DPA-714 positron emission tomography imaging. Patients with Alzheimer's disease were classified as prodromal Alzheimer's disease (n = 38) and Alzheimer's disease dementia (n = 26). Translocator protein-binding was measured using a simple ratio method with cerebellar grey matter as reference tissue, taking into account regional atrophy. Images were analysed at the regional (volume of interest) and at the voxel level. Translocator protein genotyping allowed the classification of all subjects in high, mixed and low affinity binders. Thirty high+mixed affinity binders patients with Alzheimer's disease were dichotomized into slow decliners (n = 10) or fast decliners (n = 20) after 2 years of follow-up. All patients with Alzheimer's disease had an amyloid positive Pittsburgh compound B positron emission tomography. Among controls, eight had positive amyloid scans (n = 6 high+mixed affinity binders), defined as amyloidosis controls, and were analysed separately. By both volumes of interest and voxel-wise comparison, 18-kDa translocator protein-binding was higher in high affinity binders, mixed affinity binders and high+mixed affinity binders Alzheimer's disease groups compared to controls, especially at the prodromal stage, involving the temporo-parietal cortex. Translocator protein-binding was positively correlated with Mini-Mental State Examination

  19. Nucleotides released from Aβ1–42-treated microglial cells increase cell migration and Aβ1–42 uptake through P2Y2 receptor activation

    PubMed Central

    Kim, Hye Jung; Ajit, Deepa; Peterson, Troy S.; Wang, Yanfang; Camden, Jean M.; Wood, W. Gibson; Sun, Grace Y.; Erb, Laurie; Petris, Michael; Weisman, Gary A.

    2012-01-01

    Amyloid β-protein (Aβ) deposits in brains of Alzheimer’s disease (AD) patients generate proinflammatory cytokines and chemokines that recruit microglial cells to phagocytose Aβ. Nucleotides released from apoptotic cells activate P2Y2 receptors (P2Y2Rs) in macrophages to promote clearance of dead cells. In this study, we investigated the role of P2Y2Rs in the phagocytosis and clearance of Aβ. Treatment of mouse primary microglial cells with fibrillar (fAβ1–42) and oligomeric (oAβ1–42)Aβ1–42 aggregation solutions caused a rapid release of ATP (maximum after 10 min). Furthermore, fAβ1–42 and oAβ1–42 treatment for 24 h caused an increase in P2Y2R gene expression. Treatment with fAβ1–42 and oAβ1–42 aggregation solutions increased the motility of neighboring microglial cells, a response inhibited by pre-treatment with apyrase, an enzyme that hydrolyzes nucleotides. The P2Y2R agonists ATP and UTP caused significant uptake of Aβ1–42 by microglial cells within 30 min, which reached a maximum within 1 h, but did not increase Aβ1–42 uptake by primary microglial cells isolated from P2Y2R−/− mice. Inhibitors of αv integrins, Src and Rac decreased UTP-induced Aβ1–42 uptake, suggesting that these previously identified components of the P2Y2R signaling pathway play a role in Aβ phagocytosis by microglial cells. Finally, we found that UTP treatment enhances Aβ1–42 degradation by microglial cells, but not in cells isolated from P2Y2R−/− mice. Taken together, our findings suggest that P2Y2Rs can activate microglial cells to enhance Aβ clearance and highlight the P2Y2R as a therapeutic target in AD. PMID:22353164

  20. Fasudil inhibits LPS-induced migration of retinal microglial cells via regulating p38-MAPK signaling pathway

    PubMed Central

    Xu, Fan; Xu, Yue; Zhu, Liqiong; Rao, Pinhong; Wen, Jiamin; Sang, Yunyun; Shang, Fu

    2016-01-01

    Purpose To investigate the effect and possible molecular mechanisms of fasudil on retinal microglial (RMG) cell migration. Methods Primary cultured RMG cells were incubated with lipopolysaccharide (LPS), fasudil, and/or SB203580 (a p38 inhibitor). RMG cell motility was determined with the scratch wound assay and the Transwell migration assay. The phosphorylation of p38 and levels of matrix metalloproteinase 2 (MMP-2) and MMP-9 were measured with western blot. Results In the scratch-induced migration assay, as well as in the Transwell migration assay, the results indicated that LPS stimulated the migratory potential of RMG cells and fasudil significantly reduced LPS-stimulated RMG cell migration in a concentration-dependent manner. However, fasudil had no effect on RMG cell migration in the absence of LPS stimulation. Moreover, fasudil reduced the level of phosphor-p38 mitogen-activated protein kinase (p-p38-MAPK) in a concentration-dependent manner, without effects on the levels of phospho-p44/42 (p-ERK1/2) and phospho-c-Jun N-terminal kinase (p-JNK). Cotreatment with SB203580 (a p38 inhibitor) and fasudil resulted in the synergistic reduction of MMP-2, MMP-9, and p-p38-MAPK, as well as a reduction in the LPS-stimulated migration capabilities of the RMG cells, suggesting fasudil suppresses the LPS-stimulated migration of RMG cells via directly downregulating the p38-MAPK signaling pathway. Conclusions Our studies indicated that fasudil inhibited LPS-stimulated RMG cell migration via suppression of the p38-MAPK signaling pathway. PMID:27441000

  1. Photoreceptor Proteins Initiate Microglial Activation via Toll-like Receptor 4 in Retinal Degeneration Mediated by All-trans-retinal*

    PubMed Central

    Kohno, Hideo; Chen, Yu; Kevany, Brian M.; Pearlman, Eric; Miyagi, Masaru; Maeda, Tadao; Palczewski, Krzysztof; Maeda, Akiko

    2013-01-01

    Although several genetic and biochemical factors are associated with the pathogenesis of retinal degeneration, it has yet to be determined how these different impairments can cause similar degenerative phenotypes. Here, we report microglial/macrophage activation in both a Stargardt disease and age-related macular degeneration mouse model caused by delayed clearance of all-trans-retinal from the retina, and in a retinitis pigmentosa mouse model with impaired retinal pigment epithelium (RPE) phagocytosis. Mouse microglia displayed RPE cytotoxicity and increased production of inflammatory chemokines/cytokines, Ccl2, Il1b, and Tnf, after coincubation with ligands that activate innate immunity. Notably, phagocytosis of photoreceptor proteins increased the activation of microglia/macrophages and RPE cells isolated from model mice as well as wild-type mice. The mRNA levels of Tlr2 and Tlr4, which can recognize proteins as their ligands, were elevated in mice with retinal degeneration. Bone marrow-derived macrophages from Tlr4-deficient mice did not increase Ccl2 after coincubation with photoreceptor proteins. Tlr4−/−Abca4−/−Rdh8−/− mice displayed milder retinal degenerative phenotypes than Abca4−/−Rdh8−/− mice. Additionally, inactivation of microglia/macrophages by pharmacological approaches attenuated mouse retinal degeneration. This study demonstrates an important contribution of TLR4-mediated microglial activation by endogenous photoreceptor proteins in retinal inflammation that aggravates retinal cell death. This pathway is likely to represent an underlying common pathology in degenerative retinal disorders. PMID:23572532

  2. Sleep deprivation aggravates median nerve injury-induced neuropathic pain and enhances microglial activation by suppressing melatonin secretion.

    PubMed

    Huang, Chun-Ta; Chiang, Rayleigh Ping-Ying; Chen, Chih-Li; Tsai, Yi-Ju

    2014-09-01

    Sleep deprivation is common in patients with neuropathic pain, but the effect of sleep deprivation on pathological pain remains uncertain. This study investigated whether sleep deprivation aggravates neuropathic symptoms and enhances microglial activation in the cuneate nucleus (CN) in a median nerve chronic constriction injury (CCI) model. Also, we assessed if melatonin supplements during the sleep deprived period attenuates these effects. Rats were subjected to sleep deprivation for 3 days by the disc-on-water method either before or after CCI. In the melatonin treatment group, CCI rats received melatonin supplements at doses of 37.5, 75, 150, or 300 mg/kg during sleep deprivation. Melatonin was administered at 23:00 once a day. Male Sprague-Dawley rats, weighing 180-250 g (n = 190), were used. Seven days after CCI, behavioral testing was conducted, and immunohistochemistry, immunoblotting, and enzyme-linked immunosorbent assay were used for qualitative and quantitative analyses of microglial activation and measurements of proinflammatory cytokines. In rats who underwent post-CCI sleep deprivation, microglia were more profoundly activated and neuropathic pain was worse than those receiving pre-CCI sleep deprivation. During the sleep deprived period, serum melatonin levels were low over the 24-h period. Administration of melatonin to CCI rats with sleep deprivation significantly attenuated activation of microglia and development of neuropathic pain, and markedly decreased concentrations of proinflammatory cytokines. Sleep deprivation makes rats more vulnerable to nerve injury-induced neuropathic pain, probably because of associated lower melatonin levels. Melatonin supplements to restore a circadian variation in melatonin concentrations during the sleep deprived period could alleviate nerve injury-induced behavioral hypersensitivity. © 2014 Associated Professional Sleep Societies, LLC.

  3. Cudrania cochinchinensis attenuates amyloid β protein-mediated microglial activation and promotes glia-related clearance of amyloid β protein

    PubMed Central

    2013-01-01

    Background Microglial inflammation may significantly contribute to the pathology of Alzheimer’s disease. To examine the potential of Cudrania cochinchinensis to ameliorate amyloid β protein (Aβ)-induced microglia activation, BV-2 microglial cell line, and the ramified microglia in the primary glial mixed cultured were employed. Results Lipopolysaccharide (LPS), Interferon-γ (IFN-γ), fibrillary Aβ (fAβ), or oligomeric Aβ (oAβ) were used to activate microglia. LPS and IFN-γ, but not Aβs, activated BV-2 cells to produce nitric oxide through an increase in inducible nitric oxide synthase (iNOS) expression without significant effects on cell viability of microglia. fAβ, but not oAβ, enhanced the IFN-γ-stimulated nitric oxide production and iNOS expression. The ethanol/water extracts of Cudrania cochinchinensis (CC-EW) and the purified isolated components (i.e. CCA to CCF) effectively reduced the nitric oxide production and iNOS expression stimulated by IFN-γ combined with fAβ. On the other hand, oAβ effectively activated the ramified microglia in mixed glial culture by observing the morphological alteration of the microglia from ramified to amoeboid. CC-EW and CCB effectively prohibit the Aβ-mediated morphological change of microglia. Furthermore, CC-EW and CCB effectively decreased Aβ deposition and remained Aβ in the conditioned medium suggesting the effect of CC-EW and CCB on promoting Aβ clearance. Results are expressed as mean ± S.D. and were analyzed by ANOVA with post-hoc multiple comparisons with a Bonferroni test. Conclusions The components of Cudrania cochinchinensis including CC-EW and CCB are potential for novel therapeutic intervention for Alzheimer’s disease. PMID:23915297

  4. Blockade of acute microglial activation by minocycline promotes neuroprotection and reduces locomotor hyperactivity after closed head injury in mice: a twelve-week follow-up study.

    PubMed

    Homsi, Shadi; Piaggio, Tomaso; Croci, Nicole; Noble, Florence; Plotkine, Michel; Marchand-Leroux, Catherine; Jafarian-Tehrani, Mehrnaz

    2010-05-01

    Traumatic brain injury (TBI) causes a wide spectrum of consequences, such as microglial activation, cerebral inflammation, and focal and diffuse brain injury, as well as functional impairment. In this study we aimed to investigate the effects of acute treatment with minocycline as an inhibitor of microglial activation on cerebral focal and diffuse lesions, and on the spontaneous locomotor activity following TBI. The weight-drop model was used to induce TBI in mice. Microglial activation and diffuse axonal injury (DAI) were detected by immunohistochemistry using CD11b and ss-amyloid precursor protein (ss-APP) immunolabeling, respectively. Focal injury was determined by the measurement of the brain lesion volume. Horizontal and vertical locomotor activities were measured for up to 12 weeks post-injury by an automated actimeter. Minocycline or vehicle were administered three times post-insult, at 5 min (90 mg/kg i.p.), 3 h, and 9 h post-TBI (45 mg/kg i.p.). Minocycline treatment attenuated microglial activation by 59% and reduced brain lesion volume by 58%, yet it did not affect DAI at 24 h post-TBI. More interestingly, minocycline significantly decreased TBI-induced locomotor hyperactivity at 48 h post-TBI, and its effect lasted for up to 8 weeks. Taken together, the results indicate that microglial activation appears to play an important role in the development of TBI-induced focal injury and the subsequent locomotor hyperactivity, and its short-term inhibition provides long-lasting functional recovery after TBI. These findings emphasize the fact that minocycline could be a promising new therapeutic strategy for head-injured patients.

  5. Neuronal and microglial regulators of cortical wiring: usual and novel guideposts

    PubMed Central

    Squarzoni, Paola; Thion, Morgane S.; Garel, Sonia

    2015-01-01

    Neocortex functioning relies on the formation of complex networks that begin to be assembled during embryogenesis by highly stereotyped processes of cell migration and axonal navigation. The guidance of cells and axons is driven by extracellular cues, released along by final targets or intermediate targets located along specific pathways. In particular, guidepost cells, originally described in the grasshopper, are considered discrete, specialized cell populations located at crucial decision points along axonal trajectories that regulate tract formation. These cells are usually early-born, transient and act at short-range or via cell-cell contact. The vast majority of guidepost cells initially identified were glial cells, which play a role in the formation of important axonal tracts in the forebrain, such as the corpus callosum, anterior, and post-optic commissures as well as optic chiasm. In the last decades, tangential migrating neurons have also been found to participate in the guidance of principal axonal tracts in the forebrain. This is the case for several examples such as guideposts for the lateral olfactory tract (LOT), corridor cells, which open an internal path for thalamo-cortical axons and Cajal-Retzius cells that have been involved in the formation of the entorhino-hippocampal connections. More recently, microglia, the resident macrophages of the brain, were specifically observed at the crossroads of important neuronal migratory routes and axonal tract pathways during forebrain development. We furthermore found that microglia participate to the shaping of prenatal forebrain circuits, thereby opening novel perspectives on forebrain development and wiring. Here we will review the last findings on already known guidepost cell populations and will discuss the role of microglia as a potentially new class of atypical guidepost cells. PMID:26236185

  6. Effect of anesthetics on microglial activation and nanoparticle uptake: Implications for drug delivery in traumatic brain injury.

    PubMed

    Kannan, Gokul; Kambhampati, Siva P; Kudchadkar, Sapna R

    2017-03-21

    Traumatic brain injury (TBI) is a serious public health problem, often with devastating consequences for patients and their families. Affordable and timely therapies can have a substantial impact on outcomes in severe TBI. Despite the common use of sedatives and anesthetics in the acute phase of TBI management, their effect on glial cells is not well understood. We investigated the effect of a commonly used sedative, pentobarbital, on glial cells and their uptake of nanoparticles. First, we studied how pentobarbital affects BV2 mouse microglial cells in culture. The cell morphology was imaged by confocal microscopy and analyzed. Our results suggest that microglia change to a more swollen, 'activated' shape with pentobarbital (cell area increased by approximately 20%, p<0.001). Such glial activation may have negative implications for the ability of the injured brain to clear edema. Second, we investigated how pentobarbital treatment affected nanoparticle uptake. BV-2 mouse microglial cells in the presence and absence of pentobarbital were treated with fluorescently-labeled, hydroxyl-functionalized poly(amidoamine) dendrimer nanoparticles (Dendrimer-Cy5). We demonstrated that the presence of pentobarbital increased the dendrimer nanoparticle uptake significantly (~2-fold both 2 and 6h following treatment). This semi-quantitative fluorescence assessment was broadly consistent among confocal image analysis, flow cytometry, and fluorescence quantification of cell-extracted dendrimer-Cy5. Although anesthetics appear to activate microglia, the increased uptake of dendrimer nanoparticles in their presence can be exploited to deliver drug-loaded nanoparticles directly to microglia after TBI. These drugs could restore glial and glymphatic function, enabling efficient drainage of waste and fluid from the brain and effectively improving recovery after TBI. A key future direction is to validate these findings in TBI models.

  7. Neuro-immune dysfunction during brain aging: new insights in microglial cell regulation.

    PubMed

    Matt, Stephanie M; Johnson, Rodney W

    2016-02-01

    Microglia, the resident immune cells of the brain, are at the center of communication between the central nervous system and immune system. While these brain-immune interactions are balanced in healthy adulthood, the ability to maintain homeostasis during aging is impaired. Microglia develop a loss of integrated regulatory networks including aberrant signaling from other brain cells, immune sensors, and epigenetic modifiers. The low-grade chronic neuroinflammation associated with this dysfunctional activity likely contributes to cognitive deficits and susceptibility to age-related pathologies. A better understanding of the underlying mechanisms responsible for neuro-immune dysregulation with age is crucial for providing targeted therapeutic strategies to support brain repair and healthy aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Neuro-immune Dysfunction During Brain Aging: New Insights in Microglial Cell Regulation

    PubMed Central

    Matt, Stephanie M.; Johnson, Rodney W.

    2015-01-01

    Microglia, the resident immune cells of the brain, are at the center of communication between the central nervous system and immune system. While these brain-immune interactions are balanced in healthy adulthood, the ability to maintain homeostasis during aging is impaired. Microglia develop a loss of integrated regulatory networks including aberrant signaling from other brain cells, immune sensors, and epigenetic modifiers. The low-grade chronic neuroinflammation associated with this dysfunctional activity likely contributes to cognitive deficits and susceptibility to age-related pathologies. A better understanding of the underlying mechanisms responsible for neuro-immune dysregulation with age is crucial for providing targeted therapeutic strategies to support brain repair and healthy aging. PMID:26595306

  9. Tissue Plasminogen Activator (tPA) Mediates Neurotoxin-Induced Cell Death and Microglial Activation

    DTIC Science & Technology

    2001-07-01

    Alzheimer’s disease and stroke. Tissue plasminogen activator (tPA), a protease converting plasminogen to plasmin, is necessary for neurodegeneration. In mice lacking tPA (tPA-/1), neurons are resistant to neurotoxic death. Delivery of tPA into tpA-/- mice restores susceptibility to neuronal death, indicating that tPA is neurotoxic in the context of excitotoxic injury. Although tPA is synthesized by neurons, the increase in tPA upon injury derives primarily from activated microglia, the immune cells of the brain. Microglia in tPA-/- mice demonstrate reduced activation.

  10. Microglial activity in people at ultra high risk of psychosis and in schizophrenia; an [11C]PBR28 PET brain imaging study

    PubMed Central

    Veronese, Mattia; Rizzo, Gaia; Bertoldo, Alessandra; Owen, David R; Bloomfield, Michael AP; Bonoldi, Ilaria; Kalk, Nicola; Turkheimer, Federico; McGuire, Philip

    2016-01-01

    Objective To determine whether microglial activity, measured using translocator-protein positron emission tomographic imaging (PET), is increased in unmedicated subjects presenting with sub-clinical symptoms indicating they are at ultra high risk of psychosis, and to determine if it is elevated in schizophrenia after controlling for a translocator specific genetic polymorphism. Method Here we use the second generation radioligand [11C]PBR28 and PET to image microglial activity in the brains of subjects at ultra high risk for psychosis. Subjects were recruited from early intervention centres. We also imaged a cohort of patients with schizophrenia and healthy controls for comparison, in total 56 subjects completed the study. At screening, subjects were genotyped to account for the rs6971 polymorphism in the gene encoding the 18Kd Translocator Protein. The main outcome measure was total grey matter [11C]PBR28 binding ratio, representing microglial activity. Results [11C]PBR28 binding ratio in grey matter was elevated in ultra high risk subjects, compared to matched controls, (p=0.004, F= 10.3, Cohen’s d >1.2), and was positively correlated with symptom severity (r= 0.730, p<0.01). Patients with schizophrenia also demonstrated elevated microglial activity with respect to matched controls (p<0.001, F= 20.8, Cohen’s d >1.7). Conclusion Microglial activity is elevated in schizophrenia and in subjects with sub-clinical symptoms who are at ultra high risk of psychosis, and is related to at risk symptom severity. This indicates that neuroinflammation is linked to the risk of psychosis and related disorders, and the expression of sub-clinical symptoms. Follow up of ultra high risk subjects will determine whether this is specific to the later development of schizophrenia or risk factors in general. PMID:26472628

  11. [Microglial hypothesis of schizophrenia].

    PubMed

    Kanba, Shigenobu; Kato, Takahiro

    2014-02-01

    While the etiology of schizophrenia remains unclear, there has been a growing amount of evidence pointing to neuroinflammation, which is characterized by an increased serum concentration of several pro-inflammatory cytokines and an increase of microglia in the brain of schizophrenics. Microglia respond rapidly to even minor pathological changes in the brain and may contribute directly to neuronal degeneration by producing various pro-inflammatory cytokines and free radicals. In many aspects, the neuropathology of schizophrenia has recently been reported to be closely associated with microglial activation. Our "Microglia Hypothesis of Schizophrenia" may shed a new light on the therapeutic strategy for schizophrenia.

  12. Clodronate inhibits the secretion of proinflammatory cytokines and NO by isolated microglial cells and reduces the number of proliferating glial cells in excitotoxically injured organotypic hippocampal slice cultures.

    PubMed

    Dehghani, Faramarz; Conrad, Ariane; Kohl, Angelika; Korf, Horst-Werner; Hailer, Nils P

    2004-10-01

    Treatment of excitotoxically injured organotypic hippocampal slice cultures (OHSC) with clodronate is known to result in the inhibition of microglial activation. We hypothesized that this is due to direct effects of clodronate on microglial cells, and investigated microglial proliferation in OHSC, and cytokine and NO secretion in isolated microglial cells. N-methyl-D-aspartate (NMDA) lesioning of OHSC resulted in a massive increase in the number of proliferating, bromo-desoxy-uridine (BrdU)-labeled cells that was reduced to control levels after treatment with clodronate (0.1, 1, 10 microg/ml). Triple-labeling revealed that clodronate abrogated the proliferation of both glial fibrillary acidic protein (GFAP)-labeled astrocytes and Griffonia simplicifolia isolectin B4 (IB4)-labeled microglial cells. Furthermore, isolated microglial cells were treated with clodronate after stimulation with lipopolysaccharide (LPS) or macrophage colony stimulating factor (M-CSF). Clodronate (0.01, 0.1, 1 microg/ml) significantly down-regulated the LPS-stimulated microglial secretion of tumor necrosis factor (TNF)-alpha, Interleukin (IL)-1beta and NO, but not of IL-6. In contrast, clodronate significantly reduced the microglial IL-6-release induced by M-CSF, indicating different intracellular pathways. The number and morphology of isolated microglial cells did not change significantly after treatment with clodronate. In summary, the number of proliferating microglial cells and astrocytes after excitotoxic injury is reduced to control levels after treatment with clodronate. Furthermore, clodronate inhibits microglial secretion of proinflammatory cytokines and NO. Clodronate could therefore prove to be a useful tool in the investigation of interactions between damaged neurons and microglial cells.

  13. Murine retroviral neurovirulence correlates with an enhanced ability ofvirus to infect selectively, replicate in, and activate resident microglial cells.

    PubMed Central

    Baszler, T. V.; Zachary, J. F.

    1991-01-01

    To determine the biologic basis of ts1 MoMuLV neurovirulence in vivo, newborn CFW/D mice were inoculated with neurovirulent ts1 MoMuLV and nonneurovirulent wt MoMuLV and the temporal response to virus infection in the central nervous system (CNS), spleen, and thymus was studied comparatively. Experimental procedures included single and double labeling in situ immunohistochemistry with selective morphometric analyses, and steady state immunoblotting of viral proteins. Cellular targets for virus infection were identical for both ts1 and wt MoMuLV and consisted sequentially of 1) splenic megakaryocytes, 2) splenic and thymic lymphocytes, 3) CNS capillary endothelial cells, and 4) CNS pericytes and microglia. Resident microglial cells served as the major reservor and amplifier of virus infection in the CNS of ts1 MoMuLV-infected mice; a similar but much less significant role was played by microglia in wt MoMuLV-infected mice. The genesis and progression of severe spongiform lesions in ts1 MoMuLV-infected mice were both temporally and spatially correlated with amplified virus infection of microglia, and hyperplasia and hypertrophy of both virus-infected and nonvirus-infected microglial cells. Direct virus infection of neurons was never observed. The development of clinical neurologic disease and spongiform lesions in ts1 MoMuLV-infected mice correlated with the accumulation of both viral gag and env gene products in the CNS; there was no selective accumulation of env precursor polyprotein Pr80env. When compared to wt MoMuLV-infected mice, the neurovirulence of ts1 MoMuLV-infected mice occurred by an enhanced ability to replicate in the CNS and to infect and activate more microglia, rather than by a fundamental change in cellular tropism or topography of virus infection. Images Figure 5 Figure 1 Figure 2 Figure 3 Figure 4 p666-a Figure 8 PMID:2000941

  14. An increase in voltage-gated sodium channel current elicits microglial activation followed inflammatory responses in vitro and in vivo after spinal cord injury.

    PubMed

    Jung, Gil Y; Lee, Jee Y; Rhim, Hyewhon; Oh, Tae H; Yune, Tae Y

    2013-11-01

    Inflammation induced by microglial activation plays a pivotal role in progressive degeneration after traumatic spinal cord injury (SCI). Voltage-gated sodium channels (VGSCs) are also implicated in microglial activation following injury. However, direct evidence that VGSCs are involved in microglial activation after injury has not been demonstrated yet. Here, we show that the increase in VGSC inward current elicited microglial activation followed inflammatory responses, leading to cell death after injury in vitro and in vivo. Isoforms of sodium channel, Nav 1.1, Nav 1.2, and Nav 1.6 were expressed in primary microglia, and the inward current of VGSC was increased by LPS treatment, which was blocked by a sodium channel blocker, tetrodotoxin (TTX). TTX inhibited LPS-induced NF-κB activation, expression of TNF-α, IL-1β and inducible nitric oxide synthase, and NO production. LPS-induced p38MAPK activation followed pro-nerve growth factor (proNGF) production was inhibited by TTX, whereas LPS-induced JNK activation was not. TTX also inhibited caspase-3 activation and cell death of primary cortical neurons in neuron/microglia co-cultures by inhibiting LPS-induced microglia activation. Furthermore, TTX attenuated caspase-3 activation and oligodendrocyte cell death at 5 d after SCI by inhibiting microglia activation and p38MAPK activation followed proNGF production, which is known to mediate oligodendrocyte cell death. Our study thus suggests that the increase in inward current of VGSC appears to be an early event required for microglia activation after injury.

  15. Adaptive Müller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina

    PubMed Central

    2011-01-01

    Purpose Microglia and Müller cells are prominent participants in retinal responses to injury and disease that shape eventual tissue adaptation or damage. This investigation examined how microglia and Müller cells interact with each other following initial microglial activation. Methods Mouse Müller cells were cultured alone, or co-cultured with activated or unactivated retinal microglia, and their morphological, molecular, and functional responses were evaluated. Müller cell-feedback signaling to microglia was studied using Müller cell-conditioned media. Corroborative in vivo analyses of retinal microglia-Müller cell interactions in the mouse retina were also performed. Results Our results demonstrate that Müller cells exposed to activated microglia, relative to those cultured alone or with unactivated microglia, exhibit marked alterations in cell morphology and gene expression that differed from those seen in chronic gliosis. These Müller cells demonstrated in vitro (1) an upregulation of growth factors such as GDNF and LIF, and provide neuroprotection to photoreceptor cells, (2) increased pro-inflammatory factor production, which in turn increased microglial activation in a positive feedback loop, and (3) upregulated chemokine and adhesion protein expression, which allowed Müller cells to attract and adhere to microglia. In vivo activation of microglia by intravitreal injection of lipopolysaccharide (LPS) also induced increased Müller cell-microglia adhesion, indicating that activated microglia may translocate intraretinally in a radial direction using Müller cell processes as an adhesive scaffold. Conclusion Our findings demonstrate that activated microglia are able to influence Müller cells directly, and initiate a program of bidirectional microglia-Müller cell signaling that can mediate adaptive responses within the retina following injury. In the acute aftermath following initial microglia activation, Müller cell responses may serve to augment

  16. Stimulation of Na+/H+ Exchanger Isoform 1 Promotes Microglial Migration

    PubMed Central

    Shi, Yejie; Yuan, Hui; Kim, Dong; Chanana, Vishal; Baba, Akemichi; Matsuda, Toshio; Cengiz, Pelin; Ferrazzano, Peter; Sun, Dandan

    2013-01-01

    Regulation of microglial migration is not well understood. In this study, we proposed that Na+/H+ exchanger isoform 1 (NHE-1) is important in microglial migration. NHE-1 protein was co-localized with cytoskeletal protein ezrin in lamellipodia of microglia and maintained its more alkaline intracellular pH (pHi). Chemoattractant bradykinin (BK) stimulated microglial migration by increasing lamellipodial area and protrusion rate, but reducing lamellipodial persistence time. Interestingly, blocking NHE-1 activity with its potent inhibitor HOE 642 not only acidified microglia, abolished the BK-triggered dynamic changes of lamellipodia, but also reduced microglial motility and microchemotaxis in response to BK. In addition, NHE-1 activation resulted in intracellular Na+ loading as well as intracellular Ca2+ elevation mediated by stimulating reverse mode operation of Na+/Ca2+ exchange (NCXrev). Taken together, our study shows that NHE-1 protein is abundantly expressed in microglial lamellipodia and maintains alkaline pHi in response to BK stimulation. In addition, NHE-1 and NCXrev play a concerted role in BK-induced microglial migration via Na+ and Ca2+ signaling. PMID:23991215

  17. Coordinated role of voltage-gated sodium channels and the Na{sup +}/H{sup +} exchanger in sustaining microglial activation during inflammation

    SciTech Connect

    Hossain, Muhammad M.; Sonsalla, Patricia K.; Richardson, Jason R.

    2013-12-01

    Persistent neuroinflammation and microglial activation play an integral role in the pathogenesis of many neurological disorders. We investigated the role of voltage-gated sodium channels (VGSC) and Na{sup +}/H{sup +} exchangers (NHE) in the activation of immortalized microglial cells (BV-2) after lipopolysaccharide (LPS) exposure. LPS (10 and 100 ng/ml) caused a dose- and time-dependent accumulation of intracellular sodium [(Na{sup +}){sub i}] in BV-2 cells. Pre-treatment of cells with the VGSC antagonist tetrodotoxin (TTX, 1 μM) abolished short-term Na{sup +} influx, but was unable to prevent the accumulation of (Na{sup +}){sub i} observed at 6 and 24 h after LPS exposure. The NHE inhibitor cariporide (1 μM) significantly reduced accumulation of (Na{sup +}){sub i} 6 and 24 h after LPS exposure. Furthermore, LPS increased the mRNA expression and protein level of NHE-1 in a dose- and time-dependent manner, which was significantly reduced after co-treatment with TTX and/or cariporide. LPS increased production of TNF-α, ROS, and H{sub 2}O{sub 2} and expression of gp91{sup phox}, an active subunit of NADPH oxidase, in a dose- and time-dependent manner, which was significantly reduced by TTX or TTX + cariporide. Collectively, these data demonstrate a closely-linked temporal relationship between VGSC and NHE-1 in regulating function in activated microglia, which may provide avenues for therapeutic interventions aimed at reducing neuroinflammation. - Highlights: • LPS causes immediate increase in sodium through VGSC and subsequently through the NHE-1. • Inhibition of VGSC reduces increases in NHE-1 and gp91{sup phox}. • Inhibition of VGSC and NHE-1 reduces NADPH oxidase-mediated Tnf-α, ROS, and H{sub 2}O{sub 2} production. • NHE-1 and Na{sub v}1.6 may be viable targets for therapeutic interventions to reduce neuroinflammation in neurodegenerative disease.

  18. CAPILLARY BLOOD FLOW AROUND MICROGLIAL SOMATA DETERMINES DYNAMICS OF MICROGLIAL PROCESSES IN ISCHEMIC CONDITIONS

    PubMed Central

    Masuda, Tadashi; Croom, Deborah; Hida, Hideki; Kirov, Sergei A.

    2011-01-01

    Microglia are the resident immune cells in the brain. Under normal conditions resting ramified microglia constantly extend and retract fine processes while performing immunological surveillance. In ischemia, microglia become activated as demonstrated by morphological changes during deramification leading to transformation from ramified to amoeboid form. In vivo two-photon microscopy of EGFP-expressing microglia in mouse neocortex was used to examine microglial dynamics during the early periods of focal and global ischemia. A penumbra-like “area-at-risk” surrounded by a square-shaped area of severely hypoperfused tissue was created by laser-induced photothrombosis. The dynamics of microglial processes in the area-at-risk were strongly correlated with capillary blood flow (BF) measured within 10 μm of microglial somata. Changes in BF around distal microglial processes (>30 μm from somata) had no effect on microglial dynamics. A severe reduction of capillary BF near somata by 84±6% resulted in initiation of microglial deramification, suggesting activation. A moderate decrease in BF near somata by 22±5% or increase by 87±10%, reflecting a redistribution of capillary BF, had no effect on microglial morphology. Complete BF loss during cardiac arrest (CA) or transient bilateral common carotid artery occlusion (BCCAO) entirely stalled all microglial processes without structural changes. Reperfusion after BCCAO induced recovery of microglial dynamics to pre-occlusion values. These findings suggest that during ischemia, the severe drop in BF around microglial somata coincides with morphological activation. However, this activation requires some residual BF because complete perfusion loss (as during BCCAO and CA) did not support microglial deramification. PMID:21800362

  19. Chronic ethanol intake induces partial microglial activation that is not reversed by long-term ethanol withdrawal in the rat hippocampal formation.

    PubMed

    Cruz, Catarina; Meireles, Manuela; Silva, Susana M

    2017-04-10

    Neuroinflammation has been implicated in the pathogenesis of several disorders. Activation of microglia leads to the release of pro-inflammatory mediators and microglial-mediated neuroinflammation has been proposed as one of the alcohol-induced neuropathological mechanisms. The present study aimed to examine the effect of chronic ethanol exposure and long-term withdrawal on microglial activation and neuroinflammation in the hippocampal formation. Male rats were submitted to 6 months of ethanol treatment followed by a 2-month withdrawal period. Stereological methods were applied to estimate the total number of microglia and activated microglia detected by CD11b immunohistochemistry in the hippocampal formation. The expression levels of the pro-inflammatory cytokines TNF-α, COX-2 and IL-15 were measured by qRT-PCR. Alcohol consumption was associated with an increase in the total number of activated microglia but morphological assessment indicated that microglia did not exhibit a full activation phenotype. These data were supported by functional evidence since chronic alcohol consumption produced no changes in the expression of TNF-α or COX-2. The levels of IL-15 a cytokine whose expression is increased upon activation of both astrocytes and microglia, was induced by chronic alcohol treatment. Importantly, the partial activation of microglia induced by ethanol was not reversed by long-term withdrawal. This study suggests that chronic alcohol exposure induces a microglial phenotype consistent with partial activation without significant increase in classical cytokine markers of neuroinflammation in the hippocampal formation. Furthermore, long-term cessation of alcohol intake is not sufficient to alter the microglial partial activation phenotype induced by ethanol.

  20. Effect of Lipopolysaccharide Derived from Pantoea agglomerans on the Phagocytic Activity of Amyloid β by Primary Murine Microglial Cells.

    PubMed

    Kobayashi, Yutaro; Inagawa, Hiroyuki; Kohchi, Chie; Okazaki, Katsuichiro; Zhang, Ran; Soma, Gen-Ichiro

    2016-07-01

    Monophosphoryl lipid A, lipopolysaccharide (LPS)-derived Toll-like receptor (TLR) 4 agonist, has been shown to be effective in the prevention of Alzheimer's disease (AD) by enhancing phagocytosis of amyloid β (Aβ) by brain microglia. Our recent study demonstrated that oral administration of LPS derived from Pantoea agglomerans (LPSp) activates peritoneal macrophages and enhances the phagocytic activity via TLR4 signaling pathway; however, the effect of LPSp on Aβ phagocytosis in microglia is still unknown. Primary microglial cells were isolated from adult mouse brain by enzymatic digestion, following myelin removal and magnetic separation of cluster of differentiation (CD) 11b. Phagocytic analysis of the primary microglia was measured by using HiLyte™ Fluor 488-conjugated Aβ1-42 RESULTS: Using our protocols, the average yield of isolated CD11b(+) cells was around 2.2×10(5) cells per brain. CD11b(+)CD45(+)CD39(+) cells were defined here as microglia. The phagocytic activity of Aβ1-42 by the isolated microglia was confirmed. LPSp (10 ng/ml) pre-treatment for 18 h significantly increased Aβ phagocytic activity. The enhancement of Aβ1-42 phagocytosis by LPSp treatment in the primary mouse microglia was demonstrated for the first time. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Withania somnifera and Its Withanolides Attenuate Oxidative and Inflammatory Responses and Up-Regulate Antioxidant Responses in BV-2 Microglial Cells.

    PubMed

    Sun, Grace Y; Li, Runting; Cui, Jiankun; Hannink, Mark; Gu, Zezong; Fritsche, Kevin L; Lubahn, Dennis B; Simonyi, Agnes

    2016-09-01

    Withania somnifera (L.) Dunal, commonly known as Ashwagandha, has been used in Ayurvedic medicine for promoting health and quality of life. Recent clinical trials together with experimental studies indicated significant neuroprotective effects of Ashwagandha and its constituents. This study is aimed to investigate anti-inflammatory and anti-oxidative properties of this botanical and its two withanolide constituents, namely, Withaferin A and Withanolide A, using the murine immortalized BV-2 microglial cells. Ashwagandha extracts not only effectively inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and reactive oxygen species (ROS) production in BV-2 cells, but also stimulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway, leading to induction of heme oxygenase-1 (HO-1), both in the presence and absence of LPS. Although the withanolides were also capable of inhibiting LPS-induced NO production and stimulating Nrf2/HO-1 pathway, Withaferin A was tenfold more effective than Withanolide A. In serum-free culture, LPS can also induce production of long thin processes (filopodia) between 4 and 8 h in BV-2 cells. This morphological change was significantly suppressed by Ashwagandha and both withanolides at concentrations for suppressing LPS-induced NO production. Taken together, these results suggest an immunomodulatory role for Ashwagandha and its withanolides, and their ability to suppress oxidative and inflammatory responses in microglial cells by simultaneously down-regulating the NF-kB and upregulating the Nrf2 pathways.

  2. Raft aggregation with specific receptor recruitment is required for microglial phagocytosis of Aβ42

    PubMed Central

    Persaud-Sawin, Dixie-Ann; Banach, Lynna; Harry, G. Jean

    2009-01-01

    Microglial phagocytosis contributes to the maintenance of brain homeostasis. Mechanisms involved however, remain unclear. Using Aβ42 solely as a stimulant, we provide novel insight into regulation of microglial phagocytosis by rafts. We demonstrate the existence of an Aβ42 threshold level of 250pg/ml, above which microglial phagocytic function is impaired. Low levels of Aβ42 facilitate fluorescent bead uptake, whereas phagocytosis is inhibited when Aβ42 accumulates. We also show that region-specific raft clustering occurs prior to microglial phagocytosis. Low Aβ42 levels stimulated this type of raft aggregation, but high Aβ42 levels inhibited it. Additionally, treatment with high Aβ42 concentrations caused a redistribution of the raft structural protein flotillin1 from low to higher density fractions along a sucrose gradient. This suggests a loss of raft structural integrity. Certain non-steroidal anti-inflammatory drugs, e.g. the COX-2-specific NSAID, celecoxib, raise Aβ42 levels. We demonstrated that prolonged celecoxib exposure can disrupt rafts in a manner similar to that seen in an elevated Aβ42 environment: abnormal raft aggregation and Flot1 distribution. This resulted in aberrant receptor recruitment to rafts and impaired receptor-mediated phagocytosis by microglial cells. Specifically, recruitment of the scavenger receptor CD36 to rafts during active phagocytosis was affected. Thus, we propose that maintaining raft integrity is crucial to determining microglial phagocytic outcomes and disease progression. PMID:18756527

  3. Frataxin Deficiency Promotes Excess Microglial DNA Damage and Inflammation that Is Rescued by PJ34.

    PubMed

    Shen, Yan; McMackin, Marissa Z; Shan, Yuxi; Raetz, Alan; David, Sheila; Cortopassi, Gino

    2016-01-01

    An inherited deficiency in the frataxin protein causes neurodegeneration of the dorsal root ganglia and Friedreich's ataxia (FA). Frataxin deficiency leads to oxidative stress and inflammatory changes in cell and animal models; however, the cause of the inflammatory changes, and especially what causes brain microglial activation is unclear. Here we investigated: 1) the mechanism by which frataxin deficiency activates microglia, 2) whether a brain-localized inflammatory stimulus provokes a greater microglial response in FA animal models, and 3) whether an anti-inflammatory treatment improves their condition. Intracerebroventricular administration of LPS induced higher amounts of microglial activation in the FA mouse model vs controls. We also observed an increase in oxidative damage in the form of 8-oxoguanine (8-oxo-G) and the DNA repair proteins MUTYH and PARP-1 in cerebellar microglia of FA mutant mice. We hypothesized that frataxin deficiency increases DNA damage and DNA repair genes specifically in microglia, activating them. siRNA-mediated frataxin knockdown in microglial BV2 cells clearly elevated DNA damage and the expression of DNA repair genes MUTYH and PARP-1. Frataxin knockdown also induced a higher level of PARP-1 in MEF cells, and this was suppressed in MUTYH-/- knockout cells. Administration of the PARP-1 inhibitor PJ34 attenuated the microglial activation induced by intracerebroventricular injection of LPS. The combined administration of LPS and angiotensin II provoke an even stronger activation of microglia and neurobehavioral impairment. PJ34 treatment attenuated the neurobehavioral impairments in FA mice. These results suggest that the DNA repair proteins MUTYH and PARP-1 may form a pathway regulating microglial activation initiated by DNA damage, and inhibition of microglial PARP-1 induction could be an important therapeutic target in Friedreich's ataxia.

  4. Frataxin Deficiency Promotes Excess Microglial DNA Damage and Inflammation that Is Rescued by PJ34

    PubMed Central

    Shen, Yan; McMackin, Marissa Z.; Shan, Yuxi; Raetz, Alan; David, Sheila; Cortopassi, Gino

    2016-01-01

    An inherited deficiency in the frataxin protein causes neurodegeneration of the dorsal root ganglia and Friedreich's ataxia (FA). Frataxin deficiency leads to oxidative stress and inflammatory changes in cell and animal models; however, the cause of the inflammatory changes, and especially what causes brain microglial activation is unclear. Here we investigated: 1) the mechanism by which frataxin deficiency activates microglia, 2) whether a brain-localized inflammatory stimulus provokes a greater microglial response in FA animal models, and 3) whether an anti-inflammatory treatment improves their condition. Intracerebroventricular administration of LPS induced higher amounts of microglial activation in the FA mouse model vs controls. We also observed an increase in oxidative damage in the form of 8-oxoguanine (8-oxo-G) and the DNA repair proteins MUTYH and PARP-1 in cerebellar microglia of FA mutant mice. We hypothesized that frataxin deficiency increases DNA damage and DNA repair genes specifically in microglia, activating them. siRNA-mediated frataxin knockdown in microglial BV2 cells clearly elevated DNA damage and the expression of DNA repair genes MUTYH and PARP-1. Frataxin knockdown also induced a higher level of PARP-1 in MEF cells, and this was suppressed in MUTYH-/- knockout cells. Administration of the PARP-1 inhibitor PJ34 attenuated the microglial activation induced by intracerebroventricular injection of LPS. The combined administration of LPS and angiotensin II provoke an even stronger activation of microglia and neurobehavioral impairment. PJ34 treatment attenuated the neurobehavioral impairments in FA mice. These results suggest that the DNA repair proteins MUTYH and PARP-1 may form a pathway regulating microglial activation initiated by DNA damage, and inhibition of microglial PARP-1 induction could be an important therapeutic target in Friedreich's ataxia. PMID:26954031

  5. Alkylindole-sensitive receptors modulate microglial cell migration and proliferation

    PubMed Central

    Fung, Susan; Cherry, Allison E.; Xu, Cong; Stella, Nephi

    2015-01-01

    Ligands targeting G protein-coupled receptors (GPCR) expressed by microglia have been shown to regulate distinct components of their activation process, including cell proliferation, migration and differentiation into M1 or M2 phenotypes. Cannabinoids, including the active component of the Cannabis plant, tetrahydrocannabinol (THC), and the synthetic alkylindole (AI) compound, WIN55212-2 (WIN-2), activate two molecularly identified GPCRs: CB1 and CB2. Previous studies reported that WIN-2 activates an additional unknown GPCR that is not activated by plant-derived cannabinoids, and evidence indicates that microglia express these receptors. Detailed studies on the role of AI-sensitive receptors in microglial cell activation were difficult as no selective pharmacological tools were available. Here, three newly-developed AI analogues allowed us to determine if microglia express AI-sensitive receptors and if so, study how they regulate the microglial cell activation process. We found that mouse microglia in primary culture express functional AI-sensitive receptors as measured by radioligand binding and changes in intracellular cAMP levels, and that these receptors control both basal and ATP-stimulated migration. AI analogues inhibit cell proliferation stimulated by macrophage-colony stimulating factor (M-CSF) without affecting basal cell proliferation. Remarkably, AI analogues do not control the expression of effector proteins characteristic of M1 or M2 phenotypes; yet activating microglia with M1 and M2 cytokines reduces the microglial response to AI analogues. Our results suggest that microglia express functional AI-sensitive receptors that control select components of their activation process. Agonists of these novel targets might represent a novel class of therapeutics to influence the microglial cell activation process. PMID:25914169

  6. Peripheral benzodiazepine receptor ligand PK11195 reduces microglial activation and neuronal death in quinolinic acid-injected rat striatum.

    PubMed

    Ryu, Jae K; Choi, Hyun B; McLarnon, James G

    2005-11-01

    The effects of the peripheral benzodiazepine receptor (PBR) ligand, PK11195, were investigated in the rat striatum following the administration of quinolinic acid (QUIN). Intrastriatal QUIN injection caused an increase of PBR expression in the lesioned striatum as demonstrated by immunohistochemical analysis. Double immunofluorescent staining indicated PBR was primarily expressed in ED1-immunoreactive microglia but not in GFAP-immunoreactive astrocytes or NeuN-immunoreactive neurons. PK11195 treatment significantly reduced the level of microglial activation and the expression of pro-inflammatory cytokines and iNOS in QUIN-injected striatum. Oxidative-mediated striatal QUIN damage, characterized by increased expression of markers for lipid peroxidation (4-HNE) and oxidative DNA damage (8-OHdG), was significantly diminished by PK11195 administration. Furthermore, intrastriatal injection of PK11195 with QUIN significantly reduced striatal lesions induced by the excitatory amino acid and diminished QUIN-mediated caspase-3 activation in striatal neurons. These results suggest that inflammatory responses from activated microglia are damaging to striatal neurons and pharmacological targeting of PBR in microglia may be an effective strategy in protecting neurons in neurological disorders such as Huntington's disease.

  7. Microglial-mediated PDGF-CC activation increases cerebrovascular permeability during ischemic stroke.

    PubMed

    Su, Enming Joseph; Cao, Chunzhang; Fredriksson, Linda; Nilsson, Ingrid; Stefanitsch, Christina; Stevenson, Tamara K; Zhao, Juanjuan; Ragsdale, Margret; Sun, Yu-Yo; Yepes, Manuel; Kuan, Chia-Yi; Eriksson, Ulf; Strickland, Dudley K; Lawrence, Daniel A; Zhang, Li

    2017-07-19

    Treatment of acute ischemic stroke with the thrombolytic tissue plasminogen activator (tPA) can significantly improve neurological outcomes; however, thrombolytic therapy is associated with an increased risk of intra-cerebral hemorrhage (ICH). Previously, we demonstrated that during stroke tPA acting on the parenchymal side of the neurovascular unit (NVU) can increase blood-brain barrier (BBB) permeability and ICH through activation of latent platelet-derived growth factor-CC (PDGF-CC) and signaling by the PDGF receptor-α (PDGFRα). However, in vitro, activation of PDGF-CC by tPA is very inefficient and the mechanism of PDGF-CC activation in the NVU is not known. Here, we show that the integrin Mac-1, expressed on brain microglia/macrophages (denoted microglia throughout), acts together with the endocytic receptor LRP1 in the NVU to promote tPA-mediated activation of PDGF-CC. Mac-1-deficient mice (Mac-1(-/-)) are protected from tPA-induced BBB permeability but not from permeability induced by intracerebroventricular injection of active PDGF-CC. Immunofluorescence analysis demonstrates that Mac-1, LRP1, and the PDGFRα all localize to the NVU of arterioles, and following middle cerebral artery occlusion (MCAO) Mac-1(-/-) mice show significantly less PDGFRα phosphorylation, BBB permeability, and infarct volume compared to wild-type mice. Bone-marrow transplantation studies indicate that resident CD11b(+) cells, but not bone-marrow-derived leukocytes, mediate the early activation of PDGF-CC by tPA after MCAO. Finally, using a model of thrombotic stroke with late thrombolysis, we show that wild-type mice have an increased incidence of spontaneous ICH following thrombolysis with tPA 5 h after MCAO, whereas Mac-1(-/-) mice are resistant to the development of ICH even with late tPA treatment. Together, these results indicate that Mac-1 and LRP1 act as co-factors for the activation of PDGF-CC by tPA in the NVU, and suggest a novel mechanism for tightly regulating PDGFR

  8. Long-term treatment with intranasal insulin ameliorates cognitive impairment, tau hyperphosphorylation, and microglial activation in a streptozotocin-induced Alzheimer’s rat model

    PubMed Central

    Guo, Zhangyu; Chen, Yanxing; Mao, Yan-Fang; Zheng, Tingting; Jiang, Yasi; Yan, Yaping; Yin, Xinzhen; Zhang, Baorong

    2017-01-01

    Recent evidence reveals that aberrant brain insulin signaling plays an important role in the pathology of Alzheimer’s disease (AD). Intranasal insulin administration has been reported to improve memory and attention in healthy participants and in AD patients. However, the underlying molecular mechanisms are poorly understood. Here, we treated intracerebroventricular streptozotocin-injected (ICV-STZ) rats, a commonly used animal model of sporadic AD, with daily intranasal delivery of insulin (2 U/day) for 6 consecutive weeks and then studied their cognitive function with the Morris water maze test and biochemical changes via Western blotting. We observed cognitive deficits, tau hyperphosphorylation, and neuroinflammation in the brains of ICV-STZ rats. Intranasal insulin treatment for 6 weeks significantly improved cognitive function, attenuated the level of tau hyperphosphorylation, ameliorated microglial activation, and enhanced neurogenesis in ICV-STZ rats. Additionally, our results indicate that intranasal delivery of insulin probably attenuates tau hyperphosphorylation through the down-regulation of ERK1/2 and CaMKII in the brains of ICV-STZ rats. Our findings demonstrate a beneficial effect of intranasal insulin and provide the mechanistic basis for treating AD patients with intranasal insulin. PMID:28382978

  9. Cardiotonic pill attenuates white matter and hippocampal damage via inhibiting microglial activation and downregulating ERK and p38 MAPK signaling in chronic cerebral hypoperfused rat

    PubMed Central

    2013-01-01

    Background The cardiotonic pill (CP) is a herbal medicine composed of Salvia miltiorrhiza (SM), Panax notoginseng (PN), and Dryobalanops aromatica Gaertner (DAG) that is widely used to treat cardiovascular diseases. The present experiment was conducted to examine the effects of CP on white matter and hippocampal damage induced by chronic cerebral hypoperfusion. Methods Chronic cerebral hypoperfusion was induced in male Wistar rats by permanent bilateral common carotid artery occlusion (BCCAo). Daily oral administration of CP (200 mg/kg) began 21 days after BCCAo and continued for 42 days. The levels of microglial activation and myelin basic protein (MBP) were measured in the white matter and hippocampus of rats with chronic BCCAo, and the expression levels of mitogen-activated protein kinases (MAPKs) and inflammatory markers such as cyclooxygenase-2, interleukin-1β, and interleukin-6 were examined. Results MBP expression was reduced in the white matter and hippocampal regions of rats that received BCCAo. In contrast, reduced levels of MBP were not observed in BCCAo rats given CP treatments. The administration of CP alleviated microglial activation, the alteration of ERK and p38 MAPK signaling, and inflammatory mediator expression in rats with chronic BCCAo. Conclusion These results suggest that CP may have protective effects against chronic BCCAo-induced white matter and hippocampal damage by inhibiting inflammatory processes including microglial activation and proinflammatory mediator expression, and downreguating the hyperphosphorylation of ERK and p38 MAPK signaling. PMID:24274593

  10. Antioxidant and Anti-inflammatory Activities of N-((3,4-Dihydro-2H-benzo[h]chromene-2-yl)methyl)-4-methoxyaniline in LPS-Induced BV2 Microglial Cells.

    PubMed

    Moniruzzaman, Md; Lee, Gyeongjun; Bose, Shambhunath; Choi, Minho; Jung, Jae-Kyung; Lee, Heesoon; Cho, Jungsook

    2015-01-01

    Microglial activation is known to cause inflammation resulting in neurotoxicity in several neurological diseases. N-((3,4-Dihydro-2H-benzo[h]chromene-2-yl)methyl)-4-methoxyaniline (BL-M), a chromene derivative, was originally synthesized with the perspective of inhibiting nuclear factor-kappa B (NF-κB), a key regulator of inflammation. The present study evaluated the antioxidant and anti-inflammatory potential of BL-M in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Our results demonstrated that BL-M significantly inhibited the formation of 1,1-diphenyl-2-picrylhydrazyl radicals, as well as lipid peroxidation in rat brain homogenate in a concentration-dependent manner. In addition, it suppressed the generation of intracellular reactive oxygen species, and the levels of pro-inflammatory mediators including nitric oxide, tumor necrosis factor-α, and interleukin-6 in LPS-induced BV2 cells. Western blotting analyses revealed the inhibition of inhibitor of kappa B alpha (IκBα) phosphorylation and NF-κB translocation by BL-M in LPS-activated cells. Therefore, our study highlights marked antioxidant and anti-inflammatory activities of BL-M, and suggests that this compound may have a beneficial impact on various neurodegenerative diseases associated with inflammation.

  11. Anti-inflammatory effects of rhynchophylline and isorhynchophylline in mouse N9 microglial cells and the molecular mechanism.

    PubMed

    Yuan, Dan; Ma, Bin; Yang, Jing-yu; Xie, Yuan-yuan; Wang, Li; Zhang, Li-jia; Kano, Yoshihiro; Wu, Chun-fu

    2009-12-01

    Excessive production of nitric oxide (NO) and proinflammatory cytokines from activated microglia contributes to human neurodegenerative disorders. Our previous study demonstrated the potent inhibition of lipopolysaccharide (LPS)-induced NO production in rat primary microglial cells by rhynchophylline (RIN) and isorhynchophylline (IRN), a pair of isomeric alkaloids of Uncaria rhynchophylla (Miq.) Jacks. that has been used in China for centuries as a "cognitive enhancer" as well as to treat strokes. We further investigated whether RIN and IRN effectively suppress release of proinflammatory cytokines in LPS-activated microglial cells and the underling molecular mechanism for the inhibition of microglial activation. RIN and IRN concentration-dependently attenuated LPS-induced production of proinflammatory cytokines such as TNF-alpha and IL-1beta as well as NO in mouse N9 microglial cells, with IRN showing more potent inhibition of microglial activation. The western blotting analysis indicated that the potential molecular mechanism for RIN or IRN-mediated attenuation was implicated in suppressions of iNOS protein level, phosphorylation of ERK and p38 MAPKs, and degradation of IkappaBalpha. In addition, the differential regulation of the three signaling pathways by two isomers was shown. Our results suggest that RIN and IRN may be effective therapeutic candidates for use in the treatment of neurodegenerative diseases accompanied by microglial activation.

  12. Effects of Paeonol on Anti-Neuroinflammatory Responses in Microglial Cells

    PubMed Central

    Lin, Chingju; Lin, Hsiao-Yun; Chen, Jia-Hong; Tseng, Wen-Pei; Ko, Pei-Ying; Liu, Yu-Shu; Yeh, Wei-Lan; Lu, Dah-Yuu

    2015-01-01

    Increasing studies suggest that inflammatory processes in the central nervous system mediated by microglial activation plays an important role in numerous neurodegenerative diseases. Development of planning for microglial suppression is considered a key strategy in the search for neuroprotection. Paeonol is a major phenolic component of Moutan Cortex, widely used as a nutrient supplement in Chinese medicine. In this study, we investigated the effects of paeonol on microglial cells stimulated by inflammagens. Paeonol significantly inhibited the release of nitric oxide (NO) and the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Treatment with paeonol also reduced reactive oxygen species (ROS) production and inhibited an ATP-induced increased cell migratory activity. Furthermore, the inhibitory effects of neuroinflammation by paeonol were found to be regulated by phosphorylated adenosine monophosphate-activated protein kinase-α (AMPK-α) and glycogen synthase kinase 3 α/β (GSK 3α/β). Treatment with AMPK or GSK3 inhibitors reverse the inhibitory effect of neuroinflammation by paeonol in microglial cells. Furthermore, paeonol treatment also showed significant improvement in the rotarod performance and microglial activation in the mouse model as well. The present study is the first to report a novel inhibitory role of paeonol on neuroinflammation, and presents a new candidate agent for the development of therapies for inflammation-related neurodegenerative diseases. PMID:25906473

  13. FcγRIIB mediates the inhibitory effect of aggregated α-synuclein on microglial phagocytosis.

    PubMed

    Choi, Yu Ree; Kang, Seo-Jun; Kim, Jin-Mo; Lee, Seung-Jae; Jou, Ilo; Joe, Eun-Hye; Park, Sang Myun

    2015-11-01

    Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. Although the etiology of PD has not yet been fully understood, accumulating evidence indicates that neuroinflammation plays a critical role in the progression of PD. α-Synuclein (α-Syn) has been considered to be a key player of the pathogenesis of PD, and recent reports that prion-like propagation of misfolded α-syn released from neurons may play an important role in the progression of PD have led to increased attention to the studies elucidating the roles of extracellular α-syn in the CNS. Extracellular α-syn has also been reported to regulate microglial inflammatory response. In this study, we demonstrated that aggregated α-syn inhibited microglial phagocytosis by activating SHP-1. SHP-1 activation was also observed in A53T α-syn transgenic mice. In addition, aggregated α-syn bound to FcγRIIB on microglia, inducing SHP-1 activation, further inhibiting microglial phagocytosis. Aggregated α-syn upregulated FcγRIIB expression in microglia and upregulated FcγRIIB was also observed in A53T α-syn transgenic mice. These data suggest that aggregated α-syn released from neurons dysregulates microglial immune response through inhibiting microglial phagocytosis, further causing neurodegeneration observed in PD. The interaction of aggregated α-syn and FcγRIIB and further SHP-1 activation can be a new therapeutic target against PD.

  14. Changes in the NMR Metabolic Profile of Human Microglial Cells Exposed to Lipopolysaccharide or Morphine

    PubMed Central

    El Ghazi, Issam; Sheng, Wen S.; Hu, Shuxian; Reilly, Brian G.; Lokensgard, James R.; Rock, R. Bryan; Peterson, Phillip K.; Wilcox, George L.

    2014-01-01

    Microglial cells play a major role in host defense of the central nervous system. Once activated, several functional properties are up-regulated including migration, phagocytosis, and secretion of inflammatory mediators such as cytokines and chemokines. Little, if anything, is known about the metabolic changes that occur during the activation process. High-resolution 1H nuclear magnetic resonance spectra obtained from perchloric acid extracts of human microglial cell cultures exposed to lipopolysaccharide (LPS) or morphine were used to both identify and quantify the metabolites. We found that human microglia exposed to LPS had increased concentrations of glutamate and lactate, whereas the cells exposed to morphine had decreased concentrations in creatinine, taurine, and thymine. Glutamate and creatinine were the key metabolites differentiating between the two stimuli. These results are discussed in terms of activation and differences in the inflammatory response of human microglial cells to LPS and morphine. PMID:20333557

  15. Acetyl-L-Carnitine via Upegulating Dopamine D1 Receptor and Attenuating Microglial Activation Prevents Neuronal Loss and Improves Memory Functions in Parkinsonian Rats.

    PubMed

    Singh, Sonu; Mishra, Akanksha; Srivastava, Neha; Shukla, Rakesh; Shukla, Shubha

    2016-12-14

    Parkinson's disease is accompanied by nonmotor symptoms including cognitive impairment, which precede the onset of motor symptoms in patients and are regulated by dopamine (DA) receptors and the mesocorticolimbic pathway. The relative contribution of DA receptors and astrocytic glutamate transporter (GLT-1) in cognitive functions is largely unexplored. Similarly, whether microglia-derived increased immune response affects cognitive functions and neuronal survival is not yet understood. We have investigated the effect of acetyl-L-carnitine (ALCAR) on cognitive functions and its possible underlying mechanism of action in 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats. ALCAR treatment in 6-OHDA-lesioned rats improved memory functions as confirmed by decreased latency time and path length in the Morris water maze test. ALCAR further enhanced D1 receptor levels without altering D2 receptor levels in the hippocampus and prefrontal cortex (PFC) regions, suggesting that the D1 receptor is preferentially involved in the regulation of cognitive functions. ALCAR attenuated microglial activation and release of inflammatory mediators through balancing proinflammatory and anti-inflammatory cytokines, which subsequently enhanced the survival of mature neurons in the CA1, CA3, and PFC regions and improved cognitive functions in hemiparkinsonian rats. ALCAR treatment also improved glutathione (GSH) content, while decreasing oxidative stress indices, inducible nitrogen oxide synthase (iNOS) levels, and astrogliosis resulting in the upregulation of GLT-1 levels. Additionally, ALCAR prevented the loss of dopaminergic (DAergic) neurons in ventral tagmental area (VTA)/substantia nigra pars compacta (SNpc) regions of 6-OHDA-lesioned rats, thus maintaining the integrity of the nigrostriatal pathway. Together, these results demonstrate that ALCAR treatment in hemiparkinsonian rats ameliorates neurodegeneration and cognitive deficits, hence suggesting its therapeutic potential in

  16. Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammation-mediated degeneration of dopaminergic neurons.

    PubMed

    Li, F-Q; Wang, T; Pei, Z; Liu, B; Hong, J-S

    2005-03-01

    Accumulating evidence has suggested that inflammation in the brain participates in the pathogenesis of Parkinson's disease (PD). Therefore, anti-inflammatory therapy has attracted much attention as novel interference to neurodegenerative diseases. Baicalein, a major flavonoid extracted from a traditional Chinese herb Scutellaria baicalensis Georgi (Huangqin), possesses potent anti-inflammatory and antioxidant properties. To test the potential neuroprotective effect of baicalein on dopaminergic neurons, primary midbrain neuron-glia cultures from E-14 rat embryos were used. Cultures were pretreated with baicalein for 30 min prior to stimulation with lipopolysaccharide (LPS, 10 ng/ml). LPS leads to massive activation of microglial cells revealed by OX-42 immunostaining, and produced excessive quantities of NO. Excessive elevation of superoxide level was also observed in enriched-microglia after stimulating with LPS. LPS-induced damage to dopaminergic neurons was evaluated by uptake capacity for [3H]dopamine and tyrosine hydroxylase (TH)-immunocytochemistry. Pretreatment with baicalein concentration-dependently attenuated LPS-induced decrease in [3H]dopamine uptake and loss of TH-immunoreactive (TH-ir) neurons, which the maximum protective effect was observed at the concentration of 5 microM. Post-treatment with baicalein (5 microM) was also shown to be effective even if baicalein administered up to 2 h later than LPS application. Morphological study shows that baicalein (5 microM) almost completely blocked LPS-induced activation of microglia. Excessive production of TNF(alpha) and free radicals such as NO and superoxide by LPS stimulation were also attenuated by baicalein at a concentration-dependent pattern. The present study indicates that baicalein exerts potent neuroprotective effect on LPS-induced injury of dopaminergic neurons. We hypothesize that the inhibition of LPS-induced production of NO and free radicals from microglia may underlie the mechanism of

  17. Microarray and Pathway Analysis Reveal Distinct Mechanisms Underlying Cannabinoid-Mediated Modulation of LPS-Induced Activation of BV-2 Microglial Cells

    PubMed Central

    Juknat, Ana; Kozela, Ewa; Rimmerman, Neta; Levy, Rivka; Gao, Fuying; Coppola, Giovanni; Geschwind, Daniel; Vogel, Zvi

    2013-01-01

    Cannabinoids are known to exert immunosuppressive activities. However, the mechanisms which contribute to these effects are unknown. Using lipopolysaccharide (LPS) to activate BV-2 microglial cells, we examined how Δ9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana, and cannabidiol (CBD) the non-psychoactive component, modulate the inflammatory response. Microarray analysis of genome-wide mRNA levels was performed using Illumina platform and the resulting expression patterns analyzed using the Ingenuity Pathway Analysis to identify functional subsets of genes, and the Ingenuity System Database to denote the gene networks regulated by CBD and THC. From the 5338 transcripts that were differentially expressed across treatments, 400 transcripts were found to be upregulated by LPS, 502 by CBD+LPS and 424 by THC+LPS, while 145 were downregulated by LPS, 297 by CBD+LPS and 149 by THC+LPS, by 2-fold or more (p≤0.005). Results clearly link the effects of CBD and THC to inflammatory signaling pathways and identify new cannabinoid targets in the MAPK pathway (Dusp1, Dusp8, Dusp2), cell cycle related (Cdkn2b, Gadd45a) as well as JAK/STAT regulatory molecules (Socs3, Cish, Stat1). The impact of CBD on LPS-stimulated gene expression was greater than that of THC. We attribute this difference to the fact that CBD highly upregulated several genes encoding negative regulators of both NFκB and AP-1 transcriptional activities, such as Trib3 and Dusp1 known to be modulated through Nrf2 activation. The CBD-specific expression profile reflected changes associated with oxidative stress and glutathione depletion via Trib3 and expression of ATF4 target genes. Furthermore, the CBD affected genes were shown to be controlled by nuclear factors usually involved in regulation of stress response and inflammation, mainly via Nrf2/Hmox1 axis and the Nrf2/ATF4-Trib3 pathway. These observations indicate that CBD, and less so THC, induce a cellular stress response and

  18. Reticulocalbin-1 facilitates microglial phagocytosis.

    PubMed

    Ding, Ying; Caberoy, Nora B; Guo, Feiye; LeBlanc, Michelle E; Zhang, Chenming; Wang, Weiwen; Wang, Feng; Chen, Rui; Li, Wei

    2015-01-01

    Phagocytosis is critical to the clearance of apoptotic cells, cellular debris and deleterious metabolic products for tissue homeostasis. Phagocytosis ligands directly recognizing deleterious cargos are the key to defining the functional roles of phagocytes, but are traditionally identified on a case-by-case basis with technical challenges. As a result, extrinsic regulation of phagocytosis is poorly defined. Here we demonstrate that microglial phagocytosis ligands can be systematically identified by a new approach of functional screening. One of the identified ligands is reticulocalbin-1 (Rcn1), which was originally reported as a Ca2+-binding protein with a strict expression in the endoplasmic reticulum. Our results showed that Rcn1 can be secreted from healthy cells and that secreted Rcn1 selectively bound to the surface of apoptotic neurons, but not healthy neurons. Independent characterization revealed that Rcn1 stimulated microglial phagocytosis of apoptotic but not healthy neurons. Ingested apoptotic cells were targeted to phagosomes and co-localized with phagosome marker Rab7. These data suggest that Rcn1 is a genuine phagocytosis ligand. The new approach described in this study will enable systematic identification of microglial phagocytosis ligands with broad applicability to many other phagocytes.

  19. Reticulocalbin-1 Facilitates Microglial Phagocytosis

    PubMed Central

    Ding, Ying; Caberoy, Nora B.; Guo, Feiye; LeBlanc, Michelle E.; Zhang, Chenming; Wang, Weiwen; Wang, Feng; Chen, Rui; Li, Wei

    2015-01-01

    Phagocytosis is critical to the clearance of apoptotic cells, cellular debris and deleterious metabolic products for tissue homeostasis. Phagocytosis ligands directly recognizing deleterious cargos are the key to defining the functional roles of phagocytes, but are traditionally identified on a case-by-case basis with technical challenges. As a result, extrinsic regulation of phagocytosis is poorly defined. Here we demonstrate that microglial phagocytosis ligands can be systematically identified by a new approach of functional screening. One of the identified ligands is reticulocalbin-1 (Rcn1), which was originally reported as a Ca2+-binding protein with a strict expression in the endoplasmic reticulum. Our results showed that Rcn1 can be secreted from healthy cells and that secreted Rcn1 selectively bound to the surface of apoptotic neurons, but not healthy neurons. Independent characterization revealed that Rcn1 stimulated microglial phagocytosis of apoptotic but not healthy neurons. Ingested apoptotic cells were targeted to phagosomes and co-localized with phagosome marker Rab7. These data suggest that Rcn1 is a genuine phagocytosis ligand. The new approach described in this study will enable systematic identification of microglial phagocytosis ligands with broad applicability to many other phagocytes. PMID:25992960

  20. Cytomegalovirus Infection of the Rat Developing Brain In Utero Prominently Targets Immune Cells and Promotes Early Microglial Activation

    PubMed Central

    Cloarec, Robin; Bauer, Sylvian; Luche, Hervé; Buhler, Emmanuelle; Pallesi-Pocachard, Emilie; Salmi, Manal; Courtens, Sandra; Massacrier, Annick; Grenot, Pierre; Teissier, Natacha; Watrin, Françoise; Schaller, Fabienne; Adle-Biassette, Homa; Gressens, Pierre; Malissen, Marie; Stamminger, Thomas; Streblow, Daniel N.; Bruneau, Nadine; Szepetowski, Pierre

    2016-01-01

    Background Congenital cytomegalovirus infections are a leading cause of neurodevelopmental disorders in human and represent a major health care and socio-economical burden. In contrast with this medical importance, the pathophysiological events remain poorly known. Murine models of brain cytomegalovirus infection, mostly neonatal, have brought recent insights into the possible pathogenesis, with convergent evidence for the alteration and possible involvement of brain immune cells. Objectives and Methods In order to confirm and expand those findings, particularly concerning the early developmental stages following infection of the fetal brain, we have created a model of in utero cytomegalovirus infection in the developing rat brain. Rat cytomegalovirus was injected intraventricularly at embryonic day 15 (E15) and the brains analyzed at various stages until the first postnatal day, using a combination of gene expression analysis, immunohistochemistry and multicolor flow cytometry experiments. Results Rat cytomegalovirus infection was increasingly seen in various brain areas including the choroid plexi and the ventricular and subventricular areas and was prominently detected in CD45low/int, CD11b+ microglial cells, in CD45high, CD11b+ cells of the myeloid lineage including macrophages, and in CD45+, CD11b– lymphocytes and non-B non-T cells. In parallel, rat cytomegalovirus infection of the developing rat brain rapidly triggered a cascade of pathophysiological events comprising: chemokines upregulation, including CCL2-4, 7 and 12; infiltration by peripheral cells including B-cells and monocytes at E17 and P1, and T-cells at P1; and microglia activation at E17 and P1. Conclusion In line with previous findings in neonatal murine models and in human specimen, our study further suggests that neuroimmune alterations might play critical roles in the early stages following cytomegalovirus infection of the brain in utero. Further studies are now needed to determine which

  1. Selective activation of KCa3.1 and CRAC channels by P2Y2 receptors promotes Ca(2+) signaling, store refilling and migration of rat microglial cells.

    PubMed

    Ferreira, Roger; Schlichter, Lyanne C

    2013-01-01

    Microglial activation involves Ca(2+) signaling, and numerous receptors can evoke elevation of intracellular Ca(2+). ATP released from damaged brain cells can activate ionotropic and metabotropic purinergic receptors, and act as a chemoattractant for microglia. Metabotropic P2Y receptors evoke a Ca(2+) rise through release from intracellular Ca(2+) stores and store-operated Ca(2+) entry, and some have been implicated in microglial migration. This Ca(2+) rise is expected to activate small-conductance Ca(2+)-dependent K(+) (SK) channels, if present. We previously found that SK3 (KCa2.3) and KCa3.1 (SK4/IK1) are expressed in rat microglia and contribute to LPS-mediated activation and neurotoxicity. However, neither current has been studied by elevating Ca(2+) during whole-cell recordings. We hypothesized that, rather than responding only to Ca(2+), each channel type might be coupled to different receptor-mediated pathways. Here, our objective was to determine whether the channels are differentially activated by P2Y receptors, and, if so, whether they play differing roles. We used primary rat microglia and a rat microglial cell line (MLS-9) in which riluzole robustly activates both SK3 and KCa3.1 currents. Using electrophysiological, Ca(2+) imaging and pharmacological approaches, we show selective functional coupling of KCa3.1 to UTP-mediated P2Y2 receptor activation. KCa3.1 current is activated by Ca(2+) entry through Ca(2+)-release-activated Ca(2+) (CRAC/Orai1) channels, and both CRAC/Orai1 and KCa3.1 channels facilitate refilling of Ca(2+) stores. The Ca(2+) dependence of KCa3.1 channel activation was skewed to abnormally high concentrations, and we present evidence for a close physical association of the two channel types. Finally, migration of primary rat microglia was stimulated by UTP and inhibited by blocking either KCa3.1 or CRAC/Orai1 channels. This is the first report of selective coupling of one type of SK channel to purinergic stimulation of microglia

  2. Mycobacterium tuberculosis upregulates microglial matrix metalloproteinase-1 and -3 expression and secretion via NF-kappaB- and Activator Protein-1-dependent monocyte networks.

    PubMed

    Green, Justin A; Elkington, Paul T; Pennington, Caroline J; Roncaroli, Federico; Dholakia, Shruti; Moores, Rachel C; Bullen, Anwen; Porter, Joanna C; Agranoff, Dan; Edwards, Dylan R; Friedland, Jon S

    2010-06-01

    Inflammatory tissue destruction is central to pathology in CNS tuberculosis (TB). We hypothesized that microglial-derived matrix metalloproteinases (MMPs) have a key role in driving such damage. Analysis of all of the MMPs demonstrated that conditioned medium from Mycobacterium tuberculosis-infected human monocytes (CoMTb) stimulated greater MMP-1, -3, and -9 gene expression in human microglial cells than direct infection. In patients with CNS TB, MMP-1/-3 immunoreactivity was demonstrated in the center of brain granulomas. Concurrently, CoMTb decreased expression of the inhibitors, tissue inhibitor of metalloproteinase-2, -3, and -4. MMP-1/-3 secretion was significantly inhibited by dexamethasone, which reduces mortality in CNS TB. Surface-enhanced laser desorption ionization time-of-flight analysis of CoMTb showed that TNF-alpha and IL-1beta are necessary but not sufficient for upregulating MMP-1 secretion and act synergistically to drive MMP-3 secretion. Chemical inhibition and promoter-reporter analyses showed that NF-kappaB and AP-1 c-Jun/FosB heterodimers regulate CoMTb-induced MMP-1/-3 secretion. Furthermore, NF-kappaB p65 and AP-1 c-Jun subunits were upregulated in biopsy granulomas from patients with cerebral TB. In summary, functionally unopposed, network-dependent microglial MMP-1/-3 gene expression and secretion regulated by NF-kappaB and AP-1 subunits were demonstrated in vitro and, for the first time, in CNS TB patients. Dexamethasone suppression of MMP-1/-3 gene expression provides a novel mechanism explaining the benefit of steroid therapy in these patients.

  3. Attenuation of microglial activation with minocycline is not associated with changes in neurogenesis after focal traumatic brain injury in adult mice.

    PubMed

    Ng, Si Yun; Semple, Bridgette D; Morganti-Kossmann, M Cristina; Bye, Nicole

    2012-05-01

    Neurogenesis is stimulated following injury to the adult brain and could potentially contribute to tissue repair. However, evidence suggests that microglia activated in response to injury are detrimental to the survival of new neurons, thus limiting the neurogenic response. The aim of this study was to determine the effect of the anti-inflammatory drug minocycline on neurogenesis and functional recovery after a closed head injury model of focal traumatic brain injury (TBI). Beginning 30 min after trauma, minocycline was administered for up to 2 weeks and bromodeoxyuridine was given on days 1-4 to label proliferating cells. Neurological outcome and motor function were evaluated over 6 weeks using the Neurological Severity Score (NSS) and ledged beam task. Microglial activation was assessed in the pericontusional cortex and hippocampus at 1 week post-trauma, using immunohistochemistry to detect F4/80. Following immunolabeling of bromodeoxyuridine, double-cortin, and NeuN, cells undergoing distinct stages of neurogenesis, including proliferation, neuronal differentiation, neuroblast migration, and long-term survival, were quantified at 1 and 6 weeks in the hippocampal dentate gyrus, as well as in the subventricular zone of the lateral ventricles and the pericontusional cortex. Our results show that minocycline successfully reduced microglial activation and promoted early neurological recovery that was sustained over 6 weeks. We also show for the first time in the closed head injury model, that early stages of neurogenesis were stimulated in the hippocampus and subventricular zone; however, no increase in new mature neurons occurred. Contrary to our hypothesis, despite the attenuation of activated microglia, minocycline did not support neurogenesis in the hippocampus, lateral ventricles, or pericontusional cortex, with none of the neurogenic stages being affected by treatment. These data provide evidence that a general suppression of microglial activation is

  4. Prenylflavones from Psoralea corylifolia inhibit nitric oxide synthase expression through the inhibition of I-kappaB-alpha degradation in activated microglial cells.

    PubMed

    Lee, Ming Hong; Kim, Jae Yeon; Ryu, Jae-Ha

    2005-12-01

    The overproduction of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) switches the function of NO from a physiological neuromodulator to a neurotoxic effector in central nervous system (CNS) after brain injury. From the methanol extracts of Psoralea corylifolia, we purified two inhibitors of NO production in lipopolysaccharide (LPS)-activated microglia by activity guided purification along with two inactive compounds. The active compounds were identified as a chromenoflavanone [7,8-dihydro-8-(4-hydroxyphenyl)-2,2-dimethyl-2H,6H-benzo-(1,2-b:5,4-b')dipyran-6-one] (1) and 4-hydroxylonchocarpin (2). And the inactive two compounds were identified as bavachinin (3) and bavachalcone (4) by spectral analysis. The compound 2 was isolated first time from this plant. Compounds 1 and 2 inhibited the production of NO in LPS-activated microglia in a dose dependent manner (IC(50)'s were 11.4, 10.2 microM, respectively). They also suppressed the expression of protein and mRNA of iNOS in LPS-activated microglial cells at 10 muM as observed in Western blot analysis and RT-PCR experiment. Furthermore they inhibited the degradation of I-kappaB-alpha in activated microglia. These results imply that compounds 1 and 2 can be lead compounds for the development of neuroprotective drug with the inhibitory activity of NO overproduction by activated microglial cells.

  5. Isoflurane Exposure Induces Cell Death, Microglial Activation and Modifies the Expression of Genes Supporting Neurodevelopment and Cognitive Function in the Male Newborn Piglet Brain

    PubMed Central

    Fleiss, Bobbi; Kawano, Go; Ezzati, Mojgan; Rocha-Ferreira, Eridan; Hristova, Mariya; Bennett, Kate; Fierens, Igor; Burnett, Ryan; Chaban, Badr; Alonso-Alconada, Daniel; Oliver-Taylor, Aaron; Tachsidis, Ilias; Rostami, Jamshid; Gressens, Pierre; Sanders, Robert D.

    2016-01-01

    Exposure of the brain to general anesthesia during early infancy may adversely affect its neural and cognitive development. The mechanisms mediating this are complex, incompletely understood and may be sexually dimorphic, but include developmentally inappropriate apoptosis, inflammation and a disruption to cognitively salient gene expression. We investigated the effects of a 6h isoflurane exposure on cell death, microglial activation and gene expression in the male neonatal piglet brain. Piglets (n = 6) were randomised to: (i) naive controls or (ii) 6h isoflurane. Cell death (TUNEL and caspase-3) and microglial activation were recorded in 7 brain regions. Changes in gene expression (microarray and qPCR) were assessed in the cingulate cortex. Electroencephalography (EEG) was recorded throughout. Isoflurane anesthesia induced significant increases in cell death in the cingulate and insular cortices, caudate nucleus, thalamus, putamen, internal capsule, periventricular white matter and hippocampus. Dying cells included both neurons and oligodendrocytes. Significantly, microglial activation was observed in the insula, pyriform, hippocampus, internal capsule, caudate and thalamus. Isoflurane induced significant disruption to the expression of 79 gene transcripts, of these 26 are important for the control of transcription and 23 are important for the mediation of neural plasticity, memory formation and recall. Our observations confirm that isoflurane increases apoptosis and inflammatory responses in the neonatal piglet brain but also suggests novel additional mechanisms by which isoflurane may induce adverse neural and cognitive development by disrupting the expression of genes mediating activity dependent development of neural circuits, the predictive adaptive responses of the brain, memory formation and recall. PMID:27898690

  6. Possible involvement of galectin-3 in microglial activation in the hippocampus with trimethyltin treatment.

    PubMed

    Yang, Miyoung; Kim, Juhwan; Kim, Taehyub; Kim, Sung-Ho; Kim, Jong-Choon; Kim, Jeongtae; Takayama, Chitoshi; Hayashi, Akinobu; Joo, Hong-Gu; Shin, Taekyun; Moon, Changjong

    2012-12-01

    Trimethyltin (TMT) is an organotin neurotoxicant with effects that are selectively localized to the limbic system (especially the hippocampus), which produces memory deficits and temporal lobe seizures. Galectin-3 (Gal-3) is a beta-galactoside-binding lectin that is important in cell proliferation and regulation of apoptosis. The present study evaluated the temporal expression of Gal-3 in the hippocampus of adult BALB/c mice after TMT treatment (i.p., 2.5mg/kg). Western blotting analyses showed that Gal-3 immunoreactivity began to increase days after treatment; the immunoreactivity peaked significantly within days after treatment but significantly declined between days 4 and 8. Immunohistochemical analysis indicated that Gal-3 expression was very rare in the hippocampi of vehicle-treated controls. However, Gal-3 immunoreactivity appeared between 2 and 8 days after TMT treatment and was primarily localized to the hippocampal dentate gyrus (DG), in which neuronal degeneration occurred. The immunoreactivity was detected predominantly in most of the Iba1-positive microglia and in some GFAP-positive astrocytes of the hippocampal DG. Furthermore, Gal-3 expression co-localized with the pro-inflammatory enzymes cyclooxygenase-2 and inducible nitric oxide synthase in the hippocampal DG. Therefore, we suggest that Gal-3 is involved in the inflammatory process of neurodegenerative disorder induced by organotin intoxication.

  7. Pioglitazone blocks ethanol induction of microglial activation and immune responses in the hippocampus, cerebellum, and cerebral cortex in a mouse model of fetal alcohol spectrum disorders.

    PubMed

    Drew, Paul D; Johnson, Jennifer W; Douglas, James C; Phelan, Kevin D; Kane, Cynthia J M

    2015-03-01

    Fetal alcohol spectrum disorders (FASD) result from fetal exposure to alcohol and are the leading cause of mental retardation in the United States. There is currently no effective treatment that targets the causes of these disorders. Thus, novel therapies are critically needed to limit the neurodevelopmental and neurodegenerative pathologies associated with FASD. A neonatal mouse FASD model was used to examine the role of the neuroimmune system in ethanol (EtOH)-induced neuropathology. Neonatal C57BL/6 mice were treated with EtOH, with or without pioglitazone, on postnatal days 4 through 9, and tissue was harvested 1 day post treatment. Pioglitazone is a peroxisome proliferator-activated receptor (PPAR)-γ agonist that exhibits anti-inflammatory activity and is neuroprotective. We compared the effects of EtOH with or without pioglitazone on cytokine and chemokine expression and microglial morphology in the hippocampus, cerebellum, and cerebral cortex. In EtOH-treated animals compared with controls, cytokines interleukin-1β and tumor necrosis factor-α mRNA levels were increased significantly in the hippocampus, cerebellum, and cerebral cortex. Chemokine CCL2 mRNA was increased significantly in the hippocampus and cerebellum. Pioglitazone effectively blocked the EtOH-induced increase in the cytokines and chemokine in all tissues to the level expressed in handled-only and vehicle-treated control animals. EtOH also produced a change in microglial morphology in all brain regions that was indicative of microglial activation, and pioglitazone blocked this EtOH-induced morphological change. These studies indicate that EtOH activates microglia to a pro-inflammatory stage and also increases the expression of neuroinflammatory cytokines and chemokines in diverse regions of the developing brain. Further, the anti-inflammatory and neuroprotective PPAR-γ agonist pioglitazone blocked these effects. It is proposed that microglial activation and inflammatory molecules expressed

  8. Minocycline Attenuates High Mobility Group Box 1 Translocation, Microglial Activation, and Thalamic Neurodegeneration after Traumatic Brain Injury in Postnatal Day 17 Rats.

    PubMed

    Simon, Dennis W; Aneja, Rajesh K; Alexander, Henry; Bell, Michael J; Bayır, Hülya; Kochanek, Patrick M; Clark, Robert S B

    2017-08-22

    In response to cell injury, the danger signal high mobility group box-1 (HMGB) is released, activating macrophages by binding pattern recognition receptors. We investigated the role of the anti-inflammatory drug minocycline in attenuating HMGB1 translocation, microglial activation, and neuronal injury in a rat model of pediatric traumatic brain injury (TBI). Post-natal day 17 Sprague-Dawley rats underwent moderate-severe controlled cortical impact (CCI). Animals were randomized to treatment with minocycline (90 mg/kg, intraperitoneally) or vehicle (saline) at 10 min and 20 h after injury. Shams received anesthesia and craniotomy. We analyzed HMGB1 translocation (protein fractionation and Western blotting), microglial activation (Iba-1 immunohistochemistry), neuronal death (Fluoro-Jade-B [FJB] immunofluorescence), and neuronal cell counts (unbiased stereology). Behavioral assessments included motor and Morris-water maze testing. Nuclear to cytosolic translocation of HMGB1 in the injured brain was attenuated in minocycline versus vehicle-treated rats at 24 h (p < 0.001). Treatment with minocycline reduced microglial activation in the ipsilateral cortex, hippocampus, and thalamus (p < 0.05 vs. vehicle, all regions); attenuated neurodegeneration (FJB-positive neurons) at seven days (p < 0.05 vs. vehicle); and increased thalamic neuronal survival at 14 days (naïve 22773 ± 1012 cells/mm(3), CCI + vehicle 11753 ± 464, CCI + minocycline 17047 ± 524; p < 0.001). Minocycline-treated rats demonstrated delayed motor recovery early after injury but had no injury effect on Morris-water maze whereas vehicle-treated rats performed worse than sham on the final two days of testing (both p < 0.05 vs. vehicle). Minocycline globally attenuated HMGB1 translocation and microglial activation in injured brain in a pediatric TBI model and afforded selective thalamic neuroprotection. The HMGB1 translocation and thalamic injury may represent novel

  9. Nicotine inhibits activation of microglial proton currents via interactions with α7 acetylcholine receptors.

    PubMed

    Noda, Mami; Kobayashi, A I

    2017-01-01

    Alpha 7 subunits of nicotinic acetylcholine receptors (nAChRs) are expressed in microglia and are involved in the suppression of neuroinflammation. Over the past decade, many reports show beneficial effects of nicotine, though little is known about the mechanism. Here we show that nicotine inhibits lipopolysaccharide (LPS)-induced proton (H(+)) currents and morphological change by using primary cultured microglia. The H(+) channel currents were measured by whole-cell patch clamp method under voltage-clamp condition. Increased H(+) current in activated microglia was attenuated by blocking NADPH oxidase. The inhibitory effect of nicotine was due to the activation of α7 nAChR, not a direct action on the H(+) channels, because the effects of nicotine was cancelled by α7 nAChR antagonists. Neurotoxic effect of LPS-activated microglia due to inflammatory cytokines was also attenuated by pre-treatment of microglia with nicotine. These results suggest that α7 nAChRs in microglia may be a therapeutic target in neuroinflammatory diseases.

  10. CX3CR1 Deficiency Alters Microglial Activation and Reduces Beta-Amyloid Deposition in Two Alzheimer’s Disease Mouse Models

    PubMed Central

    Lee, Sungho; Varvel, Nicholas H.; Konerth, Megan E.; Xu, Guixiang; Cardona, Astrid E.; Ransohoff, Richard M.; Lamb, Bruce T.

    2010-01-01

    Microglia, the primary immune effector cells in the brain, continually monitor the tissue parenchyma for pathological alterations and become activated in Alzheimer’s disease. Loss of signaling between neurons and microglia via deletion of the microglial receptor, CX3CR1, worsens phenotypes in various models of neurodegenerative diseases. In contrast, CX3CR1 deficiency ameliorates pathology in murine stroke models. To examine the role of CX3CR1 in Alzheimer’s disease–related β-amyloid pathology, we generated APPPS1 and R1.40 transgenic mouse models of Alzheimer’s disease deficient for CX3CR1. Surprisingly, CX3CR1 deficiency resulted in a gene dose-dependent reduction in β-amyloid deposition in both the APPPS1 and R1.40 mouse models of AD. Immunohistochemical analysis revealed reduced staining for CD68, a marker of microglial activation. Furthermore, quantitative immunohistochemical analysis revealed reduced numbers of microglia surrounding β-amyloid deposits in the CX3CR1-deficient APPPS1 animals. The reduced β-amyloid pathology correlated with reduced levels of TNFα and CCL2 mRNAs, but elevated IL1β mRNA levels, suggesting an altered neuroinflammatory milieu. Finally, to account for these seemingly disparate results, both in vitro and in vivo studies provided evidence that CX3CL1/CX3CR1 signaling alters the phagocytic capacity of microglia, including the uptake of Aβ fibrils. Taken together, these results demonstrate that loss of neuron-microglial fractalkine signaling leads to reduced β-amyloid deposition in mouse models of AD that is potentially mediated by altered activation and phagocytic capability of CX3CR1-deficient microglia. PMID:20864679

  11. Peripheral and Central Effects of Repeated Social Defeat Stress: Monocyte Trafficking, Microglial Activation, and Anxiety

    PubMed Central

    Reader, Brenda F.; Jarrett, Brant L.; McKim, Daniel B.; Wohleb, Eric S.; Godbout, Jonathan P.; Sheridan, John F.

    2015-01-01

    The development and exacerbation of depression and anxiety are associated with exposure to repeated psychosocial stress. Stress is known to affect the bidirectional communication between the nervous and immune systems leading to elevated levels of stress mediators including glucocorticoids (GCs) and catecholamines and increased trafficking of proinflammatory immune cells. Animal models, like the repeated social defeat (RSD) paradigm, were developed to explore this connection between stress and affective disorders. RSD induces activation of the sympathetic nervous system (SNS) and hypothalamic-pituitary (HPA) axis activation, increases bone marrow production and egress of primed, GC-insensitive monocytes, and stimulates the trafficking of these cells to tissues including the spleen, lung, and brain. Recently, the observation that these monocytes have the ability to traffic to the brain perivascular spaces and parenchyma have provided mechanisms by which these peripheral cells may contribute to the prolonged anxiety-like behavior associated with RSD. The data that have been amassed from the RSD paradigm and others recapitulate many of the behavioral and immunological phenotypes associated with human anxiety disorders and may serve to elucidate potential avenues of treatment for these disorders. Here, we will discuss novel and key data that will present an overview of the neuroendocrine, immunological and behavioral responses to social stressors. PMID:25596319

  12. Peripheral and central effects of repeated social defeat stress: monocyte trafficking, microglial activation, and anxiety.

    PubMed

    Reader, B F; Jarrett, B L; McKim, D B; Wohleb, E S; Godbout, J P; Sheridan, J F

    2015-03-19

    The development and exacerbation of depression and anxiety are associated with exposure to repeated psychosocial stress. Stress is known to affect the bidirectional communication between the nervous and immune systems leading to elevated levels of stress mediators including glucocorticoids (GCs) and catecholamines and increased trafficking of proinflammatory immune cells. Animal models, like the repeated social defeat (RSD) paradigm, were developed to explore this connection between stress and affective disorders. RSD induces activation of the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis activation, increases bone marrow production and egress of primed, GC-insensitive monocytes, and stimulates the trafficking of these cells to tissues including the spleen, lung, and brain. Recently, the observation that these monocytes have the ability to traffic to the brain perivascular spaces and parenchyma have provided mechanisms by which these peripheral cells may contribute to the prolonged anxiety-like behavior associated with RSD. The data that have been amassed from the RSD paradigm and others recapitulate many of the behavioral and immunological phenotypes associated with human anxiety disorders and may serve to elucidate potential avenues of treatment for these disorders. Here, we will discuss novel and key data that will present an overview of the neuroendocrine, immunological and behavioral responses to social stressors.

  13. Hydrogen sulfide-releasing NSAIDs attenuate neuroinflammation induced by microglial and astrocytic activation.

    PubMed

    Lee, Moonhee; Sparatore, Anna; Del Soldato, Piero; McGeer, Edith; McGeer, Patrick L

    2010-01-01

    Endogenously generated hydrogen sulfide (H(2)S) may have multiple functions in brain. It has been shown that H(2)S attenuates the expression of pro-inflammatory cytokines by lipopolysaccharide (LPS)-activated microglia. Here we demonstrate a neuroprotective effect of NaSH and three H(2)S-releasing compounds, ADT-OH, S-diclofenac, and S-aspirin. When activated by LPS and gamma-interferon, human microglia and THP-1 cells release materials that are toxic to human neuroblastoma SH-SY5Y cells. These phenomena also occur with gamma-interferon-stimulated human astroglia and U118 cells. When these cell types are pretreated with aspirin, diclofenac, NASH, or ADT-OH, the supernatants are significantly less toxic. When they are treated with the NSAID-H(2)S hybrid molecules S-diclofenac and S-aspirin, which are here referred to as S-NSAIDs, there is a significant enhancement of the protection. The effect is concentration and incubation time dependent. Such pretreatment also reduces the release of the proinflammatory mediators TNFalpha, IL-6, and nitric oxide. The H(2)S-releasing compounds are without effect when applied directly to SH-SY5Y cells. These data suggest that hybrid H(2)S releasing compounds have significant antiinflammatory properties and may be candidates for treating neurodegenerative disorders that have a prominent neuroinflammatory component such as Alzheimer disease and Parkinson disease.

  14. Evidences for a progressive microglial activation and increase in iNOS expression in rats submitted to a neurodevelopmental model of schizophrenia: reversal by clozapine.

    PubMed

    Ribeiro, Bruna Mara Machado; do Carmo, Marta Regina Santos; Freire, Rosemayre Souza; Rocha, Nayrton Flávio Moura; Borella, Vládia Célia Moreira; de Menezes, Antonio Teles; Monte, Aline Santos; Gomes, Patrícia Xavier Lima; de Sousa, Francisca Cléa Florenço; Vale, Mariana Lima; de Lucena, David Freitas; Gama, Clarissa Severino; Macêdo, Danielle

    2013-12-01

    Schizophrenia was proposed as a progressive neurodevelopmental disorder. In this regard herein we attempted to determine progressive inflammatory and oxidative alterations induced by a neonatal immune challenge and its possible reversal by clozapine administration. For this end, Wistar rats at postnatal day (PN) 5-7 were administered the viral mimetic polyriboinosinic-polyribocytidilic acid (polyI:C) or saline. A distinct group of animals additionally received the antipsychotic drug clozapine (25mg/kg) from PN60 to 74. At PN35 (periadolescence), 60 (adult) and 74 (adulthood) the animals were submitted to behavioral determinations of prepulse inhibition of the startle (PPI) and Y maze task for working memory evaluation. At PN35 and 74 the animals were sacrificed and the hippocampus (HC), prefrontal cortex (PFC) and striatum (ST) immunostained for Iba-1, a microglial marker, and inducible nitric oxide synthase (iNOS). At PN74 oxidative stress parameters, such as, reduced glutathione levels (GSH) and lipid peroxidation were determined. The results showed a progressive increase of microglial activation and iNOS immunostaining from PN35 to PN74 mainly in the CA2 and CA3 regions of the HC and in the ST. At PN74 neonatal challenge also induced an oxidative imbalance. These inflammatory alterations were accompanied by deficits in PPI and working memory only in adult life that were reversed by clozapine. Clozapine administration reversed microglial activation and iNOS increase, but not the alterations of oxidative stress parameters. Taken together these results give further evidences for a neuroprogressive etiology and course of schizophrenia and that clozapine may partly alleviate this process.

  15. Th1 cells downregulate connexin 43 gap junctions in astrocytes via microglial activation

    PubMed Central

    Watanabe, Mitsuru; Masaki, Katsuhisa; Yamasaki, Ryo; Kawanokuchi, Jun; Takeuchi, Hideyuki; Matsushita, Takuya; Suzumura, Akio; Kira, Jun-ichi

    2016-01-01

    We previously reported early and extensive loss of astrocytic connexin 43 (Cx43) in acute demyelinating lesions of multiple sclerosis (MS) patients. Because it is widely accepted that autoimmune T cells initiate MS lesions, we hypothesized that infiltrating T cells affect Cx43 expression in astrocytes, which contributes to MS lesion formation. Primary mixed glial cell cultures were prepared from newborn mouse brains, and microglia were isolated by anti-CD11b antibody-conjugated magnetic beads. Next, we prepared astrocyte-rich cultures and astrocyte/microglia-mixed cultures. Treatment of primary mixed glial cell cultures with interferon (IFN) γ, interleukin (IL)-4, or IL-17 showed that only IFNγ or IL-17 at high concentrations reduced Cx43 protein levels. Upon treatment of astrocyte-rich cultures and astrocyte/microglia-mixed cultures with IFNγ, Cx43 mRNA/protein levels and the function of gap junctions were reduced only in astrocyte/microglia-mixed cultures. IFNγ-treated microglia-conditioned media and IL-1β, which was markedly increased in IFNγ-treated microglia-conditioned media, reduced Cx43 protein levels in astrocyte-rich cultures. Finally, we confirmed that Th1 cell-conditioned medium decreased Cx43 protein levels in mixed glial cell cultures. These findings suggest that Th1 cell-derived IFNγ activates microglia to release IL-1β that reduces Cx43 gap junctions in astrocytes. Thus, Th1-dominant inflammatory states disrupt astrocytic intercellular communication and may exacerbate MS. PMID:27929069

  16. Protective effect of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride on hypoxia-induced toxicity by suppressing microglial activation in BV-2 cells

    PubMed Central

    Kim, Jiae; Kim, Su-Min; Na, Jung-Min; Hahn, Hoh-Gyu; Cho, Sung-Woo; Yang, Seung-Ju

    2016-01-01

    We recently reported the anti-inflammatory effects of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride (KHG26792) on the ATP-induced activation of the NFAT and MAPK pathways through the P2X7 receptor in microglia. To further investigate the underlying mechanism of KHG26792, we studied its protective effects on hypoxia-induced toxicity in microglia. The administration of KHG26792 significantly reduced the hypoxia-induced expression and activity of caspase-3 in BV-2 microglial cells. KHG26792 also reduced hypoxia-induced inducible nitric oxide synthase protein expression, which correlated with reduced nitric oxide accumulation. In addition, KHG26792 attenuated hypoxia-induced protein nitration, reactive oxygen species production, and NADPH oxidase activity. These effects were accompanied by the suppression of hypoxia-induced protein expression of hypoxia-inducible factor 1-alpha and NADPH oxidase-2. Although the clinical relevance of our findings remains to be determined, these data results suggest that KHG26792 prevents hypoxia-induced toxicity by suppressing microglial activation. PMID:27756444

  17. Protective effect of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride on hypoxia-induced toxicity by suppressing microglial activation in BV-2 cells.

    PubMed

    Kim, Jiae; Kim, Su-Min; Na, Jung-Min; Hahn, Hoh-Gyu; Cho, Sung-Woo; Yang, Seung-Ju

    2016-12-01

    We recently reported the anti-inflammatory effects of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride (KHG26792) on the ATP-induced activation of the NFAT and MAPK pathways through the P2X7 receptor in microglia. To further investigate the underlying mechanism of KHG26792, we studied its protective effects on hypoxia-induced toxicity in microglia. The administration of KHG26792 significantly reduced the hypoxia-induced expression and activity of caspase-3 in BV-2 microglial cells. KHG26792 also reduced hypoxia-induced inducible nitric oxide synthase protein expression, which correlated with reduced nitric oxide accumulation. In addition, KHG26792 attenuated hypoxiainduced protein nitration, reactive oxygen species production, and NADPH oxidase activity. These effects were accompanied by the suppression of hypoxia-induced protein expression of hypoxia-inducible factor 1-alpha and NADPH oxidase-2. Although the clinical relevance of our findings remains to be determined, these data results suggest that KHG26792 prevents hypoxia-induced toxicity by suppressing microglial activation. [BMB Reports 2016; 49(12): 687-692].

  18. Microglial activation decreases retention of the protease inhibitor saquinavir: implications for HIV treatment

    PubMed Central

    2013-01-01

    Background Active HIV infection within the central nervous system (CNS) is confined primarily to microglia. The glial cell compartment acts as a viral reservoir behind the blood-brain barrier. It provides an additional roadblock to effective pharmacological treatment via expression of multiple drug efflux transporters, including P-glycoprotein. HIV/AIDS patients frequently suffer bacterial and viral co-infections, leading to deregulation of glial cell function and release of pro-inflammatory mediators including cytokines, chemokines, and nitric oxide. Methods To better define the role of inflammation in decreased HIV drug accumulation into CNS targets, accumulation of the antiretroviral saquinavir was examined in purified cultures of rodent microglia exposed to the prototypical inflammatory mediator lipopolysaccharide (LPS). Results [3H]-Saquinavir accumulation by microglia was rapid, and was increased up to two-fold in the presence of the specific P-glycoprotein inhibitor, PSC833. After six or 24 hours of exposure to 10 ng/ml LPS, saquinavir accumulation was decreased by up to 45%. LPS did not directly inhibit saquinavir transport, and did not affect P-glycoprotein protein expression. LPS exposure did not alter RNA and/or protein expression of other transporters including multidrug resistance-associated protein 1 and several solute carrier uptake transporters. Conclusions The decrease in saquinavir accumulation in microglia following treatment with LPS is likely multi-factorial, since drug accumulation was attenuated by inhibitors of NF-κβ and the MEK1/2 pathway in the microglia cell line HAPI, and in primary microglia cultures from toll-like receptor 4 deficient mice. These data provide new pharmacological insights into why microglia act as a difficult-to-treat viral sanctuary site. PMID:23642074

  19. Genetic deletion of galectin-3 enhances neuroinflammation, affects microglial activation and contributes to sub-chronic injury in experimental neonatal focal stroke.

    PubMed

    Chip, Sophorn; Fernández-López, David; Li, Fan; Faustino, Joel; Derugin, Nikita; Vexler, Zinaida S

    2017-02-01

    The pathophysiology of neonatal stroke and adult stroke are distinct in many aspects, including the inflammatory response. We previously showed endogenously protective functions of microglial cells in acute neonatal stroke. We asked if galectin-3 (Gal3), a pleotropic molecule that mediates interactions between microglia/macrophages and the extracellular matrix (ECM), plays a role in early injury after transient middle cerebral occlusion (tMCAO) in postnatal day 9-10 mice. Compared to wild type (WT) pups, in Gal3 knockout pups injury was worse and cytokine/chemokine production altered, including further increase of MIP1α and MIP1β levels and reduced IL6 levels 72h after tMCAO. Lack of Gal3 did not affect morphological transformation or proliferation of microglia but markedly attenuated accumulation of CD11b(+)/CD45(med-high) cells after injury, as determined by multi-color flow cytometry. tMCAO increased expression of αV and β3 integrin subunits in CD11b(+)/CD45(low) microglial cells and cells of non-monocyte lineage (CD11b(-)/CD45(-)), but not in CD11b(+)/CD45(med-high) cells within injured regions of WT mice or Gal3-/- mice. αV upregulated in areas occupied and not occupied by CD68(+) cells, most prominently in the ECM, lining blood vessels, with expanded αV coverage in Gal3-/- mice. Cumulatively, these data show that lack of Gal3 worsens subchronic injury after neonatal focal stroke, likely by altering the neuroinflammatory milieu, including an imbalance between pro- and anti-inflammatory molecules, effects on microglial activation, and deregulation of the composition of the ECM.

  20. Ginkgolide B Suppresses Methamphetamine-Induced Microglial Activation Through TLR4-NF-κB Signaling Pathway in BV2 Cells.

    PubMed

    Wan, Fen; Zang, Songsong; Yu, Guoqing; Xiao, Hang; Wang, Jun; Tang, Jinrong

    2017-07-15

    Accumulating evidence suggests that microglial cells have altered morphology and proliferation in different brain regions of methamphetamine (Meth) abusers and Meth-abusing animal models. However, the possible mechanisms underlying Meth-induced microglial activation remain poorly understood. Meanwhile, Toll-like receptor4 (TLR4) is closely associated with inflammation. Therefore the aim of the present study was to assess whether Meth treatment affects TLR4 expression; in addition, we evaluated the effects of ginkgolide B (GB), a diterpene lactone extracted from Ginkgo biloba, on Meth-mediated inflammation. BV2 cells were treated with Meth. Interestingly, Meth treatment significantly increased TLR4 expression, activated the NF-κB signaling pathway, and promoted TNF-α, IL-6 and IL-1β excretion. These effects, however, were partially attenuated by GB pre-treatment. To further confirm the role of TLR4 in Meth-mediated inflammation, the siRNA technology was applied to knock down TLR4, which resulted in hampered Meth-mediated inflammatory responses, confirming the important role of TLR4 in this process. Taken together, our findings suggested that Meth exposure results in BV2 cell activation, in association with TLR4 upregulation. GB could attenuate Meth-induced inflammation, at least partially through TLR4-NF-κB signaling pathway, therefore, targeting TLR4 may constitute a potential intervention strategy for Meth mediated neuroinflammation.

  1. miR-146a negatively regulates the induction of proinflammatory cytokines in response to Japanese encephalitis virus infection in microglial cells.

    PubMed

    Deng, Minnan; Du, Ganqin; Zhao, Jiegang; Du, Xiaowei

    2017-06-01

    Increasing evidence confirms the involvement of virus infection and miRNA, such as miR-146a, in neuroinflammation-associated epilepsy. In the present study, we investigated the upregulation of miR-146a with RT-qPCR and in situ hybridization methods in a mice infection model of Japanese encephalitis virus (JEV) and in vitro. Subsequently we investigated the involvement of miR-146a in modulating JEV-induced neuroinflammation. It was demonstrated that JEV infection promoted miR-146a production in BALB/c mice brain and in cultured mouse microglial C8-B4 cells, along with pro-inflammatory cytokines, such as IL-1β, IL-6, TNF-α, IFN-β and IFN-α. We also found that miR-146a exerted negative regulatory effects upon IL-1β, IL-6, TNF-α, IFN-β and IFN-α in C8-B4 cells. Accordingly, miR-146a downregulation with a miR-146a inhibitor promoted the upregulation of IL-1β, IL-6, TNF-α, IFN-β and IFN-α, whereas miR-146a upregulation with miR-146a mimics reduced the upregulation of these cytokines. Moreover, miR-146a exerted no regulation upon JEV growth in C8-B4 cells. In conclusion, JEV infection upregulated miR-146a and pro-inflammatory cytokine production, in mice brain and in cultured C8-B4 cells. Furthermore, miR-146a negatively regulated the production of JEV-induced pro-inflammatory cytokines, in virus growth independent fashion, identifying miR-146a as a negative feedback regulator in JEV-induced neuroinflammation, and possibly in epilepsy.

  2. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer's-like pathology.

    PubMed

    Olmos-Alonso, Adrian; Schetters, Sjoerd T T; Sri, Sarmi; Askew, Katharine; Mancuso, Renzo; Vargas-Caballero, Mariana; Holscher, Christian; Perry, V Hugh; Gomez-Nicola, Diego

    2016-03-01

    The proliferation and activation of microglial cells is a hallmark of several neurodegenerative conditions. This mechanism is regulated by the activation of the colony-stimulating factor 1 receptor (CSF1R), thus providing a target that may prevent the progression of conditions such as Alzheimer's disease. However, the study of microglial proliferation in Alzheimer's disease and validation of the efficacy of CSF1R-inhibiting strategies have not yet been reported. In this study we found increased proliferation of microglial cells in human Alzheimer's disease, in line with an increased upregulation of the CSF1R-dependent pro-mitogenic cascade, correlating with disease severity. Using a transgenic model of Alzheimer's-like pathology (APPswe, PSEN1dE9; APP/PS1 mice) we define a CSF1R-dependent progressive increase in microglial proliferation, in the proximity of amyloid-β plaques. Prolonged inhibition of CSF1R in APP/PS1 mice by an orally available tyrosine kinase inhibitor (GW2580) resulted in the blockade of microglial proliferation and the shifting of the microglial inflammatory profile to an anti-inflammatory phenotype. Pharmacological targeting of CSF1R in APP/PS1 mice resulted in an improved performance in memory and behavioural tasks and a prevention of synaptic degeneration, although these changes were not correlated with a change in the number of amyloid-β plaques. Our results provide the first proof of the efficacy of CSF1R inhibition in models of Alzheimer's disease, and validate the application of a therapeutic strategy aimed at modifying CSF1R activation as a promising approach to tackle microglial activation and the progression of Alzheimer's disease. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  3. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology

    PubMed Central

    Olmos-Alonso, Adrian; Schetters, Sjoerd T. T.; Sri, Sarmi; Askew, Katharine; Mancuso, Renzo; Vargas-Caballero, Mariana; Holscher, Christian; Perry, V. Hugh

    2016-01-01

    The proliferation and activation of microglial cells is a hallmark of several neurodegenerative conditions. This mechanism is regulated by the activation of the colony-stimulating factor 1 receptor (CSF1R), thus providing a target that may prevent the progression of conditions such as Alzheimer’s disease. However, the study of microglial proliferation in Alzheimer’s disease and validation of the efficacy of CSF1R-inhibiting strategies have not yet been reported. In this study we found increased proliferation of microglial cells in human Alzheimer’s disease, in line with an increased upregulation of the CSF1R-dependent pro-mitogenic cascade, correlating with disease severity. Using a transgenic model of Alzheimer’s-like pathology (APPswe, PSEN1dE9; APP/PS1 mice) we define a CSF1R-dependent progressive increase in microglial proliferation, in the proximity of amyloid-β plaques. Prolonged inhibition of CSF1R in APP/PS1 mice by an orally available tyrosine kinase inhibitor (GW2580) resulted in the blockade of microglial proliferation and the shifting of the microglial inflammatory profile to an anti-inflammatory phenotype. Pharmacological targeting of CSF1R in APP/PS1 mice resulted in an improved performance in memory and behavioural tasks and a prevention of synaptic degeneration, although these changes were not correlated with a change in the number of amyloid-β plaques. Our results provide the first proof of the efficacy of CSF1R inhibition in models of Alzheimer’s disease, and validate the application of a therapeutic strategy aimed at modifying CSF1R activation as a promising approach to tackle microglial activation and the progression of Alzheimer’s disease. PMID:26747862

  4. microRNA-34a-Mediated Down-Regulation of the Microglial-Enriched Triggering Receptor and Phagocytosis-Sensor TREM2 in Age-Related Macular Degeneration

    PubMed Central

    Dua, Prerna; Rogaev, Evgeny I.; Lukiw, Walter J.

    2016-01-01

    The aggregation of Aβ42-peptides and the formation of drusen in age-related macular degeneration (AMD) are due in part to the inability of homeostatic phagocytic mechanisms to clear self-aggregating Aβ42-peptides from the extracellular space. The triggering receptor expressed in myeloid/microglial cells-2 (TREM2), a trans-membrane-spanning, sensor-receptor of the immune-globulin/lectin-like gene superfamily is a critical component of Aβ42-peptide clearance. Here we report a significant deficit in TREM2 in AMD retina and in cytokine- or oxidatively-stressed microglial (MG) cells. RT-PCR, miRNA-array, LED-Northern and Western blot studies indicated up-regulation of a microglial-enriched NF-кB-sensitive miRNA-34a coupled to a down-regulation of TREM2 in the same samples. Bioinformatics/transfection-luciferase reporter assays indicated that miRNA-34a targets the 299 nucleotide TREM2-mRNA-3’UTR, resulting in TREM2 down-regulation. C8B4-microglial cells challenged with Aβ42 were able to phagocytose these peptides, while miRNA-34a down-regulated both TREM2 and the ability of microglial-cells to phagocytose. Treatment of TNFα-stressed MG cells with phenyl-butyl nitrone (PBN), caffeic-acid phenethyl ester (CAPE), the NF-B-inhibitor/resveratrol analog CAY10512 or curcumin abrogated these responses. Incubation of anti-miRNA-34a (AM-34a) normalized miRNA-34a abundance and restored TREM2 back to homeostatic levels. These data support five novel observations: (i) that a ROS- and NF-B-sensitive, miRNA-34a-mediated modulation of TREM2 may in part regulate the phagocytic response; (ii) that gene products encoded on two different chromosomes (miRNA-34a at chr1q36.22 and TREM2 at chr6p21.1) orchestrate a phagocytic-Aβ42-peptide clearance-system; (iii) that this NF-kB-mediated-miRNA-34a-TREM2 mechanism is inducible from outside of the cell; (iv) that when operating normally, this pathway can clear Aβ42 peptide monomers from the extracellular medium; and (v) that anti

  5. Microglial Inflammatory Signaling Orchestrates the Hypothalamic Immune Response to Dietary Excess and Mediates Obesity Susceptibility.

    PubMed

    Valdearcos, Martin; Douglass, John D; Robblee, Megan M; Dorfman, Mauricio D; Stifler, Daniel R; Bennett, Mariko L; Gerritse, Irene; Fasnacht, Rachael; Barres, Ben A; Thaler, Joshua P; Koliwad, Suneil K

    2017-07-05

    Dietary excess triggers accumulation of pro-inflammatory microglia in the mediobasal hypothalamus (MBH), but the components of this microgliosis and its metabolic consequences remain uncertain. Here, we show that microglial inflammatory signaling determines the immunologic response of the MBH to dietary excess and regulates hypothalamic control of energy homeostasis in mice. Either pharmacologically depleting microglia or selectively restraining microglial NF-κB-dependent signaling sharply reduced microgliosis, an effect that includes prevention of MBH entry by bone-marrow-derived myeloid cells, and greatly limited diet-induced hyperphagia and weight gain. Conversely, forcing microglial activation through cell-specific deletion of the negative NF-κB regulator A20 induced spontaneous MBH microgliosis and cellular infiltration, reduced energy expenditure, and increased both food intake and weight gain even in absence of a dietary challenge. Thus, microglial inflammatory activation, stimulated by dietary excess, orchestrates a multicellular hypothalamic response that mediates obesity susceptibility, providing a mechanistic rationale for non-neuronal approaches to treat metabolic diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Auraptene and Other Prenyloxyphenylpropanoids Suppress Microglial Activation and Dopaminergic Neuronal Cell Death in a Lipopolysaccharide-Induced Model of Parkinson’s Disease

    PubMed Central

    Okuyama, Satoshi; Semba, Tomoki; Toyoda, Nobuki; Epifano, Francesco; Genovese, Salvatore; Fiorito, Serena; Taddeo, Vito Alessandro; Sawamoto, Atsushi; Nakajima, Mitsunari; Furukawa, Yoshiko

    2016-01-01

    In patients with Parkinson’s disease (PD), hyperactivated inflammation in the brain, particularly microglial hyperactivation in the substantia nigra (SN), is reported to be one of the triggers for the delayed loss of dopaminergic neurons and sequential motor functional impairments. We previously reported that (1) auraptene (AUR), a natural prenyloxycoumain, suppressed inflammatory responses including the hyperactivation of microglia in the ischemic brain and inflamed brain, thereby inhibiting neuronal cell death; (2) 7-isopentenyloxycoumarin (7-IP), another natural prenyloxycoumain, exerted anti-inflammatory and neuroprotective effects against excitotoxicity; and (3) 4′-geranyloxyferulic acid (GOFA), a natural prenyloxycinnamic acid, also exerted anti-inflammatory effects. In the present study, using an intranigral lipopolysaccharide (LPS)-induced PD-like mouse model, we investigated whether AUR, 7-IP, and GOFA suppress microglial activation and protect against dopaminergic neuronal cell death in the SN. We successfully showed that these prenyloxyphenylpropanoids exhibited these prospective abilities, suggesting the potential of these compounds as neuroprotective agents for patients with PD. PMID:27763495

  7. Cyclic ADP-ribose is a second messenger in the lipopolysaccharide-stimulated activation of murine N9 microglial cell line.

    PubMed

    Franco, Luisa; Bodrato, Nicoletta; Moreschi, Iliana; Usai, Cesare; Bruzzone, Santina; Scarf ì, Sonia; Zocchi, Elena; De Flora, Antonio

    2006-10-01

    Lipopolysaccharide, the main component of the cell wall of Gram-negative bacteria, is known to activate microglial cells following its interaction with the CD14/Toll-like receptor complex (TLR-4). The activation pathway triggered by lipopolysaccharide in microglia involves enhanced basal levels of intracellular calcium ([Ca2+]i) and terminates with increased generation of cytokines/chemokines and nitric oxide. Here we demonstrate that in lipopolysaccharide-stimulated murine N9 microglial cells, cyclic ADP-ribose, a universal and potent Ca2+ mobiliser generated from NAD+ by ADP-ribosyl cyclases (ADPRC), behaves as a second messenger in the cell activation pathway. Lipopolysaccharide induced phosphorylation, mediated by multiple protein kinases, of the mammalian ADPRC CD38, which resulted in significantly enhanced ADPRC activity and in a 1.7-fold increase in the concentration of intracellular cyclic ADP-ribose. This event was paralleled by doubling of the basal [Ca2+]i levels, which was largely prevented by the cyclic ADP-ribose antagonists 8-Br-cyclic ADP-ribose and ryanodine (by 75% and 88%, respectively). Both antagonists inhibited, although incompletely, functional events downstream of the lipopolysaccharide-induced microglia-activating pathway, i.e. expression of inducible nitric oxide synthase, overproduction and release of nitric oxide and of tumor necrosis factor alpha. The identification of cyclic ADP-ribose as a key signal metabolite in the complex cascade of events triggered by lipopolysaccharide and eventually leading to enhanced generation of pro-inflammatory molecules may suggest a new therapeutic target for treatment of neurodegenerative diseases related to microglia activation.

  8. Neurobiology of microglial action in CNS injuries: receptor-mediated signaling mechanisms and functional roles

    PubMed Central

    Hu, Xiaoming; Liou, Anthony K.F.; Leak, Rehana K.; Xu, Mingyue; An, Chengrui; Suenaga, Jun; Shi, Yejie; Gao, Yanqin; Zheng, Ping; Chen, Jun

    2014-01-01

    Microglia are the first line of immune defense against central nervous system (CNS) injuries and disorders. These highly plastic cells play dualistic roles in neuronal injury and recovery and are known for their ability to assume diverse phenotypes. A broad range of surface receptors are expressed on microglia and mediate microglial ‘On’ or ‘Off’ responses to signals from other host cells as well as invading microorganisms. The integrated actions of these receptors result in tightly regulated biological functions, including cell mobility, phagocytosis, the induction of acquired immunity, and trophic factor/inflammatory mediator release. Over the last few years, significant advances have been made towards deciphering the signaling mechanisms related to these receptors and their specific cellular functions. In this review, we describe the current state of knowledge of the surface receptors involved in microglial activation, with an emphasis on their engagement of distinct functional programs and their roles in CNS injuries. It will become evident from this review that microglial homeostasis is carefully maintained by multiple counterbalanced strategies, including, but not limited to, ‘On’ and ‘Off’ receptor signaling. Specific regulation of theses microglial receptors may be a promising therapeutic strategy against CNS injuries. PMID:24923657

  9. Increase of TREM2 during Aging of an Alzheimer’s Disease Mouse Model Is Paralleled by Microglial Activation and Amyloidosis

    PubMed Central

    Brendel, Matthias; Kleinberger, Gernot; Probst, Federico; Jaworska, Anna; Overhoff, Felix; Blume, Tanja; Albert, Nathalie L.; Carlsen, Janette; Lindner, Simon; Gildehaus, Franz Josef; Ozmen, Laurence; Suárez-Calvet, Marc; Bartenstein, Peter; Baumann, Karlheinz; Ewers, Michael; Herms, Jochen; Haass, Christian; Rominger, Axel

    2017-01-01

    Heterozygous missense mutations in the triggering receptor expressed on myeloid cells 2 (TREM2) have been reported to significantly increase the risk of developing Alzheimer’s disease (AD). Since TREM2 is specifically expressed by microglia in the brain, we hypothesized that soluble TREM2 (sTREM2) levels may increase together with in vivo biomarkers of microglial activity and amyloidosis in an AD mouse model as assessed by small animal positron-emission-tomography (μPET). In this cross-sectional study, we examined a strong amyloid mouse model (PS2APP) of four age groups by μPET with [18F]-GE180 (glial activation) and [18F]-florbetaben (amyloidosis), followed by measurement of sTREM2 levels and amyloid levels in the brain. Pathology affected brain regions were compared between tracers (dice similarity coefficients) and pseudo-longitudinally. μPET results of both tracers were correlated with terminal TREM2 levels. The brain sTREM2 levels strongly increased with age of PS2APP mice (5 vs. 16 months: +211%, p < 0.001), and correlated highly with μPET signals of microglial activity (R = 0.89, p < 0.001) and amyloidosis (R = 0.92, p < 0.001). Dual μPET enabled regional mapping of glial activation and amyloidosis in the mouse brain, which progressed concertedly leading to a high overlap in aged PS2APP mice (dice similarity 67%). Together, these results substantiate the use of in vivo μPET measurements in conjunction with post mortem sTREM2 in future anti-inflammatory treatment trials. Taking human data into account sTREM2 may increase during active amyloid deposition. PMID:28197095

  10. Ginsenoside Re rescues methamphetamine-induced oxidative damage, mitochondrial dysfunction, microglial activation, and dopaminergic degeneration by inhibiting the protein kinase Cδ gene.

    PubMed

    Shin, Eun-Joo; Shin, Seung Woo; Nguyen, Thuy-Ty Lan; Park, Dae Hun; Wie, Myung-Bok; Jang, Choon-Gon; Nah, Seung-Yeol; Yang, Byung Wook; Ko, Sung Kwon; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2014-06-01

    Ginsenoside Re, one of the main constituents of Panax ginseng, possesses novel antioxidant and anti-inflammatory properties. However, the pharmacological mechanism of ginsenoside Re in dopaminergic degeneration remains elusive. We suggested that protein kinase C (PKC) δ mediates methamphetamine (MA)-induced dopaminergic toxicity. Treatment with ginsenoside Re significantly attenuated methamphetamine-induced dopaminergic degeneration in vivo by inhibiting impaired enzymatic antioxidant systems, mitochondrial oxidative stress, mitochondrial translocation of protein kinase Cδ, mitochondrial dysfunction, pro-inflammatory microglial activation, and apoptosis. These protective effects were comparable to those observed with genetic inhibition of PKCδ in PKCδ knockout (-/-) mice and with PKCδ antisense oligonucleotides, and ginsenoside Re did not provide any additional protective effects in the presence of PKCδ inhibition. Our results suggest that PKCδ is a critical target for ginsenoside Re-mediated protective activity in response to dopaminergic degeneration induced by MA.

  11. 2-Methoxyestradiol, an endogenous 17β-estradiol metabolite, inhibits microglial proliferation and activation via an estrogen receptor-independent mechanism.

    PubMed

    Schaufelberger, Sara A; Rosselli, Marinella; Barchiesi, Federica; Gillespie, Delbert G; Jackson, Edwin K; Dubey, Raghvendra K

    2016-03-01

    17β-Estradiol (estradiol) inhibits microglia proliferation. 2-Methoxyestradiol (2-ME) is an endogenous metabolite of estradiol with little affinity for estrogen receptors (ERs). We hypothesize that 2-ME inhibits microglial proliferation and activation and contributes to estradiol's inhibitory effects on microglia. We compared the effects of estradiol, 2-hydroxyestradiol [2-OE; estradiol metabolite produced by cytochrome P450 (CYP450)], and 2-ME [formed by catechol-O-methyltransferase (COMT) acting upon 2-OE] on microglial (BV2 cells) DNA synthesis, cell proliferation, activation, and phagocytosis. 2-ME and 2-OE were approximately three- and 10-fold, respectively, more potent than estradiol in inhibiting microglia DNA synthesis. The antimitogenic effects of estradiol were reduced by pharmacological inhibitors of CYP450 and COMT. Inhibition of COMT blocked the conversion of 2-OE to 2-ME and the antimitogenic effects of 2-OE but not 2-ME. Microglia expressed ERβ and GPR30 but not ERα. 2,3-Bis(4-hydroxyphenyl)-propionitrile (ERβ agonist), but not 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (ERα agonist) or G1 (GPR30 agonist), inhibited microglial proliferation. The antiproliferative effects of estradiol, but not 2-OE or 2-ME, were partially reversed by ICI-182,780 (ERα/β antagonist) but not by 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole (ERα antagonist) or G15 (GPR30 antagonist). Lipopolysaccharide increased microglia iNOS and COX-2 expression and phagocytosing activity of microglia; these effects were inhibited by 2-ME. We conclude that in microglia, 2-ME inhibits proliferation, proinflammatory responses, and phagocytosis. 2-ME partially mediates the effects of estradiol via ER-independent mechanisms involving sequential metabolism of estradiol to 2-OE and 2-ME. 2-ME could be of potential therapeutic use in postischemic stroke injuries. Interindividual differences in estradiol metabolism might affect the

  12. Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF-κB Signaling Pathway

    PubMed Central

    Kim, Su Jung; Hong, Seung Bok; Park, Jin-Kyu

    2016-01-01

    Bee venom has long been used as a traditional folk medicine in Korea. It has been reportedly used for the treatment of arthritis, cancer, and inflammation. Although its anti-inflammatory activity in lipopolysaccharide- (LPS-) stimulated inflammatory cells has been reported, the exact mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, the aim of this study was to investigate the anti-inflammatory mechanism of bee venom in BV2 microglial cells. We first investigated whether NO production in LPS-activated BV2 cells was inhibited by bee venom, and further iNOS mRNA and protein expressions were determined. The mRNA and protein levels of proinflammatory cytokines were examined using semiquantitative RT-PCR and immunoblotting, respectively. Moreover, modulation of the transcription factor NF-κB by bee venom was also investigated using a luciferase assay. LPS-induced NO production in BV2 microglial cells was significantly inhibited in a concentration-dependent manner upon pretreatment with bee venom. Bee venom markedly reduced the mRNA expression of COX-2, TNF-α, IL-1β, and IL-6 and suppressed LPS-induced activation of MyD88 and IRAK1 and phosphorylation of TAK1. Moreover, NF-κB translocation by IKKα/β phosphorylation and subsequent IκB-α degradation were also attenuated. Thus, collectively, these results indicate that bee venom exerts its anti-inflammatory activity via the IRAK1/TAK1/NF-κB signaling pathway. PMID:27563334

  13. Silver and gold nanoparticles exposure to in vitro cultured retina--studies on nanoparticle internalization, apoptosis, oxidative stress, glial- and microglial activity.

    PubMed

    Söderstjerna, Erika; Bauer, Patrik; Cedervall, Tommy; Abdshill, Hodan; Johansson, Fredrik; Johansson, Ulrica Englund

    2014-01-01

    The complex network of neuronal cells in the retina makes it a potential target of neuronal toxicity--a risk factor for visual loss. With growing use of nanoparticles (NPs) in commercial and medical applications, including ophthalmology, there is a need for reliable models for early prediction of NP toxicity in the eye and retina. Metal NPs, such as gold and silver, gain much of attention in the ophthalmology community due to their potential to cross the barriers of the eye. Here, NP uptake and signs of toxicity were investigated after exposure to 20 and 80 nm Ag- and AuNPs, using an in vitro tissue culture model of the mouse retina. The model offers long-term preservation of retinal cell types, numbers and morphology and is a controlled system for delivery of NPs, using serum-free defined culture medium. AgNO3-treatment was used as control for toxicity caused by silver ions. These end-points were studied; gross morphological organization, glial activity, microglial activity, level of apoptosis and oxidative stress, which are all well described as signs of insult to neural tissue. TEM analysis demonstrated cellular- and nuclear uptake of all NP types in all neuronal layers of the retina. Htx-eosin staining showed morphological disruption of the normal complex layered retinal structure, vacuole formation and pyknotic cells after exposure to all Ag- and AuNPs. Significantly higher numbers of apoptotic cells as well as an increased number of oxidative stressed cells demonstrated NP-related neuronal toxicity. NPs also caused increased glial staining and microglial cell activation, typical hallmarks of neural tissue insult. This study demonstrates that low concentrations of 20 and 80 nm sized Ag- and AuNPs have adverse effects on the retina, using an organotypic retina culture model. Our results motivate careful assessment of candidate NP, metallic or-non-metallic, to be used in neural systems for therapeutic approaches.

  14. Silver and Gold Nanoparticles Exposure to In Vitro Cultured Retina – Studies on Nanoparticle Internalization, Apoptosis, Oxidative Stress, Glial- and Microglial Activity

    PubMed Central

    Söderstjerna, Erika; Bauer, Patrik; Cedervall, Tommy; Abdshill, Hodan; Johansson, Fredrik; Johansson, Ulrica Englund

    2014-01-01

    The complex network of neuronal cells in the retina makes it a potential target of neuronal toxicity – a risk factor for visual loss. With growing use of nanoparticles (NPs) in commercial and medical applications, including ophthalmology, there is a need for reliable models for early prediction of NP toxicity in the eye and retina. Metal NPs, such as gold and silver, gain much of attention in the ophthalmology community due to their potential to cross the barriers of the eye. Here, NP uptake and signs of toxicity were investigated after exposure to 20 and 80 nm Ag- and AuNPs, using an in vitro tissue culture model of the mouse retina. The model offers long-term preservation of retinal cell types, numbers and morphology and is a controlled system for delivery of NPs, using serum-free defined culture medium. AgNO3-treatment was used as control for toxicity caused by silver ions. These end-points were studied; gross morphological organization, glial activity, microglial activity, level of apoptosis and oxidative stress, which are all well described as signs of insult to neural tissue. TEM analysis demonstrated cellular- and nuclear uptake of all NP types in all neuronal layers of the retina. Htx-eosin staining showed morphological disruption of the normal complex layered retinal structure, vacuole formation and pyknotic cells after exposure to all Ag- and AuNPs. Significantly higher numbers of apoptotic cells as well as an increased number of oxidative stressed cells demonstrated NP-related neuronal toxicity. NPs also caused increased glial staining and microglial cell activation, typical hallmarks of neural tissue insult. This study demonstrates that low concentrations of 20 and 80 nm sized Ag- and AuNPs have adverse effects on the retina, using an organotypic retina culture model. Our results motivate careful assessment of candidate NP, metallic or-non-metallic, to be used in neural systems for therapeutic approaches. PMID:25144684

  15. Shenqi Fuzheng Injection attenuates irradiation-induced brain injury in mice via inhibition of the NF-κB signaling pathway and microglial activation

    PubMed Central

    Zhang, Jian; Tong, Fan; Cai, Qian; Chen, Ling-juan; Dong, Ji-hua; Wu, Gang; Dong, Xiao-rong

    2015-01-01

    Aim: Radiation-induced brain injury (RIBI) is the most common and severe adverse effect induced by cranial radiation therapy (CRT). In the present study, we examined the effects of the traditional Chinese medicine Shenqi Fuzheng Injection (SFI) on RIBI in mice, and explored the underlying mechanisms. Methods: C57BL/6J mice were subjected to a single dose of 20-Gy CRT. The mice were treated with SFI (20 mL·kg-1·d-1, ip) for 4 weeks. Morris water maze test was used to assess the cognitive changes. Evans blue leakage and a horseradish peroxidase (HRP) assay were used to evaluate the integrity of the blood-brain barrier (BBB). The expression of inflammatory factors and microglial activation in brain tissues were detected using RT-PCR, Western blotting and immunofluorescence staining. Results: CRT caused marked reductions in the body weight and life span of the mice, and significantly impaired their spatial learning. Furthermore, CRT significantly increased the BBB permeability, number of activated microglia, expression levels of TNF-α and IL-1β, and the levels of phosphorylated p65 and PIDD-CC (the twice-cleaved fragment of p53-induced protein with a death domain) in the brain tissues. Four-week SFI treatment (administered for 2 weeks before and 2 weeks after CRT) not only significantly improved the physical status, survival, and spatial learning in CRT-treated mice, but also attenuated all the CRT-induced changes in the brain tissues. Four-week SFI pretreatment (administered for 4 weeks before CRT) was less effective. Conclusion: Administration of SFI effectively attenuates irradiation-induced brain injury via inhibition of the NF-κB signaling pathway and microglial activation. PMID:26526200

  16. Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension.

    PubMed

    Trost, A; Motloch, K; Bruckner, D; Schroedl, F; Bogner, B; Kaser-Eichberger, A; Runge, C; Strohmaier, C; Klein, B; Aigner, L; Reitsamer, H A

    2015-07-01

    Glaucoma is a group of neurodegenerative diseases characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, and is the second leading cause of blindness worldwide. Elevated intraocular pressure is a well known risk factor for the development of glaucomatous optic neuropathy and pharmacological or surgical lowering of intraocular pressure represents a standard procedure in glaucoma treatment. However, the treatment options are limited and although lowering of intraocular pressure impedes disease progression, glaucoma cannot be cured by the currently available therapy concepts. In an acute short-term ocular hypertension model in rat, we characterize RGC loss, but also microglial cell activation and vascular alterations of the retina at certain time points. The combination of these three parameters might facilitate a better evaluation of the disease progression, and could further serve as a new model to test novel treatment strategies at certain time points. Acute ocular hypertension (OHT) was induced by the injection of magnetic microbeads into the rat anterior chamber angle (n = 22) with magnetic position control, leading to constant elevation of IOP. At certain time points post injection (4d, 7d, 10d, 14d and 21d), RGC loss, microglial activation, and microvascular pericyte (PC) coverage was analyzed using immunohistochemistry with corresponding specific markers (Brn3a, Iba1, NG2). Additionally, the tightness of the retinal vasculature was determined via injections of Texas Red labeled dextran (10 kDa) and subsequently analyzed for vascular leakage. For documentation, confocal laser-scanning microscopy was used, followed by cell counts, capillary length measurements and morphological and statistical analysis. The injection of magnetic microbeads led to a progressive loss of RGCs at the five time points investigated (20.07%, 29.52%, 41.80%, 61.40% and 76.57%). Microglial cells increased in number and displayed an activated morphology

  17. Inhibition of cathepsin X reduces the strength of microglial-mediated neuroinflammation.

    PubMed

    Pišlar, Anja; Božić, Biljana; Zidar, Nace; Kos, Janko

    2017-03-01

    Inflammation plays a central role in the processes associated with neurodegeneration. The inflammatory response is mediated by activated microglia that release inflammatory mediators to the neuronal environment. Microglia-derived lysosomal cathepsins, including cathepsin X, are increasingly recognized as important mediators of the inflammation involved in lipopolysaccharide (LPS)-induced neuroinflammation. The current study was undertaken to investigate the role of cathepsin X and its molecular target, γ-enolase, in neuroinflammation and to elucidate the underlying mechanism. We determined that the exposure of activated BV2 and EOC 13.31 cells to LPS led to increased levels of cathepsin X protein and activity in the culture supernatants in a concentration- and time-dependent manner. In contrast, LPS stimulation of these two cells reduced the release of active γ-enolase in a manner regulated by the cathepsin X activity. Cathepsin X inhibitor AMS36 significantly reduced LPS-induced production of nitric oxide, reactive oxygen species and the pro-inflammatory cytokines interleukin-6 and tumor necrosis factor-α from BV2 cells. Inhibition of cathepsin X suppressed microglial activation through the reduced caspase-3 activity, together with diminished microglial cell death and apoptosis, and also through inhibition of the activity of the mitogen-activated protein kinases. Further, SH-SY5Y treatment with culture supernatants of activated microglial cells showed that cathepsin X inhibition reduces microglia-mediated neurotoxicity. These results indicate that up-regulated expression and increased release and activity of microglial cathepsin X leads to microglia activation-mediated neurodegeneration. Cathepsin X inhibitor caused neuroprotection via its inhibition of the activation of microglia. Cathepsin X could thus be a potential therapeutic target for neuroinflammatory disorders.

  18. NF-κB Upregulates Type 5 Phosphodiesterase in N9 Microglial Cells: Inhibition by Sildenafil and Yonkenafil.

    PubMed

    Zhao, Siqi; Yang, Jingyu; Wang, Lixin; Peng, Shengyi; Yin, Jie; Jia, Lina; Yang, Xiaowei; Yuan, Zengqiang; Wu, Chunfu

    2016-05-01

    Our previous studies showed that the phosphodiesterase-5 (PDE5) inhibitor sildenafil inhibited the microglial activation induced by lipopolysaccharide (LPS). However, whether yonkenafil, a novel PDE5 inhibitor, also inhibits microglial activation and the underlying mechanism of inhibition remain elusive. Here we found that yonkenafil significantly suppressed the production of NO, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) and the protein expression of inducible NO synthase (iNOS) induced by LPS in microglial cells in a concentration-dependent manner. Knockdown of PDE5 inhibits NO and iNOS protein expression in LPS-stimulated N9 microglia. Moreover, we observed that the nuclear factor-κB (NF-κB) transcriptionally upregulated PDE5 expression, which was inhibited by sildenafil and yonkenafil in LPS-stimulated N9 microglia. Therefore, sildenafil and yonkenafil may exert their inhibitory effects on microglial activation by reducing the expression of PDE5. Furthermore, sildenafil and yonkenafil increased the cyclic guanosine monophosphate (cGMP) level in N9 microglia, and 8-Br-cGMP, an analogue of cGMP, downregulates extracellular signal-regulated kinases 1 and 2 (ERK1/2)/the NF-κB pathway, suggesting that sildenafil and yonkenafil inhibit microglial activation by decreasing PDE5 expression and increasing the cGMP level. Importantly, sildenafil and yonkenafil significantly alleviated the death of SH-SY5Y neuroblastoma cells and primary cortical neurons induced by the conditioned medium from activated microglia. Together, these findings position PDE5 as a potential therapy target for the treatment of neuroinflammation accompanied by microglial activation.

  19. Nicotine increases eclampsia-like seizure threshold and attenuates microglial activity in rat hippocampus through the α7 nicotinic acetylcholine receptor.

    PubMed

    Li, Xiaolan; Han, Xinjia; Bao, Junjie; Liu, Yuanyuan; Ye, Aihua; Thakur, Mukesh; Liu, Huishu

    2016-07-01

    A considerable number of studies have demonstrated that nicotine, a α7-nicotinic acetylcholine receptor (α7-nAChR) agonist, can dampen immune response through the cholinergic anti-inflammatory pathway. Evidence suggests that inflammation plays a critical role in eclampsia, which contributes to maternal and fetal morbidity and mortality. In the present study, possible anti-inflammation and neuro-protective effects of nicotine via α7-nAChRs have been investigated after inducing eclampsia-like seizures in rats. Rat eclampsia-like models were established by administering lipopolysaccharide (LPS) plus pentylenetetrazol (PTZ) in pregnant rats. Rats were given nicotine from gestation day (GD) 14-19. Then, clinical symptoms were detected. Seizure severity was recorded by behavioral tests, serum levels of inflammatory cytokines were measured by Luminex assays, microglia and astrocyte expressions were detected by immunofluorescence, and changes in neuronal number in the hippocampal CA1 region among different groups were detected by Nissl staining. Our results revealed that nicotine effectively improved fetal outcomes. Furthermore, it significantly decreased systolic blood pressure, and maternal serum levels of Th1 cytokines (TNF-α, IL-1β, IL-6 and IL-12P70) and an IL-17 cytokine (IL-17A), and dramatically increased eclampsia-like seizure threshold. Moreover, this attenuated neuronal loss and decreased the expression of microglial activation markers of the hippocampal CA1 region in the eclampsia-like group. Additionally, pretreatment with α-bungarotoxin, a selective α7-nAChR antagonist could prevent the protective effects of nicotine in eclampsia-like model rats. Our findings indicate that the administration of nicotine may attenuate microglial activity and increase eclampsia-like seizure threshold in rat hippocampus through the α7 nicotinic receptor. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Age-dependent differences in microglial responses to systemic inflammation are evident as early as middle age.

    PubMed

    Nikodemova, Maria; Small, Alissa L; Kimyon, Rebecca S; Watters, Jyoti J

    2016-05-01

    Whereas age increases microglial inflammatory activities and impairs their ability to effectively regulate their immune response, it is unclear at what age these exaggerated responses begin. We tested the hypotheses that augmented microglial responses to inflammatory challenge are present as early as middle age and that repeated stimulation of primed microglia in vivo would reveal microglial senescence. Microglial gene expression was investigated in a mouse model of repeated systemic inflammation induced by intraperitoneal injection of bacterial lipopolysaccharide (LPS). Following LPS, microglia from middle-aged mice (9-10 mo) displayed larger increases in Tnfα, Il-6, and Il-1β gene expression compared with young adults (2 mo). Similar results were observed in the spleens of middle-aged mice, indicating that exaggeration of both central and peripheral immune responses are already evident at early middle age. Interestingly, despite greater proinflammatory responses to the first LPS challenge in the aged mice, there were no age-dependent differences in either microglia or spleen following a subsequent LPS dose, suggesting that animals at this age retain the ability to effectively control their immune response following repeated challenge. The exacerbated microglial immune response to systemic inflammation at early middle age suggests that the CNS may be vulnerable to age-dependent alterations earlier than previously appreciated. Copyright © 2016 the American Physiological Society.

  1. Spirulina and C-phycocyanin reduce cytotoxicity and inflammation-related genes expression of microglial cells.

    PubMed

    Chen, Jin-Cherng; Liu, Kris Sun; Yang, Ting-Ju; Hwang, Juen-Haur; Chan, Yin-Ching; Lee, I-Te

    2012-11-01

    Our aim was to investigate the effects of Spirulina on BV-2 microglial cell cytotoxicity and inflammatory genes expression. BV-2 microglial cells were treated with lipopolysaccharide (LPS) (1 µg/ml) and various concentrations of Spirulina platensis water extract or its active component (C-phycocyanin (C-PC)) for 24 hours. Cytotoxicity (lactate dehydrogenase (LDH) release) and expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) mRNAs were assayed. LPS increased LDH production and up-regulated expression of iNOS, COX-2, TNF-α, and IL-6 by BV-2 microglial cells. However, Spirulina platensis water extract and C-PC significantly reduced LPS-induced LDH release, and expression of iNOS, COX-2, TNF-α, and IL-6 mRNAs. Spirulina can reduce the cytotoxicity and inhibit expression of inflammation-related genes of LPS-stimulated BV-2 microglial cells.

  2. Age-Related Differences in Neuropathic Pain Behavior and Spinal Microglial Activity after L5 Spinal Nerve Ligation in Male Rats

    PubMed Central

    Zeinali, Hossein; Manaheji, Homa; Zaringhalam, Jalal; Bahari, Zahra; Nazemi, Samad; Sadeghi, Mehdi

    2016-01-01

    Introduction: Several studies have reported the involvement of age-related changes in the development of neuropathic pain behaviors. However, limited data are available on the role of age in establishing and maintaining chronic neuropathic pain after peripheral nerve injury. Methods: In the present study, we examined age-related neuropathic behavior among rats in 4 age groups: pups (4 weeks old; weight, 60–80 g), juvenile rats (6 weeks old; weight, 120–140 g), and mature rats (10–12 weeks old; weight, 200–250 g). Because the exact contribution of spinal microglia and its association with the development of neuropathic pain remains unknown, we also evaluated the expression of spinal Iba1, a microglial marker, by using western blotting before and 5 days after spinal nerve ligation (SNL) as well as after the daily IP administration of minocycline (30 mg/kg). Results: Our results showed that SNL-induced mechanical allodynia but not thermal hyperalgesia in mature rats but not in pups (P<0.05 and P<0.01, respectively). The expression of spinal Iba1 in the juvenile rats was significantly lower than that in pups and mature rats (P<0.01). Moreover, administration of minocycline decreased the expression of spinal Iba1 in the pup rats more than in juvenile rats (P<0.001) and in the juvenile rats more than in the mature rats (P<0.05). Conclusion: These data suggest that the development of neuropathic behaviors and microglial activation after SNL could be age dependent. PMID:27563413

  3. A novel role of microglial NADPH oxidase in mediating extra-synaptic function of norepinephrine in regulating brain immune homeostasis

    PubMed Central

    Jiang, Lulu; Chen, Shih-Heng; Chu, Chun-Hsien; Wang, Shi-Jun; Oyarzabal, Esteban; Wilson, Belinda; Sanders, Virginia; Xie, Keqin; Wang, Qingshan; Hong, Jau-Shyong

    2015-01-01

    Although the peripheral anti-inflammatory effect of norepinephrine (NE) is well-documented, the mechanism by which this neurotransmitter functions as an anti-inflammatory/neuroprotective agent in the central nervous system is unclear. This study aimed to determine the anti-inflammatory/neuroprotective effects and underlying mechanisms of NE in inflammation-based dopaminergic neurotoxicity models. In mice, NE-depleting toxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) was injected at 6 months of lipopolysaccharide (LPS)-induced neuroinflammation. We found that NE depletion enhanced LPS-induced dopaminergic neuron loss in the substantia nigra. This piece of in vivo data prompted us to conduct a series of studies in an effort to elucidate the mechanism as to how NE affects dopamine neuron survival by using primary midbrain neuron-glia cultures. Results showed that sub-micromolar concentrations of NE dose-dependently protected dopaminergic neurons from LPS-induced neurotoxicity by inhibiting microglia activation and subsequent release of pro-inflammatory factors. However, NE-elicited neuroprotection was not totally abolished in cultures from β2-adrenergic receptor (β2-AR) deficient mice, suggesting that novel pathways other than β2-AR are involved. To this end, we found that sub-micromolar NE dose-dependently inhibited NADPH oxidase (NOX2)-generated superoxide, which contributes to the anti-inflammatory and neuroprotective effects of NE. This novel mechanism was indeed adrenergic receptors independent since both (+) and (−) optic isomers of NE displayed the same potency. We further demonstrated that NE inhibited LPS-induced NOX2 activation by blocking the translocation of its cytosolic subunit to plasma membranes. In summary, we revealed a potential physiological role of NE in maintaining brain immune homeostasis and protecting neurons via a novel mechanism. PMID:25740080

  4. A novel role of microglial NADPH oxidase in mediating extra-synaptic function of norepinephrine in regulating brain immune homeostasis.

    PubMed

    Jiang, Lulu; Chen, Shih-Heng; Chu, Chun-Hsien; Wang, Shi-Jun; Oyarzabal, Esteban; Wilson, Belinda; Sanders, Virginia; Xie, Keqin; Wang, Qingshan; Hong, Jau-Shyong

    2015-06-01

    Although the peripheral anti-inflammatory effect of norepinephrine (NE) is well documented, the mechanism by which this neurotransmitter functions as an anti-inflammatory/neuroprotective agent in the central nervous system (CNS) is unclear. This article aimed to determine the anti-inflammatory/neuroprotective effects and underlying mechanisms of NE in inflammation-based dopaminergic neurotoxicity models. In mice, NE-depleting toxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) was injected at 6 months of lipopolysaccharide (LPS)-induced neuroinflammation. It was found that NE depletion enhanced LPS-induced dopaminergic neuron loss in the substantia nigra. This piece of in vivo data prompted us to conduct a series of studies in an effort to elucidate the mechanism as to how NE affects dopamine neuron survival by using primary midbrain neuron/glia cultures. Results showed that submicromolar concentrations of NE dose-dependently protected dopaminergic neurons from LPS-induced neurotoxicity by inhibiting microglia activation and subsequent release of pro-inflammatory factors. However, NE-elicited neuroprotection was not totally abolished in cultures from β2-adrenergic receptor (β2-AR)-deficient mice, suggesting that novel pathways other than β2-AR are involved. To this end, It was found that submicromolar NE dose-dependently inhibited NADPH oxidase (NOX2)-generated superoxide, which contributes to the anti-inflammatory and neuroprotective effects of NE. This novel mechanism was indeed adrenergic receptors independent since both (+) and (-) optic isomers of NE displayed the same potency. We further demonstrated that NE inhibited LPS-induced NOX2 activation by blocking the translocation of its cytosolic subunit to plasma membranes. In summary, we revealed a potential physiological role of NE in maintaining brain immune homeostasis and protecting neurons via a novel mechanism.

  5. Anti-neuro-inflammatory effects of Nardostachys chinensis in lipopolysaccharide-and lipoteichoic acid-stimulated microglial cells.

    PubMed

    Park, Sun Young; Kim, Young Hun; Park, Geuntae

    2016-05-01

    Excessive microglial cell activation is related to the progression of chronic neuro-inflammatory disorders. Heme oxygenase-1 (HO-1) expression mediated by the NFE2-related factor (Nrf-2) pathway is a key regulator of neuro-inflammation. Nardostachys chinensis is used as an anti-malarial, anti-nociceptive, and neurotrophic treatment in traditional Asian medicines. In the present study, we examined the effects of an ethyl acetate extract of N. chinensis (EN) on the anti-neuro-inflammatory effects mediated by HO-1 up-regulation in Salmonella lipopolysaccharide (LPS)- or Staphylococcus aureus lipoteichoic acid (LTA)-stimulated BV2 microglial cells. Our results indicated that EN suppressed pro-inflammatory cytokine production and induced HO-1 transcription and translation through Nrf-2/antioxidant response element (ARE) signaling. EN markedly inhibited LPS- and LTA-induced activation of nuclear factor-kappa B (NF-κB) as well as phosphorylation of mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription (STAT). Furthermore, EN protected hippocampal HT22 cells from indirect neuronal toxicity mediated by LPS- and LTA-treated microglial cells. These results suggested that EN impairs LPS- and LTA-induced neuro-inflammatory responses in microglial cells and confers protection against indirect neuronal damage to HT22 cells. In conclusion, our findings indicate that EN could be used as a natural anti-neuro-inflammatory and neuroprotective agent. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  6. N9 microglial cells polarized by LPS and IL4 show differential responses to secondary environmental stimuli.

    PubMed

    Liu, Hong-Cui; Zheng, Min-Hua; Du, Yan-Ling; Wang, Li; Kuang, Fang; Qin, Hong-Yan; Zhang, Bing-Fang; Han, Hua

    2012-01-01

    Microglia participates in the regulation of many inflammation-related pathological processes in the central nervous system, but how microglial activation is regulated has not been fully understood. Here, by using a microglial cell line, we show that microglia, like other macrophages, are activated by inflammatory stimuli in a polarized manner. The LPS-polarized M1 microglia appeared to be unable to respond to a secondary IL4 stimulation, while IL4-polarized M2 microglia could respond to secondary LPS stimulation. We also show that Notch signaling is involved in microglial polarization. When Notch signaling was blocked, the M1 polarization was suppressed, while the M2 polarization was promoted. Withdraw of the Notch signal inhibitor did not permit M2 N9 cells to re-polarize to M1 upon LPS stimulation, suggesting that the effects of Notch blockade on microglial polarization could be "memorized" by cells. These results suggest complicated mechanisms including epigenetic programs in the regulation of macrophage polarization.

  7. Neonatal intrahippocampal injection of lipopolysaccharide induces deficits in social behavior and prepulse inhibition and microglial activation in rats: Implication for a new schizophrenia animal model.

    PubMed

    Zhu, Furong; Zhang, Lulu; Ding, Yu-qiang; Zhao, Jingping; Zheng, Yingjun

    2014-05-01

    Several lines of evidence have suggested that the dysregulation of immune system is involved in the pathogenesis of schizophrenia. Microglia are the resident macrophage of the brain and the major player in innate immunity in the brain. We hypothesized that microglia activation may be closely associated with the neuropathology of schizophrenia. Neonatal intrahippocampal injection of lipopolysaccharide (LPS), an activator of microglia, was performed in rats at postnatal day 7 (PD7), and they were separately treated with saline or minocycline for consecutive 3days. Behavioral changes (locomotor activity, social interaction and prepulse inhibition) were examined in adulthood, and the number of microglia was assessed using immunohistochemistry at PD9, PD21 and PD67. The adult rats in LPS-injected group showed obvious behavioral alterations (deficits in social behavior and prepulse inhibition) and a persistently dramatic increase of number of activated microglial cells in the hippocampus, cerebral cortex and thalamus compared to those in saline-injected group. Interestingly, pretreatment with minocycline could significantly rescue the behavioral deficits and prevent microglia activation. Our results suggest that neonatal intrahippocampal LPS injection may serve as a potential schizophrenia animal model, and inhibition of microglia activation may be a potential treatment strategy for schizophrenia.

  8. Hirsutane-Type Sesquiterpenes with Inhibitory Activity of Microglial Nitric Oxide Production from the Red Alga-Derived Fungus Chondrostereum sp. NTOU4196.

    PubMed

    Hsiao, George; Chi, Wei-Chiung; Pang, Ka-Lai; Chen, Jih-Jung; Kuo, Yueh-Hsiung; Wang, Yu-Kai; Cha, Hyo-Jung; Chou, Shen-Chieh; Lee, Tzong-Huei

    2017-05-26

    The marine red alga Pterocladiella capillacea is an economic alga for the food industry in Taiwan, and its associated highly diversified fungi have not been investigated meticulously thus far. The EtOAc extract of the fermented broth of Chondrostereum sp. NTOU4196, a fungal strain isolated from P. capillacea, was found to exhibit significant nitric oxide (NO) production inhibitory activity in lipopolysaccharide-activated murine RAW 264.7 cells at a concentration of 100 μg/mL in the preliminary screening. Therefore, separation of the active principles from the fermented broths was performed, and that has led to the isolation of eight new 5,5,5-tricyclic hirsutane-type sesquiterpenes, namely, chondroterpenes A-H (1-8), together with seven known analogues. They were identified by analyses of spectroscopic data and comparison with literature values. Among the new isolates, chondroterpene A (1) exhibited more significant NO production inhibitory activity in murine BV-2 microglial cells, and of all the isolated compounds, hirsutanol A (9) exerted limited cytotoxic effects and the most potent inhibitory activity on NO production.

  9. Role of very-late antigen-4 (VLA-4) in myelin basic protein-primed T cell contact-induced expression of proinflammatory cytokines in microglial cells.

    PubMed

    Dasgupta, Subhajit; Jana, Malabendu; Liu, Xiaojuan; Pahan, Kalipada

    2003-06-20

    The presence of neuroantigen-primed T cells recognizing self-myelin antigens within the CNS is necessary for the development of demyelinating autoimmune disease like multiple sclerosis. This study was undertaken to investigate the role of myelin basic protein (MBP)-primed T cells in the expression of proinflammatory cytokines in microglial cells. MBP-primed T cells alone induced specifically the microglial expression of interleukin (IL)-1beta, IL-1alpha tumor necrosis factor alpha, and IL-6, proinflammatory cytokines that are primarily involved in the pathogenesis of MS. This induction was primarily dependent on the contact between MBP-primed T cells and microglia. The activation of microglial NF-kappaB and CCAAT/enhancer-binding protein beta (C/EBPbeta) by MBP-primed T cell contact and inhibition of contact-mediated microglial expression of proinflammatory cytokines by dominant-negative mutants of p65 and C/EBPbeta suggest that MBP-primed T cells induce microglial expression of cytokines through the activation of NF-kappaB and C/EBPbeta. In addition, we show that MBP-primed T cells express very late antigen-4 (VLA-4), and functional blocking antibodies to alpha4 chain of VLA-4 (CD49d) inhibited the ability of MBP-primed T cells to induce microglial proinflammatory cytokines. Interestingly, the blocking of VLA-4 impaired the ability of MBP-primed T cells to induce microglial activation of only C/EBPbeta but not that of NF-kappaB. This study illustrates a novel role of VLA-4 in regulating neuroantigen-primed T cell-induced activation of microglia through C/EBPbeta

  10. Pesticides, microglial NOX2, and Parkinson's disease.

    PubMed

    Taetzsch, Thomas; Block, Michelle L

    2013-02-01

    Accumulating evidence indicates that pesticide exposure is associated with an increased risk for developing Parkinson's disease (PD). Several pesticides known to damage dopaminergic (DA) neurons, such as paraquat, rotenone, lindane, and dieldrin also demonstrate the ability to activate microglia, the resident innate immune cell in the brain. While each of these environmental toxicants may impact microglia through unique mechanisms, they all appear to converge on a common final pathway of microglial activation: NADPH oxidase 2 (NOX2) activation. This review will detail the role of microglia in selective DA neurotoxicity, highlight what is currently known about the mechanism of microglial NOX2 activation in these key pesticides, and describe the importance for DA neuron survival and PD etiology.

  11. Pesticides, Microglial NOX2, and Parkinson's disease

    PubMed Central

    Taetzsch, Thomas; Block, Michelle L.

    2013-01-01

    Accumulating evidence indicates that pesticide exposure is associated with an increased risk for developing Parkinson's disease (PD). Several pesticides known to damage dopaminergic (DA) neurons, such as paraquat, rotenone, lindane, and dieldrin also demonstrate the ability to activate microglia, the resident innate immune cell in the brain. While each of these environmental toxicants may impact microglia through unique mechanisms, they all appear to converge on a common final pathway of microglial activation: NADPH oxidase 2 (NOX2) activation. This review will detail the role of microglia in selective DA neurotoxicity, highlight what is currently known about the mechanism of microglial NOX2 activation in these key pesticides, and describe the importance for DA neuron survival and PD etiology. PMID:23349115

  12. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia

    PubMed Central

    2013-01-01

    Background Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury. Methods One day old Wistar rats were subjected to hypoxia for 2 h. Primary cultured microglia and BV-2 cells were subjected to hypoxia for different durations. TLR4 expression in microglia was determined by RT-PCR, western blot and immunofluorescence staining. Small interfering RNA (siRNA) transfection and antibody neutralization were employed to downregulate TLR4 in BV-2 and primary culture. mRNA and protein expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) was assessed. Reactive oxygen species (ROS), nitric oxide (NO) and NF-κB levels were determined by flow cytometry, colorimetric and ELISA assays respectively. Hypoxia-inducible factor-1 alpha (HIF-1α) mRNA and protein expression was quantified and where necessary, the protein expression was depleted by antibody neutralization. In vivo inhibition of TLR4 with CLI-095 injection was carried out followed by investigation of inflammatory mediators expression via double immunofluorescence staining. Results TLR4 immunofluorescence and protein expression in the corpus callosum and cerebellum in neonatal microglia were markedly enhanced post-hypoxia. In vitro, TLR4 protein expression was significantly increased in both primary microglia and BV-2 cells post-hypoxia. TLR4 neutralization in primary cultured microglia attenuated the hypoxia-induced expression of TNF-α, IL-1β and iNOS. siRNA knockdown of TLR4 reduced hypoxia-induced upregulation of TNF-α, IL-1β, iNOS, ROS and NO in BV-2 cells. TLR4

  13. Pseudoginsenoside-F11 (PF11) exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-κB, MAPKs and Akt signaling pathways.

    PubMed

    Wang, Xiaoxiao; Wang, Chunming; Wang, Jiming; Zhao, Siqi; Zhang, Kuo; Wang, Jingmin; Zhang, Wei; Wu, Chunfu; Yang, Jingyu

    2014-04-01

    Pseudoginsenoside-F11 (PF11), an ocotillol-type ginsenoside, has been shown to possess significant neuroprotective activity. Since microglia-mediated inflammation is critical for induction of neurodegeneration, this study was designed to investigate the effect of PF11 on activated microglia. PF11 significantly suppressed the release of ROS and proinflammatory mediators induced by LPS in a microglial cell line N9 including NO, PGE2, IL-1β, IL-6 and TNF-α. Moreover, PF11 inhibited interaction and expression of TLR4 and MyD88 in LPS-activated N9 cells, resulting in an inhibition of the TAK1/IKK/NF-κB signaling pathway. PF11 also inhibited the phosphorylation of Akt and MAPKs induced by LPS in N9 cells. Importantly, PF11 significantly alleviated the death of SH-SY5Y neuroblastoma cells and primary cortical neurons induced by the conditioned-medium from activated microglia. At last, the effect of PF11 on neuroinflammation was confirmed in vivo: PF11 mitigated the microglial activation and proinflammatory factors expression obviously in both cortex and hippocampus in mice injected intrahippocampally with LPS. These findings indicate that PF11 exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-κB, MAPKs and Akt signaling pathways, suggesting its therapeutic implication for neurodegenerative disease associated with neuroinflammation.

  14. Pulsed Electromagnetic Field Exposure Reduces Hypoxia and Inflammation Damage in Neuron-Like and Microglial Cells.

    PubMed

    Vincenzi, Fabrizio; Ravani, Annalisa; Pasquini, Silvia; Merighi, Stefania; Gessi, Stefania; Setti, Stefania; Cadossi, Ruggero; Borea, Pier Andrea; Varani, Katia

    2017-05-01

    In the present study, the effect of low-frequency, low-energy pulsed electromagnetic fields (PEMFs) has been investigated by using different cell lines derived from neuron-like cells and microglial cells. In particular, the primary aim was to evaluate the effect of PEMF exposure in inflammation- and hypoxia-induced injury in two different neuronal cell models, the human neuroblastoma-derived SH-SY5Y cells and rat pheochromocytoma PC12 cells and in N9 microglial cells. In neuron-like cells, live/dead and apoptosis assays were performed in hypoxia conditions from 2 to 48 h. Interestingly, PEMF exposure counteracted hypoxia damage significantly reducing cell death and apoptosis. In the same cell lines, PEMFs inhibited the activation of the hypoxia-inducible factor 1α (HIF-1α), the master transcriptional regulator of cellular response to hypoxia. The effect of PEMF exposure on reactive oxygen species (ROS) production in both neuron-like and microglial cells was investigated considering their key role in ischemic injury. PEMFs significantly decreased hypoxia-induced ROS generation in PC12, SH-SY5Y, and N9 cells after 24 or 48 h of incubation. Moreover, PEMFs were able to reduce some of the most well-known pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-8 release in N9 microglial cells stimulated with different concentrations of LPS for 24 or 48 h of incubation time. These results show a protective effect of PEMFs on hypoxia damage in neuron-like cells and an anti-inflammatory effect in microglial cells suggesting that PEMFs could represent a potential therapeutic approach in cerebral ischemic conditions. J. Cell. Physiol. 232: 1200-1208, 2017. © 2016 Wiley Periodicals, Inc.

  15. Effects of aged garlic extract and FruArg on gene expression and signaling pathways in lipopolysaccharide-activated microglial cells

    PubMed Central

    Song, Hailong; Lu, Yuan; Qu, Zhe; Mossine, Valeri V.; Martin, Matthew B.; Hou, Jie; Cui, Jiankun; Peculis, Brenda A.; Mawhinney, Thomas P.; Cheng, Jianlin; Greenlief, C. Michael; Fritsche, Kevin; Schmidt, Francis J.; Walter, Ronald B.; Lubahn, Dennis B.; Sun, Grace Y.; Gu, Zezong

    2016-01-01

    Aged garlic extract (AGE) is widely used as a dietary supplement on account of its protective effects against oxidative stress and inflammation. But less is known about specific molecular targets of AGE and its bioactive components, including N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). Our recent study showed that both AGE and FruArg significantly attenuate lipopolysaccharide (LPS)-induced neuroinflammatory responses in BV-2 microglial cells. This study aims to unveil effects of AGE and FruArg on gene expression regulation in LPS stimulated BV-2 cells. Results showed that LPS treatment significantly altered mRNA levels from 2563 genes. AGE reversed 67% of the transcriptome alteration induced by LPS, whereas FruArg accounted for the protective effect by reversing expression levels of 55% of genes altered by LPS. Key pro-inflammatory canonical pathways induced by the LPS stimulation included toll-like receptor signaling, IL-6 signaling, and Nrf2-mediated oxidative stress pathway, along with elevated expression levels of genes, such as Il6, Cd14, Casp3, Nfkb1, Hmox1, and Tnf. These effects could be modulated by treatment with both AGE and FruArg. These findings suggests that AGE and FruArg are capable of alleviating oxidative stress and neuroinflammatory responses stimulated by LPS in BV-2 cells. PMID:27734935

  16. Uptake of dendrimer-drug by different cell types in the hippocampus after hypoxic-ischemic insult in neonatal mice: Effects of injury, microglial activation and hypothermia.

    PubMed

    Nemeth, Christina L; Drummond, Gabrielle T; Mishra, Manoj K; Zhang, Fan; Carr, Patrice; Garcia, Maxine S; Doman, Sydney; Fatemi, Ali; Johnston, Michael V; Kannan, Rangaramanujam M; Kannan, Sujatha; Wilson, Mary Ann

    2017-10-01

    Perinatal hypoxic-ischemic encephalopathy (HIE) can result in neurodevelopmental disability, including cerebral palsy. The only treatment, hypothermia, provides incomplete neuroprotection. Hydroxyl polyamidoamine (PAMAM) dendrimers are being explored for targeted delivery of therapy for HIE. Understanding the biodistribution of dendrimer-conjugated drugs into microglia, neurons and astrocytes after brain injury is essential for optimizing drug delivery. We conjugated N-acetyl-L-cysteine to Cy5-labeled PAMAM dendrimer (Cy5-D-NAC) and used a mouse model of perinatal HIE to study effects of timing of administration, hypothermia, brain injury, and microglial activation on uptake. Dendrimer conjugation delivered therapy most effectively to activated microglia but also targeted some astrocytes and injured neurons. Cy5-D-NAC uptake was correlated with brain injury in all cell types and with activated morphology in microglia. Uptake was not inhibited by hypothermia, except in CD68+ microglia. Thus, dendrimer-conjugated drug delivery can target microglia, astrocytes and neurons and can be used in combination with hypothermia for treatment of HIE. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Connexins and Pannexins: New Insights into Microglial Functions and Dysfunctions

    PubMed Central

    Gajardo-Gómez, Rosario; Labra, Valeria C.; Orellana, Juan A.

    2016-01-01

    Under physiological conditions, microglia adopt a resting phenotype associated with the production of anti-inflammatory and neurotrophic factors. In response to a wide variety of insults, these cells shift to an activated phenotype that is necessary for the proper restoration of brain homeostasis. However, when the intensity of a threat is relatively high, microglial activation worsens the progression of damage rather than providing protection, with potentially significant consequences for neuronal survival. Coordinated interactions among microglia and other brain cells, including astrocytes and neurons, are critical for the development of timely and optimal inflammatory responses in the brain parenchyma. Tissue synchronization is in part mediated by connexins and pannexins, which are protein families that form different plasma membrane channels to communicate with neighboring cells. Gap junction channels (which are exclusively formed by connexins in vertebrates) connect the cytoplasm of contacting cells to coordinate electrical and metabolic coupling. Hemichannels (HCs) and pannexons (which are formed by connexins and pannexins, respectively) communicate the intra- and extracellular compartments and serve as diffusion pathways for the exchange of ions and small molecules. In this review article, we discuss the available evidence concerning the functional expression and regulation of connexin- and pannexin-based channels in microglia and their contributions to microglial function and dysfunction. Specifically, we focus on the possible implications of these channels in microglia-to-microglia, microglia-to-astrocyte and neuron-to-microglia interactions in the inflamed brain. PMID:27713688

  18. Connexins and Pannexins: New Insights into Microglial Functions and Dysfunctions.

    PubMed

    Gajardo-Gómez, Rosario; Labra, Valeria C; Orellana, Juan A

    2016-01-01

    Under physiological conditions, microglia adopt a resting phenotype associated with the production of anti-inflammatory and neurotrophic factors. In response to a wide variety of insults, these cells shift to an activated phenotype that is necessary for the proper restoration of brain homeostasis. However, when the intensity of a threat is relatively high, microglial activation worsens the progression of damage rather than providing protection, with potentially significant consequences for neuronal survival. Coordinated interactions among microglia and other brain cells, including astrocytes and neurons, are critical for the development of timely and optimal inflammatory responses in the brain parenchyma. Tissue synchronization is in part mediated by connexins and pannexins, which are protein families that form different plasma membrane channels to communicate with neighboring cells. Gap junction channels (which are exclusively formed by connexins in vertebrates) connect the cytoplasm of contacting cells to coordinate electrical and metabolic coupling. Hemichannels (HCs) and pannexons (which are formed by connexins and pannexins, respectively) communicate the intra- and extracellular compartments and serve as diffusion pathways for the exchange of ions and small molecules. In this review article, we discuss the available evidence concerning the functional expression and regulation of connexin- and pannexin-based channels in microglia and their contributions to microglial function and dysfunction. Specifically, we focus on the possible implications of these channels in microglia-to-microglia, microglia-to-astrocyte and neuron-to-microglia interactions in the inflamed brain.

  19. Impact of endogenous nitric oxide on microglial cell energy metabolism and labile iron pool

    PubMed Central

    Chénais, Benoît; Morjani, Hamid; Drapier, Jean-Claude

    2002-01-01

    Microglial activation is common in several neurodegenerative disorders. In the present study, we used the murine BV-2 microglial cell line stimulated with γ-interferon and lipopolysaccharide to gain new insights into the effects of endogenously produced NO on mitochondrial respiratory capacity, iron regulatory protein activity, and redox-active iron level. Using polarographic measurement of respiration of both intact and digitonin-permeabilized cells, and spectrophotometric determination of individual respiratory chain complex activity, we showed that in addition to the reversible inhibition of cytochrome-c oxidase, long-term endogenous NO production reduced complex I and complex II activities in an irreversible manner. As a consequence, the cellular ATP level was decreased in NO-producing cells, whereas ATPase activity was unaffected. We show that NO up-regulates RNA-binding of iron regulatory protein 1 in microglial cells, and strongly reduces the labile iron pool. Together these results point to a contribution of NO derived from inflammatory microglia to the misregulation of energy-producing reactions and iron metabolism, often associated with the pathogenesis of neurodegenerative disorders. PMID:12065670

  20. Microglial and astroglial activation by 3,4-methylenedioxymethamphetamine (MDMA) in mice depends on S(+) enantiomer and is associated with an increase in body temperature and motility.

    PubMed

    Frau, Lucia; Simola, Nicola; Plumitallo, Antonio; Morelli, Micaela

    2013-01-01

    Evidence is accumulating to suggest that 3,4-methylenedioxymethamphetamine (MDMA) has neurotoxic and neuroinflammatory properties. MDMA is composed of two enantiomers with different biological activities. In this study, we evaluated the in vivo effects of S(+)-MDMA, R(-)-MDMA, and S(+)-MDMA in combination with R(-)-MDMA on microglial and astroglial activation compared with racemic MDMA, by assessment of complement type 3 receptor (CD11b) and glial fibrillary acidic protein (GFAP) immunoreactivity in the mouse striatum, nucleus accumbens, motor cortex, and substantia nigra. Motor activity and body temperature were also measured, to elucidate the physiological modifications paired with the observed glial changes. Similar to racemic MDMA (4 × 20 mg/kg), S(+)-MDMA (4 × 10 mg/kg) increased both CD11b and GFAP in the striatum, although to a lower degree, whereas R(-)-MDMA (4 × 10 mg/kg) did not induce any significant glial activation. Combined administration of S(+) plus R(-)-MDMA did not induce any further activation compared with S(+)-MDMA. In all other areas, only racemic MDMA was able to slightly activate the microglia, but not the astroglia, whereas enantiomers had no effect, either alone or in combination. Racemic MDMA and S(+)-MDMA similarly increased motor activity and raised body temperature, whereas R(-)-MDMA affected neither body temperature nor motor activity. Interestingly, the increase in body temperature was correlated with glial activation. The results show that no synergism, but only additivity of effects, is caused by the combined administration of S(+)- and R(-)-MDMA, and underline the importance of investigating the biochemical and behavioral properties of the two MDMA enantiomers to understand their relative contribution to the neuroinflammatory and neurotoxic effects of MDMA.

  1. Cocaine Abuse in Humans Is Not Associated with Increased Microglial Activation: An 18-kDa Translocator Protein Positron Emission Tomography Imaging Study with [11C]PBR28

    PubMed Central

    Lopresti, Brian J.; Mason, Neale Scott; Deuitch, Lora; Paris, Jennifer; Himes, Michael L.; Kodavali, Chowdari V.; Nimgaonkar, Vishwajit L.

    2014-01-01

    Basic science investigations have consistently shown that repeated exposure to psychostimulant drugs, such as cocaine, activate the immune response and lead to inflammatory changes in the brain. No previous in vivo studies have confirmed this observation in chronic cocaine-abusing humans. To test this hypothesis, we used positron emission tomography imaging to measure the binding of [11C]PBR28 to the 18 kDa translocator protein (TSPO), a marker for microglial activation in a group of 15 recently abstinent cocaine abusers and 17 matched healthy controls. [11C]PBR28 volumes of distribution expressed relative to total plasma ligand concentration (VT) were measured in subjects with kinetic analysis using the arterial input function. Subjects were also genotyped for the TSPO alanine147 threonine (Ala147Thr, rs6971) polymorphism that has been shown to influence the in vivo binding of PBR28 to TSPO. Consistent with previous reports, the TSPO Ala147Thr genotype predicted the in vivo binding of [11C]PBR28. No significant differences in [11C]PBR28 VT were observed in the cortical and subcortical regions in cocaine abusers compared with healthy controls. The results of this in vivo study do not support increased TSPO expression and, by extension, microglial activation in chronic cocaine-abusing humans. Further research with more direct markers of microglial activation is necessary to conclusively rule out neuroinflammation in cocaine dependence. PMID:25057196

  2. Expression of interleukin-1 receptors and their role in interleukin-1 actions in murine microglial cells.

    PubMed

    Pinteaux, Emmanuel; Parker, Lisa C; Rothwell, Nancy J; Luheshi, Giamal N

    2002-11-01

    Interleukin (IL)-1 is an important mediator of acute brain injury and inflammation, and has been implicated in chronic neurodegeneration. The main source of IL-1 in the CNS is microglial cells, which have also been suggested as targets for its action. However, no data exist demonstrating expression of IL-1 receptors [IL-1 type-I receptor (IL-1RI), IL-1 type-II receptor (IL-1RII) and IL-1 receptor accessory protein (IL-1RAcP)] on microglia. In the present study we investigated whether microglia express IL-1 receptors and whether they present target or modulatory properties for IL-1 actions. RT-PCR analysis demonstrated lower expression of IL-1RI and higher expression of IL-1RII mRNAs in mouse microglial cultures compared with mixed glial or pure astrocyte cultures. Bacterial lipopolysaccharide (LPS) caused increased expression of IL-1RI, IL-1RII and IL-1RAcP mRNAs, induced the release of IL-1beta, IL-6 and prostaglandin-E2 (PGE2), and activated nuclear factor kappaB (NF-kappaB) and the mitogen-activated protein kinases (MAPKs) p38, and extracellular signal-regulated protein kinase (ERK1/2), but not c-Jun N-terminal kinase (JNK) in microglial cultures. In comparison, IL-1beta induced the release of PGE2, IL-6 and activated NF-kappaB, p38, JNK and ERK1/2 in mixed glial cultures, but failed to induce any of these responses in microglial cell cultures. IL-1beta also failed to affect LPS-primed microglial cells. Interestingly, a neutralizing antibody to IL-1RII significantly increased the concentration of IL-1beta in the medium of LPS-treated microglia and exacerbated the IL-1beta-induced IL-6 release in mixed glia, providing the first evidence that microglial IL-1RII regulates IL-1beta actions by binding excess levels of this cytokine during brain inflammation.

  3. GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer’s disease implicates microglial activation gene IL1RAP

    PubMed Central

    Ramanan, Vijay K; Risacher, Shannon L.; Nho, Kwangsik; Kim, Sungeun; Shen, Li; McDonald, Brenna C.; Yoder, Karmen K.; Hutchins, Gary D.; West, John D.; Tallman, Eileen F.; Gao, Sujuan; Foroud, Tatiana M.; Farlow, Martin R.; De Jager, Philip L.; Bennett, David A.; Aisen, Paul S.; Petersen, Ronald C.; Jack, Clifford R.; Toga, Arthur W.; Green, Robert C.; Jagust, William J.; Weiner, Michael W.

    2015-01-01

    Brain amyloid deposition is thought to be a seminal event in Alzheimer’s disease. To identify genes influencing Alzheimer’s disease pathogenesis, we performed a genome-wide association study of longitudinal change in brain amyloid burden measured by 18F-florbetapir PET. A novel association with higher rates of amyloid accumulation independent from APOE (apolipoprotein E) ε4 status was identified in IL1RAP (interleukin-1 receptor accessory protein; rs12053868-G; P = 1.38 × 10−9) and was validated by deep sequencing. IL1RAP rs12053868-G carriers were more likely to progress from mild cognitive impairment to Alzheimer’s disease and exhibited greater longitudinal temporal cortex atrophy on MRI. In independent cohorts rs12053868-G was associated with accelerated cognitive decline and lower cortical 11C-PBR28 PET signal, a marker of microglial activation. These results suggest a crucial role of activated microglia in limiting amyloid accumulation and nominate the IL-1/IL1RAP pathway as a potential target for modulating this process. PMID:26268530

  4. GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer's disease implicates microglial activation gene IL1RAP.

    PubMed

    Ramanan, Vijay K; Risacher, Shannon L; Nho, Kwangsik; Kim, Sungeun; Shen, Li; McDonald, Brenna C; Yoder, Karmen K; Hutchins, Gary D; West, John D; Tallman, Eileen F; Gao, Sujuan; Foroud, Tatiana M; Farlow, Martin R; De Jager, Philip L; Bennett, David A; Aisen, Paul S; Petersen, Ronald C; Jack, Clifford R; Toga, Arthur W; Green, Robert C; Jagust, William J; Weiner, Michael W; Saykin, Andrew J

    2015-10-01

    Brain amyloid deposition is thought to be a seminal event in Alzheimer's disease. To identify genes influencing Alzheimer's disease pathogenesis, we performed a genome-wide association study of longitudinal change in brain amyloid burden measured by (18)F-florbetapir PET. A novel association with higher rates of amyloid accumulation independent from APOE (apolipoprotein E) ε4 status was identified in IL1RAP (interleukin-1 receptor accessory protein; rs12053868-G; P = 1.38 × 10(-9)) and was validated by deep sequencing. IL1RAP rs12053868-G carriers were more likely to progress from mild cognitive impairment to Alzheimer's disease and exhibited greater longitudinal temporal cortex atrophy on MRI. In independent cohorts rs12053868-G was associated with accelerated cognitive decline and lower cortical (11)C-PBR28 PET signal, a marker of microglial activation. These results suggest a crucial role of activated microglia in limiting amyloid accumulation and nominate the IL-1/IL1RAP pathway as a potential target for modulating this process. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Regional distribution of selective neuronal loss and microglial activation across the MCA territory after transient focal ischemia: quantitative versus semiquantitative systematic immunohistochemical assessment

    PubMed Central

    Emmrich, Julius V; Ejaz, Sohail; Neher, Jonas J; Williamson, David J; Baron, Jean-Claude

    2015-01-01

    Histopathologic assessment in transient middle cerebral artery occlusion (MCAo) rodent models generally lacks comprehensiveness and exposes to interobserver bias. Here we compared a novel quantitative assessment of regional infarction, selective neuronal loss (SNL) and microglial activation (MA) across the MCA territory to a previously published semiquantitative visual protocol. NeuN and OX42 immunohistochemistry was applied after either 15 or 45 minutes distal MCAo to maximize SNL and infarction, respectively. Survival times varied from 28 to 60 days to cover potential biases such as delayed tissue shrinkage. Damage was assessed using a template of 44 cytoarchitectonic regions of interest (ROIs) mapped onto a subset of digitized coronal sections spanning the MCA territory. For each ROI were obtained a semiquantitative visually determined index of histopathologic changes (method 1), and lpsilateral/contralesional ratios of remaining neurons and activated microglia cell counts (method 2). There was excellent agreement between the two methods for 28-day survival for both MCAo durations, whereas method 2 more sensitively detected subtle SNL and MA at 45 days and 60 days after 15-minute MCAo. Thus the visual method is accurate for usual degrees of ischemic damage, but absolute cell quantification is superior to detect subtle changes and should therefore be preferred in brief MCAo models, although requires optimal staining quality. PMID:25352044

  6. Age exacerbates microglial activation, oxidative stress, inflammatory and NOX2 gene expression, and delays functional recovery in a middle-aged rodent model of spinal cord injury.

    PubMed

    von Leden, Ramona E; Khayrullina, Guzal; Moritz, Kasey E; Byrnes, Kimberly R

    2017-08-18

    Spinal cord injury (SCI) among people over age 40 has been steadily increasing since the 1980s and is associated with worsened outcome than injuries in young people. Age-related increases in reactive oxygen species (ROS) are suggested to lead to chronic inflammation. The NADPH oxidase 2 (NOX2) enzyme is expressed by microglia and is a primary source of ROS. This study aimed to determine the effect of age on inflammation, oxidative damage, NOX2 gene expression, and functional performance with and without SCI in young adult (3 months) and middle-aged (12 months) male rats. Young adult and middle-aged rats were assessed in two groups-naïve and moderate contusion SCI. Functional recovery was determined by weekly assessment with the Basso, Beattie, and Breshnahan general motor score (analyzed two-way ANOVA) and footprint analysis (analyzed by Chi-square analysis). Tissue was analyzed for markers of oxidative damage (8-OHdG, Oxyblot, and 3-NT), microglial-related inflammation (Iba1), NOX2 component (p47(PHOX), p22(PHOX), and gp91(PHOX)), and inflammatory (CD86, CD206, TNFα, and NFκB) gene expression (all analyzed by unpaired Student's t test). In both naïve and injured aged rats, compared to young rats, tissue analysis revealed significant increases in 8-OHdG and Iba1, as well as inflammatory and NOX2 component gene expression. Further, injured aged rats showed greater lesion volume rostral and caudal to the injury epicenter. Finally, injured aged rats showed significantly reduced Basso-Beattie-Bresnahan (BBB) scores and stride length after SCI. These results show that middle-aged rats demonstrate increased microglial activation, oxidative stress, and inflammatory gene expression, which may be related to elevated NOX2 expression, and contribute to worsened functional outcome following injury. These findings are essential to elucidating the mechanisms of age-related differences in response to SCI and developing age-appropriate therapeutics.

  7. Down-Regulation of miRNA-128 Contributes to Neuropathic Pain Following Spinal Cord Injury via Activation of P38

    PubMed Central

    Yang, Zhaoyun; Xu, Junmei; Zhu, Rong; Liu, Lei

    2017-01-01

    Background Neuropathic pain (NPP) arises from a lesion or dysfunction of the somatosensory nervous system. Recent studies have demonstrated multiple microRNAs (miRNAs) play key roles in NPP development. This study aimed to investigate the effects of miR-128 on microglial cells. Material/Methods We established a compressive spinal cord injury (SCI) model and collected the spinal cord segment-derived conditioned medium (CM). We then measured the expression of miR-128 in the murine microglial cell line BV2 treated with CM-SCI or CM obtained from control (CM-NC). Furthermore, lentivirus production of miR-128 and scrambled control were transfected into BV2 cells, which were first treated with CM-SCI or CM-NC. Moreover, the effects of miR-128 on cell viability, M1/M2 microglial gene expression, inflammatory cytokines concentration, and the protein expression of P38 and phosphorylated P38 (P-P38) were investigated. Results The expression of miR-128 was downregulated in murine microglial BV2 cells treated with CM-SCI. Overexpression of miR-128 markedly promoted the viability of murine microglial cells. In addition, miR-128 overexpression significantly decreased the expression levels of microglial M1 phenotypic markers CD86 and CD32, and increased the expression levels of M2 phenotypic markers Arg1 and CD206. Furthermore, miR-128 overexpression obviously decreased the concentration of TNF-α, IL-1β, and IL-6. We found that miR-128 overexpression significantly downregulated the expression levels of P38 andP-P38. Conclusions Our findings indicate that down-regulation of miR-128 in murine microglial cells may contribute to the development of NPP following SCI via activation of P38. MiR-128 may be a potential intervention target for NPP. PMID:28114268

  8. [Nle4, D-Phe7]-α-MSH Inhibits Toll-Like Receptor (TLR)2- and TLR4-Induced Microglial Activation and Promotes a M2-Like Phenotype

    PubMed Central

    Carniglia, Lila; Ramírez, Delia; Durand, Daniela; Saba, Julieta; Caruso, Carla; Lasaga, Mercedes

    2016-01-01

    α-melanocyte stimulating hormone (α-MSH) is an anti-inflammatory peptide, proved to be beneficial in many neuroinflammatory disorders acting through melanocortin receptor 4 (MC4R). We previously determined that rat microglial cells express MC4R and that NDP-MSH, an analog of α-MSH, induces PPAR-γ expression and IL-10 release in these cells. Given the great importance of modulation of glial activation in neuroinflammatory disorders, we tested the ability of NDP-MSH to shape microglial phenotype and to modulate Toll-like receptor (TLR)-mediated inflammatory responses. Primary rat cultured microglia were stimulated with NDP-MSH followed by the TLR2 agonist Pam3CSK4 or the TLR4 agonist LPS. NDP-MSH alone induced expression of the M2a/M2c marker Ag1 and reduced expression of the M2b marker Il-4rα and of the LPS receptor Tlr4. Nuclear translocation of NF-κB subunits p65 and c-Rel was induced by LPS and these effects were partially prevented by NDP-MSH. NDP-MSH reduced LPS- and Pam3CSK4-induced TNF-α release but did not affect TLR-induced IL-10 release. Also, NDP-MSH inhibited TLR2-induced HMGB1 translocation from nucleus to cytoplasm and TLR2-induced phagocytic activity. Our data show that NDP-MSH inhibits TLR2- and TLR4-mediated proinflammatory mechanisms and promotes microglial M2-like polarization, supporting melanocortins as useful tools for shaping microglial activation towards an alternative immunomodulatory phenotype. PMID:27359332

  9. [Nle4, D-Phe7]-α-MSH Inhibits Toll-Like Receptor (TLR)2- and TLR4-Induced Microglial Activation and Promotes a M2-Like Phenotype.

    PubMed

    Carniglia, Lila; Ramírez, Delia; Durand, Daniela; Saba, Julieta; Caruso, Carla; Lasaga, Mercedes

    2016-01-01

    α-melanocyte stimulating hormone (α-MSH) is an anti-inflammatory peptide, proved to be beneficial in many neuroinflammatory disorders acting through melanocortin receptor 4 (MC4R). We previously determined that rat microglial cells express MC4R and that NDP-MSH, an analog of α-MSH, induces PPAR-γ expression and IL-10 release in these cells. Given the great importance of modulation of glial activation in neuroinflammatory disorders, we tested the ability of NDP-MSH to shape microglial phenotype and to modulate Toll-like receptor (TLR)-mediated inflammatory responses. Primary rat cultured microglia were stimulated with NDP-MSH followed by the TLR2 agonist Pam3CSK4 or the TLR4 agonist LPS. NDP-MSH alone induced expression of the M2a/M2c marker Ag1 and reduced expression of the M2b marker Il-4rα and of the LPS receptor Tlr4. Nuclear translocation of NF-κB subunits p65 and c-Rel was induced by LPS and these effects were partially prevented by NDP-MSH. NDP-MSH reduced LPS- and Pam3CSK4-induced TNF-α release but did not affect TLR-induced IL-10 release. Also, NDP-MSH inhibited TLR2-induced HMGB1 translocation from nucleus to cytoplasm and TLR2-induced phagocytic activity. Our data show that NDP-MSH inhibits TLR2- and TLR4-mediated proinflammatory mechanisms and promotes microglial M2-like polarization, supporting melanocortins as useful tools for shaping microglial activation towards an alternative immunomodulatory phenotype.

  10. Tryptanthrin Suppresses the Activation of the LPS-Treated BV2 Microglial Cell Line via Nrf2/HO-1 Antioxidant Signaling

    PubMed Central

    Kwon, Young-Won; Cheon, So Yeong; Park, Sung Yun; Song, Juhyun; Lee, Ju-Hee

    2017-01-01

    Microglia are the resident macrophages in the central nervous system (CNS) and play essential roles in neuronal homeostasis and neuroinflammatory pathologies. Recently, microglia have been shown to contribute decisively to neuropathologic processes after ischemic stroke. Furthermore, natural compounds have been reported to attenuate inflammation and pathologies associated with neuroinflammation. Tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) is a phytoalkaloid with known anti-inflammatory effects in cells. In present study, the authors confirmed middle cerebral artery occlusion (MCAO) injury triggers the activation of microglia in brain tissue, and investigated whether tryptanthrin influences the function of mouse murine BV2 microglia under LPS-induced inflammatory conditions in vitro. It was found tryptanthrin protected BV2 microglia cells against LPS-induced inflammation and inhibited the induction of M1 phenotype microglia under inflammatory conditions. In addition, tryptanthrin reduced the production of pro-inflammatory cytokines in BV2 microglia cells via nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) signaling and NF-κB signaling. The authors suggest that tryptanthrin might alleviate the progress of neuropathologies by controlling microglial functions under neuroinflammatory conditions. PMID:28210215

  11. Isobavachalcone Attenuates MPTP-Induced Parkinson's Disease in Mice by Inhibition of Microglial Activation through NF-κB Pathway

    PubMed Central

    Jing, Haoran; Wang, Shaoxia; Wang, Min; Fu, Wenliang; Zhang, Chao; Xu, Donggang

    2017-01-01

    Parkinson's disease (PD) is a complex multi-system and age-related neurodegenerative disorder. The intervention targeting neuroinflammation in PD patients is one effective strategy to slow down or inhibit disease progression. Microglia-mediated inflammatory response plays an important role in Parkinson's, Alzheimer's and other cerebral diseases. Isobavachalcone is a main component of Chinese herb medicine Psoralea corylifolia, which function includes immunoregulation, anti-oxidation and the regulation of β-amyloid (Aβ42) deposited in hippocampus in Alzheimer's patients. Whether it has the therapeutic effect on Parkinson's disease, however, is unclear. In this study, we found that isobavachalcone could effectively remit Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP), prolong the residence time of mice on Rota-rod and alleviate the neuronal necrosis. It also inhibited the over-activation of microglia, and decreased the expression of IL-6 and IL-1β in the brain of PD mice. In vitro, isobavachalcone could inhibit nuclear factor-kappaB (NF-κB) pathway through inhibiting the LPS-induced transfer of NF-κB subunit from cytoplasm to nucleus in BV-2 cells. Isobavachalcone decreased the LPS-induced oxidative stress and the expression of inflammatory cytokines, and provided a neuroprotective effect by antagonizing microglia-mediated inflammation. Our results indicated that isobavachalcone may be a candidated drug against Parkinson's disease with great clinical potential. PMID:28060896

  12. Isobavachalcone Attenuates MPTP-Induced Parkinson's Disease in Mice by Inhibition of Microglial Activation through NF-κB Pathway.

    PubMed

    Jing, Haoran; Wang, Shaoxia; Wang, Min; Fu, Wenliang; Zhang, Chao; Xu, Donggang

    2017-01-01

    Parkinson's disease (PD) is a complex multi-system and age-related neurodegenerative disorder. The intervention targeting neuroinflammation in PD patients is one effective strategy to slow down or inhibit disease progression. Microglia-mediated inflammatory response plays an important role in Parkinson's, Alzheimer's and other cerebral diseases. Isobavachalcone is a main component of Chinese herb medicine Psoralea corylifolia, which function includes immunoregulation, anti-oxidation and the regulation of β-amyloid (Aβ42) deposited in hippocampus in Alzheimer's patients. Whether it has the therapeutic effect on Parkinson's disease, however, is unclear. In this study, we found that isobavachalcone could effectively remit Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP), prolong the residence time of mice on Rota-rod and alleviate the neuronal necrosis. It also inhibited the over-activation of microglia, and decreased the expression of IL-6 and IL-1β in the brain of PD mice. In vitro, isobavachalcone could inhibit nuclear factor-kappaB (NF-κB) pathway through inhibiting the LPS-induced transfer of NF-κB subunit from cytoplasm to nucleus in BV-2 cells. Isobavachalcone decreased the LPS-induced oxidative stress and the expression of inflammatory cytokines, and provided a neuroprotective effect by antagonizing microglia-mediated inflammation. Our results indicated that isobavachalcone may be a candidated drug against Parkinson's disease with great clinical potential.

  13. JMV5656, A Novel Derivative of TLQP-21, Triggers the Activation of a Calcium-Dependent Potassium Outward Current in Microglial Cells

    PubMed Central

    Rivolta, Ilaria; Binda, Anna; Molteni, Laura; Rizzi, Laura; Bresciani, Elena; Possenti, Roberta; Fehrentz, Jean-Alain; Verdié, Pascal; Martinez, Jean; Omeljaniuk, Robert J.; Locatelli, Vittorio; Torsello, Antonio

    2017-01-01

    TLQP-21 (TLQPPASSRRRHFHHALPPAR) is a multifunctional peptide that is involved in the control of physiological functions, including feeding, reproduction, stress responsiveness, and general homeostasis. Despite the huge interest in TLQP-21 biological activity, very little is known about its intracellular mechanisms of action. In microglial cells, TLQP-21 stimulates increases of intracellular Ca2+ that may activate functions, including proliferation, migration, phagocytosis and production of inflammatory molecules. Our aim was to investigate whether JMV5656 (RRRHFHHALPPAR), a novel short analogue of TLQP-21, stimulates intracellular Ca2+ in the N9 microglia cells, and whether this Ca2+ elevation is coupled with the activation Ca2+-sensitive K+ channels. TLQP-21 and JMV5656 induced a sharp, dose-dependent increment in intracellular calcium. In 77% of cells, JMV5656 also caused an increase in the total outward currents, which was blunted by TEA (tetraethyl ammonium chloride), a non-selective blocker of voltage-dependent and Ca2+-activated potassium (K+) channels. Moreover, the effects of ion channel blockers charybdotoxin and iberiotoxin, suggested that multiple calcium-activated K+ channel types drove the outward current stimulated by JMV5656. Additionally, inhibition of JMV5656-stimulated outward currents by NS6180 (4-[[3-(trifluoromethyl)phenyl]methyl]-2H-1,4 benzothiazin-3(4H)-one) and TRAM-34 (triarylmethane-34), indicated that KCa3.1 channels are involved in this JMV5656 mechanisms of action. In summary, we demonstrate that, in N9 microglia cells, the interaction of JMV5656 with the TLQP-21 receptors induced an increase in intracellular Ca2+, and, following extracellular Ca2+ entry, the opening of KCa3.1 channels. PMID:28280458

  14. JMV5656, A Novel Derivative of TLQP-21, Triggers the Activation of a Calcium-Dependent Potassium Outward Current in Microglial Cells.

    PubMed

    Rivolta, Ilaria; Binda, Anna; Molteni, Laura; Rizzi, Laura; Bresciani, Elena; Possenti, Roberta; Fehrentz, Jean-Alain; Verdié, Pascal; Martinez, Jean; Omeljaniuk, Robert J; Locatelli, Vittorio; Torsello, Antonio

    2017-01-01

    TLQP-21 (TLQPPASSRRRHFHHALPPAR) is a multifunctional peptide that is involved in the control of physiological functions, including feeding, reproduction, stress responsiveness, and general homeostasis. Despite the huge interest in TLQP-21 biological activity, very little is known about its intracellular mechanisms of action. In microglial cells, TLQP-21 stimulates increases of intracellular Ca(2+) that may activate functions, including proliferation, migration, phagocytosis and production of inflammatory molecules. Our aim was to investigate whether JMV5656 (RRRHFHHALPPAR), a novel short analogue of TLQP-21, stimulates intracellular Ca(2+) in the N9 microglia cells, and whether this Ca(2+) elevation is coupled with the activation Ca(2+)-sensitive K(+) channels. TLQP-21 and JMV5656 induced a sharp, dose-dependent increment in intracellular calcium. In 77% of cells, JMV5656 also caused an increase in the total outward currents, which was blunted by TEA (tetraethyl ammonium chloride), a non-selective blocker of voltage-dependent and Ca(2+)-activated potassium (K(+)) channels. Moreover, the effects of ion channel blockers charybdotoxin and iberiotoxin, suggested that multiple calcium-activated K(+) channel types drove the outward current stimulated by JMV5656. Additionally, inhibition of JMV5656-stimulated outward currents by NS6180 (4-[[3-(trifluoromethyl)phenyl]methyl]-2H-1,4 benzothiazin-3(4H)-one) and TRAM-34 (triarylmethane-34), indicated that KCa3.1 channels are involved in this JMV5656 mechanisms of action. In summary, we demonstrate that, in N9 microglia cells, the interaction of JMV5656 with the TLQP-21 receptors induced an increase in intracellular Ca(2+), and, following extracellular Ca(2+) entry, the opening of KCa3.1 channels.

  15. Microglial Dysregulation in Psychiatric Disease

    PubMed Central

    Frick, Luciana Romina; Williams, Kyle

    2013-01-01

    Microglia, the brain's resident immune cells, are phagocytes of the macrophage lineage that have a key role in responding to inflammation and immune challenge in the brain. More recently, they have been shown to have a number of important roles beyond immune surveillance and response, including synaptic pruning during development and the support of adult neurogenesis. Microglial abnormalities have been found in several neuropsychiatric conditions, though in most cases it remains unclear whether these are causative or are a reaction to some other underlying pathophysiology. Here we summarize postmortem, animal, neuroimaging, and other evidence for microglial pathology in major depression, schizophrenia, autism, obsessive-compulsive disorder, and Tourette syndrome. We identify gaps in the existing literature and important areas for future research. If microglial pathology proves to be an important causative factor in these or other neuropsychiatric diseases, modulators of microglial function may represent a novel therapeutic strategy. PMID:23690824

  16. Cocaine-mediated downregulation of microglial miR-124 expression involves promoter DNA methylation.

    PubMed

    Guo, Ming-Lei; Periyasamy, Palsamy; Liao, Ke; Kook, Yeon Hee; Niu, Fang; Callen, Shannon E; Buch, Shilpa

    2016-11-01

    Neuroinflammation plays a critical role in the development of reward-related behavior in cocaine self-administration rodents. Cocaine, one of most commonly abused drugs, has been shown to activate microglia both in vitro and in vivo. Detailed molecular mechanisms underlying cocaine-mediated microglial activation remain poorly understood. microRNAs (miRs) belonging to a class of small noncoding RNA superfamily have been shown to modulate the activation status of microglia. miR-124, one of the microglia-enriched miRs, functions as an anti-inflammatory regulator that maintains microglia in a quiescent state. To date, the possible effects of cocaine on microglial miR-124 levels and the associated underlying mechanisms have not been explored. In the current study, we demonstrated that cocaine exposure decreased miR-124 levels in both BV-2 cells and rat primary microglia. These findings were further validated in vivo, wherein we demonstrated decreased abundance of miR-124 in purified microglia isolated from cocaine-administered mice brains compared with cells from saline administered animals. Molecular mechanisms underlying these effects involved cocaine-mediated increased mRNA and protein expression of DNMTs in microglia. Consistently, cocaine substantially increased promoter DNA methylation levels of miR-124 precursors (pri-miR-124-1 and -2), but not that of pri-miR-124-3, both in vitro and in vivo. In summary, our findings demonstrated that cocaine exposure increased DNA methylation of miR-124 promoter resulting into its downregulation, which, in turn, led to microglial activation. Our results thus implicate that epigenetic modulation of miR-124 could be considered as a potential therapeutic approach to ameliorate microglial activation and, possibly, the development of cocaine addiction.

  17. Is traumatic axonal injury (AI) associated with an early microglial activation? Application of a double-labeling technique for simultaneous detection of microglia and AI.

    PubMed

    Oehmichen, M; Theuerkauf, I; Meissner, C

    1999-05-01

    The aim of the present study was to determine whether axonal injury (AI) induces a microglial reaction within 15 days after brain trauma. In 40 selected cases of confirmed AI, the topographical relation of AI and microglial reaction was assessed using an immunohistochemical double-labeling technique for simultaneous demonstration of AI using beta-amyloid precursor protein (beta-APP) antibody and of microglia using CD68 antibody. Although traumatic injury was usually followed by a moderate early diffuse rise in the number of CD68-reactive cells in the white matter, increases in macrophages in areas of AI accumulation were only sporadic and did not occur until after 4 days. At survival intervals of 5-15 days a moderate microglial reaction in regions of beta-APP-positive injured axons was detected, at maximum, in half of the case material. During this interval AI-associated satellitosis-like clusters or stars described by other authors after a survival time of more than 7 weeks were an isolated phenomenon. The prolonged microglial reaction as well as the reduction of beta-APP-positive AI during longer survival periods supports the hypothesis that AI is not primarily chemotactically attractive and that the damage to a portion of beta-APPstained axons may be partly reversible. Most cases clearly require a prolonged interval of more than 15 days before initiation of the final scavenger reaction. For forensic purposes the increase in the number of microglial cells within the region of AI accumulation after a survival time of more than 5 days and the multiple and distinct demonstration of star-like microglial reactions within the white matter after survival times exceeding 7 weeks may provide valuable postmortem information on the timing of a traumatic event.

  18. Alpha1-antichymotrypsin induces TNF-alpha production and NF-kappaB activation in the murine N9 microglial cell line.

    PubMed

    Braghin, Elisa; Galimberti, Daniela; Scarpini, Elio; Bresolin, Nereo; Baron, Pierluigi

    2009-12-18

    Microglia are known to accumulate in senile plaques of Alzheimer's disease (AD) together with a set of proteins including alpha(1)-antichymotrypsin (ACT). To investigate the biological effects of the interaction between ACT and microglia, we examined cytokine production by the murine N9 microglial cell line after ACT treatment. Real-time PCR analysis and specific immunoassays demonstrate that ACT triggers mRNA expression and release of TNF-alpha by N9 microglial cells. Furthermore, we show that ACT induces a significant increase in NF-kappaB nuclear translocation. Taken together, these data demonstrate that ACT might contribute to the inflammatory mechanisms present in AD senile plaques.

  19. Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-κB signaling pathways

    PubMed Central

    Hou, Yue; Li, Guoxun; Wang, Jian; Pan, Yingni; Jiao, Kun; Du, Juan; Chen, Ru; Wang, Bing; Li, Ning

    2017-01-01

    The EtOAc extract of Coreopsis tinctoria Nutt. significantly inhibited LPS-induced nitric oxide (NO) production, as judged by the Griess reaction, and attenuated the LPS-induced elevation in iNOS, COX-2, IL-1β, IL-6 and TNF-α mRNA levels, as determined by quantitative real-time PCR, when incubated with BV-2 microglial cells. Immunohistochemical results showed that the EtOAc extract significantly decreased the number of Iba-1-positive cells in the hippocampal region of LPS-treated mouse brains. The major effective constituent of the EtOAc extract, okanin, was further investigated. Okanin significantly suppressed LPS-induced iNOS expression and also inhibited IL-6 and TNF-α production and mRNA expression in LPS-stimulated BV-2 cells. Western blot analysis indicated that okanin suppressed LPS-induced activation of the NF-κB signaling pathway by inhibiting the phosphorylation of IκBα and decreasing the level of nuclear NF-κB p65 after LPS treatment. Immunofluorescence staining results showed that okanin inhibited the translocation of the NF-κB p65 subunit from the cytosol to the nucleus. Moreover, okanin significantly inhibited LPS-induced TLR4 expression in BV-2 cells. In summary, okanin attenuates LPS-induced activation of microglia. This effect may be associated with its capacity to inhibit the TLR4/NF-κB signaling pathways. These results suggest that okanin may have potential as a nutritional preventive strategy for neurodegenerative disorders. PMID:28367982

  20. Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-κB signaling pathways

    NASA Astrophysics Data System (ADS)

    Hou, Yue; Li, Guoxun; Wang, Jian; Pan, Yingni; Jiao, Kun; Du, Juan; Chen, Ru; Wang, Bing; Li, Ning

    2017-04-01

    The EtOAc extract of Coreopsis tinctoria Nutt. significantly inhibited LPS-induced nitric oxide (NO) production, as judged by the Griess reaction, and attenuated the LPS-induced elevation in iNOS, COX-2, IL-1β, IL-6 and TNF-α mRNA levels, as determined by quantitative real-time PCR, when incubated with BV-2 microglial cells. Immunohistochemical results showed that the EtOAc extract significantly decreased the number of Iba-1-positive cells in the hippocampal region of LPS-treated mouse brains. The major effective constituent of the EtOAc extract, okanin, was further investigated. Okanin significantly suppressed LPS-induced iNOS expression and also inhibited IL-6 and TNF-α production and mRNA expression in LPS-stimulated BV-2 cells. Western blot analysis indicated that okanin suppressed LPS-induced activation of the NF-κB signaling pathway by inhibiting the phosphorylation of IκBα and decreasing the level of nuclear NF-κB p65 after LPS treatment. Immunofluorescence staining results showed that okanin inhibited the translocation of the NF-κB p65 subunit from the cytosol to the nucleus. Moreover, okanin significantly inhibited LPS-induced TLR4 expression in BV-2 cells. In summary, okanin attenuates LPS-induced activation of microglia. This effect may be associated with its capacity to inhibit the TLR4/NF-κB signaling pathways. These results suggest that okanin may have potential as a nutritional preventive strategy for neurodegenerative disorders.

  1. RIPK1 mediates a disease-associated microglial response in Alzheimer's disease.

    PubMed

    Ofengeim, Dimitry; Mazzitelli, Sonia; Ito, Yasushi; DeWitt, Judy Park; Mifflin, Lauren; Zou, Chengyu; Das, Sudeshna; Adiconis, Xian; Chen, Hongbo; Zhu, Hong; Kelliher, Michelle A; Levin, Joshua Z; Yuan, Junying

    2017-09-13

    Dysfunction of microglia is known to play an important role in Alzheimer's disease (AD). Here, we investigated the role of RIPK1 in microglia mediating the pathogenesis of AD. RIPK1 is highly expressed by microglial cells in human AD brains. Using the amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mouse model, we found that inhibition of RIPK1, using both pharmacological and genetic means, reduced amyloid burden, the levels of inflammatory cytokines, and memory deficits. Furthermore, inhibition of RIPK1 promoted microglial degradation of Aβ in vitro. We characterized the transcriptional profiles of adult microglia from APP/PS1 mice and identified a role for RIPK1 in regulating the microglial expression of CH25H and Cst7, a marker for disease-associated microglia (DAM), which encodes an endosomal/lysosomal cathepsin inhibitor named Cystatin F. We present evidence that RIPK1-mediated induction of Cst7 leads to an impairment in the lysosomal pathway. These data suggest that RIPK1 may mediate a critical checkpoint in the transition to the DAM state. Together, our study highlights a non-cell death mechanism by which the activation of RIPK1 mediates the induction of a DAM phenotype, including an inflammatory response and a reduction in phagocytic activity, and connects RIPK1-mediated transcription in microglia to the etiology of AD. Our results support that RIPK1 is an important therapeutic target for the treatment of AD.

  2. Manganese modulation of MAPK pathways: effects on upstream mitogen activated protein kinase kinases (MKKs) and mitogen activated kinase phosphatase-1 (MKP-1) in microglial cells

    PubMed Central

    Crittenden, Patrick L.; Filipov, Nikolay M.

    2010-01-01

    Multiple studies demonstrate that manganese (Mn) exposure potentiates inflammatory mediator output from activated glia; this increased output is associated with enhanced mitogen activated protein kinase (MAPK: p38, ERK, and JNK) activity. We hypothesized that Mn activates MAPK by activating the kinases upstream of MAPK, i.e., MKK-3/6, MKK-1/2, and MKK-4 (responsible for activation of p38, ERK, and JNK, respectively), and/or by inhibiting a major phosphatase responsible for MAPK inactivation, MKP-1. Exposure of N9 microglia to Mn (250μM), LPS (100 ng/ml), or Mn+LPS increased MKK-3/6 and MKK-4 activity at 1 h; the effect of Mn+LPS on MKK-4 activation was greater than the rest. At 4 h, Mn, LPS, and Mn+LPS increased MKK-3/6 and MKK-1/2 phosphorylation, whereas MKK-4 was activated only by Mn and Mn+LPS. Besides activating MKK-4 via Ser257/Thr261 phosphorylation, Mn (4 h) prevented MKK-4’s phosphorylation on Ser80, which negatively regulates MKK-4 activity. Exposure to Mn or Mn+LPS (1 h) decreased both mRNA and protein expression of MKP-1, the negative MAPK regulator. In addition, we observed that at 4 h, but not at 1 h, a time point coinciding with increased MAPK activity, Mn+LPS markedly increased TNF-α , IL-6, and Cox-2 mRNA, suggesting a delayed effect. The fact that all three major groups of MKKs, MKK-1/2, MKK-3/6, and MKK-4 are activated by Mn suggests that Mn-induced activation of MAPK occurs via traditional mechanisms, which perhaps involve the MAPKs farthest upstream, MKKKs (MAP3Ks). In addition, for all MKKs, Mn-induced activation was persistent at least for 4 h, indicating a long-term effect. PMID:20589745

  3. Microglial Ca(2+)-activated K(+) channels are possible molecular targets for the analgesic effects of S-ketamine on neuropathic pain.

    PubMed

    Hayashi, Yoshinori; Kawaji, Kodai; Sun, Li; Zhang, Xinwen; Koyano, Kiyoshi; Yokoyama, Takeshi; Kohsaka, Shinichi; Inoue, Kazuhide; Nakanishi, Hiroshi

    2011-11-30

    Ketamine is an important analgesia clinically used for both acute and chronic pain. The acute analgesic effects of ketamine are generally believed to be mediated by the inhibition of NMDA receptors in nociceptive neurons. However, the inhibition of neuronal NMDA receptors cannot fully account for its potent analgesic effects on chronic pain because there is a significant discrepancy between their potencies. The possible effect of ketamine on spinal microglia was first examined because hyperactivation of spinal microglia after nerve injury contributes to neuropathic pain. Optically pure S-ketamine preferentially suppressed the nerve injury-induced development of tactile allodynia and hyperactivation of spinal microglia. S-Ketamine also preferentially inhibited hyperactivation of cultured microglia after treatment with lipopolysaccharide, ATP, or lysophosphatidic acid. We next focused our attention on the Ca(2+)-activated K(+) (K(Ca)) currents in microglia, which are known to induce their hyperactivation and migration. S-Ketamine suppressed both nerve injury-induced large-conductance K(Ca) (BK) currents and 1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS1619)-induced BK currents in spinal microglia. Furthermore, the intrathecal administration of charybdotoxin, a K(Ca) channel blocker, significantly inhibited the nerve injury-induced tactile allodynia, the expression of P2X(4) receptors, and the synthesis of brain-derived neurotrophic factor in spinal microglia. In contrast, NS1619-induced tactile allodynia was completely inhibited by S-ketamine. These observations strongly suggest that S-ketamine preferentially suppresses the nerve injury-induced hyperactivation and migration of spinal microglia through the blockade of BK channels. Therefore, the preferential inhibition of microglial BK channels in addition to neuronal NMDA receptors may account for the preferential and potent analgesic effects of S-ketamine on

  4. Morin downregulates nitric oxide and prostaglandin E2 production in LPS-stimulated BV2 microglial cells by suppressing NF-κB activity and activating HO-1 induction.

    PubMed

    Dilshara, Matharage Gayani; Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Lee, Seungheon; Choi, Yung Hyun; Kim, Gi-Young

    2016-06-01

    Morin possesses anti-inflammatory activity against septic shock and allergic responses, and prevents acute liver damage. However, the biological mechanism of action of morin in neuroinflammation remains largely unknown. Therefore, the present study investigated whether morin has the ability to attenuate expression of proinflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Morin inhibited the expression of LPS-induced proinflammatory mediators such as NO and PGE2, without any cytotoxic effects. Furthermore, LPS-induced inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) were inhibited both at the mRNA and protein levels in response to morin. Morin also attenuated LPS-induced DNA-binding activity of nuclear transcription factor-κB (NF-κB) and its promoter activity. Pyrrolidine dithiocarbamate (PDTC), a specific NF-κB inhibitor, downregulated the expression of LPS-induced iNOS and COX-2, which suggests that morin-mediated NF-κB inhibition is the main signaling pathway responsible for the inhibition of iNOS and COX-2 expression. Additionally, morin increased induction of heme oxygenase-1 (HO-1) activity, leading to the suppression of NO and PGE2 production. Our results indicate that morin downregulates the expression of proinflammatory genes, such as iNOS and COX-2, involved in the synthesis of NO and PGE2 in LPS-stimulated BV2 microglial cells by suppressing NF-κB activity and activation of HO-1. Taken together, the findings of the present study suggest that morin may have potential as a therapeutic for the prevention of neuroinflammation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Lipoprotein Lipase Maintains Microglial Innate Immunity in Obesity.

    PubMed

    Gao, Yuanqing; Vidal-Itriago, Andrés; Kalsbeek, Martin J; Layritz, Clarita; García-Cáceres, Cristina; Tom, Robby Zachariah; Eichmann, Thomas O; Vaz, Frédéric M; Houtkooper, Riekelt H; van der Wel, Nicole; Verhoeven, Arthur J; Yan, Jie; Kalsbeek, Andries; Eckel, Robert H; Hofmann, Susanna M; Yi, Chun-Xia

    2017-09-26

    Consumption of a hypercaloric diet upregulates microglial innate immune reactivity along with a higher expression of lipoprotein lipase (Lpl) within the reactive microglia in the mouse brain. Here, we show that knockdown of the Lpl gene specifically in microglia resulted in deficient microglial uptake of lipid, mitochondrial fuel utilization shifting to glutamine, and significantly decreased immune reactivity. Mice with knockdown of the Lpl gene in microglia gained more body weight than control mice on a high-carbohydrate high-fat (HCHF) diet. In these mice, microglial reactivity was significantly decreased in the mediobasal hypothalamus, accompanied by downregulation of phagocytic capacity and increased mitochondrial dysmorphologies. Furthermore, HCHF-diet-induced POMC neuronal loss was accelerated. These results show that LPL-governed microglial immunometabolism is essential to maintain microglial function upon exposure to an HCHF diet. In a hypercaloric environment, lack of such an adaptive immunometabolic response has detrimental effects on CNS regulation of energy metabolism. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Prostaglandin signaling suppresses beneficial microglial function in Alzheimer's disease models.

    PubMed

    Johansson, Jenny U; Woodling, Nathaniel S; Wang, Qian; Panchal, Maharshi; Liang, Xibin; Trueba-Saiz, Angel; Brown, Holden D; Mhatre, Siddhita D; Loui, Taylor; Andreasson, Katrin I

    2015-01-01

    Microglia, the innate immune cells of the CNS, perform critical inflammatory and noninflammatory functions that maintain normal neural function. For example, microglia clear misfolded proteins, elaborate trophic factors, and regulate and terminate toxic inflammation. In Alzheimer's disease (AD), however, beneficial microglial functions become impaired, accelerating synaptic and neuronal loss. Better understanding of the molecular mechanisms that contribute to microglial dysfunction is an important objective for identifying potential strategies to delay progression to AD. The inflammatory cyclooxygenase/prostaglandin E2 (COX/PGE2) pathway has been implicated in preclinical AD development, both in human epidemiology studies and in transgenic rodent models of AD. Here, we evaluated murine models that recapitulate microglial responses to Aβ peptides and determined that microglia-specific deletion of the gene encoding the PGE2 receptor EP2 restores microglial chemotaxis and Aβ clearance, suppresses toxic inflammation, increases cytoprotective insulin-like growth factor 1 (IGF1) signaling, and prevents synaptic injury and memory deficits. Our findings indicate that EP2 signaling suppresses beneficial microglia functions that falter during AD development and suggest that inhibition of the COX/PGE2/EP2 immune pathway has potential as a strategy to restore healthy microglial function and prevent progression to AD.

  7. Microglial polarization and plasticity: evidence from organotypic hippocampal slice cultures.

    PubMed

    Ajmone-Cat, Maria Antonietta; Mancini, Melissa; De Simone, Roberta; Cilli, Piera; Minghetti, Luisa

    2013-10-01

    Increasing evidence indicates that "functional plasticity" is not solely a neuronal attribute but a hallmark of microglial cells, the main brain resident macrophage population. Far from being a univocal phenomenon, microglial activation can originate a plethora of functional phenotypes, encompassing the classic M1 proinflammatory and the alternative M2 anti-inflammatory phenotypes. This concept overturns the popular view of microglial activation as a synonym of neurotoxicity and neurogenesis failure in brain disorders. The characterization of the alternative programs is a matter of intense investigation, but still scarce information is available on the course of microglial activation, on the reversibility of the different commitments and on the capability of preserving molecular memory of previous priming stimuli. By using organotypic hippocampal slice cultures as a model, we developed paradigms of stimulation aimed at shedding light on some of these aspects. We show that persistent stimulation of TLR4 signaling promotes an anti-inflammatory response and microglial polarization toward M2-like phenotype. Moreover, acute and chronic preconditioning regimens permanently affect the capability to respond to a later challenge, suggesting the onset of mechanisms of molecular memory. Similar phenomena could occur in the intact brain and differently affect the vulnerability of mature and newborn neurons to noxious signals. Copyright © 2013 Wiley Periodicals, Inc.

  8. Microglial numbers attain adult levels after undergoing a rapid decrease in cell number in the third postnatal week.

    PubMed

    Nikodemova, Maria; Kimyon, Rebecca S; De, Ishani; Small, Alissa L; Collier, Lara S; Watters, Jyoti J

    2015-01-15

    During postnatal development, microglia, CNS resident innate immune cells, are essential for synaptic pruning, neuronal apoptosis and remodeling. During this period microglia undergo morphological and phenotypic transformations; however, little is known about how microglial number and density is regulated during postnatal CNS development. We found that after an initial increase during the first 14 postnatal days, microglial numbers in mouse brain began declining in the third postnatal week and were reduced by 50% by 6weeks of age; these "adult" levels were maintained until at least 9months of age. Microglial CD11b levels increased, whereas CD45 and ER-MP58 declined between P10 and adulthood, consistent with a maturing microglial phenotype. Our data indicate that both increased microglial apoptosis and a decreased proliferative capacity contribute to the developmental reduction in microglial numbers. We found no correlation between developmental reductions in microglial numbers and brain mRNA levels of Cd200, Cx3Cl1, M-Csf or Il-34. We tested the ability of M-Csf-overexpression, a key growth factor promoting microglial proliferation and survival, to prevent microglial loss in the third postnatal week. Mice overexpressing M-Csf in astrocytes had higher numbers of microglia at all ages tested. However, the developmental decline in microglial numbers still occurred, suggesting that chronically elevated M-CSF is unable to overcome the developmental decrease in microglial numbers. Whereas the identity of the factor(s) regulating microglial number and density during development remains to be determined, it is likely that microglia respond to a "maturation" signal since the reduction in microglial numbers coincides with CNS maturation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Altered microglial copper homeostasis in a mouse model of Alzheimer's disease.

    PubMed

    Zheng, Zhiqiang; White, Carine; Lee, Jaekwon; Peterson, Troy S; Bush, Ashley I; Sun, Grace Y; Weisman, Gary A; Petris, Michael J

    2010-09-01

    Alzheimer's disease (AD) is characterized by progressive neurodegeneration associated with the aggregation and deposition of β-amyloid (Aβ(40) and Aβ(42) ) peptide in senile plaques. Recent studies suggest that copper may play an important role in AD pathology. Copper concentrations are elevated in amyloid plaques and copper binds with high affinity to the Aβ peptide and promotes Aβ oligomerization and neurotoxicity. Despite this connection between copper and AD, it is unknown whether the expression of proteins involved in regulating copper homeostasis is altered in this disorder. In this study, we demonstrate that the copper transporting P-type ATPase, ATP7A, is highly expressed in activated microglial cells that are specifically clustered around amyloid plaques in the TgCRND8 mouse model of AD. Using a cultured microglial cell line, ATP7A expression was found to be increased by the pro-inflammatory cytokine interferon-gamma, but not by TNF-α or IL-1β. Interferon-gamma also elicited marked changes in copper homeostasis, including copper-dependent trafficking of ATP7A from the Golgi to cytoplasmic vesicles, increased copper uptake and elevated expression of the CTR1 copper importer. These findings suggest that pro-inflammatory conditions associated with AD cause marked changes in microglial copper trafficking, which may underlie the changes in copper homeostasis in AD. It is concluded that copper sequestration by microglia may provide a neuroprotective mechanism in AD.

  10. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain

    PubMed Central

    Guasti, Leonardo; Richardson, Denise; Jhaveri, Maulik; Eldeeb, Khalil; Barrett, David; Elphick, Maurice R; Alexander, Stephen PH; Kendall, David; Michael, Gregory J; Chapman, Victoria

    2009-01-01

    Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs) are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG), and the related compound N-palmitoylethanolamine (PEA), in neuropathic spinal cord. Selective spinal nerve ligation (SNL) in rats resulted in mechanical allodynia and the presence of activated microglia in the ipsilateral spinal cord. Chronic daily treatment with minocycline (30 mg/kg, ip for 14 days) significantly reduced the development of mechanical allodynia at days 5, 10 and 14 post-SNL surgery, compared to vehicle-treated SNL rats (P < 0.001). Minocycline treatment also significantly attenuated OX-42 immunoreactivity, a marker of activated microglia, in the ipsilateral (P < 0.001) and contralateral (P < 0.01) spinal cord of SNL rats, compared to vehicle controls. Minocycline treatment significantly (P < 0.01) decreased levels of 2-AG and significantly (P < 0.01) increased levels of PEA in the ipsilateral spinal cord of SNL rats, compared to the contralateral spinal cord. Thus, activation of microglia affects spinal levels of endocannabinoids and related compounds in neuropathic pain states. PMID:19570201

  11. Converging perturbed microvasculature and microglial clusters characterize Alzheimer disease brain.

    PubMed

    Jantaratnotai, N; Schwab, C; Ryu, J K; McGeer, P L; McLarnon, J G

    2010-11-01

    We have investigated physical properties of microvasculature and vessel association with microglial clusters in cortical tissue from Alzheimer disease individuals, classified as severe (ADsev) or mild (ADmild), and nondemented controls (ND). Immunostaining with laminin or von Willerbrand factor demonstrated numbers of microvessels and microvascular density were significantly higher in ADsev cases compared with levels in ADmild or ND cases suggesting proangiogenic activity in ADsev brain. Evidence for extravascular laminin immunoreactivity was found in ADsev tissue and was largely absent in ADmild and ND cases suggesting vascular remodeling in ADsev brain included abnormalities in blood vessels. Microgliosis was progressively increased from ND to ADmild to ADsev with the latter demonstrating areas of clustered microglia (groupings of three or more cells) rarely observed in ADmild or ND cases. Microglial clusters in ADsev brain were in close proximity with extravascular laminin and also plasma protein, fibrinogen, implicating vascular perturbation as a component of inflammatory reactivity. ADsev brain also exhibited elevated levels of the pro-inflammatory/angiogenic factors tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor (VEGF) in association, relative to non-association, with microglial clusters. The presence of extravascular laminin and fibrinogen and the vascular modifying factors, TNF-α and VEGF in localization with clusters of activated microglia, is consistent with microglial-induced vascular remodeling in ADsev brain. Microglial-vascular reciprocal interactions could serve a critical role in the amplification and perpetuation of inflammatory reactivity in AD brain.

  12. Triptolide, a Chinese herbal extract, protects dopaminergic neurons from inflammation-mediated damage through inhibition of microglial activation.

    PubMed

    Li, Feng-Qiao; Lu, Xiu-Zhi; Liang, Xi-Bin; Zhou, Hui-Fang; Xue, Bing; Liu, Xian-Yu; Niu, Dong-Bin; Han, Ji-Sheng; Wang, Xiao-Min

    2004-03-01

    Mounting lines of evidence have suggested that brain inflammation participates in the pathogenesis of Parkinson's disease. Triptolide is one of the major active components of Chinese herb Tripterygium wilfordii Hook F, which possesses potent anti-inflammatory and immunosuppressive properties. We found that triptolide concentration-dependently attenuated the lipopolysaccharide (LPS)-induced decrease in [3H]dopamine uptake and loss of tyrosine hydroxylase-immunoreactive neurons in primary mesencephalic neuron/glia mixed culture. Triptolide also blocked LPS-induced activation of microglia and excessive production of TNFalpha and NO. Our data suggests that triptolide may protect dopaminergic neurons from LPS-induced injury and its efficiency in inhibiting microglia activation may underlie the mechanism.

  13. Translocator protein (18 kDa) (TSPO) is expressed in reactive retinal microglia and modulates microglial inflammation and phagocytosis

    PubMed Central

    2014-01-01

    Background The translocator protein (18 kDa) (TSPO) is a mitochondrial protein expressed on reactive glial cells and a biomarker for gliosis in the brain. TSPO ligands have been shown to reduce neuroinflammation in several mouse models of neurodegeneration. Here, we analyzed TSPO expression in mouse and human retinal microglia and studied the effects of the TSPO ligand XBD173 on microglial functions. Methods TSPO protein analyses were performed in retinoschisin-deficient mouse retinas and human retinas. Lipopolysaccharide (LPS)-challenged BV-2 microglial cells were treated with XBD173 and TSPO shRNAs in vitro and pro-inflammatory markers were determined by qRT-PCR. The migration potential of microglia was determined with wound healing assays and the proliferation was studied with Fluorescence Activated Cell Sorting (FACS) analysis. Microglial neurotoxicity was estimated by nitrite measurement and quantification of caspase 3/7 levels in 661 W photoreceptors cultured in the presence of microglia-conditioned medium. The effects of XBD173 on filopodia formation and phagocytosis were analyzed in BV-2 cells and human induced pluripotent stem (iPS) cell-derived microglia (iPSdM). The morphology of microglia was quantified in mouse retinal explants treated with XBD173. Results TSPO was strongly up-regulated in microglial cells of the dystrophic mouse retina and also co-localized with microglia in human retinas. Constitutive TSPO expression was high in the early postnatal Day 3 mouse retina and declined to low levels in the adult tissue. TSPO mRNA and protein were also strongly induced in LPS-challenged BV-2 microglia while the TSPO ligand XBD173 efficiently suppressed transcription of the pro-inflammatory marker genes chemokine (C-C motif) ligand 2 (CCL2), interleukin 6 (IL6) and inducible nitric oxide (NO)-synthase (iNOS). Moreover, treatment with XBD173 significantly reduced the migratory capacity and proliferation of microglia, their level of NO secretion and their

  14. Lipopolysaccharides Derived from Pantoea agglomerans Can Promote the Phagocytic Activity of Amyloid β in Mouse Microglial Cells.

    PubMed

    Kobayashi, Yutaro; Inagawa, Hiroyuki; Kohchi, Chie; Okazaki, Katsuichiro; Zhang, Ran; Kobara, Hideki; Masaki, Tsutomu; Soma, Gen-Ichiro

    2017-07-01

    Recent studies reported that lipopolysaccharide (LPS) exhibits beneficial effects on prevention of immune-related diseases by activating macrophages. We previously demonstrated that pre-treatment with LPS derived from Pantoea agglomerans (LPSp) activated amyloid β (Aβ) phagocytosis in mouse primary microglia. In the present study, we further examined the promotory effect on phagocytosis of phagocytic particles in the C8-B4 microglia cell line. Phagocytic analysis of C8-B4 cells was evaluated using phagocytic particles (latex beads or HiLyte™ Fluor 488-conjugated Aβ1-42). The phagocytic activity of latex beads was dependent on the concentration of beads and incubation time. LPSp, at as low as 100 pg/ml, significantly increased phagocytosis against the beads. In the experiment of Aβ1-42 phagocytosis, LPSp significantly increased Aβ phagocytic activity. LPSp treatment was confirmed to enhance Aβ1-42 phagocytosis by mouse microglia. It is suggested that the use of LPSp may be a potential promising candidate for the prevention of Alzheimer's disease. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. Resolvins AT-D1 and