Investigation of epi-thermal shape-parameter needed for precision analysis of activation
NASA Astrophysics Data System (ADS)
Elmaghraby, Elsayed K.
2017-06-01
The present work aims to expose factors that alter the isotope's effective resonance energy and its resonance integral in order to have consistency between the experimental observation of integral experiments and the prediction of the reaction rate. The investigation is based on disclosing the interference among resonances in Breit-Wigner and Reich-Moore representations to make the investigation of the statistical nature of resonances possible. The shape-parameter influence on the isotope's behavior in epi-thermal neutron field was investigated in the range from -0.1 to 0.1. Evaluated resonance data given in Evaluated Nuclear Data Files (ENDF/B VII.1) and temperature-dependent cross-sections of Point2015 are used. Only resolved resonances are considered in the present assessment. Tabulated values of resonance integrals and effective resonance energies with their moments are given for the majority of ENDF's isotopes. The reported data can be used, directly, to compute the integral parameters for any value of shape-parameter without the need to use numerical software tools. Correlations among effective resonance energy, experimental level spacing and resonance integral are discussed.
Control of integrated micro-resonator wavelength via balanced homodyne locking.
Cox, Jonathan A; Lentine, Anthony L; Trotter, Douglas C; Starbuck, Andrew L
2014-05-05
We describe and experimentally demonstrate a method for active control of resonant modulators and filters in an integrated photonics platform. Variations in resonance frequency due to manufacturing processes and thermal fluctuations are corrected by way of balanced homodyne locking. The method is compact, insensitive to intensity fluctuations, minimally disturbs the micro-resonator, and does not require an arbitrary reference to lock. We demonstrate long-term stable locking of an integrated filter to a laser swept over 1.25 THz. In addition, we show locking of a modulator with low bit error rate while the chip temperature is varied from 5 to 60° C.
NASA Astrophysics Data System (ADS)
Song, Junyeob; Zhou, Wei
2017-02-01
Plasmonic nanocavities can control light flows and enhance light-mater interactions at subwavelength scale, and thus can potentially be used as nanoscale components in integrated optics systems either for passive optical coupling, or for active optical modulation and emission. In this work, we investigated a new type of multilayered metal-insulator optical nanocavities that can support multiple localized plasmon resonances with ultra-small mode volumes. The total number of resonance peaks and their resonance wavelengths can be freely and accurately controlled by simple geometric design rules. Multi-resonance plasmonic nanocavities can serve as a nanoscale wavelength-multiplexed optical components in integrated optics systems, such as optical couplers, light emitters, nanolasers, optical sensors, and optical modulators.
Microoptical device for efficient read-out of active WGM resonators
NASA Astrophysics Data System (ADS)
Wienhold, Tobias; Brammer, Marko; Grossmann, Tobias; Schneider, Marc; Kalt, Heinz; Mappes, Timo
2012-06-01
Whispering-gallery mode (WGM) resonators are known to offer outstanding properties for applications in photonics and telecommunication. Despite their promising performance, one major obstacle for the use of WGM resonators in industrial products is the need of expensive components and high-precision setups for their operation, requiring a controlled lab environment. For industrial applications technically simpler and more robust realizations are desired. Active WGM resonators utilize an optical gain medium for light amplification within the resonator and may be operated as lasers. They offer several advantages over their passive counterparts, such as cheap pump sources, free space excitation of resonator modes, and potentially narrower line widths. However, collection of the light emitted from the resonator still bears several challenges. Emission occurs in plane of the resonator and radiation is emitted isotropically along the circumference. Thus, detectors positioned in plane of the resonator may collect only a limited angular segment of the resonator's light emission. We report on a microoptical device which is integrated on the resonator chip and redirects all in-plane emission of active WGM resonators into a defined off-plane direction. Redirected light can easily be collected using a standard detector. Contrary to other approaches our microoptical device does not decrease the quality factor (Q factor) of the resonator. As light from all angular segments of the resonator is collected, the detected signal-to-noise ratio is expected to be largely improved. Our microoptical device therefore offers a promising approach towards mass-producible integration of active WGM resonators, e. g. into a Lab-on-a-Chip, for sensor applications, where smallest possible frequency shifts need to be read out by a highly sensitive detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siwak, N. P.; Laboratory for the Physical Sciences, 8050 Greenmead Drive, College Park, Maryland 20740; Fan, X. Z.
2014-10-06
An integrated photodiode displacement readout scheme for a microelectromechanical cantilever waveguide resonator sensing platform is presented. III-V semiconductors are used to enable the monolithic integration of passive waveguides with active optical components. This work builds upon previously demonstrated results by measuring the displacement of cantilever waveguide resonators with on-chip waveguide PIN photodiodes. The on-chip integration of the readout provides an additional 70% improvement in mass sensitivity compared to off-chip photodetector designs due to measurement stability and minimized coupling loss. In addition to increased measurement stability, reduced packaging complexity is achieved due to the simplicity of the readout design. We havemore » fabricated cantilever waveguides with integrated photodetectors and experimentally characterized these cantilever sensors with monolithically integrated PIN photodiodes.« less
Farrar, Danielle; Budson, Andrew E
2017-04-01
While the relationship between diffusion tensor imaging (DTI) measurements and training effects is explored by Voelker et al. (this issue), a cursory discussion of functional magnetic resonance imaging (fMRI) measurements categorizes increased activation with findings of greater white matter integrity. Evidence of the relationship between fMRI activation and white matter integrity is conflicting, as is the relationship between fMRI activation and training effects. An examination of the changes in fMRI activation in response to training is helpful, but the relationship between DTI and fMRI activation, particularly in the context of white matter changes, must be examined further before general conclusions can be drawn.
Thermal neutron capture and resonance integral cross sections of 45Sc
NASA Astrophysics Data System (ADS)
Van Do, Nguyen; Duc Khue, Pham; Tien Thanh, Kim; Thi Hien, Nguyen; Kim, Guinyun; Kim, Kwangsoo; Shin, Sung-Gyun; Cho, Moo-Hyun; Lee, Manwoo
2015-11-01
The thermal neutron cross section (σ0) and resonance integral (I0) of the 45Sc(n,γ)46Sc reaction have been measured relative to that of the 197Au(n,γ)198Au reaction by means of the activation method. High-purity natural scandium and gold foils without and with a cadmium cover of 0.5 mm thickness were irradiated with moderated pulsed neutrons produced from the Pohang Neutron Facility (PNF). The induced activities in the activated foils were measured with a high purity germanium (HPGe) detector. In order to improve the accuracy of the experimental results the counting losses caused by the thermal (Gth) and resonance (Gepi) neutron self-shielding, the γ-ray attenuation (Fg) and the true γ-ray coincidence summing effects were made. In addition, the effect of non-ideal epithermal spectrum was also taken into account by determining the neutron spectrum shape factor (α). The thermal neutron cross-section and resonance integral of the 45Sc(n,γ)46Sc reaction have been determined relative to the reference values of the 197Au(n,γ)198Au reaction, with σo,Au = 98.65 ± 0.09 barn and Io,Au = 1550 ± 28 barn. The present thermal neutron cross section has been determined to be σo,Sc = 27.5 ± 0.8 barn. According to the definition of cadmium cut-off energy at 0.55 eV, the present resonance integral cross section has been determined to be Io,Sc = 12.4 ± 0.7 barn. The present results are compared with literature values and discussed.
Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator
Zhang, Tong; Qian, Guang; Wang, Yang-Yang; Xue, Xiao-Jun; Shan, Feng; Li, Ruo-Zhou; Wu, Jing-Yuan; Zhang, Xiao-Yang
2014-01-01
Optical gyroscopes with high sensitivity are important rotation sensors for inertial navigation systems. Here, we present the concept of integrated resonant optical gyroscope constructed by active long-range surface plasmon-polariton (LRSPP) waveguide resonator. In this gyroscope, LRSPP waveguide doped gain medium is pumped to compensate the propagation loss, which has lower pump noise than that of conventional optical waveguide. Peculiar properties of single-polarization of LRSPP waveguide have been found to significantly reduce the polarization error. The metal layer of LRSPP waveguide is electro-optical multiplexed for suppression of reciprocal noises. It shows a limited sensitivity of ~10−4 deg/h, and a maximum zero drift which is 4 orders of magnitude lower than that constructed by conventional single-mode waveguide. PMID:24458281
Lasing from active optomechanical resonators
Czerniuk, T.; Brüggemann, C.; Tepper, J.; Brodbeck, S.; Schneider, C.; Kamp, M.; Höfling, S.; Glavin, B. A.; Yakovlev, D. R.; Akimov, A. V.; Bayer, M.
2014-01-01
Planar microcavities with distributed Bragg reflectors (DBRs) host, besides confined optical modes, also mechanical resonances due to stop bands in the phonon dispersion relation of the DBRs. These resonances have frequencies in the 10- to 100-GHz range, depending on the resonator’s optical wavelength, with quality factors exceeding 1,000. The interaction of photons and phonons in such optomechanical systems can be drastically enhanced, opening a new route towards the manipulation of light. Here we implemented active semiconducting layers into the microcavity to obtain a vertical-cavity surface-emitting laser (VCSEL). Thereby, three resonant excitations—photons, phonons and electrons—can interact strongly with each other providing modulation of the VCSEL laser emission: a picosecond strain pulse injected into the VCSEL excites long-living mechanical resonances therein. As a result, modulation of the lasing intensity at frequencies up to 40 GHz is observed. From these findings, prospective applications of active optomechanical resonators integrated into nanophotonic circuits may emerge. PMID:25008784
NASA Astrophysics Data System (ADS)
Hien, Nguyen Thi; Kim, Guinyun; Kim, Kwangsoo; Do, Nguyen Van; Khue, Pham Duc; Thanh, Kim Tien; Shin, Sung-Gyun; Cho, Moo-Hyun
2018-06-01
The thermal neutron capture cross-section (σ0) and resonance integral (I0) of the 108Pd(n,γ)109Pd reaction have been measured relative to that of the monitor reaction 197Au(n,γ)198Au. The measurements were carried out using the neutron activation with the cadmium ratio method. Both the samples and monitors were irradiated with and without cadmium cover of 0.5 mm thickness. The induced activities of the reaction products were measured with a well calibrated HPGe γ-ray detector. In order to improve the accuracy of the results, the necessary corrections for the counting losses were made. The thermal neutron capture cross-section and resonance integral of the 108Pd(n,γ)109Pd reaction were determined to be σ0,Pd = 8.68 ± 0.41 barn and I0,Pd = 245.6 ± 24.8 barn, respectively. The obtained results are compared with literature values and discussed.
Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials.
Xu, Quan; Su, Xiaoqiang; Ouyang, Chunmei; Xu, Ningning; Cao, Wei; Zhang, Yuping; Li, Quan; Hu, Cong; Gu, Jianqiang; Tian, Zhen; Azad, Abul K; Han, Jiaguang; Zhang, Weili
2016-10-01
Recently reported active metamaterial analogues of electromagnetically induced transparency (EIT) are promising in developing novel optical components, such as active slow light devices. However, most of the previous works have focused on manipulating the EIT resonance strength at a fixed characteristic frequency and, therefore, realized on-to-off switching responses. To further extend the functionalities of the EIT effect, here we present a frequency tunable EIT analogue in the terahertz regime by integrating photoactive silicon into the metamaterial unit cell. A tuning range from 0.82 to 0.74 THz for the EIT resonance frequency is experimentally observed by optical pump-terahertz probe measurements, allowing a frequency tunable group delay of the terahertz pulses. This straightforward approach delivers frequency agility of the EIT resonance and may enable novel ultrafast tunable devices for integrated plasmonic circuits.
On the classical and quantum integrability of systems of resonant oscillators
NASA Astrophysics Data System (ADS)
Marino, Massimo
2017-01-01
We study in this paper systems of harmonic oscillators with resonant frequencies. For these systems we present general procedures for the construction of sets of functionally independent constants of motion, which can be used for the definition of generalized actionangle variables, in accordance with the general description of degenerate integrable systems which was presented by Nekhoroshev in a seminal paper in 1972. We then apply to these classical integrable systems the procedure of quantization which has been proposed to the author by Nekhoroshev during his last years of activity at Milan University. This procedure is based on the construction of linear operators by means of the symmetrization of the classical constants of motion mentioned above. For 3 oscillators with resonance 1: 1: 2, by using a computer program we have discovered an exceptional integrable system, which cannot be obtained with the standard methods based on the obvious symmetries of the Hamiltonian function. In this exceptional case, quantum integrability can be realized only by means of a modification of the symmetrization procedure.
Stagnancy of the pygmy dipole resonance
NASA Astrophysics Data System (ADS)
Sun, Xu-Wei; Chen, Jing; Lu, Ding-Hui
2018-01-01
The pygmy dipole resonance (PDR) of nickel isotopes is studied using the deformed random phase approximation method. The isoscalar character of the pygmy resonance is confirmed, and the correlation between the pygmy resonance and neutron skin thickness is discussed. Our investigation shows a linear correlation between PDR integral cross section and neutron skin thickness when the excess neutrons lie in pf orbits, with a correlation rate of about 0.27 fm-1. However, in more neutron-rich nickel isotopes, the growth of the pygmy dipole resonance is stagnant. Although the neutron skin thickness increases, the whole skin is not active. There is an inertial part in the nuclei 70-78Ni which does not participate in the pygmy resonance actively and as a result, contributes little to the photo-absorption cross section. Supported by National Science Foundation of China
Electrically switchable metadevices via graphene
Balci, Osman; Kakenov, Nurbek; Karademir, Ertugrul; Balci, Sinan; Cakmakyapan, Semih; Polat, Emre O.; Caglayan, Humeyra; Özbay, Ekmel; Kocabas, Coskun
2018-01-01
Metamaterials bring subwavelength resonating structures together to overcome the limitations of conventional materials. The realization of active metadevices has been an outstanding challenge that requires electrically reconfigurable components operating over a broad spectrum with a wide dynamic range. However, the existing capability of metamaterials is not sufficient to realize this goal. By integrating passive metamaterials with active graphene devices, we demonstrate a new class of electrically controlled active metadevices working in microwave frequencies. The fabricated active metadevices enable efficient control of both amplitude (>50 dB) and phase (>90°) of electromagnetic waves. In this hybrid system, graphene operates as a tunable Drude metal that controls the radiation of the passive metamaterials. Furthermore, by integrating individually addressable arrays of metadevices, we demonstrate a new class of spatially varying digital metasurfaces where the local dielectric constant can be reconfigured with applied bias voltages. In addition, we reconfigure resonance frequency of split-ring resonators without changing its amplitude by damping one of the two coupled metasurfaces via graphene. Our approach is general enough to implement various metamaterial systems that could yield new applications ranging from electrically switchable cloaking devices to adaptive camouflage systems. PMID:29322094
Thermally actuated resonant silicon crystal nanobalances
NASA Astrophysics Data System (ADS)
Hajjam, Arash
As the potential emerging technology for next generation integrated resonant sensors and frequency references as well as electronic filters, micro-electro-mechanical resonators have attracted a lot of attention over the past decade. As a result, a wide variety of high frequency micro/nanoscale electromechanical resonators have recently been presented. MEMS resonators, as low-cost highly integrated and ultra-sensitive mass sensors, can potentially provide new opportunities and unprecedented capabilities in the area of mass sensing. Such devices can provide orders of magnitude higher mass sensitivity and resolution compared to Film Bulk Acoustic resonators (FBAR) or the conventional quartz and Surface Acoustic Wave (SAW) resonators due to their much smaller sizes and can be batch-fabricated and utilized in highly integrated large arrays at a very low cost. In this research, comprehensive experimental studies on the performance and durability of thermally actuated micromechanical resonant sensors with frequencies up to tens of MHz have been performed. The suitability and robustness of the devices have been demonstrated for mass sensing applications related to air-borne particles and organic gases. In addition, due to the internal thermo-electro-mechanical interactions, the active resonators can turn some of the consumed electronic power back into the mechanical structure and compensate for the mechanical losses. Therefore, such resonators can provide self-sustained-oscillation without the need for any electronic circuitry. This unique property has been deployed to demonstrate a prototype self-sustained sensor for air-borne particle monitoring. I have managed to overcome one of the obstacles for MEMS resonators, which is their relatively poor temperature stability. This is a major drawback when compared with the conventional quartz crystals. A significant decrease of the large negative TCF for the resonators has been attained by doping the devices with a high concentration of phosphorous, resulting in even slightly positive TCF for some of the devices. This is also expected to improve the phase noise characteristics of oscillators implemented utilizing such frequency references by eliminating the sharp dependence to electronic noise in the resonator bias current. Finally it is well known that non-uniformities in fabrication of MEMS resonators lead to variations in their frequency. I have proposed both active (non-permanent) and permanent frequency modification to compensate for variations in frequency of the MEMS resonators.
2009-08-31
Firstly we investigated the bend loss mechanism in a waveguide made using SU8 - a negative photosensitive polymer . Simulations were performed using...present demonstration, the polymer used was SU8 (Microchem Corp.), a negative photoresist. Patterning of the microdisks were achieved using both soft...Proposed All-optical flip flop which uses a passive microring resonator integrated with active elements. Also shown is the crossesction of the SU8
Integrated photonics using colloidal quantum dots
NASA Astrophysics Data System (ADS)
Menon, Vinod M.; Husaini, Saima; Okoye, Nicky; Valappil, Nikesh V.
2009-11-01
Integrated photonic devices were realized using colloidal quantum dot composites such as flexible microcavity laser, microdisk emitters and integrated active-passive waveguides. The microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. Planar photonic devices consisting of vertically coupled microring resonators, microdisk emitters, active-passive integrated waveguide structures and coupled active microdisk resonators were realized using soft lithography, photo-lithography, and electron beam lithography, respectively. The gain medium in all these devices was a composite consisting of quantum dots embedded in SU8 matrix. Finally, the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements was determined. In addition to their specific functionalities, these novel device demonstrations and their development present a low-cost alternative to the traditional photonic device fabrication techniques.
Mulkey, Sarah B; Yap, Vivien L; Bai, Shasha; Ramakrishnaiah, Raghu H; Glasier, Charles M; Bornemeier, Renee A; Schmitz, Michael L; Bhutta, Adnan T
2015-06-01
The study aims are to evaluate cerebral background patterns using amplitude-integrated electroencephalography in newborns with critical congenital heart disease, determine if amplitude-integrated electroencephalography is predictive of preoperative brain injury, and assess the incidence of preoperative seizures. We hypothesize that amplitude-integrated electroencephalography will show abnormal background patterns in the early preoperative period in infants with congenital heart disease that have preoperative brain injury on magnetic resonance imaging. Twenty-four newborns with congenital heart disease requiring surgery at younger than 30 days of age were prospectively enrolled within the first 3 days of age at a tertiary care pediatric hospital. Infants had amplitude-integrated electroencephalography for 24 hours beginning close to birth and preoperative brain magnetic resonance imaging. The amplitude-integrated electroencephalographies were read to determine if the background pattern was normal, mildly abnormal, or severely abnormal. The presence of seizures and sleep-wake cycling were noted. The preoperative brain magnetic resonance imaging scans were used for brain injury and brain atrophy assessment. Fifteen of 24 infants had abnormal amplitude-integrated electroencephalography at 0.71 (0-2) (mean [range]) days of age. In five infants, the background pattern was severely abnormal. (burst suppression and/or continuous low voltage). Of the 15 infants with abnormal amplitude-integrated electroencephalography, 9 (60%) had brain injury. One infant with brain injury had a seizure on amplitude-integrated electroencephalography. A severely abnormal background pattern on amplitude-integrated electroencephalography was associated with brain atrophy (P = 0.03) and absent sleep-wake cycling (P = 0.022). Background cerebral activity is abnormal on amplitude-integrated electroencephalography following birth in newborns with congenital heart disease who have findings of brain injury and/or brain atrophy on preoperative brain magnetic resonance imaging. Copyright © 2015 Elsevier Inc. All rights reserved.
Fusion of Renewable Ring Resonator Lasers and Ultrafast Laser Inscribed Photonic Waveguides
Chandrahalim, Hengky; Rand, Stephen C.; Fan, Xudong
2016-01-01
We demonstrated the monolithic integration of reusable and wavelength reconfigurable ring resonator lasers and waveguides of arbitrary shapes to out-couple and guide laser emission on the same fused-silica chip. The ring resonator hosts were patterned by a single-mask standard lithography, whereas the waveguides were inscribed in the proximity of the ring resonator by using 3-dimensional femtosecond laser inscription technology. Reusability of the integrated ring resonator – waveguide system was examined by depositing, removing, and re-depositing dye-doped SU-8 solid polymer, SU-8 liquid polymer, and liquid solvent (toluene). The wavelength reconfigurability was validated by employing Rhodamine 6G (R6G) and 3,3′-Diethyloxacarbocyanine iodide (CY3) as exemplary gain media. In all above cases, the waveguide was able to couple out and guide the laser emission. This work opens a door to reconfigurable active and passive photonic devices for on-chip coherent light sources, optical signal processing, and the investigation of new optical phenomena. PMID:27600872
Fusion of Renewable Ring Resonator Lasers and Ultrafast Laser Inscribed Photonic Waveguides.
Chandrahalim, Hengky; Rand, Stephen C; Fan, Xudong
2016-09-07
We demonstrated the monolithic integration of reusable and wavelength reconfigurable ring resonator lasers and waveguides of arbitrary shapes to out-couple and guide laser emission on the same fused-silica chip. The ring resonator hosts were patterned by a single-mask standard lithography, whereas the waveguides were inscribed in the proximity of the ring resonator by using 3-dimensional femtosecond laser inscription technology. Reusability of the integrated ring resonator - waveguide system was examined by depositing, removing, and re-depositing dye-doped SU-8 solid polymer, SU-8 liquid polymer, and liquid solvent (toluene). The wavelength reconfigurability was validated by employing Rhodamine 6G (R6G) and 3,3'-Diethyloxacarbocyanine iodide (CY3) as exemplary gain media. In all above cases, the waveguide was able to couple out and guide the laser emission. This work opens a door to reconfigurable active and passive photonic devices for on-chip coherent light sources, optical signal processing, and the investigation of new optical phenomena.
A dual RF resonator system for high-field functional magnetic resonance imaging of small animals.
Ludwig, R; Bodgdanov, G; King, J; Allard, A; Ferris, C F
2004-01-30
A new apparatus has been developed that integrates an animal restrainer arrangement for small animals with an actively tunable/detunable dual radio-frequency (RF) coil system for in vivo anatomical and functional magnetic resonance imaging of small animals at 4.7 T. The radio-frequency coil features an eight-element microstrip line configuration that, in conjunction with a segmented outer copper shield, forms a transversal electromagnetic (TEM) resonator structure. Matching and active tuning/detuning is achieved through fixed/variable capacitors and a PIN diode for each resonator element. These components along with radio-frequency chokes (RFCs) and blocking capacitors are placed on two printed circuit boards (PCBs) whose copper coated ground planes form the front and back of the volume coil and are therefore an integral part of the resonator structure. The magnetic resonance signal response is received with a dome-shaped single-loop surface coil that can be height-adjustable with respect to the animal's head. The conscious animal is immobilized through a mechanical arrangement that consists of a Plexiglas body tube and a head restrainer. This restrainer has a cylindrical holder with a mouthpiece and position screws to receive and restrain the head of the animal. The apparatus is intended to perform anatomical and functional magnetic resonance imaging in conscious animals such as mice, rats, hamsters, and marmosets. Cranial images acquired from fully conscious rats in a 4.7 T Bruker 40 cm bore animal scanner underscore the feasibility of this approach and bode well to extend this system to the imaging of other animals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, B.; Urazuka, Y.; Chen, H.
2014-05-07
We report on numerical analysis on self-oscillation of standing spin wave excited in a nanostructured active ring resonator, consists of a ferromagnetic nanowire with perpendicular anisotropy. The confined resonant modes are along the nanowire length. A positive feedback with proportional-integral-derivative gain control was adopted in the active ring. Stable excitation of the 1st order standing spin wave has been demonstrated with micromagnetic simulations, taking into account the thermal effect with a random field model. The stationary standing spin wave with a pre-determined set variable of precession amplitude was attained within 20 ns by optimizing the proportional-integral-derivative gain control parameters. The resultmore » indicates that a monochromatic oscillation frequency f{sub osc} is extracted from the initial thermal fluctuation state and selectively amplified with the positive feedback loop. The obtained f{sub osc} value of 5.22 GHz practically agrees with the theoretical prediction from dispersion relation of the magneto static forward volume wave. It was also confirmed that the f{sub osc} change due to the temperature rise can be compensated with an external perpendicular bias field H{sub b}. The observed quick compensation time with an order of nano second suggests the fast operation speed in the practical device application.« less
An integrated parity-time symmetric wavelength-tunable single-mode microring laser
Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping
2017-01-01
Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm. PMID:28497784
An integrated parity-time symmetric wavelength-tunable single-mode microring laser.
Liu, Weilin; Li, Ming; Guzzon, Robert S; Norberg, Erik J; Parker, John S; Lu, Mingzhi; Coldren, Larry A; Yao, Jianping
2017-05-12
Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm.
Resonant detectors and focal plane arrays for infrared detection
NASA Astrophysics Data System (ADS)
Choi, K. K.; Allen, S. C.; Sun, J. G.; DeCuir, E. A.
2017-08-01
We are developing resonator-QWIPs for narrowband and broadband long wavelength infrared detection. Detector pixels with 25 μm and 30 μm pitches were hybridized to fanout circuits and readout integrated electronics for radiometric measurements. With a low to moderate doping of 0.2-0.5 × 1018 cm-3 and a thin active layer thickness of 0.6-1.3 μm, we achieved a quantum efficiency between 25 and 37% and a conversion efficiency between of 15 and 20%. The temperature at which photocurrent equals dark current is about 65 K under F/2 optics for a cutoff wavelength up to 11 μm. The NEΔT of the FPAs is estimated to be 20 mK at 2 ms integration time and 60 K operating temperature. This good performance confirms the advantages of the resonator-QWIP approach.
Li, Lele; Tong, Rong; Li, Mengyuan; Kohane, Daniel S
2016-03-01
Nanoparticles with combined diagnostic and therapeutic functions are promising tools for cancer diagnosis and treatment. Here, we demonstrate a theranostic nanoparticle that integrates an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile supramolecular self-assembly synthesis, where the anti-cancer drug gemcitabine-5'-monophosphate (a phosphorylated active metabolite of the anti-cancer drug gemcitabine) was used to coordinate with Gd(III) to self-assemble into theranostic nanoparticles. The formulation exhibits a strong T1 contrast signal for magnetic resonance imaging of tumors in vivo, with enhanced retention time. Furthermore, the nanoparticles did not require other inert nanocarriers or excipients and thus had an exceptionally high drug loading (55 wt%), resulting in the inhibition of MDA-MB-231 tumor growth in mice. Recent advances in nanoparticle-based drug delivery systems have spurred the development of "theranostic" multifunctional nanoparticles, which combine therapeutic and diagnostic functionalities in a single formulation. Developing simple and efficient synthetic strategies for the construction of nanotheranostics with high drug loading remains a challenge. Here, we demonstrate a theranostic nanoparticle that integrates high loadings of an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile synthesis. The nanoparticles were better T1 contrast agents than currently used Gd-DTPA and had prolonged retention in tumor. Moreover they exhibited enhanced in vivo antitumor activity compared to free drug in a breast cancer xenograft mouse model. The strategy provides a scalable way to fabricate nanoparticles that enables enhancement of both therapeutic and diagnostic capabilities. Published by Elsevier Ltd.
Iconic memory and parietofrontal network: fMRI study using temporal integration.
Saneyoshi, Ayako; Niimi, Ryosuke; Suetsugu, Tomoko; Kaminaga, Tatsuro; Yokosawa, Kazuhiko
2011-08-03
We investigated the neural basis of iconic memory using functional magnetic resonance imaging. The parietofrontal network of selective attention is reportedly relevant to readout from iconic memory. We adopted a temporal integration task that requires iconic memory but not selective attention. The results showed that the task activated the parietofrontal network, confirming that the network is involved in readout from iconic memory. We further tested a condition in which temporal integration was performed by visual short-term memory but not by iconic memory. However, no brain region revealed higher activation for temporal integration by iconic memory than for temporal integration by visual short-term memory. This result suggested that there is no localized brain region specialized for iconic memory per se.
NASA Astrophysics Data System (ADS)
Van Do, Nguyen; Khue, Pham Duc; Thanh, Kim Tien; Hien, Nguyen Thi; Kim, Guinyun; Kim, Kwangsoo; Shin, Sung-Gyun; Kye, Yong-Uk; Cho, Moo-Hyun
2017-10-01
We measured the thermal neutron cross-section (σ0) and resonance integral (I0) of the 152Sm(n,γ)153Sm reaction relative to that of the 197Au(n,γ)198Au reaction. Sm and Au foils with and without a cadmium cover of 0.5 mm were irradiated with moderated pulsed neutrons produced from the electron linac. The induced activities of the reaction products were determined via high energy resolution HPGe detector. The present results: σ0,Sm =212±8 b and I0,Sm =3.02±0.19 kb are consistent with most of the existing reference data.
Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors
Nouman, Muhammad Tayyab; Kim, Hyun-Woong; Woo, Jeong Min; Hwang, Ji Hyun; Kim, Dongju; Jang, Jae-Hyung
2016-01-01
The terahertz (THz) band of the electromagnetic spectrum, with frequencies ranging from 300 GHz to 3 THz, has attracted wide interest in recent years owing to its potential applications in numerous areas. Significant progress has been made toward the development of devices capable of actively controlling terahertz waves; nonetheless, further advances in device functionality are necessary for employment of these devices in practical terahertz systems. Here, we demonstrate a low voltage, sharp switching terahertz modulator device based on metamaterials integrated with metal semiconductor metal (MSM) varactors, fabricated on an AlGaAs/InGaAs based heterostructure. By varying the applied voltage to the MSM-varactor located at the center of split ring resonator (SRR), the resonance frequency of the SRR-based metamaterial is altered. Upon varying the bias voltage from 0 V to 3 V, the resonance frequency exhibits a transition from 0.52 THz to 0.56 THz, resulting in a modulation depth of 45 percent with an insertion loss of 4.3 dB at 0.58 THz. This work demonstrates a new approach for realizing active terahertz devices with improved functionalities. PMID:27194128
Thin disk laser with unstable resonator and reduced output coupler
NASA Astrophysics Data System (ADS)
Gavili, Anwar; Shayganmanesh, Mahdi
2018-05-01
In this paper, feasibility of using unstable resonator with reduced output coupling in a thin disk laser is studied theoretically. Unstable resonator is modeled by wave-optics using Collins integral and iterative method. An Yb:YAG crystal with 250 micron thickness is considered as a quasi-three level active medium and modeled by solving rate equations of energy levels populations. The amplification of laser beam in the active medium is calculated based on the Beer-Lambert law and Rigrod method. Using generalized beam parameters method, laser beam parameters like, width, divergence, M2 factor, output power as well as near and far-field beam profiles are calculated for unstable resonator. It is demonstrated that for thin disk laser (with single disk) in spite of the low thickness of the disk which leads to low gain factor, it is possible to use unstable resonator (with reduced output coupling) and achieve good output power with appropriate beam quality. Also, the behavior of output power and beam quality versus equivalent Fresnel number is investigated and optimized value of output coupling for maximum output power is achieved.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises.
Deng, Mao-Lin; Zhu, Wei-Qiu
2016-08-01
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Mao-Lin; Zhu, Wei-Qiu, E-mail: wqzhu@zju.edu.cn
2016-08-15
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Discriminator Stabilized Superconductor/Ferroelectric Thin Film Local Oscillator
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R. (Inventor); Miranda, Felix A. (Inventor)
2000-01-01
A tunable local oscillator with a tunable circuit that includes a resonator and a transistor as an active element for oscillation. Tuning of the circuit is achieved with an externally applied dc bias across coupled lines on the resonator. Preferably the resonator is a high temperature superconductor microstrip ring resonator with integral coupled lines formed over a thin film ferroelectric material. A directional coupler samples the output of the oscillator which is fed into a diplexer for determining whether the oscillator is performing at a desired frequency. The high-pass and lowpass outputs of the diplexer are connected to diodes respectively for inputting the sampled signals into a differential operational amplifier. The amplifier compares the sampled signals and emits an output signal if there is a difference between the resonant and crossover frequencies. Based on the sampled signal, a bias supplied to the ring resonator is either increased or decreased for raising or lowering the resonant frequency by decreasing or increasing, respectively, the dielectric constant of the ferroelectric.
Integrated ultra-low-loss resonator on a chip
NASA Astrophysics Data System (ADS)
Poon, Joyce K. S.
2018-05-01
Exquisitely low-loss optical resonators have thus far remained discrete. Monolithic integration of waveguides with silica resonators that have Q factors >100 million charts a path toward incorporating these devices in photonic circuits.
Tunable Micro- and Nanomechanical Resonators
Zhang, Wen-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang
2015-01-01
Advances in micro- and nanofabrication technologies have enabled the development of novel micro- and nanomechanical resonators which have attracted significant attention due to their fascinating physical properties and growing potential applications. In this review, we have presented a brief overview of the resonance behavior and frequency tuning principles by varying either the mass or the stiffness of resonators. The progress in micro- and nanomechanical resonators using the tuning electrode, tuning fork, and suspended channel structures and made of graphene have been reviewed. We have also highlighted some major influencing factors such as large-amplitude effect, surface effect and fluid effect on the performances of resonators. More specifically, we have addressed the effects of axial stress/strain, residual surface stress and adsorption-induced surface stress on the sensing and detection applications and discussed the current challenges. We have significantly focused on the active and passive frequency tuning methods and techniques for micro- and nanomechanical resonator applications. On one hand, we have comprehensively evaluated the advantages and disadvantages of each strategy, including active methods such as electrothermal, electrostatic, piezoelectrical, dielectric, magnetomotive, photothermal, mode-coupling as well as tension-based tuning mechanisms, and passive techniques such as post-fabrication and post-packaging tuning processes. On the other hand, the tuning capability and challenges to integrate reliable and customizable frequency tuning methods have been addressed. We have additionally concluded with a discussion of important future directions for further tunable micro- and nanomechanical resonators. PMID:26501294
Magneto-optical response in bimetallic metamaterials
NASA Astrophysics Data System (ADS)
Atmatzakis, Evangelos; Papasimakis, Nikitas; Fedotov, Vassili; Vienne, Guillaume; Zheludev, Nikolay I.
2018-01-01
We demonstrate resonant Faraday polarization rotation in plasmonic arrays of bimetallic nano-ring resonators consisting of Au and Ni sections. This metamaterial design allows the optimization of the trade-off between the enhancement of magneto-optical effects and plasmonic dissipation. Nickel sections corresponding to as little as 6% of the total surface of the metamaterial result in magneto-optically induced polarization rotation equal to that of a continuous nickel film. Such bimetallic metamaterials can be used in compact magnetic sensors, active plasmonic components, and integrated photonic circuits.
NASA Astrophysics Data System (ADS)
Kong, Duanhua; Kim, Taek; Kim, Sihan; Hong, Hyungi; Shcherbatko, Igor; Park, Youngsoo; Shin, Dongjae; Ha, Kyoung-Ho; Jeong, Gitae
2014-03-01
We designed and fabricated a 1.3-um hybrid vertical Resonant-Cavity Light-Emitting Diode for optical interconnect by using direct III-V wafer bonding on silicon on insulator (SOI). The device included InP based front distributed Bragg reflector (DBR), InGaAlAs based active layer, and SOI-based high-contrast-grating (HCG) as a back reflector. 42-uW continuous wave optical power was achieved at 20mA at room temperature.
Radiative transfer of X-rays in the solar corona
NASA Technical Reports Server (NTRS)
Acton, L. W.
1978-01-01
The problem of resonance scattering of X-ray emission lines in the solar corona is investigated. For the resonance lines of some helium-like ions, significant optical depths are reached over distances small compared with the size of typical coronal features. A general integral equation for the transfer of resonance-line radiation under solar coronal conditions is derived. This expression is in a form useful for modeling the complex three-dimensional temperature and density structure of coronal active regions. The transfer equation is then cast in a form illustrating the terms which give rise to the attenuation or enhancement of the resonance-line intensity. The source function for helium-like oxygen (O VII) under coronal conditions is computed and discussed in terms of the relative importance of scattering.
Silicon-on-insulator sensors using integrated resonance-enhanced defect-mediated photodetectors.
Fard, Sahba Talebi; Murray, Kyle; Caverley, Michael; Donzella, Valentina; Flueckiger, Jonas; Grist, Samantha M; Huante-Ceron, Edgar; Schmidt, Shon A; Kwok, Ezra; Jaeger, Nicolas A F; Knights, Andrew P; Chrostowski, Lukas
2014-11-17
A resonance-enhanced, defect-mediated, ring resonator photodetector has been implemented as a single unit biosensor on a silicon-on-insulator platform, providing a cost effective means of integrating ring resonator sensors with photodetectors for lab-on-chip applications. This method overcomes the challenge of integrating hybrid photodetectors on the chip. The demonstrated responsivity of the photodetector-sensor was 90 mA/W. Devices were characterized using refractive index modified solutions and showed sensitivities of 30 nm/RIU.
NASA Astrophysics Data System (ADS)
Wang, Yuxi; Niu, Shengkai; Hu, Yuantai
2017-06-01
The paper proposes a new piezoelectric smart structure with the integrated passive/active vibration-reduction performances, which is made of a series of periodic structural units. Every structural unit is made of two layers, one is an array of piezoelectric bimorphs (PBs) and one is an array of metal beams (MBs), both are connected as a whole by a metal plate. Analyses show that such a periodic smart structure possesses two aspects of vibration-reduction performance: one comes from its phonon crystal characteristics which can isolate those vibrations with the driving frequency inside the band gap(s). The other one comes from the electromechanical conversion of bent PBs, which is actively aimed at those vibrations with the driving frequency outside the band gap(s). By adjusting external inductance, the equivalent circuit of the proposed structure can be forced into parallel resonance such that most of the vibration energy is converted into electrical energy for dissipation by a resistance. Thus, an external circuit under the parallel resonance state is equivalent to a strong damping to the interrelated vibrating structure, which is just the action mechanism of the active vibration reduction performance of the proposed smart structure.
NASA Technical Reports Server (NTRS)
Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)
2008-01-01
The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.
Method of producing an integral resonator sensor and case
NASA Technical Reports Server (NTRS)
Challoner, A. Dorian (Inventor); Yee, Karl Y. (Inventor); Shcheglov, Kirill V. (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor)
2005-01-01
The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.
Wavelength-tunable optical ring resonators
Watts, Michael R [Albuquerque, NM; Trotter, Douglas C [Albuquerque, NM; Young, Ralph W [Albuquerque, NM; Nielson, Gregory N [Albuquerque, NM
2009-11-10
Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.
Wavelength-tunable optical ring resonators
Watts, Michael R [Albuquerque, NM; Trotter, Douglas C [Albuquerque, NM; Young, Ralph W [Albuquerque, NM; Nielson, Gregory N [Albuquerque, NM
2011-07-19
Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.
Baird, Abigail A; Colvin, Mary K; Vanhorn, John D; Inati, Souheil; Gazzaniga, Michael S
2005-04-01
In the present study, we combined 2 types of magnetic resonance technology to explore individual differences on a task that required the recognition of objects presented from unusual viewpoints. This task was chosen based on previous work that has established the necessity of information transfer from the right parietal cortex to the left inferior cortex for its successful completion. We used reaction times (RTs) to localize regions of cortical activity in the superior parietal and inferior frontal regions (blood oxygen level-dependent [BOLD] response) that were more active with longer response times. These regions were then sampled, and their signal change used to predict individual differences in structural integrity of white matter in the corpus callosum (using diffusion tensor imaging). Results show that shorter RTs (and associated increases in BOLD response) are associated with increased organization in the splenium of the corpus callosum, whereas longer RTs are associated with increased organization in the genu.
2012-06-29
of active-passive integrated polymer waveguides. The active waveguides consist of CdSe quantum dots dispersed in SU8 . Bottom panel shows CCD images...successfully demonstrated (i) incorporation of CdSe QDs into polymer and dielectric host and realization of devices such as active waveguides, microdisk...the significant outcomes of the program: • Successful incorporation of CdSe QDs into polymer and dielectric host and realization of devices such as
NASA Astrophysics Data System (ADS)
Xereas, George; Chodavarapu, Vamsy P.
2014-03-01
Frequency references are used in almost every modern electronic device including mobile phones, personal computers, and scientific and medical instrumentation. With modern consumer mobile devices imposing stringent requirements of low cost, low complexity, compact system integration and low power consumption, there has been significant interest to develop batch-manufactured MEMS resonators. An important challenge for MEMS resonators is to match the frequency and temperature stability of quartz resonators. We present 1MHz and 20MHz temperature compensated Free-Free beam MEMS resonators developed using PolyMUMPS, which is a commercial multi-user process available from MEMSCAP. We introduce a novel temperature compensation technique that enables high frequency stability over a wide temperature range. We used three strategies: passive compensation by using a structural gold (Au) layer on the resonator, active compensation through using a heater element, and a Free-Free beam design that minimizes the effects of thermal mismatch between the vibrating structure and the substrate. Detailed electro-mechanical simulations were performed to evaluate the frequency response and Quality Factor (Q). Specifically, for the 20MHz device, a Q of 10,000 was obtained for the passive compensated design. Finite Element Modeling (FEM) simulations were used to evaluate the Temperature Coefficient of frequency (TCf) of the resonators between -50°C and 125°C which yielded +0.638 ppm/°C for the active compensated, compared to -1.66 ppm/°C for the passively compensated design and -8.48 ppm/°C for uncompensated design for the 20MHz device. Electro-thermo-mechanical simulations showed that the heater element was capable of increasing the temperature of the resonators by approximately 53°C with an applied voltage of 10V and power consumption of 8.42 mW.
Integrated optics ring-resonator chemical sensor with polymer transduction layer
NASA Technical Reports Server (NTRS)
Ksendzov, A.; Homer, M. L.; Manfreda, A. M.
2004-01-01
An integrated optics chemical sensor based on a ring resonator with an ethyl cellulose polymer coating has been demonstrated. The measured sensitivity to isopropanol in air is 50 ppm-the level immediately useful for health-related air quality monitoring. The resonator was fabricated using SiO2 and SixNy materials. The signal readout is based on tracking the wavelength of a resonance peak. The resonator layout optimisation for sensing applications is discussed.
Mitchell, Karen J; Mather, Mara; Johnson, Marcia K; Raye, Carol L; Greene, Erich J
2006-10-02
We investigated the hypothesis that arousal recruits attention to item information, thereby disrupting working memory processes that help bind items to context. Using functional magnetic resonance imaging, we compared brain activity when participants remembered negative or neutral picture-location conjunctions (source memory) versus pictures only. Behaviorally, negative trials showed disruption of short-term source, but not picture, memory; long-term picture recognition memory was better for negative than for neutral pictures. Activity in areas involved in working memory and feature integration (precentral gyrus and its intersect with superior temporal gyrus) was attenuated on negative compared with neutral source trials relative to picture-only trials. Visual processing areas (middle occipital and lingual gyri) showed greater activity for negative than for neutral trials, especially on picture-only trials.
Vacuum Gap Microstrip Microwave Resonators for 2.5-D Integration in Quantum Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Rupert M.; Henry, Michael David; Schroeder, Katlin
We demonstrate vacuum gap λ/2 microwave resonators as a route toward higher integration in superconducting qubit circuits. The resonators are fabricated from pieces on two silicon chips bonded together with an In-Sb bond. Measurements of the devices yield resonant frequencies in good agreement with simulations. Furthermore, we discuss creating low loss circuits in this geometry.
Vacuum Gap Microstrip Microwave Resonators for 2.5-D Integration in Quantum Computing
Lewis, Rupert M.; Henry, Michael David; Schroeder, Katlin
2017-02-22
We demonstrate vacuum gap λ/2 microwave resonators as a route toward higher integration in superconducting qubit circuits. The resonators are fabricated from pieces on two silicon chips bonded together with an In-Sb bond. Measurements of the devices yield resonant frequencies in good agreement with simulations. Furthermore, we discuss creating low loss circuits in this geometry.
R-matrix analysis of reactions in the 9B compound system applied to the 7Li problem in BBN
NASA Astrophysics Data System (ADS)
Paris, M.; Hale, G.; Hayes-Sterbenz, A.; Jungman, G.
2016-01-01
Recent activity in solving the ‘lithium problem’ in big bang nucleosynthesis has focused on the role that putative resonances may play in resonance-enhanced destruction of 7Li. Particular attention has been paid to the reactions involving the 9B compound nuclear system, d+7Be → 9B. These reactions are analyzed via the multichannel, two-body unitary R-matrix method using the code EDA developed by Hale and collaborators. We employ much of the known elastic and reaction data, in a four-channel treatment. The data include elastic 3He +6Li differential cross sections from 0.7 to 2.0 MeV, integrated reaction cross sections for energies from 0.7 to 5.0 MeV for 6Li(3He,p)8Be* and from 0.4 to 5.0 MeV for the 6Li(3He,d)7Be reaction. Capture data have been added to an earlier analysis with integrated cross section measurements from 0.7 to 0.825 MeV for 6Li(3He,γ)9B. The resulting resonance parameters are compared with tabulated values, and previously unidentified resonances are noted. Our results show that there are no near d+7Be threshold resonances with widths that are 10’s of keV and reduce the likelihood that a resonance-enhanced mass-7 destruction mechanism, as suggested in recently published work, can explain the 7Li problem.
Resonant cavity enhanced photonic devices
NASA Astrophysics Data System (ADS)
Ünlü, M. Selim; Strite, Samuel
1995-07-01
We review the family of optoelectronic devices whose performance is enhanced by placing the active device structure inside a Fabry-Perot resonant microcavity. Such resonant cavity enhanced (RCE) devices benefit from the wavelength selectivity and the large increase of the resonant optical field introduced by the cavity. The increased optical field allows RCE photodetector structures to be thinner and therefore faster, while simultaneously increasing the quantum efficiency at the resonant wavelengths. Off-resonance wavelengths are rejected by the cavity making RCE photodetectors promising for low crosstalk wavelength division multiplexing (WDM) applications. RCE optical modulators require fewer quantum wells so are capable of reduced voltage operation. The spontaneous emission spectrum of RCE light emitting diodes (LED) is drastically altered, improving the spectral purity and directivity. RCE devices are also highly suitable for integrated detectors and emitters with applications as in optical logic and in communication networks. This review attempts an encyclopedic overview of RCE photonic devices and systems. Considerable attention is devoted to the theoretical formulation and calculation of important RCE device parameters. Materials criteria are outlined and the suitability of common heteroepitaxial systems for RCE devices is examined. Arguments for the improved bandwidth in RCE detectors are presented intuitively, and results from advanced numerical simulations confirming the simple model are provided. An overview of experimental results on discrete RCE photodiodes, phototransistors, modulators, and LEDs is given. Work aimed at integrated RCE devices, optical logic and WDM systems is also covered. We conclude by speculating what remains to be accomplished to implement a practical RCE WDM system.
Ring-resonator-integrated tunable external cavity laser employing EAM and SOA.
Yoon, Ki-Hong; Kwon, O-Kyun; Kim, Ki Soo; Choi, Byung-Seok; Oh, Su Hwan; Kim, Hyun Su; Sim, Jae-Sik; Kim, Chul Soo
2011-12-05
We propose and demonstrate a tunable external cavity laser (ECL) composed of a polymer Bragg reflector (PBR) and integrated gain chip with gain, a ring resonator, an electro-absorption modulator (EAM), and a semiconductor optical amplifier (SOA). The cavity of the laser is composed of the PBR, gain, and ring resonator. The ring resonator reflects the predetermined wavelengths into the gain region and transmits the output signal into integrated devices such as the EAM and SOA. The output wavelength of the tunable laser is discretely tuned in steps of about 0.8 nm through the thermal-optic effect of the PBR and predetermined mode spacing of the ring resonator.
NASA Astrophysics Data System (ADS)
Zhang, Sheng; Rao, Jia-Yu; Tai, Wen-Si; Wang, Ting; Liu, Fa-Lin
2016-09-01
In this paper, a kind of quasi eighth substrate integrated waveguide resonator (QESIWR) with defected fractal structure (DFS) is proposed firstly. Compared with the eighth substrate integrated waveguide resonator (ESIWR), this kind of resonator has lower resonant frequency (f0), acceptable unloaded quality (Qu) value and almost unchanged electric field distribution. In order to validate the properties of QESIWR, a cascaded quadruplet QESIWRs filter is designed and optimized. By using cross coupling and gap coupling compensation, this filter has two transmission zeros (TZs) at each side of the passband. Meanwhile, in comparison with the conventional ones, its size is cut down over 90 %. The measured results agree well with the simulated ones.
De Martin, Elena; Duran, Dunja; Ghielmetti, Francesco; Visani, Elisa; Aquino, Domenico; Marchetti, Marcello; Sebastiano, Davide Rossi; Cusumano, Davide; Bruzzone, Maria Grazia; Panzica, Ferruccio; Fariselli, Laura
2017-12-01
Magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) provide noninvasive localization of eloquent brain areas for presurgical planning. The aim of this study is the integration of MEG and fMRI maps into a CyberKnife (CK) system to optimize dose planning. Four patients with brain metastases in the motor area underwent functional imaging study of the hand motor cortex before radiosurgery. MEG data were acquired during a visually cued hand motor task. Motor activations were identified also using an fMRI block-designed paradigm. MEG and fMRI maps were then integrated into a CK system and contoured as organs at risk for treatment planning optimization. The integration of fMRI data into the CK system was achieved for all patients by means of a standardized protocol. We also implemented an ad hoc pipeline to convert the MEG signal into a DICOM standard, to make sure that it was readable by our CK treatment planning system. Inclusion of the activation areas into the optimization plan allowed the creation of treatment plans that reduced the irradiation of the motor cortex yet not affecting the brain peripheral dose. The availability of advanced neuroimaging techniques is playing an increasingly important role in radiosurgical planning strategy. We successfully imported MEG and fMRI activations into a CK system. This additional information can improve dose sparing of eloquent areas, allowing a more comprehensive investigation of the related dose-volume constraints that in theory could translate into a gain in tumor local control, and a reduction of neurological complications. Copyright © 2017 Elsevier Inc. All rights reserved.
Semiclassical description of resonance-assisted tunneling in one-dimensional integrable models
NASA Astrophysics Data System (ADS)
Le Deunff, Jérémy; Mouchet, Amaury; Schlagheck, Peter
2013-10-01
Resonance-assisted tunneling is investigated within the framework of one-dimensional integrable systems. We present a systematic recipe, based on Hamiltonian normal forms, to construct one-dimensional integrable models that exhibit resonance island chain structures with accurately controlled sizes and positions of the islands. Using complex classical trajectories that evolve along suitably defined paths in the complex time domain, we construct a semiclassical theory of the resonance-assisted tunneling process. This semiclassical approach yields a compact analytical expression for tunnelling-induced level splittings which is found to be in very good agreement with the exact splittings obtained through numerical diagonalization.
NASA Astrophysics Data System (ADS)
Xia, Xiaoyuan; Zhang, Zhixiang; Li, Xinxin
2008-03-01
Second torsion-mode resonance is proposed for microcantilever biosensors for ultra-high mass-weighing sensitivity and resolution. By increasing both the resonant frequency and Q-factor, the higher mode torsional resonance is favorable for improving the mass-sensing performance. For the first time, a Latin-cross-shaped second-mode resonant cantilever is constructed and optimally designed for both signal-readout and resonance-exciting elements. The cantilever sensor is fabricated by using silicon micromachining techniques. The transverse piezoresistive sensing element and the specific-shaped resonance-exciting loop are successfully integrated in the cantilever. Alpha-fetoprotein (AFP) antibody-antigen specific binding is implemented for the sensing experiment. The proposed cantilever sensor is designed with significantly superior sensitivity to the previously reported first torsion-mode one. After analysis with an Allan variance algorithm, which can be easily embedded in the sensing system, the Latin-cross-shaped second torsion-mode resonant cantilever is evaluated with ultra-high mass resolution. Therefore, the high-performance integrated micro-sensor is promising for on-the-spot bio-molecule detection.
Micromechanical Signal Processors
NASA Astrophysics Data System (ADS)
Nguyen, Clark Tu-Cuong
Completely monolithic high-Q micromechanical signal processors constructed of polycrystalline silicon and integrated with CMOS electronics are described. The signal processors implemented include an oscillator, a bandpass filter, and a mixer + filter--all of which are components commonly required for up- and down-conversion in communication transmitters and receivers, and all of which take full advantage of the high Q of micromechanical resonators. Each signal processor is designed, fabricated, then studied with particular attention to the performance consequences associated with miniaturization of the high-Q element. The fabrication technology which realizes these components merges planar integrated circuit CMOS technologies with those of polysilicon surface micromachining. The technologies are merged in a modular fashion, where the CMOS is processed in the first module, the microstructures in a following separate module, and at no point in the process sequence are steps from each module intermixed. Although the advantages of such modularity include flexibility in accommodating new module technologies, the developed process constrained the CMOS metallization to a high temperature refractory metal (tungsten metallization with TiSi _2 contact barriers) and constrained the micromachining process to long-term temperatures below 835^circC. Rapid-thermal annealing (RTA) was used to relieve residual stress in the mechanical structures. To reduce the complexity involved with developing this merged process, capacitively transduced resonators are utilized. High-Q single resonator and spring-coupled micromechanical resonator filters are also investigated, with particular attention to noise performance, bandwidth control, and termination design. The noise in micromechanical filters is found to be fairly high due to poor electromechanical coupling on the micro-scale with present-day technologies. Solutions to this high series resistance problem are suggested, including smaller electrode-to-resonator gaps to increase the coupling capacitance. Active Q-control techniques are demonstrated which control the bandwidth of micromechanical filters and simulate filter terminations with little passband distortion. Noise analysis shows that these active techniques are relatively quiet when compared with other resistive techniques. Modulation techniques are investigated whereby a single resonator or a filter constructed from several such resonators can provide both a mixing and a filtering function, or a filtering and amplitude modulation function. These techniques center around the placement of a carrier signal on the micromechanical resonator. Finally, micro oven stabilization is investigated in an attempt to null the temperature coefficient of a polysilicon micromechanical resonator. Here, surface micromachining procedures are utilized to fabricate a polysilicon resonator on a microplatform--two levels of suspension--equipped with heater and temperature sensing resistors, which are then imbedded in a feedback loop to control the platform (and resonator) temperature. (Abstract shortened by UMI.).
Pulse tube cooler having 1/4 wavelength resonator tube instead of reservoir
NASA Technical Reports Server (NTRS)
Gedeon, David R. (Inventor)
2008-01-01
An improved pulse tube cooler having a resonator tube connected in place of a compliance volume or reservoir. The resonator tube has a length substantially equal to an integer multiple of 1/4 wavelength of an acoustic wave in the working gas within the resonator tube at its operating frequency, temperature and pressure. Preferably, the resonator tube is formed integrally with the inertance tube as a single, integral tube with a length approximately 1/2 of that wavelength. Also preferably, the integral tube is spaced outwardly from and coiled around the connection of the regenerator to the pulse tube at a cold region of the cooler and the turns of the coil are thermally bonded together to improve heat conduction through the coil.
NASA Astrophysics Data System (ADS)
Tuzhilkin, D. A.; Borodin, A. S.
2017-11-01
The results of the study of variations in the electromagnetic background parameters of the Schumann resonator frequency range and the variability indices of the human heart period during its free activity are presented on the basis of 24-hour synchronous monitoring data. It is shown that the integral evaluation of the conjugacy of the heart rate variability indices from the Schumann resonance parameters is extremely weak. In this case, the differential evaluation of this dependence with separation into characteristic time intervals of the day, characterized by different motor activity of the subjects, becomes significantly higher. The number of volunteers whose conjugacy is characterized by a strong correlation in some cases reaches 35 percent of the sample.
Bloch surface wave structures for high sensitivity detection and compact waveguiding
NASA Astrophysics Data System (ADS)
Khan, Muhammad Umar; Corbett, Brian
2016-01-01
Resonant propagating waves created on the surface of a dielectric multilayer stack, called Bloch surface waves (BSW), can be designed for high sensitivity monitoring of the adjacent refractive index as an alternative platform to the metal-based surface plasmon resonance (SPR) sensing. The resonant wavelength and polarization can be designed by engineering of the dielectric layers unlike the fixed resonance of SPR, while the wide bandwidth low loss of dielectrics permits sharper resonances, longer propagation lengths and thus their use in waveguiding devices. The transparency of the dielectrics allows the excitation and monitoring of surface-bound fluorescent molecules. We review the recent developments in this technology. We show the advantages that can be obtained by using high index contrast layered structures. Operating at 1550 nm wavelengths will allow the BSW sensors to be implemented in the silicon photonics platform where active waveguiding can be used in the realization of compact planar integrated circuits for multi-parameter sensing.
Observation of Schumann Resonances in the Earth's Ionosphere
NASA Technical Reports Server (NTRS)
Simoes, Fernando; Pfaff, Robert; Freudenreich, Henry
2011-01-01
The surface of the Earth and the lower edge of the ionosphere define a cavity in which electromagnetic waves propagate. When the cavity is excited by broadband electromagnetic sources, e.g., lightning, a resonant state can develop provided the average equatorial circumference is approximately equal to an integral number of wavelengths of the electromagnetic waves. This phenomenon, known as Schumann resonance, corresponds to electromagnetic oscillations of the surface-ionosphere cavity, and has been used extensively to investigate atmospheric electricity. Using measurements from the Communications/Navigation Outage Forecasting System (C/NOFS) satellite, we report, for the first time, Schumann resonance signatures detected well beyond the upper boundary of the cavity. These results offer new means for investigating atmospheric electricity, tropospheric-ionospheric coupling mechanisms related to lightning activity, and wave propagation in the ionosphere. The detection of Schumann resonances in the ionosphere calls for revisions to the existing models of extremely low frequency wave propagation in the surface-ionosphere cavity. Additionally, these measurements suggest new remote sensing capabilities for investigating atmospheric electricity at other planets.
NASA Astrophysics Data System (ADS)
Fan, X. Z.; Naves, L.; Siwak, N. P.; Brown, A.; Culver, J.; Ghodssi, R.
2015-05-01
A novel virus-like particle (TMV-VLP) receptor layer has been integrated with an optical microdisk resonator transducer for biosensing applications. This bioreceptor layer is functionalized with selective peptides that encode unique recognition affinities. Integration of bioreceptors with sensor platforms is very challenging due their very different compatibility regimes. The TMV-VLP nanoreceptor exhibits integration robustness, including the ability for self-assembly along with traditional top-down microfabrication processes. An optical microdisk resonator has been functionalized for antibody binding with this receptor, demonstrating resonant wavelength shifts of (Δλo) of 0.79 nm and 5.95 nm after primary antibody binding and enzyme-linked immunosorbent assay (ELISA), respectively, illustrating label-free sensing of this bonding event. This demonstration of label-free sensing with genetically engineered TMV-VLP shows the flexibility and utility of this receptor coating when considering integration with other existing transducer platforms.
Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan
2016-01-01
Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties. PMID:26857034
Interconnect-free parallel logic circuits in a single mechanical resonator
Mahboob, I.; Flurin, E.; Nishiguchi, K.; Fujiwara, A.; Yamaguchi, H.
2011-01-01
In conventional computers, wiring between transistors is required to enable the execution of Boolean logic functions. This has resulted in processors in which billions of transistors are physically interconnected, which limits integration densities, gives rise to huge power consumption and restricts processing speeds. A method to eliminate wiring amongst transistors by condensing Boolean logic into a single active element is thus highly desirable. Here, we demonstrate a novel logic architecture using only a single electromechanical parametric resonator into which multiple channels of binary information are encoded as mechanical oscillations at different frequencies. The parametric resonator can mix these channels, resulting in new mechanical oscillation states that enable the construction of AND, OR and XOR logic gates as well as multibit logic circuits. Moreover, the mechanical logic gates and circuits can be executed simultaneously, giving rise to the prospect of a parallel logic processor in just a single mechanical resonator. PMID:21326230
Interconnect-free parallel logic circuits in a single mechanical resonator.
Mahboob, I; Flurin, E; Nishiguchi, K; Fujiwara, A; Yamaguchi, H
2011-02-15
In conventional computers, wiring between transistors is required to enable the execution of Boolean logic functions. This has resulted in processors in which billions of transistors are physically interconnected, which limits integration densities, gives rise to huge power consumption and restricts processing speeds. A method to eliminate wiring amongst transistors by condensing Boolean logic into a single active element is thus highly desirable. Here, we demonstrate a novel logic architecture using only a single electromechanical parametric resonator into which multiple channels of binary information are encoded as mechanical oscillations at different frequencies. The parametric resonator can mix these channels, resulting in new mechanical oscillation states that enable the construction of AND, OR and XOR logic gates as well as multibit logic circuits. Moreover, the mechanical logic gates and circuits can be executed simultaneously, giving rise to the prospect of a parallel logic processor in just a single mechanical resonator.
Collisionless Spectral Kinetic Simulation of Ideal Multipole Resonance Probe
NASA Astrophysics Data System (ADS)
Gong, Junbo; Wilczek, Sebastian; Szeremley, Daniel; Oberrath, Jens; Eremin, Denis; Dobrygin, Wladislaw; Schilling, Christian; Friedrichs, Michael; Brinkmann, Ralf Peter
2016-09-01
Active Plasma Resonance Spectroscopy denotes a class of industry-compatible plasma diagnostic methods which utilize the natural ability of plasmas to resonate on or near the electron plasma frequency ωpe. One particular realization of APRS with a high degree of geometric and electric symmetry is the Multipole Resonance Probe (MRP). The Ideal MRP(IMRP) is an even more symmetric idealization which is suited for theoretical investigations. In this work, a spectral kinetic scheme is presented to investigate the behavior of the IMRP in the low pressure regime. However, due to the velocity difference, electrons are treated as particles whereas ions are only considered as stationary background. In the scheme, the particle pusher integrates the equations of motion for the studied particles, the Poisson solver determines the electric field at each particle position. The proposed method overcomes the limitation of the cold plasma model and covers kinetic effects like collisionless damping.
The Multiple Resonance Probe: A Novel Device for Industry Compatible Plasma Diagnostics
NASA Astrophysics Data System (ADS)
Brinkmann, Ralf Peter; Storch, Robert; Lapke, Martin; Oberrath, Jens; Schulz, Christian; Styrnoll, Tim; Zietz, Christian; Awakowicz, Peter; Musch, Thomas; Mussenbrock, Thomas; Rolfes, Ilona
2012-10-01
To be useful for the supervision or control of technical plasmas, a diagnostic method must be i) robust and stable, ii) insensitive to perturbation by the process, iii) itself not perturbing the process, iv) clearly and easily interpretable without the need for calibration, v) compliant with the requirements of process integration, and, last but not least, vi) economical in terms of investment, footprint, and maintenance. Plasma resonance spectroscopy, exploiting the natural ability of plasmas to resonate on or near the electron plasma frequency, provides a good basis for such an ``industry compatible'' plasma diagnostics. The contribution will describe the general idea of active plasma resonance spectroscopy and introduce a mathematical formalism for its analysis. It will then focus on the novel multipole resonance probe (MRP), where the excited resonances can be classified explicitly and the connection between the probe response and the desired electron density can be cast as a simple formula. The current state of the MRP project will be described, including the experimental characterization of a prototype in comparison with Langmuir probes, and the development of a specialized measurement circuit.
ERIC Educational Resources Information Center
Pan, Lisa A.; Batezati-Alves, Silvia C.; Almeida, Jorge R. C.; Segreti, AnnaMaria; Akkal, Dalila; Hassel, Stefanie; Lakdawala, Sara; Brent, David A.; Phillips, Mary L.
2011-01-01
Objectives: Impaired attentional control and behavioral control are implicated in adult suicidal behavior. Little is known about the functional integrity of neural circuitry supporting these processes in suicidal behavior in adolescence. Method: Functional magnetic resonance imaging was used in 15 adolescent suicide attempters with a history of…
Nonlinear resonances in the ABC-flow
NASA Astrophysics Data System (ADS)
Didov, A. A.; Uleysky, M. Yu.
2018-01-01
In this paper, we study resonances of the ABC-flow in the near integrable case ( C ≪1 ). This is an interesting example of a Hamiltonian system with 3/2 degrees of freedom in which simultaneous existence of two resonances of the same order is possible. Analytical conditions of the resonance existence are received. It is shown numerically that the largest n :1 (n = 1, 2, 3) resonances exist, and their energies are equal to theoretical energies in the near integrable case. We provide analytical and numerical evidences for existence of two branches of the two largest n :1 (n = 1, 2) resonances in the region of finite motion.
Wireless-powered electroactive soft microgripper
NASA Astrophysics Data System (ADS)
Cheong, Hau Ran; Teo, Choon Yee; Leow, Pei Ling; Lai, Koon Chun; Chee, Pei Song
2018-05-01
This paper presents a wireless powered single active finger ionic polymer metal composite (IPMC) based microgripper that is operated using external radio-frequency (RF) magnetic field for biological cell manipulation application. A unimorph-like active finger is fabricated by integrating the IPMC actuator to the planar resonant LC receiver and DC rectifier circuits (made of flexible double-sided copper clad polyimide). The finger activated when the device is exposed to the external magnetic field generated by transmitter circuit that matches the resonant frequency of LC receiver circuit, ∼13.6 MHz in magnetic resonant coupling power transfer mechanism. The fabricated prototype shows a maximum IPMC deflection of 0.765 mm (activation force of 0.17 mN) at the RF power of 0.65 W with 3.5 VDC supplied from the LC receiver circuit. Three repeated ON-OFF wireless activation cycle was performed with the reported cumulative deflection of 0.57 mm. The cumulative deflection was increased to 1.17 mm, 1.19 mm and 1.24 mm for three different samples respectively at 5 VDC supplied. As a proof of concept, fish egg was used to represent the biological cell manipulation operation. The microgripper successfully gripped the fish egg sample without any damages. The experiments result validates the effectiveness of wireless RF soft microgripper towards the target application.
Arrays of Carbon Nanotubes as RF Filters in Waveguides
NASA Technical Reports Server (NTRS)
Hoppe, Daniel; Hunt, Brian; Hoenk, Michael; Noca, Flavio; Xu, Jimmy
2003-01-01
Brushlike arrays of carbon nanotubes embedded in microstrip waveguides provide highly efficient (high-Q) mechanical resonators that will enable ultraminiature radio-frequency (RF) integrated circuits. In its basic form, this invention is an RF filter based on a carbon nanotube array embedded in a microstrip (or coplanar) waveguide, as shown in Figure 1. In addition, arrays of these nanotube-based RF filters can be used as an RF filter bank. Applications of this new nanotube array device include a variety of communications and signal-processing technologies. High-Q resonators are essential for stable, low-noise communications, and radar applications. Mechanical oscillators can exhibit orders of magnitude higher Qs than electronic resonant circuits, which are limited by resistive losses. This has motivated the development of a variety of mechanical resonators, including bulk acoustic wave (BAW) resonators, surface acoustic wave (SAW) resonators, and Si and SiC micromachined resonators (known as microelectromechanical systems or MEMS). There is also a strong push to extend the resonant frequencies of these oscillators into the GHz regime of state-of-the-art electronics. Unfortunately, the BAW and SAW devices tend to be large and are not easily integrated into electronic circuits. MEMS structures have been integrated into circuits, but efforts to extend MEMS resonant frequencies into the GHz regime have been difficult because of scaling problems with the capacitively-coupled drive and readout. In contrast, the proposed devices would be much smaller and hence could be more readily incorporated into advanced RF (more specifically, microwave) integrated circuits.
An Active Metamaterial Platform for Chiral Responsive Optoelectronics.
Kang, Lei; Lan, Shoufeng; Cui, Yonghao; Rodrigues, Sean P; Liu, Yongmin; Werner, Douglas H; Cai, Wenshan
2015-08-05
Chiral-selective non-linear optics and optoelectronic signal generation are demonstrated in an electrically active photonic metamaterial. The metamaterial reveals significant chiroptical responses in both harmonic generation and the photon drag effect, correlated to the resonance behavior in the linear regime. The multifunctional chiral metamaterial with dual electrical and optical functionality enables transduction of chiroptical responses to electrical signals for integrated photonics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Integrated Printed Circuit Board (PCB) Active Cooling With Piezoelectric Actuator
2012-09-01
The cooler substrate is a laminated multilayer FR-4 substrate. Individual layers are patterned to support the active element, form a resonant...prepreg epoxy. Individual FR-4 lamina were mechanically machined to pattern each layer. The layers were aligned, stacked, and laminated to form the... laminated with 70/30 copper-nickel alloy or 80/20 nickel-chrome alloy and patterned by means of photolithographic techniques and wet etching in a ferric
van Timmeren, Tim; Jansen, Jochem M; Caan, Matthan W A; Goudriaan, Anna E; van Holst, Ruth J
2017-11-01
Pathological gambling (PG) is a behavioral addiction characterized by an inability to stop gambling despite the negative consequences, which may be mediated by cognitive flexibility deficits. Indeed, impaired cognitive flexibility has previously been linked to PG and also to reduced integrity of white matter connections between the basal ganglia and the prefrontal cortex. It remains unclear, however, how white matter integrity problems relate to cognitive inflexibility seen in PG. We used a cognitive switch paradigm during functional magnetic resonance imaging in pathological gamblers (PGs; n = 26) and healthy controls (HCs; n = 26). Cognitive flexibility performance was measured behaviorally by accuracy and reaction time on the switch task, while brain activity was measured in terms of blood oxygen level-dependent responses. We also used diffusion tensor imaging on a subset of data (PGs = 21; HCs = 21) in combination with tract-based spatial statistics and probabilistic fiber tracking to assess white matter integrity between the basal ganglia and the dorsolateral prefrontal cortex. Although there were no significant group differences in either task performance, related neural activity or tract-based spatial statistics, PGs did show decreased white matter integrity between the left basal ganglia and prefrontal cortex. Our results complement and expand similar findings from a previous study in alcohol-dependent patients. Although we found no association between white matter integrity and task performance here, decreased white matter connections may contribute to a diminished ability to recruit prefrontal networks needed for regulating behavior in PG. Hence, our findings could resonate an underlying risk factor for PG, and we speculate that these findings may extend to addiction in general. © 2016 Society for the Study of Addiction.
NASA Astrophysics Data System (ADS)
Žerovnik, Gašper; Schillebeeckx, Peter; Becker, Björn; Fiorito, Luca; Harada, Hideo; Kopecky, Stefan; Radulović, Vladimir; Sano, Tadafumi
2018-01-01
Methodologies to derive cross section data from spectrum integrated reaction rates were studied. The Westcott convention and some of its approximations were considered. Mostly measurements without and with transmission filter are combined to determine the reaction cross section at thermal energy together with the resonance integral. The accuracy of the results strongly depends on the assumptions that are made about the neutron energy distribution, which is mostly parameterised as a sum of a thermal and an epi-thermal component. Resonance integrals derived from such data can be strongly biased and should only be used in case no other data are available. The cross section at thermal energy can be biased for reaction cross sections which are dominated by low energy resonances. The amplitude of the effect is related to the lower energy limit that is used for the epi-thermal component of the neutron energy distribution. It is less affected by the assumptions on the shape of the energy distribution. When the energy dependence of the cross section is known and information about the neutron energy distribution is available, a method to correct for a bias on the cross section at thermal energy is proposed. Reactor activation measurements to determine the thermal 241Am(n, γ) cross section reported in the literature were reviewed. In case enough information was available, the results were corrected to account for possible biases and included in a least squares fit. These data combined with results of time-of-flight measurements give a capture cross section 720 (14) b for 241Am(n, γ) at thermal energy.
CMOS compatible fabrication process of MEMS resonator for timing reference and sensing application
NASA Astrophysics Data System (ADS)
Huynh, Duc H.; Nguyen, Phuong D.; Nguyen, Thanh C.; Skafidas, Stan; Evans, Robin
2015-12-01
Frequency reference and timing control devices are ubiquitous in electronic applications. There is at least one resonator required for each of this device. Currently electromechanical resonators such as crystal resonator, ceramic resonator are the ultimate choices. This tendency will probably keep going for many more years. However, current market demands for small size, low power consumption, cheap and reliable products, has divulged many limitations of this type of resonators. They cannot be integrated into standard CMOS (Complement metaloxide- semiconductor) IC (Integrated Circuit) due to material and fabrication process incompatibility. Currently, these devices are off-chip and they require external circuitries to interface with the ICs. This configuration significantly increases the overall size and cost of the entire electronic system. In addition, extra external connection, especially at high frequency, will potentially create negative impacts on the performance of the entire system due to signal degradation and parasitic effects. Furthermore, due to off-chip packaging nature, these devices are quite expensive, particularly for high frequency and high quality factor devices. To address these issues, researchers have been intensively studying on an alternative for type of resonator by utilizing the new emerging MEMS (Micro-electro-mechanical systems) technology. Recent progress in this field has demonstrated a MEMS resonator with resonant frequency of 2.97 GHz and quality factor (measured in vacuum) of 42900. Despite this great achievement, this prototype is still far from being fully integrated into CMOS system due to incompatibility in fabrication process and its high series motional impedance. On the other hand, fully integrated MEMS resonator had been demonstrated but at lower frequency and quality factor. We propose a design and fabrication process for a low cost, high frequency and a high quality MEMS resonator, which can be integrated into a standard CMOS IC. This device is expected to operate in hundreds of Mhz frequency range; quality factor surpasses 10000 and series motional impedance low enough that could be matching into conventional system without enormous effort. This MEMS resonator can be used in the design of many blocks in wireless and RF (Radio Frequency) systems such as low phase noise oscillator, band pass filter, power amplifier and in many sensing application.
Leconte, Baptiste; Gilles, Hervé; Robin, Thierry; Cadier, Benoit; Laroche, Mathieu
2018-04-16
We present the first frequency-doubled neodymium-doped fiber laser generating multi-watt CW power near 450 nm. A bow-tie resonator incorporating a LBO nonlinear crystal is integrated within a Nd-doped fiber laser emitting near 900 nm. This scheme achieves an IR to blue conversion efficiency close to 55% without any active control of the internal resonant cavity. As a result, up to 7.5 W of linearly-polarized blue power is generated, with beam quality factors M x 2 ~1.0 and M y 2 ~1.5. A simple numerical model has been developed to optimize and analyse the IR to blue conversion efficiency in the resonant cavity. Performance limitations and prospects for further improvements are discussed.
Microwave integrated circuit for Josephson voltage standards
NASA Technical Reports Server (NTRS)
Holdeman, L. B.; Toots, J.; Chang, C. C. (Inventor)
1980-01-01
A microwave integrated circuit comprised of one or more Josephson junctions and short sections of microstrip or stripline transmission line is fabricated from thin layers of superconducting metal on a dielectric substrate. The short sections of transmission are combined to form the elements of the circuit and particularly, two microwave resonators. The Josephson junctions are located between the resonators and the impedance of the Josephson junctions forms part of the circuitry that couples the two resonators. The microwave integrated circuit has an application in Josephson voltage standards. In this application, the device is asymmetrically driven at a selected frequency (approximately equal to the resonance frequency of the resonators), and a d.c. bias is applied to the junction. By observing the current voltage characteristic of the junction, a precise voltage, proportional to the frequency of the microwave drive signal, is obtained.
Sale, Martin V.; Lord, Anton; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B.
2015-01-01
Normal brain function depends on a dynamic balance between local specialization and large-scale integration. It remains unclear, however, how local changes in functionally specialized areas can influence integrated activity across larger brain networks. By combining transcranial magnetic stimulation with resting-state functional magnetic resonance imaging, we tested for changes in large-scale integration following the application of excitatory or inhibitory stimulation on the human motor cortex. After local inhibitory stimulation, regions encompassing the sensorimotor module concurrently increased their internal integration and decreased their communication with other modules of the brain. There were no such changes in modular dynamics following excitatory stimulation of the same area of motor cortex nor were there changes in the configuration and interactions between core brain hubs after excitatory or inhibitory stimulation of the same area. These results suggest the existence of selective mechanisms that integrate local changes in neural activity, while preserving ongoing communication between brain hubs. PMID:25717162
Imaging anatomy of the vestibular and visual systems.
Gunny, Roxana; Yousry, Tarek A
2007-02-01
This review will outline the imaging anatomy of the vestibular and visual pathways, using computed tomography and magnetic resonance imaging, with emphasis on the more recent developments in neuroimaging. Technical advances in computed tomography and magnetic resonance imaging, such as the advent of multislice computed tomography and newer magnetic resonance imaging techniques such as T2-weighted magnetic resonance cisternography, have improved the imaging of the vestibular and visual pathways, allowing better visualization of the end organs and peripheral nerves. Higher field strength magnetic resonance imaging is a promising tool, which has been used to evaluate and resolve fine anatomic detail in vitro, as in the labyrinth. Advanced magnetic resonance imaging techniques such as functional magnetic resonance imaging and diffusion tractography have been used to identify cortical areas of activation and associated white matter pathways, and show potential for the future identification of complex neuronal relays involved in integrating these pathways. The assessment of the various components of the vestibular and the visual systems has improved with more detailed research on the imaging anatomy of these systems, the advent of high field magnetic resonance scanners and multislice computerized tomography, and the wider use of specific techniques such as tractography which displays white matter tracts not directly accessible until now.
Multifunctional Material Systems for Reconfigurable Antennas in Superconfigurable Structures
2016-01-05
reconFig.d states of the antenna. A polarization-reconfigurable substrate-integrated waveguide ( SIW ) cavity-resonator slot antenna has also been...the automation and control. Fig. 36 Polarization-reconfigurable substrate-integrated waveguide ( SIW ) cavity-resonator slot antenna with a...22, 3833–3839, 2012. [3] Analysis of a Variable SIW Resonator Enabled by Dielectric Material Perturbations and Applications, Barrera, J.D. ; Huff
Sam, Somarith; Lim, Sungjoon
2013-04-01
This paper presents the modeling, design, fabrication, and measurement of an ultra-wideband tunable twoport resonator in which the substrate-integrated waveguide, complementary split-ring resonators (CSRRs), and varactors are embedded on the same planar platform. The tuning of the passband frequency is generated by a simple single dc voltage of 0 to 36 V, which is applied to each varactor on the CSRRs. Different capacitance values and resonant frequencies are produced while a nearly constant absolute bandwidth is maintained. The resonant frequency is varied between 0.83 and 1.58 GHz and has a wide tuning ratio of 90%.
Sound Transmission Loss Through a Corrugated-Core Sandwich Panel with Integrated Acoustic Resonators
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Allen, Albert R.; Zalewski, Bart F; Beck, Benjamin S.
2014-01-01
The goal of this study is to better understand the effect of structurally integrated resonators on the transmission loss of a sandwich panel. The sandwich panel has facesheets over a corrugated core, which creates long aligned chambers that run parallel to the facesheets. When ports are introduced through the facesheet, the long chambers within the core can be used as low-frequency acoustic resonators. By integrating the resonators within the structure they contribute to the static load bearing capability of the panel while also attenuating noise. An analytical model of a panel with embedded resonators is derived and compared with numerical simulations. Predictions show that acoustic resonators can significantly improve the transmission loss of the sandwich panel around the natural frequency of the resonators. In one configuration with 0.813 m long internal chambers, the diffuse field transmission loss is improved by more than 22 dB around 104 Hz. The benefit is achieved with no added mass or volume relative to the baseline structure. The embedded resonators are effective because they radiate sound out-of-phase with the structure. This results in destructive interference, which leads to less transmitted sound power.
Strength of Default Mode Resting-State Connectivity Relates to White Matter Integrity in Children
ERIC Educational Resources Information Center
Gordon, Evan M.; Lee, Philip S.; Maisog, Jose M.; Foss-Feig, Jennifer; Billington, Michael E.; VanMeter, John; Vaidya, Chandan J.
2011-01-01
A default mode network of brain regions is known to demonstrate coordinated activity during the resting state. While the default mode network is well characterized in adults, few investigations have focused upon its development. We scanned 9-13-year-old children with diffusion tensor imaging and resting-state functional magnetic resonance imaging.…
NASA Astrophysics Data System (ADS)
Henry, Edward Trowbridge
Semiconductor quantum dots in silicon demonstrate exceptionally long spin lifetimes as qubits and are therefore promising candidates for quantum information processing. However, control and readout techniques for these devices have thus far employed low frequency electrons, in contrast to high speed temperature readout techniques used in other qubit architectures, and coupling between multiple quantum dot qubits has not been satisfactorily addressed. This dissertation presents the design and characterization of a semiconductor charge qubit based on double quantum dot in silicon with an integrated microwave resonator for control and readout. The 6 GHz resonator is designed to achieve strong coupling with the quantum dot qubit, allowing the use of circuit QED control and readout techniques which have not previously been applicable to semiconductor qubits. To achieve this coupling, this document demonstrates successful operation of a novel silicon double quantum dot design with a single active metallic layer and a coplanar stripline resonator with a bias tee for dc excitation. Experiments presented here demonstrate quantum localization and measurement of both electrons on the quantum dot and photons in the resonator. Further, it is shown that the resonator-qubit coupling in these devices is sufficient to reach the strong coupling regime of circuit QED. The details of a measurement setup capable of performing simultaneous low noise measurements of the resonator and quantum dot structure are also presented here. The ultimate aim of this research is to integrate the long coherence times observed in electron spins in silicon with the sophisticated readout architectures available in circuit QED based quantum information systems. This would allow superconducting qubits to be coupled directly to semiconductor qubits to create hybrid quantum systems with separate quantum memory and processing components.
TALYS/TENDL verification and validation processes: Outcomes and recommendations
NASA Astrophysics Data System (ADS)
Fleming, Michael; Sublet, Jean-Christophe; Gilbert, Mark R.; Koning, Arjan; Rochman, Dimitri
2017-09-01
The TALYS-generated Evaluated Nuclear Data Libraries (TENDL) provide truly general-purpose nuclear data files assembled from the outputs of the T6 nuclear model codes system for direct use in both basic physics and engineering applications. The most recent TENDL-2015 version is based on both default and adjusted parameters of the most recent TALYS, TAFIS, TANES, TARES, TEFAL, TASMAN codes wrapped into a Total Monte Carlo loop for uncertainty quantification. TENDL-2015 contains complete neutron-incident evaluations for all target nuclides with Z ≤116 with half-life longer than 1 second (2809 isotopes with 544 isomeric states), up to 200 MeV, with covariances and all reaction daughter products including isomers of half-life greater than 100 milliseconds. With the added High Fidelity Resonance (HFR) approach, all resonances are unique, following statistical rules. The validation of the TENDL-2014/2015 libraries against standard, evaluated, microscopic and integral cross sections has been performed against a newly compiled UKAEA database of thermal, resonance integral, Maxwellian averages, 14 MeV and various accelerator-driven neutron source spectra. This has been assembled using the most up-to-date, internationally-recognised data sources including the Atlas of Resonances, CRC, evaluated EXFOR, activation databases, fusion, fission and MACS. Excellent agreement was found with a small set of errors within the reference databases and TENDL-2014 predictions.
The VERB campaign: applying a branding strategy in public health.
Asbury, Lori D; Wong, Faye L; Price, Simani M; Nolin, Mary Jo
2008-06-01
A branding strategy was an integral component of the VERB Youth Media Campaign. Branding has a long history in commercial marketing, and recently it has also been applied to public health campaigns. This article describes the process that the CDC undertook to develop a physical activity brand that would resonate with children aged 9-13 years (tweens), to launch an unknown brand nationally, to build the brand's equity, and to protect and maintain the brand's integrity. Considerations for branding other public health campaigns are also discussed.
Transverse-longitudinal integrated resonator
Hutchinson, Donald P [Knoxville, TN; Simpson, Marcus L [Knoxville, TN; Simpson, John T [Knoxville, TN
2003-03-11
A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.
Active multiple plasmon-induced transparencies with detuned asymmetric multi-rectangle resonators
NASA Astrophysics Data System (ADS)
Liu, Dongdong; Wang, Jicheng; Lu, Jian
2016-11-01
The phenomenon of plasmon-induced transparency (PIT) is realized in surface plasmon polariton waveguide at the visible and near-infrared ranges. By adding one and two resonant cavities, the PIT peak(s) was (were) achieved due to destructive interference between the side-coupled rectangle cavity and the bus waveguide. The proposed structures were demonstrated by the finite element method. The simulation results showed that for three rectangle resonators system, not only can we manipulate each single PIT window, but also the double PIT windows simultaneously by adjusting one of the geometrical parameters of the system; for four rectangle resonators system, by changing the widths, the lengths and the refractive index of three cavities simultaneously, we would realize treble PIT peaks and induce an off-to-on PIT optical response. Our novel plasmonic structures and the findings pave the way for new design and engineering of highly integrated optical circuit such as nanoscale optical switching, nanosensor and wavelength-selecting nanostructure.
NASA Astrophysics Data System (ADS)
Pasyar, N.; Yadipour, R.; Baghban, H.
2017-07-01
The proposed design of the optical memory unit cell contains dual micro ring resonators in which the effect of lasing without inversion (LWI) in three-level nano particles doped over the optical resonators or integrators as the gain segment is used for loss compensation. Also, an on/off phase shifter based on electromagnetically induced transparency (EIT) in three-level quantum dots (QDs) has been used for data reading at requested time. Device minimizing for integrated purposes and high speed data storage are the main advantages of the optical integrator based memory.
Real-time label-free biosensing with integrated planar waveguide ring resonators
NASA Astrophysics Data System (ADS)
Sohlström, Hans; Gylfason, Kristinn B.; Hill, Daniel
2010-05-01
We review the use of planar integrated optical waveguide ring resonators for label free bio-sensing and present recent results from two European biosensor collaborations: SABIO and InTopSens. Planar waveguide ring resonators are attractive for label-free biosensing due to their small footprint, high Q-factors, and compatibility with on-chip optics and microfluidics. This enables integrated sensor arrays for compact labs-on-chip. One application of label-free sensor arrays is for point-of-care medical diagnostics. Bringing such powerful tools to the single medical practitioner is an important step towards personalized medicine, but requires addressing a number of issues: improving limit of detection, managing the influence of temperature, parallelization of the measurement for higher throughput and on-chip referencing, efficient light-coupling strategies to simplify alignment, and packaging of the optical chip and integration with microfluidics. From the SABIO project we report refractive index measurement and label-free biosensing in an 8-channel slotwaveguide ring resonator sensor array, within a compact cartridge with integrated microfluidics. The sensors show a volume sensing detection limit of 5 x 10-6 RIU and a surface sensing detection limit of 0.9 pg/mm2. From the InTopSens project we report early results on silicon-on-insulator racetrack resonators.
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, Hyun S.; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.
2007-05-01
We report on the design of micro-ring resonator optical sensors for integration on what we call optical printed circuit boards (O-PCBs). The objective is to realize application-specific O-PCBs, either on hard board or on flexible board, by integrating micro/nano-scale optical sensors for compact, light-weight, low-energy, high-speed, intelligent, and environmentally friendly processing of information. The O-PCBs consist of two-dimensional planar arrays of micro/nano-scale optical wires, circuits and devices that are interconnected and integrated to perform the functions of sensing and then storing, transporting, processing, switching, routing and distributing optical signals that have been collected by means of sensors. For fabrication, the polymer and organic optical wires and waveguides are first fabricated on a board and are used to interconnect and integrate sensors and other micro/ nano-scale photonic devices. Here, in our study, we focus on the sensors based on the micro-ring structures. We designed bio-sensors using silicon based micro-ring resonator. We investigate the characteristics such as sensitivity and selectivity (or quality factor) of micro-ring resonator for their use in bio-sensing application. We performed simulation studies on the quality factor of micro-ring resonators by varying the radius of the ring resonators and the separation between adjacent waveguides. We introduce the effective coupling coefficient as a realistic value to describe the strength of the coupling in micro-ring resonators.
Inferences about action engage action systems.
Taylor, Lawrence J; Lev-Ari, Shiri; Zwaan, Rolf A
2008-10-01
Verbal descriptions of actions activate compatible motor responses [Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin & Review, 9, 558-565]. Previous studies have found that the motor processes for manual rotation are engaged in a direction-specific manner when a verb disambiguates the direction of rotation [e.g. "unscrewed;" Zwaan, R. A., & Taylor, L. (2006). Seeing, acting, understanding: Motor resonance in language comprehension. Journal of Experimental Psychology: General, 135, 1-11]. The present experiment contributes to this body of work by showing that verbs that leave direction ambiguous (e.g. "turned") do not necessarily yield such effects. Rather, motor resonance is associated with a word that disambiguates some element of an action, as meaning is being integrated across sentences. The findings are discussed within the context of discourse processes, inference generation, motor activation, and mental simulation.
A common network of functional areas for attention and eye movements
NASA Technical Reports Server (NTRS)
Corbetta, M.; Akbudak, E.; Conturo, T. E.; Snyder, A. Z.; Ollinger, J. M.; Drury, H. A.; Linenweber, M. R.; Petersen, S. E.; Raichle, M. E.; Van Essen, D. C.;
1998-01-01
Functional magnetic resonance imaging (fMRI) and surface-based representations of brain activity were used to compare the functional anatomy of two tasks, one involving covert shifts of attention to peripheral visual stimuli, the other involving both attentional and saccadic shifts to the same stimuli. Overlapping regional networks in parietal, frontal, and temporal lobes were active in both tasks. This anatomical overlap is consistent with the hypothesis that attentional and oculomotor processes are tightly integrated at the neural level.
Evaluation of thermal effects on the beam quality of disk laser with unstable resonator
NASA Astrophysics Data System (ADS)
Shayganmanesh, Mahdi; Beirami, Reza
2017-01-01
In this paper thermal effects of the disk active medium and associated effects on the beam quality of laser are investigated. Using Collins integral and iterative method, transverse mode of an unstable resonator including a Yb:YAG active medium in disk geometry is calculated. After that the beam quality of the laser is calculated based on the generalized beam characterization method. Thermal lensing of the disk is calculated based on the OPD (Optical Path Difference) concept. Five factors influencing the OPD including temperature gradient, disk thermal expansion, photo-elastic effect, electronic lens and disk deformation are considered in our calculations. The calculations show that the effect of disk deformation factor on the quality of laser beam in the resonator is strong. However the total effect of all the thermal factors on the internal beam quality is fewer. Also it is shown that thermal effects degrade the output power, beam profile and beam quality of the output laser beam severely. As well the magnitude of each of affecting factors is evaluated distinctly.
NASA Astrophysics Data System (ADS)
Zhuang, Xuye; Chen, Binggen; Wang, Xinlong; Yu, Lei; Wang, Fan; Guo, Shuwen
2018-03-01
A novel approach for fabrication of polysilicon hemispherical resonator gyroscopes with integrated 3-D curved electrodes is developed and experimentally demonstrated. The 3-D polysilicon electrodes are integrated as a part of the hemispherical shell resonator’s fabrication process, and no extra assembly process are needed, ensuring the symmetry of the shell resonator. The fabrication process and materials used are compatible with the traditional semiconductor process, indicating the gyroscope has a high potential for mass production and commercial development. Without any trimming or tuning of the n=2 wineglass frequencies, a 28 kHz shell resonator demonstrates a 0.009% frequency mismatch between two degenerate wineglass modes, and a 13.6 kHz resonator shows a frequency split of 0.03%. The ring-down time of a fabricated resonator is 0.51 s, corresponding to a Q of 22000, at 0.01 Pa vacuum and room temperature. The prototype of the gyroscope is experimentally analyzed, and the scale factor of the gyro is 1.15 mV/°/s, the bias instability is 80 °/h.
ZnO Film Bulk Acoustic Resonator for the Kinetics Study of Human Blood Coagulation
Chen, Da; Zhang, Zhen; Ma, Jilong; Wang, Wei
2017-01-01
Miniaturized and rapid blood coagulation assay technologies are critical in many clinical settings. In this paper, we present a ZnO film bulk acoustic resonator for the kinetic analysis of human blood coagulation. The resonator operated in thickness shear resonance mode at 1.4 GHz. When the resonator contacted the liquid environment, the viscous loading effect was considered as the additional resistance and inductance in the equivalent circuits, resulting in a linear relationship with a slope of approximately −217 kHz/cP between the liquid viscosity and the frequency of the resonator. The downshift of the resonant frequency and the viscosity change during the blood coagulation were correlated to monitor the coagulation process. The sigmoidal trend was observed in the frequency response for the blood samples activated by thromboplastin and calcium ions. The coagulation kinetics involving sequential phases of steady reaction, growth and saturation were revealed through the time-dependent frequency profiles. The enzymatic cascade time, the coagulation rate, the coagulation time and the clot degree were provided by fitting the time-frequency curves. The prothrombin times were compared with the results measured by a standard coagulometer and show a good correlation. Thanks to the excellent potential of integration, miniaturization and the availability of direct digital signals, the film bulk acoustic resonator has promising application for both clinical and personal use coagulation testing technologies. PMID:28467374
Integrated approach to ischemic heart disease. The one-stop shop.
Kramer, C M
1998-05-01
Magnetic resonance imaging is unique in its variety of applications for imaging the cardiovascular system. A thorough assessment of myocardial structure, function, and perfusion; assessment of coronary artery anatomy and flow; and spectroscopic evaluation of cardiac energetics can be readily performed by magnetic resonance imaging. One key to the advancement of cardiac magnetic resonance imaging as a clinical tool in the evaluation, the so called one stop shop. Improvements in magnetic resonance hardware, software, and imaging speed now permit this integrated examination. Cardiac magnetic resonance is a powerful technique with the potential to replace or complement other commonly used techniques in the diagnostic armamentarium of physicians caring for patients with ischemic heart disease.
Optimization of coupled device based on optical fiber with crystalline and integrated resonators
NASA Astrophysics Data System (ADS)
Bassir, David; Salzenstein, Patrice; Zhang, Mingjun
2017-05-01
Because of the advantages in terms of reproducibility for optical resonators on chip which are designed of various topologies and integration with optical devices. To increase the Q-factor from the lower rang [104 - 106 ] to higher one [108 -1010] [1-4] one use crystalline resonators. It is much complicated to couple an optical signal from a tapered fiber to crystalline resonator than from a defined ridge to a resonator designed on a chip. In this work, we will focus on the optimization of the crystalline resonators under straight wave guide (based on COMSOL multi-physic software) [5- 7] and subject also to technological constraints of manufacturing. The coupling problem at the Nano scale makes our optimizations problem more dynamics in term of design space.
FIBER AND INTEGRATED OPTICS: Integrated optical passive ring resonator for optical gyroscopes
NASA Astrophysics Data System (ADS)
Baĭborodin, Yu V.; Dyadin, S. S.; Lyadenko, A. F.; Mashchenko, A. I.; Ul'yanov, I. A.; Fatin, Yu L.
1992-02-01
A passive ring resonator based on channel waveguides, formed in a K8 glass substrate by diffusion ion exchange in molten potassium nitrate, was made and investigated. The waveguide structure of the resonator included a ring waveguide as well as two Y-type couplers, whose symmetric arms were coupled to the ring waveguide, whereas homogeneous arms were coupled to an external laser and a photodetector. The coupling of the external devices to the channel waveguides was implemented by prisms and butt (end face) contacts. The transfer function of the ring resonator was determined experimentally in order to illustrate its resonant properties and sharpness. Estimates were obtained of the ultimate sensitivity of an optical gyroscope utilizing a ring resonator with the properties described above and ways of improving this sensitivity were analyzed.
Spectral properties of all-active InP-based microring resonator devices
NASA Astrophysics Data System (ADS)
Kapsalis, A.; Alexandropoulos, D.; Mikroulis, S.; Simos, H.; Stamataki, I.; Syvridis, D.; Hamacher, M.; Troppenz, U.; Heidrich, H.
2006-02-01
Microring resonators are excellent candidates for very large scale photonic integration due to their compactness, and fabrication simplicity. Moreover a wide range of all-optical signal processing functions can be realized due to the resonance effect. Possible applications include filtering, add/drop of optical beams and power switching, as well as more complex procedures including multiplexing, wavelength conversion, and logic operations. All-active ring components based in InGaAsP/InP are possible candidates for laser sources, lossless filters, wavelength converters, etc. Our work is based on measurement, characterization and proposal of possible exploitation of such devices in a variety of applications. We investigate the spectral characteristics of multi-quantum well InGaAsP(λ=1.55μm)/InP microring structures of various ring diameters and different configurations including racetracks with one or two bus waveguides and MMI couplers. The latter configuration has recently exhibited the possibility to obtain tunable active filters as well as tunable laser sources based on all-active ring-bus-coupler structures. In the case of tunable lasers single mode operation has been achieved by obtaining sufficiently high side mode suppression ratio. The tuning capability is attributed to a coupled cavities effect, resembling the case of multi-section DBR lasers. However, in contrast to the latter, the fabrication of microring resonators is considered an easier task, due to a single step growth procedure, although further investigation must be carried out in order to achieve wide range tunability. Detailed mappings of achievable wavelengths are produced for a wide range of injection current values.
Lee, Dong-Jin; Yim, Hae-Dong; Lee, Seung-Gol; O, Beom-Hoan
2011-10-10
We propose a tiny surface plasmon resonance (SPR) sensor integrated on a silicon waveguide based on vertical coupling into a finite thickness metal-insulator-metal (f-MIM) plasmonic waveguide structure acting as a Fabry-Perot resonator. The resonant characteristics of vertically coupled f-MIM plasmonic waveguides are theoretically investigated and optimized. Numerical results show that the SPR sensor with a footprint of ~0.0375 μm2 and a sensitivity of ~635 nm/RIU can be designed at a 1.55 μm transmission wavelength.
Investigation of temperature-dependent photoluminescence in multi-quantum wells.
Fang, Yutao; Wang, Lu; Sun, Qingling; Lu, Taiping; Deng, Zhen; Ma, Ziguang; Jiang, Yang; Jia, Haiqiang; Wang, Wenxin; Zhou, Junming; Chen, Hong
2015-07-31
Photoluminescence (PL) is a nondestructive and powerful method to investigate carrier recombination and transport characteristics in semiconductor materials. In this study, the temperature dependences of photoluminescence of GaAs-AlxGa1-xAs multi-quantum wells samples with and without p-n junction were measured under both resonant and non-resonant excitation modes. An obvious increase of photoluminescence(PL) intensity as the rising of temperature in low temperature range (T < 50 K), is observed only for GaAs-AlxGa1-xAs quantum wells sample with p-n junction under non-resonant excitation. The origin of the anomalous increase of integrated PL intensity proved to be associated with the enhancement of carrier drifting because of the increase of carrier mobility in the temperature range from 15 K to 100 K. For non-resonant excitation, carriers supplied from the barriers will influence the temperature dependence of integrated PL intensity of quantum wells, which makes the traditional methods to acquire photoluminescence characters from the temperature dependence of integrated PL intensity unavailable. For resonant excitation, carriers are generated only in the wells and the temperature dependence of integrated PL intensity is very suitable to analysis the photoluminescence characters of quantum wells.
NASA Astrophysics Data System (ADS)
Dutta-Gupta, Shourya; Dabidian, Nima; Kholmanov, Iskandar; Belkin, Mikhail A.; Shvets, Gennady
2017-03-01
Plasmonic metasurfaces have been employed for moulding the flow of transmitted and reflected light, thereby enabling numerous applications that benefit from their ultra-thin sub-wavelength format. Their appeal is further enhanced by the incorporation of active electro-optic elements, paving the way for dynamic control of light's properties. In this paper, we realize a dynamic polarization state generator using a graphene-integrated anisotropic metasurface (GIAM) that converts the linear polarization of the incident light into an elliptical one. This is accomplished by using an anisotropic metasurface with two principal polarization axes, one of which possesses a Fano-type resonance. A gate-controlled single-layer graphene integrated with the metasurface was employed as an electro-optic element controlling the phase and intensity of light polarized along the resonant axis of the GIAM. When the incident light is polarized at an angle to the resonant axis of the metasurface, the ellipticity of the reflected light can be dynamically controlled by the application of a gate voltage. Thus accomplished dynamic polarization control is experimentally demonstrated and characterized by measuring the Stokes polarization parameters. Large changes of the ellipticity and the tilt angle of the polarization ellipse are observed. Our measurements show that the tilt angle can be changed from positive values through zero to negative values while keeping the ellipticity constant, potentially paving the way to rapid ellipsometry and other characterization techniques requiring fast polarization shifting. This article is part of the themed issue 'New horizons for nanophotonics'.
NASA Astrophysics Data System (ADS)
Wu, Chi; Keo, Sam A.; Yao, X. S.; Turner, Tasha E.; Davis, Lawrence J.; Young, Martin G.; Maleki, Lute; Forouhar, Siamak
1998-08-01
The microwave optoelectronic oscillator (OEO) has been demonstrated on a breadboard. The future trend is to integrate the whole OEO on a chip, which requires the development of high power and high efficiency integrated photonic components. In this paper, we will present the design and fabrication of an integrated semiconductor laser/modulator using the identical active layer approach on InGaAsP/InP material. The best devices have threshold currents of 50-mA at room temperature for CW operation. The device length is approximately 3-mm, resulting in a mode spacing of 14 GHz. For only 5-dBm microwave power applied to the modulator section, modulation response with 30 dB resonate enhancement has been observed. This work shows the promise for an on-chip integrated OEO.
Zhu, Zude; Yang, Fengjun; Li, Dongning; Zhou, Lianjun; Liu, Ying; Zhang, Ying; Chen, Xuezhi
2017-01-01
While aging is associated with increased knowledge, it is also associated with decreased semantic integration. To investigate brain activation changes during semantic integration, a sample of forty-eight 25-75 year-old adults read sentences with high cloze (HC) and low cloze (LC) probability while functional magnetic resonance imaging was conducted. Significant age-related reduction of cloze effect (LC vs. HC) was found in several regions, especially the left middle frontal gyrus (MFG) and right inferior frontal gyrus (IFG), which play an important role in semantic integration. Moreover, when accounting for global gray matter volume reduction, the age-cloze correlation in the left MFG and right IFG was absent. The results suggest that brain structural atrophy may disrupt brain response in aging brains, which then show less brain engagement in semantic integration.
Nanomechanical silicon resonators with intrinsic tunable gain and sub-nW power consumption.
Bartsch, Sebastian T; Lovera, Andrea; Grogg, Daniel; Ionescu, Adrian M
2012-01-24
Nanoelectromechanical systems (NEMS) as integrated components for ultrasensitive sensing, time keeping, or radio frequency applications have driven the search for scalable nanomechanical transduction on-chip. Here, we present a hybrid silicon-on-insulator platform for building NEM oscillators in which fin field effect transistors (FinFETs) are integrated into nanomechanical silicon resonators. We demonstrate transistor amplification and signal mixing, coupled with mechanical motion at very high frequencies (25-80 MHz). By operating the transistor in the subthreshold region, the power consumption of resonators can be reduced to record-low nW levels, opening the way for the parallel operation of hundreds of thousands of NEM oscillators. The electromechanical charge modulation due to the field effect in a resonant transistor body constitutes a scalable nanomechanical motion detection all-on-chip and at room temperature. The new class of tunable NEMS represents a major step toward their integration in resonator arrays for applications in sensing and signal processing. © 2011 American Chemical Society
An architecture for integrating planar and 3D cQED devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Axline, C.; Reagor, M.; Heeres, R.
Numerous loss mechanisms can limit coherence and scalability of planar and 3D-based circuit quantum electrodynamics (cQED) devices, particularly due to their packaging. The low loss and natural isolation of 3D enclosures make them good candidates for coherent scaling. We introduce a coaxial transmission line device architecture with coherence similar to traditional 3D cQED systems. Measurements demonstrate well-controlled external and on-chip couplings, a spectrum absent of cross-talk or spurious modes, and excellent resonator and qubit lifetimes. We integrate a resonator-qubit system in this architecture with a seamless 3D cavity, and separately pattern a qubit, readout resonator, Purcell filter, and high-Q striplinemore » resonator on a single chip. Device coherence and its ease of integration make this a promising tool for complex experiments.« less
Microelectromechanical reprogrammable logic device.
Hafiz, M A A; Kosuru, L; Younis, M I
2016-03-29
In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme.
Microelectromechanical reprogrammable logic device
Hafiz, M. A. A.; Kosuru, L.; Younis, M. I.
2016-01-01
In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme. PMID:27021295
NASA Astrophysics Data System (ADS)
Friedrichs, Michael; Brinkmann, Ralf Peter; Oberrath, Jens
2016-09-01
Measuring plasma parameters, e.g. electron density and electron temperature, is an important procedure to verify the stability and behavior of a plasma process. For this purpose the multipole resonance probe (MRP) represents a satisfying solution to measure the electron density. However the influence of the probe on the plasma through its physical presence makes it unattractive for some processes in industrial application. A solution to combine the benefits of the spherical MRP with the ability to integrate the probe into the plasma reactor is introduced by the planar model of the MRP. By coupling the model of the cold plasma with the maxwell equations for electrostatics an analytical model for the admittance of the plasma is derivated, adjusted to cylindrical geometry and solved analytically for the planar MRP using functional analytic methods.
Programmable and reversible plasmon mode engineering.
Yang, Ankun; Hryn, Alexander J; Bourgeois, Marc R; Lee, Won-Kyu; Hu, Jingtian; Schatz, George C; Odom, Teri W
2016-12-13
Plasmonic nanostructures with enhanced localized optical fields as well as narrow linewidths have driven advances in numerous applications. However, the active engineering of ultranarrow resonances across the visible regime-and within a single system-has not yet been demonstrated. This paper describes how aluminum nanoparticle arrays embedded in an elastomeric slab may exhibit high-quality resonances with linewidths as narrow as 3 nm at wavelengths not accessible by conventional plasmonic materials. We exploited stretching to improve and tune simultaneously the optical response of as-fabricated nanoparticle arrays by shifting the diffraction mode relative to single-particle dipolar or quadrupolar resonances. This dynamic modulation of particle-particle spacing enabled either dipolar or quadrupolar lattice modes to be selectively accessed and individually optimized. Programmable plasmon modes offer a robust way to achieve real-time tunable materials for plasmon-enhanced molecular sensing and plasmonic nanolasers and opens new possibilities for integrating with flexible electronics.
Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials
Seren, Huseyin R.; Zhang, Jingdi; Keiser, George R.; ...
2016-01-26
The development of responsive metamaterials has enabled the realization of compact tunable photonic devices capable of manipulating the amplitude, polarization, wave vector and frequency of light. Integration of semiconductors into the active regions of metallic resonators is a proven approach for creating nonlinear metamaterials through optoelectronic control of the semiconductor carrier density. Metal-free subwavelength resonant semiconductor structures offer an alternative approach to create dynamic metamaterials. We present InAs plasmonic disk arrays as a viable resonant metamaterial at terahertz frequencies. Importantly, InAs plasmonic disks exhibit a strong nonlinear response arising from electric field-induced intervalley scattering, resulting in a reduced carrier mobilitymore » thereby damping the plasmonic response. here, we demonstrate nonlinear perfect absorbers configured as either optical limiters or saturable absorbers, including flexible nonlinear absorbers achieved by transferring the disks to polyimide films. Nonlinear plasmonic metamaterials show potential for use in ultrafast terahertz (THz) optics and for passive protection of sensitive electromagnetic devices.« less
Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seren, Huseyin R.; Zhang, Jingdi; Keiser, George R.
The development of responsive metamaterials has enabled the realization of compact tunable photonic devices capable of manipulating the amplitude, polarization, wave vector and frequency of light. Integration of semiconductors into the active regions of metallic resonators is a proven approach for creating nonlinear metamaterials through optoelectronic control of the semiconductor carrier density. Metal-free subwavelength resonant semiconductor structures offer an alternative approach to create dynamic metamaterials. We present InAs plasmonic disk arrays as a viable resonant metamaterial at terahertz frequencies. Importantly, InAs plasmonic disks exhibit a strong nonlinear response arising from electric field-induced intervalley scattering, resulting in a reduced carrier mobilitymore » thereby damping the plasmonic response. here, we demonstrate nonlinear perfect absorbers configured as either optical limiters or saturable absorbers, including flexible nonlinear absorbers achieved by transferring the disks to polyimide films. Nonlinear plasmonic metamaterials show potential for use in ultrafast terahertz (THz) optics and for passive protection of sensitive electromagnetic devices.« less
Chew, Xiongyeu; Zhou, Guangya; Yu, Hongbin; Chau, Fook Siong; Deng, Jie; Loke, Yee Chong; Tang, Xiaosong
2010-10-11
Control of photonic crystal resonances in conjunction with large spectral shifting is critical in achieving reconfigurable photonic crystal devices. We propose a simple approach to achieve nano-mechanical control of photonic crystal resonances within a compact integrated on-chip approach. Three different tip designs utilizing an in-plane nano-mechanical tuning approach are shown to achieve reversible and low-loss resonance control on a one-dimensional photonic crystal nanocavity. The proposed nano-mechanical approach driven by a sub-micron micro-electromechanical system integrated on low loss suspended feeding nanowire waveguide, achieved relatively large resonance spectral shifts of up to 18 nm at a driving voltage of 25 V. Such designs may potentially be used as tunable optical filters or switches.
1983-01-01
are ignored, from the formula i,;k i/s&-) - A.(S’o e T() (2.28) ( = . 4,-p ) L) C(_ (one point function has S S 2 two body correlation integrates over s...rigid solid limit since the contributions of the first two integrals of equation (5) cancel in this case. However, for correlation times Tc - T1 4no...expression for TID for a distribution of correlation times in the same manner as we did previously for T and using the activation parameters previously
Measurement of the profile and intensity of the solar He I lambda 584-A resonance line
NASA Technical Reports Server (NTRS)
Maloy, J. O.; Hartmann, U. G.; Judge, D. L.; Carlson, R. W.
1978-01-01
The intensity and profile of the helium resonance line at 584 A from the entire disk of the sun was investigated by using a rocket-borne helium-filled spectrometer and a curve-of-growth technique. The line profile was found to be accurately represented by a Gaussian profile with full width at half maximum of 122 + or - 10 mA, while the integrated intensity was measured to be 2.6 + or - 1.3 billion photons/s per sq cm at solar activity levels of F(10.7) = 90.8 x 10 to the -22nd per sq m/Hz and Rz = 27. The measured line width is in good agreement with previous spectrographic measurements, but the integrated intensity is larger than most previous photoelectric measurements. However, the derived line center flux of 20 + or - 10 billion photons/s per sq cm/A is in good agreement with values inferred from airglow measurements.
NASA Astrophysics Data System (ADS)
Pritychenko, B.; Mughabghab, S. F.
2012-12-01
We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.
Silicon waveguide optical switch with embedded phase change material.
Miller, Kevin J; Hallman, Kent A; Haglund, Richard F; Weiss, Sharon M
2017-10-30
Phase-change materials (PCMs) have emerged as promising active elements in silicon (Si) photonic systems. In this work, we design, fabricate, and characterize a hybrid Si-PCM optical switch. By integrating vanadium dioxide (a PCM) within a Si photonic waveguide, in a non-resonant geometry, we achieve ~10 dB broadband optical contrast with a PCM length of 500 nm using thermal actuation.
Monleón, Daniel; Colson, Kimberly; Moseley, Hunter N B; Anklin, Clemens; Oswald, Robert; Szyperski, Thomas; Montelione, Gaetano T
2002-01-01
Rapid data collection, spectral referencing, processing by time domain deconvolution, peak picking and editing, and assignment of NMR spectra are necessary components of any efficient integrated system for protein NMR structure analysis. We have developed a set of software tools designated AutoProc, AutoPeak, and AutoAssign, which function together with the data processing and peak-picking programs NMRPipe and Sparky, to provide an integrated software system for rapid analysis of protein backbone resonance assignments. In this paper we demonstrate that these tools, together with high-sensitivity triple resonance NMR cryoprobes for data collection and a Linux-based computer cluster architecture, can be combined to provide nearly complete backbone resonance assignments and secondary structures (based on chemical shift data) for a 59-residue protein in less than 30 hours of data collection and processing time. In this optimum case of a small protein providing excellent spectra, extensive backbone resonance assignments could also be obtained using less than 6 hours of data collection and processing time. These results demonstrate the feasibility of high throughput triple resonance NMR for determining resonance assignments and secondary structures of small proteins, and the potential for applying NMR in large scale structural proteomics projects.
Table Resonance Integrals & Thermal Cross Sections Book Review by J. Rowlands Nuclear Reaction Atlas of Neutron Resonances Preface: This book is the fifth edition of what was previously known as BNL extensive list of detailed individual resonance parameters for each nucleus, this book contains thermal
NASA Astrophysics Data System (ADS)
Sugano, Koji; Matsumoto, Ryu; Tsutsui, Ryota; Kishihara, Hiroyuki; Matsuzuka, Naoki; Yamashita, Ichiro; Uraoka, Yukiharu; Isono, Yoshitada
2016-07-01
This study focuses on the development of a multi-walled carbon nanotube (MWCNT) forest integrated micromechanical resonator working as a rarefied gas analyzer for nitrogen (N2) and hydrogen (H2) gases in a medium vacuum atmosphere. The resonant response is detected in the form of changes in the resonant frequency or damping effects, depending on the rarefied gas species. The carbon nanotube (CNT) forest on the resonator enhances the effective specific surface area of the resonator, such that the variation of the resonant frequency and the damping effect based on the gas species increase significantly. We developed the fabrication process for the proposed resonator, which consists of standard micro-electro-mechanical systems (MEMS) processes and high-density CNT synthesis on the resonator mass. The high-density CNT synthesis was realized using multistep alternate coating of two types of ferritin proteins that act as catalytic iron particles. Two devices with different CNT densities were fabricated and characterized to evaluate the effect of the surface area of the CNT forest on the resonant response as a function of gas pressures ranging from 0.011 to 1 Pa for N2 and H2. Considering the damping effect, we found that the device with higher density was able to distinguish N2 and H2 clearly, whereas the device with lower density showed no difference between N2 and H2. We confirmed that a larger surface area showed a higher damping effect. These results were explained based on the kinetic theory of gases. In the case of resonant frequency, the relative resonant frequency shift increased with gas pressure and surface area because of the adsorption of gas molecules on the resonator surfaces. Higher density CNT forest adsorbed more gas molecules on the surfaces. The developed CNT forest integrated micromechanical resonator could successfully detect N2 and H2 gases and distinguish between them under pressures of 1 Pa.
Optimal design and fabrication of ring resonator composed of Ge02-doped silica waveguides for IOG
NASA Astrophysics Data System (ADS)
Guo, Lijun; Shi, Bangren; Chen, Chen; Lv, Hao; Zhao, Zhenming; Zhao, Meng
2009-07-01
The ring resonator is the core sensing element in the resonant integration optical gyroscope (IOG) . Its performances influence the minimum resolution and the error items of gyroscope directly and it is the key of the design and manufacturing. This paper presents optimal design of ring resonator composed of Ge02 -doped silica waveguides fabricated on silicon substrates using wide angle beam propagation method (WA-BPM). The characteristic of the light propagating across the ring resonator is analyzed. According to the design results, we succeed in fabricating the ring resonator by Plasma Enhanced Chemical Vapor Deposition (PECVD) method and Reactive Ion Etching (RIE) technology. In order to characterize the ring resonator, an optical measurement setup is built, fiber laser line-width is 50 kHz, detector responsibility is 0.95A/W and integral time is 10s. By testing, propagation loss and total loss of ring resonator are 0.02dB/cm and 0.1dB/circuit respectively. Observed from the resonance curve, a finesse of 12.5.
Monolithically integrated tri-axis shock accelerometers with MHz-level high resonant-frequency
NASA Astrophysics Data System (ADS)
Zou, Hongshuo; Wang, Jiachou; Chen, Fang; Bao, Haifei; Jiao, Ding; Zhang, Kun; Song, Zhaohui; Li, Xinxin
2017-07-01
This paper reports a novel monolithically integrated tri-axis high-shock accelerometer with high resonant-frequency for the detection of a broad frequency-band shock signal. For the first time, a resonant-frequency as high as about 1.4 MHz is designed for all the x-, y- and z-axis accelerometers of the integrated tri-axis sensor. In order to achieve a wide frequency-band detection performance, all the three sensing structures are designed into an axially compressed/stretched tiny-beam sensing scheme, where the p + -doped tiny-beams are connected into a Wheatstone bridge for piezoresistive output. By using ordinary (1 1 1) silicon wafer (i.e. non-SOI wafer), a single-wafer based fabrication technique is developed to monolithically integrate the three sensing structures for the tri-axis sensor. Testing results under high-shock acceleration show that each of the integrated three-axis accelerometers exhibit about 1.4 MHz resonant-frequency and 0.2-0.4 µV/V/g sensitivity. The achieved high frequencies for all the three sensing units make the tri-axis sensor promising in high fidelity 3D high-shock detection applications.
Spin noise spectroscopy of rubidium atomic gas under resonant and non-resonant conditions
NASA Astrophysics Data System (ADS)
Ma, Jian; Shi, Ping; Qian, Xuan; Li, Wei; Ji, Yang
2016-11-01
The spin fluctuation in rubidium atom gas is studied via all-optical spin noise spectroscopy (SNS). Experimental results show that the integrated SNS signal and its full width at half maximum (FWHM) strongly depend on the frequency detuning of the probe light under resonant and non-resonant conditions. The total integrated SNS signal can be well fitted with a single squared Faraday rotation spectrum and the FWHM dependence may be related to the absorption profile of the sample. Project supported by the National Natural Science Foundation of China (Grant Nos. 91321310 and 11404325) and the National Basic Research Program of China (Grant No. 2013CB922304).
Resonance in the dynamics of chemical systems simulated by the implicit midpoint scheme
NASA Astrophysics Data System (ADS)
Mandziuk, Margaret; Schlick, Tamar
1995-05-01
The numerical behavior of the symplectic, implicit midpoint method with a wide range of integration timesteps is examined through an application to a diatomic molecule governed by a Morse potential. Our oscillator with a 12.6 fs period exhibits notable, integrator induced, timestep- ( Δt) dependent resonances and we predict approximate values of Δt where they will occur. The particular case of a third-order resonance ( Δt ≈ 7 fs here) leads to instability, and higher-order resonances ( n = 4, 5) to large energetic fluctuations and/or corrupted phase diagrams. Significantly, for Δt > 10 fs the energy errors remain bound.
Simultaneous EEG and MEG source reconstruction in sparse electromagnetic source imaging.
Ding, Lei; Yuan, Han
2013-04-01
Electroencephalography (EEG) and magnetoencephalography (MEG) have different sensitivities to differently configured brain activations, making them complimentary in providing independent information for better detection and inverse reconstruction of brain sources. In the present study, we developed an integrative approach, which integrates a novel sparse electromagnetic source imaging method, i.e., variation-based cortical current density (VB-SCCD), together with the combined use of EEG and MEG data in reconstructing complex brain activity. To perform simultaneous analysis of multimodal data, we proposed to normalize EEG and MEG signals according to their individual noise levels to create unit-free measures. Our Monte Carlo simulations demonstrated that this integrative approach is capable of reconstructing complex cortical brain activations (up to 10 simultaneously activated and randomly located sources). Results from experimental data showed that complex brain activations evoked in a face recognition task were successfully reconstructed using the integrative approach, which were consistent with other research findings and validated by independent data from functional magnetic resonance imaging using the same stimulus protocol. Reconstructed cortical brain activations from both simulations and experimental data provided precise source localizations as well as accurate spatial extents of localized sources. In comparison with studies using EEG or MEG alone, the performance of cortical source reconstructions using combined EEG and MEG was significantly improved. We demonstrated that this new sparse ESI methodology with integrated analysis of EEG and MEG data could accurately probe spatiotemporal processes of complex human brain activations. This is promising for noninvasively studying large-scale brain networks of high clinical and scientific significance. Copyright © 2011 Wiley Periodicals, Inc.
Plasmonic hydrogen sensor based on integrated microring resonator
NASA Astrophysics Data System (ADS)
Yi, Ya Sha; Wu, Da Chuan
2017-12-01
We have proposed and demonstrated numerically an ultrasmall and highly sensitive plasmonic hydrogen sensor based on an integrated microring resonator, with a footprint size as small as 4×4 μm2. With a palladium (Pd) or platinum (Pt) hydrogen-sensitive layer coated on the inner surface of the microring resonator and the excitation of surface plasmon modes at the interface from the microring resonator waveguide, the device is highly sensitive to low hydrogen concentration variation, and the sensitivity is at least one order of magnitude larger than that of the optical fiber-based hydrogen sensor. We have also investigated the tradeoff between the portion coverage of the Pd/Pt layer and the sensitivity, as well as the width of the hydrogen-sensitive layer. This ultrasmall plasmonic hydrogen sensor holds promise for the realization of a highly compact sensor with integration capability for applications in hydrogen fuel economy.
Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator
NASA Astrophysics Data System (ADS)
Setayesh, Amir; Mirnaziry, S. Reza; Sadegh Abrishamian, Mohammad
2011-03-01
In this study, a compact nanoscale plasmonic filter which consists of two metal-insulator-metal (MIM) waveguides coupled to each other by a rectangular ring resonator is presented and investigated numerically. The propagating modes of surface plasmon polaritons (SPPs) are studied in this structure. By replacing a portion of the ring core with air, while the outer dimensions of the structure are kept constant, we illustrate the possibility of the redshift of resonant wavelengths in order to tune the resonance modes. This feature is useful for integrated circuits in which we have limitations on the outer dimensions of the filter structure and it is not possible to enlarge the dimension of the ring resonator to reach longer resonant wavelengths. The corresponding results are illustrated by the 2D finite-difference time-domain (FDTD) method. The proposed structure has potential applications in plasmonic integrated circuits and can be simply fabricated.
NASA Astrophysics Data System (ADS)
Wu, Jiayang; Moein, Tania; Xu, Xingyuan; Moss, David J.
2018-04-01
We demonstrate advanced integrated photonic filters in silicon-on-insulator (SOI) nanowires implemented by cascaded Sagnac loop reflector (CSLR) resonators. We investigate mode splitting in these standing-wave (SW) resonators and demonstrate its use for engineering the spectral profile of on-chip photonic filters. By changing the reflectivity of the Sagnac loop reflectors (SLRs) and the phase shifts along the connecting waveguides, we tailor mode splitting in the CSLR resonators to achieve a wide range of filter shapes for diverse applications including enhanced light trapping, flat-top filtering, Q factor enhancement, and signal reshaping. We present the theoretical designs and compare the CSLR resonators with three, four, and eight SLRs fabricated in SOI. We achieve versatile filter shapes in the measured transmission spectra via diverse mode splitting that agree well with theory. This work confirms the effectiveness of using CSLR resonators as integrated multi-functional SW filters for flexible spectral engineering.
An active antenna for ELF magnetic fields
NASA Technical Reports Server (NTRS)
Sutton, John F.; Spaniol, Craig
1994-01-01
The work of Nikola Tesla, especially that directed toward world-wide electrical energy distribution via excitation of the earth-ionosphere cavity resonances, has stimulated interest in the study of these resonances. Not only are they important for their potential use in the transmission of intelligence and electrical power, they are important because they are an integral part of our natural environment. This paper describes the design of a sensitive, untuned, low noise active antenna which is uniquely suited to modern earth-ionosphere cavity resonance measurements employing fast-Fourier transform techniques for near-real-time data analysis. It capitalizes on a little known field-antenna interaction mechanism. Recently, the authors made preliminary measurements of the magnetic fields in the earth-ionosphere cavity. During the course of this study, the problem of designing an optimized ELF magnetic field sensor presented itself. The sensor would have to be small, light weight (for portable use), and capable of detecting the 5-50 Hz picoTesla-level signals generated by the natural excitations of the earth-ionosphere cavity resonances. A review of the literature revealed that past researchers had employed very large search coils, both tuned and untuned. Hill and Bostick, for example, used coils of 30,000 turns wound on high permeability cores of 1.83 m length, weighing 40 kg. Tuned coils are unsuitable for modern fast-Fourier transform data analysis techniques which require a broad spectrum input. 'Untuned' coils connected to high input impedance voltage amplifiers exhibit resonant responses at the resonant frequency determined by the coil inductance and the coil distributed winding capacitance. Also, considered as antennas, they have effective areas equal only to their geometrical areas.
Towards a fully integrated optical gyroscope using whispering gallery modes resonators
NASA Astrophysics Data System (ADS)
Amrane, T.; Jager, J.-B.; Jager, T.; Calvo, V.; Léger, J.-M.
2017-11-01
Since the developments of lasers and the optical fibers in the 70s, the optical gyroscopes have been subject to an intensive research to improve both their resolution and stability performances. However the best optical gyroscopes currently on the market, the ring laser gyroscope and the interferometer fiber optic gyroscope are still macroscopic devices and cannot address specific applications where size and weight constraints are critical. One solution to overcome these limitations could be to use an integrated resonator as a sensitive part to build a fully Integrated Optical Resonant Gyroscope (IORG). To keep a high rotation sensitivity, which is usually degraded when downsizing this kind of optical sensors based on the Sagnac effect, the resonator has to exhibit a very high quality factor (Q): as detailed in equation (1) where the minimum rotation rate resolution for an IORG is given as a function of the resonator characteristics (Q and diameter D) and of the global system optical system characteristics (i.e. SNR and bandwidth B), the higher the Q×D product, the lower the resolution.
Integration of Microsphere Resonators with Bioassay Fluidics for Whispering Gallery Mode Imaging
Kim, Daniel C.; Armendariz, Kevin P.
2013-01-01
Whispering gallery mode resonators are small, radially symmetric dielectrics that trap light through continuous total internal reflection. The resonant condition at which light is efficiently confined within the structure is linked with refractive index, which has led to the development of sensitive label-free sensing schemes based on whispering gallery mode resonators. One resonator design uses inexpensive high index glass microspheres that offer intrinsically superior optical characteristics, but have proven difficult to multiplex and integrate with the fluidics for sample delivery and fluid exchange necessary for assay development. Recently, we introduced a fluorescence imaging approach that enables large scale multiplexing with microsphere resonators, thus removing one obstacle for assay development. Here we report an approach for microsphere immobilization that overcomes limitations arising from their integration with fluidic delivery. The approach is an adaptation of a calcium-assisted glass bonding method originally developed for microfluidic glass chip fabrication. Microspheres bonded to glass using this technique are shown to be stable with respect to fluid flow and show no detectable loss in optical performance. Measured Q-factors, for example, remain unchanged following sphere bonding to the substrate. The stability of the immobilized resonators is further demonstrated by transferring lipid films onto the immobilized spheres using the Langmuir-Blodgett technique. Bilayers of DOPC doped with GM1 were transferred onto immobilized resonators to detect the binding of cholera toxin to GM1. Binding curves generated from shifts in the whispering gallery mode resonance result in a measured Kd of 1.5 × 10−11 with a limit of detection of 3.3 pM. These results are discussed in terms of future assay development using microsphere resonators. PMID:23615457
Straube, Benjamin; Green, Antonia; Sass, Katharina; Kirner-Veselinovic, André; Kircher, Tilo
2013-07-01
Gestures are an important component of interpersonal communication. Especially, complex multimodal communication is assumed to be disrupted in patients with schizophrenia. In healthy subjects, differential neural integration processes for gestures in the context of concrete [iconic (IC) gestures] and abstract sentence contents [metaphoric (MP) gestures] had been demonstrated. With this study we wanted to investigate neural integration processes for both gesture types in patients with schizophrenia. During functional magnetic resonance imaging-data acquisition, 16 patients with schizophrenia (P) and a healthy control group (C) were shown videos of an actor performing IC and MP gestures and associated sentences. An isolated gesture (G) and isolated sentence condition (S) were included to separate unimodal from bimodal effects at the neural level. During IC conditions (IC > G ∩ IC > S) we found increased activity in the left posterior middle temporal gyrus (pMTG) in both groups. Whereas in the control group the left pMTG and the inferior frontal gyrus (IFG) were activated for the MP conditions (MP > G ∩ MP > S), no significant activation was found for the identical contrast in patients. The interaction of group (P/C) and gesture condition (MP/IC) revealed activation in the bilateral hippocampus, the left middle/superior temporal and IFG. Activation of the pMTG for the IC condition in both groups indicates intact neural integration of IC gestures in schizophrenia. However, failure to activate the left pMTG and IFG for MP co-verbal gestures suggests a disturbed integration of gestures embedded in an abstract sentence context. This study provides new insight into the neural integration of co-verbal gestures in patients with schizophrenia. Copyright © 2012 Wiley Periodicals, Inc.
Poincaré-Treshchev Mechanism in Multi-scale, Nearly Integrable Hamiltonian Systems
NASA Astrophysics Data System (ADS)
Xu, Lu; Li, Yong; Yi, Yingfei
2018-02-01
This paper is a continuation to our work (Xu et al. in Ann Henri Poincaré 18(1):53-83, 2017) concerning the persistence of lower-dimensional tori on resonant surfaces of a multi-scale, nearly integrable Hamiltonian system. This type of systems, being properly degenerate, arise naturally in planar and spatial lunar problems of celestial mechanics for which the persistence problem ties closely to the stability of the systems. For such a system, under certain non-degenerate conditions of Rüssmann type, the majority persistence of non-resonant tori and the existence of a nearly full measure set of Poincaré non-degenerate, lower-dimensional, quasi-periodic invariant tori on a resonant surface corresponding to the highest order of scale is proved in Han et al. (Ann Henri Poincaré 10(8):1419-1436, 2010) and Xu et al. (2017), respectively. In this work, we consider a resonant surface corresponding to any intermediate order of scale and show the existence of a nearly full measure set of Poincaré non-degenerate, lower-dimensional, quasi-periodic invariant tori on the resonant surface. The proof is based on a normal form reduction which consists of a finite step of KAM iterations in pushing the non-integrable perturbation to a sufficiently high order and the splitting of resonant tori on the resonant surface according to the Poincaré-Treshchev mechanism.
Crowe, Iain F; Clark, Nicholas; Hussein, Siham; Towlson, Brian; Whittaker, Eric; Milosevic, Milan M; Gardes, Frederic Y; Mashanovich, Goran Z; Halsall, Matthew P; Vijayaraghaven, Aravind
2014-07-28
We examine the near-IR light-matter interaction for graphene integrated cavity ring resonators based on silicon-on-insulator (SOI) race-track waveguides. Fitting of the cavity resonances from quasi-TE mode transmission spectra reveal the real part of the effective refractive index for graphene, n(eff) = 2.23 ± 0.02 and linear absorption coefficient, α(gTE) = 0.11 ± 0.01dBμm(-1). The evanescent nature of the guided mode coupling to graphene at resonance depends strongly on the height of the graphene above the cavity, which places limits on the cavity length for optical sensing applications.
A stability study of asteroid families near the 3:1 and 5:2 resonance with Jupiter
NASA Astrophysics Data System (ADS)
Hahn, G.; Lagerkvist, C.-I.; Lindblad, B. A.
1993-06-01
The stability and homogeneity of three asteroid families from Lindblad's list (1992) are studied using numerical integration techniques. These families include the Maria family, which lies close to the 3:1 mean motion resonance with Jupiter, the Oppavia-Gefion, and Dora families which are close to the 5:2 resonance. The study is based on a simplified solar system model, which takes into account the perturbations only by Jupiter and Saturn, and Everhart's variable stepsize integrator RA15. Preliminary results indicate that the stability of the orbits of all family members are not affected by the proximity to the 3:1 and 5:2 mean motion resonance with Jupiter.
Electrically Tunable Integrated Thin-Film Magnetoelectric Resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Ghazaly, Amal; Evans, Joseph T.; Sato, Noriyuki
Magnetoelectrics have attracted much attention for their ability to control magnetic behavior electrically and electrical behavior magnetically. This feature provides numerous benefits to electronic systems and can potentially serve as the bridge needed to integrate magnetic devices into mainstream electronics. This natural next step is pursued and thin-film integrated magnetoelectric devices are produced for radio-frequency (RF) electronics. The first fully integrated, thin-film magnetoelectric modulators for tunable RF electronics are presented. Moreover, these devices provide electric field control of magnetic permeability in order to change the phase velocity and resonance frequency of coplanar waveguides. During this study, the various thin-film materialmore » phenomena, trade-offs, and integration considerations for composite magnetoelectrics are analyzed and discussed. The fabricated devices achieve reversible tunability of the resonance frequency, characterized by a remarkable converse magnetoelectric coupling coefficient of up to 24 mG cm V -1 using just thin films. Based on this work, suggestions are given for additional optimizations of future designs that will maximize the thin-film magnetoelectric interactions.« less
Electrically Tunable Integrated Thin-Film Magnetoelectric Resonators
El-Ghazaly, Amal; Evans, Joseph T.; Sato, Noriyuki; ...
2017-06-14
Magnetoelectrics have attracted much attention for their ability to control magnetic behavior electrically and electrical behavior magnetically. This feature provides numerous benefits to electronic systems and can potentially serve as the bridge needed to integrate magnetic devices into mainstream electronics. This natural next step is pursued and thin-film integrated magnetoelectric devices are produced for radio-frequency (RF) electronics. The first fully integrated, thin-film magnetoelectric modulators for tunable RF electronics are presented. Moreover, these devices provide electric field control of magnetic permeability in order to change the phase velocity and resonance frequency of coplanar waveguides. During this study, the various thin-film materialmore » phenomena, trade-offs, and integration considerations for composite magnetoelectrics are analyzed and discussed. The fabricated devices achieve reversible tunability of the resonance frequency, characterized by a remarkable converse magnetoelectric coupling coefficient of up to 24 mG cm V -1 using just thin films. Based on this work, suggestions are given for additional optimizations of future designs that will maximize the thin-film magnetoelectric interactions.« less
Tunable electromagnetically induced transparency in integrated silicon photonics circuit.
Li, Ang; Bogaerts, Wim
2017-12-11
We comprehensively simulate and experimentally demonstrate a novel approach to generate tunable electromagnetically induced transparency (EIT) in a fully integrated silicon photonics circuit. It can also generate tunable fast and slow light. The circuit is a single ring resonator with two integrated tunable reflectors inside, which form an embedded Fabry-Perot (FP) cavity inside the ring cavity. The mode of the FP cavity can be controlled by tuning the reflections using integrated thermo-optic tuners. Under correct tuning conditions, the interaction of the FP mode and the ring resonance mode will generate a Fano resonance and an EIT response. The extinction ratio and bandwidth of the EIT can be tuned by controlling the reflectors. Measured group delay proves that both fast light and slow light can be generated under different tuning conditions. A maximum group delay of 1100 ps is observed because of EIT. Pulse advance around 1200 ps is also demonstrated.
Integrated resonant micro-optical gyroscope and method of fabrication
Vawter, G Allen [Albuquerque, NM; Zubrzycki, Walter J [Sandia Park, NM; Guo, Junpeng [Albuquerque, NM; Sullivan, Charles T [Albuquerque, NM
2006-09-12
An integrated optic gyroscope is disclosed which is based on a photonic integrated circuit (PIC) having a bidirectional laser source, a pair of optical waveguide phase modulators and a pair of waveguide photodetectors. The PIC can be connected to a passive ring resonator formed either as a coil of optical fiber or as a coiled optical waveguide. The lasing output from each end of the bidirectional laser source is phase modulated and directed around the passive ring resonator in two counterpropagating directions, with a portion of the lasing output then being detected to determine a rotation rate for the integrated optical gyroscope. The coiled optical waveguide can be formed on a silicon, glass or quartz substrate with a silicon nitride core and a silica cladding, while the PIC includes a plurality of III V compound semiconductor layers including one or more quantum well layers which are disordered in the phase modulators and to form passive optical waveguides.
Monitoring Crack Propagation in Turbine Blades Caused by Thermosonics
NASA Astrophysics Data System (ADS)
Bolu, G.; Gachagan, A.; Pierce, G.; Harvey, G.; Choong, L.
2010-02-01
High-power acoustic excitation of components during a thermosonic (or Sonic IR) inspection may degrade the structural integrity of the component by propagating existing cracks. Process Compensated Resonance Testing (PCRT) technology can be used to detect changes in material properties by comparing a components resonant spectra to a reference spectra at regular intervals after systematic exposure to high-power excitation associated with thermosonic inspection. The objective of this work is to determine whether a typical thermosonic inspection degrades the structural integrity of a turbine blade. In this work, the resonant spectra of six cracked and six uncracked turbine blades are captured before and after a series of thermosonic inspections. Next, these spectra are analyzed using proprietary software for changes in resonant behavior. Results from this work indicate no change in blade resonant behavior for a typical thermosonic inspection.
Oertel-Knöchel, Viola; Reinke, Britta; Feddern, Richard; Knake, Annika; Knöchel, Christian; Prvulovic, David; Pantel, Johannes; Linden, David E J
2014-12-01
We combined multimodal functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging to probe abnormalities in brain circuits underpinning episodic memory performance deficits in patients with bipolar disorder (BD). We acquired whole-brain fMRI data in 21 patients with BD and a matched group of 20 healthy controls during a non-verbal episodic memory task, using abstract shapes. We also examined density of gray matter, using voxel-based morphometry (VBM), and integrity of connecting fiber tracts, using diffusion tensor imaging (DTI) and tract-based spatial statistics, for areas with significant activation differences. Patients with BD remembered less well than controls which shapes they had seen and had lower activation levels during the encoding stage of the task in the anterior cingulate gyrus, the precuneus/cuneus bilaterally, and the left lingual gyrus, and higher activation levels during the retrieval stage in the left temporo-parietal junction. Patients with BD showed reduced gray matter volumes in the left anterior cingulate, the precuneus/cuneus bilaterally, and the left temporo-parietal region in comparison with controls. DTI revealed increased radial, axial, and mean diffusivity in the left superior longitudinal fascicle in patients with BD compared with controls. Changes in task-related activation in frontal and parietal areas were associated with poorer episodic memory in patients with BD. Compared with data from single imaging modalities, integration of multimodal neuroimaging data enables the building of more complete neuropsychological models of mental disorders. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
O'Brien, Finian M; Page, Lisa; O'Gorman, Ruth L; Bolton, Patrick; Sharma, Ajay; Baird, Gillian; Daly, Eileen; Hallahan, Brian; Conroy, Ronán M; Foy, Catherine; Curran, Sarah; Robertson, Dene; Murphy, Kieran C; Murphy, Declan G M
2010-11-30
People with autistic spectrum disorders (ASD, including Asperger syndrome) may have developmental abnormalities in the amygdala-hippocampal complex (AHC). However, in vivo, age-related comparisons of both volume and neuronal integrity of the AHC have not yet been carried out in people with Asperger syndrome (AS) versus controls. We compared structure and metabolic activity of the right AHC of 22 individuals with AS and 22 healthy controls aged 10-50 years and examined the effects of age between groups. We used structural magnetic resonance imaging (sMRI) to measure the volume of the AHC, and magnetic resonance spectroscopy ((1)H-MRS) to measure concentrations of N-acetyl aspartate (NAA), creatine+phosphocreatine (Cr+PCr), myo-inositol (mI) and choline (Cho). The bulk volume of the amygdala and the hippocampus did not differ significantly between groups, but there was a significant difference in the effect of age on the hippocampus in controls. Compared with controls, young (but not older) people with AS had a significantly higher AHC concentration of NAA and a significantly higher NAA/Cr ratio. People with AS, but not controls, had a significant age-related reduction in NAA and the NAA/Cr ratio. Also, in people with AS, but not controls, there was a significant relationship between concentrations of choline and age so that choline concentrations reduced with age. We therefore suggest that people with AS have significant differences in neuronal and lipid membrane integrity and maturation of the AHC. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shi, Tiantian; Pan, Duo; Chang, Pengyuan; Shang, Haosen; Chen, Jingbiao
2018-04-01
Without exploiting any frequency selective elements, we have realized a highly integrated, single-mode, narrow-linewidth Nd:YAG 1064 nm laser, which is end-pumped by the 808.6 nm diode laser in an integrated invar cavity. It turns out that each 1064 nm laser achieves a most probable linewidth of 8.5 kHz by beating between two identical laser systems. The output power of the 1064 nm laser increases steadily as the 808.6 nm pump power is raised, which can be up to 350 mW. Moreover, the resonant wavelength of cavity grows continuously in a certain crystal temperature range. Such a 1064 nm laser will be frequency stabilized to an ultrastable cavity by using the Pound-Drever-Hall technique and used as the good cavity laser to lock the main cavity length of 1064/1470 nm good-bad cavity dual-wavelength active optical clock.
When language meets action: the neural integration of gesture and speech.
Willems, Roel M; Ozyürek, Asli; Hagoort, Peter
2007-10-01
Although generally studied in isolation, language and action often co-occur in everyday life. Here we investigated one particular form of simultaneous language and action, namely speech and gestures that speakers use in everyday communication. In a functional magnetic resonance imaging study, we identified the neural networks involved in the integration of semantic information from speech and gestures. Verbal and/or gestural content could be integrated easily or less easily with the content of the preceding part of speech. Premotor areas involved in action observation (Brodmann area [BA] 6) were found to be specifically modulated by action information "mismatching" to a language context. Importantly, an increase in integration load of both verbal and gestural information into prior speech context activated Broca's area and adjacent cortex (BA 45/47). A classical language area, Broca's area, is not only recruited for language-internal processing but also when action observation is integrated with speech. These findings provide direct evidence that action and language processing share a high-level neural integration system.
Optimal antibunching in passive photonic devices based on coupled nonlinear resonators
NASA Astrophysics Data System (ADS)
Ferretti, S.; Savona, V.; Gerace, D.
2013-02-01
We propose the use of weakly nonlinear passive materials for prospective applications in integrated quantum photonics. It is shown that strong enhancement of native optical nonlinearities by electromagnetic field confinement in photonic crystal resonators can lead to single-photon generation only exploiting the quantum interference of two coupled modes and the effect of photon blockade under resonant coherent driving. For realistic system parameters in state of the art microcavities, the efficiency of such a single-photon source is theoretically characterized by means of the second-order correlation function at zero-time delay as the main figure of merit, where major sources of loss and decoherence are taken into account within a standard master equation treatment. These results could stimulate the realization of integrated quantum photonic devices based on non-resonant material media, fully integrable with current semiconductor technology and matching the relevant telecom band operational wavelengths, as an alternative to single-photon nonlinear devices based on cavity quantum electrodynamics with artificial atoms or single atomic-like emitters.
Resonance Parameter Adjustment Based on Integral Experiments
Sobes, Vladimir; Leal, Luiz; Arbanas, Goran; ...
2016-06-02
Our project seeks to allow coupling of differential and integral data evaluation in a continuous-energy framework and to use the generalized linear least-squares (GLLS) methodology in the TSURFER module of the SCALE code package to update the parameters of a resolved resonance region evaluation. We recognize that the GLLS methodology in TSURFER is identical to the mathematical description of a Bayesian update in SAMMY, the SAMINT code was created to use the mathematical machinery of SAMMY to update resolved resonance parameters based on integral data. Traditionally, SAMMY used differential experimental data to adjust nuclear data parameters. Integral experimental data, suchmore » as in the International Criticality Safety Benchmark Experiments Project, remain a tool for validation of completed nuclear data evaluations. SAMINT extracts information from integral benchmarks to aid the nuclear data evaluation process. Later, integral data can be used to resolve any remaining ambiguity between differential data sets, highlight troublesome energy regions, determine key nuclear data parameters for integral benchmark calculations, and improve the nuclear data covariance matrix evaluation. Moreover, SAMINT is not intended to bias nuclear data toward specific integral experiments but should be used to supplement the evaluation of differential experimental data. Using GLLS ensures proper weight is given to the differential data.« less
Reusable EGaIn-Injected Substrate-Integrated-Waveguide Resonator for Wireless Sensor Applications
Memon, Muhammad Usman; Lim, Sungjoon
2015-01-01
The proposed structure in this research is constructed on substrate integrated waveguide (SIW) technology and has a mechanism that produces 16 different and distinct resonant frequencies between 2.45 and 3.05 GHz by perturbing a fundamental TE10 mode. It is a unique method for producing multiple resonances in a radio frequency planar structure without any extra circuitry or passive elements is developed. The proposed SIW structure has four vertical fluidic holes (channels); injecting eutectic gallium indium (EGaIn), also known commonly as liquid metal (LM), into these vertical channels produces different resonant frequencies. Either a channel is empty, or it is filled with LM. In total, the combination of different frequencies produced from four vertical channels is 16. PMID:26569257
Gu, Yuyang; Chen, Chuyi; Tu, Juan; Guo, Xiasheng; Wu, Hongyi; Zhang, Dong
2016-03-01
Encapsulated microbubbles coupled with magnetic nanoparticles, one kind of hybrid agents that can integrate both ultrasound and magnetic resonance imaging/therapy functions, have attracted increasing interests in both research and clinic communities. However, there is a lack of comprehensive understanding of their dynamic behaviors generated in diagnostic and therapeutic applications. In the present work, a hybrid agent was synthesized by integrating superparamagnetic iron oxide nanoparticles (SPIOs) into albumin-shelled microbubbles (named as SPIO-albumin microbubbles). Then, both the stable and inertial cavitation thresholds of this hybrid agent were measured at varied SPIO concentrations and ultrasound parameters (e.g., frequency, pressure amplitude, and pulse length). The results show that, at a fixed acoustic driving frequency, both the stable and inertial cavitation thresholds of SPIO-albumin microbubble should decrease with the increasing SPIO concentration and acoustic driving pulse length. The inertial cavitation threshold of SPIO-albumin microbubbles also decreases with the raised driving frequency, while the minimum sub- and ultra-harmonic thresholds appear at twice and two thirds resonance frequency, respectively. It is also noticed that both the stable and inertial cavitation thresholds of SonoVue microbubbles are similar to those measured for hybrid microbubbles with a SPIO concentration of 114.7 μg/ml. The current work could provide better understanding on the impact of the integrated SPIOs on the dynamic responses (especially the cavitation activities) of hybrid microbubbles, and suggest the shell composition of hybrid agents should be appropriately designed to improve their clinical diagnostic and therapeutic performances of hybrid microbubble agents. Copyright © 2015 Elsevier B.V. All rights reserved.
Disk Crack Detection for Seeded Fault Engine Test
NASA Technical Reports Server (NTRS)
Luo, Huageng; Rodriguez, Hector; Hallman, Darren; Corbly, Dennis; Lewicki, David G. (Technical Monitor)
2004-01-01
Work was performed to develop and demonstrate vibration diagnostic techniques for the on-line detection of engine rotor disk cracks and other anomalies through a real engine test. An existing single-degree-of-freedom non-resonance-based vibration algorithm was extended to a multi-degree-of-freedom model. In addition, a resonance-based algorithm was also proposed for the case of one or more resonances. The algorithms were integrated into a diagnostic system using state-of-the- art commercial analysis equipment. The system required only non-rotating vibration signals, such as accelerometers and proximity probes, and the rotor shaft 1/rev signal to conduct the health monitoring. Before the engine test, the integrated system was tested in the laboratory by using a small rotor with controlled mass unbalances. The laboratory tests verified the system integration and both the non-resonance and the resonance-based algorithm implementations. In the engine test, the system concluded that after two weeks of cycling, the seeded fan disk flaw did not propagate to a large enough size to be detected by changes in the synchronous vibration. The unbalance induced by mass shifting during the start up and coast down was still the dominant response in the synchronous vibration.
Gabl, R; Feucht, H-D; Zeininger, H; Eckstein, G; Schreiter, M; Primig, R; Pitzer, D; Wersing, W
2004-01-15
A novel integrated bio-sensor technology based on thin-film bulk acoustic wave resonators on silicon is presented and the feasibility of detecting DNA and protein molecules proofed. The detection principle of these sensors is label-free and relies on a resonance frequency shift caused by mass loading of an acoustic resonator, a principle very well known from quartz crystal micro balances. Integrated ZnO bulk acoustic wave resonators with resonance frequencies around 2 GHz have been fabricated, employing an acoustic mirror for isolation from the silicon substrate. DNA oligos have been thiol-coupled to the gold electrode by on-wafer dispensing. In a further step, samples have either been hybridised or alternatively a protein has been coupled to the receptor. The measurement results show the new bio-sensor being capable of both, detecting proteins as well as the DNA hybridisation without using a label. Due to the substantially higher oscillation frequency, these sensors already show much higher sensitivity and resolution comparable to quartz crystal micro balances. The potential for these sensors and sensors arrays as well as technological challenges will be discussed in detail.
Lo, Yu-Chun; Chou, Tai-Li; Fan, Li-Ying; Gau, Susan Shur-Fen; Chiu, Yen-Nan; Tseng, Wen-Yih Isaac
2013-12-01
Deficits in language and communication are among the core symptoms of autism, a common neurodevelopmental disorder with long-term impairment. Despite the striking nature of the autistic language impairment, knowledge about its corresponding alterations in the brain is still evolving. We hypothesized that the dual stream language network is altered in autism, and that this alteration could be revealed by changes in the relationships between microstructural integrity and functional activation. The study recruited 20 right-handed male youths with autism and 20 carefully matched individually, typically developing (TD) youths. Microstructural integrity of the left dorsal and left ventral pathways responsible for language processing and the functional activation of the connected brain regions were investigated by using diffusion spectrum imaging and functional magnetic resonance imaging of a semantic task, respectively. Youths with autism had significantly poorer language function, and lower functional activation in left dorsal and left ventral regions of the language network, compared with TD youths. The TD group showed a significant correlation of the functional activation of the left dorsal region with microstructural integrity of the left ventral pathway, whereas the autism group showed a significant correlation of the functional activation of the left ventral region with microstructural integrity of the left dorsal pathway, and moreover verbal comprehension index was correlated with microstructural integrity of the left ventral pathway. These altered structure-function relationships in autism suggest possible involvement of the dual pathways in supporting deficient semantic processing. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.
Development of sound measurement systems for auditory functional magnetic resonance imaging.
Nam, Eui-Cheol; Kim, Sam Soo; Lee, Kang Uk; Kim, Sang Sik
2008-06-01
Auditory functional magnetic resonance imaging (fMRI) requires quantification of sound stimuli in the magnetic environment and adequate isolation of background noise. We report the development of two novel sound measurement systems that accurately measure the sound intensity inside the ear, which can simultaneously provide the similar or greater amount of scanner- noise protection than ear-muffs. First, we placed a 2.6 x 2.6-mm microphone in an insert phone that was connected to a headphone [microphone-integrated, foam-tipped insert-phone with a headphone (MIHP)]. This attenuated scanner noise by 37.8+/-4.6 dB, a level better than the reference amount obtained using earmuffs. The nonmetallic optical microphone was integrated with a headphone [optical microphone in a headphone (OMHP)] and it effectively detected the change of sound intensity caused by variable compression on the cushions of the headphone. Wearing the OMHP reduced the noise by 28.5+/-5.9 dB and did not affect echoplanar magnetic resonance images. We also performed an auditory fMRI study using the MIHP system and presented increase in the auditory cortical activation following 10-dB increment in the intensity of sound stimulation. These two newly developed sound measurement systems successfully achieved the accurate quantification of sound stimuli with maintaining the similar level of noise protection of wearing earmuffs in the auditory fMRI experiment.
A New Look at an Old Activity: Resonance Tubes Used to Teach Resonance
ERIC Educational Resources Information Center
Nelson, Jim; Nelson, Jane
2017-01-01
There are several variations of resonance laboratory activities used to determine the speed of sound. This is "not" one of them. This activity uses the resonance tube idea to teach "resonance," not to verify the speed of sound. Prior to this activity, the speed of sound has already been measured using computer sound-sensors and…
Hu, Fangrong; Fan, Yixing; Zhang, Xiaowen; Jiang, Wenying; Chen, Yuanzhi; Li, Peng; Yin, Xianhua; Zhang, Wentao
2018-01-01
We experimentally demonstrated a tunable terahertz bandpass filter based on microelectromechanical systems (MEMS) reconfigurable metamaterials. The unit cell of the filter consists of two split-ring resonators (SRRs) and a movable bar. Initially, the movable bar situates at the center of the unit cell, and the filter has two passbands whose central frequencies locate at 0.65 and 0.96 THz. The intensity of the two passbands can be actively modulated by the movable bar, and a maximum modulation depth of 96% is achieved at 0.96 THz. The mechanism of tunability is investigated using the finite-integration time-domain method. The result shows that the image currents induced on the movable bar are opposite the resonance currents induced on the SRRs and, thus, weaken the oscillating intensity of the resonance currents. This scheme paves the way to dynamically control and switch the terahertz wave at some constant frequencies utilizing induced image currents.
Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu
2015-05-01
The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.
Daniel, Reka; Pollmann, Stefan
2010-01-06
The dopaminergic system is known to play a central role in reward-based learning (Schultz, 2006), yet it was also observed to be involved when only cognitive feedback is given (Aron et al., 2004). Within the domain of information-integration category learning, in which information from several stimulus dimensions has to be integrated predecisionally (Ashby and Maddox, 2005), the importance of contingent feedback is well established (Maddox et al., 2003). We examined the common neural correlates of reward anticipation and prediction error in this task. Sixteen subjects performed two parallel information-integration tasks within a single event-related functional magnetic resonance imaging session but received a monetary reward only for one of them. Similar functional areas including basal ganglia structures were activated in both task versions. In contrast, a single structure, the nucleus accumbens, showed higher activation during monetary reward anticipation compared with the anticipation of cognitive feedback in information-integration learning. Additionally, this activation was predicted by measures of intrinsic motivation in the cognitive feedback task and by measures of extrinsic motivation in the rewarded task. Our results indicate that, although all other structures implicated in category learning are not significantly affected by altering the type of reward, the nucleus accumbens responds to the positive incentive properties of an expected reward depending on the specific type of the reward.
A closed-loop system for frequency tracking of piezoresistive cantilever sensors
NASA Astrophysics Data System (ADS)
Wasisto, Hutomo Suryo; Zhang, Qing; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin
2013-05-01
A closed loop circuit capable of tracking resonant frequencies for MEMS-based piezoresistive cantilever resonators is developed in this work. The proposed closed-loop system is mainly based on a phase locked loop (PLL) circuit. In order to lock onto the resonant frequency of the resonator, an actuation signal generated from a voltage-controlled oscillator (VCO) is locked to the phase of the input reference signal of the cantilever sensor. In addition to the PLL component, an instrumentation amplifier and an active low pass filter (LPF) are connected to the system for gaining the amplitude and reducing the noise of the cantilever output signals. The LPF can transform a rectangular signal into a sinusoidal signal with voltage amplitudes ranging from 5 to 10 V which are sufficient for a piezoactuator input (i.e., maintaining a large output signal of the cantilever sensor). To demonstrate the functionality of the system, a self-sensing silicon cantilever resonator with a built-in piezoresistive Wheatstone bridge is fabricated and integrated with the circuit. A piezoactuator is utilized for actuating the cantilever into resonance. Implementation of this closed loop system is used to track the resonant frequency of a silicon cantilever-based sensor resonating at 9.4 kHz under a cross-sensitivity test of ambient temperature. The changes of the resonant frequency are interpreted using a frequency counter connected to the system. From the experimental results, the temperature sensitivity and coefficient of the employed sensor are 0.3 Hz/°C and 32.8 ppm/°C, respectively. The frequency stability of the system can reach up to 0.08 Hz. The development of this system will enable real-time nanoparticle monitoring systems and provide a miniaturization of the instrumentation modules for cantilever-based nanoparticle detectors.
Audiovisual integration supports face-name associative memory formation.
Lee, Hweeling; Stirnberg, Rüdiger; Stöcker, Tony; Axmacher, Nikolai
2017-10-01
Prior multisensory experience influences how we perceive our environment, and hence how memories are encoded for subsequent retrieval. This study investigated if audiovisual (AV) integration and associative memory formation rely on overlapping or distinct processes. Our functional magnetic resonance imaging results demonstrate that the neural mechanisms underlying AV integration and associative memory overlap substantially. In particular, activity in anterior superior temporal sulcus (STS) is increased during AV integration and also determines the success of novel AV face-name association formation. Dynamic causal modeling results further demonstrate how the anterior STS interacts with the associative memory system to facilitate successful memory formation for AV face-name associations. Specifically, the connection of fusiform gyrus to anterior STS is enhanced while the reverse connection is reduced when participants subsequently remembered both face and name. Collectively, our results demonstrate how multisensory associative memories can be formed for subsequent retrieval.
RF performances of inductors integrated on localized p+-type porous silicon regions
2012-01-01
To study the influence of localized porous silicon regions on radiofrequency performances of passive devices, inductors were integrated on localized porous silicon regions, full porous silicon sheet, bulk silicon and glass substrates. In this work, a novel strong, resistant fluoropolymer mask is introduced to localize the porous silicon on the silicon wafer. Then, the quality factors and resonant frequencies obtained with the different substrates are presented. A first comparison is done between the performances of inductors integrated on same-thickness localized and full porous silicon sheet layers. The effect of the silicon regions in the decrease of performances of localized porous silicon is discussed. Then, the study shows that the localized porous silicon substrate significantly reduces losses in comparison with high-resistivity silicon or highly doped silicon bulks. These results are promising for the integration of both passive and active devices on the same silicon/porous silicon hybrid substrate. PMID:23009746
Resonance energy transfer between the active sites of creatine kinase from rabbit brain.
Grossman, S H
1990-09-03
Resonance energy transfer was measured between the active site domains of the brain isozyme of creatine kinase (CK-BB). The reactive thiol near the active sites, one on each subunit of the dimeric protein, was derivatized using 5-[2-[iodoacetyl)amino)ethyl]aminonaphthalene-1-sulfonic acid (AED), 2-[4'-iodoacetamidoanilino]naphthalene-6-sulfonic acid (AANS) and 5-iodoacetamidofluorescein (AF). Suitable donor/acceptor protein conjugated hybrids were prepared by controlled kinetics producing CK-BB-AED/AF and CK-BB-AANS/AF. Transfer efficiencies, measured from the quenching of the donor lifetime and steady-state sensitized acceptor emission, ranged from 0.10 to 0.17. From determination of the donor/acceptor overlap integrals, donor quantum yields and attempts to delimit the orientation factor using steady-state and phase-resolved anisotropy measurements, it was found that a suitable estimate of the range between the active sites was between 45 and 57 A. This range is similar to that reported previously for the muscle isozyme of creatine kinase (Grossman, S.H. (1989) Biochemistry 28, 4894-4902) but is a significantly greater distance than detected for the hybrid, myocardial specific isozyme (Grossman, S.H. (1983) Biochemistry 22, 5369-5375).
Fractional order implementation of Integral Resonant Control - A nanopositioning application.
San-Millan, Andres; Feliu-Batlle, Vicente; Aphale, Sumeet S
2017-10-04
By exploiting the co-located sensor-actuator arrangement in typical flexure-based piezoelectric stack actuated nanopositioners, the polezero interlacing exhibited by their axial frequency response can be transformed to a zero-pole interlacing by adding a constant feed-through term. The Integral Resonant Control (IRC) utilizes this unique property to add substantial damping to the dominant resonant mode by the use of a simple integrator implemented in closed loop. IRC used in conjunction with an integral tracking scheme, effectively reduces positioning errors introduced by modelling inaccuracies or parameter uncertainties. Over the past few years, successful application of the IRC control technique to nanopositioning systems has demonstrated performance robustness, easy tunability and versatility. The main drawback has been the relatively small positioning bandwidth achievable. This paper proposes a fractional order implementation of the classical integral tracking scheme employed in tandem with the IRC scheme to deliver damping and tracking. The fractional order integrator introduces an additional design parameter which allows desired pole-placement, resulting in superior closed loop bandwidth. Simulations and experimental results are presented to validate the theory. A 250% improvement in the achievable positioning bandwidth is observed with proposed fractional order scheme. Copyright © 2017. Published by Elsevier Ltd.
Monolithic integration of a resonant tunneling diode and a quantum well semiconductor laser
NASA Astrophysics Data System (ADS)
Grave, I.; Kan, S. C.; Griffel, G.; Wu, S. W.; Sa'Ar, A.
1991-01-01
A monolithic integration of a double barrier AlAs/GaAs resonant tunneling diode and a GaAs/AlGaAs quantum well laser is reported. Negative differential resistance and negative differential optical response are observed at room temperature. The device displays bistable electrical and optical characteristics which are voltage controlled. Operation as a two-state optical memory is demonstrated.
Xu, Qianfan; Sandhu, Sunil; Povinelli, Michelle L; Shakya, Jagat; Fan, Shanhui; Lipson, Michal
2006-03-31
We provide the first experimental observation of structure tuning of the electromagnetically induced transparency-like spectrum in integrated on-chip optical resonator systems. The system consists of coupled silicon ring resonators with 10 microm diameter on silicon, where the coherent interference between the two coupled resonators is tuned. We measured a transparency-resonance mode with a quality factor of 11,800.
-- Link6 -- Integrated Photonic Spectrographs for Astronomy Optical Multi-Mode Interference Devices Dual Guiding, Modulating, and Emitting Light on Silicon Scope1 -- Scope 2 -- Lamp1 -- optical Ring Resonators
Cavity enhanced third harmonic generation in graphene
NASA Astrophysics Data System (ADS)
Beckerleg, Chris; Constant, Thomas J.; Zeimpekis, Ioannis; Hornett, Samuel M.; Craig, Chris; Hewak, Daniel W.; Hendry, Euan
2018-01-01
Graphene displays a surprisingly large third order nonlinearity. Here, we report that conversion efficiencies approaching 10-4 are possible for third harmonic generation (THG). Moreover, the atomically thin nature of graphene allows for simple integration in cavity designs to increase this even further. We demonstrate a 117-fold enhancement, of resonant vs non-resonant wavelengths in the THG from graphene due to the integration of a graphene layer with a resonant cavity. This large enhancement occurs as the cavity is resonant for both the fundamental field and the third harmonic. We model this effect using the finite difference time domain approach. By comparing our model with experiment, we are able to deduce the value of a bulk third order susceptibility of graphene of |χ(3)|=4 ×10-17(m/V ) 2 .
Ultra-Low Loss Waveguides with Application to Photonic Integrated Circuits
NASA Astrophysics Data System (ADS)
Bauters, Jared F.
The integration of photonic components using a planar platform promises advantages in cost, size, weight, and power consumption for optoelectronic systems. Yet, the typical propagation loss of 5-10 dB/m in a planar silica waveguide is nearly five orders-of-magnitude larger than that in low loss optical fibers. For some applications, the miniaturization of the photonic system and resulting smaller propagation lengths from integration are enough to overcome the increase in propagation loss. For other more demanding systems or applications, such as those requiring long optical time delays or high-quality-factor (Q factor) resonators, the high propagation loss can degrade system performance to a degree that trumps the potential advantages offered by integration. Thus, the reduction of planar waveguide propagation loss in a Si3-N4 based waveguide platform is a primary focus of this dissertation. The ultra-low loss stoichiometric Si3-N4 waveguide platform offers the additional advantages of fabrication process stability and repeatability. Yet, active devices such as lasers, amplifiers, and photodetectors have not been monolithically integrated with ultra-low loss waveguides due to the incompatibility of the active and ultra-low loss processing thermal budgets (ultra-low loss waveguides are annealed at temperatures exceeding 1000 °C in order to drive out impurities). So a platform that enables the integration of active devices with the ultra-low losses of the Si3- N4 waveguide platform is this dissertation's second focus. The work enables the future fabrication of sensor, gyroscope, true time delay, and low phase noise oscillator photonic integrated circuits.
Zhu, Zhuan; Yuan, Jiangtan; Zhou, Haiqing; ...
2016-04-19
The monolithic integration of electronics and photonics has attracted enormous attention due to its potential applications. A major challenge to this integration is the identification of suitable materials that can emit and absorb light at the same wavelength. In this paper we utilize unique excitonic transitions in WS 2 monolayers and show that WS 2 exhibits a perfect overlap between its absorption and photoluminescence spectra. By coupling WS 2 to Ag nanowires, we then show that WS 2 monolayers are able to excite and absorb surface plasmons of Ag nanowires at the same wavelength of exciton photoluminescence. This resonant absorptionmore » by WS 2 is distinguished from that of the ohmic propagation loss of silver nanowires, resulting in a short propagation length of surface plasmons. Our demonstration of resonant optical generation and detection of surface plasmons enables nanoscale optical communication and paves the way for on-chip electronic–photonic integrated circuits.« less
Active control of the forced and transient response of a finite beam. M.S. Thesis
NASA Technical Reports Server (NTRS)
Post, John T.
1990-01-01
Structural vibrations from a point force are modelled on a finite beam. This research explores the theoretical limit on controlling beam vibrations utilizing another point source as an active controller. Three different types of excitation are considered, harmonic, random, and transient. For harmonic excitation, control over the entire beam length is possible only when the excitation frequency is near a resonant frequency of the beam. Control over a subregion may be obtained even between resonant frequencies at the cost of increasing the vibration outside of the control region. For random excitation, integrating the expected value of the displacement squared over the required interval, is shown to yield the identical cost function as obtained by integrating the cost function for harmonic excitation over all excitation frequencies. As a result, it is always possible to reduce the cost function for random excitation whether controlling the entire beam or just a subregion, without ever increasing the vibration outside the region in which control is desired. The last type of excitation considered is a single, transient pulse. The form of the controller is specified as either one or two delayed pulses, thus constraining the controller to be casual. The best possible control is examined while varying the region of control and the controller location. It is found that control is always possible using either one or two control pulses.
Light-Activated Content Release from Liposomes
Leung, Sarah J.; Romanowski, Marek
2012-01-01
Successful integration of diagnostic and therapeutic actions at the level of individual cells requires new materials that combine biological compatibility with functional versatility. This review focuses on the development of liposome-based functional materials, where payload release is activated by light. Methods of sensitizing liposomes to light have progressed from the use of organic molecular moieties to the use of metallic plasmon resonant structures. This development has facilitated application of near infrared light for activation, which is preferred for its deep penetration and low phototoxicity in biological tissues. Presented mechanisms of light-activated liposomal content release enable precise in vitro manipulation of minute amounts of reagents, but their use in clinical diagnostic and therapeutic applications will require demonstration of safety and efficacy. PMID:23139729
Inferring multi-scale neural mechanisms with brain network modelling
Schirner, Michael; McIntosh, Anthony Randal; Jirsa, Viktor; Deco, Gustavo
2018-01-01
The neurophysiological processes underlying non-invasive brain activity measurements are incompletely understood. Here, we developed a connectome-based brain network model that integrates individual structural and functional data with neural population dynamics to support multi-scale neurophysiological inference. Simulated populations were linked by structural connectivity and, as a novelty, driven by electroencephalography (EEG) source activity. Simulations not only predicted subjects' individual resting-state functional magnetic resonance imaging (fMRI) time series and spatial network topologies over 20 minutes of activity, but more importantly, they also revealed precise neurophysiological mechanisms that underlie and link six empirical observations from different scales and modalities: (1) resting-state fMRI oscillations, (2) functional connectivity networks, (3) excitation-inhibition balance, (4, 5) inverse relationships between α-rhythms, spike-firing and fMRI on short and long time scales, and (6) fMRI power-law scaling. These findings underscore the potential of this new modelling framework for general inference and integration of neurophysiological knowledge to complement empirical studies. PMID:29308767
Asteroids in three-body mean motion resonances with planets
NASA Astrophysics Data System (ADS)
Smirnov, Evgeny A.; Dovgalev, Ilya S.; Popova, Elena A.
2018-04-01
We have identified all asteroids in three-body mean-motion resonances in all possible planets configurations. The identification was done dynamically: the orbits of the asteroids were integrated for 100,000 yrs and the set of the resonant arguments was numerically analyzed. We have found that each possible planets configuration has a lot of the resonant asteroids. In total 65,972 resonant asteroids (≈14.1% of the total number of 467,303 objects from AstDyS database) have been identified.
Nonlinear integrable model of Frenkel-like excitations on a ribbon of triangular lattice
NASA Astrophysics Data System (ADS)
Vakhnenko, Oleksiy O.
2015-03-01
Following the considerable progress in nanoribbon technology, we propose to model the nonlinear Frenkel-like excitations on a triangular-lattice ribbon by the integrable nonlinear ladder system with the background-controlled intersite resonant coupling. The system of interest arises as a proper reduction of first general semidiscrete integrable system from an infinite hierarchy. The most significant local conservation laws related to the first general integrable system are found explicitly in the framework of generalized recursive approach. The obtained general local densities are equally applicable to any general semidiscrete integrable system from the respective infinite hierarchy. Using the recovered second densities, the Hamiltonian formulation of integrable nonlinear ladder system with background-controlled intersite resonant coupling is presented. In doing so, the relevant Poisson structure turns out to be essentially nontrivial. The Darboux transformation scheme as applied to the first general semidiscrete system is developed and the key role of Bäcklund transformation in justification of its self-consistency is pointed out. The spectral properties of Darboux matrix allow to restore the whole Darboux matrix thus ensuring generation one more soliton as compared with a priori known seed solution of integrable nonlinear system. The power of Darboux-dressing method is explicitly demonstrated in generating the multicomponent one-soliton solution to the integrable nonlinear ladder system with background-controlled intersite resonant coupling.
Neural integration of iconic and unrelated coverbal gestures: a functional MRI study.
Green, Antonia; Straube, Benjamin; Weis, Susanne; Jansen, Andreas; Willmes, Klaus; Konrad, Kerstin; Kircher, Tilo
2009-10-01
Gestures are an important part of interpersonal communication, for example by illustrating physical properties of speech contents (e.g., "the ball is round"). The meaning of these so-called iconic gestures is strongly intertwined with speech. We investigated the neural correlates of the semantic integration for verbal and gestural information. Participants watched short videos of five speech and gesture conditions performed by an actor, including variation of language (familiar German vs. unfamiliar Russian), variation of gesture (iconic vs. unrelated), as well as isolated familiar language, while brain activation was measured using functional magnetic resonance imaging. For familiar speech with either of both gesture types contrasted to Russian speech-gesture pairs, activation increases were observed at the left temporo-occipital junction. Apart from this shared location, speech with iconic gestures exclusively engaged left occipital areas, whereas speech with unrelated gestures activated bilateral parietal and posterior temporal regions. Our results demonstrate that the processing of speech with speech-related versus speech-unrelated gestures occurs in two distinct but partly overlapping networks. The distinct processing streams (visual versus linguistic/spatial) are interpreted in terms of "auxiliary systems" allowing the integration of speech and gesture in the left temporo-occipital region.
Wang, Tracy H.; Minton, Brian; Muftuler, L. Tugan; Rugg, Michael D.
2011-01-01
This functional magnetic resonance imaging study investigated the relationship between the neural correlates of associative memory encoding, callosal integrity, and memory performance in older adults. Thirty-six older and 18 young subjects were scanned while making relational judgments on word pairs. Neural correlates of successful encoding (subsequent memory effects) were identified by contrasting the activity elicited by study pairs that were correctly identified as having been studied together with the activity elicited by pairs wrongly judged to have come from different study trials. Subsequent memory effects common to the 2 age groups were identified in several regions, including left inferior frontal gyrus and bilateral hippocampus. Negative effects (greater activity for forgotten than for remembered items) in default network regions in young subjects were reversed in the older group, and the amount of reversal correlated negatively with memory performance. Additionally, older subjects' subsequent memory effects in right frontal cortex correlated positively with anterior callosal integrity and negatively with memory performance. It is suggested that recruitment of right frontal cortex during verbal memory encoding may reflect the engagement of processes that compensate only partially for age-related neural degradation. PMID:21282317
The functional integration of the anterior cingulate cortex during conflict processing.
Fan, Jin; Hof, Patrick R; Guise, Kevin G; Fossella, John A; Posner, Michael I
2008-04-01
Although functional activation of the anterior cingulate cortex (ACC) related to conflict processing has been studied extensively, the functional integration of the subdivisions of the ACC and other brain regions during conditions of conflict is still unclear. In this study, participants performed a task designed to elicit conflict processing by using flanker interference on target response while they were scanned using event-related functional magnetic resonance imaging. The physiological response of several brain regions in terms of an interaction between conflict processing and activity of the anterior rostral cingulate zone (RCZa) of the ACC, and the effective connectivity between this zone and other regions were examined using psychophysiological interaction analysis and dynamic causal modeling, respectively. There was significant integration of the RCZa with the caudal cingulate zone (CCZ) of the ACC and other brain regions such as the lateral prefrontal, primary, and supplementary motor areas above and beyond the main effect of conflict and baseline connectivity. The intrinsic connectivity from the RCZa to the CCZ was modulated by the context of conflict. These findings suggest that conflict processing is associated with the effective contribution of the RCZa to the neuronal activity of CCZ, as well as other cortical regions.
Coll, Sélim Yahia; Ceravolo, Leonardo; Frühholz, Sascha; Grandjean, Didier
2018-05-02
Different parts of our brain code the perceptual features and actions related to an object, causing a binding problem, in which the brain has to integrate information related to an event without any interference regarding the features and actions involved in other concurrently processed events. Using a paradigm similar to Hommel, who revealed perception-action bindings, we showed that emotion could bind with motor actions when relevant, and in specific conditions, irrelevant for the task. By adapting our protocol to a functional Magnetic Resonance Imaging paradigm we investigated, in the present study, the neural bases of the emotion-action binding with task-relevant angry faces. Our results showed that emotion bound with motor responses. This integration revealed increased activity in distributed brain areas involved in: (i) memory, including the hippocampi; (ii) motor actions with the precentral gyri; (iii) and emotion processing with the insula. Interestingly, increased activations in the cingulate gyri and putamen, highlighted their potential key role in the emotion-action binding, due to their involvement in emotion processing, motor actions, and memory. The present study confirmed our previous results and point out for the first time the functional brain activity related to the emotion-action association.
NASA Astrophysics Data System (ADS)
Wang, Chao; Search, Christopher
2013-03-01
Optical gyroscopes based on the Sagnac effect are of great interest both theoretically and practically. Previously it has been suggested a nonlinear Kerr medium inserted into a ring resonator gyroscope can largely increase the rotation sensitivity due to an instability caused by the non-reciprocal self-phase and cross-phase modulations. Recently, coupled microresonator arrays such as Side-Coupled Integrated Spaced Sequence of Resonators (SCISSOR) and Coupled Resonator Optical Waveguides (CROW) have drawn interest as potential integrated gyroscopes due to the sensitivity enhancement resulting from distributed interference between resonators. Here we analyze a SCISSOR system, which consists of an array of microresonators evanescently coupled to two parallel bus waveguides in the presence of a strong intra-resonator Kerr nonlinearity. We show that the distributed interference in the waveguides combined with the nonlinearly enhanced Sagnac effect in the resonators can further improve the sensitivity compared with either a single resonator of equal footprint or SCISSOR without a Kerr nonlinearity. Numerical simulation shows that bistability in the SCISSOR occurs and the rotation sensitivity dIoutput/dω can go to infinity near the boundaries of the bistable region.
Organic printed photonics: From microring lasers to integrated circuits
Zhang, Chuang; Zou, Chang-Ling; Zhao, Yan; Dong, Chun-Hua; Wei, Cong; Wang, Hanlin; Liu, Yunqi; Guo, Guang-Can; Yao, Jiannian; Zhao, Yong Sheng
2015-01-01
A photonic integrated circuit (PIC) is the optical analogy of an electronic loop in which photons are signal carriers with high transport speed and parallel processing capability. Besides the most frequently demonstrated silicon-based circuits, PICs require a variety of materials for light generation, processing, modulation, and detection. With their diversity and flexibility, organic molecular materials provide an alternative platform for photonics; however, the versatile fabrication of organic integrated circuits with the desired photonic performance remains a big challenge. The rapid development of flexible electronics has shown that a solution printing technique has considerable potential for the large-scale fabrication and integration of microsized/nanosized devices. We propose the idea of soft photonics and demonstrate the function-directed fabrication of high-quality organic photonic devices and circuits. We prepared size-tunable and reproducible polymer microring resonators on a wafer-scale transparent and flexible chip using a solution printing technique. The printed optical resonator showed a quality (Q) factor higher than 4 × 105, which is comparable to that of silicon-based resonators. The high material compatibility of this printed photonic chip enabled us to realize low-threshold microlasers by doping organic functional molecules into a typical photonic device. On an identical chip, this construction strategy allowed us to design a complex assembly of one-dimensional waveguide and resonator components for light signal filtering and optical storage toward the large-scale on-chip integration of microscopic photonic units. Thus, we have developed a scheme for soft photonic integration that may motivate further studies on organic photonic materials and devices. PMID:26601256
Organic printed photonics: From microring lasers to integrated circuits.
Zhang, Chuang; Zou, Chang-Ling; Zhao, Yan; Dong, Chun-Hua; Wei, Cong; Wang, Hanlin; Liu, Yunqi; Guo, Guang-Can; Yao, Jiannian; Zhao, Yong Sheng
2015-09-01
A photonic integrated circuit (PIC) is the optical analogy of an electronic loop in which photons are signal carriers with high transport speed and parallel processing capability. Besides the most frequently demonstrated silicon-based circuits, PICs require a variety of materials for light generation, processing, modulation, and detection. With their diversity and flexibility, organic molecular materials provide an alternative platform for photonics; however, the versatile fabrication of organic integrated circuits with the desired photonic performance remains a big challenge. The rapid development of flexible electronics has shown that a solution printing technique has considerable potential for the large-scale fabrication and integration of microsized/nanosized devices. We propose the idea of soft photonics and demonstrate the function-directed fabrication of high-quality organic photonic devices and circuits. We prepared size-tunable and reproducible polymer microring resonators on a wafer-scale transparent and flexible chip using a solution printing technique. The printed optical resonator showed a quality (Q) factor higher than 4 × 10(5), which is comparable to that of silicon-based resonators. The high material compatibility of this printed photonic chip enabled us to realize low-threshold microlasers by doping organic functional molecules into a typical photonic device. On an identical chip, this construction strategy allowed us to design a complex assembly of one-dimensional waveguide and resonator components for light signal filtering and optical storage toward the large-scale on-chip integration of microscopic photonic units. Thus, we have developed a scheme for soft photonic integration that may motivate further studies on organic photonic materials and devices.
NASA Astrophysics Data System (ADS)
Huby, N.; Pluchon, D.; Coulon, N.; Belloul, M.; Moreac, A.; Gaviot, E.; Panizza, P.; Bêche, B.
2010-06-01
We report on the design and realization of photonic integrated devices based on 3D organic microresonators (MR) shaped by an applied fluid mechanism technique. Such an interdisciplinary approach has been judiciously achieved by combining microfluidics techniques and thin-film processes, respectively, for the realizations of microfluidic and optical chips. The microfluidic framework with flow rates control allows the fabrication of microresonators with diameters ranging from 30 to 160 μm. The resonance of an isolated sphere in air has been demonstrated by way of a modified Raman spectroscopy devoted to the excitation of Whispering Gallery Modes (WGM). Then the 3D-MR have been integrated onto an organic chip and positioned either close to the extremity of a taper or alongside a rib waveguide. Both devices have proved efficient evanescent coupling mechanisms leading to the excitation of the WGM confined at the surface of the organic 3D-MR. Finally, a band-stop filter has been used to detect the resonance spectra of organic resonators once being integrated. Such spectral resonances have been observed with an integrated configuration and characterized with a Δ λ = 1.4 nm free spectral range (FSR), appearing as stemming from a 78 μm-radius MR structure.
Complete Firing-Rate Response of Neurons with Complex Intrinsic Dynamics
Puelma Touzel, Maximilian; Wolf, Fred
2015-01-01
The response of a neuronal population over a space of inputs depends on the intrinsic properties of its constituent neurons. Two main modes of single neuron dynamics–integration and resonance–have been distinguished. While resonator cell types exist in a variety of brain areas, few models incorporate this feature and fewer have investigated its effects. To understand better how a resonator’s frequency preference emerges from its intrinsic dynamics and contributes to its local area’s population firing rate dynamics, we analyze the dynamic gain of an analytically solvable two-degree of freedom neuron model. In the Fokker-Planck approach, the dynamic gain is intractable. The alternative Gauss-Rice approach lifts the resetting of the voltage after a spike. This allows us to derive a complete expression for the dynamic gain of a resonator neuron model in terms of a cascade of filters on the input. We find six distinct response types and use them to fully characterize the routes to resonance across all values of the relevant timescales. We find that resonance arises primarily due to slow adaptation with an intrinsic frequency acting to sharpen and adjust the location of the resonant peak. We determine the parameter regions for the existence of an intrinsic frequency and for subthreshold and spiking resonance, finding all possible intersections of the three. The expressions and analysis presented here provide an account of how intrinsic neuron dynamics shape dynamic population response properties and can facilitate the construction of an exact theory of correlations and stability of population activity in networks containing populations of resonator neurons. PMID:26720924
NASA Astrophysics Data System (ADS)
Hiraoui, M.; Guendouz, M.; Lorrain, N.; Haji, L.; Oueslati, M.
2012-11-01
A buried anti resonant reflecting optical waveguide for an integrated Mach Zehnder structure based on porous silicon material is achieved using a classical photolithography process. Three distinct porous silicon layers are then elaborated in a single step, by varying the porosity (thus the refractive index) and the thickness while respecting the anti-resonance conditions. Simulations and experimental results clearly show the antiresonant character of the buried waveguides. Significant variation of the reflectance and light propagation with different behavior depending on the polarization and the Mach Zehnder dimensions is obtained. Finally, we confirm the feasibility of this structure for sensing applications.
Fan, N.Q.; Clarke, J.
1993-10-19
A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.
Fan, Non Q.; Clarke, John
1993-01-01
A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.
Acceleration of Polarized Protons up to 3.4 GeV/c in the Nuclotron at JINR
NASA Astrophysics Data System (ADS)
Kovalenko, A. D.; Butenko, A. V.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.
2017-12-01
To preserve proton polarization in the Nuclotron up to 13.5 GeV/c, it is enough to use a partial solenoid snake with maximal field integral of 25 Tm that allows one to eliminate crossings of the most dangerous intrinsic and integer spin resonances. The insertion of weak field integral is sufficient to preserve the proton polarization up to 3.4 GeV/c. This momentum corresponds to the first intrinsic resonance. To preserve polarization during crossings of five integer spin resonances, it is possible to choose crossing rates that correspond to either the fast or the slow resonance crossings. Another possibility is a deliberate increasing of the resonance strength. To eliminate depolarization during protons injection into the Nuclotron, a scheme of matching of the polarization with a vertical direction is presented. During the run in February-March 2017, the three measurements of the proton polarization at kinetic energies of 0.5 GeV, 1 GeV and 2 GeV were made that allow one to obtain the integer spin resonances strengths.
Tutorial: Integrated-photonic switching structures
NASA Astrophysics Data System (ADS)
Soref, Richard
2018-02-01
Recent developments in waveguided 2 × 2 and N × M photonic switches are reviewed, including both broadband and narrowband resonant devices for the Si, InP, and AlN platforms. Practical actuation of switches by electro-optical and thermo-optical techniques is discussed. Present datacom-and-computing applications are reviewed, and potential applications are proposed for chip-scale photonic and optoelectronic integrated switching networks. Potential is found in the reconfigurable, programmable "mesh" switches that enable a promising group of applications in new areas beyond those in data centers and cloud servers. Many important matrix switches use gated semiconductor optical amplifiers. The family of broadband, directional-coupler 2 × 2 switches featuring two or three side-coupled waveguides deserves future experimentation, including devices that employ phase-change materials. The newer 2 × 2 resonant switches include standing-wave resonators, different from the micro-ring traveling-wave resonators. The resonant devices comprise nanobeam interferometers, complex-Bragg interferometers, and asymmetric contra-directional couplers. Although the fast, resonant devices offer ultralow switching energy, ˜1 fJ/bit, they have limitations. They require several trade-offs when deployed, but they do have practical application.
Flexible integration of free-standing nanowires into silicon photonics.
Chen, Bigeng; Wu, Hao; Xin, Chenguang; Dai, Daoxin; Tong, Limin
2017-06-14
Silicon photonics has been developed successfully with a top-down fabrication technique to enable large-scale photonic integrated circuits with high reproducibility, but is limited intrinsically by the material capability for active or nonlinear applications. On the other hand, free-standing nanowires synthesized via a bottom-up growth present great material diversity and structural uniformity, but precisely assembling free-standing nanowires for on-demand photonic functionality remains a great challenge. Here we report hybrid integration of free-standing nanowires into silicon photonics with high flexibility by coupling free-standing nanowires onto target silicon waveguides that are simultaneously used for precise positioning. Coupling efficiency between a free-standing nanowire and a silicon waveguide is up to ~97% in the telecommunication band. A hybrid nonlinear-free-standing nanowires-silicon waveguides Mach-Zehnder interferometer and a racetrack resonator for significantly enhanced optical modulation are experimentally demonstrated, as well as hybrid active-free-standing nanowires-silicon waveguides circuits for light generation. These results suggest an alternative approach to flexible multifunctional on-chip nanophotonic devices.Precisely assembling free-standing nanowires for on-demand photonic functionality remains a challenge. Here, Chen et al. integrate free-standing nanowires into silicon waveguides and show all-optical modulation and light generation on silicon photonic chips.
NASA Astrophysics Data System (ADS)
Li, Daohai; Christou, Apostolos A.
2017-09-01
In extending the analysis of the four secular resonances between close orbits in Li and Christou (Celest Mech Dyn Astron 125:133-160, 2016) (Paper I), we generalise the semianalytical model so that it applies to both prograde and retrograde orbits with a one-to-one map between the resonances in the two regimes. We propose the general form of the critical angle to be a linear combination of apsidal and nodal differences between the two orbits b_1 Δ π + b_2 Δ Ω, forming a collection of secular resonances in which the ones studied in Paper I are among the strongest. Test of the model in the orbital vicinity of massive satellites with physical and orbital parameters similar to those of the irregular satellites Himalia at Jupiter and Phoebe at Saturn shows that {>}20 and {>}40% of phase space is affected by these resonances, respectively. The survivability of the resonances is confirmed using numerical integration of the full Newtonian equations of motion. We observe that the lowest order resonances with b_1+|b_2|≤ 3 persist, while even higher-order resonances, up to b_1+|b_2|≥ 7, survive. Depending on the mass, between 10 and 60% of the integrated test particles are captured in these secular resonances, in agreement with the phase space analysis in the semianalytical model.
Weinstein, Dana; Bhave, Sunil A
2010-04-14
This paper introduces the resonant body transistor (RBT), a silicon-based dielectrically transduced nanoelectromechanical (NEM) resonator embedding a sense transistor directly into the resonator body. Combining the benefits of FET sensing with the frequency scaling capabilities and high quality factors (Q) of internal dielectrically transduced bar resonators, the resonant body transistor achieves >10 GHz frequencies and can be integrated into a standard CMOS process for on-chip clock generation, high-Q microwave circuits, fundamental quantum-state preparation and observation, and high-sensitivity measurements. An 11.7 GHz bulk-mode RBT is demonstrated with a quality factor Q of 1830, marking the highest frequency acoustic resonance measured to date on a silicon wafer.
Hollow Microtube Resonators via Silicon Self-Assembly toward Subattogram Mass Sensing Applications.
Kim, Joohyun; Song, Jungki; Kim, Kwangseok; Kim, Seokbeom; Song, Jihwan; Kim, Namsu; Khan, M Faheem; Zhang, Linan; Sader, John E; Park, Keunhan; Kim, Dongchoul; Thundat, Thomas; Lee, Jungchul
2016-03-09
Fluidic resonators with integrated microchannels (hollow resonators) are attractive for mass, density, and volume measurements of single micro/nanoparticles and cells, yet their widespread use is limited by the complexity of their fabrication. Here we report a simple and cost-effective approach for fabricating hollow microtube resonators. A prestructured silicon wafer is annealed at high temperature under a controlled atmosphere to form self-assembled buried cavities. The interiors of these cavities are oxidized to produce thin oxide tubes, following which the surrounding silicon material is selectively etched away to suspend the oxide tubes. This simple three-step process easily produces hollow microtube resonators. We report another innovation in the capping glass wafer where we integrate fluidic access channels and getter materials along with residual gas suction channels. Combined together, only five photolithographic steps and one bonding step are required to fabricate vacuum-packaged hollow microtube resonators that exhibit quality factors as high as ∼ 13,000. We take one step further to explore additionally attractive features including the ability to tune the device responsivity, changing the resonator material, and scaling down the resonator size. The resonator wall thickness of ∼ 120 nm and the channel hydraulic diameter of ∼ 60 nm are demonstrated solely by conventional microfabrication approaches. The unique characteristics of this new fabrication process facilitate the widespread use of hollow microtube resonators, their translation between diverse research fields, and the production of commercially viable devices.
Inubushi, Tomoo; Sakai, Kuniyoshi L.
2013-01-01
In both vocal and sign languages, we can distinguish word-, sentence-, and discourse-level integration in terms of hierarchical processes, which integrate various elements into another higher level of constructs. In the present study, we used magnetic resonance imaging and voxel-based morphometry (VBM) to test three language tasks in Japanese Sign Language (JSL): word-level (Word), sentence-level (Sent), and discourse-level (Disc) decision tasks. We analyzed cortical activity and gray matter (GM) volumes of Deaf signers, and clarified three major points. First, we found that the activated regions in the frontal language areas gradually expanded in the dorso-ventral axis, corresponding to a difference in linguistic units for the three tasks. Moreover, the activations in each region of the frontal language areas were incrementally modulated with the level of linguistic integration. These dual mechanisms of the frontal language areas may reflect a basic organization principle of hierarchically integrating linguistic information. Secondly, activations in the lateral premotor cortex and inferior frontal gyrus were left-lateralized. Direct comparisons among the language tasks exhibited more focal activation in these regions, suggesting their functional localization. Thirdly, we found significantly positive correlations between individual task performances and GM volumes in localized regions, even when the ages of acquisition (AOAs) of JSL and Japanese were factored out. More specifically, correlations with the performances of the Word and Sent tasks were found in the left precentral/postcentral gyrus and insula, respectively, while correlations with those of the Disc task were found in the left ventral inferior frontal gyrus and precuneus. The unification of functional and anatomical studies would thus be fruitful for understanding human language systems from the aspects of both universality and individuality. PMID:24155706
NASA Technical Reports Server (NTRS)
Rubinstein, Robert
1999-01-01
In rotating turbulence, stably stratified turbulence, and in rotating stratified turbulence, heuristic arguments concerning the turbulent time scale suggest that the inertial range energy spectrum scales as k(exp -2). From the viewpoint of weak turbulence theory, there are three possibilities which might invalidate these arguments: four-wave interactions could dominate three-wave interactions leading to a modified inertial range energy balance, double resonances could alter the time scale, and the energy flux integral might not converge. It is shown that although double resonances exist in all of these problems, they do not influence overall energy transfer. However, the resonance conditions cause the flux integral for rotating turbulence to diverge logarithmically when evaluated for a k(exp -2) energy spectrum; therefore, this spectrum requires logarithmic corrections. Finally, the role of four-wave interactions is briefly discussed.
Magnetic resonance imaging of breast implants.
Shah, Mala; Tanna, Neil; Margolies, Laurie
2014-12-01
Silicone breast implants have significantly evolved since their introduction half a century ago, yet implant rupture remains a common and expected complication, especially in patients with earlier-generation implants. Magnetic resonance imaging is the primary modality for assessing the integrity of silicone implants and has excellent sensitivity and specificity, and the Food and Drug Administration currently recommends periodic magnetic resonance imaging screening for silent silicone breast implant rupture. Familiarity with the types of silicone implants and potential complications is essential for the radiologist. Signs of intracapsular rupture include the noose, droplet, subcapsular line, and linguine signs. Signs of extracapsular rupture include herniation of silicone with a capsular defect and extruded silicone material. Specific sequences including water and silicone suppression are essential for distinguishing rupture from other pathologies and artifacts. Magnetic resonance imaging provides valuable information about the integrity of silicone implants and associated complications.
Large scale integration of CVD-graphene based NEMS with narrow distribution of resonance parameters
NASA Astrophysics Data System (ADS)
Arjmandi-Tash, Hadi; Allain, Adrien; (Vitto Han, Zheng; Bouchiat, Vincent
2017-06-01
We present a novel method for the fabrication of the arrays of suspended micron-sized membranes, based on monolayer pulsed-CVD graphene. Such devices are the source of an efficient integration of graphene nano-electro-mechanical resonators, compatible with production at the wafer scale using standard photolithography and processing tools. As the graphene surface is continuously protected by the same polymer layer during the whole process, suspended graphene membranes are clean and free of imperfections such as deposits, wrinkles and tears. Batch fabrication of 100 μm-long multi-connected suspended ribbons is presented. At room temperature, mechanical resonance of electrostatically-actuated devices show narrow distribution of their characteristic parameters with high quality factor and low effective mass and resonance frequencies, as expected for low stress and adsorbate-free membranes. Upon cooling, a sharp increase of both resonant frequency and quality factor is observed, enabling to extract the thermal expansion coefficient of CVD graphene. Comparison with state-of-the-art graphene NEMS is presented.
Coupling of lithium niobate disk resonators to integrated waveguides
NASA Astrophysics Data System (ADS)
Berneschi, S.; Cosi, F.; Nunzi Conti, G.; Pelli, S.; Soria, S.; Righini, G. C.; Dispenza, M.; Secchi, A.
2011-01-01
Whispering gallery mode (WGM) disk resonators fabricated in single crystals can have high Q factors within their transparency bandwidth and may have application both in fundamental and applied optics. Lithium niobate (LN) resonators thanks to their electro-optical properties may be used in particular as tunable filters, modulators, and delay lines. A critical step toward the actual application of these devices is the implementation of a robust and efficient coupling system. High index prisms are typically used for this purpose. In this work we demonstrate coupling to high-Q WGM LN disks from an integrated optical LN waveguide. The waveguides are made by proton exchange in X-cut LN. The disks with diameters of about 5 mm and thickness of 1 mm are made from commercial Z-cut LN wafers by core drilling a cylinder and thereafter polishing the edges into a spheroidal profile. Both resonance linewidth and cavity photon lifetime measurements were performed to calculate the Q factor of the resonator, which is in excess of 108.
Computational Silicon Nanophotonic Design
NASA Astrophysics Data System (ADS)
Shen, Bing
Photonic integration circuits (PICs) have received overwhelming attention in the past few decades due to various advantages over electronic circuits including absence of Joule effect and huge bandwidth. The most significant problem obstructing their commercial application is the integration density, which is largely determined by a signal wavelength that is in the order of microns. In this dissertation, we are focused on enhancing the integration density of PICs to warrant their practical applications. In general, we believe there are three ways to boost the integration density. The first is to downscale the dimension of individual integrated optical component. As an example, we have experimentally demonstrated an integrated optical diode with footprint 3 x 3 mum2, an integrated polarization beamsplitter with footprint 2.4 x 2.4 mum2, and a waveguide bend with effective bend radius as small as 0.65 mum. All these devices offer the smallest footprint when compared to their alternatives. A second option to increase integration density is to combine the function of multiple devices into a single compact device. To illustrate the point, we have experimentally shown an integrated mode-converting polarization beamsplitter, and a free-space to waveguide coupler and polarization beamsplitter. Two distinct functionalities are offered in one single device without significantly sacrificing the footprint. A third option for enhancing integration density is to decrease the spacing between the individual devices. For this case, we have experimentally demonstrated an integrated cloak for nonresonant (waveguide) and resonant (microring-resonator) devices. Neighboring devices are totally invisible to each other even if they are separated as small as lambda/2 apart. Inverse design algorithm is employed in demonstrating all of our devices. The basic premise is that, via nanofabrication, we can locally engineer the refractive index to achieve unique functionalities that are otherwise impossible. A nonlinear optimization algorithm is used to find the best permittivity distribution and a focused ion beam is used to define the fine nanostructures. Our future work lies in demonstrating active nanophotonic devices with compact footprint and high efficiency. Broadband and efficient silicon modulators, and all-optical and high-efficiency switches are envisioned with our design algorithm.
Apparatus and Method for Packaging and Integrating Microphotonic Devices
NASA Technical Reports Server (NTRS)
Nguyen, Hung (Inventor)
2008-01-01
An apparatus is disclosed that includes a carrier structure and an optical coupling arrangement. The carrier structure is made of a silicon material and allows for the packaging and integrating of microphotonic devices onto a single chip. The optical coupling mechanism enables laser light to be coupled into and out of a microphotonic resonant disk integrated on the carrier. The carrier provides first, second and third cavities that are dimensioned so as to accommodate the insertion and snug fitting of the microphotonic resonant disk and first and second prisms that are implemented by the optical coupling arrangement to accommodate the laser coupling.
2003-12-01
Minehunting System (RMS), is a semi-submersible, remotely controlled drone designed to tow an actively stabilized sidescan sonar towfish. The multi... comparativement aux véhicules sous-marins autonomes, ils offrent le positionnement DGPS, la commande en temps réel et la télémesure, en plus...minehunting vehicle. The Reson 8125 multi-beam bathymetric sonar is designed to acquire high-resolution (of order cm) bathymetry in a 240- beam swath 120
Multisensory speech perception without the left superior temporal sulcus.
Baum, Sarah H; Martin, Randi C; Hamilton, A Cris; Beauchamp, Michael S
2012-09-01
Converging evidence suggests that the left superior temporal sulcus (STS) is a critical site for multisensory integration of auditory and visual information during speech perception. We report a patient, SJ, who suffered a stroke that damaged the left tempo-parietal area, resulting in mild anomic aphasia. Structural MRI showed complete destruction of the left middle and posterior STS, as well as damage to adjacent areas in the temporal and parietal lobes. Surprisingly, SJ demonstrated preserved multisensory integration measured with two independent tests. First, she perceived the McGurk effect, an illusion that requires integration of auditory and visual speech. Second, her perception of morphed audiovisual speech with ambiguous auditory or visual information was significantly influenced by the opposing modality. To understand the neural basis for this preserved multisensory integration, blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) was used to examine brain responses to audiovisual speech in SJ and 23 healthy age-matched controls. In controls, bilateral STS activity was observed. In SJ, no activity was observed in the damaged left STS but in the right STS, more cortex was active in SJ than in any of the normal controls. Further, the amplitude of the BOLD response in right STS response to McGurk stimuli was significantly greater in SJ than in controls. The simplest explanation of these results is a reorganization of SJ's cortical language networks such that the right STS now subserves multisensory integration of speech. Copyright © 2012 Elsevier Inc. All rights reserved.
Multisensory Speech Perception Without the Left Superior Temporal Sulcus
Baum, Sarah H.; Martin, Randi C.; Hamilton, A. Cris; Beauchamp, Michael S.
2012-01-01
Converging evidence suggests that the left superior temporal sulcus (STS) is a critical site for multisensory integration of auditory and visual information during speech perception. We report a patient, SJ, who suffered a stroke that damaged the left tempo-parietal area, resulting in mild anomic aphasia. Structural MRI showed complete destruction of the left middle and posterior STS, as well as damage to adjacent areas in the temporal and parietal lobes. Surprisingly, SJ demonstrated preserved multisensory integration measured with two independent tests. First, she perceived the McGurk effect, an illusion that requires integration of auditory and visual speech. Second, her perception of morphed audiovisual speech with ambiguous auditory or visual information was significantly influenced by the opposing modality. To understand the neural basis for this preserved multisensory integration, blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) was used to examine brain responses to audiovisual speech in SJ and 23 healthy age-matched controls. In controls, bilateral STS activity was observed. In SJ, no activity was observed in the damaged left STS but in the right STS, more cortex was active in SJ than in any of the normal controls. Further, the amplitude of the BOLD response in right STS response to McGurk stimuli was significantly greater in SJ than in controls. The simplest explanation of these results is a reorganization of SJ's cortical language networks such that the right STS now subserves multisensory integration of speech. PMID:22634292
NASA Astrophysics Data System (ADS)
Boughariou, Jihene; Zouch, Wassim; Slima, Mohamed Ben; Kammoun, Ines; Hamida, Ahmed Ben
2015-11-01
Electroencephalography (EEG) and magnetic resonance imaging (MRI) are noninvasive neuroimaging modalities. They are widely used and could be complementary. The fusion of these modalities may enhance some emerging research fields targeting the exploration better brain activities. Such research attracted various scientific investigators especially to provide a convivial and helpful advanced clinical-aid tool enabling better neurological explorations. Our present research was, in fact, in the context of EEG inverse problem resolution and investigated an advanced estimation methodology for the localization of the cerebral activity. Our focus was, therefore, on the integration of temporal priors to low-resolution brain electromagnetic tomography (LORETA) formalism and to solve the inverse problem in the EEG. The main idea behind our proposed method was in the integration of a temporal projection matrix within the LORETA weighting matrix. A hyperparameter is the principal fact for such a temporal integration, and its importance would be obvious when obtaining a regularized smoothness solution. Our experimental results clearly confirmed the impact of such an optimization procedure adopted for the temporal regularization parameter comparatively to the LORETA method.
Encoding of marginal utility across time in the human brain.
Pine, Alex; Seymour, Ben; Roiser, Jonathan P; Bossaerts, Peter; Friston, Karl J; Curran, H Valerie; Dolan, Raymond J
2009-07-29
Marginal utility theory prescribes the relationship between the objective property of the magnitude of rewards and their subjective value. Despite its pervasive influence, however, there is remarkably little direct empirical evidence for such a theory of value, let alone of its neurobiological basis. We show that human preferences in an intertemporal choice task are best described by a model that integrates marginally diminishing utility with temporal discounting. Using functional magnetic resonance imaging, we show that activity in the dorsal striatum encodes both the marginal utility of rewards, over and above that which can be described by their magnitude alone, and the discounting associated with increasing time. In addition, our data show that dorsal striatum may be involved in integrating subjective valuation systems inherent to time and magnitude, thereby providing an overall metric of value used to guide choice behavior. Furthermore, during choice, we show that anterior cingulate activity correlates with the degree of difficulty associated with dissonance between value and time. Our data support an integrative architecture for decision making, revealing the neural representation of distinct subcomponents of value that may contribute to impulsivity and decisiveness.
Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides.
Astley, Victoria; McCracken, Blake; Mendis, Rajind; Mittleman, Daniel M
2011-04-15
We describe an experimental and theoretical characterization of rectangular resonant cavities integrated into parallel-plate waveguides, using terahertz pulses. When the waveguide is excited with the lowest-order transverse-electric mode, these cavities exhibit resonances with narrow linewidths. Broadband transmission spectra are compared with the results of mode-matching calculations, for various cavity dimensions.
Integrated narrowband optical filter based on embedded subwavelength resonant grating structures
Grann, Eric B.; Sitter, Jr., David N.
2000-01-01
A resonant grating structure in a waveguide and methods of tuning the performance of the grating structure are described. An apparatus includes a waveguide; and a subwavelength resonant grating structure embedded in the waveguide. The systems and methods provide advantages including narrowband filtering capabilities, minimal sideband reflections, spatial control, high packing density, and tunability.
Coleman, R Edward; Delbeke, Dominique; Guiberteau, Milton J; Conti, Peter S; Royal, Henry D; Weinreb, Jeffrey C; Siegel, Barry A; Federle, Michael F; Townsend, David W; Berland, Lincoln L
2005-07-01
Rapid advances in imaging technology are a challenge for health care professionals, who must determine how best to use these technologies to optimize patient care and outcomes. Hybrid imaging instrumentation, combining 2 or more new or existing technologies, each with its own separate history of clinical evolution, such as PET and CT, may be especially challenging. CT and PET provide complementary anatomic information and molecular information, respectively, with PET giving specificity to anatomic findings and CT offering precise localization of metabolic activity. Historically, the acquisition and interpretation of the 2 image sets have been performed separately and very often at different times and locales. Recently, integrated PET/CT systems have become available; these systems provide PET and CT images that are acquired nearly simultaneously and are capable of producing superimposed, coregistered images, greatly facilitating interpretation. As the implementation of this integrated technology has become more widespread in the setting of oncologic imaging, questions and concerns regarding equipment specifications, image acquisition protocols, supervision, interpretation, professional qualifications, and safety have arisen. This article summarizes the discussions and observations surrounding these issues by a collaborative working group consisting of representatives from the American College of Radiology, the Society of Nuclear Medicine, and the Society of Computed Body Tomography and Magnetic Resonance.
Coleman, R Edward; Delbeke, Dominique; Guiberteau, Milton J; Conti, Peter S; Royal, Henry D; Weinreb, Jeffrey C; Siegel, Barry A; Federle, Michael P; Townsend, David W; Berland, Lincoln L
2005-07-01
Rapid advances in imaging technology are a challenge for health care professionals, who must determine how best to use these technologies to optimize patient care and outcomes. Hybrid imaging instrumentation, combining 2 or more new or existing technologies, each with its own separate history of clinical evolution, such as PET and CT, may be especially challenging. CT and PET provide complementary anatomic information and molecular information, respectively, with PET giving specificity to anatomic findings and CT offering precise localization of metabolic activity. Historically, the acquisition and interpretation of the 2 image sets have been performed separately and very often at different times and locales. Recently, integrated PET/CT systems have become available; these systems provide PET and CT images that are acquired nearly simultaneously and are capable of producing superimposed, coregistered images, greatly facilitating interpretation. As the implementation of this integrated technology has become more widespread in the setting of oncologic imaging, questions and concerns regarding equipment specifications, image acquisition protocols, supervision, interpretation, professional qualifications, and safety have arisen. This article summarizes the discussions and observations surrounding these issues by a collaborative working group consisting of representatives from the American College of Radiology, the Society of Nuclear Medicine, and the Society of Computed Body Tomography and Magnetic Resonance.
NASA Astrophysics Data System (ADS)
Deng, Yan; Cao, Guangtao; Yang, Hui
2018-02-01
Actively tunable sharp asymmetric line shape and high-sensitivity sensor with high figure of merit (FOM) are analytically and numerically demonstrated in plasmonic coupled cavities. The Fano resonance, originating from the interference between different light pathways, is realized and effectively tuned in on-chip nanostructure composed of metal-dielectric-metal (MDM) waveguide and a pair of cavities. To investigate in detail the Fano line shape, the coupled cavities are taken as a composite cavity, and a dynamic theory is proposed, which agrees well with the numerical simulations. Subsequently, the sensing performances of the plasmonic structure is discussed and its detection sensitivity reaches 1.103 × 108. Moreover, the FOM of the plasmonic sensor can approach 2.33 × 104. These discoveries hold potential applications for on-chip nano-sensors in highly integrated photonic devices.
NASA Astrophysics Data System (ADS)
Huby, N.; Pluchon, D.; Belloul, M.; Moreac, A.; Coulon, N.; Gaviot, E.; Panizza, P.; B"che, B.
2010-02-01
We report on the design and realization of photonic integrated devices based on 3D organic microresonators. This has been achieved by combining microfluidics techniques and thin-film processes. The microfluidic device and the control of the flow rates of the continuous and dispersed phases allow the fabrication of organic microresonators with diameter ranging from 30 to 200 μm. The resonance of the sphere in air has been first investigated by using the Raman spectroscopy set-up demonstrating the appropriate photonic properties. Then the microresonators have been integrated on an organic chip made of the photosensitive resin SU-8 and positioned at the extremity of a taper and alongside a rib waveguide. The realization of these structures by thin-film processes needs one step UV-lithography leading to 6μm width and 30μm height. Both devices have proved the efficient evanescent coupling leading to the excitation of the whispering gallery modes confined at the surface of the organic 3D microresonators. Finally, a band-stop filter has been used to detect the resonance spectra of the resonators once integrated.
NASA Astrophysics Data System (ADS)
Wang, Gang; Cheng, Jianqing; Chen, Jingwei; He, Yunze
2017-02-01
Instead of analog electronic circuits and components, digital controllers that are capable of active multi-resonant piezoelectric shunting are applied to elastic metamaterials integrated with piezoelectric patches. Thanks to recently introduced digital control techniques, shunting strategies are possible now with transfer functions that can hardly be realized with analog circuits. As an example, the ‘pole-zero’ method is developed to design single- or multi-resonant bandgaps by adjusting poles and zeros in the transfer function of piezoelectric shunting directly. Large simultaneous attenuations in up to three frequency bands at deep subwavelength scale (with normalized frequency as low as 0.077) are achieved. The underlying physical mechanism is attributable to the negative group velocity of the flexural wave within bandgaps. As digital controllers can be readily adapted via wireless broadcasting, the bandgaps can be tuned easily unlike the electric components in analog shunting circuits, which must be tuned one by one manually. The theoretical results are verified experimentally with the measured vibration transmission properties, where large insulations of up to 20 dB in low-frequency ranges are observed.
Integrated optics ring-resonator chemical sensor for detection of air contamination
NASA Technical Reports Server (NTRS)
Manfreda, A. M.; Homer, M. L.; Ksendzov, A.
2004-01-01
We report a silicon nitride-based ring resonator chemical sensor with sensing polymer coating. Its sensitivity to isopropanol in air is at least 50 ppm - well under the permissible exposure level of 400 ppm.
Yebo, Nebiyu A; Lommens, Petra; Hens, Zeger; Baets, Roel
2010-05-24
Optical structures fabricated on silicon-on-insulator technology provide a convenient platform for the implementation of highly compact, versatile and low cost devices. In this work, we demonstrate the promise of this technology for integrated low power and low cost optical gas sensing. A room temperature ethanol vapor sensor is demonstrated using a ZnO nanoparticle film as a coating on an SOI micro-ring resonator of 5 microm in radius. The local coating on the ring resonators is prepared from colloidal suspensions of ZnO nanoparticles of around 3 nm diameter. The porous nature of the coating provides a large surface area for gas adsorption. The ZnO refractive index change upon vapor adsorption shifts the microring resonance through evanescent field interaction. Ethanol vapor concentrations down to 100 ppm are detected with this sensing configuration and a detection limit below 25 ppm is estimated.
Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing
NASA Technical Reports Server (NTRS)
Guo, Junpeng (Inventor)
2015-01-01
The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.
Nanostructure Diffraction Gratings for Integrated Spectroscopy and Sensing
NASA Technical Reports Server (NTRS)
Guo, Junpeng (Inventor)
2016-01-01
The present disclosure pertains to metal or dielectric nanostructures of the subwavelength scale within the grating lines of optical diffraction gratings. The nanostructures have surface plasmon resonances or non-plasmon optical resonances. A linear photodetector array is used to capture the resonance spectra from one of the diffraction orders. The combined nanostructure super-grating and photodetector array eliminates the use of external optical spectrometers for measuring surface plasmon or optical resonance frequency shift caused by the presence of chemical and biological agents. The nanostructure super-gratings can be used for building integrated surface enhanced Raman scattering (SERS) spectrometers. The nanostructures within the diffraction grating lines enhance Raman scattering signal light while the diffraction grating pattern of the nanostructures diffracts Raman scattering light to different directions of propagation according to their wavelengths. Therefore, the nanostructure super-gratings allows for the use of a photodetector array to capture the surface enhanced Raman scattering spectra.
NASA Astrophysics Data System (ADS)
Ye, Zhicheng; Zheng, Jun; Zhang, Chenchen; Sun, Shu
2011-12-01
Optical responses in Bi-layer metallic nanowire grating are investigated. There are two kinds of Surface Plasmon resonances: lateral propagating Surface Plasmon waveguide modes excited by the diffraction of the grating which lead to dips in transmission; Surface Plasmon resonance between the slits of the grating, which leads to high extinction ration of TM to TE transmission. With simultaneous resonances, a compacted device of integrated color filter and polarizer can be achieved. In order to improve the transmission of TM light, an undercut structure is proposed. The mechanism of the enhancement is analyzed. Bi-layer metallic nanowire gratings are fabricated by laser interference lithography and subsequent E-beam deposition. The measured transmission and reflection spectra confirmed the theoretical and numerical simulations. The results will have wide potential applications in Displays, Optical communication, and integrated Optics.
Modeling nonlinearities in MEMS oscillators.
Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A
2013-08-01
We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.
Planar resonator and integrated oscillator using magnetostatic waves.
Kinoshita, Y; Kubota, S; Takeda, S; Nakagoshi, A
1990-01-01
A simple planar resonator using a magnetostatic wave (MSW) excited by aluminum finger electrodes with two bonding pads was realized on YIG/GGG (yttrium-iron-garnet film on a gadolinium-gallium-garnet crystal) substrate with two reflection edges. The tunable MSW resonator chip (2 mmx5 mm) exhibited a sharp notch filter response, as deep as 20-35 dB, and a high loaded Q up to 2000, which was tunable over the microwave frequency range from 2 to 4 GHz. A small tunable oscillator (8 cm(3)) was experimentally demonstrated using the MSW planar resonator and a silicon bipolar transistor integrated on a ceramic microwave circuit substrate. Microwave oscillation with spectral purity, at the same level as that of YIG sphere technology, was observed at 3 GHz. The experimental results indicate the technical areas where improvement must be made to realize a practical oscillator configuration.
Multi-Channel Capacitive Sensor Arrays
Wang, Bingnan; Long, Jiang; Teo, Koon Hoo
2016-01-01
In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved. PMID:26821023
Piezoresistive silicon nanowire resonators as embedded building blocks in thick SOI
NASA Astrophysics Data System (ADS)
Nasr Esfahani, Mohammad; Kilinc, Yasin; Çagatay Karakan, M.; Orhan, Ezgi; Hanay, M. Selim; Leblebici, Yusuf; Erdem Alaca, B.
2018-04-01
The use of silicon nanowire resonators in nanoelectromechanical systems for new-generation sensing and communication devices faces integration challenges with higher-order structures. Monolithic and deterministic integration of such nanowires with the surrounding microscale architecture within the same thick crystal is a critical aspect for the improvement of throughput, reliability and device functionality. A monolithic and IC-compatible technology based on a tuned combination of etching and protection processes was recently introduced yielding silicon nanowires within a 10 μ m-thick device layer. Motivated by its success, the implications of the technology regarding the electromechanical resonance are studied within a particular setting, where the resonator is co-fabricated with all terminals and tuning electrodes. Frequency response is measured via piezoresistive readout with frequency down-mixing. Measurements indicate mechanical resonance with frequencies as high as 100 MHz exhibiting a Lorentzian behavior with proper transition to nonlinearity, while Allan deviation on the order of 3-8 ppm is achieved. Enabling the fabrication of silicon nanowires in thick silicon crystals using conventional semiconductor manufacturing, the present study thus demonstrates an alternative pathway to bottom-up and thin silicon-on-insulator approaches for silicon nanowire resonators.
Membrane Resonance Enables Stable and Robust Gamma Oscillations
Moca, Vasile V.; Nikolić, Danko; Singer, Wolf; Mureşan, Raul C.
2014-01-01
Neuronal mechanisms underlying beta/gamma oscillations (20–80 Hz) are not completely understood. Here, we show that in vivo beta/gamma oscillations in the cat visual cortex sometimes exhibit remarkably stable frequency even when inputs fluctuate dramatically. Enhanced frequency stability is associated with stronger oscillations measured in individual units and larger power in the local field potential. Simulations of neuronal circuitry demonstrate that membrane properties of inhibitory interneurons strongly determine the characteristics of emergent oscillations. Exploration of networks containing either integrator or resonator inhibitory interneurons revealed that: (i) Resonance, as opposed to integration, promotes robust oscillations with large power and stable frequency via a mechanism called RING (Resonance INduced Gamma); resonance favors synchronization by reducing phase delays between interneurons and imposes bounds on oscillation cycle duration; (ii) Stability of frequency and robustness of the oscillation also depend on the relative timing of excitatory and inhibitory volleys within the oscillation cycle; (iii) RING can reproduce characteristics of both Pyramidal INterneuron Gamma (PING) and INterneuron Gamma (ING), transcending such classifications; (iv) In RING, robust gamma oscillations are promoted by slow but are impaired by fast inputs. Results suggest that interneuronal membrane resonance can be an important ingredient for generation of robust gamma oscillations having stable frequency. PMID:23042733
Ahn, Heesang; Song, Hyerin; Kim, Kyujung
2017-01-01
From active developments and applications of various devices to acquire outside and inside information and to operate based on feedback from that information, the sensor market is growing rapidly. In accordance to this trend, the surface plasmon resonance (SPR) sensor, an optical sensor, has been actively developed for high-sensitivity real-time detection. In this study, the fundamentals of SPR sensors and recent approaches for enhancing sensing performance are reported. In the section on the fundamentals of SPR sensors, a brief description of surface plasmon phenomena, SPR, SPR-based sensing applications, and several configuration types of SPR sensors are introduced. In addition, advanced nanotechnology- and nanofabrication-based techniques for improving the sensing performance of SPR sensors are proposed: (1) localized SPR (LSPR) using nanostructures or nanoparticles; (2) long-range SPR (LRSPR); and (3) double-metal-layer SPR sensors for additional performance improvements. Consequently, a high-sensitivity, high-biocompatibility SPR sensor method is suggested. Moreover, we briefly describe issues (miniaturization and communication technology integration) for future SPR sensors. PMID:29301238
High output lamp with high brightness
Kirkpatrick, Douglas A.; Bass, Gary K.; Copsey, Jesse F.; Garber, Jr., William E.; Kwong, Vincent H.; Levin, Izrail; MacLennan, Donald A.; Roy, Robert J.; Steiner, Paul E.; Tsai, Peter; Turner, Brian P.
2002-01-01
An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.
Photonic Molecule Lasers Revisited
NASA Astrophysics Data System (ADS)
Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.
2014-05-01
Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.
Cannon, Daniel T.; Howe, Franklyn A.; Whipp, Brian J.; Ward, Susan A.; McIntyre, Dominick J.; Ladroue, Christophe; Griffiths, John R.; Kemp, Graham J.
2013-01-01
The integration of skeletal muscle substrate depletion, metabolite accumulation, and fatigue during large muscle-mass exercise is not well understood. Measurement of intramuscular energy store degradation and metabolite accumulation is confounded by muscle heterogeneity. Therefore, to characterize regional metabolic distribution in the locomotor muscles, we combined 31P magnetic resonance spectroscopy, chemical shift imaging, and T2-weighted imaging with pulmonary oxygen uptake during bilateral knee-extension exercise to intolerance. Six men completed incremental tests for the following: 1) unlocalized 31P magnetic resonance spectroscopy; and 2) spatial determination of 31P metabolism and activation. The relationship of pulmonary oxygen uptake to whole quadriceps phosphocreatine concentration ([PCr]) was inversely linear, and three of four knee-extensor muscles showed activation as assessed by change in T2. The largest changes in [PCr], [inorganic phosphate] ([Pi]) and pH occurred in rectus femoris, but no voxel (72 cm3) showed complete PCr depletion at exercise cessation. The most metabolically active voxel reached 11 ± 9 mM [PCr] (resting, 29 ± 1 mM), 23 ± 11 mM [Pi] (resting, 7 ± 1 mM), and a pH of 6.64 ± 0.29 (resting, 7.08 ± 0.03). However, the distribution of 31P metabolites and pH varied widely between voxels, and the intervoxel coefficient of variation increased between rest (∼10%) and exercise intolerance (∼30–60%). Therefore, the limit of tolerance was attained with wide heterogeneity in substrate depletion and fatigue-related metabolite accumulation, with extreme metabolic perturbation isolated to only a small volume of active muscle (<5%). Regional intramuscular disturbances are thus likely an important requisite for exercise intolerance. How these signals integrate to limit muscle power production, while regional “recruitable muscle” energy stores are presumably still available, remains uncertain. PMID:23813534
Febo, Marcelo; Foster, Thomas C.
2016-01-01
Neuroimaging provides for non-invasive evaluation of brain structure and activity and has been employed to suggest possible mechanisms for cognitive aging in humans. However, these imaging procedures have limits in terms of defining cellular and molecular mechanisms. In contrast, investigations of cognitive aging in animal models have mostly utilized techniques that have offered insight on synaptic, cellular, genetic, and epigenetic mechanisms affecting memory. Studies employing magnetic resonance imaging and spectroscopy (MRI and MRS, respectively) in animal models have emerged as an integrative set of techniques bridging localized cellular/molecular phenomenon and broader in vivo neural network alterations. MRI methods are remarkably suited to longitudinal tracking of cognitive function over extended periods permitting examination of the trajectory of structural or activity related changes. Combined with molecular and electrophysiological tools to selectively drive activity within specific brain regions, recent studies have begun to unlock the meaning of fMRI signals in terms of the role of neural plasticity and types of neural activity that generate the signals. The techniques provide a unique opportunity to causally determine how memory-relevant synaptic activity is processed and how memories may be distributed or reconsolidated over time. The present review summarizes research employing animal MRI and MRS in the study of brain function, structure, and biochemistry, with a particular focus on age-related cognitive decline. PMID:27468264
Uggetti, Carla; Ausenda, Carlo D; Squarza, Silvia; Cadioli, Marcello; Grimoldi, Ludovico; Cerri, Cesare; Cariati, Maurizio
2016-08-01
The bilateral transfer of a motor skill is a physiological phenomenon: the development of a motor skill with one hand can trigger the development of the same ability of the other hand. The purpose of this study was to verify whether bilateral transfer is associated with a specific brain activation pattern using functional magnetic resonance imaging (fMRI). The motor task was implemented as the execution of the Nine Hole Peg Test. Fifteen healthy subjects (10 right-handers and five left-handers) underwent two identical fMRI runs performing the motor task with the non-dominant hand. Between the first and the second run, each subject was intensively trained for five minutes to perform the same motor task with the dominant hand. Comparing the two functional scans across the pool of subjects, a change of the motor activation pattern was observed. In particular, we observed, in the second run, a change in the activation pattern both in the cerebellum and in the cerebral cortex. We found activations in cortical areas involved in somatosensory integration, areas involved in procedural memory. Our study shows, in a small group of healthy subjects, the modification of the fMRI activation pathway of a motor task performed by the non-dominant hand after intensive exercise performing the same task with the dominant hand. © The Author(s) 2016.
Test results of a resonant integrated microbeam sensor (RIMS) for acoustic emission monitoring
NASA Astrophysics Data System (ADS)
Schoess, Jeffrey N.; Zook, J. David
1998-07-01
An acoustic emission (AE) sensor has been developed by Honeywell Technology Center for avionics, industrial control, and military applications. The AE sensor design is based on an integrated silicon microstructure, a resonant microbeam with micron-level feature size, and frequency sensitivity up to 500 kHz. The AE sensor has been demonstrated successfully in the laboratory test environment to sense and characterize a simulated AE even for structural fatigue crack monitoring applications. The technical design approach and laboratory test results are presented.
Meneguzzo, Paolo; Tsakiris, Manos; Schioth, Helgi B; Stein, Dan J; Brooks, Samantha J
2014-01-01
Non-conscious neural activation may underlie various psychological functions in health and disorder. However, the neural substrates of non-conscious processing have not been entirely elucidated. Examining the differential effects of arousing stimuli that are consciously, versus unconsciously perceived will improve our knowledge of neural circuitry involved in non-conscious perception. Here we conduct preliminary analyses of neural activation in studies that have used both subliminal and supraliminal presentation of the same stimulus. We use Activation Likelihood Estimation (ALE) to examine functional Magnetic Resonance Imaging (fMRI) studies that uniquely present the same stimuli subliminally and supraliminally to healthy participants during functional magnetic resonance imaging (fMRI). We included a total of 193 foci from 9 studies representing subliminal stimulation and 315 foci from 10 studies representing supraliminal stimulation. The anterior cingulate cortex is significantly activated during both subliminal and supraliminal stimulus presentation. Subliminal stimuli are linked to significantly increased activation in the right fusiform gyrus and right insula. Supraliminal stimuli show significantly increased activation in the left rostral anterior cingulate. Non-conscious processing of arousing stimuli may involve primary visual areas and may also recruit the insula, a brain area involved in eventual interoceptive awareness. The anterior cingulate is perhaps a key brain region for the integration of conscious and non-conscious processing. These preliminary data provide candidate brain regions for further study in to the neural correlates of conscious experience.
RESONANCES, CHAOS, AND SHORT-TERM INTERACTIONS AMONG THE INNER URANIAN SATELLITES
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, Richard G.; Dawson, Rebekah I.; Showalter, Mark R., E-mail: rfrench@wellesley.edu
2015-04-15
The Portia group of Uranian satellites, representing 9 of the planet’s 13 tiny innermost moons, form a densely packed dynamical system. Hubble Space Telescope observations indicate that their orbits have changed significantly over two decades, and long-term numerical integrations show that their orbits are unstable over millions of years. To investigate the dynamical interactions of the Portia group satellites on the decade timescale over which orbital changes have been observed, we have performed a suite of 100–1000 yr N-body numerical integrations for a range of assumed satellite masses, which are at present not tightly constrained by observations. As first notedmore » by Dawson et al. and recently investigated independently by Quillen and (Robert) French, the moons are configured in chains of interlinked first- and second-order eccentric resonances that contribute to chaotic behavior. We explore in detail several of the strongest of these interlinked resonances. The first such chain is a quintet of orbital resonances: Bianca is near a resonance with Cressida, which is itself near a resonance with Desdemona. Desdemona, in turn, is near a resonance with Portia, which is itself near a resonance with Juliet. The five participating resonances are: Cressida and Bianca (16:15), Desdemona and Cressida (47:46), Portia and Desdemona (13:12), and Portia and Juliet (51:49). A second such chain is a set of two interlinked resonances: Cupid and Belinda (58:57) and Belinda and Perdita (44:43). We also report the new identification of a companion set of second-order inclination-type resonances (Cressida and Bianca (32:30), Desdemona and Cressida (94:92), Portia and Desdemona (26:24), Portia and Juliet (51:49), Cupid and Belinda (116:114), and Belinda and Perdita (88:86)), some of which result in quite strongly coupled variations in the inclinations of the interacting satellites. Using a robust formulation of orbital elements that accounts for the oblateness of Uranus, we probe the dynamical interactions among the moons in the time and frequency domains, and also in phase space, using numerical integrations of subsets of the inner moons, for a range of assumed masses. Several of the satellites are near mean-motion resonance with more than one neighbor, and undergo orbital variations at two nearly equal resonant frequencies. Such configurations of two interlinked resonances can result in chaotic behavior, associated with the transition of one resonant argument from circulation to libration. We demonstrate that, even on the short timescales investigated here, the dynamical interactions, onset of chaos, and associated Lyapunov times are highly sensitive to the masses of the interacting satellites.« less
Inter-area correlations in the ventral visual pathway reflect feature integration
Freeman, Jeremy; Donner, Tobias H.; Heeger, David J.
2011-01-01
During object perception, the brain integrates simple features into representations of complex objects. A perceptual phenomenon known as visual crowding selectively interferes with this process. Here, we use crowding to characterize a neural correlate of feature integration. Cortical activity was measured with functional magnetic resonance imaging, simultaneously in multiple areas of the ventral visual pathway (V1–V4 and the visual word form area, VWFA, which responds preferentially to familiar letters), while human subjects viewed crowded and uncrowded letters. Temporal correlations between cortical areas were lower for crowded letters than for uncrowded letters, especially between V1 and VWFA. These differences in correlation were retinotopically specific, and persisted when attention was diverted from the letters. But correlation differences were not evident when we substituted the letters with grating patches that were not crowded under our stimulus conditions. We conclude that inter-area correlations reflect feature integration and are disrupted by crowding. We propose that crowding may perturb the transformations between neural representations along the ventral pathway that underlie the integration of features into objects. PMID:21521832
Optical trapping apparatus, methods and applications using photonic crystal resonators
Erickson, David; Chen, Yih-Fan
2015-06-16
A plurality of photonic crystal resonator optical trapping apparatuses and a plurality optical trapping methods using the plurality of photonic crystal resonator optical trapping apparatuses include located and formed over a substrate a photonic waveguide that is coupled (i.e., either separately coupled or integrally coupled) with a photonic crystal resonator. In a particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a monocrystalline silicon (or other) photonic material absent any chemical functionalization. In another particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a silicon nitride material which when actuating the photonic crystal resonator optical trapping apparatus with a 1064 nanometer resonant photonic radiation wavelength (or other resonant photonic radiation wavelength in a range from about 700 to about 1200 nanometers) provides no appreciable heating of an aqueous sample fluid that is analyzed by the photonic crystal resonator optical trapping apparatus.
Evolution of the pygmy dipole resonance in Sn isotopes
NASA Astrophysics Data System (ADS)
Toft, H. K.; Larsen, A. C.; Bürger, A.; Guttormsen, M.; Görgen, A.; Nyhus, H. T.; Renstrøm, T.; Siem, S.; Tveten, G. M.; Voinov, A.
2011-04-01
Nuclear level density and γ-ray strength functions of Sn121,122 below the neutron separation energy are extracted with the Oslo method using the (He3,He3'γ) and (He3,αγ) reactions. The level densities of Sn121,122 display steplike structures, interpreted as signatures of neutron pair breaking. An enhancement in both strength functions, compared to standard models for radiative strength, is observed in our measurements for Eγ≳5.2 MeV. This enhancement is compatible with pygmy resonances centered at ≈8.4(1) and ≈8.6(2) MeV, respectively, and with integrated strengths corresponding to ≈1.8-5+1% of the classical Thomas-Reiche-Kuhn sum rule. Similar resonances were also seen in Sn116-119. Experimental neutron-capture cross reactions are well reproduced by our pygmy resonance predictions, while standard strength models are less successful. The evolution as a function of neutron number of the pygmy resonance in Sn116-122 is described as a clear increase of centroid energy from 8.0(1) to 8.6(2) MeV, but with no observable difference in integrated strengths.
Lawrence, Jane M; Stroman, Patrick W; Kollias, Spyros S
2008-03-01
We investigated noninvasively areas of the healthy human spinal cord that become active in response to vibration stimulation of different dermatomes using functional magnetic resonance imaging (fMRI). The objectives of this study were to: (1) examine the patterns of consistent activity in the spinal cord during vibration stimulation of the skin, and (2) investigate the rostrocaudal distribution of active pixels when stimulation was applied to different dermatomes. FMRI of the cervical and lumbar spinal cord of seven healthy human subjects was carried out during vibration stimulation of six different dermatomes. In separate experiments, vibratory stimulation (about 50 Hz) was applied to the right biceps, wrist, palm, patella, Achilles tendon and left palm. The segmental distribution of activity observed by fMRI corresponded well with known spinal cord neuroanatomy. The peak number of active pixels was observed at the expected level of the spinal cord with some activity in the adjacent segments. The rostrocaudal distribution of activity was observed to correspond to the dermatome being stimulated. Cross-sectional localization of activity was primarily in dorsal areas but also spread into ventral and intermediate areas of the gray matter and a distinct laterality ipsilateral to the stimulated limb was not observed. We demonstrated that fMRI can detect a dermatome-dependent pattern of spinal cord activity during vibratory stimulation and can be used as a passive stimulus for the noninvasive assessment of the functional integrity of the human spinal cord. Demonstration of cross-sectional selectivity of the activation awaits further methodological and experimental refinements.
Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk.
Liu, Shijie; Zheng, Yuanlin; Chen, Xianfeng
2017-09-15
Whispering-gallery-mode (WGM) microcavities are very important in both fundamental science and practical applications, among which on-chip second-order nonlinear microresonators play an important role in integrated photonic functionalities. Here we demonstrate resonant second-harmonic generation (SHG) and cascaded third-harmonic generation (THG) in a lithium niobate-on-insulator (LNOI) microdisk resonator. Efficient SHG in the visible range was obtained with only several mW input powers at telecom wavelengths. THG was also observed through a cascading process, which reveals simultaneous phase matching and strong mode coupling in the resonator. Cascading of second-order nonlinear processes gives rise to an effectively large third-order nonlinearity, which makes on-chip second-order nonlinear microresonators a promising frequency converter for integrated nonlinear photonics.
NASA Astrophysics Data System (ADS)
Wu, Yaw-Dong; Shih, Tien-Tsorng; Lee, Jian-Jang
2009-11-01
In this paper, we proposed the design of directional coupler integrated with ring resonator based on two-dimensional photonic crystals (2D PCs) to develop a triplexer filter. It can be widely used as the fiber access network element for multiplexer-demultiplexer wavelength selective in fiber-to-the-home (FTTH) communication systems. The directional coupler is chosen to separate the wavelengths of 1490nm and 1310nm. The ring resonator separates the wavelength of 1550nm. The transmission efficiency is larger than 90%. Besides, the total size of propose triplexer is only 19μm×12μm. We present simulation results using the finite-difference time-domain (FDTD) method for the proposed structure.
Dash, Aneesh; Selvaraja, S K; Naik, A K
2018-02-15
We present a scheme for on-chip optical transduction of strain and displacement of graphene-based nano-electro-mechanical systems (NEMS). A detailed numerical study on the feasibility of three silicon-photonic integrated circuit configurations is presented: the Mach-Zehnder interferometer (MZI), the micro-ring resonator, and the ring-loaded MZI. An index sensing based technique using an MZI loaded with a ring resonator with a moderate Q-factor of 2400 can yield a sensitivity of 28 fm/Hz and 6.5×10 -6 %/Hz for displacement and strain, respectively. Though any phase-sensitive integrated-photonic device could be used for optical transduction, here we show that optimal sensitivity is achievable by combining resonance with phase sensitivity.
NASA Astrophysics Data System (ADS)
Dash, Aneesh; Selvaraja, S. K.; Naik, A. K.
2018-02-01
We present a scheme for on-chip optical transduction of strain and displacement of Graphene-based Nano-Electro-Mechanical Systems (NEMS). A detailed numerical study on the feasibility of three silicon-photonic integrated circuit configurations is presented: Mach-Zehnder Interferometer(MZI), micro-ring resonator and ring-loaded MZI. An index-sensing based technique using a Mach-Zehnder Interferometer loaded with a ring resonator with a moderate Q-factor of 2400 can yield a sensitivity of 28 fm/sqrt(Hz), and 6.5E-6 %/sqrt(Hz) for displacement and strain respectively. Though any phase sensitive integrated photonic device could be used for optical transduction, here we show that optimal sensitivity is achievable by combining resonance with phase sensitivity.
Injector with integrated resonator
Johnson, Thomas Edward; Ziminsky, Willy Steve; York, William David; Stevenson, Christian Xavier
2014-07-29
The system may include a turbine engine. The turbine engine may include a fuel nozzle. The fuel nozzle may include an air path. The fuel nozzle may also include a fuel path such that the fuel nozzle is in communication with a combustion zone of the turbine engine. Furthermore, the fuel nozzle may include a resonator. The resonator may be disposed in the fuel nozzle directly adjacent to the combustion zone.
Mid-infrared plasmonic resonances exploiting heavily-doped Ge on Si
NASA Astrophysics Data System (ADS)
Biagioni, P.; Sakat, E.; Baldassarre, L.; Calandrini, E.; Samarelli, A.; Gallacher, K.; Frigerio, J.; Isella, G.; Paul, D. J.; Ortolani, M.
2015-03-01
We address the behavior of mid-infrared localized plasmon resonances in elongated germanium antennas integrated on silicon substrates. Calculations based on Mie theory and on the experimentally retrieved dielectric constant allow us to study the tunability and the figures of merit of plasmon resonances in heavily-doped germanium and to preliminarily compare them with those of the most established plasmonic material, gold.
Limsakul, Praopim; Peng, Qin; Wu, Yiqian; Allen, Molly E; Liang, Jing; Remacle, Albert G; Lopez, Tyler; Ge, Xin; Kay, Brian K; Zhao, Huimin; Strongin, Alex Y; Yang, Xiang-Lei; Lu, Shaoying; Wang, Yingxiao
2018-04-19
Monitoring enzymatic activities at the cell surface is challenging due to the poor efficiency of transport and membrane integration of fluorescence resonance energy transfer (FRET)-based biosensors. Therefore, we developed a hybrid biosensor with separate donor and acceptor that assemble in situ. The directed evolution and sequence-function analysis technologies were integrated to engineer a monobody variant (PEbody) that binds to R-phycoerythrin (R-PE) dye. PEbody was used for visualizing the dynamic formation/separation of intercellular junctions. We further fused PEbody with the enhanced CFP and an enzyme-specific peptide at the extracellular surface to create a hybrid FRET biosensor upon R-PE capture for monitoring membrane-type-1 matrix metalloproteinase (MT1-MMP) activities. This biosensor revealed asymmetric distribution of MT1-MMP activities, which were high and low at loose and stable cell-cell contacts, respectively. Therefore, directed evolution and rational design are promising tools to engineer molecular binders and hybrid FRET biosensors for monitoring molecular regulations at the surface of living cells. Copyright © 2018 Elsevier Ltd. All rights reserved.
Arcamone, J; van den Boogaart, M A F; Serra-Graells, F; Fraxedas, J; Brugger, J; Pérez-Murano, F
2008-07-30
Wafer-scale nanostencil lithography (nSL) is used to define several types of silicon mechanical resonators, whose dimensions range from 20 µm down to 200 nm, monolithically integrated with CMOS circuits. We demonstrate the simultaneous patterning by nSL of ∼2000 nanodevices per wafer by post-processing standard CMOS substrates using one single metal evaporation, pattern transfer to silicon and subsequent etch of the sacrificial layer. Resonance frequencies in the MHz range were measured in air and vacuum. As proof-of-concept towards an application as high performance sensors, CMOS integrated nano/micromechanical resonators are successfully implemented as ultra-sensitive areal mass sensors. These devices demonstrate the ability to monitor the deposition of gold layers whose average thickness is smaller than a monolayer. Their areal mass sensitivity is in the range of 10(-11) g cm(-2) Hz(-1), and their thickness resolution corresponds to approximately a thousandth of a monolayer.
Vertical resonant tunneling transistors with molecular quantum dots for large-scale integration.
Hayakawa, Ryoma; Chikyow, Toyohiro; Wakayama, Yutaka
2017-08-10
Quantum molecular devices have a potential for the construction of new data processing architectures that cannot be achieved using current complementary metal-oxide-semiconductor (CMOS) technology. The relevant basic quantum transport properties have been examined by specific methods such as scanning probe and break-junction techniques. However, these methodologies are not compatible with current CMOS applications, and the development of practical molecular devices remains a persistent challenge. Here, we demonstrate a new vertical resonant tunneling transistor for large-scale integration. The transistor channel is comprised of a MOS structure with C 60 molecules as quantum dots, and the structure behaves like a double tunnel junction. Notably, the transistors enabled the observation of stepwise drain currents, which originated from resonant tunneling via the discrete molecular orbitals. Applying side-gate voltages produced depletion layers in Si substrates, to achieve effective modulation of the drain currents and obvious peak shifts in the differential conductance curves. Our device configuration thus provides a promising means of integrating molecular functions into future CMOS applications.
NASA Astrophysics Data System (ADS)
Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Wasisto, Hutomo Suryo; Peiner, Erwin
2017-06-01
The asymmetric resonance responses of a thermally actuated silicon microcantilever of a portable, cantilever-based nanoparticle detector (Cantor) is analysed. For airborne nanoparticle concentration measurements, the cantilever is excited in its first in-plane bending mode by an integrated p-type heating actuator. The mass-sensitive nanoparticle (NP) detection is based on the resonance frequency (f0) shifting due to the deposition of NPs. A homemade phase-locked loop (PLL) circuit is developed for tracking of f0. For deflection sensing the cantilever contains an integrated piezo-resistive Wheatstone bridge (WB). A new fitting function based on the Fano resonance is proposed for analysing the asymmetric resonance curves including a method for calculating the quality factor Q from the fitting parameters. To obtain a better understanding, we introduce an electrical equivalent circuit diagram (ECD) comprising a series resonant circuit (SRC) for the cantilever resonator and voltage sources for the parasitics, which enables us to simulate the asymmetric resonance response and discuss the possible causes. Furthermore, we compare the frequency response of the on-chip thermal excitation with an external excitation using an in-plane piezo actuator revealing parasitic heating of the WB as the origin of the asymmetry. Moreover, we are able to model the phase component of the sensor output using the ECD. Knowing and understanding the phase response is crucial to the design of the PLL and thus the next generation of Cantor.
Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide
NASA Astrophysics Data System (ADS)
Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won
2015-07-01
We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits.
Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide.
Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Kim, Un Jeong; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won
2015-07-02
We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a "plasmonic via" in plasmonic nanocircuits.
Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide
Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won
2015-01-01
We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits. PMID:26135115
Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.
Shen, Su; Qiao, Wen; Ye, Yan; Zhou, Yun; Chen, Linsen
2015-01-26
We propose nano-meanders that can achieve wide-angle band absorption in visible regime. The nano-meander consists of a subwavelength dielectric grating covered by continuous ultra-thin Aluminum film (less than one tenth of the incident wavelength). The excited photonic resonant modes, such as cavity mode, surface plasmonic mode and Rayleigh-Wood anomaly, are discussed in detail. Nearly total resonant absorption due to funneling mechanism in the air nano-groove is almost invariant with large incident angle in transverse magnetic polarization. From both the structural geometry and the nanofabrication point of view, the light absorber has a very simple geometrical structure and it is easy to be integrated into complex photonic devices. The highly efficient angle-robust light absorber can be potential candidate for a range of passive and active photonic applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.
ZnO on nickel RF micromechanical resonators for monolithic wireless communication applications
NASA Astrophysics Data System (ADS)
Wei, Mian; Avila, Adrian; Rivera, Ivan; Baghelani, Masoud; Wang, Jing
2017-05-01
On-chip integrability of high-Q RF passives alongside CMOS transistors is crucial for the implementation of monolithic radio transceivers. One of the most significant bottlenecks in back-end-of-line (BEoL) integration of MEMS devices on CMOS processed wafers is their relatively low thermal budget, which is less than that required for typical MEMS material deposition processes. This paper investigates electroplated nickel as a structural material for piezoelectrically-transduced resonators to demonstrate ZnO-on-nickel resonators with a CMOS-compatible low temperature process for the first time. Aside from the obvious manufacturing cost benefit, electroplated nickel is a reasonable substitute for polycrystalline or single crystal silicon and thin-film microcrystalline diamond device layers, while realizing decent acoustic velocity and moderate Q. Electroplated nickel has been already adopted by MEMSCAP, a multi-user MEMS process foundry, in its MetalMUMPs process. Furthermore, it is observed that a localized annealing process through Joule heating can be exploited to significantly improve the effective mechanical quality factor for the ZnO-on-nickel resonators, which is still lower than the reported AlN resonators. This work demonstrates ZnO-on-nickel piezoelectrically-actuated MEMS resonators and resonator arrays by using an IC compatible low temperature process. There is room for performance improvement by lowering the acoustic energy losses in the ZnO and nickel layers.
Li, Jing-hui; Łuczka, Jerzy
2010-10-01
Transport properties of a Brownian particle in thermal-inertial ratchets subject to an external time-oscillatory drive and a constant bias force are investigated. Since the phenomena of negative mobility, resonant activation and noise-enhance stability were reported before, in the present paper, we report some additional aspects of negative mobility, resonant activation and noise-enhance stability, such as the ingredients for the appearances of these phenomena, multiple resonant activation peaks, current reversals, noise-weakened stability, and so on.
Recabal, Pedro; Assel, Melissa; Sjoberg, Daniel D; Lee, Daniel; Laudone, Vincent P; Touijer, Karim; Eastham, James A; Vargas, Hebert A; Coleman, Jonathan; Ehdaie, Behfar
2016-08-01
We determined whether multiparametric magnetic resonance imaging targeted biopsies may replace systematic biopsies to detect higher grade prostate cancer (Gleason score 7 or greater) and whether biopsy may be avoided based on multiparametric magnetic resonance imaging among men with Gleason 3+3 prostate cancer on active surveillance. We identified men with previously diagnosed Gleason score 3+3 prostate cancer on active surveillance who underwent multiparametric magnetic resonance imaging and a followup prostate biopsy. Suspicion for higher grade cancer was scored on a standardized 5-point scale. All patients underwent a systematic biopsy. Patients with multiparametric magnetic resonance imaging regions of interest also underwent magnetic resonance imaging targeted biopsy. The detection rate of higher grade cancer was estimated for different multiparametric magnetic resonance imaging scores with the 3 biopsy strategies of systematic, magnetic resonance imaging targeted and combined. Of 206 consecutive men on active surveillance 135 (66%) had a multiparametric magnetic resonance imaging region of interest. Overall, higher grade cancer was detected in 72 (35%) men. A higher multiparametric magnetic resonance imaging score was associated with an increased probability of detecting higher grade cancer (Wilcoxon-type trend test p <0.0001). Magnetic resonance imaging targeted biopsy detected higher grade cancer in 23% of men. Magnetic resonance imaging targeted biopsy alone missed higher grade cancers in 17%, 12% and 10% of patients with multiparametric magnetic resonance imaging scores of 3, 4 and 5, respectively. Magnetic resonance imaging targeted biopsies increased the detection of higher grade cancer among men on active surveillance compared to systematic biopsy alone. However, a clinically relevant proportion of higher grade cancer was detected using only systematic biopsy. Despite the improved detection of disease progression using magnetic resonance imaging targeted biopsy, systematic biopsy cannot be excluded as part of surveillance for men with low risk prostate cancer. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Integrated polymer micro-ring resonators for optical sensing applications
NASA Astrophysics Data System (ADS)
Girault, Pauline; Lorrain, Nathalie; Poffo, Luiz; Guendouz, Mohammed; Lemaitre, Jonathan; Carré, Christiane; Gadonna, Michel; Bosc, Dominique; Vignaud, Guillaume
2015-03-01
Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as core layer and PMATRIFE polymer as lower cladding layer. The refractive index of the polymers and of the waveguide structure as a function of the wavelength is presented. Using these results, a theoretical study of the coupling between ring and straight waveguides has been undertaken in order to define the MR design. Sub-micronic gaps of 0.5 μm to 1 μm between the ring and the straight waveguides have been successfully achieved with UV (i-lines) photolithography. Different superstrates such as air, water, and aqueous solutions with glucose at different concentrations have been studied. First results show a good normalized transmission contrast of 0.98, a resonator quality factor around 1.5 × 104 corresponding to a coupling ratio of 14.7%, and ring propagation losses around 5 dB/cm. Preliminary sensing experiments have been performed for different concentrations of glucose; a sensitivity of 115 ± 8 nm/RIU at 1550 nm has been obtained with this couple of polymers.
TheHiveDB image data management and analysis framework.
Muehlboeck, J-Sebastian; Westman, Eric; Simmons, Andrew
2014-01-06
The hive database system (theHiveDB) is a web-based brain imaging database, collaboration, and activity system which has been designed as an imaging workflow management system capable of handling cross-sectional and longitudinal multi-center studies. It can be used to organize and integrate existing data from heterogeneous projects as well as data from ongoing studies. It has been conceived to guide and assist the researcher throughout the entire research process, integrating all relevant types of data across modalities (e.g., brain imaging, clinical, and genetic data). TheHiveDB is a modern activity and resource management system capable of scheduling image processing on both private compute resources and the cloud. The activity component supports common image archival and management tasks as well as established pipeline processing (e.g., Freesurfer for extraction of scalar measures from magnetic resonance images). Furthermore, via theHiveDB activity system algorithm developers may grant access to virtual machines hosting versioned releases of their tools to collaborators and the imaging community. The application of theHiveDB is illustrated with a brief use case based on organizing, processing, and analyzing data from the publically available Alzheimer Disease Neuroimaging Initiative.
TheHiveDB image data management and analysis framework
Muehlboeck, J-Sebastian; Westman, Eric; Simmons, Andrew
2014-01-01
The hive database system (theHiveDB) is a web-based brain imaging database, collaboration, and activity system which has been designed as an imaging workflow management system capable of handling cross-sectional and longitudinal multi-center studies. It can be used to organize and integrate existing data from heterogeneous projects as well as data from ongoing studies. It has been conceived to guide and assist the researcher throughout the entire research process, integrating all relevant types of data across modalities (e.g., brain imaging, clinical, and genetic data). TheHiveDB is a modern activity and resource management system capable of scheduling image processing on both private compute resources and the cloud. The activity component supports common image archival and management tasks as well as established pipeline processing (e.g., Freesurfer for extraction of scalar measures from magnetic resonance images). Furthermore, via theHiveDB activity system algorithm developers may grant access to virtual machines hosting versioned releases of their tools to collaborators and the imaging community. The application of theHiveDB is illustrated with a brief use case based on organizing, processing, and analyzing data from the publically available Alzheimer Disease Neuroimaging Initiative. PMID:24432000
NASA Astrophysics Data System (ADS)
Gopal Madhav Annamdas, Venu; Kiong Soh, Chee
2017-01-01
Continuous structural health monitoring (SHM) and delayed SHM techniques can be contact/ contactless, surface bonded/embedded, wired/wireless and active/passive actuator-sensor systems which transfer the recorded condition of the structure to the base station almost instantaneously or with time delay respectively. The time between fatal crack initiation and its propagation leading to the collapse of key infrastructures such as aerospace, nuclear facilities, oil and gas is mostly short. Timely discovery of structural problem depends heavily on the scanning period in well-established techniques like piezoelectric (PZT) based electromechanical impedance (EMI) technique. This often takes much scanning time due to the acquisition of resonant structural peaks at all frequencies in the considered bandwidth; thus poses a challenge for its implementation in practice. On the other hand, recently developed strain sensors based on metamaterials and their breeds such as nested split-ring resonators, localized surface plasmons (LSP), etc, employ measurement of reflected or transmitted signal, with super-fast scanning in the order of at most 1/100th of the time taken by the EMI technique. This paper articulates faster measurements by reducing unnecessary resonant structural peaks and focusing on rapid monitoring using PZT and metamaterial plasmons. Our research adopted wired PZT and wireless LSP communications with impedance analyser and vector network analyser respectively. We present integrated and complementary nature of these techniques, which can be processed rapidly for key infrastructures with great effectiveness. This integration can result in both continuous and delayed SHM techniques based on time or frequency or both domains.
Integrated RF-shim coil allowing two degrees of freedom shim current.
Jiazheng Zhou; Ying-Hua Chu; Yi-Cheng Hsu; Pu-Yeh Wu; Stockmann, Jason P; Fa-Hsuan Lin
2016-08-01
High-quality magnetic resonance imaging and spectroscopic measurements require a highly homogeneous magnetic field. Different from global shimming, localized off-resonance can be corrected by using multi-coil shimming. Previously, integrated RF and shimming coils have been used to implement multi-coil shimming. Such coils share the same conductor for RF signal reception and shim field generation. Here we propose a new design of the integrated RF-shim coil at 3-tesla, where two independent shim current paths are allowed in each coil. This coil permits a higher degree of freedom in shim current distribution design. We use both phantom experiments and simulations to demonstrate the feasibility of this new design.
Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun
2017-07-01
In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.
NASA Astrophysics Data System (ADS)
Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun
2017-07-01
In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.
Electronically controllable spoof localized surface plasmons
NASA Astrophysics Data System (ADS)
Zhou, Yong Jin; Zhang, Chao; Yang, Liu; Xun Xiao, Qian
2017-10-01
Electronically controllable multipolar spoof localized surface plasmons (LSPs) are experimentally demonstrated in the microwave frequencies. It has been shown that half integer order LSPs modes exist on the corrugated ring loaded with a slit, which actually arise from the Fabry-Perot-like resonances. By mounting active components across the slit in the corrugated rings, electronic switchability and tunability of spoof LSPs modes have been accomplished. Both simulated and measured results demonstrate efficient dynamic control of the spoof LSPs. These elements may form the basis of highly integrated programmable plasmonic circuits in microwave and terahertz regimes.
Travelling wave resonators fabricated with low-loss hydrogenated amorphous silicon
NASA Astrophysics Data System (ADS)
Lipka, Timo; Amthor, Julia; Trieu, Hoc Khiem; Müller, Jörg
2013-05-01
Low-loss hydrogenated amorphous silicon is employed for the fabrication of various planar integrated travelling wave resonators. Microring, racetrack, and disk resonators of different dimensions were fabricated with CMOS-compatible processes and systematically investigated. The key properties of notch filter ring resonators as extinction ratio, Q-factor, free spectral range, and the group refractive index were determined for resonators of varying radius, thereby achieving critically coupled photonic systems with high extinction ratios of about 20 dB for both polarizations. Racetrack resonators that are arranged in add/drop configuration and high quality factor microdisk resonators were optically characterized, with the microdisks exhibiting Q-factors of greater than 100000. Four-channel add/drop wavelength-division multiplexing filters that are based on cascaded racetrack resonators are studied. The design, the fabrication, and the optical characterization are presented.
Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator
NASA Astrophysics Data System (ADS)
Dudzik, G.; Sotor, J.; Krzempek, K.; Soboń, G.; Abramski, K. M.
2014-02-01
We present a single frequency, stable, narrow linewidth, miniature laser sources operating at 532 nm (or 1064 nm) based on a monolithic resonators. Such resonators utilize birefringent filters formed by YVO4 beam displacer and KTP or YVO4 crystals to force single frequency operation at 532 nm or 1064 nm, respectively. In both configurations Nd:YVO4 gain crystal is used. The resonators dimensions are 1x1x10.5 mm3 and 1x1x8.5 mm3 for green and infrared configurations, respectively. Presented laser devices, with total dimensions of 40x52x120 mm3, are fully equipped with driving electronics, pump diode, optical and mechanical components. The highly integrated (36x15x65 mm3) low noise driving electronics with implemented digital PID controller was designed. It provides pump current and resonator temperature stability of ±30 μA@650 mA and ±0,003ºC, respectively. The laser parameters can be set and monitored via the USB interface by external application. The developed laser construction is universal. Hence, the other wavelengths can be obtained only by replacing the monolithic resonator. The optical output powers in single frequency regime was at the level of 42 mW@532 nm and 0.5 W@1064 nm with the long-term fluctuations of ±0.85 %. The linewidth and the passive frequency stability under the free running conditions were Δν < 100 kHz and 3ṡ10-9@1 s integration time, respectively. The total electrical power supply consumption of laser module was only 4 W. Presented compact, single frequency laser operating at 532 nm and 1064 nm may be used as an excellent source for laser vibrometry, interferometry or seed laser for fiber amplifiers.
NASA Astrophysics Data System (ADS)
Gatti, Davide; Güttler, Andreas; Frohnapfel, Bettina; Tropea, Cameron
2015-05-01
In the present work, wall oscillations for turbulent skin friction drag reduction are realized in an air turbulent duct flow by means of spanwise-oscillating active surfaces based on dielectric electroactive polymers. The actuator system produces spanwise wall velocity oscillations of 820 mm/s semi-amplitude at its resonance frequency of 65 Hz while consuming an active power of a few 100 mW. The actuators achieved a maximum integral drag reduction of 2.4 %. The maximum net power saving, budget of the power benefit and cost of the control, was measured for the first time with wall oscillations. Though negative, the net power saving is order of magnitudes higher than what has been estimated in previous studies. Two new direct numerical simulations of turbulent channel flow show that the finite size of the actuator only partially explains the lower values of integral drag reduction typically achieved in laboratory experiments compared to numerical simulations.
Trait motivation moderates neural activation associated with goal pursuit
Miller, Gregory A.; Warren, Stacie L.; Engels, Anna S.; Crocker, Laura D.; Sutton, Bradley P.; Heller, Wendy
2012-01-01
Research has indicated that regions of left and right dorsolateral prefrontal cortex (DLPFC) are involved in integrating the motivational and executive function processes related to, respectively, approach and avoidance goals. Given that sensitivity to pleasant and unpleasant stimuli is an important feature of conceptualizations of approach and avoidance motivation, it is possible that these regions of DLPFC are preferentially activated by valenced stimuli. The present study tested this hypothesis by using a task in which goal pursuit was threatened by distraction from valenced stimuli while functional magnetic resonance imaging data were collected. The analyses examined whether the impact of trait approach and avoidance motivation on the neural processes associated with executive function differed depending on the valence or arousal level of the distractor stimuli. The present findings support the hypothesis that the regions of DLPFC under investigation are involved in integrating motivational and executive function processes, and they also indicate the involvement of a number of other brain areas in maintaining goal pursuit. However, DLPFC did not display differential sensitivity to valence. PMID:22460723
Trait motivation moderates neural activation associated with goal pursuit.
Spielberg, Jeffrey M; Miller, Gregory A; Warren, Stacie L; Engels, Anna S; Crocker, Laura D; Sutton, Bradley P; Heller, Wendy
2012-06-01
Research has indicated that regions of left and right dorsolateral prefrontal cortex (DLPFC) are involved in integrating the motivational and executive function processes related to, respectively, approach and avoidance goals. Given that sensitivity to pleasant and unpleasant stimuli is an important feature of conceptualizations of approach and avoidance motivation, it is possible that these regions of DLPFC are preferentially activated by valenced stimuli. The present study tested this hypothesis by using a task in which goal pursuit was threatened by distraction from valenced stimuli while functional magnetic resonance imaging data were collected. The analyses examined whether the impact of trait approach and avoidance motivation on the neural processes associated with executive function differed depending on the valence or arousal level of the distractor stimuli. The present findings support the hypothesis that the regions of DLPFC under investigation are involved in integrating motivational and executive function processes, and they also indicate the involvement of a number of other brain areas in maintaining goal pursuit. However, DLPFC did not display differential sensitivity to valence.
Neural Correlates of Impaired Reward-Effort Integration in Remitted Bulimia Nervosa.
Mueller, Stefanie Verena; Morishima, Yosuke; Schwab, Simon; Wiest, Roland; Federspiel, Andrea; Hasler, Gregor
2018-03-01
The integration of reward magnitudes and effort costs is required for an effective behavioral guidance. This reward-effort integration was reported to be dependent on dopaminergic neurotransmission. As bulimia nervosa has been associated with a dysregulated dopamine system and catecholamine depletion led to reward-processing deficits in remitted bulimia nervosa, the purpose of this study was to identify the role of catecholamine dysfunction and its relation to behavioral and neural reward-effort integration in bulimia nervosa. To investigate the interaction between catecholamine functioning and behavioral, and neural responses directly, 17 remitted bulimic (rBN) and 21 healthy individuals (HC) received alpha-methyl-paratyrosine (AMPT) over 24 h to achieve catecholamine depletion in a randomized, crossover study design. We used functional magnetic resonance imaging (fMRI) and the monetary incentive delay (MID) task to assess reward-effort integration in relation to catecholaminergic neurotransmission at the behavioral and neural level. AMPT reduced the ability to integrate rewards and efforts effectively in HC participants. In contrast, in rBN participants, the reduced reward-effort integration was associated with illness duration in the sham condition and unrelated to catecholamine depletion. Regarding neural activation, AMPT decreased the reward anticipation-related neural activation in the anteroventral striatum. This decrease was associated with the AMPT-induced reduction of monetary earning in HC in contrast to rBN participants. Our findings contributed to the theory of a desensitized dopaminergic system in bulimia nervosa. A disrupted processing of reward magnitudes and effort costs might increase the probability of maintenance of bulimic symptoms.
Neural circuits in the brain that are activated when mitigating criminal sentences.
Yamada, Makiko; Camerer, Colin F; Fujie, Saori; Kato, Motoichiro; Matsuda, Tetsuya; Takano, Harumasa; Ito, Hiroshi; Suhara, Tetsuya; Takahashi, Hidehiko
2012-03-27
In sentencing guilty defendants, jurors and judges weigh 'mitigating circumstances', which create sympathy for a defendant. Here we use functional magnetic resonance imaging to measure neural activity in ordinary citizens who are potential jurors, as they decide on mitigation of punishment for murder. We found that sympathy activated regions associated with mentalising and moral conflict (dorsomedial prefrontal cortex, precuneus and temporo-parietal junction). Sentencing also activated precuneus and anterior cingulate cortex, suggesting that mitigation is based on negative affective responses to murder, sympathy for mitigating circumstances and cognitive control to choose numerical punishments. Individual differences on the inclination to mitigate, the sentence reduction per unit of judged sympathy, correlated with activity in the right middle insula, an area known to represent interoception of visceral states. These results could help the legal system understand how potential jurors actually decide, and contribute to growing knowledge about whether emotion and cognition are integrated sensibly in difficult judgments.
Multiplexing Superconducting Qubit Circuit for Single Microwave Photon Generation
NASA Astrophysics Data System (ADS)
George, R. E.; Senior, J.; Saira, O.-P.; Pekola, J. P.; de Graaf, S. E.; Lindström, T.; Pashkin, Yu A.
2017-10-01
We report on a device that integrates eight superconducting transmon qubits in λ /4 superconducting coplanar waveguide resonators fed from a common feedline. Using this multiplexing architecture, each resonator and qubit can be addressed individually, thus reducing the required hardware resources and allowing their individual characterisation by spectroscopic methods. The measured device parameters agree with the designed values, and the resonators and qubits exhibit excellent coherence properties and strong coupling, with the qubit relaxation rate dominated by the Purcell effect when brought in resonance with the resonator. Our analysis shows that the circuit is suitable for generation of single microwave photons on demand with an efficiency exceeding 80%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lereu, Aude L.; Zerrad, M.; Passian, Ali
In photonics, the field concentration and enhancement have been major objectives for achieving size reduction and device integration. Plasmonics offers resonant field confinement and enhancement, but ultra-sharp optical resonances in all-dielectric multi-layer thin films are emerging as a powerful contestant. Thus, applications capitalizing upon stronger and sharper optical resonances and larger field enhancements could be faced with a choice for the superior platform. Here in this paper, we present a comparison between plasmonic and dielectric multi-layer thin films for their resonance merits. We show that the remarkable characteristics of the resonance behavior of optimized dielectric multi-layers can outweigh those ofmore » their metallic counterpart.« less
Elastic collisions of low-energy electrons with SiY4 (Y = Cl, Br, I) molecules
NASA Astrophysics Data System (ADS)
Bettega, M. H. F.
2011-11-01
We employed the Schwinger multichannel method to compute elastic integral, differential, and momentum transfer cross sections for low-energy electron collisions with SiY4 (Y = Cl, Br, I) molecules. The calculations were carried out in the static-exchange and static-exchange plus polarization approximations for energies up to 10 eV. The elastic integral cross section for SiCl4 and SiBr4, computed in the static-exchange plus polarization approximation, shows two shape resonances belonging to the T2 and E symmetries of the Td group, and for SiI4 shows one shape resonance belonging to the E symmetry of the Td group. The present results agree well in shape with experimental total cross sections. The positions of the resonances observed in the calculated integral cross sections are also in agreement with the experimental positions. We have found the presence of a virtual state for SiCl4 and a Ramsauer-Townsend minimum for SiI4 at 0.5 eV. The present results show that the proper inclusion of polarization effects is crucial in order to correctly describe the resonance spectra of these molecules and also to identify a Ramsauer-Townsend minimum for SiI4 and a virtual state for SiCl4.
Collective photonic-plasmonic resonances in noble metal - dielectric nanoparticle hybrid arrays
Hong, Yan; Reinhard, Björn M.
2014-10-27
Coherent scattering of gold and silver nanoparticles (NPs) in regular arrays can generate Surface Lattice Resonances (SLRs) with characteristically sharp spectral features. Herein, we investigate collective resonances in compositionally more complex arrays comprising NP clusters and NPs with different chemical compositions at pre-defined lattice sites. We first characterize the impact of NP clustering by exchanging individual gold NPs in the array through dimers of electromagnetically strongly coupled gold NPs. Then, we analyze hybrid arrays that contain both gold metal NP dimers and high refractive index dielectric NPs as building blocks. We demonstrate that the integration of gold NP clusters andmore » dielectric NPs into one array enhances E-field intensities not only in the vicinity of the NPs but also in the ambient medium of the entire array. In addition, this work shows that the ability to integrate multiple building blocks with different resonance conditions in one array provides new degrees of freedom for engineering optical fields in the array plane with variable amplitude and phase.« less
Metallic metasurfaces for high efficient polarization conversion control in transmission mode.
Li, Tong; Hu, Xiaobin; Chen, Huamin; Zhao, Chen; Xu, Yun; Wei, Xin; Song, Guofeng
2017-10-02
A high efficient broadband polarization converter is an important component in integrated miniaturized optical systems, but its performances is often restricted by the material structures, metallic metasurfaces for polarization control in transmission mode never achieved efficiency above 0.5. Herein, we theoretically demonstrate that metallic metasurfaces constructed by thick cross-shaped particles can realize a high efficient polarization transformation over a broadband. We investigated the resonant properties of designed matesurfaces and found that the interaction between double FP cavity resonances and double bulk magnetic resonances is the main reason to generate a high transmissivity over a broadband. In addition, through using four resonances effect and tuning the anisotropic optical response, we realized a high efficient (> 0.85) quarter-wave plate at the wavelength range from 1175nm to 1310nm and a high efficient (> 0.9) half-wave plate at the wavelength range from 1130nm to 1230nm. The proposed polarization converters may have many potential applications in integrated polarization conversion devices and optical data storage systems.
Biological effects of exposure to magnetic resonance imaging: an overview
Formica, Domenico; Silvestri, Sergio
2004-01-01
The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited. PMID:15104797
The Physics of Superconducting Microwave Resonators
NASA Astrophysics Data System (ADS)
Gao, Jiansong
Over the past decade, low temperature detectors have brought astronomers revolutionary new observational capabilities and led to many great discoveries. Although a single low temperature detector has very impressive sensitivity, a large detector array would be much more powerful and are highly demanded for the study of more difficult and fundamental problems in astronomy. However, current detector technologies, such as transition edge sensors and superconducting tunnel junction detectors, are difficult to integrate into a large array. The microwave kinetic inductance detector (MKID) is a promising new detector technology invented at Caltech and JPL which provides both high sensitivity and an easy solution to the detector integration. It senses the change in the surface impedance of a superconductor as incoming photons break Cooper pairs, by using high-Q superconducting microwave resonators capacitively coupled to a common feedline. This architecture allows thousands of detectors to be easily integrated through passive frequency domain multiplexing. In this thesis, we explore the rich and interesting physics behind these superconducting microwave resonators. The first part of the thesis discusses the surface impedance of a superconductor, the kinetic inductance of a superconducting coplanar waveguide, and the circuit response of a resonator. These topics are related with the responsivity of MKIDs. The second part presents the study of the excess frequency noise that is universally observed in these resonators. The properties of the excess noise, including power, temperature, material, and geometry dependence, have been quantified. The noise source has been identified to be the two-level systems in the dielectric material on the surface of the resonator. A semi-empirical noise model has been developed to explain the power and geometry dependence of the noise, which is useful to predict the noise for a specified resonator geometry. The detailed physical noise mechanism, however, is still not clear. With the theoretical results of the responsivity and the semi-empirical noise model established in this thesis, a prediction of the detector sensitivity (noise equivalent power) and an optimization of the detector design are now possible.
Encoding of marginal utility across time in the human brain
Pine, Alex; Seymour, Ben; Roiser, Jonathan P; Bossaerts, Peter; Friston, Karl J.; Curran, H. Valerie; Dolan, Raymond J.
2010-01-01
Marginal utility theory prescribes the relationship between the objective property of the magnitude of rewards and their subjective value. Despite its pervasive influence, however, there is remarkably little direct empirical evidence for such a theory of value, let alone of its neurobiological basis. We show that human preferences in an inter-temporal choice task are best described by a model that integrates marginally diminishing utility with temporal discounting. Using functional magnetic resonance imaging (fMRI), we show that activity in the dorsal striatum encodes both the marginal utility of rewards, over and above that which can be described by their magnitude alone, and the discounting associated with increasing time. In addition, our data show that dorsal striatum may be involved in integrating subjective valuation systems inherent to time and magnitude, thereby providing an overall metric of value used to guide choice behaviour. Furthermore, during choice we show that anterior cingulate activity correlates with the degree of difficulty associated with dissonance between value and time. Our data support an integrative architecture for decision-making, revealing the neural representation of distinct subcomponents of value that may contribute to impulsivity and decisiveness. PMID:19641120
Elastic scattering of low-energy electrons by nitromethane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopes, A. R.; D'A Sanchez, S.; Bettega, M. H. F.
2011-06-15
In this work, we present integral, differential, and momentum transfer cross sections for elastic scattering of low-energy electrons by nitromethane, for energies up to 10 eV. We calculated the cross sections using the Schwinger multichannel method with pseudopotentials, in the static-exchange and in the static-exchange plus polarization approximations. The computed integral cross sections show a {pi}* shape resonance at 0.70 eV in the static-exchange-polarization approximation, which is in reasonable agreement with experimental data. We also found a {sigma}* shape resonance at 4.8 eV in the static-exchange-polarization approximation, which has not been previously characterized by the experiment. We also discuss howmore » these resonances may play a role in the dissociation process of this molecule.« less
Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele
2016-04-01
Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs.
Spatio-temporal Dynamics of Audiovisual Speech Processing
Bernstein, Lynne E.; Auer, Edward T.; Wagner, Michael; Ponton, Curtis W.
2007-01-01
The cortical processing of auditory-alone, visual-alone, and audiovisual speech information is temporally and spatially distributed, and functional magnetic resonance imaging (fMRI) cannot adequately resolve its temporal dynamics. In order to investigate a hypothesized spatio-temporal organization for audiovisual speech processing circuits, event-related potentials (ERPs) were recorded using electroencephalography (EEG). Stimuli were congruent audiovisual /bα/, incongruent auditory /bα/ synchronized with visual /gα/, auditory-only /bα/, and visual-only /bα/ and /gα/. Current density reconstructions (CDRs) of the ERP data were computed across the latency interval of 50-250 milliseconds. The CDRs demonstrated complex spatio-temporal activation patterns that differed across stimulus conditions. The hypothesized circuit that was investigated here comprised initial integration of audiovisual speech by the middle superior temporal sulcus (STS), followed by recruitment of the intraparietal sulcus (IPS), followed by activation of Broca's area (Miller and d'Esposito, 2005). The importance of spatio-temporally sensitive measures in evaluating processing pathways was demonstrated. Results showed, strikingly, early (< 100 msec) and simultaneous activations in areas of the supramarginal and angular gyrus (SMG/AG), the IPS, the inferior frontal gyrus, and the dorsolateral prefrontal cortex. Also, emergent left hemisphere SMG/AG activation, not predicted based on the unisensory stimulus conditions was observed at approximately 160 to 220 msec. The STS was neither the earliest nor most prominent activation site, although it is frequently considered the sine qua non of audiovisual speech integration. As discussed here, the relatively late activity of the SMG/AG solely under audiovisual conditions is a possible candidate audiovisual speech integration response. PMID:17920933
Schulte, Tilman; Müller-Oehring, Eva M; Sullivan, Edith V; Pfefferbaum, Adolf
2012-02-01
Alcohol dependence is associated with inhibitory control deficits, possibly related to abnormalities in frontoparietal cortical and midbrain function and connectivity. We examined functional connectivity and microstructural fiber integrity between frontoparietal and midbrain structures using a Stroop Match-to-Sample task with functional magnetic resonance imaging and diffusion tensor imaging in 18 alcoholic and 17 control subjects. Manipulation of color cues and response repetition sequences modulated cognitive demands during Stroop conflict. Despite similar lateral frontoparietal activity and functional connectivity in alcoholic and control subjects when processing conflict, control subjects deactivated the posterior cingulate cortex (PCC), whereas alcoholic subjects did not. Posterior cingulum fiber integrity predicted the degree of PCC deactivation in control but not alcoholic subjects. Also, PCC activity was modulated by executive control demands: activated during response switching and deactivated during response repetition. Alcoholics showed the opposite pattern: activation during repetition and deactivation during switching. Here, in alcoholic subjects, greater deviations from the normal PCC activity correlated with higher amounts of lifetime alcohol consumption. A functional dissociation of brain network connectivity between the groups further showed that control subjects exhibited greater corticocortical connectivity among middle cingulate, posterior cingulate, and medial prefrontal cortices than alcoholic subjects. In contrast, alcoholic subjects exhibited greater midbrain-orbitofrontal cortical network connectivity than control subjects. Degree of microstructural fiber integrity predicted robustness of functional connectivity. Thus, even subtle compromise of microstructural connectivity in alcoholism can influence modulation of functional connectivity and underlie alcohol-related cognitive impairment. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
K-band single-chip electron spin resonance detector.
Anders, Jens; Angerhofer, Alexander; Boero, Giovanni
2012-04-01
We report on the design, fabrication, and characterization of an integrated detector for electron spin resonance spectroscopy operating at 27 GHz. The microsystem, consisting of an LC-oscillator and a frequency division module, is integrated onto a single silicon chip using a conventional complementary metal-oxide-semiconductor technology. The achieved room temperature spin sensitivity is about 10(8)spins/G Hz(1/2), with a sensitive volume of about (100 μm)(3). Operation at 77K is also demonstrated. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaźmierczak, Andrzej; Dortu, Fabian; Giannone, Domenico; Bogaerts, Wim; Drouard, Emmanuel; Rojo-Romeo, Pedro; Gaffiot, Frederic
2009-10-01
We analyze a highly compact optical add-drop filter topology based on a pair of microdisk resonators and a bus waveguide intersection. The filter is further assessed on an integrated optical 4×4 network for optical on-chip communication. The proposed network structure, as compact as 50×50 μm, is fabricated in a CMOS-compatible process on a silicon-on-insulator (SOI) substrate. Finally, the experimental results demonstrate the proper operation of the fabricated devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grisi, Marco, E-mail: marco.grisi@epfl.ch; Gualco, Gabriele; Boero, Giovanni
In this article, we present an integrated broadband complementary metal-oxide semiconductor single-chip transceiver suitable for the realization of multi-nuclear pulsed nuclear magnetic resonance (NMR) probes. The realized single-chip transceiver can be interfaced with on-chip integrated microcoils or external LC resonators operating in the range from 1 MHz to 1 GHz. The dimension of the chip is about 1 mm{sup 2}. It consists of a radio-frequency (RF) power amplifier, a low-noise RF preamplifier, a frequency mixer, an audio-frequency amplifier, and fully integrated transmit-receive switches. As specific example, we show its use for multi-nuclear NMR spectroscopy. With an integrated coil of aboutmore » 150 μm external diameter, a {sup 1}H spin sensitivity of about 1.5 × 10{sup 13} spins/Hz{sup 1/2} is achieved at 7 T.« less
Exploration of the neural correlates of ticklish laughter by functional magnetic resonance imaging.
Wattendorf, Elise; Westermann, Birgit; Fiedler, Klaus; Kaza, Evangelia; Lotze, Martin; Celio, Marco R
2013-06-01
The burst of laughter that is evoked by tickling is a primitive form of vocalization. It evolves during an early phase of postnatal life and appears to be independent of higher cortical circuits. Clinicopathological observations have led to suspicions that the hypothalamus is directly involved in the production of laughter. In this functional magnetic resonance imaging investigation, healthy participants were 1) tickled on the sole of the right foot with permission to laugh, 2) tickled but asked to stifle laughter, and 3) requested to laugh voluntarily. Tickling that was accompanied by involuntary laughter activated regions in the lateral hypothalamus, parietal operculum, amygdala, and right cerebellum to a consistently greater degree than did the 2 other conditions. Activation of the periaqueductal gray matter was observed during voluntary and involuntary laughter but not when laughter was inhibited. The present findings indicate that hypothalamic activity plays a crucial role in evoking ticklish laughter in healthy individuals. The hypothalamus promotes innate behavioral reactions to stimuli and sends projections to the periaqueductal gray matter, which is itself an important integrative center for the control of vocalization. A comparison of our findings with published data relating to humorous laughter revealed the involvement of a common set of subcortical centers.
Integration of carbon nanotubes in slot waveguides (Conference Presentation)
NASA Astrophysics Data System (ADS)
Durán-Valdeiglesias, Elena; Zhang, Weiwei; Hoang, Thi Hong Cam; Alonso-Ramos, Carlos; Serna, Samuel; Le Roux, Xavier; Cassan, Eric; Balestrieri, Matteo; Keita, Al-Saleh; Sarti, Francesco; Biccari, Francesco; Torrini, Ughetta; Vinattieri, Anna; Yang, Hongliu; Bezugly, Viktor; Cuniberti, Gianaurelio; Filoramo, Arianna; Gurioli, Massimo; Vivien, Laurent
2016-05-01
Demanding applications such as video streaming, social networking, or web search relay on a large network of data centres, interconnected through optical links. The ever-growing data rates and power consumption inside these data centres are pushing copper links close to their fundamental limits. Optical interconnects are being extensively studied with the purpose of solving these limitations. Among the different possible technology platforms, silicon photonics, due to its compatibility with the CMOS platform, has become one of the preferred solutions for the development of the future generation photonic interconnects. However, the on-chip integration of all photonic and optoelectronic building blocks (sources, modulators and detectors…) is very complex and is not cost-effective due to the various materials involved (Ge for detection, doped Si for modulators and III-V for lasing). Carbon nanotubes (CNTs) are nanomaterials of great interest in photonics thanks to their fundamental optical properties, including near-IR room-temperature foto- and electro- luminescence, Stark effect, Kerr effect and absorption. In consequence, CNTs have the ability to emit, modulate and detect light in the telecommunications wavelength range. Furthermore, they are being extensively developed for new nano-electronics applications. In this work, we propose to use CNTs as active material integrated into silicon photonics for the development of all optoelectronic devices. Here, we report on the development of new integration schemes to couple the light emission from CNTs into optical resonators implemented on the silicon-on-insulator and silicon-nitride-on-insulator platforms. A theoretical and experimental analysis of the light interaction of CNTs with micro-ring resonators based on strip and slot waveguides and slot photonic crystal heterostructure cavities were carried out.
Narrowband resonant transmitter
Hutchinson, Donald P.; Simpson, Marcus L.; Simpson, John T.
2004-06-29
A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.
Gaussian-reflectivity mirror resonator for a high-power transverse-flow CO2 laser.
Ling, Dongxiong; Chen, Junruo; Li, Junchang
2006-05-01
A Gaussian-reflectivity mirror resonator is proposed to achieve high-quality laser beams. To analyze the laser fields in a Gaussian-reflectivity mirror resonator, the diffraction integral equations of a Gaussian-reflectivity mirror resonator are converted to the finite-sum matrix equations. Consequently, according to the Fox-Li laser self-reproducing principle, we describe the mode fields and their losses in the proposed resonator as eigenvectors and eigenvalues of a transfer matrix. The conclusion can be drawn from the numerical results that, if a Gaussian-reflectivity mirror is adopted for a plano-concave resonator, a fundamental mode can easily be obtained from a transverse-flow CO2 laser and high-quality laser beams can be expected.
Evaluation of the performance of a passive-active vibration isolation system
NASA Astrophysics Data System (ADS)
Sun, L. L.; Hansen, C. H.; Doolan, C.
2015-01-01
The behavior of a feedforward active isolation system subjected to actuator output constraints is investigated. Distributed parameter models are developed to analyze the system response, and to produce a transfer matrix for the design of an integrated passive-active isolation system. Cost functions considered here comprise a combination of the vibration transmission energy and the sum of the squared control forces. The example system considered is a rigid body connected to a simply supported plate via two isolation mounts. The overall isolation performance is evaluated by numerical simulation. The results show that the control strategies which rely on unconstrained actuator outputs may give substantial power transmission reductions over a wide frequency range, but also require large control force amplitudes to control excited vibration modes of the system. Expected power transmission reductions for modified control strategies that incorporate constrained actuator outputs are considerably less than typical reductions with unconstrained actuator outputs. The active system with constrained control force outputs is shown to be more effective at the resonance frequencies of the supporting plate. However, in the frequency range in which rigid body modes are present, the control strategies employed using constrained actuator outputs can only achieve 5-10 dB power transmission reduction, while at off-resonance frequencies, little or no power transmission reduction can be obtained with realistic control forces. Analysis of the wave effects in the passive mounts is also presented.
Wang, Liying; Du, Xiaohui; Wang, Lingyun; Xu, Zhanhao; Zhang, Chenying; Gu, Dandan
2017-03-16
In order to achieve and maintain a high quality factor (high-Q) for the micro resonant pressure sensor, this paper presents a new wafer level package by adopting cross-layer anodic bonding technique of the glass/silicon/silica (GSS) stackable structure and integrated Ti getter. A double-layer structure similar to a silicon-on-insulator (SOI) wafer is formed after the resonant layer and the pressure-sensitive layer are bonded by silicon direct bonding (SDB). In order to form good bonding quality between the pressure-sensitive layer and the glass cap layer, the cross-layer anodic bonding technique is proposed for vacuum package by sputtering Aluminum (Al) on the combination wafer of the pressure-sensitive layer and the resonant layer to achieve electrical interconnection. The model and the bonding effect of this technique are discussed. In addition, in order to enhance the performance of titanium (Ti) getter, the prepared and activation parameters of Ti getter under different sputtering conditions are optimized and discussed. Based on the optimized results, the Ti getter (thickness of 300 nm to 500 nm) is also deposited on the inside of the glass groove by magnetron sputtering to maintain stable quality factor (Q). The Q test of the built testing system shows that the number of resonators with a Q value of more than 10,000 accounts for more than 73% of the total. With an interval of 1.5 years, the Q value of the samples remains almost constant. It proves the proposed cross-layer anodic bonding and getter technique can realize high-Q resonant structure for long-term stable operation.
Sound attenuations of axial fan blade tones using flow-driven tunable resonator arrays
NASA Astrophysics Data System (ADS)
Gorny, Lee James
Flow-excited, tunable quarter-wavelength resonators can be integrated into the shrouds of ducted subsonic axial fans. This study explores their effectiveness in reducing propagations of tonal noise by means of acoustic wave cancellation. Resonators are a non-intrusive method of generating a secondary sound field near the plane of a rotor. As they can be strategically tuned to reduce radiated noise at the blade passage frequency (BPF) and its harmonics, resonators can be useful for a variety of applications to quiet existing and future turbomachinery. Experiments have demonstrated that a single quarter wave resonator is effective in reducing unidirectional plane wave propagations for long wavelength ducted applications while an array is effective for shorter wavelength or un-ducted facilities where shrouded fans are used. Testing conducted at Center for Acoustics and Vibrations (CAV) at the Pennsylvania State University the Deutsches Zentrum fur Luft und Raumfahrt (DLR) in Berlin, Germany demonstrated that resonator arrays were effective in attenuating shorter wavelength plane-wave and higher order modal propagations of blade tone noise. A chiller fan enclosure, constructed in the CAV laboratory emulated an industrial chiller in its operation. Using this facility, resonators were observed to attenuate blade tone noise from a non-ideal ducted geometry. The approaches used in this study evolved from Helmholtz resonators to conventional quarter wave tubes, to mouth tunable resonators, and finally to back-wall tunable resonators. These developments in tuning allowed for independent control of a resonator's magnitude and phase of the secondary sound field produced by the resonators. It was demonstrated that the use of two tunable resonator chambers oriented axially on either side of the blade region enables a dipole-like secondary sound field to be passively generated and bi-directional attenuations of plane wave noise to be achieved. Tonal attenuations of 28 dB were attained and BPF tones were reduced to less than 5 dB from the broadband noise floor for each case discussed above. In parallel with experimental work, analytical models were developed to effectively model and predict optimal resonator configurations for a given fan in operation. Interactions between resonators and the driving pressure field from the rotor blades are modeled using transmission line (TL) theory. Blade tone acoustic pressure is obtained using a finite element method (FEM) propagation code. By combining of these two methods, a resonator configuration that achieves optimal attenuation can be numerically obtained. The use of resonators has been shown to significantly attenuate fan noise in the conditions explored in the considered experiments. Numerical modeling has shown consistency in the response of flow driven resonators and their. These results indicate a strong potential for active control of fan noise using resonators and an approach to applying this control is presented.
Rosemann, Stephanie; Thiel, Christiane M
2018-07-15
Hearing loss is associated with difficulties in understanding speech, especially under adverse listening conditions. In these situations, seeing the speaker improves speech intelligibility in hearing-impaired participants. On the neuronal level, previous research has shown cross-modal plastic reorganization in the auditory cortex following hearing loss leading to altered processing of auditory, visual and audio-visual information. However, how reduced auditory input effects audio-visual speech perception in hearing-impaired subjects is largely unknown. We here investigated the impact of mild to moderate age-related hearing loss on processing audio-visual speech using functional magnetic resonance imaging. Normal-hearing and hearing-impaired participants performed two audio-visual speech integration tasks: a sentence detection task inside the scanner and the McGurk illusion outside the scanner. Both tasks consisted of congruent and incongruent audio-visual conditions, as well as auditory-only and visual-only conditions. We found a significantly stronger McGurk illusion in the hearing-impaired participants, which indicates stronger audio-visual integration. Neurally, hearing loss was associated with an increased recruitment of frontal brain areas when processing incongruent audio-visual, auditory and also visual speech stimuli, which may reflect the increased effort to perform the task. Hearing loss modulated both the audio-visual integration strength measured with the McGurk illusion and brain activation in frontal areas in the sentence task, showing stronger integration and higher brain activation with increasing hearing loss. Incongruent compared to congruent audio-visual speech revealed an opposite brain activation pattern in left ventral postcentral gyrus in both groups, with higher activation in hearing-impaired participants in the incongruent condition. Our results indicate that already mild to moderate hearing loss impacts audio-visual speech processing accompanied by changes in brain activation particularly involving frontal areas. These changes are modulated by the extent of hearing loss. Copyright © 2018 Elsevier Inc. All rights reserved.
Extension of the statistical theory of resonating valence bonds to hyperelectronic metals
Kamb, Barclay; Pauling, Linus
1985-01-01
The statistical treatment of resonating covalent bonds in metals, previously applied to hypoelectronic metals, is extended to hyperelectronic metals and to metals with two kinds of bonds. The theory leads to half-integral values of the valence for hyperelectronic metallic elements. PMID:16593632
III-V Semiconductor Optical Micro-Ring Resonators
NASA Astrophysics Data System (ADS)
Grover, Rohit; Absil, Philippe P.; Ibrahim, Tarek A.; Ho, Ping-Tong
2004-05-01
We describe the theory of optical ring resonators, and our work on GaAs-AlGaAs and GaInAsP-InP optical micro-ring resonators. These devices are promising building blocks for future all-optical signal processing and photonic logic circuits. Their versatility allows the fabrication of ultra-compact multiplexers/demultiplexers, optical channel dropping filters, lasers, amplifiers, and logic gates (to name a few), which will enable large-scale monolithic integration for optics.
Li, Chenyu; Chang, Chun-Chieh; Zhou, Qingli; ...
2017-10-10
Here, we investigate edge-coupling of twisted split-ring resonator (SRR) pairs in the terahertz (THz) frequency range. By using a simple coupled-resonator model we show that such a system exhibits resonance splitting and cross-polarization conversion. Numerical simulations and experimental measurements agree well with theoretical calculations, verifying the resonance splitting as a function of the coupling strength given by the SRR separation. We further show that a metal ground plane can be integrated to significantly enhance the resonance coupling, which enables the effective control of resonance splitting and the efficiency and bandwidth of the cross-polarization conversion. Our findings improve the fundamental understandingmore » of metamaterials with a view of accomplishing metamaterial functionalities with enhanced performance, which is of great interest in realizing THz functional devices required in a variety of applications.« less
Resonance region measurements of dysprosium and rhenium
NASA Astrophysics Data System (ADS)
Leinweber, Gregory; Block, Robert C.; Epping, Brian E.; Barry, Devin P.; Rapp, Michael J.; Danon, Yaron; Donovan, Timothy J.; Landsberger, Sheldon; Burke, John A.; Bishop, Mary C.; Youmans, Amanda; Kim, Guinyun N.; Kang, yeong-rok; Lee, Man Woo; Drindak, Noel J.
2017-09-01
Neutron capture and transmission measurements have been performed, and resonance parameter analysis has been completed for dysprosium, Dy, and rhenium, Re. The 60 MeV electron accelerator at RPI Gaerttner LINAC Center produced neutrons in the thermal and epithermal energy regions for these measurements. Transmission measurements were made using 6Li glass scintillation detectors. The neutron capture measurements were made with a 16-segment NaI multiplicity detector. The detectors for all experiments were located at ≈25 m except for thermal transmission, which was done at ≈15 m. The dysprosium samples included one highly enriched 164Dy metal, 6 liquid solutions of enriched 164Dy, two natural Dy metals. The Re samples were natural metals. Their capture yield normalizations were corrected for their high gamma attenuation. The multi-level R-matrix Bayesian computer code SAMMY was used to extract the resonance parameters from the data. 164Dy resonance data were analyzed up to 550 eV, other Dy isotopes up to 17 eV, and Re resonance data up to 1 keV. Uncertainties due to resolution function, flight path, burst width, sample thickness, normalization, background, and zero time were estimated and propagated using SAMMY. An additional check of sample-to-sample consistency is presented as an estimate of uncertainty. The thermal total cross sections and neutron capture resonance integrals of 164Dy and Re were determined from the resonance parameters. The NJOY and INTER codes were used to process and integrate the cross sections. Plots of the data, fits, and calculations using ENDF/B-VII.1 resonance parameters are presented.
NASA Astrophysics Data System (ADS)
Labak, Peter; Lindblom, Pasi; Malich, Gregor
2017-04-01
The Integrated Field Exercise of 2014 (IFE14) was a field event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) during which the operational and technical capabilities of a Comprehensive Test Ban Treaty's (CTBT) on-site inspection (OSI) were tested in integrated manner. Many of the inspection techniques permitted by the CTBT were applied during IFE14 including a range of geophysical techniques, however, one of the techniques foreseen by the CTBT but not yet developed is resonance seismometry. During August and September 2016, seismic field measurements have been conducted in the region of Kylylahti, Finland, in support of the further development of geophysical seismic techniques for OSIs. 45 seismic stations were used to continuously acquire seismic signals. During that period, data from local, regional and teleseismic natural events and man-made events were acquired, including from a devastating earthquake in Italy and the nuclear explosion announced by the Democratic People's Republic of Korea on 9 September 2016. Also, data were acquired following the small-scale use of man-made chemical explosives in the area and of vibratory sources. This presentation will show examples from the data set and will discuss its use for the development of resonance seimometry for OSIs.
Miniature PT Cryocooler Activated by Resonant Piezoelectric Compressor and Passive Warm Expander
NASA Astrophysics Data System (ADS)
Sobol, S.; Grossman, G.
2017-12-01
A novel type of PZT-based compressor operating at mechanical resonance, suitable for pneumatically-driven Stirling-type cryocoolers, was presented at CEC-ICMC 2015. The detailed concept, analytical model and the test results on the preliminary prototype were reported earlier and presented at ICC17. Despite some mismatch between the impedances and insufficient structural stiffness, this compressor demonstrated the feasibility to drive our miniature Pulse Tube cryocooler MTSa, operating at 103 Hz and requiring an average PV power of 11 W, filling pressure of 40 Bar and a pressure ratio of 1.3. At ICC19 the prototype of a miniature passive warm expander (WE) was presented. The WE mechanism included a phase shifting piston suspended on a silicone diaphragm, a mass element, and a viscous damping system. Several technical drawbacks prevented perfect matching between the WE and MTSa; however, the presented prototype proved the ability to create any flow-to-pressure phase appropriate for a PT cryocooler. This paper concentrates on integration of the MTSa cryocooler with the recently modified PZT compressor operating at corrected mechanical resonance and the modified WE, which was also updated recently to match the MTSa requirements.
Origin scenarios for the Kepler 36 planetary system
NASA Astrophysics Data System (ADS)
Quillen, Alice C.; Bodman, Eva; Moore, Alexander
2013-11-01
We explore scenarios for the origin of two different density planets in the Kepler 36 system in adjacent orbits near the 7:6 mean motion resonance. We find that fine tuning is required in the stochastic forcing amplitude, the migration rate and planet eccentricities to allow two convergently migrating planets to bypass mean motion resonances such as the 4:3, 5:4 and 6:5, and yet allow capture into the 7:6 resonance. Stochastic forcing can eject the system from resonance causing a collision between the planets, unless the disc causing migration and stochastic forcing is depleted soon after resonance capture. We explore a scenario with approximately Mars mass embryos originating exterior to the two planets and migrating inwards towards two planets. We find that gravitational interactions with embryos can nudge the system out of resonances. Numerical integrations with about a half dozen embryos can leave the two planets in the 7:6 resonance. Collisions between planets and embryos have a wide distribution of impact angles and velocities ranging from accretionary to disruptive. We find that impacts can occur at sufficiently high impact angle and velocity that the envelope of a planet could have been stripped, leaving behind a dense core. Some of our integrations show the two planets exchanging locations, allowing the outer planet that had experienced multiple collisions with embryos to become the innermost planet. A scenario involving gravitational interactions and collisions with embryos may account for both the proximity of the Kepler 36 planets and their large density contrast.
A New Look at an Old Activity: Resonance Tubes Used to Teach Resonance
NASA Astrophysics Data System (ADS)
Nelson, Jim; Nelson, Jane
2017-12-01
There are several variations of resonance laboratory activities used to determine the speed of sound. This is not one of them. This activity uses the resonance tube idea to teach resonance, not to verify the speed of sound. Prior to this activity, the speed of sound has already been measured using computer sound-sensors and timing echoes produced in long tubes like carpet tubes. There are other methods to determine the speed of sound. Some methods are referenced at the end of this article. The students already know the speed of sound when they are confronted with data that contradict their prior knowledge. Here, the mystery is something the students solve with the help of a series of demonstrations by the instructor.
Photonic crystal ring resonator based optical filters for photonic integrated circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, S., E-mail: mail2robinson@gmail.com
In this paper, a two Dimensional (2D) Photonic Crystal Ring Resonator (PCRR) based optical Filters namely Add Drop Filter, Bandpass Filter, and Bandstop Filter are designed for Photonic Integrated Circuits (PICs). The normalized output response of the filters is obtained using 2D Finite Difference Time Domain (FDTD) method and the band diagram of periodic and non-periodic structure is attained by Plane Wave Expansion (PWE) method. The size of the device is minimized from a scale of few tens of millimeters to the order of micrometers. The overall size of the filters is around 11.4 μm × 11.4 μm which ismore » highly suitable of photonic integrated circuits.« less
High Density Memory Based on Quantum Device Technology
NASA Technical Reports Server (NTRS)
vanderWagt, Paul; Frazier, Gary; Tang, Hao
1995-01-01
We explore the feasibility of ultra-high density memory based on quantum devices. Starting from overall constraints on chip area, power consumption, access speed, and noise margin, we deduce boundaries on single cell parameters such as required operating voltage and standby current. Next, the possible role of quantum devices is examined. Since the most mature quantum device, the resonant tunneling diode (RTD) can easily be integrated vertically, it naturally leads to the issue of 3D integrated memory. We propose a novel method of addressing vertically integrated bistable two-terminal devices, such as resonant tunneling diodes (RTD) and Esaki diodes, that avoids individual physical contacts. The new concept has been demonstrated experimentally in memory cells of field effect transistors (FET's) and stacked RTD's.
Opto-electronic oscillator: moving toward solutions based on polymer materials
NASA Astrophysics Data System (ADS)
Nguyên, Lâm Duy; Journet, Bernard; Zyss, Joseph
2008-02-01
Optoelectronic oscillators have been studied since many years now, their high spectral purity being one of their most interesting quality for photonics signal processing, communication or radio over fiber systems. One part of the structure is a long fiber optic feedback loop acting as a delay line. Different techniques have been introduced such as multiple loops in order to get very narrow spectral lines and large mode spacing. One of the problems due to long fiber loops is the size and the requirement of temperature control. In order to go toward integrated solutions it is also possible to introduce optical resonators instead of a delay line structure (as for classical electronic oscillators). But such resonators should present very high quality factor. In this paper we demonstrate solutions using resonators based on polymer materials such as PMMA-DCM. Structures such as micro-rings, micro-disks or stadium-shaped resonator have been realized at the laboratory. Quality factor of 6000 have already been achieved leading to an equivalent fiber loop of 19 m for an oscillator at 10 GHz. But it has been already theoretically proved that quality factor greater than one thousand hundred could be obtained. These resonators can be directly implemented with Mach-Zehnder optical modulators based on electro-optic polymer such as PMMA-DR1 leading to integrated solutions. And in the future it should be also possible to add a laser made with polymer material, with a structure as stadium-shape polymer micro-laser. The fully integrated photonic chip is not so far. The last important function to be implemented is the tuning of the oscillation frequency.
Segregated and integrated coding of reward and punishment in the cingulate cortex.
Fujiwara, Juri; Tobler, Philippe N; Taira, Masato; Iijima, Toshio; Tsutsui, Ken-Ichiro
2009-06-01
Reward and punishment have opposite affective value but are both processed by the cingulate cortex. However, it is unclear whether the positive and negative affective values of monetary reward and punishment are processed by separate or common subregions of the cingulate cortex. We performed a functional magnetic resonance imaging study using a free-choice task and compared cingulate activations for different levels of monetary gain and loss. Gain-specific activation (increasing activation for increasing gain, but no activation change in relation to loss) occurred mainly in the anterior part of the anterior cingulate and in the posterior cingulate cortex. Conversely, loss-specific activation (increasing activation for increasing loss, but no activation change in relation to gain) occurred between these areas, in the middle and posterior part of the anterior cingulate. Integrated coding of gain and loss (increasing activation throughout the full range, from biggest loss to biggest gain) occurred in the dorsal part of the anterior cingulate, at the border with the medial prefrontal cortex. Finally, unspecific activation increases to both gains and losses (increasing activation to increasing gains and increasing losses, possibly reflecting attention) occurred in dorsal and middle regions of the cingulate cortex. Together, these results suggest separate and common coding of monetary reward and punishment in distinct subregions of the cingulate cortex. Further meta-analysis suggested that the presently found reward- and punishment-specific areas overlapped with those processing positive and negative emotions, respectively.
Qubit Coupled Mechanical Resonator in an Electromechanical System
NASA Astrophysics Data System (ADS)
Hao, Yu
This thesis describes the development of a hybrid quantum electromechanical system. In this system the mechanical resonator is capacitively coupled to a superconducting transmon which is embedded in a superconducting coplanar waveguide (CPW) cavity. The difficulty of achieving high quality of superconducting qubit in a high-quality voltage-biased cavity is overcome by integrating a superconducting reflective T-filter to the cavity. Further spectroscopic and pulsed measurements of the hybrid system demonstrate interactions between the ultra-high frequency mechanical resonator and transmon qubit. The noise of mechanical resonator close to ground state is measured by looking at the spectroscopy of the transmon. At last, fabrication and tests of membrane resonators are discussed.
Mass spectrometry based on a coupled Cooper-pair box and nanomechanical resonator system
NASA Astrophysics Data System (ADS)
Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di
2011-10-01
Nanomechanical resonators (NRs) with very high frequency have a great potential for mass sensing with unprecedented sensitivity. In this study, we propose a scheme for mass sensing based on the NR capacitively coupled to a Cooper-pair box (CPB) driven by two microwave currents. The accreted mass landing on the resonator can be measured conveniently by tracking the resonance frequency shifts because of mass changes in the signal absorption spectrum. We demonstrate that frequency shifts induced by adsorption of ten 1587 bp DNA molecules can be well resolved in the absorption spectrum. Integration with the CPB enables capacitive readout of the mechanical resonance directly on the chip.
Surface plasmons and Bloch surface waves: Towards optimized ultra-sensitive optical sensors
Lereu, Aude L.; Zerrad, M.; Passian, Ali; ...
2017-07-07
In photonics, the field concentration and enhancement have been major objectives for achieving size reduction and device integration. Plasmonics offers resonant field confinement and enhancement, but ultra-sharp optical resonances in all-dielectric multi-layer thin films are emerging as a powerful contestant. Thus, applications capitalizing upon stronger and sharper optical resonances and larger field enhancements could be faced with a choice for the superior platform. Here in this paper, we present a comparison between plasmonic and dielectric multi-layer thin films for their resonance merits. We show that the remarkable characteristics of the resonance behavior of optimized dielectric multi-layers can outweigh those ofmore » their metallic counterpart.« less
NASA Astrophysics Data System (ADS)
Bykov, D. A.; Doskolovich, L. L.
2015-12-01
We propose the generalization of the Fourier modal method aimed at calculating localized eigenmodes of integrated optical resonators. The method is based on constructing the analytic continuation of the structure's scattering matrix and calculating its poles. The method allows one to calculate the complex frequency of the localized mode and the corresponding field distribution. We use the proposed method to calculate the eigenmodes of rectangular dielectric block located on metal surface. We show that excitation of these modes by surface plasmon-polariton (SPP) results in resonant features in the SPP transmission spectrum. The proposed method can be used to design and investigate optical properties of integrated and plasmonic optical devices.
Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, David; Lowell, David; Mao, Michelle
2016-07-28
In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.
Ring resonator based narrow-linewidth semiconductor lasers
NASA Technical Reports Server (NTRS)
Ksendzov, Alexander (Inventor)
2005-01-01
The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.
Reconfigurable electro-optical directed-logic circuit using carrier-depletion micro-ring resonators.
Qiu, Ciyuan; Gao, Weilu; Soref, Richard; Robinson, Jacob T; Xu, Qianfan
2014-12-15
Here we demonstrate a reconfigurable electro-optical directed-logic circuit based on a regular array of integrated optical switches. Each 1×1 optical switch consists of a micro-ring resonator with an embedded lateral p-n junction and a micro-heater. We achieve high-speed on-off switching by applying electrical logic signals to the p-n junction. We can configure the operation mode of each switch by thermal tuning the resonance wavelength. The result is an integrated optical circuit that can be reconfigured to perform any combinational logic operation. As a proof-of-principle, we fabricated a multi-spectral directed-logic circuit based on a fourfold array of switches and showed that this circuit can be reconfigured to perform arbitrary two-input logic functions with speeds up to 3 GB/s.
Fiber-integrated refractive index sensor based on a diced Fabry-Perot micro-resonator.
Suntsov, Sergiy; Rüter, Christian E; Schipkowski, Tom; Kip, Detlef
2017-11-20
We report on a fiber-integrated refractive index sensor based on a Fabry-Perot micro-resonator fabricated using simple diamond blade dicing of a single-mode step-index fiber. The performance of the device has been tested for the refractive index measurements of sucrose solutions as well as in air. The device shows a sensitivity of 1160 nm/RIU (refractive index unit) at a wavelength of 1.55 μm and a temperature cross-sensitivity of less than 10 -7 RIU/°C. Based on evaluation of the broadband reflection spectra, refractive index steps of 10 -5 of the solutions were accurately measured. The conducted coating of the resonator sidewalls with layers of a high-index material with real-time reflection spectrum monitoring could help to significantly improve the sensor performance.
When giving is good: Ventromedial prefrontal cortex activation for others’ intentions
Cooper, Jeffrey C.; Kreps, Tamar A.; Wiebe, Taylor; Pirkl, Tristana; Knutson, Brian
2010-01-01
Summary In social decision-making, people care both about others’ outcomes and their intentions to help or harm. How the brain integrates representations of others’ intentions with their outcomes, however, is unknown. In this study, participants inferred others’ decisions in an economic game during functional magnetic resonance imaging. When the game was described in terms of donations, ventromedial prefrontal cortex (VMPFC) activation increased for inferring generous play and decreased for inferring selfish play. When the game was described in terms of individual savings, however, VMPFC activation did not distinguish between strategies. Distinct medial prefrontal regions also encoded consistency with situational norms. A separate network, including right temporoparietal junction and parahippocampal gyrus, was more activated for inferential errors in the donation than in the savings condition. These results for the first time demonstrate that neural responses to others’ generosity or selfishness depend not only on their actions but also on their perceived intentions. PMID:20696386
NASA Astrophysics Data System (ADS)
Mehrzad, Hossein; Mohajerani, Ezeddin
2018-02-01
The present study aims to demonstrate how active hybrid nano-plasmonic modes become excited due to the coupling of localized plasmonic resonance and Fabry-Perot (FP) optical modes. The proposed structure includes an integration of a micro-cavity filled with liquid crystals with high anisotropy and a layer of gold nanoislands (NIs). The optical absorption of NI is controllably discretized to the narrow-width modes, called "hybrid modes (HM)," due to the interplay between FP and plasmonic modes. HM could demonstrate a strongly intensified and diminished absorption, compared to the absorption of the bare gold layer. Based on the active plasmonic experiments, the HM boosted the figure of merit related to activation capability up to 40 times and subsequently experienced impressive spectral shifts, leading to very wavelength-selective changes. The theoretical simulation of the HM is provided to suggest relevant insights into the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, A.; Yeo, I.; Tsvirkun, V.
2016-04-18
We investigate the non-linear mechanical dynamics of a nano-optomechanical mirror formed by a suspended membrane pierced by a photonic crystal. By applying to the mirror a periodic electrostatic force induced by interdigitated electrodes integrated below the membrane, we evidence superharmonic resonances of our nano-electro-mechanical system; the constant phase shift of the oscillator across the resonance tongues is observed on the onset of principal harmonic and subharmonic excitation regimes.
Zhuang, Leimeng; Khan, Muhammad Rezaul; Beeker, Willem; Leinse, Arne; Heideman, René; Roeloffzen, Chris
2012-11-19
We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.
Bridging ultrahigh-Q devices and photonic circuits
NASA Astrophysics Data System (ADS)
Yang, Ki Youl; Oh, Dong Yoon; Lee, Seung Hoon; Yang, Qi-Fan; Yi, Xu; Shen, Boqiang; Wang, Heming; Vahala, Kerry
2018-05-01
Optical microresonators are essential to a broad range of technologies and scientific disciplines. However, many of their applications rely on discrete devices to attain challenging combinations of ultra-low-loss performance (ultrahigh Q) and resonator design requirements. This prevents access to scalable fabrication methods for photonic integration and lithographic feature control. Indeed, finding a microfabrication bridge that connects ultrahigh-Q device functions with photonic circuits is a priority of the microcavity field. Here, an integrated resonator having a record Q factor over 200 million is presented. Its ultra-low-loss and flexible cavity design brings performance to integrated systems that has been the exclusive domain of discrete silica and crystalline microcavity devices. Two distinctly different devices are demonstrated: soliton sources with electronic repetition rates and high-coherence/low-threshold Brillouin lasers. This multi-device capability and performance from a single integrated cavity platform represents a critical advance for future photonic circuits and systems.
Multiple detuned-resonator induced transparencies in MIM plasmonic waveguide
NASA Astrophysics Data System (ADS)
Liu, Li; Xia, Sheng-Xuan; Luo, Xin; Zhai, Xiang; Yu, Ya-Bin; Wang, Ling-Ling
2018-07-01
We propose a simple plasmonic waveguide system based on two-detuned resonators, which demonstrates multiple detuned-resonator induced transparencies at visible and near-infrared region. The performance of electromagnetic responses can be agile manipulated by tuning the asymmetry degree of the structure and the width of the split gap. Three transmission dips exist with the symmetrical design while three peaks emerge between the dip-position of the transmission spectra with two detuned resonators. The physical mechanism behind the plasmon-induced transparency (PIT) resonance is revealed as being attributed to the constructive interference between the confined modes in the detuned resonators. The former tend to the role of two coupled radiative oscillators. The work may open up avenues for the control of light in highly integrated optical circuits.
Andreas Vesalius' 500th Anniversary: Initial Integral Understanding of Voice Production.
Brinkman, Romy J; Hage, J Joris
2017-01-01
Voice production relies on the integrated functioning of a three-part system: respiration, phonation and resonance, and articulation. To commemorate the 500th anniversary of the great anatomist Andreas Vesalius (1515-1564), we report on his understanding of this integral system. The text of Vesalius' masterpiece De Humani Corporis Fabrica Libri Septum and an eyewitness report of the public dissection of three corpses by Vesalius in Bologna, Italy, in 1540, were searched for references to the voice-producing anatomical structures and their function. We clustered the traced, separate parts for the first time. We found that Vesalius recognized the importance for voice production of many details of the respiratory system, the voice box, and various structures of resonance and articulation. He stressed that voice production was a cerebral function and extensively recorded the innervation of the voice-producing organs by the cranial nerves. Vesalius was the first to publicly record the concept of voice production as an integrated and cerebrally directed function of respiration, phonation and resonance, and articulation. In doing so nearly 500 years ago, he laid a firm basis for the understanding of the physiology of voice production and speech and its management as we know it today. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Singer, Neomi; Podlipsky, Ilana; Esposito, Fabrizio; Okon-Singer, Hadas; Andelman, Fani; Kipervasser, Svetlana; Neufeld, Miri Y.; Goebel, Rainer; Fried, Itzhak; Hendler, Talma
2015-01-01
Our emotions tend to be directed towards someone or something. Such emotional intentionality calls for the integration between two streams of information; abstract hedonic value and its associated concrete content. In a previous functional magnetic resonance imaging (fMRI) study we found that the combination of these two streams, as modeled by short emotional music excerpts and neutral film clips, was associated with synergistic activation in both temporal-limbic (TL) and ventral-lateral PFC (vLPFC) regions. This additive effect implies the integration of domain-specific ‘affective’ and ‘cognitive’ processes. Yet, the low temporal resolution of the fMRI limits the characterization of such cross-domain integration. To this end, we complemented the fMRI data with intracranial electroencephalogram (iEEG) recordings from twelve patients with intractable epilepsy. As expected, the additive fMRI activation in the amygdala and vLPFC was associated with distinct spatio-temporal iEEG patterns among electrodes situated within the vicinity of the fMRI activation foci. On the one hand, TL channels exhibited a transient (0–500 msec) increase in gamma power (61–69 Hz), possibly reflecting initial relevance detection or hedonic value tagging. On the other hand, vLPFC channels showed sustained (1–12 sec) suppression of low frequency power (2.3–24 Hz), possibly mediating changes in gating, enabling an on-going readiness for content-based processing of emotionally tagged signals. Moreover, an additive effect in delta-gamma phase-amplitude coupling (PAC) was found among the TL channels, possibly reflecting the integration between distinct domain specific processes. Together, this study provides a multi-faceted neurophysiological signature for computations that possibly underlie emotional intentionality in humans. PMID:25288171
Singer, Neomi; Podlipsky, Ilana; Esposito, Fabrizio; Okon-Singer, Hadas; Andelman, Fani; Kipervasser, Svetlana; Neufeld, Miri Y; Goebel, Rainer; Fried, Itzhak; Hendler, Talma
2014-11-01
Our emotions tend to be directed towards someone or something. Such emotional intentionality calls for the integration between two streams of information; abstract hedonic value and its associated concrete content. In a previous functional magnetic resonance imaging (fMRI) study we found that the combination of these two streams, as modeled by short emotional music excerpts and neutral film clips, was associated with synergistic activation in both temporal-limbic (TL) and ventral-lateral PFC (vLPFC) regions. This additive effect implies the integration of domain-specific 'affective' and 'cognitive' processes. Yet, the low temporal resolution of the fMRI limits the characterization of such cross-domain integration. To this end, we complemented the fMRI data with intracranial electroencephalogram (iEEG) recordings from twelve patients with intractable epilepsy. As expected, the additive fMRI activation in the amygdala and vLPFC was associated with distinct spatio-temporal iEEG patterns among electrodes situated within the vicinity of the fMRI activation foci. On the one hand, TL channels exhibited a transient (0-500 msec) increase in gamma power (61-69 Hz), possibly reflecting initial relevance detection or hedonic value tagging. On the other hand, vLPFC channels showed sustained (1-12 sec) suppression of low frequency power (2.3-24 Hz), possibly mediating changes in gating, enabling an on-going readiness for content-based processing of emotionally tagged signals. Moreover, an additive effect in delta-gamma phase-amplitude coupling (PAC) was found among the TL channels, possibly reflecting the integration between distinct domain specific processes. Together, this study provides a multi-faceted neurophysiological signature for computations that possibly underlie emotional intentionality in humans. Copyright © 2014 Elsevier Ltd. All rights reserved.
MacKillop, James; Amlung, Michael T; Wier, Lauren M; David, Sean P; Ray, Lara A; Bickel, Warren K; Sweet, Lawrence H
2012-04-30
Neuroeconomics integrates behavioral economics and cognitive neuroscience to understand the neurobiological basis for normative and maladaptive decision making. Delay discounting is a behavioral economic index of impulsivity that reflects capacity to delay gratification and has been consistently associated with nicotine dependence. This preliminary study used functional magnetic resonance imaging to examine delay discounting for money and cigarette rewards in 13 nicotine dependent adults. Significant differences between preferences for smaller immediate rewards and larger delayed rewards were evident in a number of regions of interest (ROIs), including the medial prefrontal cortex, anterior insular cortex, middle temporal gyrus, middle frontal gyrus, and cingulate gyrus. Significant differences between money and cigarette rewards were generally lateralized, with cigarette choices associated with left hemisphere activation and money choices associated with right hemisphere activation. Specific ROI differences included the posterior parietal cortex, medial and middle frontal gyrus, ventral striatum, temporoparietal cortex, and angular gyrus. Impulsivity as measured by behavioral choices was significantly associated with both individual ROIs and a combined ROI model. These findings provide initial evidence in support of applying a neuroeconomic approach to understanding nicotine dependence. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Electrochemically addressable trisradical rotaxanes organized within a metal–organic framework
McGonigal, Paul R.; Deria, Pravas; Hod, Idan; ...
2015-08-17
The organization of trisradical rotaxanes within the channels of a Zr 6-based metal–organic framework (NU-1000) has been achieved postsynthetically by solvent-assisted ligand incorporation. Robust ZrIV–carboxylate bonds are forged between the Zr clusters of NU-1000 and carboxylic acid groups of rotaxane precursors (semirotaxanes) as part of this building block replacement strategy. Ultraviolet–visible–near-infrared (UV-Vis-NIR), electron paramagnetic resonance (EPR), and 1H nuclear magnetic resonance (NMR) spectroscopies all confirm the capture of redox-active rotaxanes within the mesoscale hexagonal channels of NU-1000. Cyclic voltammetry measurements performed on electroactive thin films of the resulting material indicate that redox-active viologen subunits located on the rotaxane components canmore » be accessed electrochemically in the solid state. In contradistinction to previous methods, this strategy for the incorporation of mechanically interlocked molecules within porous materials circumvents the need for de novo synthesis of a metal–organic framework, making it a particularly convenient approach for the design and creation of solid-state molecular switches and machines. In conclusion, the results presented here provide proof-of-concept for the application of postsynthetic transformations in the integration of dynamic molecular machines with robust porous frameworks.« less
Advances in fMRI Real-Time Neurofeedback.
Watanabe, Takeo; Sasaki, Yuka; Shibata, Kazuhisa; Kawato, Mitsuo
2017-12-01
Functional magnetic resonance imaging (fMRI) neurofeedback is a type of biofeedback in which real-time online fMRI signals are used to self-regulate brain function. Since its advent in 2003 significant progress has been made in fMRI neurofeedback techniques. Specifically, the use of implicit protocols, external rewards, multivariate analysis, and connectivity analysis has allowed neuroscientists to explore a possible causal involvement of modified brain activity in modified behavior. These techniques have also been integrated into groundbreaking new neurofeedback technologies, specifically decoded neurofeedback (DecNef) and functional connectivity-based neurofeedback (FCNef). By modulating neural activity and behavior, DecNef and FCNef have substantially advanced both basic and clinical research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Content-specific evidence accumulation in inferior temporal cortex during perceptual decision-making
Tremel, Joshua J.; Wheeler, Mark E.
2015-01-01
During a perceptual decision, neuronal activity can change as a function of time-integrated evidence. Such neurons may serve as decision variables, signaling a choice when activity reaches a boundary. Because the signals occur on a millisecond timescale, translating to human decision-making using functional neuroimaging has been challenging. Previous neuroimaging work in humans has identified patterns of neural activity consistent with an accumulation account. However, the degree to which the accumulating neuroimaging signals reflect specific sources of perceptual evidence is unknown. Using an extended face/house discrimination task in conjunction with cognitive modeling, we tested whether accumulation signals, as measured using functional magnetic resonance imaging (fMRI), are stimulus-specific. Accumulation signals were defined as a change in the slope of the rising edge of activation corresponding with response time (RT), with higher slopes associated with faster RTs. Consistent with an accumulation account, fMRI activity in face- and house-selective regions in the inferior temporal cortex increased at a rate proportional to decision time in favor of the preferred stimulus. This finding indicates that stimulus-specific regions perform an evidence integrative function during goal-directed behavior and that different sources of evidence accumulate separately. We also assessed the decision-related function of other regions throughout the brain and found that several regions were consistent with classifications from prior work, suggesting a degree of domain generality in decision processing. Taken together, these results provide support for an integration-to-boundary decision mechanism and highlight possible roles of both domain-specific and domain-general regions in decision evidence evaluation. PMID:25562821
Keerativittayayut, Ruedeerat; Aoki, Ryuta; Sarabi, Mitra Taghizadeh; Jimura, Koji; Nakahara, Kiyoshi
2018-06-18
Although activation/deactivation of specific brain regions have been shown to be predictive of successful memory encoding, the relationship between time-varying large-scale brain networks and fluctuations of memory encoding performance remains unclear. Here we investigated time-varying functional connectivity patterns across the human brain in periods of 30-40 s, which have recently been implicated in various cognitive functions. During functional magnetic resonance imaging, participants performed a memory encoding task, and their performance was assessed with a subsequent surprise memory test. A graph analysis of functional connectivity patterns revealed that increased integration of the subcortical, default-mode, salience, and visual subnetworks with other subnetworks is a hallmark of successful memory encoding. Moreover, multivariate analysis using the graph metrics of integration reliably classified the brain network states into the period of high (vs. low) memory encoding performance. Our findings suggest that a diverse set of brain systems dynamically interact to support successful memory encoding. © 2018, Keerativittayayut et al.
NASA Astrophysics Data System (ADS)
Li, Huilin; Nguyen, Hong Hanh; Ogorzalek Loo, Rachel R.; Campuzano, Iain D. G.; Loo, Joseph A.
2018-02-01
Mass spectrometry (MS) has become a crucial technique for the analysis of protein complexes. Native MS has traditionally examined protein subunit arrangements, while proteomics MS has focused on sequence identification. These two techniques are usually performed separately without taking advantage of the synergies between them. Here we describe the development of an integrated native MS and top-down proteomics method using Fourier-transform ion cyclotron resonance (FTICR) to analyse macromolecular protein complexes in a single experiment. We address previous concerns of employing FTICR MS to measure large macromolecular complexes by demonstrating the detection of complexes up to 1.8 MDa, and we demonstrate the efficacy of this technique for direct acquirement of sequence to higher-order structural information with several large complexes. We then summarize the unique functionalities of different activation/dissociation techniques. The platform expands the ability of MS to integrate proteomics and structural biology to provide insights into protein structure, function and regulation.
Siddiqui, M Minhaj; Truong, Hong; Rais-Bahrami, Soroush; Stamatakis, Lambros; Logan, Jennifer; Walton-Diaz, Annerleim; Turkbey, Baris; Choyke, Peter L; Wood, Bradford J; Simon, Richard M; Pinto, Peter A
2015-06-01
Multiparametric magnetic resonance imaging may be beneficial in the search for rational ways to decrease prostate cancer intervention in patients on active surveillance. We applied a previously generated nomogram based on multiparametric magnetic resonance imaging to predict active surveillance eligibility based on repeat biopsy outcomes. We reviewed the records of 85 patients who met active surveillance criteria at study entry based on initial biopsy and who then underwent 3.0 Tesla multiparametric magnetic resonance imaging with subsequent magnetic resonance imaging/ultrasound fusion guided prostate biopsy between 2007 and 2012. We assessed the accuracy of a previously published nomogram in patients on active surveillance before confirmatory biopsy. For each cutoff we determined the number of biopsies avoided (ie reliance on magnetic resonance imaging alone without rebiopsy) over the full range of nomogram cutoffs. We assessed the performance of the multiparametric magnetic resonance imaging active surveillance nomogram based on a decision to perform biopsy at various nomogram generated probabilities. Based on cutoff probabilities of 19% to 32% on the nomogram the number of patients who could be spared repeat biopsy was 27% to 68% of the active surveillance cohort. The sensitivity of the test in this interval was 97% to 71% and negative predictive value was 91% to 81%. Multiparametric magnetic resonance imaging based nomograms may reasonably decrease the number of repeat biopsies in patients on active surveillance by as much as 68%. Analysis over the full range of nomogram generated probabilities allows patient and caregiver preference based decision making on the risk assumed for the benefit of fewer repeat biopsies. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Coupled-resonator vertical-cavity lasers with two active gain regions
Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.
2003-05-20
A new class of coupled-resonator vertical-cavity semiconductor lasers has been developed. These lasers have multiple resonant cavities containing regions of active laser media, resulting in a multi-terminal laser component with a wide range of novel properties.
Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope.
Lee, Jungshin; Yun, Sung Wook; Rhim, Jaewook
2016-04-20
A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing the control scheme. In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision controller, the electromechanical modelling and signal processing must be pre-performed accurately. Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric module and charge amplifier is performed by considering the mode shape of a thin hemispherical shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low maneuverability systems. The differential control scheme is easily capable of rejecting the common mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies. In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature and rate control loop. All controllers are designed on basis of a digital PI controller. The signal processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA and DSP board with these algorithms is verified through experiments.
Lim, Jaehyun; Kim, Hyunsoo; Jackson, Thomas; Choi, Kyusun; Kenny, David
2010-09-01
A novel design for a chip-scale miniature oven-controlled crystal oscillator (OCXO) is presented. In this design, all the main components of an OCXO--consisting of an oscillator, a temperature sensor, a heater, and temperature-control circuitry--are integrated on a single CMOS chip. The OCXO package size can be reduced significantly with this design, because the resonator does not require a separate package and most of the circuitry is integrated on a single CMOS chip. Other characteristics such as power consumption and warm-up time are also improved. Two different types of quartz resonators, an AT-cut tab mesa-type quartz crystal and a frame enclosed resonator, allow miniaturization of the OCXO structure. Neither of these quartz resonator types requires a separate package inside the oven structure; therefore, they can each be directly integrated with the custom-designed CMOS chip. The miniature OCXO achieves a frequency stability of +/- 0.35 ppm with an AT-cut tab mesa-type quartz crystal in the temperature range of 0 °C to 60 °C. The maximum power consumption of this miniature OCXO is 1.2 W at start-up and 303 mW at steady state. The warm-up time to reach the steady state is 190 s. These results using the proposed design are better than or the same as high-frequency commercial OCXOs.
Measurement of Quantum Interference in a Silicon Ring Resonator Photon Source.
Steidle, Jeffrey A; Fanto, Michael L; Preble, Stefan F; Tison, Christopher C; Howland, Gregory A; Wang, Zihao; Alsing, Paul M
2017-04-04
Silicon photonic chips have the potential to realize complex integrated quantum information processing circuits, including photon sources, qubit manipulation, and integrated single-photon detectors. Here, we present the key aspects of preparing and testing a silicon photonic quantum chip with an integrated photon source and two-photon interferometer. The most important aspect of an integrated quantum circuit is minimizing loss so that all of the generated photons are detected with the highest possible fidelity. Here, we describe how to perform low-loss edge coupling by using an ultra-high numerical aperture fiber to closely match the mode of the silicon waveguides. By using an optimized fusion splicing recipe, the UHNA fiber is seamlessly interfaced with a standard single-mode fiber. This low-loss coupling allows the measurement of high-fidelity photon production in an integrated silicon ring resonator and the subsequent two-photon interference of the produced photons in a closely integrated Mach-Zehnder interferometer. This paper describes the essential procedures for the preparation and characterization of high-performance and scalable silicon quantum photonic circuits.
Chip-integrated optical power limiter based on an all-passive micro-ring resonator
NASA Astrophysics Data System (ADS)
Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang
2014-10-01
Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.
Nagel, Michael; Bolivar, Peter Haring; Brucherseifer, Martin; Kurz, Heinrich; Bosserhoff, Anja; Büttner, Reinhard
2002-04-01
A promising label-free approach for the analysis of genetic material by means of detecting the hybridization of polynucleotides with electromagnetic waves at terahertz (THz) frequencies is presented. Using an integrated waveguide approach, incorporating resonant THz structures as sample carriers and transducers for the analysis of the DNA molecules, we achieve a sensitivity down to femtomolar levels. The approach is demonstrated with time-domain ultrafast techniques based on femtosecond laser pulses for generating and electro-optically detecting broadband THz signals, although the principle can certainly be transferred to other THz technologies.
Graphene–Metamaterial Photodetectors for Integrated Infrared Sensing
Luxmoore, Isaac. J.; Liu, Peter Q.; Li, Penglei; ...
2016-06-01
We study metamaterial-enhanced graphene photodetectors operating in the mid-IR to THz. The detector element consists of a graphene ribbon embedded within a dual-metal split ring resonator, which acts like a cavity to enhance the absorption of electromagnetic radiation by the graphene ribbon, while the asymmetric metal contacts enable photothermoelectric detection. The detectors we designed for the mid-IR demonstrate peak responsivity (referenced to total power) of ~120 mV/W at 1500 cm -1 and are employed in the spectroscopic evaluation of vibrational resonances, thus demonstrating a key step toward a platform for integrated surface-enhanced sensing.
NASA Astrophysics Data System (ADS)
Pena, Rodrigo F. O.; Ceballos, Cesar C.; Lima, Vinicius; Roque, Antonio C.
2018-04-01
In a neuron with hyperpolarization activated current (Ih), the correct input frequency leads to an enhancement of the output response. This behavior is known as resonance and is well described by the neuronal impedance. In a simple neuron model we derive equations for the neuron's resonance and we link its frequency and existence with the biophysical properties of Ih. For a small voltage change, the component of the ratio of current change to voltage change (d I /d V ) due to the voltage-dependent conductance change (d g /d V ) is known as derivative conductance (GhDer). We show that both GhDer and the current activation kinetics (characterized by the activation time constant τh) are mainly responsible for controlling the frequency and existence of resonance. The increment of both factors (GhDer and τh) greatly contributes to the appearance of resonance. We also demonstrate that resonance is voltage dependent due to the voltage dependence of GhDer. Our results have important implications and can be used to predict and explain resonance properties of neurons with the Ih current.
NASA Astrophysics Data System (ADS)
Galushina, T. Yu.; Titarenko, E. Yu
2014-12-01
The purpose of this work is the investigation of probabilistic orbital evolution of near-Earth asteroids (NEA) moving in the vicinity of resonances with Mercury. In order to identify such objects the equations of all NEA motion have been integrated on the time interval (1000, 3000 years). The initial data has been taken from the E. Bowell catalog on February 2014. The motion equations have been integrated numerically by Everhart method. The resonance characteristics are critical argument that defines the connection longitude of the asteroid and the planet and its time derivative, called resonance "band". The study has identified 15 asteroids moving in the vicinity of different resonances with Mercury. Six of them (52381 1993 HA, 172034 2001 WR1, 2008 VB1, 2009 KT4, 2013 CQ35, 2013 TH) move in the vicinity of the resonance 1/6, five of them (142561 2002 TX68, 159608 2002 AC2, 241370 2008 LW8, 2006 UR216, 2009 XB2) move in the vicinity of the resonance 1/9 and one by one asteroid moves in the vicinity of resonances 1/3, 1/7, 1/8 and 2/7 (2006 SE6, 2002 CV46, 2013 CN35 and 2006 VY2 respectively). The orbits of all identified asteroids have been improved by least square method using the available optical observations and probabilistic orbital evolution has been investigated. Improvement have been carried out at the time of the best conditionality in accounting perturbations from the major planets, Pluto, Moon, Ceres, Pallas and Vesta, the relativistic effects from the Sun and the Solar oblateness. The estimation of the nonlinearity factor has showed that for all the considered NEA it does not exceed the critical value of 0.1, which makes it possible to use the linear method for constructing the initial probability domain. The domain has been built in the form of an ellipsoid in six-dimensional phase space of coordinates and velocity components on the base of the full covariance matrix, the center of ellipsoid is the nominal orbit obtained by improving. The 10 000 clones distributed according to the normal law has been chosen in the initial probability domain. The nonlinear method by numerical integration of the differential equations of each clone motion has been used for study of probabilistic orbital evolution. The force model has corresponded to the model used in the improvement. The time interval has been limited by ephemeris DE406 and accuracy of integration and has been amounted for different objects from two to six thousand years. As a result of the orbit improvement from the available optical positional observations it has been turned out that the orbits of NEA 2006 SE6, 2009 KT4, 2013 CQ35, 2013 TH, 2002 CV46, 2013 CN35 and 2006 VY2 are poorly defined, that does not allow to conclude about their resonance capture. The remaining objects can be divided into two classes. Asteroids 172034 2001 WR1, 2008 VB1, 159608 2002 AC2 and 2006 UR216 move in the vicinity of the resonance over the entire interval of the study. Probability domains of NEA 52381 1993 HA, 142561 2002 TX68, 241370 2008 LW8 и 2009 XB2 are increase significantly under the influence of close encounters, and part of clones are out of resonance. It should be noted that for all the considered objects the critical argument varies around the moving center of libration or circulates that suggests instability resonance.
Nyadong, Leonard; Harris, Glenn A.; Balayssac, Stéphane; Galhena, Asiri S.; Malet-Martino, Myriam; Martino, Robert; Parry, R. Mitchell; Wang, May Dongmei; Fernández, Facundo M.; Gilard, Véronique
2016-01-01
During the past decade, there has been a marked increase in the number of reported cases involving counterfeit medicines in developing and developed countries. Particularly, artesunate-based antimalarial drugs have been targeted, because of their high demand and cost. Counterfeit antimalarials can cause death and can contribute to the growing problem of drug resistance, particularly in southeast Asia. In this study, the complementarity of two-dimensional diffusion-ordered 1H nuclear magnetic resonance spectroscopy (2D DOSY 1H NMR) with direct analysis in real-time mass spectrometry (DART MS) and desorption electrospray ionization mass spectrometry (DESI MS) was assessed for pharmaceutical forensic purposes. Fourteen different artesunate tablets, representative of what can be purchased from informal sources in southeast Asia, were investigated with these techniques. The expected active pharmaceutical ingredient was detected in only five formulations via both nuclear magnetic resonance (NMR) and mass spectrometry (MS) methods. Common organic excipients such as sucrose, lactose, stearate, dextrin, and starch were also detected. The graphical representation of DOSY 1H NMR results proved very useful for establishing similarities among groups of samples, enabling counterfeit drug “chemotyping”. In addition to bulk- and surface-average analyses, spatially resolved information on the surface composition of counterfeit and genuine antimalarial formulations was obtained using DESI MS that was performed in the imaging mode, which enabled one to visualize the homogeneity of both genuine and counterfeit drug samples. Overall, this study suggests that 2D DOSY 1H NMR, combined with ambient MS, comprises a powerful suite of instrumental analysis methodologies for the integral characterization of counterfeit antimalarials. PMID:19453162
Nyadong, Leonard; Harris, Glenn A; Balayssac, Stéphane; Galhena, Asiri S; Malet-Martino, Myriam; Martino, Robert; Parry, R Mitchell; Wang, May Dongmei; Fernández, Facundo M; Gilard, Véronique
2009-06-15
During the past decade, there has been a marked increase in the number of reported cases involving counterfeit medicines in developing and developed countries. Particularly, artesunate-based antimalarial drugs have been targeted, because of their high demand and cost. Counterfeit antimalarials can cause death and can contribute to the growing problem of drug resistance, particularly in southeast Asia. In this study, the complementarity of two-dimensional diffusion-ordered (1)H nuclear magnetic resonance spectroscopy (2D DOSY (1)H NMR) with direct analysis in real-time mass spectrometry (DART MS) and desorption electrospray ionization mass spectrometry (DESI MS) was assessed for pharmaceutical forensic purposes. Fourteen different artesunate tablets, representative of what can be purchased from informal sources in southeast Asia, were investigated with these techniques. The expected active pharmaceutical ingredient was detected in only five formulations via both nuclear magnetic resonance (NMR) and mass spectrometry (MS) methods. Common organic excipients such as sucrose, lactose, stearate, dextrin, and starch were also detected. The graphical representation of DOSY (1)H NMR results proved very useful for establishing similarities among groups of samples, enabling counterfeit drug "chemotyping". In addition to bulk- and surface-average analyses, spatially resolved information on the surface composition of counterfeit and genuine antimalarial formulations was obtained using DESI MS that was performed in the imaging mode, which enabled one to visualize the homogeneity of both genuine and counterfeit drug samples. Overall, this study suggests that 2D DOSY (1)H NMR, combined with ambient MS, comprises a powerful suite of instrumental analysis methodologies for the integral characterization of counterfeit antimalarials.
Chen, Min; Singh, Leena; Xu, Ningning; Singh, Ranjan; Zhang, Weili; Xie, Lijuan
2017-06-26
Terahertz sensing of highly absorptive aqueous solutions remains challenging due to strong absorption of water in the terahertz regime. Here, we experimentally demonstrate a cost-effective metamaterial-based sensor integrated with terahertz time-domain spectroscopy for highly absorptive water-methanol mixture sensing. This metamaterial has simple asymmetric wire structures that support multiple resonances including a fundamental Fano resonance and higher order dipolar resonance in the terahertz regime. Both the resonance modes have strong intensity in the transmission spectra which we exploit for detection of the highly absorptive water-methanol mixtures. The experimentally characterized sensitivities of the Fano and dipole resonances for the water-methanol mixtures are found to be 160 and 305 GHz/RIU, respectively. This method provides a robust route for metamaterial-assisted terahertz sensing of highly absorptive chemical and biochemical materials with multiple resonances and high accuracy.
Segregation and Integration of Auditory Streams when Listening to Multi-Part Music
Ragert, Marie; Fairhurst, Merle T.; Keller, Peter E.
2014-01-01
In our daily lives, auditory stream segregation allows us to differentiate concurrent sound sources and to make sense of the scene we are experiencing. However, a combination of segregation and the concurrent integration of auditory streams is necessary in order to analyze the relationship between streams and thus perceive a coherent auditory scene. The present functional magnetic resonance imaging study investigates the relative role and neural underpinnings of these listening strategies in multi-part musical stimuli. We compare a real human performance of a piano duet and a synthetic stimulus of the same duet in a prioritized integrative attention paradigm that required the simultaneous segregation and integration of auditory streams. In so doing, we manipulate the degree to which the attended part of the duet led either structurally (attend melody vs. attend accompaniment) or temporally (asynchronies vs. no asynchronies between parts), and thus the relative contributions of integration and segregation used to make an assessment of the leader-follower relationship. We show that perceptually the relationship between parts is biased towards the conventional structural hierarchy in western music in which the melody generally dominates (leads) the accompaniment. Moreover, the assessment varies as a function of both cognitive load, as shown through difficulty ratings and the interaction of the temporal and the structural relationship factors. Neurally, we see that the temporal relationship between parts, as one important cue for stream segregation, revealed distinct neural activity in the planum temporale. By contrast, integration used when listening to both the temporally separated performance stimulus and the temporally fused synthetic stimulus resulted in activation of the intraparietal sulcus. These results support the hypothesis that the planum temporale and IPS are key structures underlying the mechanisms of segregation and integration of auditory streams, respectively. PMID:24475030
Segregation and integration of auditory streams when listening to multi-part music.
Ragert, Marie; Fairhurst, Merle T; Keller, Peter E
2014-01-01
In our daily lives, auditory stream segregation allows us to differentiate concurrent sound sources and to make sense of the scene we are experiencing. However, a combination of segregation and the concurrent integration of auditory streams is necessary in order to analyze the relationship between streams and thus perceive a coherent auditory scene. The present functional magnetic resonance imaging study investigates the relative role and neural underpinnings of these listening strategies in multi-part musical stimuli. We compare a real human performance of a piano duet and a synthetic stimulus of the same duet in a prioritized integrative attention paradigm that required the simultaneous segregation and integration of auditory streams. In so doing, we manipulate the degree to which the attended part of the duet led either structurally (attend melody vs. attend accompaniment) or temporally (asynchronies vs. no asynchronies between parts), and thus the relative contributions of integration and segregation used to make an assessment of the leader-follower relationship. We show that perceptually the relationship between parts is biased towards the conventional structural hierarchy in western music in which the melody generally dominates (leads) the accompaniment. Moreover, the assessment varies as a function of both cognitive load, as shown through difficulty ratings and the interaction of the temporal and the structural relationship factors. Neurally, we see that the temporal relationship between parts, as one important cue for stream segregation, revealed distinct neural activity in the planum temporale. By contrast, integration used when listening to both the temporally separated performance stimulus and the temporally fused synthetic stimulus resulted in activation of the intraparietal sulcus. These results support the hypothesis that the planum temporale and IPS are key structures underlying the mechanisms of segregation and integration of auditory streams, respectively.
Package Holds Five Monolithic Microwave Integrated Circuits
NASA Technical Reports Server (NTRS)
Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.
1996-01-01
Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.
Audience effects on the neural correlates of relational reasoning in adolescence.
Dumontheil, Iroise; Wolf, Laura K; Blakemore, Sarah-Jayne
2016-07-01
Adolescents are particularly sensitive to peer influence. This may partly be due to an increased salience of peers during adolescence. We investigated the effect of being observed by a peer on a cognitively challenging task, relational reasoning, which requires the evaluation and integration of multiple mental representations. Relational reasoning tasks engage a fronto-parietal network including the inferior parietal cortex, pre-supplementary motor area, dorsolateral and rostrolateral prefrontal cortices. Using functional magnetic resonance imaging (fMRI), peer audience effects on activation in this fronto-parietal network were compared in a group of 19 female mid-adolescents (aged 14-16 years) and 14 female adults (aged 23-28 years). Adolescent and adult relational reasoning accuracy was influenced by a peer audience as a function of task difficulty: the presence of a peer audience led to decreased accuracy in the complex, relational integration condition in both groups of participants. The fMRI results demonstrated that a peer audience differentially modulated activation in regions of the fronto-parietal network in adolescents and adults. Activation was increased in adolescents in the presence of a peer audience, while this was not the case in adults. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ouzzane, Adil; Renard-Penna, Raphaele; Marliere, François; Mozer, Pierre; Olivier, Jonathan; Barkatz, Johann; Puech, Philippe; Villers, Arnauld
2015-08-01
Current selection criteria for active surveillance based on systematic biopsy underestimate prostate cancer volume and grade. We investigated the role of additional magnetic resonance imaging targeted biopsy in reclassifying patients eligible for active surveillance based on systematic biopsy. We performed a study at 2 institutions in a total of 281 men with increased prostate specific antigen. All men met certain criteria, including 1) prebiopsy magnetic resonance imaging, 12-core transrectal systematic biopsy and 2 additional magnetic resonance imaging targeted biopsies of lesions suspicious for cancer during the same sequence as systematic biopsy, and 2) eligibility for active surveillance based on systematic biopsy results. Criteria for active surveillance were prostate specific antigen less than 10 ng/ml, no Gleason grade 4/5, 5 mm or less involvement of any biopsy core and 2 or fewer positive systematic biopsy cores. Patient characteristics were compared between reclassified and nonreclassified groups based on magnetic resonance imaging targeted biopsy results. On magnetic resonance imaging 58% of the 281 patients had suspicious lesions. Magnetic resonance imaging targeted biopsy was positive for cancer in 81 of 163 patients (50%). Of 281 patients 28 (10%) were reclassified by magnetic resonance imaging targeted biopsy as ineligible for active surveillance based on Gleason score in 8, cancer length in 20 and Gleason score plus cancer length in 9. Suspicious areas on magnetic resonance imaging were in the anterior part of the prostate in 15 of the 28 men (54%). Reclassified patients had a smaller prostate volume (37 vs 52 cc) and were older (66.5 vs 63 years) than those who were not reclassified (p < 0.05). Magnetic resonance imaging targeted biopsy reclassified 10% of patients who were eligible for active surveillance based on systematic biopsy. Its incorporation into the active surveillance eligibility criteria may decrease the risk of reclassification to higher stages during followup. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Designing Birefringent Filters For Solid-State Lasers
NASA Technical Reports Server (NTRS)
Monosmith, Bryan
1992-01-01
Mathematical model enables design of filter assembly of birefringent plates as integral part of resonator cavity of tunable solid-state laser. Proper design treats polarization eigenstate of entire resonator as function of wavelength. Program includes software modules for variety of optical elements including Pockels cell, laser rod, quarter- and half-wave plates, Faraday rotator, and polarizers.
Mak, Anselm; Ren, Tao; Fu, Erin Hui-yun; Cheak, Alicia Ai-cia; Ho, Roger Chun-man
2012-06-01
To study the functional brain activation signals before and after sufficient disease control in patients with systemic lupus erythematosus (SLE) without clinical neuropsychiatric symptoms. Blood-oxygen-level-dependent signals during event-related functional magnetic resonance imaging brain were recorded, while 14 new-onset SLE patients and 14 demographically and intelligence quotient matched healthy controls performed the computer-based Wisconsin card sorting test for assessing executive function, which probes strategic planning and goal-directed task performance during feedback evaluation (FE) and response selection (RS), respectively. Composite beta maps were constructed by a general linear model to identify regions of cortical activation. Blood-oxygen-level-dependent functional magnetic resonance imaging signals were compared between (1) new-onset SLE patients and healthy controls and (2) SLE patients before and after sufficient control of their disease activity. During RS, SLE patients demonstrated significantly higher activation than healthy controls in both caudate bodies and Brodmann area (BA) 9 to enhance event anticipation, attention, and working memory, respectively, to compensate for the reduced activation during FE in BA6, 13, 24, and 32, which serve complex motor planning and decision-making, sensory integration, error detection, and conflict processing, respectively. Despite significant reduction of SLE activity, BA32 was activated during RS to compensate for reduced activation during FE in BA6, 9, 37, and 23/32, which serve motor planning, response inhibition and attention, color processing and word recognition, error detection, and conflict evaluation, respectively. Even without clinically overt neuropsychiatric symptoms, SLE patients recruited additional pathways to execute goal-directed tasks to compensate for their reduced strategic planning skill despite clinically sufficient disease control. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kliment'ev, S. I.; Kuprenyuk, V. I.; Lyubimov, V. V.; Sherstobitov, V. E.
1989-04-01
The results are given of calculations of the parameters of an unstable ring resonator with an internal angular selector based on a Fourier phase corrector. It is shown that the use of such a selector makes it possible to compensate partly for the effects of small-scale phase inhomogeneities and to reduce also the influence of the edge diffraction on the structure of the field in a resonator.
2012-05-29
the ring. At first, the resonating behavior of a typical SRR is noted by the red curve in Figure 13. Following that, with the omission of the inner...resonant frequency. Finally, in the third case, the resonance was eliminated altogether as shown in Figure 13 with the green curve . The ’short’ of the... Micromirror Devices (DMD) and phased array antenna design by controlling each element of the array or pixel electronically. 4.2.1 Numerical
Comparison of the CENTRM resonance processor to the NITAWL resonance processor in SCALE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollenbach, D.F.; Petrie, L.M.
1998-01-01
This report compares the MTAWL and CENTRM resonance processors in the SCALE code system. The cases examined consist of the International OECD/NEA Criticality Working Group Benchmark 20 problem. These cases represent fuel pellets partially dissolved in a borated solution. The assumptions inherent to the Nordheim Integral Treatment, used in MTAWL, are not valid for these problems. CENTRM resolves this limitation by explicitly calculating a problem dependent point flux from point cross sections, which is then used to create group cross sections.
Imaging of common breast implants and implant-related complications: A pictorial essay
Shah, Amisha T; Jankharia, Bijal B
2016-01-01
The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer. PMID:27413269
Imaging of common breast implants and implant-related complications: A pictorial essay.
Shah, Amisha T; Jankharia, Bijal B
2016-01-01
The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer.
Sánchez, E; Heredia, N; Camacho-Corona, M Del R; García, S
2013-12-01
The antimicrobial activity of Acacia farnesiana against Vibrio cholerae has been demonstrated; however, no information regarding its active compound or its mechanism of action has been documented. The active compound was isolated from A. farnesiana by bioassay-guided fractionation and identified as methyl gallate by nuclear magnetic resonance (NMR) techniques ((1) H NMR and (13) C NMR). The minimum bactericidal concentration (MBC) of methyl gallate and its effect on membrane integrity, cytoplasmic pH, membrane potential, ATP synthesis and gene expression of cholera toxin (ctx) from V. cholerae were determined. The MBC of methyl gallate ranged from 30 ± 1 to 50 ± 1 μg ml(-1) . Methyl gallate affected cell membrane integrity, causing a decrease in cytoplasmic pH (pHin , from 7·3 to <3·0), and membrane hyperpolarization, and ATP was no longer produced by the treated cells. However, methyl gallate did not affect ctx gene expression. Methyl gallate is a major antimicrobial compound from A. farnesiana that disturbs the membrane activity of V. cholerae. The effects of methyl gallate validate several traditional antimicrobial uses of A. farnesiana, and it is an attractive alternative to control V. cholerae. © 2013 The Society for Applied Microbiology.
Application of RF varactor using Ba(x)Sr(1-x)TiO3/TiO2/HR-Si substrate for reconfigurable radio.
Kim, Ki-Byoung; Park, Chul-Soon
2007-11-01
In this paper, the potential feasibility of integrating Ba(x)Sr(1-x)TiO3 (BST) films into Si wafer by adopting tunable interdigital capacitor (IDC) with TiO2 thin film buffer layer and a RF tunable active bandpass filter (BPF) using BST based capacitor are proposed. TiO2 as a buffer layer is grown onto Si substrate by atomic layer deposition (ALD) and the interdigital capacitor on BST(500 nm)/TiO2 (50 nm)/HR-Si is fabricated. BST interdigital tunable capacitor integrated on HR-Si substrate with high tunability and low loss tangent are characterized for their microwave performances. BST/TiO2/HR-Si IDC shows much enhanced tunability values of 40% and commutation quality factor (CQF) of 56.71. A resonator consists of an active capacitance circuit together with a BST varactor. The active capacitor is made of a field effect transistor (FET) that exhibits negative resistance as well as capacitance. The measured second order active BPF shows bandwidth of 110 MHz, insertion loss of about 1 dB at the 1.81 GHz center frequency and tuning frequency of 230 MHz (1.81-2.04 GHz).
Pharmacologic attenuation of cross-modal sensory augmentation within the chronic pain insula
Harte, Steven E.; Ichesco, Eric; Hampson, Johnson P.; Peltier, Scott J.; Schmidt-Wilcke, Tobias; Clauw, Daniel J.; Harris, Richard E.
2016-01-01
Abstract Pain can be elicited through all mammalian sensory pathways yet cross-modal sensory integration, and its relationship to clinical pain, is largely unexplored. Centralized chronic pain conditions such as fibromyalgia are often associated with symptoms of multisensory hypersensitivity. In this study, female patients with fibromyalgia demonstrated cross-modal hypersensitivity to visual and pressure stimuli compared with age- and sex-matched healthy controls. Functional magnetic resonance imaging revealed that insular activity evoked by an aversive level of visual stimulation was associated with the intensity of fibromyalgia pain. Moreover, attenuation of this insular activity by the analgesic pregabalin was accompanied by concomitant reductions in clinical pain. A multivariate classification method using support vector machines (SVM) applied to visual-evoked brain activity distinguished patients with fibromyalgia from healthy controls with 82% accuracy. A separate SVM classification of treatment effects on visual-evoked activity reliably identified when patients were administered pregabalin as compared with placebo. Both SVM analyses identified significant weights within the insular cortex during aversive visual stimulation. These data suggest that abnormal integration of multisensory and pain pathways within the insula may represent a pathophysiological mechanism in some chronic pain conditions and that insular response to aversive visual stimulation may have utility as a marker for analgesic drug development. PMID:27101425
NASA Technical Reports Server (NTRS)
Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)
2006-01-01
Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.
Kim, N Y; Dhakal, R; Adhikari, K K; Kim, E S; Wang, C
2015-05-15
A reusable robust radio frequency (RF) biosensor with a rectangular meandered line (RML) resonator on a gallium arsenide substrate by integrated passive device (IPD) technology was designed, fabricated and tested to enable the real-time identification of the glucose level in human serum. The air-bridge structure fabricated by an IPD technology was applied to the RML resonator to improve its sensitivity by increasing the magnitude of the return loss (S21). The resonance behaviour, based on S21 characteristics of the biosensor, was analysed at 9.20 GHz with human serum containing different glucose concentration ranging from 148-268 mg dl(-1), 105-225 mg dl(-1) and at a deionised (D) water glucose concentration in the range of 25- 500 mg dl(-1) for seven different samples. A calibration analysis was performed for the human serum from two different subjects and for D-glucose at a response time of 60 s; the reproducibility, the minimum shift in resonance frequency and the long-term stability of the signal were investigated. The feature characteristics based on the resonance concept after the use of serum as an analyte are modelled as an inductor, capacitor and resistor. The findings support the development of resonance-based sensing with an excellent sensitivity of 1.08 MHz per 1 mg dl(-1), a detection limit of 8.01 mg dl(-1), and a limit of quantisation of 24.30 mg dl(-1). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcioni, P.; Bressan, M.; Perregrini, L.
1995-08-01
Computer codes for the electromagnetic analysis of arbitrarily shaped cavities are very important for many applications, in particular for the design of interaction structures for particle accelerators. The design of accelerating cavities results in complicated shapes, that are obtained carrying on repeated analyses to optimize a number of parameters, such as Q-factors, beam coupling impedances, higher-order-mode spectrum, and so on. The interest in the calculation of many normalized modes derives also from the important role they play in the eigenvector expansion of the electromagnetic field in a closed region. The authors present an efficient algorithm to determine the resonant frequenciesmore » and the normalized modal fields of arbitrarily shaped cavity resonators filled with a lossless, isotropic, and homogeneous medium. The algorithm is based on the boundary integral method (BIM). The unknown current flowing on the cavity wall is considered inside a spherical resonator, rather than in free-space, as it is usual in the standard BIM. The electric field is expressed using the Green`s function of the spherical resonator, approximated by a real rational function of the frequency. Consequently, the discretized problem can be cast into the form of a real matrix linear eigenvalue problem, whose eigenvalues and eigenvectors yield the resonant frequencies and the associated modal currents. Since the algorithm does not require any frequency-by-frequency recalculation of the system matrices, computing time is much shorter than in the standard BIM, especially when many resonances must be found.« less
Magnetic resonance for laryngeal cancer.
Maroldi, Roberto; Ravanelli, Marco; Farina, Davide
2014-04-01
This review summarizes the most recent experiences on the integration of magnetic resonance in assessing the local extent of laryngeal cancer and detecting submucosal recurrences. Advances in magnetic resonance have been characterized by the development of technical solutions that shorten the acquisition time, thereby reducing motion artifacts, and increase the spatial resolution. Phased-array surface coils, directly applied to the neck, enable the use of parallel-imaging techniques, which greatly reduce the acquisition time, and amplify the signal intensity, being closer to the larynx. One of the most important drawbacks of this technique is the small field-of-view, restricting the imaged area to the larynx. Furthermore, diffusion-weighted imaging (DWI) has increased the set of magnetic resonance sequences. Differently from computed tomography (CT), which has only two variables (precontrast/postcontrast), magnetic resonance is based on a multiparameter analysis (T2-weighting and T1-weighting, DWI, and postcontrast acquisition). This multiparameter approach amplifies the contrast resolution. It has, also, permitted to differentiate scar tissue (after laser resection) from submucosal recurrent disease. In addition, DWI sequences have the potential of a more precise discrimination of peritumoral edema from neoplastic tissue, which may lead to improve the assessment of paraglottic space invasion. Magnetic resonance of the larynx is technically challenging. The use of surface coils and motion-reducing techniques is critical to achieve adequate image quality. The intrinsic high-contrast resolution is further increased by the integration of information from different sequences. When CT has not been conclusive, magnetic resonance is indicated in the pretreatment local assessment and in the suspicion of submucosal recurrence.
Chaos-Assisted Quantum Tunneling and Delocalization Caused by Resonance or Near-Resonance
NASA Astrophysics Data System (ADS)
Liang, Danfu; Zhang, Jiawei; Zhang, Xili
2018-05-01
We investigate the quantum transport of a single particle trapped in a tilted optical lattice modulated with periodical delta kicks, and attempt to figure out the relationship between chaos and delocalization or quantum tunneling. We illustrate some resonant parameter lines existing in both chaotic and regular parameter regions, and discover the velocity of delocalization of particle tends to faster in the resonant line as well as the lines in which the lattice tilt is an integral multiple n of tilt driving frequency in chaotic region. While the degree of localization is linked to the distance between parameter points and resonant lines. Those useful results can be experimentally applied to control chaos-assisted transport of single particle held in optical lattices.
Third-harmonic generation from Mie-type resonances of isolated all-dielectric nanoparticles
NASA Astrophysics Data System (ADS)
Melik-Gaykazyan, Elizaveta V.; Shcherbakov, Maxim R.; Shorokhov, Alexander S.; Staude, Isabelle; Brener, Igal; Neshev, Dragomir N.; Kivshar, Yuri S.; Fedyanin, Andrey A.
2017-03-01
Subwavelength silicon nanoparticles are known to support strongly localized Mie-type modes, including those with resonant electric and magnetic dipolar polarizabilities. Here we compare experimentally the efficiency of the third-harmonic generation from isolated silicon nanodiscs for resonant excitation at the two types of dipolar resonances. Using nonlinear spectroscopy, we observe that the magnetic dipolar mode yields more efficient third-harmonic radiation in contrast to the electric dipolar (ED) mode. This is further supported by full-wave numerical simulations, where the volume-integrated local fields and the directly simulated nonlinear response are shown to be negligible at the ED resonance compared with the magnetic one. This article is part of the themed issue 'New horizons for nanophotonics'.
Coupling Ideality of Integrated Planar High-Q Microresonators
NASA Astrophysics Data System (ADS)
Pfeiffer, Martin H. P.; Liu, Junqiu; Geiselmann, Michael; Kippenberg, Tobias J.
2017-02-01
Chip-scale optical microresonators with integrated planar optical waveguides are useful building blocks for linear, nonlinear, and quantum-optical photonic devices alike. Loss reduction through improving fabrication processes results in several integrated microresonator platforms attaining quality (Q ) factors of several millions. Beyond the improvement of the quality factor, the ability to operate the microresonator with high coupling ideality in the overcoupled regime is of central importance. In this regime, the dominant source of loss constitutes the coupling to a single desired output channel, which is particularly important not only for quantum-optical applications such as the generation of squeezed light and correlated photon pairs but also for linear and nonlinear photonics. However, to date, the coupling ideality in integrated photonic microresonators is not well understood, in particular, design-dependent losses and their impact on the regime of high ideality. Here we investigate design-dependent parasitic losses described by the coupling ideality of the commonly employed microresonator design consisting of a microring-resonator waveguide side coupled to a straight bus waveguide, a system which is not properly described by the conventional input-output theory of open systems due to the presence of higher-order modes. By systematic characterization of multimode high-Q silicon nitride microresonator devices, we show that this design can suffer from low coupling ideality. By performing 3D simulations, we identify the coupling to higher-order bus waveguide modes as the dominant origin of parasitic losses which lead to the low coupling ideality. Using suitably designed bus waveguides, parasitic losses are mitigated with a nearly unity ideality and strong overcoupling (i.e., a ratio of external coupling to internal resonator loss rate >9 ) are demonstrated. Moreover, we find that different resonator modes can exchange power through the coupler, which, therefore, constitutes a mechanism that induces modal coupling, a phenomenon known to distort resonator dispersion properties. Our results demonstrate the potential for significant performance improvements of integrated planar microresonators for applications in quantum optics and nonlinear photonics achievable by optimized coupler designs.
Escape of asteroids from the Hecuba gap
NASA Astrophysics Data System (ADS)
Michtchenko, T.; Ferraz-Mello, S.
1997-12-01
The dynamics of the 2/1 mean-motion asteroidal resonance with Jupiter is studied by numerical integration of the equations of motion of the Sun-Jupiter-Saturn-asteroid system. The measurement of the fundamental asteroidal frequencies by means of Fourier and wavelet analyses allows us to construct the web of the secular, secondary and Kozai resonances inside the 2/1- resonance boundaries. The structure of the phase space of the 2/1 resonance is discussed with emphasis on the acting depletion mechanisms due to presence of these inner resonances. Special attention is paid to the study of the middle-eccentricity depleted region. The importance of the great inequality of the Jupiter-Saturn system in the acceleration of the diffusion processes in this region is pointed out. The existence of a group of asteroids like (3789) Zhongguo, inside the 2/1 resonance, is also discussed.
Tuning Fano resonances with a nano-chamber of air.
Chen, Jianjun; He, Keke; Sun, Chengwei; Wang, Yujia; Li, Hongyun; Gong, Qihuang
2016-05-15
By designing a polymer-film-coated asymmetric metallic slit structure that only contains one nanocavity side-coupled with a subwavelength plasmonic waveguide, the Fano resonance is realized in the experiment. The Fano resonance originates from the interference between the narrow resonant spectra of the radiative light from the nanocavity and the broad nonresonant spectra of the directly transmitted light from the slit. The lateral dimension of the asymmetric slit is only 825 nm. Due to the presence of the soft polymer film, a nano-chamber of air is constructed. Based on the opto-thermal effect, the air volume in the nano-chamber is expanded by a laser beam, which blueshifts the Fano resonance. This tunable Fano resonance in such a submicron slit structure with a nano-chamber is of importance in the highly integrated plasmonic circuits.
NASA Astrophysics Data System (ADS)
Tsai, Nan-Chyuan; Sue, Chung-Yang
2010-02-01
Owing to the imposed but undesired accelerations such as quadrature error and cross-axis perturbation, the micro-machined gyroscope would not be unconditionally retained at resonant mode. Once the preset resonance is not sustained, the performance of the micro-gyroscope is accordingly degraded. In this article, a direct model reference adaptive control loop which is integrated with a modified disturbance estimating observer (MDEO) is proposed to guarantee the resonant oscillations at drive mode and counterbalance the undesired disturbance mainly caused by quadrature error and cross-axis perturbation. The parameters of controller are on-line innovated by the dynamic error between the MDEO output and expected response. In addition, Lyapunov stability theory is employed to examine the stability of the closed-loop control system. Finally, the efficacy of numerical evaluation on the exerted time-varying angular rate, which is to be detected and measured by the gyroscope, is verified by intensive simulations.
Gate-controlled electromechanical backaction induced by a quantum dot
NASA Astrophysics Data System (ADS)
Okazaki, Yuma; Mahboob, Imran; Onomitsu, Koji; Sasaki, Satoshi; Yamaguchi, Hiroshi
2016-04-01
Semiconductor-based quantum structures integrated into mechanical resonators have emerged as a unique platform for generating entanglement between macroscopic phononic and mesocopic electronic degrees of freedom. A key challenge to realizing this is the ability to create and control the coupling between two vastly dissimilar systems. Here, such coupling is demonstrated in a hybrid device composed of a gate-defined quantum dot integrated into a piezoelectricity-based mechanical resonator enabling milli-Kelvin phonon states to be detected via charge fluctuations in the quantum dot. Conversely, the single electron transport in the quantum dot can induce a backaction onto the mechanics where appropriate bias of the quantum dot can enable damping and even current-driven amplification of the mechanical motion. Such electron transport induced control of the mechanical resonator dynamics paves the way towards a new class of hybrid semiconductor devices including a current injected phonon laser and an on-demand single phonon emitter.
Kwon, Ohin; Woo, Eung Je; Yoon, Jeong-Rock; Seo, Jin Keun
2002-02-01
We developed a new image reconstruction algorithm for magnetic resonance electrical impedance tomography (MREIT). MREIT is a new EIT imaging technique integrated into magnetic resonance imaging (MRI) system. Based on the assumption that internal current density distribution is obtained using magnetic resonance imaging (MRI) technique, the new image reconstruction algorithm called J-substitution algorithm produces cross-sectional static images of resistivity (or conductivity) distributions. Computer simulations show that the spatial resolution of resistivity image is comparable to that of MRI. MREIT provides accurate high-resolution cross-sectional resistivity images making resistivity values of various human tissues available for many biomedical applications.
NASA Astrophysics Data System (ADS)
Liu, Huilan; Yang, Jupeng; Feng, Lishuang; Wang, Qiwei
2016-01-01
The temperature-dependent polarization error occurred in the silica waveguide ring resonator (WRR) is a major factor that limits the long-term performance of resonator integrated optic gyro (RIOG). In this paper, the temperature characteristics of transmissive silica WRR are successfully measured using the experiment system and analyzed in detail by us. According to the experiment results, we accurately calculate the temperature-induced refractive index and birefringence variation coefficient of silica waveguide, and we have found that the interference dip and peak of resonance curves will appear alternatively in the period of temperature fluctuation, which had not be shown before.
Patton, Ryan J; Wood, Michael G; Reano, Ronald M
2017-11-01
We report enhanced photoluminescence in the telecommunications wavelength range in ring resonators patterned in hydrogenated amorphous silicon thin films deposited via low-temperature plasma enhanced chemical vapor deposition. The thin films exhibit broadband photoluminescence that is enhanced by up to 5 dB by the resonant modes of the ring resonators due to the Purcell effect. Ellipsometry measurements of the thin films show a refractive index comparable to crystalline silicon and an extinction coefficient on the order of 0.001 from 1300 nm to 1600 nm wavelengths. The results are promising for chip-scale integrated optical light sources.
Thin film resonator technology.
Lakin, Kenneth M
2005-05-01
Advances in wireless systems have placed increased demands on high performance frequency control devices for operation into the microwave range. With spectrum crowding, high bandwidth requirements, miniaturization, and low cost requirements as a background, the thin film resonator technology has evolved into the mainstream of applications. This technology has been under development for over 40 years in one form or another, but it required significant advances in integrated circuit processing to reach microwave frequencies and practical manufacturing for high-volume applications. This paper will survey the development of the thin film resonator technology and describe the core elements that give rise to resonators and filters for today's high performance wireless applications.
Balram, Krishna C; Audet, Ross M; Miller, David A B
2013-04-22
We demonstrate the use of a subwavelength planar metal-dielectric resonant cavity to enhance the absorption of germanium photodetectors at wavelengths beyond the material's direct absorption edge, enabling high responsivity across the entire telecommunications C and L bands. The resonant wavelength of the detectors can be tuned linearly by varying the width of the Ge fin, allowing multiple detectors, each resonant at a different wavelength, to be fabricated in a single-step process. This approach is promising for the development of CMOS-compatible devices suitable for integrated, high-speed, and energy-efficient photodetection at telecommunications wavelengths.
Integrated Micro-scale Power Conversion
2012-08-01
Micro Power Converters (μPC) Loads: Sources: μ-Power Converter (μPC) Thin-film battery Solar Cell Micro- fuel Cell Vibration Harvester...passive size • Hybrid integration with MEMS passives, particularly inductors Hybrid integration ARL focus Bubble Size = Volume [mm3] Industry Focus...Power converters survey Compiled by Bedair, Bashirullah Switched inductor (SI) Switched capacitor (SC) Resonant Resonat piezo Hybrid - SI / SC
Objective assessment of olfactory function using functional magnetic resonance imaging.
Toledano, Adolfo; Borromeo, Susana; Luna, Guillermo; Molina, Elena; Solana, Ana Beatriz; García-Polo, Pablo; Hernández, Juan Antonio; Álvarez-linera, Juan
2012-01-01
To show the results of a device that generates automated olfactory stimuli suitable for functional magnetic resonance imaging (fMRI) experiments. Ten normal volunteers, 5 women and 5 men, were studied. The system allows the programming of several sequences, providing the capability to synchronise the onset of odour presentation with acquisition by a trigger signal of the MRI scanner. The olfactometer is a device that allows selection of the odour, the event paradigm, the time of stimuli and the odour concentration. The paradigm used during fMRI scanning consisted of 15-s blocks. The odorant event took 2s with butanol, mint and coffee. We observed olfactory activity in the olfactory bulb, entorhinal cortex (4%), amygdala (2.5%) and temporo-parietal cortex, especially in the areas related to emotional integration. The device has demonstrated its effectiveness in stimulating olfactory areas and its capacity to adapt to fMRI equipment. Copyright © 2010 Elsevier España, S.L. All rights reserved.
Hot electron generation by aluminum oligomers in plasmonic ultraviolet photodetectors.
Ahmadivand, Arash; Sinha, Raju; Vabbina, Phani Kiran; Karabiyik, Mustafa; Kaya, Serkan; Pala, Nezih
2016-06-13
We report on an integrated plasmonic ultraviolet (UV) photodetector composed of aluminum Fano-resonant heptamer nanoantennas deposited on a Gallium Nitride (GaN) active layer which is grown on a sapphire substrate to generate significant photocurrent via formation of hot electrons by nanoclusters upon the decay of nonequilibrium plasmons. Using the plasmon hybridization theory and finite-difference time-domain (FDTD) method, it is shown that the generation of hot carriers by metallic clusters illuminated by UV beam leads to a large photocurrent. The induced Fano resonance (FR) minimum across the UV spectrum allows for noticeable enhancement in the absorption of optical power yielding a plasmonic UV photodetector with a high responsivity. It is also shown that varying the thickness of the oxide layer (Al2O3) around the nanodisks (tox) in a heptamer assembly adjusted the generated photocurrent and responsivity. The proposed plasmonic structure opens new horizons for designing and fabricating efficient opto-electronics devices with high gain and responsivity.
NASA Astrophysics Data System (ADS)
Liu, Fuyao; He, Xiuxia; Chen, Hongda; Zhang, Junping; Zhang, Huimao; Wang, Zhenxin
2015-08-01
An ultrasmall hydrodynamic diameter is a critical factor for the renal clearance of nanoparticles from the body within a reasonable timescale. However, the integration of diagnostic and therapeutic components into a single ultrasmall nanoparticle remains challenging. In this study, pH-activated nanodots (termed Fe-CPNDs) composed of coordination polymers were synthesized via a simple and scalable method based on coordination reactions among Fe3+, gallic acid and poly(vinylpyrrolidone) at ambient conditions. The Fe-CPNDs exhibited ultrasmall (5.3 nm) hydrodynamic diameters and electrically neutral surfaces. The Fe-CPNDs also exhibited pH-activatable magnetic resonance imaging contrast and outstanding photothermal performance. The features of Fe-CPNDs greatly increased the tumour-imaging sensitivity and facilitated renal clearance after injection in animal models in vivo. Magnetic resonance imaging-guided photothermal therapy using Fe-CPNDs completely suppressed tumour growth. These findings demonstrate that Fe-CPNDs constitute a new class of renal clearable nanomedicine for photothermal therapy and molecular imaging.
Shen, Ping; Wang, Guoxin; Kang, Bonan; Guo, Wenbin; Shen, Liang
2018-02-21
Semitransparent polymer solar cells (ST-PSCs) show attractive potential in power-generating windows or building-integrated photovoltaics. However, the development of ST-PSCs is lagging behind opaque PSCs because of the contradiction between device efficiency and transmission. Herein, Ag/Au alloy nanoparticles and photonic crystals (PCs) were simultaneously introduced into ST-PSCs, acting compatibly as localized surface plasmon resonances and distributed Bragg reflectors to enhance light absorption and transmission. As a result, ST-PSCs based on a hybrid PTB7-Th:PC 71 BM active layer contribute an efficiency as high as 7.13 ± 0.15% and an average visible transmission beyond 20%, which are superior to most of the reported results. Furthermore, PCs can partly compensate valley range of transmission by balancing reflection and transmission regions, yielding a high color rendering index of 95. We believe that the idea of two light management methods compatibly enhancing the performance of ST-PSCs can offer a promising path to develop photovoltaic applications.
Bazzazi, Hojjat; Sang, Lingjie; Dick, Ivy E; Joshi-Mukherjee, Rosy; Yang, Wanjun; Yue, David T
2015-01-01
Abstract The phosphatase calcineurin is a central component of many calcium signalling pathways, relaying calcium signals from the plasma membrane to the nucleus. It has critical functions in a multitude of systems, including immune, cardiac and neuronal. Given the widespread importance of calcineurin in both normal and pathological conditions, new tools that elucidate the spatiotemporal dynamics of calcineurin activity would be invaluable. Here we develop two separate genetically encoded fluorescence resonance energy transfer (FRET)-based sensors of calcineurin activation, DuoCaN and UniCaN. Both sensors showcase a large dynamic range and rapid response kinetics, differing primarily in the linker structure between the FRET pairs. Both sensors were calibrated in HEK293 cells and their responses correlated well with NFAT translocation to the nucleus, validating the biological relevance of the sensor readout. The sensors were subsequently expressed in neonatal rat ventricular myocytes and acutely isolated adult guinea pig ventricular myocytes. Both sensors demonstrated robust responses in myocytes and revealed kinetic differences in calcineurin activation during changes in pacing rate for neonatal versus adult myocytes. Finally, mathematical modelling combined with quantitative FRET measurements provided novel insights into the kinetics and integration of calcineurin activation in response to myocyte Ca transients. In all, DuoCaN and UniCaN stand as valuable new tools for understanding the role of calcineurin in normal and pathological signalling. Key points Novel fluorescence resonance energy transfer-based genetically encoded reporters of calcineurin are constructed by fusing the two subunits of calcineurin with P2A-based linkers retaining the expected native conformation of calcineurin. Calcineurin reporters display robust responses to calcium transients in HEK293 cells. The sensor responses are correlated with NFATc1 translocation dynamics in HEK293 cells. The sensors are uniformly distributed in neonatal myocytes and respond efficiently to single electrically evoked calcium transients and show cumulative activation at frequencies of 0.5 and 1 Hz. In adult myocytes, the calcineurin sensors appear to be localized to the cardiac z-lines, and respond to cumulative calcium transients at frequencies of 0.5 and 1 Hz. PMID:26096996
Tryptophan Metabolism and White Matter Integrity in Schizophrenia
Chiappelli, Joshua; Postolache, Teodor T; Kochunov, Peter; Rowland, Laura M; Wijtenburg, S Andrea; Shukla, Dinesh K; Tagamets, Malle; Du, Xiaoming; Savransky, Anya; Lowry, Christopher A; Can, Adem; Fuchs, Dietmar; Hong, L Elliot
2016-01-01
Schizophrenia is associated with abnormalities in the structure and functioning of white matter, but the underlying neuropathology is unclear. We hypothesized that increased tryptophan degradation in the kynurenine pathway could be associated with white matter microstructure and biochemistry, potentially contributing to white matter abnormalities in schizophrenia. To test this, fasting plasma samples were obtained from 37 schizophrenia patients and 38 healthy controls and levels of total tryptophan and its metabolite kynurenine were assessed. The ratio of kynurenine to tryptophan was used as an index of tryptophan catabolic activity in this pathway. White matter structure and function were assessed by diffusion tensor imaging (DTI) and 1H magnetic resonance spectroscopy (MRS). Tryptophan levels were significantly lower (p<0.001), and kynurenine/tryptophan ratios were correspondingly higher (p=0.018) in patients compared with controls. In patients, lower plasma tryptophan levels corresponded to lower structural integrity (DTI fractional anisotropy) (r=0.347, p=0.038). In both patients and controls, the kynurenine/tryptophan ratio was inversely correlated with frontal white matter glutamate level (r=−0.391 and −0.350 respectively, p=0.024 and 0.036). These results provide initial evidence implicating abnormal tryptophan/kynurenine pathway activity in changes to white matter integrity and white matter glutamate in schizophrenia. PMID:27143602
Du, Fei; Zhang, Yi; Iltis, Isabelle; Marjanska, Malgorzata; Zhu, Xiao-Hong; Henry, Pierre-Gilles; Chen, Wei
2009-12-01
To quantitatively investigate the effects of pentobarbital anesthesia on brain activity, brain metabolite concentrations and cerebral metabolic rate of glucose, in vivo proton MR spectra, and electroencephalography were measured in the rat brain with various doses of pentobarbital. The results show that (1) the resonances attributed to propylene glycol, a solvent in pentobarbital injection solution, can be robustly detected and quantified in the brain; (2) the concentration of most brain metabolites remained constant under the isoelectric state (silent electroencephalography) with a high dose of pentobarbital compared to mild isoflurane anesthesia condition, except for a reduction of 61% in the brain glucose level, which was associated with a 37% decrease in cerebral metabolic rate of glucose, suggesting a significant amount of "housekeeping" energy for maintaining brain cellular integrity under the isoelectric state; and (3) electroencephalography and cerebral metabolic activities were tightly coupled to the pentobarbital anesthesia depth and they can be indirectly quantified by the propylene glycol resonance signal at 1.13 ppm. This study indicates that in vivo proton MR spectroscopy can be used to measure changes in cerebral metabolite concentrations and cerebral metabolic rate of glucose under varied pentobarbital anesthesia states; moreover, the propylene glycol signal provides a sensitive biomarker for quantitatively monitoring these changes and anesthesia depth noninvasively. (c) 2009 Wiley-Liss, Inc.
A wireless integrated circuit for 100-channel charge-balanced neural stimulation.
Thurgood, B K; Warren, D J; Ledbetter, N M; Clark, G A; Harrison, R R
2009-12-01
The authors present the design of an integrated circuit for wireless neural stimulation, along with benchtop and in - vivo experimental results. The chip has the ability to drive 100 individual stimulation electrodes with constant-current pulses of varying amplitude, duration, interphasic delay, and repetition rate. The stimulation is performed by using a biphasic (cathodic and anodic) current source, injecting and retracting charge from the nervous system. Wireless communication and power are delivered over a 2.765-MHz inductive link. Only three off-chip components are needed to operate the stimulator: a 10-nF capacitor to aid in power-supply regulation, a small capacitor (< 100 pF) for tuning the coil to resonance, and a coil for power and command reception. The chip was fabricated in a commercially available 0.6- mum 2P3M BiCMOS process. The chip was able to activate motor fibers to produce muscle twitches via a Utah Slanted Electrode Array implanted in cat sciatic nerve, and to activate sensory fibers to recruit evoked potentials in somatosensory cortex.
Das, Pratyusha; Maiti, Rishi; Barman, Prahalad K; Ray, Samit K; Shivakiran, Bhaktha B N
2016-02-05
The realization of optoelectronic devices using two-dimensional materials such as graphene and its intermediate product graphene oxide (GO) is extremely challenging owing to the zero band gap of the former. Here, a novel amplified spontaneous emission (ASE) system based on a GO-embedded all-dielectric one-dimensional photonic crystal (1DPhC) micro-resonator is presented. The mono- to few-layered GO sheet is inserted within a microcavity formed by two 5-bilayered SiO2/SnO2 Bragg reflectors. Significantly enhanced photoluminescence (PL) emission of GO embedded in 1DPhC is explicated by studying the electric field confined within the micro-resonator using the transfer matrix method. The inherent randomness, due to fabrication limitations, in the on-average periodic 1DPhC is exploited to further enhance the PL of the optically active micro-resonator. The 1DPhC and randomness assisted field confinement reduces the ASE threshold of the mono- to few-layered weak emitter making the realization of an ASE source feasible. Consequently, ASE at the microcavity resonance and at the low-frequency band-edge of photonic stop-band is demonstrated. Variation of the detection angle from 5° to 30°, with respect to the sample surface normal allows reallocation of the defect mode ASE peak over a spectral range of 558-542 nm, making the GO-incorporated 1DPhC a novel and attractive system for integrated optic applications.
NASA Astrophysics Data System (ADS)
Das, Pratyusha; Maiti, Rishi; Barman, Prahalad K.; Ray, Samit K.; Shivakiran, Bhaktha B. N.
2016-02-01
The realization of optoelectronic devices using two-dimensional materials such as graphene and its intermediate product graphene oxide (GO) is extremely challenging owing to the zero band gap of the former. Here, a novel amplified spontaneous emission (ASE) system based on a GO-embedded all-dielectric one-dimensional photonic crystal (1DPhC) micro-resonator is presented. The mono- to few-layered GO sheet is inserted within a microcavity formed by two 5-bilayered SiO2/SnO2 Bragg reflectors. Significantly enhanced photoluminescence (PL) emission of GO embedded in 1DPhC is explicated by studying the electric field confined within the micro-resonator using the transfer matrix method. The inherent randomness, due to fabrication limitations, in the on-average periodic 1DPhC is exploited to further enhance the PL of the optically active micro-resonator. The 1DPhC and randomness assisted field confinement reduces the ASE threshold of the mono- to few-layered weak emitter making the realization of an ASE source feasible. Consequently, ASE at the microcavity resonance and at the low-frequency band-edge of photonic stop-band is demonstrated. Variation of the detection angle from 5° to 30°, with respect to the sample surface normal allows reallocation of the defect mode ASE peak over a spectral range of 558-542 nm, making the GO-incorporated 1DPhC a novel and attractive system for integrated optic applications.
Liu, Yongjing; Li, Xinxin; Zhang, Zhixiang; Zuo, Guomin; Cheng, Zhenxing; Yu, Haitao
2009-02-01
Nanogram per milliliter-level ultra-low concentration detection of alpha-fetoprotein (AFP), which is an important marker for heptocellular carcinoma, is in favor of early-stage prognosis and disease diagnosis. On-the-spot rapid detection of such antigens as AFP highly requires innovative micro/nano techniques. To meet this requirement, an advanced resonant microcantilever is developed and used for screening the tumor marker at nanogram per milliliter level. The sensing principle of the resonant microcantilever is measuring frequency-shift versus specific-adsorbed mass. With both electromagnetic resonance-exciting and piezoresistive readout elements on-chip integrated, the microcantilever sensor is operated in a rotating resonance mode to improve sensitivity and resolution to specific mass adsorption. Prior to detection of AFP with previously immobilized anti-AFP antibody, the antigen-antibody specific-binding is confirmed with an enzyme linked immunosorbent assay experiment. By implementing the specific reaction in liquid and reading out the sensor signal in lab air environment, the micromechanical sensor has achieved the sensitive scale between 2 and 20 ng/ml. To effectively depress cross-talk signal and improve resolution, the insensitive regions of the cantilever surface are pre-modified with 2-[methoxy (polyethyleneoxy) propyl] trimethoxysilane for nonspecific bio-adsorption minimization. Finally, a better AFP detecting limit than 2 ng/mL is experimentally achieved. The label-free resonant microcantilever sensor is promising in low-cost or even disposable early-stage prognosis and diagnosis of tumors.
NASA Astrophysics Data System (ADS)
Nielsen, M.; Elezzabi, A. Y.
2013-03-01
To become a competitor to replace CMOS-electronics for next-generation data processing, signal routing, and computing, nanoplasmonic circuits will require an analogue to electrical vias in order to enable vertical connections between device layers. Vertically stacked nanoplasmonic nanoring resonators formed of Ag/Si/Ag gap plasmon waveguides were studied as a novel 3-D coupling scheme that could be monolithically integrated on a silicon platform. The vertically coupled ring resonators were evanescently coupled to 100 nm x 100 nm Ag/Si/Ag input and output waveguides and the whole device was submerged in silicon dioxide. 3-D finite difference time domain simulations were used to examine the transmission spectra of the coupling device with varying device sizes and orientations. By having the signal coupling occur over multiple trips around the resonator, coupling efficiencies as high as 39% at telecommunication wavelengths between adjacent layers were present with planar device areas of only 1.00 μm2. As the vertical signal transfer was based on coupled ring resonators, the signal transfer was inherently wavelength dependent. Changing the device size by varying the radii of the nanorings allowed for tailoring the coupled frequency spectra. The plasmonic resonator based coupling scheme was found to have quality (Q) factors of upwards of 30 at telecommunication wavelengths. By allowing different device layers to operate on different wavelengths, this coupling scheme could to lead to parallel processing in stacked independent device layers.
Tang, Yue; Zhang, Zhidong; Wang, Ruibing; Hai, Zhenyin; Xue, Chenyang; Zhang, Wendong; Yan, Shubin
2017-04-06
A surface plasmon polariton refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and ring resonators is proposed and numerically investigated using a finite element method. Fano resonances are observed in the transmission spectra, which result from the coupling between the narrow-band spectral response in the ring resonator and the broadband spectral response in the rectangular resonator. Results are analyzed using coupled-mode theory based on transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect, and the analytical result is in good agreement with the simulation result. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift, and the highest value of sensitivity (S) is 1125 nm/RIU, RIU means refractive index unit. Furthermore, the coupled MIM waveguide structure can be integrated with other photonic devices at the chip scale. The results can provide a guide for future applications of this structure.
Pluto and Charon: A Case of Precession-Orbit Resonance?
NASA Technical Reports Server (NTRS)
Rubincam, David Parry; Smith, David E. (Technical Monitor)
2000-01-01
Pluto may be the only known case of precession-orbit resonance in the solar system. The Pluto-Charon system orbits the Sun with a period of 1 Plutonian year, which is 250.8 Earth years. The observed parameters of the system are such that Charon may cause Pluto to precess with a period near 250.8 Earth years. This gives rise to two possible resonances, heretofore unrecognized. The first is due to Pluto's orbit being highly eccentric, giving solar torques on Charon with a period of 1 Plutonian year. Charon in turn drives Pluto near its precession period. Volatiles, which are expected to shuttle across Pluto's surface between equator and pole as Pluto's obliquity oscillates, might change the planet's dynamical flattening enough so that Pluto crosses the nearby resonance, forcing the planet's equatorial plane to depart from Charon's orbital plane. The mutual tilt can reach as much as 2 deg after integrating over 5.6 x 10(exp 6) years, depending upon how close Pluto is to the resonance and the supply of volatiles. The second resonance is due to the Sun's traveling above and below Charon's orbital plane; it has a period half that of the eccentricity resonance. Reaching this half-Plutonian year resonance requires a much larger but still theoretically possible amount of volatiles. In this case the departure of Charon from an equatorial orbit is about 1 deg after integrating for 5.6 x 10(exp 6) years. The calculations ignore libration and tidal friction. It is not presently known how large the mutual tilt can grow over the age of the solar system, but if it remains only a few degrees, then observing such small angles from a Pluto flyby mission would be difficult. It is not clear why the parameters of the Pluto-Charon system are so close to the eccentricity resonance.
ERIC Educational Resources Information Center
Sanchez, Katheryn M.; Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.
2008-01-01
Protein folding is an exploding area of research in biophysics and physical chemistry. Here, we describe the integration of several techniques, including absorption spectroscopy, fluorescence spectroscopy, and Forster resonance energy transfer (FRET) measurements, to probe important topics in protein folding. Cytochrome c is used as a model…
Doyle-Thomas, Krissy A.R.; Goldberg, Jeremy; Szatmari, Peter; Hall, Geoffrey B.C.
2013-01-01
Despite successful performance on some audiovisual emotion tasks, hypoactivity has been observed in frontal and temporal integration cortices in individuals with autism spectrum disorders (ASD). Little is understood about the neurofunctional network underlying this ability in individuals with ASD. Research suggests that there may be processing biases in individuals with ASD, based on their ability to obtain meaningful information from the face and/or the voice. This functional magnetic resonance imaging study examined brain activity in teens with ASD (n = 18) and typically developing controls (n = 16) during audiovisual and unimodal emotion processing. Teens with ASD had a significantly lower accuracy when matching an emotional face to an emotion label. However, no differences in accuracy were observed between groups when matching an emotional voice or face-voice pair to an emotion label. In both groups brain activity during audiovisual emotion matching differed significantly from activity during unimodal emotion matching. Between-group analyses of audiovisual processing revealed significantly greater activation in teens with ASD in a parietofrontal network believed to be implicated in attention, goal-directed behaviors, and semantic processing. In contrast, controls showed greater activity in frontal and temporal association cortices during this task. These results suggest that in the absence of engaging integrative emotional networks during audiovisual emotion matching, teens with ASD may have recruited the parietofrontal network as an alternate compensatory system. PMID:23750139
Just, Marcel Adam; Cherkassky, Vladimir L; Keller, Timothy A; Kana, Rajesh K; Minshew, Nancy J
2007-04-01
The brain activation of a group of high-functioning autistic participants was measured using functional magnetic resonance imaging during the performance of a Tower of London task, in comparison with a control group matched with respect to intelligent quotient, age, and gender. The 2 groups generally activated the same cortical areas to similar degrees. However, there were 3 indications of underconnectivity in the group with autism. First, the degree of synchronization (i.e., the functional connectivity or the correlation of the time series of the activation) between the frontal and parietal areas of activation was lower for the autistic than the control participants. Second, relevant parts of the corpus callosum, through which many of the bilaterally activated cortical areas communicate, were smaller in cross-sectional area in the autistic participants. Third, within the autism group but not within the control group, the size of the genu of the corpus callosum was correlated with frontal-parietal functional connectivity. These findings suggest that the neural basis of altered cognition in autism entails a lower degree of integration of information across certain cortical areas resulting from reduced intracortical connectivity. The results add support to a new theory of cortical underconnectivity in autism, which posits a deficit in integration of information at the neural and cognitive levels.
Neural circuits in the brain that are activated when mitigating criminal sentences
Yamada, Makiko; Camerer, Colin F.; Fujie, Saori; Kato, Motoichiro; Matsuda, Tetsuya; Takano, Harumasa; Ito, Hiroshi; Suhara, Tetsuya; Takahashi, Hidehiko
2012-01-01
In sentencing guilty defendants, jurors and judges weigh 'mitigating circumstances', which create sympathy for a defendant. Here we use functional magnetic resonance imaging to measure neural activity in ordinary citizens who are potential jurors, as they decide on mitigation of punishment for murder. We found that sympathy activated regions associated with mentalising and moral conflict (dorsomedial prefrontal cortex, precuneus and temporo-parietal junction). Sentencing also activated precuneus and anterior cingulate cortex, suggesting that mitigation is based on negative affective responses to murder, sympathy for mitigating circumstances and cognitive control to choose numerical punishments. Individual differences on the inclination to mitigate, the sentence reduction per unit of judged sympathy, correlated with activity in the right middle insula, an area known to represent interoception of visceral states. These results could help the legal system understand how potential jurors actually decide, and contribute to growing knowledge about whether emotion and cognition are integrated sensibly in difficult judgments. PMID:22453832
Characteristics of unstable resonators in flashlamp-pumped organic-compound lasers
NASA Astrophysics Data System (ADS)
Alekseyev, V. A.; Trinchuk, B. F.; Shulenin, A. V.
1985-01-01
A symmetrical confocal resonator formed by two blind convex mirrors was investigated. The space energy characteristics of radiation from a laser with an unstable resonator were investigated as a function of the specific pumping energy per cubic centimeter of active medium and the magnification of the resonator. Oscillograms of laser pulses were recorded in different cross sections of the laser beam, as were the lasing field patterns at various distances from the exit mirror of the resonator. The maximum spectral wavelengths of flat and unstable resonators were tabulated. It was found that the proper choice of parameters of an unstable resonator reduces laser beam divergence significantly and provides greater axial brightness of radiation than that provided by a flat resonator, even with a highly nonhomogeneous active medium, making it possible to extend the capabilities of flashlamp pumped organic compound lasers.
Prado, Jérôme; Noveck, Ira A
2007-04-01
Participants experience difficulty detecting that an item depicting an H-in-a-square confirms the logical rule, "If there is not a T then there is not a circle." Indeed, there is a perceptual conflict between the items mentioned in the rule (T and circle) and in the test item (H and square). Much evidence supports the claim that correct responding depends on detecting and resolving such conflicts. One aim of this study is to find more precise neurological evidence in support of this claim by using a parametric event-related functional magnetic resonance imaging (fMRI) paradigm. We scanned 20 participants while they were required to judge whether or not a conditional rule was verified (or falsified) by a corresponding target item. We found that the right middorsolateral prefrontal cortex (mid-DLPFC) was specifically engaged, together with the medial frontal (anterior cingulate and presupplementary motor area [pre-SMA]) and parietal cortices, when mismatching was present. Activity in these regions was also linearly correlated with the level of mismatch between the rule and the test item. Furthermore, a psychophysiological interaction analysis revealed that activation of the mid-DLPFC, which increases as mismatching does, was accompanied by a decrease in functional integration with the bilateral primary visual cortex and an increase in functional integration with the right parietal cortex. This indicates a need to break away from perceptual cues in order to select an appropriate logical response. These findings strongly indicate that the regions involved in inhibitory control (including the right mid-DLPFC and the medial frontal cortex) are engaged when participants have to overcome perceptual mismatches in order to provide a logical response. These findings are also consistent with neuroimaging studies investigating the belief bias, where prior beliefs similarly interfere with logical reasoning.
Wojciechowski, Kenneth E.; Baker, Michael S.; Clews, Peggy J.; ...
2015-06-24
Our paper reports the design and fabrication of a fully integrated oven controlled microelectromechanical oscillator (OCMO). This paper begins by describing the limits on oscillator frequency stability imposed by the thermal drift and electronic properties (Q, resistance) of both the resonant tank circuit and feedback electronics required to form an electronic oscillator. An OCMO is presented that takes advantage of high thermal isolation and monolithic integration of both micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. This was achieved by developing a processing technique where both silicon-on-insulator complementary metal-oxide-semiconductor (CMOS) circuitrymore » and piezoelectric aluminum nitride, AlN, micromechanical resonators are placed on a suspended platform within a standard CMOS integrated circuit. Operation at microscale sizes achieves high thermal resistances (~10 °C/mW), and hence thermal stabilization of the oscillators at very low-power levels when compared with the state-of-the-art ovenized crystal oscillators, OCXO. This constant resistance feedback circuit is presented that incorporates on platform resistive heaters and temperature sensors to both measure and stabilize the platform temperature. Moreover, the limits on temperature stability of the OCMO platform and oscillator frequency imposed by the gain of the constant resistance feedback loop, placement of the heater and temperature sensing resistors, as well as platform radiative and convective heat losses are investigated.« less
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry V.
2012-01-01
This software implements digital control of a WGM (whispering-gallerymode) resonator temperature based on the dual-mode approach. It comprises one acquisition (dual-channel) and three control modules. The interaction of the proportional-integral loops is designed in the original way, preventing the loops from fighting. The data processing is organized in parallel with the acquisition, which allows the computational overhead time to be suppressed or often completely avoided. WGM resonators potentially provide excellent optical references for metrology, clocks, spectroscopy, and other applications. However, extremely accurate (below micro-Kelvin) temperature stabilization is required. This software allows one specifically advantageous method of such stabilization to be implemented, which is immune to a variety of effects that mask the temperature variation. WGM Temperature Tracker 2.3 (see figure) is a LabVIEW code developed for dual-mode temperature stabilization of WGM resonators. It has allowed for the temperature stabilization at the level of 200 nK with one-second integration time, and 6 nK with 10,000-second integration time, with the above room-temperature set point. This software, in conjunction with the appropriate hardware, can be used as a noncryogenic temperature sensor/ controller with sub-micro-Kelvin sensitivity, which at the time of this reporting considerably outperforms the state of the art.
Substrate Integrated Waveguide (SIW)-Based Wireless Temperature Sensor for Harsh Environments.
Tan, Qiulin; Guo, Yanjie; Zhang, Lei; Lu, Fei; Dong, Helei; Xiong, Jijun
2018-05-03
This paper presents a new wireless sensor structure based on a substrate integrated circular waveguide (SICW) for the temperature test in harsh environments. The sensor substrate material is 99% alumina ceramic, and the SICW structure is composed of upper and lower metal plates and a series of metal cylindrical sidewall vias. A rectangular aperture antenna integrated on the surface of the SICW resonator is used for electromagnetic wave transmission between the sensor and the external antenna. The resonant frequency of the temperature sensor decreases when the temperature increases, because the relative permittivity of the alumina ceramic increases with temperature. The temperature sensor presented in this paper was tested four times at a range of 30⁻1200 °C, and a broad band coplanar waveguide (CPW)-fed antenna was used as an interrogation antenna during the test process. The resonant frequency changed from 2.371 to 2.141 GHz as the temperature varied from 30 to 1200 °C, leading to a sensitivity of 0.197 MHz/°C. The quality factor of the sensor changed from 3444.6 to 35.028 when the temperature varied from 30 to 1000 °C.
Jastorff, Jan; Orban, Guy A
2009-06-03
In a series of human functional magnetic resonance imaging experiments, we systematically manipulated point-light stimuli to identify the contributions of the various areas implicated in biological motion processing (for review, see Giese and Poggio, 2003). The first experiment consisted of a 2 x 2 factorial design with global shape and kinematics as factors. In two additional experiments, we investigated the contributions of local opponent motion, the complexity of the portrayed movement and a one-back task to the activation pattern. Experiment 1 revealed a clear separation between shape and motion processing, resulting in two branches of activation. A ventral region, extending from the lateral occipital sulcus to the posterior inferior temporal gyrus, showed a main effect of shape and its extension into the fusiform gyrus also an interaction. The dorsal region, including the posterior inferior temporal sulcus and the posterior superior temporal sulcus (pSTS), showed a main effect of kinematics together with an interaction. Region of interest analysis identified these interaction sites as the extrastriate and fusiform body areas (EBA and FBA). The local opponent motion cue yielded only little activation, limited to the ventral region (experiment 3). Our results suggest that the EBA and the FBA correspond to the initial stages in visual action analysis, in which the performed action is linked to the body of the actor. Moreover, experiment 2 indicates that the body areas are activated automatically even in the absence of a task, whereas other cortical areas like pSTS or frontal regions depend on the complexity of movements or task instructions for their activation.
Agostini, A; Ballotta, D; Righi, S; Moretti, M; Bertani, A; Scarcelli, A; Sartini, A; Ercolani, M; Nichelli, P; Campieri, M; Benuzzi, F
2017-10-01
In Crohn's disease (CD) patients, stress is believed to influence symptoms generation. Stress may act via central nervous system pathways to affect visceral sensitivity and motility thus exacerbating gastrointestinal symptoms. The neural substrate underpinning these mechanisms needs to be investigated in CD. We conducted an explorative functional magnetic resonance imaging (fMRI) study in order to investigate potential differences in the brain stress response in CD patients compared to controls. 17 CD patients and 17 healthy controls underwent a fMRI scan while performing a stressful task consisting in a Stroop color-word interference task designed to induce mental stress in the fMRI environment. Compared to controls, in CD patients the stress task elicited greater blood oxygen level dependent (BOLD) signals in the midcingulate cortex (MCC). The MCC integrate "high" emotional processes with afferent sensory information ascending from the gut. In light of these integrative functions, the stress-evoked MCC hyperactivity in CD patients might represent a plausible neural substrate for the association between stress and symptomatic disease. The MCC dysfunction might be involved in mechanisms of central disinhibition of nociceptive inputs leading to amplify the visceral sensitivity. Finally, the stress-evoked MCC hyperactivity might affect the regulation of intestinal motility resulting in exacerbation of disease symptoms and the autonomic and neuroendocrine regulation of inflammation resulting in enhanced inflammatory activity. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Georges des Aulnois, Johann; Szymanski, Benjamin; Grimieau, Axel; Sillard, Léo.
2018-02-01
Optical Parametric Oscillator (OPO) is a well-known solution when wide tunability in the mid-infrared is needed. A specific design called NesCOPO (Nested Cavity doubly resonant OPO) is currently integrated in the X-FLR8 portable gas analyzer from Blue Industry and Science. Thanks to its low threshold this OPO can be pumped by a micro-chip nanosecond YAG (4 kHz repetition rate and a 30 GHz bandwidth). To achieve very high resolution spectra (10 pm of resolution or better), the emitted wavelength has to be finely controlled. Commercial Wavemeter do not meet price and compactness required in the context of an affordable and portable gas analyzer. To overcome this issue, Blue first integrated an active wavelength controller using multiple tunable Fabry-Perot (FP) interferometers. The required resolution was achieved at a 10 Hz measurement rate. We now present an enhanced Wavemeter architecture, based on fixed FP etalons, that is 100 times faster and 2 times smaller. We avoid having FP `blind zones' thanks to one source characteristic: the knowledge of the FSR (Free Spectral Range) of the OPO source and thus, the fact that only discrete wavelengths can be emitted. First results are displayed showing faster measurement for spectroscopic application, and potential future improvement of the device are discussed.
NASA Astrophysics Data System (ADS)
Spohr, K. M.; Shaw, M.; Galster, W.; Ledingham, K. W. D.; Robson, L.; Yang, J. M.; McKenna, P.; McCanny, T.; Melone, J. J.; Amthor, K.-U.; Ewald, F.; Liesfeld, B.; Schwoerer, H.; Sauerbrey, R.
2008-04-01
Photo-nuclear reactions were investigated using a high power table-top laser. The laser system at the University of Jena (I ~ 3-5×1019 W cm-2) produced hard bremsstrahlung photons (kT~2.9 MeV) via a laser-gas interaction which served to induce (γ, p) and (γ, n) reactions in Mg, Ti, Zn and Mo isotopes. Several (γ, p) decay channels were identified using nuclear activation analysis to determine their integral reaction yields. As the laser-generated bremsstrahlung spectra stretches over the energy regime dominated by the giant dipole resonance (GDR), these yield measurements were used in conjunction with theoretical estimates of the resonance energies Eres and their widths Γres to derive the integral reaction cross-section σint(γ,p) for 25Mn, 48, 49Ti, 68Zn and 97, 98Mo isotopes for the first time. This study enabled the determination of the previously unknown \\frac{{\\sigma}^int(\\gamma,n)}{{\\sigma}^int(\\gamma,p)} cross-section ratios for these isotopes. The experiments were supported by extensive model calculations (Empire) and the results were compared to the Thomas-Reiche-Kuhn (TRK) dipole sum rule as well as to the experimental data in neighboring isotopes and good agreement was observed. The Coulomb barrier and the neutron excess strongly influence the \\frac{{\\sigma}^int(\\gamma,n)}{{\\sigma}^int(\\gamma,p)} ratios for increasing target proton and neutron numbers.
Simeonov, Plamen L; Ehresmann, Andrée C
2017-12-01
Forty-two years ago, Capra published "The Tao of Physics" (Capra, 1975). In this book (page 17) he writes: "The exploration of the atomic and subatomic world in the twentieth century has …. necessitated a radical revision of many of our basic concepts" and that, unlike 'classical' physics, the sub-atomic and quantum "modern physics" shows resonances with Eastern thoughts and "leads us to a view of the world which is very similar to the views held by mystics of all ages and traditions." This article stresses an analogous situation in biology with respect to a new theoretical approach for studying living systems, Integral Biomathics (IB), which also exhibits some resonances with Eastern thought. Stepping on earlier research in cybernetics 1 and theoretical biology, 2 IB has been developed since 2011 by over 100 scientists from a number of disciplines who have been exploring a substantial set of theoretical frameworks. From that effort, the need for a robust core model utilizing advanced mathematics and computation adequate for understanding the behavior of organisms as dynamic wholes was identified. At this end, the authors of this article have proposed WLIMES (Ehresmann and Simeonov, 2012), a formal theory for modeling living systems integrating both the Memory Evolutive Systems (Ehresmann and Vanbremeersch, 2007) and the Wandering Logic Intelligence (Simeonov, 2002b). Its principles will be recalled here with respect to their resonances to Eastern thought. Copyright © 2017 Elsevier Ltd. All rights reserved.
Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope
Lee, Jungshin; Yun, Sung Wook; Rhim, Jaewook
2016-01-01
A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing the control scheme. In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision controller, the electromechanical modelling and signal processing must be pre-performed accurately. Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric module and charge amplifier is performed by considering the mode shape of a thin hemispherical shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low maneuverability systems. The differential control scheme is easily capable of rejecting the common mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies. In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature and rate control loop. All controllers are designed on basis of a digital PI controller. The signal processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA and DSP board with these algorithms is verified through experiments. PMID:27104539
Iron overload prevents oxidative damage to rat brain after chlorpromazine administration.
Piloni, Natacha E; Caro, Andres A; Puntarulo, Susana
2018-05-15
The hypothesis tested is that Fe administration leads to a response in rat brain modulating the effects of later oxidative challenges such as chlorpromazine (CPZ) administration. Either a single dose (acute Fe overload) or 6 doses every second day (sub-chronic Fe overload) of 500 or 50 mg Fe-dextran/kg, respectively, were injected intraperitoneally (ip) to rats. A single dose of 10 mg CPZ/kg was injected ip 8 h after Fe treatment. DNA integrity was evaluated by quantitative PCR, lipid radical (LR · ) generation rate by electron paramagnetic resonance (EPR), and catalase (CAT) activity by UV spectrophotometry in isolated brains. The maximum increase in total Fe brain was detected after 6 or 2 h in the acute and sub-chronic Fe overload model, respectively. Mitochondrial and nuclear DNA integrity decreased after acute Fe overload at the time of maximal Fe content; the decrease in DNA integrity was lower after sub-chronic than after acute Fe overload. CPZ administration increased LR · generation rate in control rat brain after 1 and 2 h; however, CPZ administration after acute or sub-chronic Fe overload did not affect LR · generation rate. CPZ treatment did not affect CAT activity after 1-4 h neither in control rats nor in acute Fe-overloaded rats. However, CPZ administration to rats treated sub-chronically with Fe showed increased brain CAT activity after 2 or 4 h, as compared to control values. Fe supplementation prevented brain damage in both acute and sub-chronic models of Fe overload by selectively activating antioxidant pathways.
Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex.
Malach, R; Reppas, J B; Benson, R R; Kwong, K K; Jiang, H; Kennedy, W A; Ledden, P J; Brady, T J; Rosen, B R; Tootell, R B
1995-01-01
The stages of integration leading from local feature analysis to object recognition were explored in human visual cortex by using the technique of functional magnetic resonance imaging. Here we report evidence for object-related activation. Such activation was located at the lateral-posterior aspect of the occipital lobe, just abutting the posterior aspect of the motion-sensitive area MT/V5, in a region termed the lateral occipital complex (LO). LO showed preferential activation to images of objects, compared to a wide range of texture patterns. This activation was not caused by a global difference in the Fourier spatial frequency content of objects versus texture images, since object images produced enhanced LO activation compared to textures matched in power spectra but randomized in phase. The preferential activation to objects also could not be explained by different patterns of eye movements: similar levels of activation were observed when subjects fixated on the objects and when they scanned the objects with their eyes. Additional manipulations such as spatial frequency filtering and a 4-fold change in visual size did not affect LO activation. These results suggest that the enhanced responses to objects were not a manifestation of low-level visual processing. A striking demonstration that activity in LO is uniquely correlated to object detectability was produced by the "Lincoln" illusion, in which blurring of objects digitized into large blocks paradoxically increases their recognizability. Such blurring led to significant enhancement of LO activation. Despite the preferential activation to objects, LO did not seem to be involved in the final, "semantic," stages of the recognition process. Thus, objects varying widely in their recognizability (e.g., famous faces, common objects, and unfamiliar three-dimensional abstract sculptures) activated it to a similar degree. These results are thus evidence for an intermediate link in the chain of processing stages leading to object recognition in human visual cortex. Images Fig. 1 Fig. 2 Fig. 3 PMID:7667258
Demo of Active Resonators on the Active Noise Control Fan
1998-10-01
NASA has been involved in several projects to reduce aircraft engine noise. In the 1990s Active Noise Control was investigated as a potential method to reduce aircraft engine noise. A description and demonstration of Active Resonators on the Active Noise Control Fan is shown in this video.
NASA Astrophysics Data System (ADS)
Maiti, Soumyabrata; Bandyopadhyay, Ritwik; Chatterjee, Anindya
2018-01-01
We study free and harmonically forced vibrations of an Euler-Bernoulli beam with rate-independent hysteretic dissipation. The dissipation follows a model proposed elsewhere for materials with randomly dispersed frictional microcracks. The virtual work of distributed dissipative moments is approximated using Gaussian quadrature, yielding a few discrete internal hysteretic states. Lagrange's equations are obtained for the modal coordinates. Differential equations for the modal coordinates and internal states are integrated together. Free vibrations decay exponentially when a single mode dominates. With multiple modes active, higher modes initially decay rapidly while lower modes decay relatively slowly. Subsequently, lower modes show their own characteristic modal damping, while small amplitude higher modes show more erratic decay. Large dissipation, for the adopted model, leads mathematically to fast and damped oscillations in the limit, unlike viscously overdamped systems. Next, harmonically forced, lightly damped responses of the beam are studied using both a slow frequency sweep and a shooting-method based search for periodic solutions along with numerical continuation. Shooting method and frequency sweep results match for large ranges of frequency. The shooting method struggles near resonances, where internal states collapse into lower dimensional behavior and Newton-Raphson iterations fail. Near the primary resonances, simple numerically-aided harmonic balance gives excellent results. Insights are also obtained into the harmonic content of secondary resonances.
Resonant optical spectroscopy and coherent control of C r4 + spin ensembles in SiC and GaN
NASA Astrophysics Data System (ADS)
Koehl, William F.; Diler, Berk; Whiteley, Samuel J.; Bourassa, Alexandre; Son, N. T.; Janzén, Erik; Awschalom, David D.
2017-01-01
Spins bound to point defects are increasingly viewed as an important resource for solid-state implementations of quantum information and spintronic technologies. In particular, there is a growing interest in the identification of new classes of defect spin that can be controlled optically. Here, we demonstrate ensemble optical spin polarization and optically detected magnetic resonance (ODMR) of the S = 1 electronic ground state of chromium (C r4 + ) impurities in silicon carbide (SiC) and gallium nitride (GaN). Spin polarization is made possible by the narrow optical linewidths of these ensembles (<8.5 GHz), which are similar in magnitude to the ground state zero-field spin splitting energies of the ions at liquid helium temperatures. This allows us to optically resolve individual spin sublevels within the ensembles at low magnetic fields using resonant excitation from a cavity-stabilized, narrow-linewidth laser. Additionally, these near-infrared emitters possess exceptionally weak phonon sidebands, ensuring that >73% of the overall optical emission is contained with the defects' zero-phonon lines. These characteristics make this semiconductor-based, transition metal impurity system a promising target for further study in the ongoing effort to integrate optically active quantum states within common optoelectronic materials.
Wang, Yimin; Luo, Zewei; Liu, Kunping; Wang, Jie; Duan, Yixiang
2016-01-01
There is an increasing interest in real-time and in situ monitoring of living cell activities in life science and medicine. This paper reports a whole cell sensing protocol over the interface of Au film coupled in a wavelength-modulated surface plasmon resonance (WMSPR) biosensor. With dual parabolic mirrors integrated in the sensor, the compact and miniaturized instrument shows satisfactory refractive index sensitivity (2220 nm/RIU) and a high resolution of resonance wavelength shift of 0.3 nm to liquid samples. The affinity interactions between the biomarker of human tumor endothelial marker 8 (TEM8) and antibody (Ab) or specific polypeptide (PEP) were firstly introduced to WMSPR biosensor analysis. Both the interaction events of Ab-cell and PEP-cell over the Au film interface can be recognized by the sensor and the balance time of interactions is about 20 min. The concentration range of Ab for quantitative monitoring of the TEM8 expression on human colon carcinoma SW620 cells was investigated. The present low-cost and time-saving method provides a time resolution of binding specificity between Ab/PEP and TEM8 for real-time analysis of antigen on living tumor cell surface. PMID:26822761
NASA Astrophysics Data System (ADS)
Sun, Jason N.; Choi, Kwong-Kit; Olver, Kimberley A.; Fu, Richard X.
2017-05-01
Resonator-Quantum Well Infrared Photo detectors (R-QWIPs) are the next generation of QWIP detectors that use resonances to increase the quantum efficiency (QE). Recently, we are exploring R-QWIPs for broadband long wavelength applications. To achieve the expected performance, two optimized inductively coupled plasma (ICP) etching processes (selective and non-selective) are developed. Our selective ICP etching process has a nearly infinite selectivity of etching GaAs over Ga1-xAlxAs. By using the etching processes, two format (1Kx1K and 40x40) detectors with 25 μm pixel pitch were fabricated successfully. In despite of a moderate doping of 0.5 × 1018 cm-3 and a thin active layer thickness of 0.6 or 1.3 μm, we achieved a quantum efficiency 35% and 37% for 8 quantum wells and 19 quantum wells respectively. The temperature at which photocurrent equals dark current is about 66 K under F/2 optics for a cutoff wavelength up to 11 μm. The NEΔT of the FPAs is estimated to be 22 mK at 2 ms integration time and 60 K operating temperature. This good result thus exemplifies the advantages of R-QWIP.
Resonant optical spectroscopy and coherent control of C r 4 + spin ensembles in SiC and GaN
Koehl, William F.; Diler, Berk; Whiteley, Samuel J.; ...
2017-01-15
Spins bound to point defects are increasingly viewed as an important resource for solid-state implementations of quantum information technologies. In particular, there is a growing interest in the identification of new classes of defect spin that can be controlled optically. Here we demonstrate ensemble optical spin polarization and optically detected magnetic resonance (ODMR) of the S = 1 electronic ground state of chromium (Cr 4+) impurities in silicon carbide (SiC) and gallium nitride (GaN). Polarization is made possible by the narrow optical linewidths of these ensembles (< 8.5 GHz), which are similar in magnitude to the ground state zero-field spinmore » splitting energies of the ions at liquid helium temperatures. We therefore are able to optically resolve individual spin sublevels within the ensembles at low magnetic fields using resonant excitation from a cavity-stabilized, narrow-linewidth laser. Additionally, these near-infrared emitters possess exceptionally weak phonon sidebands, ensuring that > 73% of the overall optical emission is contained with the defects’ zero-phonon lines. Lastly, these characteristics make this semiconductor-based, transition metal impurity system a promising target for further study in the ongoing effort to integrate optically active quantum states within common optoelectronic materials.« less
Ginat, Daniel Thomas; Anthony, Gregory J; Christoforidis, Gregory; Oto, Aytekin; Dalag, Leonard; Sammet, Steffen
2018-02-01
The purpose of this study is to compare the image quality of magnetic resonance (MR) treatment planning images and proton resonance frequency (PRF) shift thermography images and inform coil selection for MR-guided laser ablation of tumors in the head and neck region. Laser ablation was performed on an agar phantom and monitored via MR PRF shift thermography on a 3-T scanner, following acquisition of T1-weighted (T1W) planning images. PRF shift thermography images and T2-weighted (T2W) planning images were also performed in the neck region of five normal human volunteers. Signal-to-noise ratios (SNR) and temperature uncertainty were calculated and compared between scans acquired with the quadrature mode body integrated coil and a head and neck neurovascular coil. T1W planning images of the agar phantom produced SNRs of 4.0 and 12.2 for the quadrature mode body integrated coil and head and neck neurovascular coil, respectively. The SNR of the phantom MR thermography magnitude images obtained using the quadrature mode body integrated coil was 14.4 versus 59.6 using the head and neck coil. The average temperature uncertainty for MR thermography performed on the phantom with the quadrature mode body integrated coil was 1.1 versus 0.3 °C with the head and neck coil. T2W planning images of the neck in five human volunteers produced SNRs of 28.3 and 91.0 for the quadrature mode body integrated coil and head and neck coil, respectively. MR thermography magnitude images of the neck in the volunteers obtained using the quadrature mode body integrated coil had a signal-to-noise ratio of 8.3, while the SNR using the head and neck coil was 16.1. The average temperature uncertainty for MR thermography performed on the volunteers with the body coil was 2.5 versus 1.6 °C with the head and neck neurovascular coil. The quadrature mode body integrated coil provides inferior image quality for both basic treatment planning sequences and MR PRF shift thermography compared with a neurovascular coil, but may nevertheless be adequate for clinical purposes.
Nanometric holograms based on a topological insulator material.
Yue, Zengji; Xue, Gaolei; Liu, Juan; Wang, Yongtian; Gu, Min
2017-05-18
Holography has extremely extensive applications in conventional optical instruments spanning optical microscopy and imaging, three-dimensional displays and metrology. To integrate holography with modern low-dimensional electronic devices, holograms need to be thinned to a nanometric scale. However, to keep a pronounced phase shift modulation, the thickness of holograms has been generally limited to the optical wavelength scale, which hinders their integration with ultrathin electronic devices. Here, we break this limit and achieve 60 nm holograms using a topological insulator material. We discover that nanometric topological insulator thin films act as an intrinsic optical resonant cavity due to the unequal refractive indices in their metallic surfaces and bulk. The resonant cavity leads to enhancement of phase shifts and thus the holographic imaging. Our work paves a way towards integrating holography with flat electronic devices for optical imaging, data storage and information security.
NASA Astrophysics Data System (ADS)
Zhou, Xing-Yu; Wang, Ya-Di; Xia, Li-Gang
2017-08-01
A detailed theoretical derivation of the cross sections of e+e- → e+e- and e+e- → μ + μ - around the J/ψ resonance is reported. The resonance and interference parts of the cross sections, related to J/ψ resonance parameters, are calculated. Higher-order corrections for vacuum polarization and initial-state radiation are considered. An arbitrary upper limit of radiative correction integration is involved. Full and simplified versions of analytic formulae are given with precision at the level of 0.1% and 0.2%, respectively. Moreover, the results obtained in the paper can be applied to the case of the ψ(3686) resonance. Supported by National Natural Science Foundation of China (11275211) and Istituto Nazionale di Fisica Nucleare, Italy
Sirunyan, Albert M.
2017-07-03
Here, a search for the production of heavy resonances decaying into top quark-antiquark pairs is presented. The analysis is performed in the lepton+jets and fully hadronic channels using data collected in proton-proton collisions at √s =13 TeV using the CMS detector at the LHC, corresponding to an integrated luminosity of 2.6 fb –1. The selection is optimized for massive resonances, where the top quarks have large Lorentz boosts. No evidence for resonant ttbar production is found in the data, and upper limits on the production cross section of heavy resonances are set. The exclusion limits for resonances with masses abovemore » 2 TeV are significantly improved compared to those of previous analyses at √s = 8 TeV.« less
Attitude control compensator for flexible spacecraft
NASA Technical Reports Server (NTRS)
Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)
1991-01-01
An attitude control loop for a spacecraft uses a proportional-integral-derivative (PID) controller for control about an axis. The spacecraft body has at least a primary mechanical resonance. The attitude sensors are collocated, or both on the rigid portion of the spacecraft. The flexure attributable to the resonance may result in instability of the system. A compensator for the control loop has an amplitude response which includes a component which rolls off beginning at frequencies below the resonance, and which also includes a component having a notch at a notch frequency somewhat below the resonant frequency. The phase response of the compensator tends toward zero at low frequencies, and tends toward -180.degree. as frequency increases toward the notch frequency. At frequencies above the notch frequency, the phase decreases from +180.degree., becoming more negative, and tending toward -90.degree. at frequencies far above the resonance frequency. Near the resonance frequency, the compensator phase is near zero.
Integrated unaligned resonant modulator tuning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zortman, William A.; Lentine, Anthony L.
Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, frommore » the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.« less
Critical Pedagogy and APA: A Resonant (and Timely) Interdisciplinary Blend.
Connolly, Maureen; Harvey, William J
2018-04-12
Critical pedagogy owes much of its emergence, development, and ongoing relevance to the work of Paulo Freire whose legacy remains relevant for a next generation of scholars who seek to explore issues of inclusion, oppression, social justice, and authentic expression. An interdisciplinary dialogue between critical pedagogy and adapted physical activity is timely, appropriate, and should focus on complex profiles of neurodiversity, mental illness, and mental health, with emphasis on pedagogic practices of practitioners in service delivery and teacher educators who prepare them for professional practice. A case-based scenario approach is used to present practitioner and teacher educator practices. Concrete examples are provided for analyzing and understanding deeper issues and challenges related to neurodiversity in a variety of embodied dimensions in educational and activity contexts. We work with Szostak's approach to interdisciplinary research and model an analysis strategy that integrates and applies the methodological features of interdisciplinarity, adapted physical activity, and critical pedagogy.
Hemodynamic signals of mixed messages during a social exchange.
Zucker, Nancy L; Green, Steven; Morris, James P; Kragel, Philip; Pelphrey, Kevin A; Bulik, Cynthia M; LaBar, Kevin S
2011-06-22
This study used functional magnetic resonance imaging to characterize hemodynamic activation patterns recruited when the participants viewed mixed social communicative messages during a common interpersonal exchange. Mixed messages were defined as conflicting sequences of biological motion and facial affect signals that are unexpected within a particular social context (e.g. observing the reception of a gift). Across four social vignettes, valenced facial expressions were crossed with rejecting and accepting gestures in a virtual avatar responding to presentation of a gift from the participant. The results indicate that conflicting facial affect and gesture activated superior temporal sulcus, a region implicated in expectancy violations, as well as inferior frontal gyrus and putamen. Scenarios conveying rejection differentially activated the insula and putamen, regions implicated in embodied cognition, and motivated learning, as well as frontoparietal cortex. Characterizing how meaning is inferred from integration of conflicting nonverbal communicative cues is essential to understand nuances and complexities of human exchange.
Electrophysiological Source Imaging: A Noninvasive Window to Brain Dynamics.
He, Bin; Sohrabpour, Abbas; Brown, Emery; Liu, Zhongming
2018-06-04
Brain activity and connectivity are distributed in the three-dimensional space and evolve in time. It is important to image brain dynamics with high spatial and temporal resolution. Electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive measurements associated with complex neural activations and interactions that encode brain functions. Electrophysiological source imaging estimates the underlying brain electrical sources from EEG and MEG measurements. It offers increasingly improved spatial resolution and intrinsically high temporal resolution for imaging large-scale brain activity and connectivity on a wide range of timescales. Integration of electrophysiological source imaging and functional magnetic resonance imaging could further enhance spatiotemporal resolution and specificity to an extent that is not attainable with either technique alone. We review methodological developments in electrophysiological source imaging over the past three decades and envision its future advancement into a powerful functional neuroimaging technology for basic and clinical neuroscience applications.
Effects of Peach Cultivar on Enzymatic Browning Following Cell Damage from High-Pressure Processing.
Techakanon, Chukwan; Gradziel, Thomas M; Barrett, Diane M
2016-10-12
Peach cultivars contribute to unique product characteristics and may affect the degree of browning after high-pressure processing (HPP). Nine peach cultivars were subjected to HPP at 0, 100, and 400 MPa for 10 min. Proton nuclear magnetic resonance ( 1 H NMR) relaxometry, light microscopy, color, polyphenol oxidase (PPO) activity, and total phenols were evaluated. The development of enzymatic browning during refrigerated storage occurred because of damage during HPP that triggered loss of cell integrity, allowing substrates to interact with enzymes. Increasing pressure levels resulted in greater damage, as determined by shifts in transverse relaxation time (T 2 ) and by light micrographs. Discoloration was triggered by membrane decompartmentalization but limited by PPO activity, which was found to correlate to cultivar harvest time (early, mid, and late season). Outcomes from the microstructure, 1 H NMR ,and PPO activity evaluation were an effective means of determining membrane decompartmentalization and allowed for prediction of browning scenarios.
Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing.
Chen, Yu; Lin, Hongtao; Hu, Juejun; Li, Mo
2014-07-22
Besides being the foundational material for microelectronics, crystalline silicon has long been used for the production of infrared lenses and mirrors. More recently, silicon has become the key material to achieve large-scale integration of photonic devices for on-chip optical interconnect and signal processing. For optics, silicon has significant advantages: it offers a very high refractive index and is highly transparent in the spectral range from 1.2 to 8 μm. To fully exploit silicon’s superior performance in a remarkably broad range and to enable new optoelectronic functionalities, here we describe a general method to integrate silicon photonic devices on arbitrary foreign substrates. In particular, we apply the technique to integrate silicon microring resonators on mid-infrared compatible substrates for operation in the mid-infrared. These high-performance mid-infrared optical resonators are utilized to demonstrate, for the first time, on-chip cavity-enhanced mid-infrared spectroscopic analysis of organic chemicals with a limit of detection of less than 0.1 ng.
Hierarchical Brain Networks Active in Approach and Avoidance Goal Pursuit
Spielberg, Jeffrey M.; Heller, Wendy; Miller, Gregory A.
2013-01-01
Effective approach/avoidance goal pursuit is critical for attaining long-term health and well-being. Research on the neural correlates of key goal-pursuit processes (e.g., motivation) has long been of interest, with lateralization in prefrontal cortex being a particularly fruitful target of investigation. However, this literature has often been limited by a lack of spatial specificity and has not delineated the precise aspects of approach/avoidance motivation involved. Additionally, the relationships among brain regions (i.e., network connectivity) vital to goal-pursuit remain largely unexplored. Specificity in location, process, and network relationship is vital for moving beyond gross characterizations of function and identifying the precise cortical mechanisms involved in motivation. The present paper integrates research using more spatially specific methodologies (e.g., functional magnetic resonance imaging) with the rich psychological literature on approach/avoidance to propose an integrative network model that takes advantage of the strengths of each of these literatures. PMID:23785328
Hierarchical brain networks active in approach and avoidance goal pursuit.
Spielberg, Jeffrey M; Heller, Wendy; Miller, Gregory A
2013-01-01
Effective approach/avoidance goal pursuit is critical for attaining long-term health and well-being. Research on the neural correlates of key goal-pursuit processes (e.g., motivation) has long been of interest, with lateralization in prefrontal cortex being a particularly fruitful target of investigation. However, this literature has often been limited by a lack of spatial specificity and has not delineated the precise aspects of approach/avoidance motivation involved. Additionally, the relationships among brain regions (i.e., network connectivity) vital to goal-pursuit remain largely unexplored. Specificity in location, process, and network relationship is vital for moving beyond gross characterizations of function and identifying the precise cortical mechanisms involved in motivation. The present paper integrates research using more spatially specific methodologies (e.g., functional magnetic resonance imaging) with the rich psychological literature on approach/avoidance to propose an integrative network model that takes advantage of the strengths of each of these literatures.
Electromechanical actuation for thrust vector control applications
NASA Technical Reports Server (NTRS)
Roth, Mary Ellen
1990-01-01
The advanced launch system (ALS), is a launch vehicle that is designed to be cost-effective, highly reliable, and operationally efficient with a goal of reducing the cost per pound to orbit. An electromechanical actuation (EMA) system is being developed as an attractive alternative to the hydraulic systems. The controller will integrate 20 kHz resonant link power management and distribution (PMAD) technology and pulse population modulation (PPM) techniques to implement field-oriented vector control (FOVC) of a new advanced induction motor. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a built-in test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance, and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA thrust vector control (TVC) system. The EMA system and work proposed for the future are discussed.
NASA Astrophysics Data System (ADS)
Beckett, Douglas J. S.; Hickey, Ryan; Logan, Dylan F.; Knights, Andrew P.; Chen, Rong; Cao, Bin; Wheeldon, Jeffery F.
2018-02-01
Quantum dot comb sources integrated with silicon photonic ring-resonator filters and modulators enable the realization of optical sub-components and modules for both inter- and intra-data-center applications. Low-noise, multi-wavelength, single-chip, laser sources, PAM4 modulation and direct detection allow a practical, scalable, architecture for applications beyond 400 Gb/s. Multi-wavelength, single-chip light sources are essential for reducing power dissipation, space and cost, while silicon photonic ring resonators offer high-performance with space and power efficiency.
2015-07-16
0.02(λ/ n )3 modal volumes while preserving optical cavity Q up to5×106 [Fig. 4(f)-(i)]. The mechanical mode is modeled to have fundamental resonance Qm...addition, a 30.64-MHz resonance is observed and identified as one of the wineglass modes (circumferential number n = 4, “square” mode [40]) with a measured...main challenge is that mechanical resonators operating at high frequencies are extremely stiff, having spring constant on the order of 107 N /m. This
Magnetic resonance imaging of the knee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mink, J.H.; Reicher, M.A.; Crues, J.V.
1987-01-01
Introducing a comprehensive, practical guide to the use of magnetic resonance imaging (MRI) in detecting and evaluating knee disorders and planning arthroscopic surgery) This book integrates MRI findings with pertinent anatomy, physiology, and clinical signs to assist radiologists in selecting imaging protocols and interpreting scans. Detailed chapters focus on magnetic resonance imaging of the menisci and ligaments and evaluation of osteonecrosis, osteochondrosis, and osteochondritis. The authors demonstrate the potential of MRI for diagnosing various knee disorders such as arthritis, fractures, popliteal cysts, synovial disease, plicae, popliteal artery aneurysms, tumors, and bone marrow disorders.
NASA Astrophysics Data System (ADS)
Faramarzi, F.; De Haan, T.; Kusaka, A.; Lee, A.; Neuhauser, B.; Plambeck, R.; Raum, C.; Suzuki, A.; Westbrook, B.
2018-03-01
Ground-based cosmic microwave background (CMB) experiments are undergoing a period of exponential growth. Current experiments are observing with 1000-10,000 detectors, and the next-generation experiment (CMB stage 4) is proposing to deploy approximately 500,000 detectors. This order of magnitude increase in detector count will require a new approach for readout electronics. We have developed superconducting resonators for next-generation frequency-domain multiplexing (fMUX) readout architecture. Our goal is to reduce the physical size of resonators, such that resonators and detectors can eventually be integrated on a single wafer. To reduce the size of these resonators, we have designed spiral inductors and interdigitated capacitors that resonate around 10-100 MHz, an order of magnitude higher frequency compared to current fMUX readout systems. The higher frequency leads to a wider bandwidth and would enable higher multiplexing factor than the current ˜ 50 detectors per readout channel. We will report on the simulation, fabrication method, characterization technique, and measurement of quality factor of these resonators.
Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection
NASA Astrophysics Data System (ADS)
Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X.
2013-06-01
High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies < 200 kHz have been recently demonstrated using magnetostrictive/piezoelectric magnetoelectric heterostructures. In this work, we demonstrate a novel magnetoelectric nano-electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields.
Micro-machined resonator oscillator
Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.
1994-01-01
A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.
Al-Bayati, Mohammad; Grueneisen, Johannes; Lütje, Susanne; Sawicki, Lino M; Suntharalingam, Saravanabavaan; Tschirdewahn, Stephan; Forsting, Michael; Rübben, Herbert; Herrmann, Ken; Umutlu, Lale; Wetter, Axel
2018-01-01
To evaluate diagnostic accuracy of integrated 68Gallium labelled prostate-specific membrane antigen (68Ga-PSMA)-11 positron emission tomography (PET)/MRI in patients with primary prostate cancer (PCa) as compared to multi-parametric MRI. A total of 22 patients with recently diagnosed primary PCa underwent clinically indicated 68Ga-PSMA-11 PET/CT for initial staging followed by integrated 68Ga-PSMA-11 PET/MRI. Images of multi-parametric magnetic resonance imaging (mpMRI), PET and PET/MRI were evaluated separately by applying Prostate Imaging Reporting and Data System (PIRADSv2) for mpMRI and a 5-point Likert scale for PET and PET/MRI. Results were compared with pathology reports of biopsy or resection. Statistical analyses including receiver operating characteristics analysis were performed to compare the diagnostic performance of mpMRI, PET and PET/MRI. PET and integrated PET/MRI demonstrated a higher diagnostic accuracy than mpMRI (area under the curve: mpMRI: 0.679, PET and PET/MRI: 0.951). The proportion of equivocal results (PIRADS 3 and Likert 3) was considerably higher in mpMRI than in PET and PET/MRI. In a notable proportion of equivocal PIRADS results, PET led to a correct shift towards higher suspicion of malignancy and enabled correct lesion classification. Integrated 68Ga-PSMA-11 PET/MRI demonstrates higher diagnostic accuracy than mpMRI and is particularly valuable in tumours with equivocal results from PIRADS classification. © 2018 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Yadikin, D.; Brunsell, P. R.; Drake, J. R.
2006-01-01
An active feedback system is required for long pulse operation of the reversed field pinch (RFP) device to suppress resistive wall modes (RWMs). A general feature of a feedback system using a discrete active coil array is a coupling effect which arises when a set of side band modes determined by the number of active coils is produced. Recent results obtained on the EXTRAP T2R RFP demonstrated the suppression of independent m = 1 RWMs using an active feedback system with a two-dimensional array of discrete active coils in the poloidal and toroidal directions. One of the feedback algorithms used is the intelligent shell feedback scheme. Active feedback systems having different number of active coils in the poloidal (Mc) and toroidal (Nc) directions (Mc × Nc = 2 × 32 and Mc × Nc = 4 × 16) are studied. Different side band effects are seen for these configurations. A significant prolongation of the plasma discharge is achieved for the intelligent shell feedback scheme using the 2 × 32 active coil configuration. This is attributed to the side band sets including only one of the dominant unstable RWMs and avoiding coupling to resonant modes. Analog proportional-integral-derivative controllers are used in the feedback system. Regimes with different values of the proportional gain are studied. The requirement of the proportional-integral control for low proportional gain and proportional-derivative control for high proportional gain is seen in the experiments.
Investigation on dispersion in the active optical waveguide resonator
NASA Astrophysics Data System (ADS)
Qiu, Zihan; Gao, Yining; Xie, Wei
2018-03-01
Introducing active gain in the optical waveguide resonator not only compensates the loss, but also can change the dispersion relationship in the ring resonator. It is demonstrated that the group delay time is negative when the resonator is in the undercoupled condition, which also means the resonator exhibits the fast light effect. Theoretical analysis indicates that fast light effect due to anomalous dispersion, would be manipulated by the gain coefficient controlled by the input pump light power and that fast light would enhance scale factor of the optical resonant gyroscope. Resonance optical gyroscope (ROG)'s scale factor for measuring rotation rate is enhanced by anomalous dispersion with superluminal light propagation. The sensitivity of ROG could be enhanced by anomalous dispersion by coupled resonators even considering the effect of anomalous dispersion and propagation gain on broadened linewidth, and this could result in at least two orders of magnitude enhancement in sensitivity.
People-selectivity, audiovisual integration and heteromodality in the superior temporal sulcus.
Watson, Rebecca; Latinus, Marianne; Charest, Ian; Crabbe, Frances; Belin, Pascal
2014-01-01
The functional role of the superior temporal sulcus (STS) has been implicated in a number of studies, including those investigating face perception, voice perception, and face-voice integration. However, the nature of the STS preference for these 'social stimuli' remains unclear, as does the location within the STS for specific types of information processing. The aim of this study was to directly examine properties of the STS in terms of selective response to social stimuli. We used functional magnetic resonance imaging (fMRI) to scan participants whilst they were presented with auditory, visual, or audiovisual stimuli of people or objects, with the intention of localising areas preferring both faces and voices (i.e., 'people-selective' regions) and audiovisual regions designed to specifically integrate person-related information. Results highlighted a 'people-selective, heteromodal' region in the trunk of the right STS which was activated by both faces and voices, and a restricted portion of the right posterior STS (pSTS) with an integrative preference for information from people, as compared to objects. These results point towards the dedicated role of the STS as a 'social-information processing' centre. Copyright © 2013 Elsevier Ltd. All rights reserved.
People-selectivity, audiovisual integration and heteromodality in the superior temporal sulcus
Watson, Rebecca; Latinus, Marianne; Charest, Ian; Crabbe, Frances; Belin, Pascal
2014-01-01
The functional role of the superior temporal sulcus (STS) has been implicated in a number of studies, including those investigating face perception, voice perception, and face–voice integration. However, the nature of the STS preference for these ‘social stimuli’ remains unclear, as does the location within the STS for specific types of information processing. The aim of this study was to directly examine properties of the STS in terms of selective response to social stimuli. We used functional magnetic resonance imaging (fMRI) to scan participants whilst they were presented with auditory, visual, or audiovisual stimuli of people or objects, with the intention of localising areas preferring both faces and voices (i.e., ‘people-selective’ regions) and audiovisual regions designed to specifically integrate person-related information. Results highlighted a ‘people-selective, heteromodal’ region in the trunk of the right STS which was activated by both faces and voices, and a restricted portion of the right posterior STS (pSTS) with an integrative preference for information from people, as compared to objects. These results point towards the dedicated role of the STS as a ‘social-information processing’ centre. PMID:23988132
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaltonen, T.
We search for resonant production of tt pairs in 4.8 fb -1 integrated luminosity of pp collision data at √s = 1.96 TeV in the lepton+jets decay channel, where one top quark decays leptonically and the other hadronically. A matrix element reconstruction technique is used; for each event a probability density function (pdf) of the tt candidate invariant mass is sampled. These pdfs are used to construct a likelihood function, whereby the cross section for resonant tt production is estimated, given a hypothetical resonance mass and width. The data indicate no evidence of resonant production of tt pairs. A benchmarkmore » model of leptophobic Z' → tt is excluded with m Z' < 900 GeV at 95% confidence level.« less
Micro ring cavity resonator incorporating total internal reflection mirrors
NASA Astrophysics Data System (ADS)
Kim, Doo Gun; Choi, Woon Kyung; Choi, Young Wan; Yi, Jong Chang; Chung, Youngchul; Dagli, Nadir
2007-02-01
We investigate the properties of a multimode-interference (MMI) coupled micro ring cavity resonator with total-internal-reflection (TIR) mirrors and a semiconductor optical amplifier (SOA). The TIR mirrors were fabricated by the self-aligned process with a loss of 0.7 dB per mirror. The length and width of an MMI are 142 μm and 10 μm, respectively. The resulting free spectral range (FSR) of the resonator was approximately 1.698 nm near 1571 nm and the extinction ratio was about 17 dB. These devices might be useful as optical switching and add-drop filters in a photonic integrated circuit or as small and fast resonator devices.
Search for neutral resonances decaying into a Z boson and a pair of b jets or τ leptons
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El-khateeb, E.; Elkafrawy, T.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Filipovic, N.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Sieber, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Bellato, M.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Bunin, P.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; De Castro Manzano, P.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Gecit, F. H.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozcan, M.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Konigsberg, J.; Korytov, A.; Kotov, K.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P.; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Saka, H.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Tan, P.; Verzetti, M.; Arora, S.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.
2016-08-01
A search is performed for a new resonance decaying into a lighter resonance and a Z boson. Two channels are studied, targeting the decay of the lighter resonance into either a pair of oppositely charged τ leptons or a b b ‾ pair. The Z boson is identified via its decays to electrons or muons. The search exploits data collected by the CMS experiment at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.8 fb-1. No significant deviations are observed from the standard model expectation and limits are set on production cross sections and parameters of two-Higgs-doublet models.
Integrated Microphotonic Receiver for Ka-Band
NASA Technical Reports Server (NTRS)
Levi, A. F. J.
2005-01-01
This report consists of four main sections. Part I: LiNbO3 microdisk resonant optical modulator. Brief review of microdisk optical resonator and RF ring resonator. Microwave and photonic design challenges for achieving simultaneous RF-optical resonance are addressed followed by our solutions. Part II: Experimental demonstration of LiNbO3 microdisk modulator performance in wired and wireless RF-optical links. Part III: Microphotonic RF receiver architecture that exploits the nonlinear modulation in the LiNbO3 microdisk modulator to achieve direct photonic down-conversion from RF carrier without using any high-speed electronic elements. Part IV: Ultimate sensitivity of the microdisk photonic receiver and the future road map toward a practical device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, Albert M; et al.
A search for a narrow-width resonance decaying into two Higgs bosons, each decaying into a bottom quark-antiquark pair, is presented. The search is performed using proton-proton collision data corresponding to an integrated luminosity of 35.9 fbmore » $$^{-1}$$ at $$\\sqrt{s}=$$ 13 TeV recorded by the CMS detector at the LHC. No evidence for such a signal is observed. Upper limits are set on the product of the production cross section for the resonance and the branching fraction for the selected decay mode in the resonance mass range from 260 to 1200 GeV.« less
NASA Astrophysics Data System (ADS)
Poborchii, Vladimir; Shklyaev, Alexander; Bolotov, Leonid; Uchida, Noriyuki; Tada, Tetsuya; Utegulov, Zhandos N.
2017-12-01
Metasurfaces consisting of arrays of high-index Mie resonators concentrating/redirecting light are important for integrated optics, photodetectors, and solar cells. Herein, we report the optical properties of low-Ge-content SiGe lens-like Mie resonator island arrays fabricated via dewetting during Ge deposition on a Si(100) surface at approximately 900 °C. We observe enhancement of the Si interaction with light owing to the efficient island-induced light concentration in the submicron-depth Si layer, which is mediated by both near-field Mie resonance leaking into the substrate and far-field light focusing. Such metasurfaces can improve the Si photodetector and solar-cell performance.
NASA Astrophysics Data System (ADS)
Li, Yunlong; Oh, Inkyu; Chen, Jiehao; Hu, Yuhang
2018-06-01
Conventional membrane resonators are bulky, and once the geometries and materials are fixed in the fabricated device, the resonators’ characteristics are fixed. In this work, we introduce the active membrane, dielectric elastomer (DE), into the resonator design. Attaching a stiffer passive membrane onto the active DE membrane forms a two-layer system, which generates an out-of-plane deformation when the DE is actuated through a DC voltage applied across the thickness of the DE membrane. When an AC voltage is applied, the two-layer system can generate an out-of-plane oscillation which enables its use as membrane resonators. Both experiments and simulations are carried out to study the dynamic characteristics of the system. The resonant frequencies and mode shapes of the resonator can be tuned through the passive layer properties such as the modulus, thickness, density, and size. The effective stiffness of the DE film changes as the magnitude of the voltage applied on the film changes, which provides an active way to tune the dynamic characteristics of the two-layer resonator even after the device is set. The system is also light weight, low cost, and easy to fabricate, and has great potential in many engineering applications.
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, Seung-Gol; O, Beom Hoan; Park, Se Geun
2004-08-01
Scientific and technological issues and considerations regarding the integration of miniaturized microphotonic devices, circuits and systems in micron, submicron, and quantum scale, are presented. First, we examine the issues regarding the miniaturization of photonic devices including the size effect, proximity effect, energy confinement effect, microcavity effect, optical and quantum interference effect, high field effect, nonlinear effect, noise effect, quantum optical effect, and chaotic effect. Secondly, we examine the issues regarding the interconnection including the optical alignment, minimizing the interconnection losses, and maintaining optical modes. Thirdly, we address the issues regarding the two-dimensional or three-dimensional integration either in a hybrid format or in a monolithic format between active devices and passive devices of varying functions. We find that the concept of optical printed circuit board (O-PCB) that we propose is highly attractive as a platform for micro/nano/quantum-scale photonic integration. We examine the technological issues to be addressed in the process of fabrication, characterization, and packaging for actual implementation of the miniaturization, interconnection and integration. Devices that we have used for our study include: mode conversion schemes, micro-ring and micro-racetrack resonator devices, multimode interference devices, lasers, vertical cavity surface emitting microlasers, and their arrays. Future prospects are also discussed.
ERIC Educational Resources Information Center
Familiari, Giuseppe; Relucenti, Michela; Heyn, Rosemarie; Baldini, Rossella; D'Andrea, Giancarlo; Familiari, Pietro; Bozzao, Alessandro; Raco, Antonino
2013-01-01
Neuroanatomy is considered to be one of the most difficult anatomical subjects for students. To provide motivation and improve learning outcomes in this area, clinical cases and neurosurgical images from diffusion tensor imaging (DTI) tractographies produced using an intraoperative magnetic resonance imaging apparatus (MRI/DTI) were presented and…
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Dvornikov, O.; Makarenko, V.; Zykunov, V.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Sharma, A.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Micanovic, S.; Sudic, L.; Susa, T.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Tsiakkouri, D.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; El-khateeb, E.; Salama, E.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kudella, S.; Lobelle Pardo, P.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Behnamian, H.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Chadeeva, M.; Chistov, R.; Polikarpov, S.; Rusinov, V.; Zhemchugov, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Breto, G.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Jung, K.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Bruner, C.; Castle, J.; Forthomme, L.; Kenny, R. P., III; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Kubik, A.; Kumar, A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Mc Donald, J.; Medvedeva, T.; Mei, K.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Belknap, D. A.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration
2017-04-01
A search for the resonant production of high-mass photon pairs is presented. The search focuses on spin-0 and spin-2 resonances with masses between 0.5 and 4.5 TeV, and with widths, relative to the mass, between 1.4 ×10-4 and 5.6 ×10-2. The data sample corresponds to an integrated luminosity of 12.9 fb-1 of proton-proton collisions collected with the CMS detector in 2016 at a center-of-mass energy of 13 TeV. No significant excess is observed relative to the standard model expectation. The results of the search are combined statistically with those previously obtained in 2012 and 2015 at √{ s} = 8 and 13 TeV, respectively, corresponding to integrated luminosities of 19.7 and 3.3 fb-1, to derive exclusion limits on scalar resonances produced through gluon-gluon fusion, and on Randall-Sundrum gravitons. The lower mass limits for Randall-Sundrum gravitons range from 1.95 to 4.45 TeV for coupling parameters between 0.01 and 0.2. These are the most stringent limits on Randall-Sundrum graviton production to date.
Imhoff, Andreas B; Paul, Jochen; Ottinger, Benjamin; Wörtler, Klaus; Lämmle, Lena; Spang, Jeffrey; Hinterwimmer, Stefan
2011-07-01
Osteochondral lesions of the ankle are a common injury after ankle sprains, especially in young and active patients. The Osteochondral Autograft Transfer System (OATS) is the only 1-step surgical technique designed to replace the entire osteochondral unit. This study was conducted to evaluate the long-term clinical and radiographic outcomes of the OATS procedure for the talus and compare the results of patients who have had prior surgical interventions with patients for whom OATS represents the primary surgical treatment. Case series; Level of evidence, 4. The authors retrospectively analyzed 26 talus OATS procedures (25 patients) with an average follow-up of 84 months (range, 53-124 months); 9 patients had OATS as a second surgical intervention. The patients completed the American Orthopaedic Foot & Ankle Society (AOFAS) and Tegner scores plus the visual analog scale (VAS) preoperatively and at follow-up. Magnetic resonance imaging examinations were conducted on a 1.5-T whole-body magnet that assessed transplant congruency, adjacent surface of the talus, the corresponding distal tibia, and joint effusion. The authors found significant increases for the AOFAS score (50 to 78 points, P < .01) and the Tegner score (3.1 to 3.7, P < .05) and a significant decrease for the VAS (7.8 to 1.5, P < .01) from preoperative to postoperative. Patients with normal integration or minor incongruity of the transplant on magnetic resonance imaging (81%) had significantly better AOFAS scores (P = .03). Other magnetic resonance imaging criteria did not predict clinical results. Patients for whom OATS represented a second procedure had significantly worse clinical AOFAS and Tegner scores plus a higher VAS. Long-term clinical and magnetic resonance imaging results after osteochondral transplantation are good and patients significantly benefit from this surgery. Magnetic resonance imaging should not be a routine control but appears to be indicated when clinical symptoms persist after osteochondral transplantation.
NASA Astrophysics Data System (ADS)
Mortada, O.; Zahr, A. H.; Orlianges, J.-C.; Crunteanu, A.; Chatras, M.; Blondy, P.
2017-02-01
This paper reports on the design, simulation, fabrication, and test results of ZnO-based contour-mode micro-resonators integrating piezoelectric zinc oxide (ZnO) layers. The inter-digitated (IDT) type micro-resonators are fabricated on ZnO films and suspended top of 2 μm thick silicon membranes using silicon-on insulator technology. We analyze several possibilities of increasing the quality factor (Q) and the electromechanical coupling coefficient (kt2) of the devices by varying the numbers and lengths of the IDT electrodes and using different thicknesses of the ZnO layer. We designed and fabricated IDTs of different finger numbers (n = 25, 40, 50, and 80) and lengths (L = 100/130/170/200 μm) for three different thicknesses of ZnO films (200, 600, and 800 nm). The measured Q factor confirms that reducing the length and the number of IDT fingers enables us to reach better electrical performances at resonant frequencies around 700 MHz. The extracted results for an optimized micro-resonator device having an IDT length of 100 μm and 40 finger electrodes show a Q of 1180 and a kt2 of 7.4%. We demonstrate also that the reduction of the ZnO thickness from 800 nm to 200 nm increases the quality factor from 430 to 1600, respectively, around 700 MHz. Experimental data are in very good agreement with theoretical simulations of the fabricated devices
Guermazi, Ali; Hunter, David J; Roemer, Frank W
2009-02-01
Osteoarthritis is the most common joint disorder worldwide, and it has an enormous socioeconomic impact both in the United States and throughout the world. Conventional radiography is the simplest and least expensive imaging method for assessing osteoarthritis of the knee. Radiography is able to directly visualize osseous features of osteoarthritis, including marginal osteophytes, subchondral sclerosis, and subchondral cysts, and it is used in clinical practice to confirm the diagnosis of osteoarthritis and to monitor progression of the disease. However, the assessment of joint-space width provides only an indirect estimate of cartilage thickness and meniscal integrity. Magnetic resonance imaging, with its unique ability to examine the joint as a whole organ, holds great promise with regard to the rapid advancement of knowledge about the disease and the evaluation of novel treatment approaches. Magnetic resonance imaging has been applied widely in quantitative morphometric cartilage assessment, and compositional measures have been introduced that evaluate chondral integrity. In addition, magnetic resonance imaging-based validated semiquantitative whole-organ scoring methods have been applied for cross-sectional and longitudinal joint evaluation. This review describes currently applied radiographic and magnetic resonance imaging staging and scoring methods for the assessment of osteoarthritis of the knee and focuses on the strengths and weaknesses of the two modalities with regard to their use in clinical trials and epidemiologic studies.
Neural mechanisms of imitation and 'mirror neuron' functioning in autistic spectrum disorder.
Williams, Justin H G; Waiter, Gordon D; Gilchrist, Anne; Perrett, David I; Murray, Alison D; Whiten, Andrew
2006-01-01
An association between autistic spectrum disorder and imitative impairment might result from dysfunction in mirror neurons (MNs) that serve to relate observed actions to motor codings. To explore this hypothesis, we employed a functional magnetic resonance imaging (fMRI) protocol previously used to identify the neural substrate of imitation, and human MN function, to compare 16 adolescent males of normal intelligence with autistic spectrum disorder (ASD) and age, sex and IQ matched controls. In the control group, in accord with previous findings, we identified activity attributable to MNs in areas of the right parietal lobe. Activity in this area was less extensive in the ASD group and was absent during non-imitative action execution. Broca's area was minimally active during imitation in controls. Differential patterns of activity during imitation and action observation in ASD and controls were most evident in an area at the right temporo-parietal junction also associated with a 'theory of mind' (ToM) function. ASD participants also failed to show modulation of left amygdala activity during imitation that was evident in the controls. This may have implications for understanding the imitation of emotional stimuli in ASD. Overall, we suggest that ASD is associated with altered patterns of brain activity during imitation, which could stem from poor integration between areas serving visual, motor, proprioceptive and emotional functions. Such poor integration is likely to adversely affect the development of ToM through imitation as well as other aspects of social cognitive function in ASD.
Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Fuchuan; Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130; Peng, Bo
2014-09-08
We report Fano-like asymmetric resonances modulated by optical gain in a whispering-gallery-mode resonator fabricated from erbium-doped silica. A time-dependent gain profile leads to dynamically varying sharp asymmetric resonances with features similar to Fano resonances. Depending on the scan speed of the frequency of the probe laser and the pump-probe power ratio, transmission spectra of the active microcavity exhibit a resonance dip, a resonance peak, or a Fano-like resonance.
Microstrip resonators for electron paramagnetic resonance experiments
NASA Astrophysics Data System (ADS)
Torrezan, A. C.; Mayer Alegre, T. P.; Medeiros-Ribeiro, G.
2009-07-01
In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5×1010 spins/GHz1/2 despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ketchum, Jacob A.; Adams, Fred C.; Bloch, Anthony M.
2011-01-01
Pairs of migrating extrasolar planets often lock into mean motion resonance as they drift inward. This paper studies the convergent migration of giant planets (driven by a circumstellar disk) and determines the probability that they are captured into mean motion resonance. The probability that such planets enter resonance depends on the type of resonance, the migration rate, the eccentricity damping rate, and the amplitude of the turbulent fluctuations. This problem is studied both through direct integrations of the full three-body problem and via semi-analytic model equations. In general, the probability of resonance decreases with increasing migration rate, and with increasingmore » levels of turbulence, but increases with eccentricity damping. Previous work has shown that the distributions of orbital elements (eccentricity and semimajor axis) for observed extrasolar planets can be reproduced by migration models with multiple planets. However, these results depend on resonance locking, and this study shows that entry into-and maintenance of-mean motion resonance depends sensitively on the migration rate, eccentricity damping, and turbulence.« less
Spectroscopic and Statistical Techniques for Information Recovery in Metabonomics and Metabolomics
NASA Astrophysics Data System (ADS)
Lindon, John C.; Nicholson, Jeremy K.
2008-07-01
Methods for generating and interpreting metabolic profiles based on nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and chemometric analysis methods are summarized and the relative strengths and weaknesses of NMR and chromatography-coupled MS approaches are discussed. Given that all data sets measured to date only probe subsets of complex metabolic profiles, we describe recent developments for enhanced information recovery from the resulting complex data sets, including integration of NMR- and MS-based metabonomic results and combination of metabonomic data with data from proteomics, transcriptomics, and genomics. We summarize the breadth of applications, highlight some current activities, discuss the issues relating to metabonomics, and identify future trends.
Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics.
Lindon, John C; Nicholson, Jeremy K
2008-01-01
Methods for generating and interpreting metabolic profiles based on nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and chemometric analysis methods are summarized and the relative strengths and weaknesses of NMR and chromatography-coupled MS approaches are discussed. Given that all data sets measured to date only probe subsets of complex metabolic profiles, we describe recent developments for enhanced information recovery from the resulting complex data sets, including integration of NMR- and MS-based metabonomic results and combination of metabonomic data with data from proteomics, transcriptomics, and genomics. We summarize the breadth of applications, highlight some current activities, discuss the issues relating to metabonomics, and identify future trends.
NASA Astrophysics Data System (ADS)
Thi, Minh Do; Volka, Karel
2010-07-01
A feasibility study has been undertaken to assess the suitability of a commercially available SERS substrate for monitoring of self-assembling deposition process. Monolayer self-assembly of 4-mercaptobenzoic acid on SERS active substrate Klarite™ from absolute and acidified ethanol was studied and compared with deposition on SPR substrate from absolute ethanol. Changes in integral intensity of the phenyl bands at 1587 and 1076 cm -1 and ethanol band at 1451 cm -1 allow to follow structural changes in the monolayer. Stability of the monolayer assembled from acidified ethanol in contrast to the pure ethanol was demonstrated.
Hampel, Harald; Prvulovic, David; Teipel, Stefan J; Bokde, Arun L W
2011-12-01
The objective of this review is to evaluate recent advances in functional magnetic resonance imaging (fMRI) research in Alzheimer's disease for the development of therapeutic agents. The basic building block underpinning cognition is a brain network. The measured brain activity serves as an integrator of the various components, from genes to structural integrity, that impact the function of networks underpinning cognition. Specific networks can be interrogated using cognitive paradigms such as a learning task or a working memory task. In addition, recent advances in our understanding of neural networks allow one to investigate the function of a brain network by investigating the inherent coherency of the brain networks that can be measured during resting state. The coherent resting state networks allow testing in cognitively impaired patients that may not be possible with the use of cognitive paradigms. In particular the default mode network (DMN) includes the medial temporal lobe and posterior cingulate, two key regions that support episodic memory function and are impaired in the earliest stages of Alzheimer's disease (AD). By investigating the effects of a prospective drug compound on this network, it could illuminate the specificity of the compound with a network supporting memory function. This could provide valuable information on the methods of action at physiological and behaviourally relevant levels. Utilizing fMRI opens up new areas of research and a new approach for drug development, as it is an integrative tool to investigate entire networks within the brain. The network based approach provides a new independent method from previous ones to translate preclinical knowledge into the clinical domain. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Casale, Marco; Kerdiles, Sebastien; Brianceau, Pierre; Hugues, Vincent; El Dirani, Houssein; Sciancalepore, Corrado
2017-02-01
In this communication, authors report for the first time on the fabrication and testing of Si3N4 non-linear photonic circuits for CMOS-compatible monolithic co-integration with silicon-based optoelectronics. In particular, a novel process has been developed to fabricate low-loss crack-free Si3N4 750-nm-thick films for Kerr-based nonlinear functions featuring full thermal budget compatibility with existing Silicon photonics and front-end Si optoelectronics. Briefly, differently from previous and state-of-the-art works, our nonlinear nitride-based platform has been realized without resorting to commonly-used high-temperature annealing ( 1200°C) of the film and its silica upper-cladding used to break N-H bonds otherwise causing absorption in the C-band and destroying its nonlinear functionality. Furthermore, no complex and fabrication-intolerant Damascene process - as recently reported earlier this year - aimed at controlling cracks generated in thick tensile-strained Si3N4 films has been used as well. Instead, a tailored Si3N4 multiple-step film deposition in 200-mm LPCVD-based reactor and subsequent low-temperature (400°C) PECVD oxide encapsulation have been used to fabricate the nonlinear micro-resonant circuits aiming at generating optical frequency combs via optical parametric oscillators (OPOs), thus allowing the monolithic co-integration of such nonlinear functions on existing CMOS-compatible optoelectronics, for both active and passive components such as, for instance, silicon modulators and wavelength (de-)multiplexers. Experimental evidence based on wafer-level statistics show nitride-based 112-μm-radius ring resonators using such low-temperature crack-free nitride film exhibiting quality factors exceeding Q >3 x 105, thus paving the way to low-threshold power-efficient Kerr-based comb sources and dissipative temporal solitons in the C-band featuring full thermal processing compatibility with Si photonic integrated circuits (Si-PICs).
Integrated Metamaterials and Nanophotonics in CMOS-Compatible Materials
NASA Astrophysics Data System (ADS)
Reshef, Orad
This thesis explores scalable nanophotonic devices in integrated, CMOS-compatible platforms. Our investigation focuses on two main projects: studying the material properties of integrated titanium dioxide (TiO2), and studying integrated metamaterials in silicon-on-insulator (SOI) technologies. We first describe the nanofabrication process for TiO2 photonic integrated circuits. We use this procedure to demonstrate polycrystalline anatase TiO2 ring resonators with high quality factors. We measure the thermo-optic coefficient of TiO2 and determine that it is negative, a unique property among CMOS-compatible dielectric photonic platforms. We also derive a transfer function for ring resonators in the presence of reflections and demonstrate using full-wave simulations that these reflections produce asymmetries in the resonances. For the second half of the dissertation, we design and demonstrate an SOI-based photonic-Dirac-cone metamaterial. Using a prism composed of this metamaterial, we measure its index of refraction and unambiguously determine that it is zero. Next, we take a single channel of this metamaterial to form a waveguide. Using interferometry, we independently confirm that the waveguide in this configuration preserves the dispersion profile of the aggregate medium, with a zero phase advance. We also characterize the waveguide, determining its propagation loss. Finally, we perform simulations to study nonlinear optical phenomena in zero-index media. We find that an isotropic refractive index near zero relaxes certain phase-matching constraints, allowing for more flexible configurations of nonlinear devices with dramatically reduced footprints. The outcomes of this work enable higher quality fabrication of scalable nanophotonic devices for use in nonlinear applications with passive temperature compensation. These devices are CMOS-compatible and can be integrated vertically for compact, device-dense industrial applications. It also provides access to a versatile, scalable and integrated medium with a refractive index that can be continuously engineered between n = -0.20 and n = +0.50. This opens the door to applications in high-precision interferometry, sensing, quantum information technologies and compact nonlinear applications.
Dynamics Control Approaches to Improve Vibratory Environment of the Helicopter Aircrew
NASA Astrophysics Data System (ADS)
Wickramasinghe, Viresh Kanchana
Although helicopter has become a versatile mode of aerial transportation, high vibration levels leads to poor ride quality for its passengers and aircrew. Undesired vibration transmitted through the helicopter seats have been known to cause fatigue and discomfort to the aircrew in the short-term as well as neck strain and back pain injuries due to long-term exposure. This research study investigated the use of novel active as well as passive methodologies integrated in helicopter seats to mitigate the aircrew exposure to high vibration levels. Due to significantly less certification effort required to modify the helicopter seat structure, application of novel technologies to the seat is more practical compared to flight critical components such as the main rotor to reduce aircrew vibration. In particular, this research effort developed a novel adaptive seat mount approach based on active vibration control technology. This novel design that incorporated two stacked piezoelectric actuators as active struts increases the bending stiffness to avoid the low frequency resonance while generating forces to counteract higher harmonic vibration peaks. A real-time controller implemented using a feed-forward algorithm based on adaptive notches counteracted the forced vibration peaks while a robust feedback control algorithm suppressed the resonance modes. The effectiveness of the adaptive seat mount system was demonstrated through extensive closed-loop control tests on a full-scale helicopter seat using representative helicopter floor vibration profiles. Test results concluded that the proposed adaptive seat mount approach based on active control technology is a viable solution for the helicopter seat vibration control application. In addition, a unique flight test using a Bell-412 helicopter demonstrated that the aircrew is exposed to high levels of vibration during flight and that the whole body vibration spectrum varied substantially depending on operating conditions as well as the aircrew configurations. This investigation also demonstrated the suitability of integrating novel energy absorbing cushion materials to the seat as a low cost solution to improve aircrew vibration suppression. Therefore, it was recommended to pursue certification of novel seat cushion materials as a near-term solution to mitigate undesirable occupational health hazards in helicopter aircrew due to vibration exposure.
Reconfigurable Cellular Photonic Crystal Arrays (RCPA)
2013-03-01
signal processing based on reconfigurable integrated optics devices. This technology has the potential to revolutionize the design circle of optical...Accomplishments III.A. Design and fabrication of an accumulation-mode modulator Figure 1(a) shows the schematic of a compact resonator on the double-Si... integration of silicon nitride on silicon-on-insulator platform to enhance the arsenal of photonic circuit designers . The coherent integration of
Active Control of the Forced and Transient Response of a Finite Beam. M.S. Thesis
NASA Technical Reports Server (NTRS)
Post, John Theodore
1989-01-01
When studying structural vibrations resulting from a concentrated source, many structures may be modelled as a finite beam excited by a point source. The theoretical limit on cancelling the resulting beam vibrations by utilizing another point source as an active controller is explored. Three different types of excitation are considered, harmonic, random, and transient. In each case, a cost function is defined and minimized for numerous parameter variations. For the case of harmonic excitation, the cost function is obtained by integrating the mean squared displacement over a region of the beam in which control is desired. A controller is then found to minimize this cost function in the control interval. The control interval and controller location are continuously varied for several frequencies of excitation. The results show that control over the entire beam length is possible only when the excitation frequency is near a resonant frequency of the beam, but control over a subregion may be obtained even between resonant frequencies at the cost of increasing the vibration outside of the control region. For random excitation, the cost function is realized by integrating the expected value of the displacement squared over the interval of the beam in which control is desired. This is shown to yield the identical cost function as obtained by integrating the cost function for harmonic excitation over all excitation frequencies. As a result, it is always possible to reduce the cost function for random excitation whether controlling the entire beam or just a subregion, without ever increasing the vibration outside the region in which control is desired. The last type of excitation considered is a single, transient pulse. A cost function representative of the beam vibration is obtained by integrating the transient displacement squared over a region of the beam and over all time. The form of the controller is chosen a priori as either one or two delayed pulses. Delays constrain the controller to be causal. The best possible control is then examined while varying the region of control and the controller location. It is found that control is always possible using either one or two control pulses. The two pulse controller gives better performance than a single pulse controller, but finding the optimal delay time for the additional controllers increases as the square of the number of control pulses.
Free-vibration acoustic resonance of a nonlinear elastic bar
NASA Astrophysics Data System (ADS)
Tarumi, Ryuichi; Oshita, Yoshihito
2011-02-01
Free-vibration acoustic resonance of a one-dimensional nonlinear elastic bar was investigated by direct analysis in the calculus of variations. The Lagrangian density of the bar includes a cubic term of the deformation gradient, which is responsible for both geometric and constitutive nonlinearities. By expanding the deformation function into a complex Fourier series, we derived the action integral in an analytic form and evaluated its stationary conditions numerically with the Ritz method for the first three resonant vibration modes. This revealed that the bar shows the following prominent nonlinear features: (i) amplitude dependence of the resonance frequency; (ii) symmetry breaking in the vibration pattern; and (iii) excitation of the high-frequency mode around nodal-like points. Stability of the resonant vibrations was also addressed in terms of a convex condition on the strain energy density.
NASA Astrophysics Data System (ADS)
Asgari, Somayyeh; Ghattan Kashani, Zahra; Granpayeh, Nosrat
2018-04-01
The performances of three optical devices including a refractive index sensor, a power splitter, and a 4-channel multi/demultiplexer based on graphene cylindrical resonators are proposed, analyzed, and simulated numerically by using the finite-difference time-domain method. The proposed sensor operates on the principle of the shift in resonance wavelength with a change in the refractive index of dielectric materials. The sensor sensitivity has been numerically derived. In addition, the performances of the power splitter and the multi/demultiplexer based on the variation of the resonance wavelengths of cylindrical resonator have been thoroughly investigated. The simulation results are in good agreement with the theoretical ones. Our studies demonstrate that the graphene based ultra-compact, nano-scale devices can be improved to be used as photonic integrated devices, optical switching, and logic gates.
Energy scavenging system by acoustic wave and integrated wireless communication
NASA Astrophysics Data System (ADS)
Kim, Albert
The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..
An energy-efficient readout circuit for resonant sensors based on ring-down measurement
NASA Astrophysics Data System (ADS)
Zeng, Z.; Pertijs, M. A. P.; Karabacak, D. M.
2013-02-01
This paper presents an energy-efficient readout circuit for resonant sensors that operates based on a transient measurement method. The resonant sensor is driven at a frequency close to its resonance frequency by an excitation source that can be intermittently disconnected, causing the sensor to oscillate at its resonance frequency with exponentially decaying amplitude. By counting the zero crossings of this ring-down response, the interface circuit can detect the resonance frequency. In contrast with oscillator-based readout, the presented readout circuit is readily able to detect quality factor (Q) of the resonator from the envelope of the ring-down response, and can be used even in the presence of large parasitic capacitors. A prototype of the readout circuit has been integrated in 0.35 μm CMOS technology, and consumes only 36 μA from a 3.3 V supply during a measurement time of 2 ms. The resonance frequency and quality factor of a micro-machined SiN resonator obtained using this prototype are in good agreement with results obtained using impedance analysis. Furthermore, a clear transient response is observed to ethanol flow using the presented readout, demonstrating the use of this technique in sensing applications.
NASA Astrophysics Data System (ADS)
Chen, Ying; Luo, Pei; Liu, Xiaofei; Di, Yuanjian; Han, Shuaitao; Cui, Xingning; He, Lei
2018-05-01
Based on the transmission property and the photon localization characteristic of the surface plasmonic sub-wavelength structure, a metallic double-baffle contained metal-dielectric-metal (MDM) waveguide coupled ring resonator is proposed. Like the electromagnetically induced transparency (EIT), the Fano resonance can be achieved by the interference between the metallic double-baffle resonator and the ring resonator. Based on the coupled mode theory, the transmission property is analyzed. Through the numerical simulation by the finite element method (FEM), the quantitative analysis on the influences of the radius R of the ring and the coupling distance g between the metallic double-baffle resonator and the ring resonator for the figure of merit (FOM) is performed. And after the structure parameter optimization, the sensing performance of the waveguide structure is discussed. The simulation results show that the FOM value of the optimized structure can attain to 5.74 ×104 and the sensitivity of resonance wavelength with refractive index drift is about 825 nm/RIU. The range of the detected refractive index is suitable for all gases. The waveguide structure can provide effective theoretical references for the design of integrated plasmonic devices.
Dynamic Portrait of the Retrograde 1:1 Mean Motion Resonance
NASA Astrophysics Data System (ADS)
Huang, Yukun; Li, Miao; Li, Junfeng; Gong, Shengping
2018-06-01
Asteroids in mean motion resonances with giant planets are common in the solar system, but it was not until recently that several asteroids in retrograde mean motion resonances with Jupiter and Saturn were discovered. A retrograde co-orbital asteroid of Jupiter, 2015 BZ509 is confirmed to be in a long-term stable retrograde 1:1 mean motion resonance with Jupiter, which gives rise to our interests in its unique resonant dynamics. In this paper, we investigate the phase-space structure of the retrograde 1:1 resonance in detail within the framework of the circular restricted three-body problem. We construct a simple integrable approximation for the planar retrograde resonance using canonical contact transformation and numerically employ the averaging procedure in closed form. The phase portrait of the retrograde 1:1 resonance is depicted with the level curves of the averaged Hamiltonian. We thoroughly analyze all possible librations in the co-orbital region and uncover a new apocentric libration for the retrograde 1:1 resonance inside the planet’s orbit. We also observe the significant jumps in orbital elements for outer and inner apocentric librations, which are caused by close encounters with the perturber.
How Shakespeare tempests the brain: neuroimaging insights.
Keidel, James L; Davis, Philip M; Gonzalez-Diaz, Victorina; Martin, Clara D; Thierry, Guillaume
2013-04-01
Shakespeare made extensive use of the functional shift (FS), a rhetorical device involving a change in the grammatical status of words, e.g., using nouns as verbs. Previous work using event-related brain potentials showed how FS triggers a surprise effect inviting mental re-evaluation, seemingly independent of semantic processing. Here, we used functional magnetic resonance imaging to investigate brain activation in participants making judgements on the semantic relationship between sentences -some containing a Shakespearean FS- and subsequently presented words. Behavioural performance in the semantic decision task was high and unaffected by sentence type. However, neuroimaging results showed that sentences featuring FS elicited significant activation beyond regions classically activated by typical language tasks, including the left caudate nucleus, the right inferior frontal gyrus and the right inferior temporal gyrus. These findings show how Shakespeare's grammatical exploration forces the listener to take a more active role in integrating the meaning of what is said. Copyright © 2012 Elsevier Ltd. All rights reserved.
Investigation of graphene-integrated tunable metamaterials in THz regime
NASA Astrophysics Data System (ADS)
Demir, S. Mahircan; Yüksek, Yahya; Sabah, Cumali
2018-05-01
A metallic fishnet metamaterial structure in sub-THz region is presented. The proposed structure is based on hexagonal resonators. Simulations have been performed by a 3D full-wave electromagnetic simulator and a negative refractive index has been observed at the frequency range between 0.55 and 0.70 THz with the help of the graphene layer. In order to observe the effect of the graphene layer, the metamaterial structure has been simulated and examined before and after graphene integration. Significant modification in the propagation properties has been observed after the graphene integration. Change in S-parameters with the size variation of hexagonal resonators and alteration in graphene thickness are also presented as a parametric study to show the tunability of the structure. Suitability of the metamaterial for sensor applications has been investigated. The proposed metamaterial structure is promising to be effectively used for tunability and sensor applications.
NASA Astrophysics Data System (ADS)
Klingel, S.; Oesterschulze, E.
2017-08-01
The apparent contact angle is frequently used as an indicator of the wetting state of a surface in contact with a liquid. However, the apparent contact angle is subject to hysteresis that depends furthermore strongly on both the material properties and the roughness and structure of the sample surface. In this work, we show that integrated microresonators can be exploited to determine the wetting state by measuring both the frequency shift caused by the hydrodynamic mass of the liquid and the change in the quality factor as a result of damping. For this, we integrated electrically driven hybrid bridge resonators (HBRs) into a periodically structured surface intended for wetting experiments. We could clearly differentiate between the Wenzel state and the Cassie-Baxter state because the resonant frequency and quality factor of the HBR changed by over 35% and 40%, respectively. This offers the capability to unambiguously distinguish between the different wetting states.
Yang, Ting; Dong, Jianji; Lu, Liangjun; Zhou, Linjie; Zheng, Aoling; Zhang, Xinliang; Chen, Jianping
2014-07-04
Photonic integrated circuits for photonic computing open up the possibility for the realization of ultrahigh-speed and ultra wide-band signal processing with compact size and low power consumption. Differential equations model and govern fundamental physical phenomena and engineering systems in virtually any field of science and engineering, such as temperature diffusion processes, physical problems of motion subject to acceleration inputs and frictional forces, and the response of different resistor-capacitor circuits, etc. In this study, we experimentally demonstrate a feasible integrated scheme to solve first-order linear ordinary differential equation with constant-coefficient tunable based on a single silicon microring resonator. Besides, we analyze the impact of the chirp and pulse-width of input signals on the computing deviation. This device can be compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may motivate the development of integrated photonic circuits for optical computing.
Batra, Prag; Bandt, S. Kathleen; Leuthardt, Eric C.
2016-01-01
Background: Awake craniotomy is currently the gold standard for aggressive tumor resections in eloquent cortex. However, a significant subset of patients is unable to tolerate this procedure, particularly the very young or old or those with psychiatric comorbidities, cardiopulmonary comorbidities, or obesity, among other conditions. In these cases, typical alternative procedures include biopsy alone or subtotal resection, both of which are associated with diminished surgical outcomes. Case Description: Here, we report the successful use of a preoperatively obtained resting state functional connectivity magnetic resonance imaging (MRI) integrated with intraoperative neuronavigation software in order to perform functional cortical mapping in the setting of an aborted awake craniotomy due to loss of airway. Conclusion: Resting state functional connectivity MRI integrated with intraoperative neuronavigation software can provide an alternative option for functional cortical mapping in the setting of an aborted awake craniotomy. PMID:26958419
Yang, Ting; Dong, Jianji; Lu, Liangjun; Zhou, Linjie; Zheng, Aoling; Zhang, Xinliang; Chen, Jianping
2014-01-01
Photonic integrated circuits for photonic computing open up the possibility for the realization of ultrahigh-speed and ultra wide-band signal processing with compact size and low power consumption. Differential equations model and govern fundamental physical phenomena and engineering systems in virtually any field of science and engineering, such as temperature diffusion processes, physical problems of motion subject to acceleration inputs and frictional forces, and the response of different resistor-capacitor circuits, etc. In this study, we experimentally demonstrate a feasible integrated scheme to solve first-order linear ordinary differential equation with constant-coefficient tunable based on a single silicon microring resonator. Besides, we analyze the impact of the chirp and pulse-width of input signals on the computing deviation. This device can be compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may motivate the development of integrated photonic circuits for optical computing. PMID:24993440
Near field detector for integrated surface plasmon resonance biosensor applications.
Bora, Mihail; Celebi, Kemal; Zuniga, Jorge; Watson, Colin; Milaninia, Kaveh M; Baldo, Marc A
2009-01-05
Integrated surface plasmon resonance biosensors promise to enable compact and portable biosensing at high sensitivities. To replace the far field detector traditionally used to detect surface plasmons we integrate a near field detector below a functionalized gold film. The evanescent field of a surface plasmon at the aqueous-gold interface is converted into photocurrent by a thin film organic heterojunction diode. We demonstrate that use of the near field detector is equivalent to the traditional far field measurement of reflectivity. The sensor is stable and reversible in an aqueous environment for periods of 6 hrs. For specific binding of neutravidin, the detection limit is 4 microg/cm(2). The sensitivity can be improved by reducing surface roughness of the gold layers and optimization of the device design. From simulations, we predict a maximum sensitivity that is two times lower than a comparable conventional SPR biosensor.
Nanometric holograms based on a topological insulator material
Yue, Zengji; Xue, Gaolei; Liu, Juan; Wang, Yongtian; Gu, Min
2017-01-01
Holography has extremely extensive applications in conventional optical instruments spanning optical microscopy and imaging, three-dimensional displays and metrology. To integrate holography with modern low-dimensional electronic devices, holograms need to be thinned to a nanometric scale. However, to keep a pronounced phase shift modulation, the thickness of holograms has been generally limited to the optical wavelength scale, which hinders their integration with ultrathin electronic devices. Here, we break this limit and achieve 60 nm holograms using a topological insulator material. We discover that nanometric topological insulator thin films act as an intrinsic optical resonant cavity due to the unequal refractive indices in their metallic surfaces and bulk. The resonant cavity leads to enhancement of phase shifts and thus the holographic imaging. Our work paves a way towards integrating holography with flat electronic devices for optical imaging, data storage and information security. PMID:28516906
Hybrid Photon-Plasmon Coupling and Ultrafast Control of Nanoantennas on a Silicon Photonic Chip.
Chen, Bigeng; Bruck, Roman; Traviss, Daniel; Khokhar, Ali Z; Reynolds, Scott; Thomson, David J; Mashanovich, Goran Z; Reed, Graham T; Muskens, Otto L
2018-01-10
Hybrid integration of nanoplasmonic devices with silicon photonic circuits holds promise for a range of applications in on-chip sensing, field-enhanced and nonlinear spectroscopy, and integrated nanophotonic switches. Here, we demonstrate a new regime of photon-plasmon coupling by combining a silicon photonic resonator with plasmonic nanoantennas. Using principles from coherent perfect absorption, we make use of standing-wave light fields to maximize the photon-plasmon interaction strength. Precise placement of the broadband antennas with respect to the narrowband photonic racetrack modes results in controlled hybridization of only a subset of these modes. By combining antennas into groups of radiating dipoles with opposite phase, far-field scattering is effectively suppressed. We achieve ultrafast tuning of photon-plasmon hybridization including reconfigurable routing of the standing-wave input between two output ports. Hybrid photonic-plasmonic resonators provide conceptually new approaches for on-chip integrated nanophotonic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Zhuan; Yuan, Jiangtan; Zhou, Haiqing
The monolithic integration of electronics and photonics has attracted enormous attention due to its potential applications. A major challenge to this integration is the identification of suitable materials that can emit and absorb light at the same wavelength. In this paper we utilize unique excitonic transitions in WS 2 monolayers and show that WS 2 exhibits a perfect overlap between its absorption and photoluminescence spectra. By coupling WS 2 to Ag nanowires, we then show that WS 2 monolayers are able to excite and absorb surface plasmons of Ag nanowires at the same wavelength of exciton photoluminescence. This resonant absorptionmore » by WS 2 is distinguished from that of the ohmic propagation loss of silver nanowires, resulting in a short propagation length of surface plasmons. Our demonstration of resonant optical generation and detection of surface plasmons enables nanoscale optical communication and paves the way for on-chip electronic–photonic integrated circuits.« less
Room-temperature-deposited dielectrics and superconductors for integrated photonics.
Shainline, Jeffrey M; Buckley, Sonia M; Nader, Nima; Gentry, Cale M; Cossel, Kevin C; Cleary, Justin W; Popović, Miloš; Newbury, Nathan R; Nam, Sae Woo; Mirin, Richard P
2017-05-01
We present an approach to fabrication and packaging of integrated photonic devices that utilizes waveguide and detector layers deposited at near-ambient temperature. All lithography is performed with a 365 nm i-line stepper, facilitating low cost and high scalability. We have shown low-loss SiN waveguides, high-Q ring resonators, critically coupled ring resonators, 50/50 beam splitters, Mach-Zehnder interferometers (MZIs) and a process-agnostic fiber packaging scheme. We have further explored the utility of this process for applications in nonlinear optics and quantum photonics. We demonstrate spectral tailoring and octave-spanning supercontinuum generation as well as the integration of superconducting nanowire single photon detectors with MZIs and channel-dropping filters. The packaging approach is suitable for operation up to 160 °C as well as below 1 K. The process is well suited for augmentation of existing foundry capabilities or as a stand-alone process.
Uranus, H P; Zhuang, L; Roeloffzen, C G H; Hoekstra, H J W M
2007-09-01
We report experimental observations of the negative-group-velocity (v(g)) phenomenon in an integrated-optical two-port ring-resonator circuit. We demonstrate that when the v(g) is negative, the (main) peak of output pulse appears earlier than the peak of a reference pulse, while for a positive v(g), the situation is the other way around. We observed that a pulse splitting phenomenon occurs in the neighborhood of the critical-coupling point. This pulse splitting limits the maximum achievable delay and advancement of a single device as well as facilitating a smooth transition from highly advanced to highly delayed pulse, and vice versa, across the critical-coupling point.
NASA Astrophysics Data System (ADS)
Matsumoto, Atsushi; Matsushita, Asuka; Takei, Yuki; Akahane, Kouichi; Matsushima, Yuichi; Ishikawa, Hiroshi; Utaka, Katsuyuki
2014-09-01
In this study, we investigated quantum dot intermixing (QDI) for InAs/InGaAlAs highly stacked QDs on an InP(311)B substrate with low-temperature annealing at 650 °C in order to realize integrated photonic devices with QDs and passive waveguides. In particular, we adopted the method of introducing point defects by ICP-RIE to realize a blue shift of the PL peak wavelength by about 150 nm. Moreover, we successfully fabricated double micro-ring resonators by QDI. The output power contrasts of the devices were found to be 9.0 and 8.6 dB for TE and TM modes, respectively.
Integrated microchip incorporating atomic magnetometer and microfluidic channel for NMR and MRI
Ledbetter, Micah P [Oakland, CA; Savukov, Igor M [Los Alamos, NM; Budker, Dmitry [El Cerrito, CA; Shah, Vishal K [Plainsboro, NJ; Knappe, Svenja [Boulder, CO; Kitching, John [Boulder, CO; Michalak, David J [Berkeley, CA; Xu, Shoujun [Houston, TX; Pines, Alexander [Berkeley, CA
2011-08-09
An integral microfluidic device includes an alkali vapor cell and microfluidic channel, which can be used to detect magnetism for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). Small magnetic fields in the vicinity of the vapor cell can be measured by optically polarizing and probing the spin precession in the small magnetic field. This can then be used to detect the magnetic field of in encoded analyte in the adjacent microfluidic channel. The magnetism in the microfluidic channel can be modulated by applying an appropriate series of radio or audio frequency pulses upstream from the microfluidic chip (the remote detection modality) to yield a sensitive means of detecting NMR and MRI.
Humer, Markus; Guider, Romain; Jantsch, Wolfgang; Fromherz, Thomas
2013-08-12
We experimentally investigate PbS nanocrystal (NC) photoluminescence (PL) coupled to all-integrated Si-based ring resonators and waveguides at telecom wavelengths. Dissolving the NCs into Novolak polymer significantly improves their stability in ambient atmosphere. Polymer-NC blends of various NC concentrations can be applied to and removed from the same device. For NC concentrations up to 4vol%, the spontaneous emission rate into ring-resonator modes is enhanced by a factor of ~13 with respect to that into a straight waveguide. The PL intensity shows a linear dependence on the excitation intensity up to 1.64kW/cm(2) and stable quality factors of ~2500.
A path integral approach to the full Dicke model with dipole-dipole interaction
NASA Astrophysics Data System (ADS)
Aparicio Alcalde, M.; Stephany, J.; Svaiter, N. F.
2011-12-01
We consider the full Dicke spin-boson model composed by a single bosonic mode and an ensemble of N identical two-level atoms with different couplings for the resonant and anti-resonant interaction terms, and incorporate a dipole-dipole interaction between the atoms. Assuming that the system is in thermal equilibrium with a reservoir at temperature β-1, we compute the free energy in the thermodynamic limit N → ∞ in the saddle-point approximation to the path integral and determine the critical temperature for the super-radiant phase transition. In the zero temperature limit, we recover the critical coupling of the quantum phase transition, presented in the literature.
Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude
2016-01-01
Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2 independent MEG–fMRI data sets, we observed that neural activity first emerged in the occipital pole at 50–80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams. Further region-of-interest analyses established that dorsal and ventral regions showed MEG–fMRI correspondence in representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally resolved view of the rapid neural dynamics during the first few hundred milliseconds of object vision. They further demonstrate the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how the brain computes complex cognitive functions. PMID:27235099
Huang, Xin; Jiang, Chunyan; Du, Chunhua; Jing, Liang; Liu, Mengmeng; Hu, Weiguo; Wang, Zhong Lin
2016-12-27
With a promising prospect of light-emitting diodes as an attractive alternative to conventional light sources, remaining challenges still cannot be addressed owing to their limited efficiency. Among the continued scientific efforts, significant improvement on the emission efficiency has been achieved via either piezo-phototronic effect-based strain modulation or resonant excitation of plasmons in metallic nanostructures. Here, we present the investigation on the coupling process between piezo-phototronic effect and localized surface plasmonic resonance for enhancing the photoluminescence of InGaN/GaN quantum wells coated with Ag nanoparticles. The underlying physical mechanism of experimental results originates from tuning plasmonic resonance controlled by the shift of emission wavelength via piezo-phototronic effect, and it is further confirmed with the support of theoretical calculations. As a result, our research provides an approach to the integration of plasmonics with piezo-phototronic effect and brings widespread applications to high-efficiency artificial lighting, on-chip integrated plasmonic circuits, subwavelength optical communication, and micro-optoelectronic mechanical systems.
Cantow, Kathleen; Arakelyan, Karen; Seeliger, Erdmann; Niendorf, Thoralf; Pohlmann, Andreas
2016-01-01
In vivo assessment of renal perfusion and oxygenation under (patho)physiological conditions by means of noninvasive diagnostic imaging is conceptually appealing. Blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and quantitative parametric mapping of the magnetic resonance (MR) relaxation times T 2* and T 2 are thought to provide surrogates of renal tissue oxygenation. The validity and efficacy of this technique for quantitative characterization of local tissue oxygenation and its changes under different functional conditions have not been systematically examined yet and remain to be established. For this purpose, the development of an integrative multimodality approaches is essential. Here we describe an integrated hybrid approach (MR-PHYSIOL) that combines established quantitative physiological measurements with T 2* (T 2) mapping and MR-based kidney size measurements. Standardized reversible (patho)physiologically relevant interventions, such as brief periods of aortic occlusion, hypoxia, and hyperoxia, are used for detailing the relation between the MR-PHYSIOL parameters, in particular between renal T 2* and tissue oxygenation.
Yang, Ping; Fan, Chenggui; Wang, Min; Fogelson, Noa; Li, Ling
2017-08-15
Object identity and location are bound together to form a unique integration that is maintained and processed in visual working memory (VWM). Changes in task-irrelevant object location have been shown to impair the retrieval of memorial representations and the detection of object identity changes. However, the neural correlates of this cognitive process remain largely unknown. In the present study, we aim to investigate the underlying brain activation during object color change detection and the modulatory effects of changes in object location and VWM load. To this end we used simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) recordings, which can reveal the neural activity with both high temporal and high spatial resolution. Subjects responded faster and with greater accuracy in the repeated compared to the changed object location condition, when a higher VWM load was utilized. These results support the spatial congruency advantage theory and suggest that it is more pronounced with higher VWM load. Furthermore, the spatial congruency effect was associated with larger posterior N1 activity, greater activation of the right inferior frontal gyrus (IFG) and less suppression of the right supramarginal gyrus (SMG), when object location was repeated compared to when it was changed. The ERP-fMRI integrative analysis demonstrated that the object location discrimination-related N1 component is generated in the right SMG. Copyright © 2017 Elsevier Inc. All rights reserved.
Active tuning of high-Q dielectric metasurfaces
Parry, Matthew; Komar, Andrei; Hopkins, Ben; ...
2017-08-02
Here, we demonstrate the active tuning of all-dielectric metasurfaces exhibiting high-quality factor (high-Q) resonances. The active control is provided by embedding the asymmetric silicon meta-atoms with liquid crystals, which allows the relative index of refraction to be controlled through heating. It is found that high quality factor resonances (Q = 270 ± 30) can be tuned over more than three resonance widths. Our results demonstrate the feasibility of using all-dielectric metasurfaces to construct tunable narrow-band filters.
Pitarokoili, Kalliopi; Kronlage, Moritz; Bäumer, Philip; Schwarz, Daniel; Gold, Ralf; Bendszus, Martin; Yoon, Min-Suk
2018-01-01
Background: We present a clinical, electrophysiological, sonographical and magnetic resonance neurography (MRN) study examining the complementary role of two neuroimaging methods of the peripheral nervous system for patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Furthermore, we explore the significance of cross-sectional area (CSA) increase through correlations with MRN markers of nerve integrity. Methods: A total of 108 nerve segments on the median, ulnar, radial, tibial and fibular nerve, as well as the lumbar and cervical plexus of 18 CIDP patients were examined with high-resonance nerve ultrasound (HRUS) and MRN additionally to the nerve conduction studies. Results: We observed a fair degree of correlation of the CSA values for all nerves/nerve segments between the two methods, with a low random error in Bland–Altman analysis (bias = HRUS-CSA − MRN-CSA, −0.61 to −3.26 mm). CSA in HRUS correlated with the nerve T2-weighted (nT2) signal increase as well as with diffusion tensor imaging parameters such as fractional anisotropy, a marker of microstructural integrity. HRUS-CSA of the interscalene brachial plexus correlated significantly with the MRN-CSA and nT2 signal of the L5 and S1 roots of the lumbar plexus. Conclusions: HRUS allows for reliable CSA imaging of all peripheral nerves and the cervical plexus, and CSA correlates with markers of nerve integrity. Imaging of proximal segments as well as the estimation of nerve integrity require MRN as a complementary method. PMID:29552093
The System of Secondary Periodicities and Resonances Based on β Lyrae Magnetic Field
NASA Astrophysics Data System (ADS)
Skulsky, M. Yu.
Original integral interconsistent and interconnected magnetohydrodynamical system of periodicities and resonances over their long-time variabilities is developed. The study is based upon three different observed secondary periods in β Lyrae system and taking into account geometrical features of the nonstandard magnetic field in a losing star, as well as due to the asynchronizm of the orbital and rotational periods.
Characteristics of an Integrated Optics Ring Resonator.
1983-08-01
from KNO 3 Melts .......................... 42 V.A.l. Introduction.....................42 V.A.2. measurement of Waveguide Characteristics. ...... 44...crease the resonator finesse. The waveguides were fabricated by ion exchange from a KNO3 melt at 400 0C. Channel definition was accomplished by a... melts . This technique will be described first. Previously, we used diffusion from metallic silver films. Although very low loss waveguides were
Silicon photonic resonator sensors and devices
NASA Astrophysics Data System (ADS)
Chrostowski, Lukas; Grist, Samantha; Flueckiger, Jonas; Shi, Wei; Wang, Xu; Ouellet, Eric; Yun, Han; Webb, Mitch; Nie, Ben; Liang, Zhen; Cheung, Karen C.; Schmidt, Shon A.; Ratner, Daniel M.; Jaeger, Nicolas A. F.
2012-02-01
Silicon photonic resonators, implemented using silicon-on-insulator substrates, are promising for numerous applications. The most commonly studied resonators are ring/racetrack resonators. We have fabricated these and other resonators including disk resonators, waveguide-grating resonators, ring resonator reflectors, contra-directional grating-coupler ring resonators, and racetrack-based multiplexer/demultiplexers. While numerous resonators have been demonstrated for sensing purposes, it remains unclear as to which structures provide the highest sensitivity and best limit of detection; for example, disc resonators and slot-waveguide-based ring resonators have been conjectured to provide an improved limit of detection. Here, we compare various resonators in terms of sensor metrics for label-free bio-sensing in a micro-fluidic environment. We have integrated resonator arrays with PDMS micro-fluidics for real-time detection of biomolecules in experiments such as antigen-antibody binding reaction experiments using Human Factor IX proteins. Numerous resonators are fabricated on the same wafer and experimentally compared. We identify that, while evanescent-field sensors all operate on the principle that the analyte's refractive index shifts the resonant frequency, there are important differences between implementations that lie in the relationship between the optical field overlap with the analyte and the relative contributions of the various loss mechanisms. The chips were fabricated in the context of the CMC-UBC Silicon Nanophotonics Fabrication course and workshop. This yearlong, design-based, graduate training program is offered to students from across Canada and, over the last four years, has attracted participants from nearly every Canadian university involved in photonics research. The course takes students through a full design cycle of a photonic circuit, including theory, modelling, design, and experimentation.
Toward wideband steerable acoustic metasurfaces with arrays of active electroacoustic resonators
NASA Astrophysics Data System (ADS)
Lissek, Hervé; Rivet, Etienne; Laurence, Thomas; Fleury, Romain
2018-03-01
We introduce an active concept for achieving acoustic metasurfaces with steerable reflection properties, effective over a wide frequency band. The proposed active acoustic metasurface consists of a surface array of subwavelength loudspeaker diaphragms, each with programmable individual active acoustic impedances allowing for local control over the different reflection phases over the metasurface. The active control framework used for controlling the reflection phase over the metasurface is derived from the Active Electroacoustic Resonator concept. Each unit-cell simply consists of a current-driven electrodynamic loudspeaker in a closed box, whose acoustic impedance at the diaphragm is judiciously adjusted by connecting an active electrical control circuit. The control is known to achieve a wide variety of acoustic impedances on a single loudspeaker diaphragm used as an acoustic resonator, with the possibility to shift its resonance frequency by more than one octave. This paper presents a methodology for designing such active metasurface elements. An experimental validation of the achieved individual reflection coefficients is presented, and full wave simulations present a few examples of achievable reflection properties, with a focus on the bandwidth of operation of the proposed control concept.
Few-Mode Whispering-Gallery-Mode Resonators
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Strekalov, Dmitry; Matsko, Andrey; Iltchenko, Vladimir; Maleki, Lute
2006-01-01
Whispering-gallery-mode (WGM) optical resonators of a type now under development are designed to support few well-defined waveguide modes. In the simplest case, a resonator of this type would support one equatorial family of WGMs; in a more complex case, such a resonator would be made to support two, three, or some other specified finite number of modes. Such a resonator can be made of almost any transparent material commonly used in optics. The nature of the supported modes does not depend on which material is used, and the geometrical dispersion of this resonator is much smaller than that of a typical prior WGM resonator. Moreover, in principle, many such resonators could be fabricated as integral parts of a single chip. Basically, a resonator of this type consists of a rod, made of a suitable transparent material, from which protrudes a thin circumferential belt of the same material. The belt is integral with the rest of the rod (see figure) and acts as a circumferential waveguide. If the depth (d) and width (w) of the belt are made appropriately small, then the belt acts as though it were the core of a single-mode optical fiber: the belt and its adjacent supporting rod material support a single, circumferentially propagating mode or family of modes. It has been shown theoretically that the fiber-optic-like behavior of the belton- rod resonator structure can be summarized, in part, by the difference, Dn, between (1) an effective index of refraction of an imaginary fiber core and (2) the index of refraction (n) of the transparent rod/belt material. It has also been shown theoretically that for a given required value of Dn, the required depth of the belt can be estimated as d R Dn, where R is the radius of the rod. It must be emphasized that this estimated depth is independent of n and, hence, is independent of the choice of rod material. As in the cases of prior WGM resonators, input/output optical coupling involves utilization of evanescent fields. In the present case, there are two evanescent fields: one at the belt/air interface and one in the boundary region between the belt and the rest of the rod.
NASA Astrophysics Data System (ADS)
Viswanath, Satish; Tiwari, Pallavi; Rosen, Mark; Madabhushi, Anant
2008-03-01
Recently, in vivo Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) have emerged as promising new modalities to aid in prostate cancer (CaP) detection. MRI provides anatomic and structural information of the prostate while MRS provides functional data pertaining to biochemical concentrations of metabolites such as creatine, choline and citrate. We have previously presented a hierarchical clustering scheme for CaP detection on in vivo prostate MRS and have recently developed a computer-aided method for CaP detection on in vivo prostate MRI. In this paper we present a novel scheme to develop a meta-classifier to detect CaP in vivo via quantitative integration of multimodal prostate MRS and MRI by use of non-linear dimensionality reduction (NLDR) methods including spectral clustering and locally linear embedding (LLE). Quantitative integration of multimodal image data (MRI and PET) involves the concatenation of image intensities following image registration. However multimodal data integration is non-trivial when the individual modalities include spectral and image intensity data. We propose a data combination solution wherein we project the feature spaces (image intensities and spectral data) associated with each of the modalities into a lower dimensional embedding space via NLDR. NLDR methods preserve the relationships between the objects in the original high dimensional space when projecting them into the reduced low dimensional space. Since the original spectral and image intensity data are divorced from their original physical meaning in the reduced dimensional space, data at the same spatial location can be integrated by concatenating the respective embedding vectors. Unsupervised consensus clustering is then used to partition objects into different classes in the combined MRS and MRI embedding space. Quantitative results of our multimodal computer-aided diagnosis scheme on 16 sets of patient data obtained from the ACRIN trial, for which corresponding histological ground truth for spatial extent of CaP is known, show a marginally higher sensitivity, specificity, and positive predictive value compared to corresponding CAD results with the individual modalities.
NASA Astrophysics Data System (ADS)
Dean, Robert; Flowers, George; Sanders, Nicole; MacAllister, Ken; Horvath, Roland; Hodel, A. S.; Johnson, Wayne; Kranz, Michael; Whitley, Michael
2005-05-01
Some harsh environments, such as those encountered by aerospace vehicles and various types of industrial machinery, contain high frequency/amplitude mechanical vibrations. Unfortunately, some very useful components are sensitive to these high frequency mechanical vibrations. Examples include MEMS gyroscopes and resonators, oscillators and some micro optics. Exposure of these components to high frequency mechanical vibrations present in the operating environment can result in problems ranging from an increased noise floor to component failure. Passive micromachined silicon lowpass filter structures (spring-mass-damper) have been demonstrated in recent years. However, the performance of these filter structures is typically limited by low damping (especially if operated in near-vacuum environments) and a lack of tunability after fabrication. Active filter topologies, such as piezoelectric, electrostrictive-polymer-film and SMA have also been investigated in recent years. Electrostatic actuators, however, are utilized in many micromachined silicon devices to generate mechanical motion. They offer a number of advantages, including low power, fast response time, compatibility with silicon micromachining, capacitive position measurement and relative simplicity of fabrication. This paper presents an approach for realizing active micromachined mechanical lowpass vibration isolation filters by integrating an electrostatic actuator with the micromachined passive filter structure to realize an active mechanical lowpass filter. Although the electrostatic actuator can be used to adjust the filter resonant frequency, the primary application is for increasing the damping to an acceptable level. The physical size of these active filters is suitable for use in or as packaging for sensitive electronic and MEMS devices, such as MEMS vibratory gyroscope chips.
Sestito, Mariateresa; Raballo, Andrea; Umiltà, Maria Alessandra; Leuci, Emanuela; Tonna, Matteo; Fortunati, Renata; De Paola, Giancarlo; Amore, Mario; Maggini, Carlo; Gallese, Vittorio
2015-01-01
Self-disorders (SDs) have been described as a core schizophrenia spectrum vulnerability phenotype, both in classic and contemporary psychopathological literature. However, such a core phenotype has not yet been investigated adopting a trans-domain approach that combines the phenomenological and the neurophysiological levels of analysis. The aim of this study is to investigate the relation between SDs and subtle, schizophrenia-specific impairments of emotional resonance that are supposed to reflect abnormalities in the mirror neurons mechanism. Specifically, we tested whether electromyographic response to emotional stimuli (i.e. a proxy for subtle changes in facial mimicry and related motor resonance mechanisms) would predict the occurrence of anomalous subjective experiences (i.e. SDs). Eighteen schizophrenia spectrum (SzSp) patients underwent a comprehensive psychopathological examination and were contextually tested with a multimodal paradigm, recording facial electromyographic activity of muscles in response to positive and negative emotional stimuli. Experiential anomalies were explored with the Bonn Scale for the Assessment of Basic Symptoms (BSABS) and then condensed into rational subscales mapping SzSp anomalous self-experiences. SzSp patients showed an imbalance in emotional motor resonance with a selective bias toward negative stimuli, as well as a multisensory integration impairment. Multiple regression analysis showed that electromyographic facial reactions in response to negative stimuli presented in auditory modality specifically and strongly correlated with SD subscore. The study confirms the potential of SDs as target phenotype for neurobiological research and encourages research into disturbed motor/emotional resonance as possible body-level correlate of disturbed subjective experiences in SzSp.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaltonen, T.; Brucken, E.; Devoto, F.
We search for resonant production of tt pairs in 4.8 fb{sup -1} integrated luminosity of pp collision data at {radical}(s)=1.96 TeV in the lepton+jets decay channel, where one top quark decays leptonically and the other hadronically. A matrix-element reconstruction technique is used; for each event a probability density function of the tt candidate invariant mass is sampled. These probability density functions are used to construct a likelihood function, whereby the cross section for resonant tt production is estimated, given a hypothetical resonance mass and width. The data indicate no evidence of resonant production of tt pairs. A benchmark model ofmore » leptophobic Z{sup '}{yields}tt is excluded with m{sub Z}{sup '}<900 GeV/c{sup 2} at 95% confidence level.« less
NASA Astrophysics Data System (ADS)
Jiang, Yuan; Zhang, Menglun; Duan, Xuexin; Zhang, Hao; Pang, Wei
2017-07-01
In this paper, a 2.6 GHz air-gap type thin film piezoelectric MEMS resonator was fabricated on a flexible polyethylene terephthalate film. A fabrication process combining transfer printing and hot-embossing was adopted to form a free-standing structure. The flexible radio frequency MEMS resonator possesses a quality factor of 946 and an effective coupling coefficient of 5.10%, and retains its high performance at a substrate bending radius of 1 cm. The achieved performance is comparable to that of conventional resonators on rigid silicon wafers. Our demonstration provides a viable approach to realizing universal MEMS devices on flexible polymer substrates, which is of great significance for building future fully integrated and multi-functional wireless flexible electronic systems.
NASA Astrophysics Data System (ADS)
Asgari, Somayyeh; Granpayeh, Nosrat
2017-06-01
Two parallel graphene sheet waveguides and a graphene cylindrical resonator between them is proposed, analyzed, and simulated numerically by using the finite-difference time-domain method. One end of each graphene waveguide is the input and output port. The resonance and the prominent mid-infrared band-pass filtering effect are achieved. The transmittance spectrum is tuned by varying the radius of the graphene cylindrical resonator, the dielectric inside it, and also the chemical potential of graphene utilizing gate voltage. Simulation results are in good agreement with theoretical calculations. As an application, a multi/demultiplexer is proposed and analyzed. Our studies demonstrate that graphene based ultra-compact, nano-scale devices can be designed for optical processing and photonic integrated devices.
Search for neutral resonances decaying into a Z boson and a pair of b jets or τ leptons
Khachatryan, Vardan
2016-05-31
A search is performed for a new resonance decaying into a lighter resonance and a Z boson. Two channels are studied, targeting the decay of the lighter resonance into either a pair of oppositely charged tau leptons or a b-bbar pair. The Z boson is identified via its decays to electrons or muons. The search exploits data collected by the CMS experiment at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.8 fb –1. Furthermore, no significant deviations are observed from the standard model expectation and limits are set on production cross sections and parameters ofmore » two-Higgs-doublet models.« less
NASA Astrophysics Data System (ADS)
Zhang, Ruiwen; Sun, Junqiang; Chen, Guodong; Cheng, Ming; Jiang, Jialin
2017-07-01
We demonstrate the forward stimulated Brillouin scattering (FSBS) in a partly suspended silicon nanowire racetrack resonator. To realize the tight confinement of the transverse acoustic modes in the nanoscale silicon core, the racetrack resonator is supported by the tiny pillar. The Brillouin amplification of 2.25 dB is achieved with the resonator radius of 100 μm under a low-power pump laser of 8 mW. The influences of the waveguide width and the top width of the tiny pillar on the Brillouin frequency shift and Brillouin gain are presented and analyzed. The Brillouin frequency shift is conveniently manipulated by the changes in waveguide widths. Our proposed approach furnishes an alternative towards harnessing FSBS in integrated photonic circuits.