Science.gov

Sample records for activation slow deactivation

  1. Voltage-induced slow activation and deactivation of mechanosensitive channels in Xenopus oocytes.

    PubMed Central

    Silberberg, S D; Magleby, K L

    1997-01-01

    1. The relationship between stretch and voltage activation of mechanosensitive (MS) channels from Xenopus oocytes was studied in excised patches of membrane using the patch clamp technique. 2. As is characteristic of MS channels to oocytes, stretching the membrane by applying negative pressure to the patch pipette at -50 mV activated the MS channels rapidly. The channels then deactivated rapidly when the stretch was removed. The stretch-activated MS channels entered a main conductance level (45 pS) and one or more subconductance levels in the range of about 75-90% of the main conductance level. 3. In the absence of stretch, a depolarizing step from -50 to +50 mV activated apparent MS channels after long delays of typically 1-20 s (range, 100 ms to 6 min). Upon repolarization, the channels deactivated slowly with a single exponential (mean time constant of 4 s) or double exponential (mean time constants of 0.8 and 3 s) time course. 4. Delayed activation with depolarization and slow deactivation upon repolarization were also observed for apparent MS channels in on-cell patches. 5. The voltage-activated channels were cation selective and had the same selectivity and conductance levels as the stretch activated MS channels. Applying stretch during voltage-induced channel activity did not activate any additional channels, and the same maximal number of channels were typically activated by either stretch or by voltage. These observations suggest that voltage activates the same MS channels that are activated by stretch. 6. The opening of MS channels following steps to +50 mV occurred in an apparently co-operative manner in 70% of the excised patches containing multiple MS channels. 7. In the absence of stretch, the opening frequency and open probability of MS channels increased with depolarization in the examined voltage range of -60 to -20 mV. 8. Applying a brief stretch during the delay to activation at +50 mV activated the MS channels rapidly, which then remained active

  2. Slow deactivation channels in UV-photoexcited adenine DNA.

    PubMed

    Chen, Xuebo; Fang, Weihai; Wang, Haobin

    2014-03-07

    The molecular mechanism for removing the excess energy in DNA bases is responsible for the high photostability of DNA and is thus the subject of intense theoretical/computational investigation. To understand why the excited state decay of the stacked bases is significantly longer than that of the monomers, we carried out electronic structure calculations on an adenine monomer and an aqueous (dA)5 oligonucleotide employing the CASPT2//CASSCF and CASPT2//CASSCF/AMBER levels of theory. The newly-found bright excited state pair Sstack1((1)ππ*) and Sstack2((1)ππ*) of d(A)5, originated from base stacking, is of intra-base charge transfer nature and occurs in different stacked bases with charge transfer along opposite directions. Two slow deactivation channels of d(A)5 were proposed as a result of the sizable barriers along the relaxation paths starting from the FC point of the Sstack1((1)ππ*) state. The SN1P((1)nπ*) state of d(A)5 serves as an intermediate state in one relaxation channel, to which a nonadiabatic decay from the Sstack1((1)ππ*) state occurs in an energy degeneracy region. A relatively high barrier in this state is found and attributed to the steric hindrance of the DNA environment due to the large NH2 group twisting, which gives a weak and red-shifted fluorescence. Another direct relaxation channel, induced by the C2-H2 bond twisting motion, is found to go through a conical intersection between the Sstack1((1)ππ*) and the ground state. The barrier found here enables fluorescence from the Sstack1((1)ππ*) state and may explain the bright state emission observed in the fluorescence upconversion measurements. The inter-molecular SCT((1)ππ*) state may be involved in the slow relaxation process of the photoexcited adenine oligomers through efficient internal conversion to the intra-base Sstack1((1)ππ*) state.

  3. Gating mechanisms underlying deactivation slowing by two KCNQ1 atrial fibrillation mutations

    PubMed Central

    Peng, Gary; Barro-Soria, Rene; Sampson, Kevin J.; Larsson, H. Peter; Kass, Robert S.

    2017-01-01

    KCNQ1 is a voltage-gated potassium channel that is modulated by the beta-subunit KCNE1 to generate IKs, the slow delayed rectifier current, which plays a critical role in repolarizing the cardiac action potential. Two KCNQ1 gain-of-function mutations that cause a genetic form of atrial fibrillation, S140G and V141M, drastically slow IKs deactivation. However, the underlying gating alterations remain unknown. Voltage clamp fluorometry (VCF) allows simultaneous measurement of voltage sensor movement and current through the channel pore. Here, we use VCF and kinetic modeling to determine the effects of mutations on channel voltage-dependent gating. We show that in the absence of KCNE1, S140G, but not V141M, directly slows voltage sensor movement, which indirectly slows current deactivation. In the presence of KCNE1, both S140G and V141M slow pore closing and alter voltage sensor-pore coupling, thereby slowing current deactivation. Our results suggest that KCNE1 can mediate changes in pore movement and voltage sensor-pore coupling to slow IKs deactivation and provide a key step toward developing mechanism-based therapies. PMID:28383569

  4. Temperature (de)activated patchy colloidal particles.

    PubMed

    de Las Heras, Daniel; da Gama, Margarida M Telo

    2016-06-22

    We present a new model of patchy particles in which the interaction sites can be activated or deactivated by varying the temperature of the system. We study the thermodynamics of the system by means of Wertheim's first order perturbation theory, and use Flory-Stockmayer theory of polymerization to analyse the percolation threshold. We find a very rich phase behaviour including lower critical points and reentrant percolation.

  5. 10 CFR 218.2 - Activation/Deactivation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Activation/Deactivation. 218.2 Section 218.2 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION General Provisions § 218.2 Activation/Deactivation. (a) This rule shall take effect providing: (1) The International Energy Program has...

  6. 10 CFR 218.2 - Activation/Deactivation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Activation/Deactivation. 218.2 Section 218.2 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION General Provisions § 218.2 Activation/Deactivation. (a) This rule shall take effect providing: (1) The International Energy Program has...

  7. 10 CFR 218.2 - Activation/Deactivation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Activation/Deactivation. 218.2 Section 218.2 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION General Provisions § 218.2 Activation/Deactivation. (a) This rule shall take effect providing: (1) The International Energy Program has...

  8. 10 CFR 218.2 - Activation/Deactivation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Activation/Deactivation. 218.2 Section 218.2 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION General Provisions § 218.2 Activation/Deactivation. (a) This rule shall take effect providing: (1) The International Energy Program has...

  9. 10 CFR 218.2 - Activation/Deactivation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Activation/Deactivation. 218.2 Section 218.2 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION General Provisions § 218.2 Activation/Deactivation. (a) This rule shall take effect providing: (1) The International Energy Program has...

  10. Pacemaker deactivation: withdrawal of support or active ending of life?

    PubMed

    Huddle, Thomas S; Amos Bailey, F

    2012-12-01

    In spite of ethical analyses assimilating the palliative deactivation of pacemakers to commonly accepted withdrawings of life-sustaining therapy, many clinicians remain ethically uncomfortable with pacemaker deactivation at the end of life. Various reasons have been posited for this discomfort. Some cardiologists have suggested that reluctance to deactivate pacemakers may stem from a sense that the pacemaker has become part of the patient's "self." The authors suggest that Daniel Sulmasy is correct to contend that any such identification of the pacemaker is misguided. The authors argue that clinicians uncomfortable with pacemaker deactivation are nevertheless correct to see it as incompatible with the traditional medical ethics of withdrawal of support. Traditional medical ethics is presently taken by many to sanction pacemaker deactivation when such deactivation honors the patient's right to refuse treatment. The authors suggest that the right to refuse treatment applies to treatments involving ongoing physician agency. This right cannot underwrite patient demands that physicians reverse the effects of treatments previously administered, in which ongoing physician agency is no longer implicated. The permanently indwelling pacemaker is best seen as such a treatment. As such, its deactivation in the pacemaker-dependent patient is best seen not as withdrawal of support but as active ending of life. That being the case, clinicians adhering to the usual ethical analysis of withdrawal of support are correct to be uncomfortable with pacemaker deactivation at the end of life.

  11. Automated Activation and Deactivation of a System Under Test

    NASA Technical Reports Server (NTRS)

    Poff, Mark A.

    2006-01-01

    The MPLM Automated Activation/Deactivation application (MPLM means Multi-Purpose Logistic Module) was created with a three-fold purpose in mind: 1. To reduce the possibility of human error in issuing commands to, or interpreting telemetry from, the MPLM power, computer, and environmental control systems; 2. To reduce the amount of test time required for the repetitive activation/deactivation processes; and 3. To reduce the number of on-console personnel required for activation/ deactivation. All of these have been demonstrated with the release of the software. While some degree of automated end-item commanding had previously been performed for space-station hardware in the test environment, none approached the functionality and flexibility of this application. For MPLM activation, it provides mouse-click selection of the hardware complement to be activated, activates the desired hardware and verifies proper feedbacks, and alerts the user when telemetry indicates an error condition or manual intervention is required. For MPLM deactivation, the product senses which end items are active and deactivates them in the proper sequence. For historical purposes, an on-line log is maintained of commands issued and telemetry points monitored. The benefits of the MPLM Automated Activation/ Deactivation application were demonstrated with its first use in December 2002, when it flawlessly performed MPLM activation in 8 minutes (versus as much as 2.4 hours for previous manual activations), and performed MPLM deactivation in 3 minutes (versus 66 minutes for previous manual deactivations). The number of test team members required has dropped from eight to four, and in actuality the software can be operated by a sole (knowledgeable) system engineer.

  12. The macrophage in HIV-1 infection: from activation to deactivation?

    PubMed

    Herbein, Georges; Varin, Audrey

    2010-04-09

    Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1) induced in particular by IFN-gamma display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2) induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM). Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease.

  13. Force depression and relaxation kinetics after active shortening and deactivation in mouse soleus muscle.

    PubMed

    Van Noten, P; Van Leemputte, M

    2013-03-15

    After active shortening, isometric force production capacity of muscle is reduced (force depression, FD). The mechanism is incompletely understood but increasing cross-bridge detachment and/or decreasing attachment rate might be involved. Therefore we aimed to investigate the relation between work delivered during shortening (W), and change in half-relaxation time (Δ0.5RT) and change in the slow phase of muscle relaxation (Δkslow), considered as a marker for cross-bridge detachment rate, after shortening and after a short (0.7s) interruption of activation (deactivation). We hypothesized that shortening induces an accelerated relaxation related to W which is, similar to FD, largely abolished by a short deactivation. In 10 incubated supra-maximally stimulated mouse soleus muscles, we varied the amount of FD at L0 by varying shortening amplitude (0.6, 1.2 and 2.4mm). We found that W not only induces FD (R(2)=0.92) but also a dose dependent accelerated relaxation (R(2)=0.88 and R(2)=0.77 for respectively Δkslow and Δ0.5RT). In cyclic movements this is of functional significance, because the loss in force generating capacity might be (partially) compensated by faster relaxation. After a short deactivation, both FD and Δkslow were largely abolished but Δ0.5RT remained largely present. Under the assumption that Δkslow reflects a change in cross-bridge detachment rate, these results support the idea that FD is an intrinsic sarcomeric property originating from a work induced reduction of the number of force generating cross-bridges, however not via decreased attachment but via increased detachment rate.

  14. Attention, Emotion, and Deactivation of Default Activity in Inferior Medial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Geday, Jacob; Gjedde, Albert

    2009-01-01

    Attention deactivates the inferior medial prefrontal cortex (IMPC), but it is uncertain if emotions can attenuate this deactivation. To test the extent to which common emotions interfere with attention, we measured changes of a blood flow index of brain activity in key areas of the IMPC with positron emission tomography (PET) of labeled water…

  15. Flexural activation and de-activation responses of orthodontic wires in single-tooth, occlusogingival corrections.

    PubMed

    Nikolai, R J

    1989-09-01

    An experimental design was developed to simulate the processes of the activation in flexure of a wire segment to engage an occlusogingivally-malposed tooth and the correction of that malalignment. Independent, controlled parameters, clinically referred, were wire material, mesiodistal bracket width, and inter-bracket distance. Full-cycle, activation/de-activation diagrams were generated for 96 specimens. Each load-deflection diagram was in five segments. Slope discontinuities occurred at the states of disappearance and reappearance of "second-order" clearances at the support sites. Ratios of the slopes of the diagrams above these discontinuities to their counterparts beneath the discontinuities were typically between 2:1 and 4:1. A segment of the diagram was distinct at the initiation of de-activation, and was related to the reversal of frictional forces at the supports. Generalizing, in some cases activation may not eliminate the cited clearances; in others, clearances may be negligibly small in the passive states. Apparently, analyses should ordinarily recognize the segmented formats of the activation and de-activation plots. In comparisons of activation with de-activation plots within the individual diagrams, differences in quantified properties for the cobalt-chromium- and nickel-titanium-alloy wires were sufficient to suggest further study toward an objective of predicting de-activation behavior from outcomes of an activation analysis.

  16. Glut, war slow Mideast activity

    SciTech Connect

    Not Available

    1984-07-20

    Oilpatch activity in the Middle East has been on the slow side recently, and with a heated-up war between Iran and Iraq throwing off violent sparks around the Arabian Gulf, it's difficult to keep one's mind on business-as-usual. The article deals with the rising cost of insurance for shipping because of the war and the effects on drilling, production and the environment (oil spills). The development and production of offshore oil and gas in Egypt, Saudi Arabia, and the United Arab Emirates is also discussed.

  17. Spread of activation and deactivation in the brain: does age matter?

    PubMed Central

    Gordon, Brian A.; Tse, Chun-Yu; Gratton, Gabriele; Fabiani, Monica

    2014-01-01

    Cross-sectional aging functional MRI results are sometimes difficult to interpret, as standard measures of activation and deactivation may confound variations in signal amplitude and spread, which however, may be differentially affected by age-related changes in various anatomical and physiological factors. To disentangle these two types of measures, here we propose a novel method to obtain independent estimates of the peak amplitude and spread of the BOLD signal in areas activated (task-positive) and deactivated (task-negative) by a Sternberg task, in 14 younger and 28 older adults. The peak measures indicated that, compared to younger adults, older adults had increased activation of the task-positive network, but similar levels of deactivation in the task-negative network. Measures of signal spread revealed that older adults had an increased spread of activation in task-positive areas, but a starkly reduced spread of deactivation in task-negative areas. These effects were consistent across regions within each network. Further, there was greater variability in the anatomical localization of peak points in older adults, leading to reduced cross-subject overlap. These results reveal factors that may confound the interpretation of studies of aging. Additionally, spread measures may be linked to local connectivity phenomena and could be particularly useful to analyze age-related deactivation patterns, complementing the results obtained with standard peak and region of interest analyses. PMID:25360115

  18. Spread of activation and deactivation in the brain: does age matter?

    PubMed

    Gordon, Brian A; Tse, Chun-Yu; Gratton, Gabriele; Fabiani, Monica

    2014-01-01

    Cross-sectional aging functional MRI results are sometimes difficult to interpret, as standard measures of activation and deactivation may confound variations in signal amplitude and spread, which however, may be differentially affected by age-related changes in various anatomical and physiological factors. To disentangle these two types of measures, here we propose a novel method to obtain independent estimates of the peak amplitude and spread of the BOLD signal in areas activated (task-positive) and deactivated (task-negative) by a Sternberg task, in 14 younger and 28 older adults. The peak measures indicated that, compared to younger adults, older adults had increased activation of the task-positive network, but similar levels of deactivation in the task-negative network. Measures of signal spread revealed that older adults had an increased spread of activation in task-positive areas, but a starkly reduced spread of deactivation in task-negative areas. These effects were consistent across regions within each network. Further, there was greater variability in the anatomical localization of peak points in older adults, leading to reduced cross-subject overlap. These results reveal factors that may confound the interpretation of studies of aging. Additionally, spread measures may be linked to local connectivity phenomena and could be particularly useful to analyze age-related deactivation patterns, complementing the results obtained with standard peak and region of interest analyses.

  19. Decoupling HZSM-5 catalyst activity from deactivation during upgrading of pyrolysis oil vapors.

    PubMed

    Wan, Shaolong; Waters, Christopher; Stevens, Adam; Gumidyala, Abhishek; Jentoft, Rolf; Lobban, Lance; Resasco, Daniel; Mallinson, Richard; Crossley, Steven

    2015-02-01

    The independent evaluation of catalyst activity and stability during the catalytic pyrolysis of biomass is challenging because of the nature of the reaction system and rapid catalyst deactivation that force the use of excess catalyst. In this contribution we use a modified pyroprobe system in which pulses of pyrolysis vapors are converted over a series of HZSM-5 catalysts in a separate fixed-bed reactor controlled independently. Both the reactor-bed temperature and the Si/Al ratio of the zeolite are varied to evaluate catalyst activity and deactivation rates independently both on a constant surface area and constant acid site basis. Results show that there is an optimum catalyst-bed temperature for the production of aromatics, above which the production of light gases increases and that of aromatics decrease. Zeolites with lower Si/Al ratios give comparable initial rates for aromatics production, but far more rapid catalyst deactivation rates than those with higher Si/Al ratios.

  20. Stronger activation and deactivation in archery experts for differential cognitive strategy in visuospatial working memory processing.

    PubMed

    Seo, Jeehye; Kim, Yang-Tae; Song, Hui-Jin; Lee, Hui Joong; Lee, Jongmin; Jung, Tae-Du; Lee, Gunyoung; Kwon, Eunjin; Kim, Jin Gu; Chang, Yongmin

    2012-04-01

    It is well known that elite athletes have higher performance in perception, planning, and execution in sports activities relative to novices. It remains controversial, however, whether any differences in basic cognitive functions between experts and novices exist. Furthermore, few studies have directly used functional magnetic resonance imaging (fMRI) to investigate neural activation and deactivation differences between experts and novices while performing visuospatial working memory (WM) tasks. Therefore, the purpose of this study was to examine possible differences in neural activation and deactivation associated with working memory components in processing visuospatial information between archery experts and novices. To this end, we employed a judgment of line orientation (JLO) task, which has a strong WM component. With regard to brain activation, archery experts displayed higher activation in cortical areas associated with visuospatial attention and working memory, including the middle frontal cortex, supplemental motor area, and dorsolateral prefrontal cortex than that of the novices during the performance of the JLO task. With regard to brain deactivation, archery experts exhibited stronger task-related deactivation in cortical areas, such as the paracentral cortex/precuneus and the anterior and posterior cingulate cortex related to the default network, than that of the novices. These results suggest that the archery experts have a strategy that demands greater use of neural correlates associated with visuospatial working memory and attention in addition to greater use of DMN in visuospatial working memory task not directly tied to their domain of expertise.

  1. Deactivation model for the adsorption of trichloroethylene vapor on an activated carbon bed

    SciTech Connect

    Suyadal, Y.; Erol, M.; Oguz, H.

    2000-03-01

    In this work, the adsorption of trichloroethylene (TCE) vapor was investigated in a laboratory-scale packed-bed adsorber by using granular activated carbon (GAC) at constant pressure (101.3 kPa). The packed-bed adsorber (PBA) was operated batchwise with the charges of GAC particles in the ranges of 2.5--10.0 g for obtaining TCE breakthrough curves. Experiments were carried out at different temperatures (25.6 {le} T({degree}C) {le} 35.8) and TCE feedstock concentrations (6,350 {le} C (ppm TCE) {le} 7,950) within the range of space velocity (5,000 {le} {var_theta} (h{sup {minus}1}) {le} 17,000). The effects of TCE inlet concentration, operating temperature, and mass of adsorbent (m{sub Ads}) on the TCE breakthrough curves were investigated, respectively. The deactivation model (DM) was tested for these curves by using the analogy between the adsorption of TCE and the deactivation of catalyst particles. Observed adsorption rate constants (k{sub S}) and first-order deactivation rate constants (k{sub d}) were obtained from the model. It was found that the deactivation model describes the experimental breakthrough curves more accurately compared to the adsorption isotherms given in the literature.

  2. Recovery of Alkylation Activity in Deactivated USY Catalyst Using Supercritical Fluids: A Comparison of Light Hydrocarbons

    SciTech Connect

    Daniel M. Ginosar; David N. Thompson; Kyle C. Burch

    2004-05-01

    Off-line, in-situ alkylation activity recovery from a completely deactivated solid acid catalyst was examined in a continuous-flow reaction system employing supercritical fluids (SCF). A USY zeolite catalyst was initially deactivated during the liquid phase alkylation of butene with isobutane in a single-pass reactor and then varying amounts of alkylation activity were recovered by passing supercritical fluids over the catalyst bed. A comparison of reactivation fluids on catalyst activity recovery is reported. Fluids examined included helium, propane, n-butane, isobutane, n-pentane, and isopentane. Phases studied included gas, liquid, and supercritical. As much as 82% of the fresh catalyst activity was recovered when employing supercritical isobutane. The ability of the fluid to facilitate a hydride reaction with the adsorbed deactivating high-molecular weight carbocations was indicated as an important property necessary to attain high levels of catalyst activity recovery. Activity recovery utilizing supercritical fluids that enhance reactivation by both reacting with and desorbing fouling compounds appears to be a promising technique to advance solid catalyst alkylation.

  3. Causes of Activation and Deactivation of Modified Nanogold Catalysts during Prolonged Storage and Redox Treatments.

    PubMed

    Kolobova, Ekaterina; Kotolevich, Yulia; Pakrieva, Ekaterina; Mamontov, Grigory; Farías, Mario H; Bogdanchikova, Nina; Cortés Corberán, Vicente; Pestryakov, Alexey

    2016-04-13

    The catalytic properties of modified Au/TiO₂ catalysts for low-temperature CO oxidation are affected by deactivation and reactivation after long-term storage and by redox treatments. The effect of these phenomena on the catalysts was studied by HRTEM, BET, SEM, FTIR CO, XPS and H₂ TPR methods. The main cause for the deactivation and reactivation of catalytic properties is the variation in the electronic state of the supported gold, mainly, the proportion of singly charged ions Au⁺. The most active samples are those with the highest proportion of singly charged gold ions, while catalysts with a high content of trivalent gold ions are inactive at low-temperatures. Active states of gold, resistant to changes caused by the reaction process and storage conditions, can be stabilized by modification of the titanium oxide support with transition metals oxides. The catalyst modified with lanthanum oxide shows the highest stability and activity.

  4. Activation and deactivation of vibronic channels in intact phycocyanin rods.

    PubMed

    Nganou, C; David, L; Meinke, R; Adir, N; Maultzsch, J; Mkandawire, M; Pouhè, D; Thomsen, C

    2014-02-28

    We investigated the excitation modes of the light-harvesting protein phycocyanin (PC) from Thermosynechococcus vulcanus in the crystalline state using UV and near-infrared Raman spectroscopy. The spectra revealed the absence of a hydrogen out-of-plane wagging (HOOP) mode in the PC trimer, which suggests that the HOOP mode is activated in the intact PC rod, while it is not active in the PC trimer. Furthermore, in the PC trimer an intense mode at 984 cm(-1) is assigned to the C-C stretching vibration while the mode at 454 cm(-1) is likely due to ethyl group torsion. In contrast, in the similar chromophore phytochromobilin the C5,10,15-D wag mode at 622 cm(-1) does not come from a downshift of the HOOP. Additionally, the absence of modes between 1200 and 1300 cm(-1) rules out functional monomerization. A correlation between phycocyanobilin (PCB) and phycoerythrobilin (PEB) suggests that the PCB cofactors of the PC trimer appear in a conformation similar to that of PEB. The conformation of the PC rod is consistent with that of the allophycocyanin (APC) trimer, and thus excitonic flow is facilitated between these two independent light-harvesting compounds. This excitonic flow from the PC rod to APC appears to be modulated by the vibration channels during HOOP wagging, C = C stretching, and the N-H rocking in-plan vibration.

  5. Activation and deactivation of vibronic channels in intact phycocyanin rods

    NASA Astrophysics Data System (ADS)

    Nganou, C.; David, L.; Meinke, R.; Adir, N.; Maultzsch, J.; Mkandawire, M.; Pouhè, D.; Thomsen, C.

    2014-02-01

    We investigated the excitation modes of the light-harvesting protein phycocyanin (PC) from Thermosynechococcus vulcanus in the crystalline state using UV and near-infrared Raman spectroscopy. The spectra revealed the absence of a hydrogen out-of-plane wagging (HOOP) mode in the PC trimer, which suggests that the HOOP mode is activated in the intact PC rod, while it is not active in the PC trimer. Furthermore, in the PC trimer an intense mode at 984 cm-1 is assigned to the C-C stretching vibration while the mode at 454 cm-1 is likely due to ethyl group torsion. In contrast, in the similar chromophore phytochromobilin the C5,10,15-D wag mode at 622 cm-1 does not come from a downshift of the HOOP. Additionally, the absence of modes between 1200 and 1300 cm-1 rules out functional monomerization. A correlation between phycocyanobilin (PCB) and phycoerythrobilin (PEB) suggests that the PCB cofactors of the PC trimer appear in a conformation similar to that of PEB. The conformation of the PC rod is consistent with that of the allophycocyanin (APC) trimer, and thus excitonic flow is facilitated between these two independent light-harvesting compounds. This excitonic flow from the PC rod to APC appears to be modulated by the vibration channels during HOOP wagging, C = C stretching, and the N-H rocking in-plan vibration.

  6. Probing activation/deactivation of the BRASSINOSTEROID INSENSITIVE1 receptor kinase by immunoprecipitation

    PubMed Central

    Martins, Sara; Vert, Grégory; Jaillais, Yvon

    2017-01-01

    Summary Brassinosteroids are plant sterol-derived hormones that control plant growth and development. The BR receptor complex is encoded by the BRASSINOSTEROID INSENSITIVE1 (BRI1) and members of the SOMATIC EMBRYOGENESIS RECEPTOR KINASE family. BR receptor complex activation and deactivation uses different post-translational modifications and recruitment of partner proteins. In this chapter, we describe optimized immunoprecipitation protocols and variants for biochemical analyses of BRI1 post-translational modification and protein-protein interaction. PMID:28124254

  7. The transition between active and de-activated forms of NADH:ubiquinone oxidoreductase (Complex I) in the mitochondrial membrane of Neurospora crassa.

    PubMed Central

    Grivennikova, Vera G; Serebryanaya, Darya V; Isakova, Elena P; Belozerskaya, Tatyana A; Vinogradov, Andrei D

    2003-01-01

    The mammalian mitochondrial NADH:ubiquinone oxidoreductase (Complex I) has been shown to exist in two kinetically and structurally distinct slowly interconvertible forms, active (A) and de-activated (D) [Vinogradov and Grivennikova (2001) IUBMB Life 52, 129-134]. This work was undertaken to investigate the putative Complex I A-D transition in the mitochondrial membrane of the lower eukaryote Neurospora crassa and in plasma membrane of the prokaryote Paracoccus denitrificans, organisms that are eligible for molecular genetic manipulations. The potential interconversion between A and D forms was assessed by examination of the initial and steady-state rates of NADH oxidation catalysed by inside-out submitochondrial ( N. crassa ) and sub-bacterial ( P. denitrificans ) particles and their sensitivities to N -ethylmaleimide and Mg(2+). All diagnostic tests provide evidence that slow temperature- and turnover-dependent A-D transition is an explicit feature of eukaryotic N. crassa Complex I, whereas the phenomenon is not seen in the membranes of the prokaryote P. denitrificans. Significantly lower activation energy for A-to-D transition characterizes the N. crassa enzyme compared with that determined previously for the mammalian Complex I. Either a lag or a burst in the onset of the NADH oxidase assayed in the presence of Mg(2+) is seen when the reaction is initiated by the thermally de-activated or NADH-activated particles, whereas the delayed final activities of both preparations are the same. We conclude that continuous slow cycling between A and D forms occurs during the steady-state operation of Complex I in N. crassa mitochondria. PMID:12379145

  8. Neuroimaging of cerebral activations and deactivations associated with hypercapnia and hunger for air

    PubMed Central

    Brannan, Stephen; Liotti, Mario; Egan, Gary; Shade, Robert; Madden, Lisa; Robillard, Rachel; Abplanalp, Bart; Stofer, Katie; Denton, Derek; Fox, Peter T.

    2001-01-01

    There are defined medullary, mesencephalic, hypothalamic, and thalamic functions in regulation of respiration, but knowledge of cortical control and the elements subserving the consciousness of breathlessness and air hunger is limited. In nine young adults, air hunger was produced acutely by CO2 inhalation. Comparisons were made with inhalation of a N2/O2 gas mixture with the same apparatus, and also with paced breathing, and with eyes closed rest. A network of activations in pons, midbrain (mesencephalic tegmentum, parabrachial nucleus, and periaqueductal gray), hypothalamus, limbic and paralimbic areas (amygdala and periamygdalar region) cingulate, parahippocampal and fusiform gyrus, and anterior insula were seen along with caudate nuclei and pulvinar activations. Strong deactivations were seen in dorsal cingulate, posterior cingulate, and prefrontal cortex. The striking response of limbic and paralimbic regions points to these structures having a singular role in the affective sequelae entrained by disturbance of basic respiratory control whereby a process of which we are normally unaware becomes a salient element of consciousness. These activations and deactivations include phylogenetically ancient areas of allocortex and transitional cortex that together with the amygdalar/periamygdalar region may subserve functions of emotional representation and regulation of breathing. PMID:11172070

  9. SPM95 sensitivity to size, intensity and asymmetry of brain activation/deactivation patterns

    SciTech Connect

    Levy, A.V.; Volkow, N.D.; Alexoff, D.

    1996-05-01

    Statistical Parametric Mapping (Friston, SPM95), is used widely to ascertain the statistical significance between different brain patterns induced by functional activation, drug, effects or mental illness. Our purpose is to understand the limitations of applying the SPM95 methodology. We used a group of 8 FDG PET (CTI 931) studies from normal resting human subjects and via software we activated or deactivated the same specific pixel patterns (ROIs), across the group and observed if SPM95 performed correctly. A set of 6 experiments was designed with varying ROI intensities, (from +/-2% to +/-100% of original ROI value), varying ROI sizes, (from 76 to 656 mm{sup 2}) and different locations in the brain, (cortical and/or subcortical). In experiments where the selected activation pattern was spatially symmetric SPM95 identified correctly areas of activation for cortical ROIs as small as 76 mm{sup 2} having as low as a 10% activation with p<0.01; larger areas, 656 mm{sup 2} can be correctly identified even down to only 2%. In activation experiments with left/right cortical or anterior/posterior cortical asymmetry, SPM95 reported Type II errors for levels larger than +/-20% activation/deactivation. In experiments with left/right striatum asymmetry larger than +/-20% SPM95 reported Type I Errors. In experiments where the level of asymmetry was changes while keeping one ROI as a control at the same level of activation, SPM95 erroneously reported different p values for its statistical significance. One of the typical Type I Errors is shown in the figure as an ROI along the brain`s edge; this type of error has been previously observed to be caused by residual spatial registration errors that induce false activation signals. We conclude that while the statistical part of SPM95 performs correctly, the spatial registration method used in SPM95 has residual registration errors sensitive to the type of activation pattern.

  10. Galectin-1 Deactivates Classically-Activated Microglia and Protects from Inflammation-Induced Neurodegeneration

    PubMed Central

    Starossom, Sarah C.; Mascanfroni, Ivan D.; Imitola, Jaime; Cao, Li; Raddassi, Khadir; Hernandez, Silvia F.; Bassil, Ribal; Croci, Diego O.; Cerliani, Juan P.; Delacour, Delphine; Wang, Yue; Elyaman, Wassim; Khoury, Samia J.; Rabinovich, Gabriel A.

    2012-01-01

    SUMMARY Inflammation-mediated neurodegeneration occurs in the acute and the chronic phases of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Classically-activated (M1) microglia are key players mediating this process. Here we identified Galectin-1 (Gal1), an endogenous glycan-binding protein, as a pivotal regulator of M1 microglia activation, targeting the activation of p38MAPK-, CREB-, and NF-κB-dependent signaling pathways and hierarchically supressing downstream pro-inflammatory mediators such as iNOS, TNF and CCL2. Gal1 bound to core 2 O-glycans on CD45, favoring retention of this glycoprotein on the microglial cell surface and augmenting its phosphatase activity and inhibitory function. Gal1 was highly expressed in the acute phase of EAE and its targeted deletion resulted in pronounced inflammation-induced neurodegeneration. Adoptive transfer of Gal1-secreting astrocytes or administration of recombinant Gal1 suppressed EAE through mechanisms involving microglia de-activation. Thus, Gal1-glycan interactions are essential in tempering microglia activation, brain inflammation and neurodegeneration with critical therapeutic implications for MS. PMID:22884314

  11. One-colour control of activation, excitation and deactivation of a fluorescent diarylethene derivative in super-resolution microscopy.

    PubMed

    Arai, Yuhei; Ito, Syoji; Fujita, Hajime; Yoneda, Yusuke; Kaji, Takahiro; Takei, Satoshi; Kashihara, Ryota; Morimoto, Masakazu; Irie, Masahiro; Miyasaka, Hiroshi

    2017-02-28

    We demonstrated one-colour control of activation, excitation and deactivation of a fluorescent diarylethene derivative by using a 532 nm CW laser at a weak output power. This one-colour control method was applied to single-molecule tracking in polymer films over a total duration of a few hours at room temperature and PALM for the nanostructures of polymer systems.

  12. Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves.

    PubMed

    Frauscher, Birgit; von Ellenrieder, Nicolás; Ferrari-Marinho, Taissa; Avoli, Massimo; Dubeau, François; Gotman, Jean

    2015-06-01

    Epileptic discharges in focal epilepsy are frequently activated during non-rapid eye movement sleep. Sleep slow waves are present during this stage and have been shown to include a deactivated ('down', hyperpolarized) and an activated state ('up', depolarized). The 'up' state enhances physiological rhythms, and we hypothesize that sleep slow waves and particularly the 'up' state are the specific components of non-rapid eye movement sleep that mediate the activation of epileptic activity. We investigated eight patients with pharmaco-resistant focal epilepsies who underwent combined scalp-intracerebral electroencephalography for diagnostic evaluation. We analysed 259 frontal electroencephalographic channels, and manually marked 442 epileptic spikes and 8487 high frequency oscillations during high amplitude widespread slow waves, and during matched control segments with low amplitude widespread slow waves, non-widespread slow waves or no slow waves selected during the same sleep stages (total duration of slow wave and control segments: 49 min each). During the slow waves, spikes and high frequency oscillations were more frequent than during control segments (79% of spikes during slow waves and 65% of high frequency oscillations, both P ∼ 0). The spike and high frequency oscillation density also increased for higher amplitude slow waves. We compared the density of spikes and high frequency oscillations between the 'up' and 'down' states. Spike and high frequency oscillation density was highest during the transition from the 'up' to the 'down' state. Interestingly, high frequency oscillations in channels with normal activity expressed a different peak at the transition from the 'down' to the 'up' state. These results show that the apparent activation of epileptic discharges by non-rapid eye movement sleep is not a state-dependent phenomenon but is predominantly associated with specific events, the high amplitude widespread slow waves that are frequent, but not

  13. Caged Naloxone Reveals Opioid Signaling Deactivation Kinetics

    PubMed Central

    Banghart, Matthew R.; Shah, Ruchir C.; Lavis, Luke D.

    2013-01-01

    The spatiotemporal dynamics of opioid signaling in the brain remain poorly defined. Photoactivatable opioid ligands provide a means to quantitatively measure these dynamics and their underlying mechanisms in brain tissue. Although activation kinetics can be assessed using caged agonists, deactivation kinetics are obscured by slow clearance of agonist in tissue. To reveal deactivation kinetics of opioid signaling we developed a caged competitive antagonist that can be quickly photoreleased in sufficient concentrations to render agonist dissociation effectively irreversible. Carboxynitroveratryl-naloxone (CNV-NLX), a caged analog of the competitive opioid antagonist NLX, was readily synthesized from commercially available NLX in good yield and found to be devoid of antagonist activity at heterologously expressed opioid receptors. Photolysis in slices of rat locus coeruleus produced a rapid inhibition of the ionic currents evoked by multiple agonists of the μ-opioid receptor (MOR), but not of α-adrenergic receptors, which activate the same pool of ion channels. Using the high-affinity peptide agonist dermorphin, we established conditions under which light-driven deactivation rates are independent of agonist concentration and thus intrinsic to the agonist-receptor complex. Under these conditions, some MOR agonists yielded deactivation rates that are limited by G protein signaling, whereas others appeared limited by agonist dissociation. Therefore, the choice of agonist determines which feature of receptor signaling is unmasked by CNV-NLX photolysis. PMID:23960100

  14. Catalyst activation, deactivation, and degradation in palladium-mediated Negishi cross-coupling reactions.

    PubMed

    Böck, Katharina; Feil, Julia E; Karaghiosoff, Konstantin; Koszinowski, Konrad

    2015-03-27

    Pd-mediated Negishi cross-coupling reactions were studied by a combination of kinetic measurements, electrospray-ionization (ESI) mass spectrometry, (31)P NMR and UV/Vis spectroscopy. The kinetic measurements point to a rate-determining oxidative addition. Surprisingly, this step seems to involve not only the Pd catalyst and the aryl halide substrate, but also the organozinc reagent. In this context, the ESI-mass spectrometric observation of heterobimetallic Pd-Zn complexes [L2 PdZnR](+) (L=S-PHOS, R=Bu, Ph, Bn) is particularly revealing. The inferred presence of these and related neutral complexes with a direct Pd-Zn interaction in solution explains how the organozinc reagent can modulate the reactivity of the Pd catalyst. Previous theoretical calculations by González-Pérez et al. (Organometallics- 2012, 31, 2053) suggest that the complexation by the organozinc reagent lowers the activity of the Pd catalyst. Presumably, a similar effect also causes the rate decrease observed upon addition of ZnBr2 . In contrast, added LiBr apparently counteracts the formation of Pd-Zn complexes and restores the high activity of the Pd catalyst. At longer reaction times, deactivation processes due to degradation of the S-PHOS ligand and aggregation of the Pd catalyst come into play, thus further contributing to the appreciable complexity of the title reaction.

  15. β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle

    PubMed Central

    Nuber, Susanne; Zabel, Ulrike; Lorenz, Kristina; Nuber, Andreas; Milligan, Graeme; Tobin, Andrew B.; Lohse, Martin J.; Hoffmann, Carsten

    2016-01-01

    (β-)Arrestins are important regulators of G-protein-coupled receptors (GPCRs)1–3. They bind to active, phosphorylated GPCRs and thereby shut off ‘classical’ signalling to G proteins3,4, trigger internalization of GPCRs via interaction with the clathrin machinery5–7 and mediate signalling via ‘non-classical’ pathways1,2. In addition to two visual arrestins that bind to rod and cone photoreceptors (termed arrestin1 and arrestin4), there are only two (non-visual) β-arrestin proteins (β-arrestin1 and β-arrestin2, also termed arrestin2 and arrestin3), which regulate hundreds of different (non-visual) GPCRs. Binding of these proteins to GPCRs usually requires the active form of the receptors plus their phosphorylation by G-protein-coupled receptor kinases (GRKs)1,3,4. The binding of receptors or their carboxy terminus as well as certain truncations induce active conformations of (β-)arrestins that have recently been solved by X-ray crystallography8–10. Here we investigate both the interaction of β-arrestin with GPCRs, and the β-arrestin conformational changes in real time and in living human cells, using a series of fluorescence resonance energy transfer (FRET)-based β-arrestin2 biosensors. We observe receptor-specific patterns of conformational changes in β-arrestin2 that occur rapidly after the receptor–β-arrestin2 interaction. After agonist removal, these changes persist for longer than the direct receptor interaction. Our data indicate a rapid, receptor-type-specific, two-step binding and activation process between GPCRs and β-arrestins. They further indicate that β-arrestins remain active after dissociation from receptors, allowing them to remain at the cell surface and presumably signal independently. Thus, GPCRs trigger a rapid, receptor-specific activation/deactivation cycle of β-arrestins, which permits their active signalling. PMID:27007855

  16. Nonlinear analysis and modeling of cortical activation and deactivation patterns in the immature fetal electrocorticogram

    NASA Astrophysics Data System (ADS)

    Schwab, Karin; Groh, Tobias; Schwab, Matthias; Witte, Herbert

    2009-03-01

    An approach combining time-continuous nonlinear stability analysis and a parametric bispectral method was introduced to better describe cortical activation and deactivation patterns in the immature fetal electroencephalogram (EEG). Signal models and data-driven investigations were performed to find optimal parameters of the nonlinear methods and to confirm the occurrence of nonlinear sections in the fetal EEG. The resulting measures were applied to the in utero electrocorticogram (ECoG) of fetal sheep at 0.7 gestation when organized sleep states were not developed and compared to previous results at 0.9 gestation. Cycling of the nonlinear stability of the fetal ECoG occurred already at this early gestational age, suggesting the presence of premature sleep states. This was accompanied by cycling of the time-variant biamplitude which reflected ECoG synchronization effects during premature sleep states associated with nonrapid eye movement sleep later in gestation. Thus, the combined nonlinear and time-variant approach was able to provide important insights into the properties of the immature fetal ECoG.

  17. Deactivation of Building 7602

    SciTech Connect

    Yook, H.R.; Barnett, J.R.; Collins, T.L.

    1995-10-01

    The Department of Energy (DOE) has sponsored research and development programs in Building 7602 at Oak Ridge National Laboratory (ORNL) since 1984. This work focused on development of advanced technology for processing nuclear fuels. Building 7602 was used for engineering-scale tests using depleted and natural uranium to simulate the nuclear fuel. In April 1994 the DOE Office of Nuclear Energy (NE) sent supplemental FY 1994 guidance to ORNL stating that in FY 1995 and beyond, Building 7602 is considered surplus to NE programs and missions and shall be shut down (deactivated) and maintained in a radiologically and industrially safe condition with minimal surveillance and maintenance (S&M). DOE-NE subsequently provided FY 1995 funding to support the deactivation activities. Deactivation of Building 7602 was initiated on October 1, 1994. The principal activity during the first quarter of FY 1995 was removal of process materials (chemicals and uranium) from the systems. The process systems were operated to achieve chemical solution concentrations needed for reuse or disposal of the solutions prior to removal of the materials from the systems. During this phase of deactivation the process materials processed and removed were: (1) Uranyl nitrate solution 30,178 L containing 4490 kg of uranium; (2) Nitric acid (neutralized) 9850 L containing less than 0.013 kg of uranium; (3) Organic solution 3346 L containing 265 kg of uranium; (4) Uranium oxide powder 95 kg; and (5) Miscellaneous chemicals. At the end of December 1994, the process systems and control systems were shut down and deactivated. Disposition of the process materials removed from the process systems in Building 7602 proved to be the most difficult part of the deactivation. An operational stand down and funding reductions at Y-12 prevented planned conversion of the uranyl nitrate solution to depleted uranium oxide powder. This led to disposal of the uranyl nitrate solution as waste.

  18. Neurosteroid prolongs GABAA channel deactivation by altering kinetics of desensitized states.

    PubMed

    Zhu, W J; Vicini, S

    1997-06-01

    Fast applications of GABA (1 mM) to nucleated and outside-out patches excised from granule neurons in cerebellar slices from developing rats evoked currents with a double exponential time course reminiscent of that of IPSCs. A neurosteroid 3alpha, 21dihydroxy-5alpha-pregnan-20-one (THDOC) remarkably increased the slow deactivation time constant and slowed down recovery from desensitization, as estimated by paired-pulse GABA applications. THDOC also reduced the amplitude of GABA currents, whereas it failed to affect the fast deactivation component and its relative contribution to peak amplitude. The effects of THDOC on slow deactivation were greater in rats younger than postnatal day 13 (P13) as compared with rats at P30-P35. THDOC failed to alter deactivation of short responses induced by a less-potent agonist taurine at saturating doses. These responses had deactivation kinetics described by a fast single exponential decay, little desensitization, and quick recovery. However, THDOC slowed deactivation if taurine responses were long enough to allow consistent desensitization, suggesting that desensitized states are required for the neurosteroid to modulate GABA responses. In outside-out patches, just as desensitized states prolonged GABA responses by producing reopening of channels activated by brief GABA pulses, THDOC increased the channel open probability by further increasing the number of late channel openings, resulting in a prolongation of the slow deactivation. Our data suggest that neurosteroid potentiates the inhibitory postsynaptic transmission via the prolongation of the slow deactivation and that the alteration of kinetics of entry and exit from desensitized states underlies the allosteric modification of GABAA receptors by neurosteroids.

  19. Psychosocial versus physiological stress – meta-analyses on deactivations and activations of the neural correlates of stress reactions

    PubMed Central

    Kogler, Lydia; Mueller, Veronika I.; Chang, Amy; Eickhoff, Simon B.; Fox, Peter T.; Gur, Ruben C.; Derntl, Birgit

    2015-01-01

    Stress is present in everyday life in various forms and situations. Two stressors frequently investigated are physiological and psychosocial stress. Besides similar subjective and hormonal responses, it has been suggested that they also share common neural substrates. The current study used activation-likelihood-estimation meta-analysis to test this assumption by integrating results of previous neuroimaging studies on stress processing. Reported results are cluster-level FWE corrected. The inferior frontal gyrus (IFG) and the anterior insula (AI) were the only regions that demonstrated overlapping activation for both stressors. Analysis of physiological stress showed consistent activation of cognitive and affective components of pain processing such as the insula, striatum, or the middle cingulate cortex. Contrarily, analysis across psychosocial stress revealed consistent activation of the right superior temporal gyrus and deactivation of the striatum. Notably, parts of the striatum appeared to be functionally specified: the dorsal striatum was activated in physiological stress, whereas the ventral striatum was deactivated in psychosocial stress. Additional functional connectivity and decoding analyses further characterized this functional heterogeneity and revealed higher associations of the dorsal striatum with motor regions and of the ventral striatum with reward processing. Based on our meta-analytic approach, activation of the IFG and the AI seems to indicate a global neural stress reaction. While physiological stress activates a motoric fight-or-flight reaction, during psychosocial stress attention is shifted towards emotion regulation and goal-directed behavior, and reward processing is reduced. Our results show the significance of differentiating physiological and psychosocial stress in neural engagement. Furthermore, the assessment of deactivations in addition to activations in stress research is highly recommended. PMID:26123376

  20. Probing the Mechanism of the Double C—H (De)Activation Route of a Ru-Based Olefin Metathesis Catalyst

    NASA Astrophysics Data System (ADS)

    Poater, Albert; Cavallo, Luigi

    A theoretical study of a double C—H activation mechanism that deactivates a family of second generation Ru-based catalysts is presented. DFT calculations are used to rationalize the complex mechanistic pathway from the starting precatalyst to the experimentally characterized decomposition products. In particular, we show that all the intermediates proposed by Grubbs and coworkers are indeed possible intermediates in the deactivation pathway, although the sequence of steps is somewhat different

  1. Rationalizing current strategies to protect N-heterocyclic carbene-based ruthenium catalysts active in olefin metathesis from C-H (de)activation.

    PubMed

    Poater, Albert; Bahri-Laleh, Naeimeh; Cavallo, Luigi

    2011-06-21

    Defending second generation Ru-catalysts in olefin metathesis from C-H (de)activation reactions requires precise catalyst design strategies. Computer simulations are used here to rationalize precisely the role of the currently used catalyst structural modifications, and the way these modifications cooperate.

  2. The Orosomucoid 1 protein is involved in the vitamin D – mediated macrophage de-activation process

    SciTech Connect

    Gemelli, Claudia; Martello, Andrea; Montanari, Monica; Zanocco Marani, Tommaso; Salsi, Valentina; Zappavigna, Vincenzo; Parenti, Sandra; Vignudelli, Tatiana; Selmi, Tommaso; Ferrari, Sergio; Grande, Alexis

    2013-12-10

    Orosomucoid 1 (ORM1), also named Alpha 1 acid glycoprotein A (AGP-A), is an abundant plasma protein characterized by anti-inflammatory and immune-modulating properties. The present study was designed to identify a possible correlation between ORM1 and Vitamin D3 (1,25(OH)2D3), a hormone exerting a widespread effect on cell proliferation, differentiation and regulation of the immune system. In particular, the data described here indicated that ORM1 is a 1,25(OH)2D3 primary response gene, characterized by the presence of a VDRE element inside the 1 kb sequence of its proximal promoter region. This finding was demonstrated with gene expression studies, Chromatin Immunoprecipitation and luciferase transactivation experiments and confirmed by VDR full length and dominant negative over-expression. In addition, several experiments carried out in human normal monocytes demonstrated that the 1,25(OH)2D3 – VDR – ORM1 pathway plays a functional role inside the macrophage de-activation process and that ORM1 may be considered as a signaling molecule involved in the maintenance of tissue homeostasis and remodeling. - Highlights: • ORM1 is a Vitamin D primary response gene. • VD and its receptor VDR are involved in the de-activation process mediated by human resident macrophages. • The signaling pathway VD-VDR-ORM1 plays an important role in the control of macrophage de-activation process. • ORM1 may be defined as a signaling molecule implicated in the maintenance of tissue homeostasis and remodeling.

  3. Rac1 is deactivated at integrin activation sites through an IQGAP1–filamin-A–RacGAP1 pathway

    PubMed Central

    Jacquemet, Guillaume; Morgan, Mark R.; Byron, Adam; Humphries, Jonathan D.; Choi, Colin K.; Chen, Christopher S.; Caswell, Patrick T.; Humphries, Martin J.

    2013-01-01

    Summary Cell migration makes a fundamental contribution to both normal physiology and disease pathogenesis. Integrin engagement with extracellular ligands spatially controls, via the cyclical activation and deactivation of the small GTPase Rac1, the dynamic membrane protrusion and cytoskeletal reorganization events that are required for directional migration. Although the pathways that control integrin-mediated Rac1 activation are reasonably well defined, the mechanisms that are responsible for switching off activity are poorly understood. Here, proteomic analysis of activated integrin-associated complexes suggests filamin-A and IQ-motif-containing GTPase-activating protein 1 (IQGAP1) as candidates that link β1 integrin to Rac1. siRNA-mediated knockdown of either filamin-A or IQGAP1 induced high, dysregulated Rac1 activity during cell spreading on fibronectin. Using immunoprecipitation and immunocytochemistry, filamin-A and IQGAP1 were shown to be part of a complex that is recruited to active β1 integrin. Mass spectrometric analysis of individual filamin-A, IQGAP1 and Rac1 pull-downs and biochemical analysis, identified RacGAP1 as a novel IQGAP1 binding partner. Further immunoprecipitation and immunocytochemistry analyses demonstrated that RacGAP1 is recruited to IQGAP1 and active β1 integrin, and that suppression of RacGAP1 expression triggered elevated Rac1 activity during spreading on fibronectin. Consistent with these findings, reduced expression of filamin-A, IQGAP1 or RacGAP1 triggered unconstrained membrane protrusion and disrupted directional cell migration on fibrillar extracellular matrices. These findings suggest a model whereby integrin engagement, followed by filamin-A, IQGAP1 and RacGAP1 recruitment, deactivates Rac1 to constrain its activity spatially and thereby coordinate directional cell migration. PMID:23843620

  4. Photoluminescence study of time- and spatial-dependent light induced trap de-activation in CH3NH3PbI3 perovskite films.

    PubMed

    Fu, Xiao; Jacobs, Daniel A; Beck, Fiona J; Duong, The; Shen, Heping; Catchpole, Kylie R; White, Thomas P

    2016-08-10

    Organometal halide perovskite-based solar cells have rapidly achieved high efficiency in recent years. However, many fundamental recombination mechanisms underlying the excellent performance are still not well understood. Here we apply confocal photoluminescence microscopy to investigate the time and spatial characteristics of light-induced trap de-activation in CH3NH3PbI3 perovskite films. Trap de-activation is characterized by a dramatic increase in PL emission during continuous laser illumination accompanied by a lateral expansion of the PL enhancement far beyond the laser spot. These observations are attributed to an oxygen-assisted trap de-activation process associated with carrier diffusion. To model this effect, we add a trap de-activation term to the standard semiconductor carrier recombination and diffusion models. With this approach we are able to reproduce the observed temporal and spatial dependence of laser induced PL enhancement using realistic physical parameters. Furthermore, we experimentally investigate the role of trap diffusion in this process, and demonstrate that the trap de-activation is not permanent, with the traps appearing again once the illumination is turned off. This study provides new insights into recombination and trap dynamics in perovskite films that could offer a better understanding of perovskite solar cell performance.

  5. Can the use of deactivated glass fibre filters eliminate sorption artefacts associated with active air sampling of perfluorooctanoic acid?

    PubMed

    Johansson, Jana H; Berger, Urs; Cousins, Ian T

    2017-05-01

    Experimental work was undertaken to test whether gaseous perfluorooctanoic acid (PFOA) sorbs to glass fibre filters (GFFs) during air sampling, causing an incorrect measure of the gas-particle equilibrium distribution. Furthermore, tests were performed to investigate whether deactivation by siliconisation prevents sorption of gaseous PFOA to filter materials. An apparatus was constructed to closely simulate a high-volume air sampler, although with additional features allowing introduction of gaseous test compounds into an air stream stripped from particles. The set-up enabled investigation of the sorption of gaseous test compounds to filter media, eliminating any contribution from particles. Experiments were performed under ambient outdoor air conditions at environmentally relevant analyte concentrations. The results demonstrate that gaseous PFOA sorbs to GFFs, but that breakthrough of gaseous PFOA on the GFFs occurs at trace-level loadings. This indicates that during high volume air sampling, filters do not quantitatively capture all the PFOA in the sampled air. Experiments with siliconised GFFs showed that this filter pre-treatment reduced the sorption of gaseous PFOA, but that sorption still occurred at environmentally relevant air concentrations. We conclude that deactivation of GFFs does not allow for the separation of gaseous and particle bound perfluorinated carboxylic acids (PFCAs) during active air sampling. Consequently, the well-recognised theory that PFCAs do not prevail as gaseous species in the atmosphere may be based on biased measurements. Caution should be taken to ensure that this artefact will not bias the conclusions of future field studies.

  6. Rhodopsin-stimulated activation-deactivation cycle of transducin: kinetics of the intrinsic fluorescence response of the alpha subunit.

    PubMed

    Guy, P M; Koland, J G; Cerione, R A

    1990-07-31

    The intrinsic tryptophan fluorescence of the alpha subunit of transducin (alpha T) has been shown to be sensitive to the binding of guanine nucleotides, with the fluorescence being enhanced by as much as 2-fold upon the binding of GTP or nonhydrolyzable GTP analogues [cf. Phillips and Cerione (1988) J. Biol. Chem. 263, 15498-15505]. In this work, we have used these fluorescence changes to analyze the kinetics for the activation (GTP binding)-deactivation (GTPase) cycle of transducin in a well-defined reconstituted phospholipid vesicle system containing purified rhodopsin and the alpha T and beta gamma T subunits of the retinal GTP-binding protein. Both the rate and the extent of the GTP-induced fluorescence enhancement are dependent on [rhodopsin], while only the rate (and not the extent) of the GTP gamma S-induced enhancement is dependent on the levels of rhodopsin. Comparisons of the fluorescence enhancements elicited by GTP gamma S and GTP indicate that the GTP gamma S-induced enhancements directly reflect the GTP gamma S-binding event while the GTP-induced enhancements represent a composite of the GTP-binding and GTP hydrolysis events. At high [rhodopsin], the rates for GTP binding and GTPase are sufficiently different such that the GTP-induced enhancement essentially reflects GTP binding. A fluorescence decay, which always follows the GTP-induced enhancement, directly reflects the GTP hydrolytic event. The rate of the fluorescence decay matches the rate of [32P]Pi production due to [gamma-32P]GTP hydrolysis, and the decay is immediately reversed by rechallenging with GTP. The GTP-induced fluorescence changes (i.e., the enhancement and ensuing decay) could be fit to a simple model describing the activation-deactivation cycle of transducin. The results of this modeling suggest the following points: (1) the dependency of the activation-deactivation cycle on [rhodopsin] can be described by a simple dose response profile; (2) the rate of the rhodopsin

  7. Spontaneous neural activity during human slow wave sleep.

    PubMed

    Dang-Vu, Thien Thanh; Schabus, Manuel; Desseilles, Martin; Albouy, Geneviève; Boly, Mélanie; Darsaud, Annabelle; Gais, Steffen; Rauchs, Géraldine; Sterpenich, Virginie; Vandewalle, Gilles; Carrier, Julie; Moonen, Gustave; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Phillips, Christophe; Maquet, Pierre

    2008-09-30

    Slow wave sleep (SWS) is associated with spontaneous brain oscillations that are thought to participate in sleep homeostasis and to support the processing of information related to the experiences of the previous awake period. At the cellular level, during SWS, a slow oscillation (<1 Hz) synchronizes firing patterns in large neuronal populations and is reflected on electroencephalography (EEG) recordings as large-amplitude, low-frequency waves. By using simultaneous EEG and event-related functional magnetic resonance imaging (fMRI), we characterized the transient changes in brain activity consistently associated with slow waves (>140 microV) and delta waves (75-140 microV) during SWS in 14 non-sleep-deprived normal human volunteers. Significant increases in activity were associated with these waves in several cortical areas, including the inferior frontal, medial prefrontal, precuneus, and posterior cingulate areas. Compared with baseline activity, slow waves are associated with significant activity in the parahippocampal gyrus, cerebellum, and brainstem, whereas delta waves are related to frontal responses. No decrease in activity was observed. This study demonstrates that SWS is not a state of brain quiescence, but rather is an active state during which brain activity is consistently synchronized to the slow oscillation in specific cerebral regions. The partial overlap between the response pattern related to SWS waves and the waking default mode network is consistent with the fascinating hypothesis that brain responses synchronized by the slow oscillation restore microwake-like activity patterns that facilitate neuronal interactions.

  8. GlialCAM, a CLC-2 Cl(-) channel subunit, activates the slow gate of CLC chloride channels.

    PubMed

    Jeworutzki, Elena; Lagostena, Laura; Elorza-Vidal, Xabier; López-Hernández, Tania; Estévez, Raúl; Pusch, Michael

    2014-09-02

    GlialCAM, a glial cell adhesion molecule mutated in megalencephalic leukoencephalopathy with subcortical cysts, targets the CLC-2 Cl(-) channel to cell contacts in glia and activates CLC-2 currents in vitro and in vivo. We found that GlialCAM clusters all CLC channels at cell contacts in vitro and thus studied GlialCAM interaction with CLC channels to investigate the mechanism of functional activation. GlialCAM slowed deactivation kinetics of CLC-Ka/barttin channels and increased CLC-0 currents opening the common gate and slowing its deactivation. No functional effect was seen for common gate deficient CLC-0 mutants. Similarly, GlialCAM targets the common gate deficient CLC-2 mutant E211V/H816A to cell contacts, without altering its function. Thus, GlialCAM is able to interact with all CLC channels tested, targeting them to cell junctions and activating them by stabilizing the open configuration of the common gate. These results are important to better understand the physiological role of GlialCAM/CLC-2 interaction.

  9. Rhodopsin-stimulated activation-deactivation cycle of transducin: Kinetics of the intrinsic fluorescence response of the alpha subunit

    SciTech Connect

    Guy, P.M.; Koland, J.G.; Cerione, R.A. )

    1990-07-31

    The intrinsic tryptophan fluorescence of the alpha subunit of transducin (alpha T) has been shown to be sensitive to the binding of guanine nucleotides, with the fluorescence being enhanced by as much as 2-fold upon the binding of GTP or nonhydrolyzable GTP analogues. In this work, we have used these fluorescence changes to analyze the kinetics for the activation (GTP binding)-deactivation (GTPase) cycle of transducin in a well-defined reconstituted phospholipid vesicle system containing purified rhodopsin and the alpha T and beta gamma T subunits of the retinal GTP-binding protein. Both the rate and the extent of the GTP-induced fluorescence enhancement are dependent on (rhodopsin), while only the rate (and not the extent) of the GTP gamma S-induced enhancement is dependent on the levels of rhodopsin. Comparisons of the fluorescence enhancements elicited by GTP gamma S and GTP indicate that the GTP gamma S-induced enhancements directly reflect the GTP gamma S-binding event while the GTP-induced enhancements represent a composite of the GTP-binding and GTP hydrolysis events. At high (rhodopsin), the rates for GTP binding and GTPase are sufficiently different such that the GTP-induced enhancement essentially reflects GTP binding. A fluorescence decay, which always follows the GTP-induced enhancement, directly reflects the GTP hydrolytic event. The rate of the fluorescence decay matches the rate of (32P)Pi production due to (gamma-32P)GTP hydrolysis, and the decay is immediately reversed by rechallenging with GTP. The GTP-induced fluorescence changes (i.e., the enhancement and ensuing decay) could be fit to a simple model describing the activation-deactivation cycle of transducin.

  10. Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation

    PubMed Central

    Chen, Jen-Yung; Chauvette, Sylvain; Skorheim, Steven; Timofeev, Igor; Bazhenov, Maxim

    2012-01-01

    The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms. PMID:22641778

  11. Propagated infra-slow intrinsic brain activity reorganizes across wake and slow wave sleep.

    PubMed

    Mitra, Anish; Snyder, Abraham Z; Tagliazucchi, Enzo; Laufs, Helmut; Raichle, Marcus E

    2015-11-09

    Propagation of slow intrinsic brain activity has been widely observed in electrophysiogical studies of slow wave sleep (SWS). However, in human resting state fMRI (rs-fMRI), intrinsic activity has been understood predominantly in terms of zero-lag temporal synchrony (functional connectivity) within systems known as resting state networks (RSNs). Prior rs-fMRI studies have found that RSNs are generally preserved across wake and sleep. Here, we use a recently developed analysis technique to study propagation of infra-slow intrinsic blood oxygen level dependent (BOLD) signals in normal adults during wake and SWS. This analysis reveals marked changes in propagation patterns in SWS vs. wake. Broadly, ordered propagation is preserved within traditionally defined RSNs but lost between RSNs. Additionally, propagation between cerebral cortex and subcortical structures reverses directions, and intra-cortical propagation becomes reorganized, especially in visual and sensorimotor cortices. These findings show that propagated rs-fMRI activity informs theoretical accounts of the neural functions of sleep.

  12. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis.

    PubMed

    Takiar, Vinita; Nishio, Saori; Seo-Mayer, Patricia; King, J Darwin; Li, Hui; Zhang, Li; Karihaloo, Anil; Hallows, Kenneth R; Somlo, Stefan; Caplan, Michael J

    2011-02-08

    Renal cyst development and expansion in autosomal dominant polycystic kidney disease (ADPKD) involves both fluid secretion and abnormal proliferation of cyst-lining epithelial cells. The chloride channel of the cystic fibrosis transmembrane conductance regulator (CFTR) participates in secretion of cyst fluid, and the mammalian target of rapamycin (mTOR) pathway may drive proliferation of cyst epithelial cells. CFTR and mTOR are both negatively regulated by AMP-activated protein kinase (AMPK). Metformin, a drug in wide clinical use, is a pharmacological activator of AMPK. We find that metformin stimulates AMPK, resulting in inhibition of both CFTR and the mTOR pathways. Metformin induces significant arrest of cystic growth in both in vitro and ex vivo models of renal cystogenesis. In addition, metformin administration produces a significant decrease in the cystic index in two mouse models of ADPKD. Our results suggest a possible role for AMPK activation in slowing renal cystogenesis as well as the potential for therapeutic application of metformin in the context of ADPKD.

  13. L-364,373 fails to activate the slow delayed rectifier K+ current in canine ventricular cardiomyocytes.

    PubMed

    Magyar, János; Horváth, Balázs; Bányász, Tamás; Szentandrássy, Norbert; Birinyi, Péter; Varró, András; Szakonyi, Zsolt; Fülöp, Ferenc; Nánási, Péter P

    2006-04-01

    Activators of the slow delayed rectifier K+ current (I(Ks)) are promising tools to suppress ventricular arrhythmias originating from prolongation of action potentials. A recently synthesized compound, L-364,373, was shown to activate I(Ks) in ventricular cells isolated from guinea pigs and rabbits. Due to the interspecies differences known to exist in the properties of the delayed rectifier K+ currents, the effect of L-364,373 on I(Ks) was studied and compared with that of another I(Ks) activator mefenamic acid in canine ventricular myocytes. Mefenamic acid (100 microM) significantly increased the amplitude of the fully activated I(Ks) current, as well as the I(Ks) current tails, by shifting the voltage dependence of its activation towards negative voltages and increased the time constant for deactivation. In contrast, L-364,373, up to concentrations of 3 microM, failed to augment I(Ks) at any membrane potential studied, but slightly increased the time constant of deactivation. It is concluded that human studies are required to evaluate the therapeutically beneficial effects of I(Ks) activators. Rodent cardiac tissues are not suitable for this purpose.

  14. Rapid deactivation of NADPH oxidase in neutrophils: continuous replacement by newly activated enzyme sustains the respiratory burst.

    PubMed

    Akard, L P; English, D; Gabig, T G

    1988-07-01

    The cell-free system for activation of the neutrophil NADPH oxidase allowed us to examine activation of the oxidase in the absence of its NADPH-dependent turnover. The covalent sulfhydryl-modifying reagent N-ethylmaleimide completely inhibited the activation step (Ki = 40 mumol/L) in the cell-free system but had no effect on turnover of the preactivated particulate NADPH oxidase (up to 1 mmol/L). When N-ethylmaleimide was added to intact neutrophils during the period of maximal O2 generation in response to stimuli that activate the respiratory burst (phorbol myristate acetate, f-Met-Leu-Phe, opsonized zymosan, arachidonic acid), O2- generation ceased within seconds. Study of components of the cell-free activation system indicated that the cytosolic cofactor was irreversibly inhibited by N-ethylmaleimide whereas the N-ethylmaleimide-treated, membrane-associated oxidase could be activated by arachidonate and control cytosolic cofactor. Likewise, the cell-free system prepared from intact neutrophils that had been briefly exposed to N-ethylmaleimide and then washed reflected the effects of N-ethylmaleimide on the isolated cell-free components: cytosolic cofactor activity was absent, but the membrane oxidase remained fully activatable. Thus inhibition of oxidase activation by N-ethylamaleimide unmasked a rapid deactivation step that was operative in intact neutrophils but not in isolated particulate NADPH oxidase preparations. The demonstrated specificity of N-ethylmaleimide for oxidase activation and lack of effect on turnover of the NADPH oxidase suggested that sustained O2- generation by intact neutrophils was a result of continued replenishment of a small pool of active oxidase. The existence of an inactive pool of NADPH oxidase molecules in particulate preparations from stimulated neutrophils was supported more directly by activating these preparations again in the cell-free system.

  15. Cortical deactivation induced by subcortical network dysfunction in limbic seizures

    PubMed Central

    Englot, Dario J.; Modi, Badri; Mishra, Asht M.; DeSalvo, Matthew; Hyder, Fahmeed; Blumenfeld, Hal

    2009-01-01

    Normal human consciousness may be impaired by two possible routes: direct reduced function in widespread cortical regions, or indirect disruption of subcortical activating systems. The route through which temporal lobe limbic seizures impair consciousness is not known. We recently developed an animal model which, like human limbic seizures, exhibits neocortical deactivation including cortical slow waves and reduced cortical cerebral blood flow (CBF). We now find through functional MRI (fMRI) that electrically-stimulated hippocampal seizures in rats cause increased activity in subcortical structures including the septal area and mediodorsal thalamus, along with reduced activity in frontal, cingulate, and retrosplenial cortex. Direct recordings from the hippocampus, septum, and medial thalamus demonstrated fast poly-spike activity associated with increased neuronal firing and CBF, while frontal cortex showed slow oscillations with decreased neuronal firing and CBF. Stimulation of septal area, but not hippocampus or medial thalamus, in the absence of a seizure resulted in cortical deactivation with slow oscillations and behavioral arrest, resembling changes seen during limbic seizures. Transecting the fornix, the major route from hippocampus to subcortical structures, abolished the negative cortical and behavioral effects of seizures. Cortical slow oscillations and behavioral arrest could be reconstituted in fornix-lesioned animals by inducing synchronous activity in the hippocampus and septal area, implying involvement of a downstream region converged upon by both structures. These findings suggest that limbic seizures may cause neocortical deactivation indirectly, through impaired subcortical function. If confirmed, subcortical networks may represent a target for therapies aimed at preserving consciousness in human temporal lobe seizures. PMID:19828814

  16. Brain functional correlates of working memory: reduced load-modulated activation and deactivation in aging without hyperactivation or functional reorganization.

    PubMed

    Kaup, Allison R; Drummond, Sean P A; Eyler, Lisa T

    2014-10-01

    We aimed to identify brain functional correlates of working memory performance in aging, in hopes of facilitating understanding of mechanisms that promote better versus worse working memory in late-life. Among 64 healthy adults, aged 23 to 78, we examined the relationship between age, working memory performance, and brain functional response during task performance. We focused on the association between working memory load-modulated functional response and individual differences in performance and whether these function-performance relationships differed with age. As expected, older age was associated with poorer working memory performance. Older age was also associated with reduced load-modulated activation including in bilateral prefrontal and parietal regions and left caudate as well as reduced deactivation including in the medial prefrontal cortex. Contrary to findings of hyperactivation in aging, we found no evidence of increased activation with older age. Positive associations identified between brain response and performance did not differ with age. Our findings suggest that the neural mechanisms underlying better versus worse working memory performance are age-invariant across adulthood, and argue against a pattern of functional reorganization in aging. Results are discussed within the broader literature, in which significant heterogeneity in findings between studies has been common.

  17. Nanotube-assisted protein deactivation

    NASA Astrophysics Data System (ADS)

    Joshi, Amit; Punyani, Supriya; Bale, Shyam Sundhar; Yang, Hoichang; Borca-Tasciuc, Theodorian; Kane, Ravi S.

    2008-01-01

    Conjugating proteins onto carbon nanotubes has numerous applications in biosensing, imaging and cellular delivery. However, remotely controlling the activity of proteins in these conjugates has never been demonstrated. Here we show that upon near-infrared irradiation, carbon nanotubes mediate the selective deactivation of proteins in situ by photochemical effects. We designed nanotube-peptide conjugates to selectively destroy the anthrax toxin, and also optically transparent coatings that can self-clean following either visible or near-infrared irradiation. Nanotube-assisted protein deactivation may be broadly applicable to the selective destruction of pathogens and cells, and will have applications ranging from antifouling coatings to functional proteomics.

  18. Slow Magnetosonic Waves and Fast Flows in Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-01-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast (approx 100-300 km/s) quasiperiodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow.We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  19. Enzyme activity of α-chymotrypsin: Deactivation by gold nano-cluster and reactivation by glutathione.

    PubMed

    Ghosh, Catherine; Mondal, Tridib; Bhattacharyya, Kankan

    2017-05-15

    Effect of gold nanoclusters (Au-NCs) on the circular dichroism (CD) spectra and enzymatic activity of α-chymotrypsin (ChT) (towards hydrolysis of a substrate, N-succinyl-l-phenylalanine p-nitroanilide) are studied. The CD spectra indicate that on binding to Au-NC, ChT is completely unfolded, resulting in nearly zero ellipticity. α-chymotrypsin (ChT) coated gold nano-clusters exhibit almost no enzymatic activity. Addition of glutathione (GSH) or oxidized glutathione (GSSG) restore the enzyme activity of α-chymotrypsin by 30-45%. ChT coated Au-NC exhibits two emission maxima-one at 480nm (corresponding to Au10) and one at 640nm (Au25). On addition of glutathione (GSH) or oxidized glutathione (GSSG) the emission peak at 640nm vanishes and only one peak at 480nm (Au10) remains. MALDI mass spectrometry studies suggest addition of glutathione (GSH) to α-chymotrypsin capped Au-NCs results in the formation of glutathione-capped Au-NCs and α-chymotrypsin is released from Au-NCs. CD spectroscopy indicates that the conformation of the released α-chymotrypsin is different from that of the native α-chymotrypsin.

  20. Active vision system integrating fast and slow processes

    NASA Astrophysics Data System (ADS)

    Castrillon-Santana, Modesto; Guerra-Artal, C.; Hernandez-Sosa, J.; Dominguez-Brito, A.; Isern-Gonzalez, J.; Cabrera-Gamez, Jorge; Hernandez-Tejera, F. M.

    1998-10-01

    This paper describes an Active Vision System whose design assumes a distinction between fast or reactive and slow or background processes. Fast processes need to operate in cycles with critical timeouts that may affect system stability. While slow processes, though necessary, do not compromise system stability if its execution is delayed. Based on this simple taxonomy, a control architecture has been proposed and a prototype implemented that is able to track people in real-time with a robotic head while trying to identify the target. In this system, the tracking mobile is considered as the reactive part of the system while person identification is considered a background task. This demonstrator has been developed using a new generation DSP (TMS320C80) as a specialized coprocessor to deal with fast processes, and a commercial robotic head with a dedicated DSP-based motor controller. These subsystems are hosted by a standard Pentium-Pro PC running Windows NT where slow processes are executed. The flexibility achieved in the design phase and the preliminary results obtained so far seem to validate the approach followed to integrate time- critical and slow tasks on a heterogeneous hardware platform.

  1. The slowed brain: cortical oscillatory activity in hepatic encephalopathy.

    PubMed

    Butz, Markus; May, Elisabeth S; Häussinger, Dieter; Schnitzler, Alfons

    2013-08-15

    Oscillatory activity of the human brain has received growing interest as a key mechanism of large-scale integration across different brain regions. Besides a crucial role of oscillatory activity in the emergence of other neurological and psychiatric diseases, recent evidence indicates a key role in the pathophysiology of hepatic encephalopathy (HE). This review summarizes the current knowledge on pathological alterations of oscillatory brain activity in association with liver dysfunction and HE in the context of spontaneous brain activity, motor symptoms, sensory processing, and attention. The existing literature demonstrates a prominent slowing of the frequency of oscillatory activity as shown for spontaneous brain activity at rest, with respect to deficits of motor behavior and motor symptoms, and in the context of visual attention processes. The observed slowing extends across different subsystems of the brain and has been confirmed across different frequency bands, providing evidence for ubiquitous changes of oscillatory activity in HE. For example, the frequency of cortico-muscular coherence in HE patients appears at the frequency of the mini-asterixis (⩽12Hz), while cirrhotics without overt signs of HE show coherence similar to healthy subjects, i.e. at 13-30Hz. Interestingly, the so-called critical flicker frequency (CFF) as a measure of the processing of an oscillating visual stimulus has emerged as a useful tool to quantify HE disease severity, correlating with behavioral and neurophysiological alterations. Moreover, the CFF reliably distinguishes patients with manifest HE from cirrhotics without any signs of HE and healthy controls using a cut-off frequency of 39Hz. In conclusion, oscillatory activity is globally slowed in HE in close association with HE symptoms and disease severity. Although the underlying causal mechanisms are not yet understood, these results indicate that pathological changes of oscillatory activity play an important role in the

  2. An underwater superoleophobic surface that can be activated/deactivated via external triggers.

    PubMed

    Dunderdale, Gary J; Urata, Chihiro; Hozumi, Atsushi

    2014-11-11

    Poly[(2-dimethylamino)ethyl methacrylate] (pDMAEMA) brush surfaces were prepared using a facile aqueous Activators ReGenerated by Electron Transfer Atom Transfer Radical Polymerization (ARGET-ATRP) protocol at ambient temperature without any need to purge reaction solutions of oxygen. This produced underwater superoleophobic surfaces, which exhibited high advancing (θA, 164-166°) and receding (θR, 153-165°) contact angles (CAs) and low CA hysteresis (1-11°) with a variety of oils. Both in situ spectroscopic ellipsometry and dynamic CA measurements confirmed that pDMAEMA brush surfaces responded to three different external stimuli (pH, ionic strength, and temperature) by changing their thicknesses, degree of hydration, or their chemical composition. Increasing pH resulted in the largest decrease in hydration, followed by increasing temperature, and increasing ionic strength gave the smallest change in hydration. Coincident with these structural changes, stimulus-responsive dynamic dewetting behavior with various oils was observed. Increasing pH or ionic strength drastically reduced the θR values of oil drops and increased CA hysteresis, resulting in a sticky surface on which oil drops were pinned. No noticeable changes in dynamic oleophobicity were observed with increasing temperature. In addition, when oil drops impacted onto the brush surface instead of being gently placed, surfaces did not exhibit stimulus-responsive dewetting properties, being oleophobic under all conditions.

  3. Modeling place field activity with hierarchical slow feature analysis

    PubMed Central

    Schönfeld, Fabian; Wiskott, Laurenz

    2015-01-01

    What are the computational laws of hippocampal activity? In this paper we argue for the slowness principle as a fundamental processing paradigm behind hippocampal place cell firing. We present six different studies from the experimental literature, performed with real-life rats, that we replicated in computer simulations. Each of the chosen studies allows rodents to develop stable place fields and then examines a distinct property of the established spatial encoding: adaptation to cue relocation and removal; directional dependent firing in the linear track and open field; and morphing and scaling the environment itself. Simulations are based on a hierarchical Slow Feature Analysis (SFA) network topped by a principal component analysis (ICA) output layer. The slowness principle is shown to account for the main findings of the presented experimental studies. The SFA network generates its responses using raw visual input only, which adds to its biological plausibility but requires experiments performed in light conditions. Future iterations of the model will thus have to incorporate additional information, such as path integration and grid cell activity, in order to be able to also replicate studies that take place during darkness. PMID:26052279

  4. Slow-light-enhanced gain in active photonic crystal waveguides.

    PubMed

    Ek, Sara; Lunnemann, Per; Chen, Yaohui; Semenova, Elizaveta; Yvind, Kresten; Mork, Jesper

    2014-09-30

    Passive photonic crystals have been shown to exhibit a multitude of interesting phenomena, including slow-light propagation in line-defect waveguides. It was suggested that by incorporating an active material in the waveguide, slow light could be used to enhance the effective gain of the material, which would have interesting application prospects, for example enabling ultra-compact optical amplifiers for integration in photonic chips. Here we experimentally investigate the gain of a photonic crystal membrane structure with embedded quantum wells. We find that by solely changing the photonic crystal structural parameters, the maximum value of the gain coefficient can be increased compared with a ridge waveguide structure and at the same time the spectral position of the peak gain be controlled. The experimental results are in qualitative agreement with theory and show that gain values similar to those realized in state-of-the-art semiconductor optical amplifiers should be attainable in compact photonic integrated amplifiers.

  5. Slow-light-enhanced gain in active photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Ek, Sara; Lunnemann, Per; Chen, Yaohui; Semenova, Elizaveta; Yvind, Kresten; Mork, Jesper

    2014-09-01

    Passive photonic crystals have been shown to exhibit a multitude of interesting phenomena, including slow-light propagation in line-defect waveguides. It was suggested that by incorporating an active material in the waveguide, slow light could be used to enhance the effective gain of the material, which would have interesting application prospects, for example enabling ultra-compact optical amplifiers for integration in photonic chips. Here we experimentally investigate the gain of a photonic crystal membrane structure with embedded quantum wells. We find that by solely changing the photonic crystal structural parameters, the maximum value of the gain coefficient can be increased compared with a ridge waveguide structure and at the same time the spectral position of the peak gain be controlled. The experimental results are in qualitative agreement with theory and show that gain values similar to those realized in state-of-the-art semiconductor optical amplifiers should be attainable in compact photonic integrated amplifiers.

  6. Report on First Activations with the Lead Slowing Down Spectrometer

    SciTech Connect

    Warren, Glen A.; Mace, Emily K.; Pratt, Sharon L.; Stave, Sean; Woodring, Mitchell L.

    2011-03-03

    On Feb. 17 and 18 2011, six items were irradiated with neutrons using the Lead Slowing Down Spectrometer. After irradiation, dose measurements and gamma-spectrometry measurements were completed on all of the samples. No contamination was found on the samples, and all but one provided no dose. Gamma-spectroscopy measurements qualitatively agreed with expectations based on the materials, with the exception of silver. We observed activation in the room in general, mostly due to 56Mn and 24Na. Most of the activation was short lived, with half-lives on the scale of hours, except for 198Au which has a half-life of 2.7 d.

  7. LBR deactivation information exchange

    SciTech Connect

    Guttenberg, S.

    1998-05-15

    This report contains vugraphs of presentations given at the meeting. The topics covered include the following: FFTF Deactivation Strategy; Sodium Drain and Disposition; Sodium Processing; and Fuel Storage and Disposition.

  8. PUREX Deactivation Health and Safety documentation

    SciTech Connect

    Dodd, E.N. III

    1995-01-01

    The purpose of the PUREX Deactivation Project is to establish a passively safe and environmentally secure configuration of PUREX at the Hanford Site, and to preserve that configuration for a 10-year horizon. The 10-year horizon is used to predict future maintenance requirements and represents they typical time duration expended to define, authorize, and initiate the follow-on Decontamination and Decommissioning (D&D) activities. This document was prepared to increase attention to worker safety issues during the deactivation project and, as such, identifies the documentation and programs associated with PUREX Deactivation Health and Safety.

  9. Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH(3).

    PubMed

    Kröcher, Oliver; Brandenberger, Sandro

    2012-01-01

    Fe-ZSM-5 has been systematically investigated as catalyst for the selective catalytic reduction (SCR) of NO with NH(3), concentrating on the active sites, the deactivation mechanism during hydrothermal aging and the chemical possibilities to stabilize this type of SCR catalyst. Regarding the active SCR sites, it could be shown that monomeric species start to become active at the lowest temperatures (E(a,app) ≈ 36.3 ± 0.2 kJ/mol), followed by dimeric species at intermediate temperatures (E(a,app) ≈ 77 ± 16 kJ/mol) and oligomeric species at high temperatures. Experiments with Fe-ZSM-5 samples, in which the Brønsted acidity was specifically removed, proved that Brønsted acidity is not required for high SCR activity and that NH(3) can also be adsorbed on other acidic sites on the zeolite surface. The hydrothermal deactivation of Fe-ZSM-5 could be explained by the migration of active iron ions from the exchange sites. Parallel to the iron migration dealumination of the zeolite framework occurs, which has to be regarded as an independent process. The migration of iron can be reduced by the targeted reaction of the aluminum hydroxide groups in the lattice with trimethylaluminium followed by calcination. With respect to the application of iron zeolites in the SCR process in diesel vehicles, the most efficient stabilization method would be to switch from the ZSM-5 to the BEA structure type. The addition of NO(2) to the feed gas is another effective measure to increase the activity of even strongly deactivated iron zeolites tremendously.

  10. Report on Second Activations with the Lead Slowing Down Spectrometer

    SciTech Connect

    Stave, Sean C.; Mace, Emily K.; Pratt, Sharon L.; Warren, Glen A.

    2012-04-27

    Summary On August 18 and 19 2011, five items were irradiated with neutrons using the Lead Slowing Down Spectrometer (LSDS). After irradiation, dose measurements and gamma-spectrometry measurements were completed on all of the samples. No contamination was found on the samples, and all but one provided no dose. Gamma-spectroscopy measurements qualitatively agreed with expectations based on the materials. As during the first activation run, we observed activation in the room in general, mostly due to 56Mn and 24Na. Most of the activation of the samples was short lived, with half-lives on the scale of hours to days, except for 60Co which has a half-life of 5.3 y.

  11. Mission analysis report - deactivation facilities at Hanford

    SciTech Connect

    Lund, D.P.

    1996-09-27

    This document examines the portion of the Hanford Site Cleanup Mission that deals with facility deactivation. How facilities get identified for deactivation, how they enter EM-60 for deactivation, programmatic alternatives to perform facility deactivation, the deactivation process itself, key requirements and objectives associated with the deactivation process, and deactivation planning are discussed.

  12. Changes in effective diffusivity for oxygen during neural activation and deactivation estimated from capillary diameter measured by two-photon laser microscope.

    PubMed

    Ito, Hiroshi; Takuwa, Hiroyuki; Tajima, Yosuke; Kawaguchi, Hiroshi; Urushihata, Takuya; Taniguchi, Junko; Ikoma, Yoko; Seki, Chie; Ibaraki, Masanobu; Masamoto, Kazuto; Kanno, Iwao

    2017-03-01

    The relation between cerebral blood flow (CBF) and cerebral oxygen extraction fraction (OEF) can be expressed using the effective diffusivity for oxygen in the capillary bed (D) as OEF = 1 - exp(-D/CBF). The D value is proportional to the microvessel blood volume. In this study, changes in D during neural activation and deactivation were estimated from changes in capillary and arteriole diameter measured by two-photon microscopy in awake mice. Capillary and arteriole vessel diameter in the somatosensory cortex and cerebellum were measured under neural activation (sensory stimulation) and neural deactivation [crossed cerebellar diaschisis (CCD)], respectively. Percentage changes in D during sensory stimulation and CCD were 10.3 ± 7.3 and -17.5 ± 5.3 % for capillary diameter of <6 μm, respectively. These values were closest to the percentage changes in D calculated from previously reported human positron emission tomography data. This may indicate that thinner capillaries might play the greatest role in oxygen transport from blood to brain tissue.

  13. Calculation of magnetic field-induced current densities for humans from EAS countertop activation/deactivation devices that use ferromagnetic cores

    NASA Astrophysics Data System (ADS)

    Li, Qingxiang; Gandhi, Om P.

    2005-01-01

    Compliance testing of electronic article surveillance (EAS) devices requires that induced current densities in central nervous system (CNS) tissues, i.e. brain and the spinal cord, be less than the prescribed safety limits. Even though ferromagnetic cores are mostly used for activation/deactivation of embedded magnetic tags, assumed equivalent air-core coils with guessed increased number of ampere turns have always been used to calculate the magnetic fields for the proximal region to which a customer is exposed. We show that at low frequencies up to several kilohertz, duality of electric and magnetic circuits may be exploited such that the shaped high reluctance core is modelled as though it was a higher conductivity electric circuit of the corresponding shape. The proposed procedure is tested by examples of two magnetic cores typical of countertop activation/deactivation devices. The equivalent exposure magnetic fields obtained from the dual electric fields are shown to be in excellent agreement (within ±5%) with those measured for these ferromagnetic EAS devices. The previously proposed impedance method is then used to calculate the induced current densities for a 1.974 × 1.974 × 2.93 mm resolution anatomic model of a human. For the two considered EAS systems using excitation currents of 5000 A turns at 200 Hz, the maximum 1 cm2 area-averaged induced current densities in the CNS tissues are calculated and found to be less than the ICNIRP safety limits.

  14. Deactivating the Writing Program.

    ERIC Educational Resources Information Center

    Strickland, James

    A written language learner must be given an environment that enables or fosters writing development. Unfortunately, the typical system of education and the learning strategies that are taught are at times the very things that deactivate, frustrate, and even pervert the writing program. In fact, some of the rules that student writers respond to are…

  15. PFP deactivation project management plan

    SciTech Connect

    Bogen, D.M.

    1997-07-28

    This document identifies the overall approach for deactivation of the Plutonium Finishing Plant (PFP) Complex, excluding the vaults, and includes a draft set of End Point Criteria for all buildings being deactivated.

  16. Deriving stellar inclination of slow rotators using stellar activity signal

    NASA Astrophysics Data System (ADS)

    Dumusque, Xavier

    2015-01-01

    Stellar inclination is an important parameter for many astrophysical studies. In the context of exoplanets, this allows us to derive the true obliquity of a system if the projected stellar spin-planetary orbit angle can measured via the Rossiter-Mclaughlin effect. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than 2-2.5 km.s-1. By using the new activity simulation SOAP 2.0 that can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit the activity variation of solar-type stars and derive their inclination. The case of the equator-on star HD189733 will be presented, as well as the case of Alpha Centauri B, which present an inclination of 45+9-19 degrees, implying that the earth-mass orbiting planet is not transiting if aligned with its host star. Other exemples will also demonstrate the power of the technique, that can infer a stellar inclination, even for slow rotators like Alpha Centauri B, that present a projected rotational velocity smaller than 1.15 km.s-1. In addition, the SOAP 2.0 simulation can be used to correct for the effect of activity when one major active region is dominating the RV signal. This could enhance the detection of small mass exoplanets orbiting slightly active stars.This project is funded by ETAEARTH (European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 313014), a transnational collaboration between European countries and the US (the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh) setup to optimize the synergy between space-and ground-based data whose scientific potential for the characterization of

  17. ACTIV: Sandwich Detector Activity from In-Pile Slowing-Down Spectra Experiment

    SciTech Connect

    2013-08-01

    ACTIV calculates the activities of a sandwich detector, to be used for in-pile measurements in slowing-down spectra below a few keV. The effect of scattering with energy degradation in the filter and in the detectors has been included to a first approximation.

  18. Role of slow oscillatory activity and slow wave sleep in consolidation of episodic-like memory in rats.

    PubMed

    Oyanedel, Carlos N; Binder, Sonja; Kelemen, Eduard; Petersen, Kimberley; Born, Jan; Inostroza, Marion

    2014-12-15

    Our previous experiments showed that sleep in rats enhances consolidation of hippocampus dependent episodic-like memory, i.e. the ability to remember an event bound into specific spatio-temporal context. Here we tested the hypothesis that this enhancing effect of sleep is linked to the occurrence of slow oscillatory and spindle activity during slow wave sleep (SWS). Rats were tested on an episodic-like memory task and on three additional tasks covering separately the where (object place recognition), when (temporal memory), and what (novel object recognition) components of episodic memory. In each task, the sample phase (encoding) was followed by an 80-min retention interval that covered either a period of regular morning sleep or sleep deprivation. Memory during retrieval was tested using preferential exploration of novelty vs. familiarity. Consistent with previous findings, the rats which had slept during the retention interval showed significantly stronger episodic-like memory and spatial memory, and a trend of improved temporal memory (although not significant). Object recognition memory was similarly retained across sleep and sleep deprivation retention intervals. Recall of episodic-like memory was associated with increased slow oscillatory activity (0.85-2.0Hz) during SWS in the retention interval. Spatial memory was associated with increased proportions of SWS. Against our hypothesis, a relationship between spindle activity and episodic-like memory performance was not detected, but spindle activity was associated with object recognition memory. The results provide support for the role of SWS and slow oscillatory activity in consolidating hippocampus-dependent memory, the role of spindles in this process needs to be further examined.

  19. Slow wave activity and slow oscillations in sleepwalkers and controls: effects of 38 h of sleep deprivation.

    PubMed

    Perrault, Rosemarie; Carrier, Julie; Desautels, Alex; Montplaisir, Jacques; Zadra, Antonio

    2013-08-01

    Sleepwalkers have been shown to have an unusually high number of arousals from slow wave sleep and lower slow wave activity (SWA) power during the night than controls. Because sleep deprivation increases the frequency of slow wave sleep (SWS) arousals in sleepwalkers, it may also affect the expression of the homeostatic process to a greater extent than shown previously. We thus investigated SWA power as well as slow wave oscillation (SWO) density in 10 sleepwalkers and nine controls at baseline and following 38 h of sleep deprivation. There was a significant increase in SWA during participants' recovery sleep, especially during their second non-rapid eye movement (NREM) period. SWO density was similarly increased during recovery sleep's first two NREM periods. A fronto-central gradient in SWA and SWO was also present on both nights. However, no group differences were noted on any of the 2 nights on SWA or SWO. This unexpected result may be related to the heterogeneity of sleepwalkers as a population, as well as our small sample size. SWA pressure after extended sleep deprivation may also result in a ceiling effect in both sleepwalkers and controls.

  20. Role of N-Terminal Domain and Accessory Subunits in Controlling Deactivation-Inactivation Coupling of Kv4.2 Channels

    PubMed Central

    Barghaan, Jan; Tozakidou, Magdalini; Ehmke, Heimo; Bähring, Robert

    2008-01-01

    We examined the relationship between deactivation and inactivation in Kv4.2 channels. In particular, we were interested in the role of a Kv4.2 N-terminal domain and accessory subunits in controlling macroscopic gating kinetics and asked if the effects of N-terminal deletion and accessory subunit coexpression conform to a kinetic coupling of deactivation and inactivation. We expressed Kv4.2 wild-type channels and N-terminal deletion mutants in the absence and presence of Kv channel interacting proteins (KChIPs) and dipeptidyl aminopeptidase-like proteins (DPPs) in human embryonic kidney 293 cells. Kv4.2-mediated A-type currents at positive and deactivation tail currents at negative membrane potentials were recorded under whole-cell voltage-clamp and analyzed by multi-exponential fitting. The observed changes in Kv4.2 macroscopic inactivation kinetics caused by N-terminal deletion, accessory subunit coexpression, or a combination of the two maneuvers were compared with respective changes in deactivation kinetics. Extensive correlation analyses indicated that modulatory effects on deactivation closely parallel respective effects on inactivation, including both onset and recovery kinetics. Searching for the structural determinants, which control deactivation and inactivation, we found that in a Kv4.2Δ2–10 N-terminal deletion mutant both the initial rapid phase of macroscopic inactivation and tail current deactivation were slowed. On the other hand, the intermediate and slow phase of A-type current decay, recovery from inactivation, and tail current decay kinetics were accelerated in Kv4.2Δ2–10 by KChIP2 and DPPX. Thus, a Kv4.2 N-terminal domain, which may control both inactivation and deactivation, is not necessary for active modulation of current kinetics by accessory subunits. Our results further suggest distinct mechanisms for Kv4.2 gating modulation by KChIPs and DPPs. PMID:17981906

  1. N Reactor Deactivation Program Plan. Revision 4

    SciTech Connect

    Walsh, J.L.

    1993-12-01

    This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities {center_dot} in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directive to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually.

  2. Catalyst deactivation in residue hydrocracking

    SciTech Connect

    Oballa, M.C.; Wong, C.; Krzywicki, A.

    1994-12-31

    The existence of a computer-controlled bench scale hydrocracking units at the authors site has made cheaper the non-stop running of experiments for long periods of time. It was, therefore possible to show, at minimal costs, when three hydrocracking catalysts in service reach their maximum lifetime. Different parameters which are helpful for catalyst life and activity predictions were calculated, e.g., relative catalyst age and the effectiveness factor. Experimental results compared well with model, giving them the minimum and maximum catalyst lifetime, as well as the deactivation profile with regard to sulfur and metals removal. Reaction rate constants for demetallization and desulfurization were also determined. Six commercial catalysts were evaluated at short term runs and the three most active were used for long term runs. Out of three catalysts tested for deactivation at long term runs, it was possible to choose one whose useful life was higher than the others. All runs were carried out in a Robinson-Mahoney continuous flow stirred tank reactor, using 50/50 volumetric mixture of Cold Lake/Lloydminster atmospheric residue and NiMo/Al{sub 2}O{sub 3} catalyst.

  3. Investigations on the mutagenicity of primary and secondary alpha-acetoxynitrosamines with Salmonella typhimurium: activation and deactivation of structurally related compounds by S-9.

    PubMed

    Pool, B L; Wiessler, M

    1981-01-01

    alpha-Acetoxynitrosamines may serve as model compounds to study mechanisms of action of N-nitrosamines. They are readily cleaved through hydrolysis, or by esterases, to yield the same ultimate, reactive species presumably also arising after metabolic activation of N-nitrosamines, Structure-activity investigations on alpha-acetoxynitrosamines promise to aid in elucidating mechanisms involved during the activation of N-nitrosamines. A series of alpha-acetoxyalkynitrosamines was therefore tested for mutagenicity with Salmonella typhimurium TA 1535. The compounds were readily cleaved, by hydrolysis, to mutagenic intermediates. When comparing compounds according to their proposed alkylating properties, unstable secondary alpha-acetates were considerably more mutagenic than the corresponding relatively stable primary alpha-acetates. Addition of S-9 mix caused both activation as well as deactivation in an unexpected structure-related pattern. This was so because an exactly opposite influence of S-9 components on the mutagenicity was observed for each pair of primary and secondary compounds containing the same alkylating spices. Furthermore, pairs of compounds with both methylating and ethylating properties were differently influenced by S-9 addition than those with propylating or butylating effects. This clearly demonstrates how different chemical properties of intermediate forms may strongly influence the biological activity of otherwise quite similar compounds.

  4. 340 Waste handling facility deactivation plan

    SciTech Connect

    Stordeur, R.T., Westinghouse Hanford

    1996-12-27

    This document provides an overview of both the present status of the 340 Complex (within Hanford`s 300 Area), and of tasks associated with the deactivation of segments associated with radioactive, mixed liquid waste receipt, storage, and shipping. The plan also describes activities that will allow portions of the 340 Complex to remain in service.

  5. Inositol hexaphosphate represses telomerase activity and translocates TERT from the nucleus in mouse and human prostate cancer cells via the deactivation of Akt and PKC{alpha}

    SciTech Connect

    Jagadeesh, Shankar; Banerjee, Partha P. . E-mail: ppb@georgetown.edu

    2006-11-03

    Inositol hexaphosphate (IP6) has anti-proliferative effects on a variety of cancer cells, including prostate cancer. However, the molecular mechanism of anti-proliferative effects of IP6 is not entirely understood. Since the activation of telomerase is crucial for cells to gain immortality and proliferation ability, we examined the role of IP6 in the regulation of telomerase activity in prostate cancer cells. Here, we show that IP6 represses telomerase activity in mouse and human prostate cancer cells dose-dependently. In addition, IP6 prevents the translocation of TERT to the nucleus. Since phosphorylation of TERT by Akt and/or PKC{alpha} is necessary for nuclear translocation, we examined phosphorylation of Akt and PKC{alpha} after IP6 treatments. Our results show that IP6 inhibits phosphorylation of Akt and PKC{alpha}. These results show for the first time that IP6 represses telomerase activity in prostate cancer cells by posttranslational modification of TERT via the deactivation of Akt and PKC{alpha}.

  6. PUREX/UO{sub 3} deactivation project management plan

    SciTech Connect

    Washenfelder, D.J.

    1993-12-01

    From 1955 through 1990, the Plutonium-Uranium Extraction Plant (PUREX) provided the United States Department of Energy Hanford Site with nuclear fuel reprocessing capability. It operated in sequence with the Uranium Trioxide (UO{sub 3}) Plant, which converted the PUREX liquid uranium nitrate product to solid UO{sub 3} powder. Final UO{sub 3} Plant operation ended in 1993. In December 1992, planning was initiated for the deactivation of PUREX and UO{sub 3} Plant. The objective of deactivation planning was to identify the activities needed to establish a passively safe, environmentally secure configuration at both plants, and ensure that the configuration could be retained during the post-deactivation period. The PUREX/UO{sub 3} Deactivation Project management plan represents completion of the planning efforts. It presents the deactivation approach to be used for the two plants, and the supporting technical, cost, and schedule baselines. Deactivation activities concentrate on removal, reduction, and stabilization of the radioactive and chemical materials remaining at the plants, and the shutdown of the utilities and effluents. When deactivation is completed, the two plants will be left unoccupied and locked, pending eventual decontamination and decommissioning. Deactivation is expected to cost $233.8 million, require 5 years to complete, and yield $36 million in annual surveillance and maintenance cost savings.

  7. Influence of explosive volcanic events on the activation versus de-activation of a modern turbidite system: the example of the Dohrn canyon-fan in the continental slope of the Campania volcanic district (Naples Bay, Italy - Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Roca, M.; Budillon, F.; Pappone, G.; Insinga, D.

    2015-12-01

    The interplay between volcanic activity, volcano-clastic yield and activation/deactivation of a turbidite system can be evaluated along the continental margin of Campania region (Tyrrhenian Sea - Italy), an active volcanic area, where three wide canyon-fans occur at short distances one to another. Actually, the Dohrn, Magnaghi and Cuma canyons cut the continental slope and shelf off Ischia and Procida volcanic islands and off the Campania Plain where Phlegraean Field and Mt. Vesuvius active vents are located. This research, partly supported by the Italian Flagship Project Ritmare, is based on single-channel, high-resolution seismic profiles (Sparker-One 16 kJ, 0.5 s twtt), swath-bathymetry and litho- and tephra-stratigraphy of gravity cores. We focused on the stratigraphic constraint of paleo-thalweg features and channel/levees deposits in seismics, debris flow, turbidites and hemipelagites in cores, to learn more on the activation/deactivation stages of the canyon Dohrn, in the frame of relative eustatic sea level variations over the Middle Pleistocene-Holocene time span.Preliminary outcomes suggest that even major volcanic events occurred in the last 300 ky, such as ignimbrite eruptions or large fallouts, have caused the infilling of the canyon head and the cover of pre-existing seabed morphology. As a consequence, the temporary deactivation of the turbidite system has occurred, despite the volcano-clastic overload in the coastal environment. Phases of renewed activities of the thalweg are observed to be in step with falling stages of sea level, which have driven the re-incision of canyon valleys through continuous volcano-clastic debris and turbidites down-flows. Since Holocene, the quiescence of the Dohrn Canyon has been documented, despite the intense volcano-tectonic activity in the area.

  8. Deactivation of cellulases by phenols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pretreatment of lignocellulosic materials may result in the release of inhibitors and deactivators of cellulose enzyme hydrolysis. We report the identification of phenols with major inhibition and/or deactivation effect on enzymes used for conversion of cellulose to ethanol. The inhibition effects w...

  9. Heterogeneous activation of a slow myosin gene in proliferating myoblasts and differentiated single myofibers

    PubMed Central

    Wang, Jing-hua; Wang, Qiao-jing; Wang, Chao; Reinholt, Brad; Grant, Alan L; Gerrard, David E; Kuang, Shihuan

    2015-01-01

    Each skeletal muscle contains a fixed ratio of fast and slow myofibers that are distributed in a stereotyped pattern to achieve a specific motor function. How myofibers are specified during development and regeneration is poorly understood. Here we address this question using transgenic reporter mice that indelibly mark the myofiber lineages based on activation of fast or slow myosin. Lineage tracing indicates that during development all muscles have activated the fast myosin gene Myl1, but not the slow myosin gene Myh7, which is activated in all slow but a subset of fast myofibers. Similarly, most nascent myofibers do not activate Myh7 during fast muscle regeneration, but the ratio and pattern of fast and slow myofibers are restored at the completion of regeneration. At the single myofiber level, most mature fast myofibers are heterogeneous in nuclear composition, manifested by mosaic activation of Myh7. Strikingly, Myh7 is activated in a subpopulation of proliferating myoblasts that co-express the myogenic progenitor marker Pax7. When induced to differentiate, the Myh7-activated myoblasts differentiate more readily than the non-activated myoblasts, and have a higher tendency, but not restricted, to become slow myotubes. Together, our data reveal significant nuclear heterogeneity within a single myofiber, and challenge the conventional view that myosin genes are only expressed after myogenic differentiation. These results provide novel insights into the regulation of muscle fiber type specification. PMID:25794679

  10. Acute Cocaine Induces Fast Activation of D1R and Progressive Deactivation of D2R Striatal Neurons: In vivo Optical MicroProbe [Ca2+]i Imaging

    PubMed Central

    Luo, Zhongchi; Volkow, Nora D.; Heintz, Nathaniel; Pan, Yingtian; Du, Congwu

    2011-01-01

    Cocaine induces fast dopamine increases in brain striatal regions, which are recognized to underlie its rewarding effects. Both dopamine D1 and D2 receptors are involved in cocaine’s reward but the dynamic downstream consequences of cocaine effects in striatum are not fully understood. Here we used transgenic mice expressing EGFP under the control of either the D1 receptor (D1R) or the D2 receptor (D2R) gene and microprobe optical imaging to assess the dynamic changes in intracellular calcium ([Ca2+]i) responses (used as marker of neuronal activation) to acute cocaine in vivo separately for D1R versus D2R expressing neurons in striatum. Acute cocaine (8 mg/kg ip) rapidly increased [Ca2+]i in D1R expressing neurons (10.6±3.2%) in striatum within 8.3±2.3min after cocaine administration after which the increases plateaued; these fast [Ca2+]i increases were blocked by pretreatment with a D1R antagonist (SCH 23390). In contrast cocaine induced progressive decreases in [Ca2+]i in D2R expressing neurons (10.4±5.8%) continuously throughout the 30min that followed cocaine administration; these slower [Ca2+]i decreases were blocked by pretreatment with a D2R antagonist (raclopride). Since activation of striatal D1R expressing neurons (direct-pathway) enhances cocaine reward whereas activation of D2R expressing neurons suppresses it (indirect-pathway) (Lobo et al., 2010), this suggests that cocaine’s rewarding effects entail both its fast stimulation of D1R (resulting in abrupt activation of direct-pathway neurons) and a slower stimulation of D2R (resulting in longer lasting deactivation of indirect-pathway neurons). We also provide direct in-vivo evidence of D2R and D1R interactions in the striatal responses to acute cocaine administration. PMID:21917801

  11. The GTP binding protein-dependent activation and deactivation of cGMP phosphodiesterase in rod photoreceptors

    SciTech Connect

    Yamazaki, Akio.

    1989-01-01

    Cyclic GMP (cGMP) has a crucial role in visual transduction. Recent electrophysiological studies clearly indicate the existence of cGMP-activated conductance in photoreceptor plasma membranes. In darkness, Na{sup +}, Ca{sup ++}, and Mg{sup ++} enter rod outer segments (ROS) through cGMP-activated channels while light closes channels by lowering cGMP concentrations through activation of cGMP phosphodiesterase (PDE). Many excellent reviews reference the mechanism of PDE activation in photoreceptors. However, recent progress in understanding the mechanisms regulating cGMP hydrolysis has raised an important question in the PDE-regulation: how does the three-dimensional movement of a subunit of transducin (retinal G protein) relate to the PDE activation Associated with that question, the mechanism of PDE regulation appears to vary at different stages of evolution, for example, frog and bovine photoreceptors. This review examines recent progress of the cGMP hydrolysis mechanism by focusing on the subunit interactions between transducin and PDE. 36 refs., 2 figs.

  12. A computational method for the detection of activation/deactivation patterns in biological signals with three levels of electric intensity.

    PubMed

    Guerrero, J A; Macías-Díaz, J E

    2014-02-01

    In the present work, we develop a computational technique to approximate the changes of phase in temporal series associated to electric signals of muscles which perform activities at three different levels of intensity. We suppose that the temporal series are samples of independent, normally distributed random variables with mean equal to zero, and variance equal to one of three possible values, each of them associated to a certain degree of electric intensity. For example, these intensity levels may represent a leg muscle at rest, or active during a light activity (walking), or active during a highly demanding performance (jogging). The model is presented as a maximum likelihood problem involving discrete variables. In turn, this problem is transformed into a continuous one via the introduction of continuous variables with penalization parameters, and it is solved recursively through an iterative numerical method. An a posteriori treatment of the results is used in order to avoid the detection of relatively short periods of silence or activity. We perform simulations with synthetic data in order to assess the validity of our technique. Our computational results show that the method approximates well the occurrence of the change points in synthetic temporal series, even in the presence of autocorrelated sequences. In the way, we show that a generalization of a computational technique for the change-point detection of electric signals with two phases of activity (Esquivel-Frausto et al., 2010 [40]), may be inapplicable in cases of temporal series with three levels of intensity. In this sense, the method proposed in the present manuscript improves previous efforts of the authors.

  13. Hysteresis of KcsA potassium channel's activation- deactivation gating is caused by structural changes at the channel's selectivity filter.

    PubMed

    Tilegenova, Cholpon; Cortes, D Marien; Cuello, Luis G

    2017-03-21

    Mode-shift or hysteresis has been reported in ion channels. Voltage-shift for gating currents is well documented for voltage-gated cation channels (VGCC), and it is considered a voltage-sensing domain's (VSD) intrinsic property. However, uncoupling the Shaker K(+) channel's pore domain (PD) from the VSD prevented the mode-shift of the gating currents. Consequently, it was proposed that an open-state stabilization of the PD imposes a mechanical load on the VSD, which causes its mode-shift. Furthermore, the mode-shift displayed by hyperpolarization-gated cation channels is likely caused by structural changes at the channel's PD similar to those underlying C-type inactivation. To demonstrate that the PD of VGCC undergoes hysteresis, it is imperative to study its gating process in the absence of the VSD. A back-door strategy is to use KcsA (a K(+) channel from the bacteria Streptomyces lividans) as a surrogate because it lacks a VSD and exhibits an activation coupled to C-type inactivation. By directly measuring KcsA's activation gate opening and closing in conditions that promote or halt C-type inactivation, we have found (i) that KcsA undergoes mode-shift of gating when having K(+) as the permeant ion; (ii) that Cs(+) or Rb(+), known to halt C-inactivation, prevented mode-shift of gating; and (iii) that, in the total absence of C-type inactivation, KcsA's mode-shift was prevented. Finally, our results demonstrate that an allosteric communication causes KcsA's activation gate to "remember" the conformation of the selectivity filter, and hence KcsA requires a different amount of energy for opening than for closing.

  14. Slow State Transitions of Sustained Neural Oscillations by Activity-Dependent Modulation of Intrinsic Excitability

    PubMed Central

    Fröhlich, Flavio; Bazhenov, Maxim; Timofeev, Igor; Steriade, Mircea; Sejnowski, Terrence J.

    2010-01-01

    Little is known about the dynamics and mechanisms of transitions between tonic firing and bursting in cortical networks. Here, we use a computational model of a neocortical circuit with extracellular potassium dynamics to show that activity-dependent modulation of intrinsic excitability can lead to sustained oscillations with slow transitions between two distinct firing modes: fast run (tonic spiking or fast bursts with few spikes) and slow bursting. These transitions are caused by a bistability with hysteresis in a pyramidal cell model. Balanced excitation and inhibition stabilizes a network of pyramidal cells and inhibitory interneurons in the bistable region and causes sustained periodic alternations between distinct oscillatory states. During spike-wave seizures, neocortical paroxysmal activity exhibits qualitatively similar slow transitions between fast run and bursting. We therefore predict that extracellular potassium dynamics can cause alternating episodes of fast and slow oscillatory states in both normal and epileptic neocortical networks. PMID:16763023

  15. Deriving stellar inclination of slow rotators using stellar activity

    SciTech Connect

    Dumusque, X.

    2014-12-01

    Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than ∼2-2.5 km s{sup –1}. By using the new activity simulation SOAP 2.0 which can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD 189733, we estimate the stellar inclination to be i=84{sub −20}{sup +6} deg, which implies a star-planet obliquity of ψ=4{sub −4}{sup +18} considering previous measurements of the spin-orbit angle. For α Cen B, we derive an inclination of i=45{sub −19}{sup +9}, which implies that the rotational spin of the star is not aligned with the orbital spin of the α Cen binary system. In addition, assuming that α Cen Bb is aligned with its host star, no transit would occur. The inclination of α Cen B can be measured using 40 radial-velocity measurements, which is remarkable given that the projected rotational velocity of the star is smaller than 1.15 km s{sup –1}.

  16. 340 waste handling complex: Deactivation project management plan

    SciTech Connect

    Stordeur, R.T.

    1998-06-25

    This document provides an overview of the strategy for deactivating the 340 Waste Handling Complex within Hanford`s 300 Area. The plan covers the period from the pending September 30, 1998 cessation of voluntary radioactive liquid waste (RLW) transfers to the 340 Complex, until such time that those portions of the 340 Complex that remain active beyond September 30, 1998, specifically, the Retention Process Sewer (RPS), can also be shut down and deactivated. Specific activities are detailed and divided into two phases. Phase 1 ends in 2001 after the core RLW systems have been deactivated. Phase 2 covers the subsequent interim surveillance of deactivated and stand-by components during the period of continued RPS operation, through the final transfer of the entire 340 Complex to the Environmental Restoration Contractor. One of several possible scenarios was postulated and developed as a budget and schedule planning case.

  17. IH activity is increased in populations of slow versus fast motor axons of the rat

    PubMed Central

    Lorenz, Chad; Jones, Kelvin E.

    2014-01-01

    Much is known about the electrophysiological variation in motoneuron somata across different motor units. However, comparatively less is known about electrophysiological variation in motor axons and how this could impact function or electrodiagnosis in healthy or diseased states. We performed nerve excitability testing on two groups of motor axons in Sprague–Dawley rats that are known to differ significantly in their chronic daily activity patterns and in the relative proportion of motor unit types: one group innervating the soleus (“slow motor axons”) and the other group innervating the tibialis anterior (“fast motor axons”) muscles. We found that slow motor axons have significantly larger accommodation compared to fast motor axons upon application of a 100 ms hyperpolarizing conditioning stimulus that is 40% of axon threshold (Z = 3.24, p = 0.001) or 20% of axon threshold (Z = 2.67, p = 0.008). Slow motor axons had larger accommodation to hyperpolarizing currents in the current-threshold measurement (-80% Z = 3.07, p = 0.002; -90% Z = 2.98, p = 0.003). In addition, we found that slow motor axons have a significantly smaller rheobase than fast motor axons (Z = -1.99, p = 0.047) accompanied by a lower threshold in stimulus-response curves. The results provide evidence that slow motor axons have greater activity of the hyperpolarization-activated inwardly rectifying cation conductance (IH) than fast motor axons. It is possible that this difference between fast and slow axons is caused by an adaptation to their chronic differences in daily activity patterns, and that this adaptation might have a functional effect on the motor unit. Moreover, these findings indicate that slow and fast motor axons may react differently to pathological conditions. PMID:25309406

  18. UVCS Observations of Slow Plasma Flow in the Corona Above Active Regions

    NASA Astrophysics Data System (ADS)

    Woo, R.; Habbal, S. R.

    2005-05-01

    The elusive source of slow solar wind has been the subject of ongoing discussion and debate. Observations of solar wind speed near the Earth orbit, first with IPS (interplanetary scintillation) and later with Ulysses in situ measurements, have suggested that some slow solar wind may be associated with active regions (Kojima & Kakinuma 1987; Woo, Habbal & Feldman 2004). The ability of SOHO UVCS Doppler dimming measurements to provide estimates of solar wind speed in the corona (Kohl et al. 1995) has made it possible to investigate the distribution of flow near the Sun. In this paper, we will present results confirming that active regions are one of the sources of slow wind. Insight into the relationship between coronal streamers, active regions and plasma flow will also be discussed.

  19. Fast and slow activation of voltage-dependent ion channels in radish vacuoles.

    PubMed Central

    Gambale, F; Cantu, A M; Carpaneto, A; Keller, B U

    1993-01-01

    The molecular processes associated with voltage-dependent opening and closing (gating) of ion channels were investigated using a new preparation from plant cells, i.e., voltage and calcium-activated ion channels in radish root vacuoles. These channels display a main single channel conductance of approximately 90 pS and are characterized by long activation times lasting several hundreds of milliseconds. Here, we demonstrate that these channels have a second kinetically distinct activation mode which is characterized by even longer activation times. Different membrane potential protocols allowed to switch between the fast and the slow mode in a controlled and reversible manner. At transmembrane potentials of -100 mV, the ratio between the fast and slow activation time constant was around 1:5. Correspondingly, activation times lasting several seconds were observed in the slow mode. The molecular process controlling fast and slow activation may represent an effective modulator of voltage-dependent gating of ion channels in other plant and animal systems. PMID:7507716

  20. Slow walking with turns” increases quadriceps and erector spinae muscle activity

    PubMed Central

    Araki, Mayumi; Hatamoto, Yoichi; Higaki, Yasuki; Tanaka, Hiroaki

    2017-01-01

    [Purpose] To maintain an independent lifestyle, older adults should improve muscle strength and mass, or aerobic capacity. A new exercise pattern, called slow walking with turns, which incorporates turning as an extra load additional to walking. The purpose of this study was to measure oxygen consumption during exercise and muscle activity while turning. [Subjects and Methods] Recreationally active volunteers participated. The participants performed 20 turns per minute while walking back and forth over distances of 1.5 to 3.5 m. We measured oxygen consumption, heart rate, and rating of perceived exertion and performed electromyography during the exercise. [Results] The metabolic equivalents of the exercise were 4.0 ± 0.4 to 6.3 ± 4.0 Mets. Activity was significantly greater in the vastus medialis, vastus lateralis, and erector spinae during the turn phase of slow walking with turns than during the stance phase of treadmill walking. [Conclusion] These findings suggest that slow walking with turns may help to preserve the muscle strength and mass of the trunk and lower limbs that are needed to maintain an independent lifestyle. Slow walking can be performed easily by older people, and in slow walking with turns, the exercise intensity can be adjusted as required for each individual. PMID:28356623

  1. Effects of environmental factors on the molluscicidal activities of slow-release hexabutyldistannoxane and copper sulfate*

    PubMed Central

    Chu, K. Y.

    1976-01-01

    Laboratory experiments were conducted to study the molluscicidal activities of slow-release hexabutyldistannoxane (TBTO) and copper sulfate under various environmental conditions. Organic materials such as mud and weeds reduced the molluscicidal efficacy of both chemicals. TBTO can be considered a good long-lasting molluscicide but, because of uncertainty as to its general toxic effects, it should not be used in field trials. The molluscicidal activity of slow-release copper sulfate was short-lived in plain lake water and was nil in the presence of mud or weeds at the concentration used. PMID:1088355

  2. Cross talk between activation and slow inactivation gates of Shaker potassium channels.

    PubMed

    Panyi, Gyorgy; Deutsch, Carol

    2006-11-01

    This study addresses the energetic coupling between the activation and slow inactivation gates of Shaker potassium channels. To track the status of the activation gate in inactivated channels that are nonconducting, we used two functional assays: the accessibility of a cysteine residue engineered into the protein lining the pore cavity (V474C) and the liberation by depolarization of a Cs(+) ion trapped behind the closed activation gate. We determined that the rate of activation gate movement depends on the state of the inactivation gate. A closed inactivation gate favors faster opening and slower closing of the activation gate. We also show that hyperpolarization closes the activation gate long before a channel recovers from inactivation. Because activation and slow inactivation are ubiquitous gating processes in potassium channels, the cross talk between them is likely to be a fundamental factor in controlling ion flux across membranes.

  3. Rotation sensing with Er3+-doped active ring resonator slow light structure

    NASA Astrophysics Data System (ADS)

    Gu, Hong; Liu, Xiaoqin

    2016-10-01

    An optical gyroscope, which is constituted by Er3+-doped active ring resonator (EDARR) slow light structure, is presented for the first time. The principle of improving the sensitivity of the detection of angular velocity is analysed in detail. The expression of the rotation phase difference of EDARR between the counter-propagating waves is derived and discussed. At the resonant frequency, the phase shift difference has the maximum value when the light power in the cavity is far greater than the input light power. We designed an experimental scheme of Er3+-doped active ring resonator slow light system. Two additional bias phases ϕb = ±π/2 were introduced in the optical path, by recording the light intensity difference ? and I0 at the resonant frequency ?, the input angular velocity can be obtained. The slow light structure based on EDARR can enhance the sensitivity of the detection of the angular velocity by three orders of magnitude.

  4. HEU Measurements of Holdup and Recovered Residue in the Deactivation and Decommissioning Activities of the 321-M Reactor Fuel Fabrication Facility at the Savannah River Site

    SciTech Connect

    DEWBERRY, RAYMOND; SALAYMEH, SALEEM R.; CASELLA, VITO R.; MOORE, FRANK S.

    2005-03-11

    This paper contains a summary of the holdup and material control and accountability (MC&A) assays conducted for the determination of highly enriched uranium (HEU) in the deactivation and decommissioning (D&D) of Building 321-M at the Savannah River Site (SRS). The 321-M facility was the Reactor Fuel Fabrication Facility at SRS and was used to fabricate HEU fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the SRS production reactors. The facility operated for more than 35 years. During this time thousands of uranium-aluminum-alloy (U-Al) production reactor fuel tubes were produced. After the facility ceased operations in 1995, all of the easily accessible U-Al was removed from the building, and only residual amounts remained. The bulk of this residue was located in the equipment that generated and handled small U-Al particles and in the exhaust systems for this equipment (e.g., Chip compactor, casting furnaces, log saw, lathes A & B, cyclone separator, Freon{trademark} cart, riser crusher, ...etc). The D&D project is likely to represent an important example for D&D activities across SRS and across the Department of Energy weapons complex. The Savannah River National Laboratory was tasked to conduct holdup assays to quantify the amount of HEU on all components removed from the facility prior to placing in solid waste containers. The U-235 holdup in any single component of process equipment must not exceed 50 g in order to meet the container limit. This limit was imposed to meet criticality requirements of the low level solid waste storage vaults. Thus the holdup measurements were used as guidance to determine if further decontamination of equipment was needed to ensure that the quantity of U-235 did not exceed the 50 g limit and to ensure that the waste met the Waste Acceptance Criteria (WAC) of the solid waste storage vaults. Since HEU is an accountable nuclear material, the holdup assays and assays of recovered

  5. Pharmaceutically active compounds: Their removal during slow sand filtration and their impact on slow sand filtration bacterial removal.

    PubMed

    D'Alessio, Matteo; Yoneyama, Bunnie; Kirs, Marek; Kisand, Veljo; Ray, Chittaranjan

    2015-08-15

    Slow sand filtration (SSF) has been widely used as a means of providing potable water due to its efficacy, low cost, and minimal maintenance. Advances in analytical instrumentation have revealed the occurrence of pharmaceutically active compounds (PhACs) in surface water as well as in groundwater. It is unclear if the presence of these compounds in the feed water can interfere with the performances of an SSF unit. The aim of this work was to examine i) the ability of two SSF units to remove six PhACs (caffeine, carbamazepine, 17-β estradiol [E2], estrone [E1], gemfibrozil, and phenazone), and ii) the impact of these PhACs on the removal of bacteria by two SSF units. The presence of PhACs in feed water for SSF can occur in surface waters impacted by wastewater or leakage from sewers and septic tanks, as well as in developing countries where unregulated use and improper disposal are prevalent. Two pilot-scale SSF units were used during the study. Unit B1 was fed with stream water with 1% of primary effluent added, while unit B2 was fed with stream water alone. Although limited removal (<10%) of carbamazepine, gemfibrozil, and phenazone occurred, the complete removal of caffeine, and the partial removal (11-92%) of E2 and E1 were observed in the two SSF units. The results of this study suggest that the occurrence of the selected PhACs, probably estrogens and caffeine, in the feed water at 50 μg L(-1) affected the ability of the schmutzdecke to remove total coliform and Escherichia coli. The bacterial removal achieved within the schmutzdecke dropped from 95% to less than 20% by the end of the study. This decrease in removal may be related to the change in the microbial community within the schmutzdecke. A diverse microbial community, including Bacteroidetes and several classes of Proteobacteria, was replaced by a microbial community in which Gammaproteobacteria was the predominant phylum (99%). Despite the low removal achieved within the schmutzdecke, removal of

  6. Outcome of Children with Hyperventilation-Induced High-Amplitude Rhythmic Slow Activity with Altered Awareness

    ERIC Educational Resources Information Center

    Barker, Alexander; Ng, Joanne; Rittey, Christopher D. C.; Kandler, Rosalind H.; Mordekar, Santosh R.

    2012-01-01

    Hyperventilation-induced high-amplitude rhythmic slow activity with altered awareness (HIHARS) is increasingly being identified in children and is thought to be an age-related non-epileptic electrographic phenomenon. We retrospectively investigated the clinical outcome in 15 children (six males, nine females) with HIHARS (mean age 7y, SD 1y 11mo;…

  7. EEG sleep slow-wave activity as a mirror of cortical maturation.

    PubMed

    Buchmann, Andreas; Ringli, Maya; Kurth, Salomé; Schaerer, Margot; Geiger, Anja; Jenni, Oskar G; Huber, Reto

    2011-03-01

    Deep (slow wave) sleep shows extensive maturational changes from childhood through adolescence, which is reflected in a decrease of sleep depth measured as the activity of electroencephalographic (EEG) slow waves. This decrease in sleep depth is paralleled by massive synaptic remodeling during adolescence as observed in anatomical studies, which supports the notion that adolescence represents a sensitive period for cortical maturation. To assess the relationship between slow-wave activity (SWA) and cortical maturation, we acquired sleep EEG and magnetic resonance imaging data in children and adolescents between 8 and 19 years. We observed a tight relationship between sleep SWA and a variety of indexes of cortical maturation derived from magnetic resonance (MR) images. Specifically, gray matter volumes in regions correlating positively with the activity of slow waves largely overlapped with brain areas exhibiting an age-dependent decrease in gray matter. The positive relationship between SWA and cortical gray matter was present also for power in other frequency ranges (theta, alpha, sigma, and beta) and other vigilance states (theta during rapid eye movement sleep). Our findings indicate a strong relationship between sleep EEG activity and cortical maturation. We propose that in particular, sleep SWA represents a good marker for structural changes in neuronal networks reflecting cortical maturation during adolescence.

  8. The activity of thalamus and cerebral cortex neurons in rabbits during "slow wave-spindle" EEG complexes.

    PubMed

    Burikov, A A; Bereshpolova YuI

    1999-01-01

    "Slow wave-spindle" complexes were studied during slow wave sleep in rabbits at the thalamic (medial thalamus) and cortical (upper and lower layers of the sensorimotor cortex) levels. Slow wave complexes are biphasic positive-negative complexes or triphasic complexes with a predominantly negative component. Spindles have characteristics close to those of spontaneous sleep spindles. Complexes arise singly, as though inserted into the rhythm of spontaneous sleep spindles, or in series with periods similar to the spindle rhythm. Medial thalamus neurons and some cortical neurons had the same activity during waves as during spindles: if the neuron decreased (increased) its spike frequency in a spindle, then decreases (increases) in frequency were also seen in slow waves; if the neuron produced trains of discharges during spindles, then trains of activity were also seen from the slow-wave part of "slow wave-spindle" complexes. The membrane potential changed in a similar fashion: on a background of hyperpolarization which started at the slow wave, individual depolarization oscillations appeared in the EEG wave rhythm; these oscillations were not always accompanied by spike trains. The slow wave mechanism, the rhythms of isolated complexes and simultaneous complexes and spontaneous sleep spindles may share a common underlying mechanism: slow, cyclical variations in excitability in thalamocortical neuronal networks, which have previously been demonstrated for spindle-like activity. The possibility that there are common mechanisms for slow waves in complexes and other EEG slow waves, particularly delta activity, remains hypothetical.

  9. Social exclusion in middle childhood: rejection events, slow-wave neural activity, and ostracism distress.

    PubMed

    Crowley, Michael J; Wu, Jia; Molfese, Peter J; Mayes, Linda C

    2010-01-01

    This study examined neural activity with event-related potentials (ERPs) in middle childhood during a computer-simulated ball-toss game, Cyberball. After experiencing fair play initially, children were ultimately excluded by the other players. We focused specifically on “not my turn” events within fair play and rejection events within social exclusion. Dense-array ERPs revealed that rejection events are perceived rapidly. Condition differences (“not my turn” vs. rejection) were evident in a posterior ERP peaking at 420 ms consistent, with a larger P3 effect for rejection events indicating that in middle childhood rejection events are differentiated in <500 ms. Condition differences were evident for slow-wave activity (500-900 ms) in the medial frontal cortical region and the posterior occipital-parietal region, with rejection events more negative frontally and more positive posteriorly. Distress from the rejection experience was associated with a more negative frontal slow wave and a larger late positive slow wave, but only for rejection events. Source modeling with Geosouce software suggested that slow-wave neural activity in cortical regions previously identified in functional imaging studies of ostracism, including subgenual cortex, ventral anterior cingulate cortex, and insula, was greater for rejection events vs. “not my turn” events.

  10. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding.

    PubMed

    Kirov, Roumen; Weiss, Carsten; Siebner, Hartwig R; Born, Jan; Marshall, Lisa

    2009-09-08

    The application of transcranial slow oscillation stimulation (tSOS; 0.75 Hz) was previously shown to enhance widespread endogenous EEG slow oscillatory activity when applied during a sleep period characterized by emerging endogenous slow oscillatory activity. Processes of memory consolidation typically occurring during this state of sleep were also enhanced. Here, we show that the same tSOS applied in the waking brain also induced an increase in endogenous EEG slow oscillations (0.4-1.2 Hz), although in a topographically restricted fashion. Applied during wakefulness tSOS, additionally, resulted in a marked and widespread increase in EEG theta (4-8 Hz) activity. During wake, tSOS did not enhance consolidation of memories when applied after learning, but improved encoding of hippocampus-dependent memories when applied during learning. We conclude that the EEG frequency and related memory processes induced by tSOS critically depend on brain state. In response to tSOS during wakefulness the brain transposes stimulation by responding preferentially with theta oscillations and facilitated encoding.

  11. Family Mode Deactivation Therapy Results and Implications

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Bass, Christopher K.

    2006-01-01

    This article highlights the inclusion of Mode Deactivation Therapy as a treatment modality for families in crisis. As an empirically validated treatment, Mode Deactivation Therapy has been effective in treating a wide variety of psychological issues. Mode Deactivation Therapy, (MDT) was developed to treat adolescents with disorders of conduct…

  12. Safety Design Requirements for Active Hazard Mitigation Device (AHMD) Employed to Address Fast and Slow Cook-off Thermal Threats

    DTIC Science & Technology

    2014-12-18

    Hazard Mitigation Device (AHMD) Employed to Address Fast and Slow Cook-off Thermal Threats 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...environments. 15. SUBJECT TERMS Active Hazard Mitigation Device insensitive munitions fast cook-off slow...DESIGN REQUIREMENTS FOR ACTIVE HAZARD MITIGATION DEVICE (AHMD) EMPLOYED TO ADDRESS FAST AND SLOW COOK-OFF THERMAL THREATS DOD Fuze Engineering

  13. Slow expiration reduces sternocleidomastoid activity and increases transversus abdominis and internal oblique muscle activity during abdominal curl-up.

    PubMed

    Yoon, Tae-Lim; Kim, Ki-Song; Cynn, Heon-Seock

    2014-04-01

    The aim of this study was to investigate the effects of quiet inspiration versus slow expiration on sternocleidomastoid (SCM) and abdominal muscle activity during abdominal curl-up in healthy subjects. Twelve healthy subjects participated in this study. Surface electromyography (EMG) was used to collect activity of bilateral SCM, rectus abdominis (RA), external oblique (EO), and transversus abdominis/internal oblique (TrA/IO) muscles. A paired t-test was used to determine significant differences in the bilateral SCM, RF, EO, and TrA/IO muscles between abdominal curl-up with quiet inspiration and slow expiration. There were significantly lower EMG activity of both SCMs and greater EMG activity of both IOs during abdominal curl-up with slow expiration, compared with the EMG activity of both SCMs and IOs during abdominal curl-up with quiet inspiration (p<.05). The results of this study suggest that slow expiration would be recommended during abdominal curl-up for reduced SCM activation and selective activation of TrA/IO in healthy subjects compared with those in abdominal curl up with quiet inspiration.

  14. Deactivation of Oxidation Catalysts

    DTIC Science & Technology

    1991-05-01

    the fresh catalyst . The loss in chromium may be related to the formation of volatile chromium oxychlorde which vaporizes from the catalyst . It is...CeO2 only marginally improved the thtrmal stability. The addition of 2% water vapor inhibited the oxidation of ethanol for all three copper catalysts ...original activity. Field tests of a copper chromite catalyst on process gas containing H2S, methyl mercaptan, n-aldehydes, and furfural showed

  15. Enhanced Reactivity in Hydrogen Atom Transfer from Tertiary Sites of Cyclohexanes and Decalins via Strain Release: Equatorial C-H Activation vs Axial C-H Deactivation.

    PubMed

    Salamone, Michela; Ortega, Vanesa B; Bietti, Massimo

    2015-05-01

    Absolute rate constants for hydrogen atom transfer (HAT) from cycloalkanes and decalins to the cumyloxyl radical (CumO(•)) were measured by laser flash photolysis. Very similar reactivities were observed for the C-H bonds of cyclopentane and cyclohexane, while the tertiary C-H bond of methylcyclopentane was found to be 6 times more reactive than the tertiary axial C-H bond of methylcyclohexane, pointing toward a certain extent of tertiary axial C-H bond deactivation. Comparison between the cis and trans isomers of 1,2-dimethylcyclohexane, 1,4-dimethylcyclohexane and decalin provides a quantitative evaluation of the role played by strain release in these reactions. kH values for HAT from tertiary equatorial C-H bonds were found to be at least 1 order of magnitude higher than those for HAT from the corresponding tertiary axial C-H bonds (kH(eq)/kH(ax) = 10-14). The higher reactivity of tertiary equatorial C-H bonds was explained in terms of 1,3-diaxial strain release in the HAT transition state. Increase in torsional strain in the HAT transition state accounts instead for tertiary axial C-H bond deactivation. The results are compared with those obtained for the corresponding C-H functionalization reactions by dioxiranes and nonheme metal-oxo species indicating that CumO(•) can represent a convenient model for the reactivity patterns of these oxidants.

  16. Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity.

    PubMed

    Klein, Sabine; Seidler, Barbara; Kettenberger, Anna; Sibaev, Andrei; Rohn, Michael; Feil, Robert; Allescher, Hans-Dieter; Vanderwinden, Jean-Marie; Hofmann, Franz; Schemann, Michael; Rad, Roland; Storr, Martin A; Schmid, Roland M; Schneider, Günter; Saur, Dieter

    2013-01-01

    The enteric nervous system contains excitatory and inhibitory neurons, which control contraction and relaxation of smooth muscle cells as well as gastrointestinal motor activity. Little is known about the exact cellular mechanisms of neuronal signal transduction to smooth muscle cells in the gut. Here we generate a c-Kit(CreERT2) knock-in allele to target a distinct population of pacemaker cells called interstitial cells of Cajal. By genetic loss-of-function studies, we show that interstitial cells of Cajal, which generate spontaneous electrical slow waves and thus rhythmic contractions of the smooth musculature, are essential for transmission of signals from enteric neurons to gastrointestinal smooth muscle cells. Interstitial cells of Cajal, therefore, integrate excitatory and inhibitory neurotransmission with slow-wave activity to orchestrate peristaltic motor activity of the gut. Impairment of the function of interstitial cells of Cajal causes severe gastrointestinal motor disorders. The results of our study show at the genetic level that these disorders are not only due to loss of slow-wave activity but also due to disturbed neurotransmission.

  17. Biodegradation of the cyanobacterial toxin microcystin LR in natural water and biologically active slow sand filters.

    PubMed

    Bourne, David G; Blakeley, Robert L; Riddles, Peter; Jones, Gary J

    2006-03-01

    A bacterium (MJ-PV) previously demonstrated to degrade the cyanobacterial toxin microcystin LR, was investigated for bioremediation applications in natural water microcosms and biologically active slow sand filters. Enhanced degradation of microcystin LR was observed with inoculated (1 x 10(6) cell/mL) treatments of river water dosed with microcystin LR (>80% degradation within 2 days) compared to uninoculated controls. Inoculation of MJ-PV at lower concentrations (1 x 10(2)-1 x 10(5) cells/mL) also demonstrated enhanced microcystin LR degradation over control treatments. Polymerase chain reactions (PCR) specifically targeting amplification of 16S rDNA of MJ-PV and the gene responsible for initial degradation of microcystin LR (mlrA) were successfully applied to monitor the presence of the bacterium in experimental trials. No amplified products indicative of an endemic MJ-PV population were observed in uninoculated treatments indicating other bacterial strains were active in degradation of microcystin LR. Pilot scale biologically active slow sand filters demonstrated degradation of microcystin LR irrespective of MJ-PV bacterial inoculation. PCR analysis detected the MJ-PV population at all locations within the sand filters where microcystin degradation was measured. Despite not observing enhanced degradation of microcystin LR in inoculated columns compared to uninoculated column, these studies demonstrate the effectiveness of a low-technology water treatment system like biologically active slow sand filters for removal of microcystins from reticulated water supplies.

  18. Prolonged activity evokes potentiation and the "sag" phenomenon in slow motor units of rat soleus.

    PubMed

    Drzymała-Celichowska, Hanna; Raikova, Rositsa; Krutki, Piotr

    2016-01-01

    Slow motor units (MUs) have no sag in their unfused tetani. This study in anesthetized rats shows that the sag can be observed in slow soleus MUs after prolonged activity. Twitches and unfused tetanic contractions were recorded from male (n=35) and female (n=39) MUs before and after the four minutes of the fatigue test (trains of 13 pulses at 40 Hz repeated every second). After this activity twitch contractions potentiated and a shift in the steep part of the force-frequency curve towards lower frequencies was observed in both sexes. Initially no sag was visible in unfused tetani, but after the fatigue test the phenomenon was observed in 77% of male, while in 13% of female MUs, the result consistent with the previously reported higher content of IIa myosin and faster contraction of MUs in male soleus. The decomposition of tetani with sag into trains of twitch-shape responses to consecutive stimuli revealed higher forces of initial decomposed twitches than later. The revealed alterations the force development due to long-lasting activation of slow MUs were sex-related and more pronounced in male soleus.

  19. Solid-state enzyme deactivation in air and in organic solvents

    SciTech Connect

    Toscano, G.; Pirozzi, D.; Maremonti, M.; Greco, G. Jr. . Dipartimento di Ingegneria Chimica)

    1994-09-05

    Thermal deactivation of solid-state acid phosphatase is analyzed, both in the presence and in the absence of organic solvents. The thermal deactivation profile departs from first order kinetics and shows an unusual, temperature-dependent, asymptotic value of residual activity. The process is described by a phenomenological equation, whose theoretical implications are also discussed. The total amount of buffer salts in the enzyme powder dramatically affects enzyme stability in the range 70 to 105 C. The higher salt/protein ratio increases the rate of thermal deactivation. The deactivation rate is virtually unaffected by the presence of organic solvents, independent of their hydrophilicity.

  20. Regeneration of a deactivated USY alkylation catalyst using supercritical isobutane

    SciTech Connect

    Daniel M. Ginosar; David N. Ghompson; Kyle C. Burch

    2005-01-01

    Off-line, in-situ alkylation activity recovery from a completely deactivated solid acid catalyst was examined in a continuous-flow reaction system employing supercritical isobutane. A USY zeolite catalyst was initially deactivated during the liquid phase alkylation of butene with isobutane in a single-pass reactor and then varying amounts of alkylation activity were recovered by passing supercritical isobutane over the catalyst bed at different reactivation conditions. Temperature, pressure and regeneration time were found to play important roles in the supercritical isobutane regeneration process when applied to a completely deactivated USY zeolite alkylation catalyst. Manipulation of the variables that influence solvent strength, diffusivity, surface desorption, hydride transfer rates, and coke aging, strongly influence regeneration effectiveness.

  1. Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen

    PubMed Central

    Mosole, Simone; Carraro, Ugo; Kern, Helmut; Loefler, Stefan; Zampieri, Sandra

    2016-01-01

    Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i) denervation contributes to muscle atrophy, ii) impaired mobility accelerates the process, and iii) lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES) of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC) we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers); 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers); 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always more active

  2. Characterization of Deactivated Bio-oil Hydrotreating Catalysts

    SciTech Connect

    Wang, Huamin; Wang, Yong

    2015-10-06

    Deactivation of bio-oil hydrotreating catalysts remains a significant challenge because of the poor quality of pyrolysis bio-oil input for hydrotreating and understanding their deactivation mode is critical to developing improved catalysts and processes. In this research, we developed an understanding of the deactivation of two-step bio-oil hydrotreating catalysts (sulfided Ru/C and sulfided CoMo/C) through detailed characterization of the catalysts using various complimentary analytical techniques. Severe fouling of both catalysts by carbonaceous species was the major form of deactivation, which is consistent with the significant loss of surface area and pore volume of both deactivated catalysts and the significant increase of the bulk density. Further analysis of the carbonaceous species by thermogravimetric analysis and x-ray photoelectron spectroscopy indicated that the carbonaceous species was formed by condensation reaction of active species such as sugars and sugar derivatives (aldehydes and ketones) in bio-oil feedstock during bio-oil hydrotreating under the conditions and catalysts used. Microscopy results did not show metal sintering of the Ru/C catalyst. However, X-ray diffraction indicated a probable transformation of the highly-active CoMoS phase in the sulfided CoMo/C catalyst to Co8S9 and MoS2 phase with low activity. Loss of the active site by transport of inorganic elements from the bio-oil and the reactor construction material onto the catalyst surface also might be a cause of deactivation as indicated by elemental analysis of spent catalysts.

  3. Deactivation by carbon of iron catalysts for indirect liquefaction

    SciTech Connect

    Bartholomew, C.H.

    1991-01-10

    Although promoted cobalt and iron catalysts for Fischer-Tropsch (FT) synthesis of gasoline feedstock were first developed more than three decades ago, a major technical problem still limiting the commercial use of these catalysts today is carbon deactivation. This report describes recent progress in a fundamental, three-year investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for FT synthesis, the objectives of which are to: determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation over a range of CO concentrations, CO:H{sub 2} ratios, and temperatures; and model the rates of deactivation of the same catalysts in fixed-bed reactors. To accomplish the above objectives, the project is divided into the following tasks: (1) determine the kinetics of reaction and of carbon deactivation during CO hydrogenation on Fe and Fe/K catalysts coated on monolith bodies. (2) Determine the reactivities and types of carbon deposited during reaction on the same catalysts from temperature-programmed-surface-reaction spectroscopy (TPSR) and transmission electron microscopy (TEM). Determine the types of iron carbides formed at various temperatures and H{sub 2}/CO ratios using x-ray diffraction and Moessbauer spectroscopy. (3) Develop mathematical deactivation models which include heat and mass transport contributions for FT synthesis is packed-bed reactors. Progress to date is described. 48 refs., 3 figs., 1 tab.

  4. [Soil biological activities at maize seedling stage under application of slow/controlled release nitrogen fertilizers].

    PubMed

    Li, Dongpo; Wu, Zhijie; Chen, Lijun; Liang, Chenghua; Zhang, Lili; Wang, Weicheng; Yang, Defu

    2006-06-01

    With pot experiment and simulating field ecological environment, this paper studied the effects of different slow/ controlled release N fertilizers on the soil nitrate - reductase and urease activities and microbial biomass C and N at maize seedling stage. The results showed that granular urea amended with dicyandiamide (DCD) and N-(n-bultyl) thiophosphoric triamide (NBPT) induced the highest soil nitrate-reductase activity, granular urea brought about the highest soil urease activity and microbial biomass C and N, while starch acetate (SA)-coated granular urea, SA-coated granular urea amended with DCD, methyl methacrylate (MMA) -coated granular urea amended with DCD, and no N fertilization gave a higher soil urease activity. Soil microbial C and N had a similar variation trend after applying various kinds of test slow/controlled release N fertilizers, and were the lowest after applying SA-coated granular urea amended with DCD and NBPT. Coated granular urea amended with inhibitors had a stronger effect on soil biological activities than coated granular urea, and MMA-coating had a better effect than SA-coating.

  5. Antioxidant Deactivation on Graphenic Nanocarbon Surfaces

    SciTech Connect

    Liu, Xinyuan; Sen, Sujat; Liu, Jingyu; Kulaots, Indrek; Geohegan, David B; Kane, Agnes; Puretzky, Alexander A; Rouleau, Christopher M; More, Karren Leslie; Palmore, G. Tayhas R.; Hurt, Robert H.

    2011-01-01

    This article reports a direct chemical pathway for antioxidant deactivation on the surfaces of carbon nanomaterials. In the absence of cells, carbon nanotubes are shown to deplete the key physiological antioxidant glutathione (GSH) in a reaction involving dissolved dioxygen that yields the oxidized dimer, GSSG, as the primary product. In both chemical and electrochemical experiments, oxygen is only consumed at a significant steady-state rate in the presence of both nanotubes and GSH. GSH deactivation occurs for single- and multi-walled nanotubes, graphene oxide, nanohorns, and carbon black at varying rates that are characteristic of the material. The GSH depletion rates can be partially unified by surface area normalization, are accelerated by nitrogen doping, and suppressed by defect annealing or addition of proteins or surfactants. It is proposed that dioxygen reacts with active sites on graphenic carbon surfaces to produce surface-bound oxygen intermediates that react heterogeneously with glutathione to restore the carbon surface and complete a catalytic cycle. The direct catalytic reaction between nanomaterial surfaces and antioxidants may contribute to oxidative stress pathways in nanotoxicity, and the dependence on surface area and structural defects suggest strategies for safe material design.

  6. Single-unit activity in piriform cortex during slow-wave state is shaped by recent odor experience.

    PubMed

    Wilson, Donald A

    2010-02-03

    Memory and its underlying neural plasticity play important roles in sensory discrimination and cortical pattern recognition in olfaction. Given the reported function of slow-wave sleep states in neocortical and hippocampal memory consolidation, we hypothesized that activity during slow-wave states within the piriform cortex may be shaped by recent olfactory experience. Rats were anesthetized with urethane and allowed to spontaneously shift between slow-wave and fast-wave states as recorded in local field potentials within the anterior piriform cortex. Single-unit activity of piriform cortical layer II/III neurons was recorded simultaneously. The results suggest that piriform cortical activity during slow-wave states is shaped by recent (several minutes) odor experience. The temporal structure of single-unit activity during slow waves was modified if the animal had been stimulated with an odor within the receptive field of that cell. If no odor had been delivered, the activity of the cell during slow-wave activity was stable across the two periods. The results demonstrate that piriform cortical activity during slow-wave state is shaped by recent odor experience, which could contribute to odor memory consolidation.

  7. PUREX/UO{sub 3} facilities deactivation lessons learned: History

    SciTech Connect

    Gerber, M.S.

    1997-11-25

    In May 1997, a historic deactivation project at the PUREX (Plutonium URanium EXtraction) facility at the Hanford Site in south-central Washington State concluded its activities (Figure ES-1). The project work was finished at $78 million under its original budget of $222.5 million, and 16 months ahead of schedule. Closely watched throughout the US Department of Energy (DOE) complex and by the US Department of Defense for the value of its lessons learned, the PUREX Deactivation Project has become the national model for the safe transition of contaminated facilities to shut down status.

  8. Stimulating forebrain communications: Slow sinusoidal electric fields over frontal cortices dynamically modulate hippocampal activity and cortico-hippocampal interplay during slow-wave states.

    PubMed

    Greenberg, Anastasia; Whitten, Tara A; Dickson, Clayton T

    2016-06-01

    Slow-wave states are characterized by the most global physiological phenomenon in the mammalian brain, the large-amplitude slow oscillation (SO; ~1Hz) composed of alternating states of activity (ON/UP states) and silence (OFF/DOWN states) at the network and single cell levels. The SO is cortically generated and appears as a traveling wave that can propagate across the cortical surface and can invade the hippocampus. This cortical rhythm is thought to be imperative for sleep-dependent memory consolidation, potentially through increased interactions with the hippocampus. The SO is correlated with learning and its presumed enhancement via slow rhythmic electrical field stimulation improves subsequent mnemonic performance. However, the mechanism by which such field stimulation influences the dynamics of ongoing cortico-hippocampal communication is unknown. Here we show - using multi-site recordings in urethane-anesthetized rats - that sinusoidal electrical field stimulation applied to the frontal region of the cerebral cortex creates a platform for improved cortico-hippocampal communication. Moderate-intensity field stimulation entrained hippocampal slow activity (likely by way of the temporoammonic pathway) and also increased sharp-wave ripples, the signature memory replay events of the hippocampus, and further increased cortical spindles. Following cessation of high-intensity stimulation, SO interactions in the cortical-to-hippocampal direction were reduced, while the reversed hippocampal-to-cortical communication at both SO and gamma bandwidths was enhanced. Taken together, these findings suggest that cortical field stimulation may function to boost memory consolidation by strengthening cortico-hippocampal and hippocampo-cortical interplay at multiple nested frequencies in an intensity-dependent fashion.

  9. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona

    NASA Astrophysics Data System (ADS)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.

    2013-08-01

    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  10. Origin of Active States in Local Neocortical Networks during Slow Sleep Oscillation

    PubMed Central

    Chauvette, Sylvain; Volgushev, Maxim

    2010-01-01

    Slow-wave sleep is characterized by spontaneous alternations of activity and silence in corticothalamic networks, but the causes of transition from silence to activity remain unknown. We investigated local mechanisms underlying initiation of activity, using simultaneous multisite field potential, multiunit recordings, and intracellular recordings from 2 to 4 nearby neurons in naturally sleeping or anesthetized cats. We demonstrate that activity may start in any neuron or recording location, with tens of milliseconds delay in other cells and sites. Typically, however, activity originated at deep locations, then involved some superficial cells, but appeared later in the middle of the cortex. Neuronal firing was also found to begin, after the onset of active states, at depths that correspond to cortical layer V. These results support the hypothesis that switch from silence to activity is mediated by spontaneous synaptic events, whereby any neuron may become active first. Due to probabilistic nature of activity onset, the large pyramidal cells from deep cortical layers, which are equipped with the most numerous synaptic inputs and large projection fields, are best suited for switching the whole network into active state. PMID:20200108

  11. Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration

    PubMed Central

    Gregorevic, Paul; Plant, David R; Stupka, Nicole; Lynch, Gordon S

    2004-01-01

    Damaged skeletal muscle fibres are replaced with new contractile units via muscle regeneration. Regenerating muscle fibres synthesize functionally distinct isoforms of contractile and regulatory proteins but little is known of their functional properties during the regeneration process. An advantage of utilizing single muscle fibre preparations is that assessment of their function is based on the overall characteristics of the contractile apparatus and regulatory system and as such, these preparations are sensitive in revealing not only coarse, but also subtle functional differences between muscle fibres. We examined the Ca2+- and Sr2+-activated contractile characteristics of permeabilized fibres from rat fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles at 7, 14 and 21 days following myotoxic injury, to test the hypothesis that fibres from regenerating fast and slow muscles have different functional characteristics to fibres from uninjured muscles. Regenerating muscle fibres had ∼10% of the maximal force producing capacity (Po) of control (uninjured) fibres, and an altered sensitivity to Ca2+ and Sr2+ at 7 days post-injury. Increased force production and a shift in Ca2+ sensitivity consistent with fibre maturation were observed during regeneration such that Po was restored to 36–45% of that in control fibres by 21 days, and sensitivity to Ca2+ and Sr2+ was similar to that of control (uninjured) fibres. The findings support the hypothesis that regenerating muscle fibres have different contractile activation characteristics compared with mature fibres, and that they adopt properties of mature fast- or slow-twitch muscle fibres in a progressive manner as the regeneration process is completed. PMID:15181161

  12. Hippocalcin gates the calcium activation of the slow afterhyperpolarization in hippocampal pyramidal cells.

    PubMed

    Tzingounis, Anastassios V; Kobayashi, Masaaki; Takamatsu, Ken; Nicoll, Roger A

    2007-02-15

    In the brain, calcium influx following a train of action potentials activates potassium channels that mediate a slow afterhyperpolarization current (I(sAHP)). The key steps between calcium influx and potassium channel activation remain unknown. Here we report that the key intermediate between calcium and the sAHP channels is the diffusible calcium sensor hippocalcin. Brief depolarizations sufficient to activate the I(sAHP) in wild-type mice do not elicit the I(sAHP) in hippocalcin knockout mice. Introduction of hippocalcin in cultured hippocampal neurons leads to a pronounced I(sAHP), while neurons expressing a hippocalcin mutant lacking N-terminal myristoylation exhibit a small I(sAHP) that is similar to that recorded in uninfected neurons. This implies that hippocalcin must bind to the plasma membrane to mediate its effects. These findings support a model in which the calcium sensor for the sAHP channels is not preassociated with the channel complex.

  13. Slow Conductances Could Underlie Intrinsic Phase-Maintaining Properties of Isolated Lobster (Panulirus interruptus) Pyloric Neurons

    PubMed Central

    Hooper, Scott L.; Buchman, Einat; Weaver, Adam L.; Thuma, Jeffrey B.; Hobbs, Kevin H.

    2009-01-01

    The rhythmic pyloric network of the lobster stomatogastric system approximately maintains phase (that is, the burst durations and durations between the bursts of its neurons change proportionally) when network cycle period is altered by current injection into the network pacemaker (Hooper, 1997a,b). When isolated from the network and driven by rhythmic hyperpolarizing current pulses, the delay to firing after each pulse of at least one network neuron type (Pyloric, PY) varies in a phase-maintaining manner when cycle period is varied (Hooper, 1998). These variations require PY neurons to have intrinsic mechanisms that respond to changes in neuron activity on time scales at least as long as two seconds. Slowly activating and deactivating conductances could provide such a mechanism. We tested this possibility by building models containing various slow conductances. This work showed that such conductances could indeed support intrinsic phase-maintenance and we show here results for one such conductance, a slow potassium conductance. These conductances supported phase maintenance because their mean activation level changed, hence altering neuron post-inhibition firing delay, when the rhythmic input to the neuron changed. Switching the sign of the dependence of slow conductance activation and deactivation on membrane potential resulted in neuron delays switching to change in an anti-phase maintaining manner. These data suggest that slow conductances or similar slow processes such as changes in intracellular Ca2+ concentration could underlie phase maintenance in pyloric network neurons. PMID:19211890

  14. Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls

    NASA Astrophysics Data System (ADS)

    Escartin, Javier

    2016-04-01

    Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While

  15. EEG Σ and slow-wave activity during NREM sleep correlate with overnight declarative and procedural memory consolidation.

    PubMed

    Holz, Johannes; Piosczyk, Hannah; Feige, Bernd; Spiegelhalder, Kai; Baglioni, Chiara; Riemann, Dieter; Nissen, Christoph

    2012-12-01

    Previous studies suggest that sleep-specific brain activity patterns such as sleep spindles and electroencephalographic slow-wave activity contribute to the consolidation of novel memories. The generation of both sleep spindles and slow-wave activity relies on synchronized oscillations in a thalamo-cortical network that might be implicated in synaptic strengthening (spindles) and downscaling (slow-wave activity) during sleep. This study further examined the association between electroencephalographic power during non-rapid eye movement sleep in the spindle (sigma, 12-16 Hz) and slow-wave frequency range (0.1-3.5 Hz) and overnight memory consolidation in 20 healthy subjects (10 men, 27.1 ± 4.6 years). We found that both electroencephalographic sigma power and slow-wave activity were positively correlated with the pre-post-sleep consolidation of declarative (word list) and procedural (mirror-tracing) memories. These results, although only correlative in nature, are consistent with the view that processes of synaptic strengthening (sleep spindles) and synaptic downscaling (slow-wave activity) might act in concert to promote synaptic plasticity and the consolidation of both declarative and procedural memories during sleep.

  16. Catalyst deactivation model for residual oil hydrodesulfurization

    SciTech Connect

    Takatsuka, T.; Higasino, S.; Hirohama, S.

    1995-12-31

    Hydrodesulfurization process plays a dominant role in the modern refineries to upgrade residual oil either by removing heterogeneous atoms or by hydrocracking the bottom to distillates products. The practical model is proposed to predict a catalyst life which is the most concern in the process. The catalyst is deactivated in the early stage of the operation by coke deposition on the catalyst active site. The ultimate catalyst life is determined by pore mouth plugging depending on its metal capacity. The phenomena are mathematically described by losses of catalyst surface area and effective diffusivity of feedstock molecules in catalyst pore. The model parameters were collected through the pilot plant tests with different types of catalysts and feedstocks.

  17. Patterns of Default Mode Network Deactivation in Obsessive Compulsive Disorder

    PubMed Central

    Gonçalves, Óscar F.; Soares, José Miguel; Carvalho, Sandra; Leite, Jorge; Ganho-Ávila, Ana; Fernandes-Gonçalves, Ana; Pocinho, Fernando; Carracedo, Angel; Sampaio, Adriana

    2017-01-01

    The objective of the present study was to research the patterns of Default Mode Network (DMN) deactivation in Obsessive Compulsive Disorder (OCD) in the transition between a resting and a non-rest emotional condition. Twenty-seven participants, 15 diagnosed with OCD and 12 healthy controls (HC), underwent a functional neuroimaging paradigm in which DMN brain activation in a resting condition was contrasted with activity during a non-rest condition consisting in the presentation of emotionally pleasant and unpleasant images. Results showed that HC, when compared with OCD, had a significant deactivation in two anterior nodes of the DMN (medial frontal and superior frontal) in the non-rest pleasant stimuli condition. Additional analysis for the whole brain, contrasting the resting condition with all the non-rest conditions grouped together, showed that, compared with OCD, HC had a significantly deactivation of a widespread brain network (superior frontal, insula, middle and superior temporal, putamen, lingual, cuneus, and cerebellum). Concluding, the present study found that OCD patients had difficulties with the deactivation of DMN even when the non-rest condition includes the presentation of emotional provoking stimuli, particularly evident for images with pleasant content. PMID:28287615

  18. Effects of Skilled Training on Sleep Slow Wave Activity and Cortical Gene Expression in the Rat

    PubMed Central

    Hanlon, Erin C.; Faraguna, Ugo; Vyazovskiy, Vladyslav V.; Tononi, Giulio; Cirelli, Chiara

    2009-01-01

    Study Objective: The best characterized marker of sleep homeostasis is the amount of slow wave activity (SWA, 0.5–4 Hz) during NREM sleep. SWA increases as a function of previous waking time and declines during sleep, but the underlying mechanisms remain unclear. We have suggested that SWA homeostasis is linked to synaptic potentiation associated with learning during wakefulness. Indeed, studies in rodents and humans found that SWA increases after manipulations that presumably enhance synaptic strength, but the evidence remains indirect. Here we trained rats in skilled reaching, a task known to elicit long-term potentiation in the trained motor cortex, and immediately after learning measured SWA and cortical protein levels of c-fos and Arc, 2 activity-dependent genes involved in motor learning. Design: Intracortical local field potential recordings and training on reaching task. Setting: Basic sleep research laboratory. Patients or Participants: Long Evans adult male rats. Interventions: N/A Measurements and Results: SWA increased post-training in the trained cortex (the frontal cortex contralateral to the limb used to learn the task), with smaller or no increase in other cortical areas. This increase was reversible within 1 hour, specific to NREM sleep, and positively correlated with changes in performance during the prior training session, suggesting that it reflects plasticity and not just motor activity. Fos and Arc levels were higher in the trained relative to untrained motor cortex immediately after training, but this asymmetry was no longer present after 1 hour of sleep. Conclusion: Learning to reach specifically affects gene expression in the trained motor cortex and, in the same area, increases sleep need as measured by a local change in SWA. Citation: Hanlon EC; Faraguna U; Vyazovskiy VV; Tononi G; Cirelli C. Effects of skilled training on sleep slow wave activity and cortical gene expression in the rat. SLEEP 2009;32(6):719-729. PMID:19544747

  19. Cytoplasm-to-myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibers

    NASA Technical Reports Server (NTRS)

    Tseng, B. S.; Kasper, C. E.; Edgerton, V. R.

    1994-01-01

    The relationship between myonuclear number, cellular size, succinate dehydrogenase activity, and myosin type was examined in single fiber segments (n = 54; 9 +/- 3 mm long) mechanically dissected from soleus and plantaris muscles of adult rats. One end of each fiber segment was stained for DNA before quantitative photometric analysis of succinate dehydrogenase activity; the other end was double immunolabeled with fast and slow myosin heavy chain monoclonal antibodies. Mean +/- S.D. cytoplasmic volume/myonucleus ratio was higher in fast and slow plantaris fibers (112 +/- 69 vs. 34 +/- 21 x 10(3) microns3) than fast and slow soleus fibers (40 +/- 20 vs. 30 +/- 14 x 10(3) microns3), respectively. Slow fibers always had small volumes/myonucleus, regardless of fiber diameter, succinate dehydrogenase activity, or muscle of origin. In contrast, smaller diameter (< 70 microns) fast soleus and plantaris fibers with high succinate dehydrogenase activity appeared to have low volumes/myonucleus while larger diameter (> 70 microns) fast fibers with low succinate dehydrogenase activity always had large volume/myonucleus. Slow soleus fibers had significantly greater numbers of myonuclei/mm than did either fast soleus or fast plantaris fibers (116 +/- 51 vs. 55 +/- 22 and 44 +/- 23), respectively. These data suggest that the myonuclear domain is more limited in slow than fast fibers and in the fibers with a high, compared to a low, oxidative metabolic capability.

  20. Dense seismic networks as a tool to characterize active faulting in regions of slow deformation

    NASA Astrophysics Data System (ADS)

    Custódio, Susana; Arroucau, Pierre; Carrilho, Fernando; Cesca, Simone; Dias, Nuno; Matos, Catarina; Vales, Dina

    2016-04-01

    The theory of plate tectonics states that the relative motion between lithospheric plates is accommodated at plate boundaries, where earthquakes occur on long faults. However, earthquakes with a wide range of magnitudes also occur both off plate boundaries, in intra-plate settings, and along discontinuous, diffuse plate boundaries. These settings are characterized by low rates of lithospheric deformation. A fundamental limitation in the study of slowly deforming regions is the lack of high-quality observations. In these regions, earthquake catalogs have traditionally displayed diffuse seismicity patterns. The location, geometry and activity rate of faults - all basic parameters for understanding fault dynamics - are usually poorly known. The dense seismic networks deployed in the last years around the world have opened new windows in observational seismology. Although high-magnitude earthquakes are rare in regions of slow deformation, low-magnitude earthquakes are well observable on the time-scale of these deployments. In this presentation, we will show how data from dense seismic deployments can be used to characterize faulting in regions of slow deformation. In particular, we will present the case study of western Iberia, a region undergoing low-rate deformation and which has generated some of the largest earthquakes in Europe, both intraplate (mainland) and interplate (offshore). The methods that we employ include automated earthquake detection methods to lower the completeness magnitude of catalogs, earthquake relocations, focal mechanisms patterns, waveform similarity and clustering analysis.

  1. Nonvolcanic Tremor Activity is Highly Correlated With Slow Slip Events, Mexico

    NASA Astrophysics Data System (ADS)

    Kostoglodov, V.; Shapiro, N.; Larson, K. M.; Payero, J. S.; Husker, A.; Santiago, L. A.; Clayton, R. W.

    2008-12-01

    Significant activity of nonvolcanic tremor (NVT) has been observed in the central Mexico (Guerrero) subduction zone since 2001 when continuous seismic records became available. Although the quality of these records is poor, it is possible to estimate a temporal variation of energy in the range of 1-2Hz (best signal/noise ratio for the NVT). These clearly indicate a maximum of NVT energy release (En) during the 2001-2002 and 2006 large aseismic slow slip events (SSE) registered by the Guerrero GPS network. In particular En is higher for the 2001-2002 SSE which had larger surface displacements and extension than the 2006 SSE. A more detailed and accurate study of NVT activity was carried out using the data collected during the MASE experiment in Mexico. MASE consisted of 100 broad band seismometers in operation for ~2.5 years (2005-2007) along the profile oriented SSW-NNE from Acapulco, and crossing over the subduction zone for a distance of ~500 km. Epicenters and depths of individual tremor events determined using the envelope cross-correlation technique have rather large uncertainties, partly originated from the essentially 2D geometry of the network. The 'energy' approach is more efficient in this case because it provides an average NVT activity evolution in time and space. The data processing consists of a band pass (1-2Hz) filter of the raw 100 Hz sampled N-S component records, application a 10 min-width median filter to eliminate the effect of local seismic events and noise, and integration of the energy and normalization of daily En using an average coda amplitude from several regional earthquakes of M~5. A time-space distribution of En reveals a strong correlation between NVT energy release and the 2006 SSE, which also replicates the two-phase character of this slow event and a migration of the slow slip maximum from North to South. There are also a few clear episodes of relatively high NVT energy release that do not correspond to any significant geodetic

  2. Slow potentials and spike unit activity of the cerebral cortex of rabbits exposed to microwaves

    SciTech Connect

    Chizhenkova, R.A.

    1988-01-01

    Unanesthetized rabbits exposed to 12.5-cm microwaves at a field intensity of 40 mW/cm/sup 2/ in the region of the head showed an increase in the number of slow waves and spindle-shaped firings in the EEG and a change in the discharge frequency of neurons in the visual cortex in 41-52% of the cases. An enhancement of the evoked response of visual cortex neurons to light was observed in 61% of the cases and a facilitation of the driving response in 80% of all cases. It is concluded that the evoked response is a more sensitive indicator of the microwave effect than background activity. The effects of the fields were most distinctly observed with the driving response.

  3. Suppression of NADPH Oxidase Activity May Slow the Expansion of Osteolytic Bone Metastases

    PubMed Central

    McCarty, Mark F.; DiNicolantonio, James

    2016-01-01

    Lysophosphatidic acid (LPA), generated in the microenvironment of cancer cells, can drive the proliferation, invasion, and migration of cancer cells by activating G protein-coupled LPA receptors. Moreover, in cancer cells that have metastasized to bone, LPA signaling can promote osteolysis by inducing cancer cell production of cytokines, such as IL-6 and IL-8, which can stimulate osteoblasts to secrete RANKL, a key promoter of osteoclastogenesis. Indeed, in cancers prone to metastasize to bone, LPA appears to be a major driver of the expansion of osteolytic bone metastases. Activation of NADPH oxidase has been shown to play a mediating role in the signaling pathways by which LPA, as well as RANKL, promote osteolysis. In addition, there is reason to suspect that Nox4 activation is a mediator of the feed-forward mechanism whereby release of TGF-beta from bone matrix by osteolysis promotes expression of PTHrP in cancer cells, and thereby induces further osteolysis. Hence, measures which can down-regulate NADPH oxidase activity may have potential for slowing the expansion of osteolytic bone metastases in cancer patients. Phycocyanin and high-dose statins may have utility in this regard, and could be contemplated as complements to bisphosphonates or denosumab for the prevention and control of osteolytic lesions. Ingestion of omega-3-rich flaxseed or fish oil may also have potential for controlling osteolysis in cancer patients. PMID:27571113

  4. Active region plasma outflows as sources of slow/intermediate solar wind

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia M.

    2015-08-01

    L. van Driel-Gesztelyi (1,2,3), D. Baker (1), P. Démoulin (2), Culhane, J.L. (1), M.L. DeRosa (4) C.H. Mandrini (5,6), D.H. Brooks (7), A.N. Fazakerley (1), L.K. Harra (1), L. Zhao (7), T.H. Zurbuchen (7), F.A. Nuevo (5,6), A.M. Vásquez (5,6), G.D. Cristiani (5,6) M. Pick (2)1) UCL/MSSL, UK, (2) Paris Observatory, LESIA, CNRS, France, (3) Konkoly Observatory, Hungary, (4) Lockheed Martin Solar and Astrophysics Laboratory, USA, (5) IAFE, CONICET-UBA, Argentina (6) FCEN, UBA, Argentina (7) Dept. of Atmospheric, Oceanic and Earth Sciences, Univ. of Michigan, USAWe analyse plasma upflows of tens of km/s from the edges of solar active regions discovered by Hinode/EIS and investigate whether or not they become outflows, i.e. find their way into the solar wind. We analyse two magnetic configurations: bipolar and quadrupolar and find that the active region plasma may be directly channeled into the solar wind via interchange reconnection at a high-altitude null point above the active region especially when active regions are located besides coronal holes or in a more complex way via multiple reconnections even from under a closed helmet streamer. We relate the solar observations to in-situ slow/intermediate solar wind streams.

  5. Slowing of oscillatory brain activity is a stable characteristic of Parkinson's disease without dementia.

    PubMed

    Stoffers, D; Bosboom, J L W; Deijen, J B; Wolters, E C; Berendse, H W; Stam, C J

    2007-07-01

    Extensive changes in resting-state oscillatory brain activity have recently been demonstrated using magnetoencephalography (MEG) in moderately advanced, non-demented Parkinson's disease patients relative to age-matched controls. The aim of the present study was to determine the onset and evolution of these changes over the disease course and their relationship with clinical parameters. In addition, we evaluated the effects of dopaminomimetics on resting-state oscillatory brain activity in levodopa-treated patients. MEG background oscillatory activity was studied in a group of 70 Parkinson's disease patients with varying disease duration and severity (including 18 de novo patients) as well as in 21 controls that were age-matched to the de novo patients. Whole head 151-channel MEG recordings were obtained in an eyes-closed resting-state condition. Levodopa-treated patients (N = 37) were examined both in a practically defined 'OFF' as well as in the 'ON' state. Relative spectral power was calculated for delta, theta, low alpha, high alpha, beta and gamma frequency bands and averaged for 10 cortical regions of interest (ROIs). Additionally, extensive clinical and neuropsychological testing was performed in all subjects. De novo Parkinson's disease patients showed widespread slowing of background MEG activity relative to controls. Changes included a widespread increase in theta and low alpha power, as well as a loss of beta power over all but the frontal ROIs and a loss of gamma power over all but the right occipital ROI. Neuropsychological assessment revealed abnormal perseveration in de novo patients, which was associated with increased low alpha power in centroparietal ROIs. In the whole group of Parkinson's disease patients, longer disease duration was associated with reduced low alpha power in the right temporal and right occipital ROI, but not with any other spectral power measure. No association was found between spectral power and disease stage, disease severity

  6. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal−bacterial consortia

    PubMed Central

    Hatzenpichler, Roland; Connon, Stephanie A.; Goudeau, Danielle; Malmstrom, Rex R.; Woyke, Tanja; Orphan, Victoria J.

    2016-01-01

    To understand the biogeochemical roles of microorganisms in the environment, it is important to determine when and under which conditions they are metabolically active. Bioorthogonal noncanonical amino acid tagging (BONCAT) can reveal active cells by tracking the incorporation of synthetic amino acids into newly synthesized proteins. The phylogenetic identity of translationally active cells can be determined by combining BONCAT with rRNA-targeted fluorescence in situ hybridization (BONCAT-FISH). In theory, BONCAT-labeled cells could be isolated with fluorescence-activated cell sorting (BONCAT-FACS) for subsequent genetic analyses. Here, in the first application, to our knowledge, of BONCAT-FISH and BONCAT-FACS within an environmental context, we probe the translational activity of microbial consortia catalyzing the anaerobic oxidation of methane (AOM), a dominant sink of methane in the ocean. These consortia, which typically are composed of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria, have been difficult to study due to their slow in situ growth rates, and fundamental questions remain about their ecology and diversity of interactions occurring between ANME and associated partners. Our activity-correlated analyses of >16,400 microbial aggregates provide the first evidence, to our knowledge, that AOM consortia affiliated with all five major ANME clades are concurrently active under controlled conditions. Surprisingly, sorting of individual BONCAT-labeled consortia followed by whole-genome amplification and 16S rRNA gene sequencing revealed previously unrecognized interactions of ANME with members of the poorly understood phylum Verrucomicrobia. This finding, together with our observation that ANME-associated Verrucomicrobia are found in a variety of geographically distinct methane seep environments, suggests a broader range of symbiotic relationships within AOM consortia than previously thought. PMID:27357680

  7. Simplified greywater treatment systems: Slow filters of sand and slate waste followed by granular activated carbon.

    PubMed

    Zipf, Mariah Siebert; Pinheiro, Ivone Gohr; Conegero, Mariana Garcia

    2016-07-01

    One of the main actions of sustainability that is applicable to residential, commercial, and public buildings is the rational use of water that contemplates the reuse of greywater as one of the main options for reducing the consumption of drinking water. Therefore, this research aimed to study the efficiencies of simplified treatments for greywater reuse using slow sand and slow slate waste filtration, both followed by granular activated carbon filters. The system monitoring was conducted over 28 weeks, using analyses of the following parameters: pH, turbidity, apparent color, biochemical oxygen demand (BOD), chemical oxygen demand (COD), surfactants, total coliforms, and thermotolerant coliforms. The system was run at two different filtration rates: 6 and 2 m(3)/m(2)/day. Statistical analyses showed no significant differences in the majority of the results when filtration rate changed from 6 to 2 m(3)/m(2)/day. The average removal efficiencies with regard to the turbidity, apparent color, COD and BOD were 61, 54, 56, and 56%, respectively, for the sand filter, and 66, 61, 60, and 51%, respectively, for the slate waste filter. Both systems showed good efficiencies in removing surfactants, around 70%, while the pH reached values of around 7.80. The average removal efficiencies of the total and thermotolerant coliforms were of 61 and 90%, respectively, for the sand filter, and 67 and 80%, respectively, for the slate waste filter. The statistical analysis found no significant differences between the responses of the two systems, which attest to the fact that the slate waste can be a substitute for sand. The maximum levels of efficiency were high, indicating the potential of the systems, and suggesting their optimization in order to achieve much higher average efficiencies.

  8. High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation.

    PubMed

    Du, Peng; O'Grady, G; Egbuji, J U; Lammers, W J; Budgett, D; Nielsen, P; Windsor, J A; Pullan, A J; Cheng, L K

    2009-04-01

    High-resolution, multi-electrode mapping is providing valuable new insights into the origin, propagation, and abnormalities of gastrointestinal (GI) slow wave activity. Construction of high-resolution mapping arrays has previously been a costly and time-consuming endeavor, and existing arrays are not well suited for human research as they cannot be reliably and repeatedly sterilized. The design and fabrication of a new flexible printed circuit board (PCB) multi-electrode array that is suitable for GI mapping is presented, together with its in vivo validation in a porcine model. A modified methodology for characterizing slow waves and forming spatiotemporal activation maps showing slow waves propagation is also demonstrated. The validation study found that flexible PCB electrode arrays are able to reliably record gastric slow wave activity with signal quality near that achieved by traditional epoxy resin-embedded silver electrode arrays. Flexible PCB electrode arrays provide a clinically viable alternative to previously published devices for the high-resolution mapping of GI slow wave activity. PCBs may be mass-produced at low cost, and are easily sterilized and potentially disposable, making them ideally suited to intra-operative human use.

  9. Neuronal networks in children with continuous spikes and waves during slow sleep.

    PubMed

    Siniatchkin, Michael; Groening, Kristina; Moehring, Jan; Moeller, Friederike; Boor, Rainer; Brodbeck, Verena; Michel, Christoph M; Rodionov, Roman; Lemieux, Louis; Stephani, Ulrich

    2010-09-01

    Epileptic encephalopathy with continuous spikes and waves during slow sleep is an age-related disorder characterized by the presence of interictal epileptiform discharges during at least >85% of sleep and cognitive deficits associated with this electroencephalography pattern. The pathophysiological mechanisms of continuous spikes and waves during slow sleep and neuropsychological deficits associated with this condition are still poorly understood. Here, we investigated the haemodynamic changes associated with epileptic activity using simultaneous acquisitions of electroencephalography and functional magnetic resonance imaging in 12 children with symptomatic and cryptogenic continuous spikes and waves during slow sleep. We compared the results of magnetic resonance to electric source analysis carried out using a distributed linear inverse solution at two time points of the averaged epileptic spike. All patients demonstrated highly significant spike-related positive (activations) and negative (deactivations) blood oxygenation-level-dependent changes (P < 0.05, family-wise error corrected). The activations involved bilateral perisylvian region and cingulate gyrus in all cases, bilateral frontal cortex in five, bilateral parietal cortex in one and thalamus in five cases. Electrical source analysis demonstrated a similar involvement of the perisylvian brain regions in all patients, independent of the area of spike generation. The spike-related deactivations were found in structures of the default mode network (precuneus, parietal cortex and medial frontal cortex) in all patients and in caudate nucleus in four. Group analyses emphasized the described individual differences. Despite aetiological heterogeneity, patients with continuous spikes and waves during slow sleep were characterized by activation of the similar neuronal network: perisylvian region, insula and cingulate gyrus. Comparison with the electrical source analysis results suggests that the activations

  10. Gamification of Learning Deactivates the Default Mode Network.

    PubMed

    Howard-Jones, Paul A; Jay, Tim; Mason, Alice; Jones, Harvey

    2015-01-01

    We hypothesized that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN) and deactivation of default mode network (DMN) regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer), Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points) and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards). DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated.

  11. Gamification of Learning Deactivates the Default Mode Network

    PubMed Central

    Howard-Jones, Paul A.; Jay, Tim; Mason, Alice; Jones, Harvey

    2016-01-01

    We hypothesized that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN) and deactivation of default mode network (DMN) regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer), Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points) and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards). DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated. PMID:26779054

  12. Anthropogenically-Induced Superficial Seismic Activity Modulated By Slow-Slip Events in Guerrero, Mexico

    NASA Astrophysics Data System (ADS)

    Frank, W.; Shapiro, N.; Husker, A. L.; Kostoglodov, V.; Campillo, M.

    2014-12-01

    We use the data of the MASE seismic experiment operated during 2.5 years in Guerrero, Mexico to create a large catalog of seismic multiplets. This catalog is dominated by families of Low-Frequency Earthquakes (LFE) occurring in vicinity of the main subduction interface. In addition to more than one thousand LFE families, we detected nine repeating seismic event families that are located in the upper crust and are anthropogenically induced (AI) by mining blasts. Analysis of the recurrence of these AI events in time shows that their activity significantly increases during the strong Slow-Slip Event (SSE) in 2006. Modeled static stress perturbations induced by the SSE at the surface are ~5 kPa that is on the same order of magnitude as dynamic stress perturbations observed to trigger other low stress drop phenomena, such as tectonic tremor. We propose therefore that strong SSEs in Guerrero impose an extensional regime throughout the continental crust, modifying the stress field near the surface and increasing AI activity. This modulation of the recurrence of the crustal seismic events by the SSE-induced stress might be related to another recent observation: the SSE-induced reduction of seismic velocities linked to nonlinear elastic effects caused by opening of cracks (Rivet et al., 2011, 2014).

  13. The dynamics of spindles and EEG slow-wave activity in NREM sleep in mice.

    PubMed

    Vyazovskiy, V V; Achermann, P; Borbély, A A; Tobler, I

    2004-07-01

    A quantitative analysis of spindles and spindle-related EEG activity was performed in C57BL/6 mice. The hypothesis that spindles are involved in sleep regulatory mechanisms was tested by investigating their occurrence during 24 h and after 6 h sleep deprivation (SD; n = 7). In the frontal derivation distinct spindle events were characterized as EEG oscillations with a dominant frequency approximately at 11 Hz. Spindles were most prominent during NREM sleep and increased before NREM-REM sleep transitions. Whereas spindles increased concomitantly with slow wave activity (SWA, EEG power between 0.5 and 4.0 Hz) at the beginning of the NREM sleep episode, these measures showed an opposite evolution prior to the transition to REM sleep. The 24-h time course of spindles showed a maximum at the end of the 12-h light period, and was a mirror image of SWA in NREM sleep. After 6 h SD the spindles in NREM sleep were initially suppressed, and showed a delayed rebound. In contrast, spindles occurring immediately before the transition to REM sleep were enhanced during the first 2 h of recovery. The data suggest that spindles in NREM sleep may be involved in sleep maintenance, while spindles heralding the transition to REM sleep may be related to mechanisms of REM sleep initiation.

  14. Plasma flux-dependent lipid A deactivation

    NASA Astrophysics Data System (ADS)

    Chang, Hung-Wen; Hsu, Cheng-Che; Ahmed, Musahid; Liu, Suet Yi; Fang, Yigang; Seog, Joonil; Oehrlein, Gottlieb S.; Graves, David B.

    2014-06-01

    This paper reports the influence of gas plasma flux on endotoxin lipid A film deactivation. To study the effect of the flux magnitude of reactive species, a modified low-pressure inductively coupled plasma (ICP) with O radical flux ˜1016 cm-2 s-1 was used. After ICP exposures, it was observed that while the Fourier transform infrared absorbance of fatty chains responsible for the toxicity drops by 80% through the film, no obvious film endotoxin deactivation is seen. This is in contrast to that previously observed under low flux exposure conducted in a vacuum beam system: near-surface only loss of fatty chains led to significant film deactivation. Secondary ion mass spectrometry characterization of changes at the film surface did not appear to correlate with the degree of deactivation. Lipid A films need to be nearly completely removed in order to detect significant deactivation under high flux conditions. Additional high reactive species flux experiments were conducted using an atmospheric pressure helium plasma jet and a UV/ozone device. Exposure of lipid A films to reactive species with these devices showed similar deactivation behaviour. The causes for the difference between low and high flux exposures may be due to the nature of near-surface structural modifications as a function of the rate of film removal.

  15. The slow Ca(2+)-activated K+ current, IAHP, in the rat sympathetic neurone.

    PubMed Central

    Sacchi, O; Rossi, M L; Canella, R

    1995-01-01

    1. Adult and intact sympathetic neurones of the rat superior cervical ganglion maintained in vitro at 37 degrees C were analysed using the two-electrode voltage-clamp technique in order to investigate the slow component of the Ca(2+)-dependent K+ current, IAHP. 2. The relationship between the after-hyperpolarization (AHP) conductance, gAHP, and estimated Ca2+ influx resulting from short-duration calcium currents evoked at various voltages proved to be linear over a wide range of injected Ca2+ charge. An inflow of about 1.7 x 10(7) Ca2+ ions was required before significant activation of gAHP occurred. After priming, the gAHP sensitivity was about 0.3 nS pC-1 of Ca2+ inward charge. 3. IAHP was repeatedly measured at different membrane potentials; its amplitude decreased linearly with membrane hyperpolarization and was mostly abolished close to the K+ reversal potential, EK (-93 mV). The monoexponential decay rate of IAHP was a linear function of total Ca2+ entry and was not significantly altered by membrane potential in the -40 to -80 mV range. 4. Voltage-clamp tracings of IAHP could be modelled as a difference between two exponentials with tau on approximately 5 ms and tau off = 50-250 ms. 5. Sympathetic neurones discharged only once at the onset of a long-lasting depolarizing step. If IAHP was selectively blocked by apamin or D-tubocurarine treatments, accommodation was abolished and an unusual repetitive firing appeared. 6. Summation of IAHP was demonstrated under voltage-clamp conditions when the depolarizing steps were repeated sufficiently close to one another. Under current-clamp conditions the threshold depolarizing charge for action potential discharge significantly increased with progressive pulse numbers in the train, suggesting that an opposing conductance was accumulating with repetitive firing. This frequency-dependent spike firing ability was eliminated by pharmacological inhibition of the slow IAHP. 7. The IAHP was significantly activated by a single

  16. 42 CFR 424.540 - Deactivation of Medicare billing privileges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Deactivation of Medicare billing privileges. 424... Establishing and Maintaining Medicare Billing Privileges § 424.540 Deactivation of Medicare billing privileges. (a) Reasons for deactivation. CMS may deactivate a provider or supplier's Medicare billing...

  17. 42 CFR 424.540 - Deactivation of Medicare billing privileges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Deactivation of Medicare billing privileges. 424... Establishing and Maintaining Medicare Billing Privileges § 424.540 Deactivation of Medicare billing privileges. (a) Reasons for deactivation. CMS may deactivate a provider or supplier's Medicare billing...

  18. Developmental changes in the activation properties and ultrastructure of fast- and slow-twitch muscles from fetal sheep.

    PubMed

    West, J M; Barclay, C J; Luff, A R; Walker, D W

    1999-04-01

    At early stages of muscle development, skeletal muscles contract and relax slowly, regardless of whether they are destined to become fast- or slow-twitch. In this study, we have characterised the activation profiles of developing fast- and slow-twitch muscles from a precocial species, the sheep, to determine if the activation profiles of the muscles are characteristically slow when both the fast- and slow-twitch muscles have slow isometric contraction profiles. Single skinned muscle fibres from the fast-twitch flexor digitorum longus (FDL) and slow-twitch soleus muscles from fetal (gestational ages 70, 90, 120 and 140 days; term 147 days) and neonatal (8 weeks old) sheep were used to determine the isometric force-pCa (pCa = -log10[Ca2+]) and force-pSr relations during development. Fast-twitch mammalian muscles generally have a greatly different sensitivity to Ca2+ and Sr2+ whereas slow-twitch muscles have a similar sensitivity to these divalent cations. At all ages studied, the force-pCa and force-pSr relations of the FDL muscle were widely separated. The mean separation of the mid-point of the curves (pCa50-pSr50) was approximately 1.1. This is typical of adult fast-twitch muscle. The force-pCa and force-pSr curves for soleus muscle were also widely separated at 70 and 90 days gestation (pCa50-pSr50 approximately 0.75); between 90 days and 140 days this separation decreased significantly to approximately 0.2. This leads to a paradoxical situation whereby at early stages of muscle development the fast muscles have contraction dynamics of slow muscles but the slow muscles have activation profiles more characteristic of fast muscles. The time course for development of the FDL and soleus is different, based on sarcomere structure with the soleus muscle developing clearly defined sarcomere structure earlier in gestation than the FDL. At 70 days gestation the FDL muscle had no clearly defined sarcomeres. Force (N cm-2) increased almost linearly between 70 and 140 days

  19. Vitamin E and antioxidant activity; its role in slow coronary flow

    PubMed Central

    Kenan Celik, Veysel; Eken, İmge Ezgi; Aydin, Hüseyin; Yildiz, Gürsel; Birhan Yilmaz, Mehmet; Gurlek, Ahmet

    2013-01-01

    Summary Aim Oxidative stress, which is widely recognised as an important feature of many diseases, can be defined as an increased formation of reactive oxygen species or decreased antioxidant defense. In this study we measured plasma vitamin E levels and total antioxidant activity (AOA) in patients with slow coronary flow (SCF). Methods The plasma vitamin E levels and AOA were measured in 40 patients with angiographically diagnosed SCF. Forty subjects with normal coronary flow (NCF) served as the control group. SCF and NCF were analysed, and blood samples were taken for plasma vitamin E levels and AOA. Plasma vitamin E levels and AOA in patients with SCF were evaluated and compared to those of patients with NCF. Results There was no significant difference between the two groups in terms of plasma AOA, lipid profile and C-reactive protein (CRP) levels but there was a significant difference in vitamin E levels between the two groups (p = 0.001). Conclusion Vitamin E levels were found to be lowered in patients with SCF compared to the NCF group. The association between smoking and vitamin E levels is worth further investigating in larger samples. PMID:24337212

  20. SCN10A Mutation in a Patient with Erythromelalgia Enhances C-Fiber Activity Dependent Slowing

    PubMed Central

    Neacsu, Cristian; Eberhardt, Esther; Schmidt, Roland; Lunden, Lars Kristian; Ørstavik, Kristin; Kaluza, Luisa; Meents, Jannis; Zhang, Zhiping; Carr, Thomas Hedley; Salter, Hugh; Malinowsky, David; Wollberg, Patrik; Krupp, Johannes; Kleggetveit, Inge Petter; Schmelz, Martin; Jørum, Ellen; Namer, Barbara

    2016-01-01

    Gain-of-function mutations in the tetrodotoxin (TTX) sensitive voltage-gated sodium channel (Nav) Nav1.7 have been identified as a key mechanism underlying chronic pain in inherited erythromelalgia. Mutations in TTX resistant channels, such as Nav1.8 or Nav1.9, were recently connected with inherited chronic pain syndromes. Here, we investigated the effects of the p.M650K mutation in Nav1.8 in a 53 year old patient with erythromelalgia by microneurography and patch-clamp techniques. Recordings of the patient’s peripheral nerve fibers showed increased activity dependent slowing (ADS) in CMi and less spontaneous firing compared to a control group of erythromelalgia patients without Nav mutations. To evaluate the impact of the p.M650K mutation on neuronal firing and channel gating, we performed current and voltage-clamp recordings on transfected sensory neurons (DRGs) and neuroblastoma cells. The p.M650K mutation shifted steady-state fast inactivation of Nav1.8 to more hyperpolarized potentials and did not significantly alter any other tested gating behaviors. The AP half-width was significantly broader and the stimulated action potential firing rate was reduced for M650K transfected DRGs compared to WT. We discuss the potential link between enhanced steady state fast inactivation, broader action potential width and the potential physiological consequences. PMID:27598514

  1. Increased frontal sleep slow wave activity in adolescents with major depression.

    PubMed

    Tesler, Noemi; Gerstenberg, Miriam; Franscini, Maurizia; Jenni, Oskar G; Walitza, Susanne; Huber, Reto

    2016-01-01

    Sleep slow wave activity (SWA), the major electrophysiological characteristic of deep sleep, mirrors both cortical restructuring and functioning. The incidence of Major Depressive Disorder (MDD) substantially rises during the vulnerable developmental phase of adolescence, where essential cortical restructuring is taking place. The goal of this study was to assess characteristics of SWA topography in adolescents with MDD, in order to assess abnormalities in both cortical restructuring and functioning on a local level. All night high-density EEG was recorded in 15 patients meeting DSM-5 criteria for MDD and 15 sex- and age-matched healthy controls. The actual symptom severity was assessed using the Children's Depression Rating Scale-Revised (CDRS-R). Topographical power maps were calculated based on the average SWA of the first non-rapid eye movement (NREM) sleep episode. Depressed adolescents exhibited significantly more SWA in a cluster of frontal electrodes compared to controls. SWA over frontal brain regions correlated positively with the CDRS-R subscore "morbid thoughts". Self-reported sleep latency was significantly higher in depressed adolescents compared to controls whereas sleep architecture did not differ between the groups. Higher frontal SWA in depressed adolescents may represent a promising biomarker tracing cortical regions of intense use and/or restructuring.

  2. A non-mitotic CENP-E homolog in Dictyostelium discoideum with slow motor activity.

    PubMed

    Kösem, Süleyman; Ökten, Zeynep; Ho, Thi-Hieu; Trommler, Gudrun; Koonce, Michael P; Samereier, Matthias; Müller-Taubenberger, Annette

    2013-02-15

    Kinesins are ATP-dependent molecular motors that mediate unidirectional intracellular transport along microtubules. Dictyostelium discoideum has 13 different kinesin isoforms including two members of the kinesin-7 family, Kif4 and Kif11. While Kif4 is structurally and functionally related to centromere-associated CENP-E proteins involved in the transport of chromosomes to the poles during mitosis, the function of the unusually short CENP-E variant Kif11 is unclear. Here we show that orthologs of short CENP-E variants are present in plants and fungi, and analyze functional properties of the Dictyostelium CENP-E version, Kif11. Gene knockout mutants reveal that Kif11 is not required for mitosis or development. Imaging of GFP-labeled Kif11 expressing Dictyostelium cells indicates that Kif11 is a plus-end directed motor that accumulates at microtubule plus ends. By multiple motor gliding assays, we show that Kif11 moves with an average velocity of 38nm/s, thus defining Kif11 as a very slow motor. The activity of the Kif11 motor appears to be modulated via interactions with the non-catalytic tail region. Our work highlights a subclass of kinesin-7-like motors that function outside of a role in mitosis.

  3. Increased frontal sleep slow wave activity in adolescents with major depression

    PubMed Central

    Tesler, Noemi; Gerstenberg, Miriam; Franscini, Maurizia; Jenni, Oskar G.; Walitza, Susanne; Huber, Reto

    2015-01-01

    Sleep slow wave activity (SWA), the major electrophysiological characteristic of deep sleep, mirrors both cortical restructuring and functioning. The incidence of Major Depressive Disorder (MDD) substantially rises during the vulnerable developmental phase of adolescence, where essential cortical restructuring is taking place. The goal of this study was to assess characteristics of SWA topography in adolescents with MDD, in order to assess abnormalities in both cortical restructuring and functioning on a local level. All night high-density EEG was recorded in 15 patients meeting DSM-5 criteria for MDD and 15 sex- and age-matched healthy controls. The actual symptom severity was assessed using the Children's Depression Rating Scale—Revised (CDRS-R). Topographical power maps were calculated based on the average SWA of the first non-rapid eye movement (NREM) sleep episode. Depressed adolescents exhibited significantly more SWA in a cluster of frontal electrodes compared to controls. SWA over frontal brain regions correlated positively with the CDRS-R subscore “morbid thoughts”. Self-reported sleep latency was significantly higher in depressed adolescents compared to controls whereas sleep architecture did not differ between the groups. Higher frontal SWA in depressed adolescents may represent a promising biomarker tracing cortical regions of intense use and/or restructuring. PMID:26870661

  4. Deactivation of metastable single-crystal silicon hyperdoped with sulfur

    SciTech Connect

    Simmons, C. B.; Akey, Austin J.; Sullivan, Joseph T.; Buonassisi, Tonio; Krich, Jacob J.; Recht, Daniel; Aziz, Michael J.

    2013-12-28

    Silicon supersaturated with sulfur by ion implantation and pulsed laser melting exhibits broadband optical absorption of photons with energies less than silicon's band gap. However, this metastable, hyperdoped material loses its ability to absorb sub-band gap light after subsequent thermal treatment. We explore this deactivation process through optical absorption and electronic transport measurements of sulfur-hyperdoped silicon subject to anneals at a range of durations and temperatures. The deactivation process is well described by the Johnson-Mehl-Avrami-Kolmogorov framework for the diffusion-mediated transformation of a metastable supersaturated solid solution, and we find that this transformation is characterized by an apparent activation energy of E{sub A}=1.7 ± 0.1 eV. Using this activation energy, the evolution of the optical and electronic properties for all anneal duration-temperature combinations collapse onto distinct curves as a function of the extent of reaction. We provide a mechanistic interpretation of this deactivation based on short-range thermally activated atomic movements of the dopants to form sulfur complexes.

  5. An active learning mammalian skeletal muscle lab demonstrating contractile and kinetic properties of fast- and slow-twitch muscle.

    PubMed

    Head, S I; Arber, M B

    2013-12-01

    The fact that humans possess fast- and slow-twitch muscle in the ratio of ∼50% has profound implications for designing exercise training strategies for power and endurance activities. With the growth of exercise and sport science courses, we have seen the need to develop an undergraduate student laboratory that demonstrates the basic properties of fast- and slow-twitch mammalian skeletal muscle. This laboratory illustrates the major differences in contractile properties and fatigue profiles exhibited by the two muscle types. Students compare and contrast twitch kinetics, fused tetanus characteristics, force-frequency relationships, and fatigue properties of fast- and slow-twitch muscles. Examples of results collected by students during class are used to illustrate the type of data collected and analysis performed. During the laboratory, students are encouraged to connect factual information from their skeletal muscle lectures to their laboratory findings. This enables student learning in an active fashion; in particular, the isolated muscle preparation demonstrates that much of what makes muscle fast or slow is myogenic and not the product of the nervous or circulatory systems. This has far-reaching implications for motor control and exercise behavior and therefore is a crucial element in exercise science, with its focus on power and endurance sport activities. To measure student satisfaction with this active learning technique, a questionnaire was administered after the laboratory; 96% of the comments were positive in their support of active versus passive learning strategies.

  6. Final deactivation project report on the Integrated Process Demonstration Facility, Building 7602 Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-09-01

    The purpose of this report is to document the condition of the Integrated Process Demonstration Facility (Building 7602) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities by the High Ranking Facilities Deactivation Project (HRFDP). This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the U.S. Department of Energy (DOE) Environmental Restoration EM-40 Program. This report provides a history and description of the facility prior to commencing deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous and radioactive materials inventory, radiological controls, Safeguards and Security, and supporting documentation provided in the Office of Nuclear Material and Facility Stabilization Program (EM-60) Turnover package are discussed.

  7. UO3 deactivation end point criteria

    SciTech Connect

    Stefanski, L.D.

    1994-10-01

    The UO{sub 3} Deactivation End Point Criteria are necessary to facilitate the transfer of the UO{sub 3} Facility from the Office of Facility Transition and Management (EM-60) to the office of Environmental Restoration (EM-40). The criteria were derived from a logical process for determining end points for the systems and spaces at the UO{sub 3}, Facility based on the objectives, tasks, and expected future uses pertinent to that system or space. Furthermore, the established criteria meets the intent and supports the draft guidance for acceptance criteria prepared by EM-40, {open_quotes}U.S. Department of Energy office of Environmental Restoration (EM-40) Decontamination and Decommissioning Guidance Document (Draft).{close_quotes} For the UO{sub 3} Facility, the overall objective of deactivation is to achieve a safe, stable and environmentally sound condition, suitable for an extended period, as quickly and economically as possible. Once deactivated, the facility is kept in its stable condition by means of a methodical surveillance and maintenance (S&M) program, pending ultimate decontamination and decommissioning (D&D). Deactivation work involves a range of tasks, such as removal of hazardous material, elimination or shielding of radiation fields, partial decontamination to permit access for inspection, installation of monitors and alarms, etc. it is important that the end point of each of these tasks be established clearly and in advance, for the following reasons: (1) End points must be such that the central element of the deactivation objective - to achieve stability - is unquestionably achieved. (2) Much of the deactivation work involves worker exposure to radiation or dangerous materials. This can be minimized by avoiding unnecessary work. (3) Each task is, in effect, competing for resources with other deactivation tasks and other facilities. By assuring that each task is appropriately bounded, DOE`s overall resources can be used most fully and effectively.

  8. Conversion of Biomass-Derived Small Oxygenates over HZSM-5 and its Deactivation Mechanism

    SciTech Connect

    Ramasamy, Karthikeyan K.; Gerber, Mark A.; Flake, Matthew D.; Zhang, He; Wang, Yong

    2014-02-28

    HZSM-5 catalyst deactivation was studied using aqueous feed mixtures containing ethanol, ethanol+ acetic acid, ethanol+ethyl acetate, or ethanol+acetaldehyde in a fixed bed reactor at 360°C and 300psig. Compared to ethanol alone experiment, addition of other oxygenates reduced catalyst life in the order of: ethyl acetatedeactivate the catalyst through a pore-blocking mechanism. Acetic acid deactivates the catalyst through an active site poisoning mechanism or strong adsorption of acetate intermediates on the active sites (hydroxyl groups). Ethanol deactivates the catalyst primarily through its pore-blocking mechanism, but the rate of ethanol deactivation is orders of magnitude slower than that of acetaldehyde. Ethyl acetate hydrolyzes to form acetic acid and ethanol which deactivate the catalyst through its respective mechanisms. In addition, each functional group of oxygenates requires different active sites/catalysts and different operating conditions due to competitive adsorptions on active sites for their conversion to the desired products. Therefore, it is necessary to pre-treat the mixture of oxygenates to produce a feed stream containing the same or similar functional group compounds before converting the feed stream to hydrocarbon compounds over HZSM-5 catalyst.

  9. An Active Learning Mammalian Skeletal Muscle Lab Demonstrating Contractile and Kinetic Properties of Fast- and Slow-Twitch Muscle

    ERIC Educational Resources Information Center

    Head, S. I.; Arber, M. B.

    2013-01-01

    The fact that humans possess fast and slow-twitch muscle in the ratio of approximately 50% has profound implications for designing exercise training strategies for power and endurance activities. With the growth of exercise and sport science courses, we have seen the need to develop an undergraduate student laboratory that demonstrates the basic…

  10. Deactivation by carbon of iron catalysts for indirect liquefaction

    SciTech Connect

    Bartholomew, C.H.

    1990-10-11

    This report describes recent progress in a fundamental, three-year investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for Fischer-Tropsch (FT) synthesis, the objectives of which are: determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation over a range of CO concentrations, CO:H{sub 2} ratios, and temperatures; model the rates of deactivation of the same catalysts in fixed-bed reactors. During the thirteenth quarter design of software for a computer-automated reactor system to be used in the kinetic and deactivation studies was continued. Further progress was made toward the completion of the control language, control routines, and software for operating this system. Progress was also made on the testing of the system hardware and software. H{sub 2} chemisorption capacities and activity selectivity data were also measured for three iron catalysts promoted with 1% alumina. 47 refs., 8 figs., 1 tab.

  11. Targeting Mortalin by Embelin Causes Activation of Tumor Suppressor p53 and Deactivation of Metastatic Signaling in Human Breast Cancer Cells

    PubMed Central

    Nigam, Nupur; Grover, Abhinav; Goyal, Sukriti; Katiyar, Shashank P.; Bhargava, Priyanshu; Wang, Pi-Chao; Sundar, Durai; Kaul, Sunil C.; Wadhwa, Renu

    2015-01-01

    Embelin, a natural quinone found in the fruits of Embelia ribes, is commonly used in Ayurvedic home medicine for a variety of therapeutic potentials including anti-inflammation, anti-fever, anti-bacteria and anti-cancer. Molecular mechanisms of these activities and cellular targets have not been clarified to-date. We demonstrate that the embelin inhibits mortalin-p53 interactions, and activates p53 protein in tumor cells. We provide bioinformatics, molecular docking and experimental evidence to the binding affinity of embelin with mortalin and p53. Binding of embelin with mortalin/p53 abrogates their complex resulted in nuclear translocation and transcriptional activation function of p53 causing growth arrest in cancer cells. Furthermore, analyses of growth factors and metastatic signaling using antibody membrane array revealed their downregulation in embelin-treated cells. We also found that the embelin causes transcriptional attenuation of mortalin and several other proteins involved in metastatic signaling in cancer cells. Based on these molecular dynamics and experimental data, it is concluded that the anticancer activity of embelin involves targeting of mortalin, activation of p53 and inactivation of metastatic signaling. PMID:26376435

  12. Object category classification of fMRI data using support vector machine combined with deactivation voxel selection

    NASA Astrophysics Data System (ADS)

    Yan, Caifeng; Song, Sutao; Li, Yao; Guo, Xiaojuan

    2012-03-01

    Support Vector Machine (SVM) is an accurate pattern recognition method which has been widely used in functional MRI (fMRI) data classification. Voxel selection is a very important part in classification. In general, voxel selection is based on brain regions associated with activation caused by different experiment conditions or stimulations. However, negative blood oxygenation level-dependent responses (deactivation) which have also been found in humans or animals contribute to the classification of different cognitive tasks. Different from traditional studies which focused merely on the activation voxel selection methods, our aim is to investigate the deactivation voxel selection methods in the classification of fMRI data using SVM. In this study, three different voxel selection methods (deactivation, activation, the combination of deactivation and activation) are applied to decide which voxel is included in SVM classifier with linear kernel in classifying 4-category objects on fMRI data. The average accuracies of deactivation classification were 73.36%(house vs. face), 60.34%(house vs. car), 60.94%(house vs. cat), 71.43%(face vs. car), 63.17%(face vs. cat) and 61.61%(car vs. cat). The classification results of deactivation were significantly above the chance level which implies the deactivation is informative. The accuracies of combination of activation and deactivation method were close to that of activation method, and it was even better for some representative subjects. These results suggest deactivation provides useful information in the object category classification on fMRI data and the method of voxel selection based on both activation and deactivation will be a significant method in classification in the future.

  13. Collisional deactivation of highly vibrationally excited pyrazine

    NASA Astrophysics Data System (ADS)

    Miller, Laurie A.; Barker, John R.

    1996-07-01

    The collisional deactivation of vibrationally excited pyrazine (C4N2H4) in the electronic ground state by 19 collider gases was studied using the time-resolved infrared fluorescence (IRF) technique. The pyrazine was photoexcited with a 308 nm laser and its vibrational deactivation was monitored following rapid radiationless transitions to produce vibrationally excited molecules in the electronic ground state. The IRF data were analyzed by a simple approximate inversion method, as well as with full collisional master equation simulations. The average energies transferred in deactivating collisions (<ΔE>d) exhibit a near-linear dependence on vibrational energy at lower energies and less dependence at higher energies. The deactivation of ground state pyrazine was found to be similar to that of ground state benzene [J. R. Barker and B. M. Toselli, Int. Rev. Phys. Chem. 12, 305 (1990)], but it is strikingly different from the deactivation of triplet state pyrazine [T. J. Bevilacqua and R. B. Weisman, J. Chem. Phys. 98, 6316 (1993)].

  14. Characterization of a heat-resistant extracellular protease from Pseudomonas fluorescens 07A shows that low temperature treatments are more effective in deactivating its proteolytic activity.

    PubMed

    Alves, Maura P; Salgado, Rafael L; Eller, Monique R; Vidigal, Pedro Marcus P; Fernandes de Carvalho, Antonio

    2016-10-01

    This work discusses the biological and biochemical characterization of an extracellular protease produced by Pseudomonas fluorescens. The enzyme has a molecular weight of 49.486 kDa and hydrolyzes gelatin, casein, and azocasein, but not BSA. Its maximum activity is found at 37°C and pH 7.5, but it retained almost 70% activity at pH 10.0. It was shown to be a metalloprotease inhibited by Cu(2+), Ni(2+), Zn(2+), Hg(2+), Fe(2+), and Mg(2+), but induced by Mn(2+). After incubation at 100°C for 5min, the enzyme presented over 40% activity, but only 14 to 30% when submitted to milder heat treatments. This behavior may cause significant problems under conditions commonly used for the processing and storage of milk and dairy products, particularly UHT milk. A specific peptide sequenced by mass spectrometer analysis allowed the identification of gene that encodes this extracellular protease in the genome of Pseudomonas fluorescens 07A strain. The enzyme has 477 AA and highly conserved Ca(2+)- and Zn(2+)-binding domains, indicating that Ca(2+), the main ion in milk, is also a cofactor. This work contributes to the understanding of the biochemical aspects of enzyme activity and associates them with its sequence and structure. These findings are essential for the full understanding and control of these enzymes and the technological problems they cause in the dairy industry.

  15. Regulation of GIRK channel deactivation by Galpha(q) and Galpha(i/o) pathways.

    PubMed

    Mark, M D; Ruppersberg, J P; Herlitze, S

    2000-09-01

    G protein regulated inward rectifying potassium channels (GIRKs) are activated by G protein coupled receptors (GPCRs) via the G protein betagamma subunits. However, little is known about the effects of different GPCRs on the deactivation kinetics of transmitter-mediated GIRK currents. In the present study we investigated the influence of different GPCRs in the presence and absence of RGS proteins on the deactivation kinetics of GIRK channels by coexpressing the recombinant protein subunits in Xenopus oocytes. The stimulation of both G(i/o)- and G(q)-coupled pathways accelerated GIRK deactivation. GIRK currents deactivated faster upon stimulation of G(i/o)- and G(q)-coupled pathways by P(2)Y(2) receptors (P(2)Y(2)Rs) than upon activation of the G(i/o)-coupled pathway alone via muscarinic acetylcholine receptor M2 (M(2) mAChRs). This acceleration was found to be dependent on phospholipase C (PLC) and protein kinase C (PKC) activities and intracellular calcium. With the assumption that RGS2 has a higher affinity for Galpha(q) than Galpha(i/o), we demonstrated that the deactivation kinetics of GIRK channels can be differentially regulated by the relative amount of RGS proteins. These data indicate that transmitter-mediated deactivation of GIRK currents is modulated by crosstalk between G(i/o)- and G(q)-coupled pathways.

  16. Dopamine Transporters in Striatum Correlated with Deactivation in the Default Mode Network during Visuospatial Attention

    SciTech Connect

    Tomasi, D.; Fowler, J.; Tomasi, D.; Volkow, N.D.; Wang, R.L.; Telang, F.; Wang, Chang, L.; Ernst, T.; /Fowler, J.S.

    2009-06-01

    Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [{sup 11}C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.

  17. Integrin activation by P-Rex1 is required for selectin-mediated slow leukocyte rolling and intravascular crawling.

    PubMed

    Herter, Jan M; Rossaint, Jan; Block, Helena; Welch, Heidi; Zarbock, Alexander

    2013-03-21

    Integrin activation is essential for the function of leukocytes. Impaired integrin activation on leukocytes is the hallmark of the leukocyte adhesion deficiency syndrome in humans, characterized by impaired leukocyte recruitment and recurrent infections. In inflammation, leukocytes collect different signals during the contact with the microvasculature, which activate signaling pathways leading to integrin activation and leukocyte recruitment. We report the role of P-Rex1, a Rac-specific guanine nucleotide exchanging factor, in integrin activation and leukocyte recruitment. We find that P-Rex1 is required for inducing selectin-mediated lymphocyte function-associated antigen-1 (LFA-1) extension that corresponds to intermediate affinity and induces slow leukocyte rolling, whereas P-Rex1 is not involved in the induction of the high-affinity conformation of LFA-1 obligatory for leukocyte arrest. Furthermore, we demonstrate that P-Rex1 is involved in Mac-1-dependent intravascular crawling. In vivo, both LFA-1-dependent slow rolling and Mac-1-dependent crawling are defective in P-Rex1(-/-) leukocytes, whereas chemokine-induced arrest and postadhesion strengthening remain intact in P-Rex1-deficient leukocytes. Rac1 is involved in E-selectin-mediated slow rolling and crawling. In vivo, in an ischemia-reperfusion-induced model of acute kidney injury, abolished selectin-mediated integrin activation contributed to decreased neutrophil recruitment and reduced kidney damage in P-Rex1-deficient mice. We conclude that P-Rex1 serves distinct functions in LFA-1 and Mac-1 activation.

  18. Deactivation of the TiO2 photocatalyst by coupling with WO3 and the electrochemically assisted high photocatalytic activity of WO3.

    PubMed

    Tada, Hiroaki; Kokubu, Akio; Iwasaki, Mitsunobu; Ito, Seisihro

    2004-05-25

    Patterned TiO2 stripes were formed on a sol-gel crystalline WO3 film by using a chemically modified sol-gel method (pat-TiO2/WO3), and the coupling effect on the photocatalytic activity was studied. Although the photoinduced electron transfer from TiO2 to WO3 was confirmed by labeling and visualization of the reduction sites with Ag particles, the photocatalytic activities of TiO2 for both the gas-phase oxidation of CH3CHO and the liquid-phase oxidation of 2-naphthol decreased significantly with the coupling. This finding was rationalized in terms of the decrease in the rate of the electron transfer from the semiconductor-(s) to 02 with the coupling, which was estimated from the kinetic analysis of the photopotential relaxation. When the excited electrons were removed by a SnO2 underlayer, the WO3 film exhibited a high photocatalytic activity exceeding that of TiO2 for the oxidation of 2-naphthol.

  19. Anti-HSV Activity of Kuwanon X from Mulberry Leaves with Genes Expression Inhibitory and HSV-1 Induced NF-κB Deactivated Properties.

    PubMed

    Ma, Fang; Shen, Wenwei; Zhang, Xiaoqi; Li, Manmei; Wang, Yifei; Zou, Yuxiao; Li, Yaolan; Wang, Hui

    2016-01-01

    Six stilbene derivatives isolated from Mulberry leaves including Kuwanon X, Mulberrofuran C, Mulberrofuran G, Moracin C, Moracin M 3'-O-b-glucopyranoside and Moracin M were found to have antiviral effects against herpes simplex virus type 1 and 2 (HSV-1 and HSV-2) at different potencies except for Mulberrofuran G. Kuwanon X exhibited the greatest activity against HSV-1 15577 and clinical strains and HSV-2 strain 333 with IC50 values of 2.2, 1.5 and 2.5 µg/mL, respectively. Further study revealed that Kuwanon X did not inactivate cell-free HSV-1 particles, but inhibited cellular adsorption and penetration of HSV-1 viral particles. Following viral penetration, Kuwanon X reduced the expression of HSV-1 IE and L genes, and decreased the synthesis of HSV-1 DNA. Furthermore, it was demonstrated that Kuwanon X inhibited the HSV-1-induced nuclear factor (NF)-κB activation through blocking the nuclear translocation and DNA binding of NF-κB. These results suggest that Kuwanon X exerts anti-HSV activity through multiple modes and could be a potential candidate for the therapy of HSV infection.

  20. Intracellular Ca2+ release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of Cajal

    PubMed Central

    Zhu, Mei Hong; Sung, Tae Sik; O'Driscoll, Kate; Koh, Sang Don

    2015-01-01

    Interstitial cells of Cajal (ICC) provide pacemaker activity in gastrointestinal muscles that underlies segmental and peristaltic contractions. ICC generate electrical slow waves that are due to large-amplitude inward currents resulting from anoctamin 1 (ANO1) channels, which are Ca2+-activated Cl− channels. We investigated the hypothesis that the Ca2+ responsible for the stochastic activation of ANO1 channels during spontaneous transient inward currents (STICs) and synchronized activation of ANO1 channels during slow wave currents comes from intracellular Ca2+ stores. ICC, obtained from the small intestine of Kit+/copGFP mice, were studied under voltage and current clamp to determine the effects of blocking Ca2+ uptake into stores and release of Ca2+ via inositol 1,4,5-trisphosphate (IP3)-dependent and ryanodine-sensitive channels. Cyclocpiazonic acid, thapsigargin, 2-APB, and xestospongin C inhibited STICs and slow wave currents. Ryanodine and tetracaine also inhibited STICs and slow wave currents. Store-active compounds had no direct effects on ANO1 channels expressed in human embryonic kidney-293 cells. Under current clamp, store-active drugs caused significant depolarization of ICC and reduced spontaneous transient depolarizations (STDs). After block of ryanodine receptors with ryanodine and tetracaine, repolarization did not restore STDs. ANO1 expressed in ICC has limited access to cytoplasmic Ca2+ concentration, suggesting that pacemaker activity depends on Ca2+ dynamics in restricted microdomains. Our data from studies of isolated ICC differ somewhat from studies on intact muscles and suggest that release of Ca2+ from both IP3 and ryanodine receptors is important in generating pacemaker activity in ICC. PMID:25631870

  1. Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulase performance.

    PubMed

    Mhlongo, Sizwe I; den Haan, Riaan; Viljoen-Bloom, Marinda; van Zyl, Willem H

    2015-12-01

    In this study, we monitored the inhibition and deactivation effects of various compounds associated with lignocellulosic hydrolysates on individual and combinations of cellulases. Tannic acid representing polymeric lignin residues strongly inhibited cellobiohydrolase 1 (CBH1) and β-glucosidase 1 (BGL1), but had a moderate inhibitory effect on endoglucanase 2 (EG2). Individual monomeric lignin residues had little or no inhibitory effect on hydrolytic enzymes. However, coniferyl aldehyde and syringaldehyde substantially decreased the activity of CBH1 and deactivated BGL1. Acetic and formic acids also showed strong inhibition of BGL1 but not CBH1 and EG2, whereas tannic, acetic and formic acid strongly inhibited a combination of CBH1 and EG2 during Avicel hydrolysis. Diminishing enzymatic hydrolysis is largely a function of inhibitor concentration and the enzyme-inhibitor relationship, rather than contact time during the hydrolysis process (i.e. deactivation). This suggests that decreased rates of hydrolysis during the enzymatic depolymerisation of lignocellulosic hydrolysates may be imparted by other factors related to substrate crystallinity and accessibility.

  2. Every slow-wave impulse is associated with motor activity of the human stomach.

    PubMed

    Hocke, Michael; Schöne, Ulrike; Richert, Hendryk; Görnert, Peter; Keller, Jutta; Layer, Peter; Stallmach, Andreas

    2009-04-01

    Using a newly developed high-resolution three-dimensional magnetic detector system (3D-MAGMA), we observed periodical movements of a small magnetic marker in the human stomach at the typical gastric slow-wave frequency, that is 3 min(-1). Thus we hypothesized that each gastric slow wave induces a motor response that is not strong enough to be detected by conventional methods. Electrogastrographies (EGG, Medtronic, Minneapolis, MN) for measurement of gastric slow waves and 3D-MAGMA (Innovent, Jena, Germany) measurements were simultaneously performed in 21 healthy volunteers (10 men, 40.4+/-13.6 yr; 11 women, 35.8+/-11.6 yr). The 3D-MAGMA system contains 27 highly sensitive magnetic field sensors that are able to locate a magnetic pill inside a human body with an accuracy of +/-5 mm or less in position and +/-2 degrees in orientation at a frequency of 50 Hz. Gastric transit time of the magnetic marker ranged from 19 to 154 min. The mean dominant EGG frequency while the marker was in the stomach was 2.87+/-0.15 cpm. The mean dominant 3D-MAGMA frequency during this interval was nearly identical; that is, 2.85+/-0.15 movements per minute. We observed a strong linear correlation between individual dominant EGG and 3D-MAGMA frequency (R=0.66, P=0.0011). Our findings suggest that each gastric slow wave induces a minute contraction that is too small to be detected by conventional motility investigations but can be recorded by the 3D-MAGMA system. The present slow-wave theory that assumes that the slow wave is a pure electrical signal should be reconsidered.

  3. Frontal slow-wave activity as a predictor of negative symptoms, cognition and functional capacity in schizophrenia

    PubMed Central

    Chen, Yu-Han; Stone-Howell, Breannan; Edgar, J. Christopher; Huang, Mingxiong; Wootton, Cassandra; Hunter, Michael A.; Lu, Brett Y.; Sadek, Joseph R.; Miller, Gregory A.; Cañive, José M.

    2016-01-01

    Background Increased temporal and frontal slow-wave delta (1–4 Hz) and theta (4–7 Hz) activities are the most consistent resting-state neural abnormalities reported in schizophrenia. The frontal lobe is associated with negative symptoms and cognitive abilities such as attention, with negative symptoms and impaired attention associated with poor functional capacity. Aims To establish whether frontal dysfunction, as indexed by slowing, would be associated with functional impairments. Method Eyes-closed magnetoencephalography data were collected in 41 participants with schizophrenia and 37 healthy controls, and frequency-domain source imaging localised delta and theta activity. Results Elevated delta and theta activity in right frontal and right temporoparietal regions was observed in the schizophrenia v. control group. In schizophrenia, right-frontal delta activity was uniquely associated with negative but not positive symptoms. In the full sample, increased right-frontal delta activity predicted poorer attention and functional capacity. Conclusions Our findings suggest that treatment-associated decreases in slow-wave activity could be accompanied by improved functional outcome and thus better prognosis. PMID:26206861

  4. Membrane stretch accelerates activation and slow inactivation in Shaker channels with S3-S4 linker deletions.

    PubMed Central

    Tabarean, Iustin V; Morris, Catherine E

    2002-01-01

    At low P(open)(V) Shaker exhibits pronounced stretch-activation. Possible explanations for Shaker's sensitivity to tension include 1) Shaker channels are sufficiently distensible that stretch produces novel channel states and 2) Shaker channels expand in the plane of the membrane during voltage gating. For channels expressed in oocytes, we compared effects of patch stretch on Shaker and mutants that retain their voltage-gating ability but activate sluggishly because all or most of the S3-S4 linker has been deleted. Deletants had 10, 5, or 0 amino acid (aa) linkers, whereas wild-type is 31 aa. In deletants, though activation is exceptionally slow, slow inactivation is exceptionally quick; the resulting kinetic match was a bonus that allowed effects of stretch to be followed simultaneously in both processes. With the intact linker, an approximately 3 orders of magnitude mismatch in the two processes makes this impracticable. Standard stretch stimuli increased the rates and extent of activation by about the same degree in wild type and deletants, with effects especially pronounced near the foot of G(V). In deletants (where slow inactivation is strongly coupled to activation) stretch also accelerated slow inactivation. Maximum conductances were unaffected by stretch in all variants. In ramp clamp dose experiments, near-lytic patch stretch acted, for all variants, like a approximately 10 mV hyperpolarizing shift. These results suggested that, whether basal rates were high (wild type) or low (deletants), stretch acted by facilitating voltage-dependent activation. Channel activity was therefore simulated with/without "tension," tension being simulated via rate changes at voltage-dependent closed-closed transitions that might involve in-plane expansion (explanation 2). Simulated Delta P(open) arising from approximately 2 kT of "mechanical gating energy" mimicked experimental effects seen with comfortably sub-lytic stretch. PMID:12023221

  5. Deactivation of photocatalytically active ZnO nanoparticle and enhancement of its compatibility with organic compounds by surface-capping with organically modified silica

    NASA Astrophysics Data System (ADS)

    Cao, Zhi; Zhang, Zhijun

    2011-02-01

    Tetraethyl orthosilicate (TEOS) and dimethyldiethoxysilane (DEDMS) were used as co-precursors to prepare organically modified silica (ormosil) via sol-gel process. The resultant ormosil was adopted for surface-capping of ZnO nanoparticle, where methyl (organic functional group) and silica (inorganic component) were simultaneously introduced onto the surface of the nanoparticles for realizing dual surface-modification. The ormosil-capped ZnO nanoparticle showed strong hydrophobicity and good compatibility with organic phases, as well as effectively decreased photocatalytic activity and almost unchanged ultraviolet (UV)-shielding ability. More importantly, the comprehensive properties of ormosil-capped ZnO nanoparticle could be manipulated by adjusting the molar ratio of TEOS to DEDMS during sol-gel process. This should help to open a wider window to better utilizing the unique and highly attractive properties such as high UV-shielding ability and high-visible light transparency of ZnO nanoparticle in sunscreen cosmetics.

  6. Ionic mechanism of the slow afterdepolarization induced by muscarinic receptor activation in rat prefrontal cortex.

    PubMed

    Haj-Dahmane, S; Andrade, R

    1998-09-01

    The mammalian prefrontal cortex receives a dense cholinergic innervation from subcortical regions. We previously have shown that cholinergic stimulation of layer V pyramidal neurons of the rat prefrontal cortex results in a depolarization and the appearance of a slow afterdepolarization (sADP). In the current report we examine the mechanism underlying the sADP with the use of sharp microelectrode and whole cell recording techniques in in vitro brain slices. The ability of acetylcholine (ACh) and carbachol to induce the appearance of an sADP in pyramidal cells of layer V of prefrontal cortex is antagonized in a surmountable manner by atropine and is mimicked by application of muscarine or oxotremorine. These results indicate that ACh acts on muscarinic receptors to induce the sADP. In many cell types afterpotentials are triggered by calcium influx into the cell. Therefore we examined the possibility that calcium influx might be the trigger for the generation of the sADP. Consistent with this possibility, buffering intracellular calcium reduced or abolished the sADP but had little effect on the direct muscarinic receptor-induced depolarization also seen in these cells. These results, coupled to the previous observation that calcium channel blockers inhibit the sADP, indicated that the sADP results from a rise in intracellular calcium secondary to calcium influx into the cell. The ionic basis for the current underlying the sADP (IsADP) was examined with the use of ion substitution experiments. The amplitude of IsADP was found to be reduced in a graded fashion by replacement of extracellular sodium with N-methyl-D-glucamine (NMDG). In contrast no clear evidence for the involvement of potassium or chloride channels in the generation of the sADP or IsADP could be found. This result indicated that IsADP is carried by sodium ions flowing into the cell. However, the dependence of IsADP on extracellular sodium was less pronounced than expected for a pure sodium current. We

  7. Activation of Hindbrain Neurons Is Mediated by Portal-Mesenteric Vein Glucosensors During Slow-Onset Hypoglycemia

    PubMed Central

    Bohland, MaryAnn; Matveyenko, Aleksey V.; Saberi, Maziyar; Khan, Arshad M.; Watts, Alan G.

    2014-01-01

    Hypoglycemic detection at the portal-mesenteric vein (PMV) appears mediated by spinal afferents and is critical for the counter-regulatory response (CRR) to slow-onset, but not rapid-onset, hypoglycemia. Since rapid-onset hypoglycemia induces Fos protein expression in discrete brain regions, we hypothesized that denervation of the PMV or lesioning spinal afferents would suppress Fos expression in the dorsal medulla during slow-onset hypoglycemia, revealing a central nervous system reliance on PMV glucosensors. Rats undergoing PMV deafferentation via capsaicin, celiac-superior mesenteric ganglionectomy (CSMG), or total subdiaphragmatic vagotomy (TSV) were exposed to hyperinsulinemic–hypoglycemic clamps where glycemia was lowered slowly over 60–75 min. In response to hypoglycemia, control animals demonstrated a robust CRR along with marked Fos expression in the area postrema, nucleus of the solitary tract, and dorsal motor nucleus of the vagus. Fos expression was suppressed by 65–92% in capsaicin-treated animals, as was epinephrine (74%), norepinephrine (33%), and glucagon (47%). CSMG also suppressed Fos expression and CRR during slow-onset hypoglycemia, whereas TSV failed to impact either. In contrast, CSMG failed to impact upon Fos expression or the CRR during rapid-onset hypoglycemia. Peripheral glucosensory input from the PMV is therefore required for activation of hindbrain neurons and the full CRR during slow-onset hypoglycemia. PMID:24727435

  8. The Approach of Emotional Deactivation of Prejudice

    ERIC Educational Resources Information Center

    Boucher, Jean-Nil

    2011-01-01

    The aim of the approach of emotional deactivation is to help students reduce the prejudice they may feel towards diverse social groups. Be those groups homosexuals, people living with a disability or immigrants, the victims of prejudice are invited to come into classrooms and to confront the preconceptions that students have in their respect.…

  9. Threshold of Geomorphic Detectability Estimated from Geologic Observations of Active Slow-Slipping Strike-Slip Faults

    NASA Astrophysics Data System (ADS)

    Kaneda, H.

    2002-12-01

    Sources of catastrophic earthquakes include not only major active faults, but also slow-slipping ones. However, geomorphic characteristics and long-term seismic behavior of slow-slipping faults have not been well understood, although intensive paleoseismic studies were carried out after the unexpected 1992 Landers and 1999 Hector Mine earthquakes. Two Japanese surface faulting earthquakes on slow-slipping strike-slip faults (the 1927 Mw=7.0 Kita-Tango and 1943 Mw=7.0 Tottori earthquakes) provided good opportunity to examine these problems. Analysis of coseismic surface slip, cumulative geomorphic expressions, and paleoseismicity for these two events not only supports a characteristic-slip behavior for these faults, but also suggests a concept of threshold of geomorphic detectability for intramontane strike-slip faults, which must be exceeded in order that progressive coseismic surface offsets can be preserved against surface processes as detectable systematic deflections of channels and ridge crests. The determined threshold slip rates for these examples are in the range of 0.06-0.13 mm/yr, which can be a quantitative explanation for an extremely small number of mapped active faults with slip rates of less than 0.1 mm/yr in Japan islands. On the contrary, the threshold of geomorphic detectability is probably negligible in arid regions where denudation rate would be extremely low. To date, the issue of geomorphologically undetectable active faults has been that of blind thrust faults buried beneath thick sediments, but another type of blind active faults or fault segments can exist in humid and mountainous regions. In spite of their low slip rates and long recurrence intervals, their potential presence must be considered, especially in regions under the tectonically undeveloped regime, where regional strain is accommodated by many scattered slow-slipping faults.

  10. Frequency of slow oscillations in arterial pressure and R-R intervals during muscle metaboreflex activation.

    PubMed

    Kiviniemi, Antti M; Tiinanen, Suvi; Hautala, Arto J; Seppänen, Tapio; Mäkikallio, Timo H; Huikuri, Heikki V; Tulppo, Mikko P

    2010-01-15

    Altered frequency of slow (0.04-0.15Hz) arterial pressure and R-R interval oscillations has been observed in various diseases but the mechanisms for this frequency shift are unclear. The median (Med) frequencies of slow R-R interval and blood pressure (BP) oscillations were recorded in 11 healthy subjects with paced breathing (0.25Hz) during muscle metaboreflex and baroreflex mediated sympathetic stimuli: 1) handgrip exercise (HG) followed by post-exercise circulatory occlusion (PECO), 2) handgrip exercise during ischemia by circulatory occlusion (IHG) and 3) passive head-up tilt (TILT). Med(BP) shifted to the higher frequency during HG, PECO and IHG (from 0.070+/-0.009Hz to 0.088+/-0.013, 0.085+/-0.015 and 0.099+/-0.013Hz, respectively, p<0.01 for all) but not during TILT (0.078+/-0.012Hz). Similarly, Med(R-R) shifted to the higher frequency during HG, PECO and IHG (from 0.072+/-0.009Hz to 0.085+/-0.014, 0.085+/-0.016 and 0.095+/-0.015Hz, respectively, p<0.01 for all) but not during TILT (0.075+/-0.012Hz). Med(BP) and Med(R-R) were higher during IHG compared to HG and lower during TILT compared to both HG and IHG (p<0.01 for all). We conclude that the sympathetic stimulus induced by muscle metaboreflex is an important mechanism increasing the frequency of slow oscillations in arterial pressure and R-R intervals. The present results give new insight to understand the physiology underlying the frequency of slow arterial pressure and R-R interval oscillations.

  11. Acute Cocaine Induces Fast Activation of D1 Receptor and Progressive Deactivation of D2 Receptor Strial Neurons: In Vivo Optical Microprobe [Ca(superscript)2+]subscript)i Imaging

    SciTech Connect

    Du, C.; Luo, Z.; Volkow, N.D.; Heintz, N.; Pan, Y.; Du, C.

    2011-09-14

    Cocaine induces fast dopamine increases in brain striatal regions, which are recognized to underlie its rewarding effects. Both dopamine D1 and D2 receptors are involved in cocaine's reward but the dynamic downstream consequences of cocaine effects in striatum are not fully understood. Here we used transgenic mice expressing EGFP under the control of either the D1 receptor (D1R) or the D2 receptor (D2R) gene and microprobe optical imaging to assess the dynamic changes in intracellular calcium ([Ca{sup 2+}]{sub i} ) responses (used as marker of neuronal activation) to acute cocaine in vivo separately for D1R- versus D2R-expressing neurons in striatum. Acute cocaine (8 mg/kg, i.p.) rapidly increased [Ca{sup 2+}]{sub i} in D1R-expressing neurons (10.6 {+-} 3.2%) in striatum within 8.3 {+-} 2.3 min after cocaine administration after which the increases plateaued; these fast [Ca{sup 2+}]{sub i} increases were blocked by pretreatment with a D1R antagonist (SCH23390). In contrast, cocaine induced progressive decreases in [Ca{sup 2+}]{sub i} in D2R-expressing neurons (10.4 {+-} 5.8%) continuously throughout the 30 min that followed cocaine administration; these slower [Ca{sup 2+}]{sub i} decreases were blocked by pretreatment with a D2R antagonist (raclopride). Since activation of striatal D1R-expressing neurons (direct-pathway) enhances cocaine reward, whereas activation of D2R expressing neurons suppresses it (indirect-pathway) (Lobo et al., 2010), this suggests that cocaine's rewarding effects entail both its fast stimulation ofD1R (resulting in abrupt activation of direct-pathway neurons) and a slower stimulation of D2R (resulting in longer-lasting deactivation of indirect-pathway neurons). We also provide direct in vivo evidence of D2R and D1R interactions in the striatal responses to acute cocaine administration.

  12. Nuclear fuel reprocessing deactivation plan for the Idaho Chemical Processing Plant, Revision 1

    SciTech Connect

    Patterson, M.W.

    1994-10-01

    The decision was announced on April 28, 1992 to cease all United States Department of Energy (DOE) reprocessing of nuclear fuels. This decision leads to the deactivation of all fuels dissolution, solvent extraction, krypton gas recovery operations, and product denitration at the Idaho Chemical Processing Plant (ICPP). The reprocessing facilities will be converted to a safe and stable shutdown condition awaiting future alternate uses or decontamination and decommissioning (D&D). This ICPP Deactivation Plan includes the scope of work, schedule, costs, and associated staffing levels necessary to achieve a safe and orderly deactivation of reprocessing activities and the Waste Calcining Facility (WCF). Deactivation activities primarily involve shutdown of operating systems and buildings, fissile and hazardous material removal, and related activities. A minimum required level of continued surveillance and maintenance is planned for each facility/process system to ensure necessary environmental, health, and safety margins are maintained and to support ongoing operations for ICPP facilities that are not being deactivated. Management of the ICPP was transferred from Westinghouse Idaho Nuclear Company, Inc. (WINCO) to Lockheed Idaho Technologies Company (LITCO) on October 1, 1994 as part of the INEL consolidated contract. This revision of the deactivation plan (formerly the Nuclear Fuel Reprocessing Phaseout Plan for the ICPP) is being published during the consolidation of the INEL site-wide contract and the information presented here is current as of October 31, 1994. LITCO has adopted the existing plans for the deactivation of ICPP reprocessing facilities and the plans developed under WINCO are still being actively pursued, although the change in management may result in changes which have not yet been identified. Accordingly, the contents of this plan are subject to revision.

  13. Time scale bridging in atomistic simulation of slow dynamics: viscous relaxation and defect activation

    NASA Astrophysics Data System (ADS)

    Kushima, A.; Eapen, J.; Li, Ju; Yip, S.; Zhu, T.

    2011-08-01

    Atomistic simulation methods are known for timescale limitations in resolving slow dynamical processes. Two well-known scenarios of slow dynamics are viscous relaxation in supercooled liquids and creep deformation in stressed solids. In both phenomena the challenge to theory and simulation is to sample the transition state pathways efficiently and follow the dynamical processes on long timescales. We present a perspective based on the biased molecular simulation methods such as metadynamics, autonomous basin climbing (ABC), strain-boost and adaptive boost simulations. Such algorithms can enable an atomic-level explanation of the temperature variation of the shear viscosity of glassy liquids, and the relaxation behavior in solids undergoing creep deformation. By discussing the dynamics of slow relaxation in two quite different areas of condensed matter science, we hope to draw attention to other complex problems where anthropological or geological-scale time behavior can be simulated at atomic resolution and understood in terms of micro-scale processes of molecular rearrangements and collective interactions. As examples of a class of phenomena that can be broadly classified as materials ageing, we point to stress corrosion cracking and cement setting as opportunities for atomistic modeling and simulations.

  14. Characteristics of hydrothermal convection in inclined layers: implications for hydrothermal activity at slow-spreading axis.

    NASA Astrophysics Data System (ADS)

    Fontaine, F. J.; Cannat, M.; Escartin, J.; Dusunur, D.

    2006-12-01

    The thermal structure of segments along (slow-spreading) mid-ocean ridges is likely to be a key parameter controlling the distribution, dynamics and geometry of hydrothermal systems. It is usually considered that the depth of penetration of hydrothermal fluids at the ridge axis is a function of the depth to the brittle-ductile transition. At slow-spreading axis, it is likely that this depth varies both along- and across-axis, with a deepening of several kilometers from the segment center towards its ends [e.g., Hooft et al., 2000]. This geometry is a consequence of focused melt supply to the segment center, resulting in the episodic and localized injection of magma bodies in the crust, as observed at the Lucky Strike segment of the Mid-Atlantic ridge [Singh et al., 2005]. In order to study the effect of such slopes of the basal temperature on the dynamics of slow-spreading axis hydrothermal systems, we ran a series of two-dimensional numerical models of hydrothermal convection. As a first approximation and following previous studies [e.g., Rabinowicz et al., 1999], we assume that these systems can be represented as rectangular and inclined permeable layers. The models are single-phase and incorporate realistic fluid properties and permeabilities. We have explored the cases of slopes ranging from 0 to 15°, aspect ratios from 1 to 16, and permeabilities up to 10^{-14} m2. The basal slope controls the number of convective cells. As the slope increases, the ratio of the size of the downflow and upflow areas increases. Above a critical slope the circulation is uni-cellular and composed of a broad recharge zone and a focused discharge zone, and encompassing the whole length of the segment. We will present the implication of our models for the distribution of vent sites along slow-spreading ridge segments. The segment-scale circulation and focused outflow obtained could also explain the elevated heat flux at some of the main sites found along slow-spreading ridges like

  15. Purification and characterization of a lipid thiobis ester from human neutrophil cytosol that reversibly deactivates the O2- -generating NADPH oxidase.

    PubMed

    Eklund, E A; Gabig, T G

    1990-05-25

    Intact neutrophils possess a cellular mechanism that efficiently deactivates the microbicidal O2-generating NADPH oxidase during the respiratory burst (Akard, L. P., English, D., and Gabig, T. G. (1988) Blood 72, 322-327). The present studies directed at identifying the molecular mechanism(s) involved in NADPH oxidase deactivation showed that a heat- and trypsin-insensitive species in the cytosolic fraction from normal unstimulated neutrophils was capable of deactivating the membrane-associated NADPH oxidase isolated from opsonized zymosan- or phorbol 12-myristate 13-acetate-stimulated neutrophils. This cytosolic species also deactivated the cell-free-activated oxidase. Deactivation by this cytosolic species occurred in the absence of NADPH-dependent catalytic turnover and was reversible, since NADPH oxidase activity could be subsequently reactivated in the cell-free system. The sedimentable particulate fraction from unstimulated neutrophils did not demonstrate deactivator activity. Deactivator activity was demonstrated in the neutral lipid fraction of neutrophil cytosol extracted with chloroform:methanol. Following complete purification of cytosolic deactivator activity by thin layer chromatography and reversed phase high performance liquid chromatography, the deactivator species was shown to be a lipid thiobis ester compound by mass spectroscopy. Cellular metabolism of this compound in human neutrophils may reveal a unique mechanism for enzymatic control of the NADPH oxidase system and thereby play an important role in regulation of the inflammatory response.

  16. Astrocytic glutamate uptake is slow and does not limit neuronal NMDA receptor activation in the neonatal neocortex.

    PubMed

    Hanson, Elizabeth; Armbruster, Moritz; Cantu, David; Andresen, Lauren; Taylor, Amaro; Danbolt, Niels Christian; Dulla, Chris G

    2015-10-01

    Glutamate uptake by astrocytes controls the time course of glutamate in the extracellular space and affects neurotransmission, synaptogenesis, and circuit development. Astrocytic glutamate uptake has been shown to undergo post-natal maturation in the hippocampus, but has been largely unexplored in other brain regions. Notably, glutamate uptake has never been examined in the developing neocortex. In these studies, we investigated the development of astrocytic glutamate transport, intrinsic membrane properties, and control of neuronal NMDA receptor activation in the developing neocortex. Using astrocytic and neuronal electrophysiology, immunofluorescence, and Western blot analysis we show that: (1) glutamate uptake in the neonatal neocortex is slow relative to neonatal hippocampus; (2) astrocytes in the neonatal neocortex undergo a significant maturation of intrinsic membrane properties; (3) slow glutamate uptake is accompanied by lower expression of both GLT-1 and GLAST; (4) glutamate uptake is less dependent on GLT-1 in neonatal neocortex than in neonatal hippocampus; and (5) the slow glutamate uptake we report in the neonatal neocortex corresponds to minimal astrocytic control of neuronal NMDA receptor activation. Taken together, our results clearly show fundamental differences between astrocytic maturation in the developing neocortex and hippocampus, and corresponding changes in how astrocytes control glutamate signaling.

  17. The slow relaxation dynamics in active pharmaceutical ingredients studied by DSC and TSDC: Voriconazole, miconazole and itraconazole.

    PubMed

    Ramos, Joaquim J Moura; Diogo, Hermínio P

    2016-03-30

    The slow molecular mobility of three active pharmaceutical drugs (voriconazole, miconazole and itraconazole) has been studied by differential scanning calorimetry (DSC) and thermally stimulated depolarization currents (TSDC). This study yielded the main kinetic features of the secondary relaxations and of the main (glass transition) relaxation, in particular their distribution of relaxation times. The dynamic fragility of the three glass formers was determined from DSC data (using two different procedures) and from TSDC data. According to our results voriconazole behaves as a relatively strong liquid, while miconazole is moderately fragile and itraconazole is a very fragile liquid. There are no studies in this area published in the literature relating to voriconazole. Also not available in the literature is a slow mobility study by dielectric relaxation spectroscopy in the amorphous miconazole. Apart from that, the results obtained are in reasonable agreement with published works using different experimental techniques.

  18. Separate activation of fast and slow inhibitory postsynaptic potentials in rat neocortex in vitro.

    PubMed Central

    Benardo, L S

    1994-01-01

    Synaptic inhibition was investigated by stimulating inhibitory neurones with focal microapplications of glutamate, while recording from layer V pyramidal neurones of rat somatosensory cortical slices. One class of inhibitory postsynaptic potentials (IPSPs) thus elicited was characterized as a fast, chloride-mediated, GABAA IPSP in part by its fast time-to-peak (mean 2.5 ms) and brief duration, but primarily on the basis of its reversal potential at -68 mV, and its blockade by picrotoxin. The average peak amplitude for these fast IPSPs was -1.5 mV, measured at -60 mV. The peak conductance calculated for these events was about 10 nS. The conductance change associated with the maximal fast inhibitory postsynaptic potential resulting from electrical stimulation of afferent pathways ranged up to 116 nS. A second class of IPSP was encountered much less frequently. These glutamate-triggered events were characterized as slow, potassium-mediated GABAB IPSPs partly because of their longer times-to-peak (mean, 45 ms) and duration, but especially because of their extrapolated equilibrium potential at about -89 mV and blockade by 2-hydroxysaclofen. The average peak amplitude for these slow IPSPs was -2.3 mV, measured at -60 mV. The peak conductance for these events was about 8 nS. IPSPs resulting from the excitation of individual inhibitory interneurones were elicited by glutamate microapplication at particular locations relative to recording sites. Both fast and slow IPSPs were generated, but these occurred as separate events, and mixed responses were never seen. Thus, the two mechanistically distinct types of IPSPs which result from GABA interaction at GABAA and GABAB receptors on neocortical neurones may be mediated by separate classes of inhibitory neurones. PMID:7913968

  19. Novel method of determination of the internal enzyme distribution within porous solid supports and the deactivation rate constant

    SciTech Connect

    Do, D.D.; Hossain, M.M.

    1986-04-01

    This article presents a method for determining the rate constant for deactivation and the internal distribution of immobilized enzyme. This method makes use of the parallel deactivation process in a diffusion-controlled regime, in which the internal activity profile behaves like a penetration front. This front basically traces through the initial active enzymatic profile, and one can determine the internal profile and the rate constant for deactivation from the experimentally observable bulk concentration versus time. This method is applied to the experimental data of the system of hydrogen peroxide-immobilized catalase on controlled pore glas and Si-Al particles. 26 references.

  20. Rundown of the hyperpolarization-activated KAT1 channel involves slowing of the opening transitions regulated by phosphorylation.

    PubMed Central

    Tang, X D; Hoshi, T

    1999-01-01

    Disappearance of the functional activity or rundown of ion channels upon patch excision in many cells involves a decrease in the number of channels available to open. A variety of cellular and biophysical mechanisms have been shown to be involved in the rundown of different ion channels. We examined the rundown process of the plant hyperpolarization-activated KAT1 K+ channel expressed in Xenopus oocytes. The decrease in the KAT1 channel activity on patch excision was accompanied by progressive slowing of the activation time course, and it was caused by a shift in the voltage dependence of the channel without any change in the single-channel amplitude. The single-channel analysis showed that patch excision alters only the transitions leading up to the burst states of the channel. Patch cramming or concurrent application of protein kinase A (PKA) and ATP restored the channel activity. In contrast, nonspecific alkaline phosphatase (ALP) accelerated the rundown time course. Low internal pH, which inhibits ALP activity, slowed the KAT1 rundown time course. The results show that the opening transitions of the KAT1 channel are enhanced not only by hyperpolarization but also by PKA-mediated phosphorylation. PMID:10354434

  1. Brain activity modeling in general anesthesia: Enhancing local mean-field models using a slow adaptive firing rate

    NASA Astrophysics Data System (ADS)

    Molaee-Ardekani, B.; Senhadji, L.; Shamsollahi, M. B.; Vosoughi-Vahdat, B.; Wodey, E.

    2007-10-01

    In this paper, an enhanced local mean-field model that is suitable for simulating the electroencephalogram (EEG) in different depths of anesthesia is presented. The main building elements of the model (e.g., excitatory and inhibitory populations) are taken from Steyn-Ross [M. L. Steyn-Ross , Phys. Rev. E 64, 011917 (2001), D. A. Steyn-Ross , Phys. Rev. E 64, 011918 (2001)] and Bojak and Liley [I. Bojak and D. T. Liley, Phys. Rev. E 71, 041902 (2005)] mean-field models and a new slow ionic mechanism is included in the main model. Generally, in mean-field models, some sigmoid-shape functions determine firing rates of neural populations according to their mean membrane potentials. In the enhanced model, the sigmoid function corresponding to excitatory population is redefined to be also a function of the slow ionic mechanism. This modification adapts the firing rate of neural populations to slow ionic activities of the brain. When an anesthetic drug is administered, the slow mechanism may induce neural cells to alternate between two levels of activity referred to as up and down states. Basically, the frequency of up-down switching is in the delta band (0-4Hz) and this is the main reason behind high amplitude, low frequency fluctuations of EEG signals in anesthesia. Our analyses show that the enhanced model may have different working states driven by anesthetic drug concentration. The model is settled in the up state in the waking period, it may switch to up and down states in moderate anesthesia while in deep anesthesia it remains in the down state.

  2. Large Scale Cortical Functional Networks Associated with Slow-Wave and Spindle-Burst-Related Spontaneous Activity

    PubMed Central

    McVea, David A.; Murphy, Timothy H.; Mohajerani, Majid H.

    2016-01-01

    Cortical sensory systems are active with rich patterns of activity during sleep and under light anesthesia. Remarkably, this activity shares many characteristics with those present when the awake brain responds to sensory stimuli. We review two specific forms of such activity: slow-wave activity (SWA) in the adult brain and spindle bursts in developing brain. SWA is composed of 0.5–4 Hz resting potential fluctuations. Although these fluctuations synchronize wide regions of cortex, recent large-scale imaging has shown spatial details of their distribution that reflect underlying cortical structural projections and networks. These networks are regulated, as prior awake experiences alter both the spatial and temporal features of SWA in subsequent sleep. Activity patterns of the immature brain, however, are very different from those of the adult. SWA is absent, and the dominant pattern is spindle bursts, intermittent high frequency oscillations superimposed on slower depolarizations within sensory cortices. These bursts are driven by intrinsic brain activity, which act to generate peripheral inputs, for example via limb twitches. They are present within developing sensory cortex before they are mature enough to exhibit directed movements and respond to external stimuli. Like in the adult, these patterns resemble those evoked by sensory stimulation when awake. It is suggested that spindle-burst activity is generated purposefully by the developing nervous system as a proxy for true external stimuli. While the sleep-related functions of both slow-wave and spindle-burst activity may not be entirely clear, they reflect robust regulated phenomena which can engage select wide-spread cortical circuits. These circuits are similar to those activated during sensory processing and volitional events. We highlight these two patterns of brain activity because both are prominent and well-studied forms of spontaneous activity that will yield valuable insights into brain function in

  3. Lanthanum-mediated modification of GABAA receptor deactivation, desensitization and inhibitory synaptic currents in rat cerebellar neurons.

    PubMed

    Zhu, W J; Wang, J F; Corsi, L; Vicini, S

    1998-09-15

    1. We investigated La3+ effects on recombinant and native gamma-aminobutyric acid A (GABAA) receptors using rapid agonist applications and on inhibitory synaptic currents (IPSCs) in granule and stellate neurons of rat cerebellar slices. 2. Rapid desensitization of currents elicited by 200 ms pulses of 1 mM GABA to small lifted cells transfected with alpha1beta3gamma2 cDNAs was greatly decreased by the coapplication of 100 microM LaCl3. 3. GABA responses were unaffected when coapplication lasted only 2 ms. In contrast, with LaCl3 pre-perfusion, a significant slowing of deactivation in response to 2 ms applications was observed. LaCl3 pre-perfusion also prolonged the duration of responses to 20 mM taurine. 4. Outside-out patches excised from cells transfected with alpha1beta3gamma2 subunit cDNAs were briefly exposed to a saturating concentration of GABA, eliciting a transient activation of single channel currents with a main conductance of 30 pS. Opening and burst durations increased by pre-equilibration of patches with LaCl3. 5. LaCl3 depressed the peak amplitude without affecting the slow deactivation and desensitization of GABA responses in cells transfected with alpha6beta3gamma2 and alpha6beta3delta cDNAs. No significant difference in La3+ modulation of GABA-gated currents was observed between alpha1beta3gamma2 and alpha1beta3delta receptors. 6. The effects of LaCl3 on deactivation and desensitization of GABA responses observed in nucleated patches excised from rat cerebellar granule and stellate neurons were comparable to those in the cells transfected with alpha1beta3gamma2 cDNAs. In addition, La3+ clearly prolonged the spontaneous IPSC time course without changing the amplitude. 7. Our results indicate that La3+ has a dual action on GABA-gated currents: it decreases desensitization and increases channel opening duration. These actions depend on receptor subunit composition and contribute to the prolongation of IPSCs.

  4. Routes for deactivation of different autothermal reforming catalysts

    NASA Astrophysics Data System (ADS)

    Pasel, Joachim; Wohlrab, Sebastian; Kreft, Stefanie; Rotov, Mikhail; Löhken, Katrin; Peters, Ralf; Stolten, Detlef

    2016-09-01

    Fuel cell systems with integrated autothermal reforming units require active and robust catalysts for H2 production. In pursuit of this, an experimental screening of catalysts utilized in the autothermal reforming of commercial diesel fuels is performed. The catalysts incorporate a monolithic cordierite substrate, an oxide support (γ-Al2O3, La-Al2O3, CeO2, Gd-CeO2, ZrO2, Y-ZrO2) and Rh as the active phase. Experiments are run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. In most cases, this provokes accelerated catalyst deactivation and permits an informative comparison of the catalysts. Fresh and aged catalysts are characterized by temperature-programmed methods, thermogravimetry and transmission electron microscopy to find correlations with catalytic activity and stability. Using this approach, routes for catalyst deactivation are identified, together with causes of different catalytic activities. Suitable reaction conditions can be derived from our results for the operation of reactors for autothermal reforming at steady-state and under transient reaction conditions, which helps improve the efficiency and the stability of fuel cell systems.

  5. Reflections of hunger and satiation in the structure of temporal organization of slow electrical and spike activities of fundal and antral stomach muscles in rabbits.

    PubMed

    Kromin, A A; Zenina, O Yu

    2012-11-01

    Manifestations of hunger and satiation in myoelectric activity patterns in different portions of the stomach were studied in chronic experiments. The state of hunger manifested in the structure of temporal organization of slow electric activity of muscles in the stomach body and antrum in the form of bimodal distributions of slow electric wave periods, while satiation as unimodal distribution. In hunger-specific bimodal distribution of slow electric wave periods generated by muscles of the stomach body and antrum, the position of the first maximum carries the information about oncoming food reinforcement, since this particular range of slow wave fluctuations determines temporal parameters of slow electric activity of muscles in all stomach regions in the course of subsequent successive food-procuring behavior. Under conditions of hunger, the pacemaker features of muscles in the lesser curvature are realized incompletely. Complete realization is achieved in the course of food intake and at the state of satiation.

  6. Final Deactivation Project report on the Alpha Powder Facility, Building 3028, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-04-01

    This report documents the condition of the Alpha Powder Facility (APF), Building 3028, after completion of deactivation activities. Activities conducted to place the facility in a safe and environmentally sound condition for transfer to the U.S. Department of Energy (DOE) Office of Environmental Restoration (EM-40) program are outlined. A history and profile of the facility prior to commencing deactivation activities and a profile of the building after completion of deactivation activities are provided. Turnover items, such as the post-deactivation surveillance and maintenance (S&M) plan, remaining hazardous materials, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided for in the DOE Nuclear Materials and Facility Stabilization Program (EM-60) turnover package are discussed.

  7. Sharp wave-associated synchronized inputs from the piriform cortex activate olfactory tubercle neurons during slow-wave sleep.

    PubMed

    Narikiyo, Kimiya; Manabe, Hiroyuki; Mori, Kensaku

    2014-01-01

    During slow-wave sleep, anterior piriform cortex neurons show highly synchronized discharges that accompany olfactory cortex sharp waves (OC-SPWs). The OC-SPW-related synchronized activity of anterior piriform cortex neurons travel down to the olfactory bulb and is thought to be involved in the reorganization of bulbar neuronal circuitry. However, influences of the OC-SPW-related activity on other regions of the central olfactory system are still unknown. Olfactory tubercle is an area of OC and part of ventral striatum that plays a key role in reward-directed motivational behaviors. In this study, we show that in freely behaving rats, olfactory tubercle receives OC-SPW-associated synchronized inputs during slow-wave sleep. Local field potentials in the olfactory tubercle showed SPW-like activities that were in synchrony with OC-SPWs. Single-unit recordings showed that a subpopulation of olfactory tubercle neurons discharged in synchrony with OC-SPWs. Furthermore, correlation analysis of spike activity of anterior piriform cortex and olfactory tubercle neurons revealed that the discharges of anterior piriform cortex neurons tended to precede those of olfactory tubercle neurons. Current source density analysis in urethane-anesthetized rats indicated that the current sink of the OC-SPW-associated input was located in layer III of the olfactory tubercle. These results indicate that OC-SPW-associated synchronized discharges of piriform cortex neurons travel to the deep layer of the olfactory tubercle and drive discharges of olfactory tubercle neurons. The entrainment of olfactory tubercle neurons in the OC-SPWs suggests that OC-SPWs coordinate reorganization of neuronal circuitry across wide areas of the central olfactory system including olfactory tubercle during slow-wave sleep.

  8. Photophysical deactivation pathways in adenine oligonucleotides.

    PubMed

    Spata, Vincent A; Matsika, Spiridoula

    2015-12-14

    In this work we study deactivation processes in adenine oligomers after absorption of UV radiation using Quantum Mechanics combined with Molecular Mechanics (QM/MM). Correlated electronic structure methods appropriate for describing the excited states are used to describe a π-stacked dimer of adenine bases incorporated into (dA)20(dT)20. The results of these calculations reveal three different types of excited state minima which play a role in deactivation processes. Within this set of minima there are minima where the excited state is localized on one adenine (monomer-like) as well as minima where the excited state is delocalized on two adenines, forming different types of excimers and bonded excimers of varying but inter-related character. The proximity of their energies reveals that the minima can decay into one another along a flat potential energy surface dependent on the interbase separation. Additionally, analysis of the emissive energies and other physical properties, including theoretical anisotropy calculations, and comparison with fluorescence experiments, provides evidence that excimers play an important role in long-lived signals in adenine oligonucleotides while the subpicosecond decay is attributed to monomer-like minima. The necessity for a close approach of the nucleobases reveals that the deactivation mechanism is tied to macro-molecular motion.

  9. Deactivation and poisoning of fuel cell catalysts

    NASA Astrophysics Data System (ADS)

    Ross, P. N., Jr.

    1985-06-01

    The deactivation and poisoning phenomena reviewed are: the poisoning of anode (fuel electrode) catalyst by carbon monoxide and hydrogen sulfide; the deactivation of the cathode (air electrode) catalyst by sintering; and the deactivation of the cathode by corrosion of the support. The anode catalyst is Pt supported on a conductive, high area carbon black, usually at a loading of 10 w/o. This catalyst is tolerant to some level of carbon monoxide or hydrogen sulfide or both in combination, the level depending on temperature and pressure. Much less is known about hydrogen sulfide poisoning. Typical tolerance levels are 2% CO, and 10 ppM H2S. The cathode catalyst is typically Pt supported on a raphitic carbon black, usually a furnace black heat-treated to 2700 C. The Pt loading is typically 10 w/o, and the dispersion (or percent exposed) as-prepared is typically 30%. The loss of dispersion in use depends on the operational parameters, most especially the cathode potential history, i.e., higher potentials cause more rapid decrease in dispersion. The mechanism of loss of dispersion is not well known. The graphitic carbon support corrodes at a finite rate that is also potential dependent. Support corrosion causes thickening of the electrolyte film between the gas pores and the catalyst particles, which in turn causes increased diffusional resistance and performance loss.

  10. The role of fast and slow EEG activity during sleep in males and females with Major Depressive Disorder

    PubMed Central

    Cheng, Philip; Goldschmied, Jennifer; Deldin, Patricia; Hoffmann, Robert; Armitage, Roseanne

    2015-01-01

    Sleep difficulties are highly prevalent in depression, and appears to be a contributing factor in the development and maintenance of symptoms. However, despite the generally acknowledged relationship between sleep and depression, the neurophysiological substrates underlying this relationship still remain unclear. Two main hypotheses were tested in this study. The first hypothesis states that sleep in depression is characterized by inadequate generation of restorative sleep, as indexed by reduced amounts of slow-wave activity. Conversely, the second hypothesis states that poor sleep in depression is due to intrusions of fast-frequency activity that may be reflective of a hyperaroused central nervous system. This study aimed to test both hypotheses in a large sample of individuals with clinically validated depression, as well as examine sex as a moderator. Results suggest that depression is better characterized by an overall decrease in slow-wave activity, which is related to elevated anxious and depressed mood the following morning. Results also suggest that females may be more likely to experience fast frequency activity related to depression symptom severity. PMID:26175101

  11. TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation.

    PubMed

    Woo, Dong Ho; Han, Kyung-Seok; Shim, Jae Wan; Yoon, Bo-Eun; Kim, Eunju; Bae, Jin Young; Oh, Soo-Jin; Hwang, Eun Mi; Marmorstein, Alan D; Bae, Yong Chul; Park, Jae-Yong; Lee, C Justin

    2012-09-28

    Astrocytes release glutamate upon activation of various GPCRs to exert important roles in synaptic functions. However, the molecular mechanism of release has been controversial. Here, we report two kinetically distinct modes of nonvesicular, channel-mediated glutamate release. The fast mode requires activation of G(αi), dissociation of G(βγ), and subsequent opening of glutamate-permeable, two-pore domain potassium channel TREK-1 through direct interaction between G(βγ) and N terminus of TREK-1. The slow mode is Ca(2+) dependent and requires G(αq) activation and opening of glutamate-permeable, Ca(2+)-activated anion channel Best1. Ultrastructural analyses demonstrate that TREK-1 is preferentially localized at cell body and processes, whereas Best1 is mostly found in microdomains of astrocytes near synapses. Diffusion modeling predicts that the fast mode can target neuronal mGluR with peak glutamate concentration of 100 μM, whereas slow mode targets neuronal NMDA receptors at around 1 μM. Our results reveal two distinct sources of astrocytic glutamate that can differentially influence neighboring neurons.

  12. Deactivation of Ni2P/SiO2 catalyst in hydrodechlorination of chlorobenzene

    NASA Astrophysics Data System (ADS)

    Chen, Jixiang; Ci, Donghui; Yang, Qing; Li, Kelun

    2014-11-01

    The deactivation of the Ni2P/SiO2 catalyst in the hydrodechlorination of chlorobenzene was studied. To better illuminate the reasons for the deactivation, the effect of HCl on the structure and activity of Ni2P/SiO2 was investigated. For comparison, the deactivation of the Ni/SiO2 catalyst was also involved. It was found that the Ni2P particles possessed good resistance to HCl poison and to sintering, which is ascribed to the electron-deficiency of Niδ+(0 < δ < 1) site in Ni2P. Acted as the Lewis and Brönsted acid site, the Niδ+ site and the Psbnd OH group on Ni2P/SiO2 catalyzed the formation of the carbonaceous deposit that was difficultly eliminated by hydrogenation. The carbonaceous deposit covered the active sites and might also induce a decrease in the Ni2P crystallinity, subsequently leading to the Ni2P/SiO2 deactivation. Different from Ni2P/SiO2, Ni/SiO2 was mainly deactivated by the chlorine poison and the sintering of nickel crystallites.

  13. Triggering slow waves during NREM sleep in the rat by intracortical electrical stimulation: effects of sleep/wake history and background activity.

    PubMed

    Vyazovskiy, Vladyslav V; Faraguna, Ugo; Cirelli, Chiara; Tononi, Giulio

    2009-04-01

    In humans, non-rapid eye movement (NREM) sleep slow waves occur not only spontaneously but can also be induced by transcranial magnetic stimulation. Here we investigated whether slow waves can also be induced by intracortical electrical stimulation during sleep in rats. Intracortical local field potential (LFP) recordings were obtained from several cortical locations while the frontal or the parietal area was stimulated intracortically with brief (0.1 ms) electrical pulses. Recordings were performed in early sleep (1st 2-3 h after light onset) and late sleep (6-8 h after light onset). The stimuli reliably triggered LFP potentials that were visually indistinguishable from naturally occurring slow waves. The induced slow waves shared the following features with spontaneous slow waves: they were followed by spindling activity in the same frequency range ( approximately 15 Hz) as spontaneously occurring sleep spindles; they propagated through the neocortex from the area of the stimulation; and compared with late sleep, waves triggered during early sleep were larger, had steeper slopes and fewer multipeaks. Peristimulus background spontaneous activity had a profound influence on the amplitude of the induced slow waves: they were virtually absent if the stimulus was delivered immediately after the spontaneous slow wave. These results show that in the rat a volley of electrical activity that is sufficiently strong to excite and recruit a large cortical neuronal population is capable of inducing slow waves during natural sleep.

  14. Slow activity transients’ in infant rat visual cortex: a spreading synchronous oscillation patterned by retinal waves

    PubMed Central

    Colonnese, Matthew T.; Khazipov, Rustem

    2010-01-01

    A primary feature of the preterm infant electroencephalogram is the presence of large infra-slow potentials containing rapid oscillations called Slow Activity Transients (SATs). Such activity has not been described in animal models, and their generative mechanisms are unknown. Here we use direct-current and multi-site extracellular, as well as whole-cell, recording in vivo to demonstrate the existence of regularly repeating SATs in the visual cortex of infant rats before eye-opening. Present only in absence of anesthesia, SATs at post-natal day 10-11 were identifiable as a separate group of long-duration (∼10s) events that consisted of large (>1 mV) negative local-field potentials produced by the summation of multiple bursts of rapid oscillatory activity (15-30 Hz). SATs synchronized the vast majority of neuronal activity (87%) in the visual cortex before eye-opening. Enucleation eliminated SATs, and their duration, inter-event interval and sub-burst structure matched those of phase III retinal waves recorded in vitro. Retinal waves, however, lacked rapid oscillations, suggesting they arise centrally. Multi-electrode recordings showed that SATs spread horizontally in cortex and synchronize activity at co-active locales via the rapid oscillations. SATs were clearly different from ongoing cortical activity, which was observable as a separate class of short bursts from P9. Together our data suggest that in vivo, early cortical activity is largely determined by peripheral inputs--retinal waves in visual cortex--which provide excitatory input, and by thalamocortical circuitry, which transforms this input to beta oscillations. We propose that the synchronous oscillations of SATs participate in the formation of visual circuitry. PMID:20335468

  15. Mortality salience modulates cortical responses to painful somatosensory stimulation: Evidence from slow wave and delta band activity.

    PubMed

    Valentini, Elia; Koch, Katharina; Nicolardi, Valentina; Aglioti, Salvatore Maria

    2015-10-15

    Social psychology studies show that awareness of one's eventual death profoundly influences human cognition and behaviour by inducing defensive reactions against end-of-life-related anxiety. Much less is known about the impact of reminders of mortality on brain activity. Here we tested whether reminders of mortality can induce a modulation of the slow electroencephalographic activity triggered by somatosensory nociceptive or auditory threatening stimulation and if this modulation is related to mood and anxiety as well as personality traits. We found a specific slow wave (SW) modulation only for nociceptive stimulation and only following mortality salience induction (compared to reminders of an important failed exam). The enhancement of SW negativity at the scalp vertex was associated with increased state anxiety and negative mood, whereas higher self-esteem was associated with reduced SW amplitude. In addition, mortality salience was linked to an increased amplitude of frontal delta band, which was correlated also with increased positive mood and higher self-esteem. The results indicate that SW and delta spectral activity may represent both proximal and distal defences associated with reminders of death and that neurophysiological correlates of somatosensory representation of painful and threatening stimuli may be useful for existential neuroscience studies.

  16. Effects of slow-release urea fertilizers on urease activity, microbial biomass, and nematode communities in an aquic brown soil.

    PubMed

    Jiao, Xiaoguang; Liang, Wenju; Chen, Lijun; Zhang, Haijun; Li, Qi; Wang, Peng; Wen, Dazhong

    2005-05-01

    A field experiment was carried out at the Shenyang Experimental Station of Ecology (CAS) in order to study the effects of slow-release urea fertilizers high polymer-coated urea (SRU1), SRU1 mixed with dicyandiamide DCD (SRU2), and SRU1 mixed with calcium carbide CaC2 (SRU3) on urease activity, microbial biomass C and N, and nematode communities in an aquic brown soil during the maize growth period. The results demonstrated that the application of slow-release urea fertilizers inhibits soil urease activity and increases the soil NH4+-N content. Soil available N increment could promote its immobilization by microorganisms. Determination of soil microbial biomass N indicated that a combined application of coated urea and nitrification inhibitors increased the soil active N pool. The population of predators/omnivores indicated that treatment with SRU2 could provide enough soil NH4+-N to promote maize growth and increased the food resource for the soil fauna compared with the other treatments.

  17. “Stepping Up” Activity Poststroke: Ankle-Positioned Accelerometer Can Accurately Record Steps During Slow Walking

    PubMed Central

    Klassen, Tara D.; Simpson, Lisa A.; Lim, Shannon B.; Louie, Dennis R.; Parappilly, Beena; Sakakibara, Brodie M.; Zbogar, Dominik

    2016-01-01

    Background As physical activity in people poststroke is low, devices that monitor and provide feedback of walking activity provide motivation to engage in exercise and may assist rehabilitation professionals in auditing walking activity. However, most feedback devices are not accurate at slow walking speeds. Objective This study assessed the accuracy of one accelerometer to measure walking steps of community-dwelling individuals poststroke. Design This was a cross-sectional study. Methods Two accelerometers were positioned on the nonparetic waist and ankle of participants (N=43), and walking steps from these devices were recorded at 7 speeds (0.3–0.9 m/s) and compared with video recordings (gold standard). Results When positioned at the waist, the accelerometer had more than 10% error at all speeds, except 0.8 and 0.9 m/s, and numerous participants recorded zero steps at 0.3 to 0.5 m/s. The device had 10% or less error when positioned at the ankle for all speeds between 0.4 and 0.9 m/s. Limitations Some participants were unable to complete the faster walking speeds due to their walking impairments and inability to maintain the requested walking speed. Conclusions Although not recommended by the manufacturer, positioning the accelerometer at the ankle (compared with the waist) may fill a long-standing need for a readily available device that provides accurate feedback for the altered and slow walking patterns that occur with stroke. PMID:26251478

  18. Modulation of starch digestion for slow glucose release through "toggling" of activities of mucosal α-glucosidases.

    PubMed

    Lee, Byung-Hoo; Eskandari, Razieh; Jones, Kyra; Reddy, Kongara Ravinder; Quezada-Calvillo, Roberto; Nichols, Buford L; Rose, David R; Hamaker, Bruce R; Pinto, B Mario

    2012-09-14

    Starch digestion involves the breakdown by α-amylase to small linear and branched malto-oligosaccharides, which are in turn hydrolyzed to glucose by the mucosal α-glucosidases, maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI). MGAM and SI are anchored to the small intestinal brush-border epithelial cells, and each contains a catalytic N- and C-terminal subunit. All four subunits have α-1,4-exohydrolytic glucosidase activity, and the SI N-terminal subunit has an additional exo-debranching activity on the α-1,6-linkage. Inhibition of α-amylase and/or α-glucosidases is a strategy for treatment of type 2 diabetes. We illustrate here the concept of "toggling": differential inhibition of subunits to examine more refined control of glucogenesis of the α-amylolyzed starch malto-oligosaccharides with the aim of slow glucose delivery. Recombinant MGAM and SI subunits were individually assayed with α-amylolyzed waxy corn starch, consisting mainly of maltose, maltotriose, and branched α-limit dextrins, as substrate in the presence of four different inhibitors: acarbose and three sulfonium ion compounds. The IC(50) values show that the four α-glucosidase subunits could be differentially inhibited. The results support the prospect of controlling starch digestion rates to induce slow glucose release through the toggling of activities of the mucosal α-glucosidases by selective enzyme inhibition. This approach could also be used to probe associated metabolic diseases.

  19. Final deactivation report on the radioisotope area services, Building 3034, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-09-01

    The purpose of this report is to document the condition of Bldg. 3034, after completion of deactivation activities as outlined by the Department of Energy Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the Department of Energy Office of Environmental Restoration (EM-40) Program. This report provides a history and profile of Bldg. 3034 before commencement of deactivation activities and a profile of the building after completion of deactivation activities. Turnover, items, such as the Postdeactivation Surveillance & Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, an supporting documentation provided in the Office of Nuclear Materials and Facility Stabilization Program (EM-60) Turnover Package, are discussed. Building 3034 will require access to facilitate required surveillance and maintenance (S&M) activities to maintain the building safety envelope. Building 3034 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S&M effort would be required to maintain the building safety envelope. In addition to the minimal S&M activities, the building will be occupied by the maintenance coordinator and the S&M supervisor for the Isotopes Facilities Deactivation Project. The exterior doors are locked when unoccupied to prevent unauthorized access. All materials have been removed from the building. Piping and alarms have been deactivated.

  20. Reversible Deactivation of Enzymes by Redox-Responsive Nanogel Carriers.

    PubMed

    Peng, Huan; Rübsam, Kristin; Jakob, Felix; Pazdzior, Patrizia; Schwaneberg, Ulrich; Pich, Andrij

    2016-11-01

    Novel redox-responsive polymeric nanogels that allow highly efficient enzyme encapsulation and reversible modulation of enzyme activity are developed. The nanogel synthesis and encapsulation of enzyme are performed simultaneously via in situ crosslinking of pyridyldisulfide-functionalized water-soluble reactive copolymers, which are synthesized via reversible addition-fragmentation chain transfer copolymerization. Obtained nanogels with loaded cellulase demonstrate very good colloidal stability in aqueous solutions. The enzymatic activity of cellulase is greatly reduced when encapsulated in the nanogels and rapidly recovered in 10 × 10(-3) m dithiothreitol solution. Fluorescence resonance energy transfer (FRET)-based experiments indicate that the recovered enzymatic activity is mainly ascribed to the release of the enzyme due to the degradation of the disulfide crosslinking network after addition of dithiothreitol (DTT), instead of the enhanced substrate transport rate. The developed enzyme immobilization method opens new possibilities for reversible activation/deactivation of enzymes and opens up new directions for targeted protein therapy and biotechnology applications.

  1. Characterization of K-Complexes and Slow Wave Activity in a Neural Mass Model

    PubMed Central

    Ngo, Hong-Viet Victor; Claussen, Jens Christian; Martinetz, Thomas

    2014-01-01

    NREM sleep is characterized by two hallmarks, namely K-complexes (KCs) during sleep stage N2 and cortical slow oscillations (SOs) during sleep stage N3. While the underlying dynamics on the neuronal level is well known and can be easily measured, the resulting behavior on the macroscopic population level remains unclear. On the basis of an extended neural mass model of the cortex, we suggest a new interpretation of the mechanisms responsible for the generation of KCs and SOs. As the cortex transitions from wake to deep sleep, in our model it approaches an oscillatory regime via a Hopf bifurcation. Importantly, there is a canard phenomenon arising from a homoclinic bifurcation, whose orbit determines the shape of large amplitude SOs. A KC corresponds to a single excursion along the homoclinic orbit, while SOs are noise-driven oscillations around a stable focus. The model generates both time series and spectra that strikingly resemble real electroencephalogram data and points out possible differences between the different stages of natural sleep. PMID:25392991

  2. Salt reduction in slow fermented sausages affects the generation of aroma active compounds.

    PubMed

    Corral, Sara; Salvador, Ana; Flores, Mónica

    2013-03-01

    Slow fermented sausages with different salt content were manufactured: control (2.7% NaCl, S), 16% salt reduced (2.26% NaCl, RS) and 16% replaced by KCl (2.26% NaCl and 0.43% KCl, RSK). The effect of salt reduction on microbiology and chemical parameters, sensory characteristics, texture and volatile compounds was studied. The aroma compounds were identified by GC-MS and olfactometry analyses. Small salt reduction (16%) (RS) affected sausage quality producing a reduction in the acceptance of aroma, taste, juiciness and overall quality. The substitution by KCl (RSK) produced the same acceptability by consumers as for high salt (S) treatment except for the aroma that was not improved by KCl addition. The aroma was affected due to the reduction in sulfur and acids and the increase of aldehyde compounds. Aroma compounds that characterized the high salt treatment (S) were dimethyl trisulfide, 3-methyl thiophene, 2,3-butanedione, 2-nonanone and acetic acid.

  3. Effects of halothane on GABA(A) receptor kinetics: evidence for slowed agonist unbinding.

    PubMed

    Li, X; Pearce, R A

    2000-02-01

    Many anesthetics, including the volatile agent halothane, prolong the decay of GABA(A) receptor-mediated IPSCs at central synapses. This effect is thought to be a major factor in the production of anesthesia. A variety of different kinetic mechanisms have been proposed for several intravenous agents, but for volatile agents the kinetic mechanisms underlying this change remain unknown. To address this question, we used rapid solution exchange techniques to apply GABA to recombinant GABA(A) receptors (alpha(1)beta(2)gamma(2s)) expressed in HEK 293 cells, in the absence and presence of halothane. To differentiate between different microscopic kinetic steps that may be altered by the anesthetic, we studied a variety of measures, including peak concentration-response characteristics, macroscopic desensitization, recovery from desensitization, maximal current activation rates, and responses to the low-affinity agonist taurine. Experimentally observed alterations were compared with predictions based on a kinetic scheme that incorporated two agonist binding steps, and open and desensitized states. We found that, in addition to slowing deactivation after a brief pulse of GABA, halothane increased agonist sensitivity and slowed recovery from desensitization but did not alter macroscopic desensitization or maximal activation rate and only slightly slowed rapid deactivation after taurine application. This pattern of responses was found to be consistent with a reduction in the microscopic agonist unbinding rate (k(off)) but not with changes in channel gating steps, such as the channel opening rate (beta), closing rate (alpha), or microscopic desensitization. We conclude that halothane slows IPSC decay by slowing dissociation of agonist from the receptor.

  4. A novel slow hyperpolarization-activated potassium current (IK(SHA)) from a mouse hippocampal cell line.

    PubMed Central

    Wischmeyer, E; Karschin, A

    1997-01-01

    1. A slow hyperpolarization-activated inwardly rectifying K+ current (IK(SHA)) with novel characteristics was identified from the mouse embryonic hippocampus x neuroblastoma cell line HN9.10e. 2. The non-inactivating current activated negative to a membrane potential of -80 mV with slow and complex activation kinetics (tau act approximately 1-7 s) and a characteristic delay of 1-10 s (-80 to -140 mV) that was linearly dependent on the membrane potential. 3. Tail currents and instantaneous open channel currents determined through fast voltage ramps reversed at the K+ equilibrium potential (EK) indicating that primarily K+, but not Na+, permeated the channels. 4. IK(SHA) was unaffected by altering the intracellular Ca2+ concentration between approximately 0 and 10 microM, but was susceptible to block by 5 mM extracellular Ca2+, Ba2+ (Ki = 0.42 mM), and Cs+ (Ki = 2.77 mM) 5. In cells stably transformed with M2 muscarinic receptors, IK(SHA) was rapidly, but reversibly, suppressed by application of micromolar concentrations of muscarine. 6. At the single channel level K(SHA) channel openings were observed with the characteristic delay upon membrane hyperpolarization. Analysis of unitary currents revealed an inwardly rectifying I-V profile and a channel slope conductance of 7 pS. Channel activity persisted in the inside-out configuration for many minutes. 7. It is concluded that IK(SHA) in HN9.10e cells represents a novel K+ current, which is activated upon membrane hyperpolarization. It is functionally different from both classic inwardly rectifying IKir currents and other cationic hyperpolarization-activated IH currents that have been previously described in neuronal or glial cells. Images Figure 1 Figure 2 Figure 6 Figure 7 Figure 8 PMID:9401967

  5. Calcium-activated force responses in fast- and slow-twitch skinned muscle fibres of the rat at different temperatures.

    PubMed Central

    Stephenson, D G; Williams, D A

    1981-01-01

    1. Force responses from mechanically skinned fibres of rat skeletal muscles (extensor digitorum longus and soleus) were measured at different temperatures in the range 3-35 degrees C following sudden changes in Ca2+ concentration in the preparations. 2. At all temperatures there were characteristic differences between the slow- and fast-twitch muscle fibres with respect to the relative steady-state force-[Ca2+] relation: such as a lower [Ca2+] threshold for activation and a less steep force-pCa curve in slow-twitch muscle fibres. 3. At 3-5 degrees C the force changes in both types of muscle fibres lagged considerably behind the estimated changes in [Ca2+] within the preparations and this enabled us to perform a comparative analysis of the Ca2+ kinetics in the process of force development in both muscle fibre types. This analysis suggest that two and six Ca2+ ions are involved in the regulatory unit for contraction of slow- and fast-twitch muscle fibres respectively. 4. The rate of relaxation following a sudden decrease in [Ca2+] was much lower in the slow-twitch than in the fast-twitch muscle at 5 degrees C, suggesting that properties of the contractile apparatus could play an essential role in determining the rate of relaxation in vivo. 5. There was substantial variation in Ca2+ sensitivity between muscle fibres of the same type from different animals at each temperature. However the steepness of the force-[Ca2+] relation was essentially the same for all fibres of the same type. 6. A change in temperature from 5 to 25 degrees C had a statistically significant effect on the sensitivity of the fast-twitch muscle fibres, rendering them less sensitive to Ca2+ by a factor of 2. However a further increase in temperature from 25 to 35 degrees C did not have any statistically significant effect on the force-[Ca2+] relation in fast-twitch muscle fibres. 7. The effect of temperature on the Ca2+ sensitivity of slow-twitch muscle fibres was not statistically significant

  6. Final deactivation report on the Radioisotope Production Lab-E, Building 3032, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-09-01

    The purpose of this report is to document the condition of Bldg. 3032, after completion of deactivation activities as outlined by the Department of Energy (DOE) Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the DOE Office of Environmental Restoration Program (EM-40). This report provides a history and profile of Bldg. 3032 prior to commencing deactivation activities and a profile of the building after completion of deactivation activities. Turnover items, such as the Postdeactivation Surveillance & Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, and supporting documentation provided in the EM-60 turnover package are discussed. Building 3032 will be used as the Health Physics Office for the Isotopes Facilities Deactivation Program area and will require access for these offices and to facilitate required surveillance and maintenance (S&M) activities to maintain the building safety envelope. Bldg. 3032 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S&M effort would be required to maintain the building safety envelope. All materials have been removed from the building, and all utility systems, piping, and alarms have been deactivated except electricity and steam needed for the office areas.

  7. EDITORIAL: Slow light Slow light

    NASA Astrophysics Data System (ADS)

    Boyd, Robert; Hess, Ortwin; Denz, Cornelia; Paspalakis, Emmanuel

    2010-10-01

    Research into slow light began theoretically in 1880 with the paper [1] of H A Lorentz, who is best known for his work on relativity and the speed of light. Experimental work started some 60 years later with the work of S L McCall and E L Hahn [2] who explored non-linear self-induced transparency in ruby. This field of research has burgeoned in the last 10 years, starting with the work of L Vestergaard Hau and coworkers on slow light via electromagnetically induced transparency in a Bose-Einstein condensate [3]. Many groups are now able to slow light down to a few metres per second or even stop the motion of light entirely [4]. Today, slow light - or more often `slow and fast light' - has become its own vibrant field with a strongly increasing number of publications. In broad scope, slow light research can be categorized in terms of the sort of physical mechanism used to slow down the light. One sort of slow light makes use of material dispersion. This dispersion can be the natural dispersion of the ordinary refractive index or can be the frequency dependence of some nonlinear optical process, such as electromagnetically induced transparency, coherent population oscillations, stimulated light scattering, or four-wave mixing processes. The second sort of slow light makes use of the wavelength dependence of artificially structured materials, such as photonic crystals, optical waveguides, and collections of microresonators. Material systems in which slow light has been observed include metal vapours, rare-earth-doped materials, Raman and Brillioun gain media, photonic crystals, microresonators and, more recently, metamaterials. A common feature of all of these schemes is the presence of a sharp single resonance or multiple resonances produced by an atomic transition, a resonance in a photonic structure, or in a nonlinear optical process. Current applications of slow light include a series of attractive topics in optical information processing, such as optical data

  8. PUREX/UO3 Facilities deactivation lessons learned history

    SciTech Connect

    Gerber, M.S.

    1996-09-19

    Disconnecting the criticality alarm permanently in June 1996 signified that the hazards in the PUREX (plutonium-uranium extraction) plant had been so removed and reduced that criticality was no longer a credible event. Turning off the PUREX criticality alarm also marked a salient point in a historic deactivation project, 1 year before its anticipated conclusion. The PUREX/UO3 Deactivation Project began in October 1993 as a 5-year, $222.5- million project. As a result of innovations implemented during 1994 and 1995, the project schedule was shortened by over a year, with concomitant savings. In 1994, the innovations included arranging to send contaminated nitric acid from the PUREX Plant to British Nuclear Fuels, Limited (BNFL) for reuse and sending metal solutions containing plutonium and uranium from PUREX to the Hanford Site tank farms. These two steps saved the project $36.9- million. In 1995, reductions in overhead rate, work scope, and budget, along with curtailed capital equipment expenditures, reduced the cost another $25.6 million. These savings were achieved by using activity-based cost estimating and applying technical schedule enhancements. In 1996, a series of changes brought about under the general concept of ``reengineering`` reduced the cost approximately another $15 million, and moved the completion date to May 1997. With the total savings projected at about $75 million, or 33.7 percent of the originally projected cost, understanding how the changes came about, what decisions were made, and why they were made becomes important. At the same time sweeping changes in the cultural of the Hanford Site were taking place. These changes included shifting employee relations and work structures, introducing new philosophies and methods in maintaining safety and complying with regulations, using electronic technology to manage information, and, adopting new methods and bases for evaluating progress. Because these changes helped generate cost savings and were

  9. Epidemics with temporary link deactivation in scale-free networks

    PubMed Central

    Shkarayev, Maxim S.; Tunc, Ilker; Shaw, Leah B.

    2014-01-01

    During an epidemic, people may adapt or alter their social contacts to avoid infection. Various adaptation mechanisms have been studied previously. Recently, a new adaptation mechanism was presented in [1], where susceptible nodes temporarily deactivate their links to infected neighbors and reactivate when their neighbors recover. Considering the same adaptation mechanism on a scale-free network, we find that the topology of the subnetwork consisting of active links is fundamentally different from the original network topology. We predict the scaling exponent of the active degree distribution and derive mean-field equations by using improved moment closure approximations based on the conditional distribution of active degree given the total degree. These mean field equations show better agreement with numerical simulation results than the standard mean field equations based on a homogeneity assumption. PMID:25419231

  10. Slow Wave Activity and Modulations in Mouse Jejunum Myenteric Plexus In Situ

    PubMed Central

    Cai, Ying; Tang, He; Jiang, Fan; Dong, Zhaojun

    2017-01-01

    Background/Aims Myenteric plexus interstitial cells of Cajal (ICC-MY) are involved in the generation of gut pacemaker activity and neuronal communication. We performed patch clamp on ICC-MY in situ to observe the changes of pacemaker activity in response to neural modulations. Methods A fresh longitudinal muscle with myenteric plexus (LMMP) from mouse jejunum was prepared. ICC-MY and ganglion neurons embedded in the layer of longitudinal muscles were targeted by patch clamping in whole-cell configuration in a model of current or voltage clamp. Neurogenic modulators were applied to evaluate their effects on ICC pacemaker activity. Results In situ ICC-MY showed spontaneous and rhythmical voltage oscillations with a frequency of 27.2 ± 3.9 cycles/min, amplitude of 32.6 ± 6.3 mV, and resting membrane potential of −62.2 ± 2.8 mV. In situ neurons showed electrically evocable action potential in single or multiple spikes. Pacemaker activity was modulated by neuronal activators through receiving a neuronal input. Application of tetrodotoxin depolarized pacemaker potentials in a dose dependent manner, and decreased the amplitude at tetrodotoxin 0.3 μM for about 40 ± 10%; capsaicin (1 μM) ameliorated ICC-MY K+ current for about 49 ± 14.8%; and, nitric oxide hyperpolarized pacemaker potential and decreased the amplitude and frequency. Conclusions The in situ preparation patch clamp study further demonstrates that the pacemaker activity is an intrinsic property of ICC. The neurogenic activators change and shape pacemaker potential and activity in situ. LMMP preparation in situ patch clamp provides an ideal platform to study the functional innervation of the ICC and the enteric neural system, thereby, for evaluating the neural regulation of pacemaker activity, especially in disorder models. PMID:27436346

  11. Quasi-Periodic Slow Earthquakes and Their Association With Magmatic Activity at Kilauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Brooks, B. A.; Foster, J. H.; Sandwell, D.; Poland, M.; Myer, D.; Wolfe, C.; Patrick, M.

    2007-12-01

    Since 1998 the mobile south flank of Kilauea volcano, Hawai`i, has been the site of multiple slow earthquake (SE) events recorded principally with continuous GPS. One spatially coincident family of these SEs exhibited a high degree of periodicity (774 +/- 7 days) from 1998 to 2005 suggesting the next SE would be in mid-March, 2007. In fact, no anomalous deformation occurred there until the June 17 Father's day dike intrusion that caused up to 1m of opening along Kilauea's east rift zone. We analyzed deformation related to the Father's day event using GPS, tilt, ALOS and Envisat interferometry, microseismicity, and elastic dislocation modeling. Our analysis reveals significant motions of far-field sites that cannot be explained by dike-related deformation and that are very similar to previous SE displacements of the same sites, strongly suggesting that a SE occurred. Inclusion of this event in the overall time series yields SE repeat times of 798 +/- 50 days, apparently maintaining the quasi- periodicity of the Kilauea events. Furthermore, the timing of dike- and SE-related deformation and stress modeling suggest the Father's day dike triggered the slow earthquake. We explore the connection between magmatism and SEs at Kilauea and find a potential correlation between SE-timing and eruptive activity since 2000. This suggests the possibility that a mechanistic understanding of Kilauea SEs may require consideration of magmatic processes in addition to fault zone processes.

  12. Importance of Counterion Reactivity on the Deactivation of Co-Salen Catalysts in the Hydrolytic Kinetic Resolution of Epichlorohydrin

    SciTech Connect

    Jain,S.; Zheng, X.; Jones, C.; Weck, M.; Davis, R.

    2007-01-01

    Possible modes of deactivation of Jacobsen's Co-salen catalyst during the hydrolytic kinetic resolution (HKR) of epichlorohydrin were explored by UV-vis spectroscopy, X-ray absorption spectroscopy, and electrospray ionization mass spectrometry, combined with recycling studies. Although an active Co(III)-salen catalyst deactivated substantially after multiple cycles without regeneration, the catalyst maintained its +3 oxidation state throughout the runs. Thus, deactivation of Co-salen during HKR was not the result of Co reduction. The mass spectrum of a deactivated material showed that catalyst dimerization does not account for the loss of activity. Results from various catalyst pretreatment tests, as well as from catalysts containing various counterions (acetate, tosylate, chloride, iodide) indicated that the rate of addition of the Co-salen counterions to epoxide forming Co-OH during the reaction correlated with deactivation. The extent of counterion addition to epoxide was influenced by the exposure time and the nucleophilicity of the counterion. An oligo(cyclooctene)-supported Co-OAc salen catalyst, which was 25 times more active than the standard Co-salen catalyst, was recycled multiple times with negligible deactivation.

  13. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil

    NASA Astrophysics Data System (ADS)

    Almqvist, Helena; Axelsson, Hanna; Jafari, Rozbeh; Dan, Chen; Mateus, André; Haraldsson, Martin; Larsson, Andreas; Molina, Daniel Martinez; Artursson, Per; Lundbäck, Thomas; Nordlund, Pär

    2016-03-01

    Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine. By following the cellular uptake and enzymatic conversion of known drugs we correlated the appearance of active metabolites over time with intracellular target engagement. These data distinguished a much slower activation of 5-fluorouracil when compared with nucleoside-based drugs. The approach establishes efficient means to associate drug uptake and activation with target binding during drug discovery.

  14. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil

    PubMed Central

    Almqvist, Helena; Axelsson, Hanna; Jafari, Rozbeh; Dan, Chen; Mateus, André; Haraldsson, Martin; Larsson, Andreas; Molina, Daniel Martinez; Artursson, Per; Lundbäck, Thomas; Nordlund, Pär

    2016-01-01

    Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine. By following the cellular uptake and enzymatic conversion of known drugs we correlated the appearance of active metabolites over time with intracellular target engagement. These data distinguished a much slower activation of 5-fluorouracil when compared with nucleoside-based drugs. The approach establishes efficient means to associate drug uptake and activation with target binding during drug discovery. PMID:27010513

  15. Concurrent fast and slow synchronized efferent phrenic activities in time and frequency domain.

    PubMed

    Schmid, K; Böhmer, G; Weichel, T

    1990-09-24

    In urethane-anesthetized or decerebrated vagotomized rabbits efferent multifiber activity of the phrenic nerve was investigated for synchronized activities both in time and frequency domains. When respiratory drive was steadily increased by either an elevation of end-tidal CO2 concentration or i.v. administration of 4-aminopyridine, medium-frequency oscillations (MFO) first increased, then decreased and finally became absent. The power of high-frequency oscillations (HFO) steadily rose with increasing respiratory drive. In contrast to HFO which revealed a unimodal spectral peak of mostly small bandwidth, the MFO spectrum in most cases consisted of a broad complex. This complex in some cases was composed of two distinct peaks, i.e. MFO were heterogenous. The low- and high-frequency fractions of the MFO complex were related predominantly to the first and last third of inspiration, respectively. Examination of the on-going multifiber activity of the phrenic nerve with an expanded time scale revealed that lower frequency MFO probably result from synchronized ramp-like wave activity during early and mid-inspiration. The duration of the observed ramps well matched the corresponding MFO frequency. We suggest that these ramps might result from propagated synchronized waves of high-threshold phrenic motoneurons. During the last part of inspiration, however, MFO, like HFO, resulted from burst-like synchronized discharge of phenic motoneurons. Thus HFO are superimposed on ramp-like and burst-like activity of the MFO. It is assumed that the decline of MFO at high respiratory drive may be due to the increasing strength of HFO bursts which interrupt ramp activity in the MFO range and thus let MFO appear 'invisible' to the recording electrode. Both MFO and HFO were visually detectable in postinspiration.

  16. Deactivation processes of the lowest excited state of [UO2(H2O)5]2+ in aqueous solution.

    PubMed

    Formosinho, Sebastião J; Burrows, Hugh D; da Graça Miguel, Maria; Azenha, M Emília D G; Saraiva, Isabel M; Ribeiro, A Catarina D N; Khudyakov, Igor V; Gasanov, Rashid G; Bolte, Michèle; Sarakha, Mohamed

    2003-05-01

    A detailed analysis of the photophysical behaviour of uranyl ion in aqueous solutions at room temperature is given using literature data, together with results of new experimental and theoretical studies to see whether the decay mechanism of the lowest excited state involves physical deactivation by energy transfer or a chemical process through hydrogen atom abstraction. Comparison of the radiative lifetimes determined from quantum yield and lifetime data with that obtained from the Einstein relationship strongly suggests that the emitting state is identical to that observed in the lowest energy absorption band. From study of the experimental rate and that calculated theoretically, from deuterium isotope effects and the activation energy for decay support is given to a deactivation mechanism of hydrogen abstraction involving water clusters to give uranium(v) and hydroxyl radicals. Support for hydroxyl radical formation comes from electron spin resonance spectra observed in the presence of the spin traps 5,5-dimethyl-1-pyrroline N-oxide and tert-butyl-N-phenylnitrone and from literature results on photoinduced uranyl oxygen exchange and photoconductivity. It has previously been suggested that the uranyl emission above pH 1.5 may involve an exciplex between excited uranyl ion and uranium(v). Evidence against this mechanism is given on the basis of quenching of uranyl luminescence by uranium(v), together with other kinetic reasoning. No overall photochemical reaction is observed on excitation of aqueous uranyl solutions, and it is suggested that this is mainly due to reoxidation of UO2+ by hydroxyl radicals in a radical pair. An alternative process involving oxidation by molecular oxygen is analysed experimentally and theoretically, and is suggested to be too slow to be a major reoxidation pathway.

  17. Active cortical innervation protects striatal neurons from slow degeneration in culture.

    PubMed

    Fishbein, Ianai; Segal, Menahem

    2011-03-01

    Spiny striatal GABAergic neurons receive most of their excitatory input from the neocortex. In culture, striatal neurons form inhibitory connections, but the lack of intrinsic excitatory afferents prevents the development of spontaneous network activity. Addition of cortical neurons to the striatal culture provides the necessary excitatory input to the striatal neurons, and in the presence of these neurons, striatal cultures do express spontaneous network activity. We have confirmed that cortical neurons provide excitatory drive to striatal neurons in culture using paired recording from cortical and striatal neurons. In the presence of tetrodotoxin (TTX), which blocks action potential discharges, the connections between cortical and striatal neurons are still formed, and in fact synaptic currents generated between them when TTX is removed are far larger than in control, undrugged cultures. Interestingly, the continuous presence of TTX in the co-culture caused striatal cell death. These observations indicate that the mere presence of cortical neurons is not sufficient to preserve striatal neurons in culture, but their synchronous activity, triggered by cortical excitatory synapses, is critical for the maintenance of viability of striatal neurons. These results have important implications for understanding the role of activity in neurodegenerative diseases of the striatum.

  18. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1995-08-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

  19. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    SciTech Connect

    1995-05-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S&M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the IFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of IFDP facilities was initiated in FY 1994 and will be completed in FY 1999. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $36M. The costs are summarized. Upon completion of deactivation, annual S&M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

  20. Fast and slow transitions in frontal ensemble activity during flexible sensorimotor behavior

    PubMed Central

    Siniscalchi, Michael J.; Phoumthipphavong, Victoria; Ali, Farhan; Lozano, Marc; Kwan, Alex C.

    2016-01-01

    The ability to shift between repetitive and goal-directed actions is a hallmark of cognitive control. Previous studies have reported that adaptive shifts in behavior are accompanied by changes of neural activity in frontal cortex. However, neural and behavioral adaptations can occur at multiple time scales, and their relationship remains poorly defined. Here, we developed a novel adaptive sensorimotor decision-making task for head-fixed mice, requiring them to shift flexibly between multiple auditory-motor mappings. Two-photon calcium imaging of secondary motor cortex (M2) revealed different ensemble activity states for each mapping. Notably, when adapting to a conditional mapping, transitions in ensemble activity were abrupt and occurred before the recovery of behavioral performance. By contrast, gradual and delayed transitions accompanied shifts towards repetitive responding. These results demonstrate distinct ensemble signatures associated with the start versus end of sensory-guided behavior, and suggest that M2 leads in engaging goal-directed response strategies that require sensorimotor associations. PMID:27399844

  1. Block of human cardiac sodium channels by lacosamide: evidence for slow drug binding along the activation pathway.

    PubMed

    Wang, Ging Kuo; Wang, Sho-Ya

    2014-05-01

    Lacosamide is an anticonvulsant hypothesized to enhance slow inactivation of neuronal Na(+) channels for its therapeutic action. Cardiac Na(+) channels display less and incomplete slow inactivation, but their sensitivity toward lacosamide remains unknown. We therefore investigated the action of lacosamide in human cardiac Nav1.5 and Nav1.5-CW inactivation-deficient Na(+) channels. Lacosamide showed little effect on hNav1.5 Na(+) currents at 300 µM when cells were held at -140 mV. With 30-second conditioning pulses from -90 to -50 mV; however, hNav1.5 Na(+) channels became sensitive to lacosamide with IC50 (50% inhibitory concentration) around 70-80 µM. Higher IC50 values were found at -110 and -30 mV. The development of lacosamide block at -70 mV was slow in wild-type Na(+) channels (τ; 8.04 ± 0.39 seconds, n = 8). This time constant was significantly accelerated in hNav1.5-CW inactivation-deficient counterparts. The recovery from lacosamide block at -70 mV for 10 seconds was relatively rapid in wild-type Na(+) channels (τ; 639 ± 90 milliseconds, n = 8). This recovery was accelerated further in hNav1.5-CW counterparts. Unexpectedly, lacosamide elicited a time-dependent block of persistent hNav1.5-CW Na(+) currents with an IC50 of 242 ± 19 µM (n = 5). Furthermore, both hNav1.5-CW/F1760K mutant and batrachotoxin-activated hNav1.5 Na(+) channels became completely lacosamide resistant, indicating that the lacosamide receptor overlaps receptors for local anesthetics and batrachotoxin. Our results together suggest that lacosamide targets the intermediate preopen and open states of hNav1.5 Na(+) channels. Lacosamide may thus track closely the conformational changes at the hNav1.5-F1760 region along the activation pathway.

  2. Slow recovery of tropical old-field rainforest regrowth and the value and limitations of active restoration.

    PubMed

    Shoo, Luke P; Freebody, Kylie; Kanowski, John; Catterall, Carla P

    2016-02-01

    There is current debate about the potential for secondary regrowth to rescue tropical forests from an otherwise inevitable cascade of biodiversity loss due to land clearing and scant evidence to test how well active restoration may accelerate recovery. We used site chronosequences to compare developmental trajectories of vegetation between self-organized (i.e., spontaneous) forest regrowth and biodiversity plantings (established for ecological restoration, with many locally native tree species at high density) in the Australian wet tropics uplands. Across 28 regrowth sites aged 1-59 years, some structural attributes reached reference rainforest levels within 40 years, whereas wood volume and most tested components of native plant species richness (classified by species' origins, family, and ecological functions) reached less than 50% of reference rainforest values. Development of native tree and shrub richness was particularly slow among species that were wind dispersed or animal dispersed with large (>10 mm) seeds. Many species with animal-dispersed seeds were from near-basal evolutionary lineages that contribute to recognized World Heritage values of the study region. Faster recovery was recorded in 25 biodiversity plantings of 1-25 years in which wood volume developed more rapidly; native woody plant species richness reached values similar to reference rainforest and was better represented across all dispersal modes; and species from near-basal plant families were better (although incompletely) represented. Plantings and regrowth showed slow recovery in species richness of vines and epiphytes and in overall resemblance to forest in species composition. Our results can inform decision making about when and where to invest in active restoration and provide strong evidence that protecting old-growth forest is crucially important for sustaining tropical biodiversity.

  3. Regional differences in cortical electroencephalogram (EEG) slow wave activity and interhemispheric EEG asymmetry in the fur seal.

    PubMed

    Lyamin, Oleg I; Pavlova, Ivetta F; Kosenko, Peter O; Mukhametov, Lev M; Siegel, Jerome M

    2012-12-01

    Slow wave sleep (SWS) in the northern fur seal (Callorhinus ursinus) is characterized by a highly expressed interhemispheric electroencephalogram (EEG) asymmetry, called 'unihemispheric' or 'asymmetrical' SWS. The aim of this study was to examine the regional differences in slow wave activity (SWA; power in the range of 1.2-4.0 Hz) within one hemisphere and differences in the degree of interhemispheric EEG asymmetry within this species. Three seals were implanted with 10 EEG electrodes, positioned bilaterally (five in each hemisphere) over the frontal, occipital and parietal cortex. The expression of interhemispheric SWA asymmetry between symmetrical monopolar recordings was estimated based on the asymmetry index [AI = (L-R)/(L+R), where L and R are the power in the left and right hemispheres, respectively]. Our findings indicate an anterior-posterior gradient in SWA during asymmetrical SWS in fur seals, which is opposite to that described for other mammals, including humans, with a larger SWA recorded in the parietal and occipital cortex. Interhemispheric EEG asymmetry in fur seals was recorded across the entire dorsal cerebral cortex, including sensory (visual and somatosensory), motor and associative (parietal or suprasylvian) cortical areas. The expression of asymmetry was greatest in occipital-lateral and parietal derivations and smallest in frontal-medial derivations. Regardless of regional differences in SWA, the majority (90%) of SWS episodes with interhemispheric EEG asymmetry meet the criteria for 'unihemispheric SWS' (one hemisphere is asleep while the other is awake). The remaining episodes can be described as episodes of bilateral SWS with a local activation in one cerebral hemisphere.

  4. Fewer active motors per vesicle may explain slowed vesicle transport in chick motoneurons after three days in vitro.

    PubMed

    Macosko, Jed C; Newbern, Jason M; Rockford, Jean; Chisena, Ernest N; Brown, Charlotte M; Holzwarth, George M; Milligan, Carol E

    2008-05-23

    Vesicle transport in cultured chick motoneurons was studied over a period of 3 days using motion-enhanced differential interference contrast (MEDIC) microscopy, an improved version of video-enhanced DIC. After 3 days in vitro (DIV), the average vesicle velocity was about 30% less than after 1 DIV. In observations at 1, 2 and 3 DIV, larger vesicles moved more slowly than small vesicles, and retrograde vesicles were larger than anterograde vesicles. The number of retrograde vesicles increased relative to anterograde vesicles after 3 DIV, but this fact alone could not explain the decrease in velocity, since the slowing of vesicle transport in maturing motoneurons was observed independently for both anterograde and retrograde vesicles. In order to better understand the slowing trend, the distance vs. time trajectories of individual vesicles were examined at a frame rate of 8.3/s. Qualitatively, these trajectories consisted of short (1-2 s) segments of constant velocity, and the changes in velocity between segments were abrupt (<0.2 s). The trajectories were therefore fit to a series of connected straight lines. Surprisingly, the slopes of theses lines, i.e. the vesicle velocities, were often found to be multiples of ~0.6 mum/s. The velocity histogram showed multiple peaks, which, when fit with Gaussians using a least squares minimization, yielded an average spacing of 0.57 mum/s (taken as the slope of a fit to peak position vs. peak number, R(2)=0.994). We propose that the abrupt velocity changes occur when 1 or 2 motors suddenly begin or cease actively participating in vesicle transport. Under this hypothesis, the decrease in average vesicle velocity observed for maturing motoneurons is due to a decrease in the average number of active motors per vesicle.

  5. Slowing of Hippocampal Activity Correlates with Cognitive Decline in Early Onset Alzheimer's Disease. An MEG Study with Virtual Electrodes.

    PubMed

    Engels, Marjolein M A; Hillebrand, Arjan; van der Flier, Wiesje M; Stam, Cornelis J; Scheltens, Philip; van Straaten, Elisabeth C W

    2016-01-01

    Pathology in Alzheimer's disease (AD) starts in the entorhinal cortex and hippocampus. Because of their deep location, activity from these areas is difficult to record with conventional electro- or magnetoencephalography (EEG/MEG). The purpose of this study was to explore hippocampal activity in AD patients and healthy controls using "virtual MEG electrodes". We used resting-state MEG recordings from 27 early onset AD patients [age 60.6 ± 5.4, 12 females, mini-mental state examination (MMSE) range: 19-28] and 26 cognitively healthy age- and gender-matched controls (age 61.8 ± 5.5, 14 females). Activity was reconstructed using beamformer-based virtual electrodes for 78 cortical regions and 6 hippocampal regions. Group differences in peak frequency and relative power in six frequency bands were identified using permutation testing. For the patients, spearman correlations between the MMSE scores and peak frequency or relative power were calculated. Moreover, receiver operator characteristic curves were plotted to estimate the diagnostic accuracy. We found a lower hippocampal peak frequency in AD compared to controls, which, in the patients, correlated positively with MMSE [r(25) = 0.61; p < 0.01] whereas hippocampal relative theta power correlated negatively with MMSE [r(25) = -0.54; p < 0.01]. Cortical peak frequency was also lower in AD in association areas. Furthermore, cortical peak frequency correlated positively with MMSE [r(25) = 0.43; p < 0.05]. In line with this finding, relative theta power was higher in AD across the cortex, and relative alpha and beta power was lower in more circumscribed areas. The average cortical relative theta power was the best discriminator between AD and controls (sensitivity 82%; specificity 81%). Using beamformer-based virtual electrodes, we were able to detect hippocampal activity in AD. In AD, this hippocampal activity is slowed, and correlates better with cognition than the (slowed) activity in cortical areas. On the other

  6. A pilot study of active rehabilitation for adolescents who are slow to recover from sport-related concussion.

    PubMed

    Gagnon, I; Grilli, L; Friedman, D; Iverson, G L

    2016-03-01

    The purpose of this study was to examine the effectiveness of an active rehabilitation intervention for adolescents who are slow-to-recover after a sport-related concussion. Ten adolescents (three girls and seven boys) seen at the Montreal Children's Hospital Concussion Clinic participated in this case series. Adolescents who were symptomatic more than 4 weeks after the injury were provided with an active rehabilitation intervention (M = 7.9 weeks following injury; range = 3.7 to 26.2 weeks). The rehabilitation program includes gradual, closely monitored light aerobic exercise, general coordination exercises, mental imagery, as well as reassurance, normalization of recovery, and stress/anxiety reduction strategies. The program continued until complete symptom resolution and readiness to begin stepwise return to activities. The primary outcome of the study was evolution of post-concussion symptoms. Secondary outcomes included mood, energy, balance, and cognition. After the intervention, post-concussion symptoms significantly decreased for the group of participants. They also had decreased fatigue and improved mood after 6 weeks of initiating the rehabilitation intervention. This case series shows that postconcussive symptoms and functioning in adolescents following sports-related concussion can be improved after participation in an active rehabilitation intervention. The introduction of graded light intensity exercise in the post-acute period following concussion is safe, feasible and appears to have a positive impact on adolescents' functioning.

  7. Slow river incision and erosion strongly limit active uplift in southern Africa

    NASA Astrophysics Data System (ADS)

    Erlanger, E. D.; Granger, D. E.; Gibbon, R. J.

    2010-12-01

    The high topography of the southern African passive margin has been attributed to uplift since the 1950’s, when L.C. King associated widespread, deeply weathered surfaces to successive cycles of uplift and erosion. Since the time of King, others have attempted to identify a source for the high topography. Competing hypotheses include 1) uplift is recent and continuing due to mantle-driven dynamic topography, or 2) the high topography has been relict since at least the late Cretaceous, and any ongoing uplift is due solely to erosional isostasy. It has remained difficult to test these hypotheses because estimates of late Neogene uplift rates have been very poorly constrained, ranging from ~10-1000 m/My. To resolve whether uplift is active today, we determined modern erosion rates, paleo-erosion rates, and river incision rates in South Africa. River incision rates and paleo-erosion rates were calculated from a flight of terraces along the Sundays River Valley, located on the southeastern coast. This valley hosts the best preserved flight of strath terraces in southern Africa. We dated the river terraces with cosmogenic 26Al and 10Be in quartz sediment, using an isochron burial dating method. The ages of these terraces range from modern to ~4 Ma and vary in height from ~6-80 m above the present river level, providing an excellent opportunity to evaluate uplift rates over million-year timescales. From the terrace ages and heights, we calculated a long-term incision rate of 16 m/My for the Sundays River. The average paleo-erosion rate for the Sundays River is ~10 m/My, about equal in magnitude to the long-term incision rate. We measured modern erosion rates over a large part of South Africa, including several distinct geographic regions: the southeast coast, the Great escarpment, the Lesotho highlands, and the continental interior. Along the southeast coast, erosion rates vary from 4-10 m/My. The Great Escarpment is eroding the fastest at 30-60 m/My. Erosion rates in

  8. Active tectonics, paleoseismology and associated methodological challenges posed by the slow moving Alhama de Murcia fault (SE Iberia)

    NASA Astrophysics Data System (ADS)

    Ferrater, Marta; Ortuño, Maria; Masana, Eulàlia; Pallàs, Raimon; Perea, Hector; Baize, Stephane; García-Meléndez, Eduardo; Martínez-Díaz, José J.; Echeverria, Anna; Rockwell, Thomas; Sharp, Warren D.; Arrowsmith, Ramon; Medialdea, Alicia; Rhodes, Edward

    2016-04-01

    The Alhama de Murcia fault (AMF) is a 87 km-long left-lateral slow moving fault and is responsible for the 5.1 Mw 2011 Lorca earthquake. The characterization of the seismic potential of seismogenic strike-slip slow moving faults is necessary but raises huge methodological challenges, as most paleoseismological and active tectonic techniques have been designed on and for fast moving faults. The AMF is used here as a pilot study area to adapt the traditional geomorphological and trenching analyses, especially concerning the precise quantification of offset channels. We: 1) adapted methodologies to slow moving faults, 2) obtained, for the first time, the slip rate of the AMF, and 3) updated its recurrence period and maximum expected magnitude. Morphotectonic studies aim to use the measured tectonic offset of surface channels to calculate seismic parameters. However, these studies lack a standard criterion to score the analysed features. We improved this by differentiating between subjective and objective qualities, and determining up to three objective parameters (lithological changes, associated morphotectonics and shape, and three shape sub-parameters; all ranging from 0 to 1). By applying this methodology to the AMF, we identified and characterized 138 offset features that we mapped on a high-resolution (0.5 × 0.5 m pixel size) Digital Elevation Model (DEM) from a point cloud acquired in 2013 by airborne light detection and ranging (lidar). The identified offsets, together with the ongoing datings, are going to be used to calculate the lateral slip rate of the AMF. In three-dimensional trenches, we measured the offsets of a buried channel by projecting the far-field tendency of the channel onto the fault. This procedure is inspired by the widespread geomorphological procedure and aims to avoid the diffuse deformation in the fault zone associated with slow moving faults. The calculation of the 3D tendency of the channel and its projection onto the fault permitted

  9. Slow-Onset Inhibition of the FabI Enoyl Reductase from Francisella tularensis: Residence Time and in Vivo Activity

    SciTech Connect

    Lu, H.; England, K; Ende, C; Truglio, J; Luckner, S; Reddy, B; Marlenee, N; Knudson, S; Knudson, D; et. al.

    2009-01-01

    Francisella tularensis is a highly virulent and contagious Gram-negative intracellular bacterium that causes the disease tularemia in mammals. The high infectivity and the ability of the bacterium to survive for weeks in a cool, moist environment have raised the possibility that this organism could be exploited deliberately as a potential biological weapon. Fatty acid biosynthesis (FAS-II) is essential for bacterial viability and has been validated as a target for the discovery of novel antibacterials. The FAS-II enoyl reductase ftuFabI has been cloned and expressed, and a series of diphenyl ethers have been identified that are subnanomolar inhibitors of the enzyme with MIC90 values as low as 0.00018 ?g mL-1. The existence of a linear correlation between the Ki and MIC values strongly suggests that the antibacterial activity of the diphenyl ethers results from direct inhibition of ftuFabI within the cell. The compounds are slow-onset inhibitors of ftuFabI, and the residence time of the inhibitors on the enzyme correlates with their in vivo activity in a mouse model of tularemia infection. Significantly, the rate of breakdown of the enzyme-inhibitor complex is a better predictor of in vivo activity than the overall thermodynamic stability of the complex, a concept that has important implications for the discovery of novel chemotherapeutics that normally rely on equilibrium measurements of potency.

  10. Active tectonics and rheology of slow-moving thrusts in the Tibetan foreland of peninsular India

    NASA Astrophysics Data System (ADS)

    Copley, Alex; Mitra, Supriyo; Sloan, Alastair; Gaonkar, Sharad; Avouac, Jean-Philippe; Hollingsworth, James

    2016-04-01

    Peninsular India is cut by active thrust faults that break in earthquakes in response to the compressive force exerted between India and the Tibetan Plateau. The rate of deformation is low, with 2 +/- 1 mm/yr of shortening being accommodated over the entire N-S extent of the Indian sub-continent. However, the large seismogenic thickness in the region (40-50 km), and the long faults, mean that the rare earthquakes that do occur can have magnitudes up to at least 8. This contribution describes studies of two large Indian earthquakes, and their rheological and hazard implications, using a range of techniques. First, the Mw 7.6 Bhuj (Gujarat) earthquake of 2001 is examined using a combination of seismology, InSAR, and levelling data. A slip model for the earthquake will be presented, which allows the material properties of the fault plane to be examined. Second, a Holocene-age earthquake rupture from central India will be discussed. Geomorphic analysis of the scarps produced by the event suggest a magnitude of 7.6 - 8.4. Both of these earthquakes had unusually large stress-drops, amongst the largest recorded for shallow earthquakes. The information provided by these two events will be combined with calculations for the total compressive force being transmitted through the Indian peninsular in order to suggest that the faults are characterised by a low coefficient of friction (approximately 0.1), and that the stress-drops in the earthquakes are close to complete. In turn, these results imply that the majority of the force being transmitted through the Indian plate is supported by the brittle crust. Finally, the along-strike continuation of the faults will be described, with implications for hazard assessment and material properties throughout India.

  11. Deactivation of the EBR-II complex

    SciTech Connect

    Michelbacher, J.A.; Earle, O.K.; Henslee, S.P.

    1997-12-31

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D&D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D&D plan has necessitated this current action. The EBR-II is a pool-type reactor. The primary system contains approximately 87,000 gallons of sodium, while the secondary system has 13,000 gallons. In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility has been built to react the sodium to a dry carbonate powder in a two stage process. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in the primary and secondary systems must be either reacted or inerted to preclude future concerns with sodium-air reactions that generate explosive mixtures of hydrogen and leave corrosive compounds. Residual amounts of sodium on components will effectively {open_quotes}solder{close_quotes} components in place, making future operation or removal unfeasible.

  12. Structure-Activity Relationships of the Sustained Effects of Adenosine A2A Receptor Agonists Driven by Slow Dissociation Kinetics

    PubMed Central

    Hothersall, J. Daniel; Guo, Dong; Sarda, Sunil; Sheppard, Robert J.; Chen, Hongming; Keur, Wesley; Waring, Michael J.; IJzerman, Adriaan P.; Hill, Stephen J.; Dale, Ian L.

    2017-01-01

    The duration of action of adenosine A2A receptor (A2A) agonists is critical for their clinical efficacy, and we sought to better understand how this can be optimized. The in vitro temporal response profiles of a panel of A2A agonists were studied using cAMP assays in recombinantly (CHO) and endogenously (SH-SY5Y) expressing cells. Some agonists (e.g., 3cd; UK-432,097) but not others (e.g., 3ac; CGS-21680) demonstrated sustained wash-resistant agonism, where residual receptor activation continued after washout. The ability of an antagonist to reverse pre-established agonist responses was used as a surrogate read-out for agonist dissociation kinetics, and together with radioligand binding studies suggested a role for slow off-rate in driving sustained effects. One compound, 3ch, showed particularly marked sustained effects, with a reversal t1/2 > 6 hours and close to maximal effects that remained for at least 5 hours after washing. Based on the structure-activity relationship of these compounds, we suggest that lipophilic N6 and bulky C2 substituents can promote stable and long-lived binding events leading to sustained agonist responses, although a high compound logD is not necessary. This provides new insight into the binding interactions of these ligands and we anticipate that this information could facilitate the rational design of novel long-acting A2A agonists with improved clinical efficacy. PMID:27803241

  13. Synergistic activity of rifampicin and ethambutol against slow-growing nontuberculous mycobacteria is currently of questionable clinical significance.

    PubMed

    van Ingen, Jakko; Hoefsloot, Wouter; Mouton, Johan W; Boeree, Martin J; van Soolingen, Dick

    2013-07-01

    A key issue in the treatment of disease caused by slow-growing nontuberculous mycobacteria is the limited association between in vitro minimum inhibitory concentrations (MICs) of rifampicin and ethambutol alone and the in vivo outcome of treatment with these drugs. Combined susceptibility testing to rifampicin and ethambutol could provide a more realistic view of the efficacy of these drugs. In this study, Mycobacterium avium (n = 5), Mycobacterium chimaera (n = 6), Mycobacterium intracellulare (n = 4), Mycobacterium xenopi (n = 4), Mycobacterium malmoense (n = 3) and Mycobacterium simiae (n = 2) clinical isolates were selected and the MICs of rifampicin and ethambutol alone and in combination were measured using the Middlebrook 7H10 agar dilution method. Synergy was defined as a fractional inhibitory concentration index ≤ 0.5. Rifampicin and ethambutol showed synergistic activity against the majority of M. avium (4/5), M. chimaera (5/6) and M. intracellulare (3/4) isolates and 1 of 2 eligible M. malmoense isolates. No synergistic activity was measured against M. xenopi and M. simiae. Synergy was neither universal for all species nor for all isolates of one species; it thus needs to be tested for rather than assumed. Even if this synergy exists in vivo, it is questionable whether the MICs to the combined drugs can be overcome by the drug exposure attained by current regimens at the recommended dosages. New dosing strategies for rifampicin and ethambutol should be studied to increase the exposure to these drugs and thus maximise their impact.

  14. Hydrogen peroxide modulates Ca2+-activation of single permeabilized fibres from fast- and slow-twitch skeletal muscles of rats.

    PubMed

    Plant, D R; Lynch, G S; Williams, D A

    2000-01-01

    We examined the effects of redox modulation on single membrane-permeabilized fibre segments from the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of adult rats to determine whether the contractile apparatus was the redox target responsible for the increased contractility of muscles exposed to low concentrations of H2O2. The effects of H2O2 on maximum Ca2+-activated force were dose-dependent with 30 min exposure to 5 mM H2O2 causing a progressive decrease by 22+/-3 and 13+/-2% in soleus and EDL permeabilized muscle fibres, respectively. Lower concentrations of exogenous H2O2 (100 microM and 1 mM) had no effect on maximum Ca2+-activated force. Subsequent exposure to the reductant dithiothreitol (DTT, 10 mM, 10 min) fully reversed the H2O2-induced depression of force in EDL, but not in soleus muscle fibres. Incubation with DTT alone for 10 min did not alter Ca2+-activated force in either soleus or EDL muscle fibres. The sensitivity of the contractile filaments to Ca2+ (pCa50) was not altered by exposure to any concentration of exogenous H2O2. However, all concentrations of H2O2 diminished the Hill coefficient in permeabilized fibres from the EDL muscle, indicating that the cooperativity of Ca2+ binding to troponin is altered. H2O2 (5 mM) did not affect rigor force, which indicates that the number of crossbridges participating in contraction was not reduced. In conclusion, H2O2 may reduce the maximum Ca2+ activated force production in skinned muscle fibres by decreasing the force per crossbridge.

  15. Muscle Fiber Type Specific Activation of the Slow Myosin Heavy Chain 2 Promoter by a Non-canonical E-box

    PubMed Central

    Weimer, Kristina; DiMario, Joseph X.

    2016-01-01

    Different mechanisms control skeletal muscle fiber type gene expression at specific times in vertebrate development. Embryonic myogenesis leading to formation of primary muscle fibers in avian species is largely directed by myoblast cell commitment to the formation of diverse fiber types. In contrast, development of different secondary fiber types during fetal myogenesis is partly determined by neural influences. In both primary and secondary chicken muscle fibers, differential expression of the slow myosin heavy chain 2 (MyHC2) gene distinguishes fast from fast/slow muscle fibers. This study focused on the transcriptional regulation of the slow MyHC2 gene in primary myotubes formed from distinct fast/slow and fast myogenic cell lineages. Promoter deletion analyses identified a discrete 86bp promoter segment that conferred fiber type, lineage-specific gene expression in fast/slow versus fast myoblast derived primary myotubes. Sequence analysis and promoter activity assays determined that this segment contains two functional cis-regulatory elements. One element is a non-canonical E-box, and electromobility shift assays demonstrated that both cis-elements interacted with the E-protein, E47. The results indicate that primary muscle fiber type specific expression of the slow MyHC2 gene is controlled by a novel mechanism involving a transcriptional complex that includes E47 at a non-canonical E-box. PMID:26707643

  16. Electrical Slow Waves in the Mouse Oviduct Are Dependent upon a Calcium Activated Chloride Conductance Encoded by Tmem16a1

    PubMed Central

    Dixon, Rose Ellen; Hennig, Grant W.; Baker, Salah A.; Britton, Fiona C.; Harfe, Brian D.; Rock, Jason R.; Sanders, Kenton M.; Ward, Sean M.

    2011-01-01

    ABSTRACT Myosalpinx contractions are critical for oocyte transport along the oviduct. A specialized population of pacemaker cells—oviduct interstitial cells of Cajal—generate slow waves, the electrical events underlying myosalpinx contractions. The ionic basis of oviduct pacemaker activity is unknown. We examined the role of a new class of Ca2+-activated Cl− channels (CaCCs)—anoctamin 1, encoded by Tmem16a—in oviduct slow wave generation. RT-PCR revealed the transcriptional expression of Tmem16a-encoded CaCCs in the myosalpinx. Intracellular microelectrode recordings were performed in the presence of two pharmacologically distinct Cl− channel antagonists, anthracene-9-carboxylic acid and niflumic acid. Both of these inhibitors caused membrane hyperpolarization, reduced the duration of slow waves, and ultimately inhibited pacemaker activity. Niflumic acid also inhibited propagating calcium waves within the myosalpinx. Slow waves were present at birth in wild-type and heterozygous oviducts but failed to develop by birth in mice homozygous for a null allele of Tmem16a (Tmem16atm1Bdh/tm1Bdh). These data suggest that Tmem16a-encoded CaCCs contribute to membrane potential and are responsible for the upstroke and plateau phases of oviduct slow waves. PMID:21976594

  17. TiO2 Nanotubes with Open Channels as Deactivation-Resistant Photocatalyst for the Degradation of Volatile Organic Compounds.

    PubMed

    Weon, Seunghyun; Choi, Wonyong

    2016-03-01

    We synthesized ordered TiO2 nanotubes (TNT) and compared their photocatalytic activity with that of TiO2 nanoparticles (TNP) film during the repeated cycles of photocatalytic degradation of gaseous toluene and acetaldehyde to test the durability of TNT as an air-purifying photocatalyst. The photocatalytic activity of TNT showed only moderate reduction after the five cycles of toluene degradation, whereas TNP underwent rapid deactivation as the photocatalysis cycles were repeated. Dynamic SIMS analysis showed that carbonaceous deposits were formed on the surface of TNP during the photocatalytic degradation of toluene, which implies that the photocatalyst deactivation should be ascribed to the accumulation of recalcitrant degradation intermediates (carbonaceous residues). In more oxidizing atmosphere (100% O2 under which less carbonaceous residues should form), the photocatalytic activity of TNP still decreased with repeating cycles of toluene degradation, whereas TNT showed no sign of deactivation. Because TNT has a highly ordered open channel structure, O2 molecules can be more easily supplied to the active sites with less mass transfer limitation, which subsequently hinders the accumulation of carbonaceous residues on TNT surface. Contrary to the case of toluene degradation, both TNT and TNP did not exhibit any significant deactivation during the photocatalytic degradation of acetaldehyde, because the generation of recalcitrant intermediates from acetaldehyde degradation is insignificant. The structural characteristics of TNT is highly advantageous in preventing the catalyst deactivation during the photocatalytic degradation of aromatic compounds.

  18. Highly n -doped silicon: Deactivating defects of donors

    NASA Astrophysics Data System (ADS)

    Mueller, D. Christoph; Fichtner, Wolfgang

    2004-12-01

    We report insight into the deactivation mechanisms of group V donors in heavily doped silicon. Based on our ab initio calculations, we suggest a three step model for the donor deactivation. In highly n -type Si grown at low temperatures, in the absence of excess native point defects, the intrinsic limit to ne seems to rise in part by means of donor deactivating distortions of the silicon lattice in the proximity of two or more donor atoms that share close sites. Also, donor dimers play an important part in the deactivation at high doping concentrations. While the dimers constitute a stable or metastable inactive donor configuration, the lattice distortions lower the donor levels gradually below the impurity band in degenerate silicon. On the other hand, we find that, in general, none of the earlier proposed deactivating donor pair defects is stable at any position of the Fermi level. The lattice distortions may be viewed as a precursor to Frenkel pair generation and donor-vacancy clustering process (step 2) that account for deactivation at elevated temperature and longer annealing times. Ultimately, and most prominently in the case of the large Sb atoms, precipitation of the donor atoms may set in as the last step of the deactivation process chain.

  19. Substance P and the neurokinin-1 receptor regulate electroencephalogram non-rapid eye movement sleep slow-wave activity locally.

    PubMed

    Zielinski, M R; Karpova, S A; Yang, X; Gerashchenko, D

    2015-01-22

    The neuropeptide substance P is an excitatory neurotransmitter produced by various cells including neurons and microglia that is involved in regulating inflammation and cerebral blood flow--functions that affect sleep and slow-wave activity (SWA). Substance P is the major ligand for the neurokinin-1 receptor (NK-1R), which is found throughout the brain including the cortex. The NK-1R is found on sleep-active cortical neurons expressing neuronal nitric oxide synthase whose activity is associated with SWA. We determined the effects of local cortical administration of a NK-1R agonist (substance P-fragment 1, 7) and a NK-1R antagonist (CP96345) on sleep and SWA in mice. The NK-1R agonist significantly enhanced SWA for several hours when applied locally to the cortex of the ipsilateral hemisphere as the electroencephalogram (EEG) electrode but not after application to the contralateral hemisphere when compared to saline vehicle control injections. In addition, a significant compensatory reduction in SWA was found after the NK-1R agonist-induced enhancements in SWA. Conversely, injections of the NK-1R antagonist into the cortex of the ipsilateral hemisphere of the EEG electrode attenuated SWA compared to vehicle injections but this effect was not found after injections of the NK-1R antagonist into contralateral hemisphere as the EEG electrode. Non-rapid eye movement sleep and rapid eye movement sleep duration responses after NK-1R agonist and antagonist injections were not significantly different from the responses to the vehicle. Our findings indicate that the substance P and the NK-1R are involved in regulating SWA locally.

  20. Enhanced slow-wave EEG activity and thermoregulatory impairment following the inhibition of the lateral hypothalamus in the rat.

    PubMed

    Cerri, Matteo; Del Vecchio, Flavia; Mastrotto, Marco; Luppi, Marco; Martelli, Davide; Perez, Emanuele; Tupone, Domenico; Zamboni, Giovanni; Amici, Roberto

    2014-01-01

    Neurons within the lateral hypothalamus (LH) are thought to be able to evoke behavioural responses that are coordinated with an adequate level of autonomic activity. Recently, the acute pharmacological inhibition of LH has been shown to depress wakefulness and promote NREM sleep, while suppressing REM sleep. These effects have been suggested to be the consequence of the inhibition of specific neuronal populations within the LH, i.e. the orexin and the MCH neurons, respectively. However, the interpretation of these results is limited by the lack of quantitative analysis of the electroencephalographic (EEG) activity that is critical for the assessment of NREM sleep quality and the presence of aborted NREM-to-REM sleep transitions. Furthermore, the lack of evaluation of the autonomic and thermoregulatory effects of the treatment does not exclude the possibility that the wake-sleep changes are merely the consequence of the autonomic, in particular thermoregulatory, changes that may follow the inhibition of LH neurons. In the present study, the EEG and autonomic/thermoregulatory effects of a prolonged LH inhibition provoked by the repeated local delivery of the GABAA agonist muscimol were studied in rats kept at thermoneutral (24°C) and at a low (10°C) ambient temperature (Ta), a condition which is known to depress sleep occurrence. Here we show that: 1) at both Tas, LH inhibition promoted a peculiar and sustained bout of NREM sleep characterized by an enhancement of slow-wave activity with no NREM-to-REM sleep transitions; 2) LH inhibition caused a marked transitory decrease in brain temperature at Ta 10°C, but not at Ta 24°C, suggesting that sleep changes induced by LH inhibition at thermoneutrality are not caused by a thermoregulatory impairment. These changes are far different from those observed after the short-term selective inhibition of either orexin or MCH neurons, suggesting that other LH neurons are involved in sleep-wake modulation.

  1. Enhanced Slow-Wave EEG Activity and Thermoregulatory Impairment following the Inhibition of the Lateral Hypothalamus in the Rat

    PubMed Central

    Cerri, Matteo; Vecchio, Flavia Del; Mastrotto, Marco; Luppi, Marco; Martelli, Davide; Perez, Emanuele; Tupone, Domenico; Zamboni, Giovanni; Amici, Roberto

    2014-01-01

    Neurons within the lateral hypothalamus (LH) are thought to be able to evoke behavioural responses that are coordinated with an adequate level of autonomic activity. Recently, the acute pharmacological inhibition of LH has been shown to depress wakefulness and promote NREM sleep, while suppressing REM sleep. These effects have been suggested to be the consequence of the inhibition of specific neuronal populations within the LH, i.e. the orexin and the MCH neurons, respectively. However, the interpretation of these results is limited by the lack of quantitative analysis of the electroencephalographic (EEG) activity that is critical for the assessment of NREM sleep quality and the presence of aborted NREM-to-REM sleep transitions. Furthermore, the lack of evaluation of the autonomic and thermoregulatory effects of the treatment does not exclude the possibility that the wake-sleep changes are merely the consequence of the autonomic, in particular thermoregulatory, changes that may follow the inhibition of LH neurons. In the present study, the EEG and autonomic/thermoregulatory effects of a prolonged LH inhibition provoked by the repeated local delivery of the GABAA agonist muscimol were studied in rats kept at thermoneutral (24°C) and at a low (10°C) ambient temperature (Ta), a condition which is known to depress sleep occurrence. Here we show that: 1) at both Tas, LH inhibition promoted a peculiar and sustained bout of NREM sleep characterized by an enhancement of slow-wave activity with no NREM-to-REM sleep transitions; 2) LH inhibition caused a marked transitory decrease in brain temperature at Ta 10°C, but not at Ta 24°C, suggesting that sleep changes induced by LH inhibition at thermoneutrality are not caused by a thermoregulatory impairment. These changes are far different from those observed after the short-term selective inhibition of either orexin or MCH neurons, suggesting that other LH neurons are involved in sleep-wake modulation. PMID:25398141

  2. Repetitive transcranial magnetic stimulation induced slow wave activity modification: A possible role in disorder of consciousness differential diagnosis?

    PubMed

    Pisani, Laura Rosa; Naro, Antonino; Leo, Antonino; Aricò, Irene; Pisani, Francesco; Silvestri, Rosalia; Bramanti, Placido; Calabrò, Rocco Salvatore

    2015-12-15

    Slow wave activity (SWA) generation depends on cortico-thalamo-cortical loops that are disrupted in patients with chronic Disorders of Consciousness (DOC), including the Unresponsive Wakefulness Syndrome (UWS) and the Minimally Conscious State (MCS). We hypothesized that the modulation of SWA by means of a repetitive transcranial magnetic stimulation (rTMS) could reveal residual patterns of connectivity, thus supporting the DOC clinical differential diagnosis. We enrolled 10 DOC individuals who underwent a 24hh polysomnography followed by a real or sham 5Hz-rTMS over left primary motor area, and a second polysomnographic recording. A preserved sleep-wake cycle, a standard temporal progression of sleep stages, and a SWA perturbation were found in all of the MCS patients and in none of the UWS individuals, only following the real-rTMS. In conclusion, our combined approach may improve the differential diagnosis between MCS patients, who show a partial preservation of cortical plasticity, and UWS individuals, who lack such properties.

  3. Deactivation of the EBR-II complex

    SciTech Connect

    Michelbacher, J A; Earle, O K; Henslee, S P; Wells, P B; Zahn, T P

    1996-01-01

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D and D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D and D plan has necessitated this current action.

  4. Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles.

    PubMed

    Hwang, Sung Jin; Blair, Peter J A; Britton, Fiona C; O'Driscoll, Kate E; Hennig, Grant; Bayguinov, Yulia R; Rock, Jason R; Harfe, Brian D; Sanders, Kenton M; Ward, Sean M

    2009-10-15

    Interstitial cells of Cajal (ICC) generate pacemaker activity (slow waves) in gastrointestinal (GI) smooth muscles, but the mechanism(s) of pacemaker activity are controversial. Several conductances, such as Ca(2+)-activated Cl() channels (CaCC) and non-selective cation channels (NSCC) have been suggested to be involved in slow wave depolarization. We investigated the expression and function of a new class of CaCC, anoctamin 1 (ANO1), encoded by Tmem16a, which was discovered to be highly expressed in ICC in a microarray screen. GI muscles express splice variants of the Tmem16a transcript in addition to other paralogues of the Tmem16a family. ANO1 protein is expressed abundantly and specifically in ICC in all regions of the murine, non-human primate (Macaca fascicularis) and human GI tracts. CaCC blocking drugs, niflumic acid and 4,4-diisothiocyano-2,2-stillbene-disulfonic acid (DIDS) reduced the frequency and blocked slow waves in murine, primate, human small intestine and stomach in a concentration-dependent manner. Unitary potentials, small stochastic membrane depolarizations thought to underlie slow waves, were insensitive to CaCC blockers. Slow waves failed to develop by birth in mice homozygous for a null allele of Tmem16a (Tmem16a(tm1Bdh)(/tm1Bdh)) and did not develop subsequent to birth in organ culture, as in wildtype and heterozygous muscles. Loss of function of ANO1 did not inhibit the development of ICC networks that appeared structurally normal as indicated by Kit antibodies. These data demonstrate the fundamental role of ANO1 in the generation of slow waves in GI ICC.

  5. Isomerization of 1-butene on silica-alumina: Kinetic modeling and catalyst deactivation

    SciTech Connect

    Garcia-Ochoa, F.; Santos, A. . Dept. de Ingenieria Quimica)

    1995-02-01

    In the study of 1-butene isomerization on a silica-alumina catalyst 448--523 K, cis-2-butene and trans-2-butene are detected. Based on BSTR experimental data and zero-time prediction kinetic models using the Langmuir-Hinshelwood mechanism are assumed to develop kinetic equations for which a triangular reaction scheme is used. In four different mechanisms, one and two active sites take part in the surface reaction as the controlling step and then the deactivation rate determined considering two types of experimental data from BSTR and by measuring weight changes of a catalyst particle from coke deposition in an electrobalance. A coke precursor is assumed formed by reaction of adsorbed molecules (of any butene isomer) and gas-phase molecules. Activity and coke-content-time data allow one to choose a model whose activation energies of the deactivation kinetic parameter are closer in value. Coke is assumed deposited in a monolayer. The model chosen shows a triangular scheme, kinetic equations of the reaction for fresh catalyst with two active sites in the surface reaction, and the deactivation rate according to a coke formation mechanism in which a precursor is formed by reaction of 3 adsorbed molecules and 1 molecule in the gas phase. It accurately fits both BSTR conversion-time data and electrobalance coke-content data. The coke formation mechanism establishes relationships of activity vs. coke content and catalyst acidity which are supported by experimental results.

  6. Direct Interaction between the Voltage Sensors Produces Cooperative Sustained Deactivation in Voltage-gated H+ Channel Dimers*

    PubMed Central

    Okuda, Hiroko; Yonezawa, Yasushige; Takano, Yu; Okamura, Yasushi; Fujiwara, Yuichiro

    2016-01-01

    The voltage-gated H+ channel (Hv) is a voltage sensor domain-like protein consisting of four transmembrane segments (S1–S4). The native Hv structure is a homodimer, with the two channel subunits functioning cooperatively. Here we show that the two voltage sensor S4 helices within the dimer directly cooperate via a π-stacking interaction between Trp residues at the middle of each segment. Scanning mutagenesis showed that Trp situated around the original position provides the slow gating kinetics characteristic of the dimer's cooperativity. Analyses of the Trp mutation on the dimeric and monomeric channel backgrounds and analyses with tandem channel constructs suggested that the two Trp residues within the dimer are functionally coupled during Hv deactivation but are less so during activation. Molecular dynamics simulation also showed direct π-stacking of the two Trp residues. These results provide new insight into the cooperative function of voltage-gated channels, where adjacent voltage sensor helices make direct physical contact and work as a single unit according to the gating process. PMID:26755722

  7. 1997 project of the year, PUREX deactivation project

    SciTech Connect

    Bailey, R.W.

    1998-02-13

    At the end of 1992, the PUREX and UO{sub 3} plants were deemed no longer necessary for the defense needs of the United States. Although no longer necessary, they were very costly to maintain in their post-operation state. The DOE embarked on a deactivation strategy for these plants to reduce the costs of providing continuous surveillance of the facilities and their hazards. Deactivation of the PUREX and UO{sub 3} plants was estimated to take 5 years and cost $222.5 million and result in an annual surveillance and maintenance cost of $2 million. Deactivation of the PUREX/UO{sub 3} plants officially began on October 1, 1993. The deactivation was 15 months ahead of the original schedule and $75 million under the original cost estimate. The annual cost of surveillance and maintenance of the plants was reduced to less than $1 million.

  8. Deactivation of Pacemakers and Implantable Cardioverter-Defibrillators

    PubMed Central

    Kramer, Daniel B.; Mitchell, Susan L.; Brock, Dan W.

    2013-01-01

    Cardiac implantable electrical devices (CIEDs), including pacemakers (PMs) and implantable cardioverter-defibrillators (ICDs), are the most effective treatment for life-threatening arrhythmias. Patients or their surrogates may request device deactivation to avoid prolongation of the dying process or in other settings, such as after device-related complications or with changes in their health care goals. Despite published guidelines outlining theoretical and practical aspects of this common clinical scenario, significant uncertainty remains for both patients and health care providers regarding the ethical and legal status of CIED deactivation. This review outlines the ethical and legal principles supporting CIED deactivation at patients’ request, centered upon patient autonomy and authority over their own medical treatment. The empirical literature describing stakeholder views and experiences surrounding CIED deactivation is described, along with lessons for future research and practice guidance surrounding the care of patients with CIEDs. PMID:23217433

  9. Slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with chronic heart failure: from modeling to clinical application.

    PubMed

    Harada, Daisuke; Asanoi, Hidetsugu; Takagawa, Junya; Ishise, Hisanari; Ueno, Hiroshi; Oda, Yoshitaka; Goso, Yukiko; Joho, Shuji; Inoue, Hiroshi

    2014-10-15

    Influences of slow and deep respiration on steady-state sympathetic nerve activity remain controversial in humans and could vary depending on disease conditions and basal sympathetic nerve activity. To elucidate the respiratory modulation of steady-state sympathetic nerve activity, we modeled the dynamic nature of the relationship between lung inflation and muscle sympathetic nerve activity (MSNA) in 11 heart failure patients with exaggerated sympathetic outflow at rest. An autoregressive exogenous input model was utilized to simulate entire responses of MSNA to variable respiratory patterns. In another 18 patients, we determined the influence of increasing tidal volume and slowing respiratory frequency on MSNA; 10 patients underwent a 15-min device-guided slow respiration and the remaining 8 had no respiratory modification. The model predicted that a 1-liter, step increase of lung volume decreased MSNA dynamically; its nadir (-33 ± 22%) occurred at 2.4 s; and steady-state decrease (-15 ± 5%), at 6 s. Actually, in patients with the device-guided slow and deep respiration, respiratory frequency effectively fell from 16.4 ± 3.9 to 6.7 ± 2.8/min (P < 0.0001) with a concomitant increase in tidal volume from 499 ± 206 to 1,177 ± 497 ml (P < 0.001). Consequently, steady-state MSNA was decreased by 31% (P < 0.005). In patients without respiratory modulation, there were no significant changes in respiratory frequency, tidal volume, and steady-state MSNA. Thus slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with high levels of resting sympathetic tone as in heart failure.

  10. Redistribution of slow wave activity of sleep during pharmacological treatment of depression with paroxetine but not with nefazodone.

    PubMed

    Argyropoulos, Spilios V; Hicks, Jane A; Nash, John R; Bell, Caroline J; Rich, Anne S; Nutt, David J; Wilson, Sue

    2009-09-01

    It has been suggested that increase in delta sleep ratio (DSR), a marker for the relative distribution of slow wave activity (SWA) over night time, is associated with clinical response to antidepressant treatment. We examined this index and its relationship to rapid eye movement (REM) suppression before and during long-term treatment with nefazodone, which does not suppress REM sleep, and paroxetine which does. The effect of serotonin (5-HT(2A)) receptor blockade on the evolution of SWA during treatment was also investigated. In a double-blind, randomised, parallel group, 8-week study in 29 depressed patients, sleep electroencephalograms were performed at home at baseline, on night 3 and 10, and at 8 weeks of treatment with either paroxetine or nefazodone. SWA was automatically analysed and a modified DSR (mDSR) was derived, being the ratio of amount of SWA in the first 90 min of sleep to that in the second plus third 90-min periods. At baseline, the pattern of SWA over night time was similar to other reports of depressed patients. mDSR improved over the course of treatment; there was no difference between remitters and non-remitters but there was a significant drug effect and a significant drug x time effect with paroxetine patients having a much higher mDSR after treatment, regardless of clinical status. SWA and REM during antidepressant treatment appear to be interdependent and neither of them alone is likely to predict response to treatment. Higher mDSR did not predict therapeutic response. 5-HT(2A) blockade by nefazodone does not increase SWA above normal levels.

  11. Indigenous bacteria with antagonistic and plant-growth-promoting activities improve slow-filtration efficiency in soilless cultivation.

    PubMed

    Déniel, F; Rey, P; Chérif, M; Guillou, A; Tirilly, Y

    2004-07-01

    In tomato soilless culture, slow filtration allows one to control the development of diseases caused by pathogenic microorganisms. During the disinfecting process, microbial elimination is ensured by mechanical and biological factors. In this study, system efficacy was enhanced further to a biological activation of filter by inoculating the pozzolana grains contained in the filtering unit with 5 selected bacteria. Three strains identified as Pseudomonas putida and 2 as Bacillus cereus came from a filter whose high efficiency to eliminate pathogens has been proven over years. These 5 bacteria displayed either a plant growth promoting activity (P. putida strains) or antagonistic properties (B. cereus strains). Over the first months following their introduction in the filter, the bacterial colonisation of pozzolana grains was particularly high as compared to the one observed in the control filter. Conversely to Bacillus spp. populations, Pseudomonas spp. ones remained abundant throughout the whole cultural season. The biological activation of filter unit very significantly enhanced fungal elimination with respect to the one displayed by the control filter. Indeed, the 6-month period needed by the control filter to reach its best efficacy against Fusarium oxysporum was shortened for the bacteria-amended filter; in addition, a high efficacy filtration was got as soon as the first month. Fast colonization of pozzolana grains by selected bacteria and their subsequent interaction with F. oxysporum are likely responsible for filter efficiency. Our results suggest that Pseudomonas spp. act by competition for nutrients, and Bacillus spp. by antibiosis and (or) direct parasitism. Elimination of other fungal pathogens, i.e., Pythium spp., seems to differ from that of Fusarium since both filters demonstrated a high efficacy at the experiment start. Pythium spp. elimination appears to mainly rely on physical factors. It is worth noting that a certain percentage of the 5 pozzolana

  12. Reversible and Rapid Transfer-RNA Deactivation as a Mechanism of Translational Repression in Stress

    PubMed Central

    Czech, Andreas; Wende, Sandra; Mörl, Mario; Pan, Tao; Ignatova, Zoya

    2013-01-01

    Stress-induced changes of gene expression are crucial for survival of eukaryotic cells. Regulation at the level of translation provides the necessary plasticity for immediate changes of cellular activities and protein levels. In this study, we demonstrate that exposure to oxidative stress results in a quick repression of translation by deactivation of the aminoacyl-ends of all transfer-RNA (tRNA). An oxidative-stress activated nuclease, angiogenin, cleaves first within the conserved single-stranded 3′-CCA termini of all tRNAs, thereby blocking their use in translation. This CCA deactivation is reversible and quickly repairable by the CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase]. Through this mechanism the eukaryotic cell dynamically represses and reactivates translation at low metabolic costs. PMID:24009533

  13. Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress.

    PubMed

    Czech, Andreas; Wende, Sandra; Mörl, Mario; Pan, Tao; Ignatova, Zoya

    2013-08-01

    Stress-induced changes of gene expression are crucial for survival of eukaryotic cells. Regulation at the level of translation provides the necessary plasticity for immediate changes of cellular activities and protein levels. In this study, we demonstrate that exposure to oxidative stress results in a quick repression of translation by deactivation of the aminoacyl-ends of all transfer-RNA (tRNA). An oxidative-stress activated nuclease, angiogenin, cleaves first within the conserved single-stranded 3'-CCA termini of all tRNAs, thereby blocking their use in translation. This CCA deactivation is reversible and quickly repairable by the CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase]. Through this mechanism the eukaryotic cell dynamically represses and reactivates translation at low metabolic costs.

  14. Expertise-related deactivation of the right temporoparietal junction during musical improvisation.

    PubMed

    Berkowitz, Aaron L; Ansari, Daniel

    2010-01-01

    Musical training has been associated with structural changes in the brain as well as functional differences in brain activity when musicians are compared to nonmusicians on both perceptual and motor tasks. Previous neuroimaging comparisons of musicians and nonmusicians in the motor domain have used tasks involving prelearned motor sequences or synchronization with an auditorily presented sequence during the experiment. Here we use functional magnetic resonance imaging (fMRI) to examine expertise-related differences in brain activity between musicians and nonmusicians during improvisation--the generation of novel musical-motor sequences--using a paradigm that we previously used in musicians alone. Despite behaviorally matched performance, the two groups showed significant differences in functional brain activity during improvisation. Specifically, musicians deactivated the right temporoparietal junction (rTPJ) during melodic improvisation, while nonmusicians showed no change in activity in this region. The rTPJ is thought to be part of a ventral attentional network for bottom-up stimulus-driven processing, and it has been postulated that deactivation of this region occurs in order to inhibit attentional shifts toward task-irrelevant stimuli during top-down, goal-driven behavior. We propose that the musicians' deactivation of the rTPJ during melodic improvisation may represent a training-induced shift toward inhibition of stimulus-driven attention, allowing for a more goal-directed performance state that aids in creative thought.

  15. Deactivation mechanism and feasible regeneration approaches for the used commercial NH3-SCR catalysts.

    PubMed

    Yu, Yanke; Meng, Xiaoran; Chen, Jinsheng; Yin, Liqian; Qiu, Tianxue; He, Chi

    2016-01-01

    The deactivation and regeneration of selective catalytic reduction catalysts which have been used for about 37,000 h in a coal power plant are studied. The formation of Al2(SO4)3, surface deposition of K, Mg and Ca are primary reasons for the deactivation of the studied Selective catalytic reduction catalysts. Other factors such as activated V valence alteration also contribute to the deactivation. Reactivation of used catalysts via environment-friendly and finance-feasibly approaches, that is, dilute acid or alkali solution washing, would be of great interest. Three regeneration pathways were studied in the present work, and dilute nitric acid or sodium hydroxide solution could remove most of the contaminants over the catalyst surface and partly recover the catalytic performance. Notably, the acid-alkali combination washing, namely, catalysts treated by dilute sodium hydroxide and nitric acid solutions orderly, was much more effective than single washing approach in recovering the activity, and NO conversion increased from 23.6% to 89.5% at 380°C. The higher removal efficiency of contaminants, the lower dissolution of activated V, and promoting the formation of polymeric vanadate should be the main reason for recovery of the activity.

  16. Final deactivation report on the Radioactive Gas Processing Facility, Building 3033, and the Actinide Fabrication Facility, Building 3033A, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-09-01

    The purpose of this report is to document the condition of Buildings 3033 and 3033A, after completion of deactivation activities as outlined by the Department of Energy Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the Department of Energy Office of Environmental Restoration Program (EM-40). This report provides a history and profile of Buildings 3033 and 3033A prior to commencing deactivation activities and a profile of the building after completion of deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, and supporting documentation provided in the Office of Nuclear Materials and Facility Stabilization Program (EM-60) Turnover package are discussed. Buildings 3033 and 3033A will require access to facilitate required S and M activities to maintain the building safety envelope. Buildings 3033 and 3033A were stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S and M effort would be required to maintain the building safety envelope. Other than the minimal S and M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S and M. All materials have been removed from the building, and all utility systems, piping, and alarms have been deactivated.

  17. Brief and Rare Mental "Breaks" Keep You Focused: Deactivation and Reactivation of Task Goals Preempt Vigilance Decrements

    ERIC Educational Resources Information Center

    Ariga, Atsunori; Lleras, Alejandro

    2011-01-01

    We newly propose that the vigilance decrement occurs because the cognitive control system fails to maintain active the goal of the vigilance task over prolonged periods of time (goal habituation). Further, we hypothesized that momentarily deactivating this goal (via a switch in tasks) would prevent the activation level of the vigilance goal from…

  18. Psychomotor Slowing in Schizophrenia

    PubMed Central

    Morrens, Manuel; Hulstijn, Wouter; Sabbe, Bernard

    2007-01-01

    Psychomotor slowing (PS) is a cluster of symptoms that was already recognized in schizophrenia by its earliest investigators. Nevertheless, few studies have been dedicated to the clarification of the nature and the role of the phenomenon in this illness. Moreover, slowed psychomotor functioning is often not clearly delineated from reduced processing speed. The current, first review of all existing literature on the subject discusses the key findings. Firstly, PS is a clinically observable feature that is most frequently established by neuropsychological measures assessing speed of fine movements such as writing or tasks that require rapid fingertip manipulations or the maintenance of maximal speed over brief periods of time in manual activities. Moreover, the slowed performance on the various psychomotor measures has been demonstrated independent of medication and has also been found to be associated with negative symptoms and, to a lesser extent, with positive and depressive symptoms. Importantly, performance on the psychomotor tasks proved related to the patients' social, clinical, and functional outcomes. Several imaging studies showed slowed performance to coincide with dopaminergic striatal activity. Finally, conventional neuroleptics do not improve the patients' PS symptoms, in contrast to the atypical agents that do seem to produce modestly improving effects. PMID:17093141

  19. How Can the Deactivation of the Marine Prowler Community Best Serve the Marine Corps?

    DTIC Science & Technology

    2010-03-01

    Electronic Counter Measure Officers ( ECMO ) transitioning to new communities. Before the Prowler community deactivation begins it will undergo some...Prowler squadron consists of 180 Marines. Eight are pilots, twenty are Electronic Counter Measure Officers ( ECMO ), twenty seven are Sta:ffNon-Commissioned...three operational squadrons and an FRS. The FRS activation would be used to facilitate the production of any remaining pilots and ECMOs needed to

  20. Inhibition of the ribonuclease H activity of HIV-1 reverse transcriptase by GSK5750 correlates with slow enzyme-inhibitor dissociation.

    PubMed

    Beilhartz, Greg L; Ngure, Marianne; Johns, Brian A; DeAnda, Felix; Gerondelis, Peter; Götte, Matthias

    2014-06-06

    Compounds that efficiently inhibit the ribonuclease (RNase) H activity of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) have yet to be developed. Here, we demonstrate that GSK5750, a 1-hydroxy-pyridopyrimidinone analog, binds to the enzyme with an equilibrium dissociation constant (K(d)) of ~400 nM. Inhibition of HIV-1 RNase H is specific, as DNA synthesis is not affected. Moreover, GSK5750 does not inhibit the activity of Escherichia coli RNase H. Order-of-addition experiments show that GSK5750 binds to the free enzyme in an Mg(2+)-dependent fashion. However, as reported for other active site inhibitors, binding of GSK5750 to a preformed enzyme-substrate complex is severely compromised. The bound nucleic acid prevents access to the RNase H active site, which represents a possible biochemical hurdle in the development of potent RNase H inhibitors. Previous studies suggested that formation of a complex with the prototypic RNase H inhibitor β-thujaplicinol is slow, and, once formed, it dissociates rapidly. This unfavorable kinetic behavior can limit the potency of RNase H active site inhibitors. Although the association kinetics of GSK5750 remains slow, our data show that this compound forms a long lasting complex with HIV-1 RT. We conclude that slow dissociation of the inhibitor and HIV-1 RT improves RNase H active site inhibitors and may circumvent the obstacle posed by the inability of these compounds to bind to a preformed enzyme-substrate complex.

  1. Active wave experiment on the slow Z mode using a separated transmitter and receiver in the auroral ionosphere

    NASA Astrophysics Data System (ADS)

    James, G.

    2003-04-01

    Slow Z-mode waves were observed during the OEDIPUS-C (OC) mother-son rocket experiment. Waves were transmitted from an active double-V dipole on one subpayload and received at a distance of about 1200 m on a similar dipole connected to a synchronized receiver. Bistatic propagation was obtained at frequencies f in max{fc,fp}active dipole has been replaced by a model involving incoherent radiation from sounder-accelerated electrons (SAE). Previous publications show that the OC transmitting dipole produces strong SAE at energies from 10 eV up to 10 keV when the transmitting frequency sweeps through the above mentioned frequency range. The transmitting dipole pushes SAE helically downward in the general direction of the receiver. At every instant, each SAE particle creates radiation that obeys the resonance condition f-mfc = (nf/c)cos(theta)Vcos(alpha), where m is a signed integer, n the Z-mode refractive index, theta the angle between the direction of propagation of the radiation and B, V the electron speed and alpha its pitch angle. Using the reported SAE energies, it is found that time delays like those observed can be explained with Z-mode n and theta values, for m = 0, 1 or 2. The resonance condition and dispersion relation together require theta values near the upper-oblique resonance cone. The Z mode is

  2. Age-Dependency of Location of Epileptic Foci in "Continuous Spike-and-Waves during Sleep": A Parallel to the Posterior-Anterior Trajectory of Slow Wave Activity.

    PubMed

    Heinzle, Bigna Katrin Bölsterli; Bast, Thomas; Critelli, Hanne; Huber, Reto; Schmitt, Bernhard

    2017-02-01

    Background Epileptic encephalopathy with continuous spike-and-waves during sleep (CSWS) occurs during childhood and is characterized by an activation of spike wave complexes during slow wave sleep. The location of epileptic foci is variable, as is etiology. A relationship between the epileptic focus and age has been shown in various focal epilepsies following a posterior-anterior trajectory, and a link to brain maturation has been proposed.We hypothesize that in CSWS, maximal spike wave activity, corresponding to the epileptic focus, is related to age and shows a posterior-anterior evolution. Findings In a retrospective cross-sectional study on CSWS (22 EEGs of 22 patients aged 3.1-13.5 years), the location of the epileptic focus is related to age and follows a posterior-anterior course. Younger patients are more likely to have posterior foci than older ones. Conclusions We propose that the posterior-anterior trajectory of maximal spike waves in CSWS might reflect maturational changes of maximal expression of sleep slow waves, which follow a comparable course. Epileptic spike waves, that is, "hyper-synchronized slow waves" may occur at the place where the highest and therefore most synchronized slow waves meet brain tissue with an increased susceptibility to synchronization.

  3. Slow Pseudotachylites

    NASA Astrophysics Data System (ADS)

    Pec, M.; Stunitz, H.; Heilbronner, R.

    2011-12-01

    Tectonic pseudotachylites as solidified, friction induced melts are believed to be the only unequivocal evidence for paleo-earthquakes. Earthquakes occur when fast slip (1 - 3 m/s) propagates on a localized failure plane and are always related with stress drops. The mechanical work expended, together with the rock composition and the efficiency of thermal dissipation, controls whether the temperature increase on a localized slip plane will be sufficient to induce fusion. We report the formation of pseudotachylites during steady-state plastic flow at slow bulk shear strain rates (~10^-3 to ~10^-5 /s corresponding to slip rates of ~10^-6 to ~10^-8 m/s) in experiments performed at high confining pressures (500 MPa) and temperatures (300°C) corresponding to a depth of ~15 km. Crushed granitioid rock (Verzasca gneiss), grain size ≤ 200 μm, with 0.2 wt% water added was placed between alumina forcing blocks pre-cut at 45°, weld-sealed in platinum jackets and deformed with a constant displacement rate in a solid medium deformation apparatus (modified Griggs rig). Microstructural observations show the development of a S-C-C' fabric with C' slip zones being the dominant feature. Strain hardening in the beginning of the experiment is accompanied with compaction which is achieved by closely spaced R1 shears pervasively cutting the whole gouge zone and containing fine-grained material (d < 100 nm). The peak strength is achieved at γ ~ 2 at shear stress levels of 1350-1450 MPa when compaction ceases. During further deformation, large local displacements (γ > 10) are localized in less densely spaced, ~10 μm thick C'-C slip zones which develop predominantly in feldspars and often contain micas. In TEM, they appear to have no porosity consisting of partly amorphous material and small crystalline fragments with the average grain size of 20 nm. After the peak strength, the samples weaken by ~20 MPa and continue deforming up to γ ~ 4 without any stress drops. Strain

  4. Study of the scapular muscle latency and deactivation time in people with and without shoulder impingement.

    PubMed

    Phadke, Vandana; Ludewig, Paula M

    2013-04-01

    Changes in muscle activities are commonly associated with shoulder impingement and theoretically caused by changes in motor program strategies. The purpose of this study was to assess for differences in latencies and deactivation times of scapular muscles between subjects with and without shoulder impingement. Twenty-five healthy subjects and 24 subjects with impingement symptoms were recruited. Glenohumeral kinematic data and myoelectric activities using surface electrodes from upper trapezius (UT), lower trapezius (LT), serratus anterior (SA) and anterior fibers of deltoid were collected as subjects raised and lowered their arm in response to a visual cue. Data were collected during unloaded, loaded and after repetitive arm raising motion conditions. The variables were analyzed using 2 or 3 way mixed model ANOVAs. Subjects with impingement demonstrated significantly earlier contraction of UT while raising in the unloaded condition and an earlier deactivation of SA across all conditions during lowering of the arm. All subjects exhibited an earlier activation and delayed deactivation of LT and SA in conditions with a weight held in hand. The subjects with impingement showed some significant differences to indicate possible differences in motor control strategies. Rehabilitation measures should consider appropriate training measures to improve movement patterns and muscle control.

  5. Attenuation of the slow component of delayed rectification, action potential prolongation, and triggered activity in mice expressing a dominant-negative Kv2 alpha subunit.

    PubMed

    Xu, H; Barry, D M; Li, H; Brunet, S; Guo, W; Nerbonne, J M

    1999-10-01

    An in vivo experimental strategy, involving cardiac-specific expression of a mutant Kv 2.1 subunit that functions as a dominant negative, was exploited in studies focused on exploring the role of members of the Kv2 subfamily of pore-forming (alpha) subunits in the generation of functional voltage-gated K(+) channels in the mammalian heart. A mutant Kv2.1 alpha subunit (Kv2.1N216) was designed to produce a truncated protein containing the intracellular N terminus, the S1 membrane-spanning domain, and a portion of the S1/S2 loop. The truncated Kv2.1N216 was epitope tagged at the C terminus with the 8-amino acid FLAG peptide to generate Kv2. 1N216FLAG. No ionic currents are detected on expression of Kv2. 1N216FLAG in HEK-293 cells, although coexpression of this construct with wild-type Kv2.1 markedly reduced the amplitudes of Kv2. 1-induced currents. Using the alpha-myosin heavy chain promoter to direct cardiac specific expression of the transgene, 2 lines of Kv2. 1N216FLAG-expressing transgenic mice were generated. Electrophysiological recordings from ventricular myocytes isolated from these animals revealed that I(K, slow) is selectively reduced. The attenuation of I(K, slow) is accompanied by marked action potential prolongation, and, occasionally, spontaneous triggered activity (apparently induced by early afterdepolarizations) is observed. The time constant of inactivation of I(K, slow) in Kv2. 1N216FLAG-expressing cells (mean+/-SEM=830+/-103 ms; n=17) is accelerated compared with the time constant of I(K, slow) inactivation (mean+/-SEM=1147+/-57 ms; n=25) in nontransgenic cells. In addition, unlike I(K, slow) in wild-type cells, the component of I(K, slow) remaining in the Kv2.1N216FLAG-expressing cells is insensitive to 25 mmol/L tetraethylammonium. Taken together, these observations suggest that there are 2 distinct components of I(K, slow) in mouse ventricular myocytes and that Kv2 alpha subunits underlie the more slowly inactivating, tetraethylammonium

  6. [Slow activated voltage-dependent sodium current contribution in fast depolarization in the rabbit heart true pacemaker sinoatrial node].

    PubMed

    Golovko, V A

    2009-04-01

    The functional role of INa in initiation and conduction of cardiac true pacemaker activity remains uncertain. Therefore the goal of this work was to study the effects of Na+ substitution of action potentials parameters of the sinoatrial area cells. Transmembrane action potentials were recorded with 15 to 40 MOmega glass microelectrodes filled with 2.5 M KCl. The final preparations was about 5 x 3 mm in size, contained a portion sinoatrial node and the adjacent fragment of tissue of the right branch of the sinoatrial ring bundle and crista terminalis. All strips were allowed to beat spontaneously. We have registered that Na+ replacement of 50% in external solution causes an almost two-fold monotonous decrease of dV/dtmax and overshoot values of primary (3.2 V/s, n = 15), latent pacemaker (17 V/s, n = 16) and "conducting"-like cells (130 V/s, n = 16, control, 35 C) as compared with the control. Finally (at 30 min exposure) action potential frequency is slowed dowb by 20-30%. True pacemaker cells decreased action potential amplitude from 65 to 9 mV for 20-30 min 50% Na solution exposure. It should be noted that the cells of the "conducting"-like type demonstrated the generation block of action potential 30% Na exposure. At the same time dV/dtmax monotonously decreased from 3.1 to 1.5 V/s (true pacemaker) 16 vs 7 V/s (latent) and from 130 to 1.8 v/s ("conducting"). In our opinion, these facts deserve particular attention because it has been reported earlier that tetrodotoxin (20 mcM) addition in to the control solution caused the decrease of dV/dt from 100 to 4 V/s in latent pacemaker, whereas action potential amplitude is decreased by only some mV and the rate of beating by 1.5 times. As for true pacemaker cells, the TTX does not influence them.

  7. Deactivation of Ceria Supported Palladium through C–C Scission during Transfer Hydrogenation of Phenol with Alcohols

    DOE PAGES

    Nelson, Nicholas C.; Manzano, J. Sebastián; Slowing, Igor I.

    2016-11-21

    The stability of palladium supported on ceria (Pd/CeO2) was studied during liquid flow transfer hydrogenation using primary and secondary alcohols as hydrogen donors. For primary alcohols, the ceria support was reduced to cerium hydroxy carbonate within 14 h and was a contributing factor toward catalyst deactivation. For secondary alcohols, cerium hydroxy carbonate was not observed during the same time period and the catalyst was stable upon prolonged reaction. Regeneration through oxidation/reduction does not restore initial activity likely due to irreversible catalyst restructuring. Lastly, a deactivation mechanism involving C–C scission of acyl and carboxylate intermediates is proposed.

  8. Deactivation of Ceria Supported Palladium through C–C Scission during Transfer Hydrogenation of Phenol with Alcohols

    SciTech Connect

    Nelson, Nicholas C.; Manzano, J. Sebastián; Slowing, Igor I.

    2016-11-21

    The stability of palladium supported on ceria (Pd/CeO2) was studied during liquid flow transfer hydrogenation using primary and secondary alcohols as hydrogen donors. For primary alcohols, the ceria support was reduced to cerium hydroxy carbonate within 14 h and was a contributing factor toward catalyst deactivation. For secondary alcohols, cerium hydroxy carbonate was not observed during the same time period and the catalyst was stable upon prolonged reaction. Regeneration through oxidation/reduction does not restore initial activity likely due to irreversible catalyst restructuring. Lastly, a deactivation mechanism involving C–C scission of acyl and carboxylate intermediates is proposed.

  9. Tectonic and magmatic control of hydrothermal activity along the slow-spreading Central Indian Ridge, 8°S-17°S

    NASA Astrophysics Data System (ADS)

    Son, Juwon; Pak, Sang-Joon; Kim, Jonguk; Baker, Edward T.; You, Ok-Rye; Son, Seung-Kyu; Moon, Jai-Woon

    2014-05-01

    complex geology and expansive axial valleys typical of slow-spreading ridges makes evaluating their hydrothermal activity a challenge. This challenge has gone largely unmet, as the most undersampled MOR type for hydrothermal activity is slow spreading (20-55 mm/yr). Here we report the first systematic hydrothermal plume survey conducted on the Central Indian Ridge (CIR, 8°S-17°S), the most extensive such survey yet conducted on a slow-spreading ridge. Using a combined CTD/Miniature Autonomous Plume Recorder (MAPR) package, we used 118 vertical casts along seven segments of the CIR (˜700 km of ridge length) to estimate the frequency of hydrothermal activity. Evidence for hydrothermal activity (particle and methane plumes) was found on each of the seven spreading segments, with most plumes found between 3000 and 3500 m, generally <1000 m above bottom. We most commonly found plumes on asymmetric ridge sections where ultramafic massifs formed along one ridge flank near ridge-transform intersections or nontransform offsets. The estimated plume incidence (ph) for axial and wall casts (ph=0.30, 35 of 118 casts) is consistent with the existing global trend, indicating that the long-term magmatic budget on the CIR is the primary control on the spatial frequency of hydrothermal venting. Our results show that the tectonic fabric of the CIR strongly determines where hydrothermal venting is expressed, and that using only near-axial sampling might underestimate hydrothermal activity along slow-spreading and ultraslow-spreading ridges. Serpentinization is a minor contributor to the plume inventory, based on 15 profiles with methane anomalies only, predominantly at depths above the local valley walls.

  10. A nuclear protein tyrosine phosphatase TC-PTP is a potential negative regulator of the PRL-mediated signaling pathway: dephosphorylation and deactivation of signal transducer and activator of transcription 5a and 5b by TC-PTP in nucleus.

    PubMed

    Aoki, Naohito; Matsuda, Tsukasa

    2002-01-01

    In the present study we examined involvement of nuclear protein tyrosine phosphatase TC-PTP in PRL-mediated signaling. TC-PTP could dephosphorylate signal transducer and activator of transcription 5a (STAT5a) and STAT5b, but the apparent dephosphorylation activity of TC-PTP was weaker than that of cytosolic PTP1B 30 min after PRL stimulation in transfected COS-7 cells, whereas both STAT5a and STAT5b were dephosphorylated to the same extent by recombinant TC-PTP and PTP1B in vitro. Tyrosine-phosphorylated STAT5 was coimmunoprecipitated with substrate trapping mutants of TC-PTP, suggesting that STAT5 is a specific substrate of TC-PTP. These observations were further extended in mammary epithelial COMMA-1D cells stably expressing TC-PTP. A time-course study revealed that dephosphorylation of STAT5 by TC-PTP was delayed compared with that by cytosolic PTP1B due to nuclear localization of TC-PTP throughout PRL stimulation in mammary epithelial cells. Endogenous beta-casein gene expression and beta-casein gene promoter activation in COS-7 cells were largely suppressed by TC-PTP wild type as well as catalytically inactive mutants, suggesting that stable complexes formed between STAT5 and TC-PTP in the nucleus. Taken together, we conclude that TC-PTP is catalytically competent with respect to dephosphorylation and deactivation of PRL-activated STAT5 in the nucleus.

  11. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks

    PubMed Central

    Pletzer, Belinda; Kronbichler, Martin; Nuerk, Hans-Christoph; Kerschbaum, Hubert H.

    2015-01-01

    Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN) activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret. Here we compared the BOLD-response of 18 participants with high (HMAs) and 18 participants with low mathematics anxiety (LMAs) matched for their mathematical performance to two numerical tasks (number comparison, number bisection). During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval. PMID:25954179

  12. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks.

    PubMed

    Pletzer, Belinda; Kronbichler, Martin; Nuerk, Hans-Christoph; Kerschbaum, Hubert H

    2015-01-01

    Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN) activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret. Here we compared the BOLD-response of 18 participants with high (HMAs) and 18 participants with low mathematics anxiety (LMAs) matched for their mathematical performance to two numerical tasks (number comparison, number bisection). During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval.

  13. Final deactivation report on the radioisotope production Lab-D, Building 3031, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-08-01

    The purpose of this report is to document the condition of Bldg. 3031 after completion of deactivation activities as outlined by the Department of Energy Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the Department of Energy Office of Environmental Restoration (EM-40) Program. This report provides a profile of Bldg. 3031 before and after deactivation activities. Turnover items, such as the Postdeactivation Surveillance & Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, and supporting documentation provided in the Office of Nuclear Materials and Facility Stabilization Program (EM-60) Turnover package, are discussed. Building 3031 will require access to facilitate required surveillance and maintenance activities to maintain the building safety envelope. Building 3031 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal surveillance and maintenance effort would be required to maintain the building safety envelope. Other than the minimal surveillance and maintenance activities, the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required surveillance and maintenance. All materials have been removed from the building and the hot cell, and all utility systems, piping, and alarms have been deactivated.

  14. Diagnosis of industrial catalyst deactivation by surface characterization techniques

    SciTech Connect

    Menon, P.G. . Lab. voor Petrochemische Techniek Chalmers Univ. of Technology, Goeteborg . Dept. of Engineering Chemistry)

    1994-06-01

    The exact nature of the catalyst surface and the various ways of catalyst deactivation are subjects of great scientific interest and enormous economic importance. A brief review like the present one has to be very selective, giving only the underlying principles and representative examples. The focus of this review is on industrial catalysts, in particular, on the most commonly used supported metal and mixed-oxide type catalysts. Here again, only typical examples are chosen and cited to illustrate the specific types of problems involved in catalyst deactivation and how these problems wee diagnosed by a judicious application of the experimental techniques available today. Of the types of catalyst deactivation caused by coking, poisoning, and solid-state transformations, the emphasis in this review is on the last type. Changes in the chemical composition of the catalyst surface, restructuring or reconstruction of the surface, phase transformations, gradual enrichment/depletion of a particular catalyst component on/from the catalyst surface, these are the topics of prominence in this review. Even here, emphasis is on normally unexpected or unsuspected types of deactivation and the catalyst metamorphosis produced by the catalytic reaction itself, as distinct from the purely thermal effects at the reaction temperature. This review is aimed to provide some essential background information and possibly to serve as a reference guide for trouble-shooting when a catalyst is deactivated for rather mysterious reasons. 147 refs.

  15. Reactions of n-heptane and methylcyclopentane over an oxygen-modified molybdenum carbide catalyst. Study of coke formation, catalyst deactivation, and regeneration

    SciTech Connect

    Pham-Huu, C.; York, A.P.E.; Benaissa, M.; Del Gallo, P.; Ledoux, M.J.

    1995-04-01

    After an oxidative treatment, molybdenum carbide is an active and very selective catalyst for the isomerization of n-heptane. An important parameter in the choice of a catalyst for application in industry is its resistance to deactivation by coke formation, which can be caused by the presence of cyclic molecules. In this work, a study of the effect of methylcyclopentane (MCP) on the deactivation of the oxygen-modified molybdenum carbide catalyst has been performed. It has been found that the catalyst deactivates in the presence of pure MCP and that a lower activity for heptane isomerization is obtained after the reaction under MCP. TEM showed that coke formation is the cause of the deactivation. It has also been shown that increasing the total pressure when the MCP is reacted leads to a large decrease in the catalyst deactivation and that heptane isomerization can be carried out over this deactivated sample with only a small loss in activity. Further, the catalyst can be totally regenerated in air.

  16. Perovskite photovoltaics: Slow recombination unveiled

    NASA Astrophysics Data System (ADS)

    Moser, Jacques-E.

    2017-01-01

    One of the most salient features of hybrid lead halide perovskites is the extended lifetime of their photogenerated charge carriers. This property has now been shown experimentally to originate from a slow, thermally activated recombination process.

  17. Effects of electric stimulation of the hunger center in the lateral hypothalamus on slow electric activity and spike activity of fundal and antral stomach muscles in rabbits under conditions of hunger and satiation.

    PubMed

    Kromin, A A; Zenina, O Yu

    2013-09-01

    In chronic experiments on rabbits, the effect of electric stimulation of the hunger center in the lateral hypothalamus on myoelectric activity of the fundal and antral parts of the stomach was studied under conditions of hunger and satiation in the absence of food. Stimulation of the lateral hypothalamus in rabbits subjected to 24-h food deprivation and in previously fed rabbits produced incessant seeking behavior, which was followed by reorganization of the structure of temporal organization of slow wave electric activity of muscles of the stomach body and antrum specific for hungry and satiated animals. Increased hunger motivation during electric stimulation of the lateral hypothalamus manifested in the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles in rabbits subjected to 24-h food deprivation in the replacement of bimodal distribution of slow wave periods to a trimodal type typical of 2-day deprivation, while transition from satiation to hunger caused by electric stimulation of the lateral hypothalamus was associated with a shift from monomodal distributions of slow wave periods to a bimodal type typical of 24-h deprivation. Reorganization of the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles during electric stimulation of the lateral hypothalamus was determined by descending inhibitory influences of food motivational excitation on activity of the myogenic pacemaker of the lesser curvature of the stomach.

  18. Age association of language task induced deactivation induced in a pediatric population.

    PubMed

    Sun, Binjian; Berl, Madison M; Burns, Thomas G; Gaillard, William D; Hayes, Laura; Adjouadi, Malek; Jones, Richard A

    2013-01-15

    Task-induced deactivation (TID) potentially reflects the interactions between the default mode and task specific networks, which are assumed to be age dependent. The study of the age association of such interactions provides insight about the maturation of neural networks, and lays out the groundwork for evaluating abnormal development of neural networks in neurological disorders. The current study analyzed the deactivations induced by language tasks in 45 right-handed normal controls aging from 6 to 22 years of age. Converging results from GLM, dual regression and ROI analyses showed a gradual reduction in both the spatial extent and the strength of the TID in the DMN cortices as the brain matured from kindergarten to early adulthood in the absence of any significant change in task performance. The results may be ascribed to maturation leading to either improved multi-tasking (i.e. reduced deactivation) or reduced cognitive demands due to greater experience (affects both control and active tasks but leads to reduced overall difference). However, other effects, such as changes in the DMN connectivity that were not included in this study may also have influenced the results. In light of this, researchers should be cautious when investigating the maturation of DMN using TID. With a GLM analysis using the concatenated fMRI data from several paradigms, this study additionally identified an age associated increase of TID in the STG (bilateral), possibly reflecting the role of this area in speech perception and phonological processing.

  19. PUREX/UO{sub 3} facilities deactivation lessons learned history

    SciTech Connect

    Hamrick, D.G.; Gerber, M.S.

    1995-01-01

    The Plutonium-Uranium Extraction (PUREX) Facility operated from 1956-1972, from 1983-1988, and briefly during 1989-1990 to produce for national defense at the Hanford Site in Washington State. The Uranium Trioxide (UO{sub 3}) Facility operated at the Hanford Site from 1952-1972, 1984-1988, and briefly in 1993. Both plants were ordered to permanent shutdown by the U.S. Department of Energy (DOE) in December 1992, thus initiating their deactivation phase. Deactivation is that portion of a facility`s life cycle that occurs between operations and final decontamination and decommissioning (D&D). This document details the history of events, and the lessons learned, from the time of the PUREX Stabilization Campaign in 1989-1990, through the end of the first full fiscal year (FY) of the deactivation project (September 30, 1994).

  20. Robot Work Platform for Large Hot Cell Deactivation

    SciTech Connect

    BITTEN, E.J.

    2000-05-01

    The 324 Building, located at the Hanford Site near Richland, Washington, is being deactivated to meet state and federal cleanup commitments. The facility is currently in its third year of a nine-year project to complete deactivation and closure for long-term surveillance and maintenance. The 324 building contains large hot cells that were used for high-radiation, high-contamination chemical process development and demonstrations. A major obstacle for the 324 deactivation project is the inability to effectively perform deactivation tasks within highly radioactive, contaminated environments. Current strategies use inefficient, resource intensive technologies that significantly impact the cost and schedule for deactivation. To meet mandated cleanup commitments, there is a need to deploy rapid, more efficient remote/robot technologies to minimize worker exposure, accelerate work tasks, and eliminate the need for multiple specialized tool design and procurement efforts. This paper describes the functions and performance requirements for a crane-deployed remote/robot Work Platform possessing full access capabilities. The remote/robot Work Platform will deploy commercially available off-the-shelf tools and end effectors to support Project cleanup goals and reduce overall project risk and cost. The intent of this system is to maximize the use of off-the-shelf technologies that minimize additional new, unproven, or novel designs. This paper further describes procurement strategy, the selection process, the selected technology, and the current status of the procurement and lessons learned. Funding, in part, has been provided by the US Department of Energy, Office of Science and Technology, Deactivation and Decommissioning Focus Area.

  1. Pituitary adenylate cyclase-activating polypeptide (PACAP) inhibits the slow afterhyperpolarizing current sIAHP in CA1 pyramidal neurons by activating multiple signaling pathways.

    PubMed

    Taylor, Ruth D T; Madsen, Marita Grønning; Krause, Michael; Sampedro-Castañeda, Marisol; Stocker, Martin; Pedarzani, Paola

    2014-01-01

    The slow afterhyperpolarizing current (sIAHP ) is a calcium-dependent potassium current that underlies the late phase of spike frequency adaptation in hippocampal and neocortical neurons. sIAHP is a well-known target of modulation by several neurotransmitters acting via the cyclic AMP (cAMP) and protein kinase A (PKA)-dependent pathway. The neuropeptide pituitary adenylate cyclase activating peptide (PACAP) and its receptors are present in the hippocampal formation. In this study we have investigated the effect of PACAP on the sIAHP and the signal transduction pathway used to modulate intrinsic excitability of hippocampal pyramidal neurons. We show that PACAP inhibits the sIAHP , resulting in a decrease of spike frequency adaptation, in rat CA1 pyramidal cells. The suppression of sIAHP by PACAP is mediated by PAC1 and VPAC1 receptors. Inhibition of PKA reduced the effect of PACAP on sIAHP, suggesting that PACAP exerts part of its inhibitory effect on sIAHP by increasing cAMP and activating PKA. The suppression of sIAHP by PACAP was also strongly hindered by the inhibition of p38 MAP kinase (p38 MAPK). Concomitant inhibition of PKA and p38 MAPK indicates that these two kinases act in a sequential manner in the same pathway leading to the suppression of sIAHP. Conversely, protein kinase C is not part of the signal transduction pathway used by PACAP to inhibit sIAHP in CA1 neurons. Our results show that PACAP enhances the excitability of CA1 pyramidal neurons by inhibiting the sIAHP through the activation of multiple signaling pathways, most prominently cAMP/PKA and p38 MAPK. Our findings disclose a novel modulatory action of p38 MAPK on intrinsic excitability and the sIAHP, underscoring the role of this current as a neuromodulatory hub regulated by multiple protein kinases in cortical neurons.

  2. Systems and methods for deactivating a matrix converter

    SciTech Connect

    Ransom, Ray M.

    2013-04-02

    Systems and methods are provided for deactivating a matrix conversion module. An electrical system comprises an alternating current (AC) interface, a matrix conversion module coupled to the AC interface, an inductive element coupled between the AC interface and the matrix conversion module, and a control module. The control module is coupled to the matrix conversion module, and in response to a shutdown condition, the control module is configured to operate the matrix conversion module to deactivate the first conversion module when a magnitude of a current through the inductive element is less than a threshold value.

  3. Effects of fast and slow squat exercises on the muscle activity of the paretic lower extremity in patients with chronic stroke

    PubMed Central

    Choi, Young-Ah; Kim, Jin-Seop; Lee, Dong-Yeop

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effects of the speed of squat exercises on paretic lower extremity muscle activity in patients with hemiplegia following a stroke. [Subjects and Methods] Ten stroke patients performed fast and slow squat exercises for 2 seconds and 8 seconds, respectively. The muscle activities of the paretic and non-paretic sides of the rectus femoris muscle, the biceps femoris muscle, and the tibialis anterior muscle were assessed and compared using surface electromyography. [Results] The paretic side of the rectus femoris muscle showed statistically significant differences in the fast squat exercise group, which demonstrated the highest muscle activity during the rapid return to the upright position. [Conclusion] The rectus femoris muscle showed the highest muscle activity during the return to the upright position during the fast squat exercise, which indicates that the rectus femoris muscle is highly active during the fast squat exercise. PMID:26356385

  4. Effects of fast and slow squat exercises on the muscle activity of the paretic lower extremity in patients with chronic stroke.

    PubMed

    Choi, Young-Ah; Kim, Jin-Seop; Lee, Dong-Yeop

    2015-08-01

    [Purpose] The purpose of this study was to investigate the effects of the speed of squat exercises on paretic lower extremity muscle activity in patients with hemiplegia following a stroke. [Subjects and Methods] Ten stroke patients performed fast and slow squat exercises for 2 seconds and 8 seconds, respectively. The muscle activities of the paretic and non-paretic sides of the rectus femoris muscle, the biceps femoris muscle, and the tibialis anterior muscle were assessed and compared using surface electromyography. [Results] The paretic side of the rectus femoris muscle showed statistically significant differences in the fast squat exercise group, which demonstrated the highest muscle activity during the rapid return to the upright position. [Conclusion] The rectus femoris muscle showed the highest muscle activity during the return to the upright position during the fast squat exercise, which indicates that the rectus femoris muscle is highly active during the fast squat exercise.

  5. Spontaneous Slow Fluctuation of EEG Alpha Rhythm Reflects Activity in Deep-Brain Structures: A Simultaneous EEG-fMRI Study

    PubMed Central

    Omata, Kei; Hanakawa, Takashi; Morimoto, Masako; Honda, Manabu

    2013-01-01

    The emergence of the occipital alpha rhythm on brain electroencephalogram (EEG) is associated with brain activity in the cerebral neocortex and deep brain structures. To further understand the mechanisms of alpha rhythm power fluctuation, we performed simultaneous EEGs and functional magnetic resonance imaging recordings in human subjects during a resting state and explored the dynamic relationship between alpha power fluctuation and blood oxygenation level-dependent (BOLD) signals of the brain. Based on the frequency characteristics of the alpha power time series (APTS) during 20-minute EEG recordings, we divided the APTS into two components: fast fluctuation (0.04–0.167 Hz) and slow fluctuation (0–0.04 Hz). Analysis of the correlation between the MRI signal and each component revealed that the slow fluctuation component of alpha power was positively correlated with BOLD signal changes in the brain stem and the medial part of the thalamus and anterior cingulate cortex, while the fast fluctuation component was correlated with the lateral part of the thalamus and the anterior cingulate cortex, but not the brain stem. In summary, these data suggest that different subcortical structures contribute to slow and fast modulations of alpha spectra on brain EEG. PMID:23824708

  6. Resveratrol induces expression of the slow, oxidative phenotype in mdx mouse muscle together with enhanced activity of the SIRT1-PGC-1α axis.

    PubMed

    Ljubicic, Vladimir; Burt, Matthew; Lunde, John A; Jasmin, Bernard J

    2014-07-01

    Slower, more oxidative muscle fibers are more resistant to the dystrophic pathology in Duchenne muscular dystrophy (DMD) patients as well as in the preclinical mdx mouse model of DMD. Therefore, one therapeutic strategy for DMD focuses on promoting expression of the slow, oxidative myogenic program. In the current study, we explored the therapeutic potential of stimulating the slow, oxidative phenotype in mdx mice by feeding 6-wk-old animals with the natural phenol resveratrol (RSV; ~100 mg·kg(-1)·day(-1)) for 6 wk. Sirtuin 1 (SIRT1) activity and protein levels increased significantly, as well as peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) activity, in the absence of alterations in AMPK signaling. These adaptations occurred concomitant with evidence of a fast, glycolytic, to slower, more oxidative fiber type conversion, including mitochondrial biogenesis and increased expression of slower myosin heavy chain isoforms. These positive findings raised the question of whether increased exposure to RSV would result in greater therapeutic benefits. We discovered that an elevated RSV dose of ~500 mg·kg(-1)·day(-1) across a duration of 12 wk was clearly less effective at muscle remodeling in mdx mice. This treatment protocol failed to influence SIRT1 or AMPK signaling and did not result in a shift towards a slower, more oxidative phenotype. Taken together, this study demonstrates that RSV can stimulate SIRT1 and PGC-1α activation, which in turn may promote expression of the slow, oxidative myogenic program in mdx mouse muscle. The data also highlight the importance of selecting an appropriate dosage regimen of RSV to maximize its potential therapeutic effectiveness for future application in DMD patients.

  7. 200 Area Deactivation Project Facilities Authorization Envelope Document

    SciTech Connect

    DODD, E.N.

    2000-03-28

    Project facilities as required by HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The Authorization Agreements (AA's) do not identify the specific set of environmental safety and health requirements that are applicable to the facility. Therefore, the facility Authorization Envelopes are defined here to identify the applicable requirements. This document identifies the authorization envelopes for the 200 Area Deactivation.

  8. Compassionate deactivation of ventricular assist devices in pediatric patients.

    PubMed

    Hollander, Seth A; Axelrod, David M; Bernstein, Daniel; Cohen, Harvey J; Sourkes, Barbara; Reddy, Sushma; Magnus, David; Rosenthal, David N; Kaufman, Beth D

    2016-05-01

    Despite greatly improved survival in pediatric patients with end-stage heart failure through the use of ventricular assist devices (VADs), heart failure ultimately remains a life-threatening disease with a significant symptom burden. With increased demand for donor organs, liberalizing the boundaries of case complexity, and the introduction of destination therapy in children, more children can be expected to die while on mechanical support. Despite this trend, guidelines on the ethical and pragmatic issues of compassionate deactivation of VAD support in children are strikingly absent. As VAD support for pediatric patients increases in frequency, the pediatric heart failure and palliative care communities must work toward establishing guidelines to clarify the complex issues surrounding compassionate deactivation. Patient, family and clinician attitudes must be ascertained and education regarding the psychological, legal and ethical issues should be provided. Furthermore, pediatric-specific planning documents for use before VAD implantation as well as deactivation checklists should be developed to assist with decision-making at critical points during the illness trajectory. Herein we review the relevant literature regarding compassionate deactivation with a specific focus on issues related to children.

  9. A Summary of Published Mode Deactivation Therapy Articles

    ERIC Educational Resources Information Center

    Apsche, Jack A.

    2006-01-01

    This article summarizes all of the Mode Deactivation Therapy, (MDT) articles published to date. MDT has shown to be more effective than Cognitive Behavior Therapy, (CBT), Social Skills Training, (SST), and Dialectical Behavior Therapy, (DBT), Apsche, Bass, Jennings, Murphy, Hunter, and Siv, (2005); Apsche & Bass, (2005); Apsche, Bass & Murphy,…

  10. Mode Deactivation Therapy (MDT) Family Therapy: A Theoretical Case Analysis

    ERIC Educational Resources Information Center

    Apsche, J. A.; Ward Bailey, S. R.

    2004-01-01

    This case study presents a theoretical analysis of implementing mode deactivation therapy (MDT) (Apsche & Ward Bailey, 2003) family therapy with a 13 year old Caucasian male. MDT is a form of cognitive behavioral therapy (CBT) that combines the balance of dialectical behavior therapy (DBT) (Linehan, 1993), the importance of perception from…

  11. Use and disuse and the control of acetylcholinesterase activity in fast and slow twitch muscle of rat

    NASA Technical Reports Server (NTRS)

    Dettbarn, W. D.; Groswald, D.; Gupta, R. C.; Misulis, K. E.

    1985-01-01

    The role of acetylcholinesterase (AChE) in neuromuscular transmission is relatively well established, little is known, however, of the mechanisms that regulate its synthesis and control its specific distribution in fast and slow muscle. Innervation plays an important role in the regulation of AChE and elimination of the influence of the nerve by surgical denervation results in a loss of AChE. The influences of the nerve and how they are mediated was investigated. It is suggested that muscle usage and other factors such as materials carried by axonal transport may participate in the regulation of this enzyme. The mechanisms that regulate AChE and its molecular forms in two functionally different forms are studied.

  12. FOXO/DAF-16 Activation Slows Down Turnover of the Majority of Proteins in C. elegans

    SciTech Connect

    Dhondt, Ineke; Petyuk, Vladislav A.; Cai, Huaihan; Vandemeulebroucke, Lieselot; Vierstraete, Andy; Smith, Richard D.; Depuydt, Geert; Braeckman, Bart  P.

    2016-09-13

    Most aging hypotheses assume the accumulation of damage, resulting in gradual physiological decline and, ultimately, death. Avoiding protein damage accumulation by enhanced turnover should slow down the aging process and extend the lifespan. But, lowering translational efficiency extends rather than shortens the lifespan in C. elegans. We studied turnover of individual proteins in the long-lived daf-2 mutant by combining SILeNCe (stable isotope labeling by nitrogen in Caenorhabditiselegans) and mass spectrometry. Intriguingly, the majority of proteins displayed prolonged half-lives in daf-2, whereas others remained unchanged, signifying that longevity is not supported by high protein turnover. We found that this slowdown was most prominent for translation-related and mitochondrial proteins. Conversely, the high turnover of lysosomal hydrolases and very low turnover of cytoskeletal proteins remained largely unchanged. The slowdown of protein dynamics and decreased abundance of the translational machinery may point to the importance of anabolic attenuation in lifespan extension, as suggested by the hyperfunction theory.

  13. Efficiency of an Active Rehabilitation Intervention in a Slow-to-Recover Paediatric Population following Mild Traumatic Brain Injury: A Pilot Study

    PubMed Central

    Imhoff, Sarah; Carrier-Toutant, Frédérike; Boulard, Geneviève

    2016-01-01

    Objective. The aim of this study was to identify whether the addition of an individualised Active Rehabilitation Intervention to standard care influences recovery of young patients who are slow-to-recover following a mTBI. Methods. Fifteen participants aged 15 ± 2 years received standard care and an individualised Active Rehabilitation Intervention which included (1) low- to high-intensity aerobic training; (2) sport-specific coordination exercises; and (3) therapeutic balance exercises. The following criteria were used to measure the resolution of signs and symptoms of mTBI: (1) absence of postconcussion symptoms for more than 7 consecutive days; (2) cognitive function corresponding to normative data; and (3) absence of deficits in coordination and balance. Results. The Active Rehabilitation Intervention lasted 49 ± 17 days. The duration of the intervention was correlated with self-reported participation (x-=84.64±19.63%, r = −0.792, p < 0.001). The average postconcussion symptom inventory (PCSI) score went from a total of 36.85 ± 23.21 points to 4.31 ± 5.04 points after the intervention (Z = −3.18, p = 0.001). Conclusion. A progressive submaximal Active Rehabilitation Intervention may represent an important asset in the recovery of young patients who are slow-to-recover following a mTBI. PMID:28078321

  14. Pituitary adenylate cyclase-activating polypeptide (PACAP) inhibits the slow afterhyperpolarizing current sIAHP in CA1 pyramidal neurons by activating multiple signaling pathways

    PubMed Central

    Taylor, Ruth DT; Madsen, Marita Grønning; Krause, Michael; Sampedro-Castañeda, Marisol; Stocker, Martin; Pedarzani, Paola

    2014-01-01

    The slow afterhyperpolarizing current (sIAHP) is a calcium-dependent potassium current that underlies the late phase of spike frequency adaptation in hippocampal and neocortical neurons. sIAHP is a well-known target of modulation by several neurotransmitters acting via the cyclic AMP (cAMP) and protein kinase A (PKA)-dependent pathway. The neuropeptide pituitary adenylate cyclase activating peptide (PACAP) and its receptors are present in the hippocampal formation. In this study we have investigated the effect of PACAP on the sIAHP and the signal transduction pathway used to modulate intrinsic excitability of hippocampal pyramidal neurons. We show that PACAP inhibits the sIAHP, resulting in a decrease of spike frequency adaptation, in rat CA1 pyramidal cells. The suppression of sIAHP by PACAP is mediated by PAC1 and VPAC1 receptors. Inhibition of PKA reduced the effect of PACAP on sIAHP, suggesting that PACAP exerts part of its inhibitory effect on sIAHP by increasing cAMP and activating PKA. The suppression of sIAHP by PACAP was also strongly hindered by the inhibition of p38 MAP kinase (p38 MAPK). Concomitant inhibition of PKA and p38 MAPK indicates that these two kinases act in a sequential manner in the same pathway leading to the suppression of sIAHP. Conversely, protein kinase C is not part of the signal transduction pathway used by PACAP to inhibit sIAHP in CA1 neurons. Our results show that PACAP enhances the excitability of CA1 pyramidal neurons by inhibiting the sIAHP through the activation of multiple signaling pathways, most prominently cAMP/PKA and p38 MAPK. Our findings disclose a novel modulatory action of p38 MAPK on intrinsic excitability and the sIAHP, underscoring the role of this current as a neuromodulatory hub regulated by multiple protein kinases in cortical neurons. © 2013 The Authors. Hippocampus Published by Wiley Periodicals, Inc. PMID:23996525

  15. Slow feedback inhibition in the CA3 area of the rat hippocampus by synergistic synaptic activation of mGluR1 and mGluR5.

    PubMed

    Mori, Masahiro; Gerber, Urs

    2002-11-01

    Interneurons are critical in regulating the excitability of principal cells in neuronal circuits, thereby modulating the output of neuronal networks. We investigated synaptically evoked inhibitory responses in CA3 pyramidal cells mediated by metabotropic glutamate receptors (mGluRs) expressed somatodendritically by interneurons. Although pharmacological activation of mGluRs in interneurons has been shown to enhance their excitability, the inability to record mGluR-mediated synaptic responses has precluded detailed characterization of mGluR function in hippocampal interneurons. We found that a single extracellular pulse in CA3 stratum pyramidale was sufficient to induce disynaptic inhibitory responses mediated by postsynaptic mGluRs of the interneurons in CA3 pyramidal cells of hippocampal slice cultures. The disynaptic inhibitory response followed a short-latency monosynaptic inhibitory response, and was observed at stimulus intensities evoking half-maximal monosynaptic IPSCs. Synergistic activation of mGluR1 and mGluR5 was required to induce the full inhibitory response. When recordings were obtained from interneurons in CA3 stratum radiatum or stratum oriens, a single extracellular stimulus induced a slow inward cationic current with a time course corresponding to the slow inhibitory response measured in pyramidal cells. DCG IV, a group II mGluR agonist, which specifically blocks synaptic transmission through mossy fibres, had no effect on mGluR-mediated synaptic responses in interneurons, suggesting that feed-forward inhibition via mossy fibres is not involved. Thus, postsynaptic mGluR1 and mGluR5 in hippocampal interneurons cooperatively mediate slow feedback inhibition of CA3 pyramidal cells. This mechanism may allow interneurons to monitor activity levels from populations of neighbouring principal cells to adapt inhibitory tone to the state of the network.

  16. Extended Catalyst Longevity Via Supercritical Isobutane Regeneration of a Partially Deactivated USY Alkylation Catalyst

    SciTech Connect

    Daniel M. Ginosar; David N. Thompson; Kyle C. Burch; David J. Zalewski

    2005-05-01

    Off-line, in situ activity recovery of a partially deactivated USY zeolite catalyst used for isobutane/butene alkylation was examined in a continuous-flow reaction system employing supercritical isobutane. Catalyst samples were deactivated in a controlled manner by running them to either to a fixed butene conversion level of 95% or a fixed time on stream of three hours, and then exposing the catalyst to supercritical isobutane to restore activity. Activity recovery was determined by comparing alkylation activity before and after the regeneration step. Both single and multiple regenerations were performed. Use of a 95% butene conversion level criterion to terminate the reaction step afforded 86% activity recovery for a single regeneration and provided nine sequential reaction steps for the multiple regeneration studies. Employing a fixed 3 h time on stream criterion resulted in nearly complete activity recovery for a single regeneration, and 24 reaction steps were demonstrated in sequence for the multiple regeneration process, producing only minor product yield declines per step. This resulted in a 12-fold increase in catalyst longevity versus unregenerated catalyst.

  17. Intensity of activation and timing of deactivation modulate elastic energy storage and release in a pennate muscle and account for gait-specific initiation of limb protraction in the horse.

    PubMed

    Lichtwark, Glen A; Watson, Johanna C; Mavrommatis, Sophia; Wilson, Alan M

    2009-08-01

    The equine biceps brachii (biceps) initiates rapid limb protraction through a catapult mechanism. Elastic strain energy is slowly stored in an internal tendon and is then rapidly released to protract the forelimb. The muscle fibres are short, have little scope for length change and can therefore only shorten slowly compared with the speed at which the whole muscle must shorten, which makes them poor candidates for driving rapid limb protraction. We suggest that the muscle fibres in the biceps act to modulate the elastic energy output of the muscle-tendon unit (MTU) to meet the demands of locomotion under different conditions. We hypothesise that more elastic strain energy is stored and released from the biceps MTU during higher speed locomotion to accommodate the increase in energy required to protract the limb and that this can be achieved by varying the length change and activation conditions of the muscle. We examined the work performed by the biceps during trot and canter using an inverse dynamics analysis (IDA). We then used excised biceps muscles to determine how much work could be performed by the muscle in active and passive stretch-shorten cycles. A muscle model was developed to investigate the influence of changes in activation parameters on energy storage and energy return from the biceps MTU. Increased biceps MTU length change and increased work performed by the biceps MTU were found at canter compared with at trot. More work was performed by the ex vivo biceps MTU following activation of the muscle and by increasing muscle length change. However, the ratio of active to passive work diminished with increasing length change. The muscle model demonstrated that duration and timing of activation during stretch-shorten cycles could modulate the elastic energy storage and return from the biceps. We conclude that the equine biceps MTU acts as a tuneable spring and the contractile component functions to modulate the energy required for rapid forelimb

  18. Slow Earthquakes Triggered by Typhoons

    NASA Astrophysics Data System (ADS)

    Liu, C.; Linde, A. T.; Sacks, I. S.

    2006-12-01

    Taiwan experiences very high deformation rates, particularly along its eastern margins. To investigate this region, we have started (in 2003) to install several small networks of Sacks-Evertson strainmeters. The initial data from all sites show characteristics of good quality: tidal signals with very high signal to noise ratio and large (~10,000 counts on 24 bit ADC system) amplitudes; strains trending into contraction with rates that decrease exponentially with time and earthquakes clearly recorded. Additionally the instruments have recorded a number of slow strain changes with durations ranging from about an hour up to a few days; we interpret these signals in terms of slow earthquakes. All of the slow events identified to date occur at the times of typhoons passing over or very close to the study area, but not all typhoons are associated with slow strain events (9 typhoons in 2004 were accompanied by 5 slow events). Seismicity for the area deliniates a roughly north-south striking steeply dipping (to the west) zone with reverse slip; the shallowest extent of the zone is just inland. We look for source solutions consistent with that tectonic setting. The slow events exhibit a considerable range of amplitude and complexity; small, short amplitude events have a quite simple and smooth waveform; the longest (2 days) and largest (100 to 350 nanostrain at 3 sites) has waveforms with a lot of structure. The similarity among the stations (located in an ~isosceles triangular array with spacing ~10 km and 4 km) is indicative of rupture propagation of a slow slip source (equivalent magnitude about 5). We are able to match the essential character of the data with a very simple model of a downward propagating line source with uniform slip; the largest slow event appears to be comprised of 3 sub-events all starting at a depth of ~3 km with the final sub-event propagating to a depth ~10 km. Typhoon activity produces a large increase in short period (~sec) energy so it is not

  19. CFTR: the nucleotide binding folds regulate the accessibility and stability of the activated state

    PubMed Central

    1996-01-01

    The functional roles of the two nucleotide binding folds, NBF1 and NBF2, in the activation of the cystic fibrosis transmembrane conductance regulator (CFTR) were investigated by measuring the rates of activation and deactivation of CFTR Cl- conductance in Xenopus oocytes. Activation of wild-type CFTR in response to application of forskolin and 3-isobutyl-1-methylxanthine (IBMX) was described by a single exponential. Deactivation after washout of the cocktail consisted of two phases: an initial slow phase, described by a latency, and an exponential decline. Rate analysis of CFTR variants bearing analogous mutations in NBF1 and NBF2 permitted us to characterize amino acid substitutions according to their effects on the accessibility and stability of the active state. Access to the active state was very sensitive to substitutions for the invariant glycine (G551) in NBF1, where mutations to alanine (A), serine (S), or aspartic acid (D) reduced the apparent on rate by more than tenfold. The analogous substitutions in NBF2 (G1349) also reduced the on rate, by twofold to 10-fold, but substantially destabilized the active state as well, as judged by increased deactivation rates. In the putative ATP-binding pocket of either NBF, substitution of alanine, glutamine (Q), or arginine (R) for the invariant lysine (K464 or K1250) reduced the on rate similarly, by two- to fourfold. In contrast, these analogous substitutions produced opposite effects on the deactivation rate. NBF1 mutations destabilized the active state, whereas the analogous substitutions in NBF2 stabilized the active state such that activation was prolonged compared with that seen with wild-type CFTR. Substitution of asparagine (N) for a highly conserved aspartic acid (D572) in the ATP-binding pocket of NBF1 dramatically slowed the on rate and destabilized the active state. In contrast, the analogous substitution in NBF2 (D1370N) did not appreciably affect the on rate and markedly stabilized the active state

  20. Seeing with Profoundly Deactivated Mid-level Visual Areas: Non-hierarchical Functioning in the Human Visual Cortex

    PubMed Central

    Gilaie-Dotan, Sharon; Perry, Anat; Bonneh, Yoram; Malach, Rafael

    2009-01-01

    A fundamental concept in visual processing is that activity in high-order object-category distinctive regions (e.g., lateral occipital complex, fusiform face area, middle temporal+) is dependent on bottom-up flow of activity in earlier retinotopic areas (V2, V3, V4) whose main input originates from primary visual cortex (V1). Thus, activity in down stream areas should reflect lower-level inputs. Here we qualify this notion reporting case LG, a rare case of developmental object agnosia and prosopagnosia. In this person, V1 was robustly activated by visual stimuli, yet intermediate areas (V2–V4) were strongly deactivated. Despite this intermediate deactivation, activity in down stream visual areas remained robust, showing selectivity for houses and places, while selectivity for faces and objects was impaired. The extent of impairment evident in functional magnetic resonance imaging and electroencephalography activations was somewhat larger in the left hemisphere. This pattern of brain activity, coupled with fairly adequate everyday visual performance is compatible with models emphasizing the role of nonlinear local “amplification” of neuronal inputs in eliciting activity in ventral and dorsal visual pathways as well as perceptual experience in the human brain. Thus, while the proper functioning of intermediate areas appears essential for specialization in the cortex, daily visual behavior and reading are maintained even with deactivated intermediate visual areas. PMID:19015369

  1. FOXO/DAF-16 Activation Slows Down Turnover of the Majority of Proteins in C. elegans

    DOE PAGES

    Dhondt, Ineke; Petyuk, Vladislav A.; Cai, Huaihan; ...

    2016-09-13

    Most aging hypotheses assume the accumulation of damage, resulting in gradual physiological decline and, ultimately, death. Avoiding protein damage accumulation by enhanced turnover should slow down the aging process and extend the lifespan. But, lowering translational efficiency extends rather than shortens the lifespan in C. elegans. We studied turnover of individual proteins in the long-lived daf-2 mutant by combining SILeNCe (stable isotope labeling by nitrogen in Caenorhabditiselegans) and mass spectrometry. Intriguingly, the majority of proteins displayed prolonged half-lives in daf-2, whereas others remained unchanged, signifying that longevity is not supported by high protein turnover. We found that this slowdown wasmore » most prominent for translation-related and mitochondrial proteins. Conversely, the high turnover of lysosomal hydrolases and very low turnover of cytoskeletal proteins remained largely unchanged. The slowdown of protein dynamics and decreased abundance of the translational machinery may point to the importance of anabolic attenuation in lifespan extension, as suggested by the hyperfunction theory.« less

  2. EEG frequency tagging using ultra-slow periodic heat stimulation of the skin reveals cortical activity specifically related to C fiber thermonociceptors

    PubMed Central

    Colon, Elisabeth; Liberati, Giulia; Mouraux, André

    2017-01-01

    The recording of event-related brain potentials triggered by a transient heat stimulus is used extensively to study nociception and diagnose lesions or dysfunctions of the nociceptive system in humans. However, these responses are related exclusively to the activation of a specific subclass of nociceptive afferents: quickly-adapting thermonociceptors. In fact, except if the activation of Aδ fibers is avoided or if A fibers are blocked, these responses specifically reflect activity triggered by the activation of Type 2 quickly-adapting A fiber mechano-heat nociceptors (AMH-2). Here, we propose a novel method to isolate, in the human electroencephalogram (EEG), cortical activity related to the sustained periodic activation of heat-sensitive thermonociceptors, using very slow (0.2 Hz) and long-lasting (75 s) sinusoidal heat stimulation of the skin between baseline and 50°C. In a first experiment, we show that when such long-lasting thermal stimuli are applied to the hand dorsum of healthy volunteers, the slow rises and decreases of skin temperature elicit a consistent periodic EEG response at 0.2 Hz and its harmonics, as well as a periodic modulation of the magnitude of theta, alpha and beta band EEG oscillations. In a second experiment, we demonstrate using an A fiber block that these EEG responses are predominantly conveyed by unmyelinated C fiber nociceptors. The proposed approach constitutes a novel mean to study C fiber function in humans, and to explore the cortical processing of tonic heat pain in physiological and pathological conditions. PMID:27871921

  3. EEG frequency tagging using ultra-slow periodic heat stimulation of the skin reveals cortical activity specifically related to C fiber thermonociceptors.

    PubMed

    Colon, Elisabeth; Liberati, Giulia; Mouraux, André

    2017-02-01

    The recording of event-related brain potentials triggered by a transient heat stimulus is used extensively to study nociception and diagnose lesions or dysfunctions of the nociceptive system in humans. However, these responses are related exclusively to the activation of a specific subclass of nociceptive afferents: quickly-adapting thermonociceptors. In fact, except if the activation of Aδ fibers is avoided or if A fibers are blocked, these responses specifically reflect activity triggered by the activation of Type 2 quickly-adapting A fiber mechano-heat nociceptors (AMH-2). Here, we propose a novel method to isolate, in the human electroencephalogram (EEG), cortical activity related to the sustained periodic activation of heat-sensitive thermonociceptors, using very slow (0.2Hz) and long-lasting (75s) sinusoidal heat stimulation of the skin between baseline and 50°C. In a first experiment, we show that when such long-lasting thermal stimuli are applied to the hand dorsum of healthy volunteers, the slow rises and decreases of skin temperature elicit a consistent periodic EEG response at 0.2Hz and its harmonics, as well as a periodic modulation of the magnitude of theta, alpha and beta band EEG oscillations. In a second experiment, we demonstrate using an A fiber block that these EEG responses are predominantly conveyed by unmyelinated C fiber nociceptors. The proposed approach constitutes a novel mean to study C fiber function in humans, and to explore the cortical processing of tonic heat pain in physiological and pathological conditions.

  4. The effect of nanofiber based filter morphology on bacteria deactivation during water filtration

    NASA Astrophysics Data System (ADS)

    Kimmer, Dusan; Vincent, Ivo; Lev, Jaroslav; Kalhotka, Libor; Mikula, Premysl; Korinkova, Radka; Sambaer, Wannes; Zatloukal, Martin

    2013-04-01

    Procedures permitting to prepare homogeneous functionalized nanofibre structures based on polyurethanes modified by phthalocyanines (PCs) by employing a suitable combination of variables during the electrospinning process are presented. Compared are filtration and bacteria deactivation properties of open and planar nanostructures with PCs embedded into polyurethane chain by a covalent bond protecting the release of active organic compound during the filtration process. Finding that the morphology of functionalized nanofibre structures have an effect on bacterial growth was confirmed by microbiological and physico-chemical analyses, such as the inoculation in a nutrient agar culture medium and flow cytometry.

  5. Reduction of nocturnal slow-wave activity affects daytime vigilance lapses and memory encoding but not reaction time or implicit learning.

    PubMed

    Van Der Werf, Ysbrand D; Altena, Ellemarije; Vis, José C; Koene, Teddy; Van Someren, Eus J W

    2011-01-01

    Total sleep deprivation in healthy subjects has a profound effect on the performance on tasks measuring sustained attention or vigilance. We here report how a selective disruption of deep sleep only, that is, selective slow-wave activity (SWA) reduction, affects the performance of healthy well-sleeping subjects on several tasks: a "simple" and a "complex" vigilance task, a declarative learning task, and an implicit learning task despite unchanged duration of sleep. We used automated electroencephalogram (EEG) dependent acoustic feedback aimed at selective interference with-and reduction of-SWA. In a within-subject repeated measures crossover design, performance on the tasks was assessed in 13 elderly adults without sleep complaints after either SWA-reduction or after normal sleep. The number of vigilance lapses increased as a result of SWA reduction, irrespective of the type of vigilance task. Recognition on the declarative memory task was also affected by SWA reduction, associated with a decreased activation of the right hippocampus on encoding (measured with fMRI) suggesting a weaker memory trace. SWA reduction, however, did not affect reaction time on either of the vigilance tasks or implicit memory task performance. These findings suggest a specific role of slow oscillations in the subsequent daytime ability to maintain sustained attention and to encode novel declarative information but not to maintain response speed or to build implicit memories. Of particular interest is that selective SWA reduction can mimic some of the effects of total sleep deprivation, while not affecting sleep duration.

  6. Insight into deactivation of commercial SCR catalyst by arsenic: an experiment and DFT study.

    PubMed

    Peng, Yue; Li, Junhua; Si, Wenzhe; Luo, Jinming; Dai, Qizhou; Luo, Xubiao; Liu, Xin; Hao, Jiming

    2014-12-02

    Fresh and arsenic-poisoned V2O5–WO3/TiO2 catalysts are investigated by experiments and DFT calculations for SCR activity and the deactivation mechanism. Poisoned catalyst (1.40% of arsenic) presents lower NO conversion and more N2O formation than fresh. Stream (5%) could further decrease the activity of poisoned catalyst above 350 °C. The deactivation is not attributed to the loss of surface area or phase transformation of TiO2 at a certain arsenic content, but due to the coverage of the V2O5 cluster and the decrease in the surface acidity: the number of Lewis acid sites and the stability of Brønsted acid sites. Large amounts of surface hydroxyl induced by H2O molecules provide more unreactive As–OH groups and give rise to a further decrease in the SCR activity. N2O is mainly from NH3 unselective oxidation at high temperatures since the reducibility of catalysts and the number of surface-active oxygens are improved by As2O5. Finally, the reaction pathway seems unchanged after poisoning: NH3 adsorbed on both Lewis and Brønsted acid sites is reactive.

  7. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics.

    PubMed

    Cideciyan, Artur V; Aleman, Tomas S; Boye, Sanford L; Schwartz, Sharon B; Kaushal, Shalesh; Roman, Alejandro J; Pang, Ji-Jing; Sumaroka, Alexander; Windsor, Elizabeth A M; Wilson, James M; Flotte, Terence R; Fishman, Gerald A; Heon, Elise; Stone, Edwin M; Byrne, Barry J; Jacobson, Samuel G; Hauswirth, William W

    2008-09-30

    The RPE65 gene encodes the isomerase of the retinoid cycle, the enzymatic pathway that underlies mammalian vision. Mutations in RPE65 disrupt the retinoid cycle and cause a congenital human blindness known as Leber congenital amaurosis (LCA). We used adeno-associated virus-2-based RPE65 gene replacement therapy to treat three young adults with RPE65-LCA and measured their vision before and up to 90 days after the intervention. All three patients showed a statistically significant increase in visual sensitivity at 30 days after treatment localized to retinal areas that had received the vector. There were no changes in the effect between 30 and 90 days. Both cone- and rod-photoreceptor-based vision could be demonstrated in treated areas. For cones, there were increases of up to 1.7 log units (i.e., 50 fold); and for rods, there were gains of up to 4.8 log units (i.e., 63,000 fold). To assess what fraction of full vision potential was restored by gene therapy, we related the degree of light sensitivity to the level of remaining photoreceptors within the treatment area. We found that the intervention could overcome nearly all of the loss of light sensitivity resulting from the biochemical blockade. However, this reconstituted retinoid cycle was not completely normal. Resensitization kinetics of the newly treated rods were remarkably slow and required 8 h or more for the attainment of full sensitivity, compared with <1 h in normal eyes. Cone-sensitivity recovery time was rapid. These results demonstrate dramatic, albeit imperfect, recovery of rod- and cone-photoreceptor-based vision after RPE65 gene therapy.

  8. Study on the thermal deactivation of motorcycle catalytic converters by laboratory aging tests.

    PubMed

    Chen, Yi-Chi; Chen, Lu-Yen; Yu, Yi-Hsien; Jeng, Fu-Tien

    2010-03-01

    Catalytic converters are used to curb exhaust pollution from motorcycles in Taiwan. A number of factors, including the length of time the converter is used for and driving conditions, affect the catalysts' properties during periods of use. The goal of this study is to resolve the thermal deactivation mechanism of motorcycle catalytic converters. Fresh catalysts were treated under different aging conditions by laboratory-scale aging tests to simulate the operation conditions of motorcycle catalytic converters. The aged catalysts were characterized by analytical techniques in order to provide information for investigating deactivation phenomena. The time-dependent data of specific surface areas were subsequently used to construct kinetics of sintering at the specific temperature. According to the analytical results of the catalysts' properties, the increase in aging temperature causes an increase in pore size of the catalysts and a decrease in the specific surface area. The aged catalysts all exhibited lower performances than the fresh ones. The reduction in catalytic activity is consistent with the reduction in the loss of specific surface area. The finding of catalytic properties' dependence on temperature is consistent with the thermally activated theory. In contrast, the effect of the aging time on the specific surface area was only significant during the initial few hours. The high correlation between specific surface areas measured by the Brunauer-Emmett-Teller (BET) method and predicted by the constructed model verifies that the prediction models can predict the sintering rate reasonably under the aging conditions discussed in this study. As compared to automobile catalytic converters, the differences of structures and aging conditions are made less obvious by the deactivation phenomena of motorcycles.

  9. Mechanism of enhancement of slow delayed rectifier current by extracellular sulfhydryl modification.

    PubMed

    Yao, J A; Jiang, M; Tseng, G N

    1997-07-01

    To explore the role of sulfhydryl (SH) groups in the function of cardiac slow delayed rectifier channels, we tested the effects of extracellular thimerosal (TMS, a hydrophilic SH modifier) on slow delayed rectifier current (IKs) induced by human IsK (hIsK) in oocytes and on the native IKs in canine ventricular myocytes. TMS (25 or 50 microM) had similar effects on the two currents: current amplitude increased, and there was an acceleration of activation and a slowing of deactivation. These effects showed little or no reversal after washout of TMS. The effects did not depend on intracellular Ca release or protein kinase activities but could be suppressed by dithiothreitol pretreatment. According to the current model of transmembrane topology, there is no cystein in the extracellular domain of hIsK. A likely candidate for TMS modification is the SH group on another subunit in oocyte cell membrane that interacts with IsK to form a functional channel. To explore the domain of hIsK involved in the interaction, extracellular serines of hIsK were mutated to cysteines at three locations: S37C (close to the transmembrane domain), S4C (close to the NH2-terminus), and S28C (in between). S37C and S28C mutations did not affect channel properties or hIsK response to TMS. On the other hand, S4C mutation reduced current expression even when S4C cRNA was injected at a quantity 50-fold higher than that of the other three proteins. Importantly, the response to TMS was markedly reduced in S4C compared with the other three proteins. Therefore, the NH2-terminus of hIsK may be involved in hIsK interaction with the SH-bearing subunit, and this interaction modulates slow delayed rectifier channel function.

  10. Boosting functionality of synthetic DNA circuits with tailored deactivation

    PubMed Central

    Montagne, Kevin; Gines, Guillaume; Fujii, Teruo; Rondelez, Yannick

    2016-01-01

    Molecular programming takes advantage of synthetic nucleic acid biochemistry to assemble networks of reactions, in vitro, with the double goal of better understanding cellular regulation and providing information-processing capabilities to man-made chemical systems. The function of molecular circuits is deeply related to their topological structure, but dynamical features (rate laws) also play a critical role. Here we introduce a mechanism to tune the nonlinearities associated with individual nodes of a synthetic network. This mechanism is based on programming deactivation laws using dedicated saturable pathways. We demonstrate this approach through the conversion of a single-node homoeostatic network into a bistable and reversible switch. Furthermore, we prove its generality by adding new functions to the library of reported man-made molecular devices: a system with three addressable bits of memory, and the first DNA-encoded excitable circuit. Specific saturable deactivation pathways thus greatly enrich the functional capability of a given circuit topology. PMID:27845324

  11. Boosting functionality of synthetic DNA circuits with tailored deactivation.

    PubMed

    Montagne, Kevin; Gines, Guillaume; Fujii, Teruo; Rondelez, Yannick

    2016-11-15

    Molecular programming takes advantage of synthetic nucleic acid biochemistry to assemble networks of reactions, in vitro, with the double goal of better understanding cellular regulation and providing information-processing capabilities to man-made chemical systems. The function of molecular circuits is deeply related to their topological structure, but dynamical features (rate laws) also play a critical role. Here we introduce a mechanism to tune the nonlinearities associated with individual nodes of a synthetic network. This mechanism is based on programming deactivation laws using dedicated saturable pathways. We demonstrate this approach through the conversion of a single-node homoeostatic network into a bistable and reversible switch. Furthermore, we prove its generality by adding new functions to the library of reported man-made molecular devices: a system with three addressable bits of memory, and the first DNA-encoded excitable circuit. Specific saturable deactivation pathways thus greatly enrich the functional capability of a given circuit topology.

  12. On the puzzling deactivation mechanism of thymine after light irradiation

    SciTech Connect

    Gonzalez, Leticia; Gonzalez-Vazquez, Jesus; Samoylova, Elena; Schultz, Thomas

    2008-12-08

    The possible deactivation mechanisms of thymine after UV light irradiation are reviewed in the light of theoretical calculations. Recent experiments reveal that three transient species with lifetimes in the fs, ps, and ns regime are present in thymine. The possibility of ground or excited state tautomerization is explored and discarded. The role of {pi}{sigma}* states, as well as of the proposed minimum of the {pi}{pi}* excited state surface are assessed. In view of the obtained calculations and results available from the literature, the measured time scales can be tentatively attributed to a model involving different conical intersections between the {pi}{pi}*, n{pi}*, and the electronic ground state, as well as deactivation via the triplet states. Time-resolved photoelectron experiments supported by theoretical calculations are proposed to appraise the validity of this model.

  13. Effects of allocryptopine on outward potassium current and slow delayed rectifier potassium current in rabbit myocardium

    PubMed Central

    Fu, Yi-Cheng; Zhang, Yu; Tian, Liu-Yang; Li, Nan; Chen, Xi; Cai, Zhong-Qi; Zhu, Chao; Li, Yang

    2016-01-01

    Objective Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be anti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (Ito) and slow delayed rectifier potassium current (IKs). Methods The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record Ito and IKs in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. Results The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of Ito and IKs in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation of Ito in M layers and partly inhibit the channel openings of Ito in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of IKs channel in Epi and Endo layers without affecting its activation. Conclusions Our study gives partially explanation about the mechanisms of transmural inhibition of Ito and IKs channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings. PMID:27403141

  14. Mechanism of acetaldehyde-induced deactivation of microbial lipases

    PubMed Central

    2011-01-01

    Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the enzymes. Lyophilization of

  15. Interactions of calcium ions with weakly acidic active ingredients slow cuticular penetration: a case study with glyphosate.

    PubMed

    Schönherr, Jörg; Schreiber, Lukas

    2004-10-20

    Potassium and calcium salts of glyphosate were obtained by titrating glyphosate acid with the respective bases to pH 4.0, and rates of penetration of these salts across isolated astomatous cuticular membranes (CMs) were measured at 20 degrees C and 70, 80, 90, and 100% humidity. K-glyphosate exhibited first-order penetration kinetics, and rate constants (k) increased with increasing humidity. Ca-glyphosate penetrated only when the humidity above the salt residue was 100%. At 90% humidity and below, Ca-glyphosate formed a solid residue on the CMs and penetration was not measurable. With Ca-glyphosate, the k value at 100% humidity decreased with time and the initial rates were lower than for K-glyphosate by a factor of 3.68. After equimolar concentrations of ammonium oxalate were added to Ca-glyphosate, high penetration rates close to those measured with K-glyphosate were measured at all humidities. Adding ammonium sulfate or potassium carbonate also increased rates between 70 and 100% humidity, but they were not as high as with ammonium oxalate. The data indicate that at pH 4.0 one Ca2+ ion is bound to two glyphosate anions. This salt has its deliquescence point near 100% humidity. Therefore, it is a solid at lower humidity and does not penetrate. Its molecular weight is 1.82 times larger than that of K-glyphosate, and this greatly slows down rates of penetration, even at 100% humidity. The additives tested have low solubility products and form insoluble precipitates with Ca2+ ions, but only ammonium oxalate binds Ca2+ quantitatively. The resulting ammonium salt of glyphosate penetrates at 70-100% humidity and at rates comparable to K-glyphosate. The results contribute to a better understanding of the hard water antagonism observed with glyphosate. It is argued that other pesticides and hormones with carboxyl functions are likely to respond to Ca2+ ions in a similar fashion. In all of these cases, ammonium oxalate is expected to overcome hard water antagonism.

  16. Simultaneous deactivation of FAK and Src improves the pathology of hypertrophic scar

    PubMed Central

    Su, Linlin; Li, Xiaodong; Wu, Xue; Hui, Bo; Han, Shichao; Gao, Jianxin; Li, Yan; Shi, Jihong; Zhu, Huayu; Zhao, Bin; Hu, Dahai

    2016-01-01

    Hypertrophic scar (HS) is a serious fibrotic skin condition with currently no satisfactory therapy due to undefined molecular mechanism. FAK and Src are two important non-receptor tyrosine kinases that have been indicated in HS pathogenesis. Here we found both FAK and Src were activated in HS vs. normal skin (NS), NS fibroblasts treated with TGF-β1 also exhibited FAK/Src activation. Co-immunoprecipitation and dual-labelled immunofluorescence revealed an enhanced FAK-Src association and co-localization in HS vs. NS. To examine effects of FAK/Src activation and their interplay on HS pathogenesis, site-directed mutagenesis followed by gene overexpression was conducted. Results showed only simultaneous overexpression of non-phosphorylatable mutant FAK Y407F and phosphomimetic mutant Src Y529E remarkably down-regulated the expression of Col I, Col III and α-SMA in cultured HS fibroblasts, alleviated extracellular matrix deposition and made collagen fibers more orderly in HS tissue vs. the effect from single transfection with wild-type or mutational FAK/Src. Glabridin, a chemical found to block FAK-Src complex formation in cancers, exhibited therapeutic effects on HS pathology probably through co-deactivation of FAK/Src which further resulted in FAK-Src de-association. This study suggests FAK-Src complex could serve as a potential molecular target, and FAK/Src double deactivation might be a novel strategy for HS therapy. PMID:27181267

  17. Resolving Ultrafast Photoinduced Deactivations in Water-solvated Pyrimidine Nucleosides.

    PubMed

    Pepino, Ana J; Segarra-Martí, Javier; Nenov, Artur; Improta, Roberto; Garavelli, Marco

    2017-03-27

    For the first time, ultrafast deactivations of photo-excited water-solvated pyrimidine nucleosides are mapped employing hybrid QM(CASPT2)/MM(AMBER) optimizations that account for explicit solvation, sugar effects and dynamically correlated potential energy surfaces. Low energy S1/S0 ring-puckering and ring-opening conical intersections (CIs) are suggested to drive the ballistic coherent sub-ps (<200fs) decays observed in each pyrimidine, the energetics controlling this processes correlating with the lifetimes observed. A second bright 1π2π* state, promoting excited-state population branching and leading towards a third CI with the ground state, is proposed to be involved in the slower ultrafast decay component observed in Thd/Cyd. The transient spectroscopic signals of the competitive deactivation channels are computed for the first time. A general unified scheme for ultrafast deactivations, spanning the sub-to-few ps time domain, is eventually delivered, with computed data that matches the experiments and elucidates the intrinsic photo-protection mechanism in solvated pyrimidine nucleosides.

  18. Prevention and reversal of tumor cell-induced monocyte deactivation by cytokines, purified protein derivative (PPD), and anti-IL-10 antibody.

    PubMed

    Baj-Krzyworzeka, Monika; Baran, Jaroslaw; Szatanek, Rafal; Stankiewicz, Danuta; Siedlar, Maciej; Zembala, Marek

    2004-08-25

    Upon contact with tumor cells when cocultured in vitro, human monocytes become unresponsive (deactivated) to restimulation and demonstrate decreased production of TNF-alpha and IL-12, and enhanced IL-10 secretion. The present study was undertaken to determine whether immunomodulatory agents (proinflammatory cytokines and PPD of tuberculin) could either prevent or reverse the deactivation of monocytes. Monocytes were treated with the agents either before or after being cocultured with tumor cells. Pretreatment of monocytes with IFN-gamma, either alone or in combination with TNF-alpha, GM-CSF, or PPD, significantly enhanced TNF-alpha and IL-12 production by deactivated monocytes. TNF-alpha, GM-CSF, and PPD alone were inactive. Treatment of monocytes following coculture with IFN-gamma, TNF-alpha, GM-CSF, PPD or IFN-gamma in combination with these agents reversed the depressed TNF-alpha release, whereas IL-12 production was enhanced by IFN-gamma alone. All the agents had no or only a limited effect on the enhanced IL-10 secretion by deactivated monocytes. However, treatment of cocultured monocytes with anti-IL-10 mAb significantly increased the production of TNF-alpha and IL-12 by deactivated monocytes. Moreover, coengraftment of deactivated monocytes with human pancreatic carcinoma cells into SCID mice caused an enhancement of the tumor growth that was alleviated by the treatment of monocytes in vitro with IFN-gamma alone or in combination with GM-CSF or PPD. These results suggest that activation of monocytes with certain proinflammatory cytokines and/or selective inhibition of IL-10 by a mAb may prevent or reverse monocyte deactivation caused by tumor cells.

  19. [Characteristics of the super-slow electrical activity of the brain when exposed to the action of neurotropic substances altering short-term memory].

    PubMed

    Borodkin, Iu S; Vereshchak, N I; Lapina, I A

    1976-01-01

    Superslow electrical activity was studied after the action of neurotropic drugs on curarized rabbits with gold electrodes implanted in the deep brain structures. Intramuscular administration of 1/5 mg/kg dose of ethimizol, of 5 mg/kg of ethipyrol, or of 1/5 mg/kg of metamizyl led to a reciprocity of the oscillation amplitudes between the field CA-3 of the dorsal hippocampus and the medial nuclear groups of the reticular formation. Ethimizol and ethipyrol, though producing a similar final effect, act differently on the duration and phases of slow oscillations. Micropolarization of the dorsal hippocampus field CA-3 with a 2.5 microampere current lengthened the action of the neurotropic drugs, up to six hours in the case of ethimyzol. A mathematical vector analysis has shown that the angle of the wave amplitude vector in space depends both on the characteristics of the neurotropic drug and the excitability level of field CA-3 of the dorsl hippo-campus. A slow electrical potential reflecting the capacity of the electric field of a brain structure is likely to be one the major components controlling the conformation position of the receptor proteins.

  20. Neocortical inhibitory activities and long-range afferents contribute to the synchronous onset of silent states of the neocortical slow oscillation

    PubMed Central

    Lemieux, Maxime; Chauvette, Sylvain

    2014-01-01

    During slow-wave sleep, neurons of the thalamocortical network are engaged in a slow oscillation (<1 Hz), which consists of an alternation between the active and the silent states. Several studies have provided insights on the transition from the silent, which are essentially periods of disfacilitation, to the active states. However, the conditions leading to the synchronous onset of the silent state remain elusive. We hypothesized that a synchronous input to local inhibitory neurons could contribute to the transition to the silent state in the cat suprasylvian gyrus during natural sleep and under ketamine-xylazine anesthesia. After partial and complete deafferentation of the cortex, we found that the silent state onset was more variable among remote sites. We found that the transition to the silent state was preceded by a reduction in excitatory postsynaptic potentials and firing probability in cortical neurons. We tested the impact of chloride-mediated inhibition in the silent-state onset. We uncovered a long-duration (100–300 ms) inhibitory barrage occurring about 250 ms before the silent state onset in 3–6% of neurons during anesthesia and in 12–15% of cases during natural sleep. These inhibitory activities caused a decrease in cortical firing that reduced the excitatory drive in the neocortical network. That chain reaction of disfacilitation ends up on the silent state. Electrical stimuli could trigger a network silent state with a maximal efficacy in deep cortical layers. We conclude that long-range afferents to the neocortex and chloride-mediated inhibition play a role in the initiation of the silent state. PMID:25392176

  1. Neocortical inhibitory activities and long-range afferents contribute to the synchronous onset of silent states of the neocortical slow oscillation.

    PubMed

    Lemieux, Maxime; Chauvette, Sylvain; Timofeev, Igor

    2015-02-01

    During slow-wave sleep, neurons of the thalamocortical network are engaged in a slow oscillation (<1 Hz), which consists of an alternation between the active and the silent states. Several studies have provided insights on the transition from the silent, which are essentially periods of disfacilitation, to the active states. However, the conditions leading to the synchronous onset of the silent state remain elusive. We hypothesized that a synchronous input to local inhibitory neurons could contribute to the transition to the silent state in the cat suprasylvian gyrus during natural sleep and under ketamine-xylazine anesthesia. After partial and complete deafferentation of the cortex, we found that the silent state onset was more variable among remote sites. We found that the transition to the silent state was preceded by a reduction in excitatory postsynaptic potentials and firing probability in cortical neurons. We tested the impact of chloride-mediated inhibition in the silent-state onset. We uncovered a long-duration (100-300 ms) inhibitory barrage occurring about 250 ms before the silent state onset in 3-6% of neurons during anesthesia and in 12-15% of cases during natural sleep. These inhibitory activities caused a decrease in cortical firing that reduced the excitatory drive in the neocortical network. That chain reaction of disfacilitation ends up on the silent state. Electrical stimuli could trigger a network silent state with a maximal efficacy in deep cortical layers. We conclude that long-range afferents to the neocortex and chloride-mediated inhibition play a role in the initiation of the silent state.

  2. Hydrothermal activity along the slow-spreading Lucky Strike ridge segment (Mid-Atlantic Ridge): Distribution, heatflux, and geological controls

    NASA Astrophysics Data System (ADS)

    Escartin, J.; Barreyre, T.; Cannat, M.; Garcia, R.; Gracias, N.; Deschamps, A.; Salocchi, A.; Sarradin, P.-M.; Ballu, V.

    2015-12-01

    We have reviewed available visual information from the seafloor, and recently acquired microbathymetry for several traverses across the Lucky Strike segment, to evaluate the distribution of hydrothermal activity. We have identified a new on-axis site with diffuse flow, Ewan, and an active vent structure ∼1.2 km from the axis, Capelinhos. These sites are minor relative to the Main field, and our total heatflux estimate for all active sites (200-1200 MW) is only slightly higher than previously published estimates. We also identify fossil sites W of the main Lucky Strike field. A circular feature ∼200 m in diameter located on the flanks of a rifted off-axis central volcano is likely a large and inactive hydrothermal edifice, named Grunnus. We find no indicator of focused hydrothermal activity elsewhere along the segment, suggesting that the enhanced melt supply and the associated melt lenses, required to form central volcanoes, also sustain hydrothermal circulation to form and maintain large and long-lived hydrothermal fields. Hydrothermal discharge to the seafloor occurs along fault traces, suggesting focusing of hydrothermal circulation in the shallow crust along permeable fault zones.

  3. Hydrothermal activity in Tertiary Icelandic crust: Implication for cooling processes along slow-spreading mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Pałgan, D.; Devey, C. W.; Yeo, I. A.

    2015-12-01

    Known hydrothermal activity along the Mid-Atlantic Ridge is mostly high-temperature venting, controlled by volcano-tectonic processes confined to ridge axes and neotectonic zones ~15km wide on each side of the axis (e.g. TAG or Snake Pit). However, extensive exploration and discoveries of new hydrothermal fields in off-axis regions (e.g. Lost City, MAR) show that hydrothermalism may, in some areas, be dominated by off-axis venting. Little is known about nature of such systems, including whether low-temperature "diffuse" venting dominates rather than high-temperature black-smokers. This is particularly interesting since such systems may transport up to 90% of the hydrothermal heat to the oceans. In this study we use Icelandic hot springs as onshore analogues for off-shore hydrothermal activity along the MAR to better understand volcano-tectonic controls on their occurrence, along with processes supporting fluid circulation. Iceland is a unique laboratory to study how new oceanic crust cools and suggests that old crust may not be as inactive as previously thought. Our results show that Tertiary (>3.3 Myr) crust of Iceland (Westfjords) has widespread low-temperature hydrothermal activity. Lack of tectonism (indicated by lack of seismicity), along with field research suggest that faults in Westfjords are no longer active and that once sealed, can no longer support hydrothermal circulation, i.e. none of the hot springs in the area occur along faults. Instead, dyke margins provide open and permeable fluid migration pathways. Furthermore, we suggest that the Reykjanes Ridge (south of Iceland) may be similar to Westfjords with hydrothermalism dominated by off-axis venting. Using bathymetric data we infer dyke positions and suggest potential sites for future exploration located away from neotectonic zone. We also emphasise the importance of biological observations in seeking for low-temperature hydrothermal activity, since chemical or optical methods are not sufficient.

  4. Associations between prospective symptom changes and slow-wave activity in patients with Internet gaming disorder: A resting-state EEG study.

    PubMed

    Kim, Yeon Jin; Lee, Jun-Young; Oh, Sohee; Park, Minkyung; Jung, Hee Yeon; Sohn, Bo Kyung; Choi, Sam-Wook; Kim, Dai Jin; Choi, Jung-Seok

    2017-02-01

    The identification of the predictive factors and biological markers associated with treatment-related changes in the symptoms of Internet gaming disorder (IGD) may provide a better understanding of the pathophysiology underlying this condition. Thus, the present study aimed to identify neurophysiological markers associated with symptom changes in IGD patients and to identify factors that may predict symptom improvements following outpatient treatment with pharmacotherapy. The present study included 20 IGD patients (mean age: 22.71 ± 5.47 years) and 29 healthy control subjects (mean age: 23.97 ± 4.36 years); all IGD patients completed a 6-month outpatient management program that included pharmacotherapy with selective serotonin reuptake inhibitors. Resting-state electroencephalography scans were acquired prior to and after treatment, and the primary treatment outcome was changes in scores on Young's Internet Addiction Test (IAT) from pre- to posttreatment. IGD patients showed increased resting-state electroencephalography activity in the delta and theta bands at baseline, but the increased delta band activity was normalized after 6 months of treatment and was significantly correlated with improvements in IGD symptoms. Additionally, higher absolute theta activity at baseline predicted a greater possibility of improvement in addiction symptoms following treatment, even after adjusting for the effects of depressive or anxiety symptoms. The present findings demonstrated that increased slow-wave activity represented a state neurophysiological marker in IGD patients and suggested that increased theta activity at baseline may be a favorable prognostic marker for this population.

  5. Restoring physiological levels of ascorbate slows tumor growth and moderates HIF-1 pathway activity in Gulo(-/-) mice.

    PubMed

    Campbell, Elizabeth J; Vissers, Margreet C M; Bozonet, Stephanie; Dyer, Arron; Robinson, Bridget A; Dachs, Gabi U

    2015-02-01

    Hypoxia-inducible factor-1 (HIF-1) governs cellular adaption to the hypoxic microenvironment and is associated with a proliferative, metastatic, and treatment-resistant tumor phenotype. HIF-1 levels and transcriptional activity are regulated by proline and asparagine hydroxylases, which require ascorbate as cofactor. Ascorbate supplementation reduced HIF-1 activation in vitro, but only limited data are available in relevant animal models. There is no information of the effect of physiological levels of ascorbate on HIF activity and tumor growth, which was measured in this study. C57BL/6 Gulo(-/-) mice (a model of the human ascorbate dependency condition) were supplemented with 3300 mg/L, 330 mg/L, or 33 mg/L of ascorbate in their drinking water before and during subcutaneous tumor growth of B16-F10 melanoma or Lewis lung carcinoma (LL/2). Ascorbate levels in tumors increased significantly with elevated ascorbate intake and restoration of wild-type ascorbate levels led to a reduction in growth of B16-F10 (log phase P < 0.001) and LL/2 tumors (lag growth P < 0.001, log phase P < 0.05). Levels of HIF-1α protein in tumors decreased as dietary ascorbate supplementation increased for both tumor models (P < 0.001). Similarly, tumor ascorbate was inversely correlated with levels of the HIF-1 target proteins CA-IX, GLUT-1, and VEGF in both B16-F10 and LL/2 tumors (P < 0.05). The extent of necrosis was similar between ascorbate groups but varied between models (30% for B16-F10 and 21% for LL/2), indicating that ascorbate did not affect tumor hypoxia. Our data support the hypothesis that restoration of optimal intracellular ascorbate levels reduces tumor growth via moderation of HIF-1 pathway activity.

  6. Sulforaphane improves outcomes and slows cerebral ischemic/reperfusion injury via inhibition of NLRP3 inflammasome activation in rats.

    PubMed

    Yu, Chang; He, Qi; Zheng, Jing; Li, Ling Yu; Hou, Yang Hao; Song, Fang Zhou

    2017-02-09

    Ischemia/reperfusion (I/R) injury has been correlated with systemic inflammatory response. In addition, NLRP3 has been suggested as a cause in many inflammatory processes. Sulforaphane (SFN) is a naturally occurring isothiocyanate found in cruciferous vegetables, such as broccoli and cabbage. While recent studies have demonstrated that Sulforaphane has protective effects against cerebral ischemia/reperfusion injury, little is known about how those protective effects work. In this study, we focus our investigation on the role and process of Sulforaphane in the inhibition of NLRP3 inflammasome activation, as well as its effect on brain ischemia/reperfusion injury. Adult male Sprague-Dawley rats were injected with Sulforaphane (5 or 10mg/kg) intraperitoneally at the beginning of reperfusion, after a 60min period of occlusion. A neurological score and infarct volume were assessed at 24h after the administration of Sulforaphane. Myeloperoxidase (MPO) activity was measured at 24h to assess neutrophil infiltration in brain tissue. ELISA, RT-PCR and Western blot analyses were used to measure any inflammatory reaction. Sulforaphane treatment significantly reduced infarct volume and improved neurological scores when compared to a vehicle-treated group. Neutrophil infiltration was significantly higher in the vehicle-treated group than in the Sulforaphane treatment group. Sulforaphane treatment inhibits NLRP3 inflammasome activation and the downregulation of cleaved caspase-1, while reducing IL-1β and IL-18 expression. The inhibition of inflammatory response with Sulforaphane treatment improves outcomes after focal cerebral ischemia. This neuroprotective effect is likely exerted by Sulforaphane inhibited NLRP3 inflammasome activation caused by the downregulation of NLRP3, the induction of cleaved caspase-1, and thus the reduction of IL-1β and IL-18.

  7. Loss-of-function of β-catenin bar-1 slows development and activates the Wnt pathway in Caenorhabditis elegans.

    PubMed

    van der Bent, M Leontien; Sterken, Mark G; Volkers, Rita J M; Riksen, Joost A G; Schmid, Tobias; Hajnal, Alex; Kammenga, Jan E; Snoek, L Basten

    2014-05-13

    C. elegans is extensively used to study the Wnt-pathway and most of the core-signalling components are known. Four β-catenins are important gene expression regulators in Wnt-signalling. One of these, bar-1, is part of the canonical Wnt-pathway. Together with Wnt effector pop-1, bar-1 forms a transcription activation complex which regulates the transcription of downstream genes. The effects of bar-1 loss-of-function mutations on many phenotypes have been studied well. However, the effects on global gene expression are unknown. Here we report the effects of a loss-of-function mutation bar-1(ga80). By analysing the transcriptome and developmental phenotyping we show that bar-1(ga80) impairs developmental timing. This developmental difference confounds the comparison of the gene expression profile between the mutant and the reference strain. When corrected for this difference it was possible to identify genes that were directly affected by the bar-1 mutation. We show that the Wnt-pathway itself is activated, as well as transcription factors elt-3, pqm-1, mdl-1 and pha-4 and their associated genes. The outcomes imply that this response compensates for the loss of functional bar-1. Altogether we show that bar-1 loss-of function leads to delayed development possibly caused by an induction of a stress response, reflected by daf-16 activated genes.

  8. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)?

    PubMed

    Escolà Casas, Mònica; Bester, Kai

    2015-02-15

    The degradation of seven compounds which are usually recalcitrant in classical activated sludge treatment (e.g., diclofenac, propranolol, iopromide, iohexol, iomeprol tebuconazole and propiconazole) was studied in a biofilm reactor (slow sand filtration). This reactor was used to treat real effluent-wastewater at different flow rates (hydraulic loadings) under aerobic conditions so removal and degradation kinetics of these recalcitrant compounds were calculated. With the hydraulic loading rate of 0.012 m(3)m(2)h(-1) the reactor removed 41, 94, 58, 57 and 85% of diclofenac, propranolol, iopromide, iohexol and iomeprol respectively. For these compounds the removal efficiency was dependent on hydraulic residence-times. Only 59 and 21% of the incoming tebuconazole and propiconazole respectively were removed but their removal did not depend on hydraulic residence time. Biofilm reactors are thus efficient in removing micro-pollutants and could be considered as an option for advanced treatment in small wastewater treatment plants.

  9. Slowing of Hippocampal Activity Correlates with Cognitive Decline in Early Onset Alzheimer’s Disease. An MEG Study with Virtual Electrodes

    PubMed Central

    Engels, Marjolein M. A.; Hillebrand, Arjan; van der Flier, Wiesje M.; Stam, Cornelis J.; Scheltens, Philip; van Straaten, Elisabeth C. W.

    2016-01-01

    Pathology in Alzheimer’s disease (AD) starts in the entorhinal cortex and hippocampus. Because of their deep location, activity from these areas is difficult to record with conventional electro- or magnetoencephalography (EEG/MEG). The purpose of this study was to explore hippocampal activity in AD patients and healthy controls using “virtual MEG electrodes”. We used resting-state MEG recordings from 27 early onset AD patients [age 60.6 ± 5.4, 12 females, mini-mental state examination (MMSE) range: 19–28] and 26 cognitively healthy age- and gender-matched controls (age 61.8 ± 5.5, 14 females). Activity was reconstructed using beamformer-based virtual electrodes for 78 cortical regions and 6 hippocampal regions. Group differences in peak frequency and relative power in six frequency bands were identified using permutation testing. For the patients, spearman correlations between the MMSE scores and peak frequency or relative power were calculated. Moreover, receiver operator characteristic curves were plotted to estimate the diagnostic accuracy. We found a lower hippocampal peak frequency in AD compared to controls, which, in the patients, correlated positively with MMSE [r(25) = 0.61; p < 0.01] whereas hippocampal relative theta power correlated negatively with MMSE [r(25) = -0.54; p < 0.01]. Cortical peak frequency was also lower in AD in association areas. Furthermore, cortical peak frequency correlated positively with MMSE [r(25) = 0.43; p < 0.05]. In line with this finding, relative theta power was higher in AD across the cortex, and relative alpha and beta power was lower in more circumscribed areas. The average cortical relative theta power was the best discriminator between AD and controls (sensitivity 82%; specificity 81%). Using beamformer-based virtual electrodes, we were able to detect hippocampal activity in AD. In AD, this hippocampal activity is slowed, and correlates better with cognition than the (slowed) activity in cortical areas. On the

  10. Lifecycle baseline summary for ADS 6504IS isotopes facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1995-08-01

    The scope of this Activity Data Sheet (ADS) is to provide a detailed plan for the Isotopes Facilities Deactivation Project (IFDP) at the Oak Ridge National Laboratory (ORNL). This project places the former isotopes production facilities in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S&M) until the facilities are included in the Decontamination and Decommissioning (D&D) Program. The facilities included within this deactivation project are Buildings 3026-C, 3026-D, 3028, 3029, 3038-AHF, 3038-E, 3038-M, 3047, 3517, 7025, and the Center Circle Facilities (Buildings 3030, 3031, 3032, 3033, 3033-A, 3034, and 3118). The scope of deactivation identified in this Baseline Report include surveillance and maintenance activities for each facility, engineering, contamination control and structural stabilization of each facility, radioluminescent (RL) light removal in Building 3026, re-roofing Buildings 3030, 3118, and 3031, Hot Cells Cleanup in Buildings 3047 and 3517, Yttrium (Y) Cell and Barricades Cleanup in Building 3038, Glove Boxes & Hoods Removal in Buildings 3038 and 3047, and Inventory Transfer in Building 3517. For a detailed description of activities within this Work Breakdown Structure (WBS) element, see the Level 6 and Level 7 Element Definitions in Section 3.2 of this report.

  11. A new class of neurotoxin from wasp venom slows inactivation of sodium current.

    PubMed

    Sahara, Y; Gotoh, M; Konno, K; Miwa, A; Tsubokawa, H; Robinson, H P; Kawai, N

    2000-06-01

    The effects of alpha-pompilidotoxin (alpha-PMTX), a new neurotoxin isolated from the venom of a solitary wasp, were studied on the neuromuscular synapses in lobster walking leg and the rat trigeminal ganglion (TG) neurons. Paired intracellular recordings from the presynaptic axon terminals and the innervating lobster leg muscles revealed that alpha-PMTX induced long bursts of action potentials in the presynaptic axon, which resulted in facilitated excitatory and inhibitory synaptic transmission. The action of alpha-PMTX was distinct from that of other known facilitatory presynaptic toxins, including sea anemone toxins and alpha-scorpion toxins, which modify the fast inactivation of Na+ current. We further characterized the action of alpha-PMTX on Na+ channels by whole-cell recordings from rat trigeminal neurons. We found that alpha-PMTX slowed the Na+ channels inactivation process without changing the peak current-voltage relationship or the activation time course of tetrodotoxin (TTX)-sensitive Na+ currents, and that alpha-PMTX had voltage-dependent effects on the rate of recovery from Na+ current inactivation and deactivating tail currents. The results suggest that alpha-PMTX slows or blocks conformational changes required for fast inactivation of the Na+ channels on the extracellular surface. The simple structure of alpha-PMTX, consisting of 13 amino acids, would be advantageous for understanding the functional architecture of Na+ channel protein.

  12. Mirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice.

    PubMed

    Mohajerani, Majid H; McVea, David A; Fingas, Matthew; Murphy, Timothy H

    2010-03-10

    Spontaneous slow-wave oscillations of neuronal membrane potential occur about once every second in the rodent cortex and may serve to shape the efficacy of evoked neuronal responses and consolidate memory during sleep. However, whether these oscillations reflect the entrainment of all cortical regions via propagating waves or whether they exhibit regional and temporal heterogeneity that reflects processing in local cortical circuits is unknown. Using voltage-sensitive dye (VSD) imaging within an adult C57BL/6J mouse cross-midline large craniotomy preparation, we recorded this depolarizing activity across most of both cortical hemispheres simultaneously in both anesthetized and quiet awake animals. Spontaneous oscillations in the VSD signal were highly synchronized between hemispheres, and acallosal I/LnJ mice indicated that synchrony depended on the corpus callosum. In both anesthetized and awake mice (recovered from anesthesia), the oscillations were not necessarily global changes in activity state but were made up of complex local patterns characterized by multiple discrete peaks that were unevenly distributed across cortex. Although the local patterns of depolarizing activity were complex and changed over tens of milliseconds, they were faithfully mirrored in both hemispheres in mice with an intact corpus callosum, to perhaps ensure parallel modification of related circuits in both hemispheres. We conclude that within global rhythms of spontaneous activity are complex events that reflect orchestrated processing within local cortical circuits.

  13. A role for cortical nNOS/NK1 neurons in coupling homeostatic sleep drive to EEG slow wave activity.

    PubMed

    Morairty, Stephen R; Dittrich, Lars; Pasumarthi, Ravi K; Valladao, Daniel; Heiss, Jaime E; Gerashchenko, Dmitry; Kilduff, Thomas S

    2013-12-10

    Although the neural circuitry underlying homeostatic sleep regulation is little understood, cortical neurons immunoreactive for neuronal nitric oxide synthase (nNOS) and the neurokinin-1 receptor (NK1) have been proposed to be involved in this physiological process. By systematically manipulating the durations of sleep deprivation and subsequent recovery sleep, we show that activation of cortical nNOS/NK1 neurons is directly related to non-rapid eye movement (NREM) sleep time, NREM bout duration, and EEG δ power during NREM sleep, an index of preexisting homeostatic sleep drive. Conversely, nNOS knockout mice show reduced NREM sleep time, shorter NREM bouts, and decreased power in the low δ range during NREM sleep, despite constitutively elevated sleep drive. Cortical NK1 neurons are still activated in response to sleep deprivation in these mice but, in the absence of nNOS, they are unable to up-regulate NREM δ power appropriately. These findings support the hypothesis that cortical nNOS/NK1 neurons translate homeostatic sleep drive into up-regulation of NREM δ power through an NO-dependent mechanism.

  14. A new active method for the measurement of slow-neutron fluence in modern radiotherapy treatment rooms

    NASA Astrophysics Data System (ADS)

    Gómez, F.; Iglesias, A.; Sánchez Doblado, F.

    2010-02-01

    This work focuses on neutron monitoring at clinical linac facilities during high-energy modality radiotherapy treatments. Active in-room measurement of neutron fluence is a complex problem due to the pulsed nature of the fluence and the presence of high photon background, and only passive methods have been considered reliable until now. In this paper we present a new active method to perform real-time measurement of neutron production around a medical linac. The device readout is being investigated as an estimate of patient neutron dose exposure on each radiotherapy session. The new instrument was developed based on neutron interaction effects in microelectronic memory devices, in particular using neutron-sensitive SRAM devices. This paper is devoted to the description of the instrument and measurement techniques, presenting the results obtained together with their comparison and discussion. Measurements were performed in several standard clinical linac facilities, showing high reliability, being insensitive to the photon fluence and EM pulse present inside the radiotherapy room, and having detector readout statistical relative uncertainties of about 2% on measurement of neutron fluence produced by 1000 monitor units irradiation runs.

  15. Positioning Commercial Pedometers to Measure Activity of Older Adults with Slow Gait: At the Wrist or at the Waist?

    PubMed

    Ehrler, Frederic; Weber, Chloe; Lovis, Christian

    2016-01-01

    Sedentary behaviour is a major risk factor for chronic disease morbidity and mortality in aging. Measuring people activity through devices such as pedometers is a recognized intervention to motivate them for more physical activity. However, the feedback provided by these devices must be accurate in order to avoid overtraining and keep users' motivation alive. If the accuracy of pedometers has been validated for healthy people, their lack of accuracy for elderly people walking at slower pace has been reported in several studies. The emergence on the consumer's market of new devices that can be worn indifferently at the wrist or at the waist raises once more this concern. In order to evaluate whether pedometers' location influences their accuracy, we have tested three pedometers at different locations, and for several paces in a comparative study. Beyond confirming the decrease of pedometers' accuracy with speed reduction, our study reveals that pedometers should be worn at the waist rather than at the wrist. This leads us to recommend wearing pedometers at the waist when monitoring population with reduced mobility.

  16. A low-fat, whole-food vegan diet, as well as other strategies that down-regulate IGF-I activity, may slow the human aging process.

    PubMed

    McCarty, Mark F

    2003-06-01

    A considerable amount of evidence is consistent with the proposition that systemic IGF-I activity acts as pacesetter in the aging process. A reduction in IGF-I activity is the common characteristic of rodents whose maximal lifespan has been increased by a wide range of genetic or dietary measures, including caloric restriction. The lifespans of breeds of dogs and strains of rats tend to be inversely proportional to their mature weight and IGF-I levels. The link between IGF-I and aging appears to be evolutionarily conserved; in worms and flies, lifespan is increased by reduction-of-function mutations in signaling intermediates homologous to those which mediate insulin/IGF-I activity in mammals. The fact that an increase in IGF-I activity plays a key role in the induction of sexual maturity, is consistent with a broader role for-IGF-I in aging regulation. If down-regulation of IGF-I activity could indeed slow aging in humans, a range of practical measures for achieving this may be at hand. These include a low-fat, whole-food, vegan diet, exercise training, soluble fiber, insulin sensitizers, appetite suppressants, and agents such as flax lignans, oral estrogen, or tamoxifen that decrease hepatic synthesis of IGF-I. Many of these measures would also be expected to decrease risk for common age-related diseases. Regimens combining several of these approaches might have a sufficient impact on IGF-I activity to achieve a useful retardation of the aging process. However, in light of the fact that IGF-I promotes endothelial production of nitric oxide and may be of especial importance to cerebrovascular health, additional measures for stroke prevention-most notably salt restriction-may be advisable when attempting to down-regulate IGF-I activity as a pro-longevity strategy.

  17. Deactivation of the E. coli pH stress sensor CadC by cadaverine.

    PubMed

    Haneburger, Ina; Fritz, Georg; Jurkschat, Nicole; Tetsch, Larissa; Eichinger, Andreas; Skerra, Arne; Gerland, Ulrich; Jung, Kirsten

    2012-11-23

    At acidic pH and in the presence of lysine, the pH sensor CadC activates transcription of the cadBA operon encoding the lysine/cadaverine antiporter CadB and the lysine decarboxylase CadA. In effect, these proteins contribute to acid stress adaptation in Escherichia coli. cadBA expression is feedback inhibited by cadaverine, and a cadaverine binding site is predicted within the central cavity of the periplasmic domain of CadC on the basis of its crystallographic analysis. Our present study demonstrates that this site only partially accounts for the cadaverine response in vivo. Instead, evidence for a second, pivotal binding site was collected, which overlaps with the pH-responsive patch of amino acids located at the dimer interface of the periplasmic domain. The temporal response of the E. coli Cad module upon acid shock was measured and modeled for two CadC variants with mutated cadaverine binding sites. These studies supported a cascade-like binding and deactivation model for the CadC dimer: binding of cadaverine within the pair of central cavities triggers a conformational transition that exposes two further binding sites at the dimer interface, and the occupation of those stabilizes the inactive conformation. Altogether, these data represent a striking example for the deactivation of a pH sensor.

  18. Estimation of active faulting in a slow deformation area: Culoz fault as a case study (Jura-Western Alps junction).

    NASA Astrophysics Data System (ADS)

    de La Taille, Camille; Jouanne, Francois; Crouzet, Christian; Jomard, Hervé; Beck, Christian; de Rycker, Koen; van Daele, Maarten; Lebourg, Thomas

    2014-05-01

    The north-western Alps foreland is considered as still experiencing distal effects of Alpine collision, resulting in both horizontal and vertical relative displacements. Based on seismological and geodetic surveys, detailed patterns of active faulting (including subsurface décollements, blind ramps and deeper crustal thrusts have been proposed (Thouvenot et al., 1998), underlining the importance of NW-SE left-lateral strike-slip offsets as along the Vuache and Culoz faults (cf. the 1996 Epagny event: M=5.4; Thouvenot et al., 1998 and the 1822 Culoz event I=VII-VIII; Vogt, 1979). In parallel to this tectonic evolution, the last glaciation-deglaciation cycles contributed to develop large and over-deepened lacustrine basins, such as Lake Le Bourget (Perrier, 1980). The fine grain, post LGM (ie post 18 ky), sedimentary infill gives a good opportunity to evidence late quaternary tectonic deformations. This study focuses on the Culoz fault, extending from the Jura to the West, to the Chautagne swamp and through the Lake Le Bourget to the East. Historical earthquakes are known nearby this fault as ie the 1822 Culoz event. The precise location and geometry of the main fault is illustrated but its Eastern termination still needs to be determined. High resolution seismic sections and side-scan sonar images performed in the 90's (Chapron et al., 1996) showed that the Col du Chat and Culoz faults have locally deformed the quaternary sedimentary infill of the lake. These studies, mainly devoted to paleo-climate analysis were not able to determine neither the geometry of the fault, or to quantify the observed deformations. A new campaign devoted to highlight the fault geometry and associated deformation, has been performed in October 2013. Very tight profiles were performed during this high resolution seismic survey using seistec boomer and sparker sources. In several places the rupture reaches the most recent seismic reflectors underlying that these faults were active during

  19. Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons.

    PubMed

    Colbert, C M; Magee, J C; Hoffman, D A; Johnston, D

    1997-09-01

    Na+ action potentials propagate into the dendrites of pyramidal neurons driving an influx of Ca2+ that seems to be important for associative synaptic plasticity. During repetitive (10-50 Hz) firing, dendritic action potentials display a marked and prolonged voltage-dependent decrease in amplitude. Such a decrease is not apparent in somatic action potentials. We investigated the mechanisms of the different activity dependence of somatic and dendritic action potentials in CA1 pyramidal neurons of adult rats using whole-cell and cell-attached patch-clamp methods. There were three main findings. First, dendritic Na+ currents decreased in amplitude when repeatedly activated by brief (2 msec) depolarizations. Recovery was slow and voltage-dependent. Second, Na+ currents decreased much less in somatic than in dendritic patches. Third, although K+ currents remained constant during trains, K+ currents were necessary for dendritic action potential amplitude to decrease in whole-cell experiments. These results suggest that regional differences in Na+ and K+ channels determine the differences in the activity dependence of somatic and dendritic action potential amplitudes.

  20. Rupture loop annex ion exchange RLAIX vault deactivation

    SciTech Connect

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    1996-08-01

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  1. AZD3293: A Novel, Orally Active BACE1 Inhibitor with High Potency and Permeability and Markedly Slow Off-Rate Kinetics

    PubMed Central

    Eketjäll, Susanna; Janson, Juliette; Kaspersson, Karin; Bogstedt, Anna; Jeppsson, Fredrik; Fälting, Johanna; Haeberlein, Samantha Budd; Kugler, Alan R.; Alexander, Robert C.; Cebers, Gvido

    2016-01-01

    A growing body of pathological, biomarker, genetic, and mechanistic data suggests that amyloid accumulation, as a result of changes in production, processing, and/or clearance of brain amyloid-β peptide (Aβ) concentrations, plays a key role in the pathogenesis of Alzheimer’s disease (AD). Beta-secretase 1 (BACE1) mediates the first step in the processing of amyloid-β protein precursor (AβPP) to Aβ peptides, with the soluble N terminal fragment of AβPP (sAβPPβ) as a direct product, and BACE1 inhibition is an attractive target for therapeutic intervention to reduce the production of Aβ. Here, we report the in vitro and in vivo pharmacological profile of AZD3293, a potent, highly permeable, orally active, blood-brain barrier (BBB) penetrating, BACE1 inhibitor with unique slow off-rate kinetics. The in vitro potency of AZD3293 was demonstrated in several cellular models, including primary cortical neurons. In vivo in mice, guinea pigs, and dogs, AZD3293 displayed significant dose- and time-dependent reductions in plasma, cerebrospinal fluid, and brain concentrations of Aβ40, Aβ42, and sAβPPβ. The in vitro potency of AZD3293 in mouse and guinea pig primary cortical neuronal cells was correlated to the in vivo potency expressed as free AZD3293 concentrations in mouse and guinea pig brains. In mice and dogs, the slow off-rate from BACE1 may have translated into a prolongation of the observed effect beyond the turnover rate of Aβ. The preclinical data strongly support the clinical development of AZD3293, and patients with AD are currently being recruited into a combined Phase 2/3 study to test the disease-modifying properties of AZD3293. PMID:26890753

  2. Uncovering the deactivation mechanism of Au catalyst with operando high spatial resolution IR and X-ray microspectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Gross, Elad

    2016-06-01

    Detecting the reaction mechanism of multistep catalytic transformations is essential for optimization of these complex processes. In this study, the mechanism of catalyst deactivation within a flow reactor was studied under reaction conditions. Spectral mapping of the catalyst and the organic phase along a flow reactor were performed with micrometer-sized synchrotron-based X-ray and IR beams, respectively, with a spatial resolution of 15 μm. Heterogeneous Au catalyst was packed in a flow reactor and activated toward the cascade reaction of pyran formation. X-ray absorption microspectroscopy measurements revealed that the highly oxidized Au(III), which is the catalytically active species, was continuously reduced along the flow reactor. IR microspectroscopy measurements detected a direct correlation between the reduction of the Au catalyst and deactivation of the catalytic process. It was observed that within 1.5 mm from the reactor's inlet all the catalytic reactivity was quenched. Microspectroscopy measurements determined that the reduction of Au(III) was induced by nucleophilic attack of butanol, which is one of the reactants in this reaction. Slower deactivation rates were measured once the reactants concentration was decreased by an order of magnitude. Under these conditions the reaction path within the flow reactor was increased from 1.5 to 6 mm. These results demonstrate the molecular level understanding of reaction mechanism which can be achieved by high spatial resolution microspectroscopy measurements.

  3. A role for TREK1 in generating the slow afterhyperpolarization in developing starburst amacrine cells

    PubMed Central

    Ford, Kevin J.; Arroyo, David A.; Kay, Jeremy N.; Lloyd, Eric E.; Bryan, Robert M.; Sanes, Joshua R.

    2013-01-01

    Slow afterhyperpolarizations (sAHPs) play an important role in establishing the firing pattern of neurons that in turn influence network activity. sAHPs are mediated by calcium-activated potassium channels. However, the molecular identity of these channels and the mechanism linking calcium entry to their activation are still unknown. Here we present several lines of evidence suggesting that the sAHPs in developing starburst amacrine cells (SACs) are mediated by two-pore potassium channels. First, we use whole cell and perforated patch voltage clamp recordings to characterize the sAHP conductance under different pharmacological conditions. We find that this conductance was calcium dependent, reversed at EK, blocked by barium, insensitive to apamin and TEA, and activated by arachidonic acid. In addition, pharmacological inhibition of calcium-activated phosphodiesterase reduced the sAHP. Second, we performed gene profiling on isolated SACs and found that they showed strong preferential expression of the two-pore channel gene kcnk2 that encodes TREK1. Third, we demonstrated that TREK1 knockout animals exhibited an altered frequency of retinal waves, a frequency that is set by the sAHPs in SACs. With these results, we propose a model in which depolarization-induced decreases in cAMP lead to disinhibition of the two-pore potassium channels and in which the kinetics of this biochemical pathway dictate the slow activation and deactivation of the sAHP conductance. Our model offers a novel pathway for the activation of a conductance that is physiologically important. PMID:23390312

  4. [QUANTITATIVE ASSESSMENT OF THE RELATIONSHIP BETWEEN SLOW-WAVE OSCILLATIONS OF HEART RHYTHM AND MOTOR ACTIVITY IN RAT FETUSES WITH FEMALE RESPIRATORY AND CARDIAC ACTIVITY].

    PubMed

    Timofeeva, O P; Vdovichenko, N D; Bursian, A V

    2015-01-01

    A mathematical analysis of correlation of slow-wave processes in the system during the last 4 days of bearing was performed in experiments on rat fetuses with retained placental connection with the female. The parallel recording of physiological indicators of the female and fetus state revealed the existence of a relationship between oscillations of heartbeat rhythms and breathing in about-one-minute and many-minute ranges. The highest values of connection between the heart rhythms of female and fetus are characteristic for days 17 and 20 of gestation. On day 18-19 the interrelationships are slightly weaker. The specific mechanism providing this synchronization between heartbeat oscillations of mother and fetus is unclear. There are two hypothetic possibilities: an oscillation driver close in parameters for mother and fetus, and the maternal rhythm directly affecting the fetus.

  5. Influence of a threonine residue in the S2 ligand binding domain in determining agonist potency and deactivation rate of recombinant NR1a/NR2D NMDA receptors.

    PubMed

    Chen, Philip E; Johnston, Alexander R; Mok, M H Selina; Schoepfer, Ralf; Wyllie, David J A

    2004-07-01

    NR1/NR2D NMDA receptors display unusually slow deactivation kinetics which may be critical for their role as extrasynaptic receptors. A threonine to alanine point mutation has been inserted at amino acid position 692 of the NR2D subunit (T692A). Recombinant NR1a/NR2D(T692A) NMDA receptors have been expressed in Xenopus laevis oocytes and their pharmacological and single-channel properties examined using two-electrode voltage-clamp and patch-clamp recording techniques. Glutamate dose-response curves from NR1a/NR2D(T692A) receptor channels produced an approximately 1600-fold reduction in glutamate potency compared to wild-type NR1a/NR2D receptors. There was no change in Hill slopes or gross reduction in mean maximal currents recorded in oocytes expressing either wild-type or mutant receptors. The mutation did not affect the potency of the co-agonist glycine. The shifts in potency produced by NR2D(T692A) containing receptors when activated by other glutamate-site agonists such as aspartate or NMDA were 30- to 60-fold compared to wild-type. Single-channel conductance levels of NR1a/NR2D(T692A) mutant receptors were indistinguishable from wild-type NR2D-containing channels. Additionally NR1a/NR2D(T692A) receptors showed the transitional asymmetry that is characteristic of NR2D-containing NMDA receptors. Rapid applications of glutamate on outside-out patches containing NR1a/NR2D(T692A) receptors produced macroscopic current deactivations that were about 60-fold faster than wild-type NR1a/NR2D receptors. Our results suggest that this conserved threonine residue plays a crucial role in ligand binding to NMDA NR2 receptor subunits and supports the idea that the slow decay kinetics associated with NR1a/NR2D NMDA receptors can be explained by the slow dissociation of glutamate from this NMDA receptor subtype.

  6. Synchronization Properties of Slow Cortical Oscillations

    NASA Astrophysics Data System (ADS)

    Takekawa, T.; Aoyagi, T.; Fukai, T.

    During slow-wave sleep, the brain shows slow oscillatory activity with remarkable long-range synchrony. Intracellular recordings show that the slow oscillation consists of two phases: an textit{up} state and a textit{down} state. Deriving the phase-response function of simplified neuronal systems, we examine the synchronization properties on slow oscillations between the textit{up} state and the textit{down} state. As a result, the strange interaction functions are found in some parameter ranges. These functions indicate that the states with the smaller phase lag than a critical value are all stable.

  7. Knockout of the BK β2 subunit abolishes inactivation of BK currents in mouse adrenal chromaffin cells and results in slow-wave burst activity

    PubMed Central

    Martinez-Espinosa, Pedro L.; Yang, Chengtao; Gonzalez-Perez, Vivian; Xia, Xiao-Ming

    2014-01-01

    Rat and mouse adrenal medullary chromaffin cells (CCs) express an inactivating BK current. This inactivation is thought to arise from the assembly of up to four β2 auxiliary subunits (encoded by the kcnmb2 gene) with a tetramer of pore-forming Slo1 α subunits. Although the physiological consequences of inactivation remain unclear, differences in depolarization-evoked firing among CCs have been proposed to arise from the ability of β2 subunits to shift the range of BK channel activation. To investigate the role of BK channels containing β2 subunits, we generated mice in which the gene encoding β2 was deleted (β2 knockout [KO]). Comparison of proteins from wild-type (WT) and β2 KO mice allowed unambiguous demonstration of the presence of β2 subunit in various tissues and its coassembly with the Slo1 α subunit. We compared current properties and cell firing properties of WT and β2 KO CCs in slices and found that β2 KO abolished inactivation, slowed action potential (AP) repolarization, and, during constant current injection, decreased AP firing. These results support the idea that the β2-mediated shift of the BK channel activation range affects repetitive firing and AP properties. Unexpectedly, CCs from β2 KO mice show an increased tendency toward spontaneous burst firing, suggesting that the particular properties of BK channels in the absence of β2 subunits may predispose to burst firing. PMID:25267913

  8. Essential Roles of GABA Transporter-1 in Controlling Rapid Eye Movement Sleep and in Increased Slow Wave Activity after Sleep Deprivation

    PubMed Central

    Xu, Xin-Hong; Qu, Wei-Min; Bian, Min-Juan; Huang, Fang; Fei, Jian; Urade, Yoshihiro; Huang, Zhi-Li

    2013-01-01

    GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1) constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO) mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM) sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM) sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep. PMID:24155871

  9. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation.

    PubMed

    Xu, Xin-Hong; Qu, Wei-Min; Bian, Min-Juan; Huang, Fang; Fei, Jian; Urade, Yoshihiro; Huang, Zhi-Li

    2013-01-01

    GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1) constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO) mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM) sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM) sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.

  10. Knockout of the BK β2 subunit abolishes inactivation of BK currents in mouse adrenal chromaffin cells and results in slow-wave burst activity.

    PubMed

    Martinez-Espinosa, Pedro L; Yang, Chengtao; Gonzalez-Perez, Vivian; Xia, Xiao-Ming; Lingle, Christopher J

    2014-10-01

    Rat and mouse adrenal medullary chromaffin cells (CCs) express an inactivating BK current. This inactivation is thought to arise from the assembly of up to four β2 auxiliary subunits (encoded by the kcnmb2 gene) with a tetramer of pore-forming Slo1 α subunits. Although the physiological consequences of inactivation remain unclear, differences in depolarization-evoked firing among CCs have been proposed to arise from the ability of β2 subunits to shift the range of BK channel activation. To investigate the role of BK channels containing β2 subunits, we generated mice in which the gene encoding β2 was deleted (β2 knockout [KO]). Comparison of proteins from wild-type (WT) and β2 KO mice allowed unambiguous demonstration of the presence of β2 subunit in various tissues and its coassembly with the Slo1 α subunit. We compared current properties and cell firing properties of WT and β2 KO CCs in slices and found that β2 KO abolished inactivation, slowed action potential (AP) repolarization, and, during constant current injection, decreased AP firing. These results support the idea that the β2-mediated shift of the BK channel activation range affects repetitive firing and AP properties. Unexpectedly, CCs from β2 KO mice show an increased tendency toward spontaneous burst firing, suggesting that the particular properties of BK channels in the absence of β2 subunits may predispose to burst firing.

  11. System and method of cylinder deactivation for optimal engine torque-speed map operation

    SciTech Connect

    Sujan, Vivek A; Frazier, Timothy R; Follen, Kenneth; Moon, Suk-Min

    2014-11-11

    This disclosure provides a system and method for determining cylinder deactivation in a vehicle engine to optimize fuel consumption while providing the desired or demanded power. In one aspect, data indicative of terrain variation is utilized in determining a vehicle target operating state. An optimal active cylinder distribution and corresponding fueling is determined from a recommendation from a supervisory agent monitoring the operating state of the vehicle of a subset of the total number of cylinders, and a determination as to which number of cylinders provides the optimal fuel consumption. Once the optimal cylinder number is determined, a transmission gear shift recommendation is provided in view of the determined active cylinder distribution and target operating state.

  12. Insights into the deactivation of 5-bromouracil after ultraviolet excitation.

    PubMed

    Peccati, Francesca; Mai, Sebastian; González, Leticia

    2017-04-28

    5-Bromouracil is a nucleobase analogue that can replace thymine in DNA strands and acts as a strong radiosensitizer, with potential applications in molecular biology and cancer therapy. Here, the deactivation of 5-bromouracil after ultraviolet irradiation is investigated in the singlet and triplet manifold by accurate quantum chemistry calculations and non-adiabatic dynamics simulations. It is found that, after irradiation to the bright ππ* state, three main relaxation pathways are, in principle, possible: relaxation back to the ground state, intersystem crossing (ISC) and C-Br photodissociation. Based on accurate MS-CASPT2 optimizations, we propose that ground-state relaxation should be the predominant deactivation pathway in the gas phase. We then employ different electronic structure methods to assess their suitability to carry out excited-state dynamics simulations. MRCIS (multi-reference configuration interaction including single excitations) was used in surface hopping simulations to compute the ultrafast ISC dynamics, which mostly involves the (1)nOπ* and (3)ππ* states.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.

  13. Universal and reusable virus deactivation system for respiratory protection

    PubMed Central

    Quan, Fu-Shi; Rubino, Ilaria; Lee, Su-Hwa; Koch, Brendan; Choi, Hyo-Jick

    2017-01-01

    Aerosolized pathogens are a leading cause of respiratory infection and transmission. Currently used protective measures pose potential risk of primary/secondary infection and transmission. Here, we report the development of a universal, reusable virus deactivation system by functionalization of the main fibrous filtration unit of surgical mask with sodium chloride salt. The salt coating on the fiber surface dissolves upon exposure to virus aerosols and recrystallizes during drying, destroying the pathogens. When tested with tightly sealed sides, salt-coated filters showed remarkably higher filtration efficiency than conventional mask filtration layer, and 100% survival rate was observed in mice infected with virus penetrated through salt-coated filters. Viruses captured on salt-coated filters exhibited rapid infectivity loss compared to gradual decrease on bare filters. Salt-coated filters proved highly effective in deactivating influenza viruses regardless of subtypes and following storage in harsh environmental conditions. Our results can be applied in obtaining a broad-spectrum, airborne pathogen prevention device in preparation for epidemic and pandemic of respiratory diseases. PMID:28051158

  14. Universal and reusable virus deactivation system for respiratory protection

    NASA Astrophysics Data System (ADS)

    Quan, Fu-Shi; Rubino, Ilaria; Lee, Su-Hwa; Koch, Brendan; Choi, Hyo-Jick

    2017-01-01

    Aerosolized pathogens are a leading cause of respiratory infection and transmission. Currently used protective measures pose potential risk of primary/secondary infection and transmission. Here, we report the development of a universal, reusable virus deactivation system by functionalization of the main fibrous filtration unit of surgical mask with sodium chloride salt. The salt coating on the fiber surface dissolves upon exposure to virus aerosols and recrystallizes during drying, destroying the pathogens. When tested with tightly sealed sides, salt-coated filters showed remarkably higher filtration efficiency than conventional mask filtration layer, and 100% survival rate was observed in mice infected with virus penetrated through salt-coated filters. Viruses captured on salt-coated filters exhibited rapid infectivity loss compared to gradual decrease on bare filters. Salt-coated filters proved highly effective in deactivating influenza viruses regardless of subtypes and following storage in harsh environmental conditions. Our results can be applied in obtaining a broad-spectrum, airborne pathogen prevention device in preparation for epidemic and pandemic of respiratory diseases.

  15. Suppression of boron deactivation and diffusion in preamorphized silicon after nonmelt laser annealing by carbon co-implantation

    NASA Astrophysics Data System (ADS)

    Poon, Chyiu Hyia; See, Alex; Tan, Yunling; Zhou, Meisheng; Gui, Dong

    2008-04-01

    For preamorphized boron-implanted samples subjected to nonmelt laser spike annealing (LSA), increasing the LSA temperature at temperatures below 1250 °C results in negligible sheet resistance changes due to the formation of inactive boron-interstitial clusters (BICs). These clusters, which are evidenced as a kink in the boron profile beyond the amorphous/crystalline interface, result chiefly from the inadequate removal of end-of-range (EOR) defects. When the LSA temperature is elevated beyond 1250 °C, sheet resistance improvement takes place due to the increase in active boron dose from the dissolution of the BIC at higher temperatures. Cluster dissolution also gives rise to a supersaturation of silicon interstitials that deepen the junctions as a result of transient enhanced diffusion (TED). With an additional post-LSA treatment, severe deactivation, especially at lower LSA temperatures, and further TED is observed. Two concurrent mechanisms, namely, boron clustering (which gives rise to deactivation and sheet resistance degradation) and dissolution of the BIC (which gives rise to TED) formed during the LSA step, are believed to take place during the post-LSA thermal budget. As the LSA temperature increases, TED from the as-LSA profile upon rapid thermal annealing (RTA) is significantly reduced as a result of the improved effectiveness of the EOR defect dissolution during the higher temperature LSA step. When carbon co-implantation is performed, deactivation and TED is successfully suppressed with the reduction in free silicon interstitial concentration due to the formation of complexes of carbon and silicon interstitials. The amount of deactivation upon RTA becomes independent of LSA temperature for the carbon-implanted samples, largely because boron clustering becomes limited by the small concentration of free silicon interstitials present instead of the LSA temperatures used.

  16. Emotional and cognitive processing of narratives and individual appraisal styles: recruitment of cognitive control networks vs. modulation of deactivations

    PubMed Central

    Benelli, Enrico; Mergenthaler, Erhard; Walter, Steffen; Messina, Irene; Sambin, Marco; Buchheim, Anna; Sim, Eun J.; Viviani, Roberto

    2012-01-01

    Research in psychotherapy has shown that the frequency of use of specific classes of words (such as terms with emotional valence) in descriptions of scenes of affective relevance is a possible indicator of psychological affective functioning. Using functional magnetic resonance imaging (MRI), we investigated the neural correlates of these linguistic markers in narrative texts depicting core aspects of emotional experience in human interaction, and their modulation by individual differences in the propensity to use these markers. Emotional words activated both lateral and medial aspects of the prefrontal cortex, as in previous studies of instructed emotion regulation and in consistence with recruitment of effortful control processes. However, individual differences in the spontaneous use of emotional terms in characterizing the stimulus material were prevalently associated with modulation of the signal in the perigenual cortex, in the retrosplenial cortex and precuneus, and the anterior insula/ventrolateral prefrontal cortex. Modulation of signal by the presence of these textual markers or individual differences mostly involved areas deactivated by the main task, thus further differentiating neural correlates of these appraisal styles from those associated with effortful control. These findings are discussed in the context of reports in the literature of modulations of deactivations, which suggest their importance in orienting attention and generation of response in the presence of emotional information. These findings suggest that deactivations may play a functional role in emotional appraisal and may contribute to characterizing different appraisal styles. PMID:22936905

  17. Leu85 in the beta1-beta2 linker of ASIC1 slows activation and decreases the apparent proton affinity by stabilizing a closed conformation.

    PubMed

    Li, Tianbo; Yang, Youshan; Canessa, Cecilia M

    2010-07-16

    Acid-sensing ion channels (ASICs) are proton-activated channels expressed in neurons of the central and peripheral nervous systems where they modulate neuronal activity in response to external increases in proton concentration. The size of ASIC1 currents evoked by a given local acidification is determined by the number of channels in the plasma membrane and by the apparent proton affinities for activation and steady-state desensitization of the channel. Thus, the magnitude of the pH drop and the value of the baseline pH both are functionally important. Recent characterization of ASIC1s from an increasing number of species has made evident that proton affinities of these channels vary across vertebrates. We found that in species with high baseline plasma pH, e.g. frog, shark, and fish, ASIC1 has high proton affinity compared with the mammalian channel. The beta1-beta2 linker in the extracellular domain, specifically by the substitution M85L, determines the interspecies differences in proton affinities and also the time course of ASIC1 macroscopic currents. The mechanism underlying these observations is a delay in channel opening after application of protons, most likely by stabilizing a closed conformation that decreases the apparent affinity to protons and also slows the rise and decay phases of the current. Together, the results suggest evolutionary adaptation of ASIC1 to match the value of the species-specific plasma pH. At the molecular level, adaptation is achieved by substitutions of nonionizable residues rather than by modification of the channel proton sensor.

  18. Influence of slow oscillation on hippocampal activity and ripples through cortico-hippocampal synaptic interactions, analyzed by a cortical-CA3-CA1 network model

    PubMed Central

    Taxidis, Jiannis; Mizuseki, Kenji; Mason, Robert; Owen, Markus R.

    2013-01-01

    Hippocampal sharp wave-ripple complexes (SWRs) involve the synchronous discharge of thousands of cells throughout the CA3-CA1-subiculum-entorhinal cortex axis. Their strong transient output affects cortical targets, rendering SWRs a possible means for memory transfer from the hippocampus to the neocortex for long-term storage. Neurophysiological observations of hippocampal activity modulation by the cortical slow oscillation (SO) during deep sleep and anesthesia, and correlations between ripples and UP states, support the role of SWRs in memory consolidation through a cortico-hippocampal feedback loop. We couple a cortical network exhibiting SO with a hippocampal CA3-CA1 computational network model exhibiting SWRs, in order to model such cortico-hippocampal correlations and uncover important parameters and coupling mechanisms controlling them. The cortical oscillatory output entrains the CA3 network via connections representing the mossy fiber input, and the CA1 network via the temporoammonic pathway (TA). The spiking activity in CA3 and CA1 is shown to depend on the excitation-to-inhibition ratio, induced by combining the two hippocampal inputs, with mossy fiber input controlling the UP-state correlation of CA3 population bursts and corresponding SWRs, whereas the temporoammonic input affects the overall CA1 spiking activity. Ripple characteristics and pyramidal spiking participation to SWRs are shaped by the strength of the Schaffer collateral drive. A set of in vivo recordings from the rat hippocampus confirms a model-predicted segregation of pyramidal cells into subgroups according to the SO state where they preferentially fire and their response to SWRs. These groups can potentially play distinct functional roles in the replay of spike sequences. PMID:23386827

  19. Cortical deactivations during gastric fundus distension in health: visceral pain-specific response or attenuation of 'default mode' brain function? A H2 15O-PET study.

    PubMed

    van Oudenhove, L; Vandenberghe, J; Dupont, P; Geeraerts, B; Vos, R; Bormans, G; van Laere, K; Fischler, B; Demyttenaere, K; Janssens, J; Tack, J

    2009-03-01

    Gastric distension activates a cerebral network including brainstem, thalamus, insula, perigenual anterior cingulate, cerebellum, ventrolateral prefrontal cortex and potentially somatosensory regions. Cortical deactivations during gastric distension have hardly been reported. To describe brain areas of decreased activity during gastric fundus distension compared to baseline, using data from our previously published study (Gastroenterology, 128, 2005 and 564). H(2) (15)O-brain positron emission tomography was performed in 11 healthy volunteers during five conditions (random order): (C(1)) no distension (baseline); isobaric distension to individual thresholds for (C(2)) first, (C(3)) marked, (C(4)) unpleasant sensation and (C(5)) sham distension. Subtraction analyses were performed (in SPM2) to determine deactivated areas during distension compared to baseline, with a threshold of P(uncorrected_voxel_level) < 0.001 and P(corrected_cluster_level) < 0.05. Baseline-maximal distension (C(1)-C(4)) yielded significant deactivations in: (i) bilateral occipital, lateral parietal and temporal cortex as well as medial parietal lobe (posterior cingulate and precuneus) and medial temporal lobe (hippocampus and amygdala), (ii) right dorsolateral and dorso- and ventromedial PFC, (iii) left subgenual ACC and bilateral caudate head. Intragastric pressure and epigastric sensation score correlated negatively with brain activity in similar regions. The right hippocampus/amygdala deactivation was specific to sham. Gastric fundus distension in health is associated with extensive cortical deactivations, besides the activations described before. Whether this represents task-independent suspension of 'default mode' activity (as described in various cognitive tasks) or an visceral pain/interoception-specific process remains to be elucidated.

  20. Gβ₂ mimics activation kinetic slowing of CaV2.2 channels by noradrenaline in rat sympathetic neurons.

    PubMed

    Hernández-Castellanos, Juan M; Vivas, Oscar; Garduño, Julieta; De la Cruz, Lizbeth; Arenas, Isabel; Elías-Viñas, David; Mackie, Ken; García, David E

    2014-02-28

    Several neurotransmitters and hormones acting through G protein-coupled receptors elicit a voltage-dependent regulation of CaV2.2 channels, having profound effects on cell function and the organism. It has been hypothesized that protein-protein interactions define specificity in signal transduction. Yet it is unknown how the molecular interactions in an intracellular signaling cascade determine the specificity of the voltage-dependent regulation induced by a specific neurotransmitter. It has been suspected that specific effector regions on the Gβ subunits of the G proteins are responsible for voltage-dependent regulation. The present study examines whether a neurotransmitter's specificity can be revealed by simple ion-current kinetic analysis likely resulting from interactions between Gβ subunits and the channel-molecule. Noradrenaline is a neurotransmitter that induces voltage-dependent regulation. By using biochemical and patch-clamp methods in rat sympathetic neurons we examined calcium current modulation induced by each of the five Gβ subunits and found that Gβ2 mimics activation kinetic slowing of CaV2.2 channels by noradrenaline. Furthermore, overexpression of the Gβ2 isoform reproduces the effect of noradrenaline in the willing-reluctant model. These results advance our understanding on the mechanisms by which signals conveying from a variety of membrane receptors are able to display precise homeostatic responses.

  1. A slow voltage-dependent Na(+)-current induced by 5-hydroxytryptamine and the G-protein-coupled activation mechanism in the ganglion cells of Aplysia.

    PubMed

    Kudo, A; Sasaki, K; Tamazawa, Y; Matsumoto, M

    1991-01-01

    Application of 5-hydroxytryptamine (5HT) induces a slowly depolarizing response in the neurons of Aplysia abdominal ganglion. In voltage-clamped cells, 5HT induced a slow inward current that increased steeply with membrane depolarization from -85 mV showing a negative slope conductance, but never reversed into outward when hyperpolarized beyond the equilibrium potential for K+. The 5HT-induced response was markedly augmented in Ca(2+)-free media, but depressed in Na(+)-free media, and unaffected by a change in external potassium. Intracellular injection of guanosine 5'-O-(2-thiodiphosphate) (GDP beta S) significantly depressed the 5HT response in a dose-dependent way. Injection of cholera toxin (CTX) selectively blocked the 5HT-induced response, the effect being irreversible. Neither 3'-deoxyadenosine, an inhibitor of adenylate cyclase, nor H-8, an inhibitor of protein kinase A, depressed the 5HT response. 3-Isobutyl-1-methylxanthine (IBMX) did not augment the 5HT response appreciably. The 5HT responses were not depressed at all during a saturated response to Br-cyclic AMP injected intracellularly. It was concluded that the 5HT response is produced by opening of the voltage-dependent Na(+)-channels with activation of CTX-sensitive G-protein but not necessarily with an increase in intracellular cyclic AMP.

  2. Transformer Industry Productivity Slows.

    ERIC Educational Resources Information Center

    Otto, Phyllis Flohr

    1981-01-01

    Annual productivity increases averaged 2.4 percent during 1963-79, slowing since 1972 to 1.5 percent; computer-assisted design and product standardization aided growth in output per employee-hour. (Author)

  3. Kinetics studies of d-glucose hydrogenation over activated charcoal supported platinum catalyst

    NASA Astrophysics Data System (ADS)

    Ahmed, Muthanna J.

    2012-02-01

    The kinetics of the catalytic hydrogenation of d-glucose to produce d-sorbitol was studied in a three-phase laboratory scale reactor. The hydrogenation reactions were performed on activated charcoal supported platinum catalyst in the temperature range 25-65°C and in a constant pressure of 1 atm. The kinetic data were modeled by zero, first and second-order reaction equations. In the operating regimes studied, the results show that the hydrogenation reaction was of a first order with respect to d-glucose concentration. Also the activation energy of the reaction was determined, and found to be 12.33 kJ mole-1. A set of experiment was carried out to test the deactivation of the catalyst, and the results show that the deactivation is slow with the ability of using the catalyst for several times with a small decrease in product yield.

  4. Multichannel carotenoid deactivation in photosynthetic light harvesting as identified by an evolutionary target analysis.

    PubMed

    Wohlleben, Wendel; Buckup, Tiago; Herek, Jennifer L; Cogdell, Richard J; Motzkus, Marcus

    2003-07-01

    A new channel of excitation energy deactivation in bacterial light harvesting was recently discovered, which leads to carotenoid triplet population on an ultrafast timescale. Here we show that this mechanism is also active in LH2 of Rhodopseudomonas acidophila through analysis of transient absorption data with an evolutionary target analysis. The algorithm offers flexible testing of kinetic network models with low a priori knowledge requirements. It applies universally to the simultaneous fitting of target state spectra and rate constants to time-wavelength-resolved data. Our best-fit model reproduces correctly the well-known cooling and decay behavior in the S(1) band, but necessitates an additional, clearly distinct singlet state that does not exchange with S(1), promotes ultrafast triplet population and participates in photosynthetic energy transfer.

  5. [Characteristics of mixed association and deactivation of electron excitation in chlorophyll-pheophytin complexes].

    PubMed

    Zen'kevich, E I; Zen'kevich, T V

    1984-01-01

    The regularities of the individual and mixed association of chlorophylls (Chl a, PChl a) with pheophytin (Pheo) were investigated. The complex studies of optical activity, spectral--luminescent and energetic characteristics of aggregates were carried out in mixture of solvents aceton-water (1:49). The formation of pigment mixed associates leads to intracomplex energy transfer from Chl (or PChl) to Pheo. It is shown that the efficiencies of such process, determined by independent ways via the luminescence quenching of energy donor or the emission sensibilization of acceptor, are identical. The energy migration mechanism is the inductive resonance one in studied complexes. The main patterns of the electronic excitation energy deactivation in such systems are discussed. The obtained results are analysed taking into account the contemporary background of the role of pheophytin in the primary processes of photosynthesis.

  6. Slow medical education.

    PubMed

    Wear, Delese; Zarconi, Joseph; Kumagai, Arno; Cole-Kelly, Kathy

    2015-03-01

    Slow medical education borrows from other "slow" movements by offering a complementary orientation to medical education that emphasizes the value of slow and thoughtful reflection and interaction in medical education and clinical care. Such slow experiences, when systematically structured throughout the curriculum, offer ways for learners to engage in thoughtful reflection, dialogue, appreciation, and human understanding, with the hope that they will incorporate these practices throughout their lives as physicians. This Perspective offers several spaces in the medical curriculum where slowing down is possible: while reading and writing at various times in the curriculum and while providing clinical care, focusing particularly on conducting the physical exam and other dimensions of patient care. Time taken to slow down in these ways offers emerging physicians opportunities to more fully incorporate their experiences into a professional identity that embodies reflection, critical awareness, cultural humility, and empathy. The authors argue that these curricular spaces must be created in a very deliberate manner, even on busy ward services, throughout the education of physicians.

  7. Revealing Deactivation Pathways Hidden in Time-Resolved Photoelectron Spectra

    PubMed Central

    Ruckenbauer, Matthias; Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2016-01-01

    Time-resolved photoelectron spectroscopy is commonly employed with the intention to monitor electronic excited-state dynamics occurring in a neutral molecule. With the help of theory, we show that when excited-state processes occur on similar time scales the different relaxation pathways are completely obscured in the total photoionization signal recorded in the experiment. Using non-adiabatic molecular dynamics and Dyson norms, we calculate the photoionization signal of cytosine and disentangle the transient contributions originating from the different deactivation pathways of its tautomers. In the simulations, the total signal from the relevant keto and enol tautomers can be decomposed into contributions either from the neutral electronic state populations or from the distinct mechanistic pathways across the multiple potential surfaces. The lifetimes corresponding to these contributions cannot be extracted from the experiment, thereby illustrating that new experimental setups are necessary to unravel the intricate non-adiabatic pathways occurring in polyatomic molecules after irradiation by light. PMID:27762396

  8. Revealing Deactivation Pathways Hidden in Time-Resolved Photoelectron Spectra

    NASA Astrophysics Data System (ADS)

    Ruckenbauer, Matthias; Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2016-10-01

    Time-resolved photoelectron spectroscopy is commonly employed with the intention to monitor electronic excited-state dynamics occurring in a neutral molecule. With the help of theory, we show that when excited-state processes occur on similar time scales the different relaxation pathways are completely obscured in the total photoionization signal recorded in the experiment. Using non-adiabatic molecular dynamics and Dyson norms, we calculate the photoionization signal of cytosine and disentangle the transient contributions originating from the different deactivation pathways of its tautomers. In the simulations, the total signal from the relevant keto and enol tautomers can be decomposed into contributions either from the neutral electronic state populations or from the distinct mechanistic pathways across the multiple potential surfaces. The lifetimes corresponding to these contributions cannot be extracted from the experiment, thereby illustrating that new experimental setups are necessary to unravel the intricate non-adiabatic pathways occurring in polyatomic molecules after irradiation by light.

  9. DEACTIVATION AND DECOMMISSIONING PLANNING AND ANALYSIS WITH GEOGRAPHIC INFORMATION SYSTEMS

    SciTech Connect

    Bollinger, J; William Austin, W; Larry Koffman, L

    2007-09-17

    From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. Although SRS has a continuing defense-related mission, the overall site mission is now oriented toward environmental restoration and management of legacy chemical and nuclear waste. With the change in mission, SRS no longer has a need for much of the infrastructure developed to support the weapons program. This excess infrastructure, which includes over 1000 facilities, will be decommissioned and demolished over the forthcoming years. Dispositioning facilities for decommissioning and deactivation requires significant resources to determine hazards, structure type, and a rough-order-of-magnitude estimate for the decommissioning and demolition cost. Geographic information systems (GIS) technology was used to help manage the process of dispositioning infrastructure and for reporting the future status of impacted facilities.

  10. Exploration of Excited State Deactivation Pathways of Adenine Monohydrates.

    PubMed

    Chaiwongwattana, Sermsiri; Sapunar, Marin; Ponzi, Aurora; Decleva, Piero; Došlić, Nađa

    2015-10-29

    Binding of a single water molecule has a dramatic effect on the excited state lifetime of adenine. Here we report a joint nonadiabatic dynamics and reaction paths study aimed at understanding the sub-100 fs lifetime of adenine in the monohydrates. Our nonadiabatic dynamics simulations, performed using the ADC(2) electronic structure method, show a shortening of the excited state lifetime in the monohydrates with respect to bare adenine. However, the computed lifetimes were found to be significantly longer that the observed one. By comparing the reaction pathways of several excited state deactivation processes in adenine and adenine monohydrates, we show that electron-driven proton transfer from water to nitrogen atom N3 of the adenine ring may be the process responsible for the observed ultrafast decay. The inaccessibility of the electron-driven proton transfer pathway to trajectory-based nonadiabatic dynamics simulation is discussed.

  11. Commercial experience with facility deactivation to safe storage

    SciTech Connect

    Sype, T.T.; Fischer, S.R.; Lee, J.H. Jr.; Sanchez, L.C.; Ottinger, C.A.; Pirtle, G.J.

    1995-09-01

    The Department of Energy (DOE) has shutdown many production reactors; the Department has begun a major effort to also shutdown a wide variety of other nuclear facilities. Because so many facilities are being closed, it is necessary to place many of them into a safe- storage status, i.e., deactivation, before conducting decommissioning- for perhaps as long as 20 years. The challenge is to achieve this safe-storage condition in a cost-effective manner while remaining in compliance with applicable regulations. The DOE Office of Environmental Management, Office of Transition and Management, commissioned a lessons-learned study of commercial experience with safe storage and decommissioning. Although the majority of the commercial experience has been with reactors, many of the lessons learned presented in this document can provide insight into transitioning challenges that Will be faced by the DOE weapons complex.

  12. Sorption of SO(2) and NO from simulated flue gas over rice husk ash (RHA)/CaO/CeO(2) sorbent: evaluation of deactivation kinetic parameters.

    PubMed

    Dahlan, Irvan; Lee, Keat Teong; Kamaruddin, Azlina Harun; Mohamed, Abdul Rahman

    2011-01-30

    In this study, the kinetic parameters of rice husk ash (RHA)/CaO/CeO(2) sorbent for SO(2) and NO sorptions were investigated in a laboratory-scale stainless steel fixed-bed reactor. Data experiments were obtained from our previous results and additional independent experiments were carried out at different conditions. The initial sorption rate constant (k(0)) and deactivation rate constant (k(d)) for SO(2)/NO sorptions were obtained from the nonlinear regression analysis of the experimental breakthrough data using deactivation kinetic model. Both the initial sorption rate constants and deactivation rate constants increased with increasing temperature, except at operating temperature of 170 °C. The activation energy and frequency factor for the SO(2) sorption were found to be 18.0 kJ/mol and 7.37 × 10(5)cm(3)/(g min), respectively. Whereas the activation energy and frequency factor for the NO sorption, were estimated to be 5.64 kJ/mol and 2.19 × 10(4)cm(3)/(g min), respectively. The deactivation kinetic model was found to give a very good agreement with the experimental data of the SO(2)/NO sorptions.

  13. Transcriptional Activity of Gene Encoding Subunits R1 and R2 of Interferon Gamma Receptor in Peripheral Blood Mononuclear Cells in Patients with Slow Coronary Flow

    PubMed Central

    Faramarz-Gaznagh, Sanaz; Khadem-Ansari, Mohammad-Hasan; Seyed-Mohammadzad, Mir-Hossein; Bagheri, Morteza; Nemati, Mohadeseh; Shirpoor, Alireza; Saboori, Ehsan

    2016-01-01

    Summary Background Slow coronary flow (SCF) is a coronary artery disorder characterized with delayed opacification of epicardial coronary arteries without obstructive coronary disease. The pathophysiological mechanisms of SCF remain unclear. One of the possible mechanisms that may participate in the pathology of SCF is endothelial dysfunction related to the inflammatory process. Interferon gamma (IFN-γ) is an inflammatory cytokine that acts through its specific receptor composed of two subunits, IFN-γR1 and IFN-γR2. Transcriptional activity of the gene encoding these subunits influences IFN-γ activity. This study aimed to investigate the gene expression of IFN-γ receptor subunits in peripheral blood mononuclear cells (PBMC) from patients with SCF. Methods The study was performed with 30 patients (22 male/8 female) aged 35–76 (52.8±11.7 years) with SCF and 15 sex- (11 male/4 female), Body Max Index (BMI)- and age-matched (54.73±9.42 years) healthy subjects. Total mRNA was extracted from PBMC and was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). The relative expression values (2-ΔΔCt) between control and case groups were determined and the Mann-Whitney U test was used for statistical analysis. Results There was a significant increase in the gene expression of IFN-γR1 in PBMC from SCF patients vs. controls (P< 0.0001); but the differences in IFN-γR2 gene expression were statistically insignificant between patient and control groups (P= 0.853). Conclusions It can be concluded that IFN-γ gene expression may influence the function of microvasculature and thereby contribute to the pathophysiology of SCF.

  14. Deactivation of lipopolysaccharide by Ar and H2 inductively coupled low-pressure plasma

    NASA Astrophysics Data System (ADS)

    Bartis, E. A. J.; Barrett, C.; Chung, T.-Y.; Ning, N.; Chu, J.-W.; Graves, D. B.; Seog, J.; Oehrlein, G. S.

    2014-01-01

    Using an inductively coupled plasma system, we study the effects of direct plasma, plasma-generated high-energy photons in the ultraviolet and vacuum ultraviolet (UV/VUV), and radical treatments on lipopolysaccharide (LPS). LPS is a biomolecule found in the outer membrane of Gram-negative bacteria and a potent stimulator of the immune system composed of polysaccharide and lipid A, which contains six aliphatic chains. LPS film thickness spun on silicon was monitored by ellipsometry while the surface chemistry was characterized before and after treatments by x-ray photoelectron spectroscopy (XPS). Additionally, biological activity was measured using an enzyme-linked immunosorbent assay under (a) a sensitive regime (sub-µM concentrations of LPS) and (b) a bulk regime (above µM concentrations of LPS) after plasma treatments. Direct plasma treatment causes rapid etching and deactivation of LPS in both Ar and H2 feed gases. To examine the effect of UV/VUV photons, a long-pass filter with a cut-off wavelength of 112 nm was placed over the sample. H2 UV/VUV treatment causes material removal and deactivation due to atomic and molecular UV/VUV emission while Ar UV/VUV treatment shows minimal effects as Ar plasma does not emit UV/VUV photons in the transmitted wavelength range explored. Interestingly, radical treatments remove negligible material but cause deactivation. Based on the amphiphilic structure of LPS, we expect a lipid A rich surface layer to form at the air-water interface during sample preparation with polysaccharide layers underneath. XPS shows that H2 plasma treatment under direct and UV/VUV conditions causes oxygen depletion through removal of C-O and O-C = O bonds in the films, which does not occur in Ar treatments. Damage to these groups can remove aliphatic chains that contribute to the pyrogenicity of LPS. Radical treatments from both Ar and H2 plasmas remove aliphatic carbon from the near-surface, demonstrating the important role of neutral species.

  15. Slow Movements of Bio-Inspired Limbs

    NASA Astrophysics Data System (ADS)

    Babikian, Sarine; Valero-Cuevas, Francisco J.; Kanso, Eva

    2016-10-01

    Slow and accurate finger and limb movements are essential to daily activities, but the underlying mechanics is relatively unexplored. Here, we develop a mathematical framework to examine slow movements of tendon-driven limbs that are produced by modulating the tendons' stiffness parameters. Slow limb movements are driftless in the sense that movement stops when actuations stop. We demonstrate, in the context of a planar tendon-driven system representing a finger, that the control of stiffness suffices to produce stable and accurate limb postures and quasi-static (slow) transitions among them. We prove, however, that stable postures are achievable only when tendons are pretensioned, i.e., they cannot become slack. Our results further indicate that a non-smoothness in slow movements arises because the precision with which individual stiffnesses need to be altered changes substantially throughout the limb's motion.

  16. Randomised clinical trial of the effects of prolonged-release melatonin, temazepam and zolpidem on slow-wave activity during sleep in healthy people.

    PubMed

    Arbon, Emma L; Knurowska, Malgorzata; Dijk, Derk-Jan

    2015-07-01

    Current pharmacological treatments for insomnia include benzodiazepine and non-benzodiazepine hypnotics targeting γ-aminobutyric acid (GABA)A receptors, as well as agonists of the melatonin receptors MT1 and MT2. Melatonin, temazepam and zolpidem are thought to exert their effect through different mechanisms of action, but whether this leads to differential effects on electroencephalogram (EEG) power spectra during sleep in middle-aged people is currently not known. To establish whether the effects of prolonged-release melatonin (2 mg) on the nocturnal sleep EEG are different to those of temazepam (20 mg) and zolpidem (10 mg). Sixteen healthy men and women aged 55-64 years participated in a double-blind, placebo-controlled, four-way cross-over trial. Nocturnal sleep was assessed with polysomnography and spectral analysis of the EEG. The effects of single oral doses of prolonged-release melatonin, temazepam and zolpidem on EEG slow-wave activity (SWA, 0.75-4.5 Hz) and other frequencies during nocturnal non-rapid eye movement (NREM) sleep were compared. In an entire night analysis prolonged-release melatonin did not affect SWA, whereas temazepam and zolpidem significantly reduced SWA compared with placebo. Temazepam significantly reduced SWA compared with prolonged-release melatonin. Prolonged-release melatonin only reduced SWA during the first third of the night compared with placebo. These data show that the effects of prolonged-release melatonin on the nocturnal sleep EEG are minor and are different from those of temazepam and zolpidem; this is likely due to the different mechanisms of action of the medications.

  17. Deep sleep after social stress: NREM sleep slow-wave activity is enhanced in both winners and losers of a conflict.

    PubMed

    Kamphuis, Jeanine; Lancel, Marike; Koolhaas, Jaap M; Meerlo, Peter

    2015-07-01

    Sleep is considered to be a recovery process of prior wakefulness. Not only duration of the waking period affects sleep architecture and sleep EEG, the quality of wakefulness is also highly important. Studies in rats have shown that social defeat stress, in which experimental animals are attacked and defeated by a dominant conspecific, is followed by an acute increase in NREM sleep EEG slow wave activity (SWA). However, it is not known whether this effect is specific for the stress of social defeat or a result of the conflict per se. In the present experiment, we examined how sleep is affected in both the winners and losers of a social conflict. Sleep-wake patterns and sleep EEG were recorded in male wild-type Groningen rats that were subjected to 1h of social conflict in the middle of the light phase. All animals were confronted with a conspecific of similar aggression level and the conflict took place in a neutral arena where both individuals had an equal chance to either win or lose the conflict. NREM sleep SWA was significantly increased after the social conflict compared to baseline values and a gentle stimulation control condition. REM sleep was significantly suppressed in the first hours after the conflict. Winners and losers did not differ significantly in NREM sleep time, NREM sleep SWA and REM sleep time immediately after the conflict. Losers tended to have slightly more NREM sleep later in the recovery period. This study shows that in rats a social conflict with an unpredictable outcome has quantitatively and qualitatively largely similar acute effects on subsequent sleep in winners and losers.

  18. DEACTIVATION AND DECOMMISSIONING ENVIRONMENTAL STRATEGY FOR THE PLUTONIUM FINISHING PLANT COMPLEX, HANFORD NUCLEAR RESERVATION

    SciTech Connect

    Hopkins, A.M.; Heineman, R.; Norton, S.; Miller, M.; Oates, L.

    2003-02-27

    Maintaining compliance with environmental regulatory requirements is a significant priority in successful completion of the Plutonium Finishing Plant (PFP) Nuclear Material Stabilization (NMS) Project. To ensure regulatory compliance throughout the deactivation and decommissioning of the PFP complex, an environmental regulatory strategy was developed. The overall goal of this strategy is to comply with all applicable environmental laws and regulations and/or compliance agreements during PFP stabilization, deactivation, and eventual dismantlement. Significant environmental drivers for the PFP Nuclear Material Stabilization Project include the Tri-Party Agreement; the Resource Conservation and Recovery Act of 1976 (RCRA); the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA); the National Environmental Policy Act of 1969 (NEPA); the National Historic Preservation Act (NHPA); the Clean Air Act (CAA), and the Clean Water Act (CWA). Recent TPA negotiation s with Ecology and EPA have resulted in milestones that support the use of CERCLA as the primary statutory framework for decommissioning PFP. Milestones have been negotiated to support the preparation of Engineering Evaluations/Cost Analyses for decommissioning major PFP buildings. Specifically, CERCLA EE/CA(s) are anticipated for the following scopes of work: Settling Tank 241-Z-361, the 232-Z Incinerator, , the process facilities (eg, 234-5Z, 242, 236) and the process facility support buildings. These CERCLA EE/CA(s) are for the purpose of analyzing the appropriateness of the slab-on-grade endpoint Additionally, agreement was reached on performing an evaluation of actions necessary to address below-grade structures or other structures remaining after completion of the decommissioning of PFP. Remaining CERCLA actions will be integrated with other Central Plateau activities at the Hanford site.

  19. Collective Resistance in Microbial Communities by Intracellular Antibiotic Deactivation

    PubMed Central

    Sorg, Robin A.; Lin, Leo; van Doorn, G. Sander; Sorg, Moritz; Olson, Joshua; Nizet, Victor; Veening, Jan-Willem

    2016-01-01

    The structure and composition of bacterial communities can compromise antibiotic efficacy. For example, the secretion of β-lactamase by individual bacteria provides passive resistance for all residents within a polymicrobial environment. Here, we uncover that collective resistance can also develop via intracellular antibiotic deactivation. Real-time luminescence measurements and single-cell analysis demonstrate that the opportunistic human pathogen Streptococcus pneumoniae grows in medium supplemented with chloramphenicol (Cm) when resistant bacteria expressing Cm acetyltransferase (CAT) are present. We show that CAT processes Cm intracellularly but not extracellularly. In a mouse pneumonia model, more susceptible pneumococci survive Cm treatment when coinfected with a CAT-expressing strain. Mathematical modeling predicts that stable coexistence is only possible when antibiotic resistance comes at a fitness cost. Strikingly, CAT-expressing pneumococci in mouse lungs were outcompeted by susceptible cells even during Cm treatment. Our results highlight the importance of the microbial context during infectious disease as a potential complicating factor to antibiotic therapy. PMID:28027306

  20. The effect of feedstock additives on FCC catalyst deactivation

    SciTech Connect

    Hughes, R.; Koon, C.L.; McGhee, B.

    1995-12-31

    Fluid catalytic cracking is a major petroleum refining process and because of this the deactivation of FCC catalysts by coke deposition has been the subject of considerable investigation during the past 50 years. Nevertheless, a lack of understanding of the fundamental understanding of processes leading to coke formation still exists. Basic studies using Zeolites have usually involved excessively high levels of coke deposits compared to normal FCC operation. The present study addresses coke formation at realistic levels of 0.5 to 1.0% w/w using a standard MAT reactor in which concentrations of 1% and 10% of various additives were added to the n-hexadecane feedstock. These additives included, quinoline, phenanthrene, benzofuran, thianaphthene and indene. The coke formed was characterised by mass spectrometry and was significantly aliphatic in nature, the amount formed increasing in the order quinoline, phenanthrene, thianaphthene, benzofuran, indene. Quinoline acts primarily as a poison, whereas the other additives tend to promote coke formation in n-hexadecane cracking.

  1. Excited-State Deactivation of Branched Phthalocyanine Compounds.

    PubMed

    Zhu, Huaning; Li, Yang; Chen, Jun; Zhou, Meng; Niu, Yingli; Zhang, Xinxing; Guo, Qianjin; Wang, Shuangqing; Yang, Guoqiang; Xia, Andong

    2015-12-21

    The excited-state relaxation dynamics and chromophore interactions in two phthalocyanine compounds (bis- and trisphthalocyanines) are studied by using steady-state and femtosecond transient absorption spectral measurements, where the excited-state energy-transfer mechanism is explored. By exciting phthalocyanine compounds to their second electronically excited states and probing the subsequent relaxation dynamics, a multitude of deactivation pathways are identified. The transient absorption spectra show the relaxation pathway from the exciton state to excimer state and then back to the ground state in bisphthalocyanine (bis-Pc). In trisphthalocyanine (tris-Pc), the monomeric and dimeric subunits are excited and the excitation energy transfers from the monomeric vibrationally hot S1 state to the exciton state of a pre-associated dimer, with subsequent relaxation to the ground state through the excimer state. The theoretical calculations and steady-state spectra also show a face-to-face conformation in bis-Pc, whereas in tris-Pc, two of the three phthalocyanine branches form a pre-associated face-to-face dimeric conformation with the third one acting as a monomeric unit; this is consistent with the results of the transient absorption experiments from the perspective of molecular structure. The detailed structure-property relationships in phthalocyanine compounds is useful for exploring the function of molecular aggregates in energy migration of natural photosynthesis systems.

  2. Effect of Au nano-particle aggregation on the deactivation of the AuCl3/AC catalyst for acetylene hydrochlorination

    PubMed Central

    Dai, Bin; Wang, Qinqin; Yu, Feng; Zhu, Mingyuan

    2015-01-01

    A detailed study of the valence state and distribution of the AuCl3/AC catalyst during the acetylene hydrochlorination deactivation process is described and discussed. Temperature-programmed reduction and X-ray photoelectron spectral analysis indicate that the active Au3+ reduction to metallic Au0 is one reason for the deactivation of AuCl3/AC catalyst. Transmission electron microscopy characterization demonstrated that the particle size of Au nano-particles increases with increasing reaction time. The results indicated that metallic Au0 exhibits considerable catalytic activity and that Au nano-particle aggregation may be another reason for the AuCl3/AC catalytic activity in acetylene hydrochlorination. PMID:25994222

  3. Effect of Au nano-particle aggregation on the deactivation of the AuCl3/AC catalyst for acetylene hydrochlorination

    NASA Astrophysics Data System (ADS)

    Dai, Bin; Wang, Qinqin; Yu, Feng; Zhu, Mingyuan

    2015-05-01

    A detailed study of the valence state and distribution of the AuCl3/AC catalyst during the acetylene hydrochlorination deactivation process is described and discussed. Temperature-programmed reduction and X-ray photoelectron spectral analysis indicate that the active Au3+ reduction to metallic Au0 is one reason for the deactivation of AuCl3/AC catalyst. Transmission electron microscopy characterization demonstrated that the particle size of Au nano-particles increases with increasing reaction time. The results indicated that metallic Au0 exhibits considerable catalytic activity and that Au nano-particle aggregation may be another reason for the AuCl3/AC catalytic activity in acetylene hydrochlorination.

  4. Silica supported palladium nanoparticles for the decarboxylation of high-acid feedstocks: Design, deactivation and regeneration

    NASA Astrophysics Data System (ADS)

    Ping, Eric Wayne

    2011-12-01

    The major goals of this thesis were to (1) design and synthesize a supported catalyst with well-defined monodisperse palladium nanoparticles evenly distributed throughout an inorganic oxide substrate with tunable porosity characteristics, (2) demonstrate the catalytic activity of this material in the decarboxylation of long chain fatty acids and their derivatives to make diesel-length hydrocarbons, (3) elucidate the deactivation mechanism of supported palladium catalysts under decarboxylation conditions via post mortem catalyst characterization and develop a regeneration methodology thereupon, and (4) apply this catalytic system to a real low-value biofeedstock. Initial catalyst designs were based on the SBA-15 silica support, but in an effort to maximize loading and minimize mass transfer limitations, silica MCF was synthesized as catalyst support. Functionalization with various silane ligands yielded a surface that facilitated even distribution of palladium precursor salts throughout the catalyst particle, and, after reduction, monodisperse palladium nanoparticles approximately 2 nm in diameter. Complete characterization was performed on this Pd-MCF catalyst. The Pd-MCF catalyst showed high one-time activity in the decarboxylation of fatty acids to hydrocarbons in dodecane at 300°C. Hydrogen was found to be an unnecessary reactant in the absence of unsaturations, but was required in their presence---full hydrogenation of the double bonds occurs before any decarboxylation can take place. The Pd-MCF also exhibited good activity for alkyl esters and glycerol, providing a nice hypothetical description of a stepwise reaction pathway for catalytic decarboxylation of acids and their derivatives. As expected, the Pd-MCF catalyst experienced severe deactivation after only one use. Substantial effort was put into elucidating the nature of this deactivation via post mortem catalyst characterization. H2 chemisorption confirmed a loss of active surface area, but TEM and

  5. Implementation of a Peltier-based cooling device for localized deep cortical deactivation during in vivo object recognition testing

    NASA Astrophysics Data System (ADS)

    Marra, Kyle; Graham, Brett; Carouso, Samantha; Cox, David

    2012-02-01

    While the application of local cortical cooling has recently become a focus of neurological research, extended localized deactivation deep within brain structures is still unexplored. Using a wirelessly controlled thermoelectric (Peltier) device and water-based heat sink, we have achieved inactivating temperatures (<20 C) at greater depths (>8 mm) than previously reported. After implanting the device into Long Evans rats' basolateral amygdala (BLA), an inhibitory brain center that controls anxiety and fear, we ran an open field test during which anxiety-driven behavioral tendencies were observed to decrease during cooling, thus confirming the device's effect on behavior. Our device will next be implanted in the rats' temporal association cortex (TeA) and recordings from our signal-tracing multichannel microelectrodes will measure and compare activated and deactivated neuronal activity so as to isolate and study the TeA signals responsible for object recognition. Having already achieved a top performing computational face-recognition system, the lab will utilize this TeA activity data to generalize its computational efforts of face recognition to achieve general object recognition.

  6. Slow slip and the transition from fast to slow fronts in the rupture of frictional interfaces

    PubMed Central

    Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Scheibert, Julien; Thøgersen, Kjetil; Amundsen, David Skålid; Malthe-Sørenssen, Anders

    2014-01-01

    The failure of the population of microjunctions forming the frictional interface between two solids is central to fields ranging from biomechanics to seismology. This failure is mediated by the propagation along the interface of various types of rupture fronts, covering a wide range of velocities. Among them are the so-called slow fronts, which are recently discovered fronts much slower than the materials’ sound speeds. Despite intense modeling activity, the mechanisms underlying slow fronts remain elusive. Here, we introduce a multiscale model capable of reproducing both the transition from fast to slow fronts in a single rupture event and the short-time slip dynamics observed in recent experiments. We identify slow slip immediately following the arrest of a fast front as a phenomenon sufficient for the front to propagate further at a much slower pace. Whether slow fronts are actually observed is controlled both by the interfacial stresses and by the width of the local distribution of forces among microjunctions. Our results show that slow fronts are qualitatively different from faster fronts. Because the transition from fast to slow fronts is potentially as generic as slow slip, we anticipate that it might occur in the wide range of systems in which slow slip has been reported, including seismic faults. PMID:24889640

  7. Charge separation technique for metal-oxide-silicon capacitors in the presence of hydrogen deactivated dopants

    SciTech Connect

    Witczak, Steven C.; Winokur, Peter S.; Lacoe, Ronald C.; Mayer, Donald C.

    2000-06-01

    An improved charge separation technique for metal-oxide-silicon (MOS) capacitors is presented which accounts for the deactivation of substrate dopants by hydrogen at elevated irradiation temperatures or small irradiation biases. Using high-frequency capacitance-voltage measurements, radiation-induced inversion voltage shifts are separated into components due to oxide trapped charge, interface traps, and deactivated dopants, where the latter is computed from a reduction in Si capacitance. In the limit of no radiation-induced dopant deactivation, this approach reduces to the standard midgap charge separation technique used widely for the analysis of room-temperature irradiations. The technique is demonstrated on a p-type MOS capacitor irradiated with {sup 60}Co {gamma} rays at 100 degree sign C and zero bias, where the dopant deactivation is significant.(c) 2000 American Institute of Physics.

  8. Integrated Project Management Planning for the Deactivation of the Savannah River Site F-Canyon Complex

    SciTech Connect

    Clark, T.G.

    2000-12-01

    This paper explains the planning process that is being utilized by the Westinghouse Savannah River Company to take the F-Canyon Complex facilities from operations to a deactivated condition awaiting final decommissioning.

  9. Synthesis of ZnWO4 Electrode with tailored facets: Deactivating the Microorganisms through Photoelectrocatalytic methods

    NASA Astrophysics Data System (ADS)

    Zhan, Su; Zhou, Feng; Huang, Naibao; Liu, Yujun; He, Qiuchen; Tian, Yu; Yang, Yifan; Ye, Fei

    2017-01-01

    The exotic invasive species from the ballast water in the ship will bring about serious damages to ecosystem. Photocatalyst films have been widely studied for sterilization. In this study, ZnWO4 with different exposed facets was synthesized by hydrothermal method, and ZnWO4 film electrodes have been applied in ballast water treatment through the electro-assisted photocatalytic system. Then the samples were investigated by X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS), Field emission on scanning electron microcopy (FE-SEM), Transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS), BET specific surface area analysis, Fourier transform infrared (FT-IR) and Electrochemical impedance spectra (EIS). ZnWO4 with an appropriate exposure of (0 1 1) facets ratio exhibited the best photocatalytic and photoelectrocatalytic activities. The microorganisms deactivated completely in 10 min by ZnWO4 films with 3 V bias. The mechanisms of (0 1 1) facets enhanced the photocatalytic and photoelectrocatalytic activities which were deduced based on the calculated result from the first principles. Simultaneously, appropriate exposed facets and applied bias could reduce the recombination of the photogenerated electron-hole pairs, and improve the photocatalytic activities of ZnWO4.

  10. Patient perceptions of implantable cardioverter-defibrillator deactivation discussions: A qualitative study

    PubMed Central

    MacIver, Jane; Tibbles, Alana; Billia, Filio; Ross, Heather

    2016-01-01

    Background: There is a class I recommendation for implantable cardioverter-defibrillator deactivation discussions to occur between physicians and heart failure patients. Few studies have reported the patient’s perspective on the timing of implantable cardioverter-defibrillator deactivation discussions. Aim: To determine patient awareness, preferences and timing of implantable cardioverter-defibrillator deactivation discussions. Design: Grounded theory was used to collect and analyze interview data from 25 heart failure patients with an implantable cardioverter-defibrillator. Setting and participants: Patients with an implantable cardioverter-defibrillator, from the Heart Function Clinic at University Health Network (Toronto, Canada). Results: The sample (n = 25) was predominately male (76%) with an average age of 62 years. Patients identified three stages where they felt implantable cardioverter-defibrillator deactivation should be discussed: (1) prior to implantation, (2) with any significant deterioration but while they were of sound mind to engage in and communicate their preferences and (3) at end of life, where patients wished further review of their previously established preferences and decisions about implantable cardioverter-defibrillator deactivation. Most patients (n = 17, 68%) said they would consider deactivation, six (24%) were undecided and two (8%) were adamant they would never turn it off. Conclusion: The patient preferences identified in this study support the need to include information on implantable cardioverter-defibrillator deactivation at implant, with change in clinical status and within broader discussions about end-of-life treatment preferences. Using this process to help patients determine and communicate their implantable cardioverter-defibrillator deactivation preferences may reduce the number of patients experiencing distressing implantable cardioverter-defibrillator shocks at end of life. PMID:27110361

  11. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    SciTech Connect

    JOHNSTON GA

    2008-01-15

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA). The

  12. DEACTIVATION AND DECOMMISSIONING (D AND D) TECHNOLOGY INTEGRATION

    SciTech Connect

    M.A. Ebadian, Ph.D.

    1999-01-01

    As part of the ongoing task of making Deactivation and Decommissioning (D&D) operations more efficient, this subtask has addressed the need to integrate existing characterization technologies with decontamination technologies in order to provide real-time data on the progress of contamination removal. Specifically, technologies associated with concrete decontamination and/or removal have been examined with the goal of integrating existing technologies and commercializing the resulting hybrid. The Department of Energy (DOE) has estimated that 23 million cubic meters of concrete will require disposition as 1200 buildings undergo the D&D process. All concrete removal to be performed will also necessitate extensive use of characterization techniques. The in-process characterization presents the most potential for improvement and cost-savings as compared to other types. Current methods for in-process characterization usually require cessation of work to allow for radiation surveys to assess the rate of decontamination. Combining together decontamination and characterization technologies would allow for in-process evaluation of decontamination efforts. Since the present methods do not use in-process evaluations for the progress of decontamination, they may allow for ''overremoval'' of materials (removal of contaminated along with non-contaminated materials). Overremoval increases the volume of waste and therefore the costs associated with disposal. Integrating technologies would facilitate the removal of only contaminated concrete and reduce the total volume of radioactive waste, which would be disposed of. This would eventually ensure better productivity and time savings. This project presents a general procedure to integrate the above-mentioned technologies in the form of the Technology Integration Module (TIM) along with combination lists of commercially available decontamination and characterization technologies. The scope of the project has also been expanded by FIU

  13. On the nature of the deactivation of supported palladium nanoparticle catalysts in the decarboxylation of fatty acids.

    SciTech Connect

    Ping, E. W.; Pierson, J.; Wallace, R.; Miller, J. T.; Fuller, T. F.; Jones, C. W.

    2011-04-15

    Supported palladium catalysts are effective catalysts for the hydrogen-free decarboxylation of fatty acids. However, the catalysts deactivate severely after one use. Here, the recyclability of a well-defined, mesoporous silica-supported palladium nanoparticle catalyst is evaluated in the batch decarboxylation of stearic acid at 300 C under inert atmosphere, producing n-heptadecane. The nature of the catalyst deactivation is examined in detail via an array of characterization techniques. X-ray photoelectron spectroscopy (XPS) demonstrates that little palladium surface oxidation occurs over the course of the reaction, and a combination of X-ray absorption spectroscopy and transmission electron microscopy (TEM) suggests negligible particle sintering or agglomeration. Physisorption and chemisorption measurements demonstrate substantial loss in total surface area and porosity as well as accessible palladium surface area with these losses attributed to significant organic deposition on the catalyst, as verified via thermogravimetric analysis. High temperature calcination is applied to combust and remove these residues, but resultant nanoparticle agglomeration is significant. Solid state nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT-IR) and solid dissolution followed by organic extraction methodologies demonstrate that the carbonaceous deposits are not coke but rather strongly adsorbed reactants and products. Detrimental coke formation, as suggested by prior literature, is verified to be absent, as extraction of the surface-deposited organic species yields nearly complete recovery of the total surface area, pore volume, and active palladium surface area. Furthermore, the regenerated catalyst exhibits a corresponding significant recovery of decarboxylation activity.

  14. Sulfur deactivation mechanism of Pt/MnOx-CeO2 for soot oxidation: Surface property study

    NASA Astrophysics Data System (ADS)

    Zhang, Hailong; Hou, Zhongyan; Zhu, Yi; Wang, Jianli; Chen, Yaoqiang

    2017-02-01

    In this work, an advanced diffuse reflectance infrared fourier transform spectra (DRIFTS) technology is used to describe the formation of surface sulfates on Pt/MnOx-CeO2 and study the possible deactivation mechanism for soot oxidation reactions in NO + O2. IR spectra of CO adsorption and H2-TPR results reveal the surface coverage of Pt by sulfates and the loss of partial active oxygen species after the sulfation, respectively. More importantly, in situ DRIRT spectra show sulfur poisoning apparently inhibits the formation of surface intermediates such as monodentate/bidentate nitrates and nitro species, which directly limits the production of NO2. Furthermore, the O2-TPD results indicate that the sulfation weakens the desorption of surface active oxygen resulting from the decomposition of surface nitrates. The sulfate formation would affect the production of oxygen vacant sites and thereby the mobility of surface oxygen species in both NO + O2 and O2. These factors above would play an important role on the deactivation mechanism for soot oxidation.

  15. Utilization of photocatalytic ZnO nanoparticles for deactivation of safranine dye and their applications for statistical analysis

    NASA Astrophysics Data System (ADS)

    Wahab, Rizwan; Khan, Farheen; Lutfullah; Singh, R. B.; Kaushik, Nagendra Kumar; Ahmad, Javed; Siddiqui, Maqsood A.; Saquib, Quaiser; Ali, Bahy A.; Khan, Shams T.; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.

    2015-05-01

    A soft chemical solution process was used in synthesis of photocatalytic zinc oxide nanoparticles (ZnO-PNPs) at low temperature. The synthesized PNPs were characterized in terms of their crystallinity, morphological, catalytic, spectroscopic and statistical analysis techniques. X-ray powder diffraction patterns (XRD) were used to know the crystalline property of the prepared materials whereas field emission electronic microscopy (FESEM) was employed to observe the morphology of grown NPs. UV-visible spectroscopy was employed to analyze the absorbance of degraded safranine (SA) dye in presence of NPs at desired time interval. Parameters of statistical analysis give necessary information for established analytical procedures to ensure quality and purity of results. With the help of this analytical method, outcomes were calculated in terms of absorbance such as standard deviation (SD), relative standard deviation (RSD), etc. at 95% confidence level. The photocatalytic deactivation/degradation process significantly enhanced the activity of ZnO-PNPs under UV-visible light in presence of SA dye. The effective concentration of used PNPs was optimized and validated via standard analytical procedure, which exhibited greater significance on deactivation process. The absorption spectra of photocatalyzed solution and activity of ZnO-PNPs were compared with those of pure ZnO, obtained by UV-visible spectroscopy.

  16. Slow wave sleep in crayfish.

    PubMed

    Ramón, Fidel; Hernández-Falcón, Jesús; Nguyen, Bao; Bullock, Theodore H

    2004-08-10

    Clear evidence of sleep in invertebrates is still meager. Defined as a distinct state of reduced activity, arousability, attention, and initiative, it is well established in mammals, birds, reptiles, and teleosts. It is commonly defined by additional electroencephalographic criteria that are only well established in mammals and to some extent in birds. Sleep states similar to those in mammals, except for electrical criteria, seem to occur in some invertebrates, based on behavior and some physiological observations. Currently the most compelling evidence for sleep in invertebrates (evidence that meets most standard criteria for sleep) has been obtained in the fruit fly Drosophila melanogaster. However, in mammals, sleep is also characterized by a brain state different from that at rest but awake. The electrophysiological slow wave criterion for this state is not seen in Drosophila or in honey bees. Here, we show that, in crayfish, a behavioral state with elevated threshold for vibratory stimulation is accompanied by a distinctive form of slow wave electrical activity of the brain, quite different from that during waking rest. Therefore, crayfish can attain a sleep state comparable to that of mammals.

  17. Radioactive air emissions notice of construction for deactivation of the PUREX storage tunnel number 2

    SciTech Connect

    JOHNSON, R.E.

    1999-10-11

    The Plutonium-Uranium Extraction (PUREX) Plant Storage Tunnel Number 2 (hereafter referred to as the PUREX Tunnel) was built in 1964. Since that time, the PUREX Tunnel has been used for storage of radioactive and mixed waste. In 1991, the PUREX Plant ceased operations and was transitioned to deactivation. The PUREX Tunnel continued to receive PUREX Plant waste material for storage during transition activities. Before 1995, a decision was made to store radioactive and mixed waste in the PUREX Tunnel generated from other onsite sources, on a case-by-case basis. This notice of construction (NOC) describes the activities associated with the reactivation of the PUREX Tunnel ventilation system and the transfer of up to 3.5 million curies (MCi) of radioactive waste to the PUREX Tunnel from any location on the Hanford Site. The unabated total effective dose equivalent (TEDE) estimated for the hypothetical offsite maximally exposed individual (MEI) is 5.6 E-2 millirem (mrem). The abated TEDE conservatively is estimated to account for 1.9 E-5 mrem to the MEI. The following text provides information requirements of Appendix A of Washington Administrative Code (WAC) 246-247 (requirements 1 through 18).

  18. Quantum gravity slows inflation

    SciTech Connect

    Tsamis, N.C. |; Woodard, R.P.

    1996-02-01

    We consider the quantum gravitational back-reaction on an initially inflating, homogeneous and isotropic universe whose topology is T{sup 3} {times} {Re}. Although there is no secular effect at one loop, an explicit calculation shows that two-loop processes act to slow the rate of expansion by an amount which becomes non-pertubatively large at late times. By exploiting Feynman`s tree theorem we show that all higher loops act in the same sense. 18 refs., 1 fig.

  19. Possibilities for recycling cellulases after use in cotton processing: part I: Effects of end-product inhibition, thermal and mechanical deactivation, and cellulase depletion by adsorption.

    PubMed

    Azevedo, Helena; Bishop, David; Cavaco-Paul, Artur

    2002-04-01

    Preliminary recycling experiments with cellulase enzymes after cotton treatments at 50 degrees C showed that activity remaining in the treatment liquors was reduced by about 80% after five recycling steps. The potential problems of end-product inhibition, thermal and mechanical deactivation, and the loss of some components of the cellulase complex by preferential and or irreversible adsorption to cotton substrates were studied. End-product inhibition studies showed that the build-up of cellobiose and glucose would be expected to cause no more than 40% activity loss after five textile treatment cycles. Thermal and mechanical treatments of cellulases suggested that the enzymes start to be deactivated at 60 degrees C and agitation levels similar to those used in textile processing did not cause significant enzyme deactivation. Analysis of cellulase solutions, by fast protein liquid chromatography, before and after adsorption on cotton fabrics, suggested that the cellobiohydrolase II (Cel6A) content of the cellulase complex was reduced, relative to the other components, by preferential adsorption. This would lead to a marked reduction in activity after several treatment cycles and top-up with pure cellobiohydrolase II would be necessary unless this component is easily recoverable from the treated fabric.

  20. Slow Transit Constipation.

    PubMed

    Wald, Arnold

    2002-08-01

    The diagnosis of slow transit functional constipation is based upon diagnostic testing of patients with idiopathic constipation who responded poorly to conservative measures such as fiber supplements, fluids, and stimulant laxatives. These tests include barium enema or colonoscopy, colonic transit of radio-opaque markers, anorectal manometry, and expulsion of a water-filled balloon. Plain abdominal films can identify megacolon, which can be further characterized by barium or gastrografin studies. Colonic transit of radio-opaque markers identifies patients with slow transit with stasis of markers in the proximal colon. However, anorectal function should be characterized to exclude outlet dysfunction, which may coexist with colonic inertia. Because slow colonic transit is defined by studies during which patients consume a high-fiber diet, fiber supplements are generally not effective, nor are osmotic laxatives that consist of unabsorbed sugars. Stimulant laxatives are considered first-line therapy, although studies often show a diminished colonic motor response to such agents. There is no evidence to suggest that chronic use of such laxatives is harmful if they are used two to three times per week. Polyethylene glycol with or without electrolytes may be useful in a minority of patients, often combined with misoprostol. I prefer to start with misoprostol 200 mg every other morning and increase to tolerance or efficacy. I see no advantage in prescribing misoprostol on a TID or QID basis or even daily because it increases cramping unnecessarily. This drug is not acceptable in young women who wish to become pregnant. An alternative may be colchicine, which is reported to be effective when given as 0.6 mg TID. Long-term efficacy has not been studied. Finally, biofeedback is a risk-free approach that has been reported as effective in approximately 60% of patients with slow transit constipation in the absence of outlet dysfunction. Although difficult to understand

  1. Murine startle mutant Nmf11 affects the structural stability of the glycine receptor and increases deactivation

    PubMed Central

    Wilkins, Megan E.; Caley, Alex; Gielen, Marc C.; Harvey, Robert J.

    2016-01-01

    Key points Hyperekplexia or startle disease is a serious neurological condition affecting newborn children and usually involves dysfunctional glycinergic neurotransmission.Glycine receptors (GlyRs) are major mediators of inhibition in the spinal cord and brainstem.A missense mutation, replacing asparagine (N) with lysine (K), at position 46 in the GlyR α1 subunit induced hyperekplexia following a reduction in the potency of the transmitter glycine; this resulted from a rapid deactivation of the agonist current at mutant GlyRs.These effects of N46K were rescued by mutating a juxtaposed residue, N61 on binding Loop D, suggesting these two asparagines may interact.Asparagine 46 is considered to be important for the structural stability of the subunit interface and glycine binding site, and its mutation represents a new mechanism by which GlyR dysfunction induces startle disease. Abstract Dysfunctional glycinergic inhibitory transmission underlies the debilitating neurological condition, hyperekplexia, which is characterised by exaggerated startle reflexes, muscle hypertonia and apnoea. Here we investigated the N46K missense mutation in the GlyR α1 subunit gene found in the ethylnitrosourea (ENU) murine mutant, Nmf11, which causes reduced body size, evoked tremor, seizures, muscle stiffness, and morbidity by postnatal day 21. Introducing the N46K mutation into recombinant GlyR α1 homomeric receptors, expressed in HEK cells, reduced the potencies of glycine, β‐alanine and taurine by 9‐, 6‐ and 3‐fold respectively, and that of the competitive antagonist strychnine by 15‐fold. Replacing N46 with hydrophobic, charged or polar residues revealed that the amide moiety of asparagine was crucial for GlyR activation. Co‐mutating N61, located on a neighbouring β loop to N46, rescued the wild‐type phenotype depending on the amino acid charge. Single‐channel recording identified that burst length for the N46K mutant was reduced and fast agonist application

  2. Adsorption and Deactivation Characteristics of Cu/ZnO-Based Catalysts for Methanol Synthesis from Carbon Dioxide

    SciTech Connect

    Natesakhawat, Sittichai; Ohodnicki, Paul R; Howard, Bret H; Lekse, Jonathan W; Baltrus, John P; Matranga, Christopher

    2013-07-09

    The adsorption and deactivation characteristics of coprecipitated Cu/ZnO-based catalysts were examined and correlated to their performance in methanol synthesis from CO₂ hydrogenation. The addition of Ga₂O₃ and Y₂O₃ promoters is shown to increase the Cu surface area and CO₂/H₂ adsorption capacities of the catalysts and enhance methanol synthesis activity. Infrared studies showed that CO₂ adsorbs spontaneously on these catalysts at room temperature as both monoand bi-dentate carbonate species. These weakly bound species desorb completely from the catalyst surface by 200 °C while other carbonate species persist up to 500 °C. Characterization using N₂O decomposition, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDX) analysis clearly indicated that Cu sintering is the main cause of catalyst deactivation. Ga and Y promotion improves the catalyst stability by suppressing the agglomeration of Cu and ZnO particles under pretreatment and reaction conditions.

  3. Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-03-01

    The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO).

  4. Deactivation of Pt/VC proton exchange membrane fuel cell cathodes by SO2, H2S and COS

    NASA Astrophysics Data System (ADS)

    Gould, Benjamin D.; Baturina, Olga A.; Swider-Lyons, Karen E.

    Sulfur contaminants in air pose a threat to the successful operation of proton exchange membrane fuel cells (PEMFCs) via poisoning of the Pt-based cathodes. The deactivation behavior of commercial Pt on Vulcan carbon (Pt/VC) membrane electrode assemblies (MEAs) is determined when exposed to 1 ppm (dry) of SO 2, H 2S, or COS in air for 3, 12, and 24 h while held at a constant potential of 0.6 V. All the three sulfur compounds cause the same deactivation behavior in the fuel cell cathodes, and the polarization curves of the poisoned MEAs have the same decrease in performance. Sulfur coverages after multiple exposure times (3, 12, and 24 h) are determined by cyclic voltammetry (CV). As the exposure time to sulfur contaminants increases from 12 to 24 h, the sulfur coverage of the platinum saturates at 0.45. The sulfur is removed from the cathodes and their activity is partially restored both by cyclic voltammetry, as shown by others, and by successive polarization curves. Complete recovery of fuel cell performance is not achieved with either technique, suggesting that sulfur species permanently affect the surface of the catalyst.

  5. Differential Deactivation during Mentalizing and Classification of Autism Based on Default Mode Network Connectivity

    PubMed Central

    Murdaugh, Donna L.; Shinkareva, Svetlana V.; Deshpande, Hrishikesh R.; Wang, Jing; Pennick, Mark R.; Kana, Rajesh K.

    2012-01-01

    The default mode network (DMN) is a collection of brain areas found to be consistently deactivated during task performance. Previous neuroimaging studies of resting state have revealed reduced task-related deactivation of this network in autism. We investigated the DMN in 13 high-functioning adults with autism spectrum disorders (ASD) and 14 typically developing control participants during three fMRI studies (two language tasks and a Theory-of-Mind (ToM) task). Each study had separate blocks of fixation/resting baseline. The data from the task blocks and fixation blocks were collated to examine deactivation and functional connectivity. Deficits in the deactivation of the DMN in individuals with ASD were specific only to the ToM task, with no group differences in deactivation during the language tasks or a combined language and self-other discrimination task. During rest blocks following the ToM task, the ASD group showed less deactivation than the control group in a number of DMN regions, including medial prefrontal cortex (MPFC), anterior cingulate cortex, and posterior cingulate gyrus/precuneus. In addition, we found weaker functional connectivity of the MPFC in individuals with ASD compared to controls. Furthermore, we were able to reliably classify participants into ASD or typically developing control groups based on both the whole-brain and seed-based connectivity patterns with accuracy up to 96.3%. These findings indicate that deactivation and connectivity of the DMN were altered in individuals with ASD. In addition, these findings suggest that the deficits in DMN connectivity could be a neural signature that can be used for classifying an individual as belonging to the ASD group. PMID:23185536

  6. Theta/gamma networks with slow NMDA channels learn sequences and encode episodic memory: role of NMDA channels in recall.

    PubMed

    Jensen, O; Lisman, J E

    1996-01-01

    This paper examines the role of slow N-methyl-D-aspartate (NMDA) channels (deactivation approximately 150 msec) in networks that multiplex different memories in different gamma subcycles of a low frequency theta oscillation. The NMDA channels are in the synapses of recurrent collaterals and govern synaptic modification in accord with known physiological properties. Because slow NMDA channels have a time constant that spans several gamma cycles, synaptic connections will form between cells that represent different memories. This enables brain structures that have slow NMDA channels to store heteroassociative sequence information in long-term memory. Recall of this stored sequence information can be initiated by presentation of initial elements of the sequence. The remaining sequence is then recalled at a rate of one memory every gamma cycle. A new role for the NMDA channel suggested by our finding is that recall at gamma frequency works well if slow NMDA channels provide the dominant component of the EPSP at the synapse of recurrent collaterals: The slow onset of these channels and their long duration allows the firing of one memory during one gamma cycle to trigger the next memory during the subsequent gamma cycle. An interesting feature of the readout mechanism is that the activation of a given memory is due to cumulative input from multiple previous memories in the stored sequence, not just the previous one. The network thus stores sequence information in a doubly redundant way: Activation of a memory depends on the strength of synaptic inputs from multiple cells of multiple previous memories. The cumulative property of sequence storage has support from the psychophysical literature. Cumulative learning also provides a solution to the disambiguation problem that occurs when different sequences have a region of overlap. In a final set of simulations, we show how coupling an autoassociative network to a heteroassociative network allows the storage of episodic

  7. Ab initio trajectory surface-hopping study on ultrafast deactivation process of thiophene.

    PubMed

    Cui, Ganglong; Fang, Weihai

    2011-10-27

    The ultrafast S(1)((1)ππ*) → S(0) deactivation process of thiophene in the gas phase has been simulated with the complete active space self-consistent field (CASSCF) based fewest switch surface hopping method. It was found that most of the calculated trajectories (∼80%) decay to the ground state (S(0)) with an averaged time constant of 65 ± 5 fs. This is in good agreement with the experimental value of about 80 fs. Two conical intersections were determined to be responsible for the ultrafast S(1)((1)ππ*) → S(0) internal conversion process. After thiophene is excited to the S(1)((1)ππ*) state in the Franck-Condon region, it quickly relaxes to the minimum of the S(1)((1)ππ*) state, then overcomes a small barrier near the conical intersection (CI((1)ππ*/(1)πσ*)), and eventually arrives at the minimum of one C-S bond fission (S(1)((1)πσ*)). In the vicinity of this minimum, the conical intersection (CI((1)πσ*/S(0))) funnels the electron population to the ground state (S(0)), completing the ultrafast S(1)((1)ππ*) → S(0) internal conversion process. This decay mechanism matches well with previous experimental and theoretical studies.

  8. [Application of deactivating properties of some sorbents in aquaculture feed production].

    PubMed

    Vasukevich, T A; Nitievskaya, L S

    2014-01-01

    The possibility and effectiveness of application of selective sorbents for fish feed production in aquaculture in the area exposed to the radioactive pollution were studied. The investigations of the fish feed deactivating properties with additives of ferrocyn and potassium alginate, and magnesium on whitefish fry-fingerlings and yearlings were carried out. The study has shown that the ferrocyn performance is greater than 99% regardless of the fish age. 1% ferrocyn addition to feed allows increasing the acceptable concentration of feed compo- nents polluted by the above norm cesium radionuclide up to 20 times. The alginate additives in feed provide almost double decrease in the activity of fish tissues. The optimally effective alginate dose should exceed the calcium concentration in feed up to 4 times. It was found that utilization of the feedstock (fish meal, crops and legumes, oil meal and oil cake) polluted by radionuclides is possible in combined aquaculture feed pro- duction. The application of sorbents in feed will allow increasing the amount permissible for use of the feed components polluted above the norm; ensure the radiation safety of feed and, finally, the protection of aquatic biological resources from radioactive contamination. It is shown that the sorbent additive in feed is also jus- tified in case of fish farming in closed waters affected by radioactive pollution. Feeding by mixed fodder with the sorbent additives prevents fish from radionuclide intake from natural food sources.

  9. Hydrogen sulfide deactivates common nitrobenzofurazan-based fluorescent thiol labeling reagents.

    PubMed

    Montoya, Leticia A; Pluth, Michael D

    2014-06-17

    Sulfhydryl-containing compounds, including thiols and hydrogen sulfide (H2S), play important but differential roles in biological structure and function. One major challenge in separating the biological roles of thiols and H2S is developing tools to effectively separate the reactivity of these sulfhydryl-containing compounds. To address this challenge, we report the differential responses of common electrophilic fluorescent thiol labeling reagents, including nitrobenzofurazan-based scaffolds, maleimides, alkylating agents, and electrophilic aldehydes, toward cysteine and H2S. Although H2S reacted with all of the investigated scaffolds, the photophysical response to each scaffold was significantly different. Maleimide-based, alkylating, and aldehydic thiol labeling reagents provided a diminished fluorescence response when treated with H2S. By contrast, nitrobenzofurazan-based labeling reagents were deactivated by H2S addition. Furthermore, the addition of H2S to thiol-activated nitrobenzofurazan-based reagents reduced the fluorescence signal, thus establishing the incompatibility of nitrobenzofurazan-based thiol labeling reagents in the presence of H2S. Taken together, these studies highlight the differential reactivity of thiols and H2S toward common thiol-labeling reagents and suggest that sufficient care must be taken when labeling or measuring thiols in cellular environments that produce H2S due to the potential for both false-positive and eroded responses.

  10. IL-1{beta} promotes neurite outgrowth by deactivating RhoA via p38 MAPK pathway

    SciTech Connect

    Temporin, Ko; Tanaka, Hiroyuki Kuroda, Yusuke; Okada, Kiyoshi; Yachi, Koji; Moritomo, Hisao; Murase, Tsuyoshi; Yoshikawa, Hideki

    2008-01-11

    Expression of the pro-inflammatory cytokine interleukin-1 beta (IL-1{beta}) is increased following the nervous system injury. Generally IL-1{beta} induces inflammation, leading to neural degeneration, while several neuropoietic effects have also been reported. Although neurite outgrowth is an important step in nerve regeneration, whether IL-1{beta} takes advantages on it is unclear. Now we examine how it affects neurite outgrowth. Following sciatic nerve injury, expression of IL-1{beta} is increased in Schwann cells around the site of injury, peaking 1 day after injury. In dorsal root ganglion (DRG) neurons and cerebellar granule neurons (CGNs), neurite outgrowth is inhibited by the addition of myelin-associated glycoprotein (MAG), activating RhoA. IL-1{beta} overcomes MAG-induced neurite outgrowth inhibition, by deactivating RhoA. Intracellular signaling experiments reveal that p38 MAPK, and not nuclear factor-kappa B (NF-{kappa}B), mediated this effect. These findings suggest that IL-1{beta} may contribute to nerve regeneration by promoting neurite outgrowth following nerve injury.

  11. Slowing of Vortex Rings

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell; Bolster, Diogo; Hershberger, Robert

    2008-11-01

    We have investigated the slowing of vortex rings in water which are created with very thin cores. We find that these rings propagate with no measurable change in diameter or core size. The drag appears to be the result of viscous forces on the core. A simple model for this drag describes experimental data in terms of a drag coefficient, which depends only on Reynolds number. Barenghi's group at Newcastle found that the translational velocity of a ring in an inviscid fluid perturbed by Kelvin waves decreases with increasing amplitude of Kelvin waves. This suggests that the velocity of vortex rings in a viscous fluid may well depend on the amplitude of Kelvin waves at the time of formation. Rings with substantial amplitude of Kelvin waves will be expected to move more slowly than rings with little or no Kelvin wave amplitude. We present experimental data confirming this suggestion.

  12. Slow-walking inflation

    SciTech Connect

    Erdmenger, Johanna; Halter, Sebastian; Núñez, Carlos; Tasinato, Gianmassimo E-mail: s.halter@physik.uni-muenchen.de E-mail: gianmassimo.tasinato@port.ac.uk

    2013-01-01

    We propose a new model of slow-roll inflation in string cosmology, based on warped throat supergravity solutions displaying 'walking' dynamics, i.e. the coupling constant of the dual gauge theory slowly varies over a range of energy scales. The features of the throat geometry are sourced by a rich field content, given by the dilaton and RR and NS fluxes. By considering the motion of a D3-brane probe in this geometry, we are able to analytically calculate the brane potential in a physically interesting regime. This potential has an inflection point: in its proximity we realize a model of inflation lasting sixty e-foldings, and whose robust predictions are in agreement with current observations. We are also able to interpret some of the most interesting aspects of this scenario in terms of the properties of the QFT dual theory.

  13. Slow Scan Telemedicine

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Originally developed under contract for NASA by Ball Bros. Research Corporation for acquiring visual information from lunar and planetary spacecraft, system uses standard closed circuit camera connected to a device called a scan converter, which slows the stream of images to match an audio circuit, such as a telephone line. Transmitted to its destination, the image is reconverted by another scan converter and displayed on a monitor. In addition to assist scans, technique allows transmission of x-rays, nuclear scans, ultrasonic imagery, thermograms, electrocardiograms or live views of patient. Also allows conferencing and consultation among medical centers, general practitioners, specialists and disease control centers. Commercialized by Colorado Video, Inc., major employment is in business and industry for teleconferencing, cable TV news, transmission of scientific/engineering data, security, information retrieval, insurance claim adjustment, instructional programs, and remote viewing of advertising layouts, real estate, construction sites or products.

  14. Slow change deafness.

    PubMed

    Neuhoff, John G; Wayand, Joseph; Ndiaye, Mamoudou C; Berkow, Ann B; Bertacchi, Breanna R; Benton, Catherine A

    2015-05-01

    In four experiments, we demonstrated a new phenomenon called "slow-change deafness." In Experiment 1 we presented listeners with continuous speech that changed three semitones in pitch over time, and we found that nearly 50 % failed to notice the change. Experiments 2 and 3 replicated the finding, demonstrated that the changes in the stimuli were well above threshold, and showed that when listeners were alerted to the possibility of a change, detection rates improved dramatically. Experiment 4 showed that increasing the magnitude of the change that occurred in the stimulus decreased the rate of change deafness. Our results are consistent with previous work that had shown that cueing listeners to potential auditory changes can significantly reduce change deafness. These findings support an account of change deafness that is dependent on both the magnitude of a stimulus change and listener expectations.

  15. Slow Earthquakes and Typhoons in Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, C.; Linde, A. T.; Sacks, I. S.

    2006-05-01

    As part of a cooperative program between Academica Sinica, Taiwan, and Carnegie Institution of Washington a small network of Sacks-Evertson strainmeters has been installed in eastern Taiwan, starting in 2003. The program focuses on providing data that will complement GPS data sets in aiding improved understanding of the rapid and complex tectonic deformation of the area. The initial data from all sites show the standard characteristics of good quality: tidal signals with very high signal to noise ratio and large (~10,000 counts on 24 bit ADC system) amplitudes; strains trending into conpression with rates that decrease exponentially with time and earthquakes clearly recorded. Additionally the instruments have recorded a number of slow strain changes with durations ranging from about an hour up to a few days; we interpret these signals in terms of slow earthquakes. All of the slow events identified to date occur at the times of typhoons passing over or very close to the study area, but not all typhoons are associated with slow strain events (e.g. 9 typhoons in 2004 were accompanied by 5 slow events). Seismicity for the area deliniates a roughly north-south striking steeply dipping (to the west) zone with reverse slip; the shallowest extent of the zone is approximately 10 km inland. We look for source solutions consistent with that tectonic setting. The slow events exhibit a considerable range of amplitude and complexity; small, short amplitude events have a quite simple and smooth waveform; the longest (2 days) and largest (100 to 350 nanostrain at 3 sites) has waveforms with a lot of structure. The similarity among the stations (located in an isosceles triangular array with spacing ~10 km and 4 km) is indicative of rupture propagation of a slow slip source (equivalent magnitude about 5), propagating up dip and from south to north. Typhoon activity produces a large increase in short period (~ sec) energy so it is not possible to determine whether these slow events

  16. Viscous heating effect on deactivation of helminth eggs in ventilated improved pit sludge.

    PubMed

    Belcher, D; Foutch, G L; Smay, J; Archer, C; Buckley, C A

    2015-01-01

    Viscous heating by extrusion of faecal material obtained from ventilated improved pit (VIP) latrines can be used to deactivate soil-transmitted helminth (STH) eggs by increasing the temperature of faecal sludge uniformly. Viscous heating can deactivate STH eggs present in sludge to make the material safer to transport, dispose of, or use in agricultural applications or as an energy source. The mechanical energy required to generate the shear rate can originate from any source. No other heat source or additive is required. Here we determined a baseline for the deactivation of STH eggs using viscous heating. To characterize equipment performance, three parameters were investigated: (1) minimum temperature required for deactivation; (2) local maximum temperatures for various flow rates and moisture contents (MCs); and (3) thermal efficiency. Excess water is undesirable since low viscosities require extended residence time and increased energy input. The minimum temperature to achieve greater than 90% helminth egg deactivation is 70 °C. For the laboratory-scale equipment tested, the maximum allowable mass flow rate for VIP sludge with 77% MC was found to be 3.6 g/s.

  17. Properties of slow oscillation during slow-wave sleep and anesthesia in cats

    PubMed Central

    Chauvette, Sylvain; Crochet, Sylvain; Volgushev, Maxim; Timofeev, Igor

    2011-01-01

    Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine-xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine-xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat, to directly compare properties of slow oscillation during natural sleep and ketamine-xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1-4 Hz) and spindle (8-14 Hz) frequency range, while under anesthesia the power in the gamma band (30-100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were largely uniform across cortical areas under anesthesia, but in SWS they were most pronounced in associative and visual areas, but smaller and less regular in somatosensory and motor cortices. We conclude that although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS as compared to ketamine-xylazine anesthesia. PMID:22016533

  18. Target-induced nanocatalyst deactivation facilitated by core@shell nanostructures for signal-amplified headspace-colorimetric assay of dissolved hydrogen sulfide.

    PubMed

    Gao, Zhuangqiang; Tang, Dianyong; Tang, Dianping; Niessner, Reinhard; Knopp, Dietmar

    2015-10-06

    Colorimetric assay platforms for dissolved hydrogen sulfide (H2S) have been developed for more than 100 years, but most still suffer from relatively low sensitivity. One promising route out of this predicament relies on the design of efficient signal amplification methods. Herein, we rationally designed an unprecedented H2S-induced deactivation of (gold core)@(ultrathin platinum shell) nanocatalysts (Au@TPt-NCs) as a highly efficient signal amplification method for ultrasensitive headspace-colorimetric assay of dissolved H2S. Upon target introduction, Au@TPt-NCs were deactivated to different degrees dependent on H2S levels, and the degrees could be indicated by using a Au@TPt-NCs-triggered catalytic system as a signal amplifier, thus paving a way for H2S sensing. The combination of experimental studies and density functional theory (DFT) studies revealed that the Au@TPt-NCs with only 2-monolayer equivalents of Pt (θPt = 2) were superior for H2S-induced nanocatalyst deactivation owing to their enhanced peroxidase-like catalytic activity and deactivation efficiency stemmed from the unique synergistic structural/electronic effects between Au nanocores and ultrathin Pt nanoshells. Importantly, our analytical results showed that the designed method was indeed highly sensitive for sensing H2S with a wide linear range of 10-100 nM, a slope of 0.013 in the regression equation, and a low detection limit of 7.5 nM. Also the selectivity, reproducibility, and precision were excellent. Furthermore, the method was validated for the analysis of H2S-spiked real samples, and the recovery in all cases was 91.6-106.7%. With the merits of high sensitivity and selectivity, simplification, low cost, and visual readout with the naked eye, the colorimetric method has the potential to be utilized as an effective detection kit for point-of-care testing.

  19. Solvent effects on the ultrafast nonradiative deactivation mechanisms of thymine in aqueous solution: Excited-state QM/MM molecular dynamics simulations

    SciTech Connect

    Nakayama, Akira Arai, Gaku; Yamazaki, Shohei; Taketsugu, Tetsuya

    2013-12-07

    On-the-fly excited-state quantum mechanics/molecular mechanics molecular dynamics (QM/MM-MD) simulations of thymine in aqueous solution are performed to investigate the role of solvent water molecules on the nonradiative deactivation process. The complete active space second-order perturbation theory (CASPT2) method is employed for a thymine molecule as the QM part in order to provide a reliable description of the excited-state potential energies. It is found that, in addition to the previously reported deactivation pathway involving the twisting of the C-C double bond in the pyrimidine ring, another efficient deactivation pathway leading to conical intersections that accompanies the out-of-plane displacement of the carbonyl group is observed in aqueous solution. Decay through this pathway is not observed in the gas phase simulations, and our analysis indicates that the hydrogen bonds with solvent water molecules play a key role in stabilizing the potential energies of thymine in this additional decay pathway.

  20. Does “Task Difficulty” Explain “Task-Induced Deactivation?”

    PubMed Central

    Gilbert, Sam J.; Bird, Geoffrey; Frith, Chris D.; Burgess, Paul W.

    2012-01-01

    The “default mode network” is commonly described as a set of brain regions in which activity is suppressed during relatively demanding, or difficult, tasks. But what sort of tasks are these? We review some of the contrasting ways in which a task might be assessed as being difficult, such as error rate, response time, propensity to interfere with performance of other tasks, and requirement for transformation of internal representations versus accumulation of perceptual information. We then describe a fMRI study in which 18 participants performed two “stimulus-oriented” tasks, where responses were directly cued by visual stimuli, alongside a “stimulus-independent” task, with a greater reliance on internally generated information. When indexed by response time and error rate, the stimulus-independent task was intermediate in difficulty between the two stimulus-oriented tasks. Nevertheless, BOLD signal in medial rostral prefrontal cortex (MPFC) – a prominent part of the default mode network – was reduced in the stimulus-independent condition in comparison with both the more difficult and the less difficult stimulus-oriented conditions. By contrast, other regions of the default mode network showed greatest deactivation in the difficult stimulus-oriented condition. There was therefore significant functional heterogeneity between different default mode regions. We conclude that task difficulty – as measured by response time and error rate – does not provide an adequate account of signal change in MPFC. At least in some circumstances, a better predictor of MPFC activity is the requirement of a task for transformation and manipulation of internally represented information, with greatest MPFC activity in situations predominantly requiring attention to perceptual information. PMID:22539930

  1. Itch induced by a novel method leads to limbic deactivations a functional MRI study.

    PubMed

    Herde, Lina; Forster, Clemens; Strupf, Marion; Handwerker, Hermann O

    2007-10-01

    Functional brain imaging studies on itch usually use histamine as a stimulus and, in consequence, have to cope with the highly variable time course of this particular itch sensation. In this study, we describe a novel method of histamine application. To provoke itch, a mixture of histamine and codeine was applied through intradermally positioned microdialysis fiber. The itch was terminated by lidocaine application through the same fiber. During one fMRI session, this procedure was repeated four times in four different microdialysis fibers, including one placebo control. Itch ratings of the subjects were correlated with blood-oxygen-level-dependent (BOLD) effects. In a subsequent experiment performed in the same fMRI session, heat pain was provoked in the right forearm with a Peltier thermode. During both experiments, activation clusters were found in brain areas that have been described previously to be frequently activated in response to painful stimuli. This includes prefrontal areas, supplementary motor areas (SMA), premotor cortex, anterior insula, anterior midcingulate cortex, S1, S2, thalamus, basal ganglia, and cerebellum. In general, itch stimulation entailed more activation clusters, in particular on the contralateral brain side. Only on itch, but not on heat pain, negative BOLD signals were found in the subgenual anterior cingulate cortex and the amygdala. The latter results may be associated with the itch induced urge to scratch. Amygdala deactivation may be related to the preparation of scratching by aiming to dissolve the otherwise aversive effects of the noxious scratch stimuli. These negative BOLD effects may also be attributed to the stressful character of itch stimulation.

  2. Deactivation of the left dorsolateral prefrontal cortex in Prader-Willi syndrome after meal consumption

    PubMed Central

    Reinhardt, Martin; Parigi, Angelo Del; Chen, Kewei; Reiman, Eric M.; Thiyyagura, Pradeep; Krakoff, Jonathan; Hohenadel, Maximilian G.; Le, Duc Son N.T.; Weise, Christopher M.

    2016-01-01

    Background/Objectives Prader-Willi syndrome (PWS) a type of human genetic obesity may inform us about the physiology of non-syndromic obesity. Objective of this study was to investigate the functional correlates of hunger and satiety in individuals with PWS in comparison to healthy controls with obesity, hypothesizing that we would see significant differences in activation in the left dorsolateral prefrontal cortex (DLPFC) based on prior findings. Subjects/Methods This study compared the central effects of food consumption in 9 individuals with PWS (7 men, 2 women; body fat 35.3%±10.0) and 7 controls (7 men; body fat 28.8%±7.6), matched for percentage body fat. H215O PET scans were performed before and after consumption of a standardized liquid meal to obtain quantitative measures of regional cerebral blood flow (rCBF), a marker of neuronal activity. Results Compared with obese controls, PWS showed altered (p<0.05 FWE cluster-level corrected; voxelwise p<0.001) rCBF before and after meal consumption in multiple brain regions. There was a significant differential rCBF response within the left DLPFC after meal ingestion with decreases in DLPFC rCBF in PWS; in controls DLPFC rCBF tended to remain unchanged. In more liberal analyses (voxelwise p<0.005) rCBF of the right orbitofrontal cortex (OFC) increased in PWS and decreased in controls. In PWS, ΔrCBF of the right OFC was associated with changes in appetite ratings. Conclusion The pathophysiology of eating behavior in PWS is characterized by a paradoxical meal induced deactivation of the left DLPFC and activation in the right OFC, brain regions implicated in the central regulation of eating behavior. PMID:27121248

  3. Highly controlled nest homeostasis of honey bees helps deactivate phenolics in nectar

    NASA Astrophysics Data System (ADS)

    Liu, Fanglin; He, Jianzhong; Fu, Wenjun

    2005-06-01

    Honey bees have a highly developed nest homeostasis, for example, maintaining low CO2 levels and stable nest temperatures at 35°C.We investigate the role of nest homeostasis in deactivating phenolic compounds present in the nectar of Aloe littoralis. We show that the phenolic content in nectar was reduced (from 0.65% to 0.49%) after nectar was incubated in a nest of Apis cerana, and that it was reduced still more (from 0.65% to 0.37%) if nectar was mixed with hypopharyngeal gland proteins (HGP) of worker bees before being placed inside a nest. HGP had little effect on samples outside a nest, indicating that nest conditions are necessary for HGP to deactivate phenolics in nectar. Consequently, the highly controlled nest homeostasis of honey bees facilitates direct deactivation of phenolics in nectar, and plays a role in the action of HGP as well.

  4. Effects of quitting smoking on EEG activation and attention last for more than 31 days and are more severe with stress, dependence, DRD2 A1 allele, and depressive traits.

    PubMed

    Gilbert, David; McClernon, Joseph; Rabinovich, Norka; Sugai, Chihiro; Plath, Louisette; Asgaard, Greg; Zuo, Yantao; Huggenvik, Jodi; Botros, Nazeih

    2004-04-01

    Changes in physiology and attentional performance associated with smoking abstinence were characterized in 67 female smokers during low-stress and high-stress conditions. Abstinence was associated with decreases in cognitive performance, heart rate, and electroencephalographic (EEG) activation but with no change in serum estradiol or progesterone. Effects of quitting showed no tendency to resolve across the 31 days of abstinence. EEG deactivation and heart rate slowing were greater during a math task (high stress) than during relaxation (low stress). Individuals high in trait depression or nicotine dependence or with at least one dopamine D(2) receptor A1 allele experienced greater EEG deactivation following abstinence, especially in the right hemisphere during the stressful task. Thus, findings support the situation x trait adaptive response model of abstinence effects and emphasize the value of multiple dependent measures when characterizing abstinence responses.

  5. Unilateral deactivation of macaque dorsolateral prefrontal cortex induces biases in stimulus selection

    PubMed Central

    Lomber, Stephen G.; Everling, Stefan

    2016-01-01

    Following unilateral brain injury, patients are often unable to detect a stimulus presented in the contralesional field when another is presented simultaneously ipsilesionally. This phenomenon has been referred to as extinction and has been conceptualized as a deficit in selective attention. Although most commonly observed following damage to posterior parietal areas, extinction has been observed following lesions of prefrontal cortex (PFC) in both humans and nonhuman primates. To date, most studies in nonhuman primates have examined lesions of multiple PFC subregions, including the frontal eye fields (FEF). Theoretical accounts of attentional disturbances from human patients, however, also implicate other PFC areas, including the middle frontal gyrus. Here, we investigated the effects of deactivating PFC areas anterior to the FEF on stimulus selection using a free-choice task. Macaque monkeys were presented with two peripheral stimuli appearing either simultaneously, or at varying stimulus onset asynchronies, and their performance was evaluated during unilateral cryogenic deactivation of part of dorsolateral prefrontal cortex or the cortex lining the caudal principal sulcus, the likely homologue of the human middle frontal gyrus. A decreased proportion of saccades was made to stimuli presented in the hemifield contralateral to the deactivated PFC. We also observed increases in reaction times to contralateral stimuli and decreases for stimuli presented in the hemifield ipsilateral to the deactivated hemisphere. In both cases, these results were greatest when both PFC subregions were deactivated. These findings demonstrate that selection biases result from PFC deactivation and support a role of dorsolateral prefrontal subregions anterior to FEF in stimulus selection. PMID:26792881

  6. Respiration phase-locks to fast stimulus presentations: implications for the interpretation of posterior midline "deactivations".

    PubMed

    Huijbers, Willem; Pennartz, Cyriel M A; Beldzik, Ewa; Domagalik, Aleksandra; Vinck, M; Hofman, Winnie F; Cabeza, Roberto; Daselaar, Sander M

    2014-09-01

    The posterior midline region (PMR)-considered a core of the default mode network-is deactivated during successful performance in different cognitive tasks. The extent of PMR-deactivations is correlated with task-demands and associated with successful performance in various cognitive domains. In the domain of episodic memory, functional MRI (fMRI) studies found that PMR-deactivations reliably predict learning (successful encoding). Yet it is unclear what explains this relation. One intriguing possibility is that PMR-deactivations are partially mediated by respiratory artifacts. There is evidence that the fMRI signal in PMR is particularly prone to respiratory artifacts, because of its large surrounding blood vessels. As respiratory fluctuations have been shown to track changes in attention, it is critical for the general interpretation of fMRI results to clarify the relation between respiratory fluctuations, cognitive performance, and fMRI signal. Here, we investigated this issue by measuring respiration during word encoding, together with a breath-holding condition during fMRI-scanning. Stimulus-locked respiratory analyses showed that respiratory fluctuations predicted successful encoding via a respiratory phase-locking mechanism. At the same time, the fMRI analyses showed that PMR-deactivations associated with learning were reduced during breath-holding and correlated with individual differences in the respiratory phase-locking effect during normal breathing. A left frontal region--used as a control region--did not show these effects. These findings indicate that respiration is a critical factor in explaining the link between PMR-deactivation and successful cognitive performance. Further research is necessary to demonstrate whether our findings are restricted to episodic memory encoding, or also extend to other cognitive domains.

  7. Slow wave sleep dreaming.

    PubMed

    Cavallero, C; Cicogna, P; Natale, V; Occhionero, M; Zito, A

    1992-12-01

    Fifty volunteers slept two nonconsecutive nights in a sleep laboratory under electropolygraphic control. They were awakened for one report per night. Awakenings were made, in counterbalanced order, from slow wave sleep (SWS--stage 3-4 and stage 4) and rapid eye movement (REM) sleep. Following dream reporting, subjects were asked to identify memory sources of their dream imagery. Two independent judges reliably rated mentation reports for temporal units and for several content and structural dimensions. The same judges also categorized memory sources as autobiographical episodes, abstract self-references, or semantic knowledge. We found that REM reports were significantly longer than SWS reports. Minor content SWS-REM differences were also detected. Moreover, semantic knowledge was more frequently mentioned as a dream source for REM than for SWS dream reports. These findings are interpreted as supporting the hypothesis that dreaming is a continuous process that is not unique to REM sleep. Different levels of engagement of the cognitive system are responsible for the few SWS-REM differences that have been detected.

  8. Slow frictional waves

    NASA Astrophysics Data System (ADS)

    Viswanathan, Koushik; Sundaram, Narayan; Chandrasekar, Srinivasan

    Stick-slip, manifest as intermittent tangential motion between two dry solid surfaces, is a friction instability that governs diverse phenomena from automobile brake squeals to earthquakes. We show, using high-speed in situ imaging of an adhesive polymer interface, that low velocity stick-slip is fundamentally of three kinds, corresponding to passage of three different surface waves -- separation pulses, slip pulses and the well-known Schallamach waves. These waves, traveling much slower than elastic waves, have clear distinguishing properties. Separation pulses and Schallamach waves involve local interface separation, and propagate in opposite directions while slip pulses are characterized by a sharp stress front and do not display any interface detachment. A change in the stick-slip mode from separation to slip pulse is effected simply by increasing the normal force. Together, these three waves constitute all possible stick-slip modes in adhesive friction and are shown to have direct analogues in muscular locomotory waves in soft bodied invertebrates. A theory for slow wave propagation is also presented which is capable of explaining the attendant interface displacements, velocities and stresses.

  9. Can ageing be slowed?

    PubMed Central

    Gaman, L; Stoian, I; Atanasiu, V

    2011-01-01

    Redox metabolism has long been considered to play important roles in aging and the development of age-related diseases. Both dietary and pharmacological manipulations of redox metabolism have been associated with the extension of lifespan. Increasing new evidence s also suggests that the process of aging may derive from imperfect clearance of oxidatively damaged material. The accumulation of this molecular “garbage”, relatively indigestible, further hinders cellular functions, induces progressive failure of maintenance and repair and increases the probability of death. One important trend in anti–aging strategy is, therefore, to prevent or even revert the accumulation of these oxidatively altered molecules by stimulating the maintenance and repair systems through hormesis. A promising approach for slowing down ageing and achieving a healthy senescence is represented by repeated exposure to various mild stresses (caloric restriction, moderate exercise, nutritional or pharmacological hormetins). This article reviews the potential therapeutic tools available to date for increasing longevity and obtaining and successful ageing from the redox and hormetic perspective. PMID:22514565

  10. Ultrafast Faraday Rotation of Slow Light

    NASA Astrophysics Data System (ADS)

    Musorin, A. I.; Sharipova, M. I.; Dolgova, T. V.; Inoue, M.; Fedyanin, A. A.

    2016-08-01

    The active control of optical signals in the time domain is what science and technology demand in fast all-optical information processing. Nanostructured materials can modify the group velocity and slow the light down, as the artificial light dispersion emerges. We observe the ultrafast temporal behavior of the Faraday rotation within a single femtosecond laser pulse under conditions of slow light in a one-dimensional magnetophotonic crystal. The Faraday effect changes by 20% over the time of 150 fs. This might be applicable to the fast control of light in high-capacity photonic devices.

  11. Beyond catalyst deactivation: cross-metathesis involving olefins containing N-heteroaromatics

    PubMed Central

    Lafaye, Kevin; Bosset, Cyril; Nicolas, Lionel

    2015-01-01

    Summary Alkenes containing N-heteroaromatics are known to be poor partners in cross-metathesis reactions, probably due to catalyst deactivation caused by the presence of a nitrogen atom. However, some examples of ring-closing and cross-metathesis involving alkenes that incorporate N-heteroaromatics can be found in the literature. In addition, recent mechanistic studies have focused on the rationalization of nitrogen-induced catalysts deactivation. The purpose of this mini-review is to give a brief overview of successful metathesis reactions involving olefins containing N-heteroaromatics in order to delineate some guidelines for the use of these challenging substrates in metathesis reactions. PMID:26664645

  12. Deactivation of 6-Aminocoumarin Intramolecular Charge Transfer Excited State through Hydrogen Bonding

    PubMed Central

    Krystkowiak, Ewa; Dobek, Krzysztof; Maciejewski, Andrzej

    2014-01-01

    This paper presents results of the spectral (absorption and emission) and photophysical study of 6-aminocoumarin (6AC) in various aprotic hydrogen-bond forming solvents. It was established that solvent polarity as well as hydrogen-bonding ability influence solute properties. The hydrogen-bonding interactions between S1-electronic excited solute and solvent molecules were found to facilitate the nonradiative deactivation processes. The energy-gap dependence on radiationless deactivation in aprotic solvents was found to be similar to that in protic solvents. PMID:25244014

  13. Increased alpha (8-12 Hz) activity during slow wave sleep as a marker for the transition from implicit knowledge to explicit insight.

    PubMed

    Yordanova, Juliana; Kolev, Vasil; Wagner, Ullrich; Born, Jan; Verleger, Rolf

    2012-01-01

    The number reduction task (NRT) allows us to study the transition from implicit knowledge of hidden task regularities to explicit insight into these regularities. To identify sleep-associated neurophysiological indicators of this restructuring of knowledge representations, we measured frequency-specific power of EEG while participants slept during the night between two sessions of the NRT. Alpha (8-12 Hz) EEG power during slow wave sleep (SWS) emerged as a specific marker of the transformation of presleep implicit knowledge to postsleep explicit knowledge (ExK). Beta power during SWS was increased whenever ExK was attained after sleep, irrespective of presleep knowledge. No such EEG predictors of insight were found during Sleep Stage 2 and rapid eye movement sleep. These results support the view that it is neuronal memory reprocessing during sleep, in particular during SWS, that lays the foundations for restructuring those task-related representations in the brain that are necessary for promoting the gain of ExK.

  14. The site for catabolite deactivation in the L-arabinose BAD operon in Escherichia coli B/r.

    PubMed

    Bass, R; Heffernan, L; Sweadner, K; Englesberg, E

    1976-10-11

    A series of deletions beginning in the leu operon and continuing into the araC gene and also into the ara controlling site region were analyzed in reciprocal merodiploids, e.g., F' A2Cc67/B24delta719, F' B24delta719/A2Cc67, for their effects on catabolite deactivation (CD). The results of these experiments are consistent with placing the catabolite gene activator-cyclic AMP sensitive site in the controlling site region between araB and araO. With a deletion mutant, delta1109, that places araBAD under leu control when transcription begins at leuP, the araBAD operon is immune to CD even though araCGA, araP and araI are intact and functional. To focus attention on the fine structure and related functions of this region we propose that the three proteins that function therein have separate sites of action: araI (initiator-site for activator), araP (promoter-site for RNA polymerase) and ara(CGA) (catabolite gene activator-site for CGA-cAMP). None of the eighteen initiator constitutive mutants (Ic) tested have any significant effect on catabolite derepression or on the maximal level of expression of the operon supporting the view that the araI site may be distinct from araP and ARA(CGA). A series of constitutive mutants in the araC gene (Cc) also have no pronounced effect on catabolite deactivation.

  15. Slow light and slow acoustic phonons in optophononic resonators

    NASA Astrophysics Data System (ADS)

    Villafañe, V.; Soubelet, P.; Bruchhausen, A. E.; Lanzillotti-Kimura, N. D.; Jusserand, B.; Lemaître, A.; Fainstein, A.

    2016-11-01

    Slow and confined light have been exploited in optoelectronics to enhance light-matter interactions. Here we describe the GaAs/AlAs semiconductor microcavity as a device that, depending on the excitation conditions, either confines or slows down both light and optically generated acoustic phonons. The localization of photons and phonons in the same place of space amplifies optomechanical processes. Picosecond laser pulses are used to study through time-resolved reflectivity experiments the coupling between photons and both confined and slow acoustic phonons when the laser is tuned either with the cavity (confined) optical mode or with the stop-band edge (slow) optical modes. A model that fully takes into account the modified propagation of the acoustic phonons and light in these resonant structures is used to describe the laser detuning dependence of the coherently generated phonon spectra and amplitude under these different modes of laser excitation. We observe that confined light couples only to confined mechanical vibrations, while slow light can generate both confined and slow coherent vibrations. A strong enhancement of the optomechanical coupling using confined photons and vibrations, and also with properly designed slow photon and phonon modes, is demonstrated. The prospects for the use of these optoelectronic devices in confined and slow optomechanics are addressed.

  16. Deactivation and Decommissioning Planning and Analysis with Geographic Information Systems

    SciTech Connect

    Bollinger, James S.; Koffman, Larry D.; Austin, William E.

    2008-01-15

    From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. Although SRS has a continuing defense-related mission, the overall site mission is now oriented toward environmental restoration and management of legacy chemical and nuclear waste. With the change in mission, SRS no longer has a need for much of the infrastructure developed to support the weapons program. This excess infrastructure, which includes over 1000 facilities, will be decommissioned and demolished over the forthcoming years. Dis-positioning facilities for decommissioning and deactivation requires significant resources to determine hazards, structure type, and a rough-order-of-magnitude estimate for the decommissioning and demolition cost. Geographic information systems (GIS) technology was used to help manage the process of dis-positioning infrastructure and for reporting the future status of impacted facilities. Several thousand facilities of various ages and conditions are present at SRS. Many of these facilities, built to support previous defense-related missions, now represent a potential hazard and cost for maintenance and surveillance. To reduce costs and the hazards associated with this excess infrastructure, SRS has developed an ambitious plan to decommission and demolish unneeded facilities in a systematic fashion. GIS technology was used to assist development of this plan by: providing locational information for remote facilities, identifying the location of known waste units adjacent to buildings slated for demolition, and for providing a powerful visual representation of the impact of the overall plan. Several steps were required for the development of the infrastructure GIS model. The first step involved creating an accurate and current GIS representation of the infrastructure data. This data is maintained in a Computer Aided Design

  17. Task-specific reversal of visual hemineglect following bilateral reversible deactivation of posterior parietal cortex: a comparison with deactivation of the superior colliculus.

    PubMed

    Lomber, S G; Payne, B R

    2001-01-01

    The purpose of the present study was to compare and contrast behavioral performance on three different tasks of spatial cognition during unilateral and bilateral reversible deactivation of posterior parietal cortex. Specifically, we examined posterior middle suprasylvian (pMS) sulcal cortex in adult cats during temporary and reversible cooling deactivation. In Task 1, the cats oriented to a high-contrast, black visual stimulus moved into the visual field periphery. In Task 2, the cats oriented to a static light-emitting diode (LED). Task 3 examined the cats' ability to determine whether a black-and-white checkered, landmark box was closer to the right or left side of the testing apparatus. Following training on all tasks, cryoloops were implanted bilaterally within the pMS sulcus. Unilateral deactivation of pMS sulcal cortex resulted in virtually no responses to either moved or static stimuli and virtually no responses to landmarks presented in the contralateral hemifield, and a profound contralateral hemifield neglect was induced. Responses to stimuli and landmarks presented in the ipsilateral hemifield were unimpaired. Additive, bilateral cooling of the homotopic region in the contralateral hemisphere, but not an adjacent region, resulted in reversal of the initial hemineglect for the moved stimulus, yet induced a complete failure to orient to peripheral static LED stimuli. Bilateral cooling also reversed the contralateral neglect of the landmark, but then cats could not accurately determine position of the landmark anywhere in the visual field because performance was reduced to chance levels for all landmark loci in both hemifields. In this instance, as the contralateral neglect disappeared during bilateral cooling of pMS cortex, a new spatial discrimination deficit was revealed across the entire visual field. We conclude that pMS cortex contributes in multiple ways to the analyses of space, and that these contributions cannot be safely predicted from analyses

  18. Human Gamma Oscillations during Slow Wave Sleep

    PubMed Central

    Valderrama, Mario; Crépon, Benoît; Botella-Soler, Vicente; Martinerie, Jacques; Hasboun, Dominique; Alvarado-Rojas, Catalina; Baulac, Michel; Adam, Claude; Navarro, Vincent; Le Van Quyen, Michel

    2012-01-01

    Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS). At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30–50 Hz) and high (60–120 Hz) frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves (“IN-phase” pattern), confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave (“ANTI-phase” pattern). This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks. PMID:22496749

  19. Another slow year

    SciTech Connect

    Not Available

    1987-08-01

    This article is a review of the petroleum activity in the Middle East. The article is accompanied by a detailed color map showing the activity in the area. Highlights of the article include the fact that Saudi Arabia's drilling and development activity has sunk to its lowest level in many years. The article also points out that discoveries are increasing production in North and South Yemen as well as in Syria. The article also highlights the fact that Qatar is beginning work on its massive North gas field in the Gulf. Also attention is paid to the effects of the Iranian and Iraq war on each other's oil and gas activities. The article also mentions the drilling activity of Dubai and Oman.

  20. Stabilization of the Activated hERG Channel Voltage Sensor by Depolarization Involves the S4-S5 Linker.

    PubMed

    Thouta, Samrat; Hull, Christina M; Shi, Yu Patrick; Sergeev, Valentine; Young, James; Cheng, Yen M; Claydon, Thomas W

    2017-01-24

    Slow deactivation of hERG channels is critical for preventing cardiac arrhythmia yet the mechanistic basis for the slow gating transition is unclear. Here, we characterized the temporal sequence of events leading to voltage sensor stabilization upon membrane depolarization. Progressive increase in step depolarization duration slowed voltage-sensor return in a biphasic manner (τfast = 34 ms, τslow = 2.5 s). The faster phase of voltage-sensor return slowing correlated with the kinetics of pore opening. The slower component occurred over durations that exceeded channel activation and was consistent with voltage sensor relaxation. The S4-S5 linker mutation, G546L, impeded the faster phase of voltage sensor stabilization without attenuating the slower phase, suggesting that the S4-S5 linker is important for communications between the pore gate and the voltage sensor during deactivation. These data also demonstrate that the mechanisms of pore gate-opening-indu