Science.gov

Sample records for activation state insights

  1. Inactive and active states and supramolecular organization of GPCRs: insights from computational modeling

    NASA Astrophysics Data System (ADS)

    Fanelli, Francesca; De Benedetti, Pier G.

    2006-08-01

    Herein we make an overview of the results of our computational experiments aimed at gaining insight into the molecular mechanisms of GPCR functioning either in their normal conditions or when hit by gain-of-function or loss-of-function mutations. Molecular simulations of a number of GPCRs in their wild type and mutated as well as free and ligand-bound forms were instrumental in inferring the structural features, which differentiate the mutation- and ligand-induced active from the inactive states. These features essentially reside in the interaction pattern of the E/DRY arginine and in the degree of solvent exposure of selected cytosolic domains. Indeed, the active states differ from the inactive ones in the weakening of the interactions made by the highly conserved arginine and in the increase in solvent accessibility of the cytosolic interface between helices 3 and 6. Where possible, the structural hallmarks of the active and inactive receptor states are translated into molecular descriptors useful for in silico functional screening of novel receptor mutants or ligands. Computational modeling of the supramolecular organization of GPCRs and their intracellular partners is the current challenge toward a deep understanding of their functioning mechanisms.

  2. Cationic Membrane Peptides: Atomic-Level Insight of Structure-Activity Relationships from Solid-State NMR

    PubMed Central

    Su, Yongchao; Li, Shenhui; Hong, Mei

    2012-01-01

    Many membrane-active peptides, such as cationic cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs), conduct their biological functions by interacting with the cell membrane. The interactions of charged residues with lipids and water facilitate membrane insertion, translocation or disruption of these highly hydrophobic species. In this mini-review we will summarize high-resolution structural and dynamic findings towards the understanding of the structure-activity relationship of lipid membrane-bound CPPs and AMPs, as examples of the current development of solid-state NMR (SSNMR) techniques for studying membrane peptides. We will present the most recent atomic-resolution structure of the guanidinium-phosphate complex, as constrained from experimentally measured site-specific distances. These SSNMR results will be valuable specifically for understanding the intracellular translocation pathway of CPPs and antimicrobial mechanism of AMPs, and more generally broaden our insight into how cationic macromolecules interact with and cross the lipid membrane. PMID:23108593

  3. Sport for All? Insight into Stratification and Compensation Mechanisms of Sporting Activity in the 27 European Union Member States

    ERIC Educational Resources Information Center

    Van Tuyckom, Charlotte; Scheerder, Jeroen

    2010-01-01

    Physical activity is an important public health issue and the benefits of an active lifestyle in relation to well-being and health have been strongly emphasised in recent years in Europe, as well as in most parts of the world. However, previous research has shown that physical activity within Europe and its member states is stratified. The present…

  4. Sport for All? Insight into Stratification and Compensation Mechanisms of Sporting Activity in the 27 European Union Member States

    ERIC Educational Resources Information Center

    Van Tuyckom, Charlotte; Scheerder, Jeroen

    2010-01-01

    Physical activity is an important public health issue and the benefits of an active lifestyle in relation to well-being and health have been strongly emphasised in recent years in Europe, as well as in most parts of the world. However, previous research has shown that physical activity within Europe and its member states is stratified. The present…

  5. Behçet’s disease: new insight into the relationship between procoagulant state, endothelial activation/damage and disease activity

    PubMed Central

    2013-01-01

    Background Behçet disease (BD) is associated with a prothrombotic state of unknown origin that may lead to life-threatening events. Calibrated Automated Thrombogram (CAT) and Rotational Thromboelastometry (ROTEM) are two global haemostasis assays that may reveal new insights into the physiopathological mechanisms of the disease and its procoagulant condition. Methods 23 BD patients who had no signs or symptoms of current thrombosis and 33 age- and sex-matched controls were included in the study. We performed ROTEM and CAT tests and assessed erythrocyte count, platelet count, platelet contribution to clot formation and plasma levels of tissue-type plasminogen activator, plasminogen activator inhibitor type 1 (PAI-1), fibrinogen, C-reactive protein (CRP), thrombin-antithrombin III complex (TAT), D-dimer and E-selectin (ES). Results Both ROTEM and CAT tests showed a hypercoagulable state in the BD patients. Plasma levels of PAI-1, fibrinogen, TAT, CRP and ES were significantly increased in this group compared to controls. The disease activity (DA) was significantly correlated with levels of ES and the maximum clot firmness, and this last one, in turn, correlated with rising levels of ES, PAI-1, CRP and fibrinogen. CAT parameters did not correlate with DA or ES. Conclusions Both ROTEM and CAT tests reveal that patients with BD have a procoagulant state even in the absence of thrombosis. ROTEM test indicates that increased levels of fibrinogen and PAI-1 may be involved in the prothrombotic state of this pathology, while platelets do not significantly contribute. Moreover, CAT assay demonstrate that plasma from BD patients is able to generate more thrombin than controls in response to the same stimulus and that this effect is independent of the DA and the endothelial impairment suggesting the involvement of another factor in the hypercoagulable state observed in BD patients. This study also shows that endothelium activation/damage may be a contributing factor in both

  6. Theoretical insights into the protonation states of active site cysteine and citrullination mechanism of Porphyromonas gingivalis peptidylarginine deiminase.

    PubMed

    Zhao, Chenxiao; Ling, Baoping; Dong, Lihua; Liu, Yongjun

    2017-08-01

    Porphyromonas gingivalis peptidylarginine deiminase (PPAD) catalyzes the citrullination of peptidylarginine, which plays a critical role in the rheumatoid arthritis (RA) and gene regulation. For a better understanding of citrullination mechanism of PPAD, it is required to establish the protonation states of active site cysteine, which is still a controversial issue for the members of guanidino-group-modifying enzyme superfamily. In this work, we first explored the transformation between the two states: State N (both C351 and H236 are neutral) and State I (both residues exist as a thiolate-imidazolium ion pair), and then investigated the citrullination reaction of peptidylarginine, using a combined QM/MM approach. State N is calculated to be more stable than State I by 8.46 kcal/mol, and State N can transform to State I via two steps of substrate-assisted proton transfer. Citrullination of the peptidylarginine contains deamination and hydrolysis. Starting from State N, the deamination reaction corresponds to an energy barrier of 18.82 kcal/mol. The deprotonated C351 initiates the nucleophilic attack to the substrate, which is the key step for deamination reaction. The hydrolysis reaction contains two chemical steps. Both the deprotonated D238 and H236 can act as the bases to activate the hydrolytic water, which correspond to similar energy barriers (∼17 kcal/mol). On the basis of our calculations, C351, D238, and H236 constitute a catalytic triad, and their protonation states are critical for both the deamination and hydrolysis processes. In view of the sequence similarity, these findings may be shared with human PAD1-PAD4 and other guanidino-group-modifying enzymes. Proteins 2017; 85:1518-1528. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Novel Molecular Insights into Classical and Alternative Activation States of Microglia as Revealed by Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based Proteomics*

    PubMed Central

    Bell-Temin, Harris; Culver-Cochran, Ashley E.; Chaput, Dale; Carlson, Christina M.; Kuehl, Melanie; Burkhardt, Brant R.; Bickford, Paula C.; Liu, Bin; Stevens, Stanley M.

    2015-01-01

    Microglia, the resident immune cells of the brain, have been shown to display a complex spectrum of roles that span from neurotrophic to neurotoxic depending on their activation status. Microglia can be classified into four stages of activation, M1, which most closely matches the classical (pro-inflammatory) activation stage, and the alternative activation stages M2a, M2b, and M2c. The alternative activation stages have not yet been comprehensively analyzed through unbiased, global-scale protein expression profiling. In this study, BV2 mouse immortalized microglial cells were stimulated with agonists specific for each of the four stages and total protein expression for 4644 protein groups was quantified using SILAC-based proteomic analysis. After validating induction of the various stages through a targeted cytokine assay and Western blotting of activation states, the data revealed novel insights into the similarities and differences between the various states. The data identify several protein groups whose expression in the anti-inflammatory, pro-healing activation states are altered presumably to curtail inflammatory activation through differential protein expression, in the M2a state including CD74, LYN, SQST1, TLR2, and CD14. The differential expression of these proteins promotes healing, limits phagocytosis, and limits activation of reactive nitrogen species through toll-like receptor cascades. The M2c state appears to center around the down-regulation of a key member in the formation of actin-rich phagosomes, SLP-76. In addition, the proteomic data identified a novel activation marker, DAB2, which is involved in clathrin-mediated endocytosis and is significantly different between M2a and either M1 or M2b states. Western blot analysis of mouse primary microglia stimulated with the various agonists of the classical and alternative activation states revealed a similar trend of DAB2 expression compared with BV2 cells. PMID:26424600

  8. Novel Molecular Insights into Classical and Alternative Activation States of Microglia as Revealed by Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based Proteomics.

    PubMed

    Bell-Temin, Harris; Culver-Cochran, Ashley E; Chaput, Dale; Carlson, Christina M; Kuehl, Melanie; Burkhardt, Brant R; Bickford, Paula C; Liu, Bin; Stevens, Stanley M

    2015-12-01

    Microglia, the resident immune cells of the brain, have been shown to display a complex spectrum of roles that span from neurotrophic to neurotoxic depending on their activation status. Microglia can be classified into four stages of activation, M1, which most closely matches the classical (pro-inflammatory) activation stage, and the alternative activation stages M2a, M2b, and M2c. The alternative activation stages have not yet been comprehensively analyzed through unbiased, global-scale protein expression profiling. In this study, BV2 mouse immortalized microglial cells were stimulated with agonists specific for each of the four stages and total protein expression for 4644 protein groups was quantified using SILAC-based proteomic analysis. After validating induction of the various stages through a targeted cytokine assay and Western blotting of activation states, the data revealed novel insights into the similarities and differences between the various states. The data identify several protein groups whose expression in the anti-inflammatory, pro-healing activation states are altered presumably to curtail inflammatory activation through differential protein expression, in the M2a state including CD74, LYN, SQST1, TLR2, and CD14. The differential expression of these proteins promotes healing, limits phagocytosis, and limits activation of reactive nitrogen species through toll-like receptor cascades. The M2c state appears to center around the down-regulation of a key member in the formation of actin-rich phagosomes, SLP-76. In addition, the proteomic data identified a novel activation marker, DAB2, which is involved in clathrin-mediated endocytosis and is significantly different between M2a and either M1 or M2b states. Western blot analysis of mouse primary microglia stimulated with the various agonists of the classical and alternative activation states revealed a similar trend of DAB2 expression compared with BV2 cells.

  9. Kiss1 neurons drastically change their firing activity in accordance with the reproductive state: insights from a seasonal breeder.

    PubMed

    Hasebe, Masaharu; Kanda, Shinji; Shimada, Hiroyuki; Akazome, Yasuhisa; Abe, Hideki; Oka, Yoshitaka

    2014-12-01

    Kisspeptin (Kiss) neurons show drastic changes in kisspeptin expression in response to the serum sex steroid concentration in various vertebrate species. Thus, according to the reproductive states, kisspeptin neurons are suggested to modulate various neuronal activities, including the regulation of GnRH neurons in mammals. However, despite their reproductive state-dependent regulation, there is no physiological analysis of kisspeptin neurons in seasonal breeders. Here we generated the first kiss1-enhanced green fluorescent protein transgenic line of a seasonal breeder, medaka, for histological and electrophysiological analyses using a whole-brain in vitro preparation in which most synaptic connections are intact. We found histologically that Kiss1 neurons in the nucleus ventralis tuberis (NVT) projected to the preoptic area, hypothalamus, pituitary, and ventral telencephalon. Therefore, NVT Kiss1 neurons may regulate various homeostatic functions and innate behaviors. Electrophysiological analyses revealed that they show various firing patterns, including bursting. Furthermore, we found that their firings are regulated by the resting membrane potential. However, bursting was not induced from the other firing patterns with a current injection, suggesting that it requires some chronic modulations of intrinsic properties such as channel expression. Finally, we found that NVT Kiss1 neurons drastically change their neuronal activities according to the reproductive state and the estradiol levels. Taken together with the previous reports, we here conclude that the breeding condition drastically alters the Kiss1 neuron activities in both gene expression and firing activities, the latter of which is strongly related to Kiss1 release, and the Kiss1 peptides regulate the activities of various neural circuits through their axonal projections.

  10. Light activation of rhodopsin: insights from molecular dynamics simulations guided by solid-state NMR distance restraints

    PubMed Central

    Hornak, Viktor; Ahuja, Shivani; Eilers, Markus; Goncalves, Joseph A.; Sheves, Mordechai; Reeves, Philip J.; Smith, Steven O.

    2009-01-01

    Structural restraints provided by solid-state NMR measurements of the metarhodopsin II intermediate are combined with molecular dynamics simulations to help visualize the structural changes in the light activation of rhodopsin. Since the time scale for the formation of the metarhodopsin II intermediate (> 1 ms) is beyond that readily accessible by molecular dynamics, we use NMR distance restraints derived from 13C dipolar recoupling measurements to guide the simulations. The simulations yield a working model for how photoisomerization of the 11-cis retinylidene chromophore bound within the interior of rhodopsin is coupled to transmembrane helix motion and receptor activation. The mechanism of activation that emerges is that multiple switches on the extracellular (or intradiscal) side of rhodopsin trigger structural changes that converge to disrupt the ionic lock between helices H3 and H6 on the intracellular side of the receptor. PMID:20004206

  11. Ligand-Stabilized Conformational States of Human β2 Adrenergic Receptor: Insight into G-Protein-Coupled Receptor Activation

    PubMed Central

    Bhattacharya, Supriyo; Hall, Spencer E.; Li, Hubert; Vaidehi, Nagarajan

    2008-01-01

    G-protein-coupled receptors (GPCRs) are known to exist in dynamic equilibrium between inactive- and several active-state conformations, even in the absence of a ligand. Recent experimental studies on the β2 adrenergic receptor (β2AR) indicate that structurally different ligands with varying efficacies trigger distinct conformational changes and stabilize different receptor conformations. We have developed a computational method to study the ligand-induced rotational orientation changes in the transmembrane helices of GPCRs. This method involves a systematic spanning of the rotational orientation of the transmembrane helices (TMs) that are in the vicinity of the ligand for predicting the helical rotations that occur on ligand binding. The predicted ligand-stabilized receptor conformations are characterized by a simultaneous lowering of the ligand binding energy and a significant gain in interhelical and receptor-ligand hydrogen bonds. Using the β2AR as a model, we show that the receptor conformational state depends on the structure and efficacy of the ligand for a given signaling pathway. We have studied the ligand-stabilized receptor conformations of five different ligands, a full agonist, norepinephrine; a partial agonist, salbutamol; a weak partial agonist, dopamine; a very weak agonist, catechol; and an inverse agonist, ICI-115881. The predicted ligand-stabilized receptor models correlate well with the experimentally observed conformational switches in β2AR, namely, the breaking of the ionic lock between R1313.50 at the intracellular end of TM3 (part of the DRY motif) and E2686.30 on TM6, and the rotamer toggle switch on W2866.48 on TM6. In agreement with trp-bimane quenching experiments, we found that norepinephrine and dopamine break the ionic lock and engage the rotamer toggle switch, whereas salbutamol, a noncatechol partial agonist only breaks the ionic lock, and the weak agonist catechol only engages the rotamer toggle switch. Norepinephrine and

  12. Homology modeling and molecular dynamics simulations of the active state of the nociceptin receptor reveal new insights into agonist binding and activation.

    PubMed

    Daga, Pankaj R; Zaveri, Nurulain T

    2012-08-01

    The opioid receptor-like receptor, also known as the nociceptin receptor (NOP), is a class A G protein-coupled receptor (GPCR) in the opioid receptor family. Although NOP shares a significant homology with the other opioid receptors, it does not bind known opioid ligands and has been shown to have a distinct mechanism of activation compared to the closely related opioid receptors mu, delta, and kappa. Previously reported homology models of the NOP receptor, based on the inactive-state GPCR crystal structures, give limited information on the activation and selectivity features of this fourth member of the opioid receptor family. We report here the first active-state homology model of the NOP receptor based on the opsin GPCR crystal structure. An inactive-state homology model of NOP was also built using a multiple template approach. Molecular dynamics simulation of the active-state NOP model and comparison to the inactive-state model suggest that NOP activation involves movements of transmembrane (TM)3 and TM6 and several activation microswitches, consistent with GPCR activation. Docking of the selective nonpeptidic NOP agonist ligand Ro 64-6198 into the active-state model reveals active-site residues in NOP that play a role in the high selectivity of this ligand for NOP over the other opioid receptors. Docking the shortest active fragment of endogenous agonist nociceptin/orphaninFQ (residues 1-13) shows that the NOP extracellular loop 2 (EL2) loop interacts with the positively charged residues (8-13) of N/OFQ. Both agonists show extensive polar interactions with residues at the extracellular end of the TM domain and EL2 loop, suggesting agonist-induced reorganization of polar networks, during receptor activation. Copyright © 2012 Wiley Periodicals, Inc.

  13. Structural insights on complement activation.

    PubMed

    Alcorlo, Martín; López-Perrote, Andrés; Delgado, Sandra; Yébenes, Hugo; Subías, Marta; Rodríguez-Gallego, César; Rodríguez de Córdoba, Santiago; Llorca, Oscar

    2015-10-01

    The proteolytic cleavage of C3 to generate C3b is the central and most important step in the activation of complement, a major component of innate immunity. The comparison of the crystal structures of C3 and C3b illustrates large conformational changes during the transition from C3 to C3b. Exposure of a reactive thio-ester group allows C3b to bind covalently to surfaces such as pathogens or apoptotic cellular debris. The displacement of the thio-ester-containing domain (TED) exposes hidden surfaces that mediate the interaction with complement factor B to assemble the C3-convertase of the alternative pathway (AP). In addition, the displacement of the TED and its interaction with the macroglobulin 1 (MG1) domain generates an extended surface in C3b where the complement regulators factor H (FH), decay accelerating factor (DAF), membrane cofactor protein (MCP) and complement receptor 1 (CR1) can bind, mediating accelerated decay of the AP C3-convertase and proteolytic inactivation of C3b. In the last few years, evidence has accumulated revealing that the structure of C3b in solution is significantly more flexible than anticipated. We review our current knowledge on C3b structural flexibility to propose a general model where the TED can display a collection of conformations around the MG ring, as well as a few specialized positions where the TED is held in one of several fixed locations. Importantly, this conformational heterogeneity in C3b impacts complement regulation by affecting the interaction with regulators.

  14. Insight Across the Different Mood States of Bipolar Disorder.

    PubMed

    de Assis da Silva, Rafael; Mograbi, Daniel C; Silveira, Luciana Angélica Silva; Nunes, Ana Letícia Santos; Novis, Fernanda Demôro; Landeira-Fernandez, J; Cheniaux, Elie

    2015-09-01

    In bipolar disorder, levels of insight vary as a function of the mood state and appear to influence pharmacology compliance, quality of life, the presence of suicidal ideations, and aggressive behavior. To establish a comparison among different mood states in bipolar with regard to level of insight. Forty-eight patients were evaluated in different affective states (i.e., euthymia, mania, depression, and mixed state). Identifying information, sociodemographic data, and clinical records were recorded. The following scales were applied: Hamilton Depression Scale, Young Mania Rating Scale, Positive and Negative Syndrome Scale positive symptoms subscale, and Global Assessment of Functioning and Clinical Global Impressions Scale for use in bipolar disorder. Insight was evaluated using items 11 and 17 of the Young Mania Rating Scale and Hamilton Depression Scale, respectively. Insight in bipolar disorder was found to be more compromised during manic phases and mixed episodes than during periods of depression or euthymia. The factors associated with lower levels of insight were the following: shorter illness duration, older age, and greater severity in mania; the female gender and older age in depression; and shorter illness duration and more severe depressive symptoms in mixed episodes. In the same individual, levels of insight vary as a function of the affective state over the course of bipolar disorder and appear to be influenced by several clinical variables.

  15. Structural insight into arginine methylation by the mouse protein arginine methyltransferase 7: a zinc finger freezes the mimic of the dimeric state into a single active site.

    PubMed

    Cura, Vincent; Troffer-Charlier, Nathalie; Wurtz, Jean Marie; Bonnefond, Luc; Cavarelli, Jean

    2014-09-01

    Protein arginine methyltransferase 7 (PRMT7) is a type III arginine methyltransferase which has been implicated in several biological processes such as transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation and metastasis. PRMT7 is a unique but less characterized member of the family of PRMTs. The crystal structure of full-length PRMT7 from Mus musculus refined at 1.7 Å resolution is described. The PRMT7 structure is composed of two catalytic modules in tandem forming a pseudo-dimer and contains only one AdoHcy molecule bound to the N-terminal module. The high-resolution crystal structure presented here revealed several structural features showing that the second active site is frozen in an inactive state by a conserved zinc finger located at the junction between the two PRMT modules and by the collapse of two degenerated AdoMet-binding loops.

  16. Mechanistic insights into heterogeneous methane activation

    DOE PAGES

    Latimer, Allegra A.; Aljama, Hassan; Kakekhani, Arvin; ...

    2017-01-11

    While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model tomore » aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. Here, this model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.« less

  17. Insight into hydroxides-activated coals: chemical or physical activation?

    SciTech Connect

    Alcaniz-Monge, J.; Illan-Gomez, M.J.

    2008-02-15

    The objective of this paper is to get an insight into the chemical activation mechanism using KOH and NaOH as activated agents. Three coals have been selected as carbon precursors. It was found that KOH and NaOH develop a similar narrow microporosity, independently of the coal rank, whereas only KOH generates supermicroporosity. Temperature-programmed desorption experiments, carried out with impregnated anthracite, show differences on the gas evolved during the activated carbon preparation using the two activating agents. Thus, whereas hydrogen profiles are quite similar for both activated agents, the CO and H{sub 2}O profiles are different. It is remarkable the high amount of H{sub 2}O evolved at the maximum treatment temperature for both activating agents. The results obtained to allow conclusion that the chemical activation is due to a combination of different process driving the development of material porosity.

  18. Structural insights into a unique Legionella pneumophila effector LidA recognizing both GDP and GTP bound Rab1 in their active state.

    PubMed

    Cheng, Wei; Yin, Kun; Lu, Defen; Li, Bingqing; Zhu, Deyu; Chen, Yuzhen; Zhang, Hao; Xu, Sujuan; Chai, Jijie; Gu, Lichuan

    2012-01-01

    The intracellular pathogen Legionella pneumophila hijacks the endoplasmic reticulum (ER)-derived vesicles to create an organelle designated Legionella-containing vacuole (LCV) required for bacterial replication. Maturation of the LCV involved acquisition of Rab1, which is mediated by the bacterial effector protein SidM/DrrA. SidM/DrrA is a bifunctional enzyme having the activity of both Rab1-specific GDP dissociation inhibitor (GDI) displacement factor (GDF) and guanine nucleotide exchange factor (GEF). LidA, another Rab1-interacting bacterial effector protein, was reported to promote SidM/DrrA-mediated recruitment of Rab1 to the LCV as well. Here we report the crystal structures of LidA complexes with GDP- and GTP-bound Rab1 respectively. Structural comparison revealed that GDP-Rab1 bound by LidA exhibits an active and nearly identical conformation with that of GTP-Rab1, suggesting that LidA can disrupt the switch function of Rab1 and render it persistently active. As with GTP, LidA maintains GDP-Rab1 in the active conformation through interaction with its two conserved switch regions. Consistent with the structural observations, biochemical assays showed that LidA binds to GDP- and GTP-Rab1 equally well with an affinity approximately 7.5 nM. We propose that the tight interaction with Rab1 allows LidA to facilitate SidM/DrrA-catalyzed release of Rab1 from GDIs. Taken together, our results support a unique mechanism by which a bacterial effector protein regulates Rab1 recycling.

  19. Structural Insights into a Unique Legionella pneumophila Effector LidA Recognizing Both GDP and GTP Bound Rab1 in Their Active State

    PubMed Central

    Lu, Defen; Li, Bingqing; Zhu, Deyu; Chen, Yuzhen; Zhang, Hao; Xu, Sujuan; Chai, Jijie; Gu, Lichuan

    2012-01-01

    The intracellular pathogen Legionella pneumophila hijacks the endoplasmic reticulum (ER)-derived vesicles to create an organelle designated Legionella-containing vacuole (LCV) required for bacterial replication. Maturation of the LCV involved acquisition of Rab1, which is mediated by the bacterial effector protein SidM/DrrA. SidM/DrrA is a bifunctional enzyme having the activity of both Rab1-specific GDP dissociation inhibitor (GDI) displacement factor (GDF) and guanine nucleotide exchange factor (GEF). LidA, another Rab1-interacting bacterial effector protein, was reported to promote SidM/DrrA-mediated recruitment of Rab1 to the LCV as well. Here we report the crystal structures of LidA complexes with GDP- and GTP-bound Rab1 respectively. Structural comparison revealed that GDP-Rab1 bound by LidA exhibits an active and nearly identical conformation with that of GTP-Rab1, suggesting that LidA can disrupt the switch function of Rab1 and render it persistently active. As with GTP, LidA maintains GDP-Rab1 in the active conformation through interaction with its two conserved switch regions. Consistent with the structural observations, biochemical assays showed that LidA binds to GDP- and GTP-Rab1 equally well with an affinity approximately 7.5 nM. We propose that the tight interaction with Rab1 allows LidA to facilitate SidM/DrrA-catalyzed release of Rab1 from GDIs. Taken together, our results support a unique mechanism by which a bacterial effector protein regulates Rab1 recycling. PMID:22416225

  20. X-ray-induced catalytic active-site reduction of a multicopper oxidase: structural insights into the proton-relay mechanism and O2-reduction states

    PubMed Central

    Serrano-Posada, Hugo; Centeno-Leija, Sara; Rojas-Trejo, Sonia Patricia; Rodríguez-Almazán, Claudia; Stojanoff, Vivian; Rudiño-Piñera, Enrique

    2015-01-01

    During X-ray data collection from a multicopper oxidase (MCO) crystal, electrons and protons are mainly released into the system by the radiolysis of water molecules, leading to the X-ray-induced reduction of O2 to 2H2O at the trinuclear copper cluster (TNC) of the enzyme. In this work, 12 crystallographic structures of Thermus thermophilus HB27 multicopper oxidase (Tth-MCO) in holo, apo and Hg-bound forms and with different X-ray absorbed doses have been determined. In holo Tth-MCO structures with four Cu atoms, the proton-donor residue Glu451 involved in O2 reduction was found in a double conformation: Glu451a (∼7 Å from the TNC) and Glu451b (∼4.5 Å from the TNC). A positive peak of electron density above 3.5σ in an F o − F c map for Glu451a O∊2 indicates the presence of a carboxyl functional group at the side chain, while its significant absence in Glu451b strongly suggests a carboxylate functional group. In contrast, for apo Tth-MCO and in Hg-bound structures neither the positive peak nor double conformations were observed. Together, these observations provide the first structural evidence for a proton-relay mechanism in the MCO family and also support previous studies indicating that Asp106 does not provide protons for this mechanism. In addition, eight composite structures (Tth-MCO-C1–8) with different X-ray-absorbed doses allowed the observation of different O2-reduction states, and a total depletion of T2Cu at doses higher than 0.2 MGy showed the high susceptibility of this Cu atom to radiation damage, highlighting the importance of taking radiation effects into account in biochemical interpretations of an MCO structure. PMID:26627648

  1. X-ray-induced catalytic active-site reduction of a multicopper oxidase: structural insights into the proton-relay mechanism and O2-reduction states.

    PubMed

    Serrano-Posada, Hugo; Centeno-Leija, Sara; Rojas-Trejo, Sonia Patricia; Rodríguez-Almazán, Claudia; Stojanoff, Vivian; Rudiño-Piñera, Enrique

    2015-12-01

    During X-ray data collection from a multicopper oxidase (MCO) crystal, electrons and protons are mainly released into the system by the radiolysis of water molecules, leading to the X-ray-induced reduction of O2 to 2H2O at the trinuclear copper cluster (TNC) of the enzyme. In this work, 12 crystallographic structures of Thermus thermophilus HB27 multicopper oxidase (Tth-MCO) in holo, apo and Hg-bound forms and with different X-ray absorbed doses have been determined. In holo Tth-MCO structures with four Cu atoms, the proton-donor residue Glu451 involved in O2 reduction was found in a double conformation: Glu451a (∼7 Å from the TNC) and Glu451b (∼4.5 Å from the TNC). A positive peak of electron density above 3.5σ in an Fo - Fc map for Glu451a O(ℇ2) indicates the presence of a carboxyl functional group at the side chain, while its significant absence in Glu451b strongly suggests a carboxylate functional group. In contrast, for apo Tth-MCO and in Hg-bound structures neither the positive peak nor double conformations were observed. Together, these observations provide the first structural evidence for a proton-relay mechanism in the MCO family and also support previous studies indicating that Asp106 does not provide protons for this mechanism. In addition, eight composite structures (Tth-MCO-C1-8) with different X-ray-absorbed doses allowed the observation of different O2-reduction states, and a total depletion of T2Cu at doses higher than 0.2 MGy showed the high susceptibility of this Cu atom to radiation damage, highlighting the importance of taking radiation effects into account in biochemical interpretations of an MCO structure.

  2. BK channel activation: structural and functional insights

    PubMed Central

    Lee, Urvi S.; Cui, Jianmin

    2010-01-01

    The voltage and Ca2+ activated K+ (BK) channels are involved in the regulation of neurotransmitter release and neuronal excitability. Structurally, BK channels are homologous to voltage- and ligand-gated K+ channels, having a voltage sensor and pore as the membrane-spanning domain and a cytosolic domain containing metal binding sites. Recently published electron cryomicroscopy (cryo-EM) and X-ray crystallographic structures of the BK channel provided the first look into the assembly of these domains, corroborating the close interactions among these domains during channel gating that have been suggested by functional studies. This review discusses these latest findings and an emerging new understanding about BK channel gating and implications for diseases such as epilepsy, in which mutations in BK channel genes have been associated. PMID:20663573

  3. Insights into the "free state" enzyme reaction kinetics in nanoconfinement.

    PubMed

    Wang, Chen; Ye, De-Kai; Wang, Yun-Yi; Lu, Tao; Xia, Xing-Hua

    2013-04-21

    The investigation of enzyme reaction kinetics in nanoconfined spaces mimicking the conditions in living systems is of great significance. Here, a nanofluidics chip integrated with an electrochemical detector has been designed for studying "free state" enzyme reaction kinetics in nanoconfinement. The nanofluidics chip is fabricated using the UV-ablation technique developed in our group. The enzyme and substrate solutions are simultaneously supplied from two single streams into a nanochannel through a Y-shaped junction. The laminar flow forms in the front of the nanochannel, then the two liquids fully mix at their downstream where a homogeneous enzyme reaction occurs. The "free state" enzyme reaction kinetics in nanoconfinement can thus be investigated in this laminar flow based nanofluidics device. For demonstration, glucose oxidase (GOx) is chosen as the model enzyme, which catalyzes the oxidation of beta-d-glucose. The reaction product hydrogen peroxide (H2O2) can be electrochemically detected by a microelectrode aligning to the end of nanochannel. The steady-state electrochemical current responding to various glucose concentrations is used to evaluate the activity of the "free state" GOx under nanoconfinement conditions. The effect of liquid flow rate, enzyme concentration, and nanoconfinement on reaction kinetics has been studied in detail. Results show that the "free state" GOx activity increases significantly compared to the immobilized enzyme and bath system, and the GOx reaction rate in the nanochannel is two-fold faster than that in bulk solution, demonstrating the importance of "free state" and spatial confinement for the enzyme reaction kinetics. The present approach provides an effective method for exploiting the "free state" enzyme activity in nanospatial confinement.

  4. Differential Associations of Early- and Late-Night Sleep with Functional Brain States Promoting Insight to Abstract Task Regularity

    PubMed Central

    Wagner, Ullrich; Verleger, Rolf

    2010-01-01

    Background Solving a task with insight has been associated with occipital and right-hemisphere activations. The present study tested the hypothesis if sleep-related alterations in functional activation states modulate the probability of insight into a hidden abstract regularity of a task. Methodology State-dependent functional activation was measured by beta and alpha electroencephalographic (EEG) activity and spatial synchronization. Task-dependent functional activation was assessed by slow cortical potentials (SPs). EEG parameters during the performance of the Number Reduction Task (NRT) were compared between before sleep and after sleep sessions. In two different groups, the relevant sleep occurred either in the first or in the second half of the night, dominated by slow wave sleep (SWS) or by rapid eye movement (REM) sleep. Principal Findings Changes in EEG parameters only occurred in the early-night group, not in the late-night group and indicated occipital and right-hemisphere functional alterations. These changes were associated with off-line consolidation of implicit task representations and with the amount of SWS but they did not predict subsequent insight. The gain of insight was, however, independently associated with changes of spectral beta and alpha measures only in those subjects from the two sleep groups who would subsequently comprehend the hidden regularity of the task. Insight-related enhancement of right frontal asymmetry after sleep did not depend on sleep stages. Significance It is concluded that off-line restructuring of implicit information during sleep is accompanied by alterations of functional activation states after sleep. This mechanism is promoted by SWS but not by REM sleep and may contribute to attaining insight after sleep. Original neurophysiologic evidence is provided for alterations of the functional activation brain states after sleep. These alterations are associated with a decrease in controlled processing within the visual

  5. An allolactose trapped at the lacZ β-galactosidase active site with its galactosyl moiety in a (4)H3 conformation provides insights into the formation, conformation, and stabilization of the transition state.

    PubMed

    Wheatley, Robert W; Huber, Reuben E

    2015-12-01

    When lactose was incubated with G794A-β-galactosidase (a variant with a "closed" active site loop that binds transition state analogs well) an allolactose was trapped with its Gal moiety in a (4)H3 conformation, similar to the oxocarbenium ion-like conformation expected of the transition state. The numerous interactions formed between the (4)H3 structure and β-galactosidase indicate that this structure is representative of the transition state. This conformation is also very similar to that of d-galactono-1,5-lactone, a good transition state analog. Evidence indicates that substrates take up the (4)H3 conformation during migration from the shallow to the deep mode. Steric forces utilizing His418 and other residues are important for positioning the O1 leaving group into a quasi-axial position. An electrostatic interaction between the O5 of the distorted Gal and Tyr503 as well as C-H-π bonds with Trp568 are also significant. Computational studies of the energy of sugar ring distortion show that the β-galactosidase reaction itinerary is driven by energetic considerations in utilization of a (4)H3 transition state with a novel (4)C1-(4)H3-(4)C1 conformation itinerary. To our knowledge, this is the first X-ray crystallographic structural demonstration that the transition state of a natural substrate of a glycosidase has a (4)H3 conformation.

  6. Functional states of homooligomers: insights from the evolution of glycosyltransferases.

    PubMed

    Hashimoto, Kosuke; Madej, Thomas; Bryant, Stephen H; Panchenko, Anna R

    2010-05-28

    Glycosylation is an important aspect of epigenetic regulation. Glycosyltransferase is a key enzyme in the biosynthesis of glycans, which glycosylates more than half of all proteins in eukaryotes and is involved in a wide range of biological processes. It has been suggested previously that homooligomerization in glycosyltransferases and other proteins might be crucial for their function. In this study, we explore functional homooligomeric states of glycosyltransferases in various organisms, trace their evolution, and perform comparative analyses to find structural features that can mediate or disrupt the formation of different homooligomers. First, we make a structure-based classification of the diverse superfamily of glycosyltransferases and confirm that the majority of the structures are indeed clustered into the GT-A or GT-B folds. We find that homooligomeric glycosyltransferases appear to be as ancient as monomeric glycosyltransferases and go back in evolution to the last universal common ancestor (LUCA). Moreover, we show that interface residues have significant bias to be gapped out or unaligned in the monomers, implying that they might represent features crucial for oligomer formation. Structural analysis of these features reveals that the majority of them represent loops, terminal regions, and helices, indicating that these secondary-structure elements mediate the formation of glycosyltransferases' homooligomers and directly contribute to the specific binding. We also observe relatively short protein regions that disrupt the homodimer interactions, although such cases are rare. These results suggest that relatively small structural changes in the nonconserved regions may contribute to the formation of different functional oligomeric states and might be important in regulation of enzyme activity through homooligomerization. Published by Elsevier Ltd.

  7. State Practitioner Insights Into Local Public Health Challenges and Opportunities in Obesity Prevention: a Qualitative Study

    PubMed Central

    Lewis, Moira; Khoong, Elaine C.; LaSee, Claire

    2014-01-01

    Introduction The extent of obesity prevention activities conducted by local health departments (LHDs) varies widely. The purpose of this qualitative study was to characterize how state obesity prevention program directors perceived the role of LHDs in obesity prevention and factors that impact LHDs’ success in obesity prevention. Methods From June 2011 through August 2011, we conducted 28 semistructured interviews with directors of federally funded obesity prevention programs at 22 state and regional health departments. Interviews were transcribed verbatim, coded, and analyzed to identify recurring themes and key quotations. Results Main themes focused on the roles of LHDs in local policy and environmental change and on the barriers and facilitators to LHD success. The role LHDs play in obesity prevention varied across states but generally reflected governance structure (decentralized vs centralized). Barriers to local prevention efforts included competing priorities, lack of local capacity, siloed public health structures, and a lack of local engagement in policy and environmental change. Structures and processes that facilitated prevention were having state support (eg, resources, technical assistance), dedicated staff, strong communication networks, and a robust community health assessment and planning process. Conclusions These findings provide insight into successful strategies state and local practitioners are using to implement innovative (and evidence-informed) community-based interventions. The change in the nature of obesity prevention requires a rethinking of the state–local relationship, especially in centralized states. PMID:24625363

  8. Insights on activation enthalpy for non-Schmid slip in body-centered cubic metals

    DOE PAGES

    Hale, Lucas M.; Lim, Hojun; Zimmerman, Jonathan A.; ...

    2014-12-18

    We use insights gained from atomistic simulation to develop an activation enthalpy model for dislocation slip in body-centered cubic iron. Furthermore, using a classical potential that predicts dislocation core stabilities consistent with ab initio predictions, we quantify the non-Schmid stress-dependent effects of slip. The kink-pair activation enthalpy is evaluated and a model is identified as a function of the general stress state. Thus, our model enlarges the applicability of the classic Kocks activation enthalpy model to materials with non-Schmid behavior.

  9. Mechanisms of inflammasome activation: recent advances and novel insights.

    PubMed

    Vanaja, Sivapriya K; Rathinam, Vijay A K; Fitzgerald, Katherine A

    2015-05-01

    Inflammasomes are cytosolic multiprotein platforms assembled in response to invading pathogens and other danger signals. Typically inflammasome complexes contain a sensor protein, an adaptor protein, and a zymogen - procaspase-1. Formation of inflammasome assembly results in processing of inactive procaspase-1 into an active cysteine-protease enzyme, caspase-1, which subsequently activates the proinflammatory cytokines, interleukins IL-1β and IL-18, and induces pyroptosis, a highly-pyrogenic inflammatory form of cell death. Studies over the past year have unveiled exciting new players and regulatory pathways that are involved in traditional inflammasome signaling, some of them even challenging the existing dogma. This review outlines these new insights in inflammasome research and discusses areas that warrant further exploration.

  10. Atomistic insights into rhodopsin activation from a dynamic model.

    PubMed

    Tikhonova, Irina G; Best, Robert B; Engel, Stanislav; Gershengorn, Marvin C; Hummer, Gerhard; Costanzi, Stefano

    2008-08-06

    Rhodopsin, the light sensitive receptor responsible for blue-green vision, serves as a prototypical G protein-coupled receptor (GPCR). Upon light absorption, it undergoes a series of conformational changes that lead to the active form, metarhodopsin II (META II), initiating a signaling cascade through binding to the G protein transducin (G(t)). Here, we first develop a structural model of META II by applying experimental distance restraints to the structure of lumi-rhodopsin (LUMI), an earlier intermediate. The restraints are imposed by using a combination of biased molecular dynamics simulations and perturbations to an elastic network model. We characterize the motions of the transmembrane helices in the LUMI-to-META II transition and the rearrangement of interhelical hydrogen bonds. We then simulate rhodopsin activation in a dynamic model to study the path leading from LUMI to our META II model for wild-type rhodopsin and a series of mutants. The simulations show a strong correlation between the transition dynamics and the pharmacological phenotypes of the mutants. These results help identify the molecular mechanisms of activation in both wild type and mutant rhodopsin. While static models can provide insights into the mechanisms of ligand recognition and predict ligand affinity, a dynamic model of activation could be applicable to study the pharmacology of other GPCRs and their ligands, offering a key to predictions of basal activity and ligand efficacy.

  11. Brain activity in using heuristic prototype to solve insightful problems.

    PubMed

    Dandan, Tong; Haixue, Zhu; Wenfu, Li; Wenjing, Yang; Jiang, Qiu; Qinglin, Zhang

    2013-09-15

    When confronted with a real-world problem, heuristic knowledge and experience can guide the solution of a specific technical problem as the key step toward innovation. In particular, a heuristic prototype must be used correctly to cue the technical problem that exists in a particular situation. The present study selected an innovative paradigm and scientific innovation materials to investigate the neural basis of insight induced by heuristic prototypes using event-related functional magnetic resonance imaging (fMRI). The day prior to undergoing fMRI scanning, participants were asked to solve 42 difficult technical problems that scientists might have already encountered but were unknown to the participants. In the subsequent fMRI experiment, the same participants were randomly presented with 84 prototypes classified into two types: related prototypes (RPs), which were useful for solving previously encountered problems, and unrelated prototypes (UPs), which sometimes did not contribute to problem solving. While being scanned, participants were asked to assess whether a prototype is relevant to any of the technical problems. This study comprised two conditions: solving technical problems when presented with a related heuristic prototype and failing to solve technical problems using unrelated heuristic prototypes. The authors assumed that the regions significantly activated by the RP condition, compared with the UP condition, reflected brain activity related to the role of heuristic prototypes in scientific insight. fMRI data showed that the left dorsolateral prefrontal gyrus (left DLFPC, BA9) and the left angular gyrus (left AG, BA39) were more significantly activated when presented with RPs than with UPs. The results suggest that the DLPFC may be involved in the automatic retrieval of technical problems and breaking of mental sets. Moreover, the left AG may be involved in forming novel associations between technical problems and related prototypes. Copyright © 2013

  12. On the time to steady state: insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Goren, L.; Willett, S.; McCoy, S. W.; Perron, J.

    2013-12-01

    How fast do fluvial landscapes approach steady state after an application of tectonic or climatic perturbation? While theory and some numerical models predict that the celerity of the advective wave (knickpoint) controls the response time for perturbations, experiments and other landscape evolution models demonstrate that the time to steady state is much longer than the theoretically predicted response time. We posit that the longevity of transient features and the time to steady state are controlled by the stability of the topology and geometry of channel networks. Evolution of a channel network occurs by a combination of discrete capture events and continuous migration of water divides, processes, which are difficult to represent accurately in landscape evolution models. We therefore address the question of the time to steady state using the DAC landscape evolution model that solves accurately for the location of water divides, using a combination of analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC also includes an explicit capture criterion. We have tested fundamental predictions from DAC and show that modeled networks reproduce natural network characteristics such as the Hack's exponent and coefficient and the fractal dimension. We define two steady-state criteria: a topographic steady state, defined by global, pointwise steady elevation, and a topological steady state defined as the state in which no further reorganization of the drainage network takes place. Analyzing block uplift simulations, we find that the time to achieve either topographic or topological steady state exceeds by an order of magnitude the theoretical response time of the fluvial network. The longevity of the transient state is the result of the area feedback, by which, migration of a divide changes the local contributing area. This change propagates downstream as a slope adjustment, forcing further divide migrations

  13. Insights.

    ERIC Educational Resources Information Center

    Bogner, Donna, Ed.

    1988-01-01

    Describes two methods to teach radioactive decay to secondary students with wide ranging abilities. Activities are designed to follow classroom discussions of atomic structure, transmutation, half life, and nuclear decay. Includes "The Tasmanian Empire: A Radioactive Dating Activity" and an exercise to teach concepts of half life without…

  14. Insights.

    ERIC Educational Resources Information Center

    Bogner, Donna, Ed.

    1988-01-01

    Describes two methods to teach radioactive decay to secondary students with wide ranging abilities. Activities are designed to follow classroom discussions of atomic structure, transmutation, half life, and nuclear decay. Includes "The Tasmanian Empire: A Radioactive Dating Activity" and an exercise to teach concepts of half life without…

  15. Insights from simple models for surface states in nanostructures

    NASA Astrophysics Data System (ADS)

    Boykin, Timothy B.; Klimeck, Gerhard

    2017-03-01

    Surface passivation is of great technological importance due to the increasing miniaturisation of electronic devices. It has been known for many years that under certain conditions surface states can form; when they do so in a quantum well (QW) the result is an unbound (i.e., evanescent) state in the QW. Such surface states are generally undesirable, so a good physical understanding of them is important. A simple single-p-orbital valence band model is used with two types of surface passivation to examine surface states in a QW: (1) an energy upshift added to the terminal atoms; and (2) explicit passivation by an s-orbital on each end of the QW. These models show these unbound/evanescent QW states can occur in both models; that in them the wavefunction is bound to the terminal atoms; and that the existence of these states is connected to the effective valence-band offset between the terminal atoms and the bulk QW.

  16. New insight into the physical state of galaxies and quasars

    NASA Technical Reports Server (NTRS)

    Green, R. F.

    1981-01-01

    Data from the International Ultraviolet Explorer satellite have revolutionized many concepts in extragalactic astronomy. These include the physical processes at work in the emitting gas characteristic of active objects, the nature of the continuum source itself in those objects, and the constituent hot stellar and gaseous components of normal galaxies. Several problems of extragalactic research investigated with IUE were reviewed.

  17. Kinetic insights over a PEMFC operating on stationary and oscillatory states.

    PubMed

    Mota, Andressa; Gonzalez, Ernesto R; Eiswirth, Markus

    2011-12-01

    Kinetic investigations in the oscillatory state have been carried out in order to shed light on the interplay between the complex kinetics exhibited by a proton exchange membrane fuel cell fed with poisoned H(2) (108 ppm of CO) and the other in serie process. The apparent activation energy (E(a)) in the stationary state was investigated in order to clarify the E(a) observed in the oscillatory state. The apparent activation energy in the stationary state, under potentiostatic control, rendered (a) E(a) ≈ 50-60 kJ mol(-1) over 0.8 V < E < 0.6 V and (b) E(a) ≈ 10 kJ mol(-1) at E = 0.3 V. The former is related to the H(2) adsorption in the vacancies of the surface poisoned by CO and the latter is correlated to the process of proton conductivity in the membrane. The dependence of the period-one oscillations on the temperature yielded a genuine Arrhenius dependence with two E(a) values: (a) E(a) around 70 kJ mol(-1), at high temperatures, and (b) E(a) around 10-15 kJ mol(-1), at lower temperatures. The latter E(a) indicates the presence of protonic mass transport coupled to the essential oscillatory mechanism. These insights point in the right direction to predict spatial couplings between anode and cathode as having the highest strength as well as to speculate the most likely candidates to promote spatial inhomogeneities. © 2011 American Chemical Society

  18. Markov state models provide insights into dynamic modulation of protein function.

    PubMed

    Shukla, Diwakar; Hernández, Carlos X; Weber, Jeffrey K; Pande, Vijay S

    2015-02-17

    CONSPECTUS: Protein function is inextricably linked to protein dynamics. As we move from a static structural picture to a dynamic ensemble view of protein structure and function, novel computational paradigms are required for observing and understanding conformational dynamics of proteins and its functional implications. In principle, molecular dynamics simulations can provide the time evolution of atomistic models of proteins, but the long time scales associated with functional dynamics make it difficult to observe rare dynamical transitions. The issue of extracting essential functional components of protein dynamics from noisy simulation data presents another set of challenges in obtaining an unbiased understanding of protein motions. Therefore, a methodology that provides a statistical framework for efficient sampling and a human-readable view of the key aspects of functional dynamics from data analysis is required. The Markov state model (MSM), which has recently become popular worldwide for studying protein dynamics, is an example of such a framework. In this Account, we review the use of Markov state models for efficient sampling of the hierarchy of time scales associated with protein dynamics, automatic identification of key conformational states, and the degrees of freedom associated with slow dynamical processes. Applications of MSMs for studying long time scale phenomena such as activation mechanisms of cellular signaling proteins has yielded novel insights into protein function. In particular, from MSMs built using large-scale simulations of GPCRs and kinases, we have shown that complex conformational changes in proteins can be described in terms of structural changes in key structural motifs or "molecular switches" within the protein, the transitions between functionally active and inactive states of proteins proceed via multiple pathways, and ligand or substrate binding modulates the flux through these pathways. Finally, MSMs also provide a theoretical

  19. Markov State Models Provide Insights into Dynamic Modulation of Protein Function

    PubMed Central

    2015-01-01

    Conspectus Protein function is inextricably linked to protein dynamics. As we move from a static structural picture to a dynamic ensemble view of protein structure and function, novel computational paradigms are required for observing and understanding conformational dynamics of proteins and its functional implications. In principle, molecular dynamics simulations can provide the time evolution of atomistic models of proteins, but the long time scales associated with functional dynamics make it difficult to observe rare dynamical transitions. The issue of extracting essential functional components of protein dynamics from noisy simulation data presents another set of challenges in obtaining an unbiased understanding of protein motions. Therefore, a methodology that provides a statistical framework for efficient sampling and a human-readable view of the key aspects of functional dynamics from data analysis is required. The Markov state model (MSM), which has recently become popular worldwide for studying protein dynamics, is an example of such a framework. In this Account, we review the use of Markov state models for efficient sampling of the hierarchy of time scales associated with protein dynamics, automatic identification of key conformational states, and the degrees of freedom associated with slow dynamical processes. Applications of MSMs for studying long time scale phenomena such as activation mechanisms of cellular signaling proteins has yielded novel insights into protein function. In particular, from MSMs built using large-scale simulations of GPCRs and kinases, we have shown that complex conformational changes in proteins can be described in terms of structural changes in key structural motifs or “molecular switches” within the protein, the transitions between functionally active and inactive states of proteins proceed via multiple pathways, and ligand or substrate binding modulates the flux through these pathways. Finally, MSMs also provide a

  20. Building Capacity for Tracking Human Capital Development and Its Mobility across State Lines. Policy Insights

    ERIC Educational Resources Information Center

    Prescott, Brian T.

    2014-01-01

    This issue of "Policy Insights" provides a review of the past five years of the cost and value of higher education, which have gained increased policymaker, consumer, and media attention. The Western Interstate Commission for Higher Education (WICHE) has worked with four of its member states (Hawai'i, Idaho, Oregon, and Washington) to…

  1. Constitutive Activation of G Protein-Coupled Receptors and Diseases: Insights into Mechanisms of Activation and Therapeutics

    PubMed Central

    Tao, Ya-Xiong

    2008-01-01

    The existence of constitutive activity for G protein-coupled receptors (GPCRs) was first described in 1980s. In 1991, the first naturally occurring constitutively active mutations in GPCRs that cause diseases were reported in rhodopsin. Since then, numerous constitutively active mutations that cause human diseases were reported in several additional receptors. More recently, loss of constitutive activity was postulated to also cause diseases. Animal models expressing some of these mutants confirmed the roles of these mutations in the pathogenesis of the diseases. Detailed functional studies of these naturally occurring mutations, combined with homology modeling using rhodopsin crystal structure as the template, lead to important insights into the mechanism of activation in the absence of crystal structure of GPCRs in active state. Search for inverse agonists on these receptors will be critical for correcting the diseases cause by activating mutations in GPCRs. Theoretically, these inverse agonists are better therapeutics than neutral antagonists in treating genetic diseases caused by constitutively activating mutations in GPCRs. PMID:18768149

  2. X-ray-induced catalytic active-site reduction of a multicopper oxidase: structural insights into the proton-relay mechanism and O2 -reduction states

    SciTech Connect

    Serrano-Posada, Hugo; Centeno-Leija, Sara; Rojas-Trejo, Sonia Patricia; Rodríguez-Almazán, Claudia; Stojanoff, Vivian; Rudiño-Piñera, Enrique

    2015-11-26

    During X-ray data collection from a multicopper oxidase (MCO) crystal, electrons and protons are mainly released into the system by the radiolysis of water molecules, leading to the X-ray-induced reduction of O2 to 2H2O at the trinuclear copper cluster (TNC) of the enzyme. In this work, 12 crystallographic structures of Thermus thermophilus HB27 multicopper oxidase (Tth-MCO) in holo, apo and Hg-bound forms and with different X-ray absorbed doses have been determined. In holo Tth -MCO structures with four Cu atoms, the proton-donor residue Glu451 involved in O2 reduction was found in a double conformation: Glu451a (~7 Å from the TNC) and Glu451b (~4.5 Å from the TNC). A positive peak of electron density above 3.5σ in anFo-Fc map for Glu451a Oε2 indicates the presence of a carboxyl functional group at the side chain, while its significant absence in Glu451b strongly suggests a carboxylate functional group. In contrast, for apo Tth -MCO and in Hg-bound structures neither the positive peak nor double conformations were observed. Together, these observations provide the first structural evidence for a proton-relay mechanism in the MCO family and also support previous studies indicating that Asp106 does not provide protons for this mechanism. In addition, eight composite structures (Tth -MCO-C1–8) with different X-ray-absorbed doses allowed the observation of different O2-reduction states, and a total depletion of T2Cu at doses higher than 0.2 MGy showed the high susceptibility of this Cu atom to radiation damage, highlighting the importance of taking radiation effects into account in biochemical interpretations of an MCO structure.

  3. Twenty Years in Maine: Integrating Insights from Developmental Biology into Translational Medicine in a Small State.

    PubMed

    Gridley, Thomas

    2016-01-01

    In this chapter, I give my personal reflections on more than 30 years of studying developmental biology in the mouse model, spending 20 of those years doing research in Maine, a small rural state. I also give my thoughts on my recent experience transitioning to a large medical center in Maine, and the issues involved with integrating insights from developmental biology and regenerative medicine into the fabric of translational and clinical patient care in such an environment.

  4. Activating mutations and senescence secretome: new insights into HER2 activation, drug sensitivity and metastatic progression.

    PubMed

    Acharyya, Swarnali

    2013-04-23

    HER2 amplification and overexpression is observed in approximately 20% of breast cancers and is strongly associated with poor prognosis and therapeutic responsiveness to HER2 targeted agents. A recent study by Bose and colleagues suggests that another subset of breast cancer patients without HER2 amplification but with activating HER2 mutation might also benefit from existing HER2-targeted agents and the authors functionally characterize these somatic mutations in experimental models. In a second study on HER2-driven breast cancer, Angelini and colleagues investigate how the constitutively active, truncated carboxy-terminal fragment of HER2, p95HER2, promotes metastatic progression through non-cellautonomous secretion of factors from senescent cells. These new findings advance our understanding of HER2 biology in the context of HER2 activation as well as offer new insights into our understanding of drug sensitivity and metastatic progression.

  5. Stoichiometry of Saccharomyces cerevisiae lysine methylation: insights into non-histone protein lysine methyltransferase activity.

    PubMed

    Hart-Smith, Gene; Chia, Samantha Z; Low, Jason K K; McKay, Matthew J; Molloy, Mark P; Wilkins, Marc R

    2014-03-07

    Post-translational lysine methylation is well established as a regulator of histone activity; however, it is emerging that these modifications are also likely to play extensive roles outside of the histone code. Here we obtain new insights into non-histone lysine methylation and protein lysine methyltransferase (PKMT) activity by elucidating absolute stoichiometries of lysine methylation, using mass spectrometry and absolute quantification (AQUA), in wild-type and 5 PKMT gene deletion strains of Saccharomyces cerevisiae. By analyzing 8 sites of methylation in 3 non-histone proteins, elongation factor 1-α (EF1α), elongation factor 2 (EF2), and 60S ribosomal protein L42-A/B (Rpl42ab), we find that production of preferred methylation states on individual lysine residues is commonplace and likely occurs through processive PKMT activity, Class I PKMTs can be associated with processive methylation, lysine residues are selectively methylated by specific PKMTs, and lysine methylation exists over a broad range of stoichiometries. Together these findings suggest that specific sites and forms of lysine methylation may play specialized roles in the regulation of non-histone protein activity. We also uncover new relationships between two proteins previously characterized as PKMTs, SEE1 and EFM1, in EF1α methylation and show that past characterizations of EFM1 as having direct PKMT activity may require reinterpretation.

  6. Design Insights for Tuning the Electrocatalytic Activity of Perovskite Oxides for the Oxygen Evolution Reaction

    SciTech Connect

    Malkhandi, S; Trinh, P; Manohar, AK; Manivannan, A; Balasubramanian, M; Prakash, GKS; Narayanan, SR

    2015-04-16

    Rechargeable metal-air batteries and water electrolyzers based on aqueous alkaline electrolytes hold the potential to be sustainable solutions to address the challenge of storing large amounts of electrical energy generated from solar and wind resources. For these batteries and electrolyzers to be economically viable, it is essential to have efficient, durable, and inexpensive electrocatalysts for the oxygen evolution reaction. In this article, we describe new insights for predicting and tuning the activity of inexpensive transition metal oxides for designing efficient and inexpensive electrocatalysts. We have focused on understanding the factors determining the electrocatalytic activity for oxygen evolution in a strong alkaline medium. To this end, we have conducted a systematic investigation of nanophase calcium-doped lanthanum cobalt manganese oxide, an example of a mixed metal oxide that can be tuned for its electrocatalytic activity by varying the transition metal composition. Using X-ray absorption spectroscopy (XANES), X-ray photoelectron spectroscopy (XPS), electrochemical polarization experiments, and analysis of mechanisms, we have identified the key determinants of electrocatalytic activity. We have found that the Tafel slopes are determined by the oxidation states and the bond energy of the surface intermediates of Mn-OH and Co-OH bonds while the catalytic activity increased with the average d-electron occupancy of the sigma* orbital of the M-OH bond. We anticipate that such understanding will be very useful in predicting the behavior of other transition metal oxide catalysts.

  7. Design Insights for Tuning the Electrocatalytic Activity of Perovskite Oxides For the Oxygen Evolution Reaction

    SciTech Connect

    Malkhandi, S; Trinh, P; Manohar, Aswin K.; Manivannan, A.; Balasubramanian, M.; Surya Prakash, G.K.; Narayanan, S. R.

    2015-04-16

    Rechargeable metal-air batteries and water electrolyzers based on aqueous alkaline electrolytes hold the potential to be sustainable solutions to address the challenge of storing large amounts of electrical energy generated from solar and wind resources. For these batteries and electrolyzers to be economically viable, it is essential to have efficient, durable, and inexpensive electrocatalysts for the oxygen evolution reaction. In this article, we describe new insights for predicting and tuning the activity of inexpensive transition metal oxides for designing efficient and inexpensive electrocatalysts. We have focused on understanding the factors determining the electrocatalytic activity for oxygen evolution in a strong alkaline medium. To this end, we have conducted a systematic investigation of nanophase calcium-doped lanthanum cobalt manganese oxide, an example of a mixed metal oxide that can be tuned for its electrocatalytic activity by varying the transition metal composition. Using X-ray absorption spectroscopy (XANES), X-ray photoelectron spectroscopy (XPS), electrochemical polarization experiments, and analysis of mechanisms, we have identified the key determinants of electrocatalytic activity. We have found that the Tafel slopes are determined by the oxidation states and the bond energy of the surface intermediates of Mn-OH and Co-OH bonds while the catalytic activity increased with the average d-electron occupancy of the sigma* orbital of the M-OH bond. We anticipate that such understanding will be very useful in predicting the behavior of other transition metal oxide catalysts.

  8. Activity flow over resting-state networks shapes cognitive task activations

    PubMed Central

    Cole, Michael W.; Ito, Takuya; Bassett, Danielle S.; Schultz, Douglas H.

    2016-01-01

    Resting-state functional connectivity (FC) has helped reveal the intrinsic network organization of the human brain, yet its relevance to cognitive task activations has been unclear. Uncertainty remains despite evidence that resting-state FC patterns are highly similar to cognitive task activation patterns. Identifying the distributed processes that shape localized cognitive task activations may help reveal why resting-state FC is so strongly related to cognitive task activations. We found that estimating task-evoked activity flow (the spread of activation amplitudes) over resting-state FC networks allows prediction of cognitive task activations in a large-scale neural network model. Applying this insight to empirical functional MRI data, we found that cognitive task activations can be predicted in held-out brain regions (and held-out individuals) via estimated activity flow over resting-state FC networks. This suggests that task-evoked activity flow over intrinsic networks is a large-scale mechanism explaining the relevance of resting-state FC to cognitive task activations. PMID:27723746

  9. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design

    PubMed Central

    Li, Jianguo; Koh, Jun-Jie; Liu, Shouping; Lakshminarayanan, Rajamani; Verma, Chandra S.; Beuerman, Roger W.

    2017-01-01

    Antimicrobial peptides (AMPs) are promising next generation antibiotics that hold great potential for combating bacterial resistance. AMPs can be both bacteriostatic and bactericidal, induce rapid killing and display a lower propensity to develop resistance than do conventional antibiotics. Despite significant progress in the past 30 years, no peptide antibiotic has reached the clinic yet. Poor understanding of the action mechanisms and lack of rational design principles have been the two major obstacles that have slowed progress. Technological developments are now enabling multidisciplinary approaches including molecular dynamics simulations combined with biophysics and microbiology toward providing valuable insights into the interactions of AMPs with membranes at atomic level. This has led to increasingly robust models of the mechanisms of action of AMPs and has begun to contribute meaningfully toward the discovery of new AMPs. This review discusses the detailed action mechanisms that have been put forward, with detailed atomistic insights into how the AMPs interact with bacterial membranes. The review further discusses how this knowledge is exploited toward developing design principles for novel AMPs. Finally, the current status, associated challenges, and future directions for the development of AMP therapeutics are discussed. PMID:28261050

  10. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design.

    PubMed

    Li, Jianguo; Koh, Jun-Jie; Liu, Shouping; Lakshminarayanan, Rajamani; Verma, Chandra S; Beuerman, Roger W

    2017-01-01

    Antimicrobial peptides (AMPs) are promising next generation antibiotics that hold great potential for combating bacterial resistance. AMPs can be both bacteriostatic and bactericidal, induce rapid killing and display a lower propensity to develop resistance than do conventional antibiotics. Despite significant progress in the past 30 years, no peptide antibiotic has reached the clinic yet. Poor understanding of the action mechanisms and lack of rational design principles have been the two major obstacles that have slowed progress. Technological developments are now enabling multidisciplinary approaches including molecular dynamics simulations combined with biophysics and microbiology toward providing valuable insights into the interactions of AMPs with membranes at atomic level. This has led to increasingly robust models of the mechanisms of action of AMPs and has begun to contribute meaningfully toward the discovery of new AMPs. This review discusses the detailed action mechanisms that have been put forward, with detailed atomistic insights into how the AMPs interact with bacterial membranes. The review further discusses how this knowledge is exploited toward developing design principles for novel AMPs. Finally, the current status, associated challenges, and future directions for the development of AMP therapeutics are discussed.

  11. Improved prediction of RNA tertiary structure with insights into native state dynamics.

    PubMed

    Bida, John Paul; Maher, L James

    2012-03-01

    The importance of RNA tertiary structure is evident from the growing number of published high resolution NMR and X-ray crystallographic structures of RNA molecules. These structures provide insights into function and create a knowledge base that is leveraged by programs such as Assemble, ModeRNA, RNABuilder, NAST, FARNA, Mc-Sym, RNA2D3D, and iFoldRNA for tertiary structure prediction and design. While these methods sample native-like RNA structures during simulations, all struggle to capture the native RNA conformation after scoring. We propose RSIM, an improved RNA fragment assembly method that preserves RNA global secondary structure while sampling conformations. This approach enhances the quality of predicted RNA tertiary structure, provides insights into the native state dynamics, and generates a powerful visualization of the RNA conformational space. RSIM is available for download from http://www.github.com/jpbida/rsim.

  12. Design of Conditionally Active STATs: Insights into STAT Activation and Gene Regulatory Function

    PubMed Central

    Milocco, Lawrence H.; Haslam, Jennifer A.; Rosen, Jonathan; Seidel, H. Martin

    1999-01-01

    The STAT (signal transducer and activator of transcription) signaling pathway is activated by a large number of cytokines and growth factors. We sought to design a conditionally active STAT that could not only provide insight into basic questions about STAT function but also serve as a powerful tool to determine the precise biological role of STATs. To this end, we have developed a conditionally active STAT by fusing STATs with the ligand-binding domain of the estrogen receptor (ER). We have demonstrated that the resulting STAT-ER chimeras are estrogen-inducible transcription factors that retain the functional and biochemical characteristics of the cognate wild-type STATs. In addition, these tools have allowed us to evaluate separately the contribution of tyrosine phosphorylation and dimerization to STAT function. We have for the first time provided experimental data supporting the model that the only apparent role of STAT tyrosine phosphorylation is to drive dimerization, as dimerization alone is sufficient to unmask a latent STAT nuclear localization sequence and induce nuclear translocation, sequence-specific DNA binding, and transcriptional activity. PMID:10082558

  13. Investigating the thermal and dynamic state of Mars using seismic data from the upcoming InSight Mission

    NASA Astrophysics Data System (ADS)

    Myhill, R.; Hempel, S.; Teanby, N. A.; Wookey, J. M.

    2016-12-01

    The surface of Mars exhibits convincing evidence for mantle flow. For example, the huge Tharsis volcanic province is widely believed to represent the surface expression of a stable, deep-seated mantle plume. Unlike the Earth, however, Mars does not have active tectonics, and much of the surface has been volcanically dead for billions of years. For this reason, the interior dynamics of the planet are very poorly understood. As planetary dynamics controls a range of important processes such as the rate of cooling of the interior, sources of volcanism and the preservation of geochemical reservoirs, new geophysical constraints have been eagerly awaited for several decades. In November 2018, NASA's InSight Mission will land on Mars. The lander will carry two three-component seismometers, a heat-flow probe and an accurate X-band radar ranging instrument. With these instruments, the mission will place new and exciting constraints on the deep Martian interior. In this study, we investigate InSight's ability to constrain the thermal and dynamic state of the planet. We create a series of interior structure models which are consistent with the mass, moment of inertia and tidal properties of the planet, and use these to create seismic synthetics similar to those which will be recorded by InSight's SEIS experiment. We discuss the features of these synthetics which are sensitive to the properties of the thermal boundary layers at the base of the lithosphere and core mantle boundary. We show that InSight will be able to place important new constraints on the temperature and rheology of Mars' mantle. We provide several diagnostic features which may be used even with limited data return from the mission.

  14. Structural and mechanistic insights into Mps1 kinase activation

    SciTech Connect

    Wang, Wei; Yang, Yuting; Gao, Yuefeng; Xu, Quanbin; Wang, Feng; Zhu, Songcheng; Old, William; Resing, Katheryn; Ahn, Natalie; Lei, Ming; Liu, Xuedong

    2010-11-05

    Mps1 is one of the several essential kinases whose activation is required for robust mitotic spindle checkpoint signalling. The activity of Mps1 is tightly regulated and increases dramatically during mitosis or in response to spindle damage. To understand the molecular mechanism underlying Mps1 regulation, we determined the crystal structure of the kinase domain of Mps1. The 2.7-{angstrom}-resolution crystal structure shows that the Mps1 kinase domain adopts a unique inactive conformation. Intramolecular interactions between the key Glu residue in the {alpha}C helix of the N-terminal lobe and the backbone amides in the catalytic loop lock the kinase in the inactive conformation. Autophosphorylation appears to be a priming event for kinase activation. We identified Mps1 autophosphorylation sites in the activation and the P+1 loops. Whereas activation loop autophosphorylation enhances kinase activity, autophosphorylation at the P+1 loop (T686) is associated with the active kinase. Mutation of T686 autophosphorylation site impairs both autophosphorylation and transphosphorylation. Furthermore, we demonstrated that phosphorylation of T676 may be a priming event for phosphorylation at T686. Finally, we identified two critical lysine residues in the loop between helices {alpha}EF and {alpha}F that are essential for substrate recruitment and maintaining high levels of kinase activity. Our studies reveal critical biochemical mechanisms for Mps1 kinase regulation.

  15. New insights into antioxidant activity of Brassica crops.

    PubMed

    Soengas, P; Cartea, M E; Francisco, M; Sotelo, T; Velasco, P

    2012-09-15

    Antioxidant activity of six Brassica crops-broccoli, cabbage, cauliflower, kale, nabicol and tronchuda cabbage-was measured at four plant stages with DPPH and FRAP assays. Samples taken three months after sowing showed the highest antioxidant activity. Kale crop possessed the highest antioxidant activity at this plant stage and also at the adult plant stage, while cauliflower showed the highest antioxidant activity in sprouts and in leaves taken two months after sowing. Brassica by-products could be used as sources of products with high content of antioxidants. Phenolic content and composition varied, depending on the crop under study and on the plant stage; sprout samples were much higher in hydroxycinnamic acids than the rest of samples. Differences in antioxidant activity of Brassica crops were related to differences in total phenolic content but also to differences in phenolic composition for most samples.

  16. Insight into the Mechanism of Intramolecular Inhibition of the Catalytic Activity of Sirtuin 2 (SIRT2).

    PubMed

    Li, Jinyu; Flick, Franziska; Verheugd, Patricia; Carloni, Paolo; Lüscher, Bernhard; Rossetti, Giulia

    2015-01-01

    Sirtuin 2 (SIRT2) is a NAD+-dependent deacetylase that has been associated with neurodegeneration and cancer. SIRT2 is composed of a central catalytic domain, the structure of which has been solved, and N- and C-terminal extensions that are thought to control SIRT2 function. However structural information of these N- and C-terminal regions is missing. Here, we provide the first full-length molecular models of SIRT2 in the absence and presence of NAD+. We also predict the structural alterations associated with phosphorylation of SIRT2 at S331, a modification that inhibits catalytic activity. Bioinformatics tools and molecular dynamics simulations, complemented by in vitro deacetylation assays, provide a consistent picture based on which the C-terminal region of SIRT2 is suggested to function as an autoinhibitory region. This has the capacity to partially occlude the NAD+ binding pocket or stabilize the NAD+ in a non-productive state. Furthermore, our simulations suggest that the phosphorylation at S331 causes large conformational changes in the C-terminal region that enhance the autoinhibitory activity, consistent with our previous findings that phosphorylation of S331 by cyclin-dependent kinases inhibits SIRT2 catalytic activity. The molecular insight into the role of the C-terminal region in controlling SIRT2 function described in this study may be useful for future design of selective inhibitors targeting SIRT2 for therapeutic applications.

  17. Theoretical Insights to Bulk Activity Towards Oxygen Evolution in Oxyhydroxides

    DOE PAGES

    Doyle, Andrew D.; Bajdich, Michal; Vojvodic, Aleksandra

    2017-04-07

    The nature of the electrochemical water splitting activity of layered pure and Fe-doped NiOOH is investigated using density functional theory calculations. We find similar thermodynamics for the oxygen evolution reaction (OER) intermediates between the layers of oxyhydroxides, that is, in the bulk of the materials as on the (001) surface. The effect of interlayer spacing on adsorption energy is affected by both the crystal structure and the level of hydrogenation of the active sites. For the Fe-doped NiOOH, we observe general weakening of binding between the different OER intermediates and the catalyst material. The calculated OER activity depends both onmore » doping and interlayer spacing, and our results are generally congruent with available experimental data. In conclusion, these results suggest that such interlayer “bulk” sites may contribute to measured OER activity for both the pure and Fe-doped NiOOH catalysts.« less

  18. Sodium channel activation mechanisms. Insights from deuterium oxide substitution

    SciTech Connect

    Alicata, D.A.; Rayner, M.D.; Starkus, J.G. )

    1990-04-01

    Schauf and Bullock, using Myxicola giant axons, demonstrated that solvent substitution with deuterium oxide (D2O) significantly affects both sodium channel activation and inactivation kinetics without corresponding changes in gating current or tail current rates. They concluded that (a) no significant component of gating current derives from the final channel opening step, and (b) channels must deactivate (during tail currents) by a different pathway from that used in channel opening. By contrast, Oxford found in squid axons that when a depolarizing pulse is interrupted by a brief (approximately 100 microseconds) return to holding potential, subsequent reactivation (secondary activation) is very rapid and shows almost monoexponential kinetics. Increasing the interpulse interval resulted in secondary activation rate returning towards control, sigmoid (primary activation) kinetics. He concluded that channels open and close (deactivate) via the same pathway. We have repeated both sets of observations in crayfish axons, confirming the results obtained in both previous studies, despite the apparently contradictory conclusions reached by these authors. On the other hand, we find that secondary activation after a brief interpulse interval (50 microseconds) is insensitive to D2O, although reactivation after longer interpulse intervals (approximately 400 microseconds) returns towards a D2O sensitivity similar to that of primary activation. We conclude that D2O-sensitive primary activation and D2O-insensitive tail current deactivation involve separate pathways. However, D2O-insensitive secondary activation involves reversal of the D2O-insensitive deactivation step. These conclusions are consistent with parallel gate models, provided that one gating particle has a substantially reduced effective valence.

  19. Promoting physical activity in teen girls: insight from focus groups.

    PubMed

    Loman, Deborah G

    2008-01-01

    To describe adolescent girls' views about physical activity and explore strategies that nurses can use to promote physical activity. A qualitative study using focus groups and interviews with 28 girls (12-18 years of age) recruited from schools and neighborhood health centers in a Midwest metropolitan area. An interview guide with 15 open-ended questions was used, and data were analyzed using content analysis. Most girls preferred the phrase "physical activity" over "exercise." The benefits most frequently mentioned included positive physical attributes, mental health benefits, and staying healthy. Three major themes were identified: autonomy (ask them what they like to do, and then provide choices), fun (being with friends, variation, and enjoyment), and body image (gaining weight, appearance, and self-confidence). Nursing interventions to promote physical activity and other healthy lifestyle changes that may prevent obesity should include active listening and a focus on the goals of the teen. Nurses need to evaluate their teaching and counseling approach, because the teens emphasized two points: "Don't tell me what to do" and "Don't put me down."

  20. Valsalva maneuver: Insights into baroreflex modulation of human sympathetic activity

    NASA Technical Reports Server (NTRS)

    Smith, Michael L.; Eckberg, Dwain L.; Fritsch, Janice M.; Beightol, Larry A.; Ellenbogen, Kenneth A.

    1991-01-01

    Valsalva's maneuver, voluntary forced expiration against a closed glottis, is a well-characterized research tool, used to assess the integrity of human autonomic cardiovascular control. Valsalva straining provokes a stereotyped succession of alternating positive and negative arterial pressure and heart rate changes mediated in part by arterial baroreceptors. Arterial pressure changes result primarily from fluctuating levels of venous return to the heart and changes of sympathetic nerve activity. Muscle sympathetic activity was measured directly in nine volunteers to explore quantitatively the relation between arterial pressure and human sympathetic outflow during pressure transients provoked by controlled graded Valsalva maneuvers. Our results underscore several properties of sympathetic regulation during Valsalva straining. First, muscle sympathetic nerve activity changes as a mirror image of changes in arterial pressure. Second, the magnitude of sympathetic augmentation during Valsalva straining predicts phase 4 arterial pressure elevations. Third, post-Valsalva sympathetic inhibition persists beyond the return of arterial and right atrial pressures to baseline levels which reflects an alteration of the normal relation between arterial pressure and muscle sympathetic activity. Therefore, Valsalva straining may have some utility for investigating changes of reflex control of sympathetic activity after space flight; however, measurement of beat-to-beat arterial pressure is essential for this use. The utility of this technique in microgravity can not be determined from these data. Further investigations are necessary to determine whether these relations are affected by the expansion of intrathoracic blood volume associated with microgravity.

  1. Typical and Atypical Development of Functional Human Brain Networks: Insights from Resting-State fMRI

    PubMed Central

    Uddin, Lucina Q.; Supekar, Kaustubh; Menon, Vinod

    2010-01-01

    Over the past several decades, structural MRI studies have provided remarkable insights into human brain development by revealing the trajectory of gray and white matter maturation from childhood to adolescence and adulthood. In parallel, functional MRI studies have demonstrated changes in brain activation patterns accompanying cognitive development. Despite these advances, studying the maturation of functional brain networks underlying brain development continues to present unique scientific and methodological challenges. Resting-state fMRI (rsfMRI) has emerged as a novel method for investigating the development of large-scale functional brain networks in infants and young children. We review existing rsfMRI developmental studies and discuss how this method has begun to make significant contributions to our understanding of maturing brain organization. In particular, rsfMRI has been used to complement studies in other modalities investigating the emergence of functional segregation and integration across short and long-range connections spanning the entire brain. We show that rsfMRI studies help to clarify and reveal important principles of functional brain development, including a shift from diffuse to focal activation patterns, and simultaneous pruning of local connectivity and strengthening of long-range connectivity with age. The insights gained from these studies also shed light on potentially disrupted functional networks underlying atypical cognitive development associated with neurodevelopmental disorders. We conclude by identifying critical gaps in the current literature, discussing methodological issues, and suggesting avenues for future research. PMID:20577585

  2. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques

    NASA Astrophysics Data System (ADS)

    Benoit-Bird, Kelly J.; Lawson, Gareth L.

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

  3. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques.

    PubMed

    Benoit-Bird, Kelly J; Lawson, Gareth L

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

  4. Mechanistic insights into the antileukemic activity of hyperforin.

    PubMed

    Billard, C; Merhi, F; Bauvois, B

    2013-01-01

    Hyperforin is a prenylated phloroglucinol present in the medicinal plant St John's wort (Hypericum perforatum). The compound has many biological properties, including antidepressant, anti-inflammatory, antibacterial and antitumor activities. This review focuses on the in vitro antileukemic effects of purified hyperforin and related mechanisms in chronic lymphoid leukemia (CLL) and acute myeloid leukemia (AML) - conditions that are known for their resistance to chemotherapy. Hyperforin induces apoptosis in both CLL and AML cells. In AML cell lines and primary AML cells, hyperforin directly inhibits the kinase activity of the serine/threonine protein kinase B/AKT1, leading to activation of the pro-apoptotic Bcl-2 family protein Bad through its non-phosphorylation by AKT1. In primary CLL cells, hyperforin acts by stimulating the expression of the pro-apoptotic Bcl-2 family member Noxa (possibly through the inhibition of proteasome activity). Other hyperforin targets include matrix metalloproteinase-2 in AML cells and vascular endothelial growth factor and matrix metalloproteinase-9 in CLL cells - two mediators of cell migration and angiogenesis. In summary, hyperforin targets molecules involved in signaling pathways that control leukemic cell proliferation, survival, apoptosis, migration and angiogenesis. Hyperforin also downregulates the expression of P-glycoprotein, a protein that is involved in the resistance of leukemia cells to chemotherapeutic agents. Lastly, native hyperforin and its stable derivatives show interesting in vivo properties in animal models. In view of their low toxicity, hyperforin and its derivatives are promising antileukemic agents and deserve further investigation in vivo.

  5. Structural and dynamic insights into the energetics of activation loop rearrangement in FGFR1 kinase

    NASA Astrophysics Data System (ADS)

    Klein, Tobias; Vajpai, Navratna; Phillips, Jonathan J.; Davies, Gareth; Holdgate, Geoffrey A.; Phillips, Chris; Tucker, Julie A.; Norman, Richard A.; Scott, Andrew D.; Higazi, Daniel R.; Lowe, David; Thompson, Gary S.; Breeze, Alexander L.

    2015-07-01

    Protein tyrosine kinases differ widely in their propensity to undergo rearrangements of the N-terminal Asp-Phe-Gly (DFG) motif of the activation loop, with some, including FGFR1 kinase, appearing refractory to this so-called `DFG flip'. Recent inhibitor-bound structures have unexpectedly revealed FGFR1 for the first time in a `DFG-out' state. Here we use conformationally selective inhibitors as chemical probes for interrogation of the structural and dynamic features that appear to govern the DFG flip in FGFR1. Our detailed structural and biophysical insights identify contributions from altered dynamics in distal elements, including the αH helix, towards the outstanding stability of the DFG-out complex with the inhibitor ponatinib. We conclude that the αC-β4 loop and `molecular brake' regions together impose a high energy barrier for this conformational rearrangement, and that this may have significance for maintaining autoinhibition in the non-phosphorylated basal state of FGFR1.

  6. Structural and dynamic insights into the energetics of activation loop rearrangement in FGFR1 kinase

    PubMed Central

    Klein, Tobias; Vajpai, Navratna; Phillips, Jonathan J.; Davies, Gareth; Holdgate, Geoffrey A.; Phillips, Chris; Tucker, Julie A.; Norman, Richard A.; Scott, Andrew D.; Higazi, Daniel R.; Lowe, David; Thompson, Gary S.; Breeze, Alexander L.

    2015-01-01

    Protein tyrosine kinases differ widely in their propensity to undergo rearrangements of the N-terminal Asp–Phe–Gly (DFG) motif of the activation loop, with some, including FGFR1 kinase, appearing refractory to this so-called ‘DFG flip'. Recent inhibitor-bound structures have unexpectedly revealed FGFR1 for the first time in a ‘DFG-out' state. Here we use conformationally selective inhibitors as chemical probes for interrogation of the structural and dynamic features that appear to govern the DFG flip in FGFR1. Our detailed structural and biophysical insights identify contributions from altered dynamics in distal elements, including the αH helix, towards the outstanding stability of the DFG-out complex with the inhibitor ponatinib. We conclude that the αC-β4 loop and ‘molecular brake' regions together impose a high energy barrier for this conformational rearrangement, and that this may have significance for maintaining autoinhibition in the non-phosphorylated basal state of FGFR1. PMID:26203596

  7. Structural and dynamic insights into the energetics of activation loop rearrangement in FGFR1 kinase.

    PubMed

    Klein, Tobias; Vajpai, Navratna; Phillips, Jonathan J; Davies, Gareth; Holdgate, Geoffrey A; Phillips, Chris; Tucker, Julie A; Norman, Richard A; Scott, Andrew D; Higazi, Daniel R; Lowe, David; Thompson, Gary S; Breeze, Alexander L

    2015-07-23

    Protein tyrosine kinases differ widely in their propensity to undergo rearrangements of the N-terminal Asp-Phe-Gly (DFG) motif of the activation loop, with some, including FGFR1 kinase, appearing refractory to this so-called 'DFG flip'. Recent inhibitor-bound structures have unexpectedly revealed FGFR1 for the first time in a 'DFG-out' state. Here we use conformationally selective inhibitors as chemical probes for interrogation of the structural and dynamic features that appear to govern the DFG flip in FGFR1. Our detailed structural and biophysical insights identify contributions from altered dynamics in distal elements, including the αH helix, towards the outstanding stability of the DFG-out complex with the inhibitor ponatinib. We conclude that the αC-β4 loop and 'molecular brake' regions together impose a high energy barrier for this conformational rearrangement, and that this may have significance for maintaining autoinhibition in the non-phosphorylated basal state of FGFR1.

  8. Health inequalities and welfare state regimes: theoretical insights on a public health 'puzzle'.

    PubMed

    Bambra, Clare

    2011-09-01

    Welfare states are important determinants of health. Comparative social epidemiology has almost invariably concluded that population health is enhanced by the relatively generous and universal welfare provision of the Scandinavian countries. However, most international studies of socioeconomic inequalities in health have thrown up something of a public health 'puzzle' as the Scandinavian welfare states do not, as would generally be expected, have the smallest health inequalities. This essay outlines and interrogates this puzzle by drawing upon existing theories of health inequalities--artefact, selection, cultural--behavioural, materialist, psychosocial and life course--to generate some theoretical insights. It discusses the limits of these theories in respect to cross-national research; it questions the focus and normative paradigm underpinning contemporary comparative health inequalities research; and it considers the future of comparative social epidemiology.

  9. An Insightful Steady-State Performance of a Squirrel Cage Induction Generator Enhanced with STATCOM

    NASA Astrophysics Data System (ADS)

    Ojo, Olorunfemi; Khayamy, Mehdy; Bule, Mehari

    2014-06-01

    This paper presents the regulation of the terminal voltage and reactive power of a grid-connected squirrel cage induction generator. A shunt connected voltage source inverter (VSI) with a capacitor in the DC side operating as a Static Compensator (STATCOM) and a shunt capacitor are used for regulating the generator terminal voltage and limit the reactive power demand from the grid. Simulation results for steady-state operation for a wide variation of speed in the super-synchronous region are presented as well as the dynamic stability of the system. Closed-form steady-state characteristics equations for the system are used to determine key variables and to demonstrate how the operation of the system depends on various parameters. This characteristics curve which contains all of the equations of the system provides the all in one insightful view to the inherent characteristics of the system and the effect of the parameter variation on the terminal voltage plane.

  10. Insight into the inflammasome and caspase-activating mechanisms.

    PubMed

    Gaide, Olivier; Hoffman, Hal M

    2008-01-01

    Inflammasomes are recently discovered molecular complexes that can sense danger signals and specifically activate caspase-1 and -5 and proinflammatory cytokines (IL-1beta and IL-18). Upon signaling, the inflammasome complex forms around a NOD-like receptor family member that serves both as a danger sensor and as a recruiting platform. The number of known triggers that stimulate inflammasomes is rapidly rising, ranging from genetic mutations to microbial products, gout crystals, ultraviolet light and adjuvant chemicals. As a result of this surprising diversity, the inflammasome may have a significant impact on most medical fields. A good understanding of the molecular mechanisms underlying its activation/regulation is essential today, as several therapeutic and diagnostic tools have already reached the bedside, and more are sure to come.

  11. Insights into animal and plant lectins with antimicrobial activities.

    PubMed

    Dias, Renata de Oliveira; Machado, Leandro Dos Santos; Migliolo, Ludovico; Franco, Octavio Luiz

    2015-01-05

    Lectins are multivalent proteins with the ability to recognize and bind diverse carbohydrate structures. The glyco -binding and diverse molecular structures observed in these protein classes make them a large and heterogeneous group with a wide range of biological activities in microorganisms, animals and plants. Lectins from plants and animals are commonly used in direct defense against pathogens and in immune regulation. This review focuses on sources of animal and plant lectins, describing their functional classification and tridimensional structures, relating these properties with biotechnological purposes, including antimicrobial activities. In summary, this work focuses on structural-functional elucidation of diverse lectin groups, shedding some light on host-pathogen interactions; it also examines their emergence as biotechnological tools through gene manipulation and development of new drugs.

  12. Insight in the Chemistry of Laser-Activated Dental Bleaching

    PubMed Central

    De Moor, Roeland Jozef Gentil; Meire, Maarten August; De Coster, Peter Jozef; Walsh, Laurence James

    2015-01-01

    The use of optical radiation for the activation of bleaching products has not yet been completely elucidated. Laser light is suggested to enhance the oxidizing effect of hydrogen peroxide. Different methods of enhancing hydrogen peroxide based bleaching are possible. They can be classified into six groups: alkaline pH environment, thermal enhancement and photothermal effect, photooxidation effect and direct photobleaching, photolysis effect and photodissociation, Fenton reaction and photocatalysis, and photodynamic effect. PMID:25874251

  13. Insight in the chemistry of laser-activated dental bleaching.

    PubMed

    De Moor, Roeland Jozef Gentil; Verheyen, Jeroen; Diachuk, Andrii; Verheyen, Peter; Meire, Maarten August; De Coster, Peter Jozef; Keulemans, Filip; De Bruyne, Mieke; Walsh, Laurence James

    2015-01-01

    The use of optical radiation for the activation of bleaching products has not yet been completely elucidated. Laser light is suggested to enhance the oxidizing effect of hydrogen peroxide. Different methods of enhancing hydrogen peroxide based bleaching are possible. They can be classified into six groups: alkaline pH environment, thermal enhancement and photothermal effect, photooxidation effect and direct photobleaching, photolysis effect and photodissociation, Fenton reaction and photocatalysis, and photodynamic effect.

  14. Structural insights into µ-opioid receptor activation.

    PubMed

    Huang, Weijiao; Manglik, Aashish; Venkatakrishnan, A J; Laeremans, Toon; Feinberg, Evan N; Sanborn, Adrian L; Kato, Hideaki E; Livingston, Kathryn E; Thorsen, Thor S; Kling, Ralf C; Granier, Sébastien; Gmeiner, Peter; Husbands, Stephen M; Traynor, John R; Weis, William I; Steyaert, Jan; Dror, Ron O; Kobilka, Brian K

    2015-08-20

    Activation of the μ-opioid receptor (μOR) is responsible for the efficacy of the most effective analgesics. To shed light on the structural basis for μOR activation, here we report a 2.1 Å X-ray crystal structure of the murine μOR bound to the morphinan agonist BU72 and a G protein mimetic camelid antibody fragment. The BU72-stabilized changes in the μOR binding pocket are subtle and differ from those observed for agonist-bound structures of the β2-adrenergic receptor (β2AR) and the M2 muscarinic receptor. Comparison with active β2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the μOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three G-protein-coupled receptors.

  15. Structural insights into μ-opioid receptor activation

    PubMed Central

    Huang, Weijiao; Manglik, Aashish; Venkatakrishnan, A. J.; Laeremans, Toon; Feinberg, Evan N.; Sanborn, Adrian L.; Kato, Hideaki E.; Livingston, Kathryn E.; Thorsen, Thor S.; Kling, Ralf; Granier, Sébastien; Gmeiner, Peter; Husbands, Stephen M.; Traynor, John R.; Weis, William I.; Steyaert, Jan; Dror, Ron O.; Kobilka, Brian K.

    2015-01-01

    Summary Activation of the μ-opioid receptor (μOR) is responsible for the efficacy of the most effective analgesics. To understand the structural basis for μOR activation, we obtained a 2.1 Å X-ray crystal structure of the μOR bound to the morphinan agonist BU72 and stabilized by a G protein-mimetic camelid-antibody fragment. The BU72-stabilized changes in the μOR binding pocket are subtle and differ from those observed for agonist-bound structures of the β2 adrenergic receptor (β2AR) and the M2 muscarinic receptor (M2R). Comparison with active β2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the μOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three GPCRs. PMID:26245379

  16. Diversity of Active States in TMT Opsins

    PubMed Central

    Sakai, Kazumi; Yamashita, Takahiro; Imamoto, Yasushi; Shichida, Yoshinori

    2015-01-01

    Opn3/TMT opsins belong to one of the opsin groups with vertebrate visual and non-visual opsins, and are widely distributed in eyes, brains and other internal organs in various vertebrates and invertebrates. Vertebrate Opn3/TMT opsins are further classified into four groups on the basis of their amino acid identities. However, there is limited information about molecular properties of these groups, due to the difficulty in preparing the recombinant proteins. Here, we successfully expressed recombinant proteins of TMT1 and TMT2 opsins of medaka fish (Oryzias latipes) in cultured cells and characterized their molecular properties. Spectroscopic and biochemical studies demonstrated that TMT1 and TMT2 opsins functioned as blue light-sensitive Gi/Go-coupled receptors, but exhibited spectral properties and photo-convertibility of the active state different from each other. TMT1 opsin forms a visible light-absorbing active state containing all-trans-retinal, which can be photo-converted to 7-cis- and 9-cis-retinal states in addition to the original 11-cis-retinal state. In contrast, the active state of TMT2 opsin is a UV light-absorbing state having all-trans-retinal and does not photo-convert to any other state, including the original 11-cis-retinal state. Thus, TMT opsins are diversified so as to form a different type of active state, which may be responsible for their different functions. PMID:26491964

  17. Diversity of Active States in TMT Opsins.

    PubMed

    Sakai, Kazumi; Yamashita, Takahiro; Imamoto, Yasushi; Shichida, Yoshinori

    2015-01-01

    Opn3/TMT opsins belong to one of the opsin groups with vertebrate visual and non-visual opsins, and are widely distributed in eyes, brains and other internal organs in various vertebrates and invertebrates. Vertebrate Opn3/TMT opsins are further classified into four groups on the basis of their amino acid identities. However, there is limited information about molecular properties of these groups, due to the difficulty in preparing the recombinant proteins. Here, we successfully expressed recombinant proteins of TMT1 and TMT2 opsins of medaka fish (Oryzias latipes) in cultured cells and characterized their molecular properties. Spectroscopic and biochemical studies demonstrated that TMT1 and TMT2 opsins functioned as blue light-sensitive Gi/Go-coupled receptors, but exhibited spectral properties and photo-convertibility of the active state different from each other. TMT1 opsin forms a visible light-absorbing active state containing all-trans-retinal, which can be photo-converted to 7-cis- and 9-cis-retinal states in addition to the original 11-cis-retinal state. In contrast, the active state of TMT2 opsin is a UV light-absorbing state having all-trans-retinal and does not photo-convert to any other state, including the original 11-cis-retinal state. Thus, TMT opsins are diversified so as to form a different type of active state, which may be responsible for their different functions.

  18. Uniformity and nonuniformity of neural activities correlated to different insight problem solving.

    PubMed

    Zhao, Q; Li, Y; Shang, X; Zhou, Z; Han, L

    2014-06-13

    Previous studies on the neural basis of insight reflected weak consistency except for the anterior cingulate cortex. The present work adopted the semantic and homophonic punny riddle to explore the uniformity and nonuniformity of neural activities correlated to different insight problem solving. Results showed that in the early period of insight solving, the semantic and homophonic punny riddles induced a common N350-500 over the central scalp. However, during -400 to 0 ms before the riddles were solved, the semantic punny riddles induced a positive event-related potential (ERP) deflection over the temporal cortex for retrieving the extensive semantic information, while the homophonic punny riddles induced a positive ERP deflection over the temporal cortex and a negative one in the left frontal cortex which might reflect the semantic and phonological information processing respectively. Our study indicated that different insight problem solving should have the same cognitive process of detecting cognitive conflicts, but have different ways to solve the conflicts.

  19. Improving management of student clinical placements: insights from activity theory.

    PubMed

    O'Keefe, Maree; Wade, Victoria; McAllister, Sue; Stupans, Ieva; Burgess, Teresa

    2016-08-24

    An approach to improve management of student clinical placements, the Building Teams for Quality Learning project, was trialed in three different health services. In a previous paper the authors explored in some detail the factors associated with considerable success of this approach at one of these services. In this paper, the authors extend this work with further analysis to determine if the more limited outcomes observed with participants at the other two services could be explained by application of activity theory and in particular the expansive learning cycle. Staff at three health services participated in the Building Teams for Quality Learning project: a dental clinic, a community aged care facility and a rural hospital. At each site a team of seven multi-disciplinary staff completed the project over 9 to 12 months (total 21 participants). Evaluation data were collected through interviews, focus groups and direct observation of staff and students. Following initial thematic analysis, further analysis was conducted to compare the processes and outcomes at each participating health service drawing on activity theory and the expansive learning cycle. Fifty-one interview transcripts, 33 h of workplace observation and 31 sets of workshop field notes (from 36 h of workshops) were generated. All participants were individually supportive of, and committed to, high quality student learning experiences. As was observed with staff at the dental clinic, a number of potentially effective strategies were discussed at the aged care facility and the rural hospital workshops. However, participants in these two health services could not develop a successful implementation plan. The expansive learning cycle element of modeling and testing new solutions was not achieved and participants were unable, collectively to reassess and reinterpret the object of their activities. The application of activity theory and the expansive learning cycle assisted a deeper understanding of

  20. New insights into the chemistry and antioxidant activity of coumarins.

    PubMed

    Torres, Fernando Cidade; Brucker, Natália; Andrade, Saulo Fernandes; Kawano, Daniel Fabio; Garcia, Solange Cristina; Poser, Gilsane Lino von; Eifler-Lima, Vera Lucia

    2014-01-01

    Coumarins are considered to be privileged structures due to their broad range of biological properties, including anticoagulant, anti-neurodegenerative, antioxidant, anticancer and antimicrobial activities. These interesting properties of coumarins can be ascribed to the chemical attributes of the 2H-chromen-2-one core; its aromatic ring can establish a series of hydrophobic, π-π, CH-π and cation-π interactions, and the two oxygen atoms in the lactone ring may hydrogen-bond to a series of amino acid residues in different classes of enzymes and receptors. Additionally, the double bond in the lactone helps to make the entire system planar, allows charge delocalization between the carbonyl group of the lactone and the aromatic ring and confers the characteristic fluorescence of this class of compounds, which can be explained by their preventing the trans-cis transformation of the double bond under ultraviolet (UV) irradiation. It is the possibility of radical delocalization in the 2H-chromen-2-one nucleus that makes most of the coumarins good antioxidants by acting as free radical scavengers, although some coumarins (mainly hydroxycoumarins) may also prevent the formation of free radicals by chelating metal ions. In this review, we provide a systematic analysis of the most important aspects surrounding the development of coumarins as antioxidants. Our analysis includes the synthesis of some complex antioxidant coumarins, strategies for structural modification to improve their antioxidant activities, qualitative/ quantitative structure-antioxidant relationships studies and the main in vitro assays used to evaluate their antioxidant properties.

  1. A computational insight into cyclopropenone activated dehydration reaction of alcohols.

    PubMed

    Tataroğlu, M M; Sungur, F A

    2017-08-10

    The cyclopropenone activated dehydration reaction of alcohols is a promising alternative to alcohol substitution reactions to avoid hazardous byproducts and harsh reaction conditions. Density functional theory calculations at M062X/6-31+G(d,p) level were performed for two proposed reaction mechanisms of the cyclopropenone activated chlorodehydration reaction where alkyl chloride product can be obtained from both of the proposed reaction mechanisms but chloroxalate has only one alternative. The calculations enabled us to explain the rection mechanisms in detail. Additionally, the effects of the various substituents on the cyclopropenone ring for the product distribution ratio was clarified.The substitution with electron donating group on para position of the phenyl ring of cyclopropenone has no effect on the relative free energy of the rate-determining step where the electron-withdrawing group increase the energy values independent from the position. The product ratio values that were calculated from energy barriers are in harmony with the experimentally obtained ones pointing out the reaction mechanism preference. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Metaproteomics Provides Functional Insight into Activated Sludge Wastewater Treatment

    PubMed Central

    Wilmes, Paul; Wexler, Margaret; Bond, Philip L.

    2008-01-01

    Background Through identification of highly expressed proteins from a mixed culture activated sludge system this study provides functional evidence of microbial transformations important for enhanced biological phosphorus removal (EBPR). Methodology/Principal Findings A laboratory-scale sequencing batch reactor was successfully operated for different levels of EBPR, removing around 25, 40 and 55 mg/l P. The microbial communities were dominated by the uncultured polyphosphate-accumulating organism “Candidatus Accumulibacter phosphatis”. When EBPR failed, the sludge was dominated by tetrad-forming α-Proteobacteria. Representative and reproducible 2D gel protein separations were obtained for all sludge samples. 638 protein spots were matched across gels generated from the phosphate removing sludges. 111 of these were excised and 46 proteins were identified using recently available sludge metagenomic sequences. Many of these closely match proteins from “Candidatus Accumulibacter phosphatis” and could be directly linked to the EBPR process. They included enzymes involved in energy generation, polyhydroxyalkanoate synthesis, glycolysis, gluconeogenesis, glycogen synthesis, glyoxylate/TCA cycle, fatty acid β oxidation, fatty acid synthesis and phosphate transport. Several proteins involved in cellular stress response were detected. Conclusions/Significance Importantly, this study provides direct evidence linking the metabolic activities of “Accumulibacter” to the chemical transformations observed in EBPR. Finally, the results are discussed in relation to current EBPR metabolic models. PMID:18392150

  3. A periodically active pulsar giving insight into magnetospheric physics.

    PubMed

    Kramer, M; Lyne, A G; O'Brien, J T; Jordan, C A; Lorimer, D R

    2006-04-28

    PSR B1931+24 (J1933+2421) behaves as an ordinary isolated radio pulsar during active phases that are 5 to 10 days long. However, when the radio emission ceases, it switches off in less than 10 seconds and remains undetectable for the next 25 to 35 days, then switches on again. This pattern repeats quasi-periodically. The origin of this behavior is unclear. Even more remarkably, the pulsar rotation slows down 50% faster when it is on than when it is off. This indicates a massive increase in magnetospheric currents when the pulsar switches on, proving that pulsar wind plays a substantial role in pulsar spin-down. This allows us, for the first time, to estimate the magnetospheric currents in a pulsar magnetosphere during the occurrence of radio emission.

  4. Physical activity, stress reduction, and mood: insight into immunological mechanisms.

    PubMed

    Hamer, Mark; Endrighi, Romano; Poole, Lydia

    2012-01-01

    Psychosocial factors, such as chronic mental stress and mood, are recognized as an important predictor of longevity and wellbeing. In particular, depression is independently associated with cardiovascular disease and all-cause mortality, and is often comorbid with chronic diseases that can worsen their associated health outcomes. Regular exercise is thought to be associated with stress reduction and better mood, which may partly mediate associations between depression, stress, and health outcomes. The underlying mechanisms for the positive effects of exercise on wellbeing remain poorly understood. In this overview we examine epidemiological evidence for an association between physical activity and mental health. We then describe the exercise withdrawal paradigm as an experimental protocol to study mechanisms linking exercise, mood, and stress. In particular we will discuss the potential role of the inflammatory response as a central mechanism.

  5. Serpentinization and hydrothermal activity: new insights from Fe isotopes

    NASA Astrophysics Data System (ADS)

    Delacour, A.; Busigny, V.; Cannat, M.; Andreani, M.; Mevel, C.

    2011-12-01

    Hydrothermal activity along the slow-spreading Mid-Atlantic Ridge is evidenced by high temperature hydrothermal systems, whose fluids release high metals concentrations. In addition, some of these black smoker systems (e.g., Rainbow, Logatchev) vent high concentrations in hydrogen and methane, whose formation is related to serpentinization of mantle peridotites that form, together with gabbroic rocks, the substratum of these hydrothermal systems. Serpentinization of mantle peridotites is a process leading to replacement and oxidation of primary ferromagnesian minerals, i.e. olivine and pyroxene, to serpentine ± brucite and magnetite. This hydration and redox process is known to play a significant role in chemical fluxes of some elements (e.g., S, B) at ridges and in subduction zones, but little is know on its role in iron speciation, iron isotope composition and chemical fluxes in black smoker hydrothermal systems. We present here the first measurements of Fe-isotope compositions for a set of variably serpentinized oceanic peridotites from four sites along Mid-Atlantic Ridge: Rainbow (30°N), Logatchev (15°N), and Ashadze (13°N), which host active high temperature hydrothermal systems, and the MARK area (23°N). These sites were chosen because they cover a wide range of serpentinization and oxidation degrees. Serpentinized peridotites show a narrow range of Fe-isotope compositions (δ56Fe from -0.170 to +0.138%) falling within the range of values reported for bulk mantle peridotites. This indicates that bulk Fe-isotope composition is only slightly modified during serpentinization. However, our samples show a rough negative correlation between δ56Fe values and oxidation degree, suggesting that progressive serpentinization reactions do not produce an enrichment in heavy Fe isotopes, contrasting with expectation. A more complex multiple-stage process is needed to explain this relation.

  6. Kinematics Card Sort Activity: Insight into Students' Thinking

    NASA Astrophysics Data System (ADS)

    Berryhill, Erin; Herrington, Deborah; Oliver, Keith

    2016-12-01

    Kinematics is a topic students are unknowingly aware of well before entering the physics classroom. Students observe motion on a daily basis. They are constantly interpreting and making sense of their observations, unintentionally building their own understanding of kinematics before receiving any formal instruction. Unfortunately, when students take their prior conceptions to understand a new situation, they often do so in a way that inaccurately connects their learning. We were motivated to identify strategies to help our students make accurate connections to their prior knowledge and understand kinematics at a deeper level. To do this, we integrated a formative assessment card sort into a kinematic graphing unit within an introductory high school physics course. Throughout the activities, we required students to document and reflect upon their thinking. This allowed their learning to build upon their own previously held conceptual understanding, which provided an avenue for cognitive growth. By taking a more direct approach to eliciting student reasoning, we hoped to improve student learning and guide our assessment of their learning.

  7. Activation states of blood eosinophils in asthma.

    PubMed

    Johansson, M W

    2014-04-01

    Asthma is characterized by airway inflammation rich in eosinophils. Airway eosinophilia is associated with exacerbations and has been suggested to play a role in airway remodelling. Recruitment of eosinophils from the circulation requires that blood eosinophils become activated, leading to their arrest on the endothelium and extravasation. Circulating eosinophils can be envisioned as potentially being in different activation states, including non-activated, pre-activated or 'primed', or fully activated. In addition, the circulation can potentially be deficient of pre-activated or activated eosinophils, because such cells have marginated on activated endothelium or extravasated into the tissue. A number of eosinophil surface proteins, including CD69, L-selectin, intercellular adhesion molecule-1 (ICAM-1, CD54), CD44, P-selectin glycoprotein ligand-1 (PSGL-1, CD162), cytokine receptors, Fc receptors, integrins including αM integrin (CD11b), and activated conformations of Fc receptors and integrins, have been proposed to report cell activation. Variation in eosinophil activation states may be associated with asthma activity. Eosinophil surface proteins proposed to be activation markers, with a particular focus on integrins, and evidence for associations between activation states of blood eosinophils and features of asthma are reviewed here. Partial activation of β1 and β2 integrins on blood eosinophils, reported by monoclonal antibodies (mAbs) N29 and KIM-127, is associated with impaired pulmonary function and airway eosinophilia, respectively, in non-severe asthma. The association with lung function does not occur in severe asthma, presumably due to greater eosinophil extravasation, specifically of activated or pre-activated cells, in severe disease.

  8. Mechanistic insights into metal ion activation and operator recognition by the ferric uptake regulator

    NASA Astrophysics Data System (ADS)

    Deng, Zengqin; Wang, Qing; Liu, Zhao; Zhang, Manfeng; Machado, Ana Carolina Dantas; Chiu, Tsu-Pei; Feng, Chong; Zhang, Qi; Yu, Lin; Qi, Lei; Zheng, Jiangge; Wang, Xu; Huo, Xinmei; Qi, Xiaoxuan; Li, Xiaorong; Wu, Wei; Rohs, Remo; Li, Ying; Chen, Zhongzhou

    2015-07-01

    Ferric uptake regulator (Fur) plays a key role in the iron homeostasis of prokaryotes, such as bacterial pathogens, but the molecular mechanisms and structural basis of Fur-DNA binding remain incompletely understood. Here, we report high-resolution structures of Magnetospirillum gryphiswaldense MSR-1 Fur in four different states: apo-Fur, holo-Fur, the Fur-feoAB1 operator complex and the Fur-Pseudomonas aeruginosa Fur box complex. Apo-Fur is a transition metal ion-independent dimer whose binding induces profound conformational changes and confers DNA-binding ability. Structural characterization, mutagenesis, biochemistry and in vivo data reveal that Fur recognizes DNA by using a combination of base readout through direct contacts in the major groove and shape readout through recognition of the minor-groove electrostatic potential by lysine. The resulting conformational plasticity enables Fur binding to diverse substrates. Our results provide insights into metal ion activation and substrate recognition by Fur that suggest pathways to engineer magnetotactic bacteria and antipathogenic drugs.

  9. Political contexts and maternal health policy: insights from a comparison of south Indian states.

    PubMed

    Smith, Stephanie L

    2014-01-01

    Nearly 300,000 women die from pregnancy-related complications each year. One-fifth of these deaths occur in India. Maternal survival rose on India's national policy agenda in the mid-2000s, but responsibility for health policy and implementation in the federal system is largely devolved to the state level where priority for the issue and maternal health outcomes vary. This study investigates sources of variation in maternal health policy and implementation sub-nationally in India. The study is guided by four analytical categories drawn from policy process literature: constitutional, governing and social structures; political contexts; actors and ideas. The experiences of two south Indian states-Tamil Nadu a leader and Karnataka a relatively slow mover-are examined. Process-tracing, a case study methodology that helps to identify roles of complex historical events in causal processes, was employed to investigate the research question in each state. The study is informed by interviews with public health policy experts and service delivery professionals, observation of implementation sites and archival document analysis. Historical legacies-Tamil Nadu's non-Brahmin social movement and Karnataka's developmental disparities combined with decentralization-shape the states' political contexts, affecting variation in maternal health policy and implementation. Competition to advance consistent political priorities across regimes in Tamil Nadu offers fertile ground for policy entrepreneurship and strong public health system administration facilitates progress. Inconsistent political priorities and relatively weak public health system administration frustrate progress in Karnataka. These variations offer insights to the ways in which sub-national political and administrative contexts shape health policy and implementation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Brain dynamics of post‐task resting state are influenced by expertise: Insights from baseball players

    PubMed Central

    Dodhia, Sonam; Lieberman, Gregory; Garcia, Javier O.; Verstynen, Timothy; Vettel, Jean M.; Sherwin, Jason

    2016-01-01

    Abstract Post‐task resting state dynamics can be viewed as a task‐driven state where behavioral performance is improved through endogenous, non‐explicit learning. Tasks that have intrinsic value for individuals are hypothesized to produce post‐task resting state dynamics that promote learning. We measured simultaneous fMRI/EEG and DTI in Division‐1 collegiate baseball players and compared to a group of controls, examining differences in both functional and structural connectivity. Participants performed a surrogate baseball pitch Go/No‐Go task before a resting state scan, and we compared post‐task resting state connectivity using a seed‐based analysis from the supplementary motor area (SMA), an area whose activity discriminated players and controls in our previous results using this task. Although both groups were equally trained on the task, the experts showed differential activity in their post‐task resting state consistent with motor learning. Specifically, we found (1) differences in bilateral SMA–L Insula functional connectivity between experts and controls that may reflect group differences in motor learning, (2) differences in BOLD‐alpha oscillation correlations between groups suggests variability in modulatory attention in the post‐task state, and (3) group differences between BOLD‐beta oscillations that may indicate cognitive processing of motor inhibition. Structural connectivity analysis identified group differences in portions of the functionally derived network, suggesting that functional differences may also partially arise from variability in the underlying white matter pathways. Generally, we find that brain dynamics in the post‐task resting state differ as a function of subject expertise and potentially result from differences in both functional and structural connectivity. Hum Brain Mapp 37:4454–4471, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27448098

  11. Brain dynamics of post-task resting state are influenced by expertise: Insights from baseball players.

    PubMed

    Muraskin, Jordan; Dodhia, Sonam; Lieberman, Gregory; Garcia, Javier O; Verstynen, Timothy; Vettel, Jean M; Sherwin, Jason; Sajda, Paul

    2016-12-01

    Post-task resting state dynamics can be viewed as a task-driven state where behavioral performance is improved through endogenous, non-explicit learning. Tasks that have intrinsic value for individuals are hypothesized to produce post-task resting state dynamics that promote learning. We measured simultaneous fMRI/EEG and DTI in Division-1 collegiate baseball players and compared to a group of controls, examining differences in both functional and structural connectivity. Participants performed a surrogate baseball pitch Go/No-Go task before a resting state scan, and we compared post-task resting state connectivity using a seed-based analysis from the supplementary motor area (SMA), an area whose activity discriminated players and controls in our previous results using this task. Although both groups were equally trained on the task, the experts showed differential activity in their post-task resting state consistent with motor learning. Specifically, we found (1) differences in bilateral SMA-L Insula functional connectivity between experts and controls that may reflect group differences in motor learning, (2) differences in BOLD-alpha oscillation correlations between groups suggests variability in modulatory attention in the post-task state, and (3) group differences between BOLD-beta oscillations that may indicate cognitive processing of motor inhibition. Structural connectivity analysis identified group differences in portions of the functionally derived network, suggesting that functional differences may also partially arise from variability in the underlying white matter pathways. Generally, we find that brain dynamics in the post-task resting state differ as a function of subject expertise and potentially result from differences in both functional and structural connectivity. Hum Brain Mapp 37:4454-4471, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  12. A constitutively active Gα subunit provide insights into the mechanism of G protein activation

    PubMed Central

    Singh, Garima; Ramachandran, Sekar; Cerione, Richard A.

    2013-01-01

    The activation of Gα subunits of heterotrimeric G proteins by G protein-coupled receptors (GPCRs) is a critical event underlying a variety of biological responses. Understanding how G proteins are activated will require structural and biochemical analyses of GPCRs complexed to their G protein partners, together with structure-function studies of Gα mutants that shed light on the different steps in the activation pathway. Previously, we reported that the substitution of a glycine for a proline at position 56 within the linker region connecting the helical and GTP-binding domains of a Gα chimera, designated αT*, yields a more readily exchangeable state for guanine nucleotides. Here we show that GDP-GTP exchange on αT*(G56P), in the presence of the light-activated GPCR, rhodopsin (R*), is less sensitive to the β1γ1 subunit complex as compared to wild-type αT*. We solved the x-ray crystal structure for the αT*(G56P) mutant and found that the G56P substitution leads to concerted changes that are transmitted to the conformationally sensitive switch regions, the α4/β6 loop, and the β6 strand. The α4/β6 loop has been proposed to be a GPCR contact site that signals to the TCAT motif and weakens the binding of the guanine ring of GDP, whereas, the switch regions are the contact sites for the β1γ1 complex. Collectively, these biochemical and structural data lead us to suggest that αT*(G56P) may be adopting a conformation that is normally induced within Gα subunits by the combined actions of a GPCR and a Gβγ subunit complex during the G protein activation event. PMID:22448927

  13. The State of Geography Education in English Secondary Schools: An Insight into Practice and Performance in Assessment

    ERIC Educational Resources Information Center

    Butt, Graham; Weeden, Paul; Chubb, Steven; Srokosz, Anne

    2006-01-01

    Over the last 20 years policy makers have introduced a number of measures intended to improve the quality of education provided by state secondary schools in England. The survey reported here, undertaken at the request of the Qualifications and Curriculum Authority (QCA), offers an insight into geography education in such schools with particular…

  14. Toward understanding the active SETI debate: Insights from risk communication and perception

    NASA Astrophysics Data System (ADS)

    Korbitz, Adam

    2014-12-01

    Insights from the robust field of risk communication and perception have to date been almost totally absent from the policy debate regarding the relative risks and merits of Active SETI or Messaging to Extraterrestrial Intelligence (METI). For many years, the practice (or proposed practice) of Active SETI has generated a vigorous and sometimes heated policy debate within the scientific community. There have also been some negative reactions in the media toward the activities of those engaged in Active SETI. Risk communication is a scientific approach to communication regarding situations involving potentially sensitive or controversial situations in which there may be high public concern and low public trust. The discipline has found wide acceptance and utility in fields such as public health, industrial regulation and environmental protection. Insights from the scientific field of risk communication (such as omission bias, loss aversion, the availability heuristic, probability neglect, and the general human preference for voluntary over involuntary risks) may help those who have participated in either side of the debate over Active SETI to better understand why the debate has taken on this posture. Principles of risk communication and risk perception may also help those engaged in Active SETI to communicate more effectively with other scientists, the public, with the media, and with policy makers regarding their activities and to better understand and respond to concerns expressed regarding the activity.

  15. Pulmonary Disease Due to Nontuberculous Mycobacteria: Current State and New Insights.

    PubMed

    McShane, Pamela J; Glassroth, Jeffrey

    2015-12-01

    Since pulmonary nontuberculous mycobacteria (PNTM) lung disease was last reviewed in CHEST in 2008, new information has emerged spanning multiple domains, including epidemiology, transmission and pathogenesis, clinical presentation, diagnosis, and treatment. The overall prevalence of PNTM is increasing, and in the United States, areas of highest prevalence are clustered in distinct geographic locations with common environmental and socioeconomic factors. Although the accepted paradigm for transmission continues to be inhalation from the environment, provocative reports suggest that person-to-person transmission may occur. A panoply of host factors have been investigated in an effort to elucidate why infection from this bacteria develops in ostensibly immunocompetent patients, and there has been clarification that immunocompetent patients exhibit different histopathology from immunocompromised patients with nontuberculous mycobacteria infection. It is now evident that Mycobacterium abscessus, an increasingly prevalent cause of PNTM lung disease, can be classified into three separate subspecies with differing genetic susceptibility or resistance to macrolides. Recent publications also raise the possibility of improved control of PNTM through enhanced adherence to current treatment guidelines as well as new approaches to treatment and even prevention. These and other recent developments and insights that may inform our approach to PNTM lung disease are reviewed and discussed.

  16. Cygnus X-3 Returns to an Active State

    NASA Astrophysics Data System (ADS)

    McCollough, Michael L.; Koljonen, Karri; Gurwell, Mark A.; Trushkin, Sergei; Pooley, Guy G.

    2017-08-01

    Cygnus X-3 is a well-known microquasar composed of a mass-donating Wolf-Rayet star and a compact object. Recently, Cygnus X-3 has been in a quiescent state for an extended period of time (2011-2016) but returned to an active state on two occasions during 2016/2017 including quenched/hypersoft states, gamma-ray emission, and major radio flares. During these two periods of activity, we undertook multi-wavelength observing campaigns with observations in the radio (RATAN-600, AMI-LA, Metsähovi), submillimeter (SMA, EHT), X-ray (Swift/XRT, MAXI), hard X-ray (Swift/BAT, NuSTAR), and gamma-ray (AGILE, Fermi, VERITAS). At the peak of the major radio flare in April 2017 observations were made with VERITAS (TeV), NuSTAR (hard X-ray), and the Event Horizon Telescope (submillimeter). In this presentation, I will review these observing campaigns and the insights they provide about Cygnus X-3.

  17. The role of alpha-rhythm states in perceptual learning: insights from experiments and computational models

    PubMed Central

    Sigala, Rodrigo; Haufe, Sebastian; Roy, Dipanjan; Dinse, Hubert R.; Ritter, Petra

    2014-01-01

    During the past two decades growing evidence indicates that brain oscillations in the alpha band (~10 Hz) not only reflect an “idle” state of cortical activity, but also take a more active role in the generation of complex cognitive functions. A recent study shows that more than 60% of the observed inter-subject variability in perceptual learning can be ascribed to ongoing alpha activity. This evidence indicates a significant role of alpha oscillations for perceptual learning and hence motivates to explore the potential underlying mechanisms. Hence, it is the purpose of this review to highlight existent evidence that ascribes intrinsic alpha oscillations a role in shaping our ability to learn. In the review, we disentangle the alpha rhythm into different neural signatures that control information processing within individual functional building blocks of perceptual learning. We further highlight computational studies that shed light on potential mechanisms regarding how alpha oscillations may modulate information transfer and connectivity changes relevant for learning. To enable testing of those model based hypotheses, we emphasize the need for multidisciplinary approaches combining assessment of behavior and multi-scale neuronal activity, active modulation of ongoing brain states and computational modeling to reveal the mathematical principles of the complex neuronal interactions. In particular we highlight the relevance of multi-scale modeling frameworks such as the one currently being developed by “The Virtual Brain” project. PMID:24772077

  18. Modeling thermomechanical pulp and paper activated sludge treatment plants to gain insight to the causes of bulking.

    PubMed

    Brault, Jean-Martin; Comeau, Yves; Perrier, Michel; Stuart, Paul

    2010-04-01

    The Activated Sludge Model No. 1 was chosen as the basis for model development and was modified to take into account the specific characteristics of pulp and paper effluents. The model was incorporated to the GPS-X simulation environment (Hydromantis, Hamilton, Ontario, Canada) to study operating deficiencies and nutrient transformations, particularly in relation to bulking. The results show that the process of ammonification is not significant at the studied mill and that the process of phosphatification (transformation of soluble organic phosphorus into orthophosphates) seems to be related to settling problems, as indicated by the sludge volume index. The phosphatification rate and the standard oxygen-transfer efficiency were found to decrease as the system entered a bulking state. Understanding the behavior of pulp and paper activated sludge can be improved by the incorporation of industry-specific processes and components to comprehensive models. These models then can be used to gain insight to the causes of bulking.

  19. Microglia activation states and cannabinoid system: Therapeutic implications.

    PubMed

    Mecha, M; Carrillo-Salinas, F J; Feliú, A; Mestre, L; Guaza, C

    2016-10-01

    Microglial cells are recognized as the brain's intrinsic immune cells, mediating actions that range from the protection against harmful conditions that modify CNS homeostasis, to the control of proliferation and differentiation of neurons and their synaptic pruning. To perform these functions, microglia adopts different activation states, the so-called phenotypes that depending on the local environment involve them in neuroinflammation, tissue repair and even the resolution of the inflammatory process. There is accumulating evidence indicating that cannabinoids (CBs) might serve as a promising tool to modify the outcome of inflammation, especially by influencing microglial activity. Microglia has a functional endocannabinoid (eCB) signaling system, composed of cannabinoid receptors and the complete machinery for the synthesis and degradation of eCBs. The expression of cannabinoid receptors - mainly CB2 - and the production of eCBs have been related to the activation profile of these cells and therefore, the microglial phenotype, emerging as one of the mechanisms by which microglia becomes alternatively activated. Here, we will discuss recent studies that provide new insights into the role of CBs and their endogenous counterparts in defining the profile of microglia activation. These actions make CBs a promising therapeutic tool to avoid the detrimental effects of inflammation and possibly paving the way to target microglia in order to generate a reparative milieu in neurodegenerative diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Polyomavirus T Antigens Activate an Antiviral State

    PubMed Central

    Giacobbi, Nicholas S.; Gupta, Tushar; Coxon, Andrew; Pipas, James M.

    2014-01-01

    Ectopic expression of Simian Virus 40 (SV40) large T antigen (LT) in mouse embryonic fibroblasts (MEFs) increased levels of mRNAs encoding interferon stimulated genes (ISGs). The mechanism by which T antigen increases levels of ISGs in MEFs remains unclear. We present evidence that expression of T antigen from SV40, Human Polyomaviruses BK (BKV) or JC (JCV) upregulate production of ISGs in MEFs, and subsequently result in an antiviral state, as determined by inhibition of VSV or EMCV growth. The first 136 amino acids of LT are sufficient for these activities. Furthermore, increased ISG expression and induction of the antiviral state requires STAT1. Finally, the RB binding motif of LT is necessary for activation of STAT1. We conclude that the induction of the STAT1 mediated innate immune response in MEFs is a common feature shared by SV40, BKV and JCV. PMID:25589241

  1. X-ray Raman Scattering at Extreme Conditions: Insights to Local Structure, Oxidation and Spin state

    NASA Astrophysics Data System (ADS)

    Wilke, M.; Sternemann, C.; Sahle, C.; Spiekermann, G.; Nyrow, A.; Weis, C.; Cerantola, V.; Schmidt, C.; Yavas, H.

    2015-12-01

    In the last decades, X-ray spectroscopic techniques using very intense synchrotron radiation (SR) have become indispensable tools for studying geomaterials. Due to the rather low absorption of hard X-rays, SR opens up the possibility to perform measurements in high-pressure, high temperature cells. The range of elements accessible by X-ray absorption spectroscopy (XAFS) techniques in these cells is limited by the absorption of X-rays due to the sample environment, i.e. the diamond windows. The indirect measurement of XAFS spectra by inelastic X-ray Raman scattering (XRS) provides a workaround to access absorption edges at low energies (e.g. low Z elements). Therefore, XRS enables measurements that are similar to electron energy loss spectroscopy but offer to measure at in-situ conditions and not just in vacuum. Measurements of the O K-edge of H2O from ambient to supercritical PT-conditions (up to 600°C @ 134 MPa; 400°C @ 371 MPa) were used to trace structural changes of the hydrogen-bonded network, which controls many physical and chemical properties of H2O [1]. The Fe M3,2-edge measured by XRS were used to characterize the oxidation state and local structure in crystalline compounds and glasses [2]. Furthermore, the M3,2 yields detailed insight to the crystal-field splitting and electronic spin state. In a reconnaissance study, the pressure-induced high-spin to low-spin transition of Fe in FeS between 6 and 8 GPa was measured. By multiplet calculations of the spectra for octahedral Fe2+, a difference in crystal field splitting between the two states of ca. 1.7 eV was estimated [3]. Finally, we successfully assessed the electronic structure of Fe in siderite by measurements of M and L-edge up to 50 GPa, covering the spin transition between 40 and 45 GPa. [1] Sahle et al. (2013) PNAS, doi: 10.1073/pnas.1220301110.. [2] Nyrow et al. (2014) Contrib Mineral Petrol 167, 1012. [3] Nyrow et al. (2014) Appl Phys Lett 104, 262408.

  2. Resting-state connectivity in the prodromal phase of schizophrenia: insights from EEG microstates.

    PubMed

    Andreou, Christina; Faber, Pascal L; Leicht, Gregor; Schoettle, Daniel; Polomac, Nenad; Hanganu-Opatz, Ileana L; Lehmann, Dietrich; Mulert, Christoph

    2014-02-01

    Resting-state EEG microstates are thought to reflect the momentary local states and interactions of distributed neural networks in the brain. Several changes in resting-state EEG microstates have been described in acutely ill patients with schizophrenia, but it is not known whether these represent trait or state abnormalities. The present study aimed to investigate this issue by assessing EEG microstate characteristics in high-risk individuals (HR) and clinically stable first-episode patients with schizophrenia (SZ) with low symptom levels, compared to each other and healthy controls (HC). Participants were 18 HR, 18 SZ, and 22 HC subjects. 64-channel resting-state EEG recordings were used for microstate analyses. Microstates were clustered into four classes (A-D) according to their topography. Temporal parameters and topographies of microstates were compared among groups. Microstate class A displayed higher coverage and occurrence in HR than SZ and HC, while microstate class B covered significantly more time in SZ compared to both HR and HC. Microstate class B displayed an aberrant spatial configuration in SZ, and to a lesser extent also in HR, compared to HC, with patients exhibiting significantly higher activity in the vicinity of the left posterior cingulate. Microstate abnormalities observed in HR were similar to those previously reported in acutely ill patients with schizophrenia. Moreover, there was evidence that HR and SZ might share specific disturbances in brain functional connectivity. These findings raise the possibility that certain abnormalities in resting-state EEG microstates might be associated with an increased risk for psychosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Insights into enzyme catalysis from QM/MM modelling: transition state stabilization in chorismate mutase

    NASA Astrophysics Data System (ADS)

    Ranaghan, Kara E.; Ridder, Lars; Szefczyk, Borys; Sokalski, W. Andrzej; Hermann, Johannes C.; Mulholland, Adrian J.

    Chorismate mutase provides an important test of theories of enzyme catalysis, and of modelling methods. The Claisen rearrangement of chorismate to prephenate in the enzyme has been modelled here by a combined quantum mechanics/molecular mechanics (QM/MM) method. Several pathways have been calculated. The sensitivity of the results to details of model preparation and pathway calculation is tested, and the results are compared in detail to previous similar studies and experiments. The potential energy barrier for the enzyme reaction is estimated at 24.5-31.6 kcal mol-1 (AM1/CHARMM), and 2.7-11.9 kcal mol-1 with corrections (e.g. B3LYP/6-31+G(d)). In agreement with previous studies, the present analysis of the calculated paths provides unequivocal evidence of significant transition state stabilization by the enzyme, indicating that this is central to catalysis by the enzyme. The active site is exquisitely complementary to the transition state, stabilizing it more than the substrate, so reducing the barrier to reaction. A number of similar pathways for reaction exist in the protein, as expected. Small structural differences give rise to differences in energetic contributions. Major electrostatic contributions to transition state stabilization come in all cases from Arg90, Arg7, one or two water molecules, and Glu78 (Glu78 destabilizes the transition state less than the substrate), while Arg63 contributes significantly in one model.

  4. ACTIVE STATE OF MUSCLE IN IODOACETATE RIGOR

    PubMed Central

    Mauriello, George E.; Sandow, Alexander

    1959-01-01

    Frog sartorius muscles, equilibrated to 2 x 10-4 M iodoacetic acid-Ringer's solution and activated by a series of twitches or a long tetanus, perform a rigor response consisting in general of a contractile change which plateaus and is then automatically reversed. Isotonic rigor shortening obeys a force-velocity relation which, with certain differences in value of the constants, accords with Hill's equation for this relation. Changes in rigidity during either isotonic or isometric rigor response show that the capacity of the rigor muscle to bear a load increases more abruptly than the corresponding onset of the ordinarily recorded response, briefly plateaus, and then decays. A quick release of about 1 mm. applied at any instant of isometric rigor output causes the tension to drop instantaneously to zero and then redevelop, the rate of redevelopment varying as does the intensity of the load-bearing capacity. These results demonstrate that rigor mechanical responses result from interaction of a passive, undamped series elastic component, and a contractile component with active state properties like those of normal contraction. Adenosinetriphosphate is known to break down in association with development of the rigor active state. This is discussed in relation to the apparent absence of ATP splitting in normal activation of the contractile component. PMID:13654738

  5. Evolutionary history of assassin bugs (insecta: hemiptera: Reduviidae): insights from divergence dating and ancestral state reconstruction.

    PubMed

    Hwang, Wei Song; Weirauch, Christiane

    2012-01-01

    Assassin bugs are one of the most successful clades of predatory animals based on their species numbers (∼6,800 spp.) and wide distribution in terrestrial ecosystems. Various novel prey capture strategies and remarkable prey specializations contribute to their appeal as a model to study evolutionary pathways involved in predation. Here, we reconstruct the most comprehensive reduviid phylogeny (178 taxa, 18 subfamilies) to date based on molecular data (5 markers). This phylogeny tests current hypotheses on reduviid relationships emphasizing the polyphyletic Reduviinae and the blood-feeding, disease-vectoring Triatominae, and allows us, for the first time in assassin bugs, to reconstruct ancestral states of prey associations and microhabitats. Using a fossil-calibrated molecular tree, we estimated divergence times for key events in the evolutionary history of Reduviidae. Our results indicate that the polyphyletic Reduviinae fall into 11-14 separate clades. Triatominae are paraphyletic with respect to the reduviine genus Opisthacidius in the maximum likelihood analyses; this result is in contrast to prior hypotheses that found Triatominae to be monophyletic or polyphyletic and may be due to the more comprehensive taxon and character sampling in this study. The evolution of blood-feeding may thus have occurred once or twice independently among predatory assassin bugs. All prey specialists evolved from generalist ancestors, with multiple evolutionary origins of termite and ant specializations. A bark-associated life style on tree trunks is ancestral for most of the lineages of Higher Reduviidae; living on foliage has evolved at least six times independently. Reduviidae originated in the Middle Jurassic (178 Ma), but significant lineage diversification only began in the Late Cretaceous (97 Ma). The integration of molecular phylogenetics with fossil and life history data as presented in this paper provides insights into the evolutionary history of reduviids and clears

  6. Evolutionary History of Assassin Bugs (Insecta: Hemiptera: Reduviidae): Insights from Divergence Dating and Ancestral State Reconstruction

    PubMed Central

    Hwang, Wei Song; Weirauch, Christiane

    2012-01-01

    Assassin bugs are one of the most successful clades of predatory animals based on their species numbers (∼6,800 spp.) and wide distribution in terrestrial ecosystems. Various novel prey capture strategies and remarkable prey specializations contribute to their appeal as a model to study evolutionary pathways involved in predation. Here, we reconstruct the most comprehensive reduviid phylogeny (178 taxa, 18 subfamilies) to date based on molecular data (5 markers). This phylogeny tests current hypotheses on reduviid relationships emphasizing the polyphyletic Reduviinae and the blood-feeding, disease-vectoring Triatominae, and allows us, for the first time in assassin bugs, to reconstruct ancestral states of prey associations and microhabitats. Using a fossil-calibrated molecular tree, we estimated divergence times for key events in the evolutionary history of Reduviidae. Our results indicate that the polyphyletic Reduviinae fall into 11–14 separate clades. Triatominae are paraphyletic with respect to the reduviine genus Opisthacidius in the maximum likelihood analyses; this result is in contrast to prior hypotheses that found Triatominae to be monophyletic or polyphyletic and may be due to the more comprehensive taxon and character sampling in this study. The evolution of blood-feeding may thus have occurred once or twice independently among predatory assassin bugs. All prey specialists evolved from generalist ancestors, with multiple evolutionary origins of termite and ant specializations. A bark-associated life style on tree trunks is ancestral for most of the lineages of Higher Reduviidae; living on foliage has evolved at least six times independently. Reduviidae originated in the Middle Jurassic (178 Ma), but significant lineage diversification only began in the Late Cretaceous (97 Ma). The integration of molecular phylogenetics with fossil and life history data as presented in this paper provides insights into the evolutionary history of reduviids and clears

  7. Antimicrobial activity of human α-defensin 6 analogs: insights into the physico-chemical reasons behind weak bactericidal activity of HD6 in vitro.

    PubMed

    Mathew, Basil; Nagaraj, Ramakrishnan

    2015-11-01

    Human α-defensin 6 (HD6), unlike other mammalian defensins, does not exhibit bactericidal activity, particularly against aerobic bacteria. Monomeric HD6 has a tertiary structure similar to other α-defensins in the crystalline state. However, the physico-chemical reasons behind the lack of antibacterial activity of HD6 are yet to be established unequivocally. In this study, we have investigated the antimicrobial activity of HD6 analogs. A linear analog of HD6, in which the distribution of arginine residues was similar to active α-defensins, shows broad-spectrum antimicrobial activity, indicating that atypical distribution of arginine residues contributes to the inactivity of HD6. Peptides spanning the N-terminal cationic segment were active against a wide range of organisms. Antimicrobial potency of these shorter analogs was further enhanced when myristic acid was conjugated at the N-terminus. Cytoplasmic localization of the analogs without fatty acylation was observed to be necessary for bacterial killing, while they exhibited fungicidal activity by permeabilizing Candida albicans membranes. Myristoylated analogs and the linear full-length arginine analog exhibited activity by permeabilizing bacterial and fungal membranes. Our study provides insights into the lack of bactericidal activity of HD6 against aerobic bacteria.

  8. Differences in EEG Alpha Activity between Gifted and Non-Identified Individuals: Insights into Problem Solving.

    ERIC Educational Resources Information Center

    Jausovec, Norbert

    1997-01-01

    This study examined differences in electroencephalography (EEG) alpha activity between gifted and nongifted Slovenian student-teachers (N=17 each). Gifted students showed greater left hemisphere activation than nongifted subjects in relaxed states, but lower activation during problem solving. The same pattern was observed in overall hemispheric…

  9. An insight into the process and mechanism of a mechanically activated reaction for synthesizing AlH3 nano-composites.

    PubMed

    Duan, Congwen; Hu, Lianxi; Sun, Yu; Zhou, Haiping; Yu, Huan

    2015-10-07

    The reaction pathway as well as the mechanism of the solid state reaction between MgH2 and AlCl3 has been a mystery so far. Based on SEM, TEM and NMR (Nuclear Magnetic Resonance) analyses, an amorphous intermediate (AlH6)n was preferentially formed and recrystallized as a γ phase at the final stage of the reaction. As a novel finding, this research provides a deep insight into the process and mechanism of this mechanically activated reaction.

  10. Secretomic Insight into Glucose Metabolism of Aspergillus brasiliensis in Solid-State Fermentation.

    PubMed

    Volke-Sepulveda, Tania; Salgado-Bautista, Daniel; Bergmann, Carl; Wells, Lance; Gutierrez-Sanchez, Gerardo; Favela-Torres, Ernesto

    2016-10-07

    The genus Aspergillus is ubiquitous in nature and includes various species extensively exploited industrially due to their ability to produce and secrete a variety of enzymes and metabolites. Most processes are performed in submerged fermentation (SmF); however, solid-state fermentation (SSF) offers several advantages, including lower catabolite repression and substrate inhibition and higher productivity and stability of the enzymes produced. This study aimed to explain the improved metabolic behavior of A. brasiliensis ATCC9642 in SSF at high glucose concentrations through a proteomic approach. Online respirometric analysis provided reproducible samples for secretomic studies when the maximum CO2 production rate occurred, ensuring consistent physiological states. Extracellular extracts from SSF cultures were treated by SDS-PAGE, digested with trypsin, and analyzed by LC-MS/MS. Of 531 sequences identified, 207 proteins were analyzed. Twenty-five were identified as the most abundant unregulated proteins; 87 were found to be up-regulated and 95 were down-regulated with increasing glucose concentration. Of the regulated proteins, 120 were enzymes, most involved in the metabolism of carbohydrates (51), amino acids (23), and nucleotides (9). This study shows the high protein secretory activity of A. brasiliensis under SSF conditions. High glucose concentration favors catabolic activities, while some stress-related proteins and those involved in proteolysis are down-regulated.

  11. Structure of the cathelicidin motif of protegrin-3 precursor: structural insights into the activation mechanism of an antimicrobial protein.

    PubMed

    Sanchez, Jean-Frédéric; Hoh, François; Strub, Marie-Paule; Aumelas, André; Dumas, Christian

    2002-10-01

    Cathelicidins are a family of antimicrobial proteins isolated from leucocytes and epithelia cells that contribute to the innate host defense mechanisms in mammalians. Located in the C-terminal part of the holoprotein, the cathelicidin-derived antimicrobial peptide is liberated by a specific protease cleavage. Here, we report the X-ray structure of the cathelicidin motif of protegrin-3 solved by MAD phasing using the selenocysteine-labeled protein. Its overall structure represents a fold homologous to the cystatin family and adopts two native states, a monomer, and a domain-swapped dimer. This crystal structure is the first example of a structural characterization of the highly conserved cathelicidin motif and thus provides insights into the possible mechanism of activation of the antimicrobial protegrin peptide.

  12. Structural insights into Ca2+-activated long-range allosteric channel gating of RyR1

    PubMed Central

    Wei, Risheng; Wang, Xue; Zhang, Yan; Mukherjee, Saptarshi; Zhang, Lei; Chen, Qiang; Huang, Xinrui; Jing, Shan; Liu, Congcong; Li, Shuang; Wang, Guangyu; Xu, Yaofang; Zhu, Sujie; Williams, Alan J; Sun, Fei; Yin, Chang-Cheng

    2016-01-01

    Ryanodine receptors (RyRs) are a class of giant ion channels with molecular mass over 2.2 mega-Daltons. These channels mediate calcium signaling in a variety of cells. Since more than 80% of the RyR protein is folded into the cytoplasmic assembly and the remaining residues form the transmembrane domain, it has been hypothesized that the activation and regulation of RyR channels occur through an as yet uncharacterized long-range allosteric mechanism. Here we report the characterization of a Ca2+-activated open-state RyR1 structure by cryo-electron microscopy. The structure has an overall resolution of 4.9 Å and a resolution of 4.2 Å for the core region. In comparison with the previously determined apo/closed-state structure, we observed long-range allosteric gating of the channel upon Ca2+ activation. In-depth structural analyses elucidated a novel channel-gating mechanism and a novel ion selectivity mechanism of RyR1. Our work not only provides structural insights into the molecular mechanisms of channel gating and regulation of RyRs, but also sheds light on structural basis for channel-gating and ion selectivity mechanisms for the six-transmembrane-helix cation channel family. PMID:27573175

  13. Structural insights into Ca(2+)-activated long-range allosteric channel gating of RyR1.

    PubMed

    Wei, Risheng; Wang, Xue; Zhang, Yan; Mukherjee, Saptarshi; Zhang, Lei; Chen, Qiang; Huang, Xinrui; Jing, Shan; Liu, Congcong; Li, Shuang; Wang, Guangyu; Xu, Yaofang; Zhu, Sujie; Williams, Alan J; Sun, Fei; Yin, Chang-Cheng

    2016-09-01

    Ryanodine receptors (RyRs) are a class of giant ion channels with molecular mass over 2.2 mega-Daltons. These channels mediate calcium signaling in a variety of cells. Since more than 80% of the RyR protein is folded into the cytoplasmic assembly and the remaining residues form the transmembrane domain, it has been hypothesized that the activation and regulation of RyR channels occur through an as yet uncharacterized long-range allosteric mechanism. Here we report the characterization of a Ca(2+)-activated open-state RyR1 structure by cryo-electron microscopy. The structure has an overall resolution of 4.9 Å and a resolution of 4.2 Å for the core region. In comparison with the previously determined apo/closed-state structure, we observed long-range allosteric gating of the channel upon Ca(2+) activation. In-depth structural analyses elucidated a novel channel-gating mechanism and a novel ion selectivity mechanism of RyR1. Our work not only provides structural insights into the molecular mechanisms of channel gating and regulation of RyRs, but also sheds light on structural basis for channel-gating and ion selectivity mechanisms for the six-transmembrane-helix cation channel family.

  14. An active solid state ring laser gyroscope

    SciTech Connect

    Valle, T.J.

    1992-01-01

    The properties of an active, solid state ring laser gyroscope were investigated. Two laser diode pumped monolithic nonplanar ring oscillators (NPRO), forced to lase in opposite directions, formed the NPRO-Gyro. It was unique in being an active ring laser gyroscope with a homogeneously broadened gain medium. This work examined sources of technical and fundamental noise. Associated calculations accounted for aspects of the NPRO-Gyro performance, suggested design improvements, and outlined limitations. The work brought out the need to stabilize the NPRO environment in order to achieve performance goals. Two Nd:YAG NPROs were mounted within an environment short term stabilized to microdegrees Celsius. The Allan variance of the NPRO-Gyro beat note was 500 Hz for a one second time delay. Unequal treatment of the NPROs appeared as noise on the beat frequency, therefore reducing its rotation sensitivity. The sensitivity to rotation was limited by technical noise sources.

  15. Edge states in confined active fluids

    NASA Astrophysics Data System (ADS)

    Souslov, Anton; Vitelli, Vincenzo

    Recently, topologically protected edge modes have been proposed and realized in both mechanical and acoustic metamaterials. In one class of such metamaterials, Time-Reversal Symmetry is broken, and, to achieve this TRS breaking in mechanical and acoustic systems, an external energy input must be used. For example, motors provide a driving force that uses energy and, thus, explicitly break TRS. As a result, motors have been used as an essential component in the design of topological metamaterials. By contrast, we explore the design of topological metamaterials that use a class of far-from-equilibrium liquids, called polar active liquids, that spontaneously break TRS. We thus envision the confinement of a polar active liquid to a prescribed geometry in order to realize topological order with broken time-reversal symmetry. We address the design of the requisite geometries, for example a regular honeycomb lattice composed of annular channels, in which the active liquid may be confined. We also consider the physical character of the active liquid that, when introduced into the prescribed geometry, will spontaneously form the flow pattern of a metamaterial with topologically protected edge states. Finally, we comment on potential experimental realizations of such metamaterials.

  16. Insight into the Strong Antioxidant Activity of Deinoxanthin, a Unique Carotenoid in Deinococcus Radiodurans

    PubMed Central

    Ji, Hong-Fang

    2010-01-01

    Deinoxanthin (DX) is a unique carotenoid synthesized by Deinococcus radiodurans, one of the most radioresistant organisms known. In comparison with other carotenoids, DX was proven to exhibit significantly stronger reactive oxygen species (ROS)-scavenging activity, which plays an important role in the radioresistance of D. radiodurans. In this work, to gain deeper insights into the strong antioxidant activity of DX, the parameters characterizing ROS-scavenging potential were calculated by means of quantum chemical calculations. It was found that DX possesses lower lowest triplet excitation energy for its unique structure than other carotenoids, such as β-carotene and zeaxanthin, which endows DX strong potential in the energy transfer-based ROS-scavenging process. Moreover, the H-atom donating potential of DX is similar to zeaxanthin according to the theoretical homolytic O-H bond dissociation enthalpy. Thus, the large number of conjugated double bonds should be crucial for its strong antioxidant activity. PMID:21151452

  17. Insight into the strong antioxidant activity of deinoxanthin, a unique carotenoid in Deinococcus radiodurans.

    PubMed

    Ji, Hong-Fang

    2010-11-10

    Deinoxanthin (DX) is a unique carotenoid synthesized by Deinococcus radiodurans, one of the most radioresistant organisms known. In comparison with other carotenoids, DX was proven to exhibit significantly stronger reactive oxygen species (ROS)-scavenging activity, which plays an important role in the radioresistance of D. radiodurans. In this work, to gain deeper insights into the strong antioxidant activity of DX, the parameters characterizing ROS-scavenging potential were calculated by means of quantum chemical calculations. It was found that DX possesses lower lowest triplet excitation energy for its unique structure than other carotenoids, such as β-carotene and zeaxanthin, which endows DX strong potential in the energy transfer-based ROS-scavenging process. Moreover, the H-atom donating potential of DX is similar to zeaxanthin according to the theoretical homolytic O-H bond dissociation enthalpy. Thus, the large number of conjugated double bonds should be crucial for its strong antioxidant activity.

  18. Effects of cranial electrotherapy stimulation on resting state brain activity

    PubMed Central

    Feusner, Jamie D; Madsen, Sarah; Moody, Teena D; Bohon, Cara; Hembacher, Emily; Bookheimer, Susan Y; Bystritsky, Alexander

    2012-01-01

    Cranial electrotherapy stimulation (CES) is a U.S. Food and Drug Administration (FDA)-approved treatment for insomnia, depression, and anxiety consisting of pulsed, low-intensity current applied to the earlobes or scalp. Despite empirical evidence of clinical efficacy, its mechanism of action is largely unknown. The goal was to characterize the acute effects of CES on resting state brain activity. Our primary hypothesis was that CES would result in deactivation in cortical and subcortical regions. Eleven healthy controls were administered CES applied to the earlobes at subsensory thresholds while being scanned with functional magnetic resonance imaging in the resting state. We tested 0.5- and 100-Hz stimulation, using blocks of 22 sec “on” alternating with 22 sec of baseline (device was “off”). The primary outcome measure was differences in blood oxygen level dependent data associated with the device being on versus baseline. The secondary outcome measures were the effects of stimulation on connectivity within the default mode, sensorimotor, and fronto-parietal networks. Both 0.5- and 100-Hz stimulation resulted in significant deactivation in midline frontal and parietal regions. 100-Hz stimulation was associated with both increases and decreases in connectivity within the default mode network (DMN). Results suggest that CES causes cortical brain deactivation, with a similar pattern for high- and low-frequency stimulation, and alters connectivity in the DMN. These effects may result from interference from high- or low-frequency noise. Small perturbations of brain oscillations may therefore have significant effects on normal resting state brain activity. These results provide insight into the mechanism of action of CES, and may assist in the future development of optimal parameters for effective treatment. PMID:22741094

  19. Structural insight into the active site of mushroom tyrosinase using phenylbenzoic acid derivatives.

    PubMed

    Oyama, Takahiro; Yoshimori, Atsushi; Takahashi, Satoshi; Yamamoto, Tetsuya; Sato, Akira; Kamiya, Takanori; Abe, Hideaki; Abe, Takehiko; Tanuma, Sei-Ichi

    2017-07-01

    So far, many inhibitors of tyrosinase have been discovered for cosmetic and clinical agents. However, the molecular mechanisms underlying the inhibition in the active site of tyrosinase have not been well understood. To explore this problem, we examined here the inhibitory effects of 4'-hydroxylation and methoxylation of phenylbenzoic acid (PBA) isomers, which have a unique scaffold to inhibit mushroom tyrosinase. The inhibitory effect of 3-PBA, which has the most potent inhibitory activity among the isomers, was slightly decreased by 4'-hydroxylation and further decreased by 4'-methoxylation against mushroom tyrosinase. Surprisingly, 4'-hydroxylation but not methoxylation of 2-PBA appeared inhibitory activity. On the other hand, both 4'-hydroxylation and methoxylation of 4-PBA increased the inhibitory activity against mushroom tyrosinase. In silico docking analyses using the crystallographic structure of mushroom tyrosinase indicated that the carboxylic acid or 4'-hydroxyl group of PBA derivatives could chelate with cupric ions in the active site of mushroom tyrosinase, and that the interactions of Asn260 and Phe264 in the active site with the adequate-angled biphenyl group are involved in the inhibitory activities of the modified PBAs, by parallel and T-shaped π-π interactions, respectively. Furthermore, Arg268 could fix the angle of the aromatic ring of Phe264, and Val248 is supposed to interact with the inhibitors as a hydrophobic manner. These results may enhance the structural insight into mushroom tyrosinase for the creation of novel tyrosinase inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Insights into the orbital invariance problem in state-specific multireference coupled cluster theory.

    PubMed

    Evangelista, Francesco A; Gauss, Jürgen

    2010-07-28

    In this communication we report the results of our studies on the orbital invariance properties of the state-specific multireference coupled cluster approach suggested by Mukherjee and co-workers (Mk-MRCC). In particular, we have gathered numerical evidence to show that even when the linear excitation manifold is modified in order to span the same space for each reference, the resulting method is not orbital invariant. In order to test this conjecture we have proposed a new truncation scheme (Mk-MRCCSDtq) which, in addition to full single and double excitations, contains partial triple and quadruple excitations. For a reference space generated by all possible combinations of two electrons in two orbitals, the linear excitation manifold of Mk-MRCCSDtq spans the same set for each reference determinant. Mk-MRCCSDtq is found to lack energy invariance for rotations among active molecular orbitals but it is less sensitive to orbital rotations than the conventional scheme which includes only singles and doubles (Mk-MRCCSD). Nevertheless, Mk-MRCCSDtq is a very accurate method, superior with respect to multireference configuration interaction approaches, and competitive with the active-space coupled cluster method and the MRexpT ansatz.

  1. Active State Model for Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Park, Han; Chien, Steve; Zak, Michail; James, Mark; Mackey, Ryan; Fisher, Forest

    2003-01-01

    The concept of the active state model (ASM) is an architecture for the development of advanced integrated fault-detection-and-isolation (FDI) systems for robotic land vehicles, pilotless aircraft, exploratory spacecraft, or other complex engineering systems that will be capable of autonomous operation. An FDI system based on the ASM concept would not only provide traditional diagnostic capabilities, but also integrate the FDI system under a unified framework and provide mechanism for sharing of information between FDI subsystems to fully assess the overall health of the system. The ASM concept begins with definitions borrowed from psychology, wherein a system is regarded as active when it possesses self-image, self-awareness, and an ability to make decisions itself, such that it is able to perform purposeful motions and other transitions with some degree of autonomy from the environment. For an engineering system, self-image would manifest itself as the ability to determine nominal values of sensor data by use of a mathematical model of itself, and selfawareness would manifest itself as the ability to relate sensor data to their nominal values. The ASM for such a system may start with the closed-loop control dynamics that describe the evolution of state variables. As soon as this model was supplemented with nominal values of sensor data, it would possess self-image. The ability to process the current sensor data and compare them with the nominal values would represent self-awareness. On the basis of self-image and self-awareness, the ASM provides the capability for self-identification, detection of abnormalities, and self-diagnosis.

  2. The Contribution of Extracurricular Activities to Adolescent Friendships: New Insights through Social Network Analysis

    PubMed Central

    Schaefer, David R.; Simpkins, Sandra D.; Vest, Andrea E.; Price, Chara D.

    2011-01-01

    Extracurricular activities are settings that are theorized to help adolescents maintain existing friendships and develop new friendships. The overarching goal of the current investigation was to examine whether co-participating in school-based extracurricular activities supported adolescents’ school-based friendships. We utilized social network methods and data from the National Longitudinal Study of Adolescent Health to examine whether dyadic friendship ties were more likely to exist among activity co-participants while controlling for alternative friendship processes, namely dyadic homophily (e.g., demographic and behavioral similarities) and network-level processes (e.g., triadic closure). Results provide strong evidence that activities were associated with current friendships and promoted the formation of new friendships. These associations varied based on school level (i.e., middle versus high school) and activity type (i.e., sports, academic, arts). Results of this study provide new insight into the complex relations between activities and friendship that can inform theories of their developmental outcomes. PMID:21639618

  3. Structure of the apoptosome: mechanistic insights into activation of an initiator caspase from Drosophila

    PubMed Central

    Pang, Yuxuan; Bai, Xiao-chen; Yan, Chuangye; Hao, Qi; Chen, Zheqin; Wang, Jia-Wei

    2015-01-01

    Apoptosis is executed by a cascade of caspase activation. The autocatalytic activation of an initiator caspase, exemplified by caspase-9 in mammals or its ortholog, Dronc, in fruit flies, is facilitated by a multimeric adaptor complex known as the apoptosome. The underlying mechanism by which caspase-9 or Dronc is activated by the apoptosome remains unknown. Here we report the electron cryomicroscopic (cryo-EM) structure of the intact apoptosome from Drosophila melanogaster at 4.0 Å resolution. Analysis of the Drosophila apoptosome, which comprises 16 molecules of the Dark protein (Apaf-1 ortholog), reveals molecular determinants that support the assembly of the 2.5-MDa complex. In the absence of dATP or ATP, Dronc zymogen potently induces formation of the Dark apoptosome, within which Dronc is efficiently activated. At 4.1 Å resolution, the cryo-EM structure of the Dark apoptosome bound to the caspase recruitment domain (CARD) of Dronc (Dronc-CARD) reveals two stacked rings of Dronc-CARD that are sandwiched between two octameric rings of the Dark protein. The specific interactions between Dronc-CARD and both the CARD and the WD40 repeats of a nearby Dark protomer are indispensable for Dronc activation. These findings reveal important mechanistic insights into the activation of initiator caspase by the apoptosome. PMID:25644603

  4. trans-Protease Activity and Structural Insights into the Active Form of the Alphavirus Capsid Protease

    PubMed Central

    Aggarwal, Megha; Dhindwal, Sonali; Kumar, Pravindra; Kuhn, Richard J.

    2014-01-01

    ABSTRACT The alphavirus capsid protein (CP) is a serine protease that possesses cis-proteolytic activity essential for its release from the nascent structural polyprotein. The released CP further participates in viral genome encapsidation and nucleocapsid core formation, followed by its attachment to glycoproteins and virus budding. Thus, protease activity of the alphavirus capsid is a potential antialphaviral target to arrest capsid release, maturation, and structural polyprotein processing. However, the discovery of capsid protease inhibitors has been hampered due to the lack of a suitable screening assay and of the crystal structure in its active form. Here, we report the development of a trans-proteolytic activity assay for Aura virus capsid protease (AVCP) based on fluorescence resonance energy transfer (FRET) for screening protease inhibitors. Kinetic parameters using fluorogenic peptide substrates were estimated, and the Km value was found to be 2.63 ± 0.62 μM while the kcat/Km value was 4.97 × 104 M−1 min−1. Also, the crystal structure of the trans-active form of AVCP has been determined to 1.81-Å resolution. Structural comparisons of the active form with the crystal structures of available substrate-bound mutant and inactive blocked forms of the capsid protease identify conformational changes in the active site, the oxyanion hole, and the substrate specificity pocket residues, which could be critical for rational drug design. IMPORTANCE The alphavirus capsid protease is an attractive antiviral therapeutic target. In this study, we have described the formerly unappreciated trans-proteolytic activity of the enzyme and for the first time have developed a FRET-based protease assay for screening capsid protease inhibitors. Our structural studies unveil the structural features of the trans-active protease, which has been previously proposed to exist in the natively unfolded form (M. Morillas, H. Eberl, F. H. Allain, R. Glockshuber, and E. Kuennemann, J

  5. Physical activity counseling in primary care: Insights from public health and behavioral economics.

    PubMed

    Shuval, Kerem; Leonard, Tammy; Drope, Jeffrey; Katz, David L; Patel, Alpa V; Maitin-Shepard, Melissa; Amir, On; Grinstein, Amir

    2017-02-15

    Physical inactivity has reached epidemic proportions in modern society. Abundant evidence points to a causal link between physical inactivity and increased risk for numerous noncommunicable diseases, such as some types of cancer and heart disease, as well as premature mortality. Yet, despite this overwhelming evidence, many individuals do not meet the recommended amount of physical activity required to achieve maximum health benefits. Because primary care physicians' advice is highly regarded, clinicians have the unique opportunity to play an important role in enabling patients to modify their behavior at the point of care with the goal of guiding patients to adopt and maintain an active lifestyle. In the current study, the authors evaluate pertinent literature from the fields of medicine/public health and economics/psychology to suggest a comprehensive approach to physical activity counseling at the primary care level. They first examine the public health approach to physical activity counseling, and then proceed to offer insights from behavioral economics, an emerging field that combines principles from psychology and economics. The application of key behavioral economics tools (eg, precommitment contracts, framing) to physical activity counseling in primary care is elaborated. CA Cancer J Clin 2017. © 2017 American Cancer Society.

  6. Structural Insights into and Activity Analysis of the Antimicrobial Peptide Myxinidin

    PubMed Central

    Cantisani, Marco; Finamore, Emiliana; Mignogna, Eleonora; Falanga, Annarita; Nicoletti, Giovanni Francesco; Pedone, Carlo; Morelli, Giancarlo; Leone, Marilisa

    2014-01-01

    The marine environment has been poorly explored in terms of potential new molecules possessing antibacterial activity. Antimicrobial peptides (AMPs) offer a new potential class of pharmaceuticals; however, further optimization is needed if AMPs are to find broad use as antibiotics. We focused our studies on a peptide derived from the epidermal mucus of hagfish (Myxine glutinosa L.), which was previously characterized and showed high antimicrobial activity against human and fish pathogens. In the present work, the activities of myxinidin peptide analogues were analyzed with the aim of widening the original spectrum of action of myxinidin by suitable changes in the peptide primary structure. The analysis of key residues by alanine scanning allowed for the design of novel peptides with increased activity. We identified the amino acids that are of the utmost importance for the observed antimicrobial activities against a set of pathogens comprising both Gram-negative and Gram-positive bacteria. Overall, optimized bactericidal potency was achieved by adding a tryptophan residue at the N terminus and by the simultaneous substitution of residues present in positions 3, 4, and 11 with arginine. These results indicate that the myxinidin analogues emerge as an attractive alternative for treating drug-resistant infectious diseases and provide key insights into a rational design for novel agents against these pathogens. PMID:24957834

  7. An insight into the removal of fluoroquinolones in activated sludge process: Sorption and biodegradation characteristics.

    PubMed

    Wang, Lu; Qiang, Zhimin; Li, Yangang; Ben, Weiwei

    2017-06-01

    The detailed sorption steps and biodegradation characteristics of fluoroquinolones (FQs) including ciprofloxacin, enrofloxacin, lomefloxacin, norfloxacin, and ofloxacin were investigated through batch experiments. The results indicate that FQs at a total concentration of 500μg/L caused little inhibition of sludge bioactivity. Sorption was the primary removal pathway of FQs in the activated sludge process, followed by biodegradation, while hydrolysis and volatilization were negligible. FQ sorption on activated sludge was a reversible process governed by surface reaction. Henry and Freundlich models could describe the FQ sorption isotherms well in the concentration range of 100-300μg/L. Thermodynamic parameters revealed that FQ sorption on activated sludge is spontaneous, exothermic, and enthalpy-driven. Hydrophobicity-independent mechanisms determined the FQ sorption affinity with activated sludge. The zwitterion of FQs had the strongest sorption affinity, followed by cation and anion, and aerobic condition facilitated FQ sorption. FQs were slowly biodegradable, with long half-lives (>100hr). FQ biodegradation was enhanced with increasing temperature and under aerobic condition, and thus was possibly achieved through co-metabolism during nitrification. This study provides an insight into the removal kinetics and mechanism of FQs in the activated sludge process, but also helps assess the environmental risks of FQs resulting from sludge disposal. Copyright © 2016. Published by Elsevier B.V.

  8. Recent State Policies/Activities: Community Colleges.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO.

    This document is a summary, collected from StateNet, Lexis-Nexis, state Web sites, and state newsletters. The summary includes educational policies enacted throughout the country since 1999. StateNet and Lexis-Nexis descriptions reflect the content of bills as introduced, and may not reflect changes made during the legislative process. Highlights…

  9. How has magmatism in the northwest United States affected the lithosphere? Insights from Sp Receiver Functions

    NASA Astrophysics Data System (ADS)

    Hopper, E.; Ford, H. A.; Fischer, K. M.; Lekic, V.; Fouch, M. J.

    2012-12-01

    The origins of the age-progressive hot spot track of the eastern Snake River Plain (ESRP) and the age-progressive magmatic wave of the Newberry Trend in the High Lava Plains (HLP) are much debated. Constraining lithospheric structure and its relationship to magmatism in this region can provide new insights. We employ Sp receiver functions to image the base of the lithosphere. Data was collected from stations within a ~1500km x ~900km area centered on the ESRP, comprising both permanent network stations (e.g. US, IW) and many temporary arrays, including the High Lava Plains seismic array and EarthScope's USArray Transportable Array. We first obtained Sp receiver functions for individual waveforms using an extended-time multi-taper deconvolution method. We then migrated into a 3D volume using common-conversion point stacking and a spline function representation of phase Fresnel zones assuming mantle velocities from Obrebski et al. (2011) and the crustal model of Lowry and Perez-Gussinye (2011). In some areas, we detect a mantle Sp arrival indicating a decrease in velocity with depth in the 55-100 km depth range, which is consistent with the transition from high velocity lithosphere to low velocity asthenosphere in the tomography. To the southeast of Newberry volcano beneath the HLP, a particularly strong and clear negative Sp phase increases in depth from ~55 km beneath the youngest magmatism to ~65 km beneath 9-11 Ma eruptive centers. The depth of this phase is roughly consistent with the pressures of last equilibration of asthenospherically derived magmatic samples [Till et al, 2012]. Continuing to the southeast beneath the Owyhee Plateau, where there are 14-16 Ma silicic calderas associated with the onset of the SRP magmatic trend, a significantly weaker negative Sp phase is found at depths of 80-90 km. Image quality is poorer beneath the eastern SRP, where magmatic ages are 12 Ma and younger, due to sparser path coverage east of the High Lava Plains array

  10. Insights about Fall Prevention of Older Adults in the State of Hawai‘i

    PubMed Central

    Hayashida, Cullen T; Yontz, Valerie

    2017-01-01

    The senior population in Hawai‘i is growing at a dramatic pace. In the older population, falls and fall-related injuries are leading causes of morbidity and mortality. Moreover, the health care costs for falls are very high. The State of Hawai‘i has taken measures to prevent falls through the promotion of medication reviews, vision checks, home assessments, and exercise. However, current published examinations of fall preventive measures have been insufficient, and more research is needed to confirm risk factors, effectiveness of preventive measures, and to explore future objectives. This paper examined the validity of fall risk factors and fall preventive measures for Hawai‘i's seniors by conducting mail questionnaire surveys to a sample of seniors using medical alert services from one company in Hawai‘i. The results of chi-square analysis suggest that having reduced ability to perform Activities of Daily Living (ADL) and reduced Instrumental Activities of Daily Living (IADL) were associated with a greater risk of falls (P < .01). In addition, those who fell were more likely to talk about fall preventions with their family members or friends and health providers compared with those who did not (P = .048 and .003, respectively). Evidence-based exercise programs for strengthening muscles and controlling physical balance may be needed to improve ADL and IADL. Furthermore, the results suggest that seniors do not accept that they are at risk of falling before they actually fall. Public health providers should consider how they approach seniors, and how they inform them of the importance of fall prevention across the life span. PMID:28090397

  11. Insights on the structure and activity of Lusi mud edifice from land gravity monitoring.

    NASA Astrophysics Data System (ADS)

    Mauri, Guillaume; Husein, Alwi; Karyono, Karyono; Hadi, Soffian; Prasetyo, Hardi; Lupi, Matteo; Obermann, Anne; Mazzini, Adriano; Miller, Stephen A.

    2017-04-01

    The Lusi mud eruption in East Java, Indonesia, active since May 2006, is a sedimentary-hosted hydrothermal system (SHHS) fed by magmatic fluids connected to the Arjuno-Welirang volcanic complex. The aims of the present study are to investigate changes in the local gravity field to obtain new insight into: 1) the evolution of the collapse structure ten years after its inception, 2) provide new insights on the thickening of the mud edifice for constraints on 3D numerical models, and 3) the pulsating phases characterizing the Lusi activity, which result in temporal density variations of the mudflow inside the active conduit. To investigate the structure of the mud edifice, we conducted a gravity spatial mapping over an area of 56 km2 with 390 new gravity stations. To investigate the density changes happening over time, we conducted several continuous gravity monitoring. We present results from gravity measurement collected during field campaigns in June and August 2016, and augmented by passive seismic and environmental parameter monitoring. We calculated for a reference density of 2,670 kg m-3 a new Bouguer anomaly map, which shows significant changes in the local gravity field in comparison to the previously published 2006-gravity map. In the west and south part of the edifice, maximum gravity decreases (-1 mGal) characterize the collapse of part of the edifice. In the southeast and east of the central area of flooded mud breccia, the gravity field increases locally (+1 mGal) along the limit defined by a previous study on the surface deformation of the mud edifice. The 3D model supports the hypothesis of a locally pinched volume of either mud, sediment, or mix of both between the subsiding volume and the uplifting volume of mud. The continuous gravity monitoring experiments were located at 320 and 380m away from the central area of a mud breccia flooded region. Over time, residual gravity variations reach up to 0.020 mGal in amplitude and occur at wavelengths

  12. The Structure of Bipartite Quantum States - Insights from Group Theory and Cryptography

    NASA Astrophysics Data System (ADS)

    Christandl, Matthias

    2006-04-01

    This thesis presents a study of the structure of bipartite quantum states. In the first part, the representation theory of the unitary and symmetric groups is used to analyse the spectra of quantum states. In particular, it is shown how to derive a one-to-one relation between the spectra of a bipartite quantum state and its reduced states, and the Kronecker coefficients of the symmetric group. In the second part, the focus lies on the entanglement of bipartite quantum states. Drawing on an analogy between entanglement distillation and secret-key agreement in classical cryptography, a new entanglement measure, `squashed entanglement', is introduced.

  13. The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly

    NASA Astrophysics Data System (ADS)

    Mainwaring, David E.; Nguyen, Song Ha; Webb, Hayden; Jakubov, Timur; Tobin, Mark; Lamb, Robert N.; Wu, Alex H.-F.; Marchant, Richard; Crawford, Russell J.; Ivanova, Elena P.

    2016-03-01

    While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron FTIR microspectroscopy to be similar across these activity differences. Modelling the interaction between bacterial cells and the wing surface lipids of 3 species of dragonflies, that inhabit similar environments, but with distinctly different behavioural repertoires, provided the relationship between surface structure and antibacterial functionality. In doing so, these principal behavioural patterns correlated with the demands for antimicrobial efficiency dictated by differences in their foraging strategies. This work now reveals a new feature in the design elegance of natural multi-functional surfaces as well providing insights into the bactericidal mechanism underlying inherently antimicrobial materials, while suggesting that nanotopology is related to the evolutionary development of a species through the demands of its behavioural repertoire. The underlying relationship between the processes of wetting, adhesion and capillarity of the lipid nanopillars and bactericidal efficiency suggests new prospects for purely mechano-responsive antibacterial surfaces.While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron

  14. Short-term meditation modulates brain activity of insight evoked with solution cue.

    PubMed

    Ding, Xiaoqian; Tang, Yi-Yuan; Cao, Chen; Deng, Yuqin; Wang, Yan; Xin, Xiu; Posner, Michael I

    2015-01-01

    Meditation has been shown to improve creativity in some situation. However, little is known about the brain systems underling insight into a problem when the person fails to solve the problem. Here, we examined the neural correlation using Chinese Remote Association Test, as a measure of creativity. We provide a solution following the failure of the participant to provide one. We examine how meditation in comparison with relaxation influences the reaction of the participant to a correct solution. The event-related functional magnetic resonance imaging showed greater activity, mainly distributed in the right cingulate gyrus (CG), insula, putamen, inferior frontal gyrus (IFG), and the bilateral middle frontal gyrus (MFG), the inferior parietal lobule (IPL) and the superior temporal gyrus (STG). This pattern of activation was greater following 5 h of meditation training than the same amount of relaxation. Based on prior research, we speculate on the function of this pattern of brain activity: (i) CG may be involved in detecting conflict and breaking mental set, (ii) MFG/IFG may play an important role in restructuring of the problem representation, (iii) insula, IPL and STG may be associated with error detection, problem understanding or general attentive control and (iv) putamen may be activated by 'Aha' feeling. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  15. The Active Site of Oligogalacturonate Lyase Provides Unique Insights into Cytoplasmic Oligogalacturonate β-Elimination*

    PubMed Central

    Abbott, D. Wade; Gilbert, Harry J.; Boraston, Alisdair B.

    2010-01-01

    Oligogalacturonate lyases (OGLs; now also classified as pectate lyase family 22) are cytoplasmic enzymes found in pectinolytic members of Enterobacteriaceae, such as the enteropathogen Yersinia enterocolitica. OGLs utilize a β-elimination mechanism to preferentially catalyze the conversion of saturated and unsaturated digalacturonate into monogalacturonate and the 4,5-unsaturated monogalacturonate-like molecule, 5-keto-4-deoxyuronate. To provide mechanistic insights into the specificity of this enzyme activity, we have characterized the OGL from Y. enterocolitica, YeOGL, on oligogalacturonides and determined its three-dimensional x-ray structure to 1.65 Å. The model contains a Mn2+ atom in the active site, which is coordinated by three histidines, one glutamine, and an acetate ion. The acetate mimics the binding of the uronate group of galactourono-configured substrates. These findings, in combination with enzyme kinetics and metal supplementation assays, provide a framework for modeling the active site architecture of OGL. This enzyme appears to contain a histidine for the abstraction of the α-proton in the −1 subsite, a residue that is highly conserved throughout the OGL family and represents a unique catalytic base among pectic active lyases. In addition, we present a hypothesis for an emerging relationship observed between the cellular distribution of pectate lyase folding and the distinct metal coordination chemistries of pectate lyases. PMID:20851883

  16. Short-term meditation modulates brain activity of insight evoked with solution cue

    PubMed Central

    Tang, Yi-Yuan; Cao, Chen; Deng, Yuqin; Wang, Yan; Xin, Xiu; Posner, Michael I.

    2015-01-01

    Meditation has been shown to improve creativity in some situation. However, little is known about the brain systems underling insight into a problem when the person fails to solve the problem. Here, we examined the neural correlation using Chinese Remote Association Test, as a measure of creativity. We provide a solution following the failure of the participant to provide one. We examine how meditation in comparison with relaxation influences the reaction of the participant to a correct solution. The event-related functional magnetic resonance imaging showed greater activity, mainly distributed in the right cingulate gyrus (CG), insula, putamen, inferior frontal gyrus (IFG), and the bilateral middle frontal gyrus (MFG), the inferior parietal lobule (IPL) and the superior temporal gyrus (STG). This pattern of activation was greater following 5 h of meditation training than the same amount of relaxation. Based on prior research, we speculate on the function of this pattern of brain activity: (i) CG may be involved in detecting conflict and breaking mental set, (ii) MFG/IFG may play an important role in restructuring of the problem representation, (iii) insula, IPL and STG may be associated with error detection, problem understanding or general attentive control and (iv) putamen may be activated by ‘Aha’ feeling. PMID:24532700

  17. The albedo of martian dunes: Insights into aeolian activity and dust devil formation

    NASA Astrophysics Data System (ADS)

    Bennett, K. A.; Fenton, L.; Bell, J. F.

    2017-06-01

    Wind is the primary geologic process currently active on the surface of Mars. Albedo variations at eight dune fields were tested based on the hypothesis that a dune's ripple migration rate is correlated to its albedo. On Mars, where the atmospheric pressure is low, dust is removed from the surface of a dune by saltating sand. Therefore, more active dunes should remove dust more efficiently than less active dunes. A dune's albedo was found to be low in the first half of the Mars year (Ls = 0-180°) and high in the second half (Ls = 180-360°) during the dusty season. Both dunes with fast- and slow-moving ripples exhibit low albedos, whereas dunes with ripples that migrate at intermediate speeds exhibit high albedos. A dune's minimum albedo does not have a simple correlation with its ripple migration rate. Instead, we propose that dust devils remove dust on slow-moving and immobile dunes, whereas saltating sand caused by strong winds removes dust on faster dunes. Albedo should not be used as a proxy for migration rate of ripples or dune activity, as it may be difficult to distinguish between fast- and slow-moving ripples on dunes that have the same albedo. The presence of dust devil tracks on a dune could indicate the dune and/or its ripples are either immobile or migrating slowly. We also propose that albedo variations on individual dune fields can reveal insight into the local wind regime.

  18. OER activity manipulated by IrO6 coordination geometry: an insight from pyrochlore iridates

    PubMed Central

    Sun, Wei; Liu, Ji-Yuan; Gong, Xue-Qing; Zaman, Waqas-Qamar; Cao, Li-Mei; Yang, Ji

    2016-01-01

    The anodic reaction of oxygen evolution reaction (OER), an important point for electrolysis, however, remains the obstacle due to its complicated reaction at electrochemical interfaces. Iridium oxide (IrO2) is the only currently known 5d transition metal oxide possessing admirable OER activity. Tremendous efforts have been carried out to enhance the activity of iridium oxides. Unfortunately there lies a gap in understanding what factors responsible for the activity in doped IrO2 or the novel crystal structure. Based on two metallic pyrochlores (Bi2Ir2O7 and Pb2Ir2O6.5) and IrO2. It has been found that there exists a strong correlation between the specific OER activity and IrO6 coordination geometry. The more distortion in IrO6 geometry ascends the activity of Ir sites, and generates activity order of Pb-Ir > IrO2 > Bi-Ir. Our characterizations reveal that distorted IrO6 in Pb-Ir induces a disappearance of J = 1/2 subbands in valence band, while Bi-Ir and IrO2 resist this nature probe. The performed DFT calculations indicated the distortion in IrO6 geometry can optimize binding strength between Ir-5d and O-2p due to broader d band width. Based on this insight, enhancement in OER activity is obtained by effects that change IrO6 octahedral geometry through doping or utilizing structural manipulation with nature of distorted octahedral coordination. PMID:27910932

  19. New Insights into Butyrylcholinesterase Activity Assay: Serum Dilution Factor as a Crucial Parameter

    PubMed Central

    Jońca, Joanna; Żuk, Monika; Wasąg, Bartosz; Janaszak-Jasiecka, Anna; Lewandowski, Krzysztof; Wielgomas, Bartosz; Waleron, Krzysztof; Jasiecki, Jacek

    2015-01-01

    Butyrylcholinesterase (BChE) activity assay and inhibitor phenotyping can help to identify patients at risk of prolonged paralysis following the administration of neuromuscular blocking agents. The assay plays an important role in clinical chemistry as a good diagnostic marker for intoxication with pesticides and nerve agents. Furthermore, the assay is also commonly used for in vitro characterization of cholinesterases, their toxins and drugs. There is still lack of standardized procedure for measurement of BChE activity and many laboratories use different substrates at various concentrations. The purpose of this study was to validate the BChE activity assay to determine the best dilution of human serum and the most optimal concentration of substrates and inhibitors. Serum BChE activity was measured using modified Ellman’s method applicable for a microplate reader. We present our experience and new insights into the protocol for high-throughput routine assays of human plasma cholinesterase activities adapted to a microplate reader. During our routine assays used for the determination of BChE activity, we have observed that serum dilution factor influences the results obtained. We show that a 400-fold dilution of serum and 5mM S-butyrylthiocholine iodide can be successfully used for the accurate measurement of BChE activity in human serum. We also discuss usage of various concentrations of dibucaine and fluoride in BChE phenotyping. This study indicates that some factors of such a multicomponent clinical material like serum can influence kinetic parameters of the BChE. The observed inhibitory effect is dependent on serum dilution factor used in the assay. PMID:26444431

  20. OER activity manipulated by IrO6 coordination geometry: an insight from pyrochlore iridates

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Liu, Ji-Yuan; Gong, Xue-Qing; Zaman, Waqas-Qamar; Cao, Li-Mei; Yang, Ji

    2016-12-01

    The anodic reaction of oxygen evolution reaction (OER), an important point for electrolysis, however, remains the obstacle due to its complicated reaction at electrochemical interfaces. Iridium oxide (IrO2) is the only currently known 5d transition metal oxide possessing admirable OER activity. Tremendous efforts have been carried out to enhance the activity of iridium oxides. Unfortunately there lies a gap in understanding what factors responsible for the activity in doped IrO2 or the novel crystal structure. Based on two metallic pyrochlores (Bi2Ir2O7 and Pb2Ir2O6.5) and IrO2. It has been found that there exists a strong correlation between the specific OER activity and IrO6 coordination geometry. The more distortion in IrO6 geometry ascends the activity of Ir sites, and generates activity order of Pb-Ir > IrO2 > Bi-Ir. Our characterizations reveal that distorted IrO6 in Pb-Ir induces a disappearance of J = 1/2 subbands in valence band, while Bi-Ir and IrO2 resist this nature probe. The performed DFT calculations indicated the distortion in IrO6 geometry can optimize binding strength between Ir-5d and O-2p due to broader d band width. Based on this insight, enhancement in OER activity is obtained by effects that change IrO6 octahedral geometry through doping or utilizing structural manipulation with nature of distorted octahedral coordination.

  1. Making Personalized Health Care Even More Personalized: Insights From Activities of the IOM Genomics Roundtable.

    PubMed

    David, Sean P; Johnson, Samuel G; Berger, Adam C; Feero, W Gregory; Terry, Sharon F; Green, Larry A; Phillips, Robert L; Ginsburg, Geoffrey S

    2015-01-01

    Genomic research has generated much new knowledge into mechanisms of human disease, with the potential to catalyze novel drug discovery and development, prenatal and neonatal screening, clinical pharmacogenomics, more sensitive risk prediction, and enhanced diagnostics. Genomic medicine, however, has been limited by critical evidence gaps, especially those related to clinical utility and applicability to diverse populations. Genomic medicine may have the greatest impact on health care if it is integrated into primary care, where most health care is received and where evidence supports the value of personalized medicine grounded in continuous healing relationships. Redesigned primary care is the most relevant setting for clinically useful genomic medicine research. Taking insights gained from the activities of the Institute of Medicine (IOM) Roundtable on Translating Genomic-Based Research for Health, we apply lessons learned from the patient-centered medical home national experience to implement genomic medicine in a patient-centered, learning health care system.

  2. Structural Insights into the Anti-methicillin-resistant Staphylococcus aureus (MRSA) Activity of Ceftobiprole*

    PubMed Central

    Lovering, Andrew L.; Gretes, Michael C.; Safadi, Susan S.; Danel, Franck; de Castro, Liza; Page, Malcolm G. P.; Strynadka, Natalie C. J.

    2012-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an antibiotic-resistant strain of S. aureus afflicting hospitals and communities worldwide. Of greatest concern is its development of resistance to current last-line-of-defense antibiotics; new therapeutics are urgently needed to combat this pathogen. Ceftobiprole is a recently developed, latest generation cephalosporin and has been the first to show activity against MRSA by inhibiting essential peptidoglycan transpeptidases, including the β-lactam resistance determinant PBP2a, from MRSA. Here we present the structure of the complex of ceftobiprole bound to PBP2a. This structure provides the first look at the molecular details of an effective β-lactam-resistant PBP interaction, leading to new insights into the mechanism of ceftobiprole efficacy against MRSA. PMID:22815485

  3. Making Personalized Health Care Even More Personalized: Insights From Activities of the IOM Genomics Roundtable

    PubMed Central

    David, Sean P.; Johnson, Samuel G.; Berger, Adam C.; Feero, W. Gregory; Terry, Sharon F.; Green, Larry A.; Phillips, Robert L.; Ginsburg, Geoffrey S.

    2015-01-01

    Genomic research has generated much new knowledge into mechanisms of human disease, with the potential to catalyze novel drug discovery and development, prenatal and neonatal screening, clinical pharmacogenomics, more sensitive risk prediction, and enhanced diagnostics. Genomic medicine, however, has been limited by critical evidence gaps, especially those related to clinical utility and applicability to diverse populations. Genomic medicine may have the greatest impact on health care if it is integrated into primary care, where most health care is received and where evidence supports the value of personalized medicine grounded in continuous healing relationships. Redesigned primary care is the most relevant setting for clinically useful genomic medicine research. Taking insights gained from the activities of the Institute of Medicine (IOM) Roundtable on Translating Genomic-Based Research for Health, we apply lessons learned from the patient-centered medical home national experience to implement genomic medicine in a patient-centered, learning health care system. PMID:26195686

  4. Faster than their prey: new insights into the rapid movements of active carnivorous plants traps.

    PubMed

    Poppinga, Simon; Masselter, Tom; Speck, Thomas

    2013-07-01

    Plants move in very different ways and for different reasons, but some active carnivorous plants perform extraordinary motion: Their snap-, catapult- and suction traps perform very fast and spectacular motions to catch their prey after receiving mechanical stimuli. Numerous investigations have led to deeper insights into the physiology and biomechanics of these trapping devices, but they are far from being fully understood. We review concisely how plant movements are classified and how they follow principles that bring together speed, actuation and architecture of the moving organ. In particular, we describe and discuss how carnivorous plants manage to execute fast motion. We address open questions and assess the prospects for future studies investigating potential universal mechanisms that could be the basis of key characteristic features in plant movement such as stimulus transduction, post-stimulatory mechanical answers, and organ formation.

  5. Trait and State Attributes of Insight in First Episodes of Early-Onset Schizophrenia and Other Psychoses: A 2-Year Longitudinal Study

    PubMed Central

    Parellada, Mara; Boada, Leticia; Fraguas, David; Reig, Santiago; Castro-Fornieles, Josefina; Moreno, Dolores; Gonzalez-Pinto, Ana; Otero, Soraya; Rapado-Castro, Marta; Graell, Montserrat; Baeza, Inmaculada; Arango, Celso

    2011-01-01

    Background: Increasing evidence supports the important role of illness state and individual characteristics in insight. Methods: Insight, as measured with the Scale to Assess Unawareness of Mental Disorder, over the first 2 years of early-onset first-episode psychosis and its correlations with clinical, socio-demographic, cognitive, and structural brain variables are studied. Results: (1) insight at 2 years is poorer in schizophrenia spectrum disorders (SSDs) than in subjects with other psychoses; (2) the more severe the psychosis, the worse the insight. In SSD, depressive symptoms, poorer baseline executive functioning, lower IQ, longer duration of untreated psychosis (DUP), and poorer premorbid infancy adjustment are associated with poorer insight; frontal and parietal gray matter (GM) reductions at baseline correlate with worse insight into having psychotic symptoms at 2 years; (3) insight into having a mental disorder (Scale to Assess Unawareness of Mental Disorder [SUMD]1) at 1 year, DUP, and baseline IQ are the most consistent variables explaining different aspects of insight at 2 years in SSD patients. IQ and SUMD1 at 1 year, together with left frontal and parietal GM volumes, explain 80% of the variance of insight into having specific psychotic symptoms in SSD patients (adjusted R2 = 0.795, F = 15.576, P < .001). Conclusion: Insight is a complex phenomenon that depends both on severity of psychopathology and also on disease and subject characteristics, such as past adjustment, IQ, DUP, cognitive functioning, frontal and parietal GM volumes, and age, gender, and ethnicity. PMID:20884756

  6. Novel insights into enhanced dewaterability of waste activated sludge by Fe(II)-activated persulfate oxidation.

    PubMed

    Zhen, Guangyin; Lu, Xueqin; Li, Yuyou; Zhao, Youcai; Wang, Baoying; Song, Yu; Chai, Xiaoli; Niu, Dongjie; Cao, Xianyan

    2012-09-01

    The potential of Fe(II)-activated persulfate (S(2)O(8)(2-)) oxidation on enhancing the dewaterability of sludge flocs from 3-full scale wastewater treatment plants (WWTPs) were investigated. Normalized capillary suction time (CST) was applied to evaluate sludge dewaterability. Both extracellular polymeric substances (EPS) and metabolic activity of microorganisms were determined to explore the responsible mechanism. Fe(II)-S(2)O(8)(2-) oxidation effectively improved sludge dewaterability. The most important mechanisms were proposed to be the degradation of EPS incorporated in sludge flocs and rupture of microbial cells. Three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy confirmed that the powerful SO(4)(-) from Fe(II)-S(2)O(8)(2-) system destroyed the particular functional groups of fluorescing substances (i.e., aromatic protein-, tryptophan protein-, humic- and fulvic-like substances) in EPS and caused cleavage of linkages in the polymeric backbone and simultaneous destruction of microbial cells, resulting in the release of EPS-bound water, intracellular materials and water of hydration inside cells, and subsequent enhancement of dewaterability.

  7. Insights into partially folded or unfolded States of metalloproteins from nuclear magnetic resonance.

    PubMed

    Turano, Paola

    2004-12-13

    Nuclear magnetic resonance (NMR) provides detailed insights into the conformational features of unfolded and partially folded proteins. In the case of metalloproteins, special attention should be devoted to the characterization of the properties of the metal binding sites, and specific approaches need to be developed depending on the nature of the metal ion and its coordination environment. At the same time, metal-based NMR parameters may help in getting a better picture of the average structural properties of the metalloprotein. A critical evaluation of the limits of applicability of paramagnetic effects for solution structure determination in partially folded or unfolded proteins is presented. The coupling between NMR characterization of structure and dynamic of the polypeptide chain and of the metal environment provides insights into the stabilizing role of metal ions in metalloproteins. The overall approach is illustrated for some case examples of increasing flexibility obtained far from native conditions for cytochrome c and superoxide dismutase, two metalloproteins that have been extensively studied in our lab and whose misfolded forms may be relevant for important biological processes.

  8. Antimicrobial activity of human islet amyloid polypeptides: an insight into amyloid peptides' connection with antimicrobial peptides.

    PubMed

    Wang, Lan; Liu, Qian; Chen, Jin-Chun; Cui, Yi-Xian; Zhou, Bing; Chen, Yong-Xiang; Zhao, Yu-Fen; Li, Yan-Mei

    2012-07-01

    Human islet amyloid polypeptide (hIAPP) shows an antimicrobial activity towards two types of clinically relevant bacteria. The potency of hIAPP varies with its aggregation states. Circular dichroism was employed to determine the interaction between hIAPP and bacteria lipid membrane mimic. The antimicrobial activity of each aggregate species is associated with their ability to induce membrane disruption. Our findings provide new evidence revealing the antimicrobial activity of amyloid peptide, which suggest a possible connection between amyloid peptides and antimicrobial peptides.

  9. Pterostilbene-mediated Nrf2 activation: Mechanistic insights on Keap1:Nrf2 interface.

    PubMed

    Bhakkiyalakshmi, Elango; Dineshkumar, Kesavan; Karthik, Suresh; Sireesh, Dornadula; Hopper, Waheeta; Paulmurugan, Ramasamy; Ramkumar, Kunka Mohanram

    2016-08-15

    The discovery of Keap1-Nrf2 protein-protein interaction (PPI) inhibitors has become a promising strategy to develop novel lead molecules against variety of stress. Hence, Keap1-Nrf2 system plays an important role in oxidative/electrophilic stress associated disorders. Our earlier studies identified pterostilbene (PTS), a natural analogue of resveratrol, as a potent Nrf2 activator and Keap1-Nrf2 PPI inhibitor as assessed by luciferase complementation assay. In this study, we further identified the potential of PTS in Nrf2 activation and ARE-driven downstream target genes expression by nuclear translocation experiments and ARE-luciferase reporter assay, respectively. Further, the luciferase complementation assay identified that PTS inhibits Keap1-Nrf2 PPI in both dose and time-dependent manner. Computational studies using molecular docking and dynamic simulation revealed that PTS directly interacts with the basic amino acids of kelch domain of Keap1 and perturb Keap1-Nrf2 interaction pattern. This manuscript not only shows the binding determinants of Keap1-Nrf2 proteins but also provides mechanistic insights on Nrf2 activation potential of PTS.

  10. Molecular level activation insights from a NR2A/NR2B agonist.

    PubMed

    Ieong Tou, Weng; Chang, Su-Sen; Wu, Dongchuan; Lai, Ted Weita; Wang, Yu Tian; Hsu, Chung Y; Chen, Calvin Yu-Chian

    2014-01-01

    N-methyl D-aspartate receptors (NMDARs), a subclass of glutamate receptors have broad actions in neural transmission for major brain functions. Overactivation of NMDARs leading to "excitotoxicity" is the underlying mechanism of neuronal death in a number of neurological diseases, especially stroke. Much research effort has been directed toward developing pharmacological agents to modulate NMDAR actions for treating neurological diseases, in particular stroke. Here, we report that Alliin, a sulfoxide in fresh garlic, exhibits affinity toward NR2A as well as NR2B receptors based on virtual screening. Biological activities of Alliin on these two receptors were confirmed in electrophysiological studies. Ligand-binding site closure, a structural change precluding ion channel opening, was observed with Alliin during 100 ns molecular dynamics simulation. Alliin interactions with NR2A and NR2B suggest that residues E/A413, H485, T690, and Y730 may play important roles in the conformation shift. Activation of NR2A and NR2B by Alliin can be differentiated from that caused by glutamate, the endogenous neurotransmitter. These characteristic molecular features in NR2A and NR2B activation provide insight into structural requirements for future development of novel drugs with selective interaction with NR2A and NR2B for treating neurological diseases, particularly stroke.

  11. The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly.

    PubMed

    Mainwaring, David E; Nguyen, Song Ha; Webb, Hayden; Jakubov, Timur; Tobin, Mark; Lamb, Robert N; Wu, Alex H-F; Marchant, Richard; Crawford, Russell J; Ivanova, Elena P

    2016-03-28

    While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of magnitude. Notably, the chemical composition of the lipid nanopillars was seen by XPS and synchrotron FTIR microspectroscopy to be similar across these activity differences. Modelling the interaction between bacterial cells and the wing surface lipids of 3 species of dragonflies, that inhabit similar environments, but with distinctly different behavioural repertoires, provided the relationship between surface structure and antibacterial functionality. In doing so, these principal behavioural patterns correlated with the demands for antimicrobial efficiency dictated by differences in their foraging strategies. This work now reveals a new feature in the design elegance of natural multi-functional surfaces as well providing insights into the bactericidal mechanism underlying inherently antimicrobial materials, while suggesting that nanotopology is related to the evolutionary development of a species through the demands of its behavioural repertoire. The underlying relationship between the processes of wetting, adhesion and capillarity of the lipid nanopillars and bactericidal efficiency suggests new prospects for purely mechano-responsive antibacterial surfaces.

  12. Species differences in the antidiarrheal and antispasmodic activities of Lepidium sativum and insight into underlying mechanisms.

    PubMed

    Gilani, Anwarul-Hassan; Rehman, Najeeb-Ur; Mehmood, Malik Hassan; Alkharfy, Khalid M

    2013-07-01

    The aim of this study was to see if the crude extract of Lepidium sativum (Ls.Cr) exhibits species specificity in its antidiarrheal and antispasmodic activities along with insight into the underlying mechanisms using the in-vivo and in-vitro experiments. Ls.Cr inhibited castor oil-induced diarrhea in mice at doses (300 and 1000 mg/kg) three times higher dose than for rats. In isolated rat ileum and jejunum, Ls.Cr completely inhibited carbachol (CCh), low K⁺ (25 mM) and high K⁺ (80 mM)-induced contractions, while in guinea-pig tissues, Ls.Cr caused complete inhibition of only CCh-induced contraction. In rabbit tissues, Ls.Cr completely inhibited CCh and low K⁺-induced contractions sensitive to K⁺ channel antagonists. Pretreatment of guinea-pig and rat tissues with Ls.Cr caused a rightward shift in CCh-induced contractions in a pattern similar to dicyclomine, while in rabbit and rat tissues, Ls.Cr shifted isoprenaline curves to the left similar to papaverine. These data indicate that the antidiarrheal and antispasmodic activities of L. sativum are species dependent, mediating its antispasmodic effect through combinations of multiple pathways including activation of K⁺ channels, and inhibition of muscarinic receptors, Ca⁺⁺ channels and PDE enzyme. Rat tissues showed the highest potency. Based on the results, we recommend using multiple species to know the real pharmacological profile of medicinal products.

  13. Structure of a nanobody-stabilized active state of the β(2) adrenoceptor.

    PubMed

    Rasmussen, Søren G F; Choi, Hee-Jung; Fung, Juan Jose; Pardon, Els; Casarosa, Paola; Chae, Pil Seok; Devree, Brian T; Rosenbaum, Daniel M; Thian, Foon Sun; Kobilka, Tong Sun; Schnapp, Andreas; Konetzki, Ingo; Sunahara, Roger K; Gellman, Samuel H; Pautsch, Alexander; Steyaert, Jan; Weis, William I; Kobilka, Brian K

    2011-01-13

    G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviours in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein. We generated a camelid antibody fragment (nanobody) to the human β(2) adrenergic receptor (β(2)AR) that exhibits G protein-like behaviour, and obtained an agonist-bound, active-state crystal structure of the receptor-nanobody complex. Comparison with the inactive β(2)AR structure reveals subtle changes in the binding pocket; however, these small changes are associated with an 11 Å outward movement of the cytoplasmic end of transmembrane segment 6, and rearrangements of transmembrane segments 5 and 7 that are remarkably similar to those observed in opsin, an active form of rhodopsin. This structure provides insights into the process of agonist binding and activation.

  14. Charge-Transfer Excited States in Aqueous DNA: Insights from Many-Body Green's Function Theory

    NASA Astrophysics Data System (ADS)

    Yin, Huabing; Ma, Yuchen; Mu, Jinglin; Liu, Chengbu; Rohlfing, Michael

    2014-06-01

    Charge-transfer (CT) excited states play an important role in the excited-state dynamics of DNA in aqueous solution. However, there is still much controversy on their energies. By ab initio many-body Green's function theory, together with classical molecular dynamics simulations, we confirm the existence of CT states at the lower energy side of the optical absorption maximum in aqueous DNA as observed in experiments. We find that the hydration shell can exert strong effects (˜1 eV) on both the electronic structure and CT states of DNA molecules through dipole electric fields. In this case, the solvent cannot be simply regarded as a macroscopic screening medium as usual. The influence of base stacking and base pairing on the CT states is also discussed.

  15. Insight into the antimicrobial activities of coprisin isolated from the dung beetle, Copris tripartitus, revealed by structure-activity relationships.

    PubMed

    Lee, Eunjung; Kim, Jin-Kyoung; Shin, Soyoung; Jeong, Ki-Woong; Shin, Areum; Lee, Juneyoung; Lee, Dong Gun; Hwang, Jae-Sam; Kim, Yangmee

    2013-02-01

    The novel 43-residue, insect defensin-like peptide coprisin, isolated from the dung beetle, Copris tripartitus, is a potent antibiotic with bacterial cell selectivity, exhibiting antimicrobial activities against Gram-positive and Gram-negative bacteria without exerting hemolytic activity against human erythrocytes. Tests against Staphylococcus aureus using fluorescent dye leakage and depolarization measurements showed that coprisin targets the bacterial cell membrane. To understand structure-activity relationships, we determined the three-dimensional structure of coprisin in aqueous solution by nuclear magnetic resonance spectroscopy, which showed that coprisin has an amphipathic α-helical structure from Ala(19) to Arg(28), and β-sheets from Gly(31) to Gln(35) and Val(38) to Arg(42). Coprisin has electropositive regions formed by Arg(28), Lys(29), Lys(30), and Arg(42) and ITC results proved that coprisin and LPS have electrostatically driven interactions. Using measurements of nitric oxide release and inflammatory cytokine production, we provide the first verification of the anti-inflammatory activity and associated mechanism of an insect defensin, demonstrating that the anti-inflammatory actions of the defensin-like peptide, coprisin, are initiated by suppressing the binding of LPS to toll-like receptor 4, and subsequently inhibiting the phosphorylation of p38 mitogen-activated protein kinase and nuclear translocation of NF-kB. In conclusion, we have demonstrated that an amphipathic helix and an electropositive surface in coprisin may play important roles in its effective interaction with bacterial cell membranes and, ultimately, in its high antibacterial activity and potent anti-inflammatory activity. In addition to elucidating the antimicrobial action of coprisin, this work may provide insight into the mechanism of action of insect defense systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Use of Google Insights for Search to track seasonal and geographic kidney stone incidence in the United States.

    PubMed

    Breyer, Benjamin N; Sen, Saunak; Aaronson, David S; Stoller, Marshall L; Erickson, Bradley A; Eisenberg, Michael L

    2011-08-01

    To determine whether Internet search volume for kidney stones has seasonal and geographic distributions similar to known kidney stone incidence. Google Insights for Search analyzes a portion of Google web searches from all Google domains to compute how many searches are performed for a given term relative to the total number of searches done over a specific time interval and geographic region. Selected terms related to kidney stones were examined to determine which most closely tracked kidney stone incidence. Google Insights for Search data were correlated with hospital admissions for the emergent treatment of nephrolithiasis found through the Nationwide Inpatient Sample. Ambient temperature in Seattle and New York were compared with search volume for these regions to display qualitative relationships. The term "kidney stones" had the highest seasonal correlation of terms examined (r = .81, P = .0014). Google Insights for Search output and national Inpatient Sample admissions also correlated when regions were compared (r = .90, P = .005). Qualitative relationships between ambient temperatures and kidney stone search volume do exist. Internet search volume activity for kidney stones correlates with temporal and regional kidney stone insurance claims data. In the future, with improved modeling of search detection algorithms and increased Internet usage, search volume has the potential to serve as a surrogate for kidney stone incidence. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. State-level gonorrhea rates and expedited partner therapy laws: insights from time series analyses.

    PubMed

    Owusu-Edusei, K; Cramer, R; Chesson, H W; Gift, T L; Leichliter, J S

    2017-06-01

    In this study, we examined state-level monthly gonorrhea morbidity and assessed the potential impact of existing expedited partner therapy (EPT) laws in relation to the time that the laws were enacted. Longitudinal study. We obtained state-level monthly gonorrhea morbidity (number of cases/100,000 for males, females and total) from the national surveillance data. We used visual examination (of morbidity trends) and an autoregressive time series model in a panel format with intervention (interrupted time series) analysis to assess the impact of state EPT laws based on the months in which the laws were enacted. For over 84% of the states with EPT laws, the monthly morbidity trends did not show any noticeable decreases on or after the laws were enacted. Although we found statistically significant decreases in gonorrhea morbidity within four of the states with EPT laws (Alaska, Illinois, Minnesota, and Vermont), there were no significant decreases when the decreases in the four states were compared contemporaneously with the decreases in states that do not have the laws. We found no impact (decrease in gonorrhea morbidity) attributable exclusively to the EPT law(s). However, these results do not imply that the EPT laws themselves were not effective (or failed to reduce gonorrhea morbidity), because the effectiveness of the EPT law is dependent on necessary intermediate events/outcomes, including sexually transmitted infection service providers' awareness and practice, as well as acceptance by patients and their partners. Published by Elsevier Ltd.

  18. Structural and mechanistic insights into the activation of Stromal interaction molecule 1 (STIM1).

    PubMed

    Yang, Xue; Jin, Hao; Cai, Xiangyu; Li, Siwei; Shen, Yuequan

    2012-04-10

    Calcium influx through the Ca(2+) release-activated Ca(2+) (CRAC) channel is an essential process in many types of cells. Upon store depletion, the calcium sensor in the endoplasmic reticulum, STIM1, activates Orai1, a CRAC channel in the plasma membrane. We have determined the structures of SOAR from Homo sapiens (hSOAR), which is part of STIM1 and is capable of constitutively activating Orai1, and the entire coiled coil region of STIM1 from Caenorhabditis elegans (ceSTIM1-CCR) in an inactive state. Our studies reveal that the formation of a SOAR dimer is necessary to activate the Orai1 channel. Mutations that disrupt SOAR dimerization or remove the cluster of positive residues abolish STIM1 activation of Orai1. We identified a possible inhibitory helix within the structure of ceSTIM1-CCR that tightly interacts with SOAR. Functional studies suggest that the inhibitory helix may keep the C-terminus of STIM1 in an inactive state. Our data allowed us to propose a model for STIM1 activation.

  19. The Islamic State We Knew: Insights Before the Resurgence and Their Implications

    DTIC Science & Technology

    2015-01-01

    Sabah , “Defeating Islamic State Leaves Bill Iraq’s Struggling to Pay,” Bloomberg.com, May 11, 2015; Zaid Al-Ali, “Tikrit: Iraq’s Abandoned City...http://www.nytimes.com/2007/07/05/world/africa/05iht-05iraq.4.6512786.html?_r=0 Alwan, Aziz, and Zaid Sabah , “Defeating Islamic State Leaves Bill

  20. Validity Evidence for the State Mindfulness Scale for Physical Activity

    ERIC Educational Resources Information Center

    Cox, Anne E.; Ullrich-French, Sarah; French, Brian F.

    2016-01-01

    Being attentive to and aware of one's experiences in the present moment with qualities of acceptance and openness reflects the state of mindfulness. Positive associations exist between state mindfulness and state autonomous motivation for everyday activities. Though this suggests that state mindfulness links with adaptive motivational experiences,…

  1. Validity Evidence for the State Mindfulness Scale for Physical Activity

    ERIC Educational Resources Information Center

    Cox, Anne E.; Ullrich-French, Sarah; French, Brian F.

    2016-01-01

    Being attentive to and aware of one's experiences in the present moment with qualities of acceptance and openness reflects the state of mindfulness. Positive associations exist between state mindfulness and state autonomous motivation for everyday activities. Though this suggests that state mindfulness links with adaptive motivational experiences,…

  2. B-H bond activation using an electrophilic metal complex: insights into the reaction pathway.

    PubMed

    Kumar, Rahul; Jagirdar, Balaji R

    2013-01-07

    A highly electrophilic ruthenium center in the [RuCl(dppe)(2)][OTf] complex brings about the activation of the B-H bond in ammonia borane (H(3)N·BH(3), AB) and dimethylamine borane (Me(2)HN·BH(3), DMAB). At room temperature, the reaction between [RuCl(dppe)(2)][OTf] and AB or DMAB results in trans-[RuH(η(2)-H(2))(dppe)(2)][OTf], trans-[RuCl(η(2)-H(2))(dppe)(2)][OTf], and trans-[RuH(Cl)(dppe)(2)], as noted in the NMR spectra. Mixing the ruthenium complex and AB or DMAB at low temperature (198/193 K) followed by NMR spectral measurements as the reaction mixture was warmed up to room temperature allowed the observation of various species formed enroute to the final products that were obtained at room temperature. On the basis of the variable-temperature multinuclear NMR spectroscopic studies of these two reactions, the mechanistic insights for B-H bond activation were obtained. In both cases, the reaction proceeds via an η(1)-B-H moiety bound to the metal center. The detailed mechanistic pathways of these two reactions as studied by NMR spectroscopy are described.

  3. Structural insights into Cydia pomonella pheromone binding protein 2 mediated prediction of potentially active semiochemicals

    PubMed Central

    Tian, Zhen; Liu, Jiyuan; Zhang, Yalin

    2016-01-01

    Given the advantages of behavioral disruption application in pest control and the damage of Cydia pomonella, due progresses have not been made in searching active semiochemicals for codling moth. In this research, 31 candidate semiochemicals were ranked for their binding potential to Cydia pomonella pheromone binding protein 2 (CpomPBP2) by simulated docking, and this sorted result was confirmed by competitive binding assay. This high predicting accuracy of virtual screening led to the construction of a rapid and viable method for semiochemicals searching. By reference to binding mode analyses, hydrogen bond and hydrophobic interaction were suggested to be two key factors in determining ligand affinity, so is the length of molecule chain. So it is concluded that semiochemicals of appropriate chain length with hydroxyl group or carbonyl group at one head tended to be favored by CpomPBP2. Residues involved in binding with each ligand were pointed out as well, which were verified by computational alanine scanning mutagenesis. Progress made in the present study helps establish an efficient method for predicting potentially active compounds and prepares for the application of high-throughput virtual screening in searching semiochemicals by taking insights into binding mode analyses. PMID:26928635

  4. Structural Insights into the Anti-HIV Activity of the Oscillatoria agardhii Agglutinin Homolog Lectin Family*

    PubMed Central

    Koharudin, Leonardus M. I.; Kollipara, Sireesha; Aiken, Christopher; Gronenborn, Angela M.

    2012-01-01

    Oscillatoria agardhii agglutinin homolog (OAAH) proteins belong to a recently discovered lectin family. All members contain a sequence repeat of ∼66 amino acids, with the number of repeats varying among different family members. Apart from data for the founding member OAA, neither three-dimensional structures, information about carbohydrate binding specificities, nor antiviral activity data have been available up to now for any other members of the OAAH family. To elucidate the structural basis for the antiviral mechanism of OAAHs, we determined the crystal structures of Pseudomonas fluorescens and Myxococcus xanthus lectins. Both proteins exhibit the same fold, resembling the founding family member, OAA, with minor differences in loop conformations. Carbohydrate binding studies by NMR and x-ray structures of glycan-lectin complexes reveal that the number of sugar binding sites corresponds to the number of sequence repeats in each protein. As for OAA, tight and specific binding to α3,α6-mannopentaose was observed. All the OAAH proteins described here exhibit potent anti-HIV activity at comparable levels. Altogether, our results provide structural details of the protein-carbohydrate interaction for this novel lectin family and insights into the molecular basis of their HIV inactivation properties. PMID:22865886

  5. Structural insights into Cydia pomonella pheromone binding protein 2 mediated prediction of potentially active semiochemicals

    NASA Astrophysics Data System (ADS)

    Tian, Zhen; Liu, Jiyuan; Zhang, Yalin

    2016-03-01

    Given the advantages of behavioral disruption application in pest control and the damage of Cydia pomonella, due progresses have not been made in searching active semiochemicals for codling moth. In this research, 31 candidate semiochemicals were ranked for their binding potential to Cydia pomonella pheromone binding protein 2 (CpomPBP2) by simulated docking, and this sorted result was confirmed by competitive binding assay. This high predicting accuracy of virtual screening led to the construction of a rapid and viable method for semiochemicals searching. By reference to binding mode analyses, hydrogen bond and hydrophobic interaction were suggested to be two key factors in determining ligand affinity, so is the length of molecule chain. So it is concluded that semiochemicals of appropriate chain length with hydroxyl group or carbonyl group at one head tended to be favored by CpomPBP2. Residues involved in binding with each ligand were pointed out as well, which were verified by computational alanine scanning mutagenesis. Progress made in the present study helps establish an efficient method for predicting potentially active compounds and prepares for the application of high-throughput virtual screening in searching semiochemicals by taking insights into binding mode analyses.

  6. Analysis of Red-Fluorescent Proteins Provides Insight into Dark-State Conversion and Photodegradation

    PubMed Central

    Dean, Kevin M.; Lubbeck, Jennifer L.; Binder, Jennifer K.; Schwall, Linda R.; Jimenez, Ralph; Palmer, Amy E.

    2011-01-01

    Fluorescent proteins (FPs) are powerful tools that permit real-time visualization of cellular processes. The utility of a given FP for a specific experiment depends strongly on its effective brightness and overall photostability. However, the brightness of FPs is limited by dark-state conversion (DSC) and irreversible photobleaching, which occur on different timescales. Here, we present in vivo ensemble assays for measuring DSC and irreversible photobleaching under continuous and pulsed illumination. An analysis of closely related red FPs reveals that DSC and irreversible photobleaching are not always connected by the same mechanistic pathway. DSC occurs out of the first-excited singlet state, and its magnitude depends predominantly on the kinetics for recovery out of the dark state. The experimental results can be replicated through kinetic simulations of a four-state model of the electronic states. The methodology presented here allows light-driven dynamics to be studied at the ensemble level over six orders of magnitude in time (microsecond to second timescales). PMID:21843488

  7. Analysis of red-fluorescent proteins provides insight into dark-state conversion and photodegradation.

    PubMed

    Dean, Kevin M; Lubbeck, Jennifer L; Binder, Jennifer K; Schwall, Linda R; Jimenez, Ralph; Palmer, Amy E

    2011-08-17

    Fluorescent proteins (FPs) are powerful tools that permit real-time visualization of cellular processes. The utility of a given FP for a specific experiment depends strongly on its effective brightness and overall photostability. However, the brightness of FPs is limited by dark-state conversion (DSC) and irreversible photobleaching, which occur on different timescales. Here, we present in vivo ensemble assays for measuring DSC and irreversible photobleaching under continuous and pulsed illumination. An analysis of closely related red FPs reveals that DSC and irreversible photobleaching are not always connected by the same mechanistic pathway. DSC occurs out of the first-excited singlet state, and its magnitude depends predominantly on the kinetics for recovery out of the dark state. The experimental results can be replicated through kinetic simulations of a four-state model of the electronic states. The methodology presented here allows light-driven dynamics to be studied at the ensemble level over six orders of magnitude in time (microsecond to second timescales). Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Dynamical insights into (1)pi sigma(*) state mediated photodissociation of aniline.

    PubMed

    King, Graeme A; Oliver, Thomas A A; Ashfold, Michael N R

    2010-06-07

    This article reports a comprehensive study of the mechanisms of H atom loss in aniline (C(6)H(5)NH(2)) following ultraviolet excitation, using H (Rydberg) atom photofragment translational spectroscopy. N-H bond fission via the low lying (1)pi sigma(*) electronic state of aniline is experimentally demonstrated. The (1)pi sigma(*) potential energy surface (PES) of this prototypical aromatic amine is essentially repulsive along the N-H stretch coordinate, but possesses a shallow potential well in the vertical Franck-Condon region, supporting quasibound vibrational levels. Photoexcitation at wavelengths (lambda(phot)) in the range 293.859 nm > or = lambda(phot) > or = 193.3 nm yields H atom loss via a range of mechanisms. With lambda(phot) resonant with the 1(1)pi pi(*) <-- S(0) origin (293.859 nm), H atom loss proceeds via, predominantly, multiphoton excitation processes, resonantly enhanced at the one photon energy by the first (1)pi pi(*) excited state (the 1(1)pi pi(*) state). Direct excitation to the first few quasibound vibrational levels of the (1)pi sigma(*) state (at wavelengths in the range 269.513 nm > or = lambda(phot) > or = 260 nm) induces N-H bond fission via H atom tunneling through an exit barrier into the repulsive region of the (1)pi sigma(*) PES, forming anilino (C(6)H(5)NH) radical products in their ground electronic state, and with very limited vibrational excitation; the photo-prepared vibrational mode in the (1)pi sigma(*) state generally evolves adiabatically into the corresponding mode of the anilino radical upon dissociation. However, as the excitation wavelength is reduced (lambda(phot) < 260 nm), N-H bond fission yields fragments with substantially greater vibrational excitation, rationalized in terms of direct excitation to 1(1)pi pi(*) levels, followed by coupling to the (1)pi sigma(*) PES via a 1(1)pi pi(*)/(1)pi sigma(*) conical intersection. Changes in product kinetic energy disposal once lambda(phot) approaches approximately 230 nm

  9. Magnetic latitude dependence of oxygen charge states in the global magnetosphere: Insights into solar wind-originating ion injection

    NASA Astrophysics Data System (ADS)

    Allen, R. C.; Livi, S. A.; Vines, S. K.; Goldstein, J.

    2016-10-01

    Understanding the sources and subsequent evolution of plasma in a magnetosphere holds intrinsic importance for magnetospheric dynamics. Previous studies have investigated the balance of ionospheric-originating heavy ions (low charge state) from those of solar wind origin (high charge state) in the magnetosphere of Earth. These studies have suggested a variety of entry mechanisms for solar wind ions to penetrate into the magnetosphere. Following from recently published distributions for oxygen charge states observed by the Polar spacecraft, this paper investigates oxygen charge state flux distributions versus L shell and magnetic latitude. By showing these distributions in this frame, and binning by various proxies for magnetospheric dynamics (Dst, AE, VSW∗BZ, Pdyn), insight has been gained into the underlying physics at play for oxygen injection. Ionospheric-originating oxygen is observed to depend predominantly on Dst, whereas solar wind-originating oxygen is observed to have a strong dependence on solar wind dynamic pressure (Pdyn) at the flanks and on VSW∗BZ at the dayside. This suggests that both Kelvin-Helmholtz instabilities and reconnection play major roles in solar wind ion penetration into a magnetosphere. Additionally, the near-Earth magnetotail reconnection site does not seem to be a major injection site of solar wind-originating plasma in the 1 to 200 keV/e energy range.

  10. Physical coupling of activation and derepression activities to maintain an active transcriptional state at FLC

    PubMed Central

    Yang, Hongchun; Howard, Martin; Dean, Caroline

    2016-01-01

    Establishment and maintenance of gene expression states is central to development and differentiation. Transcriptional and epigenetic mechanisms interconnect in poorly understood ways to determine these states. We explore these mechanisms through dissection of the regulation of Arabidopsis thaliana FLOWERING LOCUS C (FLC). FLC can be present in a transcriptionally active state marked by H3K36me3 or a silent state marked by H3K27me3. Here, we investigate the trans factors modifying these opposing histone states and find a physical coupling in vivo between the H3K36 methyltransferase, SDG8, and the H3K27me3 demethylase, ELF6. Previous modeling has predicted this coupling would exist as it facilitates bistability of opposing histone states. We also find association of SDG8 with the transcription machinery, namely RNA polymerase II and the PAF1 complex. Delivery of the active histone modifications is therefore likely to be through transcription at the locus. SDG8 and ELF6 were found to influence the localization of each other on FLC chromatin, showing the functional importance of the interaction. In addition, both influenced accumulation of the associated H3K27me3 and H3K36me3 histone modifications at FLC. We propose the physical coupling of activation and derepression activities coordinates transcriptional activity and prevents ectopic silencing. PMID:27482092

  11. Stated Uptake of Physical Activity Rewards Programmes Among Active and Insufficiently Active Full-Time Employees.

    PubMed

    Ozdemir, Semra; Bilger, Marcel; Finkelstein, Eric A

    2017-04-22

    Employers are increasingly relying on rewards programmes in an effort to promote greater levels of activity among employees; however, if enrolment in these programmes is dominated by active employees, then they are unlikely to be a good use of resources. This study uses a stated-preference survey to better understand who participates in rewards-based physical activity programmes, and to quantify stated uptake by active and insufficiently active employees. The survey was fielded to a national sample of 950 full-time employees in Singapore between 2012 and 2013. Participants were asked to choose between hypothetical rewards programmes that varied along key dimensions and whether or not they would join their preferred programme if given the opportunity. A mixed logit model was used to analyse the data and estimate predicted uptake for specific programmes. We then simulated employer payments based on predictions for the percentage of each type of employee likely to meet the activity goal. Stated uptake ranged from 31 to 67% of employees, depending on programme features. For each programme, approximately two-thirds of those likely to enrol were insufficiently active. Results showed that insufficiently active employees, who represent the majority, are attracted to rewards-based physical activity programmes, and at approximately the same rate as active employees, even when enrolment fees are required. This suggests that a programme with generous rewards and a modest enrolment fee may have strong employee support and be within the range of what employers may be willing to spend.

  12. Career Readiness in the United States 2015. ACT Insights in Education and Work

    ERIC Educational Resources Information Center

    LeFebvre, Mary

    2015-01-01

    ACT has conducted over 20,000 job analyses for occupations across a diverse array of industries and occupations since 1993. This report highlights the levels of career readiness for various subgroups of ACT Work Keys® examinees in the United States and provides career readiness benchmarks for selected ACT WorkKeys cognitive skills by career…

  13. Request Strategies in Professional E-Mail Correspondence: Insights from the United States Workplace

    ERIC Educational Resources Information Center

    Leopold, Lisa

    2015-01-01

    Despite growing interest in the rhetorical features of e-mail correspondence, this is the first study to examine the request strategies in e-mails written by native English-speaking professionals from a variety of industries in the United States. This study uses Blum-Kulka, House, and Kasper's (1989) speech act framework to analyze the request…

  14. What State Policymakers Should Know about Federal Higher Education Policy. Policy Insights

    ERIC Educational Resources Information Center

    Longanecker, David A.

    2006-01-01

    Despite the mantra that education is primarily a state responsibility, the federal government is an important and influential player when it comes to providing higher education to the nation's students. The federal government invests roughly $25 billion annually in higher education excluding loans that are ultimately repaid, military benefits that…

  15. New insight and old dilemma: a cross-cultural comparison of Japan and the United States.

    PubMed

    Lebra, T S

    2000-01-01

    Conflict in close relationships, or "generative tension," characterizes both the United States and Japan, with differences only in the style and timing of its manifestation. The potentially fruitful strategy of Rothbaum et al.'s article is constrained by their cross-cultural comparative methodology.

  16. Olanzapine Activates Hepatic Mammalian Target of Rapamycin: New Mechanistic Insight into Metabolic Dysregulation with Atypical Antipsychotic Drugs

    PubMed Central

    Schmidt, Robin H.; Jokinen, Jenny D.; Massey, Veronica L.; Falkner, K. Cameron; Shi, Xue; Yin, Xinmin; Zhang, Xiang; Beier, Juliane I.

    2013-01-01

    Olanzapine (OLZ), an effective treatment of schizophrenia and other disorders, causes weight gain and metabolic syndrome. Most studies to date have focused on the potential effects of OLZ on the central nervous system’s mediation of weight; however, peripheral changes in liver or other key metabolic organs may also play a role in the systemic effects of OLZ. Thus, the purpose of this study was to investigate the effects of OLZ on hepatic metabolism in a mouse model of OLZ exposure. Female C57Bl/6J mice were administered OLZ (8 mg/kg per day) or vehicle subcutaneously by osmotic minipumps for 28 days. Liver and plasma were taken at sacrifice for biochemical analyses and for comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry metabolomics analysis. OLZ increased body weight, fat pad mass, and liver-to-body weight ratio without commensurate increase in food consumption, indicating that OLZ altered energy expenditure. Expression and biochemical analyses indicated that OLZ induced anaerobic glycolysis and caused a pseudo-fasted state, which depleted hepatic glycogen reserves. OLZ caused similar effects in cultured HepG2 cells, as determined by Seahorse analysis. Metabolomic analysis indicated that OLZ increased hepatic concentrations of amino acids that can alter metabolism via the mTOR pathway; indeed, hepatic mTOR signaling was robustly increased by OLZ. Interestingly, OLZ concomitantly activated AMP-activated protein kinase (AMPK) signaling. Taken together, these data suggest that disturbances in glucose and lipid metabolism caused by OLZ in liver may be mediated, at least in part, via simultaneous activation of both catabolic (AMPK) and anabolic (mammalian target of rapamycin) pathways, which yields new insight into the metabolic side effects of this drug. PMID:23926289

  17. Seismic amplification within the Seattle Basin, Washington State: Insights from SHIPS seismic tomography experiments

    USGS Publications Warehouse

    Snelson, C.M.; Brocher, T.M.; Miller, K.C.; Pratt, T.L.; Trehu, A.M.

    2007-01-01

    Recent observations indicate that the Seattle sedimentary basin, underlying Seattle and other urban centers in the Puget Lowland, Washington, amplifies long-period (1-5 sec) weak ground motions by factors of 10 or more. We computed east-trending P- and S-wave velocity models across the Seattle basin from Seismic Hazard Investigations of Puget Sound (SHIPS) experiments to better characterize the seismic hazard the basin poses. The 3D tomographic models, which resolve features to a depth of 10 km, for the first time define the P- and S-wave velocity structure of the eastern end of the basin. The basin, which contains sedimentary rocks of Eocene to Holocene, is broadly symmetric in east-west section and reaches a maximum thickness of 6 km along our profile beneath north Seattle. A comparison of our velocity model with coincident amplification curves for weak ground motions produced by the 1999 Chi-Chi earthquake suggests that the distribution of Quaternary deposits and reduced velocity gradients in the upper part of the basement east of Seattle have significance in forecasting variations in seismic-wave amplification across the basin. Specifically, eastward increases in the amplification of 0.2- to 5-Hz energy correlate with locally thicker unconsolidated deposits and a change from Crescent Formation basement to pre-Tertiary Cascadia basement. These models define the extent of the Seattle basin, the Seattle fault, and the geometry of the basement contact, giving insight into the tectonic evolution of the Seattle basin and its influence on ground shaking.

  18. State-Of in Uav Remote Sensing Survey - First Insights Into Applications of Uav Sensing Systems

    NASA Astrophysics Data System (ADS)

    Aasen, H.

    2017-08-01

    UAVs are increasingly adapted as remote sensing platforms. Together with specialized sensors, they become powerful sensing systems for environmental monitoring and surveying. Spectral data has great capabilities to the gather information about biophysical and biochemical properties. Still, capturing meaningful spectral data in a reproducible way is not trivial. Since a couple of years small and lightweight spectral sensors, which can be carried on small flexible platforms, have become available. With their adaption in the community, the responsibility to ensure the quality of the data is increasingly shifted from specialized companies and agencies to individual researchers or research teams. Due to the complexity of the data acquisition of spectral data, this poses a challenge for the community and standardized protocols, metadata and best practice procedures are needed to make data intercomparable. In November 2016, the ESSEM COST action Innovative optical Tools for proximal sensing of ecophysiological processes (OPTIMISE; http://optimise.dcs.aber.ac.uk/) held a workshop on best practices for UAV spectral sampling. The objective of this meeting was to trace the way from particle to pixel and identify influences on the data quality / reliability, to figure out how well we are currently doing with spectral sampling from UAVs and how we can improve. Additionally, a survey was designed to be distributed within the community to get an overview over the current practices and raise awareness for the topic. This talk will introduce the approach of the OPTIMISE community towards best practises in UAV spectral sampling and present first results of the survey (http://optimise.dcs.aber.ac.uk/uav-survey/). This contribution briefly introduces the survey and gives some insights into the first results given by the interviewees.

  19. Insight into GATA1 transcriptional activity through interrogation of cis elements disrupted in human erythroid disorders

    PubMed Central

    Wakabayashi, Aoi; Ulirsch, Jacob C.; Ludwig, Leif S.; Fiorini, Claudia; Yasuda, Makiko; Choudhuri, Avik; McDonel, Patrick; Zon, Leonard I.; Sankaran, Vijay G.

    2016-01-01

    Whole-exome sequencing has been incredibly successful in identifying causal genetic variants and has revealed a number of novel genes associated with blood and other diseases. One limitation of this approach is that it overlooks mutations in noncoding regulatory elements. Furthermore, the mechanisms by which mutations in transcriptional cis-regulatory elements result in disease remain poorly understood. Here we used CRISPR/Cas9 genome editing to interrogate three such elements harboring mutations in human erythroid disorders, which in all cases are predicted to disrupt a canonical binding motif for the hematopoietic transcription factor GATA1. Deletions of as few as two to four nucleotides resulted in a substantial decrease (>80%) in target gene expression. Isolated deletions of the canonical GATA1 binding motif completely abrogated binding of the cofactor TAL1, which binds to a separate motif. Having verified the functionality of these three GATA1 motifs, we demonstrate strong evolutionary conservation of GATA1 motifs in regulatory elements proximal to other genes implicated in erythroid disorders, and show that targeted disruption of such elements results in altered gene expression. By modeling transcription factor binding patterns, we show that multiple transcription factors are associated with erythroid gene expression, and have created predictive maps modeling putative disruptions of their binding sites at key regulatory elements. Our study provides insight into GATA1 transcriptional activity and may prove a useful resource for investigating the pathogenicity of noncoding variants in human erythroid disorders. PMID:27044088

  20. Insight into GATA1 transcriptional activity through interrogation of cis elements disrupted in human erythroid disorders.

    PubMed

    Wakabayashi, Aoi; Ulirsch, Jacob C; Ludwig, Leif S; Fiorini, Claudia; Yasuda, Makiko; Choudhuri, Avik; McDonel, Patrick; Zon, Leonard I; Sankaran, Vijay G

    2016-04-19

    Whole-exome sequencing has been incredibly successful in identifying causal genetic variants and has revealed a number of novel genes associated with blood and other diseases. One limitation of this approach is that it overlooks mutations in noncoding regulatory elements. Furthermore, the mechanisms by which mutations in transcriptionalcis-regulatory elements result in disease remain poorly understood. Here we used CRISPR/Cas9 genome editing to interrogate three such elements harboring mutations in human erythroid disorders, which in all cases are predicted to disrupt a canonical binding motif for the hematopoietic transcription factor GATA1. Deletions of as few as two to four nucleotides resulted in a substantial decrease (>80%) in target gene expression. Isolated deletions of the canonical GATA1 binding motif completely abrogated binding of the cofactor TAL1, which binds to a separate motif. Having verified the functionality of these three GATA1 motifs, we demonstrate strong evolutionary conservation of GATA1 motifs in regulatory elements proximal to other genes implicated in erythroid disorders, and show that targeted disruption of such elements results in altered gene expression. By modeling transcription factor binding patterns, we show that multiple transcription factors are associated with erythroid gene expression, and have created predictive maps modeling putative disruptions of their binding sites at key regulatory elements. Our study provides insight into GATA1 transcriptional activity and may prove a useful resource for investigating the pathogenicity of noncoding variants in human erythroid disorders.

  1. 'Maximising shareholder value': a detailed insight into the corporate political activity of the Australian food industry.

    PubMed

    Mialon, Melissa; Swinburn, Boyd; Allender, Steven; Sacks, Gary

    2017-04-01

    To gain deeper insight into the corporate political activity (CPA) of the Australian food industry from a public health perspective. Fifteen interviews with a purposive sample of current and former policy makers, public health advocates and academics who have closely interacted with food industry representatives or observed food industry behaviours. All participants reported having directly experienced the CPA of the food industry during their careers, with the 'information and messaging' and 'constituency building' strategies most prominent. Participants expressed concern that food industry CPA strategies resulted in weakened policy responses to addressing diet-related disease. This study provides direct evidence of food industry practices that have the potential to shape public health-related policies and programs in Australia in ways that favour business interests at the expense of population health. Implications for public health: This evidence can inform policy makers and public health advocates and be used to adopt measures to ensure that public interests are put at the forefront as part of the policy development and implementation process. © 2017 The Authors.

  2. Direct observation of frictional contacts: New insights for state-dependent properties

    USGS Publications Warehouse

    Dieterich, J.H.; Kilgore, B.D.

    1994-01-01

    Rocks and many other materials display a rather complicated, but characteristic, dependence of friction on sliding history. These effects are well-described by empirical rate- and state-dependent constitutive formulations which have been utilized for analysis of fault slip and earthquake processes. We present a procedure for direct quantitative microscopic observation of frictional contacts during slip. The observations reveal that frictional state dependence represents an increase of contact area with contact age. Transient changes of sliding resistance correlate with changes in contact area and arise from shifts of contact population age. Displacement-dependent replacement of contact populations is shown to cause the diagnostic evolution of friction over a characteristic sliding distance that occurs whenever slip begins or sliding conditions change. ?? 1994 Birkha??user Verlag.

  3. Dynamical insights into 1πσ* state mediated photodissociation of aniline

    NASA Astrophysics Data System (ADS)

    King, Graeme A.; Oliver, Thomas A. A.; Ashfold, Michael N. R.

    2010-06-01

    This article reports a comprehensive study of the mechanisms of H atom loss in aniline (C6H5NH2) following ultraviolet excitation, using H (Rydberg) atom photofragment translational spectroscopy. N-H bond fission via the low lying π1σ∗ electronic state of aniline is experimentally demonstrated. The π1σ∗ potential energy surface (PES) of this prototypical aromatic amine is essentially repulsive along the N-H stretch coordinate, but possesses a shallow potential well in the vertical Franck-Condon region, supporting quasibound vibrational levels. Photoexcitation at wavelengths (λphot) in the range 293.859 nm≥λphot≥193.3 nm yields H atom loss via a range of mechanisms. With λphot resonant with the 1π1π∗←S0 origin (293.859 nm), H atom loss proceeds via, predominantly, multiphoton excitation processes, resonantly enhanced at the one photon energy by the first π1π∗ excited state (the 1π1π∗ state). Direct excitation to the first few quasibound vibrational levels of the π1σ∗ state (at wavelengths in the range 269.513 nm≥λphot≥260 nm) induces N-H bond fission via H atom tunneling through an exit barrier into the repulsive region of the π1σ∗ PES, forming anilino (C6H5NH) radical products in their ground electronic state, and with very limited vibrational excitation; the photo-prepared vibrational mode in the π1σ∗ state generally evolves adiabatically into the corresponding mode of the anilino radical upon dissociation. However, as the excitation wavelength is reduced (λphot<260 nm), N-H bond fission yields fragments with substantially greater vibrational excitation, rationalized in terms of direct excitation to 1π1π∗ levels, followed by coupling to the π1σ∗ PES via a 1π1π∗/π1σ∗ conical intersection. Changes in product kinetic energy disposal once λphot approaches ˜230 nm likely indicate that the photodissociation pathways of aniline proceed via direct excitation to the (higher) 2π1π∗ state. Analysis of the

  4. Dynamical insights into {sup 1}{pi}{sigma}* state mediated photodissociation of aniline

    SciTech Connect

    King, Graeme A.; Oliver, Thomas A. A.; Ashfold, Michael N. R.

    2010-06-07

    This article reports a comprehensive study of the mechanisms of H atom loss in aniline (C{sub 6}H{sub 5}NH{sub 2}) following ultraviolet excitation, using H (Rydberg) atom photofragment translational spectroscopy. N-H bond fission via the low lying {sup 1}{pi}{sigma}* electronic state of aniline is experimentally demonstrated. The {sup 1}{pi}{sigma}* potential energy surface (PES) of this prototypical aromatic amine is essentially repulsive along the N-H stretch coordinate, but possesses a shallow potential well in the vertical Franck-Condon region, supporting quasibound vibrational levels. Photoexcitation at wavelengths ({lambda}{sub phot}) in the range 293.859 nm{>=}{lambda}{sub phot}{>=}193.3 nm yields H atom loss via a range of mechanisms. With {lambda}{sub phot} resonant with the 1{sup 1}{pi}{pi}*<-S{sub 0} origin (293.859 nm), H atom loss proceeds via, predominantly, multiphoton excitation processes, resonantly enhanced at the one photon energy by the first {sup 1}{pi}{pi}* excited state (the 1{sup 1}{pi}{pi}* state). Direct excitation to the first few quasibound vibrational levels of the {sup 1}{pi}{sigma}* state (at wavelengths in the range 269.513 nm{>=}{lambda}{sub phot}{>=}260 nm) induces N-H bond fission via H atom tunneling through an exit barrier into the repulsive region of the {sup 1{pi}{sigma}*} PES, forming anilino (C{sub 6}H{sub 5}NH) radical products in their ground electronic state, and with very limited vibrational excitation; the photo-prepared vibrational mode in the {sup 1}{pi}{sigma}* state generally evolves adiabatically into the corresponding mode of the anilino radical upon dissociation. However, as the excitation wavelength is reduced ({lambda}{sub phot}<260 nm), N-H bond fission yields fragments with substantially greater vibrational excitation, rationalized in terms of direct excitation to 1{sup 1}{pi}{pi}* levels, followed by coupling to the {sup 1}{pi}{sigma}* PES via a 1{sup 1}{pi}{pi}*/{sup 1}{pi}{sigma}* conical intersection

  5. Monoaminergic control of brain states and sensory processing: Existing knowledge and recent insights obtained with optogenetics.

    PubMed

    Lőrincz, Magor L; Adamantidis, Antoine R

    2017-04-01

    Monoamines are key neuromodulators involved in a variety of physiological and pathological brain functions. Classical studies using physiological and pharmacological tools have revealed several essential aspects of monoaminergic involvement in regulating the sleep-wake cycle and influencing sensory responses but many features have remained elusive due to technical limitations. The application of optogenetic tools led to the ability of monitoring and controlling neuronal populations with unprecedented temporal precision and neurochemical specificity. Here, we focus on recent advances in revealing the roles of some monoamines in brain state control and sensory information processing. We summarize the central position of monoamines in integrating sensory processing across sleep-wake states with an emphasis on research conducted using optogenetic techniques. Finally, we discuss the limitations and perspectives of new integrated experimental approaches in understanding the modulatory mechanisms of monoaminergic systems in the mammalian brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Theoretical insights into [NiFe]-hydrogenases oxidation resulting in a slowly reactivating inactive state.

    PubMed

    Breglia, Raffaella; Ruiz-Rodriguez, Manuel Antonio; Vitriolo, Alessandro; Gonzàlez-Laredo, Rubén Francisco; De Gioia, Luca; Greco, Claudio; Bruschi, Maurizio

    2017-01-01

    [NiFe]-hydrogenases catalyse the relevant H2 → 2H(+) + 2e(-) reaction. Aerobic oxidation or anaerobic oxidation of this enzyme yields two inactive states called Ni-A and Ni-B. These states differ for the reactivation kinetics which are slower for Ni-A than Ni-B. While there is a general consensus on the structure of Ni-B, the nature of Ni-A is still controversial. Indeed, several crystallographic structures assigned to the Ni-A state have been proposed, which, however, differ for the nature of the bridging ligand and for the presence of modified cysteine residues. The spectroscopic characterization of Ni-A has been of little help due to small differences of calculated spectroscopic parameters, which does not allow to discriminate among the various forms proposed for Ni-A. Here, we report a DFT investigation on the nature of the Ni-A state, based on systematic explorations of conformational and configurational space relying on accurate energy calculations, and on comparisons of theoretical geometries with the X-ray structures currently available. The results presented in this work show that, among all plausible isomers featuring various protonation patterns and oxygenic ligands, the one corresponding to the crystallographic structure recently reported by Volbeda et al. (J Biol Inorg Chem 20:11-22, 19)-featuring a bridging hydroxide ligand and the sulphur atom of Cys64 oxidized to bridging sulfenate-is the most stable. However, isomers with cysteine residues oxidized to terminal sulfenate are very close in energy, and modifications in the network of H-bond with neighbouring residues may alter the stability order of such species.

  7. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids.

    PubMed

    Nepali, Kunal; Sharma, Sahil; Sharma, Manmohan; Bedi, P M S; Dhar, K L

    2014-04-22

    A Hybrid drug which comprises the incorporation of two drug pharmacophores in one single molecule are basically designed to interact with multiple targets or to amplify its effect through action on another bio target as one single molecule or to counterbalance the known side effects associated with the other hybrid part(.) The present review article offers a detailed account of the design strategies employed for the synthesis of anticancer agents via molecular hybridization techniques. Over the years, the researchers have employed this technique to discover some promising chemical architectures displaying significant anticancer profiles. Molecular hybridization as a tool has been particularly utilized for targeting tubulin protein as exemplified through the number of research papers. The microtubule inhibitors such as taxol, colchicine, chalcones, combretasatin, phenstatins and vinca alkaloids have been utilized as one of the functionality of the hybrids and promising results have been obtained in most of the cases with some of the tubulin based hybrids exhibiting anticancer activity at nanomolar level. Linkage with steroids as biological carrier vector for anticancer drugs and the inclusion of pyrrolo [2,1-c] [1,4]benzodiazepines (PBDs), a family of DNA interactive antitumor antibiotics derived from Streptomyces species in hybrid structure based drug design has also emerged as a potential strategy. Various heteroaryl based hybrids in particular isatin and coumarins have also been designed and reported to posses' remarkable inhibitory potential. Apart from presenting the design strategies, the article also highlights the structure activity relationship along with mechanistic insights revealed during the biological evaluation of the hybrids. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Language in the brain at rest: new insights from resting state data and graph theoretical analysis

    PubMed Central

    Muller, Angela M.; Meyer, Martin

    2014-01-01

    In humans, the most obvious functional lateralization is the specialization of the left hemisphere for language. Therefore, the involvement of the right hemisphere in language is one of the most remarkable findings during the last two decades of fMRI research. However, the importance of this finding continues to be underestimated. We examined the interaction between the two hemispheres and also the role of the right hemisphere in language. From two seeds representing Broca's area, we conducted a seed correlation analysis (SCA) of resting state fMRI data and could identify a resting state network (RSN) overlapping to significant extent with a language network that was generated by an automated meta-analysis tool. To elucidate the relationship between the clusters of this RSN, we then performed graph theoretical analyses (GTA) using the same resting state dataset. We show that the right hemisphere is clearly involved in language. A modularity analysis revealed that the interaction between the two hemispheres is mediated by three partitions: A bilateral frontal partition consists of nodes representing the classical left sided language regions as well as two right-sided homologs. The second bilateral partition consists of nodes from the right frontal, the left inferior parietal cortex as well as of two nodes within the posterior cerebellum. The third partition is also bilateral and comprises five regions from the posterior midline parts of the brain to the temporal and frontal cortex, two of the nodes are prominent default mode nodes. The involvement of this last partition in a language relevant function is a novel finding. PMID:24808843

  9. From REM sleep behaviour disorder to status dissociatus: insights into the maze of states of being.

    PubMed

    Vetrugno, Roberto; Montagna, Pasquale

    2011-12-01

    Sleep is a coordinated process involving more or less simultaneous changes in sensory, motor, autonomic, hormonal, and cerebral processes. On the other hand, none of the changes occurring with sleep are invariably coupled to sleep. EEG synchrony, heat loss, sleep-related hormone secretion, and even REM-related motoneuron paralysis may occur independent of the parent state. In REM sleep behaviour disorder (RBD) the muscle tone of wakefulness intrudes into REM sleep, allowing the release of dream-enacting behaviours. Status dissociatus (SD) is a condition in which brain and mind are in disarray along the boundaries of sleep and wakefulness. The existence of such dissociated behaviours shows that they have separate neuronal control systems and indicates that the whole organization of sleep is an emergent property of the collective neuronal systems to synchronize. Insults to the brain can drastically alter the circuitries responsible for maintaining the integrity of wakefulness, NREM sleep, and REM sleep. As a consequence, the basic states of existence can become admixed and interchanged with striking disturbances of consciousness, brain electrophysiology, and the behavioural and polygraphic expression of sleep and wakefulness. The evolution of RBD into SD may result from a disarray of (brainstem) structures that orchestrate the whole brain wake-sleep conditions, but with preserved discrete systems and dissociable strategies to still place navigation in wake and sleep. Advances in the fields of genetics, neuroimaging, and behavioural neurology will expand the understanding of the mechanisms underlying the organization of the states of being along with their somatic/behavioural manifestations.

  10. Language in the brain at rest: new insights from resting state data and graph theoretical analysis.

    PubMed

    Muller, Angela M; Meyer, Martin

    2014-01-01

    In humans, the most obvious functional lateralization is the specialization of the left hemisphere for language. Therefore, the involvement of the right hemisphere in language is one of the most remarkable findings during the last two decades of fMRI research. However, the importance of this finding continues to be underestimated. We examined the interaction between the two hemispheres and also the role of the right hemisphere in language. From two seeds representing Broca's area, we conducted a seed correlation analysis (SCA) of resting state fMRI data and could identify a resting state network (RSN) overlapping to significant extent with a language network that was generated by an automated meta-analysis tool. To elucidate the relationship between the clusters of this RSN, we then performed graph theoretical analyses (GTA) using the same resting state dataset. We show that the right hemisphere is clearly involved in language. A modularity analysis revealed that the interaction between the two hemispheres is mediated by three partitions: A bilateral frontal partition consists of nodes representing the classical left sided language regions as well as two right-sided homologs. The second bilateral partition consists of nodes from the right frontal, the left inferior parietal cortex as well as of two nodes within the posterior cerebellum. The third partition is also bilateral and comprises five regions from the posterior midline parts of the brain to the temporal and frontal cortex, two of the nodes are prominent default mode nodes. The involvement of this last partition in a language relevant function is a novel finding.

  11. An insight into the biophysical characterization of different states of cefotaxime hydrolyzing β-lactamase 15 (CTX-M-15).

    PubMed

    Rehman, Md Tabish; Faheem, Mohd; Khan, Asad U

    2015-01-01

    Cefotaxime hydrolyzing β-lactamase-15 (CTX-M-15) is encoded by blaCTX-M-15 gene present on plasmid of various Gram-negative bacteria, such as E. coli, E. cloacae, K. pneumoniae, etc. The widespread dissemination of CTX-M-15 harboring bacteria in hospital as well as community settings is a universal threat as they are resistant to various clinically significant antibiotics. In order to gain an insight into the folding mechanism of CTX-M-15, we carried out pH-induced denaturation study by monitoring Trp fluorescence, far-UV circular dichroism (CD), and ANS fluorescence. We found that the pH-induced denaturation of CTX-M-15 was a three-step process with the accumulation of two stable folding intermediates (XI at pH 2.5 and XII at pH 1.5) in the folding pathway. The intermediates were further characterized by far-UV and near-UV CD analysis, Trp fluorescence, ANS fluorescence, three-dimensional fluorescence, acrylamide quenching, dynamic light scattering, and thermal denaturation studies. We found that XI state lacked tertiary structure but retained most of the secondary structure, its Trp residues were partially exposed to the solvent and its hydrophobic patches were highly accessible to ANS. On the other hand, a complete disruption of tertiary structure along with more than 50% loss in secondary structure was observed in XII state. We conclude that the XI state of CTX-M-15 at pH 2.5 had all the characteristics of a molten globule (MG) state, while its XII state at pH 1.5 was more similar to pre-molten globule (PMG) state. ANS fluorescence also showed that the binding of ANS in XII state was lower than that in the XI state. We propose that the accumulation of MG- and PMG-states was due to separation (at pH 2.5) and then unfolding (at pH 1.5) of the αβα-fold of CTX-M-15, respectively.

  12. Resting-state functional MR imaging shed insights into the brain of diabetes.

    PubMed

    Wang, Yun Fei; Ji, Xue Man; Lu, Guang Ming; Zhang, Long Jiang

    2016-10-01

    Diabetes mellitus is a common metabolic disease which is associated with increasing risk for multiple cognitive declines. Alterations in brain functional connectivity are believed to be the mechanisms underlying the cognitive function impairments. During the past decade, resting-state functional magnetic resonance imaging (rs-fMRI) has been developed as a major tool to study brain functional connectivity in vivo. This paper briefly reviews the diabetes-associated cognitive impairment, analysis algorithms and clinical applications of rs-fMRI. We also provide future perspectives of rs-fMRI in diabetes.

  13. Non-sulfate sulfur in fine aerosols across the United States: Insight for organosulfate prevalence

    NASA Astrophysics Data System (ADS)

    Shakya, Kabindra M.; Peltier, Richard E.

    2015-01-01

    We investigated the discrepancies in long-term sulfur measurements from 2000 to 2012 by two separate speciation methods, X-ray fluorescence (XRF) spectroscopy and ion chromatography (IC) across the United States (334 sites). Overall, there was a good correlation between sulfur measurements by XRF spectroscopy and IC (R ≥ 0.90 for most of the sites). However, the inorganic sulfate measured by ion chromatography was not sufficient to account for all the sulfur measured by XRF spectroscopy at many of the sites. Discrepancies were observed with the high ratios of sulfur measured by XRF spectroscopy to that by IC. Such high ratios also exhibited seasonal variation, and differed across land use types; significant differences occurred at locations classified as forest, agriculture, and mobile, but not in locations classified as commercial, desert, industrial, and residential. On average, the excess, or non-sulfate, sulfur (unmeasured organic sulfur or other inorganic species of sulfur) was variable and observed as high as ∼13% of organic carbon and ∼2% of PM2.5. The contribution of such assumed organosulfur was larger in the eastern region than other geographical locations in the United States. Besides the temporal and spatial trends, the additional sulfur was found to be related to other factors such as aerosol acidity and emission sources. The results suggest that these unmeasured sulfur species could have significant contribution to aerosol burden, and the understanding of these could help to control PM2.5 levels and to assess other effects of sulfur aerosols.

  14. Non-sulfate sulfur in fine aerosols across the United States: Insight for organosulfate prevalence

    PubMed Central

    Shakya, Kabindra M.; Peltier, Richard E.

    2014-01-01

    We investigated the discrepancies in long-term sulfur measurements from 2000 to 2012 by two separate speciation methods, X-ray fluorescence (XRF) spectroscopy and ion chromatography (IC) across the United States (334 sites). Overall, there was a good correlation between sulfur measurements by XRF spectroscopy and IC (R ≥ 0.90 for most of the sites). However, the inorganic sulfate measured by ion chromatography was not sufficient to account for all the sulfur measured by XRF spectroscopy at many of the sites. Discrepancies were observed with the high ratios of sulfur measured by XRF spectroscopy to that by IC. Such high ratios also exhibited seasonal variation, and differed across land use types; significant differences occurred at locations classified as forest, agriculture, and mobile, but not in locations classified as commercial, desert, industrial, and residential. On average, the excess, or non-sulfate, sulfur (unmeasured organic sulfur or other inorganic species of sulfur) was variable and observed as high as ~13% of organic carbon and ~2% of PM2.5. The contribution of such assumed organosulfur was larger in the eastern region than other geographical locations in the United States. Besides the temporal and spatial trends, the additional sulfur was found to be related to other factors such as aerosol acidity and emission sources. The results suggest that these unmeasured sulfur species could have significant contribution to aerosol burden, and the understanding of these could help to control PM2.5 levels and to assess other effects of sulfur aerosols. PMID:25620874

  15. Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR

    PubMed Central

    Hong, Mei; Su, Yongchao

    2011-01-01

    Many membrane peptides and protein domains contain functionally important cationic Arg and Lys residues, whose insertion into the hydrophobic interior of the lipid bilayer encounters significant energy barriers. To understand how these cationic molecules overcome the free energy barrier to insert into the lipid membrane, we have used solid-state NMR spectroscopy to determine the membrane-bound topology of these peptides. A versatile array of solid-state NMR experiments now readily yields the conformation, dynamics, orientation, depth of insertion, and site-specific protein–lipid interactions of these molecules. We summarize key findings of several Arg-rich membrane peptides, including β-sheet antimicrobial peptides, unstructured cell-penetrating peptides, and the voltage-sensing helix of voltage-gated potassium channels. Our results indicate the central role of guanidinium-phosphate and guanidinium-water interactions in dictating the structural topology of these cationic molecules in the lipid membrane, which in turn account for the mechanisms of this functionally diverse class of membrane peptides. PMID:21344534

  16. Microhydration of LiOH: Insight from electronic decays of core-ionized states.

    PubMed

    Kryzhevoi, Nikolai V

    2016-06-28

    We compute and compare the autoionization spectra of a core-ionized LiOH molecule both in its isolated and microhydrated states. Stepwise microhydration of LiOH leads to gradual elongation of the Li-OH bond length and finally to molecular dissociation. The accompanying changes in the local environment of the OH(-) and Li(+) counterions are reflected in the computed O 1s and Li 1s spectra. The role of solvent water molecules and the counterion in the spectral shape formation is assessed. Electronic decays of the microhydrated LiOH are found to be mostly intermolecular since the majority of the populated final states have at least one outer-valence vacancy outside the initially core-ionized ion, mainly on a neighboring water molecule. The charge delocalization occurs through the intermolecular Coulombic and electron transfer mediated decays. Both mechanisms are highly efficient that is partly attributed to hybridization of molecular orbitals. The computed spectral shapes are sensitive to the counterion separation as well as to the number and arrangement of solvent molecules. These sensitivities can be used for studying the local hydration structure of solvated ions in aqueous solutions.

  17. Microhydration of LiOH: Insight from electronic decays of core-ionized states

    NASA Astrophysics Data System (ADS)

    Kryzhevoi, Nikolai V.

    2016-06-01

    We compute and compare the autoionization spectra of a core-ionized LiOH molecule both in its isolated and microhydrated states. Stepwise microhydration of LiOH leads to gradual elongation of the Li-OH bond length and finally to molecular dissociation. The accompanying changes in the local environment of the OH- and Li+ counterions are reflected in the computed O 1s and Li 1s spectra. The role of solvent water molecules and the counterion in the spectral shape formation is assessed. Electronic decays of the microhydrated LiOH are found to be mostly intermolecular since the majority of the populated final states have at least one outer-valence vacancy outside the initially core-ionized ion, mainly on a neighboring water molecule. The charge delocalization occurs through the intermolecular Coulombic and electron transfer mediated decays. Both mechanisms are highly efficient that is partly attributed to hybridization of molecular orbitals. The computed spectral shapes are sensitive to the counterion separation as well as to the number and arrangement of solvent molecules. These sensitivities can be used for studying the local hydration structure of solvated ions in aqueous solutions.

  18. On the dynamical state of galaxy clusters: insights from cosmological simulations - II.

    NASA Astrophysics Data System (ADS)

    Cui, Weiguang; Power, Chris; Borgani, Stefano; Knebe, Alexander; Lewis, Geraint F.; Murante, Giuseppe; Poole, Gregory B.

    2017-01-01

    Using a suite of cosmology simulations of a sample of >120 galaxy clusters with log (MDM, vir) ≤ 14.5. We compare clusters that form in purely dark matter (DM) run and their counterparts in hydro-runs and investigate four independent parameters that are normally used to classify dynamical state. We find that the virial ratio η in hydro-dynamical runs is ˜10 per cent lower than in the DM run, and there is no clear separation between the relaxed and unrelaxed clusters for any parameter. Further, using the velocity dispersion deviation parameter ζ, which is defined as the ratio between cluster velocity dispersion σ and the theoretical prediction σ _t = √{G M_{total}/R}, we find that there is a linear correlation between the virial ratio η and this ζ parameter. We propose to use this ζ parameter, which can be easily derived from observed galaxy clusters, as a substitute of the η parameter to quantify the cluster dynamical state.

  19. The peptide-receptive transition state of MHC-1 molecules: Insight from structure and molecular dynamics

    SciTech Connect

    Robinson H.; Mage, M.; Dolan, M.; Wang, R.; Boyd, L.; Revilleza, M.; Natarajan, K.; Myers, N.; Hansen, T.; Margulies, D.

    2012-05-01

    MHC class I (MHC-I) proteins of the adaptive immune system require antigenic peptides for maintenance of mature conformation and immune function via specific recognition by MHC-I-restricted CD8(+) T lymphocytes. New MHC-I molecules in the endoplasmic reticulum are held by chaperones in a peptide-receptive (PR) transition state pending release by tightly binding peptides. In this study, we show, by crystallographic, docking, and molecular dynamics methods, dramatic movement of a hinged unit containing a conserved 3(10) helix that flips from an exposed 'open' position in the PR transition state to a 'closed' position with buried hydrophobic side chains in the peptide-loaded mature molecule. Crystallography of hinged unit residues 46-53 of murine H-2L(d) MHC-I H chain, complexed with mAb 64-3-7, demonstrates solvent exposure of these residues in the PR conformation. Docking and molecular dynamics predict how this segment moves to help form the A and B pockets crucial for the tight peptide binding needed for stability of the mature peptide-loaded conformation, chaperone dissociation, and Ag presentation.

  20. Amyloidogenic behavior of different intermediate state of stem bromelain: A biophysical insight.

    PubMed

    Zaman, Masihuz; Ehtram, Aquib; Chaturvedi, Sumit Kumar; Nusrat, Saima; Khan, Rizwan Hasan

    2016-10-01

    Stem bromelain, a cysteine proteases from Ananas comosus is a widely accepted therapeutic drug with broad medicinal application. It exists as intermediate states at pH 2.0 and 10.0, where it encountered in gastrointestinal tract during adsorption (acidic pH) and in gut epithelium (alkaline pH), respectively. In this study, we monitored the thermal aggregation/amyloid formation of SB at different pH intermediate states. Thermal treatment of stem bromelain at pH 10.0 favors the fibrillation in which the extent of aggregation increases with increase in protein concentration. However, no fibril formation in stem bromelain at pH 2.0 was found at all the concentration used at pH 10.0. The fibril formation was confirmed by various techniques such as turbidity measurements, Rayleigh light scattering, dye binding assays and far UV circular dichroism. The Dynamic light scattering confirmed the formation of aggregates by measuring the hydrodynamic radii pattern. Moreover, microscopic techniques were performed to analyze the morphology of fibrils. The aggregation behavior may be due to variation in number of charged amino acid residues. The less negative charge developed at pH 10.0 may be responsible for aggregation. This work helps to overcome the aggregation related problems of stem bromelain during formulations in pharmaceutical industry.

  1. Insights into the excitonic states of individual chlorosomes from Chlorobaculum tepidum.

    PubMed

    Jendrny, Marc; Aartsma, Thijs J; Köhler, Jürgen

    2014-05-06

    Green-sulfur bacteria have evolved a unique light-harvesting apparatus, the chlorosome, by which it is perfectly adapted to thrive photosynthetically under extremely low light conditions. We have used single-particle, optical spectroscopy to study the structure-function relationship of chlorosomes each of which incorporates hundreds of thousands of self-assembled bacteriochlorophyll (BChl) molecules. The electronically excited states of these molecular assemblies are described as Frenkel excitons whose photophysical properties depend crucially on the mutual arrangement of the pigments. The signature of these Frenkel excitons and its relation to the supramolecular organization of the chlorosome becomes accessible by optical spectroscopy. Because subtle spectral features get obscured by ensemble averaging, we have studied individual chlorosomes from wild-type Chlorobaculum tepidum by polarization-resolved fluorescence-excitation spectroscopy. This approach minimizes the inherent sample heterogeneity and allows us to reveal properties of the exciton states without ensemble averaging. The results are compared with predictions from computer simulations of various models of the supramolecular organization of the BChl monomers. We find that the photophysical properties of individual chlorosomes from wild-type Chlorobaculum tepidum are consistent with a (multiwall) helical arrangement of syn-anti stacked BChl molecules in cylinders and/or spirals of different size.

  2. Non-sulfate sulfur in fine aerosols across the United States: Insight for organosulfate prevalence.

    PubMed

    Shakya, Kabindra M; Peltier, Richard E

    2015-01-01

    We investigated the discrepancies in long-term sulfur measurements from 2000 to 2012 by two separate speciation methods, X-ray fluorescence (XRF) spectroscopy and ion chromatography (IC) across the United States (334 sites). Overall, there was a good correlation between sulfur measurements by XRF spectroscopy and IC (R ≥ 0.90 for most of the sites). However, the inorganic sulfate measured by ion chromatography was not sufficient to account for all the sulfur measured by XRF spectroscopy at many of the sites. Discrepancies were observed with the high ratios of sulfur measured by XRF spectroscopy to that by IC. Such high ratios also exhibited seasonal variation, and differed across land use types; significant differences occurred at locations classified as forest, agriculture, and mobile, but not in locations classified as commercial, desert, industrial, and residential. On average, the excess, or non-sulfate, sulfur (unmeasured organic sulfur or other inorganic species of sulfur) was variable and observed as high as ~13% of organic carbon and ~2% of PM2.5. The contribution of such assumed organosulfur was larger in the eastern region than other geographical locations in the United States. Besides the temporal and spatial trends, the additional sulfur was found to be related to other factors such as aerosol acidity and emission sources. The results suggest that these unmeasured sulfur species could have significant contribution to aerosol burden, and the understanding of these could help to control PM2.5 levels and to assess other effects of sulfur aerosols.

  3. Molecular Dynamic Simulation Insights into the Normal State and Restoration of p53 Function

    PubMed Central

    Fu, Ting; Min, Hanyi; Xu, Yong; Chen, Jianzhong; Li, Guohui

    2012-01-01

    As a tumor suppressor protein, p53 plays a crucial role in the cell cycle and in cancer prevention. Almost 50 percent of all human malignant tumors are closely related to a deletion or mutation in p53. The activity of p53 is inhibited by over-active celluar antagonists, especially by the over-expression of the negative regulators MDM2 and MDMX. Protein-protein interactions, or post-translational modifications of the C-terminal negative regulatory domain of p53, also regulate its tumor suppressor activity. Restoration of p53 function through peptide and small molecular inhibitors has become a promising strategy for novel anti-cancer drug design and development. Molecular dynamics simulations have been extensively applied to investigate the conformation changes of p53 induced by protein-protein interactions and protein-ligand interactions, including peptide and small molecular inhibitors. This review focuses on the latest MD simulation research, to provide an overview of the current understanding of interactions between p53 and its partners at an atomic level. PMID:22949826

  4. Computational insights into the protonation states of catalytic dyad in BACE1-acyl guanidine based inhibitor complex.

    PubMed

    Kocak, Abdulkadir; Erol, Ismail; Yildiz, Muslum; Can, Hatice

    2016-11-01

    Developing small compound based drugs targeting the β-secretase (BACE) enzyme is one of the most promising strategies in treatment of the Alzheimer's disease. As the enzyme shows the activity based on the acid-base reaction at a very narrow pH range, the protonation state of aspartic acids with the residue number 32 and 228 (Asp32 and Asp228), which forms the active site dyad, along with the protonation state of the ligand (substrate or inhibitor) play very critical role in interactions between the ligand and enzyme. Thus, understanding the nature of the protonation state of both enzyme's active site dyad and ligand is crucial for drug design in Alzheimer's disease field. Here we have investigated the protonation state of the Asp32 and Asp228 residues in the presence of a highly potent beta secretase inhibitor, containing acyl guanidine warhead that have recently been devised but not extensively studied. Our Quantum Mechanical, Molecular Dynamics and Docking studies on all the possible protonation states have suggested that the dyad residues are in di-deprotonated states in the presence of protonated inhibitor. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Predictions of the equation of state of cerium yield interesting insights into experimental results

    SciTech Connect

    Cherne, Frank J; Jensen, Brian J; Rigg, Paulo A; Elkin, Vyacheslav M

    2009-01-01

    There has been much interest in the past in understanding the dynamic properties of phase changing materials. In this paper we begin to explore the dynamic properties of the complex material of cerium. Cerium metal is a good candidate material to explore capabilities in determining a dynamic phase diagram on account of its low dynamic phase boundaries, namely, the {gamma}-{alpha}, and {alpha}-liquid phase boundaries. Here we present a combination of experimental results with calculated results to try to understand the dynamic behavior of the material. Using the front surface impact technique, we performed a series of experiments which displayed a rarefaction shock upon release. These experiments show that the reversion shock stresses occur at different magnitudes, allowing us to plot out the {gamma}-{alpha} phase boundary. Applying a multiphase equation of state a broader understanding of the experimental results will be discussed.

  6. Molecular Structure of Aggregated Amyloid-β: Insights from Solid State Nuclear Magnetic Resonance

    PubMed Central

    Tycko, Robert

    2016-01-01

    Amyloid-β (Aβ) peptides aggregate to form polymorphic amyloid fibrils and a variety of intermediate assemblies, including oligomers and protofibrils, both in vitro and in human brain tissue. Since the beginning of the 21st century, considerable progress has been made on characterization of the molecular structures of Aβ aggregates. Full molecular structural models that are based primarily on data from solid state nuclear magnetic resonance measurements have been developed for several in vitro Aβ fibrils and one metastable protofibril. Partial structural characterization of other aggregation intermediates has been achieved. One full structural model for fibrils derived from brain tissue has also been reported. Future work is likely to focus on additional structures from brain tissue and on further clarification of nonfibrillar Aβ aggregates. PMID:27481836

  7. Excited state dynamics of thiophene and bithiophene: new insights into theoretically challenging systems.

    PubMed

    Prlj, Antonio; Curchod, Basile F E; Corminboeuf, Clémence

    2015-06-14

    The computational elucidation and proper description of the ultrafast deactivation mechanisms of simple organic electronic units, such as thiophene and its oligomers, is as challenging as it is contentious. A comprehensive excited state dynamics analysis of these systems utilizing reliable electronic structure approaches is currently lacking, with earlier pictures of the photochemistry of these systems being conceived based upon high-level static computations or lower level dynamic trajectories. Here a detailed surface hopping molecular dynamics of thiophene and bithiophene using the algebraic diagrammatic construction to second order (ADC(2)) method is presented. Our findings illustrate that ring puckering plays an important role in thiophene photochemistry and that the photostability increases when going upon dimerization into bithiophene.

  8. Insights from the structure of a smallpox virus topoisomerase-DNA transition state mimic

    PubMed Central

    Perry, Kay; Hwang, Young; Bushman, Frederic D.; Van Duyne, Gregory D.

    2010-01-01

    Summary Poxviruses encode their own type IB topoisomerases (TopIBs) which release superhelical tension generated by replication and transcription of their genomes. To investigate the reaction catalyzed viral TopIBs, we have determined the structure of a variola virus topoisomerase-DNA complex trapped as a vanadate transition state mimic. The structure reveals how the viral TopIB enzymes are likely to position the DNA duplex for ligation following relaxation of supercoils and identifies the sources of friction observed in single molecule experiments that argue against free rotation. The structure also identifies a conformational change in the leaving group sugar that must occur prior to cleavage and reveals a mechanism for promoting ligation following relaxation of supercoils that involves a novel Asp-minor groove interaction. Overall, the new structural data support a common catalytic mechanism for the TopIB superfamily but indicate distinct methods for controlling duplex rotation in the small vs. large enzyme subfamilies. PMID:20152159

  9. The Impact of Seawater Saturation State on Early Skeletal Development in Larval Corals: Insights into Scleractinian Biomineralization

    NASA Astrophysics Data System (ADS)

    Cohen, A. L.; McCorkle, D. C.; de Putron, S.

    2007-12-01

    Understanding the response of coral calcification to changes in seawater saturation state (ocean acidification) could provide important insights into the fundamental processes of scleractinian biomineralization. In particular, larval calcification, which involves initiation of skeletogenesis by a previously non-calcifying planktonic planula, offers a unique opportunity to examine the role and limitations of biological control over an essentially physicochemical process. Larvae of the brooding Atlantic coral Favia fragum were settled in unmodified seawater onto clay tiles within 12h of spawning, and placed into non-through flow 30 L aquaria prior to initiation of calcification. Seawater chemistry was pre-adjusted via HCl addition and continuous bubbling with laboratory air, yielding four aragonite saturation states: Omega(aragonite) = 3.71 (unmodified), 2.4, 1.04, and 0.22. The aquaria were held at 25 °C on a 12h/12h light/dark cycle, and sets of tiles harvested at 1, 5 and 8 days post-spawning. Accretion of aragonite (confirmed by Raman spectroscopy) in all treatments indicates that the settled larvae were able to elevate the saturation state of aquarium seawater sequestered within their calcifying space. However, external aqueous carbonate chemistry had a striking effect on larval mortality, on the nature and timing of basal plate formation, on skeletal growth rates (based on the length and cross-sectional area of septa), and on the structure and organization of aragonite crystals within the septa (imaged using SEM). Larval survival rates at the two lower saturation states was only 40% of that in the control and Omega = 2.35 treatments, and skeletal growth decreased by 30 % (relative to the control) in seawater with saturation state comparable to that predicted for the mid-latitude surface ocean by 2100 AD. SEM imaging of the larval skeletons revealed significant differences in the morphology of aragonite crystals accreted under different conditions. In stark

  10. Terrane boundaries in the southeastern United States: Insights from seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Wagner, L. S.; Long, M. D.; Benoit, M. H.; Johnston, M. D.

    2012-12-01

    Over the course of a full Wilson cycle, the southeastern United States experienced several orogenic episodes that resulted in terrane accretion. Subsequent impact with Gondwana translated the uppermost 5 - 10 km of crust up to several hundred kilometers to the west. Due to this displacement, it has been difficult to positively identify the locations of crustal terrane boundaries at depth. While some terrane boundaries have been inferred from magnetic anomalies (e.g. the Brunswick Magnetic Anomaly/Suwannee Suture), others, like the Carolinia terrane boundary, are clearly expressed at the surface but their locations at depth remain debated. We examine regional patterns of seismic anisotropy as recorded by SKS and SKKS splitting and compare these to magnetic anomalies and Bouguer gravity anomalies. Data for this study come from regional permanent stations and four temporary broadband seismic deployments: the Appalachian Seismic Transect (AST), the Test Experiment for Eastern North America (TEENA), the South Carolina Earth Physics Project (SCEPP), and the Florida to Edmonton Array (FLED). We find broad general patterns of seismic anisotropy that have been noted before: strong anisotropy aligned parallel to North American plate motion to the north and west, and largely null splitting measurements south and east of the Appalachians. However, we find notable exceptions within these patterns that closely align themselves with magnetic anomalies, some of which have been interpreted as terrane boundaries. We suggest that some of the anisotropic signature observed may be due to frozen lithospheric fabric formed along transpressive terrane boundaries. In particular, we argue that the Carolinia terrane boundary at depth is not far removed from its surface expression despite the displacement of the upper crust during the Alleghanian. Future research using data from the SESAME deployment in Georgia and from the EarthScope Transportable Array will allow for a closer evaluation of

  11. Charge-state dependent compaction and dissociation of protein complexes: insights from ion mobility and molecular dynamics.

    PubMed

    Hall, Zoe; Politis, Argyris; Bush, Matthew F; Smith, Lorna J; Robinson, Carol V

    2012-02-22

    Collapse to compact states in the gas phase, with smaller collision cross sections than calculated for their native-like structure, has been reported previously for some protein complexes although not rationalized. Here we combine experimental and theoretical studies to investigate the gas-phase structures of four multimeric protein complexes during collisional activation. Importantly, using ion mobility-mass spectrometry (IM-MS), we find that all four macromolecular complexes retain their native-like topologies at low energy. Upon increasing the collision energy, two of the four complexes adopt a more compact state. This collapse was most noticeable for pentameric serum amyloid P (SAP) which contains a large central cavity. The extent of collapse was found to be highly correlated with charge state, with the surprising observation that the lowest charge states were those which experience the greatest degree of compaction. We compared these experimental results with in vacuo molecular dynamics (MD) simulations of SAP, during which the temperature was increased. Simulations showed that low charge states of SAP exhibited compact states, corresponding to collapse of the ring, while intermediate and high charge states unfolded to more extended structures, maintaining their ring-like topology, as observed experimentally. To simulate the collision-induced dissociation (CID) of different charge states of SAP, we used MS to measure the charge state of the ejected monomer and assigned this charge to one subunit, distributing the residual charges evenly among the remaining four subunits. Under these conditions, MD simulations captured the unfolding and ejection of a single subunit for intermediate charge states of SAP. The highest charge states recapitulated the ejection of compact monomers and dimers, which we observed in CID experiments of high charge states of SAP, accessed by supercharging. This strong correlation between theory and experiment has implications for further

  12. Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides

    DOE PAGES

    Aljama, Hassan; Nørskov, Jens K.; Abild-Pedersen, Frank

    2017-07-17

    Here, we investigate the role of alkaline metal oxides (AMO) (MgO, CaO, and SrO) in activating the C–H bond in methane. We also use Density Functional Theory (DFT) and microkinetic modeling to study the catalytic elementary steps in breaking the C–H bond in methane and creating the methyl radical, a precursor prior to creating C2 products. We also study the effects of surface geometry on the catalytic activity of AMO by examining terrace and step sites. We observe that the process of activating methane depends strongly on the structure of the AMO. When the AMO surface is doped with anmore » alkali metal, the transition state (TS) structure has a methyl radical-like behavior, where the methyl radical interacts weakly with the AMO surface. In this case, the TS energy scales with the hydrogen binding energy. On pure AMO, the TS interacts with AMO surface oxygen as well as the metal atom on the surface, and consequently the TS energy scales with the binding energy of hydrogen and methyl. We study the activity of AMO using a mean-field microkinetic model. The results indicate that terrace sites have similar catalytic activity, with the exception of MgO(100). Step sites bind hydrogen more strongly, making them more active, and this confirms previously reported experimental results. We map the catalytic activity of AMO using a volcano plot with two descriptors: the methyl and the hydrogen binding energies, with the latter being a more significant descriptor. The microkinetic model results suggest that C–H bond dissociation is not always the rate-limiting step. At weak hydrogen binding, the reaction is limited by C–H bond activation. At strong hydrogen binding, the reaction is limited due to poisoning of the active site. We found an increase in activity of AMO as the basicity increased. Finally, the developed microkinetic model allows screening for improved catalysts using simple calculations of the hydrogen binding energy.« less

  13. Structure-activity relationships of diphenyl-ether as protoporphyrinogen oxidase inhibitors: insights from computational simulations

    NASA Astrophysics Data System (ADS)

    Hao, Ge-Fei; Tan, Ying; Yu, Ning-Xi; Yang, Guang-Fu

    2011-03-01

    Protoporphyrinogen oxidase (PPO, EC 1.3.3.4), which has been identified as a significant target for a great family of herbicides with diverse chemical structures, is the last common enzyme responsible for the seventh step in the biosynthetic pathway to heme and chlorophyll. Among the existing PPO inhibitors, diphenyl-ether is the first commercial family of PPO inhibitors and used as agriculture herbicides for decades. Most importantly, diphenyl-ether inhibitors have been found recently to possess the potential in Photodynamic therapy (PDT) to treat cancer. Herein, molecular dynamics simulations, approximate free energy calculations and hydrogen bond energy calculations were integrated together to uncover the structure-activity relationships of this type of PPO inhibitors. The calculated binding free energies are correlated very well with the values derived from the experimental k i data. According to the established computational models and the results of approximate free energy calculation, the substitution effects at different position were rationalized from the view of binding free energy. Some outlier ( e.g. LS) in traditional QSAR study can also be explained reasonably. In addition, the hydrogen bond energy calculation and interaction analysis results indicated that the carbonyl oxygen on position-9 and the NO2 group at position-8 are both vital for the electrostatic interaction with Arg98, which made a great contribution to the binding free energy. These insights from computational simulations are not only helpful for understanding the molecular mechanism of PPO-inhibitor interactions, but also beneficial to the future rational design of novel promising PPO inhibitors.

  14. Insight into Temperature Dependence of GTPase Activity in Human Guanylate Binding Protein-1

    PubMed Central

    Rahman, Safikur; Deep, Shashank; Sau, Apurba Kumar

    2012-01-01

    Interferon-γ induced human guanylate binding protein-1(hGBP1) belongs to a family of dynamin related large GTPases. Unlike all other GTPases, hGBP1 hydrolyzes GTP to a mixture of GDP and GMP with GMP being the major product at 37°C but GDP became significant when the hydrolysis reaction was carried out at 15°C. The hydrolysis reaction in hGBP1 is believed to involve with a number of catalytic steps. To investigate the effect of temperature in the product formation and on the different catalytic complexes of hGBP1, we carried out temperature dependent GTPase assays, mutational analysis, chemical and thermal denaturation studies. The Arrhenius plot for both GDP and GMP interestingly showed nonlinear behaviour, suggesting that the product formation from the GTP-bound enzyme complex is associated with at least more than one step. The negative activation energy for GDP formation and GTPase assay with external GDP together indicate that GDP formation occurs through the reversible dissociation of GDP-bound enzyme dimer to monomer, which further reversibly dissociates to give the product. Denaturation studies of different catalytic complexes show that unlike other complexes the free energy of GDP-bound hGBP1 decreases significantly at lower temperature. GDP formation is found to be dependent on the free energy of the GDP-bound enzyme complex. The decrease in the free energy of this complex at low temperature compared to at high is the reason for higher GDP formation at low temperature. Thermal denaturation studies also suggest that the difference in the free energy of the GTP-bound enzyme dimer compared to its monomer plays a crucial role in the product formation; higher stability favours GMP but lower favours GDP. Thus, this study provides the first thermodynamic insight into the effect of temperature in the product formation of hGBP1. PMID:22859948

  15. Rational approaches, design strategies, structure activity relationship and mechanistic insights for esterase inhibitors.

    PubMed

    Singh, Harbinder; Singh, Jatinder Vir; Kaur, Navdeep; Sanduja, Mohit; Singh, Gurpreet; Bedi, Preet Mohinder Singh; Sharma, Sahil

    2017-08-07

    Esterase is an enzyme that splits esters into an acid and alcohol. Varieties of esterases are present in human body to control diverse set of cellular processes and execute their specific functions. It can be seen that any increase in metabolites produced by these enzymes lead to severe pathological conditions like Alzheimer disease, hypercholesterolemia etc. Numerous esterase inhibitors have been developed and reported by the researchers around the globe, but not systematically summarized yet. Therefore, this assemblage focuses on various reported esterase inhibitors during recent past with detailed account of the design strategies employed for the synthesis of novel drug entities. The article also highlights the structure activity relationship along with mechanistic insights revealed during the biological evaluation of inhibitors as esterase inhibition. The interactions with the amino acid residues responsible for esterase inhibitory potential of molecules have also been discussed. This compilation will be of great interest for the researchers working in the area of esterase inhibitors. Rivastigmine derivatives (44-53), tacrine-piperazine hybrid (136), coumarin-benzofuran derivative (169), coumarin-benzylpiperidine hybrid (181) and phenylcinnamide derivative (220) found to be exerting cholinesterase inhibition with IC50 below the range of 1 nM. Whereas, flavone (258) has displayed anticholesterol esterase potential below 1 nM. Benzil like derivative, (273) has also been designed and reported to possess remarkable inhibitory potential (IC50 < 1 nM) against carboxylesterase. These representative results place them in forefront as potential future drug candidates to further develop potent and specific esterase inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Activities of the Solid State Division

    NASA Astrophysics Data System (ADS)

    Green, P. H.; Hinton, L. W.

    1994-08-01

    This report covers research progress in the Solid State Division from April 1, 1992, to September 30, 1993. During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. This research effort was enhanced by new capabilities in atomic-scale materials characterization, new emphasis on the synthesis and processing of materials, and increased partnering with industry and universities. The theoretical effort included a broad range of analytical studies, as well as a new emphasis on numerical simulation stimulated by advances in high-performance computing and by strong interest in related division experimental programs. Superconductivity research continued to advance on a broad front from fundamental mechanisms of high-temperature superconductivity to the development of new materials and processing techniques. The Neutron Scattering Program was characterized by a strong scientific user program and growing diversity represented by new initiatives in complex fluids and residual stress. The national emphasis on materials synthesis and processing was mirrored in division research programs in thin-film processing, surface modification, and crystal growth. Research on advanced processing techniques such as laser ablation, ion implantation, and plasma processing was complemented by strong programs in the characterization of materials and surfaces including ultrahigh resolution scanning transmission electron microscopy, atomic-resolution chemical analysis, synchrotron x-ray research, and scanning tunneling microscopy.

  17. Atomic substitutions in synthetic apatite; Insights from solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Vaughn, John S.

    Apatite, Ca5(PO4)3X (where X = F, Cl, or OH), is a unique mineral group capable of atomic substitutions for cations and anions of varied size and charge. Accommodation of differing substituents requires some kind of structural adaptation, e.g. new atomic positions, vacancies, or coupled substitutions. These structural adaptations often give rise to important physicochemical properties relevant to a range of scientific disciplines. Examples include volatile trapping during apatite crystallization, substitution for large radionuclides for long-term storage of nuclear fission waste, substitution for fluoride to improve acid resistivity in dental enamel composed dominantly of hydroxylapatite, and the development of novel biomaterials with enhanced biocompatibility. Despite the importance and ubiquity of atomic substitutions in apatite materials, many of the mechanisms by which these reactions occur are poorly understood. Presence of substituents at dilute concentration and occupancy of disordered atomic positions hinder detection by bulk characterization methods such as X-ray diffraction (XRD) and infrared (IR) spectroscopy. Solid-state nuclear magnetic resonance (NMR) spectroscopy is an isotope-specific structural characterization technique that does not require ordered atomic arrangements, and is therefore well suited to investigate atomic substitutions and structural adaptations in apatite. In the present work, solid-state NMR is utilized to investigate structural adaptations in three different types of apatite materials; a series of near-binary F, Cl apatite, carbonate-hydroxylapatite compositions prepared under various synthesis conditions, and a heat-treated hydroxylapatite enriched in 17O. The results indicate that hydroxyl groups in low-H, near binary F,Cl apatite facilitate solid-solution between F and Cl via column reversals, which result in average hexagonal symmetry despite very dilute OH concentration ( 2 mol percent). In addition, 19F NMR spectra indicate

  18. Metastability of the Nonlinear Wave Equation: Insights from Transition State Theory

    NASA Astrophysics Data System (ADS)

    Newhall, Katherine A.; Vanden-Eijnden, Eric

    2017-06-01

    This paper is concerned with the longtime dynamics of the nonlinear wave equation in one-space dimension, u_{tt} - κ ^2 u_{xx} +V'(u) =0 \\quad x\\in [0,1] where κ >0 is a parameter and V( u) is a potential bounded from below and growing at least like u^2 as |u|→ ∞. Infinite energy solutions of this equation preserve a natural Gibbsian invariant measure, and when the potential is double-welled, for example when V(u) = 1/4 (1-u^2)^2, there is a regime such that two small disjoint sets in the system's phase-space concentrate most of the mass of this measure. This suggests that the solutions to the nonlinear wave equation can be metastable over these sets, in the sense that they spend long periods of time in these sets and only rarely transition between them. Here, we quantify this phenomenon by calculating exactly via transition state theory (TST) the mean frequency at which the solutions of the nonlinear wave equation with initial conditions drawn from its invariant measure cross a dividing surface lying in between the metastable sets. We also investigate numerically how the mean TST frequency compares to the rate at which a typical solution crosses this dividing surface. These numerical results suggest that the dynamics of the nonlinear wave equation is ergodic and rapidly mixing with respect to the Gibbs invariant measure when the parameter κ in small enough. In this case, successive transitions between the two regions are roughly uncorrelated and their dynamics can be coarse-grained to jumps in a two-state Markov chain whose rate can be deduced from the mean TST frequency. This is a regime in which the dynamics of the nonlinear wave equation displays a metastable behavior that is not fundamentally different from that observed in its stochastic counterpart in which random noise and damping terms are added to the equation. For larger κ , however, the dynamics either stops being ergodic, or its mixing time becomes larger than the inverse of the TST frequency

  19. Metastability of the Nonlinear Wave Equation: Insights from Transition State Theory

    NASA Astrophysics Data System (ADS)

    Newhall, Katherine A.; Vanden-Eijnden, Eric

    2017-01-01

    This paper is concerned with the longtime dynamics of the nonlinear wave equation in one-space dimension, u_{tt} - κ^2 u_{xx} +V'(u) =0 quad xin [0,1] where κ >0 is a parameter and V(u) is a potential bounded from below and growing at least like u^2 as |u|→ ∞. Infinite energy solutions of this equation preserve a natural Gibbsian invariant measure, and when the potential is double-welled, for example when V(u) = 1/4 (1-u^2)^2 , there is a regime such that two small disjoint sets in the system's phase-space concentrate most of the mass of this measure. This suggests that the solutions to the nonlinear wave equation can be metastable over these sets, in the sense that they spend long periods of time in these sets and only rarely transition between them. Here, we quantify this phenomenon by calculating exactly via transition state theory (TST) the mean frequency at which the solutions of the nonlinear wave equation with initial conditions drawn from its invariant measure cross a dividing surface lying in between the metastable sets. We also investigate numerically how the mean TST frequency compares to the rate at which a typical solution crosses this dividing surface. These numerical results suggest that the dynamics of the nonlinear wave equation is ergodic and rapidly mixing with respect to the Gibbs invariant measure when the parameter κ in small enough. In this case, successive transitions between the two regions are roughly uncorrelated and their dynamics can be coarse-grained to jumps in a two-state Markov chain whose rate can be deduced from the mean TST frequency. This is a regime in which the dynamics of the nonlinear wave equation displays a metastable behavior that is not fundamentally different from that observed in its stochastic counterpart in which random noise and damping terms are added to the equation. For larger κ, however, the dynamics either stops being ergodic, or its mixing time becomes larger than the inverse of the TST frequency

  20. Intermediate states in the binding process of folic acid to folate receptor α: insights by molecular dynamics and metadynamics

    NASA Astrophysics Data System (ADS)

    Della-Longa, Stefano; Arcovito, Alessandro

    2015-01-01

    Folate receptor α (FRα) is a cell surface, glycophosphatidylinositol-anchored protein which has focussed attention as a therapeutic target and as a marker for the diagnosis of cancer. It has a high affinity for the dietary supplemented folic acid (FOL), carrying out endocytic transport across the cell membrane and delivering the folate at the acidic pH of the endosome. Starting from the recently reported X-ray structure at pH 7, 100 ns classical molecular dynamics simulations have been carried out on the FRα-FOL complex; moreover, the ligand dissociation process has been studied by metadynamics, a recently reported method for the analysis of free-energy surfaces (FES), providing clues on the intermediate states and their energy terms. Multiple dissociation runs were considered to enhance the configurational sampling; a final clustering of conformations within the averaged FES provides the representative structures of several intermediate states, within an overall barrier for ligand escape of about 75 kJ/mol. Escaping of FOL to solvent occurs while only minor changes affect the FRα conformation of the binding pocket. During dissociation, the FOL molecule translates and rotates around a turning point located in proximity of the receptor surface. FOL at this transition state assumes an "L" shaped conformation, with the pteridin ring oriented to optimize stacking within W102 and W140 residues, and the negatively charged glutamate tail, outside the receptor, interacting with the positively charged R103 and R106 residues, that contrary to the bound state, are solvent exposed. We show that metadynamics method can provide useful insights at the atomistic level on the effects of point-mutations affecting functionality, thus being a very promising tool for any study related to folate-targeted drug delivery or cancer therapies involving folate uptake.

  1. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation.

    PubMed

    Aguirre, Jacob D; Dunkerley, Karen M; Mercier, Pascal; Shaw, Gary S

    2017-01-10

    Mutations in PARK2 and PARK6 genes are responsible for the majority of hereditary Parkinson's disease cases. These genes encode the E3 ubiquitin ligase parkin and the protein kinase PTEN-induced kinase 1 (PINK1), respectively. Together, parkin and PINK1 regulate the mitophagy pathway, which recycles damaged mitochondria following oxidative stress. Native parkin is inactive and exists in an autoinhibited state mediated by its ubiquitin-like (UBL) domain. PINK1 phosphorylation of serine 65 in parkin's UBL and serine 65 of ubiquitin fully activate ubiquitin ligase activity; however, a structural rationale for these observations is not clear. Here, we report the structure of the phosphorylated UBL domain from parkin. We find that destabilization of the UBL results from rearrangements to hydrophobic core packing that modify its structure. Altered surface electrostatics from the phosphoserine group disrupt its intramolecular association, resulting in poorer autoinhibition in phosphorylated parkin. Further, we show that phosphorylation of both the UBL domain and ubiquitin are required to activate parkin by releasing the UBL domain, forming an extended structure needed to facilitate E2-ubiquitin binding. Together, the results underscore the importance of parkin activation by the PINK1 phosphorylation signal and provide a structural picture of the unraveling of parkin's ubiquitin ligase potential.

  2. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation

    PubMed Central

    Aguirre, Jacob D.; Dunkerley, Karen M.; Mercier, Pascal; Shaw, Gary S.

    2017-01-01

    Mutations in PARK2 and PARK6 genes are responsible for the majority of hereditary Parkinson’s disease cases. These genes encode the E3 ubiquitin ligase parkin and the protein kinase PTEN-induced kinase 1 (PINK1), respectively. Together, parkin and PINK1 regulate the mitophagy pathway, which recycles damaged mitochondria following oxidative stress. Native parkin is inactive and exists in an autoinhibited state mediated by its ubiquitin-like (UBL) domain. PINK1 phosphorylation of serine 65 in parkin’s UBL and serine 65 of ubiquitin fully activate ubiquitin ligase activity; however, a structural rationale for these observations is not clear. Here, we report the structure of the phosphorylated UBL domain from parkin. We find that destabilization of the UBL results from rearrangements to hydrophobic core packing that modify its structure. Altered surface electrostatics from the phosphoserine group disrupt its intramolecular association, resulting in poorer autoinhibition in phosphorylated parkin. Further, we show that phosphorylation of both the UBL domain and ubiquitin are required to activate parkin by releasing the UBL domain, forming an extended structure needed to facilitate E2–ubiquitin binding. Together, the results underscore the importance of parkin activation by the PINK1 phosphorylation signal and provide a structural picture of the unraveling of parkin’s ubiquitin ligase potential. PMID:28007983

  3. Photodissociation of quantum state-selected diatomic molecules yields new insight into ultracold chemistry

    NASA Astrophysics Data System (ADS)

    McDonald, Mickey; McGuyer, Bart H.; Lee, Chih-Hsi; Apfelbeck, Florian; Zelevinsky, Tanya

    2016-05-01

    When a molecule is subjected to a sufficiently energetic photon it can break apart into fragments through a process called ``photodissociation''. For over 70 years this simple chemical reaction has served as a vital experimental tool for acquiring information about molecular structure, since the character of the photodissociative transition can be inferred by measuring the 3D photofragment angular distribution (PAD). While theoretical understanding of this process has gradually evolved from classical considerations to a fully quantum approach, experiments to date have not yet revealed the full quantum nature of this process. In my talk I will describe recent experiments involving the photodissociation of ultracold, optical lattice-trapped, and fully quantum state-resolved 88Sr2 molecules. Optical absorption images of the PADs produced in these experiments reveal features which are inherently quantum mechanical in nature, such as matter-wave interference between output channels, and are sensitive to the quantum statistics of the molecular wavefunctions. The results of these experiments cannot be predicted using quasiclassical methods. Instead, we describe our results with a fully quantum mechanical model yielding new intuition about ultracold chemistry.

  4. Spectroscopic insights on imidazole substituted phthalocyanine photosensitizers: Fluorescence properties, triplet state and singlet oxygen generation

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-Fu; Lin, Yong; Guo, Wenfeng; Zhu, Jingzhong

    2014-12-01

    Imidazole substituted metal phthalocyanine (Pc) complexes were synthesized. UV-vis absorption, steady state and time-resolved fluorescence, as well as laser flash photolysis were used to measure the photophysical and photosensitizing properties. All the imidazole-phthalocyanine conjugates show high ΦT (quantum yield of excited triplet formation), high ΦΔ (singlet oxygen formation yield, >0.50) and good fluorescence properties (quantum yield Φf > 0.20 and lifetime τf > 3.0 ns). Compared to the unsubstituted Pc, both α- and β-imidazole substitutions result in the remarkable decrease in Φf and τf, but the α-substitution is stronger. The imidazole substitution, on the other hand, causes the increase of ΦT, τT, and ΦΔ values. Magnesium phthalocyanine (MgPc) is more susceptible to the substitution than zinc phthalocyanine (ZnPc). The mechanism responsible for the result is suggested based on the involvement of intramolecular photoinduced electron transfer. The high ΦΔ and appropriate fluorescence properties make the Pcs good candidate for PDT photosensitizers.

  5. Insights into excited-state and isomerization dynamics of bacteriorhodopsin from ultrafast transient UV absorption

    PubMed Central

    Schenkl, S.; van Mourik, F.; Friedman, N.; Sheves, M.; Schlesinger, R.; Haacke, S.; Chergui, M.

    2006-01-01

    A visible-pump/UV-probe transient absorption is used to characterize the ultrafast dynamics of bacteriorhodopsin with 80-fs time resolution. We identify three spectral components in the 265- to 310-nm region, related to the all-trans retinal, tryptophan (Trp)-86 and the isomerized photoproduct, allowing us to map the dynamics from reactants to products, along with the response of Trp amino acids. The signal of the photoproduct appears with a time delay of ≈250 fs and is characterized by a steep rise (≈150 fs), followed by additional rise and decay components, with time scales characteristic of the J intermediate. The delayed onset and the steep rise point to an impulsive formation of a transition state on the way to isomerization. We argue that this impulsive formation results from a splitting of a wave packet of torsional modes on the potential surface at the branching between the all-trans and the cis forms. Parallel to these dynamics, the signal caused by Trp response rises in ≈200 fs, because of the translocation of charge along the conjugate chain, and possible mechanisms are presented, which trigger isomerization. PMID:16537491

  6. Local Government Capacity to Respond to Environmental Change: Insights from Towns in New York State.

    PubMed

    Larson, Lincoln R; Lauber, T Bruce; Kay, David L; Cutts, Bethany B

    2017-07-01

    Local governments attempting to respond to environmental change face an array of challenges. To better understand policy responses and factors influencing local government capacity to respond to environmental change, we studied three environmental issues affecting rural or peri-urban towns in different regions of New York State: climate change in the Adirondacks (n = 63 towns), loss of open space due to residential/commercial development in the Hudson Valley (n = 50), and natural gas development in the Southern Tier (n = 62). Our analysis focused on towns' progression through three key stages of the environmental policy process (issue awareness and salience, common goals and agenda setting, policy development and implementation) and the factors that affect this progression and overall capacity for environmental governance. We found that-when compared to towns addressing open space development and natural gas development-towns confronted with climate change were at a much earlier stage in the policy process and were generally less likely to display the essential resources, social support, and political legitimacy needed for an effective policy response. Social capital cultivated through collaboration and networking was strongly associated with towns' policy response across all regions and could help municipalities overcome omnipresent resource constraints. By comparing and contrasting municipal responses to each issue, this study highlights the processes and factors influencing local government capacity to address a range of environmental changes across diverse management contexts.

  7. Heat of capillary condensation in nanopores: new insights from the equation of state.

    PubMed

    Tan, Sugata P; Piri, Mohammad

    2017-02-15

    Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) coupled with the Young-Laplace equation is a recently developed equation of state (EOS) that successfully presents not only the capillary condensation but also the pore critical phenomena. The development of this new EOS allows further investigation of the heats involved in condensation. Compared to the conventional approaches, the EOS calculations present the temperature-dependent behavior of the heat of capillary condensation as well as that of the contributing effects. The confinement effect was found to be the strongest at the pore critical point. Therefore, contrary to the bulk heat condensation that vanishes at the critical point, the heat of capillary condensation in small pores shows a minimum and then increases with temperature when approaching the pore critical temperature. Strong support for the existence of the pore critical point is also discussed as the volume expansivity of the condensed phase in confinement was found to increase dramatically near the pore critical temperature. At high reduced temperatures, the Clausius-Clapeyron equation was found to apply better for confined fluids than it does for bulk fluids.

  8. Tritium activities in the United States

    SciTech Connect

    Anderson, J.L.; LaMarche, P.

    1995-07-01

    There have been many significant changes in the status of tritium activities in the US since the 4th Tritium Conference in October, 1991. The replacement Tritium Facility (RTF) at Savannah River Site and the Weapons Engineering Tritium Facility (WETF) at the Los Alamos National Laboratory are now operational with tritium. The Tokamak Fusion Test Reactor (TFTR) has initiated a highly successful experimental campaign studying DT plasmas, and has produced more than 10 Megawatts (MW) of fusion power in a D-T plasma. Sandia National Laboratory has ceased tritium operations at the Tritium Research Laboratory (TRL) and many of the activities previously performed there have been transferred to Los Alamos and Savannah River. The tritium laboratory at Lawrence Livermore National Laboratory has reduced the tritium inventory to <5 grams. The Tritium Systems Test Assembly (TSTA) at Los Alamos continues to be at the forefront of tritium technology and safety development for the fusion energy program.

  9. Mechanistic insights into protonation state as a critical factor in hFPPS enzyme inhibition

    NASA Astrophysics Data System (ADS)

    Fernández, David; Ortega-Castro, Joaquin; Mariño, Laura; Perelló, Joan; Frau, Juan

    2015-07-01

    Zoledronate and risedronate are the most powerful available nitrogen-containing bisphosphonates used in the treatment of bone-resorption disorders. Knowledge about inhibition mechanisms of these molecules is based on available crystallographic structures of human farnesyl pyrophosphate synthase (hFPPS). However, there is a lack of information explaining the inhibition potency of these two molecules compared to the natural substrate, dimethylallyl pyrophosphate. We carried out a molecular dynamics study that shown: (1) that NBPs potency is related to higher electrostatic interactions with the metallic cluster of the active site than to the natural substrate, and (2) the protonation of the R2 side chain is a critical factor to stabilize the NBPs into a closely irreversible ternary complex with the hFPPS.

  10. Insights into host-pathogen interactions from state-of-the-art animal models of respiratory Pseudomonas aeruginosa infections.

    PubMed

    Lorenz, Anne; Pawar, Vinay; Häussler, Susanne; Weiss, Siegfried

    2016-11-01

    Pseudomonas aeruginosa is an important opportunistic pathogen that can cause acute respiratory infections in immunocompetent patients or chronic infections in immunocompromised individuals and in patients with cystic fibrosis. When acquiring the chronic infection state, bacteria are encapsulated within biofilm structures enabling them to withstand diverse environmental assaults, including immune reactions and antimicrobial therapy. Understanding the molecular interactions within the bacteria, as well as with the host or other bacteria, is essential for developing innovative treatment strategies. Such knowledge might be accumulated in vitro. However, it is ultimately necessary to confirm these findings in vivo. In the present Review, we describe state-of-the-art in vivo models that allow studying P. aeruginosa infections in molecular detail. The portrayed mammalian models exclusively focus on respiratory infections. The data obtained by alternative animal models which lack lung tissue, often provide molecular insights that are easily transferable to mammals. Importantly, these surrogate in vivo systems reveal complex molecular interactions of P. aeruginosa with the host. Herein, we also provide a critical assessment of the advantages and disadvantages of such models.

  11. Laboratory Delayed Triggering and Insights into Rate-State Friction Properties During Stick-Slip (Invited)

    NASA Astrophysics Data System (ADS)

    Savage, H. M.; van der Elst, N.

    2013-12-01

    Remote triggering observations often include earthquakes that are delayed with respect to the passage of seismic waves. These delayed triggered earthquakes may simply be aftershocks of initial triggered events, or they may point to a slower or prolonged triggering process. The nature of this delay mechanism remains a topic of considerable debate. Stick-slip experiments on a dry, granular, laboratory fault show that stress perturbations do not only trigger slip during the transient stress, but also advance the timing of slip well after the transient has passed. Delayed triggering therefore does not necessarily require any secondary triggering or non-frictional mechanisms. Our experiments were performed in a biaxial deformation apparatus, with a double-direct shear sample geometry. Our fault consists of 3-mm thick layers of soda lime glass beads. Glass beads show remarkably consistent stick-slip recurrence intervals, making them an ideal material to study triggering. The background loading rate is constant, and small velocity oscillations of varying amplitude and frequency are introduced at different intervals in the stick-slip cycle. We find that for a given stress amplitude, higher frequency oscillations (2-3 Hz) lead to statistically significant delayed triggering whereas 1 Hz frequencies do not (the higher frequency oscillations also have a faster transient loading velocity). To determine what makes higher frequency triggers more effective at delayed triggering, we measure the transient mechanical response of the fault to a load point oscillation at different points in the stick-slip cycle. We find that the response varies considerably throughout the cycle, with slip velocity and dilation increasing systematically, and transient stress amplitude decreasing. The results suggest a monotonic decrease in the rate-state friction direct effect, a, throughout the stick-slip cycle. The evolution of frictional parameters during the interseismic cycle would have important

  12. 34 CFR 403.70 - How must funds be used under the State Programs and State Leadership Activities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... State Leadership Activities? 403.70 Section 403.70 Education Regulations of the Offices of the... the Basic Programs? State Programs and State Leadership Activities § 403.70 How must funds be used under the State Programs and State Leadership Activities? A State shall use funds reserved under...

  13. State opportunities for action: Update of states' combined heat and power activities

    SciTech Connect

    Brown, Elizabeth; Elliott, R. Neal

    2003-10-01

    This report updates the review of state policies with regard to CHP that the American Council for and Energy Efficient Economy completed in 2002. It describes the current activities of states with programs during the initial survey and also reviews new programs offered by the states.

  14. Structure of the eastern Seattle fault zone, Washington state: New insights from seismic reflection data

    USGS Publications Warehouse

    Liberty, L.M.; Pratt, T.L.

    2008-01-01

    We identify and characterize the active Seattle fault zone (SFZ) east of Lake Washington with newly acquired seismic reflection data. Our results focus on structures observed in the upper 1 km below the cities of Bellevue, Sammamish, Newcastle, and Fall City, Washington. The SFZ appears as a broad zone of faulting and folding at the southern boundary of the Seattle basin and north edge of the Seattle uplift. We interpret the Seattle fault as a thrust fault that accommodates north-south shortening by forming a fault-propagation fold with a forelimb breakthrough. The blind tip of the main fault forms a synclinal growth fold (deformation front) that extends at least 8 km east of Vasa Park (west side of Lake Sammamish) and defines the south edge of the Seattle basin. South of the deformation front is the forelimb break-through fault, which was exposed in a trench at Vasa Park. The Newcastle Hills anticline, a broad anticline forming the north part of the Seattle uplift east of Lake Washington, is interpreted to lie between the main blind strand of the Seattle fault and a backthrust. Our profiles, on the northern limb of this anticline, consistently image north-dipping strata. A structural model for the SFZ east of Lake Washington is consistent with about 8 km of slip on the upper part of the Seattle fault, but the amount of motion is only loosely constrained.

  15. Electrospray ionization ion mobility mass spectrometry provides novel insights into the pattern and activity of fetal hippocampus gangliosides.

    PubMed

    Sarbu, Mirela; Vukelić, Željka; Clemmer, David E; Zamfir, Alina D

    2017-08-01

    Gangliosides (GGs), a particular class of glycosphingolipids ubiquitously found in tissues and body fluids, exhibit the highest expression in the central nervous system, especially in brain. GGs are involved in crucial processes, such as neurogenesis, synaptogenesis, synaptic transmission, cell adhesion, growth and proliferation. For these reasons, efforts are constantly invested into development and refinement of specific methods for GG analysis. We have recently shown that ion mobility separation (IMS) mass spectrometry (MS) has the capability to provide consistent compositional and structural information on GGs at high sensitivity, resolution and mass accuracy. In the present paper, we have implemented IMS MS for the first time in the study of a highly complex native GG mixture extracted and purified from human fetal hippocampus. As compared to previous studies, where no separation techniques prior to MS were applied, IMS MS technique has not just generated valuable novel information on the GG pattern characteristic for hippocampus in early developmental stage, but also provided data related to the GG molecular involvement in the synaptic functions by the discovery of 25 novel structures modified by CH3COO(-). The detection and identification in fetal hippocampus of a much larger number of GG species than ever reported before was possible due to the ion mobility separation according to the charge state, the carbohydrate chain length and the degree of sialylation. By applying IMS in conjunction with collision induced dissociation (CID) tandem MS (MS/MS), novel GG species modified by CH3COO(-) attachment, discovered here for the first time, were sequenced and structurally investigated in details. The present findings, based on IMS MS, provide a more reliable insight into the expression and role of gangliosides in human hippocampus, with a particular emphasis on their cholinergic activity at this level. Copyright © 2017 Elsevier B.V. and Société Française de

  16. Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir-Ni Oxide Catalysts for Electrochemical Water Splitting (OER).

    PubMed

    Reier, Tobias; Pawolek, Zarina; Cherevko, Serhiy; Bruns, Michael; Jones, Travis; Teschner, Detre; Selve, Sören; Bergmann, Arno; Nong, Hong Nhan; Schlögl, Robert; Mayrhofer, Karl J J; Strasser, Peter

    2015-10-14

    Mixed bimetallic oxides offer great opportunities for a systematic tuning of electrocatalytic activity and stability. Here, we demonstrate the power of this strategy using well-defined thermally prepared Ir-Ni mixed oxide thin film catalysts for the electrochemical oxygen evolution reaction (OER) under highly corrosive conditions such as in acidic proton exchange membrane (PEM) electrolyzers and photoelectrochemical cells (PEC). Variation of the Ir to Ni ratio resulted in a volcano type OER activity curve with an unprecedented 20-fold improvement in Ir mass-based activity over pure Ir oxide. In situ spectroscopic probing of metal dissolution indicated that, against common views, activity and stability are not directly anticorrelated. To uncover activity and stability controlling parameters, the Ir-Ni mixed thin oxide film catalysts were characterized by a wide array of spectroscopic, microscopic, scattering, and electrochemical techniques in conjunction with DFT theoretical computations. By means of an intuitive model for the formation of the catalytically active state of the bimetallic Ir-Ni oxide surface, we identify the coverage of reactive surface hydroxyl groups as a suitable descriptor for the OER activity and relate it to controllable synthetic parameters. Overall, our study highlights a novel, highly active oxygen evolution catalyst; moreover, it provides novel important insights into the structure and performance of bimetallic oxide OER electrocatalysts in corrosive acidic environments.

  17. Active Solid State Dosimetry for Lunar EVA

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.; Chen, Liang-Yu.

    2006-01-01

    The primary threat to astronauts from space radiation is high-energy charged particles, such as electrons, protons, alpha and heavier particles, originating from galactic cosmic radiation (GCR), solar particle events (SPEs) and trapped radiation belts in Earth orbit. There is also the added threat of secondary neutrons generated as the space radiation interacts with atmosphere, soil and structural materials.[1] For Lunar exploration missions, the habitats and transfer vehicles are expected to provide shielding from standard background radiation. Unfortunately, the Lunar Extravehicular Activity (EVA) suit is not expected to afford such shielding. Astronauts need to be aware of potentially hazardous conditions in their immediate area on EVA before a health and hardware risk arises. These conditions would include fluctuations of the local radiation field due to changes in the space radiation field and unknown variations in the local surface composition. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.[2

  18. Observing Single Enzyme Molecules Interconvert between Activity States upon Heating

    PubMed Central

    Rojek, Marcin J.; Walt, David R.

    2014-01-01

    In this paper, we demonstrate that single enzyme molecules of β-galactosidase interconvert between different activity states upon exposure to short pulses of heat. We show that these changes in activity are the result of different enzyme conformations. Hundreds of single β-galactosidase molecules are trapped in femtoliter reaction chambers and the individual enzymes are subjected to short heating pulses. When heating pulses are introduced into the system, the enzyme molecules switch between different activity states. Furthermore, we observe that the changes in activity are random and do not correlate with the enzyme's original activity. This study demonstrates that different stable conformations play an important role in the static heterogeneity reported previously, resulting in distinct long-lived activity states of enzyme molecules in a population. PMID:24465972

  19. Synaptic plasticity modulates autonomous transitions between waking and sleep states: Insights from a Morris-Lecar model

    NASA Astrophysics Data System (ADS)

    Ciszak, Marzena; Bellesi, Michele

    2011-12-01

    The transitions between waking and sleep states are characterized by considerable changes in neuronal firing. During waking, neurons fire tonically at irregular intervals and a desynchronized activity is observed at the electroencephalogram. This activity becomes synchronized with slow wave sleep onset when neurons start to oscillate between periods of firing (up-states) and periods of silence (down-states). Recently, it has been proposed that the connections between neurons undergo potentiation during waking, whereas they weaken during slow wave sleep. Here, we propose a dynamical model to describe basic features of the autonomous transitions between such states. We consider a network of coupled neurons in which the strength of the interactions is modulated by synaptic long term potentiation and depression, according to the spike time-dependent plasticity rule (STDP). The model shows that the enhancement of synaptic strength between neurons occurring in waking increases the propensity of the network to synchronize and, conversely, desynchronization appears when the strength of the connections become weaker. Both transitions appear spontaneously, but the transition from sleep to waking required a slight modification of the STDP rule with the introduction of a mechanism which becomes active during sleep and changes the proportion between potentiation and depression in accordance with biological data. At the neuron level, transitions from desynchronization to synchronization and vice versa can be described as a bifurcation between two different states, whose dynamical regime is modulated by synaptic strengths, thus suggesting that transition from a state to an another can be determined by quantitative differences between potentiation and depression.

  20. Are Auditory Hallucinations Related to the Brain's Resting State Activity? A 'Neurophenomenal Resting State Hypothesis'

    PubMed Central

    2014-01-01

    While several hypotheses about the neural mechanisms underlying auditory verbal hallucinations (AVH) have been suggested, the exact role of the recently highlighted intrinsic resting state activity of the brain remains unclear. Based on recent findings, we therefore developed what we call the 'resting state hypotheses' of AVH. Our hypothesis suggest that AVH may be traced back to abnormally elevated resting state activity in auditory cortex itself, abnormal modulation of the auditory cortex by anterior cortical midline regions as part of the default-mode network, and neural confusion between auditory cortical resting state changes and stimulus-induced activity. We discuss evidence in favour of our 'resting state hypothesis' and show its correspondence with phenomenal, i.e., subjective-experiential features as explored in phenomenological accounts. Therefore I speak of a 'neurophenomenal resting state hypothesis' of auditory hallucinations in schizophrenia. PMID:25598821

  1. [Nonequilibrium state of electrochemically activated water and its biological activity].

    PubMed

    Petrushanko, I Iu; Lobyshev, V I

    2001-01-01

    Changes in the physicochemical parameters (pH, redox potential and electroconductivity) of catholyte and anolyte produced by membrane electrolysis of distilled water and dilute (c < 10(-3) M) sodium chloride solutions were studied. The relaxation of these parameters after electrolysis and the influence of catholyte and anolyte on the growth of roots of Tradescantia viridis grafts, the development of duckweed, and the motive activity of infusoria Spirostomum ambiguum were investigated. It was found that the anolyte of distilled water stimulated development of these biological objects. The direction of shift of physicochemical parameters of catholyte and anolyte from equilibrium values and the type of their biological activity (stimulation or inhibition) depend on salt concentration in initial solution. Barbotage of initial distilled water with argon or nitrogen leads to a greater decrease in the redox potential of catholyte during electrolysis. The physicochemical parameters relax to equilibrium values, and the biological activity of catholite and anolyte decreases with time and practically disappears by the end of the day. It was found that the oxidation of reducing agent by atmospheric oxygen is not the sole cause of the relaxation of catalyte redox potential. The increase in the ionic strength of catholite and anolyte by the addition of concentrated sodium chloride after electrolysis decreases the rate of redox potential relaxation several times. The redox potential can be maintained for long periods by freezing.

  2. Disrupted relationship between "resting state" connectivity and task-evoked activity during social perception in schizophrenia.

    PubMed

    Ebisch, Sjoerd J H; Gallese, Vittorio; Salone, Anatolia; Martinotti, Giovanni; di Iorio, Giuseppe; Mantini, Dante; Perrucci, Mauro Gianni; Romani, Gian Luca; Di Giannantonio, Massimo; Northoff, Georg

    2017-07-20

    Schizophrenia has been described as a self-disorder, whereas social deficits are key features of the illness. Changes in "resting state" activity of brain networks involved in self-related processing have been consistently reported in schizophrenia, but their meaning for social perception deficits remains poorly understood. Here, we applied a novel approach investigating the relationship between task-evoked neural activity during social perception and functional organization of self-related brain networks during a "resting state". "Resting state" functional MRI was combined with task-related functional MRI using a social perception experiment. Twenty-one healthy control participants (HC) and 21 out-patients with a diagnosis of schizophrenia (SCH) were included. There were no significant differences concerning age, IQ, education and gender between the groups. Results showed reduced "resting state" functional connectivity between ventromedial prefrontal cortex and dorsal posterior cingulate cortex in SCH, compared to HC. During social perception, neural activity in dorsal posterior cingulate cortex and behavioral data indicated impaired congruence coding of social stimuli in SCH. Task-evoked activity during social perception in dorsal posterior cingulate cortex co-varied with dorsal posterior cingulate cortex-ventromedial prefrontal cortex functional connectivity during a "resting state" in HC, but not in SCH. Task-evoked activity also correlated with negative symptoms in SCH. These preliminary findings, showing disrupted prediction of social perception measures by "resting state" functioning of self-related brain networks in schizophrenia, provide important insight in the hypothesized link between self and social deficits. They also shed light on the meaning of "resting state" changes for tasks such as social perception. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Further insights into the mechanism of the reaction of activated bleomycin with DNA

    PubMed Central

    Chow, Marina S.; Liu, Lei V.; Solomon, Edward I.

    2008-01-01

    Bleomycin (BLM) is a glycopeptide anticancer drug that effectively carries out single- and double-stranded DNA cleavage. Activated BLM (ABLM), a low-spin ferric-hydroperoxide, BLM–FeIII–OOH, is the last intermediate detected before DNA cleavage. We have previously shown through experiments and DFT calculations that both ABLM decay and reaction with H atom donors proceed via direct H atom abstraction. However, the rate of ABLM decay had been previously found, based on indirect methods, to be independent of the presence of DNA. In this study, we use a circular dichroism (CD) feature unique to ABLM to directly monitor the kinetics of ABLM reaction with a DNA oligonucleotide. Our results show that the ABLM + DNA reaction is appreciably faster, has a different kinetic isotope effect, and has a lower Arrhenius activation energy than does ABLM decay. In the ABLM reaction with DNA, the small normal kH/kD ratio is attributed to a secondary solvent effect through DFT vibrational analysis of reactant and transition state (TS) frequencies, and the lower Ea is attributed to the weaker bond involved in the abstraction reaction (C–H for DNA and N–H for the decay in the absence of DNA). The DNA dependence of the ABLM reaction indicates that DNA is involved in the TS for ABLM decay and thus reacts directly with BLM–FeIII–OOH instead of its decay product. PMID:18757754

  4. 34 CFR 300.704 - State-level activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false State-level activities. 300.704 Section 300.704 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  5. 34 CFR 300.704 - State-level activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true State-level activities. 300.704 Section 300.704 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  6. Monitoring Affect States during Effortful Problem Solving Activities

    ERIC Educational Resources Information Center

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  7. Physical activity in Georgia state parks: A pilot study

    Treesearch

    Lincoln R. Larson; Jason W. Whiting; Gary T. Green

    2012-01-01

    This pilot study assessed the role of Georgia State Parks in the promotion of physical activity among different racial/ethnic and age groups. Data were collected at three state parks in north Georgia during the summer of 2009 using two research methods: behavior observations (N=2281) and intercept surveys (N=473).

  8. 34 CFR 300.814 - Other State-level activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Other State-level activities. 300.814 Section 300.814 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  9. 34 CFR 300.812 - Reservation for State activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Reservation for State activities. 300.812 Section 300.812 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  10. Monitoring Affect States during Effortful Problem Solving Activities

    ERIC Educational Resources Information Center

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  11. Structural Insight into an Alzheimer's Brain-Derived Spherical Assembly of Amyloid β by Solid-State NMR.

    PubMed

    Parthasarathy, Sudhakar; Inoue, Masafumi; Xiao, Yiling; Matsumura, Yoshitaka; Nabeshima, Yo-ichi; Hoshi, Minako; Ishii, Yoshitaka

    2015-05-27

    Accumulating evidence suggests that various neurodegenerative diseases, including Alzheimer's disease (AD), are linked to cytotoxic diffusible aggregates of amyloid proteins, which are metastable intermediate species in protein misfolding. This study presents the first site-specific structural study on an intermediate called amylospheroid (ASPD), an AD-derived neurotoxin composed of oligomeric amyloid-β (Aβ). Electron microscopy and immunological analyses using ASPD-specific "conformational" antibodies established synthetic ASPD for the 42-residue Aβ(1-42) as an excellent structural/morphological analogue of native ASPD extracted from AD patients, the level of which correlates with the severity of AD. (13)C solid-state NMR analyses of approximately 20 residues and interstrand distances demonstrated that the synthetic ASPD is made of a homogeneous single conformer containing parallel β-sheets. These results provide profound insight into the native ASPD, indicating that Aβ is likely to self-assemble into the toxic intermediate with β-sheet structures in AD brains. This approach can be applied to various intermediates relevant to amyloid diseases.

  12. Heterogeneity of dopamine neuron activity across traits and states

    PubMed Central

    Marinelli, Michela; McCutcheon, James E.

    2014-01-01

    Midbrain dopamine neurons fire irregularly, with interspersed clusters of high-frequency spikes, commonly called ‘bursts’. In this review we examine such heterogeneity in activity, and provide insight into how it can participate in psychiatric conditions such as drug addiction. We first describe several techniques used to evaluate dopamine neuron activity, and comment on the different measures that each provides. We next describe the activity of dopamine neurons in ‘basal’ conditions. Specifically, we discuss how the use of anesthesia and reduced preparations may alter aspects of dopamine cell activity, and how there is heterogeneity across species and regions. We also describe how dopamine cell firing changes throughout the peri-adolescent period and how dopamine neuron activity differs across the population. In the final section, we discuss how dopamine neuron activity changes in response to life events. First, we focus attention on drugs of abuse. Drugs themselves change firing activity through a variety of mechanisms, with effects on firing while drug is present differing from those seen after drug discontinuation. We then review how stimuli that are rewarding, aversive, or salient can evoke changes in firing rate and discharge pattern of dopamine neurons, and provide behavioral relevance of dopamine signaling. Finally, we discuss how stress can modulate dopamine neuron firing and how this may contribute to the role that stressful experiences play in psychiatric disorders such as addiction and depression. PMID:25084048

  13. Improving Administrative Activities of State Vocational Education Agencies.

    ERIC Educational Resources Information Center

    Koble, Daniel E., Jr., Ed.; Coker, Robert U., Ed.

    The 1973 seminar focused on improving administrative activities of State vocational education agencies, and emphasis was given to the processes and innovative concepts related to the maintenance and improvement of administrative activities. Guidelines and position papers were presented in the following areas: (1) The Role of Vocational Education…

  14. Aircraft: United States Air Force Child Care Program Activity Guide.

    ERIC Educational Resources Information Center

    Boggs, Juanita; Brant, Linda

    General information about United States' aircraft is provided in this program activity guide for teachers and caregivers in Air Force preschools and day care centers. The guide includes basic information for teachers and caregivers, basic understandings, suggested teaching methods and group activities, vocabulary, ideas for interest centers, and…

  15. The Very Young and Education: 1974 State Activity.

    ERIC Educational Resources Information Center

    Hayas, Denise Kale; Ross, Doris M.

    This booklet contains more than 100 brief descriptions of early childhood projects, activities, studies, and legislation obtained from newsletters, bulletins, and the Education Commission of the States' (ECS) 1974 Annual Survey. Only legislation and activities that have been validated or newly reported are included. Bills which failed or were…

  16. On the way of classifying new states of active matter

    NASA Astrophysics Data System (ADS)

    Menzel, Andreas M.

    2016-07-01

    With ongoing research into the collective behavior of self-propelled particles, new states of active matter are revealed. Some of them are entirely based on the non-equilibrium character and do not have an immediate equilibrium counterpart. In their recent work, Romanczuk et al (2016 New J. Phys. 18 063015) concentrate on the characterization of smectic-like states of active matter. A new type, referred to by the authors as smectic P, is described. In this state, the active particles form stacked layers and self-propel along them. Identifying and classifying states and phases of non-equilibrium matter, including the transitions between them, is an up-to-date effort that will certainly extend for a longer period into the future.

  17. Electrical Activation of Dark Excitonic States in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Uda, Takushi; Yoshida, Masahiro; Ishii, Akihiro; Kato, Yuichiro K.

    Electrical activation of optical transitions to parity-forbidden dark excitonic states in individual carbon nanotubes is reported. We examine electric field effects on various excitonic states by simultaneously measuring both photocurrent and photoluminescence. As the applied field increases, we observe an emergence of new absorption peaks in the excitation spectra. From the diameter dependence of the energy separation between the new peaks and the ground state of E11 excitons, we attribute the peaks to the dark excited states which became optically active due to the applied field. A simple field-induced exciton dissociation model is introduced to explain the photocurrent threshold fields, and the edge of the E11 continuum states have been identified using this model. Work supported by JSPS (KAKENHI 24340066, 26610080), MEXT (Photon Frontier Network Program, Nanotechnology Platform), Canon Foundation, and Asahi Glass Foundation.

  18. Strategic Priorities for Physical Activity Surveillance in the United States.

    PubMed

    Fulton, Janet E; Carlson, Susan A; Ainsworth, Barbara E; Berrigan, David; Carlson, Cynthia; Dorn, Joan M; Heath, Gregory W; Kohl, Harold W; Lee, I-Min; Lee, Sarah M; Másse, Louise C; Morrow, James R; Gabriel, Kelley Pettee; Pivarnik, James M; Pronk, Nicolaas P; Rodgers, Anne B; Saelens, Brian E; Sallis, James F; Troiano, Richard P; Tudor-Locke, Catrine; Wendel, Arthur

    2016-10-01

    Develop strategic priorities to guide future physical activity surveillance in the United States. The Centers for Disease Control and Prevention and the American College of Sports Medicine convened a scientific roundtable of physical activity and measurement experts. Participants summarized the current state of aerobic physical activity surveillance for adults, focusing on practice and research needs in three areas: 1) behavior, 2) human movement, and 3) community supports. Needs and challenges for each area were identified. At the conclusion of the meeting, experts identified one overarching strategy and five strategic priorities to guide future surveillance. The identified overarching strategy was to develop a national plan for physical activity surveillance similar to the U.S. National Physical Activity Plan for promotion. The purpose of the plan would be to enhance coordination and collaboration within and between sectors, such as transportation and public health, and to address specific strategic priorities identified at the roundtable. These strategic priorities were used 1) to identify and prioritize physical activity constructs; 2) to assess the psychometric properties of instruments for physical activity surveillance; 3) to provide training and technical assistance for those collecting, analyzing, or interpreting surveillance data; 4) to explore accessing data from alternative sources; and 5) to improve communication, translation, and dissemination about estimates of physical activity from surveillance systems. This roundtable provided strategic priorities for physical activity surveillance in the United States. A first step is to develop a national plan for physical activity surveillance that would provide an operating framework from which to execute these priorities.

  19. Systemic inflammation and skeletal muscle dysfunction in chronic obstructive pulmonary disease: state of the art and novel insights in regulation of muscle plasticity.

    PubMed

    Remels, Alexander H; Gosker, Harry R; van der Velden, Jos; Langen, Ramon C; Schols, Annemie M

    2007-09-01

    Systemic inflammation is a recognized hallmark of chronic obstructive pulmonary disease pathogenesis. Although the origin and mechanisms responsible for the persistent chronic inflammatory process remain to be elucidated, it is recognized that it plays an important role in skeletal muscle pathology as observed in chronic obstructive pulmonary disease and several other chronic inflammatory disorders. This article describes state-of-the-art knowledge and novel insights in the role of inflammatory processes on several aspects of inflammation-related skeletal muscle pathology and offers new insights in therapeutic perspectives.

  20. Mechanistic insight into the hydrazine decomposition on Rh(111): effect of reaction intermediate on catalytic activity.

    PubMed

    Deng, Zhigang; Lu, Xiaoqing; Wen, Zengqiang; Wei, Shuxian; Liu, Yunjie; Fu, Dianling; Zhao, Lianming; Guo, Wenyue

    2013-10-14

    Periodic density functional theory (DFT) calculations have been performed to systematically investigate the effect of reaction intermediate on catalytic activity for hydrazine (N2H4) decomposition on Rh(111). Reaction mechanisms via intramolecular and NH2-assisted N2H4 decompositions are comparatively analyzed, including adsorption configuration, reaction energy and barrier of elementary step, and reaction network. Our results show that the most favorable N2H4 decomposition pathway starts with the initial N-N bond scission to the NH2 intermediate, followed by stepwise H stripping from adsorbed N2Hx (x = 1-4) species, and finally forms the N2 and NH3 products. Comparatively, the stepwise intramolecular dehydrogenation via N2H4→ N2H3→ N2H2→ N2H → N2, and N2H4→ NH2→ NH → N with or without NH2 promotion effect, are unfavorable due to higher energy barriers encountered. Energy barrier analysis, reaction rate constants, and electronic structures are used to identify the crucial competitive route. The promotion effect of the NH2 intermediate is structurally reflected in the weakening of the N-H bond and strengthening of the N-N bond in N2Hx in the coadsorption system; it results intrinsically from the less structural deformation of the adsorbate, and weakening of the interaction between dehydrogenated fragment and departing H in transition state. Our results highlight the crucial effect of reaction intermediate on catalytic activity and provide a theoretical approach to analyze the effect.

  1. Assessing state-level active living promotion using network analysis.

    PubMed

    Buchthal, Opal Vanessa; Taniguchi, Nicole; Iskandar, Livia; Maddock, Jay

    2013-01-01

    Physical inactivity is a growing problem in the United States, one that is being addressed through the development of active living communities. However, active living promotion requires collaboration among organizations that may not have previously shared goals. A network analysis was conducted to assess Hawaii's active living promotion network. Twenty-six organizations playing a significant role in promoting active living in Hawaii were identified and surveyed about their frequency of contact, level of collaboration, and funding flow with other agencies. A communication network was identified linking all agencies. This network had many long pathways, impeding information flow. The Department of Health (DOH) and the State Nutrition and Physical Activity Coalition (NPAC) were central nodes, but DOH connected state agencies while NPAC linked county and voluntary organizations. Within the network, information sharing was common, but collaboration and formal partnership were low. Linkages between county and state agencies, between counties, and between state agencies with different core agendas were particularly low. Results suggest that in the early stages of development, active living networks may be divided by geography and core missions, requiring work to bridge these divides. Network mapping appears helpful in identifying areas for network development.

  2. Ethanol Electro-Oxidation on Ternary Platinum–Rhodium–Tin Nanocatalysts: Insights in the Atomic 3D Structure of the Active Catalytic Phase

    SciTech Connect

    Erini, Nina; Loukrakpam, Rameshwori; Petkov, Valeri; Baranova, Elena A.; Yang, Ruizhi; Teschner, Detre; Huang, Yunhui; Brankovic, Stanko R.; Strasser, Peter

    2014-04-25

    Novel insights in the synthesis–structure–catalytic activity relationships of nanostructured trimetallic Pt–Rh–Sn electrocatalysts for the electrocatalytic oxidation of ethanol are reported. In particular, we identify a novel single-phase Rh-doped Pt–Sn Niggliite mineral phase as the source of catalytically active sites for ethanol oxidation; we discuss its morphology, composition, chemical surface state, and the detailed 3D atomic arrangement using high-energy (HE-XRD), atomic pair distribution function (PDF) analysis, and X-ray photoelectron spectroscopy (XPS). The intrinsic ethanol oxidation activity of the active Niggliite phase exceeded those of earlier reports, lending support to the notion that the atomic-scale neighborhood of Pt, Rh, and Sn is conducive to the emergence of active surface catalytic sites under reaction conditions. In situ mechanistic Fourier transform infrared (in situ FTIR) analysis confirms an active 12 electron oxidation reaction channel to CO2 at electrode potentials as low as 450 mV/RHE, demonstrating the favorable efficiency of the PtRhSn Niggliite phase for C–C bond splitting.

  3. Insights into the pathogenesis of chronic heart failure: immune activation and cachexia.

    PubMed

    Anker, S D; Rauchhaus, M

    1999-05-01

    Body wasting, i.e, cardiac cachexia, is a complication of chronic heart failure (CHF). The authors have suggested that cardiac cachexia should be diagnosed when nonedematous weight loss of more than 7.5% of the premorbid normal weight occurs over a time period of more than 6 months. In an unselected CHF outpatient population, 16% of patients were found to be cachectic. The cachectic state is predictive of poor survival independently of age, functional class, ejection fraction, and exercise capacity. Patients with cardiac cachexia suffer from a general loss of fat, lean, and bone tissue. Cachectic CHF patients are weaker and fatigue earlier. The pathophysiologic causes of body wasting in patients with CHF remain unclear, but initial studies have suggested that humoral neuroendocrine and immunologic abnormalities may be of importance. Cachectic CHF patients show increased plasma levels of catecholamines, cortisol, and aldosterone. Several studies have shown that cardiac cachexia is linked to increased plasma levels of tumor necrosis factor alpha. The degree of body wasting is strongly correlated with neurohormonal and immune abnormalities. Some investigators have suggested that endotoxin may be important in triggering immune activation in CHF patients. Available studies suggest that cardiac cachexia is a multifactorial neuroendocrine and immunologic disorder that carries a poor prognosis. A complex catabolic-anabolic imbalance in different body systems may cause body wasting in patients with CHF.

  4. A Tale of Two Economies: 2016 Higher Education Legislative Activity in the West. Policy Insights

    ERIC Educational Resources Information Center

    Sedney, Christina

    2016-01-01

    In 2016, there was an increasingly dramatic divergence between state economies in the West. Most states in the region benefited from an ongoing economic recovery, but states reliant on the energy sector for tax revenues were hit hard by the global decline in oil prices. This resulted in varying budget situations in legislatures across the…

  5. Resting state activity in patients with disorders of consciousness

    PubMed Central

    Soddu, Andrea; Vanhaudenhuyse, Audrey; Demertzi, Athena; Bruno, Marie-Aurélie; Tshibanda, Luaba; Di, Haibo; Boly, Mélanie; Papa, Michele; Laureys, Steven; Noirhomme, Quentin

    Summary Recent advances in the study of spontaneous brain activity have demonstrated activity patterns that emerge with no task performance or sensory stimulation; these discoveries hold promise for the study of higher-order associative network functionality. Additionally, such advances are argued to be relevant in pathological states, such as disorders of consciousness (DOC), i.e., coma, vegetative and minimally conscious states. Recent studies on resting state activity in DOC, measured with functional magnetic resonance imaging (fMRI) techniques, show that functional connectivity is disrupted in the task-negative or the default mode network. However, the two main approaches employed in the analysis of resting state functional connectivity data (i.e., hypothesis-driven seed-voxel and data-driven independent component analysis) present multiple methodological difficulties, especially in non-collaborative DOC patients. Improvements in motion artifact removal and spatial normalization are needed before fMRI resting state data can be used as proper biomarkers in severe brain injury. However, we anticipate that such developments will boost clinical resting state fMRI studies, allowing for easy and fast acquisitions and ultimately improve the diagnosis and prognosis in the absence of DOC patients’ active collaboration in data acquisition. PMID:21693087

  6. The state of multiple sclerosis: current insight into the patient/health care provider relationship, treatment challenges, and satisfaction

    PubMed Central

    Tintoré, Mar; Alexander, Maggie; Costello, Kathleen; Duddy, Martin; Jones, David E; Law, Nancy; O’Neill, Gilmore; Uccelli, Antonio; Weissert, Robert; Wray, Sibyl

    2017-01-01

    Background Managing multiple sclerosis (MS) treatment presents challenges for both patients and health care professionals. Effective communication between patients with MS and their neurologist is important for improving clinical outcomes and quality of life. Methods A closed-ended online market research survey was used to assess the current state of MS care from the perspective of both patients with MS (≥18 years of age) and neurologists who treat MS from Europe and the US and to gain insight into perceptions of treatment expectations/goals, treatment decisions, treatment challenges, communication, and satisfaction with care, based on current clinical practice. Results A total of 900 neurologists and 982 patients completed the survey, of whom 46% self-identified as having remitting-relapsing MS, 29% secondary progressive MS, and 11% primary progressive MS. Overall, patients felt satisfied with their disease-modifying therapy (DMT); satisfaction related to comfort in speaking with their neurologist and participation in their DMT decision-making process. Patients who self-identified as having relapsing-remitting MS were more likely to be very satisfied with their treatment. Top challenges identified by patients in managing their DMT were cost, side effects/tolerability of treatment, and uncertainty if treatment was working. Half of the patients reported skipping doses, but only 68% told their health care provider that they did so. Conclusion Several important differences in perception were identified between patients and neurologists concerning treatment selection, satisfaction, expectations, goals, and comfort discussing symptoms, as well as treatment challenges and skipped doses. The study results emphasize that patient/neurologist communication and patient input into the treatment decision-making process likely influence patient satisfaction with treatment. PMID:28053511

  7. Hydroxylation of p-substituted phenols by tyrosinase: Further insight into the mechanism of tyrosinase activity

    SciTech Connect

    Munoz-Munoz, Jose Luis; Berna, Jose; Garcia-Molina, Maria del Mar; Garcia-Molina, Francisco; Garcia-Ruiz, Pedro Antonio; Varon, Ramon [Departamento de Quimica-Fisica, Escuela de Ingenieros Industriales de Albacete, Universidad de Castilla la Mancha, Avda. Espana s and others

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer The action the copper complexes and tyrosinase on phenols is equivalent. Black-Right-Pointing-Pointer Isotope effect showed that nucleophilic attack to copper atom may be the slower step. Black-Right-Pointing-Pointer The value of {rho} (Hammett constant) supports an electrophilic aromatic substitution. Black-Right-Pointing-Pointer Data obtained in steady state pH 7 conditions support the mechanism of Scheme 1SM. -- Abstract: A study of the monophenolase activity of tyrosinase by measuring the steady state rate with a group of p-substituted monophenols provides the following kinetic information: k{sub cat}{sup m} and the Michaelis constant, K{sub M}{sup m}. Analysis of these data taking into account chemical shifts of the carbon atom supporting the hydroxyl group ({delta}) and {sigma}{sub p}{sup +}, enables a mechanism to be proposed for the transformation of monophenols into o-diphenols, in which the first step is a nucleophilic attack on the copper atom on the form E{sub ox} (attack of the oxygen of the hydroxyl group of C-1 on the copper atom) followed by an electrophilic attack (attack of the hydroperoxide group on the ortho position with respect to the hydroxyl group of the benzene ring, electrophilic aromatic substitution with a reaction constant {rho} of -1.75). These steps show the same dependency on the electronic effect of the substituent groups in C-4. Furthermore, a study of a solvent deuterium isotope effect on the oxidation of monophenols by tyrosinase points to an appreciable isotopic effect. In a proton inventory study with a series of p-substituted phenols, the representation of k{sub cat}{sup f{sub n}}/k{sub cat}{sup f{sub 0}} against n (atom fractions of deuterium), where k{sub cat}{sup f{sub n}} is the catalytic constant for a molar fraction of deuterium (n) and k{sub cat}{sup f{sub 0}} is the corresponding kinetic parameter in a water solution, was linear for all substrates. These results indicate that

  8. Patterns, predictors and effects of texting intervention on physical activity in CHD - insights from the TEXT ME randomized clinical trial.

    PubMed

    Thakkar, Jay; Redfern, Julie; Thiagalingam, Aravinda; Chow, Clara K

    2016-11-01

    Mobile phone text message interventions are used to support behaviour change including physical activity, but we have less insight into how these interventions work and what factors predict response. To study the effect of TEXT ME (Tobacco EXercise and dieT Messages) text message intervention on physical activity domains, consistency of effects across sub-groups and its additive value in patients that received traditional cardiac rehabilitation programme. This is a secondary analysis of the TEXT ME, a randomized clinical trial of lifestyle-focused text message intervention compared with usual care in patients with coronary heart disease. A quarter of the messages were designed specifically to encourage physical activity. Sedentary time and physical activity were assessed using the Global Physical Activity Questionnaire. At baseline, 85% of the 710 participants reported low physical activity levels. At six months, compared with controls, the intervention arm reported higher recreational physical activity (471 vs. 307 metabolic equivalent-min/week, p = 0.001) and travel physical activity (230 vs. 128 MET-min/week, p = 0.002), similar work-related physical activity and lower sedentary times (494 vs. 587 min, p < 0.001). Male gender, high baseline physical activity, cardiac rehabilitation participation and text message intervention predicted physically active status at six months. Subjects that received both cardiac rehabilitation and text messaging intervention were more likely to achieve target physical activity levels compared with cardiac rehabilitation alone (odds ratio 7.07 vs. 1.80, p < 0.001). The TEXT ME intervention improved recreational and travel physical activity, reduced sedentary times but had no effects on work-related physical activity. It had incremental benefits at achieving target physical activity levels even in patients participating in the traditional cardiac rehabilitation programme. © The European Society of Cardiology 2016.

  9. State Legislation Related to Increasing Physical Activity: 2006-2012

    PubMed Central

    Eyler, Amy A.; Budd, Elizabeth; Camberos, Gabriela J.; Yan, Yan; Brownson, Ross C.

    2016-01-01

    Background Strategies to improve physical activity prevalence often include policy and environmental changes. State-level policies can be influential in supporting access and opportunities for physical activity in schools and communities. The purpose of this study was to explore the prevalence of state legislation related to physical activity and identify the correlates of enactment of this legislation. Methods An online legislative database was used to collect bills from 50 states in the U.S. from 2006-2012 for ten topics related to physical activity. Bills were coded for content and compiled into a database with state-level variables (e.g., obesity prevalence). With enactment status as the outcome, bivariate and multivariate analyses were conducted. Results Of the 1542 bills related to physical activity introduced, 30% (N=460) were enacted. Bills on public transportation and trails were more likely to be enacted than those without these topics. Primary sponsorship by the Republican Party, bipartisan sponsorship, and mention of specific funding amounts were also correlates of enactment. Conclusion Policy surveillance of bills and correlates of enactment are important for understanding patterns in legislative support for physical activity. This information can be used to prioritize advocacy efforts and identify ways for research to better inform policy. PMID:26104603

  10. Mild activation of CeO2-supported gold nanoclusters and insight into the catalytic behavior in CO oxidation.

    PubMed

    Li, Weili; Ge, Qingjie; Ma, Xiangang; Chen, Yuxiang; Zhu, Manzhou; Xu, Hengyong; Jin, Rongchao

    2016-01-28

    We report a new activation method and insight into the catalytic behavior of a CeO2-supported, atomically precise Au144(SR)60 nanocluster catalyst (where thiolate -SR = -SCH2CH2Ph) for CO oxidation. An important finding is that the activation of the catalyst is closely related to the production of active oxygen species on CeO2, rather than ligand removal of the Au144(SR)60 clusters. A mild O2 pretreatment (at 80 °C) can activate the catalyst, and the addition of reductive gases (CO or H2) can enhance the activation effects of O2 pretreatment via a redox cycle in which CO could reduce the surface of CeO2 to produce oxygen vacancies-which then adsorb and activate O2 to produce more active oxygen species. The CO/O2 pulse experiments confirm that CO is adsorbed on the cluster catalyst even with ligands on, and active oxygen species present on the surface of the pretreated catalyst reacts with CO pulses to generate CO2. The Au144(SR)60/CeO2 exhibits high CO oxidation activity at 80 °C without the removal of thiolate ligands. The surface lattice-oxygen of the support CeO2 possibly participates in the oxidation of CO over the Au144(SR)60/CeO2 catalyst.

  11. Insights into the Interferon Regulatory Factor Activation from the Crystal Structure of Dimeric IRF5

    SciTech Connect

    Chen, W.; Lam, S; Srinath, H; Jiang, Z; Correia, J; Schiffer, C; Fitzgerald, K; Lin, K; Royer, Jr., W

    2008-01-01

    The interferon regulatory factors (IRFs) are involved in the innate immune response and are activated by phosphorylation. The structure of a pseudophosphorylated IRF5 activation domain now reveals structural changes in the activated form that would turn an autoinhibitory region into a dimerization interface. In vivo analysis supports the relevance of such a dimer to transcriptional activation.

  12. Correspondence between resting state activity and brain gene expression

    PubMed Central

    Wang, Guang-Zhong; Belgard, T. Grant; Mao, Deng; Chen, Leslie; Berto, Stefano; Preuss, Todd M.; Lu, Hanzhang; Geschwind, Daniel H.; Konopka, Genevieve

    2015-01-01

    SUMMARY The relationship between functional brain activity and gene expression has not been fully explored in the human brain. Here, we identify significant correlations between gene expression in the brain and functional activity by comparing fractional Amplitude of Low Frequency Fluctuations (fALFF) from two independent human fMRI resting state datasets to regional cortical gene expression from a newly generated RNA-seq dataset and two additional gene expression datasets to obtain robust and reproducible correlations. We find significantly more genes correlated with fALFF than expected by chance, and identify specific genes correlated with the imaging signals in multiple expression datasets in the default mode network. Together, these data support a population-level relationship between regional steady state brain gene expression and resting state brain activity. PMID:26590343

  13. Dynamics of Multistable States during Ongoing and Evoked Cortical Activity

    PubMed Central

    Mazzucato, Luca

    2015-01-01

    Single-trial analyses of ensemble activity in alert animals demonstrate that cortical circuits dynamics evolve through temporal sequences of metastable states. Metastability has been studied for its potential role in sensory coding, memory, and decision-making. Yet, very little is known about the network mechanisms responsible for its genesis. It is often assumed that the onset of state sequences is triggered by an external stimulus. Here we show that state sequences can be observed also in the absence of overt sensory stimulation. Analysis of multielectrode recordings from the gustatory cortex of alert rats revealed ongoing sequences of states, where single neurons spontaneously attain several firing rates across different states. This single-neuron multistability represents a challenge to existing spiking network models, where typically each neuron is at most bistable. We present a recurrent spiking network model that accounts for both the spontaneous generation of state sequences and the multistability in single-neuron firing rates. Each state results from the activation of neural clusters with potentiated intracluster connections, with the firing rate in each cluster depending on the number of active clusters. Simulations show that the model's ensemble activity hops among the different states, reproducing the ongoing dynamics observed in the data. When probed with external stimuli, the model predicts the quenching of single-neuron multistability into bistability and the reduction of trial-by-trial variability. Both predictions were confirmed in the data. Together, these results provide a theoretical framework that captures both ongoing and evoked network dynamics in a single mechanistic model. PMID:26019337

  14. Enhanced proinflammatory state and autoimmune activation: a breakthrough to understanding chronic diseases.

    PubMed

    Onat, Altan; Can, Günay

    2014-01-01

    Insight is provided herein into the novel mechanisms of cardiometabolic risk. Previous reports, including the epidemiological work of the Turkish Adult Risk Factor study, indicated that proinflammatory state and oxidative stress are crucial for evaluating cardiometabolic risk. Autoimmune pathways in the course of oxidative stress are major determinants of cardiorenal and metabolic risk. The latter encompasses metabolic syndrome, type 2 diabetes, coronary heart disease, and chronic kidney disease (CKD). Along with platelet-activating factor acetylhydrolase, creatinine, thyroid stimulating hormone, acylation-stimulating protein, asymmetric dimethylarginine, and serum lipoprotein[Lp](a) are triggers of systemic low-grade inflammation and enhanced autoimmune reactions. Related studies are analyzed in the current review. Lp(a) plays a crucial role by taking part in the immune activation, thereby accelerating the course of diabetes, CKD, and other chronic disorders. Populations prone to impaired glucose tolerance, and particularly peri- and postmenopausal women, are at high risk of developing related vascular complications.

  15. Physical activity promotion: a local and state health department perspective.

    PubMed

    Simon, Paul; Gonzalez, Eloisa; Ginsburg, David; Abrams, Jennifer; Fielding, Jonathan

    2009-10-01

    Local and state health departments are well-positioned to serve as catalysts for the institutional and community changes needed to increase physical activity across the population. Efforts should focus on evidence-based strategies, including promotion of high-quality physical education in schools, social support networks and structured programs for physical activity in communities, and organizational practices, policies, and programs that promote physical activity in the workplace. Health departments must also focus on land use and transportation practices and policies in communities where the built environment creates major impediments to physical activity, particularly in economically disadvantaged communities disproportionately burdened by chronic disease.

  16. Limits of state activity in the interstate water market

    SciTech Connect

    Rodgers, A.B.

    1986-01-01

    In an effort to ensure future water supplies, many western states are becoming participants in the market for water. As market participants, states gain a proprietary interest in their water resources which more effectively secures their right to the water than mere regulation or claims of ownership under the public trust doctrine. As the author points out, however, the constitution imposes numerous limitations on state water market activity. The privileges and immunities clause, the commerce clause, the property clause, as well as the equal protection clause of the fourteenth amendment, all influence the manner in which states may behave. Most significantly, the author explains, these clauses prevent states from using their power as water market participants as a disguise for economic protectionism.

  17. Using community insight to understand physical activity adoption in overweight and obese African American and Hispanic women: a qualitative study.

    PubMed

    Mama, Scherezade K; McCurdy, Sheryl A; Evans, Alexandra E; Thompson, Deborah I; Diamond, Pamela M; Lee, Rebecca E

    2015-06-01

    Ecologic models suggest that multiple levels of influencing factors are important for determining physical activity participation and include individual, social, and environmental factors. The purpose of this qualitative study was to use an ecologic framework to gain a deeper understanding of the underlying behavioral mechanisms that influence physical activity adoption among ethnic minority women. Eighteen African American and Hispanic women completed a 1-hour in-depth interview. Verbatim interview transcripts were analyzed for emergent themes using a constant comparison approach. Women were middle-aged (age M = 43.9 ± 7.3 years), obese (body mass index M = 35.0 ± 8.9 kg/m(2)), and of high socioeconomic status (88.9% completed some college or more, 41.2% reported income >$82,600/year). Participants discussed individual factors, including the need for confidence, motivation and time, and emphasized the importance of environmental factors, including their physical neighborhood environments and safety of and accessibility to physical activity resources. Women talked about caretaking for others and social support and how these influenced physical activity behavior. The findings from this study highlight the multilevel, interactive complexities that influence physical activity, emphasizing the need for a more sophisticated, ecologic approach for increasing physical activity adoption and maintenance among ethnic minority women. Community insight gleaned from this study may be used to better understand determinants of physical activity and develop multilevel solutions and programs guided by an ecologic framework to increase physical activity in ethnic minority women.

  18. Using Community Insight to Understand Physical Activity Adoption in Overweight and Obese African American and Hispanic Women: A Qualitative Study

    PubMed Central

    Mama, Scherezade K.; McCurdy, Sheryl A.; Evans, Alexandra E.; Thompson, Deborah I.; Diamond, Pamela M.; Lee, Rebecca E.

    2015-01-01

    Ecologic models suggest that multiple levels of influencing factors are important for determining physical activity participation and include individual, social, and environmental factors. The purpose of this qualitative study was to use an ecologic framework to gain a deeper understanding of the underlying behavioral mechanisms that influence physical activity adoption among ethnic minority women. Eighteen African American and Hispanic women completed a 1-hour in-depth interview. Verbatim interview transcripts were analyzed for emergent themes using a constant comparison approach. Women were middle-aged (age M = 43.9 ± 7.3 years), obese (body mass index M = 35.0 ± 8.9 kg/m2), and of high socioeconomic status (88.9% completed some college or more, 41.2% reported income >$82,600/year). Participants discussed individual factors, including the need for confidence, motivation and time, and emphasized the importance of environmental factors, including their physical neighborhood environments and safety of and accessibility to physical activity resources. Women talked about caretaking for others and social support and how these influenced physical activity behavior. The findings from this study highlight the multilevel, interactive complexities that influence physical activity, emphasizing the need for a more sophisticated, ecologic approach for increasing physical activity adoption and maintenance among ethnic minority women. Community insight gleaned from this study may be used to better understand determinants of physical activity and develop multilevel solutions and programs guided by an ecologic framework to increase physical activity in ethnic minority women. PMID:25504569

  19. Affordability and Student Success: Recapping 2014 Higher Education Legislative Activity in the West. Policy Insights

    ERIC Educational Resources Information Center

    Krueger, Carl

    2014-01-01

    After reaching a low point in 2012, state investment in higher education increased for the second year in a row in 2014--something that had not happened since the Great Recession of 2008 began. With greater stability in some, though certainly not all, state budgets, many Western legislatures in 2014 looked for new ways to contain college costs for…

  20. Oligomeric state in the crystal structure of modular FAD synthetase provides insights into its sequential catalysis in prokaryotes.

    PubMed

    Herguedas, Beatriz; Martínez-Júlvez, Marta; Frago, Susana; Medina, Milagros; Hermoso, Juan A

    2010-07-09

    The crystal structure of the modular flavin adenine dinucleotide (FAD) synthetase from Corynebacterium ammoniagenes has been solved at 1.95 A resolution. The structure of C. ammoniagenes FAD synthetase presents two catalytic modules-a C-terminus with ATP-riboflavin kinase activity and an N-terminus with ATP-flavin mononucleotide (FMN) adenylyltransferase activity-that are responsible for the synthesis of FAD from riboflavin in two sequential steps. In the monomeric structure, the active sites from both modules are placed 40 A away, preventing the direct transfer of the product from the first reaction (FMN) to the second catalytic site, where it acts as substrate. Crystallographic and biophysical studies revealed a hexameric assembly formed by the interaction of two trimers. Each trimer presents a head-tail configuration, with FMN adenylyltransferase and riboflavin kinase modules from different protomers approaching the active sites and allowing the direct transfer of FMN. Experimental results provide molecular-level evidences of the mechanism of the synthesis of FMN and FAD in prokaryotes in which the oligomeric state could be involved in the regulation of the catalytic efficiency of the modular enzyme. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. Working memory capacity and the functional connectome - insights from resting-state fMRI and voxelwise centrality mapping.

    PubMed

    Markett, Sebastian; Reuter, Martin; Heeren, Behrend; Lachmann, Bernd; Weber, Bernd; Montag, Christian

    2017-02-28

    The functional connectome represents a comprehensive network map of functional connectivity throughout the human brain. To date, the relationship between the organization of functional connectivity and cognitive performance measures is still poorly understood. In the present study we use resting-state functional magnetic resonance imaging (fMRI) data to explore the link between the functional connectome and working memory capacity in an individual differences design. Working memory capacity, which refers to the maximum amount of context information that an individual can retain in the absence of external stimulation, was assessed outside the MRI scanner and estimated based on behavioral data from a change detection task. Resting-state time series were analyzed by means of voxelwise degree and eigenvector centrality mapping, which are data-driven network analytic approaches for the characterization of functional connectivity. We found working memory capacity to be inversely correlated with both centrality in the right intraparietal sulcus. Exploratory analyses revealed that this relationship was putatively driven by an increase in negative connectivity strength of the structure. This resting-state connectivity finding fits previous task based activation studies that have shown that this area responds to manipulations of working memory load.

  2. Abnormal resting-state brain activity in headache-free migraine patients: A magnetoencephalography study.

    PubMed

    Li, Feng; Xiang, Jing; Wu, Ting; Zhu, Donglin; Shi, Jingping

    2016-08-01

    The aim of this study is to quantitatively assess the resting-state brain activity in migraine patients during the headache-free phase with magnetoencephalography (MEG). A total of 25 migraine patients during the headache-free phase and 25 gender- and age-matched control patients were studied with a whole-head MEG system at eyes-closed resting-state. MEG data were analyzed in multifrequency range of 4-200Hz. In a regional cortex analysis, the spectral power of gamma oscillations in left frontal and left temporal regions was significantly increased in migraine patients as compared to controls (all p<0.001), but no significant difference was found between the two groups for the global channels. Analyses of source location showed that there were significant differences in the distribution of gamma oscillation between migraine subjects and controls (p<0.025). Migraine patients in resting-state had altered brain activities in spectral power value and source distribution that can be detected and analyzed by MEG. Abnormal brain activities in the left frontal and temporal regions may be involved in pain modulation and processing of migraine. These findings provide new insights into the possible mechanisms of migraine attacks. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Informal Face-to-Face Interaction Improves Mood State Reflected in Prefrontal Cortex Activity

    PubMed Central

    Watanabe, Jun-ichiro; Atsumori, Hirokazu; Kiguchi, Masashi

    2016-01-01

    Recent progress with wearable sensors has enabled researchers to capture face-to-face interactions quantitatively and given great insight into human dynamics. One attractive field for applying such sensors is the workplace, where the relationship between the face-to-face behaviors of employees and the productivity of the organization has been investigated. One interesting result of previous studies showed that informal face-to-face interaction among employees, captured by wearable sensors that the employees wore, significantly affects their performance. However, the mechanism behind this relationship has not yet been adequately explained, though experiences at the job scene might qualitatively support the finding. We hypothesized that informal face-to-face interaction improves mood state, which in turn affects the task performance. To test this hypothesis, we evaluated the change of mood state before and after break time for two groups of participants, one that spent their breaks alone and one that spent them with other participants, by administering questionnaires and taking brain activity measurements. Recent neuroimaging studies have suggested a significant relationship between mood state and brain activity. Here, we show that face-to-face interaction during breaks significantly improved mood state, which was measured by Profiles of Mood States (POMS). We also observed that the verbal working memory (WM) task performance of participants who did not have face-to-face interaction during breaks decreased significantly. In this paper, we discuss how the change of mood state was evidenced in the prefrontal cortex (PFC) activity accompanied by WM tasks measured by near-infrared spectroscopy (NIRS). PMID:27199715

  4. Mechanistic Insight into the Reactivation of BCAII Enzyme from Denatured and Molten Globule States by Eukaryotic Ribosomes and Domain V rRNAs.

    PubMed

    Chakraborty, Biprashekhar; Bhakta, Sayan; Sengupta, Jayati

    2016-01-01

    In all life forms, decoding of messenger-RNA into polypeptide chain is accomplished by the ribosome. Several protein chaperones are known to bind at the exit of ribosomal tunnel to ensure proper folding of the nascent chain by inhibiting their premature folding in the densely crowded environment of the cell. However, accumulating evidence suggests that ribosome may play a chaperone role in protein folding events in vitro. Ribosome-mediated folding of denatured proteins by prokaryotic ribosomes has been studied extensively. The RNA-assisted chaperone activity of the prokaryotic ribosome has been attributed to the domain V, a span of 23S rRNA at the intersubunit side of the large subunit encompassing the Peptidyl Transferase Centre. Evidently, this functional property of ribosome is unrelated to the nascent chain protein folding at the exit of the ribosomal tunnel. Here, we seek to scrutinize whether this unique function is conserved in a primitive kinetoplastid group of eukaryotic species Leishmania donovani where the ribosome structure possesses distinct additional features and appears markedly different compared to other higher eukaryotic ribosomes. Bovine Carbonic Anhydrase II (BCAII) enzyme was considered as the model protein. Our results manifest that domain V of the large subunit rRNA of Leishmania ribosomes preserves chaperone activity suggesting that ribosome-mediated protein folding is, indeed, a conserved phenomenon. Further, we aimed to investigate the mechanism underpinning the ribosome-assisted protein reactivation process. Interestingly, the surface plasmon resonance binding analyses exhibit that rRNA guides productive folding by directly interacting with molten globule-like states of the protein. In contrast, native protein shows no notable affinity to the rRNA. Thus, our study not only confirms conserved, RNA-mediated chaperoning role of ribosome but also provides crucial insight into the mechanism of the process.

  5. Mechanistic Insight into the Reactivation of BCAII Enzyme from Denatured and Molten Globule States by Eukaryotic Ribosomes and Domain V rRNAs

    PubMed Central

    Chakraborty, Biprashekhar; Bhakta, Sayan; Sengupta, Jayati

    2016-01-01

    In all life forms, decoding of messenger-RNA into polypeptide chain is accomplished by the ribosome. Several protein chaperones are known to bind at the exit of ribosomal tunnel to ensure proper folding of the nascent chain by inhibiting their premature folding in the densely crowded environment of the cell. However, accumulating evidence suggests that ribosome may play a chaperone role in protein folding events in vitro. Ribosome-mediated folding of denatured proteins by prokaryotic ribosomes has been studied extensively. The RNA-assisted chaperone activity of the prokaryotic ribosome has been attributed to the domain V, a span of 23S rRNA at the intersubunit side of the large subunit encompassing the Peptidyl Transferase Centre. Evidently, this functional property of ribosome is unrelated to the nascent chain protein folding at the exit of the ribosomal tunnel. Here, we seek to scrutinize whether this unique function is conserved in a primitive kinetoplastid group of eukaryotic species Leishmania donovani where the ribosome structure possesses distinct additional features and appears markedly different compared to other higher eukaryotic ribosomes. Bovine Carbonic Anhydrase II (BCAII) enzyme was considered as the model protein. Our results manifest that domain V of the large subunit rRNA of Leishmania ribosomes preserves chaperone activity suggesting that ribosome-mediated protein folding is, indeed, a conserved phenomenon. Further, we aimed to investigate the mechanism underpinning the ribosome-assisted protein reactivation process. Interestingly, the surface plasmon resonance binding analyses exhibit that rRNA guides productive folding by directly interacting with molten globule-like states of the protein. In contrast, native protein shows no notable affinity to the rRNA. Thus, our study not only confirms conserved, RNA-mediated chaperoning role of ribosome but also provides crucial insight into the mechanism of the process. PMID:27099964

  6. Data inconsistencies from states with unconventional oil and gas activity.

    PubMed

    Malone, Samantha; Kelso, Matthew; Auch, Ted; Edelstein, Karen; Ferrar, Kyle; Jalbert, Kirk

    2015-01-01

    The quality and availability of unconventional oil and gas (O&G) data in the United States have never been compared methodically state-to-state. By conducting such an assessment, this study seeks to better understand private and publicly sourced data variability and to identify data availability gaps. We developed an exploratory data-grading tool - Data Accessibility and Usability Index (DAUI) - to guide the review of O&G data quality. Between July and October 2013, we requested, collected, and assessed 5 categories of unconventional O&G data (wells drilled, violations, production, waste, and Class II disposal wells) from 10 states with active drilling activity. We based our assessment on eight data quality parameters (accessibility, usability, point location, completeness, metadata, agency responsiveness, accuracy, and cost). Using the DAUI, two authors graded the 10 states and then averaged their scores. The average score received across all states, data categories, and parameters was 67.1 out of 100, largely insufficient for proper data transparency. By state, Pennsylvania received the highest average ( = 93.5) and ranked first in all but one data category. The lowest scoring state was Texas ( = 44) largely due to its policy of charging for certain data. This article discusses the various reasons for scores received, as well as methodological limitations of the assessment metrics. We argue that the significant variability of unconventional O&G data-and its availability to the public-is a barrier to regulatory and industry transparency. The lack of transparency also impacts public education and broader participation in industry governance. This study supports the need to develop a set of data best management practices (BMPs) for state regulatory agencies and the O&G industry, and suggests potential BMPs for this purpose.

  7. Active Transportation Surveillance - United States, 1999-2012.

    PubMed

    Whitfield, Geoffrey P; Paul, Prabasaj; Wendel, Arthur M

    2015-08-28

    Physical activity is a health-enhancing behavior, and most U.S. adults do not meet the 2008 Physical Activity Guidelines for Americans. Active transportation, such as by walking or bicycling, is one way that persons can be physically active. No comprehensive, multiyear assessments of active transportation surveillance in the United States have been conducted. 1999-2012. Five surveillance systems assess one or more components of active transportation. The American Community Survey and the National Household Travel Survey (NHTS) both assess the mode of transportation to work in the past week. From these systems, the proportion of respondents who reported walking or bicycling to work can be calculated. NHTS and the American Time Use Survey include 1-day assessments of trips or activities. With that information, the proportion of respondents who report any walking or bicycling for transportation can be calculated. The National Health and Nutrition Examination Survey and the National Health Interview Survey both assess recent (i.e., in the past week or past month) habitual physical activity behaviors, including those performed during active travel. From these systems, the proportion of respondents who report any recent habitual active transportation can be calculated. The prevalence of active transportation as the primary commute mode to work in the past week ranged from 2.6% to 3.4%. The 1-day assessment indicated that the prevalence of any active transportation ranged from 10.5% to 18.5%. The prevalence of any habitual active transportation ranged from 23.9% to 31.4%. No consistent trends in active transportation across time periods and surveillance systems were identified. Among systems, active transportation was usually more common among men, younger respondents, and minority racial/ethnic groups. Among education groups, the highest prevalence of active transportation was usually among the least or most educated groups, and active transportation tended to be more

  8. The Current State of Marketing Activity among Higher Education Institutions.

    ERIC Educational Resources Information Center

    Newman, Cynthia M.

    2002-01-01

    Investigated the current state of marketing, marketing research, and planning practices at four-year higher education institutions. Builds upon previous studies by Blackburn (1979) and Goldgehn (1982 and 1989). Determined whether the use and apparent understanding of marketing and its attendant activities by admissions and enrollment management…

  9. Canada and the United States. Perspective. Learning Activity Packet.

    ERIC Educational Resources Information Center

    Maine Univ., Orono. New England - Atlantic Provinces - Quebec Center.

    The similarities and differences of Canada and the United States are explored in this Learning Activity Packet (LAP). Ten learning objectives are given which encourage students to examine: 1) the misconceptions Americans and Canadians have about each other and their ways of life; 2) the effect and influence of French and English exploration and…

  10. The Current State of Marketing Activity among Higher Education Institutions.

    ERIC Educational Resources Information Center

    Newman, Cynthia M.

    2002-01-01

    Investigated the current state of marketing, marketing research, and planning practices at four-year higher education institutions. Builds upon previous studies by Blackburn (1979) and Goldgehn (1982 and 1989). Determined whether the use and apparent understanding of marketing and its attendant activities by admissions and enrollment management…

  11. Obesity, Health, and Physical Activity: Discourses from the United States

    ERIC Educational Resources Information Center

    Zieff, Susan G.; Veri, Maria J.

    2009-01-01

    This article examines the obesity, health, and physical activity discourses of the past 35 years in the context of the United States with particular reference to five social sectors: the biomedical domain; the popular media; nonprofit foundations, centers and agencies; various national and multinational corporations; and government at all levels.…

  12. Obesity, Health, and Physical Activity: Discourses from the United States

    ERIC Educational Resources Information Center

    Zieff, Susan G.; Veri, Maria J.

    2009-01-01

    This article examines the obesity, health, and physical activity discourses of the past 35 years in the context of the United States with particular reference to five social sectors: the biomedical domain; the popular media; nonprofit foundations, centers and agencies; various national and multinational corporations; and government at all levels.…

  13. Notification: Oversight of Superfund State Contracts for Remedial Activities

    EPA Pesticide Factsheets

    Project #OA-FY15-0054, December 30, 2014. The Office of Inspector General (OIG) for the U.S. Environmental Protection Agency (EPA) is beginning an audit of the EPA's oversight of Superfund State Contracts (SSCs) for remedial activities.

  14. 20 CFR 631.41 - Allowable State activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Allowable State activities. 631.41 Section 631.41 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR PROGRAMS UNDER... be limited to those individuals who can most benefit from and are in need of such services. (e)...

  15. New Insights into Active Site Conformation Dynamics of E. coli PNP Revealed by Combined H/D Exchange Approach and Molecular Dynamics Simulations.

    PubMed

    Kazazić, Saša; Bertoša, Branimir; Luić, Marija; Mikleušević, Goran; Tarnowski, Krzysztof; Dadlez, Michal; Narczyk, Marta; Bzowska, Agnieszka

    2016-01-01

    The biologically active form of purine nucleoside phosphorylase (PNP) from Escherichia coli (EC 2.4.2.1) is a homohexamer unit, assembled as a trimer of dimers. Upon binding of phosphate, neighboring monomers adopt different active site conformations, described as open and closed. To get insight into the functions of the two distinctive active site conformations, virtually inactive Arg24Ala mutant is complexed with phosphate; all active sites are found to be in the open conformation. To understand how the sites of neighboring monomers communicate with each other, we have combined H/D exchange (H/DX) experiments with molecular dynamics (MD) simulations. Both methods point to the mobility of the enzyme, associated with a few flexible regions situated at the surface and within the dimer interface. Although H/DX provides an average extent of deuterium uptake for all six hexamer active sites, it was able to indicate the dynamic mechanism of cross-talk between monomers, allostery. Using this technique, it was found that phosphate binding to the wild type (WT) causes arrest of the molecular motion in backbone fragments that are flexible in a ligand-free state. This was not the case for the Arg24Ala mutant. Upon nucleoside substrate/inhibitor binding, some release of the phosphate-induced arrest is observed for the WT, whereas the opposite effects occur for the Arg24Ala mutant. MD simulations confirmed that phosphate is bound tightly in the closed active sites of the WT; conversely, in the open conformation of the active site of the WT phosphate is bound loosely moving towards the exit of the active site. In Arg24Ala mutant binary complex Pi is bound loosely, too.

  16. Physical activity, food intake, and body weight regulation: insights from doubly labeled water studies.

    PubMed

    Westerterp, Klaas R

    2010-03-01

    Body weight and energy balance can be maintained by adapting energy intake to changes in energy expenditure and vice versa, whereas short-term changes in energy expenditure are mainly caused by physical activity. This review investigates whether physical activity is affected by over- and undereating, whether intake is affected by an increase or a decrease in physical activity, and whether being overweight affects physical activity. The available evidence is based largely on studies that quantified physical activity with doubly labeled water. Overeating does not affect physical activity, while undereating decreases habitual or voluntary physical activity. Thus, it is easier to gain weight than to lose weight. An exercise-induced increase in energy requirement is typically compensated by increased energy intake, while a change to a more sedentary routine does not induce an equivalent reduction of intake and generally results in weight gain. Overweight and obese subjects tend to have similar activity energy expenditures to lean people despite being more sedentary. There are two ways in which the general population trend towards increasing body weight can be reversed: reduce intake or increase physical activity. The results of the present literature review indicate that eating less is the most effective method for preventing weight gain, despite the potential for a negative effect on physical activity when a negative energy balance is reached.

  17. Insights into the activation mechanism of class I HDAC complexes by inositol phosphates

    PubMed Central

    Watson, Peter J.; Millard, Christopher J.; Riley, Andrew M.; Robertson, Naomi S.; Wright, Lyndsey C.; Godage, Himali Y.; Cowley, Shaun M.; Jamieson, Andrew G.; Potter, Barry V. L.; Schwabe, John W. R.

    2016-01-01

    Histone deacetylases (HDACs) 1, 2 and 3 form the catalytic subunit of several large transcriptional repression complexes. Unexpectedly, the enzymatic activity of HDACs in these complexes has been shown to be regulated by inositol phosphates, which bind in a pocket sandwiched between the HDAC and co-repressor proteins. However, the actual mechanism of activation remains poorly understood. Here we have elucidated the stereochemical requirements for binding and activation by inositol phosphates, demonstrating that activation requires three adjacent phosphate groups and that other positions on the inositol ring can tolerate bulky substituents. We also demonstrate that there is allosteric communication between the inositol-binding site and the active site. The crystal structure of the HDAC1:MTA1 complex bound to a novel peptide-based inhibitor and to inositol hexaphosphate suggests a molecular basis of substrate recognition, and an entropically driven allosteric mechanism of activation. PMID:27109927

  18. Epoxide hydrolase-catalyzed enantioselective conversion of trans-stilbene oxide: Insights into the reaction mechanism from steady-state and pre-steady-state enzyme kinetics.

    PubMed

    Archelas, Alain; Zhao, Wei; Faure, Bruno; Iacazio, Gilles; Kotik, Michael

    2016-02-01

    A detailed kinetic study based on steady-state and pre-steady-state measurements is described for the highly enantioselective epoxide hydrolase Kau2. The enzyme, which is a member of the α/β-hydrolase fold family, preferentially reacts with the (S,S)-enantiomer of trans-stilbene oxide (TSO) with an E value of ∼200. The enzyme follows a classical two-step catalytic mechanism with formation of an alkyl-enzyme intermediate in the first step and hydrolysis of this intermediate in a rate-limiting second step. Tryptophan fluorescence quenching during TSO conversion appears to correlate with alkylation of the enzyme. The steady-state data are consistent with (S,S) and (R,R)-TSO being two competing substrates with marked differences in k(cat) and K(M) values. The high enantiopreference of the epoxide hydrolase is best explained by pronounced differences in the second-order alkylation rate constant (k2/K(S)) and the alkyl-enzyme hydrolysis rate k3 between the (S,S) and (R,R)-enantiomers of TSO. Our data suggest that during conversion of (S,S)-TSO the two active site tyrosines, Tyr(157) and Tyr(259), serve mainly as electrophilic catalysts in the alkylation half-reaction, polarizing the oxirane oxygen of the bound epoxide through hydrogen bond formation, however, without fully donating their hydrogens to the forming alkyl-enzyme intermediate.

  19. Insights into the structural basis of endogenous agonist activation of family B G protein-coupled receptors.

    PubMed

    Dong, Maoqing; Gao, Fan; Pinon, Delia I; Miller, Laurence J

    2008-06-01

    Agonist drugs targeting the glucagon-like peptide-1 (GLP1) receptor represent important additions to the clinical management of patients with diabetes mellitus. In the current report, we have explored whether the recently described concept of a receptor-active endogenous agonist sequence within the amino terminus of the secretin receptor may also be applicable to the GLP1 receptor. If so, this could provide a lead for the development of additional small molecule agonists targeting this and other important family members. Indeed, the region of the GLP1 receptor analogous to that containing the active WDN within the secretin receptor was found to possess full agonist activity at the GLP1 receptor. The minimal fragment within this region that had full agonist activity was NRTFD. Despite having no primary sequence identity with the WDN, it was also active at the secretin receptor, where it had similar potency and efficacy to WDN, suggesting common structural features. Molecular modeling demonstrated that an intradomain salt bridge between the side chains of arginine and aspartate could yield similarities in structure with cyclic WDN. This directly supports the relevance of the endogenous agonist concept to the GLP1 receptor and provides new insights into the rational development and refinement of new types of drugs activating this important receptor.

  20. Pathway activation profiling reveals new insights into age-related macular degeneration and provides avenues for therapeutic interventions.

    PubMed

    Makarev, Evgeny; Cantor, Charles; Zhavoronkov, Alex; Buzdin, Anton; Aliper, Alexander; Csoka, Anotonei Benjamin

    2014-12-01

    Age-related macular degeneration (AMD) is a major cause of blindness in older people and is caused by loss of the central region of the retinal pigment epithelium (RPE). Conventional methods of gene expression analysis have yielded important insights into AMD pathogenesis, but the precise molecular pathway alterations are still poorly understood. Therefore we developed a new software program, "AMD Medicine", and discovered differential pathway activation profiles in samples of human RPE/choroid from AMD patients and controls. We identified 29 pathways in RPE-choroid AMD phenotypes: 27 pathways were activated in AMD compared to controls, and 2 pathways were activated in controls compared to AMD. In AMD, we identified a graded activation of pathways related to wound response, complement cascade, and cell survival. Also, there was downregulation of two pathways responsible for apoptosis. Furthermore, significant activation of pro-mitotic pathways is consistent with dedifferentiation and cell proliferation events, which occur early in the pathogenesis of AMD. Significantly, we discovered new global pathway activation signatures of AMD involved in the cell-based inflammatory response: IL-2, STAT3, and ERK. The ultimate aim of our research is to achieve a better understanding of signaling pathways involved in AMD pathology, which will eventually lead to better treatments.

  1. 2-(pyrazin-2-yloxy)acetohydrazide analogs QSAR Study: An insight into the structural basis of antimycobacterial activity.

    PubMed

    Gupta, Revathi A; Gupta, Arun K; Soni, Love K; Kaskhedikar, Satish Gopalrao

    2010-11-01

    Quantitative structure activity relationship analysis based on classical Hansch approach was adopted on reported novel series of 2-(pyrazin-2-yloxy)acetohydrazide analogs. Various types of descriptors like topological, spatial, thermodynamic, and electronic were used to derive a quantitative relationship between the antitubercular activity and structural properties. The consensus scoring function showed a significant statistics of training and test set. Coefficient of determination (r²) of consensus model and predictive squared correlation coefficient (r²(pred)) were found to be 0.889 and 0.782, respectively. The model is not only able to predict the activity of test compounds but also explained the important structural features of the molecules in a quantitative manner. The study revealed that antimycobacterium activity is predominantly explained by the molecular connectivity indices of length 6, hydrogen donor feature of the analogs, and shape factors of the substituent. The comparative investigation of antibacterial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Salmonella typhi provided structural insights on how modulation of the molecular connectivity indices, energy of lowest unoccupied molecular orbital, accessible surface area, and moment of inertia of the analogs could be usefully made to optimize the antibacterial activity.

  2. Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity

    PubMed Central

    Ahmed, Afsar U.; Williams, Bryan R. G.; Hannigan, Gregory E.

    2015-01-01

    Acute inflammation, an integral part of host defence and immunity, is a highly conserved cellular response to pathogens and other harmful stimuli. An inflammatory stimulation triggers transcriptional activation of selective pro-inflammatory genes that carry out specific functions such as anti-microbial activity or tissue healing. Based on the nature of inflammatory stimuli, an extensive exploitation of selective transcriptional activations of pro-inflammatory genes is performed by the host to ensure a defined inflammatory response. Inflammatory signal transductions are initiated by the recognition of inflammatory stimuli by transmembrane receptors, followed by the transmission of the signals to the nucleus for differential gene activations. The differential transcriptional activation of pro-inflammatory genes is precisely controlled by the selective binding of transcription factors to the promoters of these genes. Among a number of transcription factors identified to date, NF-κB still remains the most prominent and studied factor for its diverse range of selective transcriptional activities. Differential transcriptional activities of NF-κB are dictated by post-translational modifications, specificities in dimer formation, and variability in activation kinetics. Apart from the differential functions of transcription factors, the transcriptional activation of selective pro-inflammatory genes is also governed by chromatin structures, epigenetic markers, and other regulators as the field is continuously expanding. PMID:26569329

  3. Nonequilibrium Equation of State in Suspensions of Active Colloids

    NASA Astrophysics Data System (ADS)

    Ginot, Félix; Theurkauff, Isaac; Levis, Demian; Ybert, Christophe; Bocquet, Lydéric; Berthier, Ludovic; Cottin-Bizonne, Cécile

    2015-01-01

    Active colloids constitute a novel class of materials composed of colloidal-scale particles locally converting chemical energy into motility, mimicking micro-organisms. Evolving far from equilibrium, these systems display structural organizations and dynamical properties distinct from thermalized colloidal assemblies. Harvesting the potential of this new class of systems requires the development of a conceptual framework to describe these intrinsically nonequilibrium systems. We use sedimentation experiments to probe the nonequilibrium equation of state of a bidimensional assembly of active Janus microspheres and conduct computer simulations of a model of self-propelled hard disks. Self-propulsion profoundly affects the equation of state, but these changes can be rationalized using equilibrium concepts. We show that active colloids behave, in the dilute limit, as an ideal gas with an activity-dependent effective temperature. At finite density, increasing the activity is similar to increasing adhesion between equilibrium particles. We quantify this effective adhesion and obtain a unique scaling law relating activity and effective adhesion in both experiments and simulations. Our results provide a new and efficient way to understand the emergence of novel phases of matter in active colloidal suspensions.

  4. Behavioral State Modulates the Activity of Brainstem Sensorimotor Neurons

    PubMed Central

    McArthur, Kimberly L.

    2011-01-01

    Sensorimotor processing must be modulated according to the animal's behavioral state. A previous study demonstrated that motion responses were strongly state dependent in birds. Vestibular eye and head responses were significantly larger and more compensatory during simulated flight, and a flight-specific vestibular tail response was also characterized. In the current study, we investigated the neural substrates for these state-dependent vestibular behaviors by recording extracellularly from neurons in the vestibular nuclear complex and comparing their spontaneous activity and sensory responses during default and simulated flight states. We show that motion-sensitive neurons in the lateral vestibular nucleus are state dependent. Some neurons increased their spontaneous firing rates during flight, though their increased excitability was not reflected in higher sensory gains. However, other neurons exhibited state-dependent gating of sensory inputs, responding to rotational stimuli only during flight. These results demonstrate that vestibular processing in the brainstem is state dependent and lay the foundation for future studies to investigate the synaptic mechanisms responsible for these modifications. PMID:22090497

  5. Structural insights into the histidine trimethylation activity of EgtD from Mycobacterium smegmatis.

    PubMed

    Jeong, Jae-Hee; Cha, Hyung Jin; Ha, Sung-Chul; Rojviriya, Catleya; Kim, Yeon-Gil

    2014-10-03

    EgtD is an S-adenosyl-l-methionine (SAM)-dependent histidine N,N,N-methyltransferase that catalyzes the formation of hercynine from histidine in the ergothioneine biosynthetic process of Mycobacterium smegmatis. Ergothioneine is a secreted antioxidant that protects mycobacterium from oxidative stress. Here, we present three crystal structures of EgtD in the apo form, the histidine-bound form, and the S-adenosyl-l-homocysteine (SAH)/histidine-bound form. The study revealed that EgtD consists of two distinct domains: a typical methyltransferase domain and a unique substrate binding domain. The histidine binding pocket of the substrate binding domain primarily recognizes the imidazole ring and carboxylate group of histidine rather than the amino group, explaining the high selectivity for histidine and/or (mono-, di-) methylated histidine as substrates. In addition, SAM binding to the MTase domain induced a conformational change in EgtD to facilitate the methyl transfer reaction. The structural analysis provides insights into the putative catalytic mechanism of EgtD in a processive trimethylation reaction.

  6. PGRMC1 regulation by phosphorylation: potential new insights in controlling biological activity!

    PubMed Central

    Cahill, Michael A.; Jazayeri, Jalal A.; Kovacevic, Zaklina; Richardson, Des R.

    2016-01-01

    Progesterone receptor membrane component 1 (PGRMC1) is a multifunctional protein implicated in multiple pathologies, including cancer and Alzheimer's disease. The recently published structure of PGRMC1 revealed heme-mediated dimerization that directed the PGRMC1-dependent cytochrome P450-mediated detoxification of doxorubicin. We describe here how the PGRMC1 structure also enables important new insights into the possible regulation of PGRMC1 function by phosphorylation. Predicted regulatory interaction sites for SH2- and SH3-domain proteins are in non-structured regions that could be available to cytoplasmic enzymes. Further to the published interpretation, we suggest that phosphorylation of PGRMC1 at position Y113 may promote the attested membrane trafficking function of PGRMC1. To stimulate further experimentation, we also discuss that heme-mediated dimerization of PGRMC1 and membrane trafficking may be mutually exclusive functions. These roles could potentially be reciprocally regulated by phosphorylation/dephosphorylation at Y113. It follows that the phosphorylation status of PGRMC1 should be further explored in order to better understand many of its proposed biological functions. PMID:27448967

  7. Novel insights into RAD51 activity and regulation during homologous recombination and DNA replication

    PubMed Central

    Godin, Stephen K.; Sullivan, Meghan R.; Bernstein, Kara A.

    2016-01-01

    In this review we focus on new insights that challenge our understanding of homologous recombination (HR) and Rad51 regulation. Recent advances using high resolution microscopy and single molecule techniques have broadened our knowledge of Rad51 filament formation and strand invasion at double-strand break (DSB) sites and at replication forks, which are one of most physiologically relevant forms of HR from yeast to humans. Rad51 filament formation and strand invasion is regulated by many mediator proteins such as the Rad51 paralogues and the Shu complex, consisting of a Shu2/SWS1 family member and additional Rad51 paralogues. Importantly, a novel RAD-51 paralogue was discovered in C. elegans and its in vitro characterization has demonstrated a new function for the worm RAD-51 paralogues during HR. Conservation of the human RAD51 paralogues function during HR and repair of replicative damage demonstrate how the RAD51 mediators play a critical role in human health and genomic integrity. Together, these new findings provide a framework for understanding RAD51 and its mediators in DNA repair during multiple cellular contexts. PMID:27224545

  8. The Contribution of Extracurricular Activities to Adolescent Friendships: New Insights through Social Network Analysis

    ERIC Educational Resources Information Center

    Schaefer, David R.; Simpkins, Sandra D.; Vest, Andrea E.; Price, Chara D.

    2011-01-01

    Extracurricular activities are settings that are theorized to help adolescents maintain existing friendships and develop new friendships. The overarching goal of the current investigation was to examine whether coparticipating in school-based extracurricular activities supported adolescents' school-based friendships. We used social network methods…

  9. Novel structural insights for imidoselenocarbamates with antitumoral activity related to their ability to generate methylselenol.

    PubMed

    Font, María; Zuazo, Alicia; Ansó, Elena; Plano, Daniel; Sanmartín, Carmen; Palop, Juan-Antonio; Martínez-Irujo, Juan-José

    2012-09-01

    In the search for molecules with potential antiangiogenic activity we found that several imidoselenocarbamate derivatives, which have pro-apoptotic and antiproliferative activities, under hypoxic conditions release methylselenol, a volatile and highly reactive gas that was considered to be responsible for the observed biological activity. The kinetic for the liberation of methylselenol is highly dependent on the nature of the overall structure and correlate with their proven pro-apoptotic activity in lung cancer cell line H157. The preliminary structure-activity relationships allow us to select as the basic structural element a scaffold constructed with an imidoselenocarbamate fragment decorated with a methyl residue on the Se central atom and two heteroaromatic lateral rings. These imidoselenocarbamate derivatives may be of interest both for their antitumoral activities and because they have a structure that can be considered as a template for the design of new derivatives with apoptotic activity. This activity is related to the controlled delivery of methylselenol and makes this an interesting approach to develop new antitumoral agents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Superior Temporal Activation as a Function of Linguistic Knowledge: Insights from Deaf Native Signers Who Speechread

    ERIC Educational Resources Information Center

    Capek, Cheryl M.; Woll, Bencie; MacSweeney, Mairead; Waters, Dafydd; McGuire, Philip K.; David, Anthony S.; Brammer, Michael J.; Campbell, Ruth

    2010-01-01

    Studies of spoken and signed language processing reliably show involvement of the posterior superior temporal cortex. This region is also reliably activated by observation of meaningless oral and manual actions. In this study we directly compared the extent to which activation in posterior superior temporal cortex is modulated by linguistic…

  11. The Contribution of Extracurricular Activities to Adolescent Friendships: New Insights through Social Network Analysis

    ERIC Educational Resources Information Center

    Schaefer, David R.; Simpkins, Sandra D.; Vest, Andrea E.; Price, Chara D.

    2011-01-01

    Extracurricular activities are settings that are theorized to help adolescents maintain existing friendships and develop new friendships. The overarching goal of the current investigation was to examine whether coparticipating in school-based extracurricular activities supported adolescents' school-based friendships. We used social network methods…

  12. Insights into structure and activity of natural compound inhibitors of pneumolysin

    PubMed Central

    Li, Hongen; Zhao, Xiaoran; Deng, Xuming; Wang, Jianfeng; Song, Meng; Niu, Xiaodi; Peng, Liping

    2017-01-01

    Pneumolysin is the one of the major virulence factor of the bacterium Streptococcus pneumoniae. In previous report, it is shown that β-sitosterol, a natural compound without antimicrobial activity, is a potent antagonist of pneumolysin. Here, two new pneumolysin natural compound inhibitors, with differential activity, were discovered via haemolysis assay. To explore the key factor of the conformation for the inhibition activity, the interactions between five natural compound inhibitors with differential activity and pneumolysin were reported using molecular modelling, the potential of mean force profiles. Interestingly, it is found that incorporation of the single bond (C22-C23-C24-C25) to replace the double bond (hydrocarbon sidechain) improved the anti-haemolytic activity. In view of the molecular modelling, binding of the five inhibitors to the conserved loop region (Val372, Leu460, and Tyr461) of the cholesterol binding sites led to stable complex systems, which was consistent with the result of β-sitosterol. Owing to the single bond (C22-C23-C24-C25), campesterol and brassicasterol could form strong interactions with Val372 and show higher anti-haemolytic activity, which indicated that the single bond (C22-C23-C24-C25) in inhibitors was required for the anti-haemolytic activity. Overall, the current molecular modelling work provides a starting point for the development of rational design and higher activity pneumolysin inhibitors. PMID:28165051

  13. Superior Temporal Activation as a Function of Linguistic Knowledge: Insights from Deaf Native Signers Who Speechread

    ERIC Educational Resources Information Center

    Capek, Cheryl M.; Woll, Bencie; MacSweeney, Mairead; Waters, Dafydd; McGuire, Philip K.; David, Anthony S.; Brammer, Michael J.; Campbell, Ruth

    2010-01-01

    Studies of spoken and signed language processing reliably show involvement of the posterior superior temporal cortex. This region is also reliably activated by observation of meaningless oral and manual actions. In this study we directly compared the extent to which activation in posterior superior temporal cortex is modulated by linguistic…

  14. Synthesis and insight into the structure-activity relationships of chalcones as antimalarial agents.

    PubMed

    Tadigoppula, Narender; Korthikunta, Venkateswarlu; Gupta, Shweta; Kancharla, Papireddy; Khaliq, Tanvir; Soni, Awakash; Srivastava, Rajeev Kumar; Srivastava, Kumkum; Puri, Sunil Kumar; Raju, Kanumuri Siva Rama; Wahajuddin; Sijwali, Puran Singh; Kumar, Vikash; Mohammad, Imran Siddiqi

    2013-01-10

    Licochalcone A (I), isolated from the roots of Chinese licorice, is the most promising antimalarial compound reported so far. In continuation of our drug discovery program, we isolated two similar chalcones, medicagenin (II) and munchiwarin (III), from Crotalaria medicagenia , which exhibited antimalarial activity against Plasmodium falciparum . A library of 88 chalcones were synthesized and evaluated for their in vitro antimalarial activity. Among these, 67, 68, 74, 77, and 78 exhibited good in vitro antimalarial activity against P. falciparum strains 3D7 and K1 with low cytotoxicity. These chalcones also showed reduction in parasitemia and increased survival time of Swiss mice infected with Plasmodium yoelii (strain N-67). Pharmacokinetic studies indicated that low oral bioavailability due to poor ADME properties. Molecular docking studies revealed the binding orientation of these inhibitors in active sites of falcipain-2 (FP-2) enzyme. Compounds 67, 68, and 78 showed modest inhibitory activity against the major hemoglobin degrading cysteine protease FP-2.

  15. The effect of temperature on enzyme activity: new insights and their implications.

    PubMed

    Daniel, Roy M; Danson, Michael J; Eisenthal, Robert; Lee, Charles K; Peterson, Michelle E

    2008-01-01

    The two established thermal properties of enzymes are their activation energy and their thermal stability. Arising from careful measurements of the thermal behaviour of enzymes, a new model, the Equilibrium Model, has been developed to explain more fully the effects of temperature on enzymes. The model describes the effect of temperature on enzyme activity in terms of a rapidly reversible active-inactive transition, in addition to an irreversible thermal inactivation. Two new thermal parameters, Teq and Delta Heq, describe the active-inactive transition, and enable a complete description of the effect of temperature on enzyme activity. We review here the Model itself, methods for the determination of Teq and Delta Heq, and the implications of the Model for the environmental adaptation and evolution of enzymes, and for biotechnology.

  16. Intrinsic resting-state activity predicts working memory brain activation and behavioral performance.

    PubMed

    Zou, Qihong; Ross, Thomas J; Gu, Hong; Geng, Xiujuan; Zuo, Xi-Nian; Hong, L Elliot; Gao, Jia-Hong; Stein, Elliot A; Zang, Yu-Feng; Yang, Yihong

    2013-12-01

    Although resting-state brain activity has been demonstrated to correspond with task-evoked brain activation, the relationship between intrinsic and evoked brain activity has not been fully characterized. For example, it is unclear whether intrinsic activity can also predict task-evoked deactivation and whether the rest-task relationship is dependent on task load. In this study, we addressed these issues on 40 healthy control subjects using resting-state and task-driven [N-back working memory (WM) task] functional magnetic resonance imaging data collected in the same session. Using amplitude of low-frequency fluctuation (ALFF) as an index of intrinsic resting-state activity, we found that ALFF in the middle frontal gyrus and inferior/superior parietal lobules was positively correlated with WM task-evoked activation, while ALFF in the medial prefrontal cortex, posterior cingulate cortex, superior frontal gyrus, superior temporal gyrus, and fusiform gyrus was negatively correlated with WM task-evoked deactivation. Further, the relationship between the intrinsic resting-state activity and task-evoked activation in lateral/superior frontal gyri, inferior/superior parietal lobules, superior temporal gyrus, and midline regions was stronger at higher WM task loads. In addition, both resting-state activity and the task-evoked activation in the superior parietal lobule/precuneus were significantly correlated with the WM task behavioral performance, explaining similar portions of intersubject performance variance. Together, these findings suggest that intrinsic resting-state activity facilitates or is permissive of specific brain circuit engagement to perform a cognitive task, and that resting activity can predict subsequent task-evoked brain responses and behavioral performance. Copyright © 2012 Wiley Periodicals, Inc.

  17. Constitutive activity and ligand-dependent activation of the nuclear receptor CAR-insights from molecular dynamics simulations.

    PubMed

    Windshügel, Björn; Poso, Antti

    2011-01-01

    The constitutive androstane receptor (CAR) possesses, unlike most other nuclear receptors, a pronounced basal activity in vitro whose structural basis is still not fully understood. Using comparative molecular dynamics simulations of CAR X-ray crystal structures, we evaluated the molecular basis for constitutive activity and ligand-dependent receptor activation. Our results suggest that a combination of van der Waals interactions and hydrogen bonds is required to maintain the activation helix in the active conformation also in absence of a ligand. Furthermore, we identified conformational rearrangements within the ligand-binding pocket upon agonist binding and an influence of CAR inducers pregnanedione and CITCO on the helical conformation of the activation helix. Based on the results a model for ligand-dependent CAR activation is suggested. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Mechanistic insights into caspase-9 activation by the structure of the apoptosome holoenzyme

    PubMed Central

    Li, Yini; Zhou, Mengying; Hu, Qi; Bai, Xiao-chen; Huang, Weiyun; Shi, Yigong

    2017-01-01

    Mammalian intrinsic apoptosis requires activation of the initiator caspase-9, which then cleaves and activates the effector caspases to execute cell killing. The heptameric Apaf-1 apoptosome is indispensable for caspase-9 activation by together forming a holoenzyme. The molecular mechanism of caspase-9 activation remains largely enigmatic. Here, we report the cryoelectron microscopy (cryo-EM) structure of an apoptotic holoenzyme and structure-guided biochemical analyses. The caspase recruitment domains (CARDs) of Apaf-1 and caspase-9 assemble in two different ways: a 4:4 complex docks onto the central hub of the apoptosome, and a 2:1 complex binds the periphery of the central hub. The interface between the CARD complex and the central hub is required for caspase-9 activation within the holoenzyme. Unexpectedly, the CARD of free caspase-9 strongly inhibits its proteolytic activity. These structural and biochemical findings demonstrate that the apoptosome activates caspase-9 at least in part through sequestration of the inhibitory CARD domain. PMID:28143931

  19. Physical activity patterns in urban neighbourhood parks: insights from a multiple case study.

    PubMed

    McCormack, Gavin R; Rock, Melanie; Swanson, Kenda; Burton, Lindsay; Massolo, Alessandro

    2014-09-17

    Many characteristics of urban parks and neighbourhoods have been linked to patterns of physical activity, yet untangling these relationships to promote increased levels of physical activity presents methodological challenges. Based on qualitative and quantitative data, this article describes patterns of activity within urban parks and the socio-demographic characteristics of park visitors. It also accounts for these patterns in relation to the attributes of parks and their surrounding neighbourhoods. A multiple case study was undertaken that incorporated quantitative and qualitative data derived from first-hand observation in a purposive sample of four urban parks. Quantitative data, based on direct observation of visitors' patterns of use and socio-demographic characteristics, were collected using a structured instrument. Differences in frequencies of observed activities and socio-demographic characteristics of visitors were compared between the four parks. Qualitative data, based on direct observation of park characteristics and patterns of use, were generated through digital photography and analyzed through captioning. Quantitative data on patterns in activity and socio-demographic characteristics were synthesized with the qualitative data on park and usage characteristics. A comprehensive portrait of each park in the study was generated. Activity types (sedentary, walking, dog-related, cycling, and play), patterns of park use (time of day, day of week), and socio-demographic characteristics (age group, social group) differed between the four parks. Patterns in park use and activity appeared to be associated with socio-demographic characteristics of the surrounding neighbourhoods as well as the physical and social environmental characteristics specific to each park. Both park and neighbourhood characteristics influence patterns of use and physical activity within parks. The study findings suggest that socio-demographic characteristics of neighbourhoods

  20. Certified Nurse Aide scope of practice: state-by-state differences in allowable delegated activities.

    PubMed

    McMullen, Tara L; Resnick, Barbara; Chin-Hansen, Jennie; Geiger-Brown, Jeanne M; Miller, Nancy; Rubenstein, Robert

    2015-01-01

    To gain a better understanding of the state-by-state differences in allowable delegated activities for Certified Nurse Aides (CNAs) working in long-term care settings, this exploratory descriptive study assessed what are the allowable tasks for CNAs based on findings from each state board of nursing. Specifically, findings from each state determined whether the care tasks allowed were consistent with those delineated by the 42 CFR § 483. This descriptive study included data drawn from all 50 states' regulatory offices or health care services agencies. Data were obtained from the regulations listed on each state's board of nursing, department of health, department of aging, department of health professions, department of commerce, and office of long-term care, among like agencies. The Code of Federal regulations (42 CFR § 483) listed 9 tasks that are allowable by each state. These tasks are identified as items 1 to 9: (1) personal care skills, (2) safety/emergency procedures, (3) basic nursing skills, (4) infection control, (5) communication and interpersonal skills, (6) care of cognitively impaired residents, (7) basic restorative care, (8) mental health and social service needs, and (9) residents' rights. Nine tasks delineated in the 42 CFR § 483 were identified as allowable in each state. On data analysis, it was found that 11 states noted that CNAs were able to perform workplace tasks that could be considered "expanded" care tasks, tasks beyond the basic care tasks listed in the 42 CFR § 483. Findings from this exploratory study aid in limiting the confusion around the application of workplace duties across states, providing a useful description of the care tasks CNAs are allowed to perform in an attempt to find uniformity state-by-state. Overall, states reported considering expanding the scope of practice or authorized duties for CNAs to strengthen patient care and safety. States may choose to expand CNA authorized duties so as to equip CNAs with specific

  1. 75 FR 56663 - Agency Information Collection (Quarterly Report of State Approving Agency Activities); Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ...: VA reimburses State Approving Agencies (SAAs) for expenses incurred in the approval and supervision of education and training programs. SAAs are required to report their activities to VA quarterly and...

  2. Structural insights into the role of iron–histidine bond cleavage in nitric oxide-induced activation of H-NOX gas sensor proteins

    PubMed Central

    Herzik, Mark A.; Jonnalagadda, Rohan; Kuriyan, John; Marletta, Michael A.

    2014-01-01

    Heme-nitric oxide/oxygen (H-NOX) binding domains are a recently discovered family of heme-based gas sensor proteins that are conserved across eukaryotes and bacteria. Nitric oxide (NO) binding to the heme cofactor of H-NOX proteins has been implicated as a regulatory mechanism for processes ranging from vasodilation in mammals to communal behavior in bacteria. A key molecular event during NO-dependent activation of H-NOX proteins is rupture of the heme–histidine bond and formation of a five-coordinate nitrosyl complex. Although extensive biochemical studies have provided insight into the NO activation mechanism, precise molecular-level details have remained elusive. In the present study, high-resolution crystal structures of the H-NOX protein from Shewanella oneidensis in the unligated, intermediate six-coordinate and activated five-coordinate, NO-bound states are reported. From these structures, it is evident that several structural features in the heme pocket of the unligated protein function to maintain the heme distorted from planarity. NO-induced scission of the iron–histidine bond triggers structural rearrangements in the heme pocket that permit the heme to relax toward planarity, yielding the signaling-competent NO-bound conformation. Here, we also provide characterization of a nonheme metal coordination site occupied by zinc in an H-NOX protein. PMID:25253889

  3. Defining Democracy and the Terms of Engagement with the Postsocialist Polish State: Insights from HIV/AIDS.

    PubMed

    2009-08-01

    This article explores the history of HIV activism in Poland from the socialist period through the early 1990s transformation as a means of examining the reconfiguration of rights, obligations, and responsibility as Poland redefined itself as a market democracy. Drawing on archival materials, in-depth qualitative interviews with current and former HIV activists, and participant observation at HIV prevention organizations in Warsaw, Poland, I sketch the ways in the socialist system's failures to protect the health of its subjects led to the terms through which state-citizen engagement were defined in the postsocialist period. Uncertainties and anxieties surrounding who was responsible for protecting the health and well-being of citizens in the newly democratic Poland gave rise to a series of violent protests centered on HIV prevention and care for people living with HIV/AIDS. Resolution of these political and social crises involved defining democracy in postsocialist Poland through claims to moral authority, in alliance with the Catholic Church, and an obligation by multiple stakeholders to disseminate technical/scientific knowledge. By comparing the responses to the epidemic by diverse institutions, including the government, the Catholic Church, and the fledgling gay rights movement, this analysis reveals the ways in which democracy in postsocialist Poland tightly links science, democratic reform, and moral/religious authority, while at the same time excluding sexual minorities from engaging in political activism centered on rights to health and inclusion in the new democracy.

  4. Defining Democracy and the Terms of Engagement with the Postsocialist Polish State: Insights from HIV/AIDS

    PubMed Central

    2010-01-01

    This article explores the history of HIV activism in Poland from the socialist period through the early 1990s transformation as a means of examining the reconfiguration of rights, obligations, and responsibility as Poland redefined itself as a market democracy. Drawing on archival materials, in-depth qualitative interviews with current and former HIV activists, and participant observation at HIV prevention organizations in Warsaw, Poland, I sketch the ways in the socialist system’s failures to protect the health of its subjects led to the terms through which state-citizen engagement were defined in the postsocialist period. Uncertainties and anxieties surrounding who was responsible for protecting the health and well-being of citizens in the newly democratic Poland gave rise to a series of violent protests centered on HIV prevention and care for people living with HIV/AIDS. Resolution of these political and social crises involved defining democracy in postsocialist Poland through claims to moral authority, in alliance with the Catholic Church, and an obligation by multiple stakeholders to disseminate technical/scientific knowledge. By comparing the responses to the epidemic by diverse institutions, including the government, the Catholic Church, and the fledgling gay rights movement, this analysis reveals the ways in which democracy in postsocialist Poland tightly links science, democratic reform, and moral/religious authority, while at the same time excluding sexual minorities from engaging in political activism centered on rights to health and inclusion in the new democracy. PMID:20190876

  5. Activation of dioxygen by copper metalloproteins and insights from model complexes.

    PubMed

    Quist, David A; Diaz, Daniel E; Liu, Jeffrey J; Karlin, Kenneth D

    2017-04-01

    Nature uses dioxygen as a key oxidant in the transformation of biomolecules. Among the enzymes that are utilized for these reactions are copper-containing metalloenzymes, which are responsible for important biological functions such as the regulation of neurotransmitters, dioxygen transport, and cellular respiration. Enzymatic and model system studies work in tandem in order to gain an understanding of the fundamental reductive activation of dioxygen by copper complexes. This review covers the most recent advancements in the structures, spectroscopy, and reaction mechanisms for dioxygen-activating copper proteins and relevant synthetic models thereof. An emphasis has also been placed on cofactor biogenesis, a fundamentally important process whereby biomolecules are post-translationally modified by the pro-enzyme active site to generate cofactors which are essential for the catalytic enzymatic reaction. Significant questions remaining in copper-ion-mediated O2-activation in copper proteins are addressed.

  6. Structural Insights Lead to a Negamycin Analogue with Improved Antimicrobial Activity against Gram-Negative Pathogens

    PubMed Central

    2015-01-01

    Negamycin is a natural product with antibacterial activity against a broad range of Gram-negative pathogens. Recent revelation of its ribosomal binding site and mode of inhibition has reinvigorated efforts to identify improved analogues with clinical potential. Translation-inhibitory potency and antimicrobial activity upon modification of different moieties of negamycin were in line with its observed ribosomal binding conformation, reaffirming stringent structural requirements for activity. However, substitutions on the N6 amine were tolerated and led to N6-(3-aminopropyl)-negamycin (31f), an analogue showing 4-fold improvement in antibacterial activity against key bacterial pathogens. This represents the most potent negamycin derivative to date and may be a stepping stone toward clinical development of this novel antibacterial class. PMID:26288696

  7. Resting-state beta and gamma activity in Internet addiction.

    PubMed

    Choi, Jung-Seok; Park, Su Mi; Lee, Jaewon; Hwang, Jae Yeon; Jung, Hee Yeon; Choi, Sam-Wook; Kim, Dai Jin; Oh, Sohee; Lee, Jun-Young

    2013-09-01

    Internet addiction is the inability to control one's use of the Internet and is related to impulsivity. Although a few studies have examined neurophysiological activity as individuals with Internet addiction engage in cognitive processing, no information on spontaneous EEG activity in the eyes-closed resting-state is available. We investigated resting-state EEG activities in beta and gamma bands and examined their relationships with impulsivity among individuals with Internet addiction and healthy controls. Twenty-one drug-naïve patients with Internet addiction (age: 23.33 ± 3.50 years) and 20 age-, sex-, and IQ-matched healthy controls (age: 22.40 ± 2.33 years) were enrolled in this study. Severity of Internet addiction was identified by the total score on Young's Internet Addiction Test. Impulsivity was measured with the Barratt Impulsiveness Scale-11 and a stop-signal task. Resting-state EEG during eyes closed was recorded, and the absolute/relative power of beta and gamma bands was analyzed. The Internet addiction group showed high impulsivity and impaired inhibitory control. The generalized estimating equation showed that the Internet-addiction group showed lower absolute power on the beta band than did the control group (estimate = -3.370, p < 0.01). On the other hand, the Internet-addiction group showed higher absolute power on the gamma band than did the control group (estimate = 0.434, p < 0.01). These EEG activities were significantly associated with the severity of Internet addiction as well as with the extent of impulsivity. The present study suggests that resting-state fast-wave brain activity is related to the impulsivity characterizing Internet addiction. These differences may be neurobiological markers for the pathophysiology of Internet addiction.

  8. Trypanosoma cruzi: insights into naphthoquinone effects on growth and proteinase activity.

    PubMed

    Bourguignon, Saulo C; Cavalcanti, Danielle F B; de Souza, Alessandra M T; Castro, Helena C; Rodrigues, Carlos R; Albuquerque, Magaly G; Santos, Dilvani O; da Silva, Gabriel Gomes; da Silva, Fernando C; Ferreira, Vitor F; de Pinho, Rosa T; Alves, Carlos R

    2011-01-01

    In this study we compared the effects of naphthoquinones (α-lapachone, β-lapachone, nor-β-lapachone and Epoxy-α-lap) on growth of Trypanosoma cruzi epimastigotes forms, and on viability of VERO cells. In addition we also experimentally analyzed the most active compounds inhibitory profile against T. cruzi serine- and cysteine-proteinases activity and theoretically evaluated them against cruzain, the major T. cruzi cysteine proteinase by using a molecular docking approach. Our results confirmed β-lapachone and Epoxy-α-lap with a high trypanocidal activity in contrast to α-lapachone and nor-β-lapachone whereas Epoxy-α-lap presented the safest toxicity profile against VERO cells. Interestingly the evaluation of the active compounds effects against T. cruzi cysteine- and serine-proteinases activities revealed different targets for these molecules. β-Lapachone is able to inhibit the cysteine-proteinase activity of T. cruzi proteic whole extract and of cruzain, similar to E-64, a classical cysteine-proteinase inhibitor. Differently, Epoxy-α-lap inhibited the T. cruzi serine-proteinase activity, similar to PMSF, a classical serine-proteinase inhibitor. In agreement to these biological profiles in the enzymatic assays, our theoretical analysis showed that E-64 and β-lapachone interact with the cruzain specific S2 pocket and active site whereas Epoxy-α-lap showed no important interactions. Overall, our results infer that β-lapachone and Epoxy-α-lap compounds may inhibit T. cruzi epimastigotes growth by affecting T. cruzi different proteinases. Thus the present data shows the potential of these compounds as prototype of protease inhibitors on drug design studies for developing new antichagasic compounds.

  9. Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation.

    PubMed

    Próchnicki, Tomasz; Mangan, Matthew S; Latz, Eicke

    2016-01-01

    Inflammasomes are high-molecular-weight protein complexes that are formed in the cytosolic compartment in response to danger- or pathogen-associated molecular patterns. These complexes enable activation of an inflammatory protease caspase-1, leading to a cell death process called pyroptosis and to proteolytic cleavage and release of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Along with caspase-1, inflammasome components include an adaptor protein, ASC, and a sensor protein, which triggers the inflammasome assembly in response to a danger signal. The inflammasome sensor proteins are pattern recognition receptors belonging either to the NOD-like receptor (NLR) or to the AIM2-like receptor family. While the molecular agonists that induce inflammasome formation by AIM2 and by several other NLRs have been identified, it is not well understood how the NLR family member NLRP3 is activated. Given that NLRP3 activation is relevant to a range of human pathological conditions, significant attempts are being made to elucidate the molecular mechanism of this process. In this review, we summarize the current knowledge on the molecular events that lead to activation of the NLRP3 inflammasome in response to a range of K (+) efflux-inducing danger signals. We also comment on the reported involvement of cytosolic Ca (2+) fluxes on NLRP3 activation. We outline the recent advances in research on the physiological and pharmacological mechanisms of regulation of NLRP3 responses, and we point to several open questions regarding the current model of NLRP3 activation.

  10. Insights on how the activity of an endoglucanase is affected by physical properties of insoluble celluloses.

    PubMed

    Bragatto, Juliano; Segato, Fernando; Cota, Junio; Mello, Danilo B; Oliveira, Marcelo M; Buckeridge, Marcos S; Squina, Fabio M; Driemeier, Carlos

    2012-05-31

    Cellulose physical properties like crystallinity, porosity, and particle size are known to influence cellulase activity, but knowledge is still insufficient for activity prediction from such measurable substrate characteristics. With the aim of illuminating enzyme-substrate relationships, this work evaluates a purified hyperthermophilic endo-1,4-beta-glucanase (from Pyrococcus furiosus) acting on 13 celluloses characterized for crystallinity and crystal width (by X-ray diffraction), wet porosity (by thermoporometry), and particle size (by light scattering). Activities are analyzed by the Michaelis-Menten kinetic equation, which is justified by low enzyme-substrate affinity. Michaelis-Menten coefficients K(m) and k(cat) are reinterpreted in the context of heterogeneous cellulose hydrolysis. For a set of as-received and milled microcrystalline celluloses, activity is successfully described as a function of accessible substrate concentration, with accessibility proportional to K(m)(-1). Accessibility contribution from external particle areas, pore areas, and crystalline packing are discriminated to have comparable magnitudes, implying that activity prediction demands all these substrate properties to be considered. Results additionally suggest that looser crystalline packing increases the lengths of released cello-oligomers as well as the maximum endoglucanase specific activity (k(cat)).

  11. Soil Microbial Activity Provides Insight to Carbon Cycling in Shrub Ecotones of Sub-Arctic Sweden

    NASA Astrophysics Data System (ADS)

    Marek, E.; Kashi, N. N.; Chen, J.; Hobbie, E. A.; Schwan, M. R.; Varner, R. K.

    2015-12-01

    Shrubs are expanding in Arctic and sub-Arctic regions due to rising atmospheric temperatures. Microbial activity increases as growing temperatures cause permafrost warming and subsequent thaw, leading to a greater resource of soil nutrients enabling shrub growth. Increased carbon inputs from shrubs is predicted to result in faster carbon turnover by microbial decomposition. Further understanding of microbial activity underneath shrubs could uncover how microbes and soil processes interact to promote shrub expansion and carbon cycling. To address how higher soil carbon input from shrubs influences decomposition, soil samples were taken across a heath, shrub, and forest ecotone gradient at two sites near Abikso, Sweden. Samples were analyzed for soluble carbon and nitrogen, microbial abundance, and microbial activity of chitinase, glucosidase, and phosphatase to reflect organic matter decomposition and availability of nitrogen, carbon, and phosphate respectively. Chitinase activity positively correlated with shrub cover, suggesting microbial demands for nitrogen increase with higher shrub cover. Glucosidase activity negatively correlated with shrub cover and soluble carbon, suggesting decreased microbial demand for carbon as shrub cover and carbon stores increase. Lower glucosidase activity in areas with high carbon input from shrubs implies that microbes are decomposing carbon less readily than carbon is being put into the soil. Increasing soil carbon stores in shrub covered areas can lead to shrubs becoming a net carbon sink and a negative feedback to changing climate.

  12. Two-state model of light induced activation and thermal bleaching of photochromic glasses: theory and experiments

    SciTech Connect

    Ferrari, Jose A.; Perciante, Cesar D

    2008-07-10

    The behavior of photochromic glasses during activation and bleaching is investigated. A two-state phenomenological model describing light-induced activation (darkening) and thermal bleaching is presented. The proposed model is based on first-order kinetics. We demonstrate that the time behavior in the activation process (acting simultaneously with the thermal fading) can be characterized by two relaxation times that depend on the intensity of the activating light. These characteristic times are lower than the decay times of the pure thermal bleaching process. We study the temporal evolution of the glass optical density and its dependence on the activating intensity. We also present a series of activation and bleaching experiments that validate the proposed model. Our approach may be used to gain more insight into the transmittance behavior of photosensitive glasses, which could be potentially relevant in a broad range of applications, e.g., real-time holography and reconfigurable optical memories.

  13. Activity Clamp Provides Insights into Paradoxical Effects of the Anti-Seizure Drug Carbamazepine

    PubMed Central

    Leite, Marco; Kullmann, Dimitri M.

    2017-01-01

    A major challenge in experimental epilepsy research is to reconcile the effects of anti-epileptic drugs (AEDs) on individual neurons with their network-level actions. Highlighting this difficulty, it is unclear why carbamazepine (CBZ), a frontline AED with a known molecular mechanism, has been reported to increase epileptiform activity in several clinical and experimental studies. We confirmed in an in vitro mouse model (in both sexes) that the frequency of interictal bursts increased after CBZ perfusion. To address the underlying mechanisms, we developed a method, activity clamp, to distinguish the response of individual neurons from network-level actions of CBZ. We first recorded barrages of synaptic conductances from neurons during epileptiform activity and then replayed them in pharmacologically isolated neurons under control conditions and in the presence of CBZ. CBZ consistently decreased the reliability of the second action potential in each burst of activity. Conventional current-clamp recordings using excitatory ramp or square-step current injections failed to reveal this effect. Network modeling showed that a CBZ-induced decrease of neuron recruitment during epileptic bursts can lead to an increase in burst frequency at the network level by reducing the refractoriness of excitatory transmission. By combining activity clamp with computer simulations, the present study provides a potential explanation for the paradoxical effects of CBZ on epileptiform activity. SIGNIFICANCE STATEMENT The effects of anti-epileptic drugs on individual neurons are difficult to separate from their network-level actions. Although carbamazepine (CBZ) has a known anti-epileptic mechanism, paradoxically, it has also been reported to increase epileptiform activity in clinical and experimental studies. To investigate this paradox during realistic neuronal epileptiform activity, we developed a method, activity clamp, to distinguish the effects of CBZ on individual neurons from network

  14. Education Alignment and Accountability in an Era of Convergence: Policy Insights from States with Individual Learning Plans and Policies

    ERIC Educational Resources Information Center

    Phelps, L. Allen; Durham, Julie; Wills, Joan

    2011-01-01

    In response to the rising demand for market-responsive education reform across the U.S., since 1998 more than twenty states have created Individual Learning or Graduation Plan (ILP/IGP) state policies. Using extensive policy document analyses and stakeholder interview data from four early-adopting ILP/IGP states, the goal of this four-state case…

  15. Electronic Word of Mouth on Twitter About Physical Activity in the United States: Exploratory Infodemiology Study

    PubMed Central

    Campo, Shelly; Janz, Kathleen F; Eckler, Petya; Yang, Jingzhen; Snetselaar, Linda G; Signorini, Alessio

    2013-01-01

    Background Twitter is a widely used social medium. However, its application in promoting health behaviors is understudied. Objective In order to provide insights into designing health marketing interventions to promote physical activity on Twitter, this exploratory infodemiology study applied both social cognitive theory and the path model of online word of mouth to examine the distribution of different electronic word of mouth (eWOM) characteristics among personal tweets about physical activity in the United States. Methods This study used 113 keywords to retrieve 1 million public tweets about physical activity in the United States posted between January 1 and March 31, 2011. A total of 30,000 tweets were randomly selected and sorted based on numbers generated by a random number generator. Two coders scanned the first 16,100 tweets and yielded 4672 (29.02%) tweets that they both agreed to be about physical activity and were from personal accounts. Finally, 1500 tweets were randomly selected from the 4672 tweets (32.11%) for further coding. After intercoder reliability scores reached satisfactory levels in the pilot coding (100 tweets separate from the final 1500 tweets), 2 coders coded 750 tweets each. Descriptive analyses, Mann-Whitney U tests, and Fisher exact tests were performed. Results Tweets about physical activity were dominated by neutral sentiments (1270/1500, 84.67%). Providing opinions or information regarding physical activity (1464/1500, 97.60%) and chatting about physical activity (1354/1500, 90.27%) were found to be popular on Twitter. Approximately 60% (905/1500, 60.33%) of the tweets demonstrated users’ past or current participation in physical activity or intentions to participate in physical activity. However, social support about physical activity was provided in less than 10% of the tweets (135/1500, 9.00%). Users with fewer people following their tweets (followers) (P=.02) and with fewer accounts that they followed (followings) (P=.04

  16. Electronic word of mouth on twitter about physical activity in the United States: exploratory infodemiology study.

    PubMed

    Zhang, Ni; Campo, Shelly; Janz, Kathleen F; Eckler, Petya; Yang, Jingzhen; Snetselaar, Linda G; Signorini, Alessio

    2013-11-20

    Twitter is a widely used social medium. However, its application in promoting health behaviors is understudied. In order to provide insights into designing health marketing interventions to promote physical activity on Twitter, this exploratory infodemiology study applied both social cognitive theory and the path model of online word of mouth to examine the distribution of different electronic word of mouth (eWOM) characteristics among personal tweets about physical activity in the United States. This study used 113 keywords to retrieve 1 million public tweets about physical activity in the United States posted between January 1 and March 31, 2011. A total of 30,000 tweets were randomly selected and sorted based on numbers generated by a random number generator. Two coders scanned the first 16,100 tweets and yielded 4672 (29.02%) tweets that they both agreed to be about physical activity and were from personal accounts. Finally, 1500 tweets were randomly selected from the 4672 tweets (32.11%) for further coding. After intercoder reliability scores reached satisfactory levels in the pilot coding (100 tweets separate from the final 1500 tweets), 2 coders coded 750 tweets each. Descriptive analyses, Mann-Whitney U tests, and Fisher exact tests were performed. Tweets about physical activity were dominated by neutral sentiments (1270/1500, 84.67%). Providing opinions or information regarding physical activity (1464/1500, 97.60%) and chatting about physical activity (1354/1500, 90.27%) were found to be popular on Twitter. Approximately 60% (905/1500, 60.33%) of the tweets demonstrated users' past or current participation in physical activity or intentions to participate in physical activity. However, social support about physical activity was provided in less than 10% of the tweets (135/1500, 9.00%). Users with fewer people following their tweets (followers) (P=.02) and with fewer accounts that they followed (followings) (P=.04) were more likely to talk positively about

  17. An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation.

    PubMed

    Mamo, Gashaw; Thunnissen, Marjolein; Hatti-Kaul, Rajni; Mattiasson, Bo

    2009-09-01

    The alkaliphilic bacterium, Bacillus halodurans S7, produces an alkaline active xylanase (EC 3.2.1.8), which differs from many other xylanases in being operationally stable under alkaline conditions as well as at elevated temperature. Compared to non-alkaline active xylanases, this enzyme has a high percent composition of acidic amino acids which results in high ratio of negatively to positively charged residues. A positive correlation was observed between the charge ratio and the pH optima of xylanases. The recombinant xylanase was crystallized using a hanging drop diffusion method. The crystals belong to the space group P2(1)2(1)2(1) and the structure was determined at a resolution of 2.1 A. The enzyme has the common eight-fold TIM-barrel structure of family 10 xylanases; however, unlike non-alkaline active xylanases, it has a highly negatively charged surface and a deeper active site cleft. Mutational analysis of non-conserved amino acids which are close to the acid/base residue has shown that Val169, Ile170 and Asp171 are important to hydrolyze xylan at high pH. Unlike the wild type xylanase which has optimum pH at 9-9.5, the triple mutant xylanase (V169A, I170F and D171N), which was constructed using sequence information of alkaline sensitive xylanses was optimally active around pH 7. Compared to non-alkaline active xylanases, the alkaline active xylanases have highly acidic surfaces and fewer solvent exposed alkali labile residues. Based on these results obtained from sequence, structural and mutational analysis, the possible mechanisms of high pH stability and catalysis are discussed. This will provide useful information to understand the mechanism of high pH adaptation and engineering of enzymes that can be operationally stable at high pH.

  18. An insight into antimicrobial activity of the freshwater bryozoan Pectinatella magnifica.

    PubMed

    Pejin, Boris; Ciric, Ana; Horvatovic, Mladen; Jurca, Tamara; Glamoclija, Jasmina; Nikolic, Milos; Sokovic, Marina

    2016-08-01

    The antimicrobial activity of five crude extracts of the freshwater bryozoan Pectinatella magnifica (Leidy, 1851) was evaluated in vitro for the first time. P. magnifica acetone extract exhibited the highest antibacterial activity (minimum inhibitory concentrations (MIC) 0.004-0.350 mg/mL and MBC 0.007-0.500 mg/mL), while its methanol extract showed the most promising antifungal activity (MIC 0.03-0.12 mg/mL and MFC 0.06-0.25 mg/mL). Furthermore, at a concentration of 0.25 MIC, the methanol extract reduced biofilm formation of the bacterial strain Pseudomonas aeruginosa PAO1 in a considerable extent (59.14%). FTIR spectra of the most active extracts indicate the presence of carbonyl compounds, long-chain alcohols and/or sterols. According to the experimental data obtained, P. magnifica methanol extract may be considered as a good resource of novel natural products with potent antibiofilm activity against the bacterium well known for its resistance.

  19. Superior temporal activation as a function of linguistic knowledge: insights from deaf native signers who speechread.

    PubMed

    Capek, Cheryl M; Woll, Bencie; MacSweeney, Mairéad; Waters, Dafydd; McGuire, Philip K; David, Anthony S; Brammer, Michael J; Campbell, Ruth

    2010-02-01

    Studies of spoken and signed language processing reliably show involvement of the posterior superior temporal cortex. This region is also reliably activated by observation of meaningless oral and manual actions. In this study we directly compared the extent to which activation in posterior superior temporal cortex is modulated by linguistic knowledge irrespective of differences in language form. We used a novel cross-linguistic approach in two groups of volunteers who differed in their language experience. Using fMRI, we compared deaf native signers of British Sign Language (BSL), who were also proficient speechreaders of English (i.e., two languages) with hearing people who could speechread English, but knew no BSL (i.e., one language). Both groups were presented with BSL signs and silently spoken English words, and were required to respond to a signed or spoken target. The interaction of group and condition revealed activation in the superior temporal cortex, bilaterally, focused in the posterior superior temporal gyri (pSTG, BA 42/22). In hearing people, these regions were activated more by speech than by sign, but in deaf respondents they showed similar levels of activation for both language forms - suggesting that posterior superior temporal regions are highly sensitive to language knowledge irrespective of the mode of delivery of the stimulus material.

  20. Flavonoids as CDK1 Inhibitors: Insights in Their Binding Orientations and Structure-Activity Relationship

    PubMed Central

    Navarro-Retamal, Carlos

    2016-01-01

    In the last years, the interactions of flavonoids with protein kinases (PKs) have been described by using crystallographic experiments. Interestingly, different orientations have been found for one flavonoid inside different PKs and different chemical substitutions lead to different orientations of the flavonoid scaffold inside one PK. Accordingly, orientation predictions of novel analogues could help to the design of flavonoids with high PK inhibitory activities. With this in mind, we studied the binding modes of 37 flavonoids (flavones and chalcones) inside the cyclin-dependent PK CDK1 using docking experiments. We found that the compounds under study adopted two different orientations into the active site of CDK1 (orientations I and II in the manuscript). In addition, quantitative structure–activity relationship (QSAR) models using CoMFA and CoMSIA methodologies were constructed to explain the trend of the CDK1 inhibitory activities for the studied flavonoids. Template-based and docking-based alignments were used. Models developed starting from docking-based alignment were applied for describing the whole dataset and compounds with orientation I. Adequate R2 and Q2 values were obtained by each method; interestingly, only hydrophobic and hydrogen bond donor fields describe the differential potency of the flavonoids as CDK1 inhibitors for both defined alignments and subsets. Our current application of docking and QSAR together reveals important elements to be drawn for the design of novel flavonoids with increased PK inhibitory activities. PMID:27517610

  1. New Insights into the Antibacterial Activity of Hydroxycoumarins against Ralstonia solanacearum.

    PubMed

    Yang, Liang; Ding, Wei; Xu, Yuquan; Wu, Dousheng; Li, Shili; Chen, Juanni; Guo, Bing

    2016-04-08

    Coumarins are important plant-derived natural products with wide-ranging bioactivities and extensive applications. In this study, we evaluated for the first time the antibacterial activity and mechanisms of action of coumarins against the phytopathogen Ralstonia solanacearum, and investigated the effect of functional group substitution. We first tested the antibacterial activity of 18 plant-derived coumarins with different substitution patterns, and found that daphnetin, esculetin, xanthotol, and umbelliferone significantly inhibited the growth of R. solanacearum. Daphnetin showed the strongest antibacterial activity, followed by esculetin and umbelliferone, with MICs of 64, 192, and 256 mg/L, respectively, better than the archetypal coumarin with 384 mg/L. We further demonstrated that the hydroxylation of coumarins at the C-6, C-7 or C-8 position significantly enhanced the antibacterial activity against R. solanacearum. Transmission electron microscope (TEM) and fluorescence microscopy images showed that hydroxycoumarins may interact with the pathogen by mechanically destroying the cell membrane and inhibiting biofilm formation. The antibiofilm effect of hydroxycoumarins may relate to the repression of flagellar genes fliA and flhC. These physiological changes in R. solanacearum caused by hydroxycoumarins can provide information for integral pathogen control. The present findings demonstrated that hydroxycoumarins have superior antibacterial activity against the phytopathogen R. solanacearum, and thus have the potential to be applied for controlling plant bacterial wilt.

  2. Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking

    PubMed Central

    Islam, Barira; Sharma, Charu; Adem, Abdu; Aburawi, Elhadi; Ojha, Shreesh

    2015-01-01

    Statins are hypolipidemic drugs that are effective in the treatment of hypercholesterolemia by attenuating cholesterol synthesis in the liver via competitive inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. Recently, dietary changes associated with drug therapy have garnered attention as novel drugs to mitigate or ameliorate hypercholesterolemia. The present study was undertaken to observe different dietary polyphenols that can bind to the active site of HMGR and inhibit it. Results from the 12 dietary polyphenols tested reveal that polyphenols can bind to HMGR and block the binding of nicotinamide adenine dinucleotide phosphate (NADP+). We observed that the rigidity of phenolic rings prevents the polyphenols from docking to the enzyme activity site. The presence of an ester linkage between the phenolic rings in (–)-epigallocatechin-3-gallate (EGCG) and the alkyl chain in curcumin allows them to orient in the active site of the HMGR and bind to the catalytic residues. EGCG and curcumin showed binding to the active site residues with a low GRID score, which may be a potential inhibitor of HMGR. Kaempferol showed binding to HMG-CoA, but with low binding affinity. These observations provide a rationale for the consistent hypolipidemic effect of EGCG and curcumin, which has been previously reported in several epidemiological and animal studies. Therefore, this study substantiates the mechanism of polyphenols on the activity of HMGR by molecular docking and provides the impetus for drug design involving further structure–function relationship studies. PMID:26357462

  3. Flavonoids as CDK1 Inhibitors: Insights in Their Binding Orientations and Structure-Activity Relationship.

    PubMed

    Navarro-Retamal, Carlos; Caballero, Julio

    2016-01-01

    In the last years, the interactions of flavonoids with protein kinases (PKs) have been described by using crystallographic experiments. Interestingly, different orientations have been found for one flavonoid inside different PKs and different chemical substitutions lead to different orientations of the flavonoid scaffold inside one PK. Accordingly, orientation predictions of novel analogues could help to the design of flavonoids with high PK inhibitory activities. With this in mind, we studied the binding modes of 37 flavonoids (flavones and chalcones) inside the cyclin-dependent PK CDK1 using docking experiments. We found that the compounds under study adopted two different orientations into the active site of CDK1 (orientations I and II in the manuscript). In addition, quantitative structure-activity relationship (QSAR) models using CoMFA and CoMSIA methodologies were constructed to explain the trend of the CDK1 inhibitory activities for the studied flavonoids. Template-based and docking-based alignments were used. Models developed starting from docking-based alignment were applied for describing the whole dataset and compounds with orientation I. Adequate R2 and Q2 values were obtained by each method; interestingly, only hydrophobic and hydrogen bond donor fields describe the differential potency of the flavonoids as CDK1 inhibitors for both defined alignments and subsets. Our current application of docking and QSAR together reveals important elements to be drawn for the design of novel flavonoids with increased PK inhibitory activities.

  4. Insights into the activation of the helicase Prp43 by biochemical studies and structural mass spectrometry.

    PubMed

    Christian, Henning; Hofele, Romina V; Urlaub, Henning; Ficner, Ralf

    2014-01-01

    Splicing of precursor messenger RNA is a hallmark of eukaryotic cells, which is carried out by the spliceosome, a multi-megadalton ribonucleoprotein machinery. The splicing reaction removes non-coding regions (introns) and ligates coding regions (exons). The spliceosome is a highly dynamic ribonucleoprotein complex that undergoes dramatic structural changes during its assembly, the catalysis and its disassembly. The transitions between the different steps during the splicing cycle are promoted by eight conserved DExD/H box ATPases. The DEAH-box protein Prp43 is responsible for the disassembly of the intron-lariat spliceosome and its helicase activity is activated by the G-patch protein Ntr1. Here, we investigate the activation of Prp43 by Ntr1 in the presence and absence of RNA substrate by functional assays and structural proteomics. Residues 51-110 of Ntr1 were identified to be the minimal fragment that induces full activation. We found protein-protein cross-links that indicate that Prp43 interacts with the G-patch motif of Ntr1 through its C-terminal domains. Additionally, we report on functionally important RNA binding residues in both proteins and propose a model for the activation of the helicase.

  5. Structural insights into the activation of MST3 by MO25

    PubMed Central

    Mehellou, Youcef; Alessi, Dario R.; Macartney, Thomas J.; Szklarz, Marta; Knapp, Stefan; Elkins, Jonathan M.

    2013-01-01

    The MO25 scaffolding protein operates as critical regulator of a number of STE20 family protein kinases (e.g. MST and SPAK isoforms) as well as pseudokinases (e.g. STRAD isoforms that play a critical role in activating the LKB1 tumour suppressor). To better understand how MO25 interacts and stimulates the activity of STE20 protein kinases, we determined the crystal structure of MST3 catalytic domain (residues 19–289) in complex with full length MO25β. The structure reveals an intricate web of interactions between MST3 and MO25β that function to stabilise the kinase domain in a closed, active, conformation even in the absence of ATP or an ATP-mimetic inhibitor. The binding mode of MO25β is reminiscent of the mechanism by which MO25α interacts with the pseudokinase STRADα. In particular we identified interface residues Tyr223 of MO25β and Glu58 and Ile71 of MST3 that when mutated prevent activation of MST3 by MO25β. These data provide molecular understanding of the mechanism by which MO25 isoforms regulates the activity of STE20 family protein kinases. PMID:23296203

  6. Insights into the activation of the helicase Prp43 by biochemical studies and structural mass spectrometry

    PubMed Central

    Christian, Henning; Hofele, Romina V.; Urlaub, Henning; Ficner, Ralf

    2014-01-01

    Splicing of precursor messenger RNA is a hallmark of eukaryotic cells, which is carried out by the spliceosome, a multi-megadalton ribonucleoprotein machinery. The splicing reaction removes non-coding regions (introns) and ligates coding regions (exons). The spliceosome is a highly dynamic ribonucleoprotein complex that undergoes dramatic structural changes during its assembly, the catalysis and its disassembly. The transitions between the different steps during the splicing cycle are promoted by eight conserved DExD/H box ATPases. The DEAH-box protein Prp43 is responsible for the disassembly of the intron-lariat spliceosome and its helicase activity is activated by the G-patch protein Ntr1. Here, we investigate the activation of Prp43 by Ntr1 in the presence and absence of RNA substrate by functional assays and structural proteomics. Residues 51–110 of Ntr1 were identified to be the minimal fragment that induces full activation. We found protein–protein cross-links that indicate that Prp43 interacts with the G-patch motif of Ntr1 through its C-terminal domains. Additionally, we report on functionally important RNA binding residues in both proteins and propose a model for the activation of the helicase. PMID:24165877

  7. Insights into Substrate Specificity and Metal Activation of Mammalian Tetrahedral Aspartyl Aminopeptidase*

    PubMed Central

    Chen, Yuanyuan; Farquhar, Erik R.; Chance, Mark R.; Palczewski, Krzysztof; Kiser, Philip D.

    2012-01-01

    Aminopeptidases are key enzymes involved in the regulation of signaling peptide activity. Here, we present a detailed biochemical and structural analysis of an evolutionary highly conserved aspartyl aminopeptidase called DNPEP. We show that this peptidase can cleave multiple physiologically relevant substrates, including angiotensins, and thus may play a key role in regulating neuron function. Using a combination of x-ray crystallography, x-ray absorption spectroscopy, and single particle electron microscopy analysis, we provide the first detailed structural analysis of DNPEP. We show that this enzyme possesses a binuclear zinc-active site in which one of the zinc ions is readily exchangeable with other divalent cations such as manganese, which strongly stimulates the enzymatic activity of the protein. The plasticity of this metal-binding site suggests a mechanism for regulation of DNPEP activity. We also demonstrate that DNPEP assembles into a functionally relevant tetrahedral complex that restricts access of peptide substrates to the active site. These structural data allow rationalization of the enzyme's preference for short peptide substrates with N-terminal acidic residues. This study provides a structural basis for understanding the physiology and bioinorganic chemistry of DNPEP and other M18 family aminopeptidases. PMID:22356908

  8. Insights into Substrate Specificity and Metal Activation of Mammalian Tetrahedral Aspartyl Aminopeptidase

    SciTech Connect

    Chen, Yuanyuan; Farquhar, Erik R.; Chance, Mark R.; Palczewski, Krzysztof; Kiser, Philip D.

    2012-07-11

    Aminopeptidases are key enzymes involved in the regulation of signaling peptide activity. Here, we present a detailed biochemical and structural analysis of an evolutionary highly conserved aspartyl aminopeptidase called DNPEP. We show that this peptidase can cleave multiple physiologically relevant substrates, including angiotensins, and thus may play a key role in regulating neuron function. Using a combination of x-ray crystallography, x-ray absorption spectroscopy, and single particle electron microscopy analysis, we provide the first detailed structural analysis of DNPEP. We show that this enzyme possesses a binuclear zinc-active site in which one of the zinc ions is readily exchangeable with other divalent cations such as manganese, which strongly stimulates the enzymatic activity of the protein. The plasticity of this metal-binding site suggests a mechanism for regulation of DNPEP activity. We also demonstrate that DNPEP assembles into a functionally relevant tetrahedral complex that restricts access of peptide substrates to the active site. These structural data allow rationalization of the enzyme's preference for short peptide substrates with N-terminal acidic residues. This study provides a structural basis for understanding the physiology and bioinorganic chemistry of DNPEP and other M18 family aminopeptidases.

  9. Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking.

    PubMed

    Islam, Barira; Sharma, Charu; Adem, Abdu; Aburawi, Elhadi; Ojha, Shreesh

    2015-01-01

    Statins are hypolipidemic drugs that are effective in the treatment of hypercholesterolemia by attenuating cholesterol synthesis in the liver via competitive inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. Recently, dietary changes associated with drug therapy have garnered attention as novel drugs to mitigate or ameliorate hypercholesterolemia. The present study was undertaken to observe different dietary polyphenols that can bind to the active site of HMGR and inhibit it. Results from the 12 dietary polyphenols tested reveal that polyphenols can bind to HMGR and block the binding of nicotinamide adenine dinucleotide phosphate (NADP(+)). We observed that the rigidity of phenolic rings prevents the polyphenols from docking to the enzyme activity site. The presence of an ester linkage between the phenolic rings in (-)-epigallocatechin-3-gallate (EGCG) and the alkyl chain in curcumin allows them to orient in the active site of the HMGR and bind to the catalytic residues. EGCG and curcumin showed binding to the active site residues with a low GRID score, which may be a potential inhibitor of HMGR. Kaempferol showed binding to HMG-CoA, but with low binding affinity. These observations provide a rationale for the consistent hypolipidemic effect of EGCG and curcumin, which has been previously reported in several epidemiological and animal studies. Therefore, this study substantiates the mechanism of polyphenols on the activity of HMGR by molecular docking and provides the impetus for drug design involving further structure-function relationship studies.

  10. New insights into the activation, interaction partners and possible functions of MK5/PRAK.

    PubMed

    Perander, Maria; Keyse, Stephen M; Seternes, Ole-Morten

    2016-01-01

    MAP kinase-activated protein kinase 5 (MK5) was first described as a downstream target of the p38 MAP kinase pathway leading to its alternative acronym of p38-regulated/activated protein kinase (PRAK). However, since the discovery that MK5 is a bona fide interaction partner of the atypical MAP kinases ERK3 and ERK4 and that this interaction leads to both the activation and subcellular relocalisation of MK5, there has been considerable debate as to the relative roles of these MAPK pathways in mediating the activation and biological functions of MK5. Here we discuss recent progress in defining novel upstream components of the ERK3/ERK4 signalling pathway, our increased understanding of the mechanism by which MK5 interacts with and is activated by ERK3 and ERK4, and the discovery of novel interaction partners for MK5. Finally, we review recent literature that suggests novel biological functions for MK5 in a range of physiological and pathophysiological conditions including neuronal function and cancer.

  11. Chemical probing reveals insights into the signaling mechanism of inflammasome activation.

    PubMed

    Gong, Yi-Nan; Wang, Xiaoming; Wang, Jiayi; Yang, Zhenxiao; Li, Shan; Yang, Jieling; Liu, Liping; Lei, Xiaoguang; Shao, Feng

    2010-12-01

    Caspase-1-mediated IL-1β production is generally controlled by two pathways. Toll-like receptors (TLRs) recognize pathogen-derived products and induce NF-κB-dependent pro-IL-1β transcription; NOD-like receptors (NLRs) assemble caspase-1-activating inflammasome complexes that sense bacterial products/danger signals. Through a targeted chemical screen, we identify bromoxone, a marine natural product, as a specific and potent inhibitor of the caspase-1 pathway. Bromoxone is effective over diverse inflammatory stimuli including TLR ligands plus ATP/nigericin, cytosolic DNA, flagellin and Bacillus anthracis lethal toxin. Bromoxone also efficiently suppresses caspase-1 activation triggered by several types of bacterial infection. Bromoxone acts upstream or at the level of the inflammasome in a transcription-independent manner. Bromoxone also inhibits pro-IL-1β expression by targeting components upstream of IKK in the TLR-NF-κB pathway. The unique dual activities of bromoxone are shared by the known TAK1 inhibitor that specifically blocks Nalp3 inflammasome activation. Hinted from the mechanistic and pharmacological properties of bromoxone, we further discover that several known NF-κB inhibitors that act upstream of IKK, but not those targeting IKK or IKK downstream, are potent blockers of different NLRs-mediated caspase-1 activation. Our study uncovers a possible non-transcriptional molecular link between the NLR (Nalp3)-mediated inflammasome pathway and TLR-NF-κB signaling, and suggests a potential strategy to develop new anti-inflammatory drugs.

  12. Structural Insight into Activation Mechanism of Toxoplasma gondii Nucleoside Triphosphate Diphosphohydrolases by Disulfide Reduction*

    PubMed Central

    Krug, Ulrike; Zebisch, Matthias; Krauss, Michel; Sträter, Norbert

    2012-01-01

    The intracellular parasite Toxoplasma gondii produces two nucleoside triphosphate diphosphohydrolases (NTPDase1 and -3). These tetrameric, cysteine-rich enzymes require activation by reductive cleavage of a hitherto unknown disulfide bond. Despite a 97% sequence identity, both isozymes differ largely in their ability to hydrolyze ATP and ADP. Here, we present crystal structures of inactive NTPDase3 as an apo form and in complex with the product AMP to resolutions of 2.0 and 2.2 Å, respectively. We find that the enzyme is present in an open conformation that precludes productive substrate binding and catalysis. The cysteine bridge 258–268 is identified to be responsible for locking of activity. Crystal structures of constitutively active variants of NTPDase1 and -3 generated by mutation of Cys258–Cys268 show that opening of the regulatory cysteine bridge induces a pronounced contraction of the whole tetramer. This is accompanied by a 12° domain closure motion resulting in the correct arrangement of all active site residues. A complex structure of activated NTPDase3 with a non-hydrolyzable ATP analog and the cofactor Mg2+ to a resolution of 2.85 Å indicates that catalytic differences between the NTPDases are primarily dictated by differences in positioning of the adenine base caused by substitution of Arg492 and Glu493 in NTPDase1 by glycines in NTPDase3. PMID:22130673

  13. A family 13 thioesterase isolated from an activated sludge metagenome: Insights into aromatic compounds metabolism.

    PubMed

    Sánchez-Reyez, Ayixon; Batista-García, Ramón Alberto; Valdés-García, Gilberto; Ortiz, Ernesto; Perezgasga, Lucía; Zárate-Romero, Andrés; Pastor, Nina; Folch-Mallol, Jorge Luis

    2017-07-01

    Activated sludge is produced during the treatment of sewage and industrial wastewaters. Its diverse chemical composition allows growth of a large collection of microbial phylotypes with very different physiologic and metabolic profiles. Thus, activated sludge is considered as an excellent environment to discover novel enzymes through functional metagenomics, especially activities related with degradation of environmental pollutants. Metagenomic DNA was isolated and purified from an activated sludge sample. Metagenomic libraries were subsequently constructed in Escherichia coli. Using tributyrin hydrolysis, a screening by functional analysis was conducted and a clone that showed esterase activity was isolated. Blastx analysis of the sequence of the cloned DNA revealed, among others, an ORF that encodes a putative thioesterase with 47-64% identity to GenBank CDS reported genes, similar to those in the hotdog fold thioesterase superfamily. On the basis of its amino acid similarity and its homology-modelled structure we deduced that this gene encodes an enzyme (ThYest_ar) that belongs to family TE13, with a preference for aryl-CoA substrates and a novel catalytic residue constellation. Plasmid retransformation in E. coli confirmed the clone's phenotype, and functional complementation of a paaI E. coli mutant showed preference for phenylacetate over chlorobenzene as a carbon source. This work suggests a role for TE13 family thioesterases in swimming and degradation approaches for phenyl acetic acid. Proteins 2017; 85:1222-1237. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Annual and seasonal tornado activity in the United States and the global wind oscillation

    NASA Astrophysics Data System (ADS)

    Moore, Todd W.

    2017-08-01

    Previous studies have searched for relationships between tornado activity and atmospheric teleconnections to provide insight on the relationship between tornadoes, their environments, and larger scale patterns in the climate system. Knowledge of these relationships is practical because it can improve seasonal and sub-seasonal predictions of tornado probability and, therefore, help mitigate tornado-related losses. This study explores the relationships between the annual and seasonal tornado activity in the United States and the Global Wind Oscillation. Time series herein show that phases of the Global Wind Oscillation, and atmospheric angular momentum anomalies, vary over a period of roughly 20-25 years. Rank correlations indicate that tornado activity is weakly correlated with phases 2, 3, and 4 (positive) and 6, 7, and 8 (negative) of the Global Wind Oscillation in winter, spring, and fall. The correlation is not as clear in summer or at the annual scale. Non-parametric Mann-Whitney U tests indicate that winters and springs with more phase 2, 3, and 4 and fewer phase 6, 7, and 8 days tend to have more tornadoes. Lastly, logistic regression models indicate that winters and springs with more phase 2, 3, and 4 days have greater likelihoods of having more than normal tornado activity. Combined, these analyses suggest that seasons with more low atmospheric angular momentum days, or phase 2, 3, and 4 days, tend to have greater tornado activity than those with fewer days, and that this relationship is most evident in winter and spring.

  15. Immunoproteasome Activation During Early Antiviral Response in Mouse Pancreatic β-cells: New Insights into Auto-antigen Generation in Type I Diabetes?

    PubMed

    Freudenburg, Wieke; Gautam, Madhav; Chakraborty, Pradipta; James, Jared; Richards, Jennifer; Salvatori, Alison S; Baldwin, Aaron; Schriewer, Jill; Buller, R Mark L; Corbett, John A; Skowyra, Dorota

    2013-04-23

    Type 1 diabetes results from autoimmune destruction of the insulin producing pancreatic β-cells. The immunoproteasome, a version of the proteasome that collaborates with the 11S/PA28 activator to generate immunogenic peptides for presentation by MHC class I molecules, has long been implicated in the onset of the disease, but little is known about immunoproteasome function and regulation in pancreatic β-cells. Interesting insight into these issues comes from a recent analysis of the immunoproteasome expressed in pancreatic β-cells during early antiviral defenses mediated by interferon β (IFNβ), a type I IFN implicated in the induction of the diabetic state in human and animal models. Using mouse islets and the MIN6 insulinoma cell line, Freudenburg et al. found that IFNβ stimulates expression of the immunoproteasome and the 11S/PA28 activator in a manner fundamentally similar to the classic immuno-inducer IFNγ, with similar timing of mRNA accumulation and decline; similar transcriptional activation mediated primarily by the IRF1 and similar mRNA and protein levels. Furthermore, neither IFNβ nor IFNγ altered the expression of regular proteolytic subunits or prevented their incorporation into proteolytic cores. As a result, immunoproteasomes had stochastic combinations of immune and regular proteolytic sites, an arrangement that would likely increase the probability with which unique immunogenic peptides are produced. However, immunoproteasomes were activated by the 11S/PA28 only under conditions of ATP depletion. A mechanism that prevents the activation of immunoproteasome at high ATP levels has not been reported before and could have a major regulatory significance, as it could suppress the generation of immunogenic peptides as cell accumulate immunoproteasome and 11S/PA28, and activate antigen processing only when ATP levels drop. We discuss implications of these new findings on the link between early antiviral response and the onset of type 1 diabetes.

  16. Transcranial electric stimulation (tES) and NeuroImaging: the state-of-the-art, new insights and prospects in basic and clinical neuroscience.

    PubMed

    Soekadar, Surjo R; Herring, Jim Don; McGonigle, David

    2016-10-15

    Transcranial electric stimulation (tES) of the brain has attracted an increased interest in recent years. Yet, despite remarkable research efforts to date, the underlying neurobiological mechanisms of tES' effects are still incompletely understood. This Special Issue aims to provide a comprehensive and up-to-date overview of the state-of-the-art in studies combining tES and neuroimaging, while introducing most recent insights and outlining future prospects related to this new and rapidly growing field. The findings reported here combine methodological advancements with insights into the underlying mechanisms of tES itself. At the same time, they also point to the many caveats and specific challenges associated with such studies, which can arise from both technical and biological sources. Besides promising to advance basic neuroscience, combined tES and neuroimaging studies may also substantially change previous conceptions about the methods of action of electric or magnetic stimulation on the brain.

  17. Direct Activation of ENaC by Angiotensin II: Recent Advances and New Insights

    PubMed Central

    Zaika, Oleg; Mamenko, Mykola; Staruschenko, Alexander

    2012-01-01

    Angiotensin II (Ang II) is the principal effector of the renin-angiotensin-aldosterone system (RAAS). It initiates myriad processes in multiple organs integrated to increase circulating volume and elevate systemic blood pressure. In the kidney, Ang II stimulates renal tubular water and salt reabsorption causing antinatriuresis and antidiuresis. Activation of RAAS is known to enhance activity of the epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron. In addition to its well described stimulatory actions on aldosterone secretion, Ang II is also capable to directly increase ENaC activity. In this brief review, we discuss recent findings about non-classical Ang II actions on ENaC and speculate about its relevance for renal sodium handling. PMID:23180052

  18. Recent insights into the biological activities and drug delivery systems of tanshinones

    PubMed Central

    Cai, Yuee; Zhang, Wenji; Chen, Zirong; Shi, Zhi; He, Chengwei; Chen, Meiwan

    2016-01-01

    Tanshinones, the major lipid-soluble pharmacological constituents of the Chinese medicinal herb Tanshen (Salvia miltiorrhiza), have attracted growing scientific attention because of the prospective biomedical applications of these compounds. Numerous pharmacological activities, including anti-inflammatory, anticancer, and cardio-cerebrovascular protection activities, are exhibited by the three primary bioactive constituents among the tanshinones, ie, tanshinone I (TNI), tanshinone IIA (TNIIA), and cryptotanshinone (CPT). However, due to their poor solubility and low dissolution rate, the clinical applications of TNI, TNIIA, and CPT are limited. To solve these problems, many studies have focused on loading tanshinones into liposomes, nanoparticles, microemulsions, cyclodextrin inclusions, solid dispersions, and so on. In this review, we aim to offer an updated summary of the biological activities and drug delivery systems of tanshinones to provide a reference for these constituents in clinical applications. PMID:26792989

  19. New insights into co-digestion of activated sludge and food waste: Biogas versus biofertilizer.

    PubMed

    Ma, Yingqun; Yin, Yao; Liu, Yu

    2017-10-01

    This study explored two holistic approaches for co-digestion of activated sludge and food waste. In Approach 1, mixed activated sludge and food waste were first hydrolyzed with fungal mash, and produced hydrolysate without separation was directly subject to anaerobic digestion. In Approach 2, solid generated after hydrolysis of food waste by fungal mash was directly converted to biofertilizer, while separated liquid with high soluble COD concentration was further co-digested with activated sludge for biomethane production. Although the potential energy produced from Approach 1 was about 1.8-time higher than that from Approach 2, the total economic revenue generated from Approach 2 was about 1.9-fold of that from Approach 1 due to high market value of biofertilizer. It is expected that this study may lead to a paradigm shift in biosolid management towards environmental and economic sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. New insights into the multidimensional concept of macrophage ontogeny, activation and function.

    PubMed

    Ginhoux, Florent; Schultze, Joachim L; Murray, Peter J; Ochando, Jordi; Biswas, Subhra K

    2016-01-01

    Macrophages have protective roles in immunity to pathogens, tissue development, homeostasis and repair following damage. Maladaptive immunity and inflammation provoke changes in macrophage function that are causative of disease. Despite a historical wealth of knowledge about macrophages, recent advances have revealed unknown aspects of their development and function. Following development, macrophages are activated by diverse signals. Such tissue microenvironmental signals together with epigenetic changes influence macrophage development, activation and functional diversity, with consequences in disease and homeostasis. We discuss here how recent discoveries in these areas have led to a multidimensional concept of macrophage ontogeny, activation and function. In connection with this, we also discuss how technical advances facilitate a new roadmap for the isolation and analysis of macrophages at high resolution.

  1. An insight into synthetic Schiff bases revealing antiproliferative activities in vitro.

    PubMed

    Sztanke, Krzysztof; Maziarka, Agata; Osinka, Anna; Sztanke, Małgorzata

    2013-07-01

    Schiff bases or azomethines are among the most important groups of biomolecules. These compounds have been found to reveal both remarkable biological activities and a variety of valuable practical applications. An interest in the exploration of novel series of synthetic Schiff bases has undoubtedly been growing due to their proven utility as attractive lead structures for the design of novel cytotoxic and cytostatic agents with a mechanism of action that sometimes differs from that of clinically authorized anticancer agents. Therefore, in the present paper we have focussed our attention on the collected synthetic simple Schiff bases of aldimine- and ketimine-types revealing anticancer activities in vitro, that have been described in the scientific literature during the last decade, and on structural variations whose affect the antiproliferative activity in sets of the designed molecules.

  2. Pyrimethamine Derivatives: Insight into Binding Mechanism and Improved Enhancement of Mutant β-N-acetylhexosaminidase Activity.

    PubMed

    Tropak, Michael B; Zhang, Jianmin; Yonekawa, Sayuri; Rigat, Brigitte A; Aulakh, Virender S; Smith, Matthew R; Hwang, Hee-Jong; Ciufolini, Marco A; Mahuran, Don J

    2015-06-11

    In order to identify structural features of pyrimethamine (5-(4-chlorophenyl)-6-ethylpyrimidine-2,4-diamine) that contribute to its inhibitory activity (IC50 value) and chaperoning efficacy toward β-N-acetylhexosaminidase, derivatives of the compound were synthesized that differ at the positions bearing the amino, ethyl, and chloro groups. Whereas the amino groups proved to be critical to its inhibitory activity, a variety of substitutions at the chloro position only increased its IC50 by 2-3-fold. Replacing the ethyl group at the 6-position with butyl or methyl groups increased IC50 more than 10-fold. Surprisingly, despite its higher IC50, a derivative lacking the chlorine atom in the para-position was found to enhance enzyme activity in live patient cells a further 25% at concentrations >100 μM, while showing less toxicity. These findings demonstrate the importance of the phenyl group in modulating the chaperoning efficacy and toxicity profile of the derivatives.

  3. Insights into the interactions between enzyme and co-solvents: stability and activity of stem bromelain.

    PubMed

    Rani, Anjeeta; Venkatesu, Pannuru

    2015-02-01

    In present study, an attempt is made to elucidate the effects of various naturally occurring osmolytes and denaturants on BM at pH 7.0. The effects of the varying concentrations of glycerol, sorbitol, sucrose, trehalose, urea and guanidinium chloride (GdnHCl) on structure, stability and activity of BM are explored by fluorescence spectroscopy, circular dichroism (CD), UV-vis spectroscopy and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Our experimental observations reveal that glycerol and sorbitol are acting as stabilizers at all concentrations while sucrose and trehalose are found to be destabilizers at lower concentrations, however, acted as stabilizers at higher concentrations. On the other hand, urea and GdnHCl are denaturants except at lower concentrations. There is a direct relationship between activity and conformational stability as the activity data are found to be in accordance with conformational stability parameters (ΔGu, Tm, ΔCp) and BM profile on SDS-PAGE.

  4. Insights from Bacterial Subtilases into the Mechanisms of Intramolecular Chaperone-Mediated Activation of Furin

    PubMed Central

    Shinde, Ujwal; Thomas, Gary

    2015-01-01

    Prokaryotic subtilisins and eukaryotic proprotein convertases (PCs) are two homologous protease subfamilies that belong to the larger ubiquitous super-family called subtilases. Members of the subtilase super-family are produced as zymogens wherein their propeptide domains function as dedicated intramolecular chaperones (IMCs) that facilitate correct folding and regulate precise activation of their cognate catalytic domains. The molecular and cellular determinants that modulate IMC-dependent folding and activation of PCs are poorly understood. In this chapter we review what we have learned from the folding and activation of prokaryotic subtilisin, discuss how this has molded our understanding of furin maturation, and foray into the concept of pH sensors, which may represent a paradigm that PCs (and possibly other IMC-dependent eukaryotic proteins) follow for regulating their biological functions using the pH gradient in the secretory pathway. PMID:21805238

  5. Modeling GPCR active state conformations: the β(2)-adrenergic receptor.

    PubMed

    Simpson, Lisa M; Wall, Ian D; Blaney, Frank E; Reynolds, Christopher A

    2011-05-01

    The recent publication of several G protein-coupled receptor (GPCR) structures has increased the information available for homology modeling inactive class A GPCRs. Moreover, the opsin crystal structure shows some active features. We have therefore combined information from these two sources to generate an extensively validated model of the active conformation of the β(2)-adrenergic receptor. Experimental information on fully active GPCRs from zinc binding studies, site-directed spin labeling, and other spectroscopic techniques has been used in molecular dynamics simulations. The observed conformational changes reside mainly in transmembrane helix 6 (TM6), with additional small but significant changes in TM5 and TM7. The active model has been validated by manual docking and is in agreement with a large amount of experimental work, including site-directed mutagenesis information. Virtual screening experiments show that the models are selective for β-adrenergic agonists over other GPCR ligands, for (R)- over (S)-β-hydroxy agonists and for β(2)-selective agonists over β(1)-selective agonists. The virtual screens reproduce interactions similar to those generated by manual docking. The C-terminal peptide from a model of the stimulatory G protein, readily docks into the active model in a similar manner to which the C-terminal peptide from transducin, docks into opsin, as shown in a recent opsin crystal structure. This GPCR-G protein model has been used to explain site-directed mutagenesis data on activation. The agreement with experiment suggests a robust model of an active state of the β(2)-adrenergic receptor has been produced. The methodology used here should be transferable to modeling the active state of other GPCRs. Copyright © 2011 Wiley-Liss, Inc.

  6. Mood state and brain electric activity in ecstasy users.

    PubMed

    Gamma, A; Frei, E; Lehmann, D; Pascual-Marqui, R D; Hell, D; Vollenweider, F X

    2000-01-17

    Resting EEG during open and closed eyes and subsequent mood ratings were obtained from 15 Ecstasy users and 14 Ecstasy-naive controls. Absolute spectral power on the scalp, and the three-dimensional, intracerebral distribution of neuroelectric activity using low resolution brain electromagnetic tomography (LORETA) were computed. LORETA revealed global increases of theta, alpha 1 and beta 2/3 power during eyes open in Ecstasy users, and spectral analyses revealed a right-posterior increase of alpha 2 power (confirmed by LORETA) and increased beta band activity during open eyes. Ecstasy users had higher levels of state depressiveness, emotional excitability and a trend-level increase in state anxiety. The observed differences may be related to regular exposure to Ecstasy or other illicit drugs, or may be pre-existing.

  7. Active states and structure transformations in accreting white dwarfs

    NASA Astrophysics Data System (ADS)

    Boneva, Daniela; Kaygorodov, Pavel

    2016-07-01

    Active states in white dwarfs are usually associated with light curve's effects that concern to the bursts, flickering or flare-up occurrences. It is common that a gas-dynamics source exists for each of these processes there. We consider the white dwarf binary stars with accretion disc around the primary. We suggest a flow transformation modeling of the mechanisms that are responsible for ability to cause some flow instability and bring the white dwarfs system to the outburst's development. The processes that cause the accretion rate to sufficiently increase are discussed. Then the transition from a quiescent to an active state is realized. We analyze a quasi-periodic variability in the luminosity of white dwarf binary stars systems. The results are supported with an observational data.

  8. Activated and deactivated functional brain areas in the Deqi state

    PubMed Central

    Huang, Yong; Zeng, Tongjun; Zhang, Guifeng; Li, Ganlong; Lu, Na; Lai, Xinsheng; Lu, Yangjia; Chen, Jiarong

    2012-01-01

    We compared the activities of functional regions of the brain in the Deqi versus non-Deqi state, as reported by physicians and subjects during acupuncture. Twelve healthy volunteers received sham and true needling at the Waiguan (TE5) acupoint. Real-time cerebral functional MRI showed that compared with non-sensation after sham needling, true needling activated Brodmann areas 3, 6, 8, 9, 10, 11, 13, 20, 21, 37, 39, 40, 43, and 47, the head of the caudate nucleus, the parahippocampal gyrus, thalamus and red nucleus. True needling also deactivated Brodmann areas 1, 2, 3, 4, 5, 6, 7, 9, 10, 18, 24, 31, 40 and 46. PMID:25538761

  9. Mining Claim Activity on Federal Land in the United States

    USGS Publications Warehouse

    Causey, J. Douglas

    2007-01-01

    Several statistical compilations of mining claim activity on Federal land derived from the Bureau of Land Management's LR2000 database have previously been published by the U.S Geological Survey (USGS). The work in the 1990s did not include Arkansas or Florida. None of the previous reports included Alaska because it is stored in a separate database (Alaska Land Information System) and is in a different format. This report includes data for all states for which there are Federal mining claim records, beginning in 1976 and continuing to the present. The intent is to update the spatial and statistical data associated with this report on an annual basis, beginning with 2005 data. The statistics compiled from the databases are counts of the number of active mining claims in a section of land each year from 1976 to the present for all states within the United States. Claim statistics are subset by lode and placer types, as well as a dataset summarizing all claims including mill site and tunnel site claims. One table presents data by case type, case status, and number of claims in a section. This report includes a spatial database for each state in which mining claims were recorded, except North Dakota, which only has had two claims. A field is present that allows the statistical data to be joined to the spatial databases so that spatial displays and analysis can be done by using appropriate geographic information system (GIS) software. The data show how mining claim activity has changed in intensity, space, and time. Variations can be examined on a state, as well as a national level. The data are tied to a section of land, approximately 640 acres, which allows it to be used at regional, as well as local scale. The data only pertain to Federal land and mineral estate that was open to mining claim location at the time the claims were staked.

  10. Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation

    PubMed Central

    Próchnicki, Tomasz; Mangan, Matthew S.; Latz, Eicke

    2016-01-01

    Inflammasomes are high-molecular-weight protein complexes that are formed in the cytosolic compartment in response to danger- or pathogen-associated molecular patterns. These complexes enable activation of an inflammatory protease caspase-1, leading to a cell death process called pyroptosis and to proteolytic cleavage and release of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Along with caspase-1, inflammasome components include an adaptor protein, ASC, and a sensor protein, which triggers the inflammasome assembly in response to a danger signal. The inflammasome sensor proteins are pattern recognition receptors belonging either to the NOD-like receptor (NLR) or to the AIM2-like receptor family. While the molecular agonists that induce inflammasome formation by AIM2 and by several other NLRs have been identified, it is not well understood how the NLR family member NLRP3 is activated. Given that NLRP3 activation is relevant to a range of human pathological conditions, significant attempts are being made to elucidate the molecular mechanism of this process. In this review, we summarize the current knowledge on the molecular events that lead to activation of the NLRP3 inflammasome in response to a range of K + efflux-inducing danger signals. We also comment on the reported involvement of cytosolic Ca 2+ fluxes on NLRP3 activation. We outline the recent advances in research on the physiological and pharmacological mechanisms of regulation of NLRP3 responses, and we point to several open questions regarding the current model of NLRP3 activation. PMID:27508077

  11. A semisynthetic Eph receptor tyrosine kinase provides insight into ligand-induced kinase activation

    PubMed Central

    Singla, Nikhil; Erdjument-Bromage, Hediye; Himanen, Juha P.; Muir, Tom W.; Nikolov, Dimitar B.

    2011-01-01

    SUMMARY We have developed a methodology for generating milligram amounts of functional Eph tyrosine kinase receptor using the protein engineering approach of expressed protein ligation. Stimulation with ligand induces efficient autophosphorylation of the semisynthetic Eph construct. The in vitro phosphorylation of key Eph tyrosine residues upon ligand-induced activation was monitored via time-resolved, quantitative phosphoproteomics, suggesting a precise and unique order of phosphorylation of the Eph tyrosines in the kinase activation process. To our knowledge, this work represents the first reported semisynthesis of a receptor tyrosine kinase and provides a potentially general method for producing single-pass membrane proteins for structural and biochemical characterization. PMID:21439481

  12. Geomorphic signal of active faulting at the northern edge of Lut Block: Insights on the kinematic scenario of Central Iran

    NASA Astrophysics Data System (ADS)

    Calzolari, Gabriele; Della Seta, Marta; Rossetti, Federico; Nozaem, Reza; Vignaroli, Gianluca; Cosentino, Domenico; Faccenna, Claudio

    2016-01-01

    Recent works documented Neogene to Quaternary dextral strike-slip tectonics along the Kuh-e-Sarhangi and Kuh-e-Faghan intraplate strike-slip faults at the northern edge of the Lut Block of Central Iran, previously thought to be dominated by sinistral strike-slip deformation. This work focuses on the evidence of Quaternary activity of one of these fault systems, in order to provide new spatiotemporal constraints on their role in the active regional kinematic scenario. Through geomorphological and structural investigation, integrated with optically stimulated luminescence dating of three generations of alluvial fans and fluvial terraces (at ~53, ~25, and ~6 ka), this study documents (i) the topographic inheritance of the long-term (Myr) punctuated history of fault nucleation, propagation, and exhumation along the northern edge of Lut Block; (ii) the tectonic control on drainage network evolution, pediment formation, fluvial terraces, and alluvial fan architecture; (iii) the minimum Holocene age of Quaternary dextral strike-slip faulting; and (iv) the evidence of Late Quaternary fault-related uplift localized along the different fault strands. The documented spatial and temporal constraints on the active dextral strike-slip tectonics at the northern edge of Lut Block provide new insights on the kinematic model for active faulting in Central Iran, which has been reinterpreted in an escape tectonic scenario.

  13. Near-planar Solution Structures of Mannose-binding Lectin Oligomers Provide Insight on Activation of Lectin Pathway of Complement

    PubMed Central

    Miller, Ami; Phillips, Anna; Gor, Jayesh; Wallis, Russell; Perkins, Stephen J.

    2012-01-01

    The complement system is a fundamental component of innate immunity that orchestrates complex immunological and inflammatory processes. Complement comprises over 30 proteins that eliminate invading microorganisms while maintaining host cell integrity. Protein-carbohydrate interactions play critical roles in both the activation and regulation of complement. Mannose-binding lectin (MBL) activates the lectin pathway of complement via the recognition of sugar arrays on pathogenic surfaces. To determine the solution structure of MBL, synchrotron x-ray scattering and analytical ultracentrifugation experiments showed that the carbohydrate-recognition domains in the MBL dimer, trimer, and tetramer are positioned close to each other in near-planar fan-like structures. These data were subjected to constrained modeling fits. A bent structure for the MBL monomer was identified starting from two crystal structures for its carbohydrate-recognition domain and its triple helical region. The MBL monomer structure was used to identify 10–12 near-planar solution structures for each of the MBL dimers, trimers, and tetramers starting from 900 to 6,859 randomized structures for each. These near-planar fan-like solution structures joined at an N-terminal hub clarified how the carbohydrate-recognition domain of MBL binds to pathogenic surfaces. They also provided insight on how MBL presents a structural template for the binding and auto-activation of the MBL-associated serine proteases to initiate the lectin pathway of complement activation. PMID:22167201

  14. Impacts of black carbon mixing state on black carbon nucleation scavenging: Insights from a particle-resolved model

    NASA Astrophysics Data System (ADS)

    Ching, J.; Riemer, N.; West, M.

    2012-12-01

    This paper presents an advancement of the recently developed particle-resolved aerosol model PartMC-MOSAIC (Particle Monte Carlo-Model for Simulating Aerosol Interactions and Chemistry) to investigate the impacts of mixing state on cloud droplet formation and to provide a tool for the quantification of errors in cloud properties introduced by simplifying mixing state assumptions. We coupled PartMC-MOSAIC with a cloud parcel model. We initialized the cloud parcel simulation with hourly PartMC-MOSAIC model output from a 48-hour urban plume simulation. The cloud parcel model then explicitly simulated activation and condensational growth of the particles as the parcel underwent cooling at a specified rate and the particles of the aerosol population competed for water vapor. We used this capability to quantify the relative importance of size information versus composition information for the prediction of the cloud droplet number fraction, mass fraction of black carbon that is nucleation-scavenged, cloud droplet effective radius, and relative dispersion of the droplet size distribution by introducing averaging of particle-resolved information within prescribed bins. For the cloud droplet number fraction, both composition averaging and size-bin averaging individually led to an error of less than 25% for all cloud parcel simulations, while averaging in both size bins and composition resulted in errors of up to 34% for the base case cooling rate of 0.5 K/min. In contrast, for the nucleation-scavenged black carbon mass fraction, the results for size-bin averaging tracked the reference case well, while composition averaging, with or without size-bin averaging, led to overestimation of this quantity by up to 600%.

  15. Single molecule microscopy reveals mechanistic insight into RNA polymerase II preinitiation complex assembly and transcriptional activity.

    PubMed

    Horn, Abigail E; Kugel, Jennifer F; Goodrich, James A

    2016-09-06

    Transcription by RNA polymerase II (Pol II) is a complex process that requires general transcription factors and Pol II to assemble on DNA into preinitiation complexes that can begin RNA synthesis upon binding of NTPs (nucleoside triphosphate). The pathways by which preinitiation complexes form, and how this impacts transcriptional activity are not completely clear. To address these issues, we developed a single molecule system using TIRF (total internal reflection fluorescence) microscopy and purified human transcription factors, which allows us to visualize transcriptional activity at individual template molecules. We see that stable interactions between polymerase II (Pol II) and a heteroduplex DNA template do not depend on general transcription factors; however, transcriptional activity is highly dependent upon TATA-binding protein, TFIIB and TFIIF. We also found that subsets of general transcription factors and Pol II can form stable complexes that are precursors for functional transcription complexes upon addition of the remaining factors and DNA. Ultimately we found that Pol II, TATA-binding protein, TFIIB and TFIIF can form a quaternary complex in the absence of promoter DNA, indicating that a stable network of interactions exists between these proteins independent of promoter DNA. Single molecule studies can be used to learn how different modes of preinitiation complex assembly impact transcriptional activity. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Insights into structure–activity relationship of GABAA receptor modulating coumarins and furanocoumarins

    PubMed Central

    Singhuber, Judith; Baburin, Igor; Ecker, Gerhard F.; Kopp, Brigitte; Hering, Steffen

    2011-01-01

    The coumarins imperatorin and osthole are known to exert anticonvulsant activity. We have therefore analyzed the modulation of GABA-induced chloride currents (IGABA) by a selection of 18 coumarin derivatives on recombinant α1β2γ2S GABAA receptors expressed in Xenopus laevis oocytes by means of the two-microelectrode voltage clamp technique. Osthole (EC50=14±1 μM) and oxypeucedanin (EC50=25±8 μM) displayed the highest efficiency with IGABA potentiation of 116±4% and 547±56%, respectively. IGABA enhancement by osthole and oxypeucedanin was not inhibited by flumazenil (1 μM) indicating an interaction with a binding site distinct from the benzodiazepine binding site. In general, prenyl residues are essential for the positive modulatory activity, while longer side chains or bulkier residues (e.g. geranyl residues) diminish IGABA modulation. Generation of a binary classification tree revealed the importance of polarisability, which is sufficient to distinguish actives from inactives. A 4-point pharmacophore model based on oxypeucedanin – comprising three hydrophobic and one aromatic feature – identified 6 out of 7 actives as hits. In summary, (oxy-)prenylated coumarin derivatives from natural origin represent new GABAA receptor modulators. PMID:21749864

  17. XPD Helicase Structures and Activities: Insights into the Cancer and Aging Phenotypes from XPD Mutations

    SciTech Connect

    Tainer, John; Fan, Li; Fuss, Jill O.; Cheng, Quen J.; Arvai, Andrew S.; Hammel, Michal; Roberts, Victoria A.; Cooper, Priscilla K.; Tainer, John A.

    2008-06-02

    Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicase activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ.

  18. XPD Helicase Structures And Activities: Insights Into the Cancer And Aging Phenotypes From XPD Mutations

    SciTech Connect

    Fan, L.; Fuss, J.O.; Cheng, Q.J.; Arvai, A.S.; Hammel, M.; Roberts, V.A.; Cooper, P.K.; Tainer, J.A.

    2009-05-18

    Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicase activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ.

  19. A computational insight into acetylcholinesterase inhibitory activity of a new lichen depsidone.

    PubMed

    Ece, Abdulilah; Pejin, Boris

    2015-01-01

    Acetylcholinesterase (AChE) inhibitors are yet the best drugs currently available for the management of Alzheimer's disease. The recent phytochemical investigation has led to the isolation of a new depsidone 1 with moderate AChE activity (1 μg). This work was focused on its electronic properties analysed using commercially available programs. Both the active depsidone molecule 1 and galanthamine showed to have higher HOMO energies than the inactive depsidones 2-4, isolated from the same lichen species. However, the amino depsidone derivative 7, whose structure was proposed using computational approaches, is expected to be more active AChE inhibitor than the depsidone 1, due to the improved HOMO energy value. In addition, the molecular docking study indicated that the compound 7 has ability to make the well-known interactions of potent AChE inhibitors with the enzyme active site. The data presented herein support the design of novel AChE inhibitors based on the depsidone scaffold.

  20. [Enhancing glutamate decarboxylase activity by site-directed mutagenesis: an insight from Ramachandran plot].

    PubMed

    Ke, Piyu; Huang, Jun; Hu, Sheng; Zhao, Weirui; Lü, Changjiang; Yu, Kai; Lei, Yinlin; Wang, Jinbo; Mei, Lehe

    2016-01-01

    Glutamate decarboxylase (GAD) can catalyze the decarboxylation of glutamate into γ-aminobutyrate (GABA) and is the only enzyme of GABA biosynthesis. Improving GAD activity and thermostability will be helpful for the highly efficient biosynthesis of GABA. According to the Ramachandran plot information of GAD 1407 three-dimensional structure from Lactobacillus brevis CGMCC No. 1306, we identified the unstable site K413 as the mutation target, constructed the mutant GAD by site-directed mutagenesis and measured the thermostability and activity of the wide type and mutant GAD. Mutant K413A led to a remarkably slower inactivation rate, and its half-life at 50 °C reached 105 min which was 2.1-fold higher than the wild type GAD1407. Moreover, mutant K413I exhibited 1.6-fold higher activity in comparison with the wide type GAD1407, although it had little improvement in thermostability of GAD. Ramachandran plot can be considered as a potential approach to increase GAD thermostability and activity.

  1. Moving Souls: History Offers Insights into Physical Activity that Go beyond Fitness and Fun

    ERIC Educational Resources Information Center

    Sydnor, Synthia

    2005-01-01

    This article looks at four theoretical themes that scholars insist on when studying history. The themes--social memory, liminality, community, and critique--may be useful in stimulating the direction, planning, and practice of physical activity in young adults. These particular themes were chosen because they seem to match some of the…

  2. Insights into the activity of maturation inhibitor PF-46396 on HIV-1 clade C

    PubMed Central

    Ghimire, Dibya; Timilsina, Uddhav; Srivastava, Tryambak Pratap; Gaur, Ritu

    2017-01-01

    HIV maturation inhibitors are an emerging class of anti-retroviral compounds that inhibit the viral protease-mediated cleavage of the Gag, CA-SP1 (capsid-spacer peptide 1) peptide to mature CA. The first-in-class maturation inhibitor bevirimat (BVM) displayed potent activity against HIV-1 clade B but was ineffective against other HIV-1 clades including clade C. Another pyridone-based maturation inhibitor, PF-46396 displayed potent activity against HIV-1 clade B. In this study, we aimed at determining the activity of PF-46396 against HIV-1 clade C. We employed various biochemical and virological assays to demonstrate that PF-46396 is effective against HIV-1 clade C. We observed a dose dependent accumulation of CA-SP1 intermediate in presence of the compound. We carried out mutagenesis in the CA- SP1 region of HIV-1 clade C Gag and observed that the mutations conferred resistance against the compound. Many mutations inhibited Gag processing thereby reducing virus release in the absence of the compound. However, presence of PF-46396 rescued these defects and enhanced virus release, replication capacity and infectivity of HIV-1 clade C. These results put together identify PF-46396 as a broadly active maturation inhibitor against HIV-1 clade B and C and help in rational designing of novel analogs with reduced toxicity and increased efficacy for its potential use in clinics. PMID:28252110

  3. Biochemical and computational insights into the anti-aromatase activity of natural catechol estrogens.

    PubMed

    Neves, Marco A C; Dinis, Teresa C P; Colombo, Giorgio; Luisa Sá E Melo, M

    2008-05-01

    High levels of endogenous estrogens are associated with increased risks of breast cancer. Estrogen levels are mainly increased by the activity of the aromatase enzyme and reduced by oxidative/conjugative metabolic pathways. In this paper, we demonstrate for the first time that catechol estrogen metabolites are potent aromatase inhibitors, thus establishing a link between aromatase activity and the processes involved in estrogen metabolism. In particular, the anti-aromatase activity of a set of natural hydroxyl and methoxyl estrogen metabolites was investigated using biochemical methods and subsequently compared with the anti-aromatase potency of estradiol and two reference aromatase inhibitors. Catechol estrogens proved to be strong inhibitors with an anti-aromatase potency two orders of magnitude higher than estradiol. A competitive inhibition mechanism was found for the most potent molecule, 2-hydroxyestradiol (2-OHE(2)) and a rational model identifying the interaction determinants of the metabolites with the enzyme is proposed based on ab initio quantum-mechanical calculations. A strong relationship between activity and electrostatic properties was found for catechol estrogens. Moreover, our results suggest that natural catechol estrogens may be involved in the control mechanisms of estrogen production.

  4. Moving Souls: History Offers Insights into Physical Activity that Go beyond Fitness and Fun

    ERIC Educational Resources Information Center

    Sydnor, Synthia

    2005-01-01

    This article looks at four theoretical themes that scholars insist on when studying history. The themes--social memory, liminality, community, and critique--may be useful in stimulating the direction, planning, and practice of physical activity in young adults. These particular themes were chosen because they seem to match some of the…

  5. Insights into microstructure and chemistry of active fiber core material produced by the granulated silica method

    NASA Astrophysics Data System (ADS)

    Najafi, H.; Etissa, D.; Romano, V.

    2014-05-01

    The production of special fibers relies on new methods and materials to incorporate new functionalities into optical fibers by virtues of dopants and structure. In particular, the granulated silica method allows to rapidly produce active fibers with high dopant content and with virtually any microstructure. The implementation of this production method requires a multitude of process steps at various temperatures and temperature gradients that can significantly influence the optical properties of the produced preforms and fibers. To better understand and optimize the processes of active material production and fiber drawing parameters we have done a thorough analysis of microstructure, phase development, crystallinity and chemical mapping of active fiber cores produced by a combination of sol-gel process and granulated silica method with and without employment of a CO2 laser treatment. The microstructure of fibers have been analyzed with a diverse suite of techniques in Transmission Electron Microscopy (TEM), revealing formation of various silica polymorphs and distribution of active elements (i.e. Yb and P) into the core structure. Our results show the presence of another polymorph of silica with low crystallinity dispersed in the main amorphous polymorph (i.e. quartz). We conclude that in spite of importance of homogeneous distribution of Yb and P into the core, the formation of various silica polymorphs resulting from materials processing has to be considered.

  6. Assessing the activity of faults in continental interiors: Palaeoseismic insights from SE Kazakhstan

    NASA Astrophysics Data System (ADS)

    Grützner, C.; Carson, E.; Walker, R. T.; Rhodes, E. J.; Mukambayev, A.; Mackenzie, D.; Elliott, J. R.; Campbell, G.; Abdrakhmatov, K.

    2017-02-01

    The presence of fault scarps is a first-order criterion for identifying active faults. Yet the preservation of these features depends on the recurrence interval between surface rupturing events, combined with the rates of erosional and depositional processes that act on the landscape. Within arid continental interiors single earthquake scarps can be preserved for thousands of years, and yet the interval between surface ruptures on faults in these regions may be much longer, such that the lack of evidence for surface faulting in the morphology may not preclude activity on those faults. In this study we investigate the 50 km-long 'Toraigyr' thrust fault in the northern Tien Shan. From palaeoseismological trenching we show that two surface rupturing earthquakes occurred in the last 39.9 ± 2.7 ka BP, but only the most recent event (3.15-3.6 ka BP) has a clear morphological expression. We conclude that a landscape reset took place in between the two events, likely as a consequence of the climatic change at the end of the last glacial maximum. These findings illustrate that in the Tien Shan evidence for the most recent active faulting can be easily obliterated by climatic processes due to the long earthquake recurrence intervals. Our results illustrate the problems related to the assessment of active tectonic deformation and seismic hazard assessments in continental interior settings.

  7. Cyclin A2 Mutagenesis Analysis: A New Insight into CDK Activation and Cellular Localization Requirements

    PubMed Central

    Bendris, Nawal; Lemmers, Bénédicte; Blanchard, Jean-Marie; Arsic, Nikola

    2011-01-01

    Cyclin A2 is essential at two critical points in the somatic cell cycle: during S phase, when it activates CDK2, and during the G2 to M transition when it activates CDK1. Based on the crystal structure of Cyclin A2 in association with CDKs, we generated a panel of mutants to characterize the specific amino acids required for partner binding, CDK activation and subcellular localization. We find that CDK1, CDK2, p21, p27 and p107 have overlapping but distinct requirements for association with this protein. Our data highlight the crucial importance of the N-terminal α helix, in conjunction with the α3 helix within the cyclin box, in activating CDK. Several Cyclin A2 mutants selectively bind to either CDK1 or CDK2. We demonstrate that association of Cyclin A2 to proteins such as CDK2 that was previously suggested as crucial is not a prerequisite for its nuclear localization, and we propose that the whole protein structure is involved. PMID:21829545

  8. Cyclin A2 mutagenesis analysis: a new insight into CDK activation and cellular localization requirements.

    PubMed

    Bendris, Nawal; Lemmers, Bénédicte; Blanchard, Jean-Marie; Arsic, Nikola

    2011-01-01

    Cyclin A2 is essential at two critical points in the somatic cell cycle: during S phase, when it activates CDK2, and during the G2 to M transition when it activates CDK1. Based on the crystal structure of Cyclin A2 in association with CDKs, we generated a panel of mutants to characterize the specific amino acids required for partner binding, CDK activation and subcellular localization. We find that CDK1, CDK2, p21, p27 and p107 have overlapping but distinct requirements for association with this protein. Our data highlight the crucial importance of the N-terminal α helix, in conjunction with the α3 helix within the cyclin box, in activating CDK. Several Cyclin A2 mutants selectively bind to either CDK1 or CDK2. We demonstrate that association of Cyclin A2 to proteins such as CDK2 that was previously suggested as crucial is not a prerequisite for its nuclear localization, and we propose that the whole protein structure is involved.

  9. Insights into cholinesterase inhibitory and antioxidant activities of five Juniperus species.

    PubMed

    Orhan, Nilufer; Orhan, Ilkay Erdogan; Ergun, Fatma

    2011-09-01

    In vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory and antioxidant activities of the aqueous and ethanol extracts of the leaves, ripe fruits, and unripe fruits of Juniperus communis ssp. nana, Juniperus oxycedrus ssp. oxycedrus, Juniperus sabina, Juniperus foetidissima, and Juniperus excelsa were investigated in the present study. Cholinesterase inhibition of the extracts was screened using ELISA microplate reader. Antioxidant activity of the extracts was tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radical scavenging, ferrous ion-chelating, and ferric-reducing antioxidant power (FRAP) assays. Total phenol and flavonoid contents of the extracts were determined spectrophotometrically. The extracts had low or no inhibition towards AChE, whereas the leaf aqueous extract of J. foetidissima showed the highest BChE inhibition (93.94 ± 0.01%). The leaf extracts usually exerted higher antioxidant activity. We herein describe the first study on anticholinesterase and antioxidant activity by the methods of ferrous ion-chelating, superoxide radical scavenging, and ferric-reducing antioxidant power (FRAP) assays of the mentioned Juniperus species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Physical Activity and Sedentary Behavior in Breast Cancer Survivors: New Insight into Activity Patterns and Potential Intervention Targets

    PubMed Central

    Phillips, Siobhan M.; Dodd, Kevin W.; Steeves, Jeremy; McClain, James; Alfano, Catherine M.; McAuley, Edward

    2016-01-01

    Background Inactivity and sedentary behavior are related to poorer health outcomes in breast cancer survivors. However, few studies examining these behaviors in survivors have used objective measures, considered activities other than moderate-to-vigorous intensity activity (MVPA) and/or sedentary behavior (i.e. low intensity activities) or compared survivors to healthy controls. The purpose of the present study is to compare accelerometer-measured activity of various intensities (total, light, lifestyle, MVPA) and sedentary behavior between breast cancer survivors and non-cancer controls. Methods An imputation-based approach of independent sample t-tests adjusting for multiple comparisons was used to compare estimates of participation in each activity and sedentary behavior between survivors [n=398; M(SD)age=56.95 (9.11)] and block-matched non-cancer controls [n=1120; M(SD)age=54.88 (16.11)]. Potential moderating effects of body mass index (BMI), age, and education were also examined. Results Breast cancer survivors registered less daily total (282.8 v. 346.9) light (199.1 v. 259.3) and lifestyle (62.0 v. 71.7) activity minutes and more MVPA (21.6 v. 15.9) and sedentary behavior (555.7 v. 500.6) minutes than controls (p<0.001 for all). These relationships were largely consistent across BMI, age and education. On average, survivors spent an estimated 66.4% of their waking time sedentary and 31.1% in light/lifestyle activity and 2.6% in MVPA. Conclusions Breast cancer survivors are more sedentary and participate in less low intensity activity than controls. Although survivors registered more MVPA, these levels were insufficient. Future research should explore these differences and potential benefits of targeting low intensity activities and reducing sedentary time in this population. PMID:26026737

  11. Abnormal resting-state brain activities in patients with first-episode obsessive-compulsive disorder

    PubMed Central

    Niu, Qihui; Yang, Lei; Song, Xueqin; Chu, Congying; Liu, Hao; Zhang, Lifang; Li, Yan; Zhang, Xiang; Cheng, Jingliang; Li, Youhui

    2017-01-01

    Objective This paper attempts to explore the brain activity of patients with obsessive-compulsive disorder (OCD) and its correlation with the disease at resting duration in patients with first-episode OCD, providing a forceful imaging basis for clinic diagnosis and pathogenesis of OCD. Methods Twenty-six patients with first-episode OCD and 25 healthy controls (HC group; matched for age, sex, and education level) underwent functional magnetic resonance imaging (fMRI) scanning at resting state. Statistical parametric mapping 8, data processing assistant for resting-state fMRI analysis toolkit, and resting state fMRI data analysis toolkit packages were used to process the fMRI data on Matlab 2012a platform, and the difference of regional homogeneity (ReHo) values between the OCD group and HC group was detected with independent two-sample t-test. With age as a concomitant variable, the Pearson correlation analysis was adopted to study the correlation between the disease duration and ReHo value of whole brain. Results Compared with HC group, the ReHo values in OCD group were decreased in brain regions, including left thalamus, right thalamus, right paracentral lobule, right postcentral gyrus, and the ReHo value was increased in the left angular gyrus region. There was a negative correlation between disease duration and ReHo value in the bilateral orbitofrontal cortex (OFC). Conclusion OCD is a multifactorial disease generally caused by abnormal activities of many brain regions at resting state. Worse brain activity of the OFC is related to the OCD duration, which provides a new insight to the pathogenesis of OCD. PMID:28243104

  12. New insights into the early biochemical activation of jasmonic acid biosynthesis in leaves

    PubMed Central

    Baldwin, Ian T

    2010-01-01

    In plants, herbivore attack elicits the rapid accumulation of jasmonic acid (JA) which results from the activation of constitutively expressed biosynthetic enzymes. The molecular mechanisms controlling the activation of JA biosynthesis remain largely unknown however new research has elucidated some of the early regulatory components involved in this process. Nicotiana attenuata plants, a wild tobacco species, responds to fatty acid amino acid conjuguates (FAC) elicitors in the oral secretion of its natural herbivore, Manduca sexta, by triggering specific defense and tolerance responses against it; all of the defense responses known to date require the amplification of the wound-induced JA increase. We recently demonstrated that this FAC-elicited JA burst requires an increased flux of free linolenic acid (18:3) likely originating from the activation of a plastidial glycerolipase (GLA1) which is activated by an abundant FAC found in insect oral secretions, N-linolenoyl-glutamate (18:3-Glu). The lack of accumulation of free 18:3 after elicitation suggests a tight physical association between GLA1 and LOX3 in N. attenuata leaves. In addition, the salicylate-induced protein kinase (SIPK) and the nonexpressor of PR-1 (NPR1) participate in this activation mechanism that controls the supply of 18:3. In contrast, the wound-induced protein kinase (WIPK) does not but instead regulates the conversion of 13(S)-hydroperoxy-18:3 into 12-oxo-phytodienoic acid (OPDA). These results open new perspectives on the complex network of signals and regulatory components inducing the JA biosynthetic pathway. PMID:20037473

  13. New insights into deleterious impacts of in vivo glycation on albumin antioxidant activities.

    PubMed

    Baraka-Vidot, Jennifer; Guerin-Dubourg, Alexis; Dubois, Fanny; Payet, Bertrand; Bourdon, Emmanuel; Rondeau, Philippe

    2013-06-01

    Albumin constitutes the most abundant circulating antioxidant and prevents oxidative damages. However, in diabetes, this plasmatic protein is exposed to several oxidative modifications, which impact on albumin antioxidant properties. Most studies dealing on albumin antioxidant activities were conducted on in vitro modified protein. Here we tried to decipher whether reduced antioxidant properties of albumin could be evidenced in vivo. For this, we compared the antioxidant properties of albumin purified from diabetic patients to in vitro models of glycated albumin. Both in vivo and in vitro glycated albumins displayed impaired antioxidant activities in the free radical-induced hemolysis test. Surprisingly, the ORAC method (Oxygen Radical Antioxidant Capacity) showed an enhanced antioxidant activity for glycated albumin. Faced with this paradox, we investigated antioxidant and anti-inflammatory activities of our albumin preparations on cultured cells (macrophages and adipocytes). Reduced cellular metabolism and enhanced intracellular oxidative stress were measured in cells treated with albumin from diabetics. NF-kB -mediated gene induction was higher in macrophages treated with both type of glycated albumin compared with cells treated with native albumin. Anti inflammatory activity of native albumin is significantly impaired after in vitro glycation and albumin purified from diabetics significantly enhanced IL6 secretion by adipocytes. Expression of receptor for advanced glycation products is significantly enhanced in glycated albumin-treated cells. Our results bring new evidences on the deleterious impairments of albumin important functions after glycation and emphasize the importance of in vivo model of glycation in studies relied to diabetes pathology. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. On brain activity mapping: insights and lessons from Brain Decoding Project to map memory patterns in the hippocampus.

    PubMed

    Tsien, Joe Z; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longnian; Wang, Phillip Lei; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui

    2013-09-01

    The BRAIN project recently announced by the president Obama is the reflection of unrelenting human quest for cracking the brain code, the patterns of neuronal activity that define who we are and what we are. While the Brain Activity Mapping proposal has rightly emphasized on the need to develop new technologies for measuring every spike from every neuron, it might be helpful to consider both the theoretical and experimental aspects that would accelerate our search for the organizing principles of the brain code. Here we share several insights and lessons from the similar proposal, namely, Brain Decoding Project that we initiated since 2007. We provide a specific example in our initial mapping of real-time memory traces from one part of the memory circuit, namely, the CA1 region of the mouse hippocampus. We show how innovative behavioral tasks and appropriate mathematical analyses of large datasets can play equally, if not more, important roles in uncovering the specific-to-general feature-coding cell assembly mechanism by which episodic memory, semantic knowledge, and imagination are generated and organized. Our own experiences suggest that the bottleneck of the Brain Project is not only at merely developing additional new technologies, but also the lack of efficient avenues to disseminate cutting edge platforms and decoding expertise to neuroscience community. Therefore, we propose that in order to harness unique insights and extensive knowledge from various investigators working in diverse neuroscience subfields, ranging from perception and emotion to memory and social behaviors, the BRAIN project should create a set of International and National Brain Decoding Centers at which cutting-edge recording technologies and expertise on analyzing large datasets analyses can be made readily available to the entire community of neuroscientists who can apply and schedule to perform cutting-edge research.

  15. THE DISCOVERY OF THE FIRST “CHANGING LOOK” QUASAR: NEW INSIGHTS INTO THE PHYSICS AND PHENOMENOLOGY OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    LaMassa, Stephanie M.; Cales, Sabrina; Urry, C. Megan; Moran, Edward C.; Myers, Adam D.; Richards, Gordon T.; Eracleous, Michael; Heckman, Timothy M.; Gallo, Luigi

    2015-02-20

    SDSS J015957.64+003310.5 is an X-ray selected, z = 0.31 active galactic nucleus (AGN) from the Stripe 82X survey that transitioned from a Type 1 quasar to a Type 1.9 AGN between 2000 and 2010. This is the most distant AGN, and first quasar, yet observed to have undergone such a dramatic change. We re-observed the source with the double spectrograph on the Palomar 5 m telescope in 2014 July and found that the spectrum is unchanged since 2010. From fitting the optical spectra, we find that the AGN flux dropped by a factor of 6 between 2000 and 2010 while the broad Hα emission faded and broadened. Serendipitous X-ray observations caught the source in both the bright and dim state, showing a similar 2–10 keV flux diminution as the optical while lacking signatures of obscuration. The optical and X-ray changes coincide with g-band magnitude variations over multiple epochs of Stripe 82 observations. We demonstrate that variable absorption, as might be expected from the simplest AGN unification paradigm, does not explain the observed photometric or spectral properties. We interpret the changing state of J0159+0033 to be caused by dimming of the AGN continuum, reducing the supply of ionizing photons available to excite gas in the immediate vicinity around the black hole. J0159+0033 provides insight into the intermittency of black hole growth in quasars, as well as an unprecedented opportunity to study quasar physics (in the bright state) and the host galaxy (in the dim state), which has been impossible to do in a single sources until now.

  16. The Discovery of the First “Changing Look” Quasar: New Insights Into the Physics and Phenomenology of Active Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    LaMassa, Stephanie M.; Cales, Sabrina; Moran, Edward C.; Myers, Adam D.; Richards, Gordon T.; Eracleous, Michael; Heckman, Timothy M.; Gallo, Luigi; Urry, C. Megan

    2015-02-01

    SDSS J015957.64+003310.5 is an X-ray selected, z = 0.31 active galactic nucleus (AGN) from the Stripe 82X survey that transitioned from a Type 1 quasar to a Type 1.9 AGN between 2000 and 2010. This is the most distant AGN, and first quasar, yet observed to have undergone such a dramatic change. We re-observed the source with the double spectrograph on the Palomar 5 m telescope in 2014 July and found that the spectrum is unchanged since 2010. From fitting the optical spectra, we find that the AGN flux dropped by a factor of 6 between 2000 and 2010 while the broad Hα emission faded and broadened. Serendipitous X-ray observations caught the source in both the bright and dim state, showing a similar 2-10 keV flux diminution as the optical while lacking signatures of obscuration. The optical and X-ray changes coincide with g-band magnitude variations over multiple epochs of Stripe 82 observations. We demonstrate that variable absorption, as might be expected from the simplest AGN unification paradigm, does not explain the observed photometric or spectral properties. We interpret the changing state of J0159+0033 to be caused by dimming of the AGN continuum, reducing the supply of ionizing photons available to excite gas in the immediate vicinity around the black hole. J0159+0033 provides insight into the intermittency of black hole growth in quasars, as well as an unprecedented opportunity to study quasar physics (in the bright state) and the host galaxy (in the dim state), which has been impossible to do in a single sources until now.

  17. Integrative modelling of TIR domain-containing adaptor molecule inducing interferon-β (TRIF) provides insights into its autoinhibited state.

    PubMed

    Mahita, Jarjapu; Sowdhamini, Ramanathan

    2017-04-20

    TRIF is a key protein in antiviral innate immunity, operating downstream of TLRs. TRIF activation leads to the production of interferon-β and pro-inflammatory cytokines. There is evidence from experiments to suggest that the N-terminal domain of TRIF binds to its TIR domain to avoid constitutive activation. However, no structure of a complex between the N-terminal domain and the TIR domain exists till date. The disordered nature of the region connecting the N-terminal domain and the TIR domain compounds the issue of elucidating the mechanism of autoinhibition of TRIF. In this study, we have employed an integrative approach consisting of mutual information analysis, docking, molecular dynamics simulations and residue network analysis, in combination with existing experimental data to provide a glimpse of TRIF in its autoinhibited state. Our extensive docking approach reveals that the N-terminal domain binds to the BB loop-B helix region of the TIR domain, consistent with experimental observations. Long length molecular dynamics simulations of 1 microsecond performed on the docked model highlights residues participating in hydrogen bonding and hydrophobic interactions at the interface. A pair of residues present in the vicinity of the interface is also predicted by mutual information analysis, to co-evolve. Residues mediating long-range interactions within the TIR domain of TRIF were identified using residue network analysis. Based on the results of the modelling and residue network analysis, we propose that the N-terminal domain binds to the BB loop region of the TIR domain, thereby preventing its homodimersation. The binding of TRIF to TLR3 or TRAM could induce a slight conformational change, causing the interactions between the N-terminal domain and TIR domain to disrupt, thereby exposing the BB loop and rendering it amenable for higher-order oligomerisation. This article was reviewed by Michael Gromiha, Srikrishna Subramaniam and Peter Bond (nominated by Chandra

  18. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.

    PubMed

    Bhattacharya, Supriyo; Hall, Spencer E; Vaidehi, Nagarajan

    2008-10-03

    Activation of G-protein-coupled receptors (GPCRs) is initiated by conformational changes in the transmembrane (TM) helices and the intra- and extracellular loops induced by ligand binding. Understanding the conformational changes in GPCRs leading to activation is imperative in deciphering the role of these receptors in the pathology of diseases. Since the crystal structures of activated GPCRs are not yet available, computational methods and biophysical techniques have been used to predict the structures of GPCR active states. We have recently applied the computational method LITiCon to understand the ligand-induced conformational changes in beta(2)-adrenergic receptor by ligands of varied efficacies. Here we report a study of the conformational changes associated with the activation of bovine rhodopsin for which the crystal structure of the inactive state is known. Starting from the inactive (dark) state, we have predicted the TM conformational changes that are induced by the isomerization of 11-cis retinal to all-trans retinal leading to the fully activated state, metarhodopsin II. The predicted active state of rhodopsin satisfies all of the 30 known experimental distance constraints. The predicted model also correlates well with the experimentally observed conformational switches in rhodopsin and other class A GPCRs, namely, the breaking of the ionic lock between R135(3.50) at the intracellular end of TM3 (part of the DRY motif) and E247(6.30) on TM6, and the rotamer toggle switch on W265(6.48) on TM6. We observe that the toggling of the W265(6.48) rotamer modulates the bend angle of TM6 around the conserved proline. The rotamer toggling is facilitated by the formation of a water wire connecting S298(7.45), W265(6.48) and H211(5.46). As a result, the intracellular ends of TMs 5 and 6 move outward from the protein core, causing large conformational changes at the cytoplasmic interface. The predicted outward movements of TM5 and TM6 are in agreement with the

  19. Organization of left–right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling

    PubMed Central

    Shevtsova, Natalia A; Talpalar, Adolfo E; Markin, Sergey N; Harris-Warrick, Ronald M; Kiehn, Ole; Rybak, Ilya A

    2015-01-01

    Different locomotor gaits in mammals, such as walking or galloping, are produced by coordinated activity in neuronal circuits in the spinal cord. Coordination of neuronal activity between left and right sides of the cord is provided by commissural interneurons (CINs), whose axons cross the midline. In this study, we construct and analyse two computational models of spinal locomotor circuits consisting of left and right rhythm generators interacting bilaterally via several neuronal pathways mediated by different CINs. The CIN populations incorporated in the models include the genetically identified inhibitory (V0D) and excitatory (V0V) subtypes of V0 CINs and excitatory V3 CINs. The model also includes the ipsilaterally projecting excitatory V2a interneurons mediating excitatory drive to the V0V CINs. The proposed network architectures and CIN connectivity allow the models to closely reproduce and suggest mechanistic explanations for several experimental observations. These phenomena include: different speed-dependent contributions of V0D and V0V CINs and V2a interneurons to left–right alternation of neural activity, switching gaits between the left–right alternating walking-like activity and the left–right synchronous hopping-like pattern in mutants lacking specific neuron classes, and speed-dependent asymmetric changes of flexor and extensor phase durations. The models provide insights into the architecture of spinal network and the organization of parallel inhibitory and excitatory CIN pathways and suggest explanations for how these pathways maintain alternating and synchronous gaits at different locomotor speeds. The models propose testable predictions about the neural organization and operation of mammalian locomotor circuits. Key points Coordination of neuronal activity between left and right sides of the mammalian spinal cord is provided by several sets of commissural interneurons (CINs) whose axons cross the midline. Genetically identified inhibitory V

  20. Activities of Amphioxus GH-Like Protein in Osmoregulation: Insight into Origin of Vertebrate GH Family

    PubMed Central

    Li, Mengyang; Jiang, Chengyan

    2017-01-01

    GH is known to play an important role in both growth promotion and osmoregulation in vertebrates. We have shown that amphioxus possesses a single GH-like hormone (GHl) gene encoding a functional protein capable of promoting growth. However, if GHl can mediate osmoregulation remains open. Here, we demonstrated clearly that GHl increased not only the survival rate of amphioxus but also the muscle moisture under high salinity. Moreover, GHl induced the expression of both the ion transporter Na+-K+-ATPase (NKA) and Na+-K+-2Cl− cotransporter (NKCC) in the gill as well as the mediator of GH action IGFl in the hepatic caecum, indicating that GHl fulfills this osmoregulatory activity through the same mechanisms of vertebrate GH. These results together suggest that the osmoregulatory activities of GH had emerged in the basal chordate amphioxus. We also proposed a new model depicting the origin of pituitary hormone family in vertebrates. PMID:28408927

  1. Insights on the Spectral Signatures of Stellar Activity and Planets from PCA

    NASA Astrophysics Data System (ADS)

    Davis, Allen B.; Cisewski, Jessi; Dumusque, Xavier; Fischer, Debra A.; Ford, Eric B.

    2017-09-01

    Photospheric velocities and stellar activity features such as spots and faculae produce measurable radial velocity signals that currently obscure the detection of sub-meter-per-second planetary signals. However, photospheric velocities are imprinted differently in a high-resolution spectrum than are Keplerian Doppler shifts. Photospheric activity produces subtle differences in the shapes of absorption lines due to differences in how temperature or pressure affects the atomic transitions. In contrast, Keplerian Doppler shifts affect every spectral line in the same way. With a high enough signal-to-noise (S/N) and resolution, statistical techniques can exploit differences in spectra to disentangle the photospheric velocities and detect lower-amplitude exoplanet signals. We use simulated disk-integrated time-series spectra and principal component analysis (PCA) to show that photospheric signals introduce spectral line variability that is distinct from that of Doppler shifts. We quantify the impact of instrumental resolution and S/N for this work.

  2. Synthesis, antioxidant and cytoprotective evaluation of potential antiatherogenic phenolic hydrazones. A structure-activity relationship insight.

    PubMed

    Vanucci-Bacqué, Corinne; Carayon, Chantal; Bernis, Corinne; Camare, Caroline; Nègre-Salvayre, Anne; Bedos-Belval, Florence; Baltas, Michel

    2014-08-01

    A novel series of hydrazones derived from substituted benzaldehydes have been synthesized as potential antiatherogenic agents. Several methods were used for exploring their antioxidant and cytoprotective properties, such as their scavenging effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, the inhibition of superoxide anion (O₂(·-)) generation and the measurement of cell-induced low-density lipoprotein oxidation (monitored by the formation of TBARS). The cytoprotective efficacy was also evaluated by measuring the cell viability (monitored by the MTT assay) in the presence of cytotoxic oxidized LDL. In this report, we discuss the relationship between the chemical structure of phenolic hydrazones and their antioxidant and cytoprotective activities, for subsequent application as antiatherogenic agents. This SAR study confirms that the phenolic frame is not the only prerequisite for antioxidant activity and N-methylbenzothiazole hydrazone moiety magnifies the dual required properties in two most interesting derivatives.

  3. Nonlinear optical studies and structure-activity relationship of chalcone derivatives with in silico insights

    NASA Astrophysics Data System (ADS)

    Kar, Swayamsiddha; Adithya, K. S.; Shankar, Pruthvik; Jagadeesh Babu, N.; Srivastava, Sailesh; Nageswara Rao, G.

    2017-07-01

    Nine chalcones were prepared via Claisen-Schmidt condensation, and characterized by UV-vis, IR, 1H NMR, 13C NMR and mass spectrometry. One of the representative member 4-NDM-TC has been studied via single crystal XRD and the TGA/DTA technique. SHG efficiency and NLO susceptibilities of the chalcones have been evaluated by the Kurtz and Perry method and Degenerate Four Wave Mixing techniques respectively. 3-Cl-4‧-HC was noted to possess SHG efficiency 1.37 times that of urea while 4-NDM-TC returned the highest third order NLO susceptibilities with respect to CS2. In silico studies help evaluate various physical parameters, in correlating the observed activities. In conclusion, the structure-activity relationship was derived based on the in silico and experimental results for the third order NLO susceptibilities.

  4. Insights into Exo- and Endoglucanase Activities of Family 6 Glycoside Hydrolases from Podospora anserina

    PubMed Central

    Poidevin, Laetitia; Feliu, Julia; Doan, Annick; Berrin, Jean-Guy; Bey, Mathieu; Coutinho, Pedro M.; Henrissat, Bernard; Record, Eric

    2013-01-01

    The ascomycete Podospora anserina is a coprophilous fungus that grows at late stages on droppings of herbivores. Its genome encodes a large diversity of carbohydrate-active enzymes. Among them, four genes encode glycoside hydrolases from family 6 (GH6), the members of which comprise putative endoglucanases and exoglucanases, some of them exerting important functions for biomass degradation in fungi. Therefore, this family was selected for functional analysis. Three of the enzymes, P. anserina Cel6A (PaCel6A), PaCel6B, and PaCel6C, were functionally expressed in the yeast Pichia pastoris. All three GH6 enzymes hydrolyzed crystalline and amorphous cellulose but were inactive on hydroxyethyl cellulose, mannan, galactomannan, xyloglucan, arabinoxylan, arabinan, xylan, and pectin. PaCel6A had a catalytic efficiency on cellotetraose comparable to that of Trichoderma reesei Cel6A (TrCel6A), but PaCel6B and PaCel6C were clearly less efficient. PaCel6A was the enzyme with the highest stability at 45°C, while PaCel6C was the least stable enzyme, losing more than 50% of its activity after incubation at temperatures above 30°C for 24 h. In contrast to TrCel6A, all three studied P. anserina GH6 cellulases were stable over a wide range of pHs and conserved high activity at pH values of up to 9. Each enzyme displayed a distinct substrate and product profile, highlighting different modes of action, with PaCel6A being the enzyme most similar to TrCel6A. PaCel6B was the only enzyme with higher specific activity on carboxymethylcellulose (CMC) than on Avicel and showed lower processivity than the others. Structural modeling predicts an open catalytic cleft, suggesting that PaCel6B is an endoglucanase. PMID:23645193

  5. Estimation of ground water residence times in the Critical zone: insight from U activity ratios

    NASA Astrophysics Data System (ADS)

    Chabaux, Francois; Ackerer, Julien; Lucas, Yann; viville, Daniel

    2016-04-01

    The use of radioactive disequilibria as tracers and chronometers of weathering processes and related mass transfers has been recognized since the 60'. The development, over the last two decades, of analytical methods for measuring very precisely U-series nuclides (especially, 234U, 230Th and 226Ra) in environmental samples has opened up new scientific applications in Earth Surface Sciences. Here, we propose to present the potential of U activity ratios in surface waters as chronometer of water transfers at a watershed scale. This will be illustrated from studies performed at different scales, with the analysis of U activity ratios in surface waters from small watersheds (Strengbach and Ringelbach watersheds in the Vosges Mountain, France) but also from watersheds of much more regional extension (e.g., the Upper Rhine basin or the Ganges basin). These various studies show that variations of U activity ratios in surface waters are mainly associated with 234U-238U fractionations occurring during the water transfer within the bedrock, which intensity depends on two main parameters: the petro-physical characteristics of the aquifer, principally the geometry of water-rock interfaces and the duration of the water-rock interactions. This readily explains why different U activity ratios (UAR) can be observed in the different aquifers of a continental hydrosystem and hence why UAR can be used to trace the source of river waters. For a hydrological system developed on a substratum marked by fairly homogeneous petro-physical characteristics, the main parameter controlling the UAR in waters draining such a system would be the duration of the water-rock interactions. Variations of UAR in stream or spring waters of such a system can therefore be modeled using simple reactive transport model, which allows the estimation of both the dissolution rate of the bedrock and the residence time of the waters within the aquifer.

  6. New insights into Clostridium perfringens epsilon toxin activation and action on the brain during enterotoxemia.

    PubMed

    Freedman, John C; McClane, Bruce A; Uzal, Francisco A

    2016-10-01

    Epsilon toxin (ETX), produced by Clostridium perfringens types B and D, is responsible for diseases that occur mostly in ruminants. ETX is produced in the form of an inactive prototoxin that becomes proteolytically-activated by several proteases. A recent ex vivo study using caprine intestinal contents demonstrated that ETX prototoxin is processed in a step-wise fashion into a stable, active ∼27 kDa band on SDS-PAGE. When characterized further by mass spectrometry, the stable ∼27 kDa band was shown to contain three ETX species with varying C-terminal residues; each of these ETX species is cytotoxic. This study also demonstrated that, in addition to trypsin and chymotrypsin, proteases such as carboxypeptidases are involved in processing ETX prototoxin. Once absorbed, activated ETX species travel to several internal organs, including the brain, where this toxin acts on the vasculature to cross the blood-brain barrier, produces perivascular edema and affects several types of brain cells including neurons, astrocytes, and oligodendrocytes. In addition to perivascular edema, affected animals show edema within the vascular walls. This edema separates the astrocytic end-feet from affected blood vessels, causing hypoxia of nervous system tissue. Astrocytes of rats and sheep affected by ETX show overexpression of aquaporin-4, a membrane channel protein that is believed to help remove water from affected perivascular spaces in an attempt to resolve the perivascular edema. Amyloid precursor protein, an early astrocyte damage indicator, is also observed in the brains of affected sheep. These results show that ETX activation in vivo seems to be more complex than previously thought and this toxin acts on the brain, affecting vascular permeability, but also damaging neurons and other cells.

  7. Strombolian Activity of Mount Etna in July 2001: Insights From Doppler Radar Measurements

    NASA Astrophysics Data System (ADS)

    Donnadieu, F.; Gouhier, M.; Allard, P.

    2006-12-01

    Ground-based Doppler radar measurements of the Strombolian activity of Etna's SE crater were performed on July 4, 7 and 13, 2001, from 1 km to the SSW. Gradually more violent Strombolian eruptive episodes occurred at intervals of a few days from June, including dense/dilute lava jets and lava bubble outbursts. This culminated in lava fountains up to 700 m high, followed by a period of quiet degassing and lava outpourings. Fifteen such paroxysms occurred between 7 June and the main flank eruption, which lasted from 17 July to 9 August 2001. Maximum radar velocities measured at SE crater were 70-80 m/s on July 4, 90m/s on July 7, and 90-100 m/s on July 13, confirming that this episode was one of the most violent of the series. Sudden changes in activity intensity were recorded by the radar on July 13, and are clearly correlated to some of the numerous earthquakes felt. Moreover, trends of radar power and radial velocity data follow the tremor intensity level, suggesting the shallow control of the volcanic tremor by the dynamics of gas bubbling in the magmatic conduit. Additional radar measurements were carried out on July 29 and 31 during intense Strombolian activity of the new Laghetto cone, north of La Montagnola. This magmatic phase was preceded and followed by phreatomagmatic phases and lasted about 2 weeks. Maximum jet velocities recorded by the radar at Laghetto during intense Strombolian activity exceeded 130 m/s, emphasizing the strongly explosive dynamics. Video analyses corroborate these values for ejecta velocities. A range of initial gas velocities is inferred from maximum particle velocities for all episodes and corresponding gas flux estimates will be presented. The radar reflectivity factor characterizing the size and number of ejecta is relatively constant around 54 dBZ during explosions of 4, 13, and 29 July. Assuming, as a first step, Rayleigh scattering, this suggests an average particle size around 10 cm.

  8. Enzyme activities and gene expression of starch metabolism provide insights into grape berry development

    PubMed Central

    Zhu, Xudong; Zhang, Chaobo; Wu, Weimin; Li, Xiaopeng; Zhang, Chuan; Fang, Jinggui

    2017-01-01

    Grapes are categorized as a non-climacteric type of fruit which its ripening is not associated to important rises in respiration and ethylene synthesis. The starch metabolism shares a certain role in the carbohydrate metabolic pathways during grape berry development, and is regarded as an important transient pool in the pathway of sugar accumulation. However, the comprehensive role of starch and its contribution to the quality and flavor of grape berry have not been explored thoroughly. In this study, the expression levels of genes enzyme activities and carbohydrate concentrations related to starch metabolism, were analyzed to understand the molecular mechanism of starch accumulation during grape berry development. The results indicated that starch granules in grape berry were located at the chloroplast in the sub-epidermal tissues, acting as the temporary reserves of photosynthetic products to meet the needs for berry development, and relatively high starch contents could be detected at véraison stage. Moreover, both ADP-glucose pyrophosphorylase (EC 2.7.7.27) and sucrose phosphate synthase (EC 2.3.1.14) involved in starch synthesis displayed elevated gene expression and enzymes activities in the sub-epidermal tissue, while α- and β-amylases involved in its degradation were highly transcribed and active in the central flesh, explaining the absence of starch in this last tissue. Change in the gene expression and activities of ADP-glucose pyrophosphorylase, β-amylase and sucrose phosphate synthase revealed that they were regulated by the circadian rhythms in the fruitlets compared with those in the leaves. Both the morphological, enzymological and transcriptional data in this study provide advanced understandings on the function of starch during berry development and ripening that are so important for berry quality. This study will further facilitate our understanding of the sugar metabolism in grape berry as well as in other plant species. PMID:28529757

  9. Insights into the amplification of bacterial resistance to erythromycin in activated sludge.

    PubMed

    Guo, Mei-Ting; Yuan, Qing-Bin; Yang, Jian

    2015-10-01

    Wastewater treatment plants are significant reservoirs for antimicrobial resistance. However, little is known about wastewater treatment effects on the variation of antibiotic resistance. The shifts of bacterial resistance to erythromycin, a macrolide widely used in human medicine, on a lab-scale activated sludge system fed with real wastewater was investigated from levels of bacteria, community and genes, in this study. The resistance variation of total heterotrophic bacteria was studied during the biological treatment process, based on culture dependent method. The alterations of bacterial community resistant to erythromycin and nine typical erythromycin resistance genes were explored with molecular approaches, including high-throughput sequencing and quantitative polymerase chain reaction. The results revealed that the total heterotrophs tolerance level to erythromycin concentrations (higher than 32 mg/L) was significantly amplified during the activated sludge treatment, with the prevalence increased from 9.6% to 21.8%. High-throughput sequencing results demonstrated an obvious increase of the total heterotrophic bacterial diversity resistant to erythromycin. Proteobacteria and Bacteroidetes were the two dominant phyla in the influent and effluent of the bioreactor. However, the prevalence of Proteobacteria decreased from 76% to 59% while the total phyla number increased greatly from 18 to 29 through activated sludge treatment. The gene proportions of erm(A), mef(E) and erm(D) were greatly amplified after biological treatment. It is proposed that the transfer of antibiotic resistance genes through the variable mixtures of bacteria in the activated sludge might be the reason for the antibiotic resistance amplification. The amplified risk of antibiotic resistance in wastewater treatment needs to be paid more attention.

  10. Insights into the mechanism of human papillomavirus E2-induced procaspase-8 activation and cell death

    NASA Astrophysics Data System (ADS)

    Singh, Nitu; Senapati, Sanjib; Bose, Kakoli

    2016-02-01

    High-risk human papillomavirus (HR-HPV) E2 protein, the master regulator of viral life cycle, induces apoptosis of host cell that is independent of its virus-associated regulatory functions. E2 protein of HR-HPV18 has been found to be involved in novel FADD-independent activation of caspase-8, however, the molecular basis of this unique non-death-fold E2-mediated apoptosis is poorly understood. Here, with an interdisciplinary approach that involves in silico, mutational, biochemical and biophysical probes, we dissected and characterized the E2-procasapse-8 binding interface. Our data demonstrate direct non-homotypic interaction of HPV18 E2 transactivation domain (TAD) with α2/α5 helices of procaspase-8 death effector domain-B (DED-B). The observed interaction mimics the homotypic DED-DED complexes, wherein the conserved hydrophobic motif of procaspase-8 DED-B (F122/L123) occupies a groove between α2/α3 helices of E2 TAD. This interaction possibly drives DED oligomerization leading to caspase-8 activation and subsequent cell death. Furthermore, our data establish a model for E2-induced apoptosis in HR-HPV types and provide important clues for designing E2 analogs that might modulate procaspase-8 activation and hence apoptosis.

  11. Lowering of blood pressure by chronic suppression of central sympathetic outflow: insight from prolonged baroreflex activation

    PubMed Central

    Iliescu, Radu

    2012-01-01

    Device-based therapy for resistant hypertension by electrical activation of the carotid baroreflex is currently undergoing active clinical investigation, and initial findings from clinical trials have been published. The purpose of this mini-review is to summarize the experimental studies that have provided a conceptual understanding of the mechanisms that account for the long-term lowering of arterial pressure with baroreflex activation. The well established mechanisms mediating the role of the baroreflex in short-term regulation of arterial pressure by rapid changes in peripheral resistance and cardiac function are often extended to long-term pressure control, and the more sluggish actions of the baroreflex on renal excretory function are often not taken into consideration. However, because clinical, experimental, and theoretical evidence indicates that the kidneys play a dominant role in long-term control of arterial pressure, this review focuses on the mechanisms that link baroreflex-mediated reductions in central sympathetic outflow with increases in renal excretory function that lead to sustained reductions in arterial pressure. PMID:22797307

  12. New insights into the structural bases of activation of Cys-loop receptors.

    PubMed

    Bouzat, Cecilia

    2012-01-01

    Neurotransmitter receptors of the Cys-loop superfamily mediate rapid synaptic transmission throughout the nervous system, and include receptors activated by ACh, GABA, glycine and serotonin. They are involved in physiological processes, including learning and memory, and in neurological disorders, and they are targets for clinically relevant drugs. Cys-loop receptors assemble either from five copies of one type of subunit, giving rise to homomeric receptors, or from several types of subunits, giving rise to heteromeric receptors. Homomeric receptors are invaluable models for probing fundamental relationships between structure and function. Receptors contain a large extracellular domain that carries the binding sites and a transmembrane region that forms the ion pore. How the structural changes elicited by agonist binding are propagated through a distance of 50Å to the ion channel gate is central to understanding receptor function. Depending on the receptor subtype, occupancy of either two, as in the prototype muscle nicotinic receptor, or three binding sites, as in homomeric receptors, is required for full activation. The conformational changes initiated at the binding sites are propagated to the gate through the interface between the extracellular and transmembrane domains. This region forms a network that relays structural changes from the binding site towards the pore, and also contributes to open channel lifetime and rate of desensitization. Thus, this coupling region controls the beginning and duration of a synaptic response. Here we review recent advances in the molecular mechanism by which Cys-loop receptors are activated with particular emphasis on homomeric receptors.

  13. Novel Insights into Structure-Activity Relationships of N-Terminally Modified PACE4 Inhibitors.

    PubMed

    Kwiatkowska, Anna; Couture, Frédéric; Levesque, Christine; Ly, Kévin; Beauchemin, Sophie; Desjardins, Roxane; Neugebauer, Witold; Dory, Yves L; Day, Robert

    2016-02-04

    PACE4 plays important roles in prostate cancer cell proliferation. The inhibition of this enzyme has been shown to slow prostate cancer progression and is emerging as a promising therapeutic strategy. In previous work, we developed a highly potent and selective PACE4 inhibitor, the multi-Leu (ML) peptide, an octapeptide with the sequence Ac-LLLLRVKR-NH2 . Here, with the objective of developing a useful compound for in vivo administration, we investigate the effect of N-terminal modifications. The inhibitory activity, toxicity, stability, and cell penetration properties of the resulting analogues were studied and compared to the unmodified inhibitor. Our results show that the incorporation of a polyethylene glycol (PEG) moiety leads to a loss of antiproliferative activity, whereas the attachment of a lipid chain preserves or improves it. However, the lipidated peptides are significantly more toxic when compared with their unmodified counterparts. Therefore, the best results were achieved not by the N-terminal extension but by the protection of both ends with the d-Leu residue and 4-amidinobenzylamide, which yielded the most stable inhibitor, with an excellent activity and toxicity profile.

  14. Insights into the mechanism of human papillomavirus E2-induced procaspase-8 activation and cell death

    PubMed Central

    Singh, Nitu; Senapati, Sanjib; Bose, Kakoli

    2016-01-01

    High-risk human papillomavirus (HR-HPV) E2 protein, the master regulator of viral life cycle, induces apoptosis of host cell that is independent of its virus-associated regulatory functions. E2 protein of HR-HPV18 has been found to be involved in novel FADD-independent activation of caspase-8, however, the molecular basis of this unique non-death-fold E2-mediated apoptosis is poorly understood. Here, with an interdisciplinary approach that involves in silico, mutational, biochemical and biophysical probes, we dissected and characterized the E2-procasapse-8 binding interface. Our data demonstrate direct non-homotypic interaction of HPV18 E2 transactivation domain (TAD) with α2/α5 helices of procaspase-8 death effector domain-B (DED-B). The observed interaction mimics the homotypic DED-DED complexes, wherein the conserved hydrophobic motif of procaspase-8 DED-B (F122/L123) occupies a groove between α2/α3 helices of E2 TAD. This interaction possibly drives DED oligomerization leading to caspase-8 activation and subsequent cell death. Furthermore, our data establish a model for E2-induced apoptosis in HR-HPV types and provide important clues for designing E2 analogs that might modulate procaspase-8 activation and hence apoptosis. PMID:26906543

  15. Identification of essential cannabinoid-binding domains: structural insights into early dynamic events in receptor activation.

    PubMed

    Shim, Joong-Youn; Bertalovitz, Alexander C; Kendall, Debra A

    2011-09-23

    The classical cannabinoid agonist HU210, a structural analog of (-)-Δ(9)-tetrahydrocannabinol, binds to brain cannabinoid (CB1) receptors and activates signal transduction pathways. To date, an exact molecular description of the CB1 receptor is not yet available. Utilizing the minor binding pocket of the CB1 receptor as the primary ligand interaction site, we explored HU210 binding using lipid bilayer molecular dynamics (MD) simulations. Among the potential ligand contact residues, we identified residues Phe-174(2.61), Phe-177(2.64), Leu-193(3.29), and Met-363(6.55) as being critical for HU210 binding by mutational analysis. Using these residues to guide the simulations, we determined essential cannabinoid-binding domains in the CB1 receptor, including the highly sought after hydrophobic pocket important for the binding of the C3 alkyl chain of classical and nonclassical cannabinoids. Analyzing the simulations of the HU210-CB1 receptor complex, the CP55940-CB1 receptor complex, and the (-)-Δ(9)-tetrahydrocannabinol-CB1 receptor complex, we found that the positioning of the C3 alkyl chain and the aromatic stacking between Trp-356(6.48) and Trp-279(5.43) is crucial for the Trp-356(6.48) rotamer change toward receptor activation through the rigid-body movement of H6. The functional data for the mutant receptors demonstrated reductions in potency for G protein activation similar to the reductions seen in ligand binding affinity for HU210.

  16. Modulation of MICAL Monooxygenase Activity by its Calponin Homology Domain: Structural and Mechanistic Insights

    PubMed Central

    Alqassim, Saif S.; Urquiza, Mauricio; Borgnia, Eitan; Nagib, Marc; Amzel, L. Mario; Bianchet, Mario A.

    2016-01-01

    MICALs (Molecule Interacting with CasL) are conserved multidomain enzymes essential for cytoskeletal reorganization in nerve development, endocytosis, and apoptosis. In these enzymes, a type-2 calponin homology (CH) domain always follows an N-terminal monooxygenase (MO) domain. Although the CH domain is required for MICAL-1 cellular localization and actin-associated function, its contribution to the modulation of MICAL activity towards actin remains unclear. Here, we present the structure of a fragment of MICAL-1 containing the MO and the CH domains—determined by X-ray crystallography and small angle scattering—as well as kinetics experiments designed to probe the contribution of the CH domain to the actin-modification activity. Our results suggest that the CH domain, which is loosely connected to the MO domain by a flexible linker and is far away from the catalytic site, couples F-actin to the enhancement of redox activity of MICALMO-CH by a cooperative mechanism involving a trans interaction between adjacently bound molecules. Binding cooperativity is also observed in other proteins regulating actin assembly/disassembly dynamics, such as ADF/Cofilins. PMID:26935886

  17. Crystal structures of Ophiostoma piceae sterol esterase: structural insights into activation mechanism and product release.

    PubMed

    Gutiérrez-Fernández, Javier; Vaquero, María Eugenia; Prieto, Alicia; Barriuso, Jorge; Martínez, María Jesús; Hermoso, Juan A

    2014-09-01

    Sterol esterases are able to efficiently hydrolyze both sterol esters and triglycerides and to carry out synthesis reactions in the presence of organic solvents. Their high versatility makes them excellent candidates for biotechnological purposes. Sterol esterase from fungus Ophiostoma piceae (OPE) belongs to the family abH03.01 of the Candida rugosa lipase-like proteins. Crystal structures of OPE were solved in this study for the closed and open conformations. Enzyme activation involves a large displacement of the conserved lid, structural rearrangements of loop α16-α17, and formation of a dimer with a large opening. Three PEG molecules are placed in the active site, mimicking chains of the triglyceride substrate, demonstrating the position of the oxyanion hole and the three pockets that accommodate the sn-1, sn-2 and sn-3 fatty acids chains. One of them is an internal tunnel, connecting the active center with the outer surface of the enzyme 30 Å far from the catalytic Ser220. Based on our structural and biochemical results we propose a mechanism by which a great variety of different substrates can be hydrolyzed in OPE paving the way for the construction of new variants to improve the catalytic properties of these enzymes and their biotechnological applications.

  18. Baroreflex Activation Therapy in Congestive Heart Failure: Novel Findings and Future Insights.

    PubMed

    Grassi, Guido; Brambilla, GianMaria; Pizzalla, Daniela Prata; Seravalle, Gino

    2016-08-01

    Congestive heart failure is characterized by hemodynamic and non-hemodynamic abnormalities, the latter including an activation of the sympathetic influences to the heart and peripheral circulation coupled with an impairment of baroreceptor control of autonomic function. Evidence has been provided that both these alterations are hallmark features of the disease with a specific relevance for the disease progression as well as for the development of life-threatening cardiac arrhythmias. In addition, a number of studies have documented in heart failure the adverse prognostic role of the sympathetic and baroreflex alterations, which both are regarded as major independent determinants of cardiovascular morbidity and mortality. This represents the pathophysiological and clinical background for the use of carotid baroreceptor activation therapy in the treatment of congestive heart failure. Promising data collected in experimental animal models of heart failure have supported the recent performance of pilot small-scale clinical studies, aimed at providing initial information in this area. The results of these studies demonstrated the clinical safety and efficacy of the intervention which has been tested in large-scale clinical studies. The present paper will critically review the background and main results of the published studies designed at defining the clinical impact of baroreflex activation therapy in congestive heart failure patients. Emphasis will be given to the strengths and limitations of such studies, which represent the background for the ongoing clinical trials testing the long-term effects of the device in heart failure patients.

  19. Temperature-accelerated molecular dynamics gives insights into globular conformations sampled in the free state of the AC catalytic domain.

    PubMed

    Selwa, Edithe; Huynh, Tru; Ciccotti, Giovanni; Maragliano, Luca; Malliavin, Thérèse E

    2014-10-01

    The catalytic domain of the adenyl cyclase (AC) toxin from Bordetella pertussis is activated by interaction with calmodulin (CaM), resulting in cAMP overproduction in the infected cell. In the X-ray crystallographic structure of the complex between AC and the C terminal lobe of CaM, the toxin displays a markedly elongated shape. As for the structure of the isolated protein, experimental results support the hypothesis that more globular conformations are sampled, but information at atomic resolution is still lacking. Here, we use temperature-accelerated molecular dynamics (TAMD) simulations to generate putative all-atom models of globular conformations sampled by CaM-free AC. As collective variables, we use centers of mass coordinates of groups of residues selected from the analysis of standard molecular dynamics (MD) simulations. Results show that TAMD allows extended conformational sampling and generates AC conformations that are more globular than in the complexed state. These structures are then refined via energy minimization and further unrestrained MD simulations to optimize inter-domain packing interactions, thus resulting in the identification of a set of hydrogen bonds present in the globular conformations.

  20. Structural Analysis and Insights into the Oligomeric State of an Arginine-Dependent Transcriptional Regulator from Bacillus halodurans

    PubMed Central

    Park, Young Woo; Kang, Jina; Yeo, Hyun Ku; Lee, Jae Young

    2016-01-01

    The arginine repressor (ArgR) is an arginine-dependent transcription factor that regulates the expression of genes encoding proteins involved in the arginine biosynthesis and catabolic pathways. ArgR is a functional homolog of the arginine-dependent repressor/activator AhrC from Bacillus subtilis, and belongs to the ArgR/AhrC family of transcriptional regulators. In this research, we determined the structure of the ArgR (Bh2777) from Bacillus halodurans at 2.41 Å resolution by X-ray crystallography. The ArgR from B. halodurans appeared to be a trimer in a size exclusion column and in the crystal structure. However, it formed a hexamer in the presence of L-arginine in multi-angle light scattering (MALS) studies, indicating the oligomerization state was dependent on the presence of L-arginine. The trimeric structure showed that the C-terminal domains form the core, which was made by inter-subunit interactions mainly through hydrophobic contacts, while the N-terminal domains containing a winged helix-turn-helix DNA binding motif were arranged around the periphery. The arrangement of trimeric structure in the B. halodurans ArgR was different from those of other ArgR homologs previously reported. We finally showed that the B. halodurans ArgR has an arginine-dependent DNA binding property by an electrophoretic mobility shift assay. PMID:27171430

  1. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases

    PubMed Central

    Molitor, Christian; Mauracher, Stephan Gerhard

    2016-01-01

    Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze the o-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme’s interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate–enzyme complexes were performed, and a key residue was identified that influences the plant PPO’s acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their—so far unknown—natural substrates in vivo. PMID:26976571

  2. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases.

    PubMed

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette

    2016-03-29

    Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze theo-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme's interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate-enzyme complexes were performed, and a key residue was identified that influences the plant PPO's acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their--so far unknown--natural substrates in vivo.

  3. Structural Insights into the Activation of the RhoA GTPase by the Lymphoid Blast Crisis (Lbc) Oncoprotein*

    PubMed Central

    Lenoir, Marc; Sugawara, Masae; Kaur, Jaswant; Ball, Linda J.; Overduin, Michael

    2014-01-01

    The small GTPase RhoA promotes deregulated signaling upon interaction with lymphoid blast crisis (Lbc), the oncogenic form of A-kinase anchoring protein 13 (AKAP13). The onco-Lbc protein is a hyperactive Rho-specific guanine nucleotide exchange factor (GEF), but its structural mechanism has not been reported despite its involvement in cardiac hypertrophy and cancer causation. The pleckstrin homology (PH) domain of Lbc is located at the C-terminal end of the protein and is shown here to specifically recognize activated RhoA rather than lipids. The isolated dbl homology (DH) domain can function as an independent activator with an enhanced activity. However, the DH domain normally does not act as a solitary Lbc interface with RhoA-GDP. Instead it is negatively controlled by the PH domain. In particular, the DH helical bundle is coupled to the structurally dependent PH domain through a helical linker, which reduces its activity. Together the two domains form a rigid scaffold in solution as evidenced by small angle x-ray scattering and 1H,13C,15N-based NMR spectroscopy. The two domains assume a “chair” shape with its back possessing independent GEF activity and the PH domain providing a broad seat for RhoA-GTP docking rather than membrane recognition. This provides structural and dynamical insights into how DH and PH domains work together in solution to support regulated RhoA activity. Mutational analysis supports the bifunctional PH domain mediation of DH-RhoA interactions and explains why the tandem domain is required for controlled GEF signaling. PMID:24993829

  4. Insights Learned from L457(3.43)R, an Activating Mutant of the Human Lutropin Receptor

    PubMed Central

    Latronico, Ana Claudia; Segaloff, Deborah L.

    2006-01-01

    The L457(3.43)R mutation of the hLHR was initially identified in a Brazilian boy with gonadotropin-independent precocious puberty. As would be expected, L457(3.43)R, when expressed in 293 cells, caused a marked elevation in basal cAMP levels. Interestingly, in spite of the fact that the elevated basal levels of cAMP elicited by L457R were not as great as those elicited by the wild-type hLHR when stimulated with hCG, L457(3.43)R cells were unresponsive to further hormonal stimulation. We have since determined that the L457(3.43)R mutant, as well as other constitutively active mutants of the hLHR, causes an increase in phosphodiesterase activity that attenuates the target cell to hormonal stimulation of the wild-type hLHR or other Gs-coupled GPCRs. We have also shown that the constitutive activity and lack of hormonal responsiveness of L457(3.43)R are due to the formation of a salt bridge between the introduced arginine in the mid portion of helix 3 with D578(6.44) in the mid portion of helix 6. The formation of this salt bridge results in the disruption of interactions between the cytoplasmic ends of helices 3 and 6 that are associated in general with activation of the hLHR. As such, this mutant has provided novel insights into the properties of target cells expressing activating hLHR mutants and into the structural basis for hLHR activation. PMID:17055147

  5. Altered Resting-State Brain Activity in Obstructive Sleep Apnea

    PubMed Central

    Zhang, Quan; Wang, Dawei; Qin, Wen; Li, Qiong; Chen, Baoyuan; Zhang, Yunting; Yu, Chunshui

    2013-01-01

    Study Objectives: Structural and functional brain changes may contribute to neural dysfunction in patients with obstructive sleep apnea (OSA). However, the effect of OSA on resting-state brain activity has not been established. The objective of this study was to investigate alterations in resting-state functional connectivity (rsFC) of the common brain networks in patients with OSA and their relationships with changes in gray matter volume (GMV) in the corresponding brain regions. Designs: Resting-state functional and structural MRI data were acquired from patients with OSA and healthy controls. Seven brain networks were identified by independent component analysis. The rsFC in each network was compared between groups and the GMV of brain regions with significant differences in rsFC was also compared. Setting: University hospital. Patients and Participants: Twenty-four male patients with untreated OSA and 21 matched healthy controls. Interventions: N/A. Measurements and Results: OSA specifically affected the cognitive and sensorimotor-related brain networks but not the visual and auditory networks. The medial prefrontal cortex and left dorsolateral prefrontal cortex (DLPFC) showed decreased rsFC and GMV in patients with OSA, suggesting structural and functional deficits. The right DLPFC and left precentral gyrus showed decreased rsFC and unchanged GMV, suggesting a functional deficit. The right posterior cingulate cortex demonstrated increased rsFC and unchanged GMV, suggesting functional compensation. In patients with OSA, the rsFC of the right DLPFC was negatively correlated with the apnea-hypopnea index. Conclusions: OSA specifically affects resting-state functional connectivity in cognitive and sensorimotor-related brain networks, which may be related to the impaired cognitive and motor functions in these patients. Citation: Zhang Q; Wang D; Qin W; Li Q; Chen B; Zhang Y; Yu C. Altered resting-state brain activity in obstructive sleep apnea. SLEEP 2013

  6. [Activities of Center for Nondestructive Evaluation, Iowa State University

    NASA Technical Reports Server (NTRS)

    Gray, Joe

    2002-01-01

    The final report of NASA funded activities at Iowa State University (ISU) for the period between 1/96 and 1/99 includes two main areas of activity. The first is the development and delivery of an x-ray simulation package suitable for evaluating the impact of parameters affects the inspectability of an assembly of parts. The second area was the development of images processing tools to remove reconstruction artifacts in x-ray laminagraphy images. The x-ray simulation portion of this work was done by J. Gray and the x-ray laminagraphy work was done by J. Basart. The report is divided into two sections covering the two activities respectively. In addition to this work reported the funding also covered NASA's membership in the NSF University/Industrial Cooperative Research Center.

  7. New insights into the aquatic photochemistry of fluoroquinolone antibiotics: Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes.

    PubMed

    Ge, Linke; Na, Guangshui; Zhang, Siyu; Li, Kai; Zhang, Peng; Ren, Honglei; Yao, Ziwei

    2015-09-15

    The ubiquity and photoreactivity of fluoroquinolone antibiotics (FQs) in surface waters urge new insights into their aqueous photochemical behavior. This study concerns the photochemistry of 6 FQs: ciprofloxacin, danofloxacin, levofloxacin, sarafloxacin, difloxacin and enrofloxacin. Methods were developed to calculate their solar direct photodegradation half-lives (td,E) and hydroxyl-radical oxidation half-lives (tOH,E) in sunlit surface waters. The td,E values range from 0.56 min to 28.8 min at 45° N latitude, whereas tOH,E ranges from 3.24h to 33.6h, suggesting that most FQs tend to undergo fast direct photolysis rather than hydroxyl-radical oxidation in surface waters. However, a case study for levofloxacin and sarafloxacin indicated that the hydroxyl-radical oxidation induced risky photochlorination and resulted in multi-degradation pathways, such as piperazinyl hydroxylation and clearage. Changes in the antibacterial activity of FQs caused by photodegradation in various waters were further examined using Escherichia coli, and it was found that the activity evolution depended on primary photodegradation pathways and products. Primary intermediates with intact FQ nuclei retained significant antibacterial activity. These results are important for assessing the fate and risk of FQs in surface waters. Copyright © 2015. Published by Elsevier B.V.

  8. Discovery of anabaenopeptin 679 from freshwater algal bloom material: Insights into the structure-activity relationship of anabaenopeptin protease inhibitors.

    PubMed

    Harms, Henrik; Kurita, Kenji L; Pan, Li; Wahome, Paul G; He, Haiyin; Kinghorn, A Douglas; Carter, Guy T; Linington, Roger G

    2016-10-15

    Cyanobacteria possess a unique capacity for the production of structurally novel secondary metabolites compared to the biosynthetic abilities of other environmental prokaryotes such as bacteria of the genus Streptomyces. Two different strategies to explore cyanobacteria-derived natural products have been explored previously: (1) cultivation of single cyanobacterial strains, in bioreactors for example; (2) bulk collections from the environment of so called 'algal blooms' that are dominated by cyanobacteria. In this study a new environmentally friendly collection technique for obtaining large quantities of algal bloom biomass was utilized. Algal biomass derived from eight million liters of lake water was concentrated using a novel continuous countercurrent filtration system. Analysis of this freshwater algal bloom from Grand Lake-Saint Marys, Ohio led to the discovery of anabaenopeptin 679 (1), as well as the known anabaenopeptins B, F, H and 908. Anabaenopeptin 679 is unusual in that it possesses the classical anabaenopeptin-like cyclic pentapeptide core, but lacks the typical sidechain attached to the constitutive ureido group. Screening of all anabaenopeptin derivatives in an enzymatic assay for inhibitory activity toward carboxypeptidase A identified anabaenopeptin 679 as a strong inhibitor of carboxypeptidase A with an IC50 value of 4.6μg/mL. This result defines a new minimal core structure for carboxypeptidase activity among the anabaenopeptin class, and provides further insight into the structure-activity relationship of anabaenopeptin-like carboxypeptidase A inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. New Insights on the Mechanism of the K+-Independent Activity of Crenarchaeota Pyruvate Kinases

    PubMed Central

    De la Vega-Ruíz, Gustavo; Domínguez-Ramírez, Lenin; Riveros-Rosas, Héctor; Guerrero-Mendiola, Carlos; Torres-Larios, Alfredo; Hernández-Alcántara, Gloria; García-Trejo, José J.; Ramírez-Silva, Leticia

    2015-01-01

    Eukarya pyruvate kinases have glutamate at position 117 (numbered according to the rabbit muscle enzyme), whereas in Bacteria have either glutamate or lysine and in Archaea have other residues. Glutamate at this position makes pyruvate kinases K+-dependent, whereas lysine confers K+-independence because the positively charged residue substitutes for the monovalent cation charge. Interestingly, pyruvate kinases from two characterized Crenarchaeota exhibit K+-independent activity, despite having serine at the equivalent position. To better understand pyruvate kinase catalytic activity in the absence of K+ or an internal positive charge, the Thermofilum pendens pyruvate kinase (valine at the equivalent position) was characterized. The enzyme activity was K+-independent. The kinetic mechanism was random order with a rapid equilibrium, which is equal to the mechanism of the rabbit muscle enzyme in the presence of K+ or the mutant E117K in the absence of K+. Thus, the substrate binding order of the T. pendens enzyme was independent despite lacking an internal positive charge. Thermal stability studies of this enzyme showed two calorimetric transitions, one attributable to the A and C domains (Tm of 99.2°C), and the other (Tm of 105.2°C) associated with the B domain. In contrast, the rabbit muscle enzyme exhibits a single calorimetric transition (Tm of 65.2°C). The calorimetric and kinetic data indicate that the B domain of this hyperthermophilic enzyme is more stable than the rest of the protein with a conformation that induces the catalytic readiness of the enzyme. B domain interactions of pyruvate kinases that have been determined in Pyrobaculum aerophilum and modeled in T. pendens were compared with those of the rabbit muscle enzyme. The results show that intra- and interdomain interactions of the Crenarchaeota enzymes may account for their higher B domain stability. Thus the structural arrangement of the T. pendens pyruvate kinase could allow charge

  10. New insights on the mechanism of the K(+-) independent activity of crenarchaeota pyruvate kinases.

    PubMed

    De la Vega-Ruíz, Gustavo; Domínguez-Ramírez, Lenin; Riveros-Rosas, Héctor; Guerrero-Mendiola, Carlos; Torres-Larios, Alfredo; Hernández-Alcántara, Gloria; García-Trejo, José J; Ramírez-Silva, Leticia

    2015-01-01

    Eukarya pyruvate kinases have glutamate at position 117 (numbered according to the rabbit muscle enzyme), whereas in Bacteria have either glutamate or lysine and in Archaea have other residues. Glutamate at this position makes pyruvate kinases K+-dependent, whereas lysine confers K+-independence because the positively charged residue substitutes for the monovalent cation charge. Interestingly, pyruvate kinases from two characterized Crenarchaeota exhibit K+-independent activity, despite having serine at the equivalent position. To better understand pyruvate kinase catalytic activity in the absence of K+ or an internal positive charge, the Thermofilum pendens pyruvate kinase (valine at the equivalent position) was characterized. The enzyme activity was K+-independent. The kinetic mechanism was random order with a rapid equilibrium, which is equal to the mechanism of the rabbit muscle enzyme in the presence of K+ or the mutant E117K in the absence of K+. Thus, the substrate binding order of the T. pendens enzyme was independent despite lacking an internal positive charge. Thermal stability studies of this enzyme showed two calorimetric transitions, one attributable to the A and C domains (Tm of 99.2°C), and the other (Tm of 105.2°C) associated with the B domain. In contrast, the rabbit muscle enzyme exhibits a single calorimetric transition (Tm of 65.2°C). The calorimetric and kinetic data indicate that the B domain of this hyperthermophilic enzyme is more stable than the rest of the protein with a conformation that induces the catalytic readiness of the enzyme. B domain interactions of pyruvate kinases that have been determined in Pyrobaculum aerophilum and modeled in T. pendens were compared with those of the rabbit muscle enzyme. The results show that intra- and interdomain interactions of the Crenarchaeota enzymes may account for their higher B domain stability. Thus the structural arrangement of the T. pendens pyruvate kinase could allow charge

  11. Modulation of NCC activity by low and high K(+) intake: insights into the signaling pathways involved.

    PubMed

    Castañeda-Bueno, María; Cervantes-Perez, Luz Graciela; Rojas-Vega, Lorena; Arroyo-Garza, Isidora; Vázquez, Norma; Moreno, Erika; Gamba, Gerardo

    2014-06-15

    Modulation of Na(+)-Cl(-) cotransporter (NCC) activity is essential to adjust K(+) excretion in the face of changes in dietary K(+) intake. We used previously characterized genetic mouse models to assess the role of Ste20-related proline-alanine-rich kinase (SPAK) and with-no-lysine kinase (WNK)4 in the modulation of NCC by K(+) diets. SPAK knockin and WNK4 knockout mice were placed on normal-, low-, or high-K(+)-citrate diets for 4 days. The low-K(+) diet decreased and high-K(+) diet increased plasma aldosterone levels, but both diets were associated with increased phosphorylation of NCC (phospho-NCC, Thr(44)/Thr(48)/Thr(53)) and phosphorylation of SPAK/oxidative stress responsive kinase 1 (phospho-SPAK/OSR1, Ser(383)/Ser(325)). The effect of the low-K(+) diet on SPAK phosphorylation persisted in WNK4 knockout and SPAK knockin mice, whereas the effects of ANG II on NCC and SPAK were lost in both mouse colonies. This suggests that for NCC activation by ANG II, integrity of the WNK4/SPAK pathway is required, whereas for the low-K(+) diet, SPAK phosphorylation occurred despite the absence of WNK4, suggesting the involvement of another WNK (WNK1 or WNK3). Additionally, because NCC activation also occurred in SPAK knockin mice, it is possible that loss of SPAK was compensated by OSR1. The positive effect of the high-K(+) diet was observed when the accompanying anion was citrate, whereas the high-KCl diet reduced NCC phosphorylation. However, the effect of the high-K(+)-citrate diet was aldosterone dependent, and neither metabolic alkalosis induced by bicarbonate, nor citrate administration in the absence of K(+) increased NCC phosphorylation, suggesting that it was not due to citrate-induced metabolic alkalosis. Thus, the accompanying anion might modulate the NCC response to the high-K(+) diet. Copyright © 2014 the American Physiological Society.

  12. Mechanistic insight into the catechol oxidase activity by a biomimetic dinuclear copper complex.

    PubMed

    Granata, Alessandro; Monzani, Enrico; Casella, Luigi

    2004-10-01

    The biomimetic catalytic oxidation of 3,5-di- tert-butylcatechol by the dicopper(II) complex of the ligand alpha,alpha'-bis(bis[1-(1'-methyl-2'-benzimidazolyl)methyl]amino)- m-xylene in the presence of dioxygen has been investigated as a function of temperature and pH in a mixed aqueous/organic solvent. The catalytic cycle occurs in two steps, the first step being faster than the second step. In the first step, one molecule of catechol is oxidized by the dicopper(II) complex, and the copper(II) centers are reduced. From the pH dependence, it is deduced that the active species of the process is the monohydroxo form of the dinuclear complex. In the second step, the second molecule of catechol is oxidized by the dicopper(I)-dioxygen complex formed upon oxygenation of the reduced complex. In both cases, catechol oxidation is an inner-sphere electron transfer process involving binding of the catechol to the active species. The binary catechol-dicopper(II) complex formed in the first step could be characterized at very low temperature (-90 degrees C), where substrate oxidation is blocked. On the contrary, the ternary complex of dicopper(I)-O(2)-catechol relevant to the second step does not accumulate in solution and could not be characterized, even at low temperature. The investigation of the biphasic kinetics of the catalytic reaction over a range of temperatures allowed the thermodynamic (Delta H degrees and Delta S degrees ) and activation parameters (Delta H( not equal) and Delta S( not equal)) connected with the key steps of the catecholase process to be obtained.

  13. Insights into seasonal active layer dynamics by monitoring relative velocity changes using ambient seismic noise

    NASA Astrophysics Data System (ADS)

    James, S. R.; Knox, H. A.; Cole, C. J.; Abbott, R. E.; Screaton, E.

    2016-12-01

    Seasonal freeze and thaw of the active layer above permafrost results in dramatic changes in seismic velocity. We used daily cross correlations of ambient seismic noise recorded at Poker Flat Research Range in central Alaska to create a nearly continuous 2-year record of relative velocity changes. This analysis required that we modify the Moving Window Cross-spectral Analysis technique used in the Python package MSNoise to reduce the occurrence of cycle skipping. Results show relative velocity variations follow a seasonal pattern, where velocities decrease in late spring through the summer months and increase through the fall and winter months. This timing is consistent with active layer freeze and thaw in this region. These results were compared to a suite of ground- and satellite-based measurements to identify relationships. A decrease in relative velocities in late spring closely follows the timing of snow melt recorded in nearby ground temperatures and snow-depth logs. This transition also aligns with a decrease in the Normalized Difference Snow Index (NDSI) derived from multi-temporal Landsat 8 satellite imagery collected over the study site. A gradual increase in relative velocity through the fall months occurs when temperatures below ground surface remain near zero. We suggest this is due to latent heat feedbacks that keep temperatures constant while active layer velocities increase from continued ice formation. This highlights the value in velocity variations for capturing details on the freezing process. In addition, spatial variations in the magnitude of velocity changes are consistent with thaw probe surveys. Exploring relationships with remote sensing may allow indirect measurements of thaw over larger areas and further surface wave analysis may allow for thickness evolution measurements. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for

  14. A proteomic insight into the effects of the immunomodulatory hydroxynaphthoquinone lapachol on activated macrophages.

    PubMed

    Oliveira, Renato A S; Correia-Oliveira, Janaina; Tang, Li-Jun; Garcia, Rodolfo C

    2012-09-01

    We report the effect of an immunomodulatory and anti-mycobacterial naphthoquinone, lapachol, on the bi-dimensional patterns of protein expression of toll-like receptor 2 (TLR2)-agonised and IFN-γ-treated THP-1 macrophages. This non-hypothesis driven proteomic analysis intends to shed light on the cellular functions lapachol may be affecting. Proteins of both cytosol and membrane fractions were analysed. After quantification of the protein spots, the protein levels corresponding to macrophages activated in the absence or presence of lapachol were compared. A number of proteins were identified, the levels of which were appreciably and significantly increased or decreased as a result of the action of lapachol on the activated macrophages: cofilin-1, fascin, plastin-2, glucose-6-P-dehydrogenase, adenylyl cyclase-associated protein 1, pyruvate kinase, sentrin-specific protease 6, cathepsin B, cathepsin D, cytosolic aminopeptidase, proteasome β type-4 protease, tryptophan-tRNA ligase, DnaJ homolog and protein disulphide isomerase. Altogether, the comparative analysis performed indicates that lapachol could be hypothetically causing an impairment of cell migration and/or phagocytic capacity, an increase in NADPH availability, a decrease in pyruvate concentration, protection from proteosomal protein degradation, a decrease in lysosomal protein degradation, an impairment of cytosolic peptide generation, and an interference with NOS2 activation and grp78 function. The present proteomic results suggest issues that should be experimentally addressed ex- and in-vivo, to establish more accurately the potential of lapachol as an anti-infective drug. This study also constitutes a model for the pre-in-vivo evaluation of drug actions.

  15. Addressing complex healthcare problems in diverse settings: insights from activity theory.

    PubMed

    Greig, Gail; Entwistle, Vikki A; Beech, Nic

    2012-02-01

    In the U.K., approaches to policy implementation, service improvement and quality assurance treat policy, management and clinical care as separate, hierarchical domains. They are often based on the central knowledge transfer (KT) theory idea that best practice solutions to complex problems can be identified and 'rolled out' across organisations. When the designated 'best practice' is not implemented, this is interpreted as local--particularly management--failure. Remedial actions include reiterating policy aims and tightening performance management of solution implementation, frequently to no avail. We propose activity theory (AT) as an alternative approach to identifying and understanding the challenges of addressing complex healthcare problems across diverse settings. AT challenges the KT conceptual separations between levels of policy, management and clinical care. It does not regard knowledge and practice as separable, and does not understand them in the commodified way that has typified some versions of KT theory. Instead, AT focuses on "objects of activity" which can be contested. It sees new practice as emerging from contradiction and understands knowledge and practice as fundamentally entwined, not separate. From an AT perspective, there can be no single best practice. The contributions of AT are that it enables us to understand the dynamics of knowledge-practice in activities rather than between levels. It shows how efforts to reduce variation from best practice may paradoxically remove a key source of practice improvement. After explaining the principles of AT we illustrate its explanatory potential through an ethnographic study of primary healthcare teams responding to a policy aim of reducing inappropriate hospital admissions of older people by the 'best practice' of rapid response teams. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Modulation of NCC activity by low and high K+ intake: insights into the signaling pathways involved

    PubMed Central

    Castañeda-Bueno, María; Cervantes-Perez, Luz Graciela; Rojas-Vega, Lorena; Arroyo-Garza, Isidora; Vázquez, Norma; Moreno, Erika

    2014-01-01

    Modulation of Na+-Cl− cotransporter (NCC) activity is essential to adjust K+ excretion in the face of changes in dietary K+ intake. We used previously characterized genetic mouse models to assess the role of Ste20-related proline-alanine-rich kinase (SPAK) and with-no-lysine kinase (WNK)4 in the modulation of NCC by K+ diets. SPAK knockin and WNK4 knockout mice were placed on normal-, low-, or high-K+-citrate diets for 4 days. The low-K+ diet decreased and high-K+ diet increased plasma aldosterone levels, but both diets were associated with increased phosphorylation of NCC (phospho-NCC, Thr44/Thr48/Thr53) and phosphorylation of SPAK/oxidative stress responsive kinase 1 (phospho-SPAK/OSR1, Ser383/Ser325). The effect of the low-K+ diet on SPAK phosphorylation persisted in WNK4 knockout and SPAK knockin mice, whereas the effects of ANG II on NCC and SPAK were lost in both mouse colonies. This suggests that for NCC activation by ANG II, integrity of the WNK4/SPAK pathway is required, whereas for the low-K+ diet, SPAK phosphorylation occurred despite the absence of WNK4, suggesting the involvement of another WNK (WNK1 or WNK3). Additionally, because NCC activation also occurred in SPAK knockin mice, it is possible that loss of SPAK was compensated by OSR1. The positive effect of the high-K+ diet was observed when the accompanying anion was citrate, whereas the high-KCl diet reduced NCC phosphorylation. However, the effect of the high-K+-citrate diet was aldosterone dependent, and neither metabolic alkalosis induced by bicarbonate, nor citrate administration in the absence of K+ increased NCC phosphorylation, suggesting that it was not due to citrate-induced metabolic alkalosis. Thus, the accompanying anion might modulate the NCC response to the high-K+ diet. PMID:24761002

  17. The nature of the volcanic activity at Loki: Insights from Galileo NIMS and PPR data

    NASA Astrophysics Data System (ADS)

    Howell, Robert R.; Lopes, Rosaly M. C.

    2007-02-01

    Loki is the largest patera and the most energetic hotspot on Jupiter's moon Io, in turn the most volcanically active body in the Solar System, but the nature of the activity remains enigmatic. We present detailed analysis of Galileo Near-Infrared Mapping Spectrometer (NIMS) and PhotoPolarimeter/Radiometer (PPR) observations covering the 1.5-100 μm wavelength range during the I24, I27, and I32 flybys. The general pattern of activity during these flybys is consistent with previously proposed models of a resurfacing wave periodically crossing a silicate lava lake. In particular our analysis of the I32 NIMS observations shows, over much of the observed patera, surface temperatures and implied ages closely matching those expected for a wave advancing counterclockwise at 0.94-1.38 km/day. The age pattern is different than other published analyses which do not show as clearly this azimuthal pattern. Our analysis also shows two additional distinctly different patera surfaces. The first is located along the inner and outer margins where components with a 3.00-4.70-μm color temperature of 425 K exist. The second is located at the southwestern margin where components with a 550-K color temperature exist. Although the high temperatures could be caused by disruption of a lava lake crust, some additional mechanism is required to explain why the southwest margin is different from the inner or outer ones. Finally, analysis of the temperature profiles across the patera reveal a smoothness that is difficult to explain by simple lava cooling models. Paradoxically, at a subpixel level, wide temperature distributions exist which may be difficult to explain by just the presence of hot cracks in the lava crust. The resurfacing wave and lava cooling models explain well the overall characteristics of the observations. However, additional physical processes, perhaps involving heat transport by volatiles, are needed to explain the more subtle features.

  18. New insights into the size and stoichiometry of the plasminogen activator inhibitor type-1.vitronectin complex.

    PubMed

    Podor, T J; Shaughnessy, S G; Blackburn, M N; Peterson, C B

    2000-08-18

    Plasminogen activator inhibitor-type 1 (PAI-1) is the primary inhibitor of endogenous plasminogen activators that generate plasmin in the vicinity of a thrombus to initiate thrombolysis, or in the pericellular region of cells to facilitate migration and/or tissue remodeling. It has been shown that the physiologically relevant form of PAI-1 is in a complex with the abundant plasma glycoprotein, vitronectin. The interaction between vitronectin and PAI-1 is important for stabilizing the inhibitor in a reactive conformation. Although the complex is clearly significant, information is vague regarding the composition of the complex and consequences of its formation on the distribution and activity of vitronectin in vivo. Most studies have assumed a 1:1 interaction between the two proteins, but this has not been demonstrated experimentally and is a matter of some controversy since more than one PAI-1-binding site has been proposed within the sequence of vitronectin. To address this issue, competition studies using monoclonal antibodies specific for separate epitopes confirmed that the two distinct PAI-1-binding sites present on vitronectin can be occupied simultaneously. Analytical ultracentrifugation was used also for a rigorous analysis of the composition and sizes of complexes formed from purified vitronectin and PAI-1. The predominant associating species observed was high in molecular weight (M(r) approximately 320,000), demonstrating that self-association of vitronectin occurs upon interaction with PAI-1. Moreover, the size of this higher order complex indicates that two molecules of PAI-1 bind per vitronectin molecule. Binding of PAI-1 to vitronectin and association into higher order complexes is proposed to facilitate interaction with macromolecules on surfaces.

  19. Deeper Insight into the Diels-Alder Reaction through the Activation Strain Model.

    PubMed

    Fernández, Israel; Bickelhaupt, F Matthias

    2016-12-06

    In this Focus Review, we present the application of the so-called Activation Strain Model of chemical reactivity to the Diels-Alder cycloaddition reaction. To this end, representative recent examples have been selected to illustrate the power of this new computational approach to gain a deeper quantitative understanding of this fundamental process in chemistry. We cover a wide range of issues, such as, the "endo-rule", reactivity trends emerging from systematic variation in the reactants' strain, and cycloaddition reactions involving relevant species in material science, that is, fullerenes, polycyclic aromatic hydrocarbons and nanotubes. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nonlinear rheology of active particle suspensions: insights from an analytical approach.

    PubMed

    Heidenreich, Sebastian; Hess, Siegfried; Klapp, Sabine H L

    2011-01-01

    We consider active suspensions in the isotropic phase subjected to a shear flow. Using a set of extended hydrodynamic equations we derive a variety of analytical expressions for rheological quantities such as shear viscosity and normal stress differences. In agreement to full-blown numerical calculations and experiments we find a shear-thickening or -thinning behavior depending on whether the particles are contractile or extensile. Moreover, our analytical approach predicts that the normal stress differences can change their sign in contrast to passive suspensions.

  1. Io’s active volcanoes during the New Horizons era: Insights from New Horizons imaging

    NASA Astrophysics Data System (ADS)

    Rathbun, J. A.; Spencer, J. R.; Lopes, R. M.; Howell, R. R.

    2014-03-01

    In February 2007, the New Horizons spacecraft flew by the Jupiter system, obtaining images of Io, the most volcanically active body in the Solar System. The Multicolor Visible Imaging Camera (MVIC), a four-color (visible to near infrared) camera, obtained 17 sets of images. The Long-Range Reconnaissance Imager (LORRI), a high-resolution panchromatic camera, obtained 190 images, including many of Io eclipsed by Jupiter. We present a complete view of the discrete point-like emission sources in all images obtained by these two instruments. We located 54 emission sources and determined their brightnesses. These observations, the first that observed individual Ionian volcanoes on short timescales of seconds to minutes, demonstrate that the volcanoes have stable brightnesses on these timescales. The active volcanoes Tvashtar (63N, 124W) and E. Girru (22N, 245W) were observed by both LORRI and MVIC, both in the near-infrared (NIR) and methane (CH4) filters. Tvashtar was additionally observed in the red filter, which allowed us to calculate a color temperature of approximately 1200 K. We found that, with some exceptions, most of the volcanoes frequently active during the Galileo era continued to be active during the New Horizons flyby. We found that none of the seven volcanoes observed by New Horizons multiple times over short timescales showed substantial changes on the order of seconds and only one, E. Girru exhibited substantial variation over minutes to days, increasing by 25% in just over an hour and decreasing by a factor of 4 over 6 days. Observations of Tvashtar are consistent with a current eruption similar to previously observed eruptions and are more consistent with the thermal emission of a lava flow than the fire fountains inferred from the November 1999 observations. These data also present new puzzles regarding Ionian volcanism. Since there is no associated surface change or low albedo feature that could be identified nearby, the source of the emission from

  2. Insight into the Amino-Type Excited-State Intramolecular Proton Transfer Cycle Using N-Tosyl Derivatives of 2-(2'-Aminophenyl)benzothiazole.

    PubMed

    Chen, Chi-Lin; Tseng, Huan-Wei; Chen, Yi-An; Liu, Jun-Qi; Chao, Chi-Min; Liu, Kuan-Miao; Lin, Tzu-Chieh; Hung, Cheng-Hsien; Chou, Yen-Lin; Lin, Ta-Chun; Chou, Pi-Tai

    2016-02-25

    Studies have been carried out to gain insight in to an overall excited-state proton transfer cycle for a series of N-tosyl derivatives of 2-(2'-aminophenyl)benzothiazole. The results indicate that followed by ultrafast (<150 fs) excited-state intramolecular proton transfer (ESIPT), the titled compounds undergo rotational isomerization along the C1-C1' bond. For the model compound 2-(2'-tosylaminophenyl)benzothiazole (PBT-NHTs) the subsequent cis-trans isomerization process in both triplet and ground states are probed by nanosecond transient absorption (TA) and two-step laser-induced fluorescence (TSLIF) spectroscopy. Both TA and TSLIF results indicate the existence of a long-lived trans-tautomer species in the ground state with a lifetime of few microseconds. The experimental results correlate well with the theoretical approach, which suggests that PBT-NHTs proton transfer tautomer generated in the excited state undergoes intramolecular C1-C1' rotation to ∼100° between benzothiazole and phenyl moieties in which the energetics for the S1 and T1 states are nearly identical. As a result, the intersystem crossing between S1 and T1 states serves as a fast deactivation pathway for the excited-state cis-tautomer to channel into both cis- and trans-tautomer in their respective T1 states, followed by the dominant T1-S0 radiationless deactivation to populate the trans-tautomer in the ground state. The trans-tautomer species in the S0 state proceeds with intermolecular double proton transfer to regenerate the cis-normal form. An overall proton-transfer cycle describing the amino-type ESIPT and the subsequent isomerization processes is thus depicted in detail.

  3. Neural correlates of insight in dreaming and psychosis.

    PubMed

    Dresler, Martin; Wehrle, Renate; Spoormaker, Victor I; Steiger, Axel; Holsboer, Florian; Czisch, Michael; Hobson, J Allan

    2015-04-01

    The idea that dreaming can serve as a model for psychosis has a long and honourable tradition, however it is notoriously speculative. Here we demonstrate that recent research on the phenomenon of lucid dreaming sheds new light on the debate. Lucid dreaming is a rare state of sleep in which the dreamer gains insight into his state of mind during dreaming. Recent electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) data for the first time allow very specific hypotheses about the dream-psychosis relationship: if dreaming is a reasonable model for psychosis, then insight into the dreaming state and insight into the psychotic state should share similar neural correlates. This indeed seems to be the case: cortical areas activated during lucid dreaming show striking overlap with brain regions that are impaired in psychotic patients who lack insight into their pathological state. This parallel allows for new therapeutic approaches and ways to test antipsychotic medication.

  4. The Acute Relationships Between Affect, Physical Feeling States, and Physical Activity in Daily Life: A Review of Current Evidence.

    PubMed

    Liao, Yue; Shonkoff, Eleanor T; Dunton, Genevieve F

    2015-01-01

    Until recently, most studies investigating the acute relationships between affective and physical feeling states and physical activity were conducted in controlled laboratory settings, whose results might not translate well to everyday life. This review was among the first attempts to synthesize current evidence on the acute (e.g., within a few hours) relationships between affective and physical feeling states and physical activity from studies conducted in free-living, naturalistic settings in non-clinical populations. A systematic literature search yielded 14 eligible studies for review. Six studies tested the relationship between affective states and subsequent physical activity; findings from these studies suggest that positive affective states were positively associated with physical activity over the next few hours while negative affective states had no significant association. Twelve studies tested affective states after physical activity and yielded consistent evidence for physical activity predicting higher positive affect over the next few hours. Further, there was some evidence that physical activity was followed by a higher level of energetic feelings in the next few hours. The evidence for physical activity reducing negative affect in the next few hours was inconsistent and inconclusive. Future research in this area should consider recruiting more representative study participants, utilizing higher methodological standards for assessment (i.e., electronic devices combined with accelerometry), reporting patterns of missing data, and investigating pertinent moderators and mediators (e.g., social and physical context, intensity, psychological variables). Knowledge gained from this topic could offer valuable insights for promoting daily physical activity adoption and maintenance in non-clinical populations.

  5. The Acute Relationships Between Affect, Physical Feeling States, and Physical Activity in Daily Life: A Review of Current Evidence

    PubMed Central

    Liao, Yue; Shonkoff, Eleanor T.; Dunton, Genevieve F.

    2015-01-01

    Until recently, most studies investigating the acute relationships between affective and physical feeling states and physical activity were conducted in controlled laboratory settings, whose results might not translate well to everyday life. This review was among the first attempts to synthesize current evidence on the acute (e.g., within a few hours) relationships between affective and physical feeling states and physical activity from studies conducted in free-living, naturalistic settings in non-clinical populations. A systematic literature search yielded 14 eligible studies for review. Six studies tested the relationship between affective states and subsequent physical activity; findings from these studies suggest that positive affective states were positively associated with physical activity over the next few hours while negative affective states had no significant association. Twelve studies tested affective states after physical activity and yielded consistent evidence for physical activity predicting higher positive affect over the next few hours. Further, there was some evidence that physical activity was followed by a higher level of energetic feelings in the next few hours. The evidence for physical activity reducing negative affect in the next few hours was inconsistent and inconclusive. Future research in this area should consider recruiting more representative study participants, utilizing higher methodological standards for assessment (i.e., electronic devices combined with accelerometry), reporting patterns of missing data, and investigating pertinent moderators and mediators (e.g., social and physical context, intensity, psychological variables). Knowledge gained from this topic could offer valuable insights for promoting daily physical activity adoption and maintenance in non-clinical populations. PMID:26779049

  6. Further insights into the isoenzyme composition and activity of glutamate dehydrogenase in Arabidopsis thaliana

    PubMed Central

    Fontaine, Jean-Xavier; Tercé-Laforgue, Thérèse; Bouton, Sophie; Pageau, Karine; Lea, Peter J.; Dubois, Frédéric; Hirel, Bertrand

    2013-01-01

    Following the discovery that in Arabidopsis, a third isoenzyme of NADH-dependent glutamate dehydrogenase (GDH) is expressed in the mitochondria of the root companion cells, we have re-examined the GDH isoenzyme composition. By analyzing the NADH-GDH isoenzyme composition of single, double and triple mutants deficient in the expression of the three genes encoding the enzyme, we have found that the α, β and γ polypeptides that comprise the enzyme can be assembled into a complex combination of heterohexamers in roots. Moreover, we observed that when one or two of the three root isoenzymes were missing from the mutants, the remaining isoenzymes compensated for this deficiency. The significance of such complexity is discussed in relation to the metabolic and signaling function of the NADH-GDH enzyme. Although it has been shown that a fourth gene encoding a NADPH-dependent enzyme is present in Arabidopsis, we were not able to detect corresponding enzyme activity, even in the triple mutant totally lacking NADH-GDH activity. PMID:23299333

  7. Is the peptide bond formation activated by Cu(2+) interactions? Insights from density functional calculations.

    PubMed

    Rimola, A; Rodríguez-Santiago, L; Ugliengo, P; Sodupe, M

    2007-05-24

    The catalytic role that Cu(2+) cations play in the peptide bond formation has been addressed by means of density functional calculations. First, the Cu(2+)-(glycine)2 --> Cu(2+)-(glycylglycine) + H2O reaction was investigated since mass spectrometry low collision activated dissociation (CAD) spectra of Cu(2+)-(glycine)2 led to the elimination of a water molecule, which suggested that an intracomplex peptide bond formation might have occurred. Results show that this intracomplex condensation is associated to a very high free energy barrier (97 kcal mol(-1)) and reaction free energy (66 kcal mol(-1)) because of the loss of metal coordination during the reaction. Second, on the basis of the salt-induced peptide formation theory, the condensation reaction between two glycines was studied in aqueous solution using discrete water molecules and the conductor polarized continuum model (CPCM) continuous method. It is found that the synergy between the interaction of glycines with Cu(2+) and the presence of water molecules acting as proton-transfer helpers significantly lower the activation barrier (from 55 kcal/mol for the uncatalyzed system to 20 kcal/mol for the Cu(2+) solvated system) which largely favors the formation of the peptide bond.

  8. A Near-Atomic Structure of the Dark Apoptosome Provides Insight into Assembly and Activation.

    PubMed

    Cheng, Tat Cheung; Akey, Ildikó V; Yuan, Shujun; Yu, Zhiheng; Ludtke, Steven J; Akey, Christopher W

    2017-01-03

    In Drosophila, the Apaf-1-related killer (Dark) forms an apoptosome that activates procaspases. To investigate function, we have determined a near-atomic structure of Dark double rings using cryo-electron microscopy. We then built a nearly complete model of the apoptosome that includes 7- and 8-blade β-propellers. We find that the preference for dATP during Dark assembly may be governed by Ser325, which is in close proximity to the 2' carbon of the deoxyribose ring. Interestingly, β-propellers in V-shaped domains of the Dark apoptosome are more widely separated, relative to these features in the Apaf-1 apoptosome. This wider spacing may be responsible for the lack of cytochrome c binding to β-propellers in the Dark apoptosome. Our structure also highlights the roles of two loss-of-function mutations that may block Dark assembly. Finally, the improved model provides a framework to understand apical procaspase activation in the intrinsic cell death pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Protumor activities of the immune response: insights in the mechanisms of immunological shift, oncotraining, and oncopromotion.

    PubMed

    Chimal-Ramírez, G K; Espinoza-Sánchez, N A; Fuentes-Pananá, E M

    2013-01-01

    Experimental and clinical studies indicate that cells of the innate and adaptive immune system have both anti- and pro-tumor activities. This dual role of the immune system has led to a conceptual shift in the role of the immune system's regulation of cancer, in which immune-tumor cell interactions are understood as a dynamic process that comprises at least five phases: immunosurveillance, immunoselection, immunoescape, oncotraining, and oncopromotion. The tumor microenvironment shifts immune cells to perform functions more in tune with the tumor needs (oncotraining); these functions are related to chronic inflammation and tissue remodeling activities. Among them are increased proliferation and survival, increased angiogenesis and vessel permeability, protease secretion, acquisition of migratory mesenchymal characteristics, and self-renewal properties that altogether promote tumor growth and metastasis (oncopromotion). Important populations in all these pro-tumor processes are M2 macrophages, N2 neutrophils, regulatory T cells, and myeloid derived suppressor cells; the main effectors molecules are CSF-1, IL-6, metalloproteases, VEGF, PGE-2, TGF- β , and IL-10. Cancer prognosis correlates with densities and concentrations of protumoral populations and molecules, providing ideal targets for the intelligent design of directed preventive or anticancer therapies.

  10. Antioxidant activity of ferulic acid alkyl esters in a heterophasic system: a mechanistic insight.

    PubMed

    Anselmi, Cecilia; Centini, Marisanna; Granata, Paola; Sega, Alessandro; Buonocore, Anna; Bernini, Andrea; Facino, Roberto Maffei

    2004-10-20

    The antioxidant activity of some esters of ferulic acid with the linear fatty alcohols C7, C8 (branched and linear), C9, C11, C12, C13, C15, C16, and C18 has been studied in homogeneous and heterogeneous phases. Whereas in homogeneous phase all of the alkyl ferulates possessed similar radical-scavenging abilities, in rat liver microsomes they showed striking differences, the more effective being C12 (7) (IC50 = 11.03 M), linear C8 (3) (IC50 = 12.40 microM), C13 (8) (IC50 = 18.60 microM), and C9 (5) (IC50 = 19.74 microM), followed by C7 (2), C15 (9), C11 (6), branched C8 (4), C16 (10), and C18 (11) (ferulic acid was the less active, IC50 = 243.84 microM). All of the molecules showed similar partition coefficients in an octanol-buffer system. Three-dimensional studies (NMR in solution, modeling in vacuo) indicate that this behavior might be due to a different anchorage of the molecules with the ester side chain to the microsomal phospholipid bilayer and to a consequent different orientation/positioning of the scavenging phenoxy group outside the membrane surface against the flux of oxy radicals.

  11. Insights into the emission reductions of multiple unintentional persistent organic pollutants from industrial activities.

    PubMed

    Liu, Guorui; Zheng, Minghui; Jiang, Xiaoxu; Jin, Rong; Zhao, Yuyang; Zhan, Jiayu

    2016-02-01

    Industrial activities result in unintentional production of multiple types of persistent organic pollutants (POPs) at various concentrations. Because of the potential adverse effect of these POPs on the environment, biota and human health, methods for controlling emission of POPs are required. Development and application of techniques for controlling emissions of POPs can be a technical and economic burden for the industry involved. Therefore, from the point of view of cost-benefit analysis, reducing emissions of multiple pollutants at the same time is optimal for sustainable industrial development. Although techniques have been developed for reducing the emissions of individual POPs, such as dioxins, further work is required on multi-POP control emissions from industrial activities. This paper discusses three important aspects that need to be taken to achieve multi-POP control. These aspects include the establishment of a comprehensive system for evaluating the risk from emissions of multiple POPs, determination of indicators for total emissions of multiple POPs, and the preparation and application of functional materials to inhibit formation of multiple POPs. These discussion might be helpful for the future research on the multi-POP control in industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. An insight on the neuropharmacological activity of Telescopium telescopium--a mollusc from the Sunderban mangrove.

    PubMed

    Samanta, S K; Kumar, K T Manisenthil; Roy, Amrita; Karmakar, S; Lahiri, Shawon; Palit, G; Vedasiromoni, J R; Sen, T

    2008-12-01

    The present study was carried out to evaluate the biological properties of the tissue extract of a marine snail Telescopium telescopium, collected from the coastal regions of West Bengal India. On extensive pharmacological screening, it was found that the biological extract of T. telescopium (TTE) produced significant central nervous system (CNS)-depressant activity as observed from the reduced spontaneous motility, potentiation of pentobarbitone induced sleeping time, hypothermia and respiratory depression with transient apnoea. The extract significantly decreased both residual curiosity and also muscle coordination. The fraction, obtained following saturation with 60-80% ammonium sulphate (80S), was also found to demonstrate predominant CNS-depressant activity. It was observed that both TTE and the 80S fraction significantly altered the brain noradrenaline and homovanillic acid levels without affecting the brain gamma amino butyric acid (GABA) concentration. Based on the present observations, it can be suggested that the CNS-depressant effects produced by TTE and 80S could be attributable to modified catecholamine metabolism in the brain.

  13. Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit.

    PubMed

    Brites, Fernando; Martin, Maximiliano; Guillas, Isabelle; Kontush, Anatol

    2017-12-01

    Uptake of low-density lipoprotein (LDL) particles by macrophages represents a key step in the development of atherosclerotic plaques, leading to the foam cell formation. Chemical modification of LDL is however necessary to induce this process. Proatherogenic LDL modifications include aggregation, enzymatic digestion and oxidation. LDL oxidation by one-electron (free radicals) and two-electron oxidants dramatically increases LDL affinity to macrophage scavenger receptors, leading to rapid LDL uptake and fatty streak formation. Circulating high-density lipoprotein (HDL) particles, primarily small, dense, protein-rich HDL3, provide potent protection of LDL from oxidative damage by free radicals, resulting in the inhibition of the generation of pro-inflammatory oxidized lipids. HDL-mediated inactivation of lipid hydroperoxides involves their initial transfer from LDL to HDL and subsequent reduction to inactive hydroxides by redox-active Met residues of apolipoprotein A-I. Several HDL-associated enzymes are present at elevated concentrations in HDL3 relative to large, light HDL2 and can be involved in the inactivation of short-chain oxidized phospholipids. Therefore, HDL represents a multimolecular complex capable of acquiring and inactivating proatherogenic lipids. Antioxidative function of HDL can be impaired in several metabolic and inflammatory diseases. Structural and compositional anomalies in the HDL proteome and lipidome underlie such functional deficiency. Concomitant normalization of the metabolism, circulating levels, composition and biological activities of HDL particles, primarily those of small, dense HDL3, can constitute future therapeutic target.

  14. Structural insights into the polypharmacological activity of quercetin on serine/threonine kinases.

    PubMed

    Baby, Bincy; Antony, Priya; Al Halabi, Walaa; Al Homedi, Zahrah; Vijayan, Ranjit

    2016-01-01

    Polypharmacology, the discovery or design of drug molecules that can simultaneously interact with multiple targets, is gaining interest in contemporary drug discovery. Serine/threonine kinases are attractive targets for therapeutic intervention in oncology due to their role in cellular phosphorylation and altered expression in cancer. Quercetin, a naturally occurring flavonoid, inhibits multiple cancer cell lines and is used as an anticancer drug in Phase I clinical trial. Quercetin glycosides have also received some attention due to their high bioavailability and activity against various diseases including cancer. However, these have been studied to a lesser extent. In this study, the structural basis of the multitarget inhibitory activity of quercetin and isoquercitrin, a glycoside derivative, on serine/threonine kinases using molecular modeling was explored. Structural analysis showed that both quercetin and isoquercitrin exhibited good binding energies and interacted with aspartate in the highly conserved Asp-Phe-Gly motif. The results indicate that isoquercitrin could be a more potent inhibitor of several members of the serine/threonine kinase family. In summary, the current structural evaluation highlights the multitarget inhibitory property of quercetin and its potential to be a chemical platform for oncological polypharmacology.

  15. Structural insights into the polypharmacological activity of quercetin on serine/threonine kinases

    PubMed Central

    Baby, Bincy; Antony, Priya; Al Halabi, Walaa; Al Homedi, Zahrah; Vijayan, Ranjit

    2016-01-01

    Polypharmacology, the discovery or design of drug molecules that can simultaneously interact with multiple targets, is gaining interest in contemporary drug discovery. Serine/threonine kinases are attractive targets for therapeutic intervention in oncology due to their role in cellular phosphorylation and altered expression in cancer. Quercetin, a naturally occurring flavonoid, inhibits multiple cancer cell lines and is used as an anticancer drug in Phase I clinical trial. Quercetin glycosides have also received some attention due to their high bioavailability and activity against various diseases including cancer. However, these have been studied to a lesser extent. In this study, the structural basis of the multitarget inhibitory activity of quercetin and isoquercitrin, a glycoside derivative, on serine/threonine kinases using molecular modeling was explored. Structural analysis showed that both quercetin and isoquercitrin exhibited good binding energies and interacted with aspartate in the highly conserved Asp–Phe–Gly motif. The results indicate that isoquercitrin could be a more potent inhibitor of several members of the serine/threonine kinase family. In summary, the current structural evaluation highlights the multitarget inhibitory property of quercetin and its potential to be a chemical platform for oncological polypharmacology. PMID:27729770

  16. Insights on the phytochemical profile (cyclopeptides) and biological activities of Calotropis procera latex organic fractions.

    PubMed

    Jucá, Thiago Lustosa; Ramos, Márcio Viana; Moreno, Frederico Bruno Mendes Batista; Viana de Matos, Mayara Patrícia; Marinho-Filho, José Delano Barreto; Moreira, Renato Azevedo; de Oliveira Monteiro-Moreira, Ana Cristina

    2013-01-01

    Calotropis procera is a medicinal plant whose pharmacological properties are associated with its latex. Here, the Calotropis procera latex fractions were investigated in an attempt to trace its phytochemical profile and measure its anti-inflammatory and toxicity activity. The crude latex was partitioned, yielding five fractions (49.4% hexane, 5.2% dichloromethane, 2.0% ethyl acetate, 2.1% n-butanol, and 41.1% aqueous). Phytochemical screening and spectroscopy analysis revealed that dichloromethane is the most chemically diverse fraction. Triterpenes were detected in both the hexane and dichloromethane fractions, while flavonoids were detected in the dichloromethane and ethyl acetate fractions. These fractions were cytotoxic to cancer cell lines (LD50 0.05 to 3.9  μ g/mL) and lethal to brine shrimp (LD50 10.9 to 65.7  μ g/mL). Reduced neutrophil migration in rats was observed in carrageenan-induced peritonitis for the dichloromethane (67%), ethyl acetate (56%), and aqueous (72%) fractions. A positive reaction with tolidine and ninhydrin suggested that cyclopeptides are in the ethyl acetate fraction. It is therefore concluded that Calotropis procera latex dichloromethane and ethyl acetate fractions exhibit both in vitro and in vivo activities as well as anti-inflammatory properties. Cyclopeptide detection is especially interesting because previous attempts to investigate these low-molecular cyclic amino acid sequences in C. procera have failed.

  17. Translational Insights Into Peroxisome Proliferator-Activated Receptors in Experimental Acute Pancreatitis.

    PubMed

    Huang, Wei; Szatmary, Peter; Wan, Meihua; Bharucha, Shameena; Awais, Muhammad; Tang, Wenfu; Criddle, David N; Xia, Qing; Sutton, Robert

    2016-02-01

    Acute pancreatitis (AP) is an inflammatory disorder of the exocrine pancreas frequently associated with metabolic causes, contributing factors, or consequences, including hypertriglyceridemia, obesity, and disorders of intermediary metabolism, respectively. To date, there is no specific therapy for this disease. Future optimal therapy should correct both inflammatory and metabolic components of the disease. Peroxisome proliferator-activated receptors (PPARs) are lipid-sensing nuclear receptors that control inflammatory and metabolic pathways via ligand-dependent and ligand-independent mechanisms. There are 3 known subtypes, PPAR-α, PPAR-β/δ, and PPAR-γ, which are differentially expressed in various tissues. The PPARs interact closely with other transcription factors such as nuclear factor κB and signal tranducers and activators of transcription that have pivotal roles in the pathobiology of AP. In this comprehensive review, we summarize the role of PPARs in AP, highlighting important in vitro and in vivo experimental findings. Finally, we propose future research directions as well as potential translational use of PPAR agonists in the treatment of AP.

  18. New insights into the biological activity and secretion properties of a polypeptide derived from tilapia somatotropin.

    PubMed

    Acosta, Jannel; Carpio, Yamila; Morales, Reynold; Aguila, Julio César; Acanda, Yosvani; Herrera, Fidel; Estrada, Mario P

    2010-08-01

    In a previous study, we unexpectedly found that tilapia growth hormone (tiGH) secreted to the culture media by transformed cells of the yeast Pichia pastoris lacks 46 amino acids from the C-terminal end. In the present study, we cloned the exact fragment that code for this truncated variant and demonstrated its growth promoting activity in goldfish when it's administered by immersion bath. Furthermore, a better characterization of this polypeptide was performed. Administration of the polypeptide derived from tiGH increased superoxide anion production and has a mitogenic effect on peripheral blood leukocytes. This molecule binds to liver membranes proteins in vitro in a saturable manner. Beside, we cloned and expressed tiGH and its truncated variant in mammalian cells using the signal peptide of this hormone and we observed that the secretion was drastically reduced in the truncated tiGH as compared to the intact molecule. Truncated tilapia growth hormone lacking the helix 4 and two disulfide loops is still a bioactive hormone, suggesting that the disulfide bonds and the helix 4 are not essential for the biological activities examined in this work. However, the growth hormone C-terminal portion seems to be essential for this hormone to be secreted by cultured cells in vitro. 2010 Elsevier Inc. All rights reserved.

  19. Insights on the Phytochemical Profile (Cyclopeptides) and Biological Activities of Calotropis procera Latex Organic Fractions

    PubMed Central

    Jucá, Thiago Lustosa; Ramos, Márcio Viana; Moreno, Frederico Bruno Mendes Batista; Viana de Matos, Mayara Patrícia; Marinho-Filho, José Delano Barreto; Moreira, Renato Azevedo; Monteiro-Moreira, Ana Cristina de Oliveira

    2013-01-01

    Calotropis procera is a medicinal plant whose pharmacological properties are associated with its latex. Here, the Calotropis procera latex fractions were investigated in an attempt to trace its phytochemical profile and measure its anti-inflammatory and toxicity activity. The crude latex was partitioned, yielding five fractions (49.4% hexane, 5.2% dichloromethane, 2.0% ethyl acetate, 2.1% n-butanol, and 41.1% aqueous). Phytochemical screening and spectroscopy analysis revealed that dichloromethane is the most chemically diverse fraction. Triterpenes were detected in both the hexane and dichloromethane fractions, while flavonoids were detected in the dichloromethane and ethyl acetate fractions. These fractions were cytotoxic to cancer cell lines (LD50 0.05 to 3.9 μg/mL) and lethal to brine shrimp (LD50 10.9 to 65.7 μg/mL). Reduced neutrophil migration in rats was observed in carrageenan-induced peritonitis for the dichloromethane (67%), ethyl acetate (56%), and aqueous (72%) fractions. A positive reaction with tolidine and ninhydrin suggested that cyclopeptides are in the ethyl acetate fraction. It is therefore concluded that Calotropis procera latex dichloromethane and ethyl acetate fractions exhibit both in vitro and in vivo activities as well as anti-inflammatory properties. Cyclopeptide detection is especially interesting because previous attempts to investigate these low-molecular cyclic amino acid sequences in C. procera have failed. PMID:24348174

  20. New Insights into the Active Tectonics of Eastern Indonesia from GPS Measurements

    NASA Astrophysics Data System (ADS)

    Susilo, S.; Koulali Idrissi, A.; McClusky, S.; Meilano, I.; Cummins, P. R.; Tregoning, P.; Syafii, A.

    2014-12-01

    The Indonesian archipelago encompasses a wide range of tectonic environments, including island arc volcanism, subduction zones, and arc-continent collision. Many of the details of this tectonic activity are still poorly understood, especially where the Australian continent collides with Indonesia, separating the Sunda Arc in west from that at the Banda Arc in the east. While it seems clear that the Australian plate is subducted under both the Sunda and Banda Arcs, it is not clear what happens along the 1000 km -long stretch in between. The question of just where the plate motion is accommodated is of major importance to assessments of earthquake and tsunami hazard in the region. To help resolve these questions the Geospatial Information Agency of Indonesia has collaborated with the Australian National University and the Bandung Institute of Technology in a GPS campaign spanning much of eastern Indonesia, from Lombok in the west to Alor in the east. We have combined these data with those from previous campaigns, resulting in over 27 campaign and 18 continuous GPS sites being used in the analysis. The improvement in site density allowed us to develop of a more complete description of tectonic activity in this region than has been obtained in previous studies. Our preliminary results suggests that there is a relatively simple transition from subduction at the Java Trench off east Java, to a partitioned convergence along both the Timor Trough and the Flores Thrust in the Nusa Tenggara region.

  1. Air pollution information activities at state and local agencies--United States, 1992

    SciTech Connect

    Not Available

    1993-01-08

    Because air pollution is a pervasive environmental health problem in the United States, one of the national health objectives for the year 2000 is to increase from 49.7% to 85.0% the proportion of persons who live in counties that have not exceeded any air quality standard during the previous 12 months (1). Public support for air pollution control efforts is critical if this national health objective is to be achieved. To characterize public health information activities related to air pollution, in 1992, the State and Territorial Air Pollution Program Administrators (STAPPA) and the Association of Local Air Pollution Control Officials (ALAPCO), with the assistance of CDC, conducted a survey of state and local air pollution control agencies. This report summarizes the findings of that survey.

  2. Deciphering the DNAzyme activity of multimeric quadruplexes: insights into their actual role in the telomerase activity evaluation assay.

    PubMed

    Stefan, Loic; Denat, Franck; Monchaud, David

    2011-12-21

    The end of human telomeres is comprised of a long G-rich single-stranded DNA (known as 3'-overhang) able to adopt an unusual three-dimensional "beads-on-the-string" organization made of consecutively stacked G-quadruplex units (so-called quadruplex multimers). It has been widely demonstrated that, upon interaction with hemin, discrete quadruplexes acquire peroxidase-mimicking properties, oxidizing several organic probes in H(2)O(2)-rich conditions; this property, known as DNAzyme, has found tens of applications in the last two decades. However, little is known about the DNAzyme activity of multimeric quadruplexes; this is an important question to address, especially in light of recent reports that exploit the DNAzyme process to optically assess the activity of an enzyme that elongates the telomeric overhang, the telomerase. Herein, we thoroughly investigate the DNAzyme activity of long telomeric fragments, with a particular focus on both the nature of the hemin/multimeric quadruplex interactions and the putative higher-order fold of the studied fragments; in light of our results, we also propose possible ways that may be followed to improve the use of DNAzyme to evaluate the telomerase activity. © 2011 American Chemical Society

  3. Insights into the role of hepatocyte PPARα activity in response to fasting.

    PubMed

    Régnier, Marion; Polizzi, Arnaud; Lippi, Yannick; Fouché, Edwin; Michel, Géraldine; Lukowicz, Céline; Smati, Sarra; Marrot, Alain; Lasserre, Frédéric; Naylies, Claire; Batut, Aurélie; Viars, Fanny; Bertrand-Michel, Justine; Postic, Catherine; Loiseau, Nicolas; Wahli, Walter; Guillou, Hervé; Montagner, Alexandra

    2017-07-31

    The liver plays a central role in the regulation of fatty acid metabolism. Hepatocytes are highly sensitive to nutrients and hormones that drive extensive transcriptional responses. Nuclear hormone receptors are key transcription factors involved in this process. Among these factors, PPARα is a critical regulator of hepatic lipid catabolism during fasting. This study aimed to analyse the wide array of hepatic PPARα-dependent transcriptional responses during fasting. We compared gene expression in male mice with a hepatocyte specific deletion of PPARα and their wild-type littermates in the fed (ad libitum) and 24-h fasted states. Liver samples were acquired, and transcriptome and lipidome analyses were performed. Our data extended and confirmed the critical role of hepatocyte PPARα as a central for regulator of gene expression during starvation. Interestingly, we identified novel PPARα-sensitive genes, including Cxcl-10, Rab30, and Krt23. We also found that liver phospholipid remodelling was a novel fasting-sensitive pathway regulated by PPARα. These results may contribute to investigations on transcriptional control in hepatic physiology and underscore the clinical relevance of drugs that target PPARα in liver pathologies, such as non-alcoholic fatty liver disease. Copyright © 2017 Elsevier B.V. All rights reserved.