Sample records for activation test bat

  1. Evaluation of basophil activation test in suspected food hypersensitivity.

    PubMed

    Pignatti, Patrizia; Yacoub, Mona-Rita; Testoni, Claudia; Pala, Gianni; Corsetti, Maura; Colombo, Giselda; Meriggi, Antonio; Moscato, Gianna

    2017-07-01

    Food hypersensitivity is characterized by a wide range of symptoms. The relationship between symptoms and food is more frequently suspected than objectively proven. Basophil activation test (BAT) is based on the evaluation of activation markers on blood basophils in vitro stimulated with drugs or allergens. The aim of the study was to evaluate the usefulness of BAT when introduced in the routine work-up of suspected food hypersensitivity. BAT was requested in subjects with food adverse reactions when a discrepancy existed among history and skin prick test (SPT) and/or specific IgE. Data from 150 subjects were analysed using CD63 as basophil activation marker. Thirty controls were evaluated for cut-offs. Immunoblots was performed with the sera of representative subjects positive for BAT and negative for SPT and sIgE. 1,024 BAT were carried out, the agreement (positive/positive and negative/negative) was 78.5% for BAT vs. SPT and 78.3% for BAT vs. IgE. Atopic patients, but not atopic controls, more frequently had a positive BAT than non-atopic patients (P < 0.0001). Among subjects with positive BAT, those with negative sIgE had lower total IgE, P = 0.001. Nearly 23.3% of all subjects had positive BAT (for at least one tested food) and both negative sIgE and SPT. Immunoblots revealed the presence of sIgE for the tested foods in representative patients with positive BAT, negative SPT and sIgE. Introduction of BAT in routine of food hypersensitivity, limited to subjects with a discrepancy between history and traditional tests, might be useful particularly when total IgE are low. © 2015 International Clinical Cytometry Society. © 2015 International Clinical Cytometry Society.

  2. The CD63 basophil activation test in Hymenoptera venom allergy: a prospective study.

    PubMed

    Sturm, G J; Böhm, E; Trummer, M; Weiglhofer, I; Heinemann, A; Aberer, W

    2004-10-01

    The basophil activation test (BAT), which relies on flow cytometric quantitation of the allergen-induced up-regulation of the granule-associated marker CD63 in peripheral blood basophils, has been suggested to be a useful approach in detecting responsiveness to allergens. The purpose of this study was to establish the usefulness of the BAT with regard to the clinical history and current diagnostic tools in Hymenoptera venom allergy using a prospective study design. Fifty-seven consecutive patients allergic to Hymenoptera venom as defined by a systemic reaction after an insect sting, and 30 age- and sex-matched control subjects with a negative history were included. The degree and nature of sensitization was confirmed by skin testing, specific immunoglobulin E (IgE), serum tryptase levels and BAT. In the nonallergic control group only analysis of specific IgE and BAT were performed. Correlation of BAT, skin test and specific IgE, respectively, with the clinical history in the allergic group was termed as sensitivity and in the control group as specificity. Twenty one of 23 (91.3%) bee venom allergic patients and 29 of 34 (85.3%) patients allergic to wasp and hornet venom tested positive in BAT. The overall sensitivity of BAT, specific IgE and skin tests were 87.7, 91.2 and 93.0%, respectively. The overall specificities were 86.7% for BAT and 66.7% for specific IgE. No correlation between the severity of clinical symptoms and the magnitude of basophil activation was observed. The BAT seems to be an appropriate method to identify patients allergic to bee or wasp venom with a comparable sensitivity to standard diagnostic regimens. The higher specificity of BAT as compared with specific IgE makes this test a useful tool in the diagnosis of Hymenoptera venom allergy.

  3. The utility of the basophil activation test in the diagnosis of immediate amoxicillin or amoxicillin-clavulanate hypersensitivity in children and adults.

    PubMed

    Barni, Simona; Mori, Francesca; Valleriani, Claudia; Mangone, Giusi; Testi, Sergio; Saretta, Francesca; Sarti, Lucrezia; Pucci, Neri; de Martino, Maurizio; Azzari, Chiara; Novembre, Elio

    2017-04-21

    The basophil activation test (BAT), has been proposed as a possible assay for the diagnosis of immediate-type allergy to beta-lactams (BLs). The aim of this study was to assess the utility of BAT in the diagnosis of amoxicillin (AMX) or AMX-clavulanate (AMX-C) IgE-mediated hypersensitivity in children and adults. Eighteen children and 21 adults, with clinical history of immediate reactions to AMX or AMX-C, were referred to Anna Meyer Children's Hospital and San Giovanni di Dio Hospital, respectively. They underwent in vivo tests (skin prick test and intradermal test). Moreover, BAT with AMX or AMX-C was performed within 6 months from the reaction. In the pediatric group, the concordance between the skin tests (ST) and BAT results was 83.3%. Upon comparing the symptom grades and ST results to the BAT results, we found that the reaction severity and ST positivity did not correlate with BAT results in children. In the adult group, the concordance between the ST and BAT results was 61.9%. Upon comparing patients with severe reactions and patients with mild reactions in terms of BAT results, we found a BAT sensitivity of 38.5% and a specificity of 100%. When comparing the symptom grades to the BAT results, we found that no patients with mild symptoms had a positive BAT result, whereas 38.5% of patients with severe symptoms had a positive BAT result. BAT does not seem to be a useful tool to increase the sensitivity of an allergy work-up to diagnose immediate hypersensitivity to AMX or AMX-C.

  4. Basophil activation test compared to skin prick test and fluorescence enzyme immunoassay for aeroallergen-specific Immunoglobulin-E

    PubMed Central

    2012-01-01

    Background Skin prick test (SPT) and fluorescence enzyme immunoassay (FEIA) are widely used for the diagnosis of Immunoglobulin-E (IgE)-mediated allergic disease. Basophil activation test (BAT) could obviate disadvantages of SPT and FEIA. However, it is not known whether BAT gives similar results as SPT or FEIA for aeroallergens. Objectives In this study, we compared the results of SPT, BAT and FEIA for different aeroallergens. Methods We performed BAT, SPT and FEIA in 41 atopic subjects (symptomatic and with positive SPT for at least 1 of 9 common aeroallergens) and 31 non-atopic subjects (asymptomatic and with negative SPT). Results Correlations between SPT and BAT, SPT and FEIA, and BAT and FEIA results were statistically significant but imperfect. Using SPT as the "gold standard", BAT and FEIA were similar in sensitivity. However, BAT had lower specificity than FEIA. False positive (BATposSPTneg) results were frequent in those atopic subjects who were allergic by SPT to a different allergen and rare in non-atopic subjects. The false positivity in atopic subjects was due in part to high levels of serum Total-IgE (T-IgE) levels in atopic individuals that lead to basophil activation upon staining with fluorochrome-labeled anti-IgE. Conclusion As an alternative to SPT in persons allergic to aeroallergens, BAT in its present form is useful for distinguishing atopic from non-atopic persons. However, BAT in its present form is less specific than FEIA when determining the allergen which a patient is allergic to. This is due to IgE staining-induced activation of atopic person's basophils and/or nonspecific hyperreactivity of atopic person's basophils. PMID:22264407

  5. Evidence of Lagos bat virus circulation among Nigerian fruit bats.

    PubMed

    Dzikwi, Asabe A; Kuzmin, Ivan I; Umoh, Jarlath U; Kwaga, Jacob K P; Ahmad, Aliyu A; Rupprecht, Charles E

    2010-01-01

    During lyssavirus surveillance, 350 brains from four species of fruit bats and one species of insectivorous bat were collected from seven locations in Northern Nigeria during May to October, 2006. Lyssavirus antigen was not detected in the brains, and isolation attempts in mice were unsuccessful. However, serologic tests demonstrated the presence of lyssavirus-neutralizing antibodies in bat sera. Of 140 sera tested, 27 (19%) neutralized Lagos bat virus, and two of these additionally neutralized Mokola virus. The positive samples originated from the straw-colored fruit bat (Eidolon helvum) and the Gambian epaulet bat (Epomophorus gambianus). No neutralizing activity was detected against other lyssaviruses including rabies, Duvenhage, and West Caucasian bat viruses.

  6. Dim ultraviolet light as a means of deterring activity by the Hawaiian hoary bat Lasiurus cinereus semotus

    USGS Publications Warehouse

    Gorresen, P. Marcos; Cryan, Paul M.; Dalton, David C.; Wolf, Sandy; Johnson, Jessica A.; Todd, Christopher M.; Bonaccorso, Frank J.

    2015-01-01

    Widespread bat fatalities at industrial wind turbines are a conservation issue with the potential to inhibit efficient use of an abundant source of energy. Bat fatalities can be reduced by altering turbine operations, but such curtailment decreases turbine efficiency. If additional ways of reducing bat fatalities at wind turbines were available such tradeoffs might not be needed. Based on the facts that bats perceive distant objects primarily through vision and can see in very dim lighting conditions, and the possibility that bats might interact with turbines after approaching them as they would trees, we propose a novel method of reducing bat activity at wind turbines: illumination of the structure with dim light. As a first step toward assessing this approach, we illuminated trees with dim flickering ultraviolet (UV) light in areas frequented by Hawaiian hoary bats Lasiurus cinereus semotus, an endangered subspecies affected by wind turbines. We used a repeated-measures design to quantify bat activity near trees with acoustic detectors and thermal video cameras in the presence and absence of UV illumination, while concurrently monitoring insect numbers. Results indicate that dim UV reduces bat activity despite an increase in insect numbers. Experimental treatment did not completely inhibit bat activity near trees, nor did all measures of bat activity show statistically significant differences due to high variance in bat activity among sites. However, the observed decreases in bat activity with dim UV illumination justify further testing of this method as a means to reduce bat fatalities at wind turbines.

  7. Clinical routine utility of basophil activation testing for diagnosis of hymenoptera-allergic patients with emphasis on individuals with negative venom-specific IgE antibodies.

    PubMed

    Korošec, Peter; Šilar, Mira; Eržen, Renato; Čelesnik, Nina; Bajrović, Nissera; Zidarn, Mihaela; Košnik, Mitja

    2013-01-01

    Previous reports suggest the usefulness of basophil activation testing (BAT) in Hymenoptera-allergic patients with negative venom-specific IgE antibodies. We sought to evaluate the diagnostic utility of this testing in a routine clinical laboratory setting. Twenty-one patients with anaphylactic reactions to Hymenoptera sting (median grade III) and negative venom-specific IgE were routinely and prospectively tested with BAT. We were able to diagnose 81% (17 of 21) of patients with BAT and 57% (12 of 21) with intradermal skin testing. Three wasp venom-allergic patients showed IgE positivity to rVes v 5. Four patients (19%) were negative for all tests. In the case of double-positive BAT, the culprit insect correlated with the venom that induced a significantly higher basophil response. BAT allows the identification of severe Hymenoptera-allergic patients with negative specific IgE and skin tests. The routine use of this cellular test should facilitate prescription of venom immunotherapy in complex cases with inconclusive diagnostic results. Copyright © 2013 S. Karger AG, Basel.

  8. Basophil Activation Test is a Relevant Biomarker of the Outcome of Rapid Desensitization in Platinum Compounds-Allergy.

    PubMed

    Giavina-Bianchi, Pedro; Galvão, Violeta Régnier; Picard, Matthieu; Caiado, Joana; Castells, Mariana C

    Rapid drug desensitization (RDD) has become a cornerstone in the management of immediate drug hypersensitivity reactions (DHRs) to chemotherapeutic agents. Because of the inherent risk of anaphylaxis during RDD, biomarkers to predict patients at risk of developing such severe reactions are needed. The basophil activation test (BAT) has been used in DHRs as a diagnostic tool. We evaluated basophil CD63 and CD203c expression (BAT) as a biomarker to assess the safety and effectiveness of RDD in platinum compounds-allergic patients. Patients allergic to platinum compounds (n = 15) undergoing RDD were assessed through clinical history, skin testing, serum tryptase levels, and BAT. BAT was performed immediately before RDD, assessing CD203c and CD63 expression on basophils. BAT was also performed in 6 patients tolerant to platinum compounds and in 6 healthy volunteers. BAT was positive to CD203c or CD63 in 11 out of 15 patients allergic to platinum compounds (73%), with increased expression of CD203c and CD63 in 11 (73%) and 6 (40%) patients, respectively. Increased CD63 expression tended to be associated with more severe initial reactions. All controls had negative test results. Reactions during RDD were associated with BAT positivity and increased tryptase levels. Only 1 of 4 patients with negative BAT had a mild reaction during RDD. BAT remained positive in multiple sequential RDD. BAT identified patients allergic to platinum compounds with an increased risk of reactions during desensitization and higher CD63 expression was observed in severe reactions. Multiple RDDs to platinum compounds did not induce persistent hyporesponsiveness on basophils. BAT is a potential biomarker for RDD. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. [The role of the basophil activation test (BAT) in qualification for specific immunotherapy with inhalant allergens].

    PubMed

    Bulanda, Małgorzata; Dyga, Wojciech; Rusinek, Barbara; Czarnobilska, Ewa

    Qualification for specific immunotherapy (SIT) according to the guidelines of the European Academy of Allergy and Clinical Immunology (EAACI) includes medical history, skin prik tests (SPT) and/or measuring the concentration of sIgE. It is necessary to perform additional diagnostic tests in case of discrepancies between the history and the results of SPT/sIgE or differences between SPT and sIgE. Basophil activation test (BAT) assesses the expression of activation markers of these cells, eg. CD63 and CD203c after stimulation. The aim of our study was to evaluate the usefulness of BAT in the qualification for the SIT in comparison to the SPT and sIgE and in case of discrepancies between the results of SPT and sIgE. The study included 30 patients with allergic rhinitis (AR) caused by allergy to house dust mite (Dermatophagoides pteronyssinus, Dp) or birch pollen qualified for SIT. All patients had SPT, sIgE and BAT determination. The group of patients with allergy to birch was a control group for Dp allergic and vice versa. BAT with CD63 antigen expression was performed using a Flow2CAST test. Basophils were stimulated with allergen preparation (50, 500, and 5000 SBU/ml concentrations). BAT results were expressed as a stimulation index (SI). For optimal concentrations of 50 and 500 SBU/ml parameters comparing BAT to SPT and sIgE as the gold standards were consecutively: sensitivity 82-100% and 93-100%, specificity 50-94% and 47-89%, positive predictive value 65- 94% and 61-87%, negative predictive value 86-100% and 93-100%. Correlation BAT - SPT and BAT - sIgE ranged within 0.59 to 0.84 and 0.51 to 0.72. BAT was helpful in 2 of 30 patients with incompatible results of SPT and sIgE. Optimal concentrations for basophil stimulation are 50 and 500 SBU/ ml. BAT may be useful diagnostic tool in the qualification for the SIT in case of discrepancies between the results of SPT and sIgE.

  10. Frequent arousals from winter torpor in Rafinesque's big-eared bat (Corynorhinus rafinesquii).

    PubMed

    Johnson, Joseph S; Lacki, Michael J; Thomas, Steven C; Grider, John F

    2012-01-01

    Extensive use of torpor is a common winter survival strategy among bats; however, data comparing various torpor behaviors among species are scarce. Winter torpor behaviors are likely to vary among species with different physiologies and species inhabiting different regional climates. Understanding these differences may be important in identifying differing susceptibilities of species to white-nose syndrome (WNS) in North America. We fitted 24 Rafinesque's big-eared bats (Corynorhinus rafinesquii) with temperature-sensitive radio-transmitters, and monitored 128 PIT-tagged big-eared bats, during the winter months of 2010 to 2012. We tested the hypothesis that Rafinesque's big-eared bats use torpor less often than values reported for other North American cave-hibernators. Additionally, we tested the hypothesis that Rafinesque's big-eared bats arouse on winter nights more suitable for nocturnal foraging. Radio-tagged bats used short (2.4 d ± 0.3 (SE)), shallow (13.9°C ± 0.6) torpor bouts and switched roosts every 4.1 d ± 0.6. Probability of arousal from torpor increased linearly with ambient temperature at sunset (P<0.0001), and 83% (n=86) of arousals occurred within 1 hr of sunset. Activity of PIT-tagged bats at an artificial maternity/hibernaculum roost between November and March was positively correlated with ambient temperature at sunset (P<0.0001), with males more active at the roost than females. These data show Rafinesque's big-eared bat is a shallow hibernator and is relatively active during winter. We hypothesize that winter activity patterns provide Corynorhinus species with an ecological and physiological defense against the fungus causing WNS, and that these bats may be better suited to withstand fungal infection than other cave-hibernating bat species in eastern North America.

  11. [Clinical investigation of basophil activation test as a complementary test for house dust mite allergen].

    PubMed

    Ren, H L; Li, J D; Miao, Y H; Xu, T

    2018-03-01

    Objective: To investigate the clinical application of glass micro fiber basophil activation test (BAT) used as a complementary test for house dust mite allergen. Method: Forty patients with clinical diagnosed allergic rhinitis was test by three methods for house dust mite allergen, skin prick test(SPT),Immuno CAP sIgE, and BAT in vitro. The sensitivity and specificity of glass micro fiber were accessed, and the consistency between BAT, SPT, and Immuno sIgE was analyzed. As in vivo provocation was not performed, gold standard is regarded as the combination of medical history and positive reports of SPT and/or ImmunoCAP sIgE test. Result: Twentythree patients are diagnosed as house dust mite allergic rhinitis by gold standard. The sensitivity and specificity of glass micro fiber BAT were 60.9% and 88.2%, the sensitivity of SPT and sIgE was 87.0% and sIgE 73.9%. The correlation rates between BAT with SPT is 0.67( P <0.05), and sIgE 0.55( P <0.05). The accuracy, predictive value of positive and negative of BAT are 0.47,60.9%,88.2%.The Kappa values of BAT, SPT and sIgE with gold standard are 0.47,0.86,0.71. Conclusion: As a complementary test for house dust mite allergic rhinitis, BAT have a good consistency with SPT and sIgE, while as it has only moderate consistency with "gold standard", further studies are needed to prove its clinical significance. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  12. Activity of southeastern bats along sandstone cliffs used for rock climbing

    USGS Publications Warehouse

    Loeb, Susan C.; Jodice, Patrick G. R.

    2018-01-01

    Bats in the eastern U.S. are facing numerous threats and many species are in decline. Although several species of bats commonly roost in cliffs, little is known about use of cliffs for foraging and roosting. Because rock climbing is a rapidly growing sport and may cause disturbance to bats, our objectives were to examine use of cliff habitats by bats and to assess the effects of climbing on their activity. We used radio-telemetry to track small-footed bats (Myotis leibii) to day roosts, and Anabat SD2 detectors to compare bat activity between climbed and unclimbed areas of regularly climbed cliff faces, and between climbed and unclimbed cliffs. Four adult male small-footed bats were tracked to nine day roosts, all of which were in various types of crevices including five cliff face roosts (three on climbed and two on unclimbed faces). Bat activity was high along climbed cliffs and did not differ between climbed and unclimbed areas of climbed cliffs. In contrast, overall bat activity was significantly higher along climbed cliffs than unclimbed cliffs; species richness did not differ between climbed and unclimbed cliffs or areas. Lower activity along unclimbed cliffs may have been related to lower cliff heights and more clutter along these cliff faces. Due to limited access to unclimbed cliffs of comparable size to climbed cliffs, we could not thoroughly test the effects of climbing on bat foraging and roosting activity. However, the high overall use of climbed and unclimbed cliff faces for foraging and commuting that we observed suggests that cliffs may be important habitat for a number of bat species. Additional research on bats' use of cliff faces will improve our understanding of the factors that affect their use of this habitat including the impacts of climbing.

  13. Test Systems to Study the Structure and Function of Uncoupling Protein 1: A Critical Overview

    PubMed Central

    Hirschberg, Verena; Fromme, Tobias; Klingenspor, Martin

    2011-01-01

    The discovery of active brown adipose tissue (BAT) in healthy adult humans has renewed interest in the biology of this organ. BAT is capable of distributing nutrient energy in the form of heat allowing small mammals to efficiently defend their body temperature when acutely exposed to the cold. On the other hand BAT might be a target for the treatment of obesity and related diseases, as its pharmacological activation could allow release of excess energy stored in white adipose tissue depots. Energy dissipation in BAT depends on the activity of uncoupling protein 1 (UCP1), therefore a BAT-based obesity therapy requires a detailed understanding of structure and function of UCP1. Although UCP1 has been in the focus of research since its discovery, central questions concerning its mechanistic function and regulation are not yet resolved. They have been addressed in native mitochondria but also in several test systems, which are generally used to lower inter-experimental variability and to simplify analysis conditions. Different test systems have contributed to our current knowledge about UCP1 but of course all of them have certain limitations. We here provide an overview about research on UCP1 structure and function in test systems. So far, these have nearly exclusively been employed to study rodent and not human UCP1. Considering that the amino acid sequence of mouse and human UCP1 is only 79% identical, it will be essential to test whether the human version has a similarly high catalytic activity, allowing a relevant amount of energy dissipation in human BAT. Besides the issue of comparable mechanistic function a sufficiently high expression level of human UCP1 is a further prerequisite for anti-obesity therapeutic potential. Treatments which induce BAT hyperplasia and UCP1 expression in humans might therefore be equally important to discover as mere activators of the thermogenic process. PMID:22654819

  14. Basophil activation test discriminates between allergy and tolerance in peanut-sensitized children.

    PubMed

    Santos, Alexandra F; Douiri, Abdel; Bécares, Natalia; Wu, Shih-Ying; Stephens, Alick; Radulovic, Suzana; Chan, Susan M H; Fox, Adam T; Du Toit, George; Turcanu, Victor; Lack, Gideon

    2014-09-01

    Most of the peanut-sensitized children do not have clinical peanut allergy. In equivocal cases, oral food challenges (OFCs) are required. However, OFCs are laborious and not without risk; thus, a test that could accurately diagnose peanut allergy and reduce the need for OFCs is desirable. To assess the performance of basophil activation test (BAT) as a diagnostic marker for peanut allergy. Peanut-allergic (n = 43), peanut-sensitized but tolerant (n = 36) and non-peanut-sensitized nonallergic (n = 25) children underwent skin prick test (SPT) and specific IgE (sIgE) to peanut and its components. BAT was performed using flow cytometry, and its diagnostic performance was evaluated in relation to allergy versus tolerance to peanut and validated in an independent population (n = 65). BAT in peanut-allergic children showed a peanut dose-dependent upregulation of CD63 and CD203c while there was no significant response to peanut in peanut-sensitized but tolerant (P < .001) and non-peanut-sensitized nonallergic children (P < .001). BAT optimal diagnostic cutoffs showed 97% accuracy, 95% positive predictive value, and 98% negative predictive value. BAT allowed reducing the number of required OFCs by two-thirds. BAT proved particularly useful in cases in which specialists could not accurately diagnose peanut allergy with SPT and sIgE to peanut and to Arah2. Using a 2-step diagnostic approach in which BAT was performed only after equivocal SPT or Arah2-sIgE, BAT had a major effect (97% reduction) on the number of OFCs required. BAT proved to be superior to other diagnostic tests in discriminating between peanut allergy and tolerance, particularly in difficult cases, and reduced the need for OFCs. Copyright © 2014. Published by Elsevier Inc.

  15. Road map for the clinical application of the basophil activation test in food allergy.

    PubMed

    Santos, A F; Shreffler, W G

    2017-09-01

    The diagnosis of IgE-mediated food allergy based solely on the clinical history and the documentation of specific IgE to whole allergen extract or single allergens is often ambiguous, requiring oral food challenges (OFCs), with the attendant risk and inconvenience to the patient, to confirm the diagnosis of food allergy. This is a considerable proportion of patients assessed in allergy clinics. The basophil activation test (BAT) has emerged as having superior specificity and comparable sensitivity to diagnose food allergy, when compared with skin prick test and specific IgE. BAT, therefore, may reduce the number of OFC required for accurate diagnosis, particularly positive OFC. BAT can also be used to monitor resolution of food allergy and the clinical response to immunomodulatory treatments. Given the practicalities involved in the performance of BAT, we propose that it can be applied for selected cases where the history, skin prick test and/or specific IgE are not definitive for the diagnosis of food allergy. In the cases that the BAT is positive, food allergy is sufficiently confirmed without OFC; in the cases that BAT is negative or the patient has non-responder basophils, OFC may still be indicated. However, broad clinical application of BAT demands further standardization of the laboratory procedure and of the flow cytometry data analyses, as well as clinical validation of BAT as a diagnostic test for multiple target allergens and confirmation of its feasibility and cost-effectiveness in multiple settings. © 2017 The Authors. Clinical & Experimental Allergy published by John Wiley & Sons Ltd.

  16. Basophil activation test with food additives in chronic urticaria patients.

    PubMed

    Kang, Min-Gyu; Song, Woo-Jung; Park, Han-Ki; Lim, Kyung-Hwan; Kim, Su-Jung; Lee, Suh-Young; Kim, Sae-Hoon; Cho, Sang-Heon; Min, Kyung-Up; Chang, Yoon-Seok

    2014-01-01

    The role of food additives in chronic urticaria (CU) is still under investigation. In this study, we aimed to explore the association between food additives and CU by using the basophil activation test (BAT). The BAT using 15 common food additives was performed for 15 patients with CU who had a history of recurrent urticarial aggravation following intake of various foods without a definite food-specific IgE. Of the 15 patients studied, two (13.3%) showed positive BAT results for one of the tested food additives. One patient responded to monosodium glutamate, showing 18.7% of CD203c-positive basophils. Another patient showed a positive BAT result to sodium benzoate. Both patients had clinical correlations with the agents, which were partly determined by elimination diets. The present study suggested that at least a small proportion of patients with CU had symptoms associated with food additives. The results may suggest the potential utility of the BAT to identity the role of food additives in CU.

  17. Basophil Activation Test with Food Additives in Chronic Urticaria Patients

    PubMed Central

    Kang, Min-Gyu; Song, Woo-Jung; Park, Han-Ki; Lim, Kyung-Hwan; Kim, Su-Jung; Lee, Suh-Young; Kim, Sae-Hoon; Cho, Sang-Heon; Min, Kyung-Up

    2014-01-01

    The role of food additives in chronic urticaria (CU) is still under investigation. In this study, we aimed to explore the association between food additives and CU by using the basophil activation test (BAT). The BAT using 15 common food additives was performed for 15 patients with CU who had a history of recurrent urticarial aggravation following intake of various foods without a definite food-specific IgE. Of the 15 patients studied, two (13.3%) showed positive BAT results for one of the tested food additives. One patient responded to monosodium glutamate, showing 18.7% of CD203c-positive basophils. Another patient showed a positive BAT result to sodium benzoate. Both patients had clinical correlations with the agents, which were partly determined by elimination diets. The present study suggested that at least a small proportion of patients with CU had symptoms associated with food additives. The results may suggest the potential utility of the BAT to identity the role of food additives in CU. PMID:24527415

  18. Bat activity in relation to fire and fire surrogate treatments in southern pine stands

    Treesearch

    Susan C. Loeb; Thomas A. Waldrop

    2008-01-01

    Forest managers often use thinning and prescribed burning to reduce the risk of wildfire and insect outbreaks. Because thinning and burning alter the structure of forest stands and may affect insect prey abundance, they may change the suitability of stands for bats. Our objective was to test the effects of thinning and burning on bat foraging and commuting activity in...

  19. On the reliability of the CD123-endowed basophil activation test (BAT) and its application in food allergy.

    PubMed

    Chirumbolo, Salvatore; Bjørklund, Geir; Vella, Antonio

    2018-06-15

    the recent paper by Appel et al., evaluated the use of the basophil activaion test (BAT) in sesame allergy and concluded that BAT should be preferentially used in association with high protein sesame extract-skin prick test (HSPE-SPT) for the diagnosis of sesame food allergy, so preventing any ethical issue regarding the possble risk associated with oral food challenge (OFC) 1 . The authors used a non commercial BAT approach endowed with the CD123 pos /HLADR neg phenotyping protocol and using CD63 and/or CD203c as activation markers 2,3 . Basophils were initially captured in flow cytometry (FC) from a not clearly separated side scatter (SSC)-CD123 pos . This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Immunotherapy in allergy and cellular tests

    PubMed Central

    Chirumbolo, Salvatore

    2014-01-01

    The basophil activation test (BAT) is an in vitro assay where the activation of basophils upon exposure to various IgE-challenging molecules is measured by flow cytometry. It is a cellular test able to investigate basophil behavior during allergy and allergy immunotherapy. A panoply of critical issues and suggestive advances have rendered this assay a promising yet puzzling tool to endeavor a full comprehension of innate immunity of allergy desensitization and manage allergen or monoclonal anti-IgE therapy. In this review a brief state of art of BAT in immunotherapy is described focusing onto the analytical issue pertaining BAT performance in allergy specific therapy. PMID:24717453

  1. The role of the brown adipose tissue in β3-adrenergic receptor activation-induced sleep, metabolic and feeding responses.

    PubMed

    Szentirmai, Éva; Kapás, Levente

    2017-04-19

    Brown adipose tissue (BAT) is regulated by the sympathetic nervous system via β3-adrenergic receptors (β3-AR). Here we tested the hypothesis that pharmacological stimulation of β3-ARs leads to increased sleep in mice and if this change is BAT dependent. In wild-type (WT) animals, administration of CL-316,243, a selective β3-AR agonist, induced significant increases in non-rapid-eye movement sleep (NREMS) lasting for 4-10 h. Simultaneously, electroencephalographic slow-wave activity (SWA) was significantly decreased and body temperature was increased with a delay of 5-6 h. In uncoupling protein 1 (UCP-1) knockout mice, the middle and highest doses of the β3-AR agonist increased sleep and suppressed SWA, however, these effects were significantly attenuated and shorter-lasting as compared to WT animals. To determine if somnogenic signals arising from BAT in response to β3-AR stimulation are mediated by the sensory afferents of BAT, we tested the effects of CL-316,243 in mice with the chemical deafferentation of the intra-scapular BAT pads. Sleep responses to CL-316,243 were attenuated by ~50% in intra-BAT capsaicin-treated mice. Present findings indicate that the activation of BAT via β3-AR leads to increased sleep in mice and that this effect is dependent on the presence of UCP-1 protein and sleep responses require the intact sensory innervation of BAT.

  2. A comparison of passive and active acoustic sampling for a bat community impacted by White-nose syndrome

    USGS Publications Warehouse

    Coleman, Laci S.; Ford, W. Mark; Dobony, Christopher A.; Britzke, Eric R.

    2014-01-01

    In the summers of 2011 and 2012, we compared passive and active acoustic sampling for bats at 31 sites at Fort Drum Military Installation, New York. We defined active sampling as acoustic sampling that occurred in 30-min intervals between the hours of sunset and 0200 with a user present to manipulate the directionality of the microphone. We defined passive sampling as acoustic sampling that occurred over a 12-h period (1900–0700 hours) without a user present and with the microphone set in a predetermined direction. We detected seven of the nine possible species at Fort Drum, including the federally endangered Indiana bat Myotis sodalis, the proposed-for-listing northern bat M. septentrionalis, the little brown bat M. lucifugus, and the big brown bat Eptesicus fuscus, which are impacted by white-nose syndrome (WNS); and the eastern red bat Lasiurus borealis, the hoary bat L. cinereus, and the silver-haired bat Lasionycteris noctivagans, which are not known to be impacted by WNS. We did not detect two additional WNS-impacted species known to historically occur in the area: the eastern small-footed bat Myotis leibii and the tri-colored bat Perimyotis subflavus. Single-season occupancy models revealed lower detection probabilities of all detected species using active sampling versus passive sampling. Additionally, overall detection probabilities declined in detected WNS-impacted species between years. A paired t-test of simultaneous sampling on 21 occasions revealed that overall recorded foraging activity per hour was greater using active than passive sampling for big brown bats and greater using passive than active sampling for little brown bats. There was no significant difference in recorded activity between methods for other WNS-impacted species, presumably because these species have been so reduced in number that their “apparency” on the landscape is lower. Finally, a cost analysis of standard passive and active sampling protocols revealed that passive sampling is substantially more cost-effective than active sampling per hour of data collection. We recommend passive sampling over active sampling methodologies as they are defined in our study for detection probability and/or occupancy studies focused on declining bat species in areas that have experienced severe WNS-associated impacts.

  3. Evaluation of innovative state and community alcohol projects : breath alcohol testing program effectiveness, impact and transferability

    DOT National Transportation Integrated Search

    1987-03-01

    Breath Alcohol Testing (BAT) programs in Albuquerque and Santa Fe, New Mexico are evaluated in regard to effectiveness, impact, and transferability of the special DWI enforcement squads and their use of BAT Mobiles. Squad activity effectiveness is me...

  4. Reply to 'On the reliability of the CD123-endowed basophil activation test (BAT) and its application in food allergy'.

    PubMed

    Appel, Michael Y; Nachshon, Liat; Elizur, Arnon; Levy, Michael B; Katz, Yitzhak; Goldberg, Michael R

    2018-06-19

    In response to the comments of Chirumbolo et al. concerning our recent paper 1 , we note that this group has published comments with similar concerns, in reply to various papers over the past several years 2-9 . Their general concern is that basophil gating strategies employed for the basophil activation test (BAT) vary between different publications, with potential for nonmaximal basophil purity to affect the interpretation of the BAT and thus its overall accuracy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. The basophil activation test in the diagnosis of allergy: technical issues and critical factors.

    PubMed

    Sturm, G J; Kranzelbinder, B; Sturm, E M; Heinemann, A; Groselj-Strele, A; Aberer, W

    2009-09-01

    The basophil activation test (BAT) is a widely validated and reliable tool especially for the diagnosis of hymenoptera venom allergy. Nevertheless, several pitfalls have to be considered and outcomes may differ because of diverse in-house protocols and commercially available kits. We aimed to identify the factors that may influence results of the CD63-based BAT. Basophil responses to monoclonal anti-IgE (clone E124.2.8) and bee and wasp venom were determined by BAT based on CD63. The effect of stimulating factors such as, IL-3, cytochalasin B and prewarming of the samples was investigated. Furthermore, we compared two different flow cytometer systems and evaluated the influence of storage time, different staining protocols and anti-allergic drugs on the test results. Interleukin-3 enhanced the reactivity of basophils at 300 pM, but not at 75 and 150 pM. Prewarming of samples and reagents did not affect basophil reactivity. CD63 expression assayed after storage time of up to 48 h showed that basophil reactivity already started to decline after 4 h. Basophils stained with HLA-DR-PC5 and CD123-PE antibodies gated as HLA-DR(neg)/CD123(pos) cells showed the highest reactivity. No effect on test outcomes was observed at therapeutic doses of dimetindene and desloratadine. Finally, slight differences in the percentage of activated basophils, depending on the cytometer system used, were found. Basophil activation test should be performed as early as possible after taking the blood sample, preferably within 4 h. In contrast to the skin test, BAT can be performed in patients undergoing treatment with antihistamines. For reasons of multiple influencing factors, BAT should be performed only at validated laboratories.

  6. Ultrasonic Bat Deterrent Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzie, Kevin; Rominger, Kathryn M.

    The project objective was to advance the development and testing of an Near commercial bat-deterrent system with a goal to increase the current GE deterrent system effectiveness to over 50% with broad species applicability. Additionally, the research supported by this program has provided insights into bat behavior and ultrasonic deterrent design that had not previously been explored. Prior research and development had demonstrated the effectiveness of a commercial-grade, air-powered, ultrasonic bat deterrent to be between 30-50% depending upon the species of bat. However, the previous research provided limited insight into the behavioral responses of bats in the presence of ultrasonicmore » deterrent sound fields that could be utilized to improve effectiveness. A unique bat flight room was utilized to observe the behavioral characteristics of bats in the presence of ultrasonic sound fields. Behavioral testing in the bat flight facility demonstrated that ultrasonic sounds similar to those produced by the GE deterrent influenced the activities and behaviors, primarily those associated with foraging, of the species exposed. The study also indicated that continuous and pulsing ultrasonic signals had a similar effect on the bats, and confirmed that as ultrasonic sounds attenuate, their influence on the bats’ activities and behavior decreases. Ground testing at Wolf Ridge Wind, LLC and Shawnee National Forest assessed both continuous and pulsing deterrent signals emitted from the GE deterrent system and further enhanced the behavioral understanding of bats in the presence of the deterrent. With these data and observations, the existing 4-nozzle continuous, or steady, emission ultrasonic system was redesigned to a 6-nozzle system that could emit a pulsing signal covering a larger air space around a turbine. Twelve GE 1.6-100 turbines were outfitted with the deterrent system and a formal three-month field study was performed using daily carcass searches beneath the 12 turbines. Additionally, a unique 3D bat flight path visualization system was utilized to monitor for and identify any changes in bat activity caused by the operation of the deterrent system. Both the carcass search and flight path visualization data indicated that the pulsed deterrent system was effective, but not more effective, than the steady system tested in prior years. The pulsed deterrent system was effective at reducing bat fatalities by 38% for all species and 54% effective at reducing fatalities if Eastern Red bats were excluded from the data. However, an unanticipated byproduct of the pulsing system was the emission of intermittent water vapor from the deterrent devices due to the air compression process that powered the devices. This water vapor may have altered the ultrasonic signal and obscured the results in an unknown way. While a qualitative analysis of the effect of the water vapor on the deterrent signal had indicated there was not dramatic change in the expected ultrasonic signal, it was not possible to conclusively determine if the pulse signal would have been more effective in the absence of the water vapor.« less

  7. Role of olfactory bulb serotonin in olfactory learning in the greater short-nosed fruit bat, Cynopterus sphinx (Chiroptera: Pteropodidae).

    PubMed

    Ganesh, Ambigapathy; Bogdanowicz, Wieslaw; Haupt, Moritz; Marimuthu, Ganapathy; Rajan, Koilmani Emmanuvel

    2010-09-17

    The role of olfactory bulb (OB) serotonin [5-hydroxytryptamine (5-HT)] in olfactory learning and memory was tested in the greater short-nosed fruit bat, Cynopterus sphinx (family Pteropodidae). Graded concentrations (25, 40, and 60microg) of 5,7-dihydroxytryptamine (5,7-DHT) or saline were injected into the OB of bats one day before training to the novel odor. In a behavioral test, 5,7-DHT (60microg) injected bats made significantly fewer feeding attempts and bouts when compared to saline-injected bats during learning and in the memory test. Subsequent biochemical analysis showed that 5-HT level was effectively depleted in the OB of 5,7-DHT injected bats. To test odor-induced 5-HT mediated changes in 5-HT receptors and second messenger cascade in the OB, we examined the expression of 5-HT receptors and mitogen-activated protein kinase (MAPK)/Erk cascade after training to the novel odor. We found that odor stimulation up-regulated the expression of 5-HT(1A) receptor, Erk1 and Creb1 mRNA, and phosphorylation of ERK1 and CREB1. Odor stimulation failed to induce expression in 5-HT-depleted bats, which is similar to control bats and significantly low compared to saline-treated bats. Together these data revealed that the level of 5-HT in the OB may regulate olfactory learning and memory in C. sphinx through Erk and CREB.

  8. Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats.

    PubMed

    Amichai, Eran; Blumrosen, Gaddi; Yovel, Yossi

    2015-12-22

    Active-sensing systems such as echolocation provide animals with distinct advantages in dark environments. For social animals, however, like many bat species, active sensing can present problems as well: when many individuals emit bio-sonar calls simultaneously, detecting and recognizing the faint echoes generated by one's own calls amid the general cacophony of the group becomes challenging. This problem is often termed 'jamming' and bats have been hypothesized to solve it by shifting the spectral content of their calls to decrease the overlap with the jamming signals. We tested bats' response in situations of extreme interference, mimicking a high density of bats. We played-back bat echolocation calls from multiple speakers, to jam flying Pipistrellus kuhlii bats, simulating a naturally occurring situation of many bats flying in proximity. We examined behavioural and echolocation parameters during search phase and target approach. Under severe interference, bats emitted calls of higher intensity and longer duration, and called more often. Slight spectral shifts were observed but they did not decrease the spectral overlap with jamming signals. We also found that pre-existing inter-individual spectral differences could allow self-call recognition. Results suggest that the bats' response aimed to increase the signal-to-noise ratio and not to avoid spectral overlap. © 2015 The Author(s).

  9. Decreased insulin-stimulated brown adipose tissue glucose uptake after short-term exercise training in healthy middle-aged men.

    PubMed

    Motiani, Piryanka; Virtanen, Kirsi A; Motiani, Kumail K; Eskelinen, Joonas J; Middelbeek, Roeland J; Goodyear, Laurie J; Savolainen, Anna M; Kemppainen, Jukka; Jensen, Jørgen; Din, Mueez U; Saunavaara, Virva; Parkkola, Riitta; Löyttyniemi, Eliisa; Knuuti, Juhani; Nuutila, Pirjo; Kalliokoski, Kari K; Hannukainen, Jarna C

    2017-10-01

    To test the hypothesis that high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) improve brown adipose tissue (BAT) insulin sensitivity. Healthy middle-aged men (n = 18, age 47 years [95% confidence interval {CI} 49, 43], body mass index 25.3 kg/m 2 [95% CI 24.1-26.3], peak oxygen uptake (VO 2peak ) 34.8 mL/kg/min [95% CI 32.1, 37.4] ) were recruited and randomized into six HIIT or MICT sessions within 2 weeks. Insulin-stimulated glucose uptake was measured using 2-[ 18 F]flouro-2-deoxy-D-glucose positron-emission tomography in BAT, skeletal muscle, and abdominal and femoral subcutaneous and visceral white adipose tissue (WAT) depots before and after the training interventions. Training improved VO 2peak (P = .0005), insulin-stimulated glucose uptake into the quadriceps femoris muscle (P = .0009) and femoral subcutaneous WAT (P = .02) but not into BAT, with no difference between the training modes. Using pre-intervention BAT glucose uptake, we next stratified subjects into high BAT (>2.9 µmol/100 g/min; n = 6) or low BAT (<2.9 µmol/100 g/min; n = 12) groups. Interestingly, training decreased insulin-stimulated BAT glucose uptake in the high BAT group (4.0 [2.8, 5.5] vs 2.5 [1.7, 3.6]; training*BAT, P = .02), whereas there was no effect of training in the low BAT group (1.5 [1.2, 1.9] vs 1.6 [1.2, 2.0] µmol/100 g/min). Participants in the high BAT group had lower levels of inflammatory markers compared with those in the low BAT group. Participants with functionally active BAT have an improved metabolic profile compared with those with low BAT activity. Short-term exercise training decreased insulin-stimulated BAT glucose uptake in participants with active BAT, suggesting that training does not work as a potent stimulus for BAT activation. © 2017 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

  10. Disease and community structure: white-nose syndrome alters spatial and temporal niche partitioning in sympatric bat species

    USGS Publications Warehouse

    Jachowski, David S.; Dobony, Christopher A.; Coleman, Laci S.; Ford, W. Mark; Britzke, Eric R.; Rodrigue, Jane L.

    2014-01-01

    AimEmerging infectious diseases present a major perturbation with apparent direct effects such as reduced population density, extirpation and/or extinction. Comparatively less is known about the potential indirect effects of disease that likely alter community structure and larger ecosystem function. Since 2006, white-nose syndrome (WNS) has resulted in the loss of over 6 million hibernating bats in eastern North America. Considerable evidence exists concerning niche partitioning in sympatric bat species in this region, and the unprecedented, rapid decline in multiple species following WNS may provide an opportunity to observe a dramatic restructuring of the bat community.LocationWe conducted our study at Fort Drum Army Installation in Jefferson and Lewis counties, New York, USA, where WNS first impacted extant bat species in winter 2007–2008.MethodsAcoustical monitoring during 2003–2011 allowed us to test the hypothesis that spatial and temporal niche partitioning by bats was relaxed post-WNS.ResultsWe detected nine bat species pre- and post-WNS. Activity for most bat species declined post-WNS. Dramatic post-WNS declines in activity of little brown bat (Myotis lucifugus, MYLU), formerly the most abundant bat species in the region, were associated with complex, often species-specific responses by other species that generally favoured increased spatial and temporal overlap with MYLU.Main conclusionsIn addition to the obvious direct effects of disease on bat populations and activity levels, our results provide evidence that disease can have cascading indirect effects on community structure. Recent occurrence of WNS in North America, combined with multiple existing stressors, is resulting in dramatic shifts in temporal and spatial niche partitioning within bat communities. These changes might influence long-term population viability of some bat species as well as broader scale ecosystem structure and function.

  11. Dead and dying Brazilian free-tailed bats (Tadarida brasiliensis) from Texas: Rabies and pesticide exposure

    USGS Publications Warehouse

    Clark, Donlad R.; Lollar, Amanda; Cowman, Deborah

    1996-01-01

    Twenty-three dead and dying Brazilian free-tailed bats from roosts in downtown Mineral Wells, Palo Pinto County, Texas, were tested for rabies and for anticholinesterase (antiChE) effects of or- ganophosphorus (OP) and carbamate pesticides. Seventeen of the 23 bats tested positive for rabies. The cause of death or dying in five of the nonrabid bats is unknown; however, one of the six nonrabid bats had a ChE activity level equivalent to only 27% of the control mean and may have been exposed to a pes- ticide. Three bats (including the bat with depressed ChE) contained sufficient ingesta to analyze for an- tiChE compounds, but no antiChE compounds could be identified in the samples. Exposure may be dermal and pulmonary as well as dietary. It is feasible that other bat deaths not explained by rabies were attributable to a pesticide but missed due to postmortem reactivation of the ChE enzyme. The largest group of rabid bats was young males (13 of 17, 76.5%), and the largest group of nonrabid bats was older females (3 of 6, 50%). All older females were nonrabid, perhaps survivors of the disease in previous years. Rabid bats had a lower mean fat index and weighed less than nonrabid bats. Four bats (not includ- ing the low ChE bat) showed external bleeding, and none was rabid; thus the incidence of bleeding was greater among nonrabid bats than among rabid bats. The four affected bats came from roosts in three different buildings, making a roost-treatment with an anticoagulant chemical seem unlikely.

  12. Spatial and temporal trends of bat-borne rabies in Chile.

    PubMed

    Escobar, L E; Restif, O; Yung, V; Favi, M; Pons, D J; Medina-Vogel, G

    2015-05-01

    In Chile, while dog rabies has decreased markedly over the last 30 years, bat rabies is still reported frequently. In order to shed new light on the spatiotemporal trends of these reports, we analysed active and passive data from years 1985 and 2012, which included 61 076 samples from 289 counties of Chile. We found that from 1994 to 2012, more than 15 000 bat samples were submitted for diagnostics through passive surveillance, 9·5% of which tested positive for rabies. By contrast, the prevalence of infection was only ~0·4% among the nearly 12 000 bat samples submitted through active surveillance. We found that the prevalence of dog rabies dropped steadily over the same period, with just a single confirmed case since 1998. None of the 928 samples from wild animals, other than bats, were positive for rabies. Although there has been only one confirmed case of human rabies in Chile since 1985, and a single confirmed case in a dog since 1998, bats remain a reservoir for rabies viruses. While active surveillance indicates that rabies prevalence is low in bat colonies, the high proportion of positive bats submitted through passive surveillance is a concern. To prevent human rabies, local public health agencies should increase research on the basic ecology of bats and the role of stray dogs and cats as potential rabies amplifiers.

  13. British American Tobacco on Facebook: undermining Article 13 of the global World Health Organization Framework Convention on Tobacco Control.

    PubMed

    Freeman, Becky; Chapman, Simon

    2010-06-01

    The World Health Organization Framework Convention on Tobacco Control (WHO FCTC) bans all forms of tobacco advertising, promotion and sponsorship. The comprehensiveness of this ban has yet to be tested by online social networking media such as Facebook. In this paper, the activities of employees of the transnational tobacco company, British American Tobacco, (BAT) on Facebook and the type of content associated with two globally popular BAT brands (Dunhill and Lucky Strike) are mapped. BAT employees on Facebook were identified and then the term 'British American Tobacco' was searched for in the Facebook search engine and results recorded, including titles, descriptions, names and the number of Facebook participants involved for each search result. To further detail any potential promotional activities, a search for two of BAT's global brands, 'Dunhill' and 'Lucky Strike', was conducted. Each of the 3 search terms generated more than 500 items across a variety of Facebook subsections. Some BAT employees are energetically promoting BAT and BAT brands on Facebook through joining and administrating groups, joining pages as fans and posting photographs of BAT events, products and promotional items. BAT employees undertaking these actions are from countries that have ratified the WHO FCTC, which requires signatories to ban all forms of tobacco advertising, including online and crossborder exposure from countries that are not enforcing advertising restrictions. The results of the present research could be used to test the comprehensiveness of the advertising ban by requesting that governments mandate the removal of this promotional material from Facebook.

  14. British American Tobacco on Facebook: undermining article 13 of the global World Health Organization Framework Convention on Tobacco Control

    PubMed Central

    Chapman, Simon

    2010-01-01

    Background The World Health Organization Framework Convention on Tobacco Control (WHO FCTC) bans all forms of tobacco advertising, promotion and sponsorship. The comprehensiveness of this ban has yet to be tested by online social networking media such as Facebook. In this paper, the activities of employees of the transnational tobacco company, British American Tobacco, (BAT) on Facebook and the type of content associated with two globally popular BAT brands (Dunhill and Lucky Strike) are mapped. Methods BAT employees on Facebook were identified and then the term ‘British American Tobacco’ was searched for in the Facebook search engine and results recorded, including titles, descriptions, names and the number of Facebook participants involved for each search result. To further detail any potential promotional activities, a search for two of BAT's global brands, ‘Dunhill’ and ‘Lucky Strike’, was conducted. Results Each of the 3 search terms generated more than 500 items across a variety of Facebook subsections. Discussion Some BAT employees are energetically promoting BAT and BAT brands on Facebook through joining and administrating groups, joining pages as fans and posting photographs of BAT events, products and promotional items. BAT employees undertaking these actions are from countries that have ratified the WHO FCTC, which requires signatories to ban all forms of tobacco advertising, including online and crossborder exposure from countries that are not enforcing advertising restrictions. The results of the present research could be used to test the comprehensiveness of the advertising ban by requesting that governments mandate the removal of this promotional material from Facebook. PMID:20395406

  15. Relaxed evolution in the tyrosine aminotransferase gene tat in old world fruit bats (Chiroptera: Pteropodidae).

    PubMed

    Shen, Bin; Fang, Tao; Yang, Tianxiao; Jones, Gareth; Irwin, David M; Zhang, Shuyi

    2014-01-01

    Frugivorous and nectarivorous bats fuel their metabolism mostly by using carbohydrates and allocate the restricted amounts of ingested proteins mainly for anabolic protein syntheses rather than for catabolic energy production. Thus, it is possible that genes involved in protein (amino acid) catabolism may have undergone relaxed evolution in these fruit- and nectar-eating bats. The tyrosine aminotransferase (TAT, encoded by the Tat gene) is the rate-limiting enzyme in the tyrosine catabolic pathway. To test whether the Tat gene has undergone relaxed evolution in the fruit- and nectar-eating bats, we obtained the Tat coding region from 20 bat species including four Old World fruit bats (Pteropodidae) and two New World fruit bats (Phyllostomidae). Phylogenetic reconstructions revealed a gene tree in which all echolocating bats (including the New World fruit bats) formed a monophyletic group. The phylogenetic conflict appears to stem from accelerated TAT protein sequence evolution in the Old World fruit bats. Our molecular evolutionary analyses confirmed a change in the selection pressure acting on Tat, which was likely caused by a relaxation of the evolutionary constraints on the Tat gene in the Old World fruit bats. Hepatic TAT activity assays showed that TAT activities in species of the Old World fruit bats are significantly lower than those of insectivorous bats and omnivorous mice, which was not caused by a change in TAT protein levels in the liver. Our study provides unambiguous evidence that the Tat gene has undergone relaxed evolution in the Old World fruit bats in response to changes in their metabolism due to the evolution of their special diet.

  16. Diagnosis of stinging insect allergy: utility of cellular in-vitro tests.

    PubMed

    Scherer, Kathrin; Bircher, Andreas J; Heijnen, Ingmar Afm

    2009-08-01

    Diagnosis of stinging insect allergy is based on a detailed history, venom skin tests, and detection of venom-specific IgE. As an additional diagnostic tool, basophil responsiveness to venom allergens has been shown to be helpful in selected patients. This review summarizes the current diagnostic procedures for stinging insect allergy and discusses the latest developments in cellular in-vitro tests. Cellular assays have been evaluated in patients with Hymenoptera venom allergy. The diagnostic performance of the cellular mediator release test is similar to that of the flow cytometric basophil activation test (BAT), but the BAT has been the most intensively studied. BAT offers the possibility to assess basophil reactivity to allergens in their natural environment and to simultaneously analyze surface marker expression and intracellular signaling. It has been demonstrated that BAT represents a valuable additional diagnostic tool in selected patients when used in combination with other well established tests. A major limitation is the current lack of unified, standardized protocols. Flow cytometry offers huge possibilities to enhance knowledge of basophil functions. The BAT may be used as an additional test to confirm the diagnosis of stinging insect allergy in selected patients, provided that it is performed by an experienced laboratory using a validated assay. Test results have to be interpreted by clinicians familiar with the methodological aspects. The utility of the BAT to confirm allergy diagnosis and to predict the risk of subsequent systemic reactions may be improved by combined analysis of multiple surface markers and intracellular signaling pathways.

  17. Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats

    PubMed Central

    Amichai, Eran; Blumrosen, Gaddi; Yovel, Yossi

    2015-01-01

    Active-sensing systems such as echolocation provide animals with distinct advantages in dark environments. For social animals, however, like many bat species, active sensing can present problems as well: when many individuals emit bio-sonar calls simultaneously, detecting and recognizing the faint echoes generated by one's own calls amid the general cacophony of the group becomes challenging. This problem is often termed ‘jamming’ and bats have been hypothesized to solve it by shifting the spectral content of their calls to decrease the overlap with the jamming signals. We tested bats’ response in situations of extreme interference, mimicking a high density of bats. We played-back bat echolocation calls from multiple speakers, to jam flying Pipistrellus kuhlii bats, simulating a naturally occurring situation of many bats flying in proximity. We examined behavioural and echolocation parameters during search phase and target approach. Under severe interference, bats emitted calls of higher intensity and longer duration, and called more often. Slight spectral shifts were observed but they did not decrease the spectral overlap with jamming signals. We also found that pre-existing inter-individual spectral differences could allow self-call recognition. Results suggest that the bats’ response aimed to increase the signal-to-noise ratio and not to avoid spectral overlap. PMID:26702045

  18. Loxoprofen sodium induces the production of complement C5a in human serum.

    PubMed

    Kumagai, Tomoaki; Yamaguchi, Nozomi; Hirai, Hiroyuki; Kojima, Shigeyuki; Kodani, Yoshiko; Hashiguchi, Akihiko; Haida, Michiko; Nakamura, Masataka

    2016-04-01

    Basophil activation test (BAT) is an in vitro allergy test that is useful to identify allergens that cause IgE-dependent allergies. The test has been used to detect not only food allergies and allergies caused by environmental factors but also to detect drug hypersensitivity, which has been known to include IgE-independent reactions. In our preliminary studies in which BAT was applied to detect hypersensitivity of loxoprofen, a non-steroidal anti-inflammatory drug (NSAID), conventional BAT with incubation for 30min did not show basophil activation by means of increased CD203c expression. In this study, we extended the incubation time to 24h on the basis of the hypothesis that loxoprofen indirectly activates basophils. Basophils from healthy control donors as well as allergic patients showed up-regulation of CD203c after incubation with loxoprofen for 24h. Activation was induced using loxoprofen-treated serum. Proteomic and pharmacologic analyses revealed that serum incubation with loxoprofen generated an active complement component C5a, which induced CD203c expression via binding to the C5a receptor on basophils. Because C3a production was also detected after incubation for 24h, loxoprofen is likely to stimulate the complement classical pathway. Our findings suggest that the complement activation is involved in drug hypersensitivity and the suppression of this activation may contribute to the elimination of false positive of BAT for drug allergies. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Role of the autonomic nervous system in activation of human brown adipose tissue: A review of the literature.

    PubMed

    Bahler, L; Molenaars, R J; Verberne, H J; Holleman, F

    2015-12-01

    Brown adipose tissue (BAT) is able to convert calories into heat rather than storing them. Therefore, activated BAT could be a potential target in the battle against obesity and type 2 diabetes. This review focuses on the role of the autonomic nervous system in the activation of human BAT. Although the number of studies focusing on BAT in humans is limited, involvement of the sympathetic nervous system (SNS) in BAT activation is evident. Metabolic BAT activity can be visualized with (18)F-fluorodeoxyglucose, whereas sympathetic activation of BAT can be visualized with nuclear-medicine techniques using different radiopharmaceuticals. Also, interruption of the sympathetic nerves leading to BAT activation diminishes sympathetic stimulation, resulting in reduced metabolic BAT activity. Furthermore, both β- and α-adrenoceptors might be important in the stimulation process of BAT, as pretreatment with propranolol or α-adrenoceptor blockade also diminishes BAT activity. In contrast, high catecholamine levels are known to activate and recruit BAT. There are several interventional studies in which BAT was successfully inhibited, whereas only one interventional study aiming to activate BAT resulted in the intended outcome. Most studies have focused on the SNS for activating BAT, although the parasympathetic nervous system might also be a target of interest. To better define the possible role of BAT in strategies to combat the obesity epidemic, it seems likely that future studies focusing on both histology and imaging are essential for identifying the factors and receptors critical for activation of human BAT. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Relaxed Evolution in the Tyrosine Aminotransferase Gene Tat in Old World Fruit Bats (Chiroptera: Pteropodidae)

    PubMed Central

    Shen, Bin; Fang, Tao; Yang, Tianxiao; Jones, Gareth; Irwin, David M.; Zhang, Shuyi

    2014-01-01

    Frugivorous and nectarivorous bats fuel their metabolism mostly by using carbohydrates and allocate the restricted amounts of ingested proteins mainly for anabolic protein syntheses rather than for catabolic energy production. Thus, it is possible that genes involved in protein (amino acid) catabolism may have undergone relaxed evolution in these fruit- and nectar-eating bats. The tyrosine aminotransferase (TAT, encoded by the Tat gene) is the rate-limiting enzyme in the tyrosine catabolic pathway. To test whether the Tat gene has undergone relaxed evolution in the fruit- and nectar-eating bats, we obtained the Tat coding region from 20 bat species including four Old World fruit bats (Pteropodidae) and two New World fruit bats (Phyllostomidae). Phylogenetic reconstructions revealed a gene tree in which all echolocating bats (including the New World fruit bats) formed a monophyletic group. The phylogenetic conflict appears to stem from accelerated TAT protein sequence evolution in the Old World fruit bats. Our molecular evolutionary analyses confirmed a change in the selection pressure acting on Tat, which was likely caused by a relaxation of the evolutionary constraints on the Tat gene in the Old World fruit bats. Hepatic TAT activity assays showed that TAT activities in species of the Old World fruit bats are significantly lower than those of insectivorous bats and omnivorous mice, which was not caused by a change in TAT protein levels in the liver. Our study provides unambiguous evidence that the Tat gene has undergone relaxed evolution in the Old World fruit bats in response to changes in their metabolism due to the evolution of their special diet. PMID:24824435

  1. LysoPC-acyl C16:0 is associated with brown adipose tissue activity in men.

    PubMed

    Boon, Mariëtte R; Bakker, Leontine E H; Prehn, Cornelia; Adamski, Jerzy; Vosselman, Maarten J; Jazet, Ingrid M; Arias-Bouda, Lenka M Pereira; van Lichtenbelt, Wouter D Marken; van Dijk, Ko Willems; Rensen, Patrick C N; Mook-Kanamori, Dennis O

    2017-01-01

    Brown adipose tissue (BAT) recently emerged as a potential therapeutic target in the treatment of obesity and associated disorders due to its fat-burning capacity. The current gold standard in assessing BAT activity is [ 18 F]FDG PET-CT scan, which has severe limitations including radiation exposure, being expensive, and being labor-intensive. Therefore, indirect markers are needed of human BAT activity and volume. We aimed to identify metabolites in serum that are associated with BAT volume and activity in men. We assessed 163 metabolites in fasted serum of a cohort of twenty-two healthy lean men (age 24.1 (21.7-26.6) years, BMI 22.1 (20.5-23.4) kg/m 2 ) who subsequently underwent a cold-induced [ 18 F]FDG PET-CT scan to assess BAT volume and activity. In addition, we included three replication cohorts consisting of in total thirty-seven healthy lean men that were similar with respect to age and BMI compared to the discovery cohort. After correction for multiple testing, fasting concentrations of lysophosphatidylcholine-acyl (LysoPC-acyl) C16:1, LysoPC-acyl C16:0 and phosphatidylcholine-diacyl C32:1 showed strong positive correlations with BAT volume (β= 116 (85-148) mL, R 2  = 0.81, p = 4.6 × 10 -7 ; β = 79 (93-119) mL, R 2  = 0.57, p = 5.9 × 10 -4 and β= 91 (40-141) mL, R 2  = 0.52, p = 1.0 × 10 -3 , respectively) as well as with BAT activity (β= 0.20 (0.11-0.29) g/mL, R 2  = 0.59, p = 1.9 × 10 -4 ; β = 0.15 (0.06-0.23) g/mL, R 2  = 0.47, p = 2.0 × 10 -3 and β= 0.13 (0.01-0.25) g/mL, R 2  = 0.28, p = 0.04, respectively). When tested in three independent replication cohorts (total n = 37), the association remained significant between LysoPC-acyl C16:0 and BAT activity in a pooled analysis (β= 0.15 (0.07-0.23) g/mL, R 2  = 0.08, p = 4.2 × 10 -4 ). LysoPC-acyl C16:0 is associated with BAT activity in men. Since BAT is regarded as a promising tool in the battle against obesity and related disorders, the identification of such a noninvasive marker is highly relevant.

  2. Seasonal bat activity related to insect emergence at three temperate lakes.

    PubMed

    Salvarina, Ioanna; Gravier, Dorian; Rothhaupt, Karl-Otto

    2018-04-01

    Knowledge of aquatic food resources entering terrestrial systems is important for food web studies and conservation planning. Bats, among other terrestrial consumers, often profit from aquatic insect emergence and their activity might be closely related to such events. However, there is a lack of studies which monitor bat activity simultaneously with aquatic insect emergence, especially from lakes. Thus, our aim was to understand the relationship between insect emergence and bat activity, and investigate whether there is a general spatial or seasonal pattern at lakeshores. We assessed whole-night bat activity using acoustic monitoring and caught emerging and aerial flying insects at three different lakes through three seasons. We predicted that insect availability and seasonality explain the variation in bat activity, independent of the lake size and characteristics. Spatial (between lakes) differences of bat activity were stronger than temporal (seasonal) differences. Bat activity did not always correlate to insect emergence, probably because other factors, such as habitat characteristics, or bats' energy requirements, play an important role as well. Aerial flying insects explained bat activity better than the emerged aquatic insects in the lake with lowest insect emergence. Bats were active throughout the night with some activity peaks, and the pattern of their activity also differed among lakes and seasons. Lakes are important habitats for bats, as they support diverse bat communities and activity throughout the night and the year when bats are active. Our study highlights that there are spatial and temporal differences in bat activity and its hourly nocturnal pattern, that should be considered when investigating aquatic-terrestrial interactions or designing conservation and monitoring plans.

  3. Monitoring seasonal bat activity on a coastal barrier island in Maryland, USA.

    PubMed

    Johnson, Joshua B; Gates, J Edward; Zegre, Nicolas P

    2011-02-01

    Research on effects of wind turbines on bats has increased dramatically in recent years because of significant numbers of bats killed by rotating wind turbine blades. Whereas most research has focused on the Midwest and inland portions of eastern North America, bat activity and migration on the Atlantic Coast has largely been unexamined. We used three long-term acoustic monitoring stations to determine seasonal bat activity patterns on the Assateague Island National Seashore, a barrier island off the coast of Maryland, from 2005 to 2006. We recorded five species, including eastern red bats (Lasiurus borealis), big brown bats (Eptesicus fuscus), hoary bats (Lasiurus cinereus), tri-colored bats (Perimyotis subflavus), and silver-haired bats (Lasionycteris noctivagans). Seasonal bat activity (number of bat passes recorded) followed a cosine function and gradually increased beginning in April, peaked in August, and declined gradually until cessation in December. Based on autoregressive models, inter-night bat activity was autocorrelated for lags of seven nights or fewer but varied among acoustic monitoring stations. Higher nightly temperatures and lower wind speeds positively affected bat activity. When autoregressive model predictions were fitted to the observed nightly bat pass totals, model residuals>2 standard deviations from the mean existed only during migration periods, indicating that periodic increases in bat activity could not be accounted for by seasonal trends and weather variables alone. Rather, the additional bat passes were attributable to migrating bats. We conclude that bats, specifically eastern red, hoary, and silver-haired bats, use this barrier island during migration and that this phenomenon may have implications for the development of near and offshore wind energy.

  4. Usefulness of the CD63 basophil activation test in detecting Anisakis hypersensitivity in patients with chronic urticaria: diagnosis and follow-up.

    PubMed

    Frezzolini, A; Cadoni, S; De Pità, O

    2010-10-01

    The basophil activation test (BAT) has been recently described as a useful in vitro tool for diagnosis of allergy to Anisakis species in patients with acute urticaria. To evaluate the relationship between sensitization to Anisakis simplex and chronic urticaria (CU), using flow cytometry analysis of in vitro BAT. Methods.  A. simplex sensitization was evaluated in patients with CU (n = 57) and in atopic (n = 22) and healthy controls (n = 20) by means of skin prick test (SPT), specific IgE and Anisakis-induced BAT using a triple-labelled strategy with anti-CD123, anti-human leucocyte antigen DR and anti-CD63 antibodies. During a follow-up period of 6 months in 10 patients with CU who accepted a fish-free dietary regimen, the diagnostic performance of the in vivo and in vitro methods was calculated, and changes in specific IgE and BAT were evaluated with respect to clinical response. A significant association between CU and A. simplex sensitization was found, with an overall prevalence of 75.4% in patients with CU (43/57) compared with 18% (4/22) and 10% (2/20) of the atopic and healthy controls, respectively (P < 0.0001). BAT (cut-off > 13%) had the highest sensitivity and specificity, with significantly better ability than specific IgE testing for the identification of A. simplex sensitization in patients with CU. During the 6-month follow-up, clinical improvement was seen in all patients, and specific IgE and BAT results decreased to normal values in 6/10 (60%) and 10/10 (100%) patients, respectively. BAT can be considered a reliable new in vitro method to evaluate A. simplex hypersensitivity in patients with CU, supplementing standardized procedures in both diagnosis and follow-up. © 2009 The Author(s). Journal compilation © 2009 British Association of Dermatologists.

  5. Toxicity of methyl parathion to bats: Mortality and coordination loss

    USGS Publications Warehouse

    Clark, D.R.

    1986-01-01

    The 24-h oral LD50 of methyl parathion (phosphorothioic acid O,O-dimethyl O-(4-nitrophenyl) ester) to little brown bats (Myotis lucifugus) (372 mg/kg) was 8.5 times the LD50 for mice (Mus musculus) (44 mg/kg). However, orally dosed mice either died or appeared behaviorally normal after 2 to 3 h, whereas many dosed bats, although alive at 24 h, could not right themselves when placed on their backs. The oral dose estimated to cause this loss of coordination in 50% of a sample of big brown bats (Eptesicus fuscus) was one-third or less the LD50 of this species. Cholinesterase activity depression in brains of little brown bats was similar whether dosage was oral or dermal. With death as the criterion, bats proved relatively insensitive to methyl parathion in 24-h tests, but considerations of the chemical's potential to cause coordination loss, leading to capture and death by predators, coupled with bats' naturally low reproductive rates, suggest possible injury to exposed bat populations.

  6. Win(d)-Win(d) Solutions for wind developers and bats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hein, Cris; Schirmacher, Michael; Arnett, Ed

    Bat Conservation International initiated a multi-year, pre-construction study in mid-summer 2009 to investigate patterns of bat activity and evaluate the use of acoustic monitoring to predict mortality of bats at the proposed Resolute Wind Energy Project (RWEP) in east-central Wyoming. The primary objectives of this study were to: (1) determine levels and patterns of activity for three phonic groups of bats (high-frequency emitting bats, low-frequency emitting bats, and hoary bats) using the proposed wind facility prior to construction of turbines; (2) determine if bat activity can be predicted based on weather patterns; correlate bat activity with weather variables; and (3)more » combine results from this study with those from similar efforts to determine if indices of pre-construction bat activity can be used to predict post-construction bat fatalities at proposed wind facilities. We report results from two years of pre-construction data collection.« less

  7. A comprehensive landscape approach for monitoring bats on the Nevada Test Site in south-central Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, D.

    The Nevada Test Site (NTS) is located in south-central Nevada and encompasses approximately 3,497 square kilometers (1,350 square miles). It straddles both the Mojave and Great Basin Deserts and includes a distinct transition region between these two deserts. Because of its geographical location, a great level of vegetative and physiographic diversity exists on the NTS. Also, numerous mines and tunnels are found on the NTS which are potential roost sites for bats. Multiple technqiues are being used to inventory and monitor the bat fauna on the NTS. These techniques include mistnetting at water sources with concurrent use of the Anabatmore » II bat detection system, conducting road surveys with the Anabat II system, and conducting exit surveys at mine and tunnel entrances using the Anabat II system. To date, a total of 13 species of bats has been documented on the NTS, of which six are considered species of concern by the US Fish and Wildlife Service. These include Townsend's big-eared bat (Corynorhinus townsendii), spotted bat (Euderma maculatum), small-footed myotis (Myotis ciliolabrum), long-eared myotis (M. evotis), fringed myotis (M. thysanodes), and long-legged myotis (M. volans). Results from mistnet and Anabat surveys reveal that all bat species of concern except for the long-legged myotis are found exclusively in the Great Basin Desert portion of the NTS. The long-legged myotis is found throughout the NTS. The Anabat II system has greatly facilitated the monitoring of bats on the NTS, and allowed biologists to cost effectively survey large areas for bat activity. Information obtained from bat monitoring will be used to develop and update guidelines for managing bats on the NTS.« less

  8. Frequent Extreme Cold Exposure and Brown Fat and Cold-Induced Thermogenesis: A Study in a Monozygotic Twin

    PubMed Central

    Vosselman, Maarten J.; Vijgen, Guy H. E. J.; Kingma, Boris R. M.; Brans, Boudewijn; van Marken Lichtenbelt, Wouter D.

    2014-01-01

    Introduction Mild cold acclimation is known to increase brown adipose tissue (BAT) activity and cold-induced thermogenesis (CIT) in humans. We here tested the effect of a lifestyle with frequent exposure to extreme cold on BAT and CIT in a Dutch man known as ‘the Iceman’, who has multiple world records in withstanding extreme cold challenges. Furthermore, his monozygotic twin brother who has a ‘normal’ sedentary lifestyle without extreme cold exposures was measured. Methods The Iceman (subject A) and his brother (subject B) were studied during mild cold (13°C) and thermoneutral conditions (31°C). Measurements included BAT activity and respiratory muscle activity by [18F]FDG-PET/CT imaging and energy expenditure through indirect calorimetry. In addition, body temperatures, cardiovascular parameters, skin perfusion, and thermal sensation and comfort were measured. Finally, we determined polymorphisms for uncoupling protein-1 and β3-adrenergic receptor. Results Subjects had comparable BAT activity (A: 1144 SUVtotal and B: 1325 SUVtotal), within the range previously observed in young adult men. They were genotyped with the polymorphism for uncoupling protein-1 (G/G). CIT was relatively high (A: 40.1% and B: 41.9%), but unlike during our previous cold exposure tests in young adult men, here both subjects practiced a g-Tummo like breathing technique, which involves vigorous respiratory muscle activity. This was confirmed by high [18F]FDG-uptake in respiratory muscle. Conclusion No significant differences were found between the two subjects, indicating that a lifestyle with frequent exposures to extreme cold does not seem to affect BAT activity and CIT. In both subjects, BAT was not higher compared to earlier observations, whereas CIT was very high, suggesting that g-Tummo like breathing during cold exposure may cause additional heat production by vigorous isometric respiratory muscle contraction. The results must be interpreted with caution given the low subject number and the fact that both participants practised the g-Tummo like breathing technique. PMID:25014028

  9. Rapid detection of MERS coronavirus-like viruses in bats: pote1ntial for tracking MERS coronavirus transmission and animal origin.

    PubMed

    Woo, Patrick C Y; Lau, Susanna K P; Chen, Yixin; Wong, Emily Y M; Chan, Kwok-Hung; Chen, Honglin; Zhang, Libiao; Xia, Ningshao; Yuen, Kwok-Yung

    2018-03-07

    Recently, we developed a monoclonal antibody-based rapid nucleocapsid protein detection assay for diagnosis of MERS coronavirus (MERS-CoV) in humans and dromedary camels. In this study, we examined the usefulness of this assay to detect other lineage C betacoronaviruses closely related to MERS-CoV in bats. The rapid MERS-CoV nucleocapsid protein detection assay was tested positive in 24 (88.9%) of 27 Tylonycteris bat CoV HKU4 (Ty-BatCoV-HKU4) RNA-positive alimentary samples of Tylonycteris pachypus and 4 (19.0%) of 21 Pipistrellus bat CoV HKU5 (Pi-BatCoV-HKU5) RNA-positive alimentary samples of Pipistrellus abramus. There was significantly more Ty-BatCoV-HKU4 RNA-positive alimentary samples than Pi-BatCoV-HKU5 RNA-positive alimentary samples that were tested positive by the rapid MERS-CoV nucleocapsid protein detection assay (P < 0.001 by Chi-square test). The rapid assay was tested negative in all 51 alimentary samples RNA-positive for alphacoronaviruses (Rhinolophus bat CoV HKU2, Myotis bat CoV HKU6, Miniopterus bat CoV HKU8 and Hipposideros batCoV HKU10) and 32 alimentary samples positive for lineage B (SARS-related Rhinolophus bat CoV HKU3) and lineage D (Rousettus bat CoV HKU9) betacoronaviruses. No significant difference was observed between the viral loads of Ty-BatCoV-HKU4/Pi-BatCoV-HKU5 RNA-positive alimentary samples that were tested positive and negative by the rapid test (Mann-Witney U test). The rapid MERS-CoV nucleocapsid protein detection assay is able to rapidly detect lineage C betacoronaviruses in bats. It detected significantly more Ty-BatCoV-HKU4 than Pi-BatCoV-HKU5 because MERS-CoV is more closely related to Ty-BatCoV-HKU4 than Pi-BatCoV-HKU5. This assay will facilitate rapid on-site mass screening of animal samples for ancestors of MERS-CoV and tracking transmission in the related bat species.

  10. Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis

    PubMed Central

    Razzoli, Maria; Frontini, Andrea; Gurney, Allison; Mondini, Eleonora; Cubuk, Cankut; Katz, Liora S.; Cero, Cheryl; Bolan, Patrick J.; Dopazo, Joaquin; Vidal-Puig, Antonio; Cinti, Saverio; Bartolomucci, Alessandro

    2015-01-01

    Background Stress-associated conditions such as psychoemotional reactivity and depression have been paradoxically linked to either weight gain or weight loss. This bi-directional effect of stress is not understood at the functional level. Here we tested the hypothesis that pre-stress level of adaptive thermogenesis and brown adipose tissue (BAT) functions explain the vulnerability or resilience to stress-induced obesity. Methods We used wt and triple β1,β2,β3−Adrenergic Receptors knockout (β-less) mice exposed to a model of chronic subordination stress (CSS) at either room temperature (22 °C) or murine thermoneutrality (30 °C). A combined behavioral, physiological, molecular, and immunohistochemical analysis was conducted to determine stress-induced modulation of energy balance and BAT structure and function. Immortalized brown adipocytes were used for in vitro assays. Results Departing from our initial observation that βARs are dispensable for cold-induced BAT browning, we demonstrated that under physiological conditions promoting low adaptive thermogenesis and BAT activity (e.g. thermoneutrality or genetic deletion of the βARs), exposure to CSS acted as a stimulus for BAT activation and thermogenesis, resulting in resistance to diet-induced obesity despite the presence of hyperphagia. Conversely, in wt mice acclimatized to room temperature, and therefore characterized by sustained BAT function, exposure to CSS increased vulnerability to obesity. Exposure to CSS enhanced the sympathetic innervation of BAT in wt acclimatized to thermoneutrality and in β-less mice. Despite increased sympathetic innervation suggesting adrenergic-mediated browning, norepinephrine did not promote browning in βARs knockout brown adipocytes, which led us to identify an alternative sympathetic/brown adipocytes purinergic pathway in the BAT. This pathway is downregulated under conditions of low adaptive thermogenesis requirements, is induced by stress, and elicits activation of UCP1 in wt and β-less brown adipocytes. Importantly, this purinergic pathway is conserved in human BAT. Conclusion Our findings demonstrate that thermogenesis and BAT function are determinant of the resilience or vulnerability to stress-induced obesity. Our data support a model in which adrenergic and purinergic pathways exert complementary/synergistic functions in BAT, thus suggesting an alternative to βARs agonists for the activation of human BAT. PMID:26844204

  11. Bat rabies surveillance in France: first report of unusual mortality among serotine bats.

    PubMed

    Picard-Meyer, Evelyne; Servat, Alexandre; Wasniewski, Marine; Gaillard, Matthieu; Borel, Christophe; Cliquet, Florence

    2017-12-13

    Rabies is a fatal viral encephalitic disease that is caused by lyssaviruses which can affect all mammals, including human and bats. In Europe, bat rabies cases are attributed to five different lyssavirus species, the majority of rabid bats being attributed to European bat 1 lyssavirus (EBLV-1), circulating mainly in serotine bats (Eptesicus serotinus). In France, rabies in bats is under surveillance since 1989, with 77 positive cases reported between 1989 and 2016. In the frame of the bat rabies surveillance, an unusual mortality of serotine bats was reported in 2009 in a village in North-East France. Six juvenile bats from an E. serotinus maternity colony counting ~200 individuals were found to be infected with EBLV-1. The active surveillance of the colony by capture sessions of bats from July to September 2009 showed a high detection rate of neutralising EBLV-1 antibodies (≈ 50%) in the colony. Moreover, one out of 111 animals tested was found to shed viable virus in saliva, while lyssavirus RNA was detected by RT-PCR for five individuals. This study demonstrated that the lyssavirus infection in the serotine maternity colony was followed by a high rate of bat rabies immunity after circulation of the virus in the colony. The ratio of seropositive bats is probably indicative of an efficient virus transmission coupled to a rapid circulation of EBLV-1 in the colony.

  12. Serological Evidence of Lyssavirus Infection among Bats in Nagaland, a North-Eastern State in India.

    PubMed

    Mani, R S; Dovih, D P; Ashwini, M A; Chattopadhyay, B; Harsha, P K; Garg, K M; Sudarshan, S; Puttaswamaiah, R; Ramakrishnan, U; Madhusudana, S N

    2017-06-01

    Bats are known to be reservoirs of several medically important viruses including lyssaviruses. However, no systematic surveillance for bat rabies has been carried out in India, a canine rabies endemic country with a high burden of human rabies. Surveillance for rabies virus (RABV) infection in bats was therefore carried out in Nagaland, a north-eastern state in India at sites with intense human-bat interfaces during traditional bat harvests. Brain tissues and sera from bats were tested for evidence of infection due to RABV. Brain tissues were subjected to the fluorescent antibody test for detection of viral antigen and real-time reverse transcriptase PCR for presence of viral RNA. Bat sera were tested for the presence of rabies neutralizing antibodies by the rapid fluorescent focus inhibition test. None of the bat brains tested (n = 164) were positive for viral antigen or viral RNA. However, rabies neutralizing antibodies were detected in 4/78 (5·1%) bat sera tested, suggesting prior exposure to RABV or related lyssaviruses. The serological evidence of lyssaviral infection in Indian bats may have important implications in disease transmission and rabies control measures, and warrant extensive bat surveillance to better define the prevalence of lyssaviral infection in bats.

  13. Western Bats as a Reservoir of Novel Streptomyces Species with Antifungal Activity.

    PubMed

    Hamm, Paris S; Caimi, Nicole A; Northup, Diana E; Valdez, Ernest W; Buecher, Debbie C; Dunlap, Christopher A; Labeda, David P; Lueschow, Shiloh; Porras-Alfaro, Andrea

    2017-03-01

    At least two-thirds of commercial antibiotics today are derived from Actinobacteria , more specifically from the genus Streptomyces Antibiotic resistance and new emerging diseases pose great challenges in the field of microbiology. Cave systems, in which actinobacteria are ubiquitous and abundant, represent new opportunities for the discovery of novel bacterial species and the study of their interactions with emergent pathogens. White-nose syndrome is an invasive bat disease caused by the fungus Pseudogymnoascus destructans , which has killed more than six million bats in the last 7 years. In this study, we isolated naturally occurring actinobacteria from white-nose syndrome (WNS)-free bats from five cave systems and surface locations in the vicinity in New Mexico and Arizona, USA. We sequenced the 16S rRNA region and tested 632 isolates from 12 different bat species using a bilayer plate method to evaluate antifungal activity. Thirty-six actinobacteria inhibited or stopped the growth of P. destructans , with 32 (88.9%) actinobacteria belonging to the genus Streptomyces Isolates in the genera Rhodococcus , Streptosporangium , Luteipulveratus , and Nocardiopsis also showed inhibition. Twenty-five of the isolates with antifungal activity against P. destructans represent 15 novel Streptomyces spp. based on multilocus sequence analysis. Our results suggest that bats in western North America caves possess novel bacterial microbiota with the potential to inhibit P. destructans IMPORTANCE This study reports the largest collection of actinobacteria from bats with activity against Pseudogymnoascus destructans , the fungal causative agent of white-nose syndrome. Using multigene analysis, we discovered 15 potential novel species. This research demonstrates that bats and caves may serve as a rich reservoir for novel Streptomyces species with antimicrobial bioactive compounds. Copyright © 2017 American Society for Microbiology.

  14. Western Bats as a Reservoir of Novel Streptomyces Species with Antifungal Activity

    PubMed Central

    Caimi, Nicole A.; Northup, Diana E.; Valdez, Ernest W.; Buecher, Debbie C.; Dunlap, Christopher A.; Labeda, David P.; Lueschow, Shiloh

    2016-01-01

    ABSTRACT At least two-thirds of commercial antibiotics today are derived from Actinobacteria, more specifically from the genus Streptomyces. Antibiotic resistance and new emerging diseases pose great challenges in the field of microbiology. Cave systems, in which actinobacteria are ubiquitous and abundant, represent new opportunities for the discovery of novel bacterial species and the study of their interactions with emergent pathogens. White-nose syndrome is an invasive bat disease caused by the fungus Pseudogymnoascus destructans, which has killed more than six million bats in the last 7 years. In this study, we isolated naturally occurring actinobacteria from white-nose syndrome (WNS)-free bats from five cave systems and surface locations in the vicinity in New Mexico and Arizona, USA. We sequenced the 16S rRNA region and tested 632 isolates from 12 different bat species using a bilayer plate method to evaluate antifungal activity. Thirty-six actinobacteria inhibited or stopped the growth of P. destructans, with 32 (88.9%) actinobacteria belonging to the genus Streptomyces. Isolates in the genera Rhodococcus, Streptosporangium, Luteipulveratus, and Nocardiopsis also showed inhibition. Twenty-five of the isolates with antifungal activity against P. destructans represent 15 novel Streptomyces spp. based on multilocus sequence analysis. Our results suggest that bats in western North America caves possess novel bacterial microbiota with the potential to inhibit P. destructans. IMPORTANCE This study reports the largest collection of actinobacteria from bats with activity against Pseudogymnoascus destructans, the fungal causative agent of white-nose syndrome. Using multigene analysis, we discovered 15 potential novel species. This research demonstrates that bats and caves may serve as a rich reservoir for novel Streptomyces species with antimicrobial bioactive compounds. PMID:27986729

  15. Suppression of emission rates improves sonar performance by flying bats.

    PubMed

    Adams, Amanda M; Davis, Kaylee; Smotherman, Michael

    2017-01-31

    Echolocating bats face the challenge of actively sensing their environment through their own emissions, while also hearing calls and echoes of nearby conspecifics. How bats mitigate interference is a long-standing question that has both ecological and technological implications, as biosonar systems continue to outperform man-made sonar systems in noisy, cluttered environments. We recently showed that perched bats decreased calling rates in groups, displaying a behavioral strategy resembling the back-off algorithms used in artificial communication networks to optimize information throughput at the group level. We tested whether free-tailed bats (Tadarida brasiliensis) would employ such a coordinated strategy while performing challenging flight maneuvers, and report here that bats navigating obstacles lowered emission rates when hearing artificial playback of another bat's calls. We measured the impact of acoustic interference on navigation performance and show that the calculated reductions in interference rates are sufficient to reduce interference and improve obstacle avoidance. When bats flew in pairs, each bat responded to the presence of the other as an obstacle by increasing emissions, but hearing the sonar emissions of the nearby bat partially suppressed this response. This behavior supports social cohesion by providing a key mechanism for minimizing mutual interference.

  16. Western bats as a reservoir of novel Streptomyces species with antifungal activity

    USGS Publications Warehouse

    Hamm, Paris S.; Caimi, Nicole A.; Northup, Diana E.; Valdez, Ernest W.; Buecher, Debbie C.; Dunlap, Christopher A.; Labeda, David P.; Lueschow, Shiloh; Porras-Alfaro, Andrea

    2017-01-01

    At least two-thirds of commercial antibiotics today are derived from Actinobacteria, more specifically from the genus Streptomyces. Antibiotic resistance and new emerging diseases pose great challenges in the field of microbiology. Cave systems, in which actinobacteria are ubiquitous and abundant, represent new opportunities for the discovery of novel bacterial species and the study of their interactions with emergent pathogens. White-nose syndrome is an invasive bat disease caused by the fungus Pseudogymnoascus destructans, which has killed more than six million bats in the last 7 years. In this study, we isolated naturally occurring actinobacteria from white-nose syndrome (WNS)-free bats from five cave systems and surface locations in the vicinity in New Mexico and Arizona, USA. We sequenced the 16S rRNA region and tested 632 isolates from 12 different bat species using a bilayer plate method to evaluate antifungal activity. Thirty-six actinobacteria inhibited or stopped the growth of P. destructans, with 32 (88.9%) actinobacteria belonging to the genus Streptomyces. Isolates in the genera Rhodococcus, Streptosporangium, Luteipulveratus, and Nocardiopsis also showed inhibition. Twenty-five of the isolates with antifungal activity against P. destructans represent 15 novel Streptomyces spp. based on multilocus sequence analysis. Our results suggest that bats in western North America caves possess novel bacterial microbiota with the potential to inhibit P. destructans.

  17. Arizona bark scorpion venom resistance in the pallid bat, Antrozous pallidus

    PubMed Central

    Hopp, Bradley H.; Arvidson, Ryan S.; Adams, Michael E.; Razak, Khaleel A.

    2017-01-01

    The pallid bat (Antrozous pallidus), a gleaning bat found in the western United States and Mexico, hunts a wide variety of ground-dwelling prey, including scorpions. Anecdotal evidence suggests that the pallid bat is resistant to scorpion venom, but no systematic study has been performed. Here we show with behavioral measures and direct injection of venom that the pallid bat is resistant to venom of the Arizona bark scorpion, Centruroides sculpturatus. Our results show that the pallid bat is stung multiple times during a hunt without any noticeable effect on behavior. In addition, direct injection of venom at mouse LD50 concentrations (1.5 mg/kg) has no effect on bat behavior. At the highest concentration tested (10 mg/kg), three out of four bats showed no effects. One of the four bats showed a transient effect suggesting that additional studies are required to identify potential regional variation in venom tolerance. Scorpion venom is a cocktail of toxins, some of which activate voltage-gated sodium ion channels, causing intense pain. Dorsal root ganglia (DRG) contain nociceptive neurons and are principal targets of scorpion venom toxins. To understand if mutations in specific ion channels contribute to venom resistance, a pallid bat DRG transcriptome was generated. As sodium channels are a major target of scorpion venom, we identified amino acid substitutions present in the pallid bat that may lead to venom resistance. Some of these substitutions are similar to corresponding amino acids in sodium channel isoforms responsible for reduced venom binding activity. The substitution found previously in the grasshopper mouse providing venom resistance to the bark scorpion is not present in the pallid bat, indicating a potentially novel mechanism for venom resistance in the bat that remains to be identified. Taken together, these results indicate that the pallid bat is resistant to venom of the bark scorpion and altered sodium ion channel function may partly underlie such resistance. PMID:28854259

  18. Arizona bark scorpion venom resistance in the pallid bat, Antrozous pallidus.

    PubMed

    Hopp, Bradley H; Arvidson, Ryan S; Adams, Michael E; Razak, Khaleel A

    2017-01-01

    The pallid bat (Antrozous pallidus), a gleaning bat found in the western United States and Mexico, hunts a wide variety of ground-dwelling prey, including scorpions. Anecdotal evidence suggests that the pallid bat is resistant to scorpion venom, but no systematic study has been performed. Here we show with behavioral measures and direct injection of venom that the pallid bat is resistant to venom of the Arizona bark scorpion, Centruroides sculpturatus. Our results show that the pallid bat is stung multiple times during a hunt without any noticeable effect on behavior. In addition, direct injection of venom at mouse LD50 concentrations (1.5 mg/kg) has no effect on bat behavior. At the highest concentration tested (10 mg/kg), three out of four bats showed no effects. One of the four bats showed a transient effect suggesting that additional studies are required to identify potential regional variation in venom tolerance. Scorpion venom is a cocktail of toxins, some of which activate voltage-gated sodium ion channels, causing intense pain. Dorsal root ganglia (DRG) contain nociceptive neurons and are principal targets of scorpion venom toxins. To understand if mutations in specific ion channels contribute to venom resistance, a pallid bat DRG transcriptome was generated. As sodium channels are a major target of scorpion venom, we identified amino acid substitutions present in the pallid bat that may lead to venom resistance. Some of these substitutions are similar to corresponding amino acids in sodium channel isoforms responsible for reduced venom binding activity. The substitution found previously in the grasshopper mouse providing venom resistance to the bark scorpion is not present in the pallid bat, indicating a potentially novel mechanism for venom resistance in the bat that remains to be identified. Taken together, these results indicate that the pallid bat is resistant to venom of the bark scorpion and altered sodium ion channel function may partly underlie such resistance.

  19. European Bat Lyssavirus in Scottish Bats

    PubMed Central

    Brookes, Sharon M.; Aegerter, James N.; Smith, Graham C.; Healy, Derek M.; Jolliffe, Tracey A.; Swift, Susan M.; Mackie, Iain J.; Pritchard, J. Stewart; Racey, Paul A.; Moore, Niall P.

    2005-01-01

    We report the first seroprevalence study of the occurrence of specific antibodies to European bat lyssavirus type 2 (EBLV-2) in Daubenton's bats. Bats were captured from 19 sites across eastern and southern Scotland. Samples from 198 Daubenton's bats, 20 Natterer's bats, and 6 Pipistrelle's bats were tested for EBLV-2. Blood samples (N = 94) were subjected to a modified fluorescent antibody virus neutralization test to determine antibody titer. From 0.05% to 3.8% (95% confidence interval) of Daubenton's bats were seropositive. Antibodies to EBLV-2 were not detected in the 2 other species tested. Mouth swabs (N = 218) were obtained, and RNA was extracted for a reverse transcription–polymerase chain reaction (RT-PCR). The RT-PCR included pan lyssavirus-primers (N gene) and internal PCR control primers for ribosomal RNA. EBLV-2 RNA was not detected in any of the saliva samples tested, and live virus was not detected in virus isolation tests. PMID:15829196

  20. Large roads reduce bat activity across multiple species.

    PubMed

    Kitzes, Justin; Merenlender, Adina

    2014-01-01

    Although the negative impacts of roads on many terrestrial vertebrate and bird populations are well documented, there have been few studies of the road ecology of bats. To examine the effects of large roads on bat populations, we used acoustic recorders to survey bat activity along ten 300 m transects bordering three large highways in northern California, applying a newly developed statistical classifier to identify recorded calls to the species level. Nightly counts of bat passes were analyzed with generalized linear mixed models to determine the relationship between bat activity and distance from a road. Total bat activity recorded at points adjacent to roads was found to be approximately one-half the level observed at 300 m. Statistically significant road effects were also found for the Brazilian free-tailed bat (Tadarida brasiliensis), big brown bat (Eptesicus fuscus), hoary bat (Lasiurus cinereus), and silver-haired bat (Lasionycteris noctivagans). The road effect was found to be temperature dependent, with hot days both increasing total activity at night and reducing the difference between activity levels near and far from roads. These results suggest that the environmental impacts of road construction may include degradation of bat habitat and that mitigation activities for this habitat loss may be necessary to protect bat populations.

  1. Intra- and interspecific responses to Rafinesque’s big-eared bat (Corynorhinus rafinesquii) social calls.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loeb, Susan, C.; Britzke, Eric, R.

    Bats respond to the calls of conspecifics as well as to calls of other species; however, few studies have attempted to quantify these responses or understand the functions of these calls. We tested the response of Rafinesque’s big-eared bats (Corynorhinus rafinesquii) to social calls as a possible method to increase capture success and to understand the function of social calls. We also tested if calls of bats within the range of the previously designated subspecies differed, if the responses of Rafinesque’s big-eared bats varied with geographic origin of the calls, and if other species responded to the calls of C.more » rafinesquii. We recorded calls of Rafinesque’s big-eared bats at two colony roost sites in South Carolina, USA. Calls were recorded while bats were in the roosts and as they exited. Playback sequences for each site were created by copying typical pulses into the playback file. Two mist nets were placed approximately 50–500 m from known roost sites; the net with the playback equipment served as the Experimental net and the one without the equipment served as the Control net. Call structures differed significantly between the Mountain and Coastal Plains populations with calls from the Mountains being of higher frequency and longer duration. Ten of 11 Rafinesque’s big-eared bats were caught in the Control nets and, 13 of 19 bats of other species were captured at Experimental nets even though overall bat activity did not differ significantly between Control and Experimental nets. Our results suggest that Rafinesque’s big-eared bats are not attracted to conspecifics’ calls and that these calls may act as an intraspecific spacing mechanism during foraging.« less

  2. Basophil Reactivity as Biomarker in Immediate Drug Hypersensitivity Reactions—Potential and Limitations

    PubMed Central

    Steiner, Markus; Harrer, Andrea; Himly, Martin

    2016-01-01

    Immediate drug hypersensitivity reactions (DHRs) resemble typical immunoglobulin E (IgE)-mediated symptoms. Clinical manifestations range from local skin reactions, gastrointestinal and/or respiratory symptoms to severe systemic involvement with potential fatal outcome. Depending on the substance group of the eliciting drug the correct diagnosis is a major challenge. Skin testing and in vitro diagnostics are often unreliable and not reproducible. The involvement of drug-specific IgE is questionable in many cases. The culprit substance (parent drug or metabolite) and potential cross-reacting compounds are difficult to identify, patient history and drug provocation testing often remain the only means for diagnosis. Hence, several groups proposed basophil activation test (BAT) for the diagnosis of immediate DHRs as basophils are well-known effector cells in allergic reactions. However, the usefulness of BAT in immediate DHRs is highly variable and dependent on the drug itself plus its capacity to spontaneously conjugate to serum proteins. Stimulation with pure solutions of the parent drug or metabolites thereof vs. drug-protein conjugates may influence sensitivity and specificity of the test. We thus, reviewed the available literature about the use of BAT for diagnosing immediate DHRs against drug classes such as antibiotics, radio contrast media, neuromuscular blocking agents, non-steroidal anti-inflammatory drugs, and biologicals. Influencing factors like the selection of stimulants or of the identification and activation markers, the stimulation protocol, gating strategies, and cut-off definition are addressed in this overview on BAT performance. The overall aim is to evaluate the suitability of BAT as biomarker for the diagnosis of immediate drug-induced hypersensitivity reactions. PMID:27378928

  3. Warm-up with weighted bat and adjustment of upper limb muscle activity in bat swinging under movement correction conditions.

    PubMed

    Ohta, Yoichi; Ishii, Yasumitsu; Ikudome, Sachi; Nakamoto, Hiroki

    2014-02-01

    The effects of weighted bat warm-up on adjustment of upper limb muscle activity were investigated during baseball bat swinging under dynamic conditions that require a spatial and temporal adjustment of the swinging to hit a moving target. Seven male college baseball players participated in this study. Using a batting simulator, the task was to swing the standard bat coincident with the arrival timing and position of a moving target after three warm-up swings using a standard or weighted bat. There was no significant effect of weighted bat warm-up on muscle activity before impact associated with temporal or spatial movement corrections. However, lower inhibition of the extensor carpi ulnaris muscle activity was observed in a velocity-changed condition in the weighted bat warm-up, as compared to a standard bat warm-up. It is suggested that weighted bat warm-up decreases the adjustment ability associated with inhibition of muscle activation under movement correction conditions.

  4. Molecular mechanism underlying muscle mass retention in hibernating bats: role of periodic arousal.

    PubMed

    Lee, Kisoo; So, Hyekyoung; Gwag, Taesik; Ju, Hyunwoo; Lee, Ju-Woon; Yamashita, Masamichi; Choi, Inho

    2010-02-01

    Hibernators like bats show only marginal muscle atrophy during prolonged hibernation. The current study was designed to test the hypothesis that hibernators use periodic arousal to increase protein anabolism that compensates for the continuous muscle proteolysis during disuse. To test this hypothesis, we investigated the effects of 3-month hibernation (HB) and 7-day post-arousal torpor (TP) followed by re-arousal (RA) on signaling activities in the pectoral muscles of summer-active (SA) and dormant Murina leucogaster bats. The bats did not lose muscle mass relative to body mass during the HB or TP-to-RA period. For the first 30-min following arousal, the peak amplitude and frequency of electromyographic spikes increased 3.1- and 1.4-fold, respectively, indicating massive myofiber recruitment and elevated motor signaling during shivering. Immunoblot analyses of whole-tissue lysates revealed several principal outcomes: (1) for the 3-month HB, the phosphorylation levels of Akt1 (p-Akt1) and p-mTOR decreased significantly compared to SA bats, but p-FoxO1 levels remained unaltered; (2) for the TP-to-RA period, p-Akt1 and p-FoxO1 varied little, while p-mTOR showed biphasic oscillation; (3) proteolytic signals (i.e., atrogin-1, MuRF1, Skp2 and calpain-1) remained constant during the HB and TP-to-RA period. These results suggest that the resistive properties of torpid bat muscle against atrophy might be attained primarily by relatively constant proteolysis in combination with oscillatory anabolic activity (e.g., p-mTOR) corresponding to the frequency of arousals occurring throughout hibernation. (c) 2009 Wiley-Liss, Inc.

  5. Seasonal influence on stimulated BAT activity in prospective trials: a retrospective analysis of BAT visualized on 18F-FDG PET-CTs and 123I-mIBG SPECT-CTs.

    PubMed

    Bahler, Lonneke; Deelen, Jan W; Hoekstra, Joost B; Holleman, Frits; Verberne, Hein J

    2016-06-15

    Retrospective studies have shown that outdoor temperature influences the prevalence of detectable brown adipose tissue (BAT). Prospective studies use acute cold exposure to activate BAT. In prospective studies, BAT might be preconditioned in winter months leading to an increased BAT response to various stimuli. Therefore the aim of this study was to assess whether outdoor temperatures and other weather characteristics modulate the response of BAT to acute cold. To assess metabolic BAT activity and sympathetic outflow to BAT, 64 (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography-computed tomography (PET-CT) and 56 additional (123)I-meta-iodobenzylguanidine ((123)I-mIBG) single-photon emission computed tomography-CT (SPECT-CT) scans, respectively, of subjects participating in previously executed trials were retrospectively included. BAT activity was measured in subjects after an overnight fast, following 2 h of cold exposure (∼17°C). The average daytime outdoor temperatures and other weather characteristics were obtained from the Dutch Royal Weather Institute. Forty-nine subjects were BAT positive. One week prior to the scan, outdoor temperature was significantly lower in the BAT-positive group compared with the BAT-negative group. Higher outdoor temperatures on preceding days resulted in lower stimulated metabolic BAT activity and volume (all P < 0.01). Outdoor temperatures did not correlate with sympathetic outflow to BAT. In conclusion, outdoor temperatures influence metabolic BAT activity and volume, but not sympathetic outflow to BAT, in subjects exposed to acute cold. To improve the consistency of the findings of future BAT studies in humans and to exclude bias introduced by outdoor temperatures, these studies should be planned in periods of similar outdoor temperatures. Copyright © 2016 the American Physiological Society.

  6. Suppression of emission rates improves sonar performance by flying bats

    PubMed Central

    Adams, Amanda M.; Davis, Kaylee; Smotherman, Michael

    2017-01-01

    Echolocating bats face the challenge of actively sensing their environment through their own emissions, while also hearing calls and echoes of nearby conspecifics. How bats mitigate interference is a long-standing question that has both ecological and technological implications, as biosonar systems continue to outperform man-made sonar systems in noisy, cluttered environments. We recently showed that perched bats decreased calling rates in groups, displaying a behavioral strategy resembling the back-off algorithms used in artificial communication networks to optimize information throughput at the group level. We tested whether free-tailed bats (Tadarida brasiliensis) would employ such a coordinated strategy while performing challenging flight maneuvers, and report here that bats navigating obstacles lowered emission rates when hearing artificial playback of another bat’s calls. We measured the impact of acoustic interference on navigation performance and show that the calculated reductions in interference rates are sufficient to reduce interference and improve obstacle avoidance. When bats flew in pairs, each bat responded to the presence of the other as an obstacle by increasing emissions, but hearing the sonar emissions of the nearby bat partially suppressed this response. This behavior supports social cohesion by providing a key mechanism for minimizing mutual interference. PMID:28139707

  7. Isolation and purification of a new kalimantacin/batumin-related polyketide antibiotic and elucidation of its biosynthesis gene cluster.

    PubMed

    Mattheus, Wesley; Gao, Ling-Jie; Herdewijn, Piet; Landuyt, Bart; Verhaegen, Jan; Masschelein, Joleen; Volckaert, Guido; Lavigne, Rob

    2010-02-26

    Kal/bat, a polyketide, isolated to high purity (>95%) is characterized by strong and selective antibacterial activity against Staphylococcus species (minimum inhibitory concentration, 0.05 microg/mL), and no resistance was observed in strains already resistant to commonly used antibiotics. The kal/bat biosynthesis gene cluster was determined to a 62 kb genomic region of Pseudomonas fluorescens BCCM_ID9359. The kal/bat gene cluster consists of 16 open reading frames (ORF), encoding a hybrid PKS-NRPS system, extended with trans-acting tailoring functions. A full model for kal/bat biosynthesis is postulated and experimentally tested by gene inactivation, structural confirmation (using NMR spectroscopy), and complementation. The structural and microbiological study of biosynthetic kal/bat analogs revealed the importance of the carbamoyl group and 17-keto group for antibacterial activity. The mechanism of self-resistance lies within the production of an inactive intermediate, which is activated in a one-step enzymatic oxidation upon export. The genetic basis and biochemical elucidation of the biosynthesis pathway of this antibiotic will facilitate rational engineering for the design of novel structures with improved activities. This makes it a promising new therapeutic option to cope with multidrug-resistant clinical infections. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Evaluation of the basophil activation test and skin prick testing for the diagnosis of sesame food allergy.

    PubMed

    Appel, Michael Y; Nachshon, Liat; Elizur, Arnon; Levy, Michael B; Katz, Yitzhak; Goldberg, Michael R

    2018-05-14

    The prevalence of sesame food allergy (SFA) has increased over recent years, with the potential of anaphylactic reactions upon exposure. Oral food challenge (OFC) remains the diagnostic standard, yet its implementation may be risky. Commercial skin prick tests (SPT) have a low sensitivity. Investigation of alternate diagnostic methods is warranted. To evaluate the utility of SPT and the basophil activation test (BAT) for SFA diagnosis. Eighty-two patients with suspected SFA completed an open OFC to sesame or reported a recent confirmed reaction. Patients were administered skin prick tests (SPT) with commercial sesame seed extract (CSSE), and a high protein concentration sesame extract (HPSE) (100 mg/ml protein). Whole blood from eighty patients was stimulated with sesame seed extract (40-10000 ng/ml protein) for BAT), assessing CD63 and CD203c as activation markers. Sixty patients (73%) had IgE-mediated reactions to sesame, and 22 (27%) did not react. Receiver operating characteristic (ROC) curve analysis demonstrated an area under the curve (AUC) of 0.87 for HPSE-SPT, and 0.66 for CSSE-SPT. At 1000 ng/ml of sesame protein, induction of CD63 and CD203c was weakly but significantly associated with OFC eliciting dose by rank (Spearman's rho= -0.42 (P<0.01) and -0.35 (P<0.05) for CD63 and CD203c, respectively). By ROC analysis, the AUC for CD63 was 0.86, and was 0.81 for CD203c sesame-induced basophil expression. Using HPSE-SPT as a first test to definitively diagnose (n=24) or rule out (n=5) SFA and BAT as a second test to diagnose the remainder, results in the correct classification of 73/80 (91%) patients, leaving one false negative and four false positive patients. Two BAT non-responders remain unclassified by this algorithm. While prospective cohort validation is necessary, joint utilization of BAT and SPT with HPSE extract may obviate the need for OFC in most SFA patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Winter Activity of Coastal Plain Populations of Bat Species Affected by White-Nose Syndrome and Wind Energy Facilities.

    PubMed

    Grider, John F; Larsen, Angela L; Homyack, Jessica A; Kalcounis-Rueppell, Matina C

    2016-01-01

    Across the entire distribution of a species, populations may have variable responses to environmental perturbations. Many bat species experience mortality in large portions of their range during hibernation and along migratory paths to and from wintering grounds, from White-nose syndrome (WNS) and wind energy development, respectively. In some areas, warm temperatures may allow bats to remain active through winter, thus decreasing their susceptibility to WNS and/or mortality associated with migration to wintering grounds. These areas could act as a refugia and be important for the persistence of local populations. To determine if warmer temperatures affect bat activity, we compared year-round activity of bat populations in the Coastal Plain and Piedmont of North Carolina, USA, two regions that differ in winter temperature. We established six recording stations, four along a 295-kilometer north-south transect in the Coastal Plain, and two in the Piedmont of North Carolina. We recorded bat activity over two years. We supplemented our recordings with mist-net data. Although bat activity was lower during winter at all sites, the odds of recording a bat during winter were higher at Coastal Plain sites when compared with Piedmont sites. Further, bats in the Piedmont had a lower level of winter activity compared to summer activity than bats in the Coastal Plain that had more similar levels of activity in the winter and summer. We found high bat species richness on the Coastal Plain in winter, with winter-active species including those known to hibernate throughout most of their range and others known to be long distance migrants. In particular, two species impacted by WNS, the northern long-eared bat (Myotis septentrionalis) and tricolored bat (Perimyotis subflavus), were present year round in the Coastal Plain. The tricolored bat was also present year-round in the Piedmont. In the Coastal Plain, the long distance migratory hoary bat (Lasiurus cinereus) was active in the winter but not present during the other seasons, and the long distance migratory silver-haired bat (Lasionycteris noctivagans) was active primarily in the winter, suggesting the Coastal Plain may be an overwintering ground for these two species. We suggest that the winter activity exhibited by populations of bats on the North Carolina Coastal Plain has important conservation implications and these populations should be carefully monitored and afforded protection.

  10. BAT3 Analyzer: Real-Time Data Display and Interpretation Software for the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3)

    USGS Publications Warehouse

    Winston, Richard B.; Shapiro, Allen M.

    2007-01-01

    The BAT3 Analyzer provides real-time display and interpretation of fluid pressure responses and flow rates measured during geochemical sampling, hydraulic testing, or tracer testing conducted with the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3) (Shapiro, 2007). Real-time display of the data collected with the Multifunction BAT3 allows the user to ensure that the downhole apparatus is operating properly, and that test procedures can be modified to correct for unanticipated hydraulic responses during testing. The BAT3 Analyzer can apply calibrations to the pressure transducer and flow meter data to display physically meaningful values. Plots of the time-varying data can be formatted for a specified time interval, and either saved to files, or printed. Libraries of calibrations for the pressure transducers and flow meters can be created, updated and reloaded to facilitate the rapid set up of the software to display data collected during testing with the Multifunction BAT3. The BAT3 Analyzer also has the functionality to estimate calibrations for pressure transducers and flow meters using data collected with the Multifunction BAT3 in conjunction with corroborating check measurements. During testing with the Multifunction BAT3, and also after testing has been completed, hydraulic properties of the test interval can be estimated by comparing fluid pressure responses with model results; a variety of hydrogeologic conceptual models of the formation are available for interpreting fluid-withdrawal, fluid-injection, and slug tests.

  11. Active Brown Fat During 18F-FDG PET/CT Imaging Defines a Patient Group with Characteristic Traits and an Increased Probability of Brown Fat Redetection.

    PubMed

    Gerngroß, Carlos; Schretter, Johanna; Klingenspor, Martin; Schwaiger, Markus; Fromme, Tobias

    2017-07-01

    Brown adipose tissue (BAT) provides a means of nonshivering thermogenesis. In humans, active BAT can be visualized by 18 F-FDG uptake as detected by PET combined with CT. The retrospective analysis of clinical scans is a valuable source to identify anthropometric parameters that influence BAT mass and activity and thus the potential efficacy of envisioned drugs targeting this tissue to treat metabolic disease. Methods: We analyzed 2,854 18 F-FDG PET/CT scans from 1,644 patients and identified 98 scans from 81 patients with active BAT. We quantified the volume of active BAT depots (mean values in mL ± SD: total BAT, 162 ± 183 [ n = 98]; cervical, 40 ± 37 [ n = 53]; supraclavicular, 66 ± 68 [ n = 71]; paravertebral, 51 ± 53 [ n = 69]; mediastinal, 43 ± 40 [ n = 51]; subphrenic, 21 ± 21 [ n = 29]). Because only active BAT is detectable by 18 F-FDG uptake, these numbers underestimate the total amount of BAT. Considering only 32 scans of the highest activity as categorized by a visual scoring strategy, we determined a mean total BAT volume of 308 ± 208 mL. In 30 BAT-positive patients with 3 or more repeated scans, we calculated a much higher mean probability to redetect active BAT (52% ± 25%) as compared with the overall prevalence of 4.9%. We calculated a BAT activity index (BFI) based on volume and intensity of individual BAT depots. Results: We detected higher total BFI in younger patients ( P = 0.009), whereas sex, body mass index, height, mass, outdoor temperature, and blood parameters did not affect total or depot-specific BAT activity. Surprisingly, renal creatinine clearance as estimated from mass, age, and plasma creatinine was a significant predictor of BFI on the total ( P = 0.005) as well as on the level of several individual depots. In summary, we detected a high amount of more than 300 mL of BAT tissue. Conclusion: BAT-positive patients represent a group with a higher than usual probability to activate BAT during a scan. Estimated renal creatinine clearance correlated with the extent of activated BAT in a given scan. These data imply an efficacy of drugs targeting BAT to treat metabolic disease that is at the same time higher and subject to a larger individual variation than previously assumed. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  12. Patterns of acoustical activity of bats prior to and following White-nose Syndrome occurrence

    USGS Publications Warehouse

    Ford, W. Mark; Britzke, Eric R.; Dobony, Christopher A.; Rodrigue, Jane L.; Johnson, Joshua B.

    2011-01-01

    White-nose Syndrome (WNS), a wildlife health concern that has decimated cave-hibernating bat populations in eastern North America since 2006, began affecting source-caves for summer bat populations at Fort Drum, a U.S. Army installation in New York in the winter of 2007–2008. As regional die-offs of bats became evident, and Fort Drum's known populations began showing declines, we examined whether WNS-induced change in abundance patterns and seasonal timing of bat activity could be quantified using acoustical surveys, 2003–2010, at structurally uncluttered riparian–water habitats (i.e., streams, ponds, and wet meadows). As predicted, we observed significant declines in overall summer activity between pre-WNS and post-WNS years for little brown bats Myotis lucifugus, northern bats M. septentrionalis, and Indiana bats M. sodalis. We did not observe any significant change in activity patterns between pre-WNS and post-WNS years for big brown bats Eptesicus fuscus, eastern red bats Lasiurus borealis, or the small number of tri-colored bats Perimyotis subflavus. Activity of silver-haired bats Lasionycteris noctivagans increased from pre-WNS to post-WNS years. Activity levels of hoary bats Lasiurus cinereus significantly declined between pre- and post-WNS years. As a nonhibernating, migratory species, hoary bat declines might be correlated with wind-energy development impacts occurring in the same time frame rather than WNS. Intraseason activity patterns also were affected by WNS, though the results were highly variable among species. Little brown bats showed an overall increase in activity from early to late summer pre-WNS, presumably due to detections of newly volant young added to the local population. However, the opposite occurred post-WNS, indicating that reproduction among surviving little brown bats may be declining. Our data suggest that acoustical monitoring during the summer season can provide insights into species' relative abundance on the landscape as affected by the occurrence of WNS.

  13. Ensemble composition and activity levels of insectivorous bats in response to management intensification in coffee agroforestry systems.

    PubMed

    Williams-Guillén, Kimberly; Perfecto, Ivette

    2011-01-26

    Shade coffee plantations have received attention for their role in biodiversity conservation. Bats are among the most diverse mammalian taxa in these systems; however, previous studies of bats in coffee plantations have focused on the largely herbivorous leaf-nosed bats (Phyllostomidae). In contrast, we have virtually no information on how ensembles of aerial insectivorous bats--nearly half the Neotropical bat species--change in response to habitat modification. To evaluate the effects of agroecosystem management on insectivorous bats, we studied their diversity and activity in southern Chiapas, Mexico, a landscape dominated by coffee agroforestry. We used acoustic monitoring and live captures to characterize the insectivorous bat ensemble in forest fragments and coffee plantations differing in the structural and taxonomic complexity of shade trees. We captured bats of 12 non-phyllostomid species; acoustic monitoring revealed the presence of at least 12 more species of aerial insectivores. Richness of forest bats was the same across all land-use types; in contrast, species richness of open-space bats increased in low shade, intensively managed coffee plantations. Conversely, only forest bats demonstrated significant differences in ensemble structure (as measured by similarity indices) across land-use types. Both overall activity and feeding activity of forest bats declined significantly with increasing management intensity, while the overall activity, but not feeding activity, of open-space bats increased. We conclude that diverse shade coffee plantations in our study area serve as valuable foraging and commuting habitat for aerial insectivorous bats, and several species also commute through or forage in low shade coffee monocultures.

  14. Seroprevalence dynamics of European bat lyssavirus type 1 in a multispecies bat colony.

    PubMed

    López-Roig, Marc; Bourhy, Hervé; Lavenir, Rachel; Serra-Cobo, Jordi

    2014-09-04

    We report an active surveillance study of the occurrence of specific antibodies to European Bat Lyssavirus Type 1 (EBLV-1) in bat species, scarcely studied hitherto, that share the same refuge. From 2004 to 2012, 406 sera were obtained from nine bat species. Blood samples were subjected to a modified fluorescent antibody virus neutralization test to determine the antibody titer. EBLV-1-neutralizing antibodies were detected in six of the nine species analyzed (Pipistrellus pipistrellus, P. kuhlii, Hypsugo savii, Plecotus austriacus, Eptesicus serotinus and Tadarida teniotis). Among all bats sampled, female seroprevalence (20.21%, 95% CI: 14.78%-26.57%) was not significantly higher than the seroprevalence in males (15.02%, 95% CI: 10.51%-20.54%). The results showed that the inter-annual variation in the number of seropositive bats in T. teniotis and P. austriacus showed a peak in 2007 (>70% of EBLV-1 prevalence). However, significant differences were observed in the temporal patterns of the seroprevalence modeling of T. teniotis and P. austriacus. The behavioral ecology of these species involved could explain the different annual fluctuations in EBLV-1 seroprevalence.

  15. Active acoustic interference elicits echolocation changes in heterospecific bats.

    PubMed

    Jones, Te K; Wohlgemuth, Melville J; Conner, William E

    2018-06-27

    Echolocating bats often forage in the presence of both conspecific and heterospecific individuals who have the potential to produce acoustic interference. Recent studies have shown that at least one bat species, the Brazilian free-tailed bat ( Tadarida brasiliensis ), produces specialized social signals that disrupt the sonar of conspecific competitors. We herein discuss the differences between passive and active jamming signals and test whether heterospecific jamming occurs in species overlapping spatiotemporally as well as whether such interference elicits a jamming avoidance response (JAR). We compare the capture rates of tethered moths and the echolocation parameters of big brown bats ( Eptesicus fuscus ) challenged with the playback of the jamming signal normally produced by Brazilian free-tailed bats and playback of deconstructed versions of this signal. There were no differences in the capture rates of targets with and without the jamming signal although significant changes in both spectral and temporal features of the bats' echolocation were observed. These changes are consistent with improvements of the signal-to-noise ratio in the presence of acoustic interference. Accordingly, we propose to expand the traditional definition of the JAR, stating that echolocation changes in response to interference should decrease similarity between the two signals, to include any change that increases the ability to separate returning echoes from active jamming stimuli originating from conspecific and heterospecific organisms. Flexibility in echolocation is an important characteristic for overcoming various forms of acoustic interference and may serve a purpose in interspecific interactions as well as intraspecific ones. © 2018. Published by The Company of Biologists Ltd.

  16. Examining patterns of bat activity in Bandelier National Monument, New Mexico, using walking point transects

    USGS Publications Warehouse

    Ellison, L.E.; Everette, A.L.; Bogan, M.A.

    2005-01-01

    We conducted a preliminary study using small field crews, a single Anabat II detector coupled with a laptop computer, and point transects to examine patterns of bat activity at a scale of interest to local resource managers. The study was conducted during summers of 1996–1998 in Bandelier National Monument in the Jemez Mountains of northern New Mexico, a landscape with distinct vegetation zones and high species richness of bats. We developed simple models that described general patterns of acoustic activity within 4 vegetation zones based primarily on nightly variation and a qualitative index of habitat complexity. Bat acoustic activity (number of bat passes&sol point) did not vary dramatically among a limited sample of transects within a vegetation zone during 1996. In 1997 and 1998, single transects within each vegetation zone were established, and bat activity did not vary annually within these zones. Acoustic activity differed among the 4 vegetation zones of interest, with the greatest activity occurring in riparian canyon bottomland, intermediate activity in coniferous forest and a 1977 burned zone, and lowest activity in piñon-juniper woodlands. We identified 68.5% of 2,529 bat passes recorded during point-transect surveys to species using an echolocation call reference library we established for the area and qualitative characteristics of bat calls. Bat species richness and composition differed among vegetation zones. Results of these efforts were consistent with general knowledge of where different bat species typically forage and with the natural history of bats of New Mexico, suggesting such a method might have value for drawing inferences about bat activity in different vegetation zones.

  17. Bat mortality and activity at a Northern Iowa wind resource area

    USGS Publications Warehouse

    Jain, A.A.; Koford, Rolf R.; Hancock, A.W.; Zenner, G.G.

    2011-01-01

    We examined bat collision mortality, activity and species composition at an 89-turbine wind resource area in farmland of north-central Iowa from mid-Apr. to mid-Dec., 2003 and mid-Mar. to mid-Dec., 2004. We found 30 bats beneath turbines on cleared ground and gravel access areas in 2003 and 45 bats in 2004. After adjusting for search probability, search efficiency and scavenging rate, we estimated total bat mortality at 396 ?? 72 (95 ci) in 2003 and 636 ?? 112 (95 ci) in 2004. Although carcasses were mostly migratory tree bats, we found a considerable proportion of little brown bats (Myotis lucifugus). We recorded 1465 bat echolocation call files at turbine sites ( 34.88 call files/detector-night) and 1536 bat call files at adjacent non-turbine sites ( 36.57 call files/detector-night). Bat activity did not differ significantly between turbine and non-turbine sites. A large proportion of recorded call files were made by Myotis sp. but this may be because we detected activity at ground level only. There was no relationship between types of turbine lights and either collision mortality or echolocation activity. The highest levels of bat echolocation activity and collision mortality were recorded during Jul. and Aug. during the autumn dispersal and migration period. The fatality rates for bats in general and little brown bats in particular were higher at the Top of Iowa Wind Resource Area than at other, comparable studies in the region. Future efforts to study behavior of bats in flight around turbines as well as cumulative impact studies should not ignore non-tree dwelling bats, generally regarded as minimally affected. ?? 2011, American Midland Naturalist.

  18. Bat activity in harvested and intact forest stands in the allegheny mountains

    USGS Publications Warehouse

    Owen, S.F.; Menzel, M.A.; Edwards, J.W.; Ford, W.M.; Menzel, J.M.; Chapman, B.R.; Wood, P.B.; Miller, K.V.

    2004-01-01

    We used Anabat acoustical monitoring devices to examine bat activity in intact canopy forests, complex canopy forests with gaps, forests subjected to diameter-limit harvests, recent deferment harvests, clearcuts and unmanaged forested riparian areas in the Allegheny Mountains of West Virginia in the summer of 1999. We detected eight species of bats, including the endangered Indiana bat (Myotis sodalis). Most bat activity was concentrated in forested riparian areas. Among upland habitats, activity of silver-haired bats (Lasionycteris noctivagans) and hoary bats (Lasiurus cinereus) was higher in open, less cluttered vegetative types such as recent deferment harvests and clearcuts. Our results suggest that bat species in the central Appalachians partially segregate themselves among vegetative conditions based on differences in body morphology and echolocation call characteristics. From the standpoint of conserving bat foraging habitat for the maximum number of species in the central Appalachians, special emphasis should be placed on protecting forested riparian areas.

  19. Bat ecology and public health surveillance for rabies in an urbanizing region of Colorado

    USGS Publications Warehouse

    O'Shea, T.J.; Neubaum, D.J.; Neubaum, M.A.; Cryan, P.M.; Ellison, L.E.; Stanley, T.R.; Rupprecht, C.E.; Pape, W.J.; Bowen, R.A.

    2011-01-01

    We describe use of Fort Collins, Colorado, and nearby areas by bats in 2001-2005, and link patterns in bat ecology with concurrent public health surveillance for rabies. Our analyses are based on evaluation of summary statistics, and information-theoretic support for results of simple logistic regression. Based on captures in mist nets, the city bat fauna differed from that of the adjacent mountains, and was dominated by big brown bats (Eptesicus fuscus). Species, age, and sex composition of bats submitted for rabies testing locally and along the urbanizing Front Range Corridor were similar to those of the mist-net captures and reflected the annual cycle of reproduction and activity of big brown bats. Few submissions occurred November- March, when these bats hibernated elsewhere. In summer females roosted in buildings in colonies and dominated health samples; fledging of young corresponded to a summer peak in health submissions with no increase in rabies prevalence. Roosting ecology of big brown bats in buildings was similar to that reported for natural sites, including colony size, roost-switching behavior, fidelity to roosts in a small area, and attributes important for roost selection. Attrition in roosts occurred from structural modifications of buildings to exclude colonies by citizens, but without major effects on long-term bat reproduction or survival. Bats foraged in areas set aside for nature conservation. A pattern of lower diversity in urban bat communities with dominance by big brown bats may occur widely in the USA, and is consistent with national public health records for rabies surveillance. ?? 2011 Springer Science+Business Media, LLC (outside the USA).

  20. Adaptive echolocation behavior in bats for the analysis of auditory scenes

    PubMed Central

    Chiu, Chen; Xian, Wei; Moss, Cynthia F.

    2009-01-01

    Summary Echolocating bats emit sonar pulses and listen to returning echoes to probe their surroundings. Bats adapt their echolocation call design to cope with dynamic changes in the acoustic environment, including habitat change or the presence of nearby conspecifics/heterospecifics. Seven pairs of big brown bats, Eptesicus fuscus, were tested in this study to examine how they adjusted their echolocation calls when flying and competing with a conspecific for food. Results showed that differences in five call parameters, start/end frequencies, duration, bandwidth and sweep rate, significantly increased in the two-bat condition compared with the baseline data. In addition, the magnitude of spectral separation of calls was negatively correlated with the baseline call design differences in individual bats. Bats with small baseline call frequency differences showed larger increases in call frequency separation when paired than those with large baseline call frequency differences, suggesting that bats actively change their sonar call structure if pre-existing differences in call design are small. Call design adjustments were also influenced by physical spacing between two bats. Calls of paired bats exhibited the largest design separations when inter-bat distance was shorter than 0.5 m, and the separation decreased as the spacing increased. All individuals modified at least one baseline call parameter in response to the presence of another conspecific. We propose that dissimilarity between the time–frequency features of sonar calls produced by different bats aids each individual in segregating echoes of its own sonar vocalizations from the acoustic signals of neighboring bats. PMID:19376960

  1. Causes of bat fatalities at wind turbines: Hypotheses and predictions

    USGS Publications Warehouse

    Cryan, P.M.; Barclay, R.M.R.

    2009-01-01

    Thousands of industrial-scale wind turbines are being built across the world each year to meet the growing demand for sustainable energy. Bats of certain species are dying at wind turbines in unprecedented numbers. Species of bats consistently affected by turbines tend to be those that rely on trees as roosts and most migrate long distances. Although considerable progress has been made in recent years toward better understanding the problem, the causes of bat fatalities at turbines remain unclear. In this synthesis, we review hypothesized causes of bat fatalities at turbines. Hypotheses of cause fall into 2 general categoriesproximate and ultimate. Proximate causes explain the direct means by which bats die at turbines and include collision with towers and rotating blades, and barotrauma. Ultimate causes explain why bats come close to turbines and include 3 general types: random collisions, coincidental collisions, and collisions that result from attraction of bats to turbines. The random collision hypothesis posits that interactions between bats and turbines are random events and that fatalities are representative of the bats present at a site. Coincidental hypotheses posit that certain aspects of bat distribution or behavior put them at risk of collision and include aggregation during migration and seasonal increases in flight activity associated with feeding or mating. A surprising number of attraction hypotheses suggest that bats might be attracted to turbines out of curiosity, misperception, or as potential feeding, roosting, flocking, and mating opportunities. Identifying, prioritizing, and testing hypothesized causes of bat collisions with wind turbines are vital steps toward developing practical solutions to the problem. ?? 2009 American Society of Mammalogists.

  2. Bat response to carolina bays and wetland restoration in the southeastern U.S. Coastal Plain.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menzel, Jennifer M.; Michael A. Menzel; John C. Kilgo

    2005-09-01

    Abstract: Bat activity in the southeastern United States is concentrated over riparian areas and wetland habitats. The restoration and creation of wetlands for mitigation purposes is becoming common in the Southeast. Understanding the effects of these restoration efforts on wetland flora and fauna is thus becoming increasingly important. Because bats (Order: Chiroptera) consist of many species that are of conservation concern and are commonly associated with wetland and riparian habitats in the Southeast (making them a good general indicator for the condition of wetland habitats), we monitored bat activity over restored and reference Carolina bays surrounded by pine savanna (Pinusmore » spp.) or mixed pine-hardwood habitat types at the Savannah River Site in South Carolina. In order to determine how wetland restoration efforts affected the bat community, we monitored bat activity above drained Carolina bays pre- and post-restoration. Our results indicate that bat activity was greater over reference (i.e., undrained) than drained bays prior to the restorative efforts. One year following combined hydrologic and vegetation treatment, however, bat activity was generally greater over restored than reference bays. Bat activity was also greater over both reference and restored bays than in random, forested interior locations. We found significantly more bat activity after restoration than prior to restoration for all but one species in the treatment bays, suggesting that Carolina bay restoration can have almost immediate positive impacts on bat activity.« less

  3. Bats.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Presents information about bats, including definitions and descriptions of the characteristics of bats. Provides teaching activities such as "Bat and Math,""A Bat Like That,""Bat Party,""Ears in the Dark," and "The Big Bat Mystery." Contains reproducible handouts and quizzes. (TW)

  4. GENETIC ACTIVITY PROFILES AND PATTERN RECOGNITION IN TEST BATTERY SELECTION (JOURNAL VERSION)

    EPA Science Inventory

    Computer-generated genetic activity profiles and pairwise matching procedures may aid in the selection of the most appropriate short-term bioassays to be used in test batteries for the evaluation of the genotoxicity of a given chemical or group of chemicals. Selection of test bat...

  5. Intrinsic circannual regulation of brown adipose tissue form and function in tune with hibernation

    PubMed Central

    Hindle, Allyson G.

    2013-01-01

    Winter hibernators repeatedly cycle between cold torpor and rewarming supported by nonshivering thermogenesis in brown adipose tissue (BAT). In contrast, summer animals are homeotherms, undergoing reproduction, growth, and fattening. This life history confers variability to BAT recruitment and activity. To address the components underlying prewinter enhancement and winter activation, we interrogated the BAT proteome in 13-lined ground squirrels among three summer and five winter states. We also examined mixed physiology in fall and spring individuals to test for ambient temperature and seasonal effects, as well as the timing of seasonal transitions. BAT form and function differ circannually in these animals, as evidenced by morphology and proteome dynamics. This intrinsic pattern distinguished homeothermic groups and early vs. late winter hibernators. Homeothermic variation derived from postemergence delay in growth and substrate biosynthesis. The heterothermic proteome varied less despite extreme winter physiological shifts and was optimized to exploit lipids by enhanced fatty acid binding, β-oxidation, and mitochondrial protein translocation. Surprisingly, ambient temperature did not affect the BAT proteome during transition seasons; rather, the pronounced summer-winter shift preceded environmental changes and phenotypic progression. During fall transition, differential regulation of two fatty acid binding proteins provides further evidence of recruitment and separates proteomic preparation from successful hibernation. Abundance of FABP4 correlates with torpor bout length throughout the year, clarifying its potential function in hibernation. Metabolically active BAT is a target for treating human obesity and metabolic disorders. Understanding the hibernator's extreme and seasonally distinct recruitment and activation control strategies offers untapped potential to identify novel, therapeutically relevant regulatory pathways. PMID:24326419

  6. [Diagnostic Significance of BAT in Anaphylaxis to Non-ionic Contrast Media].

    PubMed

    Zhang, Hao-yue; Xu, Su-jun; Tang, Xiao-xian; Niu, Ji-jun; Guo, Xiang-jie; Gao, Cai-rong

    2015-06-01

    To investigate the diagnostic significance of basophil activation test (BAT) in anaphylaxis to non-ionic contrast media through testing the content of CD63, mast cell-carboxypeptidase A3 (MC-CPA3), and terminal complement complex SC5b-9 of the individuals by testing their levels in the normal immune group and the anaphylaxis groups to β-lactam drugs and non -ionic contrast media. The CD63 expression of basophilic granulocyte in blood was detected by flow cytometry. The levels of MC-CPA3 in blood serum and SC5b-9 in blood plasma were detected by ELISA. The CD63 expression of basophilic granulocyte in blood, the levels of MC-CPA3 and SC5b-9 of anaphylaxis to non-ionic contrast media and β-lactam drugs were significantly higher than that in normal immune group (P < 0.05). There is activation of basophilic granulocytes, mast cells and complement system in anaphylaxis to non-ionic contrast media. BAT can be used to diagnose the anaphylaxis to non-ionic contrast media.

  7. Development and Validation of the Behavioral Avoidance Test-Back Pain (BAT-Back) for Patients With Chronic Low Back Pain.

    PubMed

    Holzapfel, Sebastian; Riecke, Jenny; Rief, Winfried; Schneider, Jessica; Glombiewski, Julia A

    2016-11-01

    Pain-related fear and avoidance of physical activities are central elements of the fear-avoidance model of musculoskeletal pain. Pain-related fear has typically been measured by self-report instruments. In this study, we developed and validated a Behavioral Avoidance Test (BAT) for chronic low back pain (CLBP) patients with the aim of assessing pain-related avoidance behavior by direct observation. The BAT-Back was administered to a group of CLBP patients (N=97) and pain-free controls (N=31). Furthermore, pain, pain-related fear, disability, catastrophizing, and avoidance behavior were measured using self-report instruments. Reliability was assessed with intraclass correlation coefficient and Cronbach α. Validity was assessed by examining correlation and regression analysis. The intraclass correlation coefficient for the BAT-Back avoidance score was r=0.76. Internal consistency was α=0.95. CLBP patients and controls differed significantly on BAT-Back avoidance scores as well as self-report measures. BAT-Back avoidance scores were significantly correlated with scores on each of the self-report measures (rs=0.27 to 0.54). They were not significantly correlated with general anxiety and depression, age, body mass index, and pain duration. The BAT-Back avoidance score was able to capture unique variance in disability after controlling for other variables (eg, pain intensity and pain-related fear). Results indicate that the BAT-Back is a reliable and valid measure of pain-related avoidance behavior. It may be useful for clinicians in tailoring treatments for chronic pain as well as an outcome measure for exposure treatments.

  8. Habitat-associated and temporal patterns of bat activity in a diverse forest landscape of southern New England, USA

    Treesearch

    Robert T. Brooks

    2009-01-01

    The development and use of acoustic recording technology, surveys have revealed the composition, relative levels of activity, and preliminary habitat use of bat communities of various forest locations. However, detailed examinations of acoustic surveys results to investigate temporal patterns of bat activity are rare. Initial active acoustic surveys of bat activity on...

  9. Ecological factors associated with European bat lyssavirus seroprevalence in spanish bats.

    PubMed

    Serra-Cobo, Jordi; López-Roig, Marc; Seguí, Magdalena; Sánchez, Luisa Pilar; Nadal, Jacint; Borrás, Miquel; Lavenir, Rachel; Bourhy, Hervé

    2013-01-01

    Bats have been proposed as major reservoirs for diverse emerging infectious viral diseases, with rabies being the best known in Europe. However, studies exploring the ecological interaction between lyssaviruses and their natural hosts are scarce. This study completes our active surveillance work on Spanish bat colonies that began in 1992. Herein, we analyzed ecological factors that might affect the infection dynamics observed in those colonies. Between 2001 and 2011, we collected and tested 2,393 blood samples and 45 dead bats from 25 localities and 20 bat species. The results for dead confirmed the presence of EBLV-1 RNA in six species analyzed (for the first time in Myotis capaccinii). Samples positive for European bat lyssavirus-1 (EBLV-1)-neutralizing antibodies were detected in 68% of the localities sampled and in 13 bat species, seven of which were found for the first time (even in Myotis daubentonii, a species to date always linked to EBLV-2). EBLV-1 seroprevalence (20.7%) ranged between 11.1 and 40.2% among bat species and seasonal variation was observed, with significantly higher antibody prevalence in summer (July). EBLV-1 seroprevalence was significantly associated with colony size and species richness. Higher seroprevalence percentages were found in large multispecific colonies, suggesting that intra- and interspecific contacts are major risk factors for EBLV-1 transmission in bat colonies. Although bat-roosting behavior strongly determines EBLV-1 variability, we also found some evidence that bat phylogeny might be involved in bat-species seroprevalence. The results of this study highlight the importance of life history and roost ecology in understanding EBLV-1-prevalence patterns in bat colonies and also provide useful information for public health officials.

  10. Ecological Factors Associated with European Bat Lyssavirus Seroprevalence in Spanish Bats

    PubMed Central

    Serra-Cobo, Jordi; López-Roig, Marc; Seguí, Magdalena; Sánchez, Luisa Pilar; Nadal, Jacint; Borrás, Miquel; Lavenir, Rachel; Bourhy, Hervé

    2013-01-01

    Bats have been proposed as major reservoirs for diverse emerging infectious viral diseases, with rabies being the best known in Europe. However, studies exploring the ecological interaction between lyssaviruses and their natural hosts are scarce. This study completes our active surveillance work on Spanish bat colonies that began in 1992. Herein, we analyzed ecological factors that might affect the infection dynamics observed in those colonies. Between 2001 and 2011, we collected and tested 2,393 blood samples and 45 dead bats from 25 localities and 20 bat species. The results for dead confirmed the presence of EBLV-1 RNA in six species analyzed (for the first time in Myotis capaccinii). Samples positive for European bat lyssavirus-1 (EBLV-1)–neutralizing antibodies were detected in 68% of the localities sampled and in 13 bat species, seven of which were found for the first time (even in Myotis daubentonii, a species to date always linked to EBLV-2). EBLV-1 seroprevalence (20.7%) ranged between 11.1 and 40.2% among bat species and seasonal variation was observed, with significantly higher antibody prevalence in summer (July). EBLV-1 seroprevalence was significantly associated with colony size and species richness. Higher seroprevalence percentages were found in large multispecific colonies, suggesting that intra- and interspecific contacts are major risk factors for EBLV-1 transmission in bat colonies. Although bat-roosting behavior strongly determines EBLV-1 variability, we also found some evidence that bat phylogeny might be involved in bat-species seroprevalence. The results of this study highlight the importance of life history and roost ecology in understanding EBLV-1–prevalence patterns in bat colonies and also provide useful information for public health officials. PMID:23700480

  11. Enhanced Passive Bat Rabies Surveillance in Indigenous Bat Species from Germany - A Retrospective Study

    PubMed Central

    Auer, Ernst; Goharriz, Hooman; Harbusch, Christine; Johnson, Nicholas; Kaipf, Ingrid; Mettenleiter, Thomas Christoph; Mühldorfer, Kristin; Mühle, Ralf-Udo; Ohlendorf, Bernd; Pott-Dörfer, Bärbel; Prüger, Julia; Ali, Hanan Sheikh; Stiefel, Dagmar; Teubner, Jens; Ulrich, Rainer Günter; Wibbelt, Gudrun; Müller, Thomas

    2014-01-01

    In Germany, rabies in bats is a notifiable zoonotic disease, which is caused by European bat lyssaviruses type 1 and 2 (EBLV-1 and 2), and the recently discovered new lyssavirus species Bokeloh bat lyssavirus (BBLV). As the understanding of bat rabies in insectivorous bat species is limited, in addition to routine bat rabies diagnosis, an enhanced passive surveillance study, i.e. the retrospective investigation of dead bats that had not been tested for rabies, was initiated in 1998 to study the distribution, abundance and epidemiology of lyssavirus infections in bats from Germany. A total number of 5478 individuals representing 21 bat species within two families were included in this study. The Noctule bat (Nyctalus noctula) and the Common pipistrelle (Pipistrellus pipistrellus) represented the most specimens submitted. Of all investigated bats, 1.17% tested positive for lyssaviruses using the fluorescent antibody test (FAT). The vast majority of positive cases was identified as EBLV-1, predominately associated with the Serotine bat (Eptesicus serotinus). However, rabies cases in other species, i.e. Nathusius' pipistrelle bat (Pipistrellus nathusii), P. pipistrellus and Brown long-eared bat (Plecotus auritus) were also characterized as EBLV-1. In contrast, EBLV-2 was isolated from three Daubenton's bats (Myotis daubentonii). These three cases contribute significantly to the understanding of EBLV-2 infections in Germany as only one case had been reported prior to this study. This enhanced passive surveillance indicated that besides known reservoir species, further bat species are affected by lyssavirus infections. Given the increasing diversity of lyssaviruses and bats as reservoir host species worldwide, lyssavirus positive specimens, i.e. both bat and virus need to be confirmed by molecular techniques. PMID:24784117

  12. Hot heads & cool bodies: The conundrums of human brown adipose tissue (BAT) activity research.

    PubMed

    Bahler, Lonneke; Holleman, Frits; Booij, Jan; Hoekstra, Joost B; Verberne, Hein J

    2017-05-01

    Brown adipose tissue is able to increase energy expenditure by converting glucose and fatty acids into heat. Therefore, BAT is able to increase energy expenditure and could thereby facilitate weight loss or at least weight maintenance. Since cold is a strong activator of BAT, most prospective research is performed during cold to activate BAT. In current research, there are roughly two methods of cooling. Cooling by lowering ambient air temperature, which uses a fixed temperature for all subjects and personalized cooling, which uses cooling blankets or vests with temperatures that can be adjusted to the individual set point of shivering. These methods might trigger mechanistically different cold responses and hence result in a different BAT activation. This hypothesis is underlined by two studies with the same research question (difference in BAT activity between Caucasians and South Asians) one study found no differences in BAT activity whereas the other did found differences in BAT activity. Since most characteristics (e.g. age, BMI) were similar in the two studies, the best explanation for the differences in outcomes is the use of different cooling protocols. One of the reasons for differences in outcomes might be the sensory input from the facial skin, which might be important for the activation of BAT. In this review we will elaborate on the differences between the two cooling protocols used to activate BAT. Copyright © 2017 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  13. Brown adipose tissue activation as measured by infrared thermography by mild anticipatory psychological stress in lean healthy females.

    PubMed

    Robinson, Lindsay J; Law, James M; Symonds, Michael E; Budge, Helen

    2016-04-01

    What is the central question of this study? Does psychological stress, which is known to promote cortisol secretion, simultaneously activate brown adipose tissue function in healthy adult females? What is the main finding and its importance? One explanation for the pronounced differences in brown adipose tissue function between individuals lies in their responsiveness to psychological stress and, as such, should be taken into account when examining its in vivo stimulation. Brown adipose tissue (BAT) has been implicated in the pathogenesis of obesity, type 2 diabetes and the metabolic syndrome and is a potential therapeutic target. Brown adipose tissue can have a significant impact on energy balance and glucose homeostasis through the action of uncoupling protein 1, dissipating chemical energy as heat following neuroendocrine stimulation. We hypothesized that psychological stress, which is known to promote cortisol secretion, would simultaneously activate BAT at thermoneutrality. Brown adipose tissue activity was measured using infrared thermography to determine changes in the temperature of the skin overlying supraclavicular BAT (TSCR ). A mild psychological stress was induced in five healthy, lean, female, Caucasian volunteers using a short mental arithmetic (MA) test. The TSCR was compared with a repeated assessment, in which the MA test was replaced with a period of relaxation. Although MA did not elicit an acute stress response, anticipation of MA testing led to an increase in salivary cortisol, indicative of an anticipatory stress response, that was associated with a trend towards higher absolute and relative TSCR . A positive correlation between TSCR and cortisol was found during the anticipatory phase, a relationship that was enhanced by increased cortisol linked to MA. Our findings suggest that subtle changes in the level of psychological stress can stimulate BAT, findings that may account for the high variability and inconsistency in reported BAT prevalence and activity measured by other modalities. Consistent assessment of this uniquely metabolic tissue is fundamental to the discovery of potential therapeutic strategies against metabolic disease. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  14. Brown adipose tissue is linked to a distinct thermoregulatory response to mild cold in people

    USDA-ARS?s Scientific Manuscript database

    Brown adipose tissue (BAT) plays an important role in thermoregulation in rodents. Its role in temperature homeostasis in people is less studied. To this end, we recruited 18 men [8 subjects with no/minimal BAT activity (BAT-) and 10 with pronounced BAT activity (BAT+)]. Each volunteer participated ...

  15. A landscape perspective on bat foraging ecology along rivers: does channel confinement and insect availability influence the response of bats to aquatic resources in riverine landscapes?

    PubMed

    Hagen, Elizabeth M; Sabo, John L

    2011-07-01

    River and riparian areas provide an important foraging habitat for insectivorous bats owing to high insect availability along waterways. However, structural characteristics of the riverine landscape may also influence the location of foraging bats. We used bat detectors to compare bat activity longitudinally along river reaches with contrasting channel confinement, ratio of valley floor width to active channel width, and riparian vegetation, and laterally with distance from the river along three different reach types. We measured rates of insect emergence from the river and aerial insect availability above the river and laterally up to 50-m into the riparian habitat in order to assess the relationship between food resources and insectivorous bat activity. Longitudinally, bat activity was concentrated along confined reaches in comparison to unconfined reaches but was not related to insect availability. Laterally, bats tracked exponential declines in aquatic insects with distance from the river. These data suggest that along the lateral dimension bats track food resources, but that along the longitudinal dimension channel shape and landscape structure determine bat distributions more than food resources.

  16. Benefit of the basophil activation test in deciding when to reintroduce cow's milk in allergic children.

    PubMed

    Rubio, A; Vivinus-Nébot, M; Bourrier, T; Saggio, B; Albertini, M; Bernard, A

    2011-01-01

    Oral challenges are required to establish the persistence or resolution of IgE-mediated cow's milk allergy (CMA). Determining the appropriate timing for challenging is the main difficulty. The benefit of the basophil activation test (BAT) in predicting a child's reaction to the oral challenge was evaluated and compared to the specific IgE and skin prick tests' (SPT) results. One hundred and twelve consecutive children with CMA admitted for an oral challenge to reassess their allergy were included. Allergen-induced basophil activation was detected as a CD63-upregulation by flow cytometry. Thirty-six children (32%) had a positive oral challenge. The percentage of activated basophils in patients with a positive challenge (mean = 20.9; SD = 18.8) was significantly higher than that of patients with a negative challenge (mean = 3.9; SD = 9.8, P < 0.0001), and was well correlated with the eliciting dose of cow's milk (P < 0.0001). The BAT had an efficiency of 90%, a sensitivity of 91%, a specificity of 90%, and positive and negative predictive values of 81% and 96% in detecting persistently allergic patients. The area under the ROC curve was 0.866. These scores were higher than those obtained with SPT and IgE values, whichever positivity cut-point was chosen. Referring to a decisional algorithm combining BAT, specific IgE and SPT allowed the correct identification of 94% of patients as tolerant or persistently allergic to cow's milk proteins (CMP) in our cohort. The BAT could be a valuable tool in the management of paediatric CMA in addition to specific IgE quantification and SPT, by contributing in determining whether an oral challenge can safely be undertaken. © 2010 John Wiley & Sons A/S.

  17. Cross-neutralization of antibodies induced by vaccination with Purified Chick Embryo Cell Vaccine (PCECV) against different Lyssavirus species.

    PubMed

    Malerczyk, Claudius; Freuling, Conrad; Gniel, Dieter; Giesen, Alexandra; Selhorst, Thomas; Müller, Thomas

    2014-01-01

    Rabies is a neglected zoonotic disease caused by viruses belonging to the genus lyssavirus. In endemic countries of Asia and Africa, where the majority of the estimated 60,000 human rabies deaths occur, it is mainly caused by the classical rabies virus (RABV) transmitted by dogs. Over the last decade new species within the genus lyssavirus have been identified. Meanwhile 15 (proposed or classified) species exist, including Australian bat lyssavirus (ABLV), European bat lyssavirus (EBLV-1 and -2), Duvenhage virus (DUVV), as well as Lagos bat virus (LBV) and Mokola virus (MOKV) and recently identified novel species like Bokeloh bat lyssavirus (BBLV), Ikoma bat lyssavirus (IKOV) or Lleida bat lyssavirus (LLBV). The majority of these lyssavirus species are found in bat reservoirs and some have caused human infection and deaths. Previous work has demonstrated that Purified Chick Embryo Cell Rabies Vaccine (PCECV) not only induces immune responses against classical RABV, but also elicits cross-neutralizing antibodies against ABLV, EBLV-1 and EBLV-2. Using the same serum samples as in our previous study, this study extension investigated cross-neutralizing activities of serum antibodies measured by rapid fluorescent focus inhibition test (RFFIT) against selected other non-classical lyssavirus species of interest, namely DUVV and BBLV, as well as MOKV and LBV. Antibodies developed after vaccination with PCECV have neutralizing capability against BBLV and DUVV in the same range as against ABLV and EBLV-1 and -2. As expected, for the phylogenetically more distant species LBV no cross-neutralizing activity was found. Interestingly, 15 of 94 serum samples (16%) with a positive neutralizing antibody titer against RABV displayed specific cross-neutralizing activity (65-fold lower than against RABV) against one specific MOKV strain (Ethiopia isolate), which was not seen against a different strain (Nigeria isolate). Cross-neutralizing activities partly correlate with the phylogenetic distance of the virus species. Cross-neutralizing activities against the species BBLV and DUVV of phylogroup 1 were demonstrated, in line with previous results of cross-neutralizing activities against ABLV and EBLV-1 and -2. Potential partial cross-neutralizing activities against more distant lyssavirus species like selected MOKV strains need further research.

  18. Negative regulators of brown adipose tissue (BAT)-mediated thermogenesis.

    PubMed

    Sharma, Bal Krishan; Patil, Mallikarjun; Satyanarayana, Ande

    2014-12-01

    Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. PET-CT scans recently demonstrated the existence of metabolically active BAT in adult humans, which revitalized our interest in BAT. Increasing the amount and/or activity of BAT holds tremendous promise for the treatment of obesity and its associated diseases. PGC1α is the master regulator of UCP1-mediated thermogenesis in BAT. A number of proteins have been identified to influence thermogenesis either positively or negatively through regulating the expression or transcriptional activity of PGC1α. Therefore, BAT activation can be achieved by either inducing the expression of positive regulators of PGC1α or by inhibiting the repressors of the PGC1α/UCP1 pathway. Here, we review the most important negative regulators of PGC1α/UCP1 signaling and their mechanism of action in BAT-mediated thermogenesis. © 2014 Wiley Periodicals, Inc.

  19. Urban bat communities are affected by wetland size, quality, and pollution levels.

    PubMed

    Straka, Tanja Maria; Lentini, Pia Eloise; Lumsden, Linda Faye; Wintle, Brendan Anthony; van der Ree, Rodney

    2016-07-01

    Wetlands support unique biota and provide important ecosystem services. These services are highly threatened due to the rate of loss and relative rarity of wetlands in most landscapes, an issue that is exacerbated in highly modified urban environments. Despite this, critical ecological knowledge is currently lacking for many wetland-dependent taxa, such as insectivorous bats, which can persist in urban areas if their habitats are managed appropriately. Here, we use a novel paired landscape approach to investigate the role of wetlands in urban bat conservation and examine local and landscape factors driving bat species richness and activity. We acoustically monitored bat activity at 58 urban wetlands and 35 nonwetland sites (ecologically similar sites without free-standing water) in the greater Melbourne area, southeastern Australia. We analyzed bat species richness and activity patterns using generalized linear mixed-effects models. We found that the presence of water in urban Melbourne was an important driver of bat species richness and activity at a landscape scale. Increasing distance to bushland and increasing levels of heavy metal pollution within the waterbody also negatively influenced bat richness and individual species activity. Areas with high levels of artificial night light had reduced bat species richness, and reduced activity for all species except those adapted to urban areas, such as the White-striped free-tailed bat (Austronomus australis). Increased surrounding tree cover and wetland size had a positive effect on bat species richness. Our findings indicate that wetlands form critical habitats for insectivorous bats in urban environments. Large, unlit, and unpolluted wetlands flanked by high tree cover in close proximity to bushland contribute most to the richness of the bat community. Our findings clarify the role of wetlands for insectivorous bats in urban areas and will also allow for the preservation, construction, and management of wetlands that maximize conservation outcomes for urban bats and possibly other wetland-dependent and nocturnal fauna.

  20. Diversification of Transcriptional Regulation Determines Subfunctionalization of Paralogous Branched Chain Aminotransferases in the Yeast Saccharomyces cerevisiae.

    PubMed

    González, James; López, Geovani; Argueta, Stefany; Escalera-Fanjul, Ximena; El Hafidi, Mohammed; Campero-Basaldua, Carlos; Strauss, Joseph; Riego-Ruiz, Lina; González, Alicia

    2017-11-01

    Saccharomyces cerevisiae harbors BAT1 and BAT2 paralogous genes that encode branched chain aminotransferases and have opposed expression profiles and physiological roles . Accordingly, in primary nitrogen sources such as glutamine, BAT1 expression is induced, supporting Bat1-dependent valine-isoleucine-leucine (VIL) biosynthesis, while BAT2 expression is repressed. Conversely, in the presence of VIL as the sole nitrogen source, BAT1 expression is hindered while that of BAT2 is activated, resulting in Bat2-dependent VIL catabolism. The presented results confirm that BAT1 expression is determined by transcriptional activation through the action of the Leu3-α-isopropylmalate (α-IPM) active isoform, and uncovers the existence of a novel α-IPM biosynthetic pathway operating in a put3 Δ mutant grown on VIL, through Bat2-Leu2-Leu1 consecutive action. The classic α-IPM biosynthetic route operates in glutamine through the action of the leucine-sensitive α-IPM synthases. The presented results also show that BAT2 repression in glutamine can be alleviated in a ure2 Δ mutant or through Gcn4-dependent transcriptional activation. Thus, when S. cerevisiae is grown on glutamine, VIL biosynthesis is predominant and is preferentially achieved through BAT1 ; while on VIL as the sole nitrogen source, catabolism prevails and is mainly afforded by BAT2 . Copyright © 2017 by the Genetics Society of America.

  1. Variable Cold-Induced Brown Adipose Tissue Response to Thyroid Hormone Status

    PubMed Central

    Hasselgren, Per-Olof; Glasgow, Allison; Doyle, Ashley N.; Lee, Alice J.; Fox, Peter; Gautam, Shiva; Hennessey, James V.; Kolodny, Gerald M.

    2017-01-01

    Background: In addition to its role in adaptive thermogenesis, brown adipose tissue (BAT) may protect from weight gain, insulin resistance/diabetes, and metabolic syndrome. Prior studies have shown contradictory results regarding the influence of thyroid hormone (TH) levels on BAT volume and activity. The aim of this pilot study was to gain further insights regarding the effect of TH treatment on BAT function in adult humans by evaluating the BAT mass and activity prospectively in six patients, first in the hypothyroid and then in the thyrotoxic phase. Methods: The study subjects underwent 18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) scanning after cold exposure to measure BAT mass and activity while undergoing treatment for differentiated thyroid cancer, first while hypothyroid following TH withdrawal at the time of the radioactive iodine treatment and then three to six months after starting TH suppressive treatment when they were iatrogenically thyrotoxic. Thermogenic and metabolic parameters were measured in both phases. Results: All study subjects had detectable BAT under cold stimulation in both the hypothyroid and thyrotoxic state. The majority but not all (4/6) subjects showed an increase in detectable BAT volume and activity under cold stimulation between the hypothyroid and thyrotoxic phase (total BAT volume: 72.0 ± 21.0 vs. 87.7 ± 16.5 mL, p = 0.25; total BAT activity 158.1 ± 72.8 vs. 189.0 ± 55.5 SUV*g/mL, p = 0.34). Importantly, circulating triiodothyronine was a stronger predictor of energy expenditure changes compared with cold-induced BAT activity. Conclusions: Iatrogenic hypothyroidism lasting two to four weeks does not prevent cold-induced BAT activation, while the use of TH to induce thyrotoxicosis does not consistently increase cold-induced BAT activity. It remains to be determined which physiological factors besides TH play a role in regulating BAT function. PMID:27750020

  2. Variable Cold-Induced Brown Adipose Tissue Response to Thyroid Hormone Status.

    PubMed

    Gavrila, Alina; Hasselgren, Per-Olof; Glasgow, Allison; Doyle, Ashley N; Lee, Alice J; Fox, Peter; Gautam, Shiva; Hennessey, James V; Kolodny, Gerald M; Cypess, Aaron M

    2017-01-01

    In addition to its role in adaptive thermogenesis, brown adipose tissue (BAT) may protect from weight gain, insulin resistance/diabetes, and metabolic syndrome. Prior studies have shown contradictory results regarding the influence of thyroid hormone (TH) levels on BAT volume and activity. The aim of this pilot study was to gain further insights regarding the effect of TH treatment on BAT function in adult humans by evaluating the BAT mass and activity prospectively in six patients, first in the hypothyroid and then in the thyrotoxic phase. The study subjects underwent 18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) scanning after cold exposure to measure BAT mass and activity while undergoing treatment for differentiated thyroid cancer, first while hypothyroid following TH withdrawal at the time of the radioactive iodine treatment and then three to six months after starting TH suppressive treatment when they were iatrogenically thyrotoxic. Thermogenic and metabolic parameters were measured in both phases. All study subjects had detectable BAT under cold stimulation in both the hypothyroid and thyrotoxic state. The majority but not all (4/6) subjects showed an increase in detectable BAT volume and activity under cold stimulation between the hypothyroid and thyrotoxic phase (total BAT volume: 72.0 ± 21.0 vs. 87.7 ± 16.5 mL, p = 0.25; total BAT activity 158.1 ± 72.8 vs. 189.0 ± 55.5 SUV*g/mL, p = 0.34). Importantly, circulating triiodothyronine was a stronger predictor of energy expenditure changes compared with cold-induced BAT activity. Iatrogenic hypothyroidism lasting two to four weeks does not prevent cold-induced BAT activation, while the use of TH to induce thyrotoxicosis does not consistently increase cold-induced BAT activity. It remains to be determined which physiological factors besides TH play a role in regulating BAT function.

  3. Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection.

    PubMed

    Amman, Brian R; Carroll, Serena A; Reed, Zachary D; Sealy, Tara K; Balinandi, Stephen; Swanepoel, Robert; Kemp, Alan; Erickson, Bobbie Rae; Comer, James A; Campbell, Shelley; Cannon, Deborah L; Khristova, Marina L; Atimnedi, Patrick; Paddock, Christopher D; Crockett, Rebekah J Kent; Flietstra, Timothy D; Warfield, Kelly L; Unfer, Robert; Katongole-Mbidde, Edward; Downing, Robert; Tappero, Jordan W; Zaki, Sherif R; Rollin, Pierre E; Ksiazek, Thomas G; Nichol, Stuart T; Towner, Jonathan S

    2012-01-01

    Marburg virus (family Filoviridae) causes sporadic outbreaks of severe hemorrhagic disease in sub-Saharan Africa. Bats have been implicated as likely natural reservoir hosts based most recently on an investigation of cases among miners infected in 2007 at the Kitaka mine, Uganda, which contained a large population of Marburg virus-infected Rousettus aegyptiacus fruit bats. Described here is an ecologic investigation of Python Cave, Uganda, where an American and a Dutch tourist acquired Marburg virus infection in December 2007 and July 2008. More than 40,000 R. aegyptiacus were found in the cave and were the sole bat species present. Between August 2008 and November 2009, 1,622 bats were captured and tested for Marburg virus. Q-RT-PCR analysis of bat liver/spleen tissues indicated ~2.5% of the bats were actively infected, seven of which yielded Marburg virus isolates. Moreover, Q-RT-PCR-positive lung, kidney, colon and reproductive tissues were found, consistent with potential for oral, urine, fecal or sexual transmission. The combined data for R. aegyptiacus tested from Python Cave and Kitaka mine indicate low level horizontal transmission throughout the year. However, Q-RT-PCR data show distinct pulses of virus infection in older juvenile bats (~six months of age) that temporarily coincide with the peak twice-yearly birthing seasons. Retrospective analysis of historical human infections suspected to have been the result of discrete spillover events directly from nature found 83% (54/65) events occurred during these seasonal pulses in virus circulation, perhaps demonstrating periods of increased risk of human infection. The discovery of two tags at Python Cave from bats marked at Kitaka mine, together with the close genetic linkages evident between viruses detected in geographically distant locations, are consistent with R. aegyptiacus bats existing as a large meta-population with associated virus circulation over broad geographic ranges. These findings provide a basis for developing Marburg hemorrhagic fever risk reduction strategies.

  4. Seasonal Pulses of Marburg Virus Circulation in Juvenile Rousettus aegyptiacus Bats Coincide with Periods of Increased Risk of Human Infection

    PubMed Central

    Amman, Brian R.; Carroll, Serena A.; Reed, Zachary D.; Sealy, Tara K.; Balinandi, Stephen; Swanepoel, Robert; Kemp, Alan; Erickson, Bobbie Rae; Comer, James A.; Campbell, Shelley; Cannon, Deborah L.; Khristova, Marina L.; Atimnedi, Patrick; Paddock, Christopher D.; Kent Crockett, Rebekah J.; Flietstra, Timothy D.; Warfield, Kelly L.; Unfer, Robert; Katongole-Mbidde, Edward; Downing, Robert; Tappero, Jordan W.; Zaki, Sherif R.; Rollin, Pierre E.; Ksiazek, Thomas G.; Nichol, Stuart T.; Towner, Jonathan S.

    2012-01-01

    Marburg virus (family Filoviridae) causes sporadic outbreaks of severe hemorrhagic disease in sub-Saharan Africa. Bats have been implicated as likely natural reservoir hosts based most recently on an investigation of cases among miners infected in 2007 at the Kitaka mine, Uganda, which contained a large population of Marburg virus-infected Rousettus aegyptiacus fruit bats. Described here is an ecologic investigation of Python Cave, Uganda, where an American and a Dutch tourist acquired Marburg virus infection in December 2007 and July 2008. More than 40,000 R. aegyptiacus were found in the cave and were the sole bat species present. Between August 2008 and November 2009, 1,622 bats were captured and tested for Marburg virus. Q-RT-PCR analysis of bat liver/spleen tissues indicated ∼2.5% of the bats were actively infected, seven of which yielded Marburg virus isolates. Moreover, Q-RT-PCR-positive lung, kidney, colon and reproductive tissues were found, consistent with potential for oral, urine, fecal or sexual transmission. The combined data for R. aegyptiacus tested from Python Cave and Kitaka mine indicate low level horizontal transmission throughout the year. However, Q-RT-PCR data show distinct pulses of virus infection in older juvenile bats (∼six months of age) that temporarily coincide with the peak twice-yearly birthing seasons. Retrospective analysis of historical human infections suspected to have been the result of discrete spillover events directly from nature found 83% (54/65) events occurred during these seasonal pulses in virus circulation, perhaps demonstrating periods of increased risk of human infection. The discovery of two tags at Python Cave from bats marked at Kitaka mine, together with the close genetic linkages evident between viruses detected in geographically distant locations, are consistent with R. aegyptiacus bats existing as a large meta-population with associated virus circulation over broad geographic ranges. These findings provide a basis for developing Marburg hemorrhagic fever risk reduction strategies. PMID:23055920

  5. Inverse association between brown adipose tissue activation and white adipose tissue accumulation in successfully treated pediatric malignancy1234

    PubMed Central

    Chalfant, James S; Smith, Michelle L; Hu, Houchun H; Dorey, Fred J; Goodarzian, Fariba; Fu, Cecilia H

    2012-01-01

    Background: Although the accumulation of white adipose tissue (WAT) is a risk factor for disease, brown adipose tissue (BAT) has been suggested to have a protective role against obesity. Objective: We studied whether changes in BAT were related to changes in the amounts of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in children treated for malignancy. Design: We examined the effect of BAT activity on weight, SAT, and VAT in 32 pediatric patients with cancer whose positron emission tomography–computed tomography (PET-CT) scans at diagnosis showed no BAT activity. Changes in weight, SAT, and VAT from diagnosis to remission for children with metabolically active BAT at disease-free follow-up (BAT+) were compared with those in children without visualized BAT when free of disease (BAT−). Results: Follow-up PET-CT studies (4.7 ± 2.4 mo later) after successful treatment of the cancer showed BAT+ in 19 patients but no active BAT (BAT−) in 13 patients. BAT+ patients, in comparison with BAT− patients, gained significantly less weight (3.3 ± 6.6% compared with 11.0 ± 11.6%; P = 0.02) and had significantly less SAT (18.2 ± 26.5% compared with 67.4 ± 71.7%; P = 0.01) and VAT (22.6 ± 33.5% compared with 131.6 ± 171.8%; P = 0.01) during treatment. Multiple regression analysis indicated that the inverse relations between BAT activation and measures of weight, SAT, and VAT persisted even after age, glucocorticoid treatment, and the season when the PET-CT scans were obtained were accounted for. Conclusion: The activation of BAT in pediatric patients undergoing treatment of malignancy is associated with significantly less adipose accumulation. This trial was registered at clinicaltrials.gov as NCT01517581. PMID:22456659

  6. The Distribution of Henipaviruses in Southeast Asia and Australasia: Is Wallace’s Line a Barrier to Nipah Virus?

    PubMed Central

    Breed, Andrew C.; Meers, Joanne; Sendow, Indrawati; Bossart, Katharine N.; Barr, Jennifer A.; Smith, Ina; Wacharapluesadee, Supaporn; Wang, Linfa; Field, Hume E.

    2013-01-01

    Nipah virus (NiV) (Genus Henipavirus) is a recently emerged zoonotic virus that causes severe disease in humans and has been found in bats of the genus Pteropus. Whilst NiV has not been detected in Australia, evidence for NiV-infection has been found in pteropid bats in some of Australia’s closest neighbours. The aim of this study was to determine the occurrence of henipaviruses in fruit bat (Family Pteropodidae) populations to the north of Australia. In particular we tested the hypothesis that Nipah virus is restricted to west of Wallace’s Line. Fruit bats from Australia, Papua New Guinea, East Timor and Indonesia were tested for the presence of antibodies to Hendra virus (HeV) and Nipah virus, and tested for the presence of HeV, NiV or henipavirus RNA by PCR. Evidence was found for the presence of Nipah virus in both Pteropus vampyrus and Rousettus amplexicaudatus populations from East Timor. Serology and PCR also suggested the presence of a henipavirus that was neither HeV nor NiV in Pteropus alecto and Acerodon celebensis. The results demonstrate the presence of NiV in the fruit bat populations on the eastern side of Wallace’s Line and within 500 km of Australia. They indicate the presence of non-NiV, non-HeV henipaviruses in fruit bat populations of Sulawesi and Sumba and possibly in Papua New Guinea. It appears that NiV is present where P. vampyrus occurs, such as in the fruit bat populations of Timor, but where this bat species is absent other henipaviruses may be present, as on Sulawesi and Sumba. Evidence was obtained for the presence henipaviruses in the non-Pteropid species R. amplexicaudatus and in A. celebensis. The findings of this work fill some gaps in knowledge in geographical and species distribution of henipaviruses in Australasia which will contribute to planning of risk management and surveillance activities. PMID:23637812

  7. The distribution of henipaviruses in Southeast Asia and Australasia: is Wallace's line a barrier to Nipah virus?

    PubMed

    Breed, Andrew C; Meers, Joanne; Sendow, Indrawati; Bossart, Katharine N; Barr, Jennifer A; Smith, Ina; Wacharapluesadee, Supaporn; Wang, Linfa; Field, Hume E

    2013-01-01

    Nipah virus (NiV) (Genus Henipavirus) is a recently emerged zoonotic virus that causes severe disease in humans and has been found in bats of the genus Pteropus. Whilst NiV has not been detected in Australia, evidence for NiV-infection has been found in pteropid bats in some of Australia's closest neighbours. The aim of this study was to determine the occurrence of henipaviruses in fruit bat (Family Pteropodidae) populations to the north of Australia. In particular we tested the hypothesis that Nipah virus is restricted to west of Wallace's Line. Fruit bats from Australia, Papua New Guinea, East Timor and Indonesia were tested for the presence of antibodies to Hendra virus (HeV) and Nipah virus, and tested for the presence of HeV, NiV or henipavirus RNA by PCR. Evidence was found for the presence of Nipah virus in both Pteropus vampyrus and Rousettus amplexicaudatus populations from East Timor. Serology and PCR also suggested the presence of a henipavirus that was neither HeV nor NiV in Pteropus alecto and Acerodon celebensis. The results demonstrate the presence of NiV in the fruit bat populations on the eastern side of Wallace's Line and within 500 km of Australia. They indicate the presence of non-NiV, non-HeV henipaviruses in fruit bat populations of Sulawesi and Sumba and possibly in Papua New Guinea. It appears that NiV is present where P. vampyrus occurs, such as in the fruit bat populations of Timor, but where this bat species is absent other henipaviruses may be present, as on Sulawesi and Sumba. Evidence was obtained for the presence henipaviruses in the non-Pteropid species R. amplexicaudatus and in A. celebensis. The findings of this work fill some gaps in knowledge in geographical and species distribution of henipaviruses in Australasia which will contribute to planning of risk management and surveillance activities.

  8. Forest structure affects trophic linkages: How silvicultural disturbance impacts bats and their insect prey

    USGS Publications Warehouse

    Dodd, L.E.; Lacki, M.J.; Britzke, E.R.; Buehler, D.A.; Keyser, P.D.; Larkin, J.L.; Rodewald, A.D.; Wigley, T.B.; Wood, P.B.; Rieske, L.K.

    2012-01-01

    Vertebrate insectivores such as bats are a pervasive top-down force on prey populations in forest ecosystems. Conservation focusing on forest-dwelling bats requires understanding of community-level interactions between these predators and their insect prey. Our study assessed bat activity and insect occurrence (abundance and diversity) across a gradient of forest disturbance and structure (silvicultural treatments) in the Central Appalachian region of North America. We conducted acoustic surveys of bat echolocation concurrent with insect surveys using blacklight and malaise traps over 2 years. Predator activity, prey occurrence and prey biomass varied seasonally and across the region. The number of bat echolocation pulses was positively related with forest disturbance, whereas prey demonstrated varied trends. Lepidopteran abundance was negatively related with disturbance, while dipteran abundance and diversity was positively related with disturbance. Coleoptera were unaffected. Neither bat nor insect response variables differed between plot interiors and edges. Correlations between bat activity and vegetative structure reflected differences in foraging behavior among ensembles. Activity of myotine bats was correlated with variables describing sub-canopy vegetation, whereas activity of lasiurine bats was more closely correlated with canopy-level vegetation. Lepidopteran abundance was correlated with variables describing canopy and sub-canopy vegetation, whereas coleopteran and dipteran occurrence were more closely correlated with canopy-level vegetative structure. Our study demonstrates regional variation in bat activity and prey occurrence across a forested disturbance gradient. Land management and conservation efforts should consider the importance of vegetation structure and plant species richness to sustain forest-dwelling bats and their insect prey.

  9. Assessing basophil activation by using flow cytometry and mass cytometry in blood stored 24 hours before analysis.

    PubMed

    Mukai, Kaori; Gaudenzio, Nicolas; Gupta, Sheena; Vivanco, Nora; Bendall, Sean C; Maecker, Holden T; Chinthrajah, Rebecca S; Tsai, Mindy; Nadeau, Kari C; Galli, Stephen J

    2017-03-01

    Basophil activation tests (BATs) have promise for research and for clinical monitoring of patients with allergies. However, BAT protocols vary in blood anticoagulant used and temperature and time of storage before testing, complicating comparisons of results from various studies. We attempted to establish a BAT protocol that would permit analysis of blood within 24 hours of obtaining the sample. Blood from 46 healthy donors and 120 patients with peanut allergy was collected into EDTA or heparin tubes, and samples were stored at 4°C or room temperature for 4 or 24 hours before performing BATs. Stimulation with anti-IgE or IL-3 resulted in strong upregulation of basophil CD203c in samples collected in EDTA or heparin, stored at 4°C, and analyzed 24 hours after sample collection. However, a CD63 hi population of basophils was not observed in any conditions in EDTA-treated samples unless exogenous calcium/magnesium was added at the time of anti-IgE stimulation. By contrast, blood samples collected in heparin tubes were adequate for quantification of upregulation of basophil CD203c and identification of a population of CD63 hi basophils, irrespective of whether the specimens were analyzed by means of conventional flow cytometry or cytometry by time-of-flight mass spectrometry, and such tests could be performed after blood was stored for 24 hours at 4°C. BATs to measure upregulation of basophil CD203c and induction of a CD63 hi basophil population can be conducted with blood obtained in heparin tubes and stored at 4°C for 24 hours. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  10. Seroprevalence Dynamics of European Bat Lyssavirus Type 1 in a Multispecies Bat Colony

    PubMed Central

    López-Roig, Marc; Bourhy, Hervé; Lavenir, Rachel; Serra-Cobo, Jordi

    2014-01-01

    We report an active surveillance study of the occurrence of specific antibodies to European Bat Lyssavirus Type 1 (EBLV-1) in bat species, scarcely studied hitherto, that share the same refuge. From 2004 to 2012, 406 sera were obtained from nine bat species. Blood samples were subjected to a modified fluorescent antibody virus neutralization test to determine the antibody titer. EBLV-1-neutralizing antibodies were detected in six of the nine species analyzed (Pipistrellus pipistrellus, P. kuhlii, Hypsugo savii, Plecotus austriacus, Eptesicus serotinus and Tadarida teniotis). Among all bats sampled, female seroprevalence (20.21%, 95% CI: 14.78%–26.57%) was not significantly higher than the seroprevalence in males (15.02%, 95% CI: 10.51%–20.54%). The results showed that the inter-annual variation in the number of seropositive bats in T. teniotis and P. austriacus showed a peak in 2007 (>70% of EBLV-1 prevalence). However, significant differences were observed in the temporal patterns of the seroprevalence modeling of T. teniotis and P. austriacus. The behavioral ecology of these species involved could explain the different annual fluctuations in EBLV-1 seroprevalence. PMID:25192547

  11. Increasing evidence that bats actively forage at wind turbines

    PubMed Central

    Foo, Cecily F.; Bennett, Victoria J.; Korstian, Jennifer M.; Schildt, Alison J.; Williams, Dean A.

    2017-01-01

    Although the ultimate causes of high bat fatalities at wind farms are not well understood, several lines of evidence suggest that bats are attracted to wind turbines. One hypothesis is that bats would be attracted to turbines as a foraging resource if the insects that bats prey upon are commonly present on and around the turbine towers. To investigate the role that foraging activity may play in bat fatalities, we conducted a series of surveys at a wind farm in the southern Great Plains of the US from 2011–2016. From acoustic monitoring we recorded foraging activity, including feeding buzzes indicative of prey capture, in the immediate vicinity of turbine towers from all six bat species known to be present at this site. From insect surveys we found Lepidoptera, Coleoptera, and Orthoptera in consistently high proportions over several years suggesting that food resources for bats were consistently available at wind turbines. We used DNA barcoding techniques to assess bat diet composition of (1) stomach contents from 47 eastern red bat (Lasiurus borealis) and 24 hoary bat (Lasiurus cinereus) carcasses collected in fatality searches, and (2) fecal pellets from 23 eastern red bats that were found on turbine towers, transformers, and tower doors. We found that the majority of the eastern red bat and hoary bat stomachs, the two bat species most commonly found in fatality searches at this site, were full or partially full, indicating that the bats were likely killed while foraging. Although Lepidoptera and Orthoptera dominated the diets of these two bat species, both consumed a range of prey items with individual bats having from one to six insect species in their stomachs at the time of death. The prey items identified from eastern red bat fecal pellets showed similar results. A comparison of the turbine insect community to the diet analysis results revealed that the most abundant insects at wind turbines, including terrestrial insects such as crickets and several important crop pests, were also commonly eaten by eastern red and hoary bats. Collectively, these findings suggest that bats are actively foraging around wind turbines and that measures to minimize bat fatalities should be broadly implemented at wind facilities. PMID:29114441

  12. Increasing evidence that bats actively forage at wind turbines.

    PubMed

    Foo, Cecily F; Bennett, Victoria J; Hale, Amanda M; Korstian, Jennifer M; Schildt, Alison J; Williams, Dean A

    2017-01-01

    Although the ultimate causes of high bat fatalities at wind farms are not well understood, several lines of evidence suggest that bats are attracted to wind turbines. One hypothesis is that bats would be attracted to turbines as a foraging resource if the insects that bats prey upon are commonly present on and around the turbine towers. To investigate the role that foraging activity may play in bat fatalities, we conducted a series of surveys at a wind farm in the southern Great Plains of the US from 2011-2016. From acoustic monitoring we recorded foraging activity, including feeding buzzes indicative of prey capture, in the immediate vicinity of turbine towers from all six bat species known to be present at this site. From insect surveys we found Lepidoptera, Coleoptera, and Orthoptera in consistently high proportions over several years suggesting that food resources for bats were consistently available at wind turbines. We used DNA barcoding techniques to assess bat diet composition of (1) stomach contents from 47 eastern red bat ( Lasiurus borealis ) and 24 hoary bat ( Lasiurus cinereus ) carcasses collected in fatality searches, and (2) fecal pellets from 23 eastern red bats that were found on turbine towers, transformers, and tower doors. We found that the majority of the eastern red bat and hoary bat stomachs, the two bat species most commonly found in fatality searches at this site, were full or partially full, indicating that the bats were likely killed while foraging. Although Lepidoptera and Orthoptera dominated the diets of these two bat species, both consumed a range of prey items with individual bats having from one to six insect species in their stomachs at the time of death. The prey items identified from eastern red bat fecal pellets showed similar results. A comparison of the turbine insect community to the diet analysis results revealed that the most abundant insects at wind turbines, including terrestrial insects such as crickets and several important crop pests, were also commonly eaten by eastern red and hoary bats. Collectively, these findings suggest that bats are actively foraging around wind turbines and that measures to minimize bat fatalities should be broadly implemented at wind facilities.

  13. The Hemagglutinin of Bat-Associated Influenza Viruses Is Activated by TMPRSS2 for pH-Dependent Entry into Bat but Not Human Cells

    PubMed Central

    Hoffmann, Markus; Krüger, Nadine; Zmora, Pawel; Wrensch, Florian; Herrler, Georg; Pöhlmann, Stefan

    2016-01-01

    New World bats have recently been discovered to harbor influenza A virus (FLUAV)-related viruses, termed bat-associated influenza A-like viruses (batFLUAV). The internal proteins of batFLUAV are functional in mammalian cells. In contrast, no biological functionality could be demonstrated for the surface proteins, hemagglutinin (HA)-like (HAL) and neuraminidase (NA)-like (NAL), and these proteins need to be replaced by their human counterparts to allow spread of batFLUAV in human cells. Here, we employed rhabdoviral vectors to study the role of HAL and NAL in viral entry. Vectors pseudotyped with batFLUAV-HAL and -NAL were able to enter bat cells but not cells from other mammalian species. Host cell entry was mediated by HAL and was dependent on prior proteolytic activation of HAL and endosomal low pH. In contrast, sialic acids were dispensable for HAL-driven entry. Finally, the type II transmembrane serine protease TMPRSS2 was able to activate HAL for cell entry indicating that batFLUAV can utilize human proteases for HAL activation. Collectively, these results identify viral and cellular factors governing host cell entry driven by batFLUAV surface proteins. They suggest that the absence of a functional receptor precludes entry of batFLUAV into human cells while other prerequisites for entry, HAL activation and protonation, are met in target cells of human origin. PMID:27028521

  14. Organization and seasonal quantification of the intertubular compartment in the bat Molossus molossus (Pallas, 1776) testis.

    PubMed

    Morais, Danielle Barbosa; De Oliveira, Luciana Coutinho; Carmo Cupertino, Marli Do; De Freitas, Karine Moura; De Freitas, Mariella Bontempo Duca; De Paula, Tarcízio Antônio Rêgo; Da Matta, Sérgio Luis Pinto

    2013-01-01

    Environmental factors can influence the reproductive rates in bats, and since morphometric information of bats testis is scarce, we aimed to compare the organization and quantification of the intertubular components in the testes of the bat Molossus molossus, collected in different seasons. Testicular histological sections were evaluated using light and electron microscopy. The intertubular compartment occupied an average 10% of the testes, being predominately constituted of Leydig cells (LC). The percentages of the testes occupied by the intertubular compartment and by LC were significantly higher in summer, while the other intertubular components did not vary significantly among the seasons. As suspected under light microscopy, the ultrastructural analysis confirmed the existence of multinucleated LC during winter. The increase in the nuclear percentage of LC in winter seems to have caused the decrease of the cytoplasmatic measurements in that season, as well as in the volume of LC. The highest cytoplasmatic values and volume of LC registered in the spring, summer, and fall can be related to greater activity of this cell in these seasons. The higher investment in intertubular tissue and in LC observed in summer, compared to winter; suggest an increase in the steroidogenic capacity of this bat during summer. The analyses correlating testicular morphometry and abiotic environmental factors in this study confirm the influence of climatic factors on the reproduction of M. molossus. Copyright © 2012 Wiley Periodicals, Inc.

  15. Evidence of Australian bat lyssavirus infection in diverse Australian bat taxa.

    PubMed

    Field, Hume Ernest

    2018-05-21

    Historically, Australia was considered free of rabies and rabieslike viruses. Thus, the identification of Australian bat lyssavirus (ABLV) in 1996 in a debilitated bat found by a member of the public precipitated both public health consternation and a revision of lyssavirus taxonomy. Subsequent observational studies sought to elaborate the occurrence and frequency of ABLV infection in Australian bats. This paper describes the taxonomic diversity of bat species showing evidence of ABLV infection to better inform public health considerations. Blood and/or brain samples were collected from two cohorts of bats (wild-caught and diagnostic submissions) from four Australian states or territories between April 1996 and October 2002. Fresh brain impression smears were tested for ABLV antigen using fluorescein-labelled anti-rabies monoclonal globulin (CENTOCOR) in a direct fluorescent antibody test; sera were tested for the presence of neutralising antibodies using a rapid fluorescent focus inhibition test. A total of 3,217 samples from 2,633 bats were collected and screened: brain samples from 1,461 wild-caught bats and 1,086 submitted bats from at least 16 genera and seven families, and blood samples from 656 wild-caught bats and 14 submitted bats from 14 genera and seven families. Evidence of ABLV infection was found in five of the six families of bats occurring in Australia, and in three of the four Australian states/territories surveyed, supporting the historic presence of the virus in Australia. While the infection prevalence in the wild-caught cohort is evidently low, the significantly higher infection prevalence in rescued bats in urban settings represents a clear and present public health significance because of the higher risk of human exposure. © 2018 Blackwell Verlag GmbH.

  16. Infrared thermography, a new method for detection of brown adipose tissue activity after a meal in humans

    NASA Astrophysics Data System (ADS)

    Habek, Nikola; Kordić, Milan; Jurenec, Franjo; Dugandžić, Aleksandra

    2018-03-01

    The activation of brown adipose tissue (BAT) after cold exposure leads to heat production. However, the activation of BAT activity after a meal as part of diet induced thermogenesis is still controversial. A possible reason is that measuring BAT activity by positron emission tomography-computed tomography (PET CT) via accumulation of radiotracer fludeoxyglucose (18F-FDG), which competes with an increase in glucose concentration after a meal, fails as the method of choice. In this study, activity of BAT was determined by infrared thermography. Activation of BAT 30 min after a meal increases glucose consumption, decreases plasma glucose concentration, and leads to changes of body temperature (diet-induced thermogenesis). Detecting pathophysiological changes in BAT activity after a meal by infrared thermography, a non-invasive more sensitive method, will be of great importance for people with increased body weight and diabetes mellitus type 2.

  17. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity.

    PubMed

    Morimoto-Kobayashi, Yumie; Ohara, Kazuaki; Takahashi, Chika; Kitao, Sayoko; Wang, Guanying; Taniguchi, Yoshimasa; Katayama, Mikio; Nagai, Katsuya

    2015-01-01

    Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB) appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA). Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional foods or beverages to counteract the accumulation of body fat.

  18. Capsinoids activate brown adipose tissue (BAT) with increased energy expenditure associated with subthreshold 18-fluorine fluorodeoxyglucose uptake in BAT-positive humans confirmed by positron emission tomography scan.

    PubMed

    Sun, Lijuan; Camps, Stefan G; Goh, Hui Jen; Govindharajulu, Priya; Schaefferkoetter, Joshua D; Townsend, David W; Verma, Sanjay K; Velan, S Sendhil; Sun, Lei; Sze, Siu Kwan; Lim, Su Chi; Boehm, Bernhard Otto; Henry, Christiani Jeyakumar; Leow, Melvin Khee-Shing

    2018-01-01

    Capsinoids are reported to increase energy expenditure (EE) via brown adipose tissue (BAT) stimulation. However, imaging of BAT activation by capsinoids remains limited. Because BAT activation is a potential therapeutic strategy for obesity and related metabolic disorders, we sought to prove that capsinoid-induced BAT activation can be visualized by 18-fluorine fluorodeoxyglucose (18F-FDG) positron emission tomography (PET). We compared capsinoids and cold exposure on BAT activation and whole-body EE. Twenty healthy participants (8 men, 12 women) with a mean age of 26 y (range: 21-35 y) and a body mass index (kg/m2) of 21.7 (range: 18.5-26.0) underwent 18F-FDG PET and whole-body calorimetry after ingestion of 12 mg capsinoids or ≤2 h of cold exposure (∼14.5°C) in a crossover design. Mean standardized uptake values (SUVs) of the region of interest and BAT volumes were calculated. Blood metabolites were measured before and 2 h after each treatment. All of the participants showed negligible 18F-FDG uptake post-capsinoid ingestion. Upon cold exposure, 12 participants showed avid 18F-FDG uptake into supraclavicular and lateral neck adipose tissues (BAT-positive group), whereas the remaining 8 participants (BAT-negative group) showed undetectable uptake. Capsinoids and cold exposure increased EE, although cold induced a 2-fold increase in whole-body EE and higher fat oxidation, insulin sensitivity, and HDL cholesterol compared with capsinoids. Capsinoids only increased EE in BAT-positive participants, which suggests that BAT mediates EE evoked by capsinoids. This implies that capsinoids stimulate BAT to a lesser degree than cold exposure as evidenced by 18F-FDG uptake below the presently accepted SUV thresholds defining BAT activation. This trial was registered at www.clinicaltrials.gov as NCT02964442. © 2018 American Society for Nutrition. All rights reserved.

  19. Matched Behavioral and Neural Adaptations for Low Sound Level Echolocation in a Gleaning Bat, Antrozous pallidus.

    PubMed

    Measor, Kevin R; Leavell, Brian C; Brewton, Dustin H; Rumschlag, Jeffrey; Barber, Jesse R; Razak, Khaleel A

    2017-01-01

    In active sensing, animals make motor adjustments to match sensory inputs to specialized neural circuitry. Here, we describe an active sensing system for sound level processing. The pallid bat uses downward frequency-modulated (FM) sweeps as echolocation calls for general orientation and obstacle avoidance. The bat's auditory cortex contains a region selective for these FM sweeps (FM sweep-selective region, FMSR). We show that the vast majority of FMSR neurons are sensitive and strongly selective for relatively low levels (30-60 dB SPL). Behavioral testing shows that when a flying bat approaches a target, it reduces output call levels to keep echo levels between ∼30 and 55 dB SPL. Thus, the pallid bat behaviorally matches echo levels to an optimized neural representation of sound levels. FMSR neurons are more selective for sound levels of FM sweeps than tones, suggesting that across-frequency integration enhances level tuning. Level-dependent timing of high-frequency sideband inhibition in the receptive field shapes increased level selectivity for FM sweeps. Together with previous studies, these data indicate that the same receptive field properties shape multiple filters (sweep direction, rate, and level) for FM sweeps, a sound common in multiple vocalizations, including human speech. The matched behavioral and neural adaptations for low-intensity echolocation in the pallid bat will facilitate foraging with reduced probability of acoustic detection by prey.

  20. RABIES SURVEILLANCE AMONG BATS IN TENNESSEE, USA, 1996-2010.

    PubMed

    Gilbert, Amy T; McCracken, Gary F; Sheeler, Lorinda L; Muller, Lisa I; O'Rourke, Dorcas; Kelch, William J; New, John C

    2015-10-01

    Rabies virus (RABV) infects multiple bat species in the Americas, and enzootic foci perpetuate in bats principally via intraspecific transmission. In recent years, bats have been implicated in over 90% of human rabies cases in the US. In Tennessee, two human cases of rabies have occurred since 1960: one case in 1994 associated with a tricolored bat (Perimyotis subflavus) RABV variant and another in 2002 associated with the tricolored/silver-haired bat (P. subflavus/Lasionycteris noctivagans) RABV variant. From 1996 to 2010, 2,039 bats were submitted for rabies testing in Tennessee. Among 1,943 bats in satisfactory condition for testing and with a reported diagnostic result, 96% (1,870 of 1,943) were identified to species and 10% (196 of 1,943) were rabid. Big brown (Eptesicus fuscus), tricolored, and eastern red (Lasiurus borealis) bats comprised 77% of testable bat submissions and 84% of rabid bats. For species with five or more submissions during 1996-2010, the highest proportion of rabid bats occurred in hoary (Lasiurus cinereus; 46%), unspecified Myotis spp. (22%), and eastern red (17%) bats. The best model to predict rabid bats included month of submission, exposure history of submission, species, and sex of bat.

  1. Maintenance of neural activities in torpid Rhinolophus ferrumequinum bats revealed by 2D gel-based proteome analysis.

    PubMed

    Yin, Qiuyuan; Zhang, Yijian; Dong, Dong; Lei, Ming; Zhang, Shuyi; Liao, Chen-Chung; Pan, Yi-Hsuan

    2017-08-01

    Bats are the only mammals capable of self-powered flying. Many bat species hibernate in winter. A reversible control of cerebral activities is critical for bats to accommodate a repeated torpor-arousal cycle during hibernation. Little is known about the molecular mechanisms that regulate neuronal activities in torpid bats. In this study, Rhinolophus ferrumequinum bat brain proteins were fractionated, and their abundance in active and torpid states was compared. Results of 2D gel-based proteomics showed that 38% of identified proteins with a significant change in abundance are involved in synaptic vesicle recycling and cytoskeletal integrity. Changes in the abundance of proteins related to RNA splicing, proteostasis, redox homeostasis, mitochondrial function, and energy metabolism were also detected. In addition, the levels of GNAO1 (guanine nucleotide-binding protein G αo subunit), an important modulator of neuronal transmembrane signaling, were significantly increased in the insoluble protein fraction of torpid bats; this may be due to GNAO1 palmitoylation making it insoluble. Our data provide molecular evidence for the maintenance of neuronal activities in torpid bats and suggest that a reversible palmitoylation of the G protein plays a role in the regulation of neuronal activities during bat hibernation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Lagos bat virus transmission in an Eidolon helvum bat colony, Ghana.

    PubMed

    Freuling, Conrad M; Binger, Tabea; Beer, Martin; Adu-Sarkodie, Yaw; Schatz, Juliane; Fischer, Melina; Hanke, Dennis; Hoffmann, Bernd; Höper, Dirk; Mettenleiter, Thomas C; Oppong, Samual K; Drosten, Christian; Müller, Thomas

    2015-12-02

    A brain sample of a straw-coloured fruit bat (Eidolon helvum) from Ghana without evident signs of disease tested positive by generic Lyssavirus RT-PCR and direct antigen staining. Sequence analysis confirmed the presence of a Lagos bat virus belonging to phylogenetic lineage A. Virus neutralization tests using the isolate with sera from the same group of bats yielded neutralizing antibodies in 74% of 567 animals. No cross-neutralization was observed against a different Lagos bat virus (lineage B). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Human Brown Adipose Tissue Temperature and Fat Fraction Are Related to Its Metabolic Activity.

    PubMed

    Koskensalo, Kalle; Raiko, Juho; Saari, Teemu; Saunavaara, Virva; Eskola, Olli; Nuutila, Pirjo; Saunavaara, Jani; Parkkola, Riitta; Virtanen, Kirsi A

    2017-04-01

    The metabolic activity of human brown adipose tissue (BAT) has been previously examined using positron emission tomography (PET). The aim of this study was to use proton magnetic resonance spectroscopy (1H MRS) to investigate whether the temperature and the fat fraction (FF) of BAT and white adipose tissue (WAT) are associated with BAT metabolic activity determined by deoxy-2-18F-fluoro-d-glucose (18F-FDG)-PET. Ten healthy subjects (four women, six men; 25 to 45 years of age) were studied using PET-magnetic resonance imaging during acute cold exposure and at ambient room temperature. BAT and subcutaneous WAT 1H MRS were measured. The tissue temperature and the FF were derived from the spectra. Tissue metabolic activity was studied through glucose uptake using dynamic FDG PET scanning during cold exposure. A 2-hour hyperinsulinemic euglycemic clamp was performed on eight subjects. The metabolic activity of BAT associated directly with the heat production capacity and inversely with the FF of the tissue. In addition, the lipid-burning capacity of BAT associated with whole-body insulin sensitivity. During cold exposure, the FF of BAT was lower than at room temperature, and cold-induced FF of BAT associated inversely with high-density lipoprotein and directly with low-density lipoprotein cholesterol. Both 1H MRS-derived temperature and FF are promising methods to study BAT activity noninvasively. The association between the lipid-burning capacity of BAT and whole-body insulin sensitivity emphasizes the role of BAT in glucose handling. Furthermore, the relation of FF to high-density lipoprotein and low-density lipoprotein cholesterol suggests that BAT has a role in lipid clearance, thus protecting tissues from excess lipid load. Copyright © 2017 Endocrine Society

  4. The influence of bat echolocation call duration and timing on auditory encoding of predator distance in noctuoid moths.

    PubMed

    Gordon, Shira D; Ter Hofstede, Hannah M

    2018-03-22

    Animals co-occur with multiple predators, making sensory systems that can encode information about diverse predators advantageous. Moths in the families Noctuidae and Erebidae have ears with two auditory receptor cells (A1 and A2) used to detect the echolocation calls of predatory bats. Bat communities contain species that vary in echolocation call duration, and the dynamic range of A1 is limited by the duration of sound, suggesting that A1 provides less information about bats with shorter echolocation calls. To test this hypothesis, we obtained intensity-response functions for both receptor cells across many moth species for sound pulse durations representing the range of echolocation call durations produced by bat species in northeastern North America. We found that the threshold and dynamic range of both cells varied with sound pulse duration. The number of A1 action potentials per sound pulse increases linearly with increasing amplitude for long-duration pulses, saturating near the A2 threshold. For short sound pulses, however, A1 saturates with only a few action potentials per pulse at amplitudes far lower than the A2 threshold for both single sound pulses and pulse sequences typical of searching or approaching bats. Neural adaptation was only evident in response to approaching bat sequences at high amplitudes, not search-phase sequences. These results show that, for short echolocation calls, a large range of sound levels cannot be coded by moth auditory receptor activity, resulting in no information about the distance of a bat, although differences in activity between ears might provide information about direction. © 2018. Published by The Company of Biologists Ltd.

  5. Neonatal tobacco smoke reduces thermogenesis capacity in brown adipose tissue in adult rats.

    PubMed

    Peixoto, T C; Moura, E G; Oliveira, E; Younes-Rapozo, V; Soares, P N; Rodrigues, V S T; Santos, T R; Peixoto-Silva, N; Carvalho, J C; Calvino, C; Conceição, E P S; Guarda, D S; Claudio-Neto, S; Manhães, A C; Lisboa, P C

    2018-01-01

    Maternal smoking is a risk factor for progeny obesity. We have previously shown, in a rat model of neonatal tobacco smoke exposure, a mild increase in food intake and a considerable increase in visceral adiposity in the adult offspring. Males also had secondary hyperthyroidism, while females had only higher T4. Since brown adipose tissue (BAT) hypofunction is related to obesity, here we tested the hypothesis that higher levels of thyroid hormones are not functional in BAT, suggesting a lower metabolic rate. We evaluated autonomic nerve activity in BAT and its function in adult rats that were exposed to tobacco smoke during lactation. At birth, litters were adjusted to 3 male and 3 female pups/litter. From postnatal day (PND) 3 to 21, Wistar lactating rats and their pups were divided into SE group, smoke-exposed in a cigarette smoking machine (4 times/day) and C group, exposed to filtered air. Offspring were sacrificed at PND180. Adult SE rats of both genders had lower interscapular BAT autonomic nervous system activity, with higher BAT mass but no change in morphology. BAT UCP1 and CPT1a protein levels were decreased in the SE groups of both genders. Male SE rats had lower β3-AR, TRα1, and TRβ1 expression while females showed lower PGC1α expression. BAT Dio2 mRNA and hypothalamic POMC and MC4R levels were similar between groups. Hypothalamic pAMPK level was higher in SE males and lower in SE females. Thus, neonatal cigarette smoke exposure induces lower BAT thermogenic capacity, which can be obesogenic at adulthood.

  6. Rabies in a captive colony of big brown bats (Eptesicus fuscus)

    USGS Publications Warehouse

    Shankar, V.; Bowen, R.A.; Davis, A.D.; Rupprecht, C.E.; O'Shea, T.J.

    2004-01-01

    Our research has focused on the ecology of commensal populations of big brown bats (Eptesicus fuscus) in Fort Collins, Colorado (USA), in relation to rabies virus (RV) transmission. We captured 35 big brown bats (Eptesicus fuscus) in late summer 2001 and held them captive for 4.8 mo. The bats were initially placed in an indoor cage for 1 mo then segregated into groups of two to six per cage. Two of the bats succumbed to rabies virus (RV) within the first month of capture. Despite group housing, all of the remaining bats were healthy over the course of the investigation; none developed rabies, although one of the rabid bats was observed to bite her cage mates. Reverse transcription–polymerase chain reaction (RT-PCR) and Taqman® real-time PCR analysis of the RNA derived from the brain tissue, salivary glands, and oral swab samples confirmed RV infection in the dead bats. Rabies virus was also isolated from the brain tissue upon passage in mouse neuroblastoma cells. Nucleotide sequence analysis of the RV nucleoprotein (N) gene showed 100% identity with the N gene sequence of a 1985 E. fuscus isolate from El Paso County, Colorado. Bat sera obtained six times throughout the study were assayed for RV neutralizing antibodies using the rapid fluorescent focus inhibition test. The RV neutralizing activity in the serum was associated with the IgG component, which was purified by binding to protein G Sepharose. Five bats were RV seropositive prior to their capture and maintained titers throughout captivity. Two adult bats seroconverted during captivity. Two volant juvenile bats had detectable RV antibody titers at the first serum collection but were negative thereafter. Four seronegative bats responded to a RV vaccine administration with high titers of RV antibodies. A serologic survey of big brown bats in the roost from which one of the captive rabid bats had originated showed a significant rise in seroprevalence during 2002.

  7. 49 CFR 40.247 - What procedures does the BAT or STT follow after a screening test result?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false What procedures does the BAT or STT follow after a... What procedures does the BAT or STT follow after a screening test result? (a) If the test result is an alcohol concentration of less than 0.02, as the BAT or STT, you must do the following: (1) Sign and date...

  8. 49 CFR 40.247 - What procedures does the BAT or STT follow after a screening test result?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What procedures does the BAT or STT follow after a... What procedures does the BAT or STT follow after a screening test result? (a) If the test result is an alcohol concentration of less than 0.02, as the BAT or STT, you must do the following: (1) Sign and date...

  9. 49 CFR 40.247 - What procedures does the BAT or STT follow after a screening test result?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false What procedures does the BAT or STT follow after a... What procedures does the BAT or STT follow after a screening test result? (a) If the test result is an alcohol concentration of less than 0.02, as the BAT or STT, you must do the following: (1) Sign and date...

  10. 49 CFR 40.247 - What procedures does the BAT or STT follow after a screening test result?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false What procedures does the BAT or STT follow after a... What procedures does the BAT or STT follow after a screening test result? (a) If the test result is an alcohol concentration of less than 0.02, as the BAT or STT, you must do the following: (1) Sign and date...

  11. 49 CFR 40.247 - What procedures does the BAT or STT follow after a screening test result?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false What procedures does the BAT or STT follow after a... What procedures does the BAT or STT follow after a screening test result? (a) If the test result is an alcohol concentration of less than 0.02, as the BAT or STT, you must do the following: (1) Sign and date...

  12. Numerical and functional responses of forest bats to a major insect pest in pine plantations.

    PubMed

    Charbonnier, Yohan; Barbaro, Luc; Theillout, Amandine; Jactel, Hervé

    2014-01-01

    Global change is expected to modify the frequency and magnitude of defoliating insect outbreaks in forest ecosystems. Bats are increasingly acknowledged as effective biocontrol agents for pest insect populations. However, a better understanding is required of whether and how bat communities contribute to the resilience of forests to man- and climate-driven biotic disturbances.We studied the responses of forest insectivorous bats to a major pine defoliator, the pine processionary moth Thaumetopoea pityocampa, which is currently expanding its range in response to global warming [corrected]. We used pheromone traps and ultrasound bat recorders to estimate the abundance and activity of moths and predatory bats along the edge of infested pine stands. We used synthetic pheromone to evaluate the effects of experimentally increased moth availability on bat foraging activity. We also evaluated the top-down regulation of moth population by estimating T. pityocampa larval colonies abundance on the same edges the following winter. We observed a close spatio-temporal matching between emergent moths and foraging bats, with bat activity significantly increasing with moth abundance. The foraging activity of some bat species was significantly higher near pheromone lures, i.e. in areas of expected increased prey availability. Furthermore moth reproductive success significantly decreased with increasing bat activity during the flight period of adult moths. These findings suggest that bats, at least in condition of low prey density, exhibit numerical and functional responses to a specific and abundant prey, which may ultimately result in an effective top-down regulation of the population of the prey. These observations are consistent with bats being useful agents for the biocontrol of insect pest populations in plantation forests.

  13. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed

    PubMed Central

    Nusslé, Sébastien; Miltner, Daniela; Kohle, Oliver; Glaizot, Olivier; Braunisch, Veronika; Obrist, Martin K.; Arlettaz, Raphaël

    2018-01-01

    Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50–150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi’s pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely. PMID:29561851

  14. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed.

    PubMed

    Wellig, Sascha D; Nusslé, Sébastien; Miltner, Daniela; Kohle, Oliver; Glaizot, Olivier; Braunisch, Veronika; Obrist, Martin K; Arlettaz, Raphaël

    2018-01-01

    Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50-150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi's pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely.

  15. A modelling framework to predict bat activity patterns on wind farms: An outline of possible applications on mountain ridges of North Portugal.

    PubMed

    Silva, Carmen; Cabral, João Alexandre; Hughes, Samantha Jane; Santos, Mário

    2017-03-01

    Worldwide ecological impact assessments of wind farms have gathered relevant information on bat activity patterns. Since conventional bat study methods require intensive field work, the prediction of bat activity might prove useful by anticipating activity patterns and estimating attractiveness concomitant with the wind farm location. A novel framework was developed, based on the stochastic dynamic methodology (StDM) principles, to predict bat activity on mountain ridges with wind farms. We illustrate the framework application using regional data from North Portugal by merging information from several environmental monitoring programmes associated with diverse wind energy facilities that enable integrating the multifactorial influences of meteorological conditions, land cover and geographical variables on bat activity patterns. Output from this innovative methodology can anticipate episodes of exceptional bat activity, which, if correlated with collision probability, can be used to guide wind farm management strategy such as halting wind turbines during hazardous periods. If properly calibrated with regional gradients of environmental variables from mountain ridges with windfarms, the proposed methodology can be used as a complementary tool in environmental impact assessments and ecological monitoring, using predicted bat activity to assist decision making concerning the future location of wind farms and the implementation of effective mitigation measures. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Keeping the blood flowing—plasminogen activator genes and feeding behavior in vampire bats

    NASA Astrophysics Data System (ADS)

    Tellgren-Roth, Åsa; Dittmar, Katharina; Massey, Steven E.; Kemi, Cecilia; Tellgren-Roth, Christian; Savolainen, Peter; Lyons, Leslie A.; Liberles, David A.

    2009-01-01

    The blood feeding vampire bats emerged from New World leaf-nosed bats that fed on fruit and insects. Plasminogen activator, a serine protease that regulates blood coagulation, is known to be expressed in the saliva of Desmodus rotundus (common vampire bat) and is thought to be a key enzyme for the emergence of blood feeding in vampire bats. To better understand the evolution of this biological function, we studied the plasminogen activator (PA) genes from all vampire bat species in light of their feeding transition to bird and subsequently mammalian blood. We include the rare species Diphylla ecaudata and Diaemus youngi, where plasminogen activator had not previously been studied and demonstrate that PA gene duplication observed in Desmodus is not essential to the vampire phenotype, but relates to the emergence of predominant mammalian blood feeding in this species. Plasminogen activator has evolved through gene duplication, domain loss, and sequence evolution leading to change in fibrin-specificity and susceptibility to plasminogen activator inhibitor-1. Before undertaking this study, only the four plasminogen activator isoforms from Desmodus were known. The evolution of vampire bat plasminogen activators can now be linked phylogenetically to the transition in feeding behavior among vampire bat species from bird to mammalian blood.

  17. Mapping of human brown adipose tissue in lean and obese young men

    PubMed Central

    Leitner, Brooks P.; Huang, Shan; Brychta, Robert J.; Duckworth, Courtney J.; Baskin, Alison S.; McGehee, Suzanne; Tal, Ilan; Dieckmann, William; Gupta, Garima; Kolodny, Gerald M.; Pacak, Karel; Herscovitch, Peter

    2017-01-01

    Human brown adipose tissue (BAT) can be activated to increase glucose uptake and energy expenditure, making it a potential target for treating obesity and metabolic disease. Data on the functional and anatomic characteristics of BAT are limited, however. In 20 healthy young men [12 lean, mean body mass index (BMI) 23.2 ± 1.9 kg/m2; 8 obese, BMI 34.8 ± 3.3 kg/m2] after 5 h of tolerable cold exposure, we measured BAT volume and activity by 18F-labeled fluorodeoxyglucose positron emission tomography/computerized tomography (PET/CT). Obese men had less activated BAT than lean men (mean, 130 vs. 334 mL) but more fat in BAT-containing depots (mean, 1,646 vs. 855 mL) with a wide range (0.1–71%) in the ratio of activated BAT to inactive fat between individuals. Six anatomic regions had activated BAT—cervical, supraclavicular, axillary, mediastinal, paraspinal, and abdominal—with 67 ± 20% of all activated BAT concentrated in a continuous fascial layer comprising the first three depots in the upper torso. These nonsubcutaneous fat depots amounted to 1.5% of total body mass (4.3% of total fat mass), and up to 90% of each depot could be activated BAT. The amount and activity of BAT was significantly influenced by region of interest selection methods, PET threshold criteria, and PET resolutions. The present study suggests that active BAT can be found in specific adipose depots in adult humans, but less than one-half of the fat in these depots is stimulated by acute cold exposure, demonstrating a previously underappreciated thermogenic potential. PMID:28739898

  18. In uncontrolled diabetes, thyroid hormone and sympathetic activators induce thermogenesis without increasing glucose uptake in brown adipose tissue.

    PubMed

    Matsen, Miles E; Thaler, Joshua P; Wisse, Brent E; Guyenet, Stephan J; Meek, Thomas H; Ogimoto, Kayoko; Cubelo, Alex; Fischer, Jonathan D; Kaiyala, Karl J; Schwartz, Michael W; Morton, Gregory J

    2013-04-01

    Recent advances in human brown adipose tissue (BAT) imaging technology have renewed interest in the identification of BAT activators for the treatment of obesity and diabetes. In uncontrolled diabetes (uDM), activation of BAT is implicated in glucose lowering mediated by intracerebroventricular (icv) administration of leptin, which normalizes blood glucose levels in streptozotocin (STZ)-induced diabetic rats. The potent effect of icv leptin to increase BAT glucose uptake in STZ-diabetes is accompanied by the return of reduced plasma thyroxine (T4) levels and BAT uncoupling protein-1 (Ucp1) mRNA levels to nondiabetic controls. We therefore sought to determine whether activation of thyroid hormone receptors is sufficient in and of itself to lower blood glucose levels in STZ-diabetes and whether this effect involves activation of BAT. We found that, although systemic administration of the thyroid hormone (TR)β-selective agonist GC-1 increases energy expenditure and induces further weight loss in STZ-diabetic rats, it neither increased BAT glucose uptake nor attenuated diabetic hyperglycemia. Even when GC-1 was administered in combination with a β(3)-adrenergic receptor agonist to mimic sympathetic nervous system activation, glucose uptake was not increased in STZ-diabetic rats, nor was blood glucose lowered, yet this intervention potently activated BAT. Similar results were observed in animals treated with active thyroid hormone (T3) instead of GC-1. Taken together, our data suggest that neither returning normal plasma thyroid hormone levels nor BAT activation has any impact on diabetic hyperglycemia, and that in BAT, increases of Ucp1 gene expression and glucose uptake are readily dissociated from one another in this setting.

  19. Does similarity in call structure or foraging ecology explain interspecific information transfer in wild Myotis bats?

    PubMed

    Hügel, Theresa; van Meir, Vincent; Muñoz-Meneses, Amanda; Clarin, B-Markus; Siemers, Björn M; Goerlitz, Holger R

    2017-01-01

    Animals can gain important information by attending to the signals and cues of other animals in their environment, with acoustic information playing a major role in many taxa. Echolocation call sequences of bats contain information about the identity and behaviour of the sender which is perceptible to close-by receivers. Increasing evidence supports the communicative function of echolocation within species, yet data about its role for interspecific information transfer is scarce. Here, we asked which information bats extract from heterospecific echolocation calls during foraging. In three linked playback experiments, we tested in the flight room and field if foraging Myotis bats approached the foraging call sequences of conspecifics and four heterospecifics that were similar in acoustic call structure only (acoustic similarity hypothesis), in foraging ecology only (foraging similarity hypothesis), both, or none. Compared to the natural prey capture rate of 1.3 buzzes per minute of bat activity, our playbacks of foraging sequences with 23-40 buzzes/min simulated foraging patches with significantly higher profitability. In the flight room, M. capaccinii only approached call sequences of conspecifics and of the heterospecific M. daubentonii with similar acoustics and foraging ecology. In the field, M. capaccinii and M. daubentonii only showed a weak positive response to those two species. Our results confirm information transfer across species boundaries and highlight the importance of context on the studied behaviour, but cannot resolve whether information transfer in trawling Myotis is based on acoustic similarity only or on a combination of similarity in acoustics and foraging ecology. Animals transfer information, both voluntarily and inadvertently, and within and across species boundaries. In echolocating bats, acoustic call structure and foraging ecology are linked, making echolocation calls a rich source of information about species identity, ecology and activity of the sender, which receivers might exploit to find profitable foraging grounds. We tested in three lab and field experiments if information transfer occurs between bat species and if bats obtain information about ecology from echolocation calls. Myotis capaccinii/daubentonii bats approached call playbacks, but only those from con- and heterospecifics with similar call structure and foraging ecology, confirming interspecific information transfer. Reactions differed between lab and field, emphasising situation-dependent differences in animal behaviour, the importance of field research, and the need for further studies on the underlying mechanism of information transfer and the relative contributions of acoustic and ecological similarity.

  20. Serologic evidence of Lyssavirus infections among bats, the Philippines.

    PubMed

    Arguin, Paul M; Murray-Lillibridge, Kristy; Miranda, Mary E G; Smith, Jean S; Calaor, Alan B; Rupprecht, Charles E

    2002-03-01

    Active surveillance for lyssaviruses was conducted among populations of bats in the Philippines. The presence of past or current Lyssavirus infection was determined by use of direct fluorescent antibody assays on bat brains and virus neutralization assays on bat sera. Although no bats were found to have active infection with a Lyssavirus, 22 had evidence of neutralizing antibody against the Australian bat lyssavirus (ABLV). Seropositivity was statistically associated with one species of bat, Miniopterus schreibersi. Results from the virus neutralization assays are consistent with the presence in the Philippines of a naturally occurring Lyssavirus related to ABLV.

  1. Serologic Evidence of Lyssavirus Infections among Bats, the Philippines

    PubMed Central

    Murray-Lillibridge, Kristy; Miranda, Mary E.G.; Smith, Jean S.; Calaor, Alan B.; Rupprecht, Charles E.

    2002-01-01

    Active surveillance for lyssaviruses was conducted among populations of bats in the Philippines. The presence of past or current Lyssavirus infection was determined by use of direct fluorescent antibody assays on bat brains and virus neutralization assays on bat sera. Although no bats were found to have active infection with a Lyssavirus, 22 had evidence of neutralizing antibody against the Australian bat lyssavirus (ABLV). Seropositivity was statistically associated with one species of bat, Miniopterus schreibersi. Results from the virus neutralization assays are consistent with the presence in the Philippines of a naturally occurring Lyssavirus related to ABLV. PMID:11927022

  2. Supraclavicular skin temperature and BAT activity in lean healthy adults.

    PubMed

    van der Lans, Anouk A J J; Vosselman, Maarten J; Hanssen, Mark J W; Brans, Boudewijn; van Marken Lichtenbelt, Wouter D

    2016-01-01

    The 'gold standard' for measuring brown adipose tissue (BAT) in humans is [(18)F]FDG-PET/CT-imaging. With this technique subjects are exposed to ionizing radiation and are therefore limited in the number of scans that can be performed. We investigated the relation between supraclavicular skin temperatures and BAT activity values using a strictly temperature-controlled air-cooling protocol. Data of 36 male subjects was analyzed. BAT activity was evaluated by [(18)F]FDG-PET/CT-imaging and skin temperature was measured by means of wireless temperature sensors. Supraclavicular skin temperature dropped less compared to skin temperatures at other sites (all P values <0.01). A significant positive correlation was found between the change in supraclavicular skin temperature with BAT activity (R (2) 0.23), and the change in supraclavicular skin temperature and non-shivering thermogenesis (R (2) 0.18, both P values <0.01). The correlations indicate that supraclavicular skin temperature (changes) can potentially be used as a qualitative measure of BAT activity and BAT thermogenesis.

  3. Nest survival estimation: a review of alternatives to the Mayfield estimator

    USGS Publications Warehouse

    Jehle, G.; Yackel Adams, A.A.; Savidge, J.A.; Skagen, S.K.

    2004-01-01

    Our research has focused on the ecology of commensal populations of big brown bats (Eptesicus fuscus) in Fort Collins, Colorado (USA), in relation to rabies virus (RV) transmission. We captured 35 big brown bats (Eptesicus fuscus) in late summer 2001 and held them captive for 4.8 mo. The bats were initially placed in an indoor cage for 1 mo then segregated into groups of two to six per cage. Two of the bats succumbed to rabies virus (RV) within the first month of capture. Despite group housing, all of the remaining bats were healthy over the course of the investigation; none developed rabies, although one of the rabid bats was observed to bite her cage mates. Reverse transcription–polymerase chain reaction (RT-PCR) and Taqman® real-time PCR analysis of the RNA derived from the brain tissue, salivary glands, and oral swab samples confirmed RV infection in the dead bats. Rabies virus was also isolated from the brain tissue upon passage in mouse neuroblastoma cells. Nucleotide sequence analysis of the RV nucleoprotein (N) gene showed 100% identity with the N gene sequence of a 1985 E. fuscus isolate from El Paso County, Colorado. Bat sera obtained six times throughout the study were assayed for RV neutralizing antibodies using the rapid fluorescent focus inhibition test. The RV neutralizing activity in the serum was associated with the IgG component, which was purified by binding to protein G Sepharose. Five bats were RV seropositive prior to their capture and maintained titers throughout captivity. Two adult bats seroconverted during captivity. Two volant juvenile bats had detectable RV antibody titers at the first serum collection but were negative thereafter. Four seronegative bats responded to a RV vaccine administration with high titers of RV antibodies. A serologic survey of big brown bats in the roost from which one of the captive rabid bats had originated showed a significant rise in seroprevalence during 2002.

  4. Autonomic regulation of brown adipose tissue thermogenesis in health and disease: potential clinical applications for altering BAT thermogenesis

    PubMed Central

    Tupone, Domenico; Madden, Christopher J.; Morrison, Shaun F.

    2014-01-01

    From mouse to man, brown adipose tissue (BAT) is a significant source of thermogenesis contributing to the maintenance of the body temperature homeostasis during the challenge of low environmental temperature. In rodents, BAT thermogenesis also contributes to the febrile increase in core temperature during the immune response. BAT sympathetic nerve activity controlling BAT thermogenesis is regulated by CNS neural networks which respond reflexively to thermal afferent signals from cutaneous and body core thermoreceptors, as well as to alterations in the discharge of central neurons with intrinsic thermosensitivity. Superimposed on the core thermoregulatory circuit for the activation of BAT thermogenesis, is the permissive, modulatory influence of central neural networks controlling metabolic aspects of energy homeostasis. The recent confirmation of the presence of BAT in human and its function as an energy consuming organ have stimulated interest in the potential for the pharmacological activation of BAT to reduce adiposity in the obese. In contrast, the inhibition of BAT thermogenesis could facilitate the induction of therapeutic hypothermia for fever reduction or to improve outcomes in stroke or cardiac ischemia by reducing infarct size through a lowering of metabolic oxygen demand. This review summarizes the central circuits for the autonomic control of BAT thermogenesis and highlights the potential clinical relevance of the pharmacological inhibition or activation of BAT thermogenesis. PMID:24570653

  5. Autonomic regulation of brown adipose tissue thermogenesis in health and disease: potential clinical applications for altering BAT thermogenesis.

    PubMed

    Tupone, Domenico; Madden, Christopher J; Morrison, Shaun F

    2014-01-01

    From mouse to man, brown adipose tissue (BAT) is a significant source of thermogenesis contributing to the maintenance of the body temperature homeostasis during the challenge of low environmental temperature. In rodents, BAT thermogenesis also contributes to the febrile increase in core temperature during the immune response. BAT sympathetic nerve activity controlling BAT thermogenesis is regulated by CNS neural networks which respond reflexively to thermal afferent signals from cutaneous and body core thermoreceptors, as well as to alterations in the discharge of central neurons with intrinsic thermosensitivity. Superimposed on the core thermoregulatory circuit for the activation of BAT thermogenesis, is the permissive, modulatory influence of central neural networks controlling metabolic aspects of energy homeostasis. The recent confirmation of the presence of BAT in human and its function as an energy consuming organ have stimulated interest in the potential for the pharmacological activation of BAT to reduce adiposity in the obese. In contrast, the inhibition of BAT thermogenesis could facilitate the induction of therapeutic hypothermia for fever reduction or to improve outcomes in stroke or cardiac ischemia by reducing infarct size through a lowering of metabolic oxygen demand. This review summarizes the central circuits for the autonomic control of BAT thermogenesis and highlights the potential clinical relevance of the pharmacological inhibition or activation of BAT thermogenesis.

  6. Usefulness of Basophil Activation Tests for Diagnosis of Sugammadex-Induced Anaphylaxis.

    PubMed

    Horiuchi, Tatsuo; Yokohama, Akihiko; Orihara, Masaki; Tomita, Yukinari; Tomioka, Akihiro; Yoshida, Nagahide; Takahashi, Kenichiro; Saito, Shigeru; Takazawa, Tomonori

    2018-05-01

    Sugammadex is used to reverse the effects of neuromuscular blocking agents in many cases of general anesthesia. However, there are several reports of anaphylaxis after its use. Skin testing is the gold standard for detecting the causative agent of anaphylaxis. However, due to the lack of validated protocols for skin testing with sugammadex, the diagnostic accuracy might be inadequate. Recently, the basophil activation test (BAT) has been established as a tool to detect the causative agent of anaphylaxis with high sensitivity and specificity. However, few studies have investigated the utility of the BAT for sugammadex-induced anaphylaxis. Eight patients who presented with immediate hypersensitivity to sugammadex during general anesthesia were included in this study. We conducted skin tests to confirm the diagnosis of sugammadex-induced anaphylaxis. Twenty-one sugammadex-naive individuals who had a negative skin test for allergy to this drug were enrolled as controls. Basophils were selected on a CD3/CRTH2 gate and labeled with CD63 and CD203c. The ratios of activated basophils in the patients were much higher than those in controls: the median values of areas under the curves in the patients and controls for CD203c were 1,265,985 (95% confidence interval [CI], 77,580-5,040,270) and 116,325 (95% CI, -268,605 to 232,690), respectively (Mann-Whitney U test, P < .01), and the areas under the curves in the patients and controls for CD63 were 788,647 (95% CI, 120,285-3,523,410) and 220,005 (95% CI, -50,346 to 404,680), respectively (Mann-Whitney U test, P < .01). The patients, but not controls, demonstrated clear dose-dependent CD203c upregulation. This was also true for CD63. In the case of CD203c, the sensitivity of the BAT for sugammadex was 88% (95% CI, 47%-100%), and specificity was 100% (95% CI, 84%-100%), while sensitivity and specificity for CD63 were 75% (95% CI, 35%-97%) and 100% (95% CI, 84%-100%), respectively. The BAT seems to have comparable accuracy to skin tests for the diagnosis of sugammadex-induced anaphylaxis. For this purpose, both CD203c and CD63 can be used to detect activated basophils.

  7. Assessment of human brown adipose tissue density during daily ingestion of thermogenic capsinoids using near-infrared time-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Nirengi, Shinsuke; Homma, Toshiyuki; Inoue, Naohiko; Sato, Hitoshi; Yoneshiro, Takeshi; Matsushita, Mami; Kameya, Toshimitsu; Sugie, Hiroki; Tsuzaki, Kokoro; Saito, Masayuki; Sakane, Naoki; Kurosawa, Yuko; Hamaoka, Takafumi

    2016-09-01

    F18-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDG-PET/CT) is widely used as a standard method for evaluating human brown adipose tissue (BAT), a recognized therapeutic target of obesity. However, a longitudinal BAT study using FDG-PET/CT is lacking owing to limitations of the method. Near-infrared time-resolved spectroscopy (NIRTRS) is a technique for evaluating human BAT density noninvasively. This study aimed to test whether NIRTRS could detect changes in BAT density during or after long-term intervention. First, using FDG-PET/CT, we confirmed a significant increase (+48.8%, P<0.05) in BAT activity in the supraclavicular region after 6-week treatment with thermogenic capsaicin analogs, capsinoids. Next, 20 volunteers were administered either capsinoids or placebo daily for 8 weeks in a double-blind design, and BAT density was measured using NIRTRS every 2 weeks during the 8-week treatment period and an 8-week period after stopping treatment. Consistent with FDG-PET/CT results, NIRTRS successfully detected an increase in BAT density during the 8-week treatment (+46.4%, P<0.05), and a decrease in the 8-week follow-up period (-12.5%, P=0.07), only in the capsinoid-treated, but not the placebo, group. Thus, NIRTRS can be applied for quantitative assessment of BAT in longitudinal intervention studies in humans.

  8. Horseshoe bats make adaptive prey-selection decisions, informed by echo cues

    PubMed Central

    Koselj, Klemen; Schnitzler, Hans-Ulrich; Siemers, Björn M.

    2011-01-01

    Foragers base their prey-selection decisions on the information acquired by the sensory systems. In bats that use echolocation to find prey in darkness, it is not clear whether the specialized diet, as sometimes found by faecal analysis, is a result of active decision-making or rather of biased sensory information. Here, we tested whether greater horseshoe bats decide economically when to attack a particular prey item and when not. This species is known to recognize different insects based on their wing-beat pattern imprinted in the echoes. We built a simulation of the natural foraging process in the laboratory, where the bats scanned for prey from a perch and, upon reaching the decision to attack, intercepted the prey in flight. To fully control echo information available to the bats and assure its unambiguity, we implemented computer-controlled propellers that produced echoes resembling those from natural insects of differing profitability. The bats monitored prey arrivals to sample the supply of prey categories in the environment and to inform foraging decisions. The bats adjusted selectivity for the more profitable prey to its inter-arrival intervals as predicted by foraging theory (an economic strategy known to benefit fitness). Moreover, unlike in previously studied vertebrates, foraging performance of horseshoe bats was not limited by costly rejections of the profitable prey. This calls for further research into the evolutionary selection pressures that sharpened the species's decision-making capacity. PMID:21367788

  9. The depiction of brown adipose tissue is related to disease status in pediatric patients with lymphoma.

    PubMed

    Gilsanz, Vicente; Hu, Houchun H; Smith, Michelle L; Goodarzian, Fariba; Carcich, Sherri L; Warburton, Nicole M; Malogolowkin, Marcio

    2012-04-01

    The objective of our study was to determine whether the depiction of brown adipose tissue (BAT) in PET/CT studies of pediatric patients with lymphoma is related to disease status. The PET/CT studies of 31 pediatric patients (17 boys and 14 girls) with Hodgkin or non-Hodgkin lymphoma were reviewed, and the prevalence of metabolically active BAT at diagnosis and the prevalence of BAT when there was no evidence of disease were compared. The percentage of PET/CT studies depicting BAT was greater when there was no evidence of disease than at diagnosis (10% vs 77%, respectively; p < 0.001). The McNemar test indicated a strong inverse correlation between the presence of disease and the presence of BAT (p < 0.001). This correlation was noted when all subjects were examined together and when subjects with Hodgkin lymphoma and those with non-Hodgkin lymphoma were analyzed separately (p < 0.001 and < 0.05, respectively). When baseline and follow-up PET/CT scans for all patients were analyzed for the presence of BAT using conditional logistic regression, both the season when the study was performed and disease status independently predicted BAT: The winter months positively predicted BAT and the presence of lymphoma was negatively correlated with the depiction of BAT on PET/CT. Age, sex, treatment, and weight did not provide additional information when added to the model. The knowledge that BAT is a predictor of disease status should contribute to the correct analysis of PET/CT studies in children with lymphoma.

  10. Indirect oral immunization of captive vampires, Desmodus rotundus.

    PubMed

    Almeida, Marilene F; Martorelli, Luzia F A; Aires, Caroline C; Sallum, P C; Massad, Eduardo

    2005-07-01

    A vaccinia-rabies glycoprotein recombinant virus (V-RG) vaccine was tested in hematophagous bats (Desmodus rotundus) kept in captivity. The vaccine was applied in a neutral vehicle (Vaseline) spread on the back of one or two vector bats, which were then reintroduced into their groups. Our hypothesis was that, as in the case of vampire bat control by vampiricide paste, the administration of V-RG vaccine through paste to one bat could indirectly protect other bats from the same group. Eight groups were tested. The rabies virus strain used to challenge the bats was isolated from a naturally infected hematophagous bat (Desmodus rotundus). The survival proportion after the virus challenge ranged between 42.8 and 71.4%. The results are encouraging because a significant number of bats that did not receive the vaccine survived the challenge. The vaccine was shown to be safe and immunogenic to hematophagous bats. No adverse effects to vaccinia virus were observed.

  11. The impacts of new street light technologies: experimentally testing the effects on bats of changing from low-pressure sodium to white metal halide

    PubMed Central

    Stone, Emma Louise; Wakefield, Andrew; Harris, Stephen; Jones, Gareth

    2015-01-01

    Artificial light at night is a major feature of anthropogenic global change and is increasingly recognized as affecting biodiversity, often negatively. On a global scale, newer technology white lights are replacing orange sodium lights to reduce energy waste. In 2009, Cornwall County Council (UK) commenced replacement of existing low-pressure sodium (LPS) high intensity discharge (HID) street lights with new Phillips CosmoPolis white ceramic metal halide street lights to reduce energy wastage. This changeover provided a unique collaborative opportunity to implement a before-after-control-impact field experiment to investigate the ecological effects of newly installed broad spectrum light technologies. Activity of the bat species Pipistrellus pipistrellus, P. pygmaeus and Nyctalus/Eptesicus spp. was significantly higher at metal halide than LPS lights, as found in other studies of bat activity at old technology (i.e. mercury vapour) white light types. No significant difference was found in feeding attempts per bat pass between light types, though more passes overall were recorded at metal halide lights. Species-specific attraction of bats to the metal halide lights could have cascading effects at lower trophic levels. We highlight the need for further research on possible ecosystem-level effects of light technologies before they are installed on a wide scale. PMID:25780239

  12. Serological evidence of widespread exposure of Grenada fruit bats to chikungunya virus.

    PubMed

    Stone, D; Lyons, A C; Huang, Y-J S; Vanlandingham, D L; Higgs, S; Blitvich, B J; Adesiyun, A A; Santana, S E; Leiser-Miller, L; Cheetham, S

    2018-03-25

    Antibody detection against selected potentially zoonotic vector-borne alphaviruses and flaviviruses was conducted on sera from bats from all six parishes in Grenada, West Indies. Sera were tested for (i) antibodies to flaviviruses West Nile virus, St. Louis encephalitis virus, Ilhéus virus, Bussuquara virus (BSQV), Rio Bravo virus and all four serotypes of dengue virus (DENV) by plaque reduction neutralization test (PRNT); (ii) antibodies to alphaviruses western equine encephalitis virus, Venezuelan equine encephalitis virus and eastern equine encephalitis virus by epitope-blocking enzyme-linked immunosorbent assay (ELISA); and (iii) antibodies to the alphavirus chikungunya (CHIKV) by PRNT. Two species of fruit bats were sampled, Artibeus jamaicensis and Artibeus lituratus, all roosting in or within 1,000 m of human settlements. Fifteen (36%) of the 42 bats tested for neutralizing antibodies to CHIKV were positive. The CHIKV-seropositive bats lived in localities spanning five of the six parishes. All 43 bats tested for epitope-blocking ELISA antibody to the other alphaviruses were negative, except one positive for Venezuelan equine encephalitis virus. All 50 bats tested for neutralizing antibody to flaviviruses were negative, except one that had a BSQV PRNT 80 titre of 20. The CHIKV serology results indicate that bats living close to and within human settlements were exposed to CHIKV in multiple locations. Importantly, bats for this study were trapped a year after the introduction and peak of the human CHIKV epidemic in Grenada. Thus, our data indicate that bats were exposed to CHIKV possibly during a time of marked decline in human cases. © 2018 Blackwell Verlag GmbH.

  13. Glucagon-like peptide-1 regulates brown adipose tissue thermogenesis via the gut-brain axis in rats.

    PubMed

    Krieger, Jean-Philippe; Santos da Conceição, Ellen Paula; Sanchez-Watts, Graciela; Arnold, Myrtha; Pettersen, Klaus G; Mohammed, Mazher; Modica, Salvatore; Lossel, Pius; Morrison, Shaun F; Madden, Christopher J; Watts, Alan G; Langhans, Wolfgang; Lee, Shin J

    2018-05-30

    Endogenous intestinal glucagon-like peptide-1 (GLP-1) controls satiation and glucose metabolism via vagal afferent neurons (VAN). Recently, VAN have received increasing attention for their role in brown adipose tissue (BAT) thermogenesis. It is however unclear whether VAN GLP-1 receptor (GLP-1R) signaling affects BAT thermogenesis and energy expenditure (EE), and whether this VAN mechanism contributes to energy balance. First, we tested the effect of the GLP-1R agonist Exendin-4 (Ex4, 0.3 μg/kg IP) on EE and BAT thermogenesis, and whether these effects require VAN GLP-1R signaling, using a rat model with a selective Glp1r knockdown (kd) in VAN. Second, we examined the role of VAN GLP-1R in energy balance during chronic high-fat diet (HFD) feeding in VAN Glp1r kd rats. Lastly, we used viral transsynaptic tracers to identify the possible neuronal substrates of such a gut-BAT interaction. VAN Glp1r kd attenuated the acute suppressive effects of Ex4 on EE and BAT thermogenesis. Consistent with this finding, the VAN Glp1r kd increased EE and BAT activity, diminished body weight gain, and improved insulin sensitivity compared to HFD-fed controls. Anterograde transsynaptic viral tracing of VAN infected major hypothalamic and hindbrain areas involved in BAT sympathetic regulation. Moreover, retrograde tracing from BAT combined with laser capture microdissection revealed that a population of VAN expressing Glp1r is synaptically connected to the BAT. Our findings reveal a novel role of VAN GLP-1R signaling in the regulation of EE and BAT thermogenesis, and imply that through this gut-brain-BAT connection intestinal GLP-1 plays a role in HFD-induced metabolic syndrome.

  14. Monitoring Sensitive Bat Species at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenberg, Kari M.

    Bats play a critical role in ecosystems and are vulnerable to disturbance and disruption by human activities. In recent decades, bat populations in the United States and elsewhere have decreased tremendously. There are 47 different species of bat in the United States and 28 of these occur in New Mexico with 15 different species documented at the Los Alamos National Laboratory (LANL) and surrounding areas. Euderma maculatum(the spotted bat) is listed as “threatened” by the state of New Mexico and is known to occur at LANL. Four other species of bats are listed as “sensitive” and also occur here. Inmore » 1995, a four year study was initiated at LANL to assess the status of bat species of concern, elucidate distribution and relative abundance, and obtain information on roosting sites. There have been no definitive studies since then. Biologists in the Environmental Protection Division at LANL initiated a multi-year monitoring program for bats in May 2013 to implement the Biological Resources Management Plan. The objective of this ongoing study is to monitor bat species diversity and seasonal activity over time at LANL. Bat species diversity and seasonal activity were measured using an acoustic bat detector, the Pettersson D500X. This ultrasound recording unit is intended for long-term, unattended recording of bat and other high frequency animal calls. During 2013, the detector was deployed at two locations around LANL. Study sites were selected based on proximity to water where bats may be foraging. Recorded bat calls were analyzed using Sonobat, software that can help determine specific species of bat through their calls. A list of bat species at the two sites was developed and compared to lists from previous studies. Species diversity and seasonal activity, measured as the number of call sequences recorded each month, were compared between sites and among months. A total of 17,923 bat calls were recorded representing 15 species. Results indicate that there is a statistically significant relationship between bat diversity and month of the year. Future studies will be implemented based on these findings.« less

  15. Cross-neutralization of antibodies induced by vaccination with Purified Chick Embryo Cell Vaccine (PCECV) against different Lyssavirus species

    PubMed Central

    Malerczyk, Claudius; Freuling, Conrad; Gniel, Dieter; Giesen, Alexandra; Selhorst, Thomas; Müller, Thomas

    2014-01-01

    Background: Rabies is a neglected zoonotic disease caused by viruses belonging to the genus lyssavirus. In endemic countries of Asia and Africa, where the majority of the estimated 60,000 human rabies deaths occur, it is mainly caused by the classical rabies virus (RABV) transmitted by dogs. Over the last decade new species within the genus lyssavirus have been identified. Meanwhile 15 (proposed or classified) species exist, including Australian bat lyssavirus (ABLV), European bat lyssavirus (EBLV-1 and -2), Duvenhage virus (DUVV), as well as Lagos bat virus (LBV) and Mokola virus (MOKV) and recently identified novel species like Bokeloh bat lyssavirus (BBLV), Ikoma bat lyssavirus (IKOV) or Lleida bat lyssavirus (LLBV). The majority of these lyssavirus species are found in bat reservoirs and some have caused human infection and deaths. Previous work has demonstrated that Purified Chick Embryo Cell Rabies Vaccine (PCECV) not only induces immune responses against classical RABV, but also elicits cross-neutralizing antibodies against ABLV, EBLV-1 and EBLV-2. Material & Methods: Using the same serum samples as in our previous study, this study extension investigated cross-neutralizing activities of serum antibodies measured by rapid fluorescent focus inhibition test (RFFIT) against selected other non-classical lyssavirus species of interest, namely DUVV and BBLV, as well as MOKV and LBV. Results: Antibodies developed after vaccination with PCECV have neutralizing capability against BBLV and DUVV in the same range as against ABLV and EBLV-1 and -2. As expected, for the phylogenetically more distant species LBV no cross-neutralizing activity was found. Interestingly, 15 of 94 serum samples (16%) with a positive neutralizing antibody titer against RABV displayed specific cross-neutralizing activity (65-fold lower than against RABV) against one specific MOKV strain (Ethiopia isolate), which was not seen against a different strain (Nigeria isolate). Conclusion: Cross-neutralizing activities partly correlate with the phylogenetic distance of the virus species. Cross-neutralizing activities against the species BBLV and DUVV of phylogroup 1 were demonstrated, in line with previous results of cross-neutralizing activities against ABLV and EBLV-1 and -2. Potential partial cross-neutralizing activities against more distant lyssavirus species like selected MOKV strains need further research. PMID:25483634

  16. Unexpected visitor on FDG PET/CT--brown adipose tissue (BAT) in mesentery in a case of retroperitoneal extra-adrenal pheochromocytoma: is the BAT activation secondary to catecholamine-secreting pheochromocytoma?

    PubMed

    Joshi, Prathamesh Vijay; Lele, Vikram Ramchandra

    2012-05-01

    Fused positron emission tomography-computed tomography (PET/CT) technology has enabled the determination that nonmalignant fluorodeoxyglucose (FDG) uptake is observed in brown adipose tissue (BAT). FDG uptake in BAT is a known potential source of false-positive interpretations for PET. The typical locations of BAT include neck, supraclavicular area, mediastinum, and paravertebral intercostal spaces. Examples of atypical locations for BAT include posterior neck, left paratracheal area, axillae, perirenal area, and retrocrural area. We report PET/CT findings in a young male patient with malignant retroperitoneal extra-adrenal pheochromocytoma, who demonstrated FDG uptake in BAT at multiple locations including mesenteric BAT. We also propose catecholamine-secreting pheochromocytoma as a possible cause of BAT activation in our case.

  17. Detection of the Severe Acute Respiratory Syndrome-Related Coronavirus and Alphacoronavirus in the Bat Population of Taiwan.

    PubMed

    Chen, Y-N; Phuong, V N; Chen, H C; Chou, C-H; Cheng, H-C; Wu, C-H

    2016-12-01

    Bats have been demonstrated to be natural reservoirs of severe acute respiratory syndrome coronavirus (SARS CoV) and Middle East respiratory syndrome (MERS) CoV. Faecal samples from 248 individuals of 20 bat species were tested for partial RNA-dependent RNA polymerase gene of CoV and 57 faecal samples from eight bat species were tested positive. The highest detection rate of 44% for Scotophilus kuhlii, followed by 30% for Rhinolophus monoceros. Significantly higher detection rates of coronaviral RNA were found in female bats and Scotophilus kuhlii roosting in palm trees. Phylogenetic analysis classified the positive samples into SARS-related (SARSr) CoV, Scotophilus bat CoV 512 close to those from China and Philippines, and Miniopterus bat CoV 1A-related lineages. Coronaviral RNA was also detected in bat guano from Scotophilus kuhlii and Myotis formosus flavus on the ground and had potential risk for human exposure. Diverse bat CoV with zoonotic potential could be introduced by migratory bats and maintained in the endemic bat population in Taiwan. © 2016 Blackwell Verlag GmbH.

  18. Effect of Chronic Athletic Activity on Brown Fat in Young Women.

    PubMed

    Singhal, Vibha; Maffazioli, Giovana D; Ackerman, Kate E; Lee, Hang; Elia, Elisa F; Woolley, Ryan; Kolodny, Gerald; Cypess, Aaron M; Misra, Madhusmita

    2016-01-01

    The effect of chronic exercise activity on brown adipose tissue (BAT) is not clear, with some studies showing positive and others showing negative associations. Chronic exercise is associated with increased resting energy expenditure (REE) secondary to increased lean mass and a probable increase in BAT. Many athletes are in a state of relative energy deficit suggested by lower fat mass and hypothalamic amenorrhea. States of severe energy deficit such as anorexia nervosa are associated with reduced BAT. There are no data regarding the impact of chronic exercise activity on BAT volume or activity in young women and it is unclear whether relative energy deficiency modifies the effects of exercise on BAT. We assessed cold induced BAT volume and activity in young female athletes compared with non-athletes, and further evaluated associations of BAT with measures of REE, body composition and menstrual status. The protocol was approved by our Institutional Review Board. Written informed consent was obtained from all participants prior to study initiation. This was a cross-sectional study of 24 women (16 athletes and8 non-athletes) between 18-25 years of age. Athletes were either oligo-amenorrheic (n = 8) or eumenorrheic (n = 8).We used PET/CT scans to determine cold induced BAT activity, VMAX Encore 29 metabolic cart to obtain measures of REE, and DXA for body composition. Athletes and non-athletes did not differ for age or BMI. Compared with non-athletes, athletes had lower percent body fat (p = 0.002), higher percent lean mass (p = 0.01) and trended higher in REE (p = 0.09). BAT volume and activity in athletes trended lower than in non-athletes (p = 0.06; p = 0.07, respectively). We found negative associations of BAT activity with duration of amenorrhea (r = -0.46, p = 0.02).BAT volume correlated inversely with lean mass (r = -0.46, p = 0.02), and positively with percent body fat, irisin and thyroid hormones. Our study shows a trend for lower BAT in young female athletes compared with non-athletes, and shows associations of brown fat with menstrual status and body composition. Brown fat may undergo adaptive reductions with increasing energy deficit.

  19. Enrichment of beneficial bacteria in the skin microbiota of bats persisting with white-nose syndrome.

    PubMed

    Lemieux-Labonté, Virginie; Simard, Anouk; Willis, Craig K R; Lapointe, François-Joseph

    2017-09-05

    Infectious diseases of wildlife are increasing worldwide with implications for conservation and human public health. The microbiota (i.e. microbial community living on or in a host) could influence wildlife disease resistance or tolerance. White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans (Pd), has killed millions of hibernating North American bats since 2007. We characterized the skin microbiota of naïve, pre-WNS little brown bats (Myotis lucifugus) from three WNS-negative hibernation sites and persisting, previously exposed bats from three WNS-positive sites to test the hypothesis that the skin microbiota of bats shifts following WNS invasion. Using high-throughput 16S rRNA gene sequencing on 66 bats and 11 environmental samples, we found that hibernation site strongly influenced the composition and diversity of the skin microbiota. Bats from WNS-positive and WNS-negative sites differed in alpha and beta diversity, as well as in microbiota composition. Alpha diversity was reduced in persisting, WNS-positive bats, and the microbiota profile was enriched with particular taxa such Janthinobacterium, Micrococcaceae, Pseudomonas, Ralstonia, and Rhodococcus. Some of these taxa are recognized for their antifungal activity, and specific strains of Rhodococcus and Pseudomonas are known to inhibit Pd growth. Composition of the microbial community in the hibernaculum environment and the community on bat skin was superficially similar but differed in relative abundance of some bacterial taxa. Our results are consistent with the hypothesis that Pd invasion leads to a shift in the skin microbiota of surviving bats and suggest the possibility that the microbiota plays a protective role for bats facing WNS. The detection of what appears to be enrichment of beneficial bacteria in the skin microbiota of persisting bats is a promising discovery for species re-establishment. Our findings highlight not only the potential value of management actions that might encourage transmission, growth, and establishment of beneficial bacteria on bats, and within hibernacula, but also the potential risks of such management actions.

  20. Developing an automated risk management tool to minimize bird and bat mortality at wind facilities.

    PubMed

    Robinson Willmott, Julia; Forcey, Greg M; Hooton, Lauren A

    2015-11-01

    A scarcity of baseline data is a significant barrier to understanding and mitigating potential impacts of offshore development on birds and bats. Difficult and sometimes unpredictable conditions coupled with high expense make gathering such data a challenge. The Acoustic and Thermographic Offshore Monitoring (ATOM) system combines thermal imaging with acoustic and ultrasound sensors to continuously monitor bird and bat abundance, flight height, direction, and speed. ATOM's development and potential capabilities are discussed, and illustrated using onshore and offshore test data obtained over 16 months in the eastern USA. Offshore deployment demonstrated birds tending to fly into winds and activity declining sharply in winds >10 km h(-1). Passerines showed distinct seasonal changes in flight bearing and flew higher than non-passerines. ATOM data could be used to automatically shut down wind turbines to minimize collision mortality while simultaneously providing information for modeling activity in relation to weather and season.

  1. Central Nervous System Regulation of Brown Adipose Tissue

    PubMed Central

    Morrison, Shaun F.; Madden, Christopher J.

    2015-01-01

    Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior. PMID:25428857

  2. Influence of landscape structure and human modifications on insect biomass and bat foraging activity in an urban landscape.

    PubMed

    Threlfall, Caragh G; Law, Bradley; Banks, Peter B

    2012-01-01

    Urban landscapes are often located in biologically diverse, productive regions. As such, urbanization may have dramatic consequences for this diversity, largely due to changes in the structure and function of urban communities. We examined the influence of landscape productivity (indexed by geology), housing density and vegetation clearing on the spatial distribution of nocturnal insect biomass and the foraging activity of insectivorous bats in the urban landscape of Sydney, Australia. Nocturnal insect biomass (g) and bat foraging activity were sampled from 113 sites representing backyard, open space, bushland and riparian landscape elements, across urban, suburban and vegetated landscapes within 60 km of Sydney's Central Business District. We found that insect biomass was at least an order of magnitude greater within suburban landscapes in bushland and backyard elements located on the most fertile shale influenced geologies (both p<0.001) compared to nutrient poor sandstone landscapes. Similarly, the feeding activity of bats was greatest in bushland, and riparian elements within suburbs on fertile geologies (p = 0.039). Regression tree analysis indicated that the same three variables explained the major proportion of the variation in insect biomass and bat foraging activity. These were ambient temperature (positive), housing density (negative) and the percent of fertile shale geologies (positive) in the landscape; however variation in insect biomass did not directly explain bat foraging activity. We suggest that prey may be unavailable to bats in highly urbanized areas if these areas are avoided by many species, suggesting that reduced feeding activity may reflect under-use of urban habitats by bats. Restoration activities to improve ecological function and maintain the activity of a diversity of bat species should focus on maintaining and restoring bushland and riparian habitat, particularly in areas with fertile geology as these were key bat foraging habitats.

  3. Influence of Landscape Structure and Human Modifications on Insect Biomass and Bat Foraging Activity in an Urban Landscape

    PubMed Central

    Threlfall, Caragh G.; Law, Bradley; Banks, Peter B.

    2012-01-01

    Urban landscapes are often located in biologically diverse, productive regions. As such, urbanization may have dramatic consequences for this diversity, largely due to changes in the structure and function of urban communities. We examined the influence of landscape productivity (indexed by geology), housing density and vegetation clearing on the spatial distribution of nocturnal insect biomass and the foraging activity of insectivorous bats in the urban landscape of Sydney, Australia. Nocturnal insect biomass (g) and bat foraging activity were sampled from 113 sites representing backyard, open space, bushland and riparian landscape elements, across urban, suburban and vegetated landscapes within 60 km of Sydney's Central Business District. We found that insect biomass was at least an order of magnitude greater within suburban landscapes in bushland and backyard elements located on the most fertile shale influenced geologies (both p<0.001) compared to nutrient poor sandstone landscapes. Similarly, the feeding activity of bats was greatest in bushland, and riparian elements within suburbs on fertile geologies (p = 0.039). Regression tree analysis indicated that the same three variables explained the major proportion of the variation in insect biomass and bat foraging activity. These were ambient temperature (positive), housing density (negative) and the percent of fertile shale geologies (positive) in the landscape; however variation in insect biomass did not directly explain bat foraging activity. We suggest that prey may be unavailable to bats in highly urbanized areas if these areas are avoided by many species, suggesting that reduced feeding activity may reflect under-use of urban habitats by bats. Restoration activities to improve ecological function and maintain the activity of a diversity of bat species should focus on maintaining and restoring bushland and riparian habitat, particularly in areas with fertile geology as these were key bat foraging habitats. PMID:22685608

  4. Bats in Agroecosytems around California's Central Coast

    NASA Astrophysics Data System (ADS)

    Wayne, A.

    2014-12-01

    Bats in agroecosystems around California's Central Coast: A full quarter of California's land area is farmland. Crops account for 32.5 billion of California's GDP. Insect control is a big problem for farmers, and California bats eat only insects, saving farmers an estimated 3 to $53 billion a year. As farmers maximize crop yield, they use more pesticides, herbicides, and fertilizers, which contaminate runoff streams that bats drink from. Also, pesticide use kills bats' sole food source: insects. My research objective was to find out how farm management practices and landscape complexity affect bat diversity and activity, and to see which one affects bat activity more. We monitored 18 sites, including conventional, organic, and low and high-complexity landscapes. We noted more bat activity at sites with high complexity landscapes and organic practices than at sites with either low-complexity landscapes or conventional farming practices. I captured and processed bats and recorded data. I also classified insects collected from light traps. I learned how to handle bats and measure forearm length and weight, as well as how to indentify their gender. I took hair clippings and fecal samples, which yield data about the bats' diet. Their diet, in turn, gives us data about which pests they eat and therefore help control. I also learned about bats' echolocation: they have a special muscle over their ears that closes when they echolocate so that they don't burst their own eardrum. Also, some insects have evolved a special call that will disrupt bats echolocation so bats can't track it.

  5. Anatomical and functional assessment of brown adipose tissue by magnetic resonance imaging.

    PubMed

    Chen, Y Iris; Cypess, Aaron M; Sass, Christina A; Brownell, Anna-Liisa; Jokivarsi, Kimmo T; Kahn, C Ronald; Kwong, Kenneth K

    2012-07-01

    Brown adipose tissue (BAT) is the primary tissue responsible for nonshivering thermogenesis in mammals. The amount of BAT and its level of activation help regulate the utilization of excessive calories for thermogenesis as opposed to storage in white adipose tissue (WAT) which would lead to weight gain. Over the past several years, BAT activity in vivo has been primarily assessed by positron emission tomography-computed tomography (PET-CT) scan using 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) to measure glucose utilization associated with BAT mitochondrial respiration. In this study, we demonstrate the feasibility of mapping and estimating BAT volume and metabolic function in vivo in rats at a 9.4T magnetic resonance imaging (MRI) scanner using sequences available from clinical MR scanners. Based on the morphological characteristics of BAT, we measured the volume distribution of BAT with MRI sequences that have strong fat-water contrast. We also investigated BAT volume by utilizing spin-echo MRI sequences. The in vivo MRI-estimated BAT volumes were correlated with direct measurement of BAT mass from dissected samples. Using MRI, we also were able to map hemodynamic responses to changes in BAT metabolism induced pharmacologically by β3-adrenergic receptor agonist, CL-316,243 and compare this to BAT activity in response to CL-316,243 assessed by PET 18F-FDG. In conclusion, we demonstrate the feasibility of measuring BAT volume and function in vivo using routine MRI sequences. The MRI measurement of BAT volume is consistent with quantitative measurement of the tissue ex vivo.

  6. Evolution and Antiviral Specificities of Interferon-Induced Mx Proteins of Bats against Ebola, Influenza, and Other RNA Viruses

    PubMed Central

    Fuchs, Jonas; Hölzer, Martin; Schilling, Mirjam; Patzina, Corinna; Schoen, Andreas; Zimmer, Gert; Marz, Manja; Müller, Marcel A.

    2017-01-01

    ABSTRACT Bats serve as a reservoir for various, often zoonotic viruses, including significant human pathogens such as Ebola and influenza viruses. However, for unknown reasons, viral infections rarely cause clinical symptoms in bats. A tight control of viral replication by the host innate immune defense might contribute to this phenomenon. Transcriptomic studies revealed the presence of the interferon-induced antiviral myxovirus resistance (Mx) proteins in bats, but detailed functional aspects have not been assessed. To provide evidence that bat Mx proteins might act as key factors to control viral replication we cloned Mx1 cDNAs from three bat families, Pteropodidae, Phyllostomidae, and Vespertilionidae. Phylogenetically these bat Mx1 genes cluster closely with their human ortholog MxA. Using transfected cell cultures, minireplicon systems, virus-like particles, and virus infections, we determined the antiviral potential of the bat Mx1 proteins. Bat Mx1 significantly reduced the polymerase activity of viruses circulating in bats, including Ebola and influenza A-like viruses. The related Thogoto virus, however, which is not known to infect bats, was not inhibited by bat Mx1. Further, we provide evidence for positive selection in bat Mx1 genes that might explain species-specific antiviral activities of these proteins. Together, our data suggest a role for Mx1 in controlling these viruses in their bat hosts. IMPORTANCE Bats are a natural reservoir for various viruses that rarely cause clinical symptoms in bats but are dangerous zoonotic pathogens, like Ebola or rabies virus. It has been hypothesized that the interferon system might play a key role in controlling viral replication in bats. We speculate that the interferon-induced Mx proteins might be key antiviral factors of bats and have coevolved with bat-borne viruses. This study evaluated for the first time a large set of bat Mx1 proteins spanning three major bat families for their antiviral potential, including activity against Ebola virus and bat influenza A-like virus, and we describe here their phylogenetic relationship, revealing patterns of positive selection that suggest a coevolution with viral pathogens. By understanding the molecular mechanisms of the innate resistance of bats against viral diseases, we might gain important insights into how to prevent and fight human zoonotic infections caused by bat-borne viruses. PMID:28490593

  7. Evolution and Antiviral Specificities of Interferon-Induced Mx Proteins of Bats against Ebola, Influenza, and Other RNA Viruses.

    PubMed

    Fuchs, Jonas; Hölzer, Martin; Schilling, Mirjam; Patzina, Corinna; Schoen, Andreas; Hoenen, Thomas; Zimmer, Gert; Marz, Manja; Weber, Friedemann; Müller, Marcel A; Kochs, Georg

    2017-08-01

    Bats serve as a reservoir for various, often zoonotic viruses, including significant human pathogens such as Ebola and influenza viruses. However, for unknown reasons, viral infections rarely cause clinical symptoms in bats. A tight control of viral replication by the host innate immune defense might contribute to this phenomenon. Transcriptomic studies revealed the presence of the interferon-induced antiviral myxovirus resistance (Mx) proteins in bats, but detailed functional aspects have not been assessed. To provide evidence that bat Mx proteins might act as key factors to control viral replication we cloned Mx1 cDNAs from three bat families, Pteropodidae, Phyllostomidae, and Vespertilionidae. Phylogenetically these bat Mx1 genes cluster closely with their human ortholog MxA. Using transfected cell cultures, minireplicon systems, virus-like particles, and virus infections, we determined the antiviral potential of the bat Mx1 proteins. Bat Mx1 significantly reduced the polymerase activity of viruses circulating in bats, including Ebola and influenza A-like viruses. The related Thogoto virus, however, which is not known to infect bats, was not inhibited by bat Mx1. Further, we provide evidence for positive selection in bat Mx1 genes that might explain species-specific antiviral activities of these proteins. Together, our data suggest a role for Mx1 in controlling these viruses in their bat hosts. IMPORTANCE Bats are a natural reservoir for various viruses that rarely cause clinical symptoms in bats but are dangerous zoonotic pathogens, like Ebola or rabies virus. It has been hypothesized that the interferon system might play a key role in controlling viral replication in bats. We speculate that the interferon-induced Mx proteins might be key antiviral factors of bats and have coevolved with bat-borne viruses. This study evaluated for the first time a large set of bat Mx1 proteins spanning three major bat families for their antiviral potential, including activity against Ebola virus and bat influenza A-like virus, and we describe here their phylogenetic relationship, revealing patterns of positive selection that suggest a coevolution with viral pathogens. By understanding the molecular mechanisms of the innate resistance of bats against viral diseases, we might gain important insights into how to prevent and fight human zoonotic infections caused by bat-borne viruses. Copyright © 2017 American Society for Microbiology.

  8. BAT Exosomes: Metabolic Crosstalk with Other Organs and Biomarkers for BAT Activity.

    PubMed

    Goody, Deborah; Pfeifer, Alexander

    2018-04-10

    In the last decade, exosomes have gained interest as a new type of intercellular communication between cells and tissues. Exosomes are circulating, cell-derived lipid vesicles smaller than 200 nm that contain proteins and nucleic acids, including microRNAs (miRNAs), and are able to modify cellular targets. Exosomal miRNAs function as signalling molecules that regulate the transcription of their target genes and can cause phenotypic transformation of recipient cells. Recent studies have shown that brown fat secretes exosomes as a form of communication with other metabolic organs such as the liver. Moreover, it has been shown that levels of miRNAs in BAT-derived exosomes change after BAT activation in vitro and in vivo. Thus, BAT-derived exosomes can be used as potential biomarkers of BAT activity. Here, we review the present knowledge about BAT-derived exosomes and their role in metabolism.

  9. Winter behavior of bats and the progression of white-nose syndrome in the southeastern United States.

    PubMed

    Bernard, Riley F; McCracken, Gary F

    2017-03-01

    Understanding the winter behavior of bats in temperate North America can provide insight into how bats react to perturbations caused by natural disturbances such as weather, human-induced disturbances, or the introduction of disease. This study measured the activity patterns of bats outside of their hibernaculum and asked how this winter activity varied by time, temperature, bat species, body condition, and WNS status. Over the course of three winters (2011-2013), we collected acoustic data and captured bats outside of five hibernacula in Tennessee, United States. During this time, Pseudogymnoascus destructans, the causative agent of white-nose syndrome, became established in hibernacula throughout the region, allowing us to track disease-related changes in the winter behavior of ten bat species. We determined that bats in the southeastern United States were active during winter regardless of disease. We recorded activity outside of hibernacula at temperatures as low as -13°C. Although bat activity was best determined by a combination of variables, the strongest factor was mean daily temperature ( R 2  = .2879, F 1,1450  = 586.2, p  < .0001). Bats that left the hibernacula earlier in evening had lower body condition than those that left 2-4 hr after sunset ( F 7,932  = 7.225, p  < .0001, Tukey HSD, p  < .05). The number of daytime emergences from hibernacula, as determined via acoustic detection, increased the longer a site was P. destructans positive ( F 3,17 808  = 124.48, p  < .0001, Tukey HSD, p  < .05). Through the use of passive acoustic monitoring and monthly captures, we determined that winter activity was driven by both ambient temperature and the presence of P. destructans .

  10. Dengue virus in bats from southeastern Mexico.

    PubMed

    Sotomayor-Bonilla, Jesús; Chaves, Andrea; Rico-Chávez, Oscar; Rostal, Melinda K; Ojeda-Flores, Rafael; Salas-Rojas, Mónica; Aguilar-Setien, Álvaro; Ibáñez-Bernal, Sergio; Barbachano-Guerrero, Arturo; Gutiérrez-Espeleta, Gustavo; Aguilar-Faisal, J Leopoldo; Aguirre, A Alonso; Daszak, Peter; Suzán, Gerardo

    2014-07-01

    To identify the relationship between landscape use and dengue virus (DENV) occurrence in bats, we investigated the presence of DENV from anthropogenically changed and unaltered landscapes in two Biosphere Reserves: Calakmul (Campeche) and Montes Azules (Chiapas) in southern Mexico. Spleen samples of 146 bats, belonging to 16 species, were tested for four DENV serotypes with standard reverse transcriptase polymerase chain reaction (RT-PCR) protocols. Six bats (4.1%) tested positive for DENV-2: four bats in Calakmul (two Glossophaga soricina, one Artibeus jamaicensis, and one A. lituratus) and two bats in Montes Azules (both A. lituratus). No effect of anthropogenic disturbance on the occurrence of DENV was detected; however, all three RT-PCR-positive bat species are considered abundant species in the Neotropics and well-adapted to disturbed habitats. To our knowledge, this study is the first study conducted in southeastern Mexico to identify DENV-2 in bats by a widely accepted RT-PCR protocol. The role that bats play on DENV's ecology remains undetermined. © The American Society of Tropical Medicine and Hygiene.

  11. Dengue Virus in Bats from Southeastern Mexico

    PubMed Central

    Sotomayor-Bonilla, Jesús; Chaves, Andrea; Rico-Chávez, Oscar; Rostal, Melinda K.; Ojeda-Flores, Rafael; Salas-Rojas, Mónica; Aguilar-Setien, Álvaro; Ibáñez-Bernal, Sergio; Barbachano-Guerrero, Arturo; Gutiérrez-Espeleta, Gustavo; Aguilar-Faisal, J. Leopoldo; Aguirre, A. Alonso; Daszak, Peter; Suzán, Gerardo

    2014-01-01

    To identify the relationship between landscape use and dengue virus (DENV) occurrence in bats, we investigated the presence of DENV from anthropogenically changed and unaltered landscapes in two Biosphere Reserves: Calakmul (Campeche) and Montes Azules (Chiapas) in southern Mexico. Spleen samples of 146 bats, belonging to 16 species, were tested for four DENV serotypes with standard reverse transcriptase polymerase chain reaction (RT-PCR) protocols. Six bats (4.1%) tested positive for DENV-2: four bats in Calakmul (two Glossophaga soricina, one Artibeus jamaicensis, and one A. lituratus) and two bats in Montes Azules (both A. lituratus). No effect of anthropogenic disturbance on the occurrence of DENV was detected; however, all three RT-PCR–positive bat species are considered abundant species in the Neotropics and well-adapted to disturbed habitats. To our knowledge, this study is the first study conducted in southeastern Mexico to identify DENV-2 in bats by a widely accepted RT-PCR protocol. The role that bats play on DENV's ecology remains undetermined. PMID:24752688

  12. Insights into Brown Adipose Tissue Physiology as Revealed by Imaging Studies

    PubMed Central

    Izzi-Engbeaya, Chioma; Salem, Victoria; Atkar, Rajveer S; Dhillo, Waljit S

    2014-01-01

    There has been resurgence in interest in brown adipose tissue (BAT) following radiological and histological identification of metabolically active BAT in adult humans. Imaging enables BAT to be studied non-invasively and therefore imaging studies have contributed a significant amount to what is known about BAT function in humans. In this review the current knowledge (derived from imaging studies) about the prevalence, function, activity and regulation of BAT in humans (as well as relevant rodent studies), will be summarized. PMID:26167397

  13. The anti-bat strategy of ultrasound absorption: the wings of nocturnal moths (Bombycoidea: Saturniidae) absorb more ultrasound than the wings of diurnal moths (Chalcosiinae: Zygaenoidea: Zygaenidae).

    PubMed

    Ntelezos, Athanasios; Guarato, Francesco; Windmill, James F C

    2017-01-15

    The selection pressure from echolocating bats has driven the development of a diverse range of anti-bat strategies in insects. For instance, several studies have proposed that the wings of some moths absorb a large portion of the sound energy contained in a bat's ultrasonic cry; as a result, the bat receives a dampened echo, and the moth becomes invisible to the bat. To test the hypothesis that greater exposure to bat predation drives the development of higher ultrasound absorbance, we used a small reverberation chamber to measure the ultrasound absorbance of the wings of nocturnal (Bombycoidea: Saturniidae) and diurnal moths (Chalcosiinae: Zygaenoidea: Zygaenidae). The absorption factor of the nocturnal saturniids peaks significantly higher than the absorption factor of the diurnal chalcosiines. However, the wings of the chalcosiines absorb more ultrasound than the wings of some diurnal butterflies. Following a phylogenetic analysis on the character state of diurnality/ nocturnality in the Zygaenidae, we propose that diurnality in the Chalcosiinae is plesiomorphic (retained); hence, the absorbance of their wings is probably not a vestigial trait from an ancestral, nocturnal form but an adaptation to bat activity that overlaps their own. On a within-species level, females of the saturniids Argema mittrei and Samia cynthia ricini have significantly higher absorption factors than the males. In the female S. c. ricini, the higher absorption factor corresponds to a detection distance by bats that is at best 20-30% shorter than that of the male. © 2017. Published by The Company of Biologists Ltd.

  14. The anti-bat strategy of ultrasound absorption: the wings of nocturnal moths (Bombycoidea: Saturniidae) absorb more ultrasound than the wings of diurnal moths (Chalcosiinae: Zygaenoidea: Zygaenidae)

    PubMed Central

    Guarato, Francesco; Windmill, James F. C.

    2017-01-01

    ABSTRACT The selection pressure from echolocating bats has driven the development of a diverse range of anti-bat strategies in insects. For instance, several studies have proposed that the wings of some moths absorb a large portion of the sound energy contained in a bat's ultrasonic cry; as a result, the bat receives a dampened echo, and the moth becomes invisible to the bat. To test the hypothesis that greater exposure to bat predation drives the development of higher ultrasound absorbance, we used a small reverberation chamber to measure the ultrasound absorbance of the wings of nocturnal (Bombycoidea: Saturniidae) and diurnal moths (Chalcosiinae: Zygaenoidea: Zygaenidae). The absorption factor of the nocturnal saturniids peaks significantly higher than the absorption factor of the diurnal chalcosiines. However, the wings of the chalcosiines absorb more ultrasound than the wings of some diurnal butterflies. Following a phylogenetic analysis on the character state of diurnality/ nocturnality in the Zygaenidae, we propose that diurnality in the Chalcosiinae is plesiomorphic (retained); hence, the absorbance of their wings is probably not a vestigial trait from an ancestral, nocturnal form but an adaptation to bat activity that overlaps their own. On a within-species level, females of the saturniids Argema mittrei and Samia cynthia ricini have significantly higher absorption factors than the males. In the female S. c. ricini, the higher absorption factor corresponds to a detection distance by bats that is at best 20-30% shorter than that of the male. PMID:27913454

  15. Bat habitat use in White Mountain National Forest

    Treesearch

    Rachel A. Krusic; Mariko Yamasaki; Christopher D. Neefus; Peter J. Pekins

    1996-01-01

    In 1992 and 1993, we surveyed the foraging and feeding activity of bat species with broadband bat detectors at 2 foliage heights in 4 age classes of northern hardwood and spruce/fir forest stands in White Mountain National Forest, New Hampshire and Maine. The association of bat activity with trails and water bodies and the effect of elevation were measured. Mist nets,...

  16. Natural exposure of bats in Grenada to rabies virus

    PubMed Central

    Zieger, Ulrike; Cheetham, Sonia; Santana, Sharlene E.; Leiser-Miller, Leith; Matthew-Belmar, Vanessa; Goharriz, Hooman; Fooks, Anthony R.

    2017-01-01

    ABSTRACT Introduction: Grenada is a rabies endemic country, where terrestrial rabies is maintained in the small Indian mongoose (Herpestes auropunctatus). The role of bats in the epidemiology of rabies in Grenada is unknown. A 1974 report described one rabies virus positive Jamaican fruit bat (Artibeus jamaicensis), and a high seroprevalence in this species. In the current study, the natural exposure to rabies virus in Grenadian bats was re-evaluated. It is postulated that bats serve as a natural rabies reservoir, probably circulating a bat-specific rabies virus variant. Material and methods: Bats were trapped in 2015 in all six parishes of Grenada using mist- and hand nets. For the detection of rabies virus in brain tissue, the direct fluorescent antibody test (dFAT) and the reverse transcription polymerase chain reaction (RT-PCR) were used. Serum neutralizing antibodies were determined using the fluorescent antibody virus neutralization test (FAVN). Results and discussion: Brain tissue and sera from 111 insectivorous and frugivorous bats belonging to four species were tested (52 Artibeus jamaicensis, two Artibeus lituratus, 33 Glossophaga longirostris, 24 Molossus molossus). Rabies virus antigen and genomic RNA were not detected in brain tissues. Rabies virus neutralizing antibodies were detected in the sera of eight A. jamaicensis in four of the six parishes. Bats in Grenada continue to show natural exposure to rabies virus. As rabies virus was not isolated in this study, serology alone is not sufficient to determine the strain of rabies virus circulating in A. jamaicensis bats in Grenada. Conclusion: Artibeus jamaicensis appears to play a role as a reservoir bat species, which is of public health concern in Grenada. Dispersion of bats to neighboring islands is possible and serological bat surveys should be initiated in these neighboring states, especially in those areas that are free of rabies in terrestrial mammals. PMID:28804595

  17. Brown adipose tissue and its modulation by a mitochondria-targeted peptide in rat burn injury-induced hypermetabolism

    PubMed Central

    Yo, Kikuo; Yu, Yong-Ming; Zhao, Gaofeng; Bonab, Ali A.; Aikawa, Naoki; Tompkins, Ronald G.

    2013-01-01

    Hypermetabolism is a prominent feature of burn injury, and altered mitochondria function is presumed to contribute to this state. Recently, brown adipose tissue (BAT) was found to be present not only in rodents but also in humans, and its activity is associated with resting metabolic rate. In this report, we elucidate the relationship between burn injury-induced hypermetabolism and BAT activity and the possible role of the mitochondria-targeted peptide SS31 in attenuating burn injury-induced hypermetabolism by using a rat burn injury model. We demonstrate that burn injury induces morphological changes in interscapular BAT (iBAT). Burn injury was associated with iBAT activation, and this effect was positively correlated with increased energy expenditure. BAT activation was associated with augmentation of mitochondria biogenesis, and UCP1 expression in the isolated iBAT mitochondria. In addition, the mitochondria-targeted peptide SS31 attenuated burn injury-induced hypermetabolism, which was accompanied by suppression of UCP1 expression in isolated mitochondria. Our results suggest that BAT plays an important role in burn injury-induced hypermetabolism through its morphological changes and expression of UCP1. PMID:23169784

  18. Brown adipose tissue and its modulation by a mitochondria-targeted peptide in rat burn injury-induced hypermetabolism.

    PubMed

    Yo, Kikuo; Yu, Yong-Ming; Zhao, Gaofeng; Bonab, Ali A; Aikawa, Naoki; Tompkins, Ronald G; Fischman, Alan J

    2013-02-15

    Hypermetabolism is a prominent feature of burn injury, and altered mitochondria function is presumed to contribute to this state. Recently, brown adipose tissue (BAT) was found to be present not only in rodents but also in humans, and its activity is associated with resting metabolic rate. In this report, we elucidate the relationship between burn injury-induced hypermetabolism and BAT activity and the possible role of the mitochondria-targeted peptide SS31 in attenuating burn injury-induced hypermetabolism by using a rat burn injury model. We demonstrate that burn injury induces morphological changes in interscapular BAT (iBAT). Burn injury was associated with iBAT activation, and this effect was positively correlated with increased energy expenditure. BAT activation was associated with augmentation of mitochondria biogenesis, and UCP1 expression in the isolated iBAT mitochondria. In addition, the mitochondria-targeted peptide SS31 attenuated burn injury-induced hypermetabolism, which was accompanied by suppression of UCP1 expression in isolated mitochondria. Our results suggest that BAT plays an important role in burn injury-induced hypermetabolism through its morphological changes and expression of UCP1.

  19. A Review of the Internal and External Physiological Demands Associated With Batting in Cricket.

    PubMed

    Scanlan, Aaron T; Berkelmans, Daniel M; Vickery, William M; Kean, Crystal O

    2016-11-01

    Cricket is a popular international team sport with various game formats ranging from long-duration multiday tests to short-duration Twenty20 game play. The role of batsmen is critical to all game formats, with differing physiological demands imposed during each format. Investigation of the physiological demands imposed during cricket batting has historically been neglected, with much of the research focusing on bowling responses and batting technique. A greater understanding of the physiological demands of the batting role in cricket is required to assist strength and conditioning professionals and coaches with the design of training plans, recovery protocols, and player-management strategies. This brief review provides an updated synthesis of the literature examining the internal (eg, metabolic demands and heart rate) and external (eg, activity work rates) physiological responses to batting in the various game formats, as well as simulated play and small-sided-games training. Although few studies have been done in this area, the summary of data provides important insight regarding physiological responses to batting and highlights that more research on this topic is required. Future research is recommended to combine internal and external measures during actual game play, as well as comparing different game formats and playing levels. In addition, understanding the relationship between batting technique and physiological responses is warranted to gain a more holistic understanding of batting in cricket, as well as to develop appropriate coaching and training strategies.

  20. A controlled study on batted ball speed and available pitcher reaction time in slowpitch softball

    PubMed Central

    McDowell, M; Ciocco, M

    2005-01-01

    Objectives: To investigate safety risks in slowpitch softball by conducting laboratory and experimental studies on the performance of high tech softball bats with polyurethane softballs. To compare the results with the recommended safety standards. Methods: ASTM standard compression testing of seven softball models was conducted. Using these seven softball models, bat/ball impact testing was performed using seven adult male softball players and six high tech softball bat models to determine mean batted ball speeds. Over 500 bat/ball impact measurements were recorded and analysed. Available pitcher reaction time was calculated from the mean batted ball speed measurements. Results: According to the United States Specialty Sports Association and the Amateur Softball Association, the maximum initial batted ball speed should be 137.2 km/h, which corresponds to a minimum pitcher reaction time of 0.420 second. These experiments produced mean batted ball speeds of 134.0–159.7 km/h, which correspond to available pitcher reaction times of 0.409–0.361 second. Conclusion: The use of high tech softball bats with polyurethane softballs can result in batted ball speeds that exceed the recommended safety limits, which correspond to decreased available pitcher reaction times. PMID:15793092

  1. Neutralizing antibodies against flaviviruses, Babanki virus, and Rift Valley fever virus in Ugandan bats.

    PubMed

    Kading, Rebekah C; Kityo, Robert M; Mossel, Eric C; Borland, Erin M; Nakayiki, Teddie; Nalikka, Betty; Nyakarahuka, Luke; Ledermann, Jeremy P; Panella, Nicholas A; Gilbert, Amy T; Crabtree, Mary B; Peterhans, Julian Kerbis; Towner, Jonathan S; Amman, Brian R; Sealy, Tara K; Nichol, Stuart T; Powers, Ann M; Lutwama, Julius J; Miller, Barry R

    2018-01-01

    Introduction: A number of arboviruses have previously been isolated from naturally-infected East African bats, however the role of bats in arbovirus maintenance is poorly understood. The aim of this study was to investigate the exposure history of Ugandan bats to a panel of arboviruses. Materials and methods: Insectivorous and fruit bats were captured from multiple locations throughout Uganda during 2009 and 2011-2013. All serum samples were tested for neutralizing antibodies against West Nile virus (WNV), yellow fever virus (YFV), dengue 2 virus (DENV-2), Zika virus (ZIKV), Babanki virus (BBKV), and Rift Valley fever virus (RVFV) by plaque reduction neutralization test (PRNT). Sera from up to 626 bats were screened for antibodies against each virus. Results and Discussion:  Key findings include the presence of neutralizing antibodies against RVFV in 5/52 (9.6%) of little epauletted fruit bats ( Epomophorus labiatus ) captured from Kawuku and 3/54 (5.6%) Egyptian rousette bats from Kasokero cave. Antibodies reactive to flaviviruses were widespread across bat taxa and sampling locations. Conclusion: The data presented demonstrate the widespread exposure of bats in Uganda to arboviruses, and highlight particular virus-bat associations that warrant further investigation.

  2. Bat Facts and Fun.

    ERIC Educational Resources Information Center

    McKee, Judith A.

    1992-01-01

    Describes a unit of study for elementary school science on bats. Students investigate the different types of bats; examine their behavior; find facts that other students are unlikely to know; write stories about bats; and examine the concept of echolocation, the means by which bats navigate. Suggests integrated activities for mathematics…

  3. High levels of activity of bats at gold mining water bodies: implications for compliance with the International Cyanide Management Code.

    PubMed

    Griffiths, Stephen R; Donato, David B; Coulson, Graeme; Lumsden, Linda F

    2014-06-01

    Wildlife and livestock are known to visit and interact with tailings dam and other wastewater impoundments at gold mines. When cyanide concentrations within these water bodies exceed a critical toxicity threshold, significant cyanide-related mortality events can occur in wildlife. Highly mobile taxa such as birds are particularly susceptible to cyanide toxicosis. Nocturnally active bats have similar access to uncovered wastewater impoundments as birds; however, cyanide toxicosis risks to bats remain ambiguous. This study investigated activity of bats in the airspace above two water bodies at an Australian gold mine, to assess the extent to which bats use these water bodies and hence are at potential risk of exposure to cyanide. Bat activity was present on most nights sampled during the 16-month survey period, although it was highly variable across nights and months. Therefore, despite the artificial nature of wastewater impoundments at gold mines, these structures present attractive habitats to bats. As tailings slurry and supernatant pooling within the tailings dam were consistently well below the industry protective concentration limit of 50 mg/L weak acid dissociable (WAD) cyanide, wastewater solutions stored within the tailings dam posed a minimal risk of cyanide toxicosis for wildlife, including bats. This study showed that passively recorded bat echolocation call data provides evidence of the presence and relative activity of bats above water bodies at mine sites. Furthermore, echolocation buzz calls recorded in the airspace directly above water provide indirect evidence of foraging and/or drinking. Both echolocation monitoring and systematic sampling of cyanide concentration in open wastewater impoundments can be incorporated into a gold mine risk-assessment model in order to evaluate the risk of bat exposure to cyanide. In relation to risk minimisation management practices, the most effective mechanism for preventing cyanide toxicosis to wildlife, including bats, is capping the concentration of cyanide in tailings discharged to open impoundments at 50 mg/L WAD.

  4. Bartonella Species in Bats (Chiroptera) and Bat Flies (Nycteribiidae) from Nigeria, West Africa

    PubMed Central

    Baneth, Gad; Mitchell, Mark; Mumcuoglu, Kosta Y.; Gutiérrez, Ricardo; Harrus, Shimon

    2014-01-01

    Abstract Previous and ongoing studies have incriminated bats as reservoirs of several emerging and re-emerging zoonoses. Most of these studies, however, have focused on viral agents and neglected important bacterial pathogens. To date, there has been no report investigating the prevalence of Bartonella spp. in bats and bat flies from Nigeria, despite the fact that bats are used as food and for cultural ritual purposes by some ethnic groups in Nigeria. To elucidate the role of bats as reservoirs of bartonellae, we screened by molecular methods 148 bats and 34 bat flies, Diptera:Hippoboscoidea:Nycteribiidae (Cyclopodia greeffi) from Nigeria for Bartonella spp. Overall, Bartonella spp. DNA was detected in 76 out of 148 (51.4%) bat blood samples tested and 10 out of 24 (41.7%) bat flies tested by qPCR targeting the 16S–23S internal transcribed spacer (ITS) locus. Bartonella was isolated from 23 of 148 (15.5%) bat blood samples, and the isolates were genetically characterized. Prevalence of Bartonella spp. culture-positive samples ranged from 0% to 45.5% among five bat species. Micropterus spp. bats had a significantly higher relative risk of 3.45 for being culture positive compared to Eidolon helvum, Epomophorus spp., Rhinolophus spp., and Chaerephon nigeriae. Bartonella spp. detected in this study fall into three distinct clusters along with other Bartonella spp. isolated from bats and bat flies from Kenya and Ghana, respectively. The isolation of Bartonella spp. in 10.0–45.5% of four out of five bat species screened in this study indicates a widespread infection in bat population in Nigeria. Further investigation is warranted to determine the role of these bacteria as a cause of human and animal diseases in Nigeria. PMID:25229701

  5. Bartonella species in bats (Chiroptera) and bat flies (Nycteribiidae) from Nigeria, West Africa.

    PubMed

    Kamani, Joshua; Baneth, Gad; Mitchell, Mark; Mumcuoglu, Kosta Y; Gutiérrez, Ricardo; Harrus, Shimon

    2014-09-01

    Previous and ongoing studies have incriminated bats as reservoirs of several emerging and re-emerging zoonoses. Most of these studies, however, have focused on viral agents and neglected important bacterial pathogens. To date, there has been no report investigating the prevalence of Bartonella spp. in bats and bat flies from Nigeria, despite the fact that bats are used as food and for cultural ritual purposes by some ethnic groups in Nigeria. To elucidate the role of bats as reservoirs of bartonellae, we screened by molecular methods 148 bats and 34 bat flies, Diptera:Hippoboscoidea:Nycteribiidae (Cyclopodia greeffi) from Nigeria for Bartonella spp. Overall, Bartonella spp. DNA was detected in 76 out of 148 (51.4%) bat blood samples tested and 10 out of 24 (41.7%) bat flies tested by qPCR targeting the 16S-23S internal transcribed spacer (ITS) locus. Bartonella was isolated from 23 of 148 (15.5%) bat blood samples, and the isolates were genetically characterized. Prevalence of Bartonella spp. culture-positive samples ranged from 0% to 45.5% among five bat species. Micropterus spp. bats had a significantly higher relative risk of 3.45 for being culture positive compared to Eidolon helvum, Epomophorus spp., Rhinolophus spp., and Chaerephon nigeriae. Bartonella spp. detected in this study fall into three distinct clusters along with other Bartonella spp. isolated from bats and bat flies from Kenya and Ghana, respectively. The isolation of Bartonella spp. in 10.0-45.5% of four out of five bat species screened in this study indicates a widespread infection in bat population in Nigeria. Further investigation is warranted to determine the role of these bacteria as a cause of human and animal diseases in Nigeria.

  6. Living with Bats: The Case of Ve Golokuati Township in the Volta Region of Ghana

    PubMed Central

    Ohemeng, Fidelia; Tweneboah Lawson, Elaine; Waldman, Linda

    2017-01-01

    Transmission of zoonotic pathogens from bats to humans through direct and indirect contact with bats raises public apprehension about living close to bats. In the township of Ve Golokuati in Ghana, several “camps” of Epomophorus gambianus roost in fruit trees that provide ecosystems services for residents. This study explored human-bat interaction in the township and the potential risks of disease transmission from bats to humans. Data were derived through questionnaire administration and participatory appraisal approach involving focus group discussions, participatory landscape mapping, and transect walk. The study found that most human activities within the township, such as petty-trading, domestic chores, and children's outdoor recreation, exposed people to bats. Though there have been no reported cases of disease spillover from bats to humans from the perspective of residents and from medical records, respondents whose activities brought them closer to bats within the township were found to be more likely to experience fevers than those who do not interact with bats frequently. The study recommends education of community members about the potential risks involved in human-bat interactions and makes suggestions for reducing the frequent interactions with and exposure to bats by humans. PMID:29081813

  7. Assessment of softball bat safety performance using mid-compression polyurethane softballs.

    PubMed

    McDowell, Mark

    2004-07-01

    There is currently much debate about the safety of the sport of softball. Batted-ball speed and average pitcher reaction time are factors often used to determine safe performance. Batted-ball speed is shown to be the most important factor to consider when determining safe play. Average pitcher reaction time is explained and directly correlated to batted-ball speed. Eleven aluminum multi-wall, three aluminum single-wall and two composite softball bats were tested with mid-compression polyurethane softballs averaging 1721+/-62 N/6.4 mm to represent the relative bat-ball performance for the sport of slowpitch softball. Nine men and six women were chosen for this study out of a test group of over three hundred slowpitch softball players. On average, aluminum bat performance results were within the recommended safety limits established by the national softball associations. However, when composite bats were used, their performance results exceeded the recommended safety limits which can pose a significant safety risk. Using aluminum softball bats, batted-ball speeds ranged from 80 to 145km x h(-1) Using composite softball bats, batted-ball speeds ranged from 146 to 161 km x h(-1). The scientific relevance of this study is to provide performance information that can lead to injury prevention in the sport of softball.

  8. Glycinergic inhibition of BAT sympathetic premotor neurons in rostral raphe pallidus.

    PubMed

    Conceição, Ellen Paula Santos da; Madden, Christopher J; Morrison, Shaun F

    2017-06-01

    The rostral raphe pallidus (rRPa) contains sympathetic premotor neurons controlling thermogenesis in brown adipose tissue (BAT). We sought to determine whether a tonic activation of glycine A receptors (Gly A R) in the rRPa contributes to the inhibitory regulation of BAT sympathetic nerve activity (SNA) and of cardiovascular parameters in anesthetized rats. Nanoinjection of the Gly A R antagonist, strychnine (STR), into the rRPa of intact rats increased BAT SNA (peak: +495%), BAT temperature (T BAT , +1.1°C), expired CO 2 , (+0.4%), core body temperature (T CORE , +0.2°C), mean arterial pressure (MAP, +4 mmHg), and heart rate (HR, +57 beats/min). STR into rRPa in rats with a postdorsomedial hypothalamus transection produced similar increases in BAT thermogenic and cardiovascular parameters. Glycine nanoinjection into the rRPa evoked a potent inhibition of the cooling-evoked increases in BAT SNA (nadir: -74%), T BAT (-0.2°C), T CORE (-0.2°C), expired CO 2 (-0.2%), MAP (-8 mmHg), and HR (-22 beats/min) but had no effect on the increases in these variables evoked by STR nanoinjection into rRPa. Nanoinjection of GABA into the rRPa inhibited the STR-evoked BAT SNA (nadir: -86%) and reduced the expired CO 2 (-0.4%). Blockade of glutamate receptors in rRPa reduced the STR-evoked increases in BAT SNA (nadir: -61%), T BAT (-0.5°C), expired CO 2 (-0.3%), MAP (-9 mmHg), and HR (-33 beats/min). We conclude that a tonically active glycinergic input to the rRPa contributes to the inhibitory regulation of the discharge of BAT sympathetic premotor neurons and of BAT thermogenesis and energy expenditure. Copyright © 2017 the American Physiological Society.

  9. Distress calls of the greater short-nosed fruit bat Cynopterus sphinx activate hypothalamic-pituitary-adrenal (HPA) axis in conspecifics.

    PubMed

    Mariappan, Subramanian; Bogdanowicz, Wieslaw; Marimuthu, Ganapathy; Rajan, Koilmani Emmanuvel

    2013-09-01

    In a stressful situation, greater short-nosed fruit bats (Cynopterus sphinx) emit audible vocalization either to warn or to inform conspecifics. We examined the effect of distress calls on bats emitting the call as well as the bats receiving the distress signal through analysis of the hypothalamic-pituitary-adrenal axis and catacholaminargic systems. We measured the levels of neurotransmitters [serotonin (5-HT), dopamine (DA), norepinephrine (NE)] and stress hormones [(adrenocorticotropic hormone (ACTH) and corticosterone (CORT)]. Our results showed that distress call emission elevated the level of ACTH and CORT, as well as 5-HT, DA and NE in the amygdala, for both the call emitting bat and the responding bat. Subsequently, we observed increased activity of glucocorticoid receptor and its steroid receptor co-activator (SRC-1). An expression of SRC-1 was up-regulated in the distress call emitter only, whereas it was at a similar level in both the call responder and silent bats. These findings suggest that bats emitting distress calls and also bats responding to such calls have similar neurotransmitter expression patterns, and may react similarly in response to stress.

  10. Effect of Chronic Athletic Activity on Brown Fat in Young Women

    PubMed Central

    Singhal, Vibha; Maffazioli, Giovana D.; Ackerman, Kate E.; Lee, Hang; Elia, Elisa F.; Woolley, Ryan; Kolodny, Gerald; Cypess, Aaron M.; Misra, Madhusmita

    2016-01-01

    Background The effect of chronic exercise activity on brown adipose tissue (BAT) is not clear, with some studies showing positive and others showing negative associations. Chronic exercise is associated with increased resting energy expenditure (REE) secondary to increased lean mass and a probable increase in BAT. Many athletes are in a state of relative energy deficit suggested by lower fat mass and hypothalamic amenorrhea. States of severe energy deficit such as anorexia nervosa are associated with reduced BAT. There are no data regarding the impact of chronic exercise activity on BAT volume or activity in young women and it is unclear whether relative energy deficiency modifies the effects of exercise on BAT. Purpose We assessed cold induced BAT volume and activity in young female athletes compared with non-athletes, and further evaluated associations of BAT with measures of REE, body composition and menstrual status. Methods The protocol was approved by our Institutional Review Board. Written informed consent was obtained from all participants prior to study initiation. This was a cross-sectional study of 24 women (16 athletes and8 non-athletes) between 18–25 years of age. Athletes were either oligo-amenorrheic (n = 8) or eumenorrheic (n = 8).We used PET/CT scans to determine cold induced BAT activity, VMAX Encore 29 metabolic cart to obtain measures of REE, and DXA for body composition. Results Athletes and non-athletes did not differ for age or BMI. Compared with non-athletes, athletes had lower percent body fat (p = 0.002), higher percent lean mass (p = 0.01) and trended higher in REE (p = 0.09). BAT volume and activity in athletes trended lower than in non-athletes (p = 0.06; p = 0.07, respectively). We found negative associations of BAT activity with duration of amenorrhea (r = -0.46, p = 0.02).BAT volume correlated inversely with lean mass (r = -0.46, p = 0.02), and positively with percent body fat, irisin and thyroid hormones. Conclusions Our study shows a trend for lower BAT in young female athletes compared with non-athletes, and shows associations of brown fat with menstrual status and body composition. Brown fat may undergo adaptive reductions with increasing energy deficit. PMID:27243823

  11. Negativization rates of IgE radioimmunoassay and basophil activation test in immediate reactions to penicillins.

    PubMed

    Fernández, T D; Torres, M J; Blanca-López, N; Rodríguez-Bada, J L; Gomez, E; Canto, G; Mayorga, C; Blanca, M

    2009-02-01

    Skin test sensitivity in patients with immediate allergy to penicillins tends to decrease over time, but no information is available concerning in vitro tests. We analysed the negativization rates of two in vitro methods that determine specific immunoglobulin E (IgE) antibodies, the basophil activation test using flow cytometry (BAT) and the radioallergosorbent test (RAST), in immediate allergic reactions to penicillins. Forty-one patients with immediate allergic reactions to amoxicillin were followed up over a 4-year period. BAT and RAST were performed at 6-month intervals. Patients were randomized into groups: Group I, skin tests carried out at regular intervals; Group II, skin tests made only at the beginning of the study. Differences were observed between RAST and BAT (P < 0.01), the latter showing earlier negativization. Considering different haptens, significant differences for the rate of negativization were only found for amoxicillin (P < 0.05). Comparisons between Groups I (n = 10) and II (n = 31) showed a tendency to become negative later in Group I with RAST. Levels of specific IgE antibodies tended to decrease over time in patients with immediate allergic reactions to amoxicillin. Conversion to negative took longer for the RAST assay, although the differences were only detected with the amoxicillin hapten. Skin testing influenced the rate of negativization of the RAST assay, contributing to maintenance of in vitro sensitivity. Because of the loss of sensitivity over time, the determination of specific IgE antibodies to penicillins in patients with immediate allergic reactions must be done as soon as possible after the reaction.

  12. The impacts of new street light technologies: experimentally testing the effects on bats of changing from low-pressure sodium to white metal halide.

    PubMed

    Stone, Emma Louise; Wakefield, Andrew; Harris, Stephen; Jones, Gareth

    2015-05-05

    Artificial light at night is a major feature of anthropogenic global change and is increasingly recognized as affecting biodiversity, often negatively. On a global scale, newer technology white lights are replacing orange sodium lights to reduce energy waste. In 2009, Cornwall County Council (UK) commenced replacement of existing low-pressure sodium (LPS) high intensity discharge (HID) street lights with new Phillips CosmoPolis white ceramic metal halide street lights to reduce energy wastage. This changeover provided a unique collaborative opportunity to implement a before-after-control-impact field experiment to investigate the ecological effects of newly installed broad spectrum light technologies. Activity of the bat species Pipistrellus pipistrellus, P. pygmaeus and Nyctalus/Eptesicus spp. was significantly higher at metal halide than LPS lights, as found in other studies of bat activity at old technology (i.e. mercury vapour) white light types. No significant difference was found in feeding attempts per bat pass between light types, though more passes overall were recorded at metal halide lights. Species-specific attraction of bats to the metal halide lights could have cascading effects at lower trophic levels. We highlight the need for further research on possible ecosystem-level effects of light technologies before they are installed on a wide scale. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Matched Behavioral and Neural Adaptations for Low Sound Level Echolocation in a Gleaning Bat, Antrozous pallidus

    PubMed Central

    Measor, Kevin R.; Leavell, Brian C.; Brewton, Dustin H.; Rumschlag, Jeffrey; Barber, Jesse R.

    2017-01-01

    Abstract In active sensing, animals make motor adjustments to match sensory inputs to specialized neural circuitry. Here, we describe an active sensing system for sound level processing. The pallid bat uses downward frequency-modulated (FM) sweeps as echolocation calls for general orientation and obstacle avoidance. The bat’s auditory cortex contains a region selective for these FM sweeps (FM sweep-selective region, FMSR). We show that the vast majority of FMSR neurons are sensitive and strongly selective for relatively low levels (30-60 dB SPL). Behavioral testing shows that when a flying bat approaches a target, it reduces output call levels to keep echo levels between ∼30 and 55 dB SPL. Thus, the pallid bat behaviorally matches echo levels to an optimized neural representation of sound levels. FMSR neurons are more selective for sound levels of FM sweeps than tones, suggesting that across-frequency integration enhances level tuning. Level-dependent timing of high-frequency sideband inhibition in the receptive field shapes increased level selectivity for FM sweeps. Together with previous studies, these data indicate that the same receptive field properties shape multiple filters (sweep direction, rate, and level) for FM sweeps, a sound common in multiple vocalizations, including human speech. The matched behavioral and neural adaptations for low-intensity echolocation in the pallid bat will facilitate foraging with reduced probability of acoustic detection by prey. PMID:28275715

  14. Observations of little myotis (myotis Lucifugus) habitat associations and activity in the Chugach National Forest, Alaska

    Treesearch

    Susan C. Loeb; Eric A. Winters; Marion E. Glaser; Marian L. Snively; Kevin S. Laves; Jessica K. Ilse

    2014-01-01

    Little is known about the ecological relationships of bats of Southcentral Alaska. We used AnaBat II bat detectors, mist-netting, and radio-telemetry to collect preliminary data on the distribution and status of bats on the Chugach National Forest (CNF), their activity patterns, and their roosting and foraging habitats. Myotis spp. were detected at 20 of 25 acoustic...

  15. An examination of factors influencing the spatial distribution of foraging bats in pine stands in the southeastern United States.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menzel, Michael, A., Jr.

    Menzel, M.A. 2003. An examination of factors influencing the spatial distribution of foraging bats in pine stands in the Southeastern United States. Ph.D Dissertation. Davis College of Agriculture, Forestry and Consumer Sciences at West Virginia University, Morgantown, West Virginia. 336 pp. The general objective of this dissertation was to determine the effect of changes in forest structure on bat activity patterns in southern pine stands. Four sub studies are included in the dissertation: (1) An examination of the homerange size, habitat use and diet of four reproductively active male Rafinesque's big eared bats (Corynorhimus rafinesquii); (2) An examination of themore » diet of 5 reproductively active male Rafinesque's big eared bats; (3) A comparison of bat activity levels in the Coastal Plain of South Carolina among 5 vegetational community types: forested riparian areas, clearcuts, young pine plantations, mature plantations, and pine savannahs; (4) A summarization of information concerning the natural history of all bat species common in the SPR.« less

  16. Brown adipose tissue transplantation ameliorates polycystic ovary syndrome

    PubMed Central

    Yuan, Xiaoxue; Hu, Tao; Zhao, Han; Huang, Yuanyuan; Ye, Rongcai; Lin, Jun; Zhang, Chuanhai; Zhang, Hanlin; Wei, Gang; Zhou, Huiqiao; Dong, Meng; Zhao, Jun; Wang, Haibin; Liu, Qingsong; Lee, Hyuek Jong; Jin, Wanzhu; Chen, Zi-Jiang

    2016-01-01

    Polycystic ovary syndrome (PCOS), which is characterized by anovulation, hyperandrogenism, and polycystic ovaries, is a complex endocrinopathy. Because the cause of PCOS at the molecular level is largely unknown, there is no cure or specific treatment for PCOS. Here, we show that transplantation of brown adipose tissue (BAT) reversed anovulation, hyperandrogenism, and polycystic ovaries in a dehydroepiandrosterone (DHEA)-induced PCOS rat. BAT transplantation into a PCOS rat significantly stabilized menstrual irregularity and improved systemic insulin sensitivity up to a normal level, which was not shown in a sham-operated or muscle-transplanted PCOS rat. Moreover, BAT transplantation, not sham operation or muscle transplantation, surprisingly improved fertility in PCOS rats. Interestingly, BAT transplantation activated endogenous BAT and thereby increased the circulating level of adiponectin, which plays a prominent role in whole-body energy metabolism and ovarian physiology. Consistent with BAT transplantation, administration of adiponectin protein dramatically rescued DHEA-induced PCOS phenotypes. These results highlight that endogenous BAT activity is closely related to the development of PCOS phenotypes and that BAT activation might be a promising therapeutic option for the treatment of PCOS. PMID:26903641

  17. The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights

    PubMed Central

    Rowse, Elizabeth G.; Harris, Stephen; Jones, Gareth

    2016-01-01

    We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS) to light emitting diode (LED) street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum ‘white’ light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes), or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these ‘light-intolerant’ bat species. PMID:27008274

  18. A comparison of bat activity at low and high elevations in the Black Hills of western Washington

    USGS Publications Warehouse

    Erickson, J.; Adams, Michael J.

    2003-01-01

    We examined the differences in activity patterns and community structure of bats between low (<150 m) and high ( ! 575 m) elevation sites in two habitats of the Capitol State Forest, Washington. Total bat activity averaged four times higher at low elevation sites than at high elevation sites. Feeding activity was almost 20 times higher at low elevation sites. However, the non-myotis group had similar activity levels at high and low elevation, whereas myotis group activity decreased at higher elevations. Different levels of activity between elevations could be the result of differences in insect availability, climatic conditions, and morphology of the bat species.

  19. Metabolic Cost of the Activation of Immune Response in the Fish-Eating Myotis (Myotis vivesi): The Effects of Inflammation and the Acute Phase Response

    PubMed Central

    Otálora-Ardila, Aída; Herrera M., L. Gerardo; Flores-Martínez, José Juan; Welch, Kenneth C.

    2016-01-01

    Inflammation and activation of the acute phase response (APR) are energetically demanding processes that protect against pathogens. Phytohaemagglutinin (PHA) and lipopolysaccharide (LPS) are antigens commonly used to stimulate inflammation and the APR, respectively. We tested the hypothesis that the APR after an LPS challenge was energetically more costly than the inflammatory response after a PHA challenge in the fish-eating Myotis bat (Myotis vivesi). We measured resting metabolic rate (RMR) after bats were administered PHA and LPS. We also measured skin temperature (Tskin) after the LPS challenge and skin swelling after the PHA challenge. Injection of PHA elicited swelling that lasted for several days but changes in RMR and body mass were not significant. LPS injection produced a significant increase in Tskin and in RMR, and significant body mass loss. RMR after LPS injection increased by 140–185% and the total cost of the response was 6.50 kJ. Inflammation was an energetically low-cost process but the APR entailed a significant energetic investment. Examination of APR in other bats suggests that the way in which bats deal with infections might not be uniform. PMID:27792729

  20. Metabolic Cost of the Activation of Immune Response in the Fish-Eating Myotis (Myotis vivesi): The Effects of Inflammation and the Acute Phase Response.

    PubMed

    Otálora-Ardila, Aída; Herrera M, L Gerardo; Flores-Martínez, José Juan; Welch, Kenneth C

    2016-01-01

    Inflammation and activation of the acute phase response (APR) are energetically demanding processes that protect against pathogens. Phytohaemagglutinin (PHA) and lipopolysaccharide (LPS) are antigens commonly used to stimulate inflammation and the APR, respectively. We tested the hypothesis that the APR after an LPS challenge was energetically more costly than the inflammatory response after a PHA challenge in the fish-eating Myotis bat (Myotis vivesi). We measured resting metabolic rate (RMR) after bats were administered PHA and LPS. We also measured skin temperature (Tskin) after the LPS challenge and skin swelling after the PHA challenge. Injection of PHA elicited swelling that lasted for several days but changes in RMR and body mass were not significant. LPS injection produced a significant increase in Tskin and in RMR, and significant body mass loss. RMR after LPS injection increased by 140-185% and the total cost of the response was 6.50 kJ. Inflammation was an energetically low-cost process but the APR entailed a significant energetic investment. Examination of APR in other bats suggests that the way in which bats deal with infections might not be uniform.

  1. [Role of oxotremorine in arginine vasopressin-induced hypothermia and its effects on behavioral thermoregulatory response in rats].

    PubMed

    Shen, Zi-Ling; Yang, Yong-Lu; Sun, Bing; Tang, Yu; Wang, Nian

    2012-03-01

    To investigate the role of oxotremorine in arginine vasopressin (AVP)-induced hypothermia and its effects on the behavioral thermoregulatory response. Core temperature (Tc), brown adipose tissue (BAT) temperature and motor activities were monitored in undisturbed female SD rats using radiotelemetry. The behavioral thermoregulatory response was monitored in rats using radiotelemetric temperature gradient apparatus. Effect of AVP (10 microg/kg) and oxotremorine (0.25 mg/kg) on Tc, motor activities, BAT temperature (T(BAT)), grooming activities and the behavioral thermoregulatory response were observed in rats. Administration of AVP and oxotremorine caused a significant drop in Tc, T(BAT), and an increases in grooming activities, respectively. The hypothermic responses were accompanied with a preference for cooler ambient temperature. Oxotremorine augmented the reduction of Tc, T(BAT), and the elevation of grooming activities resulting from AVP, and lasting a longer time. Administration of oxotremorine followed immediately by AVP injection in rats was also shown to induce a preference for cooler ambient temperature, but there was no significant difference compared with AVP. AVP-induced hypothermia was related with the set point temperature reduction, inhibiton of BAT thermogenesis and an increases in grooming activities. Oxotremorine could participate in peripheral AVP-induced hypothermia by affecting BAT thermogenesis and behavioral thermoregulation.

  2. Activity levels of bats and katydids in relation to the lunar cycle.

    PubMed

    Lang, Alexander B; Kalko, Elisabeth K V; Römer, Heinrich; Bockholdt, Cecile; Dechmann, Dina K N

    2006-01-01

    Animals are exposed to many conflicting ecological pressures, and the effect of one may often obscure that of another. A likely example of this is the so-called "lunar phobia" or reduced activity of bats during full moon. The main reason for lunar phobia was thought to be that bats adjust their activity to avoid predators. However, bats can be prey, but many are carnivorous and therefore predators themselves. Thus, they are likely to be influenced by prey availability as well as predation risk. We investigated the activity patterns of the perch-hunting Lophostoma silvicolum and one of its main types of prey, katydids, to assess the influence of the former during different phases of the lunar cycle on a gleaning insectivorous bat. To avoid sampling bias, we used sound recordings and two different capture methods for the katydids, as well as video monitoring and radio-telemetry for the bats. Both, bats and katydids were significantly more active during the dark periods associated with new moon compared to bright periods around the full moon. We conclude that foraging activity of L. silvicolum is probably influenced by prey availability to a large extent and argue that generally the causes of lunar phobia are species-specific.

  3. Satellite Telemetry and Long-Range Bat Movements

    PubMed Central

    Smith, Craig S.; Epstein, Jonathan H.; Breed, Andrew C.; Plowright, Raina K.; Olival, Kevin J.; de Jong, Carol; Daszak, Peter; Field, Hume E.

    2011-01-01

    Background Understanding the long-distance movement of bats has direct relevance to studies of population dynamics, ecology, disease emergence, and conservation. Methodology/Principal Findings We developed and trialed several collar and platform terminal transmitter (PTT) combinations on both free-living and captive fruit bats (Family Pteropodidae: Genus Pteropus). We examined transmitter weight, size, profile and comfort as key determinants of maximized transmitter activity. We then tested the importance of bat-related variables (species size/weight, roosting habitat and behavior) and environmental variables (day-length, rainfall pattern) in determining optimal collar/PTT configuration. We compared battery- and solar-powered PTT performance in various field situations, and found the latter more successful in maintaining voltage on species that roosted higher in the tree canopy, and at lower density, than those that roost more densely and lower in trees. Finally, we trialed transmitter accuracy, and found that actual distance errors and Argos location class error estimates were in broad agreement. Conclusions/Significance We conclude that no single collar or transmitter design is optimal for all bat species, and that species size/weight, species ecology and study objectives are key design considerations. Our study provides a strategy for collar and platform choice that will be applicable to a larger number of bat species as transmitter size and weight continue to decrease in the future. PMID:21358823

  4. Respiratory allergy to inhaled bat guano.

    PubMed

    el-Ansary, E H; Tee, R D; Gordon, D J; Taylor, A J

    1987-02-07

    In the Sudan many asthmatic patients attribute their symptoms to inhalation of bat droppings. Design of the roofs of many Sudanese buildings allows black bats to roost; guano drops through cracks in the ceiling into the rooms below where it can be inhaled and cause allergic respiratory disorders. Seven atopic patients seen at Sennar Hospital with bat-related case-histories were investigated. Six had bronchial asthma and allergic rhinitis and one had asthma alone. Extracts of yellow hairy bat, black bat, and bat droppings were made. All seven patients had a positive skin prick test and specific IgE antibodies (RAST) to bat droppings. Three patients also had a positive RAST to both yellow and black bats and one patient to yellow bat. Droppings are probably the major allergen source in bat-related respiratory allergy.

  5. 15O PET Measurement of Blood Flow and Oxygen Consumption in Cold-Activated Human Brown Fat

    PubMed Central

    Muzik, Otto; Mangner, Thomas J.; Leonard, William R.; Kumar, Ajay; Janisse, James; Granneman, James G.

    2013-01-01

    Although it has been believed that brown adipose tissue (BAT) depots disappear shortly after the perinatal period in humans, PET imaging using the glucose analog 18F-FDG has shown unequivocally the existence of functional BAT in adult humans, suggesting that many humans retain some functional BAT past infancy. The objective of this study was to determine to what extent BAT thermogenesis is activated in adults during cold stress and to establish the relationship between BAT oxidative metabolism and 18F-FDG tracer uptake. Methods Twenty-five healthy adults (15 women and 10 men; mean age ± SD, 30 ± 7 y) underwent triple-oxygen scans (H215O, C15O, and 15O2) as well as measurements of daily energy expenditure (DEE; kcal/d) both at rest and after exposure to mild cold (15.5°C [60°F]) using indirect calorimetry. The subjects were divided into 2 groups (high BAT and low BAT) based on the presence or absence of 18F-FDG tracer uptake (standardized uptake value [SUV] > 2) in cervical–supraclavicular BAT. Blood flow and oxygen extraction fraction (OEF) were calculated from dynamic PET scans at the location of BAT, muscle, and white adipose tissue. Regional blood oxygen saturation was determined by near-infrared spectroscopy. The total energy expenditure during rest and mild cold stress was measured by indirect calorimetry. Tissue-level metabolic rate of oxygen (MRO2) in BAT was determined and used to calculate the contribution of activated BAT to DEE. Results The mass of activated BAT was 59.1 ± 17.5 g (range, 32–85 g) in the high-BAT group (8 women and 1 man; mean age, 29.6 ± 5.5 y) and 2.2 ± 3.6 g (range, 0–9.3 g) in the low-BAT group (9 men and 7 women; mean age, 31.4 ± 10 y). Corresponding maximal SUVs were significantly higher in the high-BAT group than in the low-BAT group (10.7 ± 3.9 vs. 2.1 ± 0.7, P = 0.01). Blood flow values were significantly higher in the high-BAT group than in the low-BAT group for BAT (12.9 ± 4.1 vs. 5.9 ± 2.2 mL/100 g/min, P = 0.03) and white adipose tissue (7.2 ± 3.4 vs. 5.7 ± 2.3 mL/100 g/min, P = 0.03) but were similar for muscle (4.4 ± 1.9 vs. 3.9 ± 1.7 mL/100 g/min). Moreover, OEF in BAT was similar in the 2 groups (0.51 ± 0.17 in high-BAT group vs. 0.47 ± 0.18 in low-BAT group, P = 0.39). During mild cold stress, calculated MRO2 values in BAT increased from 0.97 ± 0.53 to 1.42 ± 0.68 mL/100 g/min (P = 0.04) in the high-BAT group and were significantly higher than those determined in the low-BAT group (0.40 ± 0.28 vs. 0.51 ± 0.23, P = 0.67). The increase in DEE associated with BAT oxidative metabolism was highly variable in the high-BAT group, with an average of 3.2 ± 2.4 kcal/d (range, 1.9–4.6 kcal/d) at rest, and increased to 6.3 ± 3.5 kcal/d (range, 4.0–9.9 kcal/d) during exposure to mild cold. Although BAT accounted for only a small fraction of the cold-induced increase in DEE, such increases were not observed in subjects lacking BAT. Conclusion Mild cold-induced thermogenesis in BAT accounts for 15–25 kcal/d in subjects with relatively large BAT depots. Thus, although the presence of active BAT is correlated with cold-induced energy expenditure, direct measurement of MRO2 indicates that BAT is a minor source of thermogenesis in humans. PMID:23362317

  6. 49 CFR 40.213 - What training requirements must STTs and BATs meet?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What training requirements must STTs and BATs meet... requirements must STTs and BATs meet? To be permitted to act as a BAT or STT in the DOT alcohol testing program...). (1) Qualification training must be in accordance with the DOT Model BAT or STT Course, as applicable...

  7. 49 CFR 40.213 - What training requirements must STTs and BATs meet?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false What training requirements must STTs and BATs meet... requirements must STTs and BATs meet? To be permitted to act as a BAT or STT in the DOT alcohol testing program...). (1) Qualification training must be in accordance with the DOT Model BAT or STT Course, as applicable...

  8. 49 CFR 40.213 - What training requirements must STTs and BATs meet?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false What training requirements must STTs and BATs meet... requirements must STTs and BATs meet? To be permitted to act as a BAT or STT in the DOT alcohol testing program...). (1) Qualification training must be in accordance with the DOT Model BAT or STT Course, as applicable...

  9. 49 CFR 40.213 - What training requirements must STTs and BATs meet?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false What training requirements must STTs and BATs meet... requirements must STTs and BATs meet? To be permitted to act as a BAT or STT in the DOT alcohol testing program...). (1) Qualification training must be in accordance with the DOT Model BAT or STT Course, as applicable...

  10. 49 CFR 40.213 - What training requirements must STTs and BATs meet?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false What training requirements must STTs and BATs meet... requirements must STTs and BATs meet? To be permitted to act as a BAT or STT in the DOT alcohol testing program...). (1) Qualification training must be in accordance with the DOT Model BAT or STT Course, as applicable...

  11. Hibernating Little Brown Myotis (Myotis lucifugus) Show Variable Immunological Responses to White-Nose Syndrome

    PubMed Central

    Moore, Marianne S.; Reichard, Jonathan D.; Murtha, Timothy D.; Nabhan, Morgan L.; Pian, Rachel E.; Ferreira, Jennifer S.; Kunz, Thomas H.

    2013-01-01

    White-nose syndrome (WNS) is an emerging infectious disease devastating hibernating North American bat populations that is caused by the psychrophilic fungus Geomyces destructans. Previous histopathological analysis demonstrated little evidence of inflammatory responses in infected bats, however few studies have compared other aspects of immune function between WNS-affected and unaffected bats. We collected bats from confirmed WNS-affected and unaffected sites during the winter of 2008–2009 and compared estimates of their circulating levels of total leukocytes, total immunoglobulins, cytokines and total antioxidants. Bats from affected and unaffected sites did not differ in their total circulating immunoglobulin levels, but significantly higher leukocyte counts were observed in bats from affected sites and particularly in affected bats with elevated body temperatures (above 20°C). Bats from WNS-affected sites exhibited significantly lower antioxidant activity and levels of interleukin-4 (IL-4), a cytokine that induces T cell differentiation. Within affected sites only, bats exhibiting visible fungal infections had significantly lower antioxidant activity and levels of IL-4 compared to bats without visible fungal infections. Overall, bats hibernating in WNS-affected sites showed immunological changes that may be evident of attempted defense against G. destructans. Observed changes, specifically elevated circulating leukocytes, may also be related to the documented changes in thermoregulatory behaviors of affected bats (i.e. increased frequencies in arousal from torpor). Alterations in immune function may reflect expensive energetic costs associated with these processes and intrinsic qualities of the immunocapability of hibernating bats to clear fungal infections. Additionally, lowered antioxidant activity indicates a possible imbalance in the pro- versus antioxidant system, may reflect oxidative tissue damage, and should be investigated as a contributor to WNS-associated morbidity and mortality. PMID:23527062

  12. Use of the BAT with a Cantonese-Putonghua speaker with aphasia.

    PubMed

    Kong, Anthony Pak-Hin; Weekes, Brendan Stuart

    2011-06-01

    The aim of this article is to illustrate the use of the Bilingual Aphasia Test (BAT) with a Cantonese-Putonghua speaker. We describe G, who is a relatively young Chinese bilingual speaker with aphasia. G's communication abilities in his L2, Putonghua, were impaired following brain damage. This impairment caused specific difficulties in communication with his wife, a native Putonghua speaker, and was thus a priority for investigation. Given a paucity of standardised tests of aphasia in Putonghua, our goal was to use the BAT to assess G's impairments in his L2. Results showed that G's performance on the BAT subtests measuring word and sentence comprehension and production was impaired. His pattern of performance on the BAT allowed us to generate hypotheses about his higher-level language impairments in Putonghua, which were subsequently found to be impaired. We argue that the BAT is able to capture the primary language impairments in Chinese-speaking patients with aphasia when Putonghua is the second language. We also suggest some modifications to the BAT for testing Chinese-speaking patients with bilingual aphasia.

  13. Prevalence, Mass, and Glucose-Uptake Activity of 18F-FDG-Detected Brown Adipose Tissue in Humans Living in a Temperate Zone of Italy

    PubMed Central

    Persichetti, Agnese; Sciuto, Rosa; Rea, Sandra; Basciani, Sabrina; Lubrano, Carla; Mariani, Stefania; Ulisse, Salvatore; Nofroni, Italo; Maini, Carlo Ludovico; Gnessi, Lucio

    2013-01-01

    Background The 18F-fluorodeoxyglucose (18F-FDG)-detected brown adipose tissue (BAT), is enhanced by cold stimulus and modulated by other factors that still have to be disentangled. We investigated the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in a population of adults living in the temperate climatic zone of the Rome area. Methods and Findings We retrospectively analyzed 6454 patients who underwent 18F-FDG positron emission tomography/computed tomography (PET/CT) examinations. We found 18F-FDG BAT in 217 of the 6454 patients (3.36%). Some of them underwent more than one scan and the positive scans were 278 among 8004 (3.47%). The prevalence of patients with at least one positive scan was lower in men (1.77%; 56 of 3161) compared with women (4.88%; 161 of 3293). The BAT positive patients were most frequently younger, thinner and with lower plasma glucose levels compared with BAT negative patients. The amount of BAT in the defined region of interest, the activity of BAT and the number of positive sites of active BAT were similar in both sexes. The prevalence of patients with 18F-FDG positive PET/CT was highest in December-February, lower in March-May and September-November, and lowest in June-August and was positively correlated with night length and negatively correlated with ambient temperature. Changes in day length and variations of temperature, associated with the prevalence of positive BAT patients. Among the patients who had multiple scans, outdoor temperature was significantly lower and day length was shorter on the occasion when BAT was detected. Conclusions This study identifies day length, outdoor temperature, age, sex, BMI, and plasma glucose levels as major determinants of the prevalence, mass, and activity of 18F-FDG-detected BAT. PMID:23667608

  14. IRF7 in the Australian black flying fox, Pteropus alecto: evidence for a unique expression pattern and functional conservation.

    PubMed

    Zhou, Peng; Cowled, Chris; Mansell, Ashley; Monaghan, Paul; Green, Diane; Wu, Lijun; Shi, Zhengli; Wang, Lin-Fa; Baker, Michelle L

    2014-01-01

    As the only flying mammal, bats harbor a number of emerging and re-emerging viruses, many of which cause severe diseases in humans and other mammals yet result in no clinical symptoms in bats. As the master regulator of the interferon (IFN)-dependent immune response, IFN regulatory factor 7 (IRF7) plays a central role in innate antiviral immunity. To explore the role of bat IRF7 in the regulation of the IFN response, we performed sequence and functional analysis of IRF7 from the pteropid bat, Pteropus alecto. Our results demonstrate that bat IRF7 retains the ability to bind to MyD88 and activate the IFN response despite unique changes in the MyD88 binding domain. We also demonstrate that bat IRF7 has a unique expression pattern across both immune and non-immune related tissues and is inducible by double-strand RNA. The broad tissue distribution of IRF7 may provide bats with an enhanced ability to rapidly activate the IFN response in a wider range of tissues compared to other mammals. The importance of IRF7 in antiviral activity against the bat reovirus, Pulau virus was confirmed by siRNA knockdown of IRF7 in bat cells resulting in enhanced viral replication. Our results highlight the importance of IRF7 in innate antiviral immunity in bats.

  15. IRF7 in the Australian Black Flying Fox, Pteropus alecto: Evidence for a Unique Expression Pattern and Functional Conservation

    PubMed Central

    Zhou, Peng; Cowled, Chris; Mansell, Ashley; Monaghan, Paul; Green, Diane; Wu, Lijun; Shi, Zhengli; Wang, Lin-Fa; Baker, Michelle L.

    2014-01-01

    As the only flying mammal, bats harbor a number of emerging and re-emerging viruses, many of which cause severe diseases in humans and other mammals yet result in no clinical symptoms in bats. As the master regulator of the interferon (IFN)-dependent immune response, IFN regulatory factor 7 (IRF7) plays a central role in innate antiviral immunity. To explore the role of bat IRF7 in the regulation of the IFN response, we performed sequence and functional analysis of IRF7 from the pteropid bat, Pteropus alecto. Our results demonstrate that bat IRF7 retains the ability to bind to MyD88 and activate the IFN response despite unique changes in the MyD88 binding domain. We also demonstrate that bat IRF7 has a unique expression pattern across both immune and non-immune related tissues and is inducible by double-strand RNA. The broad tissue distribution of IRF7 may provide bats with an enhanced ability to rapidly activate the IFN response in a wider range of tissues compared to other mammals. The importance of IRF7 in antiviral activity against the bat reovirus, Pulau virus was confirmed by siRNA knockdown of IRF7 in bat cells resulting in enhanced viral replication. Our results highlight the importance of IRF7 in innate antiviral immunity in bats. PMID:25100081

  16. Effect of habitat and foraging height on bat activity in the coastal plain of South Carolina.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menzel, Jennifer, M.; Menzel, Michael A.; Kilgo, John C.

    2005-07-01

    A comparison of bat activity levels in the Coastal Plain of South Carolina among 5 habitat types: forested riparian areas, clearcuts, young pine plantations, mature pine plantations and pine savannas, using time expansion radio-microphones and integrated detectors to simultaneously monitor bat activity at three heights in each habitat type.

  17. Using sutures to attach miniature tracking tags to small bats for multimonth movement and behavioral studies

    USGS Publications Warehouse

    Castle, Kevin T.; Weller, Theodore J.; Cryan, Paul M.; Hein, Cris D.; Schirmacher, Michael R.

    2015-01-01

    1. Determining the detailed movements of individual animals often requires them to carry tracking devices, but tracking broad-scale movement of small bats (< 30g) has been limited by transmitter technology and long-term attachment methods. This limitation inhibits our understanding of bat dispersal and migration, particularly in the context of emerging conservation issues like fatalities at wind turbines and diseases. 2. We tested a novel method of attaching lightweight global positioning system (GPS) tags and geolocating data loggers to small bats. We used monofilament, synthetic, absorbable sutures to secure GPS tags and data loggers to the skin of anesthetized big brown bats (Eptesicus fuscus) in Colorado and hoary bats (Lasiurus cinereus) in California. 3. GPS tags and data loggers were sutured to 17 bats in this study. Three tagged bats were recaptured seven months after initial deployment, with tags still attached; none of these bats showed ill effects from the tag. No severe injuries were apparent upon recapture of 6 additional bats that carried tags up to 26 days after attachment, however one of the bats exhibited skin chafing. 4. Use of absorbable sutures to affix small tracking devices seems to be a safe, effective method for studying movements of bats over multiple months, although additional testing is warranted. This new attachment method has the potential to quickly advance our understanding of small bats, particularly as more-sophisticated miniature tracking devices (e.g., satellite tags) become available.

  18. Using sutures to attach miniature tracking tags to small bats for multimonth movement and behavioral studies.

    PubMed

    Castle, Kevin T; Weller, Theodore J; Cryan, Paul M; Hein, Cris D; Schirmacher, Michael R

    2015-07-01

    Determining the detailed movements of individual animals often requires them to carry tracking devices, but tracking broad-scale movement of small bats (<30 g) has been limited by transmitter technology and long-term attachment methods. This limitation inhibits our understanding of bat dispersal and migration, particularly in the context of emerging conservation issues such as fatalities at wind turbines and diseases. We tested a novel method of attaching lightweight global positioning system (GPS) tags and geolocating data loggers to small bats. We used monofilament, synthetic, absorbable sutures to secure GPS tags and data loggers to the skin of anesthetized big brown bats (Eptesicus fuscus) in Colorado and hoary bats (Lasiurus cinereus) in California. GPS tags and data loggers were sutured to 17 bats in this study. Three tagged bats were recaptured 7 months after initial deployment, with tags still attached; none of these bats showed ill effects from the tag. No severe injuries were apparent upon recapture of 6 additional bats that carried tags up to 26 days after attachment; however, one of the bats exhibited skin chafing. Use of absorbable sutures to affix small tracking devices seems to be a safe, effective method for studying movements of bats over multiple months, although additional testing is warranted. This new attachment method has the potential to quickly advance our understanding of small bats, particularly as more sophisticated miniature tracking devices (e.g., satellite tags) become available.

  19. The bats of Wyoming

    USGS Publications Warehouse

    Bogan, Michael A.; Cryan, Paul M.; Choate, Jerry R.

    2000-01-01

    We examined 1280 bats of 12 species submitted to the Wyoming State Veterinary Laboratory (WSVL) for ra­bies testing between 1981 and 1992. The most abundant species in the sample was Myotis lucifugus, followed by Epte­sicus fuscus, Lasionycteris noetivagans, M. ciliolabrum, and M. volans. Using the WSVL sample and additional museum specimens, we summarized available records and knowledge for 17 species of bats in Wyoming, Records of the WSVL show that, between 1981 and 1992, 113 bats actually tested positive for rabies. We examined 45 of those rabies­ positive bats; E. fuscus had the highest incidence (60%) in the sample, followed by L. noctivagans (11 %) and L. cinereus (9%).

  20. Central serotonergic neurons activate and recruit thermogenic brown and beige fat and regulate glucose and lipid homeostasis.

    PubMed

    McGlashon, Jacob M; Gorecki, Michelle C; Kozlowski, Amanda E; Thirnbeck, Caitlin K; Markan, Kathleen R; Leslie, Kirstie L; Kotas, Maya E; Potthoff, Matthew J; Richerson, George B; Gillum, Matthew P

    2015-05-05

    Thermogenic brown and beige adipocytes convert chemical energy to heat by metabolizing glucose and lipids. Serotonin (5-HT) neurons in the CNS are essential for thermoregulation and accordingly may control metabolic activity of thermogenic fat. To test this, we generated mice in which the human diphtheria toxin receptor (DTR) was selectively expressed in central 5-HT neurons. Treatment with diphtheria toxin (DT) eliminated 5-HT neurons and caused loss of thermoregulation, brown adipose tissue (BAT) steatosis, and a >50% decrease in uncoupling protein 1 (Ucp1) expression in BAT and inguinal white adipose tissue (WAT). In parallel, blood glucose increased 3.5-fold, free fatty acids 13.4-fold, and triglycerides 6.5-fold. Similar BAT and beige fat defects occurred in Lmx1b(f/f)ePet1(Cre) mice in which 5-HT neurons fail to develop in utero. We conclude 5-HT neurons play a major role in regulating glucose and lipid homeostasis, in part through recruitment and metabolic activation of brown and beige adipocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Screening of Active Lyssavirus Infection in Wild Bat Populations by Viral RNA Detection on Oropharyngeal Swabs

    PubMed Central

    Echevarría, Juan E.; Avellón, Ana; Juste, Javier; Vera, Manuel; Ibáñez, Carlos

    2001-01-01

    Brain analysis cannot be used for the investigation of active lyssavirus infection in healthy bats because most bat species are protected by conservation directives. Consequently, serology remains the only tool for performing virological studies on natural bat populations; however, the presence of antibodies merely reflects past exposure to the virus and is not a valid marker of active infection. This work describes a new nested reverse transcription (RT)-PCR technique specifically designed for the detection of the European bat virus 1 on oropharyngeal swabs obtained from bats but also able to amplify RNA from the remaining rabies-related lyssaviruses in brain samples. The technique was successfully used for surveillance of a serotine bat (Eptesicus serotinus) colony involved in a case of human exposure, in which 15 out of 71 oropharyngeal swabs were positive. Lyssavirus infection was detected on 13 oropharyngeal swabs but in only 5 brains out of the 34 animals from which simultaneous brain and oropharyngeal samples had been taken. The lyssavirus involved could be rapidly identified by automatic sequencing of the RT-PCR products obtained from 14 brains and three bat oropharyngeal swabs. In conclusion, RT-PCR using oropharyngeal swabs will permit screening of wild bat populations for active lyssavirus infection, for research or epidemiological purposes, in line not only with conservation policies but also in a more efficient manner than classical detection techniques used on the brain. PMID:11574590

  2. Summer Roost Tree Selection by Eastern Red, Seminole, and Evening Bats in the Upper Coastal Plain of South Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menzel, M.A.; Carter, T.C.; Ford, W.M.

    Radiotraction of six eastern red bats, six seminole bats and twenty-four evening bats to 55, 61, and 65 day roosts during 1996 to 1997 in the Upper Coastal Plain of South Carolina. For each species, testing was done for differences between used roost trees and randomly located trees. Also tested for differences between habitat characteristics surrounding roost trees and randomly located trees. Eastern Red and Seminole bats generally roosted in canopies of hardwood and pine while clinging to foilage and small branches. Evening bats roosted in cavities or under exfoliating bark in pines and dead snags. Forest management strategies namedmore » within the study should be beneficial for providing roosts in the Upper Coastal Plain of South Carolina.« less

  3. Effect of emergent aquatic insects on bat foraging in a riparian forest.

    PubMed

    Fukui, Dai; Murakami, Masashi; Nakano, Shigeru; Aoi, Toshiki

    2006-11-01

    1. Riparian zones serve several ecological functions for bats. They provide a source of prey and likely provide favourable structural habitats and shelter from predators. Many studies have shown that bats use the space above streams, ponds or riparian vegetation as feeding habitat. These studies, however, have never distinguished between the effects of habitat structure and prey availability on the foraging activities of bats. Such effects can only be distinguished by an experimental approach. We predicted that bat activity along a stream is influenced by the number of emerged aquatic insects. 2. We evaluated the response of terrestrial consumers, insectivorous bats, to changes in the abundance of emergent aquatic insects by conducting a manipulative field experiment. In a deciduous riparian forest in Japan, aquatic insect flux from the stream to the riparian zone was controlled with an insect-proof cover over a 1.2 km stream reach. 3. We estimated the abundance of emergent aquatic and flying terrestrial arthropods near the treatment and control reaches using Malaise traps. The foraging activity of bats was evaluated in both treatment and control reaches using ultrasonic detectors. 4. The insect-proof cover effectively reduced the flux of emergent aquatic insects to the riparian zone adjacent to the treatment reach. Adjacent to the control reach, adult aquatic insect biomass was highest in spring, and then decreased gradually. Terrestrial insect biomass increased gradually during the summer at both treatment and control reaches. 5. Foraging activity of bats was correlated with insect abundance. In spring, foraging activity of bats at the control reach was significantly greater than at the treatment reach, and increased at both sites with increasing terrestrial insect abundance. 6. Our result suggests that the flux of aquatic insects emerging from streams is one of the most important factors affecting the distribution of riparian-foraging bats. As is the case with other riparian consumers, resource subsidies from streams can directly enhance the performance or population density of riparian-dependent bats. To conserve and manage bat populations, it is important to protect not only forest ecosystems, but also adjacent aquatic systems such as streams.

  4. Brown adipose tissue and lipid metabolism.

    PubMed

    Heeren, Joerg; Scheja, Ludger

    2018-06-01

    This article explores how the interplay between lipid metabolism and thermogenic adipose tissues enables proper physiological adaptation to cold environments in rodents and humans. Cold exposure triggers systemic changes in lipid metabolism, which increases fatty acid delivery to brown adipose tissue (BAT) by various routes. Next to fatty acids generated intracellularly by de-novo lipogenesis or by lipolysis at lipid droplets, brown adipocytes utilize fatty acids released by white adipose tissue (WAT) for adaptive thermogenesis. WAT-derived fatty acids are internalized directly by BAT, or indirectly after hepatic conversion to very low-density lipoproteins and acylcarnitines. In the postprandial state, chylomicrons hydrolyzed by lipoprotein lipase - activated specifically in thermogenic adipocytes - are the predominant fatty acid source. Cholesterol-enriched chylomicron remnants and HDL generated by intravascular lipolysis in BAT are cleared more rapidly by the liver, explaining the antiatherogenic effects of BAT activation. Notably, increased cholesterol flux and elevated hepatic synthesis of bile acids under cold exposure further promote BAT-dependent thermogenesis. Although pathways providing fatty acids for activated BAT have been identified, more research is needed to understand the integration of lipid metabolism in BAT, WAT and liver, and to determine the relevance of BAT for human energy metabolism.

  5. Substantial Metabolic Activity of Human Brown Adipose Tissue during Warm Conditions and Cold-Induced Lipolysis of Local Triglycerides.

    PubMed

    Weir, Graeme; Ramage, Lynne E; Akyol, Murat; Rhodes, Jonathan K; Kyle, Catriona J; Fletcher, Alison M; Craven, Thomas H; Wakelin, Sonia J; Drake, Amanda J; Gregoriades, Maria-Lena; Ashton, Ceri; Weir, Nick; van Beek, Edwin J R; Karpe, Fredrik; Walker, Brian R; Stimson, Roland H

    2018-06-05

    Current understanding of in vivo human brown adipose tissue (BAT) physiology is limited by a reliance on positron emission tomography (PET)/computed tomography (CT) scanning, which has measured exogenous glucose and fatty acid uptake but not quantified endogenous substrate utilization by BAT. Six lean, healthy men underwent 18 fluorodeoxyglucose-PET/CT scanning to localize BAT so microdialysis catheters could be inserted in supraclavicular BAT under CT guidance and in abdominal subcutaneous white adipose tissue (WAT). Arterial and dialysate samples were collected during warm (∼25°C) and cold exposure (∼17°C), and blood flow was measured by 133 xenon washout. During warm conditions, there was increased glucose uptake and lactate release and decreased glycerol release by BAT compared with WAT. Cold exposure increased blood flow, glycerol release, and glucose and glutamate uptake only by BAT. This novel use of microdialysis reveals that human BAT is metabolically active during warm conditions. BAT activation substantially increases local lipolysis but also utilization of other substrates such as glutamate. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Guide to the BATS Resource Trunk.

    ERIC Educational Resources Information Center

    Arizona Game and Fish Dept., Phoenix.

    This guide provides detailed information, resources, and activities to teach students about the bats of Arizona. Chapters include: (1) "What is a Bat?"; (2) "Megabat or Microbat?"; (3) "Bat Anatomy"; (4) Diet and Feeding"; (5) Echolocation"; (6) Reproduction and Lifespan"; (7) "Flight"; (8)…

  7. [Development of a SPA-ELISA method for detecting anti-coronavirus IgG antibodies in serum samples from fulvous fruit bats].

    PubMed

    Zhou, Jie; Liao, Yu-xue; Chen, Zhong; Li, Yu-chun; Gao, Lu-Lu; Chen, Yi-xiong; Cai, Lian-gong; Chen, Qing; Yu, Shou-yi

    2008-05-01

    To develop an simple and sensitive method for detecting anti-coronavirus IgG antibodies in bat sera based on enzyme-linked immunosorbent assay (ELISA). A commercial ELISA kit for detecting SARS-CoV antibody was modified for detecting coronavirus antibodies in bat serum samples. The second antibody in the kit was replaced with horseradish peroxidase-conjugated protein-A (HRP-SPA) based on the characteristics of binding between Staphylococcus aureus protein A (SPA) and mammal IgG Fc fragment. The sera of 55 fulvous fruit bats (Rousettus dasymallus) were tested using the SPA-ELISA. The test results of the positive and negative controls in the kit and the serum samples from convalescent ;patient were consistent with expectation. Coronavirus antibody was detected in 2 out of the 55 bat serum samples. Serum neutralization test confirmed the validity of the SPA-ELISA method. This SPA-ELISA method is applicable for detecting coronavirus antibody in bat sera.

  8. Bat use of a high-plains urban wildlife refuge

    USGS Publications Warehouse

    Everette, A.L.; O'Shea, T.J.; Ellison, L.E.; Stone, L.A.; McCance, J.L.

    2001-01-01

    Bats are significant components of mammalian diversity and in many areas are of management concern. However, little attention has been given to bats in urban or prairie landscapes. In 1997 and 1998, we determined species richness, relative abundance, roosting habits, and echolocation activity of bats at Rocky Mountain Arsenal National Wildlife Refuge (RMA), the largest urban unit in the United States refuge system, located on the high plains near Denver, Colorado. An inventory using mist nets revealed 3 species foraging at this site: big brown bats (Eptesicus fuscus), hoary bats (Lasiurus cinereus), and silver-haired bats (Lasionycteris noctivagans). Big brown bats comprised 86% of captures (n=176). This pattern was consistent with continental-scale predictions of bat species richness and evenness based on availability of potential roosts. Relative abundance based on captures was similar to that revealed by echolocation detector surveys, except that the latter revealed the likely presence of at least 2 additional species (Myotis spp. and red bats [Lasiurus borealis]). Echolocation activity was significantly greater (P=0.009) in areas with tree or water habitat edges than in open prairie, suggesting that maintaining such features is important for bats. Big brown bats commuted greater distances (9.2-18.8 km) from roosts in urban core areas to foraging sites on the refuge than typically reported for this species elsewhere, emphasizing the value of the site to these bats. Urban refuges can provide habitat of importance to bat populations, but may be characterized by abundant bats that roost in buildings if a variety of other kinds of roosting habitats are unavailable.

  9. The immune gene repertoire of an important viral reservoir, the Australian black flying fox.

    PubMed

    Papenfuss, Anthony T; Baker, Michelle L; Feng, Zhi-Ping; Tachedjian, Mary; Crameri, Gary; Cowled, Chris; Ng, Justin; Janardhana, Vijaya; Field, Hume E; Wang, Lin-Fa

    2012-06-20

    Bats are the natural reservoir host for a range of emerging and re-emerging viruses, including SARS-like coronaviruses, Ebola viruses, henipaviruses and Rabies viruses. However, the mechanisms responsible for the control of viral replication in bats are not understood and there is little information available on any aspect of antiviral immunity in bats. Massively parallel sequencing of the bat transcriptome provides the opportunity for rapid gene discovery. Although the genomes of one megabat and one microbat have now been sequenced to low coverage, no transcriptomic datasets have been reported from any bat species. In this study, we describe the immune transcriptome of the Australian flying fox, Pteropus alecto, providing an important resource for identification of genes involved in a range of activities including antiviral immunity. Towards understanding the adaptations that have allowed bats to coexist with viruses, we have de novo assembled transcriptome sequence from immune tissues and stimulated cells from P. alecto. We identified about 18,600 genes involved in a broad range of activities with the most highly expressed genes involved in cell growth and maintenance, enzyme activity, cellular components and metabolism and energy pathways. 3.5% of the bat transcribed genes corresponded to immune genes and a total of about 500 immune genes were identified, providing an overview of both innate and adaptive immunity. A small proportion of transcripts found no match with annotated sequences in any of the public databases and may represent bat-specific transcripts. This study represents the first reported bat transcriptome dataset and provides a survey of expressed bat genes that complement existing bat genomic data. In addition, these data provide insight into genes relevant to the antiviral responses of bats, and form a basis for examining the roles of these molecules in immune response to viral infection.

  10. Biological activity of the mite Sancassania sp. (Acari: Acaridae) from bat guano associated with the pathogenic fungus Histoplasma capsulatum.

    PubMed

    Estrada-Bárcenas, Daniel A; Palacios-Vargas, José G; Estrada-Venegas, Edith; Klimov, Pavel B; Martínez-Mena, Alejandro; Taylor, Maria Lucia

    2010-03-01

    Mites and the mammal pathogenic fungus Histoplasma capsulatum are the major components of bat guano microbiota. Interactions between mites and H. capsulatum were evaluated under laboratory conditions. Acarid mites, mainly Sancassania sp., were the most abundant microarthropod in the sampled guano of the Mexican bat Tadarida brasiliensis mexicana and, based on its morphology, Sancassania sp. was similar to the cosmopolitan species Sancassania sphaerogaster. The mycophagous and vectoring activities of this mite were tested for H. capsulatum and two other fungal species, Sporothrix schenckii (pathogenic) and Aspergillus sclerotiorum (non-pathogenic). S. ca. sphaerogaster was able to reproduce in H. capsulatum and S. schenckii colonies, multiplying in great numbers under controlled fungal mycelial-phase culture conditions. H. capsulatum colonies were completely destroyed after 14 days of in vitro interaction with mites. In contrast, S. ca. sphaerogaster did not reproduce in A. sclerotiorum cultures. S. ca. sphaerogaster was found vectoring H. capsulatum, but not the two other fungal species studied.

  11. Bat consumption in Thailand.

    PubMed

    Suwannarong, Kanokwan; Schuler, Sidney

    2016-01-01

    Human consumption of bats poses an increasing public health threat globally. Communities in which bat guano is mined from caves have extensive exposure to bat excreta, often harvest bats for consumption, and are at risk for bat-borne diseases. This rapid ethnographic study was conducted in four provinces of Thailand (Ratchaburi, Sakaeo, Nakorn Sawan, and Phitsanulok), where bat guano was mined and sold during the period April-August 2014. The aim of this study was to understand behaviors and risk perceptions associated with bat conservation, exposure to bats and their excreta, and bat consumption. Sixty-seven respondents playing various roles in bat guano mining, packaging, sale, and use as fertilizer participated in the study. Data were collected through interviews and/or focus group discussions. In spite of a bat conservation program dating back to the 1980s, the benefits of conserving bats and the risks associated with bat consumption were not clear and infrequently articulated by study respondents. Since bat consumption continues, albeit covertly, the risk of bat-borne diseases remains high. There is an opportunity to reduce the risk of bat-borne diseases in guano-mining communities by strengthening bat conservation efforts and raising awareness of the health risks of bat consumption. Further research is suggested to test behavior change strategies for reducing bat consumption.

  12. Bat consumption in Thailand

    PubMed Central

    Suwannarong, Kanokwan; Schuler, Sidney

    2016-01-01

    Background Human consumption of bats poses an increasing public health threat globally. Communities in which bat guano is mined from caves have extensive exposure to bat excreta, often harvest bats for consumption, and are at risk for bat-borne diseases. Methods This rapid ethnographic study was conducted in four provinces of Thailand (Ratchaburi, Sakaeo, Nakorn Sawan, and Phitsanulok), where bat guano was mined and sold during the period April–August 2014. The aim of this study was to understand behaviors and risk perceptions associated with bat conservation, exposure to bats and their excreta, and bat consumption. Sixty-seven respondents playing various roles in bat guano mining, packaging, sale, and use as fertilizer participated in the study. Data were collected through interviews and/or focus group discussions. Results In spite of a bat conservation program dating back to the 1980s, the benefits of conserving bats and the risks associated with bat consumption were not clear and infrequently articulated by study respondents. Discussion Since bat consumption continues, albeit covertly, the risk of bat-borne diseases remains high. There is an opportunity to reduce the risk of bat-borne diseases in guano-mining communities by strengthening bat conservation efforts and raising awareness of the health risks of bat consumption. Further research is suggested to test behavior change strategies for reducing bat consumption. PMID:26806167

  13. Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses.

    PubMed

    Vaughan, Cheryl H; Bartness, Timothy J

    2012-05-01

    Brown adipose tissue (BAT) thermogenic activity and growth are controlled by its sympathetic nervous system (SNS) innervation, but nerve fibers containing sensory-associated neuropeptides [substance P, calcitonin gene-related peptide (CGRP)] also suggest sensory innervation. The central nervous system (CNS) projections of BAT afferents are unknown. Therefore, we used the H129 strain of the herpes simplex virus-1 (HSV-1), an anterograde transneuronal viral tract tracer used to delineate sensory nerve circuits, to define these projections. HSV-1 was injected into interscapular BAT (IBAT) of Siberian hamsters and HSV-1 immunoreactivity (ir) was assessed 24, 48, 72, 96, and 114 h postinjection. The 96- and 114-h groups had the most HSV-1-ir neurons with marked infections in the hypothalamic paraventricular nucleus, periaqueductal gray, olivary areas, parabrachial nuclei, raphe nuclei, and reticular areas. These sites also are involved in sympathetic outflow to BAT suggesting possible BAT sensory-SNS thermogenesis feedback circuits. We tested the functional contribution of IBAT sensory innervation on thermogenic responses to an acute (24 h) cold exposure test by injecting the specific sensory nerve toxin capsaicin directly into IBAT pads and then measuring core (T(c)) and IBAT (T(IBAT)) temperature responses. CGRP content was significantly decreased in capsaicin-treated IBAT demonstrating successful sensory nerve destruction. T(IBAT) and T(c) were significantly decreased in capsaicin-treated hamsters compared with the saline controls at 2 h of cold exposure. Thus the central sensory circuits from IBAT have been delineated for the first time, and impairment of sensory feedback from BAT appears necessary for the appropriate, initial thermogenic response to acute cold exposure.

  14. Delayed response and biosonar perception explain movement coordination in trawling bats.

    PubMed

    Giuggioli, Luca; McKetterick, Thomas J; Holderied, Marc

    2015-03-01

    Animal coordinated movement interactions are commonly explained by assuming unspecified social forces of attraction, repulsion and alignment with parameters drawn from observed movement data. Here we propose and test a biologically realistic and quantifiable biosonar movement interaction mechanism for echolocating bats based on spatial perceptual bias, i.e. actual sound field, a reaction delay, and observed motor constraints in speed and acceleration. We found that foraging pairs of bats flying over a water surface swapped leader-follower roles and performed chases or coordinated manoeuvres by copying the heading a nearby individual has had up to 500 ms earlier. Our proposed mechanism based on the interplay between sensory-motor constraints and delayed alignment was able to recreate the observed spatial actor-reactor patterns. Remarkably, when we varied model parameters (response delay, hearing threshold and echolocation directionality) beyond those observed in nature, the spatio-temporal interaction patterns created by the model only recreated the observed interactions, i.e. chases, and best matched the observed spatial patterns for just those response delays, hearing thresholds and echolocation directionalities found to be used by bats. This supports the validity of our sensory ecology approach of movement coordination, where interacting bats localise each other by active echolocation rather than eavesdropping.

  15. 11β-HSD1 Modulates the Set Point of Brown Adipose Tissue Response to Glucocorticoids in Male Mice

    PubMed Central

    Doig, Craig L.; Fletcher, Rachel S.; Morgan, Stuart A.; McCabe, Emma L.; Larner, Dean P.; Tomlinson, Jeremy W.; Stewart, Paul M.; Philp, Andrew

    2017-01-01

    Glucocorticoids (GCs) are potent regulators of energy metabolism. Chronic GC exposure suppresses brown adipose tissue (BAT) thermogenic capacity in mice, with evidence for a similar effect in humans. Intracellular GC levels are regulated by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity, which can amplify circulating GC concentrations. Therefore, 11β-HSD1 could modulate the impact of GCs on BAT function. This study investigated how 11β-HSD1 regulates the molecular architecture of BAT in the context of GC excess and aging. Circulating GC excess was induced in 11β-HSD1 knockout (KO) and wild-type mice by supplementing drinking water with 100 μg/mL corticosterone, and the effects on molecular markers of BAT function and mitochondrial activity were assessed. Brown adipocyte primary cultures were used to examine cell autonomous consequences of 11β-HSD1 deficiency. Molecular markers of BAT function were also examined in aged 11β-HSD1 KO mice to model lifetime GC exposure. BAT 11β-HSD1 expression and activity were elevated in response to GC excess and with aging. 11β-HSD1 KO BAT resisted the suppression of uncoupling protein 1 (UCP1) and mitochondrial respiratory chain subunit proteins normally imposed by GC excess. Furthermore, brown adipocytes from 11β-HSD1 KO mice had elevated basal mitochondrial function and were able to resist GC-mediated repression of activity. BAT from aged 11β-HSD1 KO mice showed elevated UCP1 protein and mitochondrial content, and a favorable profile of BAT function. These data reveal a novel mechanism in which increased 11β-HSD1 expression, in the context of GC excess and aging, impairs the molecular and metabolic function of BAT. PMID:28368470

  16. Torpor and activity in a free-ranging tropical bat: implications for the distribution and conservation of mammals?

    NASA Astrophysics Data System (ADS)

    Geiser, Fritz; Stawski, Clare; Bondarenco, Artiom; Pavey, Chris R.

    2011-05-01

    Bats are most diverse in the tropics, but there are no quantitative data on torpor use for energy conservation by any tropical bat in the wild. We examined the thermal biology, activity patterns and torpor use of two tree-roosting long-eared bats ( Nyctophilus geoffroyi, 7.8 g) in tropical northern Australia in winter using temperature telemetry. Bats commenced activity about 20 min after sunset, ended activity about 2.5 h before sunrise and entered torpor everyday in the early morning even when minimum ambient temperatures ( T a) were as high as 23°C. On average, bats remained torpid for almost 5 h, mean minimum skin temperature ( T skin) measured was 22.8 ± 0.1°C and daily T skin minima were correlated with T a. Our study shows that even in the tropics, torpor is frequently employed by bats, suggesting that worldwide most bat species are heterothermic and use torpor for energy conservation. We propose that the ability of employing torpor and the resulting highly plastic energy requirements may partially explain why these small insectivorous bats can inhabit almost the entire Australian continent despite vastly different climatic and likely trophic conditions. Reduced energy requirements also may permit survival in degraded or modified habitats, reduce the need for foraging and reduce exposure to predators. Thus, the ability to employ torpor may be one important reason for why most Australian bats and other heterothermic mammals have not gone extinct whereas many obligatory homeothermic mammals that cannot employ torpor and have high energy and foraging requirements have suffered high rates of extinctions.

  17. The United States Army Medical Department Journal. July-September 2012

    DTIC Science & Technology

    2012-01-01

    Baker HG. Bat activity and 20. pollination of Bauhinia Pauletia: plant - pollinator coevolution. Ecology . 1974;55(2):412-419. Venters HD, Hoffert WR...insects, while many plants depend on the pollinating activities of fruit bats.20 BAT RABIES IN THE UNITED STATES Bat rabies was recognized for the fi rst...who may have interacted with the patient.3 Any individual that was identifi ed as meeting the exposure criteria set by the Advisory Committee on

  18. Experimental Inoculation of Egyptian Fruit Bats (Rousettus aegyptiacus) with Ebola Virus

    PubMed Central

    Paweska, Janusz T.; Storm, Nadia; Grobbelaar, Antoinette A.; Markotter, Wanda; Kemp, Alan; Jansen van Vuren, Petrus

    2016-01-01

    Colonized Egyptian fruit bats (Rousettus aegyptiacus), originating in South Africa, were inoculated subcutaneously with Ebola virus (EBOV). No overt signs of morbidity, mortality, or gross lesions were noted. Bats seroconverted by Day 10–16 post inoculation (p.i.), with the highest mean anti-EBOV IgG level on Day 28 p.i. EBOV RNA was detected in blood from one bat. In 16 other tissues tested, viral RNA distribution was limited and at very low levels. No seroconversion could be demonstrated in any of the control bats up to 28 days after in-contact exposure to subcutaneously-inoculated bats. The control bats were subsequently inoculated intraperitoneally, and intramuscularly with the same dose of EBOV. No mortality, morbidity or gross pathology was observed in these bats. Kinetics of immune response was similar to that in subcutaneously-inoculated bats. Viral RNA was more widely disseminated to multiple tissues and detectable in a higher proportion of individuals, but consistently at very low levels. Irrespective of the route of inoculation, no virus was isolated from tissues which tested positive for EBOV RNA. Viral RNA was not detected in oral, nasal, ocular, vaginal, penile and rectal swabs from any of the experimental groups. PMID:26805873

  19. Immunological Control of Viral Infections in Bats and the Emergence of Viruses Highly Pathogenic to Humans

    PubMed Central

    Schountz, Tony; Baker, Michelle L.; Butler, John; Munster, Vincent

    2017-01-01

    Bats are reservoir hosts of many important viruses that cause substantial disease in humans, including coronaviruses, filoviruses, lyssaviruses, and henipaviruses. Other than the lyssaviruses, they do not appear to cause disease in the reservoir bats, thus an explanation for the dichotomous outcomes of infections of humans and bat reservoirs remains to be determined. Bats appear to have a few unusual features that may account for these differences, including evidence of constitutive interferon (IFN) activation and greater combinatorial diversity in immunoglobulin genes that do not undergo substantial affinity maturation. We propose these features may, in part, account for why bats can host these viruses without disease and how they may contribute to the highly pathogenic nature of bat-borne viruses after spillover into humans. Because of the constitutive IFN activity, bat-borne viruses may be shed at low levels from bat cells. With large naive antibody repertoires, bats may control the limited virus replication without the need for rapid affinity maturation, and this may explain why bats typically have low antibody titers to viruses. However, because bat viruses have evolved in high IFN environments, they have enhanced countermeasures against the IFN response. Thus, upon infection of human cells, where the IFN response is not constitutive, the viruses overwhelm the IFN response, leading to abundant virus replication and pathology. PMID:28959255

  20. Tiger moths and the threat of bats: decision-making based on the activity of a single sensory neuron.

    PubMed

    Ratcliffe, John M; Fullard, James H; Arthur, Benjamin J; Hoy, Ronald R

    2009-06-23

    Echolocating bats and eared moths are a model system of predator-prey interaction within an almost exclusively auditory world. Through selective pressures from aerial-hawking bats, noctuoid moths have evolved simple ears that contain one to two auditory neurons and function to detect bat echolocation calls and initiate defensive flight behaviours. Among these moths, some chemically defended and mimetic tiger moths also produce ultrasonic clicks in response to bat echolocation calls; these defensive signals are effective warning signals and may interfere with bats' ability to process echoic information. Here, we demonstrate that the activity of a single auditory neuron (the A1 cell) provides sufficient information for the toxic dogbane tiger moth, Cycnia tenera, to decide when to initiate defensive sound production in the face of bats. Thus, despite previous suggestions to the contrary, these moths' only other auditory neuron, the less sensitive A2 cell, is not necessary for initiating sound production. However, we found a positive linear relationship between combined A1 and A2 activity and the number of clicks the dogbane tiger moth produces.

  1. Livestock abundance predicts vampire bat demography, immune profiles and bacterial infection risk

    PubMed Central

    Czirják, Gábor Á.; Volokhov, Dmitriy V.; Carrera, Jorge E.; Camus, Melinda S.; Navara, Kristen J.; Chizhikov, Vladimir E.; Fenton, M. Brock; Simmons, Nancy B.; Recuenco, Sergio E.; Gilbert, Amy T.

    2018-01-01

    Human activities create novel food resources that can alter wildlife–pathogen interactions. If resources amplify or dampen, pathogen transmission probably depends on both host ecology and pathogen biology, but studies that measure responses to provisioning across both scales are rare. We tested these relationships with a 4-year study of 369 common vampire bats across 10 sites in Peru and Belize that differ in the abundance of livestock, an important anthropogenic food source. We quantified innate and adaptive immunity from bats and assessed infection with two common bacteria. We predicted that abundant livestock could reduce starvation and foraging effort, allowing for greater investments in immunity. Bats from high-livestock sites had higher microbicidal activity and proportions of neutrophils but lower immunoglobulin G and proportions of lymphocytes, suggesting more investment in innate relative to adaptive immunity and either greater chronic stress or pathogen exposure. This relationship was most pronounced in reproductive bats, which were also more common in high-livestock sites, suggesting feedbacks between demographic correlates of provisioning and immunity. Infection with both Bartonella and haemoplasmas were correlated with similar immune profiles, and both pathogens tended to be less prevalent in high-livestock sites, although effects were weaker for haemoplasmas. These differing responses to provisioning might therefore reflect distinct transmission processes. Predicting how provisioning alters host–pathogen interactions requires considering how both within-host processes and transmission modes respond to resource shifts. This article is part of the theme issue ‘Anthropogenic resource subsidies and host–parasite dynamics in wildlife’. PMID:29531144

  2. Molecular detection of the causative agent of white-nose syndrome on Rafinesque's big-eared bats (Corynorhinus rafinesquii) and two species of migratory bats in the southeastern USA.

    PubMed

    Bernard, Riley F; Foster, Jeffrey T; Willcox, Emma V; Parise, Katy L; McCracken, Gary F

    2015-04-01

    Pseudogymnoascus destructans, the causal agent of white-nose syndrome (WNS), is responsible for widespread mortality of hibernating bats across eastern North America. To document P. destructans exposure and infections on bats active during winter in the southeastern US, we collected epidermal swabs from bats captured during winters 2012-13 and 2013-14 in mist nets set outside of hibernacula in Tennessee. Epidermal swab samples were collected from eight Rafinesque's big-eared bats (Corynorhinus rafinesquii), six eastern red bats (Lasiurus borealis), and three silver-hair bats (Lasionycteris noctivagans). Using real-time PCR methods, we identified DNA sequences of P. destructans from skin swabs of two Rafinesque's big-eared bats, two eastern red bats, and one silver-haired bat. This is the first detection of the WNS fungus on Rafinesque's big-eared bats and eastern red bats and the second record of the presence of the fungus on silver-haired bats.

  3. Ebola Virus Antibodies in Fruit Bats, Bangladesh

    PubMed Central

    Islam, Ariful; Yu, Meng; Anthony, Simon J.; Epstein, Jonathan H.; Khan, Shahneaz Ali; Khan, Salah Uddin; Crameri, Gary; Wang, Lin-Fa; Lipkin, W. Ian; Luby, Stephen P.; Daszak, Peter

    2013-01-01

    To determine geographic range for Ebola virus, we tested 276 bats in Bangladesh. Five (3.5%) bats were positive for antibodies against Ebola Zaire and Reston viruses; no virus was detected by PCR. These bats might be a reservoir for Ebola or Ebola-like viruses, and extend the range of filoviruses to mainland Asia. PMID:23343532

  4. Serological Evidence of Lyssaviruses among Bats on Southwestern Indian Ocean Islands.

    PubMed

    Mélade, Julien; McCulloch, Stewart; Ramasindrazana, Beza; Lagadec, Erwan; Turpin, Magali; Pascalis, Hervé; Goodman, Steven M; Markotter, Wanda; Dellagi, Koussay

    2016-01-01

    We provide serological evidence of lyssavirus circulation among bats on southwestern Indian Ocean (SWIO) islands. A total of 572 bats belonging to 22 species were collected on Anjouan, Mayotte, La Réunion, Mauritius, Mahé and Madagascar and screened by the Rapid Fluorescent Focus Inhibition Test for the presence of neutralising antibodies against the two main rabies related lyssaviruses circulating on the African continent: Duvenhage lyssavirus (DUVV) and Lagos bat lyssavirus (LBV), representing phylogroups I and II, respectively. A total of 97 and 42 sera were able to neutralise DUVV and LBV, respectively. No serum neutralised both DUVV and LBV but most DUVV-seropositive bats (n = 32/220) also neutralised European bat lyssavirus 1 (EBLV-1) but not Rabies lyssavirus (RABV), the prototypic lyssavirus of phylogroup I. These results highlight that lyssaviruses belonging to phylogroups I and II circulate in regional bat populations and that the putative phylogroup I lyssavirus is antigenically closer to DUVV and EBLV-1 than to RABV. Variation between bat species, roost sites and bioclimatic regions were observed. All brain samples tested by RT-PCR specific for lyssavirus RNA were negative.

  5. Antibodies to Pseudogymnoascus destructans are not sufficient for protection against white-nose syndrome

    PubMed Central

    Johnson, Joseph S; Reeder, DeeAnn M; Lilley, Thomas M; Czirják, Gábor Á; Voigt, Christian C; McMichael, James W; Meierhofer, Melissa B; Seery, Christopher W; Lumadue, Shayne S; Altmann, Alexander J; Toro, Michael O; Field, Kenneth A

    2015-01-01

    White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans (Pd) that affects bats during hibernation. Although millions of bats have died from WNS in North America, mass mortality has not been observed among European bats infected by the fungus, leading to the suggestion that bats in Europe are immune. We tested the hypothesis that an antibody-mediated immune response can provide protection against WNS by quantifying antibodies reactive to Pd in blood samples from seven species of free-ranging bats in North America and two free-ranging species in Europe. We also quantified antibodies in blood samples from little brown myotis (Myotis lucifugus) that were part of a captive colony that we injected with live Pd spores mixed with adjuvant, as well as individuals surviving a captive Pd infection trial. Seroprevalence of antibodies against Pd, as well as antibody titers, was greater among little brown myotis than among four other species of cave-hibernating bats in North America, including species with markedly lower WNS mortality rates. Among little brown myotis, the greatest titers occurred in populations occupying regions with longer histories of WNS, where bats lacked secondary symptoms of WNS. We detected antibodies cross-reactive with Pd among little brown myotis naïve to the fungus. We observed high titers among captive little brown myotis injected with Pd. We did not detect antibodies against Pd in Pd-infected European bats during winter, and titers during the active season were lower than among little brown myotis. These results show that antibody-mediated immunity cannot explain survival of European bats infected with Pd and that little brown myotis respond differently to Pd than species with higher WNS survival rates. Although it appears that some species of bats in North America may be developing resistance to WNS, an antibody-mediated immune response does not provide an explanation for these remnant populations. PMID:26078857

  6. Antibodies to Pseudogymnoascus destructans are not sufficient for protection against white-nose syndrome.

    PubMed

    Johnson, Joseph S; Reeder, DeeAnn M; Lilley, Thomas M; Czirják, Gábor Á; Voigt, Christian C; McMichael, James W; Meierhofer, Melissa B; Seery, Christopher W; Lumadue, Shayne S; Altmann, Alexander J; Toro, Michael O; Field, Kenneth A

    2015-06-01

    White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans (Pd) that affects bats during hibernation. Although millions of bats have died from WNS in North America, mass mortality has not been observed among European bats infected by the fungus, leading to the suggestion that bats in Europe are immune. We tested the hypothesis that an antibody-mediated immune response can provide protection against WNS by quantifying antibodies reactive to Pd in blood samples from seven species of free-ranging bats in North America and two free-ranging species in Europe. We also quantified antibodies in blood samples from little brown myotis (Myotis lucifugus) that were part of a captive colony that we injected with live Pd spores mixed with adjuvant, as well as individuals surviving a captive Pd infection trial. Seroprevalence of antibodies against Pd, as well as antibody titers, was greater among little brown myotis than among four other species of cave-hibernating bats in North America, including species with markedly lower WNS mortality rates. Among little brown myotis, the greatest titers occurred in populations occupying regions with longer histories of WNS, where bats lacked secondary symptoms of WNS. We detected antibodies cross-reactive with Pd among little brown myotis naïve to the fungus. We observed high titers among captive little brown myotis injected with Pd. We did not detect antibodies against Pd in Pd-infected European bats during winter, and titers during the active season were lower than among little brown myotis. These results show that antibody-mediated immunity cannot explain survival of European bats infected with Pd and that little brown myotis respond differently to Pd than species with higher WNS survival rates. Although it appears that some species of bats in North America may be developing resistance to WNS, an antibody-mediated immune response does not provide an explanation for these remnant populations.

  7. How to diagnose food allergy.

    PubMed

    Sato, Sakura; Yanagida, Noriyuki; Ebisawa, Motohiro

    2018-06-01

    To assess the recent studies that focus on specific immunoglobulin E (sIgE) testing and basophil activation test (BAT) for diagnosing IgE-mediated food allergies. The sIgE to allergen extract or component can predict reactivity to food. The cutoff value based on the positive predictive value (PPV) of sIgE can be considered whenever deciding whether oral food challenge (OFC) is required to diagnose hen's egg, cow's milk, wheat, peanut, and cashew nut allergy. However, PPV varies depending on the patients' background, OFC methodology, challenge foods, and assay methodology. Component-resolved diagnostics (CRD) has been used for food allergy diagnosis. Ovomucoid and omega-5 gliadin are good diagnostic markers for heated egg and wheat allergy. More recently, CRD of peanut, tree nuts, and seed have been investigated. Ara h 2 showed the best diagnostic accuracy for peanut allergy; other storage proteins, such as Jug r 1 for walnut, Ana o 3 for cashew nut, Ses i 1 for sesame, and Fag e 3 for buckwheat, are also better markers than allergen extracts. Some studies suggested that BAT has superior specificity than skin prick test and sIgE testing. The sIgE testing and BAT can improve diagnostic accuracy. CRD provides additional information that can help determine whether OFCs should be performed to diagnose food allergy.

  8. Bats Avoid Radar Installations: Could Electromagnetic Fields Deter Bats from Colliding with Wind Turbines?

    PubMed Central

    Nicholls, Barry; Racey, Paul A.

    2007-01-01

    Large numbers of bats are killed by collisions with wind turbines, and there is at present no direct method of reducing or preventing this mortality. We therefore determine whether the electromagnetic radiation associated with radar installations can elicit an aversive behavioural response in foraging bats. Four civil air traffic control (ATC) radar stations, three military ATC radars and three weather radars were selected, each surrounded by heterogeneous habitat. Three sampling points matched for habitat type and structure, dominant vegetation species, altitude and surrounding land class were located at increasing distances from each station. A portable electromagnetic field meter measured the field strength of the radar at three distances from the source: in close proximity (<200 m) with a high electromagnetic field (EMF) strength >2 volts/metre, an intermediate point within line of sight of the radar (200–400 m) and with an EMF strength <2 v/m, and a control site out of sight of the radar (>400 m) and registering an EMF of zero v/m. At each radar station bat activity was recorded three times with three independent sampling points monitored on each occasion, resulting in a total of 90 samples, 30 of which were obtained within each field strength category. At these sampling points, bat activity was recorded using an automatic bat recording station, operated from sunset to sunrise. Bat activity was significantly reduced in habitats exposed to an EMF strength of greater than 2 v/m when compared to matched sites registering EMF levels of zero. The reduction in bat activity was not significantly different at lower levels of EMF strength within 400 m of the radar. We predict that the reduction in bat activity within habitats exposed to electromagnetic radiation may be a result of thermal induction and an increased risk of hyperthermia. PMID:17372629

  9. Effect of habitat and foraging height on bat activity in the coastal plain of South Carolina

    Treesearch

    Jennifer M. Menzel; Michael A. Menzel; John C. Kilgo; W. Mark Ford; John w. Edwards; Gary F. McCracken

    2005-01-01

    We conipared bat activity levels in the Coaslal Plain of South Carolina atnong 5 habitat types: forested riparian areas, clearcuts, young pine plantations, ature pine plantations, and pine savannas. We used time-expansion radio-microphones and integrated detectors to simultaneously monitor bat activity at 3 heights (30, 10, 2 mj in each habitat type. Variation in...

  10. Post-White-nose syndrome trends in Virginia’s cave bats, 2008-2013

    USGS Publications Warehouse

    Powers, Karen E.; Reynolds, Richard J.; Orndorff, Wil; Ford, W. Mark; Hobson, Christopher S.

    2015-01-01

    Since its 2009 detection in Virginia hibernacula, the fungal pathogen Pseudogymnoascus destructans causing White-nose Syndrome (WNS) has had a marked impact on cave bats locally. From 2008-2013, we documented numeric and physiologic changes in cave bats through fall swarm (FS), early hibernation (EH), and late hibernation (LH) capture and banding surveys at 18 hibernacula in western Virginia. We coupled active surveys with passive biennial winter counts in 2009, 2011, and 2013. We compared individual body mass index (BMI) across years for FS, EH, and LH hibernation to determine if WNS impacts on extant bats would be manifested by changes in body condition (as anecdotally observed elsewhere for WNS-impacted bats) as well as a population reduction. To estimate percent declines in bat presence or relative activity, we used FS capture per-unit-effort data, and the winter hibernacula absolute counts. We captured 4,524 bats of eight species, with species-specific capture success declining by 75-100% post-WNS. Little brown bats (Myotis lucifugus) exhibited the greatest declines in winter hibernacula counts (AVG. = 99.0% decline), followed by tri-colored bats (Perimyotis subflavus; 89.5% decline) and Indiana bats (M. sodalis; 33.5% decline). Graphical analyses of captures-per-trap-hour in FS showed declines for little brown bats, tri-colored bats, and northern long-eared bats (M. septentrionalis), but suggest a modest rebound of Indiana bat numbers. Fall swarm trends in BMI suggested some drops post-WNS exposure, but these trends were not consistent across sexes or seasonal time blocks. Our inconclusive BMI metrics and little brown bat band recapture data suggest little competitive advantage or selection for surviving bats. Lesser (but apparent) declines in Indiana bat numbers mirrors trends seen elsewhere regionally, and band recoveries do show that some individuals are persisting. Additional surveys will determine if bats in Virginia will persist or face extirpation due to presumed low recruitment and survivorship.

  11. Tribbles 3 inhibits brown adipocyte differentiation and function by suppressing insulin signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Ha-Won; Choi, Ran Hee; McClellan, Jamie L.

    Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found thatmore » TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function. - Highlights: • TRB3 is expressed in brown adipose tissue and its expression is increased during differentiation. • Overexpression of TRB3 inhibits differentiation and its activity. • Overexpression of TRB3 in brown preadipocytes inhibits insulin signaling. • TRB3KO mice displays improved insulin signaling in brown adipose tissue. • Insulin signaling is required for the effects of TRB3 to regulate brown adipose tissue differentiation and activity.« less

  12. Usefulness of basophil activation test for the diagnosis of IgE mediated hypersensitivity to tetanus toxoid vaccine.

    PubMed

    Herreros, Blanca; Méndez, Yesica; Feo-Brito, Francisco; Urra, José Miguel

    2018-03-01

    A great number of vaccinated patients develop specific anti-tetanus toxoid IgE, but usually do not undergo any adverse effect. Most of the allergic reactions to tetanus toxoid vaccine usually present with unspecific symptoms of local inflammation. In the presence of severe reactions, and in a special way if the vaccine is provided together with other drugs, it is difficult to establish which is the harmful drug responsible for IgE-mediated adverse reaction. A patient with an anaphylactic reaction after the administration of Toxoid Tetanic (TT) along with several drugs is described. All skin test were negative. The basophils activation test (BAT) in a clear way, identified TT as the allergen that triggered anaphylaxis. The results achieved demonstrates the usefulness of BAT to clarify patients with hypersensibility to tetanus toxoide when the clinic is severe and the vaccine has been administered together with other drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Western bats as a reservoir of novel Streptomyces species with antifungal activity.

    USDA-ARS?s Scientific Manuscript database

    White-nose syndrome (WNS), a bat infection caused by the psychrophilic (cold-loving) fungus, Pseudogymnoascus destructans, has caused the death of more than six million bats. In this study we evaluate the biocontrol potential of naturally occurring Actinobacteria isolated from WNS-free bats from New...

  14. Bat Coronaviruses and Experimental Infection of Bats, the Philippines

    PubMed Central

    Watanabe, Shumpei; Masangkay, Joseph S.; Nagata, Noriyo; Morikawa, Shigeru; Mizutani, Tetsuya; Fukushi, Shuetsu; Alviola, Phillip; Omatsu, Tsutomu; Ueda, Naoya; Iha, Koichiro; Taniguchi, Satoshi; Fujii, Hikaru; Tsuda, Shumpei; Endoh, Maiko; Kato, Kentaro; Tohya, Yukinobu; Kyuwa, Shigeru; Yoshikawa, Yasuhiro

    2010-01-01

    Fifty-two bats captured during July 2008 in the Philippines were tested by reverse transcription–PCR to detect bat coronavirus (CoV) RNA. The overall prevalence of virus RNA was 55.8%. We found 2 groups of sequences that belonged to group 1 (genus Alphacoronavirus) and group 2 (genus Betacoronavirus) CoVs. Phylogenetic analysis of the RNA-dependent RNA polymerase gene showed that groups 1 and 2 CoVs were similar to Bat-CoV/China/A515/2005 (95% nt sequence identity) and Bat-CoV/HKU9–1/China/2007 (83% identity), respectively. To propagate group 2 CoVs obtained from a lesser dog-faced fruit bat (Cynopterus brachyotis), we administered intestine samples orally to Leschenault rousette bats (Rousettus leschenaulti) maintained in our laboratory. After virus replication in the bats was confirmed, an additional passage of the virus was made in Leschenault rousette bats, and bat pathogenesis was investigated. Fruit bats infected with virus did not show clinical signs of infection. PMID:20678314

  15. Bat coronaviruses and experimental infection of bats, the Philippines.

    PubMed

    Watanabe, Shumpei; Masangkay, Joseph S; Nagata, Noriyo; Morikawa, Shigeru; Mizutani, Tetsuya; Fukushi, Shuetsu; Alviola, Phillip; Omatsu, Tsutomu; Ueda, Naoya; Iha, Koichiro; Taniguchi, Satoshi; Fujii, Hikaru; Tsuda, Shumpei; Endoh, Maiko; Kato, Kentaro; Tohya, Yukinobu; Kyuwa, Shigeru; Yoshikawa, Yasuhiro; Akashi, Hiroomi

    2010-08-01

    Fifty-two bats captured during July 2008 in the Philippines were tested by reverse transcription-PCR to detect bat coronavirus (CoV) RNA. The overall prevalence of virus RNA was 55.8%. We found 2 groups of sequences that belonged to group 1 (genus Alphacoronavirus) and group 2 (genus Betacoronavirus) CoVs. Phylogenetic analysis of the RNA-dependent RNA polymerase gene showed that groups 1 and 2 CoVs were similar to Bat-CoV/China/A515/2005 (95% nt sequence identity) and Bat-CoV/HKU9-1/China/2007 (83% identity), respectively. To propagate group 2 CoVs obtained from a lesser dog-faced fruit bat (Cynopterus brachyotis), we administered intestine samples orally to Leschenault rousette bats (Rousettus leschenaulti) maintained in our laboratory. After virus replication in the bats was confirmed, an additional passage of the virus was made in Leschenault rousette bats, and bat pathogenesis was investigated. Fruit bats infected with virus did not show clinical signs of infection.

  16. First encounter of European bat lyssavirus type 2 (EBLV-2) in a bat in Finland.

    PubMed

    Jakava-Viljanen, M; Lilley, T; Kyheröinen, E-M; Huovilainen, A

    2010-11-01

    In Finland, rabies in bats was suspected for the first time in 1985 when a bat researcher, who had multiple bat bites, died in Helsinki. The virus isolated from the researcher proved to be antigenically related to rabies viruses previously detected in German bats. Later, the virus was typed as EBLV-2b. Despite an epidemiological study in bats 1986 and subsequent rabies surveillance, rabies in bats was not detected in Finland until the first case in a Daubenton's bat (Myotis daubentonii) was confirmed in August 2009. The bat was paralysed, occasionally crying, and biting when approached; it subsequently tested positive for rabies. The virus was genetically typed as EBLV-2. This is the northernmost case of bat rabies ever detected in Europe. Phylogenetic analyses showed that the EBLV-2b isolate from the human case in 1985 and the isolate from the bat in 2009 were genetically closely related, demonstrating that EBLV-2 may have been circulating in Finland for many years.

  17. Need for multiscale planning for conservation of urban bats.

    PubMed

    Gallo, Travis; Lehrer, Elizabeth W; Fidino, Mason; Kilgour, R Julia; Wolff, Patrick J; Magle, Seth B

    2017-11-10

    For over a century there have been continual efforts to incorporate nature into urban planning. These efforts (i.e., urban reconciliation) aim to manage and create habitats that support biodiversity within cities. Given that species select habitat at different spatial scales, understanding the scale at which urban species respond to their environment is critical to the success of urban reconciliation efforts. We assessed species-habitat relationships for common bat species at 50-m, 500-m, and 1 km spatial scales in the Chicago (U.S.A.) metropolitan area and predicted bat activity across the greater Chicago region. Habitat characteristics across all measured scales were important predictors of silver-haired bat (Lasionycteris noctivagans) and eastern red bat (Lasiurus borealis) activity, and big brown bat (Eptesicus fuscus) activity was significantly lower at urban sites relative to rural sites. Open vegetation had a negative effect on silver-haired bat activity at the 50-m scale but a positive effect at the 500-m scale, indicating potential shifts in the relative importance of some habitat characteristics at different scales. These results demonstrate that localized effects may be constrained by broader spatial patterns. Our findings highlight the importance of considering scale in urban reconciliation efforts and our landscape predictions provide information that can help prioritize urban conservation work. © 2017 Society for Conservation Biology.

  18. Alpha-2 adrenergic receptor-mediated inhibition of thermogenesis

    PubMed Central

    Madden, Christopher J.; Tupone, Domenico; Cano, Georgina; Morrison, Shaun F.

    2013-01-01

    Alpha2-adrenergic receptor (α2-AR) agonists have been use as anti-hypertensive agents, in the management of drug withdrawal, and as sedative analgesics. Since α2-AR agonists also influence the regulation of body temperature, we explored their potential as antipyretic agents. This study delineates the central neural substrate for the inhibition of rat brown adipose tissue (BAT) and shivering thermogenesis by α2-AR agonists. Nanoinjection of the α2-AR agonist, clonidine (1.2 nmol), into the rostral raphe pallidus (rRPa) inhibited BAT sympathetic nerve activity (SNA) and BAT thermogenesis. Subsequent nanoinjection of the α2-AR antagonist, idazoxan (6nmol) into the rRPa reversed the clonidine-evoked inhibition of BAT SNA and BAT thermogenesis. Systemic administration of the α2-AR agonists, dexmedetomidine (25ug/kg, iv) or clonidine (100ug/kg, iv) inhibited shivering EMGs, BAT SNA and BAT thermogenesis effects that were reversed by nanoinjection of idazoxan (6nmol) into the rRPa. Dexmedetomidine (100µg/kg, ip) prevented and reversed lipopolysaccharide (10µg/kg ip)-evoked thermogenesis in free-behaving rats. Cholera toxin subunit b retrograde tracing from rRPa and pseudorabies virus transynaptic retrograde tracing from BAT combined with immunohistochemistry for catecholaminergic biosynthetic enzymes revealed the ventrolateral medulla as the source of catecholaminergic input to the rRPa and demonstrated that these catecholaminergic neurons are synaptically connected to BAT. Photostimulation of VLM neurons expressing of the PRSx8-ChR2-mCherry lentiviral vector inhibited BAT SNA via activation of α2-ARs in the rRPa. These results indicate a potent inhibition of BAT and shivering thermogenesis by α2-AR activation in the rRPa, and suggest a therapeutic potential of α2-AR agonists for reducing potentially-lethal elevations in body temperature during excessive fever. PMID:23365239

  19. Annual reproductive synchronization in ovary and pineal gland function of female short-nosed fruit bat, Cynopterus sphinx.

    PubMed

    Haldar, Chandana; Yadav, Rajesh; Alipreeta

    2006-08-01

    We studied the annual correlation of ovarian activity and pineal gland in relation with seasonal variation and gestation of a tropical zone short-nosed fruit bat Cynopterus sphinx. Female bats showed bimodal polyestry (February/March and September/October) in their reproductive cycle. Plasma estradiol concentration ran parallel with ovarian activity and had an inverse relation with pineal mass and peripheral melatonin concentration. Due to the delayed embryonic development in the uterus (October-March) of female bats, interestingly, the uterine activity did not show a parallel relation with ovarian activity and estradiol level. Further, compared with normal non-pregnant females, melatonin level was high during gestation and delayed embryonic development phase. This suggests that the reproductive synchrony and annual variation in ovarian activity of this nocturnal flying mammal differ from other common tropical mammals. The delayed embryonic development in bats might be an adaptive strategy for the unfavorable conditions of the seasons and might be regulated by high peripheral estradiol and melatonin concentration.

  20. Distinct Lineage of Vesiculovirus from Big Brown Bats, United States

    PubMed Central

    Driscoll, Cindy; Carlos, Maria Paz; Prioleau, Algernon; Schmieder, Robert; Dwivedi, Bhakti; Wong, Jakk; Cha, Yunhee; Head, Steven; Breitbart, Mya; Delwart, Eric

    2013-01-01

    We identified a novel rhabdovirus, American bat vesiculovirus, from postmortem tissue samples from 120 rabies-negative big brown bats with a history of human contact. Five percent of the tested bats were infected with this virus. The extent of zoonotic exposure and possible health effects in humans from this virus are unknown. PMID:24274823

  1. Bat activity following restoration prescribed burning in the central Appalachian Upland and riparian habitats

    USGS Publications Warehouse

    Austin, Lauren V.; Silvis, Alexander; Ford, W. Mark; Muthersbaugh, Michael; Powers, Karen E.

    2018-01-01

    After decades of fire suppression in eastern North America, land managers now are prioritizing prescribed fire as a management tool to restore or maintain fire-adapted vegetation communities. However, in long—fire-suppressed landscapes, such as the central and southern Appalachians, it is unknown how bats will respond to prescribed fire in both riparian and upland forest habitats. To address these concerns, we conducted zero-crossing acoustic surveys of bat activity in burned, unburned, riparian, and non-riparian areas in the central Appalachians, Virginia, USA. Burn and riparian variables had model support (ΔAICc < 4) to explain activity of all bat species. Nonetheless, parameter estimates for these conditions were small and confidence intervals overlapped zero for all species, indicating effect sizes were marginal. Our results suggest that bats respond to fire differently between upland and riparian forest habitats, but overall, large landscape-level prescribed fire has a slightly positive to neutral impact on all bats species identified at our study site post—fire application.

  2. Recombinant mumps viruses expressing the batMuV fusion glycoprotein are highly fusion active and neurovirulent.

    PubMed

    Krüger, Nadine; Sauder, Christian; Hoffmann, Markus; Örvell, Claes; Drexler, Jan Felix; Rubin, Steven; Herrler, Georg

    2016-11-01

    A recent study reported the detection of a bat-derived virus (BatPV/Epo_spe/AR1/DCR/2009, batMuV) with phylogenetic relatedness to human mumps virus (hMuV). Since all efforts to isolate infectious batMuV have reportedly failed, we generated recombinant mumps viruses (rMuVs) in which the open reading frames (ORFs) of the fusion (F) and haemagglutinin-neuraminidase (HN) glycoproteins of an hMuV strain were replaced by the corresponding ORFs of batMuV. The batMuV F and HN proteins were successfully incorporated into viral particles and the resultant chimeric virus was able to mediate infection of Vero cells. Distinct differences were observed between the fusogenicity of rMuVs expressing one or both batMuV glycoproteins: viruses expressing batMuV F were highly fusogenic, regardless of the origin of HN. In contrast, rMuVs expressing human F and bat-derived HN proteins were less fusogenic compared to hMuV. The growth kinetics of chimeric MuVs expressing batMuV HN in combination with either hMuV or batMuV F were similar to that of the backbone virus, whereas a delay in virus replication was obtained for rMuVs harbouring batMuV F and hMuV HN. Replacement of the hMuV F and HN genes or the HN gene alone by the corresponding batMuV genes led to a slight reduction in neurovirulence of the highly neurovirulent backbone strain. Neutralizing antibodies inhibited infection mediated by all recombinant viruses generated. Furthermore, group IV anti-MuV antibodies inhibited the neuraminidase activity of bat-derived HN. Our study reports the successful generation of chimeric MuVs expressing the F and HN proteins of batMuV, providing a means for further examination of this novel batMuV.

  3. Thermal Vacuum/Balance Test Results of Swift BAT with Loop Heat Pipe Thermal System

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2004-01-01

    The Swift Burst Alert Telescope (BAT) Detector Array is thermally well coupled to eight constant conductance heat pipes (CCHPs) embedded in the Detector Array Plate PAP), and two loop heat pipes (LHPs) transport heat from the CCHPs to a radiator. The CCHPs have ammonia as the working fluid and the LHPs have propylene as the working fluid. Precision heater controllers, which have adjustable set points in flight, are used to control the LHP compensation chamber and Detector Array xA1 ASIC temperatures. The radiator has AZ-Tek's AZW-LA-II low solar absorptance white paint as the thermal coating, and is located on the anti-sun side of the spacecraft. A thermal balance (T/B) test on the BAT was successfully completed. It validated that the thermal design satisfies the temperature requirements of the BAT in the flight thermal environments. Instrument level and observatory level thermal vacuum (TN) cycling tests of the BAT Detector Array by using the LHP thermal system were successfully completed. This paper presents the results of the T/B test and T N cycling tests.

  4. Bats adjust their pulse emission rates with swarm size in the field.

    PubMed

    Lin, Yuan; Abaid, Nicole; Müller, Rolf

    2016-12-01

    Flying in swarms, e.g., when exiting a cave, could pose a problem to bats that use an active biosonar system because the animals could risk jamming each other's biosonar signals. Studies from current literature have found different results with regard to whether bats reduce or increase emission rate in the presence of jamming ultrasound. In the present work, the number of Eastern bent-wing bats (Miniopterus fuliginosus) that were flying inside a cave during emergence was estimated along with the number of signal pulses recorded. Over the range of average bat numbers present in the recording (0 to 14 bats), the average number of detected pulses per bat increased with the average number of bats. The result was interpreted as an indication that the Eastern bent-wing bats increased their emission rate and/or pulse amplitude with swarm size on average. This finding could be explained by the hypothesis that the bats might not suffer from substantial jamming probabilities under the observed density regimes, so jamming might not have been a limiting factor for their emissions. When jamming did occur, the bats could avoid it through changing the pulse amplitude and other pulse properties such as duration or frequency, which has been suggested by other studies. More importantly, the increased biosonar activities may have addressed a collision-avoidance challenge that was posed by the increased swarm size.

  5. Central Control of Brown Adipose Tissue Thermogenesis

    PubMed Central

    Morrison, Shaun F.; Madden, Christopher J.; Tupone, Domenico

    2011-01-01

    Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. Mitochondrial oxidation in brown adipose tissue (BAT) is a significant source of neurally regulated metabolic heat production in many species from mouse to man. BAT thermogenesis is regulated by neural networks in the central nervous system which responds to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate BAT sympathetic nerve activity. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates BAT thermogenesis and includes the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E2, to increase body temperature during fever. The cold thermal afferent circuit from cutaneous thermal receptors, through second-order thermosensory neurons in the dorsal horn of the spinal cord ascends to activate neurons in the lateral parabrachial nucleus which drive GABAergic interneurons in the preoptic area (POA) to inhibit warm-sensitive, inhibitory output neurons of the POA. The resulting disinhibition of BAT thermogenesis-promoting neurons in the dorsomedial hypothalamus activates BAT sympathetic premotor neurons in the rostral ventromedial medulla, including the rostral raphe pallidus, which provide excitatory, and possibly disinhibitory, inputs to spinal sympathetic circuits to drive BAT thermogenesis. Other recently recognized central sites influencing BAT thermogenesis and energy expenditure are also described. PMID:22389645

  6. Sensory Ecology of Water Detection by Bats: A Field Experiment

    PubMed Central

    Russo, Danilo; Cistrone, Luca; Jones, Gareth

    2012-01-01

    Bats face a great risk of dehydration, so sensory mechanisms for water recognition are crucial for their survival. In the laboratory, bats recognized any smooth horizontal surface as water because these provide analogous reflections of echolocation calls. We tested whether bats also approach smooth horizontal surfaces other than water to drink in nature by partly covering watering troughs used by hundreds of bats with a Perspex layer mimicking water. We aimed 1) to confirm that under natural conditions too bats mistake any horizontal smooth surface for water by testing this on large numbers of individuals from a range of species and 2) to assess the occurrence of learning effects. Eleven bat species mistook Perspex for water relying chiefly on echoacoustic information. Using black instead of transparent Perspex did not deter bats from attempting to drink. In Barbastella barbastellus no echolocation differences occurred between bats approaching the water and the Perspex surfaces respectively, confirming that bats perceive water and Perspex to be acoustically similar. The drinking attempt rates at the fake surface were often lower than those recorded in the laboratory: bats then either left the site or moved to the control water surface. This suggests that bats modified their behaviour as soon as the lack of drinking reward had overridden the influence of echoacoustic information. Regardless of which of two adjoining surfaces was covered, bats preferentially approached and attempted to drink from the first surface encountered, probably because they followed a common route, involving spatial memory and perhaps social coordination. Overall, although acoustic recognition itself is stereotyped and its importance in the drinking process overwhelming, our findings point at the role of experience in increasing behavioural flexibility under natural conditions. PMID:23133558

  7. Altered thermogenesis and impaired bone remodeling in Misty mice

    PubMed Central

    Motyl, Katherine J; Bishop, Kathleen A; DeMambro, Victoria E; Bornstein, Sheila A; Le, Phuong; Kawai, Masanobu; Lotinun, Sutada; Horowitz, Mark C; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J

    2013-01-01

    Fat mass may be modulated by the number of brown-like adipocytes in white adipose tissue (WAT) in humans and rodents. Bone remodeling is dependent on systemic energy metabolism and, with age, bone remodeling becomes uncoupled and brown adipose tissue (BAT) function declines. To test the interaction between BAT and bone, we employed Misty (m/m) mice, which were reported be deficient in BAT. We found that Misty mice have accelerated age-related trabecular bone loss and impaired brown fat function (including reduced temperature, lower expression of Pgc1a and less sympathetic innervation compared to wildtype (+/+)). Despite reduced BAT function, Misty mice had normal core body temperature, suggesting heat is produced from other sources. Indeed, upon acute cold exposure (4°C for 6 hr), inguinal WAT from Misty mice compensated for BAT dysfunction by increasing expression of Acadl, Pgc1a, Dio2 and other thermogenic genes. Interestingly, acute cold exposure also decreased Runx2 and increased Rankl expression in Misty bone, but only Runx2 was decreased in wildtype. Browning of WAT is under the control of the sympathetic nervous system (SNS) and, if present at room temperature, could impact bone metabolism. To test whether SNS activity could be responsible for accelerated trabecular bone loss, we treated wildtype and Misty mice with the β-blocker, propranolol. As predicted, propranolol slowed trabecular BV/TV loss in the distal femur of Misty mice without affecting wildtype. Finally, the Misty mutation (a truncation of DOCK7) also has a significant cell-autonomous role. We found DOCK7 expression in whole bone and osteoblasts. Primary osteoblast differentiation from Misty calvaria was impaired, demonstrating a novel role for DOCK7 in bone remodeling. Despite the multifaceted effects of the Misty mutation, we have shown that impaired brown fat function leads to altered SNS activity and bone loss, and for the first time that cold exposure negatively affects bone remodeling. PMID:23553822

  8. Brown Adipose Tissue Is Linked to a Distinct Thermoregulatory Response to Mild Cold in People

    PubMed Central

    Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Chao, Tony; Porter, Craig; Annamalai, Palam; Yfanti, Christina; Labbe, Sebastien M.; Hurren, Nicholas M.; Malagaris, Ioannis; Cesani, Fernardo; Sidossis, Labros S.

    2016-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in rodents. Its role in temperature homeostasis in people is less studied. To this end, we recruited 18 men [8 subjects with no/minimal BAT activity (BAT−) and 10 with pronounced BAT activity (BAT+)]. Each volunteer participated in a 6 h, individualized, non-shivering cold exposure protocol. BAT was quantified using positron emission tomography/computed tomography. Body core and skin temperatures were measured using a telemetric pill and wireless thermistors, respectively. Core body temperature decreased during cold exposure in the BAT− group only (−0.34°C, 95% CI: −0.6 to −0.1, p = 0.03), while the cold-induced change in core temperature was significantly different between BAT+ and BAT− subjects (BAT+ vs. BAT−, 0.43°C, 95% CI: 0.20–0.65, p = 0.0014). BAT volume was associated with the cold-induced change in core temperature (p = 0.01) even after adjustment for age and adiposity. Compared to the BAT− group, BAT+ subjects tolerated a lower ambient temperature (BAT−: 20.6 ± 0.3°C vs. BAT+: 19.8 ± 0.3°C, p = 0.035) without shivering. The cold-induced change in core temperature (r = 0.79, p = 0.001) and supraclavicular temperature (r = 0.58, p = 0.014) correlated with BAT volume, suggesting that these non-invasive measures can be potentially used as surrogate markers of BAT when other methods to detect BAT are not available or their use is not warranted. These results demonstrate a physiologically significant role for BAT in thermoregulation in people. This trial has been registered with Clinaltrials.gov: NCT01791114 (https://clinicaltrials.gov/ct2/show/NCT01791114). PMID:27148068

  9. Reduced adiposity by compensatory WAT browning upon iBAT removal in mice.

    PubMed

    Piao, Zhengyu; Zhai, Baiqiang; Jiang, Xiaoxiao; Dong, Meng; Yan, Changguo; Lin, Jun; Jin, Wanzhu

    2018-06-27

    The strong effects of classic brown adipose tissue (BAT) and recruited beige adipocytes in treatment of obesity and metabolic syndrome have been attracting increasing research interest. Cold treatment is an effective, convenient approach to stimulate BAT activity and induce white adipose tissue (WAT) browning. Here, we utilized prolonged cold exposure (from 2 h to 2 weeks in a 4° cold chamber) to elucidate dynamic changes in BAT and in WAT browning during acute and chronic cold exposure in mice. BAT mass decreased quickly, with reduced lipid droplet sizes within 8 h of cold exposure owing to the utilization of BAT pre-storage triglycerides, and subsequently increased during prolonged cold exposure. These dynamic morphological changes in BAT were confirmed by gene expression changes in ADRB3 and PGC1α, while UCP1 and ELOVL3 expression was continuously up-regulated throughout the entire cold exposure period. Additionally, cold treatment increased BAT secretion of FGF21, which has been reported to activate beige adipocyte formation. Thus, to illustrate potential crosstalk between secreted BAT proteins (so-called BATokines) and beige adipogenesis during cold stress, we performed an interscapular BAT (iBAT) removal experiment in mice. Surprisingly, loss of classic iBAT enhanced WAT browning due to compensatorily increased sympathetic WAT input. Unexpectedly, we observed significantly reduced adiposity in the iBAT removal group compared with the control group. These results further suggest that WAT browning plays an important role in whole-body energy metabolism during cold acclimation, even without iBAT. Furthermore, our data imply that enhanced WAT browning may be an efficient therapeutic tool to combat obesity and related syndromes. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Long-Term Survival of an Urban Fruit Bat Seropositive for Ebola and Lagos Bat Viruses

    PubMed Central

    Hayman, David T. S.; Emmerich, Petra; Yu, Meng; Wang, Lin-Fa; Suu-Ire, Richard; Fooks, Anthony R.; Cunningham, Andrew A.; Wood, James L. N.

    2010-01-01

    Ebolaviruses (EBOV) (family Filoviridae) cause viral hemorrhagic fevers in humans and non-human primates when they spill over from their wildlife reservoir hosts with case fatality rates of up to 90%. Fruit bats may act as reservoirs of the Filoviridae. The migratory fruit bat, Eidolon helvum, is common across sub-Saharan Africa and lives in large colonies, often situated in cities. We screened sera from 262 E. helvum using indirect fluorescent tests for antibodies against EBOV subtype Zaire. We detected a seropositive bat from Accra, Ghana, and confirmed this using western blot analysis. The bat was also seropositive for Lagos bat virus, a Lyssavirus, by virus neutralization test. The bat was fitted with a radio transmitter and was last detected in Accra 13 months after release post-sampling, demonstrating long-term survival. Antibodies to filoviruses have not been previously demonstrated in E. helvum. Radio-telemetry data demonstrates long-term survival of an individual bat following exposure to viruses of families that can be highly pathogenic to other mammal species. Because E. helvum typically lives in large urban colonies and is a source of bushmeat in some regions, further studies should determine if this species forms a reservoir for EBOV from which spillover infections into the human population may occur. PMID:20694141

  11. Long-term survival of an urban fruit bat seropositive for Ebola and Lagos bat viruses.

    PubMed

    Hayman, David T S; Emmerich, Petra; Yu, Meng; Wang, Lin-Fa; Suu-Ire, Richard; Fooks, Anthony R; Cunningham, Andrew A; Wood, James L N

    2010-08-04

    Ebolaviruses (EBOV) (family Filoviridae) cause viral hemorrhagic fevers in humans and non-human primates when they spill over from their wildlife reservoir hosts with case fatality rates of up to 90%. Fruit bats may act as reservoirs of the Filoviridae. The migratory fruit bat, Eidolon helvum, is common across sub-Saharan Africa and lives in large colonies, often situated in cities. We screened sera from 262 E. helvum using indirect fluorescent tests for antibodies against EBOV subtype Zaire. We detected a seropositive bat from Accra, Ghana, and confirmed this using western blot analysis. The bat was also seropositive for Lagos bat virus, a Lyssavirus, by virus neutralization test. The bat was fitted with a radio transmitter and was last detected in Accra 13 months after release post-sampling, demonstrating long-term survival. Antibodies to filoviruses have not been previously demonstrated in E. helvum. Radio-telemetry data demonstrates long-term survival of an individual bat following exposure to viruses of families that can be highly pathogenic to other mammal species. Because E. helvum typically lives in large urban colonies and is a source of bushmeat in some regions, further studies should determine if this species forms a reservoir for EBOV from which spillover infections into the human population may occur.

  12. Grassland bats and land management in the Southwest

    Treesearch

    Alice L. Chung-MacCoubrey

    1996-01-01

    Of the bat research that has been conducted in the Southwestern states, few studies have addressed species inhabiting grasslands and the potential effects of management activities on these populations. Up to 17 bat species may be found regularly or occasionally in Southwestern grasslands or short-grass prairie. Main habitat requirements of grassland-dwelling bats are...

  13. Cloning and molecular evolution of the aldehyde dehydrogenase 2 gene (Aldh2) in bats (Chiroptera).

    PubMed

    Chen, Yao; Shen, Bin; Zhang, Junpeng; Jones, Gareth; He, Guimei

    2013-02-01

    Old World fruit bats (Pteropodidae) and New World fruit bats (Phyllostomidae) ingest significant quantities of ethanol while foraging. Mitochondrial aldehyde dehydrogenase (ALDH2, encoded by the Aldh2 gene) plays an important role in ethanol metabolism. To test whether the Aldh2 gene has undergone adaptive evolution in frugivorous and nectarivorous bats in relation to ethanol elimination, we sequenced part of the coding region of the gene (1,143 bp, ~73 % coverage) in 14 bat species, including three Old World fruit bats and two New World fruit bats. Our results showed that the Aldh2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to Old World fruit bats and New World fruit bats. Further research is needed to determine whether other genes involved in ethanol metabolism have been the targets of positive selection in frugivorous and nectarivorous bats.

  14. Relationships of three species of bats impacted by white-nose syndrome to forest condition and management

    USGS Publications Warehouse

    Silvis, Alexander; Perry, Roger W.; Ford, W. Mark

    2016-01-01

    Forest management activities can have substantial effects on forest structure and community composition and response of wildlife therein. Bats can be highly influenced by these structural changes, and understanding how forest management affects day-roost and foraging ecology of bats is currently a paramount conservation issue. With populations of many cave-hibernating bat species in eastern North America declining as a result of white-nose syndrome (WNS), it is increasingly critical to understand relationships among bats and forest-management activities. Herein, we provide a comprehensive literature review and synthesis of: (1) responses of northern long-eared (Myotis septentrionalis) and tri-colored (Perimyotis subflavus) bats—two species affected by WNS that use forests during summer—to forest management, and (2) an update to a previous review on the ecology of the endangered Indiana bat (Myotis sodalis).

  15. Activation of Innate Immune-Response Genes in Little Brown Bats (Myotis lucifugus) Infected with the Fungus Pseudogymnoascus destructans

    PubMed Central

    Rapin, Noreen; Johns, Kirk; Martin, Lauren; Warnecke, Lisa; Turner, James M.; Bollinger, Trent K.; Willis, Craig K. R.; Voyles, Jamie; Misra, Vikram

    2014-01-01

    Recently bats have been associated with the emergence of diseases, both as reservoirs for several new viral diseases in humans and other animals and, in the northern Americas, as hosts for a devastating fungal disease that threatens to drive several bat species to regional extinction. However, despite these catastrophic events little Information is available on bat defences or how they interact with their pathogens. Even less is known about the response of bats to infection during torpor or long-term hibernation. Using tissue samples collected at the termination of an experiment to explore the pathogenesis of White Nose Syndrome in Little Brown Bats, we determined if hibernating bats infected with the fungus Pseudogymnoascus destructans could respond to infection by activating genes responsible for innate immune and stress responses. Lesions due to fungal infection and, in some cases, secondary bacterial infections, were restricted to the skin. However, we were unable to obtain sufficient amounts of RNA from these sites. We therefore examined lungs for response at an epithelial surface not linked to the primary site of infection. We found that bats responded to infection with a significant increase in lungs of transcripts for Cathelicidin (an anti-microbial peptide) as well as the immune modulators tumor necrosis factor alpha and interleukins 10 and 23. In conclusion, hibernating bats can respond to experimental P. destructans infection by activating expression of innate immune response genes. PMID:25391018

  16. Activation of innate immune-response genes in little brown bats (Myotis lucifugus) infected with the fungus Pseudogymnoascus destructans.

    PubMed

    Rapin, Noreen; Johns, Kirk; Martin, Lauren; Warnecke, Lisa; Turner, James M; Bollinger, Trent K; Willis, Craig K R; Voyles, Jamie; Misra, Vikram

    2014-01-01

    Recently bats have been associated with the emergence of diseases, both as reservoirs for several new viral diseases in humans and other animals and, in the northern Americas, as hosts for a devastating fungal disease that threatens to drive several bat species to regional extinction. However, despite these catastrophic events little Information is available on bat defences or how they interact with their pathogens. Even less is known about the response of bats to infection during torpor or long-term hibernation. Using tissue samples collected at the termination of an experiment to explore the pathogenesis of White Nose Syndrome in Little Brown Bats, we determined if hibernating bats infected with the fungus Pseudogymnoascus destructans could respond to infection by activating genes responsible for innate immune and stress responses. Lesions due to fungal infection and, in some cases, secondary bacterial infections, were restricted to the skin. However, we were unable to obtain sufficient amounts of RNA from these sites. We therefore examined lungs for response at an epithelial surface not linked to the primary site of infection. We found that bats responded to infection with a significant increase in lungs of transcripts for Cathelicidin (an anti-microbial peptide) as well as the immune modulators tumor necrosis factor alpha and interleukins 10 and 23. In conclusion, hibernating bats can respond to experimental P. destructans infection by activating expression of innate immune response genes.

  17. Bats coordinate sonar and flight behavior as they forage in open and cluttered environments.

    PubMed

    Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie; Moss, Cynthia F

    2014-12-15

    Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment. © 2014. Published by The Company of Biologists Ltd.

  18. Bats coordinate sonar and flight behavior as they forage in open and cluttered environments

    PubMed Central

    Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie; Moss, Cynthia F.

    2014-01-01

    Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment. PMID:25394632

  19. The bat-bird-bug battle: daily flight activity of insects and their predators over a rice field revealed by high-resolution Scheimpflug Lidar

    NASA Astrophysics Data System (ADS)

    Malmqvist, Elin; Jansson, Samuel; Zhu, Shiming; Li, Wansha; Svanberg, Katarina; Svanberg, Sune; Rydell, Jens; Song, Ziwei; Bood, Joakim; Brydegaard, Mikkel; Åkesson, Susanne

    2018-04-01

    We present the results of, to our knowledge, the first Lidar study applied to continuous and simultaneous monitoring of aerial insects, bats and birds. It illustrates how common patterns of flight activity, e.g. insect swarming around twilight, depend on predation risk and other constraints acting on the faunal components. Flight activity was monitored over a rice field in China during one week in July 2016, using a high-resolution Scheimpflug Lidar system. The monitored Lidar transect was about 520 m long and covered approximately 2.5 m3. The observed biomass spectrum was bimodal, and targets were separated into insects and vertebrates in a categorization supported by visual observations. Peak flight activity occurred at dusk and dawn, with a 37 min time difference between the bat and insect peaks. Hence, bats started to feed in declining insect activity after dusk and stopped before the rise in activity before dawn. A similar time difference between insects and birds may have occurred, but it was not obvious, perhaps because birds were relatively scarce. Our observations are consistent with the hypothesis that flight activity of bats is constrained by predation in bright light, and that crepuscular insects exploit this constraint by swarming near to sunset/sunrise to minimize predation from bats.

  20. PPARγ activation attenuates cold-induced upregulation of thyroid status and brown adipose tissue PGC-1α and D2

    PubMed Central

    Festuccia, William T.; Blanchard, Pierre-Gilles; Oliveira, Thiago B.; Magdalon, Juliana; Paschoal, Vivian A.; Richard, Denis

    2012-01-01

    Here, we investigated whether pharmacological PPARγ activation modulates key early events in brown adipose tissue (BAT) recruitment induced by acute cold exposure with the aim of unraveling the interrelationships between sympathetic and PPARγ signaling. Sprague-Dawley rats treated or not with the PPARγ ligand rosiglitazone (15 mg·kg−1·day−1, 7 days) were kept at 23°C or exposed to cold (5°C) for 24 h and evaluated for BAT gene expression, sympathetic activity, thyroid status, and adrenergic signaling. Rosiglitazone did not affect the reduction in body weight gain and the increase in feed efficiency, V̇o2, and BAT sympathetic activity induced by 24-h cold exposure. Rosiglitazone strongly attenuated the increase in serum total and free T4 and T3 levels and BAT iodothyronine deiodinase type 2 (D2) and PGC-1α mRNA levels and potentiated the reduction in BAT thyroid hormone receptor (THR) β mRNA levels induced by cold. Administration of T3 to rosiglitazone-treated rats exacerbated the cold-induced increase in energy expenditure but did not restore a proper activation of D2 and PGC-1α, nor further increased uncoupling protein 1 expression. Regarding adrenergic signaling, rosiglitazone did not affect the changes in BAT cAMP content and PKA activity induced by cold. Rosiglitazone alone or in combination with cold increased CREB binding to DNA, but it markedly reduced the expression of one of its major coactivators, CREB binding protein. In conclusion, pharmacological PPARγ activation impairs short-term cold elicitation of BAT adrenergic and thyroid signaling, which may result in abnormal tissue recruitment and thermogenic activity. PMID:23100029

  1. Sympathetic Innervation of Cold-Activated Brown and White Fat in Lean Young Adults

    PubMed Central

    Mangner, Tom J.; Leonard, William R.; Kumar, Ajay; Granneman, James G.

    2017-01-01

    Recent work in rodents has demonstrated that basal activity of the local sympathetic nervous system is critical for maintaining brown adipocyte phenotypes in classic brown adipose tissue (BAT) and white adipose tissue (WAT). Accordingly, we sought to assess the relationship between sympathetic innervation and cold-induced activation of BAT and WAT in lean young adults. Methods: Twenty adult lean normal subjects (10 women and 10 men; mean age ± SD, 23.3 ± 3.8 y; body mass index, 23.7 ± 2.5 kg/m2) underwent 11C-meta-hydroxyephedrin (11C-HED) and 15O-water PET imaging at rest and after exposure to mild cold (16°C) temperature. In addition, 18F-FDG images were obtained during the cold stress condition to assess cold-activated BAT mass. Subjects were divided into 2 groups (high BAT and low BAT) based on the presence of 18F-FDG tracer uptake. Blood flow and 11C-HED retention index (RI, an indirect measure of sympathetic innervation) were calculated from dynamic PET scans at the location of BAT and WAT. Whole-body daily energy expenditure (DEE) during rest and cold stress was measured by indirect calorimetry. Tissue level oxygen consumption (MRO2) was determined and used to calculate the contribution of cold-activated BAT and WAT to daily DEE. Results: 18F-FDG uptake identified subjects with high and low levels of cold-activated BAT mass (high BAT, 96 ± 37 g; low-BAT, 16 ± 4 g). 11C-HED RI under thermoneutral conditions significantly predicted 18F-FDG uptake during cold stress (R2 = 0.68, P < 0.01). In contrast to the significant increase of 11C-HED RI during cold in BAT (2.42 ± 0.85 vs. 3.43 ± 0.93, P = 0.02), cold exposure decreased the 11C-HED RI in WAT (0.44 ± 0.22 vs. 0.41 ± 0.18) as a consequence of decreased perfusion (1.22 ± 0.20 vs. 1.12 ± 0.16 mL/100 g/min). The contribution of WAT to whole-body DEE was approximately 150 kcal/d at rest (149 ± 52 kcal/d), which decreased to approximately 100 kcal/d during cold (102 ± 47 kcal/d). Conclusion: The level of sympathetic innervation, as determined by 11C-HED RI, can predict levels of functional BAT. Overall, blood flow is the best independent predictor of 11C-HED RI and 18F-FDG uptake across thermoneutral and cold conditions. In contrast to BAT, cold stress reduces blood flow and 18F-FDG uptake in subcutaneous WAT, indicating that the physiologic response is to reduce heat loss rather than to generate heat. PMID:27789721

  2. The immune gene repertoire of an important viral reservoir, the Australian black flying fox

    PubMed Central

    2012-01-01

    Background Bats are the natural reservoir host for a range of emerging and re-emerging viruses, including SARS-like coronaviruses, Ebola viruses, henipaviruses and Rabies viruses. However, the mechanisms responsible for the control of viral replication in bats are not understood and there is little information available on any aspect of antiviral immunity in bats. Massively parallel sequencing of the bat transcriptome provides the opportunity for rapid gene discovery. Although the genomes of one megabat and one microbat have now been sequenced to low coverage, no transcriptomic datasets have been reported from any bat species. In this study, we describe the immune transcriptome of the Australian flying fox, Pteropus alecto, providing an important resource for identification of genes involved in a range of activities including antiviral immunity. Results Towards understanding the adaptations that have allowed bats to coexist with viruses, we have de novo assembled transcriptome sequence from immune tissues and stimulated cells from P. alecto. We identified about 18,600 genes involved in a broad range of activities with the most highly expressed genes involved in cell growth and maintenance, enzyme activity, cellular components and metabolism and energy pathways. 3.5% of the bat transcribed genes corresponded to immune genes and a total of about 500 immune genes were identified, providing an overview of both innate and adaptive immunity. A small proportion of transcripts found no match with annotated sequences in any of the public databases and may represent bat-specific transcripts. Conclusions This study represents the first reported bat transcriptome dataset and provides a survey of expressed bat genes that complement existing bat genomic data. In addition, these data provide insight into genes relevant to the antiviral responses of bats, and form a basis for examining the roles of these molecules in immune response to viral infection. PMID:22716473

  3. A Novel Quantum-Behaved Bat Algorithm with Mean Best Position Directed for Numerical Optimization

    PubMed Central

    Zhu, Wenyong; Liu, Zijuan; Duan, Qingyan; Cao, Long

    2016-01-01

    This paper proposes a novel quantum-behaved bat algorithm with the direction of mean best position (QMBA). In QMBA, the position of each bat is mainly updated by the current optimal solution in the early stage of searching and in the late search it also depends on the mean best position which can enhance the convergence speed of the algorithm. During the process of searching, quantum behavior of bats is introduced which is beneficial to jump out of local optimal solution and make the quantum-behaved bats not easily fall into local optimal solution, and it has better ability to adapt complex environment. Meanwhile, QMBA makes good use of statistical information of best position which bats had experienced to generate better quality solutions. This approach not only inherits the characteristic of quick convergence, simplicity, and easy implementation of original bat algorithm, but also increases the diversity of population and improves the accuracy of solution. Twenty-four benchmark test functions are tested and compared with other variant bat algorithms for numerical optimization the simulation results show that this approach is simple and efficient and can achieve a more accurate solution. PMID:27293424

  4. Do scores on a tachistoscope test correlate with baseball batting averages?

    PubMed

    Reichow, Alan W; Garchow, Kenneth E; Baird, Richard Y

    2011-05-01

    Millions of dollars are spent each year by individuals seeking to improve their athletic performance. One area of visual training is the use of the tachistoscope, which measures inspection time or visual recognition time. Although the potential of the tachistoscope as a training tool has received some research attention, its use as a means of measurement or predictor of athletic ability in sports has not been explored. The purpose of this pilot study is to assess the potential of the tachistoscope as a measurement instrument by determining if a baseball player's ability to identify a tachistoscopically presented picture of a pitch is correlated with hitting performance as measured by batting average. Using sport-specific slides, 20 subjects-all non-pitching members of the Pacific University Baseball Team-were administered a tachistoscopic test. The test consisted of identifying the type of pitch illustrated in 30 randomly ordered slides depicting a pitcher throwing four different baseball pitches. Each slide was presented for 0.2 sec. The results of the test were compared with the athlete's previous season's batting average. A positive correlation was found between an athlete's ability to correctly identify a picture of a pitch presented tachistoscopically and batting average (r=0.648; P<0.01). These results suggest that a superior ability to recognize pitches presented via tachistoscope may correlate with a higher skill level in batting. Tachistoscopic test scores correlated positively with batting averages. The tachistoscope may be an acceptable tool to help in assessing batting performance. Additional testing with players from different sports, different levels of ability, and different tachistoscopic times should be performed to determine if the tachistoscope is a valid measure of athletic ability. Implications may also be drawn in other areas such as military and police work.

  5. The brain and brown fat

    PubMed Central

    Gonzalez, Francisco; Fernø, Johan; Diéguez, Carlos; Rahmouni, Kamal; Nogueiras, Rubén

    2015-01-01

    Brown adipose tissue (BAT) is a specialized organ responsible for thermogenesis, a process required for maintaining body temperature. BAT is regulated by the sympathetic nervous system (SNS), which activates lipolysis and mitochondrial uncoupling in brown adipocytes. For many years, BAT was considered to be important only in small mammals and newborn humans, but recent data have shown that BAT is also functional in adult humans. On the basis of this evidence, extensive research has been focused on BAT function, where new molecules, such as irisin and bone morphogenetic proteins, particularly BMP7 and BMP8B, as well as novel central factors and new regulatory mechanisms, such as orexins and the canonical ventomedial nucleus of the hypothalamus (VMH) AMP- activated protein kinase (AMPK)–SNS–BAT axis, have been discovered and emerged as potential drug targets to combat obesity. In this review we provide an overview of the complex central regulation of BAT and how different neuronal cell populations co-ordinately work to maintain energy homeostasis. PMID:24915455

  6. The effects of thyroid hormones on brown adipose tissue in humans: a PET-CT study.

    PubMed

    Zhang, Qiongyue; Miao, Qing; Ye, Hongying; Zhang, Zhaoyun; Zuo, Chuantao; Hua, Fengchun; Guan, Yihui; Li, Yiming

    2014-09-01

    Brown adipose tissue (BAT) is important for energy expenditure through thermogenesis, although its regulatory factors are not well known in humans. There is evidence suggesting that thyroid hormones affect BAT functions in some mammals, but the effects of thyroid hormones on BAT activity in humans are still unclear. The aim of this study was to investigate the effects of thyroid hormones on glucose metabolism of BAT and other organs in humans. Nine Graves' disease-caused hyperthyroid patients who were newly diagnosed and untreated were studied. Putative brown adipose tissue activity was determined by the integrated ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron-emission tomography and computed tomography (PET-CT). All hyperthyroid patients were treated with methimazole and had been monitored until their symptoms disappeared and thyroid hormone levels returned to normal. At the end, a second PET-CT scan was performed. The average follow-up period was 77 days. Meanwhile, compared with a group of seventy-five brown adipose tissue-negative controls, thyroid hormones of seventy-five BAT-positive healthy subjects were measured. Active brown adipose tissue was not present in any of the hyperthyroid patients. However, one patient with normalized thyroid function showed active BAT after therapy. The free T3 levels and free T4 levels were significantly lower in the 75 BAT-positive subjects than in the BAT-negative subjects. All hyperthyroid patients showed symmetrically increased uptake of fluorodeoxyglucose in skeletal muscles before treatment, whereas, the standardized uptake value was substantially decreased after treatment. Abnormally high circulating thyroid hormone levels may not increase brown adipose tissue activity, which may be limited by the increased obligatory thermogenesis of muscle in adult humans. Copyright © 2014 John Wiley & Sons, Ltd.

  7. DISPERSAL HAZARDS OF PSEUDOGYMNOASCUS DESTRUCTANS BY BATS AND HUMAN ACTIVITY AT HIBERNACULA IN SUMMER.

    PubMed

    Ballmann, Anne E; Torkelson, Miranda R; Bohuski, Elizabeth A; Russell, Robin E; Blehert, David S

    2017-10-01

    Bats occupying hibernacula during summer are exposed to Pseudogymnoascus destructans (Pd), the causative agent of white-nose syndrome (WNS), and may contribute to its dispersal. Furthermore, equipment and clothing exposed to cave environments are a potential source for human-assisted spread of Pd. To explore dispersal hazards for Pd during the nonhibernal season, we tested samples that were collected from bats, the environment, and equipment at hibernacula in the eastern US between 18 July-22 August 2012. Study sites included six hibernacula known to harbor bats with Pd with varying winter-count impacts from WNS and two hibernacula (control sites) without prior history of WNS. Nucleic acid from Pd was detected from wing-skin swabs or guano from 40 of 617 bats (7% prevalence), including males and females of five species at five sites where WNS had previously been confirmed as well as from one control site. Analysis of guano collected during summer demonstrated a higher apparent prevalence of Pd among bats (17%, 37/223) than did analysis of wing-skin swabs (1%, 4/617). Viable Pd cultured from wing skin (2%, 1/56) and low recapture rates at all sites suggested bats harboring Pd during summer could contribute to pathogen dispersal. Additionally, Pd DNA was detected on clothing and trapping equipment used inside and near hibernacula, and Pd was detected in sediment more readily than in swabs of hibernaculum walls. Statistically significant differences in environmental abundance of Pd were not detected among sites, but prevalence of Pd differed between sites and among bat species. Overall, bats using hibernacula in summer can harbor Pd on their skin and in their guano, and demonstration of Pd on clothing, traps, and other equipment used at hibernacula during summertime within the WNS-affected region indicates risk for pathogen dispersal during the nonhibernal season.

  8. Are Canadian-born Major League Baseball players more likely to bat left-handed? A partial test of the hockey-influence on batting hypothesis.

    PubMed

    Cairney, John; Chirico, Daniele; Li, Yao-Chuen; Bremer, Emily; Graham, Jeffrey D

    2018-01-01

    It has been suggested that Canadian-born Major League Baseball (MLB) players are more likely to bat left-handed, possibly owing to the fact that they learn to play ice hockey before baseball, and that there is no clear hand-preference when shooting with a hockey stick; approximately half of all ice hockey players shoot left. We constructed a database on active (i.e., October, 2016) MLB players from four countries/regions based on place of birth (Canada, United States of America [USA], Dominican Republic and South Asia [i.e., Japan, Taiwan and South Korea]), including information on which hand they use to bat and throw. We also extracted information on all Canadian-born MLB players, dating back to 1917. Our results confirm that the proportion of left-handed batters born in Canada is higher when compared to the other countries selected; also, since 1917, the proportion of Canadian MLB players who bat left has been consistently higher than the league average. We also compared the proportion of left-handed batters in Canada with players born in states in the USA grouped into high, average and low based on hockey participation. The proportion of MLB players born in states with a high level of hockey participation were more likely to bat left, although the differences were significant at trend level only (p < .10). Lastly, we found that while Canadians were more likely to bat left-handed, this did not correspond with a greater left-hand dominance, as determined by throwing hand. In conclusion, the present study confirms that Canadian-born MLB players are more likely to bat left-handed when compared to American, Dominican Republic and South Asian-born MLB players, providing partial support for the hockey influence on batting hypothesis.

  9. Dispersal hazards of Pseudogymnoascus destructans by bats and human activity at hibernacula in summer

    USGS Publications Warehouse

    Ballmann, Anne; Torkelson, Miranda R.; Bohuski, Elizabeth A.; Russell, Robin E.; Blehert, David

    2017-01-01

    Bats occupying hibernacula during summer are exposed to Pseudogymnoascus destructans (Pd), the causative agent of white-nose syndrome (WNS), and may contribute to its dispersal. Furthermore, equipment and clothing exposed to cave environments are a potential source for human-assisted spread of Pd. To explore dispersal hazards for Pd during the nonhibernal season, we tested samples that were collected from bats, the environment, and equipment at hibernacula in the eastern US between 18 July–22 August 2012. Study sites included six hibernacula known to harbor bats with Pd with varying winter-count impacts from WNS and two hibernacula (control sites) without prior history of WNS. Nucleic acid from Pd was detected from wing-skin swabs or guano from 40 of 617 bats (7% prevalence), including males and females of five species at five sites where WNS had previously been confirmed as well as from one control site. Analysis of guano collected during summer demonstrated a higher apparent prevalence of Pd among bats (17%, 37/223) than did analysis of wing-skin swabs (1%, 4/617). Viable Pd cultured from wing skin (2%, 1/56) and low recapture rates at all sites suggested bats harboring Pd during summer could contribute to pathogen dispersal. Additionally, Pd DNA was detected on clothing and trapping equipment used inside and near hibernacula, and Pd was detected in sediment more readily than in swabs of hibernaculum walls. Statistically significant differences in environmental abundance of Pd were not detected among sites, but prevalence of Pd differed between sites and among bat species. Overall, bats using hibernacula in summer can harbor Pd on their skin and in their guano, and demonstration of Pd on clothing, traps, and other equipment used at hibernacula during summertime within the WNS-affected region indicates risk for pathogen dispersal during the nonhibernal season.

  10. Unexpected Functional Divergence of Bat Influenza Virus NS1 Proteins.

    PubMed

    Turkington, Hannah L; Juozapaitis, Mindaugas; Tsolakos, Nikos; Corrales-Aguilar, Eugenia; Schwemmle, Martin; Hale, Benjamin G

    2018-03-01

    Recently, two influenza A virus (FLUAV) genomes were identified in Central and South American bats. These sequences exhibit notable divergence from classical FLUAV counterparts, and functionally, bat FLUAV glycoproteins lack canonical receptor binding and destroying activity. Nevertheless, other features that distinguish these viruses from classical FLUAVs have yet to be explored. Here, we studied the viral nonstructural protein NS1, a virulence factor that modulates host signaling to promote efficient propagation. Like all FLUAV NS1 proteins, bat FLUAV NS1s bind double-stranded RNA and act as interferon antagonists. Unexpectedly, we found that bat FLUAV NS1s are unique in being unable to bind host p85β, a regulatory subunit of the cellular metabolism-regulating enzyme, phosphoinositide 3-kinase (PI3K). Furthermore, neither bat FLUAV NS1 alone nor infection with a chimeric bat FLUAV efficiently activates Akt, a PI3K effector. Structure-guided mutagenesis revealed that the bat FLUAV NS1-p85β interaction can be reengineered (in a strain-specific manner) by changing two to four NS1 residues (96L, 99M, 100I, and 145T), thereby creating a hydrophobic patch. Notably, ameliorated p85β-binding is insufficient for bat FLUAV NS1 to activate PI3K, and a chimeric bat FLUAV expressing NS1 with engineered hydrophobic patch mutations exhibits cell-type-dependent, but species-independent, propagation phenotypes. We hypothesize that bat FLUAV hijacking of PI3K in the natural bat host has been selected against, perhaps because genes in this metabolic pathway were differentially shaped by evolution to suit the unique energy use strategies of this flying mammal. These data expand our understanding of the enigmatic functional divergence between bat FLUAVs and classical mammalian and avian FLUAVs. IMPORTANCE The potential for novel influenza A viruses to establish infections in humans from animals is a source of continuous concern due to possible severe outbreaks or pandemics. The recent discovery of influenza A-like viruses in bats has raised questions over whether these entities could be a threat to humans. Understanding unique properties of the newly described bat influenza A-like viruses, such as their mechanisms to infect cells or how they manipulate host functions, is critical to assess their likelihood of causing disease. Here, we characterized the bat influenza A-like virus NS1 protein, a key virulence factor, and found unexpected functional divergence of this protein from counterparts in other influenza A viruses. Our study dissects the molecular changes required by bat influenza A-like virus NS1 to adopt classical influenza A virus properties and suggests consequences of bat influenza A-like virus infection, potential future evolutionary trajectories, and intriguing virus-host biology in bat species. Copyright © 2018 Turkington et al.

  11. Unexpected Functional Divergence of Bat Influenza Virus NS1 Proteins

    PubMed Central

    Turkington, Hannah L.; Juozapaitis, Mindaugas; Tsolakos, Nikos; Corrales-Aguilar, Eugenia; Schwemmle, Martin

    2017-01-01

    ABSTRACT Recently, two influenza A virus (FLUAV) genomes were identified in Central and South American bats. These sequences exhibit notable divergence from classical FLUAV counterparts, and functionally, bat FLUAV glycoproteins lack canonical receptor binding and destroying activity. Nevertheless, other features that distinguish these viruses from classical FLUAVs have yet to be explored. Here, we studied the viral nonstructural protein NS1, a virulence factor that modulates host signaling to promote efficient propagation. Like all FLUAV NS1 proteins, bat FLUAV NS1s bind double-stranded RNA and act as interferon antagonists. Unexpectedly, we found that bat FLUAV NS1s are unique in being unable to bind host p85β, a regulatory subunit of the cellular metabolism-regulating enzyme, phosphoinositide 3-kinase (PI3K). Furthermore, neither bat FLUAV NS1 alone nor infection with a chimeric bat FLUAV efficiently activates Akt, a PI3K effector. Structure-guided mutagenesis revealed that the bat FLUAV NS1-p85β interaction can be reengineered (in a strain-specific manner) by changing two to four NS1 residues (96L, 99M, 100I, and 145T), thereby creating a hydrophobic patch. Notably, ameliorated p85β-binding is insufficient for bat FLUAV NS1 to activate PI3K, and a chimeric bat FLUAV expressing NS1 with engineered hydrophobic patch mutations exhibits cell-type-dependent, but species-independent, propagation phenotypes. We hypothesize that bat FLUAV hijacking of PI3K in the natural bat host has been selected against, perhaps because genes in this metabolic pathway were differentially shaped by evolution to suit the unique energy use strategies of this flying mammal. These data expand our understanding of the enigmatic functional divergence between bat FLUAVs and classical mammalian and avian FLUAVs. IMPORTANCE The potential for novel influenza A viruses to establish infections in humans from animals is a source of continuous concern due to possible severe outbreaks or pandemics. The recent discovery of influenza A-like viruses in bats has raised questions over whether these entities could be a threat to humans. Understanding unique properties of the newly described bat influenza A-like viruses, such as their mechanisms to infect cells or how they manipulate host functions, is critical to assess their likelihood of causing disease. Here, we characterized the bat influenza A-like virus NS1 protein, a key virulence factor, and found unexpected functional divergence of this protein from counterparts in other influenza A viruses. Our study dissects the molecular changes required by bat influenza A-like virus NS1 to adopt classical influenza A virus properties and suggests consequences of bat influenza A-like virus infection, potential future evolutionary trajectories, and intriguing virus-host biology in bat species. PMID:29237829

  12. Bat Activity in a Forest Landscape of central Massachusetts

    Treesearch

    Robert T. Brooks; W. Mark Ford

    2005-01-01

    Nine species of bat are known to occur across the six New England a states, but most aspects of their natural history, such as foraging habitat use, are poorly understood. Recent published research has documented the importance of still-water habitats as foci of bat flight activity. To better understand and document habitat use in southern New England, we used the...

  13. DDT poisoning of big brown bats, Eptesicus fuscus, in Hamilton, Montana.

    PubMed

    Buchweitz, John P; Carson, Keri; Rebolloso, Sarah; Lehner, Andreas

    2018-06-01

    Dichlorodiphenyltrichloroethane (DDT) is an insecticidal organochlorine pesticide with; known potential for neurotoxic effects in wildlife. The United States Environmental Protection Agency (US EPA) registration for this pesticide has been cancelled and there are currently no federally active products that contain this ingredient in the U.S. We present a case of a colony of big brown bats (E. Fuscus) found dead in the attic roost of an administrative building; in the city of Hamilton, Montana from unknown cause. DDT and its metabolites; dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD) were detected in bat tissues by gas chromatography/mass spectrometry (GC-MS) and quantified by gas chromatography tandem quadrupole mass spectrometry (GC-MS/MS). Concentrations of 4081 ppm DDT and 890 ppm DDE wet weight were found in the brain of one bat and are the highest reported concentrations in such a mortality event to date. This case emphasizes the importance of testing wildlife mortalities against a comprehensive panel of toxicologic agents including persistent organic pollutants in the absence of other more common disease threats. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Analysis of Cathepsin and Furin Proteolytic Enzymes Involved in Viral Fusion Protein Activation in Cells of the Bat Reservoir Host

    PubMed Central

    El Najjar, Farah; Lampe, Levi; Baker, Michelle L.; Wang, Lin-Fa; Dutch, Rebecca Ellis

    2015-01-01

    Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing. PMID:25706132

  15. Transfer of Training from Virtual to Real Baseball Batting

    PubMed Central

    Gray, Rob

    2017-01-01

    The use of virtual environments (VE) for training perceptual-motors skills in sports continues to be a rapidly growing area. However, there is a dearth of research that has examined whether training in sports simulation transfers to the real task. In this study, the transfer of perceptual-motor skills trained in an adaptive baseball batting VE to real baseball performance was investigated. Eighty participants were assigned equally to groups undertaking adaptive hitting training in the VE, extra sessions of batting practice in the VE, extra sessions of real batting practice, and a control condition involving no additional training to the players’ regular practice. Training involved two 45 min sessions per week for 6 weeks. Performance on a batting test in the VE, in an on-field test of batting, and on a pitch recognition test was measured pre- and post-training. League batting statistics in the season following training and the highest level of competition reached in the following 5 years were also analyzed. For the majority of performance measures, the adaptive VE training group showed a significantly greater improvement from pre-post training as compared to the other groups. In addition, players in this group had superior batting statistics in league play and reached higher levels of competition. Training in a VE can be used to improve real, on-field performance especially when designers take advantage of simulation to provide training methods (e.g., adaptive training) that do not simply recreate the real training situation. PMID:29326627

  16. Serological evidence of arenavirus circulation among fruit bats in Trinidad.

    PubMed

    Malmlov, Ashley; Seetahal, Janine; Carrington, Christine; Ramkisson, Vernie; Foster, Jerome; Miazgowicz, Kerri L; Quackenbush, Sandra; Rovnak, Joel; Negrete, Oscar; Munster, Vincent; Schountz, Tony

    2017-01-01

    Tacaribe virus (TCRV) was isolated in the 1950s from artibeus bats captured on the island of Trinidad. The initial characterization of TCRV suggested that artibeus bats were natural reservoir hosts. However, nearly 60 years later experimental infections of Jamaican fruit bats (Artibeus jamaicensis) resulted in fatal disease or clearance, suggesting artibeus bats may not be a reservoir host. To further evaluate the TCRV reservoir host status of artibeus bats, we captured bats of six species in Trinidad for evidence of infection. Bats of all four fruigivorous species captured had antibodies to TCRV nucleocapsid, whereas none of the insectivore or nectarivore species did. Many flat-faced fruit-eating bats (A. planirostris) and great fruit-eating bats (A. literatus) were seropositive by ELISA and western blot to TCRV nucleocapsid antigen, as were two of four Seba's fruit bats (Carollia perspicillata) and two of three yellow-shouldered fruit bats (Sturnira lilium). Serum neutralization tests failed to detect neutralizing antibodies to TCRV from these bats. TCRV RNA was not detected in lung tissues or lung homogenates inoculated onto Vero cells. These data indicate that TCRV or a similar arenavirus continues to circulate among fruit bats of Trinidad but there was no evidence of persistent infection, suggesting artibeus bats are not reservoir hosts.

  17. Survey of bats on Columbia National Wildlife Refuge, Washington, December 2011-April 2012

    USGS Publications Warehouse

    Hagar, Joan C.; Manning, Tom; Barnett, Jenny

    2013-01-01

    Bats are diverse and abundant in many ecosystems worldwide. They perform important ecosystem functions, particularly by consuming large quantities of insects (Cleveland and others, 2006; Jones and others, 2009; Kuhn and others, 2011). The importance of bats to biodiversity and to ecosystem integrity has been overlooked in many regions, largely because the challenges of detecting and studying these small, nocturnal mammals have rendered a paucity of information on matters as basic as species distribution and natural history attributes. Recently, concern for bats has arisen in response to recognition of large-scale threats, such as white-nosed syndrome (WNS; Turner and others, 2009; Frick and others, 2010) and mortality at wind energy facilities (Arnett and others, 2008), factors that are causing unprecedented population declines of bats (Boyles and others, 2011). WNS is a fungal disease that has killed more than 1 million cave-hibernating bats in eastern North America since being discovered in New York State in 2006 (U.S. Fish and Wildlife Service, 2012). WNS has spread rapidly from northeastern U.S., and as of August 2012 has been confirmed as far west as eastern Missouri(U.S. Fish and Wildlife Service, 2013). Given the rapid spread of WNS, there is concern that the disease may soon affect western bat populations. Hibernating bats are particularly vulnerable to the effects of WNS (Blehert and others, 2009). Refuges in eastern Washington, including the Mid-Columbia River National Wildlife Refuge Complex (MCRNWRC) and Little Pend Oreille National Wildlife Refuge, support many potential hibernacula. Sixteen species of bats potentially occur on these refuges, including one federally listed species of concern (Townsend’s big-eared bat [Corynorhinus townsendii]; see table 1 for scientific names of bats), and 12 species that are of conservation concern in Washington and Oregon (table 1). However, little is known about bats on these refuges because few surveys have been done, and none have been done during winter. Refuge biologists are lacking even the most basic information, such as species presence, and location and status of hibernacula. In order to assess vulnerability and develop a strategy for management of WNS, refuge managers need to know where bats are hibernating, and which species are using each hibernaculum. The goal of this project was to provide information on the status of wintering bats to refuge biologists and managers in order to support decision-making that might minimize the threat of WNS in western bat populations. We conducted surveys of bat activity in winter and early spring as an initial step toward identifying bat species that may be over-wintering and locating potential hibernacula on these refuges. Our specific objectives were to identify bat species using the refuges, to identify areas of resident bat activity in autumn, winter, and early spring using acoustic bat detectors, and to try new methods for quick surveys of bat activity.

  18. Bardoxolone Methyl Prevents Fat Deposition and Inflammation in Brown Adipose Tissue and Enhances Sympathetic Activity in Mice Fed a High-Fat Diet

    PubMed Central

    Dinh, Chi H. L.; Szabo, Alexander; Yu, Yinghua; Camer, Danielle; Zhang, Qingsheng; Wang, Hongqin; Huang, Xu-Feng

    2015-01-01

    Obesity results in changes in brown adipose tissue (BAT) morphology, leading to fat deposition, inflammation, and alterations in sympathetic nerve activity. Bardoxolone methyl (BARD) has been extensively studied for the treatment of chronic diseases. We present for the first time the effects of oral BARD treatment on BAT morphology and associated changes in the brainstem. Three groups (n = 7) of C57BL/6J mice were fed either a high-fat diet (HFD), a high-fat diet supplemented with BARD (HFD/BARD), or a low-fat diet (LFD) for 21 weeks. BARD was administered daily in drinking water. Interscapular BAT, and ventrolateral medulla (VLM) and dorsal vagal complex (DVC) in the brainstem, were collected for analysis by histology, immunohistochemistry and Western blot. BARD prevented fat deposition in BAT, demonstrated by the decreased accumulation of lipid droplets. When administered BARD, HFD mice had lower numbers of F4/80 and CD11c macrophages in the BAT with an increased proportion of CD206 macrophages, suggesting an anti-inflammatory effect. BARD increased phosphorylation of tyrosine hydroxylase in BAT and VLM. In the VLM, BARD increased energy expenditure proteins, including beta 3-adrenergic receptor (β3-AR) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Overall, oral BARD prevented fat deposition and inflammation in BAT, and stimulated sympathetic nerve activity. PMID:26066016

  19. Bardoxolone Methyl Prevents Fat Deposition and Inflammation in Brown Adipose Tissue and Enhances Sympathetic Activity in Mice Fed a High-Fat Diet.

    PubMed

    Dinh, Chi H L; Szabo, Alexander; Yu, Yinghua; Camer, Danielle; Zhang, Qingsheng; Wang, Hongqin; Huang, Xu-Feng

    2015-06-09

    Obesity results in changes in brown adipose tissue (BAT) morphology, leading to fat deposition, inflammation, and alterations in sympathetic nerve activity. Bardoxolone methyl (BARD) has been extensively studied for the treatment of chronic diseases. We present for the first time the effects of oral BARD treatment on BAT morphology and associated changes in the brainstem. Three groups (n = 7) of C57BL/6J mice were fed either a high-fat diet (HFD), a high-fat diet supplemented with BARD (HFD/BARD), or a low-fat diet (LFD) for 21 weeks. BARD was administered daily in drinking water. Interscapular BAT, and ventrolateral medulla (VLM) and dorsal vagal complex (DVC) in the brainstem, were collected for analysis by histology, immunohistochemistry and Western blot. BARD prevented fat deposition in BAT, demonstrated by the decreased accumulation of lipid droplets. When administered BARD, HFD mice had lower numbers of F4/80 and CD11c macrophages in the BAT with an increased proportion of CD206 macrophages, suggesting an anti-inflammatory effect. BARD increased phosphorylation of tyrosine hydroxylase in BAT and VLM. In the VLM, BARD increased energy expenditure proteins, including beta 3-adrenergic receptor (β3-AR) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Overall, oral BARD prevented fat deposition and inflammation in BAT, and stimulated sympathetic nerve activity.

  20. Delayed Response and Biosonar Perception Explain Movement Coordination in Trawling Bats

    PubMed Central

    Giuggioli, Luca; McKetterick, Thomas J.; Holderied, Marc

    2015-01-01

    Animal coordinated movement interactions are commonly explained by assuming unspecified social forces of attraction, repulsion and alignment with parameters drawn from observed movement data. Here we propose and test a biologically realistic and quantifiable biosonar movement interaction mechanism for echolocating bats based on spatial perceptual bias, i.e. actual sound field, a reaction delay, and observed motor constraints in speed and acceleration. We found that foraging pairs of bats flying over a water surface swapped leader-follower roles and performed chases or coordinated manoeuvres by copying the heading a nearby individual has had up to 500 ms earlier. Our proposed mechanism based on the interplay between sensory-motor constraints and delayed alignment was able to recreate the observed spatial actor-reactor patterns. Remarkably, when we varied model parameters (response delay, hearing threshold and echolocation directionality) beyond those observed in nature, the spatio-temporal interaction patterns created by the model only recreated the observed interactions, i.e. chases, and best matched the observed spatial patterns for just those response delays, hearing thresholds and echolocation directionalities found to be used by bats. This supports the validity of our sensory ecology approach of movement coordination, where interacting bats localise each other by active echolocation rather than eavesdropping. PMID:25811627

  1. Effects of exercise on brown and beige adipocytes.

    PubMed

    Dewal, Revati S; Stanford, Kristin I

    2018-04-21

    Physical exercise leads to beneficial effects in numerous tissues and organ systems and offers protection against obesity and type 2 diabetes. Recent studies have investigated the role of exercise on brown adipose tissue (BAT) and white adipose tissue (WAT), and have indicated marked adaptations to each tissue with exercise. Studies investigating the effects of exercise on BAT have produced conflicting results, with some showing an increase in the thermogenic activity of BAT and some demonstrating a decrease in the thermogenic activity of BAT. Human studies have observed a down-regulation of BAT activity (measured by a reduction in glucose uptake) in response to exercise. In WAT, exercise decreases adipocyte size, alters gene expression, and increases mitochondrial activity. Transplantation of exercise-trained subcutaneous WAT (scWAT) improves whole-body metabolic health. In rodents, exercise also results in a beiging of scWAT. Thus, exercise-induced changes to adipose tissue may be part of the mechanism by which exercise improves metabolic health. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. Detection of group 1 coronaviruses in bats in North America

    USGS Publications Warehouse

    Dominguez, S.R.; O'Shea, T.J.; Oko, L.M.; Holmes, K.V.

    2007-01-01

    The epidemic of severe acute respiratory syndrome (SARS) was caused by a newly emerged coronavirus (SARS-CoV). Bats of several species in southern People's Republic of China harbor SARS-like CoVs and may be reservoir hosts for them. To determine whether bats in North America also harbor coronaviruses, we used reverse transcription-PCR to detect coronavirus RNA in bats. We found coronavirus RNA in 6 of 28 fecal specimens from bats of 2 of 7 species tested. The prevalence of viral RNA shedding was high: 17% in Eptesicus fuscus and 50% in Myotis occultus. Sequence analysis of a 440-bp amplicon in gene 1b showed that these Rocky Mountain bat coronaviruses formed 3 clusters in phylogenetic group 1 that were distinct from group 1 coronaviruses of Asian bats. Because of the potential for bat coronaviruses to cause disease in humans and animals, further surveillance and characterization of bat coronaviruses in North America are needed.

  3. Supraclavicular skin temperature as a measure of 18F-FDG uptake by BAT in human subjects.

    PubMed

    Boon, Mariëtte R; Bakker, Leontine E H; van der Linden, Rianne A D; Pereira Arias-Bouda, Lenka; Smit, Frits; Verberne, Hein J; van Marken Lichtenbelt, Wouter D; Jazet, Ingrid M; Rensen, Patrick C N

    2014-01-01

    Brown adipose tissue (BAT) has emerged as a novel player in energy homeostasis in humans and is considered a potential new target for combating obesity and related diseases. The current 'gold standard' for quantification of BAT volume and activity is cold-induced 18F-FDG uptake in BAT. However, use of this technique is limited by cost and radiation exposure. Given the fact that BAT is a thermogenic tissue, mainly located in the supraclavicular region, the aim of the current study was to investigate whether cold-induced supraclavicular skin temperature and core body temperature may be alternative markers of BAT activation in humans. BAT volume and activity were measured in 24 healthy lean adolescent males (mean age 24.1±0.8 years), using cold-induced 18F-FDG uptake with PET-CT. Core body temperature was measured continuously in the small intestine with use of an ingestible telemetric capsule and skin temperature was measured by eighteen wireless iButtons attached to the skin following ISO-defined locations. Proximal and distal (hand/feet) skin temperatures markedly decreased upon cold exposure, while supraclavicular skin temperature significantly increased (35.2±0.1 vs. 35.5±0.1°C, p = 0.001). Furthermore, cold-induced supraclavicular skin temperature positively correlated with both total (R2 = 0.28, P = 0.010) and clavicular BAT volume (R2 = 0.20, P = 0.030) and clavicular SUVmax (R2 = 0.27, P = 0.010), while core body temperature did not. Supraclavicular skin temperature as measured by iButtons may have predictive value for BAT detection in adult humans. This is highly desirable considering the increasing interest in pharmacological interventions to stimulate BAT in human subjects. NTR 2473.

  4. Bat assemblages in conservation areas of a metropolitan region in Southeastern Brazil, including an important karst habitat.

    PubMed

    Talamoni, S A; Coelho, D A; Dias-Silva, L H; Amaral, A S

    2013-05-01

    Species richness and abundance of bats were studied in four nature reserves, including a karst area which has many potential rocky shelters for bats, such as caves and rock crevices. The reserves were located in the greater Belo Horizonte metropolitan area, one of the most populated regions of Brazil, within the Atlantic Forest, and Cerrado (Brazilian savanna) ecological domains. Bats were sampled using mist-nets and, in the karst area, also by active searches in shelters. A total of 1,599 bats were captured representing 30 species belonging to four families. There was little similarity among the four chiropteran faunas. The greatest species richness was found in the karst area with 22 species recorded whereas richness estimates in the other areas indicated the need for further studies. Two hundred and sixty-five individuals of 14 species were captured from 56 shelters. Most of the shelters were frequently used for diurnal roosts, and all the bats found belonged to the Phyllostomidae, with the exception of Myotis nigricans (Vespertilionidae), Nyctinomops laticaudatus (Molossidae) and Peropteryx macrotis (Emballonuridae). The sanguinivorous Desmodus rotundus was the most common species in the shelters. The results of this study demonstrate the importance of maintaining multiple protected areas to ensure a representative fauna of bats in a region characterized by a vegetation transition zone and with intense economic activity and high environmental impact. This study also demonstrates the importance of rock shelters for maintaining local bat richness and the importance of active searches for bats in their diurnal roosts for a more thorough sampling of the bat fauna at a given locality.

  5. British American Tobacco's tactics during China's accession to the World Trade Organization

    PubMed Central

    Zhong, Fei; Yano, Eiji

    2007-01-01

    Background China entered the World Trade Organization (WTO) in 2001 after years of negotiations. As a WTO member, China had to reduce tariffs on imported cigarettes and remove non‐tariff barriers to allow foreign cigarettes to be more competitive in the Chinese market. Among foreign tobacco companies, British American Tobacco (BAT) was the most active lobbyist during China's WTO negotiations. Objective To review and analyse BAT's tactics and activities relating to China's entry into the WTO. Methods Internal tobacco industry documents were reviewed and are featured here. Industry documents were searched mainly on the website of BAT's Guildford Depository and other documents' websites. 528 documents were evaluated and 142 were determined to be relevant to China's entry into the WTO. Results BAT was extremely active during the progress of China's entry into the WTO. The company focused its lobbying efforts on two main players in the negotiations: the European Union (EU) and the US. Because of the negative moral and health issues related to tobacco, BAT did not seek public support from officials associated with the WTO negotiations. Instead, BAT lobbyists suggested that officials protect the interests of BAT by presenting the company's needs as similar to those of all European companies. During the negotiation process, BAT officials repeatedly spoke favourably of China's accession into the WTO, with the aim of presenting BAT as a facilitator in this process and of gaining preferential treatment from their Chinese competitor. Conclusions BAT's activities clearly suggest that tobacco companies place their own interests above public health interests. Today, China struggles with issues of tobacco control that are aggravated by the aggressive practices of transnational tobacco companies, tobacco‐tariff reductions and the huge number of smokers. For the tobacco‐control movement to progress in China, health advocates must understand how foreign tobacco companies have undermined anti‐tobacco activities by taking advantage of trade liberalisation policies. China should attach importance to public health and comprehensive tobacco‐control policies and guarantee strong protection measures from national and international tobacco interests supported by international trade agreements. PMID:17400952

  6. British American Tobacco's tactics during China's accession to the World Trade Organization.

    PubMed

    Zhong, Fei; Yano, Eiji

    2007-04-01

    China entered the World Trade Organization (WTO) in 2001 after years of negotiations. As a WTO member, China had to reduce tariffs on imported cigarettes and remove non-tariff barriers to allow foreign cigarettes to be more competitive in the Chinese market. Among foreign tobacco companies, British American Tobacco (BAT) was the most active lobbyist during China's WTO negotiations. To review and analyse BAT's tactics and activities relating to China's entry into the WTO. Internal tobacco industry documents were reviewed and are featured here. Industry documents were searched mainly on the website of BAT's Guildford Depository and other documents' websites. 528 documents were evaluated and 142 were determined to be relevant to China's entry into the WTO. BAT was extremely active during the progress of China's entry into the WTO. The company focused its lobbying efforts on two main players in the negotiations: the European Union (EU) and the US. Because of the negative moral and health issues related to tobacco, BAT did not seek public support from officials associated with the WTO negotiations. Instead, BAT lobbyists suggested that officials protect the interests of BAT by presenting the company's needs as similar to those of all European companies. During the negotiation process, BAT officials repeatedly spoke favourably of China's accession into the WTO, with the aim of presenting BAT as a facilitator in this process and of gaining preferential treatment from their Chinese competitor. BAT's activities clearly suggest that tobacco companies place their own interests above public health interests. Today, China struggles with issues of tobacco control that are aggravated by the aggressive practices of transnational tobacco companies, tobacco-tariff reductions and the huge number of smokers. For the tobacco-control movement to progress in China, health advocates must understand how foreign tobacco companies have undermined anti-tobacco activities by taking advantage of trade liberalisation policies. China should attach importance to public health and comprehensive tobacco-control policies and guarantee strong protection measures from national and international tobacco interests supported by international trade agreements.

  7. Barriers and benefits: implications of artificial night-lighting for the distribution of common bats in Britain and Ireland

    PubMed Central

    Mathews, Fiona; Roche, Niamh; Aughney, Tina; Jones, Nicholas; Day, Julie; Baker, James; Langton, Steve

    2015-01-01

    Artificial lighting is a particular problem for animals active at night. Approximately 69% of mammal species are nocturnal, and one-third of these are bats. Due to their extensive movements—both on a nightly basis to exploit ephemeral food supplies, and during migration between roosts—bats have an unusually high probability of encountering artificial light in the landscape. This paper reviews the impacts of lighting on bats and their prey, exploring the direct and indirect consequences of lighting intensity and spectral composition. In addition, new data from large-scale surveys involving more than 265 000 bat calls at more than 600 locations in two countries are presented, showing that prevalent street-lighting types are not generally linked with increased activity of common and widespread bat species. Such bats, which are important to ecosystem function, are generally considered ‘light-attracted’ and likely to benefit from the insect congregations that form at lights. Leisler's bat (Nyctalus leisleri) may be an exception, being more frequent in lit than dark transects. For common pipistrelle bats (Pipistrellus pipistrellus), lighting is negatively associated with their distribution on a landscape scale, but there may be local increases in habitats with good tree cover. Research is now needed on the impacts of sky glow and glare for bat navigation, and to explore the implications of lighting for habitat matrix permeability. PMID:25780236

  8. The effects of baroreflex activation therapy on blood pressure and sympathetic function in patients with refractory hypertension: the rationale and design of the Nordic BAT study.

    PubMed

    Gordin, Daniel; Fadl Elmula, Fadl Elmula M; Andersson, Bert; Gottsäter, Anders; Elf, Johan; Kahan, Thomas; Christensen, Kent Lodberg; Vikatmaa, Pirkka; Vikatmaa, Leena; Bastholm Olesen, Thomas; Groop, Per-Henrik; Olsen, Michael Hecht; Tikkanen, Ilkka

    2017-10-01

    To explore the effects of baroreflex activation therapy (BAT) on hypertension in patients with treatment resistant or refractory hypertension. This investigator-initiated randomized, double-blind, 1:1 parallel-design clinical trial will include 100 patients with refractory hypertension from 6 tertiary referral hypertension centers in the Nordic countries. A Barostim Neo System will be implanted and after 1 month patients will be randomized to either BAT for 16 months or continuous pharmacotherapy (BAT off) for 8 months followed by BAT for 8 months. A second randomization will take place after 16 months to BAT or BAT off for 3 months. Eligible patients have a daytime systolic ambulatory blood pressure (ABPM) of  ≥145 mm Hg, and/or a daytime diastolic ABPM of  ≥95 mm Hg after witnessed drug intake (including  ≥3 antihypertensive drugs, preferably including a diuretic). The primary end point is the reduction in 24-hour systolic ABPM by BAT at 8 months, as compared to pharmacotherapy. Secondary and tertiary endpoints are effects of BAT on home and office blood pressures, measures of indices of cardiac and vascular structure and function during follow-up, and safety. This academic initiative will increase the understanding of mechanisms and role of BAT in the refractory hypertension.

  9. Central GLP-1 receptor signalling accelerates plasma clearance of triacylglycerol and glucose by activating brown adipose tissue in mice.

    PubMed

    Kooijman, Sander; Wang, Yanan; Parlevliet, Edwin T; Boon, Mariëtte R; Edelschaap, David; Snaterse, Gido; Pijl, Hanno; Romijn, Johannes A; Rensen, Patrick C N

    2015-11-01

    Glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) agonism, used in the treatment of type 2 diabetes, has recently been shown to increase thermogenesis via the brain. As brown adipose tissue (BAT) produces heat by burning triacylglycerol (TG) and takes up glucose for de novo lipogenesis, the aim of this study was to evaluate the potential of chronic central GLP-1R activation by exendin-4 to facilitate clearance of lipids and glucose from the circulation by activating BAT. Lean and diet-induced obese (DIO) C57Bl/6J mice were used to explore the effect of a 5 day intracerebroventricular infusion of the GLP-1 analogue exendin-4 or vehicle on lipid and glucose uptake by BAT in both insulin-sensitive and insulin-resistant conditions. Central administration of exendin-4 in lean mice increased sympathetic outflow towards BAT and white adipose tissue (WAT), resulting in increased thermogenesis as evidenced by increased uncoupling protein 1 (UCP-1) protein levels and decreased lipid content, while the uptake of TG-derived fatty acids was increased in both BAT and WAT. Interestingly, in DIO mice, the effects on WAT were blunted, while exendin-4 still increased sympathetic outflow towards BAT and increased the uptake of plasma TG-derived fatty acids and glucose by BAT. These effects were accompanied by increased fat oxidation, lower plasma TG and glucose concentrations, and reduced body weight. Collectively, our results suggest that BAT activation may be a major contributor to the glucose- and TG-lowering effects of GLP-1R agonism.

  10. Brown adipose tissue activation by rutin ameliorates polycystic ovary syndrome in rat.

    PubMed

    Hu, Tao; Yuan, Xiaoxue; Ye, Rongcai; Zhou, Huiqiao; Lin, Jun; Zhang, Chuanhai; Zhang, Hanlin; Wei, Gang; Dong, Meng; Huang, Yuanyuan; Lim, Wonchung; Liu, Qingsong; Lee, Hyuek Jong; Jin, Wanzhu

    2017-09-01

    Polycystic ovary syndrome (PCOS) is a complex endocrinopathy that is characterized by anovulation, hyperandrogenism and polycystic ovary. However, there is a lack of effective treatment for PCOS at present because the pathologic cause of PCOS has not been elucidated. Although it has been known that brown adipose tissue transplantation ameliorates PCOS by activating endogenous BAT, BAT transplantation is not applicable in clinic. Therefore, BAT activation with natural compound could be an effective treatment strategy for PCOS patients. Here, we found that 3 weeks of rutin (a novel compound for BAT activation) treatment increased BAT activation, thereby it improved thermogenesis and systemic insulin sensitivity in dehydroepiandrosterone (DHEA)-induced PCOS rat. In addition, the expression levels of ovarian steroidogenic enzymes such as P450C17, aromatase, 3β-HSD, 17β-HSD and STAR were up-regulated in rutin-treated PCOS rat. Furthermore, acyclicity and the serum level of luteinizing hormone were normalized, and a large number of mature ovulated follicle with a reduction of cystic formation were observed in PCOS rat after rutin treatment. Finally, rutin treatment surprisingly improved fertility and birth defect in PCOS rat. Collectively, our results indicate that rutin treatment significantly improves systemic insulin resistance and ovarian malfunction in PCOS, and our findings in this study provide a novel therapeutic option for the treatment of PCOS by activating BAT with rutin. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Cloning, expression and antiviral activity of IFNγ from the Australian fruit bat, Pteropus alecto.

    PubMed

    Janardhana, Vijaya; Tachedjian, Mary; Crameri, Gary; Cowled, Chris; Wang, Lin-Fa; Baker, Michelle L

    2012-03-01

    Bats are natural reservoir hosts to a variety of viruses, many of which cause morbidity and mortality in other mammals. Currently there is a paucity of information regarding the nature of the immune response to viral infections in bats, partly due to a lack of appropriate bat specific reagents. IFNγ plays a key role in controlling viral replication and coordinating a response for long term control of viral infection. Here we describe the cloning and expression of IFNγ from the Australian flying fox, Pteropus alecto and the generation of mouse monoclonal and chicken egg yolk antibodies specific to bat IFNγ. Our results demonstrate that P. alecto IFNγ is conserved with IFNγ from other species and is induced in bat splenocytes following stimulation with T cell mitogens. P. alecto IFNγ has antiviral activity on Semliki forest virus in cell lines from P. alecto and the microbat, Tadarida brasiliensis. Additionally recombinant bat IFNγ was able to mitigate Hendra virus infection in P. alecto cells. These results provide the first evidence for an antiviral role for bat IFNγin vitro in addition to the application of important immunological reagents for further studies of bat antiviral immunity. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  12. Functional characterization of piggyBat from the bat Myotis lucifugus unveils an active mammalian DNA transposon.

    PubMed

    Mitra, Rupak; Li, Xianghong; Kapusta, Aurélie; Mayhew, David; Mitra, Robi D; Feschotte, Cédric; Craig, Nancy L

    2013-01-02

    A revelation of the genomic age has been the contributions of the mobile DNA segments called transposable elements to chromosome structure, function, and evolution in virtually all organisms. Substantial fractions of vertebrate genomes derive from transposable elements, being dominated by retroelements that move via RNA intermediates. Although many of these elements have been inactivated by mutation, several active retroelements remain. Vertebrate genomes also contain substantial quantities and a high diversity of cut-and-paste DNA transposons, but no active representative of this class has been identified in mammals. Here we show that a cut-and-paste element called piggyBat, which has recently invaded the genome of the little brown bat (Myotis lucifugus) and is a member of the piggyBac superfamily, is active in its native form in transposition assays in bat and human cultured cells, as well as in the yeast Saccharomyces cerevisiae. Our study suggests that some DNA transposons are still actively shaping some mammalian genomes and reveals an unprecedented opportunity to study the mechanism, regulation, and genomic impact of cut-and-paste transposition in a natural mammalian host.

  13. Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity

    PubMed Central

    Kooijman, Sander; van den Berg, Rosa; Ramkisoensing, Ashna; Boon, Mariëtte R.; Kuipers, Eline N.; Loef, Marieke; Zonneveld, Tom C. M.; Lucassen, Eliane A.; Sips, Hetty C. M.; Chatzispyrou, Iliana A.; Houtkooper, Riekelt H.; Meijer, Johanna H.; Coomans, Claudia P.; Biermasz, Nienke R.; Rensen, Patrick C. N.

    2015-01-01

    Disruption of circadian rhythmicity is associated with obesity and related disorders, including type 2 diabetes and cardiovascular disease. Specifically, prolonged artificial light exposure associates with obesity in humans, although the underlying mechanism is unclear. Here, we report that increasing the daily hours of light exposure increases body adiposity through attenuation of brown adipose tissue (BAT) activity, a major contributor of energy expenditure. Mice exposed to a prolonged day length of 16- and 24-h light, compared with regular 12-h light, showed increased adiposity without affecting food intake or locomotor activity. Mechanistically, we demonstrated that prolonged day length decreases sympathetic input into BAT and reduces β3-adrenergic intracellular signaling. Concomitantly, prolonging day length decreased the uptake of fatty acids from triglyceride-rich lipoproteins, as well as of glucose from plasma selectively by BAT. We conclude that impaired BAT activity is an important mediator in the association between disturbed circadian rhythm and adiposity, and anticipate that activation of BAT may overcome the adverse metabolic consequences of disturbed circadian rhythmicity. PMID:25964318

  14. Non-parametric entrainment by natural twilight in the microchiropteran bat, Hipposideros speoris inside a cave.

    PubMed

    Joshi, D S; Vanlalnghaka, C

    2005-01-01

    The study aimed to determine the influence of repeated natural dawn and dusk twilight pulses in entraining the circadian flight activity rhythm of the microchiropteran bat, Hipposideros speoris, free-running in constant darkness in a natural cave. The bats were exposed to repeated dawn or dusk twilight pulses at eight circadian phases. All bats exposed to dawn twilight pulses were entrained by advancing transients, and the stable entrainment was reached when the onset of activity occurred about 12 h before the lights-on of the pulses, irrespective of the initial phase at which the bats were exposed to twilight. All bats exposed to dusk twilight pulses, however, were entrained by delaying transients, and the stable entrainment was reached when the onset of activity occurred about 1.6 h after the lights-on of the pulses. The entrainment caused by dawn and dusk twilight pulses is discussed in the context of the postulated two photoreceptors: the short wavelength sensitive (S) photoreceptors mediating entrainment via dusk twilight, and the medium wavelength sensitive (M) photoreceptors mediating entrainment via dawn twilight.

  15. Thailand--lighting up a dark market: British American tobacco, sports sponsorship and the circumvention of legislation.

    PubMed

    MacKenzie, Ross; Collin, Jeff; Sriwongcharoen, Kobkul

    2007-01-01

    To examine how British American Tobacco (BAT) used sports sponsorship to circumvent restrictions on tobacco promotion in Thailand, both a key emerging market and a world leader in tobacco control. Analysis of previously confidential BAT company documents. Since its inception in 1987, BAT's sports sponsorship programme in Thailand has been politically sensitive and legally ambiguous. Given Thailand's ban on imported cigarettes, early events provided promotional support to smuggled brands. BAT's funding of local badminton, snooker, football and cricket tournaments generated substantial media coverage for its brands. After the General Agreement on Trade and Tariffs decision that obliged Thailand to open its cigarette market to imports, Thailand's 1992 tobacco control legislation established one of the world's most restrictive marketing environments. BAT's sponsorship strategy shifted to rallying and motorbike racing, using broadcasts of regional competitions to undermine national regulations. BAT sought to dominate individual sports and to shape media coverage to maximise brand awareness. An adversarial approach was adopted, testing the limits of legality and requiring active enforcement to secure compliance with legislation. The documents show the opportunities offered by sports sponsorship to tobacco companies amid increasing advertising restrictions. Before the 1992 tobacco control legislation, sponsored events in Thailand promoted international brands by combining global and local imagery. The subsequent strategy of "regionalisation as defensibility" reflected the capacity of international sport to transcend domestic restrictions. These transnational effects may be effectively dealt with via the Framework Convention on Tobacco Control, but will require the negotiation of a specific protocol.

  16. Migratory bats respond to artificial green light with positive phototaxis.

    PubMed

    Voigt, Christian C; Roeleke, Manuel; Marggraf, Lara; Pētersons, Gunārs; Voigt-Heucke, Silke L

    2017-01-01

    Artificial light at night is spreading worldwide at unprecedented rates, exposing strictly nocturnal animals such as bats to a novel anthropogenic stressor. Previous studies about the effect of artificial light on bats focused almost exclusively on non-migratory species, yet migratory animals such as birds are known to be largely affected by light pollution. Thus, we conducted a field experiment to evaluate if bat migration is affected by artificial light at night. In late summer, we presented artificial green light of 520 nm wavelength to bats that were migrating south along the shoreline of the Baltic Sea. Using a light on-off treatment, we observed that the activity of Pipistrellus nathusii and P. pygmaeus, the two most abundant migratory species at our site, increased by more than 50% in the light-on compared to the light-off treatment. We observed an increased number of feeding buzzes during the light-on compared to the light-off treatment for P. nathusii. However, feeding activity was low in general and did not increase disproportionately during the light-on treatment in relation to the overall echolocation call activity of bats. Further, P. nathusii were attracted towards the green light at a distance of about 23 m, which is way beyond the echolocation detection range for insects of Nathusius' bats. We therefore infer that migratory bats were not attracted to artificial green light because of high insect densities, but instead by positive phototaxis. We conclude that artificial light at night may potentially impact bat migration in a yet unrecognized way.

  17. Prediction of child performance on a parent-child behavioral approach test with animal phobic children.

    PubMed

    Ollendick, Thomas H; Lewis, Krystal M; Cowart, Maria J W; Davis, Thompson

    2012-07-01

    A host of factors including genetic influences, temperament characteristics, learning experiences, information processing biases, parental psychopathology, and specific parenting practices have been hypothesized to contribute to the development and expression of children's phobias. In the present study, the authors focused on parental psychopathology (phobic anxiety) and parenting behaviors (warmth, involvement) in the prediction of child performance on a behavioral approach test (BAT). All children (n = 44) experienced a phobia of animals and were clinic referred. The youth completed two BATs: the first alone and the second one with a parent present. Overall, performance was greater on the parent-present BAT (58% of steps completed) than on the child-alone BAT (38% of steps completed), although considerable variability was present. Performance on the parent-present BAT was associated with parental warmth and involvement but not parental phobic anxiety. Implications of these findings were discussed, and their implications for the use of behavioral analogues tests were explored.

  18. Bat white-nose syndrome: a real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructanstructans.

    USGS Publications Warehouse

    Muller, Laura K.; Lorch, Jeffrey M.; Lindner, Daniel L.; O'Connor, Michael; Gargas, Andrea; Blehert, David S.

    2013-01-01

    The fungus Geomyces destructans is the causative agent of white-nose syndrome (WNS), a disease that has killed millions of North American hibernating bats. We describe a real-time TaqMan PCR test that detects DNA from G. destructans by targeting a portion of the multicopy intergenic spacer region of the rRNA gene complex. The test is highly sensitive, consistently detecting as little as 3.3 fg of genomic DNA from G. destructans. The real-time PCR test specifically amplified genomic DNA from G. destructans but did not amplify target sequence from 54 closely related fungal isolates (including 43 Geomyces spp. isolates) associated with bats. The test was further qualified by analyzing DNA extracted from 91 bat wing skin samples, and PCR results matched histopathology findings. These data indicate the real-time TaqMan PCR method described herein is a sensitive, specific, and rapid test to detect DNA from G. destructans and provides a valuable tool for WNS diagnostics and research.

  19. The distribution of the bats of South Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menzel, Jennifer M.; Menzel, Michael A.; Ford, W. Mark

    Menzel. J.M., M.A. Menzel, W.M. Ford, J.W. Edwards, S.R. Sheffield, J.C. Kilgo, and M.S. Bunch. 2003. The distribution of the bats of South Carolina. Southeastern Nat. 2(1): 121-152. There is a paucity of information available about the distribution of bats in the southeastern United States. We synthesized records from museums, bat captures, and bats submitted for rabies testing to provide a more accurate and useful distribution for natural resource managers and those planning to research bats in South Carolina. Distributional information, including maps, collection localities within counties, and literature references, for all 14 species of bats that occur in Southmore » Carolina, has never been synthesized. To provide better information on the state's bat fauna, we have updated distributions for all species that occur in South Carolina.« less

  20. Nightly and yearly bat activity before and after white-nose syndrome on the Fernow Experimental Forest in West Virginia

    Treesearch

    Joshua B. Johnson; Jane L. Rodrigue; W. Mark Ford

    2013-01-01

    In the central Appalachians, conservation concern about bat communities and their population status has become increasingly more significant with the advent and spread of white-nose syndrome (WNS). However, managers often are hampered in their response to WNS by the lack of information on pre-WNS local distribution, abundance, or activity patterns for most bat species...

  1. Modeling perspectives on echolocation strategies inspired by bats flying in groups.

    PubMed

    Lin, Yuan; Abaid, Nicole

    2015-12-21

    Bats navigating with echolocation - which is a type of active sensing achieved by interpreting echoes resulting from self-generated ultrasonic pulses - exhibit unique behaviors during group flight. While bats may benefit from eavesdropping on their peers׳ echolocation, they also potentially suffer from confusion between their own and peers׳ pulses, caused by an effect called frequency jamming. This hardship of group flight is supported by experimental observations of bats simplifying their sound-scape by shifting their pulse frequencies or suppressing echolocation altogether. Here, we investigate eavesdropping and varying pulse emission rate from a modeling perspective to understand these behaviors׳ potential benefits and detriments. We define an agent-based model of echolocating bats avoiding collisions in a three-dimensional tunnel. Through simulation, we show that bats with reasonably accurate eavesdropping can reduce collisions compared to those neglecting information from peers. In large populations, bats minimize frequency jamming by decreasing pulse emission rate, while collision risk increases; conversely, increasing pulse emission rate minimizes collisions by allowing more sensing information generated per bat. These strategies offer benefits for both biological and engineered systems, since frequency jamming is a concern in systems using active sensing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. α2 Adrenergic receptor-mediated inhibition of thermogenesis.

    PubMed

    Madden, Christopher J; Tupone, Domenico; Cano, Georgina; Morrison, Shaun F

    2013-01-30

    α2 adrenergic receptor (α2-AR) agonists have been used as antihypertensive agents, in the management of drug withdrawal, and as sedative analgesics. Since α2-AR agonists also influence the regulation of body temperature, we explored their potential as antipyretic agents. This study delineates the central neural substrate for the inhibition of rat brown adipose tissue (BAT) and shivering thermogenesis by α2-AR agonists. Nanoinjection of the α2-AR agonist clonidine (1.2 nmol) into the rostral raphe pallidus area (rRPa) inhibited BAT sympathetic nerve activity (SNA) and BAT thermogenesis. Subsequent nanoinjection of the α2-AR antagonist idazoxan (6 nmol) into the rRPa reversed the clonidine-evoked inhibition of BAT SNA and BAT thermogenesis. Systemic administration of the α2-AR agonists dexmedetomidine (25 μg/kg, i.v.) and clonidine (100 μg/kg, i.v.) inhibited shivering EMGs, BAT SNA, and BAT thermogenesis, effects that were reversed by nanoinjection of idazoxan (6 nmol) into the rRPa. Dexmedetomidine (100 μg/kg, i.p.) prevented and reversed lipopolysaccharide-evoked (10 μg/kg, i.p.) thermogenesis in free-behaving rats. Cholera toxin subunit b retrograde tracing from rRPa and pseudorabies virus transynaptic retrograde tracing from BAT combined with immunohistochemistry for catecholaminergic biosynthetic enzymes revealed the ventrolateral medulla as the source of catecholaminergic input to the rRPa and demonstrated that these catecholaminergic neurons are synaptically connected to BAT. Photostimulation of ventrolateral medulla neurons expressing the PRSx8-ChR2-mCherry lentiviral vector inhibited BAT SNA via activation of α2-ARs in the rRPa. These results indicate a potent inhibition of BAT and shivering thermogenesis by α2-AR activation in the rRPa, and suggest a therapeutic potential of α2-AR agonists for reducing potentially lethal elevations in body temperature during excessive fever.

  3. HOST GALAXY PROPERTIES OF THE SWIFT BAT ULTRA HARD X-RAY SELECTED ACTIVE GALACTIC NUCLEUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) active galactic nucleus (AGN) with host galaxy optical data to date, with 185 nearby (z < 0.05), moderate luminosity AGNs from the Swift BAT sample. The BAT AGN host galaxies have intermediate optical colors (u - r and g - r) that are bluer than a comparison sample of inactive galaxies and optically selected AGNs from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BATmore » AGNs are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGNs in massive galaxies (log M{sub *} >10.5) have a 5-10 times higher rate of spiral morphologies than in SDSS AGNs or inactive galaxies. We also see enhanced far-infrared emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGNs are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGNs have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] {lambda}5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGNs in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as a whole. In agreement with the unified model of AGNs, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGNs suggest that host galaxy morphology is related to the activation and fueling of local AGN.« less

  4. Dietary Factors Promoting Brown and Beige Fat Development and Thermogenesis12

    PubMed Central

    Okla, Meshail; Kim, Jiyoung

    2017-01-01

    Brown adipose tissue (BAT) is a specialized fat tissue that has a high capacity to dissociate cellular respiration from ATP utilization, resulting in the release of stored energy as heat. Adult humans possess a substantial amount of BAT in the form of constitutively active brown fat or inducible beige fat. BAT activity in humans is inversely correlated with adiposity, blood glucose concentrations, and insulin sensitivity; this suggests that strategies aimed at BAT-mediated bioenergetics are an attractive therapeutic target in combating the continuing epidemic of obesity and diabetes. Despite advances in knowledge regarding the developmental lineage and transcriptional regulators of brown and beige adipocytes, our current understanding of environmental modifiers of BAT thermogenesis, such as diet, is limited. In this review, we consolidated the latest research on dietary molecules that may serve to promote BAT thermogenesis. Here, we summarized the thermogenic function of selected phytochemicals (e.g., capsaicin, resveratrol, curcumin, green tea, and berberine), dietary fatty acids (e.g., fish oil and conjugated linoleic acids), and all-trans retinoic acid, a vitamin A metabolite. We also delineated the proposed mechanisms whereby these dietary molecules promote BAT activity and/or browning of white adipose tissue. Characterizing thermogenic dietary factors may offer novel insight into revising nutritional intervention strategies aimed at obesity and diabetes prevention and management. PMID:28507012

  5. The Harvard Beat Assessment Test (H-BAT): a battery for assessing beat perception and production and their dissociation.

    PubMed

    Fujii, Shinya; Schlaug, Gottfried

    2013-01-01

    Humans have the abilities to perceive, produce, and synchronize with a musical beat, yet there are widespread individual differences. To investigate these abilities and to determine if a dissociation between beat perception and production exists, we developed the Harvard Beat Assessment Test (H-BAT), a new battery that assesses beat perception and production abilities. H-BAT consists of four subtests: (1) music tapping test (MTT), (2) beat saliency test (BST), (3) beat interval test (BIT), and (4) beat finding and interval test (BFIT). MTT measures the degree of tapping synchronization with the beat of music, whereas BST, BIT, and BFIT measure perception and production thresholds via psychophysical adaptive stair-case methods. We administered the H-BAT on thirty individuals and investigated the performance distribution across these individuals in each subtest. There was a wide distribution in individual abilities to tap in synchrony with the beat of music during the MTT. The degree of synchronization consistency was negatively correlated with thresholds in the BST, BIT, and BFIT: a lower degree of synchronization was associated with higher perception and production thresholds. H-BAT can be a useful tool in determining an individual's ability to perceive and produce a beat within a single session.

  6. The Harvard Beat Assessment Test (H-BAT): a battery for assessing beat perception and production and their dissociation

    PubMed Central

    Fujii, Shinya; Schlaug, Gottfried

    2013-01-01

    Humans have the abilities to perceive, produce, and synchronize with a musical beat, yet there are widespread individual differences. To investigate these abilities and to determine if a dissociation between beat perception and production exists, we developed the Harvard Beat Assessment Test (H-BAT), a new battery that assesses beat perception and production abilities. H-BAT consists of four subtests: (1) music tapping test (MTT), (2) beat saliency test (BST), (3) beat interval test (BIT), and (4) beat finding and interval test (BFIT). MTT measures the degree of tapping synchronization with the beat of music, whereas BST, BIT, and BFIT measure perception and production thresholds via psychophysical adaptive stair-case methods. We administered the H-BAT on thirty individuals and investigated the performance distribution across these individuals in each subtest. There was a wide distribution in individual abilities to tap in synchrony with the beat of music during the MTT. The degree of synchronization consistency was negatively correlated with thresholds in the BST, BIT, and BFIT: a lower degree of synchronization was associated with higher perception and production thresholds. H-BAT can be a useful tool in determining an individual's ability to perceive and produce a beat within a single session. PMID:24324421

  7. Dynamic Duos? Jamaican Fruit Bats (Artibeus jamaicensis) Do Not Show Prosocial Behavior in a Release Paradigm.

    PubMed

    Hoffmaster, Eric; Vonk, Jennifer

    2016-11-20

    Once thought to be uniquely human, prosocial behavior has been observed in a number of species, including vampire bats that engage in costly food-sharing. Another social chiropteran, Jamaican fruit bats ( Artibeus jamaicensis ), have been observed to engage in cooperative mate guarding, and thus might be expected to display prosocial behavior as well. However, frugivory and hematophagy diets may impose different selection pressures on prosocial preferences, given that prosocial preferences may depend upon cognitive abilities selected by different ecological constraints. Thus, we assessed whether Jamaican fruit bats would assist a conspecific in an escape paradigm in which a donor could opt to release a recipient from an enclosure. The test apparatus contained two compartments-one of which was equipped with a sensor that, once triggered, released the trap door of the adjacent compartment. Sixty-six exhaustive pairs of 12 bats were tested, with each bat in each role, twice when the recipient was present and twice when absent. Bats decreased their behavior of releasing the trapdoor in both conditions over time, decreasing the behavior slightly more rapidly in the recipient absent condition. Bats did not release the door more often when recipients were present, regardless of the recipient; thus, there was no clear evidence of prosocial behavior.

  8. Sympathetic Innervation of Cold-Activated Brown and White Fat in Lean Young Adults.

    PubMed

    Muzik, Otto; Mangner, Tom J; Leonard, William R; Kumar, Ajay; Granneman, James G

    2017-05-01

    Recent work in rodents has demonstrated that basal activity of the local sympathetic nervous system is critical for maintaining brown adipocyte phenotypes in classic brown adipose tissue (BAT) and white adipose tissue (WAT). Accordingly, we sought to assess the relationship between sympathetic innervation and cold-induced activation of BAT and WAT in lean young adults. Methods: Twenty adult lean normal subjects (10 women and 10 men; mean age ± SD, 23.3 ± 3.8 y; body mass index, 23.7 ± 2.5 kg/m 2 ) underwent 11 C-meta-hydroxyephedrin ( 11 C-HED) and 15 O-water PET imaging at rest and after exposure to mild cold (16°C) temperature. In addition, 18 F-FDG images were obtained during the cold stress condition to assess cold-activated BAT mass. Subjects were divided into 2 groups (high BAT and low BAT) based on the presence of 18 F-FDG tracer uptake. Blood flow and 11 C-HED retention index (RI, an indirect measure of sympathetic innervation) were calculated from dynamic PET scans at the location of BAT and WAT. Whole-body daily energy expenditure (DEE) during rest and cold stress was measured by indirect calorimetry. Tissue level oxygen consumption (MRO 2 ) was determined and used to calculate the contribution of cold-activated BAT and WAT to daily DEE. Results: 18 F-FDG uptake identified subjects with high and low levels of cold-activated BAT mass (high BAT, 96 ± 37 g; low-BAT, 16 ± 4 g). 11 C-HED RI under thermoneutral conditions significantly predicted 18 F-FDG uptake during cold stress ( R 2 = 0.68, P < 0.01). In contrast to the significant increase of 11 C-HED RI during cold in BAT (2.42 ± 0.85 vs. 3.43 ± 0.93, P = 0.02), cold exposure decreased the 11 C-HED RI in WAT (0.44 ± 0.22 vs. 0.41 ± 0.18) as a consequence of decreased perfusion (1.22 ± 0.20 vs. 1.12 ± 0.16 mL/100 g/min). The contribution of WAT to whole-body DEE was approximately 150 kcal/d at rest (149 ± 52 kcal/d), which decreased to approximately 100 kcal/d during cold (102 ± 47 kcal/d). Conclusion: The level of sympathetic innervation, as determined by 11 C-HED RI, can predict levels of functional BAT. Overall, blood flow is the best independent predictor of 11 C-HED RI and 18 F-FDG uptake across thermoneutral and cold conditions. In contrast to BAT, cold stress reduces blood flow and 18 F-FDG uptake in subcutaneous WAT, indicating that the physiologic response is to reduce heat loss rather than to generate heat. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  9. In vitro testing to diagnose venom allergy and monitor immunotherapy: a placebo-controlled, crossover trial.

    PubMed

    Brown, S G A; Haas, M A; Black, J A; Parameswaran, A; Woods, G M; Heddle, R J

    2004-05-01

    In people with a history of sting allergy, only prior reaction severity and older age are known to predict subsequent reaction risk. Furthermore, no diagnostic test other than a deliberate sting challenge has been found to identify people in whom venom immunotherapy (VIT) has been unsuccessful. We aimed to assess the utility of a number of in vitro tests to diagnose venom allergy and to monitor immunotherapy. During a double-blind randomized placebo-controlled crossover trial of Myrmecia pilosula ant VIT the following venom-specific tests were performed at enrolment, and at completion of treatment prior to a diagnostic sting challenge; leucocyte stimulation index (SI), IL-4 production, IgE RAST, histamine release test (HRT), leukotriene release test (LRT) and basophil activation test (BAT). Intradermal venom skin testing (VST) was also performed at trial entry. Only VST and HRT identified those at risk of sting anaphylaxis in the placebo group. Although IgE RAST, leucocyte SI and IL-4 production, LRT and BAT all correlated well with intradermal VSTs, they did not predict sting challenge outcome. After successful VIT, venom-induced leucocyte IL-4 production tended to fall, whereas IgE RAST increased and a natural decline in HRT reactivity was reversed. A confounding seasonal affect on laboratory results was suspected. The HRT warrants further assessment for diagnosis of venom allergy. Uninformative performance of the commercially available LRT and BAT tests may be due to pre-incubation with IL-3. None of the tests evaluated appear to be reliable markers of successful VIT.

  10. Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia.

    PubMed

    Lacroix, Audrey; Duong, Veasna; Hul, Vibol; San, Sorn; Davun, Hull; Omaliss, Keo; Chea, Sokha; Hassanin, Alexandre; Theppangna, Watthana; Silithammavong, Soubanh; Khammavong, Kongsy; Singhalath, Sinpakone; Greatorex, Zoe; Fine, Amanda E; Goldstein, Tracey; Olson, Sarah; Joly, Damien O; Keatts, Lucy; Dussart, Philippe; Afelt, Aneta; Frutos, Roger; Buchy, Philippe

    2017-03-01

    South-East Asia is a hot spot for emerging zoonotic diseases, and bats have been recognized as hosts for a large number of zoonotic viruses such as Severe Acute Respiratory Syndrome (SARS), responsible for acute respiratory syndrome outbreaks. Thus, it is important to expand our knowledge of the presence of viruses in bats which could represent a risk to humans. Coronaviruses (CoVs) have been reported in bat species from Thailand, China, Indonesia, Taiwan and the Philippines. However no such work was conducted in Cambodia or Lao PDR. Between 2010 and 2013, 1965 bats were therefore sampled at interfaces with human populations in these two countries. They were tested for the presence of coronavirus by consensus reverse transcription-PCR assay. A total of 93 samples (4.7%) from 17 genera of bats tested positive. Sequence analysis revealed the presence of potentially 37 and 56 coronavirus belonging to alpha-coronavirus (αCoV) and beta-CoV (βCoV), respectively. The βCoVs group is known to include some coronaviruses highly pathogenic to human, such as SARS-CoV and MERS-CoV. All coronavirus sequences generated from frugivorous bats (family Pteropodidae) (n=55) clustered with other bat βCoVs of lineage D, whereas one coronavirus from Pipistrellus coromandra fell in the lineage C of βCoVs which also includes the MERS-CoV. αCoVs were all detected in various genera of insectivorous bats and clustered with diverse bat αCoV sequences previously published. A closely related strain of PEDV, responsible for severe diarrhea in pigs (PEDV-CoV), was detected in 2 Myotis bats. We highlighted the presence and the high diversity of coronaviruses circulating in bats from Cambodia and Lao PDR. Three new bat genera and species were newly identified as host of coronaviruses, namely Macroglossus sp., Megaerops niphanae and Myotis horsfieldii. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Phosphoenolpyruvate carboxykinase 1 gene (Pck1) displays parallel evolution between Old World and New World fruit bats.

    PubMed

    Zhu, Lei; Yin, Qiuyuan; Irwin, David M; Zhang, Shuyi

    2015-01-01

    Bats are an ideal mammalian group for exploring adaptations to fasting due to their large variety of diets and because fasting is a regular part of their life cycle. Mammals fed on a carbohydrate-rich diet experience a rapid decrease in blood glucose levels during a fast, thus, the development of mechanisms to resist the consequences of regular fasts, experienced on a daily basis, must have been crucial in the evolution of frugivorous bats. Phosphoenolpyruvate carboxykinase 1 (PEPCK1, encoded by the Pck1 gene) is the rate-limiting enzyme in gluconeogenesis and is largely responsible for the maintenance of glucose homeostasis during fasting in fruit-eating bats. To test whether Pck1 has experienced adaptive evolution in frugivorous bats, we obtained Pck1 coding sequence from 20 species of bats, including five Old World fruit bats (OWFBs) (Pteropodidae) and two New World fruit bats (NWFBs) (Phyllostomidae). Our molecular evolutionary analyses of these sequences revealed that Pck1 was under purifying selection in both Old World and New World fruit bats with no evidence of positive selection detected in either ancestral branch leading to fruit bats. Interestingly, however, six specific amino acid substitutions were detected on the ancestral lineage of OWFBs. In addition, we found considerable evidence for parallel evolution, at the amino acid level, between the PEPCK1 sequences of Old World fruit bats and New World fruit bats. Test for parallel evolution showed that four parallel substitutions (Q276R, R503H, I558V and Q593R) were driven by natural selection. Our study provides evidence that Pck1 underwent parallel evolution between Old World and New World fruit bats, two lineages of mammals that feed on a carbohydrate-rich diet and experience regular periods of fasting as part of their life cycle.

  12. Phosphoenolpyruvate Carboxykinase 1 Gene (Pck1) Displays Parallel Evolution between Old World and New World Fruit Bats

    PubMed Central

    Irwin, David M.; Zhang, Shuyi

    2015-01-01

    Bats are an ideal mammalian group for exploring adaptations to fasting due to their large variety of diets and because fasting is a regular part of their life cycle. Mammals fed on a carbohydrate-rich diet experience a rapid decrease in blood glucose levels during a fast, thus, the development of mechanisms to resist the consequences of regular fasts, experienced on a daily basis, must have been crucial in the evolution of frugivorous bats. Phosphoenolpyruvate carboxykinase 1 (PEPCK1, encoded by the Pck1 gene) is the rate-limiting enzyme in gluconeogenesis and is largely responsible for the maintenance of glucose homeostasis during fasting in fruit-eating bats. To test whether Pck1 has experienced adaptive evolution in frugivorous bats, we obtained Pck1 coding sequence from 20 species of bats, including five Old World fruit bats (OWFBs) (Pteropodidae) and two New World fruit bats (NWFBs) (Phyllostomidae). Our molecular evolutionary analyses of these sequences revealed that Pck1 was under purifying selection in both Old World and New World fruit bats with no evidence of positive selection detected in either ancestral branch leading to fruit bats. Interestingly, however, six specific amino acid substitutions were detected on the ancestral lineage of OWFBs. In addition, we found considerable evidence for parallel evolution, at the amino acid level, between the PEPCK1 sequences of Old World fruit bats and New World fruit bats. Test for parallel evolution showed that four parallel substitutions (Q276R, R503H, I558V and Q593R) were driven by natural selection. Our study provides evidence that Pck1 underwent parallel evolution between Old World and New World fruit bats, two lineages of mammals that feed on a carbohydrate-rich diet and experience regular periods of fasting as part of their life cycle. PMID:25807515

  13. Size Constancy in Bat Biosonar? Perceptual Interaction of Object Aperture and Distance

    PubMed Central

    Heinrich, Melina; Wiegrebe, Lutz

    2013-01-01

    Perception and encoding of object size is an important feature of sensory systems. In the visual system object size is encoded by the visual angle (visual aperture) on the retina, but the aperture depends on the distance of the object. As object distance is not unambiguously encoded in the visual system, higher computational mechanisms are needed. This phenomenon is termed “size constancy”. It is assumed to reflect an automatic re-scaling of visual aperture with perceived object distance. Recently, it was found that in echolocating bats, the ‘sonar aperture’, i.e., the range of angles from which sound is reflected from an object back to the bat, is unambiguously perceived and neurally encoded. Moreover, it is well known that object distance is accurately perceived and explicitly encoded in bat sonar. Here, we addressed size constancy in bat biosonar, recruiting virtual-object techniques. Bats of the species Phyllostomus discolor learned to discriminate two simple virtual objects that only differed in sonar aperture. Upon successful discrimination, test trials were randomly interspersed using virtual objects that differed in both aperture and distance. It was tested whether the bats spontaneously assigned absolute width information to these objects by combining distance and aperture. The results showed that while the isolated perceptual cues encoding object width, aperture, and distance were all perceptually well resolved by the bats, the animals did not assign absolute width information to the test objects. This lack of sonar size constancy may result from the bats relying on different modalities to extract size information at different distances. Alternatively, it is conceivable that familiarity with a behaviorally relevant, conspicuous object is required for sonar size constancy, as it has been argued for visual size constancy. Based on the current data, it appears that size constancy is not necessarily an essential feature of sonar perception in bats. PMID:23630598

  14. Size constancy in bat biosonar? Perceptual interaction of object aperture and distance.

    PubMed

    Heinrich, Melina; Wiegrebe, Lutz

    2013-01-01

    Perception and encoding of object size is an important feature of sensory systems. In the visual system object size is encoded by the visual angle (visual aperture) on the retina, but the aperture depends on the distance of the object. As object distance is not unambiguously encoded in the visual system, higher computational mechanisms are needed. This phenomenon is termed "size constancy". It is assumed to reflect an automatic re-scaling of visual aperture with perceived object distance. Recently, it was found that in echolocating bats, the 'sonar aperture', i.e., the range of angles from which sound is reflected from an object back to the bat, is unambiguously perceived and neurally encoded. Moreover, it is well known that object distance is accurately perceived and explicitly encoded in bat sonar. Here, we addressed size constancy in bat biosonar, recruiting virtual-object techniques. Bats of the species Phyllostomus discolor learned to discriminate two simple virtual objects that only differed in sonar aperture. Upon successful discrimination, test trials were randomly interspersed using virtual objects that differed in both aperture and distance. It was tested whether the bats spontaneously assigned absolute width information to these objects by combining distance and aperture. The results showed that while the isolated perceptual cues encoding object width, aperture, and distance were all perceptually well resolved by the bats, the animals did not assign absolute width information to the test objects. This lack of sonar size constancy may result from the bats relying on different modalities to extract size information at different distances. Alternatively, it is conceivable that familiarity with a behaviorally relevant, conspicuous object is required for sonar size constancy, as it has been argued for visual size constancy. Based on the current data, it appears that size constancy is not necessarily an essential feature of sonar perception in bats.

  15. Acute effects of various weighted bat warm-up protocols on bat velocity.

    PubMed

    Reyes, G Francis; Dolny, Dennis

    2009-10-01

    Although research has provided evidence of increased muscular performance following a facilitation set of resistance exercise, this has not been established for use prior to measuring baseball bat velocity. The purpose of this study was to determine the effectiveness of selected weighted bat warm-up protocols to enhance bat velocity in collegiate baseball players. Nineteen collegiate baseball players (age = 20.15 +/- 1.46 years) were tested for upper-body strength by a 3-repetition maximum (RM) bench press (mean = 97.98 +/- 14.54 kg) and mean bat velocity. Nine weighted bat warm-up protocols, utilizing 3 weighted bats (light = 794 g; standard = 850 g; heavy = 1,531 g) were swung in 3 sets of 6 repetitions in different orders. A control trial involved the warm-up protocol utilizing only the standard bat. Pearson product correlation revealed a significant relationship between 3RM strength and pretest bat velocity (r = 0.51, p = 0.01). Repeated measures analysis of variance (ANOVA) revealed no significant treatment effects of warm-up protocol on bat velocity. However, the order of standard, light, heavy bat sequence resulted in the greatest increase in bat velocity (+6.03%). These results suggest that upper-body muscle strength influences bat velocity. It appears that the standard, light, heavy warm-up order may provide the greatest benefit to increase subsequent bat velocity and may warrant use in game situations.

  16. Bat Rabies in Guatemala

    PubMed Central

    Ellison, James A.; Gilbert, Amy T.; Recuenco, Sergio; Moran, David; Alvarez, Danilo A.; Kuzmina, Natalia; Garcia, Daniel L.; Peruski, Leonard F.; Mendonça, Mary T.; Lindblade, Kim A.; Rupprecht, Charles E.

    2014-01-01

    Rabies in bats is considered enzootic throughout the New World, but few comparative data are available for most countries in the region. As part of a larger pathogen detection program, enhanced bat rabies surveillance was conducted in Guatemala, between 2009 and 2011. A total of 672 bats of 31 species were sampled and tested for rabies. The prevalence of rabies virus (RABV) detection among all collected bats was low (0.3%). Viral antigens were detected and infectious virus was isolated from the brains of two common vampire bats (Desmodus rotundus). RABV was also isolated from oral swabs, lungs and kidneys of both bats, whereas viral RNA was detected in all of the tissues examined by hemi-nested RT-PCR except for the liver of one bat. Sequencing of the nucleoprotein gene showed that both viruses were 100% identical, whereas sequencing of the glycoprotein gene revealed one non-synonymous substitution (302T,S). The two vampire bat RABV isolates in this study were phylogenetically related to viruses associated with vampire bats in the eastern states of Mexico and El Salvador. Additionally, 7% of sera collected from 398 bats demonstrated RABV neutralizing antibody. The proportion of seropositive bats varied significantly across trophic guilds, suggestive of complex intraspecific compartmentalization of RABV perpetuation. PMID:25080103

  17. Bat Response to Differing Fire Severity in Mixed-Conifer Forest California, USA

    PubMed Central

    Heady, Paul A.; Hayes, John P.; Frick, Winifred F.

    2013-01-01

    Wildlife response to natural disturbances such as fire is of conservation concern to managers, policy makers, and scientists, yet information is scant beyond a few well-studied groups (e.g., birds, small mammals). We examined the effects of wildfire severity on bats, a taxon of high conservation concern, at both the stand (<1 ha) and landscape scale in response to the 2002 McNally fire in the Sierra Nevada region of California, USA. One year after fire, we conducted surveys of echolocation activity at 14 survey locations, stratified in riparian and upland habitat, in mixed-conifer forest habitats spanning three levels of burn severity: unburned, moderate, and high. Bat activity in burned areas was either equivalent or higher than in unburned stands for all six phonic groups measured, with four groups having significantly greater activity in at least one burn severity level. Evidence of differentiation between fire severities was observed with some Myotis species having higher levels of activity in stands of high-severity burn. Larger-bodied bats, typically adapted to more open habitat, showed no response to fire. We found differential use of riparian and upland habitats among the phonic groups, yet no interaction of habitat type by fire severity was found. Extent of high-severity fire damage in the landscape had no effect on activity of bats in unburned sites suggesting no landscape effect of fire on foraging site selection and emphasizing stand-scale conditions driving bat activity. Results from this fire in mixed-conifer forests of California suggest that bats are resilient to landscape-scale fire and that some species are preferentially selecting burned areas for foraging, perhaps facilitated by reduced clutter and increased post-fire availability of prey and roosts. PMID:23483936

  18. Chemical ecology of fruit bat foraging behavior in relation to the fruit odors of two species of paleotropical bat-dispersed figs (Ficus hispida and Ficus scortechinii).

    PubMed

    Hodgkison, Robert; Ayasse, Manfred; Kalko, Elisabeth K V; Häberlein, Christopher; Schulz, Stefan; Mustapha, Wan Aida Wan; Zubaid, Akbar; Kunz, Thomas H

    2007-11-01

    We investigated the fruit odors of two bat-dispersed fig species in the Paleotropics, in relation to the foraging behavior of fruit bats, to test the following hypotheses: 1) fruit odor plays a critical role for detection and selection of ripe figs by fruit bats; 2) bat-dispersed fig species are characterized by the same, or similar, chemical compounds; and 3) total scent production, in bat-dispersed figs, increases when fruits ripen. We performed bioassays to test the effect of both natural and synthetic fig fruit odors on the foraging behavior of the short-nosed fruit bat (Cynopterus brachyotis)-an important disperser of figs within the study area. Fruit bats responded to both visual and chemical (olfactory) cues when foraging for figs. However, the strongest foraging reaction that resulted in a landing or feeding attempt was almost exclusively associated with the presence of a ripe fruit odor-either in combination with visual cues or when presented alone. Fruit bats also used fruit odors to distinguish between ripe and unripe fruits. By using gas chromatography (GC) and GC/mass spectrometry (MS), a total of 16 main compounds were identified in the ripe fruit odor of Ficus hispida and 13 in the ripe fruit odor of Ficus scortechinii-including alcohols, ketones, esters, and two terpenes. Additional compounds were also recorded in F. hispida, but not identified-four of which also occurred in F. scortechinii. Total scent production increased in both species when fruits ripened. Both natural and synthetic fruit odors resulted in feeding attempts by bats, with no feeding attempts elicited by unscented controls. Reaction rates to natural fruit odors were higher than those to synthetic blends.

  19. Brown Adipose Tissue Improves Whole-Body Glucose Homeostasis and Insulin Sensitivity in Humans

    PubMed Central

    Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Porter, Craig; Annamalai, Palam; Enerbäck, Sven; Lidell, Martin E.; Saraf, Manish K.; Labbe, Sebastien M.; Hurren, Nicholas M.; Yfanti, Christina; Chao, Tony; Andersen, Clark R.; Cesani, Fernando; Hawkins, Hal

    2014-01-01

    Brown adipose tissue (BAT) has attracted scientific interest as an antidiabetic tissue owing to its ability to dissipate energy as heat. Despite a plethora of data concerning the role of BAT in glucose metabolism in rodents, the role of BAT (if any) in glucose metabolism in humans remains unclear. To investigate whether BAT activation alters whole-body glucose homeostasis and insulin sensitivity in humans, we studied seven BAT-positive (BAT+) men and five BAT-negative (BAT−) men under thermoneutral conditions and after prolonged (5–8 h) cold exposure (CE). The two groups were similar in age, BMI, and adiposity. CE significantly increased resting energy expenditure, whole-body glucose disposal, plasma glucose oxidation, and insulin sensitivity in the BAT+ group only. These results demonstrate a physiologically significant role of BAT in whole-body energy expenditure, glucose homeostasis, and insulin sensitivity in humans, and support the notion that BAT may function as an antidiabetic tissue in humans. PMID:25056438

  20. Variation in bat detections due to detector orientation in a forest.

    Treesearch

    Theodore J. Weller; Zabel Cynthia J.

    2002-01-01

    Bat detectors are widely used to compare bat activity among habitats. We placed 8 Anabat II detectors at 2 heights. 3 directions and 2 angles with respect to horizontal to evaluate the effect of detector orientation on the number of bat detections received. The orientation receiving the maximum number of detections had 70% more detections than the mean of the 7...

  1. Patterns of acoustical activity of bats prior to and following white-nose syndrome occurrence

    Treesearch

    W.M. Ford; E.R. Britzke; C.A. Dobony; J.L. Rodrigue; J.B. Johnson

    2011-01-01

    White-nose Syndrome (WNS), a wildlife health concern that has decimated cave-hibernating bat populations in eastern North America since 2006, began affecting source-caves for summer bat populations at Fort Drum, a U.S. Army installation in New York in the winter of 2007-2008. As regional die-offs of bats became evident, and Fort Drum's known populations began...

  2. Notes on the Diet of Reproductively Active Male Rafinesque's Big Eared Bats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menzel, M.A.; Carter, T.C.; Menzel, J.M.

    Diet examination through the use of fecal samples, of five reproductively active male Rafinesque's big-eared bats from the Upper Coastal Plain of South Carolina during August and September 1999. Diets of these individuals in upland pine stands were similar to diets of Rafinesque's big-eared bats in bottomland and upland hardwood habitats. Although fecal samples had three insect orders, the diet consisted primarily of lepidopterans.

  3. Indomethacin Enhances Brown Fat Activity.

    PubMed

    Hao, Lei; Kearns, Jamie; Scott, Sheyenne; Wu, Dayong; Kodani, Sean D; Morisseau, Christophe; Hammock, Bruce D; Sun, Xiaocun; Zhao, Ling; Wang, Shu

    2018-06-01

    Indomethacin, a nonsteroidal anti-inflammatory drug, has been shown to induce white adipocyte differentiation; however, its roles in brown adipocyte differentiation and activation in brown adipose tissue (BAT) and obesity are unknown. To address this issue, we treated mouse brown preadipocytes with different doses of indomethacin, and delivered indomethacin to interscapular BAT (iBAT) of obese mice using implanted osmotic pumps. Indomethacin dose dependently increased brown preadipocyte differentiation and upregulated both mRNA and protein expression of uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor (PPAR) γ coactivator 1-alpha. The mechanistic study showed that indomethacin significantly activated the reporter driven by the PPAR response element, indicating that indomethacin may work as a PPAR γ agonist in this cell line. Consistently, indomethacin significantly decreased iBAT mass and fasting blood glucose levels in high-fat diet-induced obesity (DIO) mice. Histologic analysis showed that brown adipocytes of indomethacin-treated mice contained smaller lipid droplets compared with control mice, suggesting that indomethacin alleviated the whitening of BAT induced by the high-fat diet. Moreover, indomethacin significantly increased UCP1 mRNA expression in iBAT. Taken together, this study indicates that indomethacin can promote mouse brown adipocyte differentiation, and might increase brown fat and glucose oxidation capacity in DIO mice. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  4. The BatR/BatS Two-Component Regulatory System Controls the Adaptive Response of Bartonella henselae during Human Endothelial Cell Infection ▿ † ‡

    PubMed Central

    Quebatte, Maxime; Dehio, Michaela; Tropel, David; Basler, Andrea; Toller, Isabella; Raddatz, Guenter; Engel, Philipp; Huser, Sonja; Schein, Hermine; Lindroos, Hillevi L.; Andersson, Siv G. E.; Dehio, Christoph

    2010-01-01

    Here, we report the first comprehensive study of Bartonella henselae gene expression during infection of human endothelial cells. Expression of the main cluster of upregulated genes, comprising the VirB type IV secretion system and its secreted protein substrates, is shown to be under the positive control of the transcriptional regulator BatR. We demonstrate binding of BatR to the promoters of the virB operon and a substrate-encoding gene and provide biochemical evidence that BatR and BatS constitute a functional two-component regulatory system. Moreover, in contrast to the acid-inducible (pH 5.5) homologs ChvG/ChvI of Agrobacterium tumefaciens, BatR/BatS are optimally activated at the physiological pH of blood (pH 7.4). By conservation analysis of the BatR regulon, we show that BatR/BatS are uniquely adapted to upregulate a genus-specific virulence regulon during hemotropic infection in mammals. Thus, we propose that BatR/BatS two-component system homologs represent vertically inherited pH sensors that control the expression of horizontally transmitted gene sets critical for the diverse host-associated life styles of the alphaproteobacteria. PMID:20418395

  5. Repeated detection of European bat lyssavirus type 2 in dead bats found at a single roost site in the UK.

    PubMed

    Banyard, Ashley C; Johnson, N; Voller, K; Hicks, D; Nunez, A; Hartley, M; Fooks, A R

    2009-01-01

    In August 2007, European bat lyssavirus type 2 (EBLV-2) was isolated from a Daubenton's bat found at Stokesay Castle. In September 2008, another bat from the same vicinity of Stokesay Castle also tested positive for EBLV-2. This is the first occurrence of repeated detection of EBLV-2 from a single site. Here, we report the detection of low levels of viral RNA in various bat organs by qRT-PCR and detection of viral antigen by immunohistochemistry. We also report sequence data from both cases and compare data with those derived from other EBLV-2 isolations in the UK.

  6. Refinement of Scoring Procedures for the Basic Attributes Test (BAT) Battery

    DTIC Science & Technology

    1993-03-01

    see Carretta, 1991). Research on the BAT summary scores has shown that some of them (a) are significantly positively skewed and platykurtic , (b) contain...for positively skewed and platykurtic data distributions, and those that were applied here to the BAT data, are the square-root and natural logarithm

  7. Evidence for an Ancestral Association of Human Coronavirus 229E with Bats

    PubMed Central

    Corman, Victor Max; Baldwin, Heather J.; Tateno, Adriana Fumie; Zerbinati, Rodrigo Melim; Annan, Augustina; Owusu, Michael; Nkrumah, Evans Ewald; Maganga, Gael Darren; Oppong, Samuel; Adu-Sarkodie, Yaw; Vallo, Peter; da Silva Filho, Luiz Vicente Ribeiro Ferreira; Leroy, Eric M.; Thiel, Volker; van der Hoek, Lia; Poon, Leo L. M.; Tschapka, Marco

    2015-01-01

    ABSTRACT We previously showed that close relatives of human coronavirus 229E (HCoV-229E) exist in African bats. The small sample and limited genomic characterizations have prevented further analyses so far. Here, we tested 2,087 fecal specimens from 11 bat species sampled in Ghana for HCoV-229E-related viruses by reverse transcription-PCR (RT-PCR). Only hipposiderid bats tested positive. To compare the genetic diversity of bat viruses and HCoV-229E, we tested historical isolates and diagnostic specimens sampled globally over 10 years. Bat viruses were 5- and 6-fold more diversified than HCoV-229E in the RNA-dependent RNA polymerase (RdRp) and spike genes. In phylogenetic analyses, HCoV-229E strains were monophyletic and not intermixed with animal viruses. Bat viruses formed three large clades in close and more distant sister relationships. A recently described 229E-related alpaca virus occupied an intermediate phylogenetic position between bat and human viruses. According to taxonomic criteria, human, alpaca, and bat viruses form a single CoV species showing evidence for multiple recombination events. HCoV-229E and the alpaca virus showed a major deletion in the spike S1 region compared to all bat viruses. Analyses of four full genomes from 229E-related bat CoVs revealed an eighth open reading frame (ORF8) located at the genomic 3′ end. ORF8 also existed in the 229E-related alpaca virus. Reanalysis of HCoV-229E sequences showed a conserved transcription regulatory sequence preceding remnants of this ORF, suggesting its loss after acquisition of a 229E-related CoV by humans. These data suggested an evolutionary origin of 229E-related CoVs in hipposiderid bats, hypothetically with camelids as intermediate hosts preceding the establishment of HCoV-229E. IMPORTANCE The ancestral origins of major human coronaviruses (HCoVs) likely involve bat hosts. Here, we provide conclusive genetic evidence for an evolutionary origin of the common cold virus HCoV-229E in hipposiderid bats by analyzing a large sample of African bats and characterizing several bat viruses on a full-genome level. Our evolutionary analyses show that animal and human viruses are genetically closely related, can exchange genetic material, and form a single viral species. We show that the putative host switches leading to the formation of HCoV-229E were accompanied by major genomic changes, including deletions in the viral spike glycoprotein gene and loss of an open reading frame. We reanalyze a previously described genetically related alpaca virus and discuss the role of camelids as potential intermediate hosts between bat and human viruses. The evolutionary history of HCoV-229E likely shares important characteristics with that of the recently emerged highly pathogenic Middle East respiratory syndrome (MERS) coronavirus. PMID:26378164

  8. Younger vampire bats (Desmodus rotundus) are more likely than adults to explore novel objects.

    PubMed

    Carter, Gerald G; Forss, Sofia; Page, Rachel A; Ratcliffe, John M

    2018-01-01

    The effects of age on neophobia and exploration are best described in birds and primates, and broader comparisons require reports from other taxa. Here we present data showing age-dependent exploration in a long-lived social species, the common vampire bat (Desmodus rotundus). A previous study found that vampire bats regurgitated food to partners trapped in a cage. Interestingly, while only a few adult bats visited the trapped bat, in every trial all or most of the eight young males in the colony would visit the trapped bat without feeding it. To test whether this behavioral difference resulted from age class differences in exploration, we compared responses of the bats to a trapped conspecific versus an inanimate novel object. Some adults and young showed interest in trapped conspecifics, but only the young males explored the novel objects. Additional novel object tests in a second captive colony showed that higher rates of novel object exploration were shown by young of both sexes. Our results corroborate past findings from other mammals and birds that age predicts exploration. If age-dependent exploration is indeed adaptive, then the role of age as a predictor of exploration tendency should depend on species-specific life history traits. Finally, because younger vampire bats also appear to have higher exposure to pathogens such as rabies virus, there may be implications for pathogen transmission if younger and more exploratory vampire bats are more likely to feed on novel hosts.

  9. Thyroid hormone regulation of Sirtuin 1 expression and implications to integrated responses in fasted mice.

    PubMed

    Cordeiro, Aline; de Souza, Luana Lopes; Oliveira, Lorraine Soares; Faustino, Larissa Costa; Santiago, Letícia Aragão; Bloise, Flavia Fonseca; Ortiga-Carvalho, Tania Maria; Almeida, Norma Aparecida Dos Santos; Pazos-Moura, Carmen Cabanelas

    2013-02-01

    Sirtuin 1 (SIRT1), a NAD(+)-dependent deacetylase, has been connected to beneficial effects elicited by calorie restriction. Physiological adaptation to starvation requires higher activity of SIRT1 and also the suppression of thyroid hormone (TH) action to achieve energy conservation. Here, we tested the hypothesis that those two events are correlated and that TH may be a regulator of SIRT1 expression. Forty-eight-hour fasting mice exhibited reduced serum TH and increased SIRT1 protein content in liver and brown adipose tissue (BAT), and physiological thyroxine replacement prevented or attenuated the increment of SIRT1 in liver and BAT of fasted mice. Hypothyroid mice exhibited increased liver SIRT1 protein, while hyperthyroid ones showed decreased SIRT1 in liver and BAT. In the liver, decreased protein is accompanied by reduced SIRT1 activity and no alteration in its mRNA. Hyperthyroid and hypothyroid mice exhibited increases and decreases in food intake and body weight gain respectively. Food-restricted hyperthyroid animals (pair-fed to euthyroid group) exhibited liver and BAT SIRT1 protein levels intermediary between euthyroid and hyperthyroid mice fed ad libitum. Mice with TH resistance at the liver presented increased hepatic SIRT1 protein and activity, with no alteration in Sirt1 mRNA. These results suggest that TH decreases SIRT1 protein, directly and indirectly, via food ingestion control and, in the liver, this reduction involves TRβ. The SIRT1 reduction induced by TH has important implication to integrated metabolic responses to fasting, as the increase in SIRT1 protein requires the fasting-associated suppression of TH serum levels.

  10. Dampened STING-Dependent Interferon Activation in Bats.

    PubMed

    Xie, Jiazheng; Li, Yang; Shen, Xurui; Goh, Geraldine; Zhu, Yan; Cui, Jie; Wang, Lin-Fa; Shi, Zheng-Li; Zhou, Peng

    2018-03-14

    Compared with terrestrial mammals, bats have a longer lifespan and greater capacity to co-exist with a variety of viruses. In addition to cytosolic DNA generated by these viral infections, the metabolic demands of flight cause DNA damage and the release of self-DNA into the cytoplasm. However, whether bats have an altered DNA sensing/defense system to balance high cytosolic DNA levels remains an open question. We demonstrate that bats have a dampened interferon response due to the replacement of the highly conserved serine residue (S358) in STING, an essential adaptor protein in multiple DNA sensing pathways. Reversing this mutation by introducing S358 restored STING functionality, resulting in interferon activation and virus inhibition. Combined with previous reports on bat-specific changes of other DNA sensors such as TLR9, IFI16, and AIM2, our findings shed light on bat adaptation to flight, their long lifespan, and their unique capacity to serve as a virus reservoir. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Ultraviolet vision may be widespread in bats

    USGS Publications Warehouse

    Gorresen, P. Marcos; Cryan, Paul; Dalton, David C.; Wolf, Sandy; Bonaccorso, Frank

    2015-01-01

    Insectivorous bats are well known for their abilities to find and pursue flying insect prey at close range using echolocation, but they also rely heavily on vision. For example, at night bats use vision to orient across landscapes, avoid large obstacles, and locate roosts. Although lacking sharp visual acuity, the eyes of bats evolved to function at very low levels of illumination. Recent evidence based on genetics, immunohistochemistry, and laboratory behavioral trials indicated that many bats can see ultraviolet light (UV), at least at illumination levels similar to or brighter than those before twilight. Despite this growing evidence for potentially widespread UV vision in bats, the prevalence of UV vision among bats remains unknown and has not been studied outside of the laboratory. We used a Y-maze to test whether wild-caught bats could see reflected UV light and whether such UV vision functions at the dim lighting conditions typically experienced by night-flying bats. Seven insectivorous species of bats, representing five genera and three families, showed a statistically significant ‘escape-toward-the-light’ behavior when placed in the Y-maze. Our results provide compelling evidence of widespread dim-light UV vision in bats.

  12. 3,5-Diiodo-L-Thyronine Activates Brown Adipose Tissue Thermogenesis in Hypothyroid Rats

    PubMed Central

    Lombardi, Assunta; Senese, Rosalba; De Matteis, Rita; Busiello, Rosa Anna; Cioffi, Federica; Goglia, Fernando; Lanni, Antonia

    2015-01-01

    3,5-diiodo-l-thyronine (T2), a thyroid hormone derivative, is capable of increasing energy expenditure, as well as preventing high fat diet-induced overweight and related metabolic dysfunction. Most studies to date on T2 have been carried out on liver and skeletal muscle. Considering the role of brown adipose tissue (BAT) in energy and metabolic homeostasis, we explored whether T2 could activate BAT thermogenesis. Using euthyroid, hypothyroid, and T2-treated hypothyroid rats (all maintained at thermoneutrality) in morphological and functional studies, we found that hypothyroidism suppresses the maximal oxidative capacity of BAT and thermogenesis, as revealed by reduced mitochondrial content and respiration, enlarged cells and lipid droplets, and increased number of unilocular cells within the tissue. In vivo administration of T2 to hypothyroid rats activated BAT thermogenesis and increased the sympathetic innervation and vascularization of tissue. Likewise, T2 increased BAT oxidative capacity in vitro when added to BAT homogenates from hypothyroid rats. In vivo administration of T2 to hypothyroid rats enhanced mitochondrial respiration. Moreover, UCP1 seems to be a molecular determinant underlying the effect of T2 on mitochondrial thermogenesis. In fact, inhibition of mitochondrial respiration by GDP and its reactivation by fatty acids were greater in mitochondria from T2-treated hypothyroid rats than untreated hypothyroid rats. In vivo administration of T2 led to an increase in PGC-1α protein levels in nuclei (transient) and mitochondria (longer lasting), suggesting a coordinate effect of T2 in these organelles that ultimately promotes net activation of mitochondrial biogenesis and BAT thermogenesis. The effect of T2 on PGC-1α is similar to that elicited by triiodothyronine. As a whole, the data reported here indicate T2 is a thyroid hormone derivative able to activate BAT thermogenesis. PMID:25658324

  13. Transcriptomic Signatures of Tacaribe Virus-Infected Jamaican Fruit Bats

    PubMed Central

    Gerrard, Diana L.; Hawkinson, Ann; Sherman, Tyler; Modahl, Cassandra M.; Hume, Gretchen; Campbell, Corey L.; Schountz, Tony

    2017-01-01

    ABSTRACT Tacaribe virus (TCRV) is a mammalian arenavirus that was first isolated from artibeus bats in the 1950s. Subsequent experimental infection of Jamaican fruit bats (Artibeus jamaicensis) caused a disease similar to that of naturally infected bats. Although substantial attention has focused on bats as reservoir hosts of viruses that cause human disease, little is known about the interactions between bats and their pathogens. We performed a transcriptome-wide study to illuminate the response of Jamaican fruit bats experimentally infected with TCRV. Differential gene expression analysis of multiple tissues revealed global and organ-specific responses associated with innate antiviral responses, including interferon alpha/beta and Toll-like receptor signaling, activation of complement cascades, and cytokine signaling, among others. Genes encoding proteins involved in adaptive immune responses, such as gamma interferon signaling and costimulation of T cells by the CD28 family, were also altered in response to TCRV infection. Immunoglobulin gene expression was also elevated in the spleens of infected bats, including IgG, IgA, and IgE isotypes. These results indicate an active innate and adaptive immune response to TCRV infection occurred but did not prevent fatal disease. This de novo assembly provides a high-throughput data set of the Jamaican fruit bat and its host response to TCRV infection, which remains a valuable tool to understand the molecular signatures involved in antiviral responses in bats. IMPORTANCE As reservoir hosts of viruses associated with human disease, little is known about the interactions between bats and viruses. Using Jamaican fruit bats infected with Tacaribe virus (TCRV) as a model, we characterized the gene expression responses to infection in different tissues and identified pathways involved with the response to infection. This report is the most detailed gene discovery work in the species to date and the first to describe immune gene expression responses in bats during a pathogenic viral infection. PMID:28959737

  14. Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans.

    PubMed

    Matsushita, M; Yoneshiro, T; Aita, S; Kameya, T; Sugie, H; Saito, M

    2014-06-01

    Brown adipose tissue (BAT) is involved in the regulation of whole-body energy expenditure and adiposity. Some clinical studies have reported an association between BAT and blood glucose in humans. To examine the impact of BAT on glucose metabolism, independent of that of body fatness, age and sex in healthy adult humans. Two hundred and sixty healthy volunteers (184 males and 76 females, 20-72 years old) underwent fluorodeoxyglucose-positron emission tomography and computed tomography after 2 h of cold exposure to assess maximal BAT activity. Blood parameters including glucose, HbA1c and low-density lipoprotein (LDL)/high-density lipoprotein-cholesterol were measured by conventional methods, and body fatness was estimated from body mass index (BMI), body fat mass and abdominal fat area. The impact of BAT on body fatness and blood parameters was determined by logistic regression with the use of univariate and multivariate models. Cold-activated BAT was detected in 125 (48%) out of 260 subjects. When compared with subjects without detectable BAT, those with detectable BAT were younger and showed lower adiposity-related parameters such as the BMI, body fat mass and abdominal fat area. Although blood parameters were within the normal range in the two subject groups, HbA1c, total cholesterol and LDL-cholesterol were significantly lower in the BAT-positive group. Blood glucose also tended to be lower in the BAT-positive group. Logistic regression demonstrated that BAT, in addition to age and sex, was independently associated with BMI, body fat mass, and abdominal visceral and subcutaneous fat areas. For blood parameters, multivariate analysis after adjustment for age, sex and body fatness revealed that BAT was a significantly independent determinant of glucose and HbA1c. BAT, independent of age, sex and body fatness, has a significant impact on glucose metabolism in adult healthy humans.

  15. Preventing Australian bat lyssavirus: community knowledge and risk perception of bats in South East Queensland.

    PubMed

    Young, Megan K; El Saadi, Debra; McCall, Bradley J

    2014-04-01

    Ongoing potential exposure of members of the public to Australian bat lyssavirus (ABLV) in South East Queensland, Australia, prompted investigation of community knowledge, risk perception, and intention to handle bats to inform future prevention efforts. After pilot testing, a computer-assisted telephone survey of a representative sample of 700 adults without previous potential exposure to ABLV was undertaken in the defined geographic region. Twenty-four percent of eligible contacted individuals participated. Basic knowledge of bats and ABLV was generally high, with 65% of participants answering nine or more of 12 knowledge questions correctly. The perceived risk that bats pose to human health was also high, with 93% indicating some degree of risk. Although 88% of participants indicated they would handle bats in one or more of the scripted situations, overall intention to handle bats was low, with 59% indicating they would handle a bat in four or less of the 12 scenarios. Younger males with lower risk perception of bats most frequently indicated intention to handle bats in varying situations. Knowledge score was not associated with intention to handle bats on multivariate modeling. Future public health prevention efforts, both in Australia and overseas, should focus further on conveying the risk to humans and to bats when nontrained, nonvaccinated people attempt to handle bats rather than attempting to purely convey knowledge about bats and ABLV or rabies. Suitable alternative measures to handling should be included. Younger adult males are a particular target group for prevention efforts.

  16. Bats adjust their mouth gape to zoom their biosonar field of view.

    PubMed

    Kounitsky, Pavel; Rydell, Jens; Amichai, Eran; Boonman, Arjan; Eitan, Ofri; Weiss, Anthony J; Yovel, Yossi

    2015-05-26

    Active sensing, where sensory acquisition is actively modulated, is an inherent component of almost all sensory systems. Echolocating bats are a prime example of active sensing. They can rapidly adjust many of their biosonar parameters to optimize sensory acquisition. They dynamically adjust pulse design, pulse duration, and pulse rate within dozens of milliseconds according to the sensory information that is required for the task that they are performing. The least studied and least understood degree of freedom in echolocation is emission beamforming--the ability to change the shape of the sonar sound beam in a functional way. Such an ability could have a great impact on the bat's control over its sensory perception. On the one hand, the bat could direct more energy into a narrow sector to zoom its biosonar field of view, and on the other hand, it could widen the beam to increase the space that it senses. We show that freely behaving bats constantly control their biosonar field of view in natural situations by rapidly adjusting their emitter aperture--the mouth gape. The bats dramatically narrowed the beam when entering a confined space, and they dramatically widened it within dozens of milliseconds when flying toward open space. Hence, mouth-emitting bats dynamically adjust their mouth gape to optimize the area that they sense with their echolocation system.

  17. Supraclavicular Skin Temperature as a Measure of 18F-FDG Uptake by BAT in Human Subjects

    PubMed Central

    van der Linden, Rianne A. D.; Pereira Arias-Bouda, Lenka; Smit, Frits; Verberne, Hein J.; van Marken Lichtenbelt, Wouter D.

    2014-01-01

    Background Brown adipose tissue (BAT) has emerged as a novel player in energy homeostasis in humans and is considered a potential new target for combating obesity and related diseases. The current ‘gold standard’ for quantification of BAT volume and activity is cold-induced 18F-FDG uptake in BAT. However, use of this technique is limited by cost and radiation exposure. Given the fact that BAT is a thermogenic tissue, mainly located in the supraclavicular region, the aim of the current study was to investigate whether cold-induced supraclavicular skin temperature and core body temperature may be alternative markers of BAT activation in humans. Subjects/Methods BAT volume and activity were measured in 24 healthy lean adolescent males (mean age 24.1±0.8 years), using cold-induced 18F-FDG uptake with PET-CT. Core body temperature was measured continuously in the small intestine with use of an ingestible telemetric capsule and skin temperature was measured by eighteen wireless iButtons attached to the skin following ISO-defined locations. Results Proximal and distal (hand/feet) skin temperatures markedly decreased upon cold exposure, while supraclavicular skin temperature significantly increased (35.2±0.1 vs. 35.5±0.1°C, p = 0.001). Furthermore, cold-induced supraclavicular skin temperature positively correlated with both total (R2 = 0.28, P = 0.010) and clavicular BAT volume (R2 = 0.20, P = 0.030) and clavicular SUVmax (R2 = 0.27, P = 0.010), while core body temperature did not. Conclusions Supraclavicular skin temperature as measured by iButtons may have predictive value for BAT detection in adult humans. This is highly desirable considering the increasing interest in pharmacological interventions to stimulate BAT in human subjects. Trial Registration NTR 2473 PMID:24922545

  18. The glycogen synthase 2 gene (Gys2) displays parallel evolution between Old World and New World fruit bats.

    PubMed

    Qian, Yamin; Fang, Tao; Shen, Bin; Zhang, Shuyi

    2014-01-01

    Frugivorous and nectarivorous bats rely largely on hepatic glycogenesis and glycogenolysis for postprandial blood glucose disposal and maintenance of glucose homeostasis during short time starvation, respectively. The glycogen synthase 2 encoded by the Gys2 gene plays a critical role in liver glycogen synthesis. To test whether the Gys2 gene has undergone adaptive evolution in bats with carbohydrate-rich diets in relation to their insect-eating sister taxa, we sequenced the coding region of the Gys2 gene in a number of bat species, including three Old World fruit bats (OWFBs) (Pteropodidae) and two New World fruit bats (NWFBs) (Phyllostomidae). Our results showed that the Gys2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to OWFBs and NWFBs. Our explicit convergence test showed that posterior probabilities of convergence between several branches of OWFBs, and the NWFBs were markedly higher than that of divergence. Three parallel amino acid substitutions (Q72H, K371Q, and E666D) were detected among branches of OWFBs and NWFBs. Tests for parallel evolution showed that two parallel substitutions (Q72H and E666D) were driven by natural selection, while the K371Q was more likely to be fixed randomly. Thus, our results suggested that the Gys2 gene has undergone parallel evolution on amino acid level between OWFBs and NWFBs in relation to their carbohydrate metabolism.

  19. Prevalence of neutralizing antibodies to rabies virus in serum of seven species of insectivorous bats from Colorado and New Mexico, United States

    USGS Publications Warehouse

    Bowen, Richard A.; O'Shea, Thomas J.; Shankar, Vidya; Neubaum, Melissa A.; Neubaum, Daniel J.; Rupprecht, Charles E.

    2013-01-01

    We determined the presence of rabies-virus-neutralizing antibodies (RVNA) in serum of 721 insectivorous bats of seven species captured, sampled, and released in Colorado and New Mexico, United States in 2003-2005. A subsample of 160 bats was tested for rabies-virus RNA in saliva. We sampled little brown bats (Myotis lucifugus) at two maternity roosts in Larimer County, Colorado; big brown bats (Eptesicus fuscus) at three maternity roosts in Morgan County, Colorado; and big brown bats at five maternity roosts in Larimer County. We also sampled hoary bats (Lasiurus cinereus) and silver-haired bats (Lasionycteris noctivagans) captured while drinking or foraging over water in Bernalillo County, New Mexico and at various locations in Larimer County. Big brown bats, little brown bats, long-legged myotis (Myotis volans), long-eared myotis (Myotis evotis), and fringed myotis (Myotis thysanodes) were also sampled over water in Larimer County. All species except long-eared myotis included individuals with RVNA, with prevalences ranging from 7% in adult female silver-haired bats to 32% in adult female hoary bats. None of the bats had detectable rabies-virus RNA in oropharyngeal swabs, including 51 bats of 5 species that had RVNA in serum. Antibody-positive bats were present in nine of the 10 maternity colonies sampled. These data suggest that wild bats are commonly exposed to rabies virus and develop a humoral immune response suggesting some degree of viral replication, but many infections fail to progress to clinical disease.

  20. Thailand—lighting up a dark market: British American tobacco, sports sponsorship and the circumvention of legislation

    PubMed Central

    MacKenzie, Ross; Collin, Jeff; Sriwongcharoen, Kobkul

    2007-01-01

    Objective To examine how British American Tobacco (BAT) used sports sponsorship to circumvent restrictions on tobacco promotion in Thailand, both a key emerging market and a world leader in tobacco control. Method Analysis of previously confidential BAT company documents. Results Since its inception in 1987, BAT's sports sponsorship programme in Thailand has been politically sensitive and legally ambiguous. Given Thailand's ban on imported cigarettes, early events provided promotional support to smuggled brands. BAT's funding of local badminton, snooker, football and cricket tournaments generated substantial media coverage for its brands. After the General Agreement on Trade and Tariffs decision that obliged Thailand to open its cigarette market to imports, Thailand's 1992 tobacco control legislation established one of the world's most restrictive marketing environments. BAT's sponsorship strategy shifted to rallying and motorbike racing, using broadcasts of regional competitions to undermine national regulations. BAT sought to dominate individual sports and to shape media coverage to maximise brand awareness. An adversarial approach was adopted, testing the limits of legality and requiring active enforcement to secure compliance with legislation. Conclusions The documents show the opportunities offered by sports sponsorship to tobacco companies amid increasing advertising restrictions. Before the 1992 tobacco control legislation, sponsored events in Thailand promoted international brands by combining global and local imagery. The subsequent strategy of “regionalisation as defensibility” reflected the capacity of international sport to transcend domestic restrictions. These transnational effects may be effectively dealt with via the Framework Convention on Tobacco Control, but will require the negotiation of a specific protocol. PMID:17183011

  1. Evidence of a role for melatonin in fetal sheep physiology: direct actions of melatonin on fetal cerebral artery, brown adipose tissue and adrenal gland

    PubMed Central

    Torres-Farfan, Claudia; Valenzuela, Francisco J; Mondaca, Mauricio; Valenzuela, Guillermo J; Krause, Bernardo; Herrera, Emilio A; Riquelme, Raquel; Llanos, Anibal J; Seron-Ferre, Maria

    2008-01-01

    Although the fetal pineal gland does not secrete melatonin, the fetus is exposed to melatonin of maternal origin. In the non-human primate fetus, melatonin acts as a trophic hormone for the adrenal gland, stimulating growth while restraining cortisol production. This latter physiological activity led us to hypothesize that melatonin may influence some fetal functions critical for neonatal adaptation to extrauterine life. To test this hypothesis we explored (i) the presence of G-protein-coupled melatonin binding sites and (ii) the direct modulatory effects of melatonin on noradrenaline (norepinephrine)-induced middle cerebral artery (MCA) contraction, brown adipose tissue (BAT) lypolysis and ACTH-induced adrenal cortisol production in fetal sheep. We found that melatonin directly inhibits the response to noradrenaline in the MCA and BAT, and also inhibits the response to ACTH in the adrenal gland. Melatonin inhibition was reversed by the melatonin antagonist luzindole only in the fetal adrenal. MCA, BAT and adrenal tissue displayed specific high-affinity melatonin binding sites coupled to G-protein (Kd values: MCA 64 ± 1 pm, BAT 98.44 ± 2.12 pm and adrenal 4.123 ± 3.22 pm). Melatonin binding was displaced by luzindole only in the adrenal gland, supporting the idea that action in the MCA and BAT is mediated by different melatonin receptors. These direct inhibitory responses to melatonin support a role for melatonin in fetal physiology, which we propose prevents major contraction of cerebral vessels, restrains cortisol release and restricts BAT lypolysis during fetal life. PMID:18599539

  2. Neurodynamics for auditory stream segregation: tracking sounds in the mustached bat's natural environment.

    PubMed

    Kanwal, Jagmeet S; Medvedev, Andrei V; Micheyl, Christophe

    2003-08-01

    During navigation and the search phase of foraging, mustached bats emit approximately 25 ms long echolocation pulses (at 10-40 Hz) that contain multiple harmonics of a constant frequency (CF) component followed by a short (3 ms) downward frequency modulation. In the context of auditory stream segregation, therefore, bats may either perceive a coherent pulse-echo sequence (PEPE...), or segregated pulse and echo streams (P-P-P... and E-E-E...). To identify the neural mechanisms for stream segregation in bats, we developed a simple yet realistic neural network model with seven layers and 420 nodes. Our model required recurrent and lateral inhibition to enable output nodes in the network to 'latch-on' to a single tone (corresponding to a CF component in either the pulse or echo), i.e., exhibit differential suppression by the alternating two tones presented at a high rate (> 10 Hz). To test the applicability of our model to echolocation, we obtained neurophysiological data from the primary auditory cortex of awake mustached bats. Event-related potentials reliably reproduced the latching behaviour observed at output nodes in the network. Pulse as well as nontarget (clutter) echo CFs facilitated this latching. Individual single unit responses were erratic, but when summed over several recording sites, they also exhibited reliable latching behaviour even at 40 Hz. On the basis of these findings, we propose that a neural correlate of auditory stream segregation is present within localized synaptic activity in the mustached bat's auditory cortex and this mechanism may enhance the perception of echolocation sounds in the natural environment.

  3. Assessment of Oxidative Metabolism in Brown Fat Using PET Imaging

    PubMed Central

    Muzik, Otto; Mangner, Thomas J.; Granneman, James G.

    2011-01-01

    Objective: Although it has been believed that brown adipose tissue (BAT) depots disappear shortly after the perinatal period in humans, positron emission tomography (PET) imaging using the glucose analog 18F-deoxy-d-glucose (FDG) has shown unequivocally the existence of functional BAT in humans, suggesting that most humans have some functional BAT. The objective of this study was to determine, using dynamic oxygen-15 (15O) PET imaging, to what extent BAT thermogenesis is activated in adults during cold stress and to establish the relationship between BAT oxidative metabolism and FDG tracer uptake. Methods: Fourteen adult normal subjects (9F/5M, 30 ± 7 years) underwent triple oxygen scans (H215O, C15O, 15O2) as well as indirect calorimetric measurements at both rest and following exposure to mild cold (16°C). Subjects were divided into two groups (BAT+ and BAT−) based on the presence or absence of FDG tracer uptake (SUV > 2) in cervical–supraclavicular BAT. Blood flow and oxygen extraction fraction (OEF) was calculated from dynamic PET scans at the location of BAT, muscle, and white adipose tissue (WAT). The metabolic rate of oxygen (MRO2) in BAT was determined and used to calculate the contribution of activated BAT to daily energy expenditure (DEE). Results: The median mass of activated BAT in the BAT+ group (5F, age 31 ± 8) was 52.4 g (range 14–68 g) and was 1.7 g (range 0–6.3 g) in the BAT − group (5M/4F, age 29 ± 6). Corresponding SUV values were significantly higher in the BAT+ as compared to the BAT− group (7.4 ± 3.7 vs. 1.9 ± 0.9; p = 0.03). Blood flow values in BAT were significantly higher in the BAT+ group as compared to the BAT− group (13.1 ± 4.4 vs. 5.7 ± 1.1 ml/100 g/min, p = 0.03), but were similar in WAT (4.1 ± 1.6 vs. 4.2 ± 1.8 ml/100 g/min) and muscle (3.7 ± 0.8 vs. 3.3 ± 1.2 ml/100 g/min). Moreover, OEF in BAT was similar in the two groups (0.56 ± 0.18 in BAT+ vs. 0.46 ± 0.19 in BAT−, p = 0.39). Calculated MRO2 values in BAT increased from 0.95 ± 0.74 to 1.62 ± 0.82 ml/100 g/min in the BAT+ group and were significantly higher than those determined in the BAT− group (0.43 ± 0.27 vs. 0.56 ± 0.24, p = 0.67). The DEE associated with BAT oxidative metabolism was highly variable in the BAT+ group, with an average of 5.5 ± 6.4 kcal/day (range 0.57–15.3 kcal/day). Conclusion: BAT thermogenesis in humans accounts for less than 20 kcal/day during moderate cold stress, even in subjects with relatively large BAT depots. Furthermore, due to the large differences in blood flow and glucose metabolic rates in BAT between humans and rodents, the application of rodent data to humans is problematic and needs careful evaluation. PMID:22649408

  4. Bat habitat research. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, B.L.; Bosworth, W.R.; Doering, R.W.

    This progress report describes activities over the current reporting period to characterize the habitats of bats on the INEL. Research tasks are entitled Monitoring bat habitation of caves on the INEL to determine species present, numbers, and seasons of use; Monitor bat use of man-made ponds at the INEL to determine species present and rates of use of these waters; If the Big Lost River is flowing on the INEL and/or if the Big Lost River sinks contain water, determine species present, numbers and seasons of use; Determine the habitat requirement of Townsend`s big-eared bats, including the microclimate of cavesmore » containing Townsend`s big-eared bats as compared to other caves that do not contain bats; Determine and describe an economical and efficient bat census technique to be used periodically by INEL scientists to determine the status of bats on the INEL; and Provide a suggestive management and protective plan for bat species on the INEL that might, in the future, be added to the endangered and sensitive list;« less

  5. Altered thermogenesis and impaired bone remodeling in Misty mice.

    PubMed

    Motyl, Katherine J; Bishop, Kathleen A; DeMambro, Victoria E; Bornstein, Sheila A; Le, Phuong; Kawai, Masanobu; Lotinun, Sutada; Horowitz, Mark C; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J

    2013-09-01

    Fat mass may be modulated by the number of brown-like adipocytes in white adipose tissue (WAT) in humans and rodents. Bone remodeling is dependent on systemic energy metabolism and, with age, bone remodeling becomes uncoupled and brown adipose tissue (BAT) function declines. To test the interaction between BAT and bone, we employed Misty (m/m) mice, which were reported be deficient in BAT. We found that Misty mice have accelerated age-related trabecular bone loss and impaired brown fat function (including reduced temperature, lower expression of Pgc1a, and less sympathetic innervation compared to wild-type (+/ +)). Despite reduced BAT function, Misty mice had normal core body temperature, suggesting heat is produced from other sources. Indeed, upon acute cold exposure (4°C for 6 hours), inguinal WAT from Misty mice compensated for BAT dysfunction by increasing expression of Acadl, Pgc1a, Dio2, and other thermogenic genes. Interestingly, acute cold exposure also decreased Runx2 and increased Rankl expression in Misty bone, but only Runx2 was decreased in wild-type. Browning of WAT is under the control of the sympathetic nervous system (SNS) and, if present at room temperature, could impact bone metabolism. To test whether SNS activity could be responsible for accelerated trabecular bone loss, we treated wild-type and Misty mice with the β-blocker, propranolol. As predicted, propranolol slowed trabecular bone volume/total volume (BV/TV) loss in the distal femur of Misty mice without affecting wild-type. Finally, the Misty mutation (a truncation of DOCK7) also has a significant cell-autonomous role. We found DOCK7 expression in whole bone and osteoblasts. Primary osteoblast differentiation from Misty calvaria was impaired, demonstrating a novel role for DOCK7 in bone remodeling. Despite the multifaceted effects of the Misty mutation, we have shown that impaired brown fat function leads to altered SNS activity and bone loss, and for the first time that cold exposure negatively affects bone remodeling. Copyright © 2013 American Society for Bone and Mineral Research.

  6. Ecobat: An online resource to facilitate transparent, evidence-based interpretation of bat activity data.

    PubMed

    Lintott, Paul R; Davison, Sophie; van Breda, John; Kubasiewicz, Laura; Dowse, David; Daisley, Jonathan; Haddy, Emily; Mathews, Fiona

    2018-01-01

    Acoustic surveys of bats are one of the techniques most commonly used by ecological practitioners. The results are used in Ecological Impact Assessments to assess the likely impacts of future developments on species that are widely protected in law, and to monitor developments' postconstruction. However, there is no standardized methodology for analyzing or interpreting these data, which can make the assessment of the ecological value of a site very subjective. Comparisons of sites and projects are therefore difficult for ecologists and decision-makers, for example, when trying to identify the best location for a new road based on relative bat activity levels along alternative routes. Here, we present a new web-based, data-driven tool, Ecobat, which addresses the need for a more robust way of interpreting ecological data. Ecobat offers users an easy, standardized, and objective method for analyzing bat activity data. It allows ecological practitioners to compare bat activity data at regional and national scales and to generate a numerical indicator of the relative importance of a night's worth of bat activity. The tool is free and open-source; because the underlying algorithms are already developed, it could easily be expanded to new geographical regions and species. Data donation is required to ensure the robustness of the analyses; we use a positive feedback mechanism to encourage ecological practitioners to share data by providing in return high quality, contextualized data analysis, and graphical visualizations for direct use in ecological reports.

  7. First direct evidence of long-distance seasonal movements and hibernation in a migratory bat

    USGS Publications Warehouse

    Weller, Theodore J.; Castle, Kevin T.; Liechti, Felix; Hein, Cris D.; Schirmacher, Michael R.; Cryan, Paul M.

    2016-01-01

    Understanding of migration in small bats has been constrained by limitations of techniques that were labor-intensive, provided coarse levels of resolution, or were limited to population-level inferences. Knowledge of movements and behaviors of individual bats have been unknowable because of limitations in size of tracking devices and methods to attach them for long periods. We used sutures to attach miniature global positioning system (GPS) tags and data loggers that recorded light levels, activity, and temperature to male hoary bats (Lasiurus cinereus). Results from recovered GPS tags illustrated profound differences among movement patterns by individuals, including one that completed a >1000 km round-trip journey during October 2014. Data loggers allowed us to record sub-hourly patterns of activity and torpor use, in one case over a period of 224 days that spanned an entire winter. In this latter bat, we documented 5 torpor bouts that lasted ≥16 days and a flightless period that lasted 40 nights. These first uses of miniature tags on small bats allowed us to discover that male hoary bats can make multi-directional movements during the migratory season and sometimes hibernate for an entire winter.

  8. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat.

    PubMed

    Cypess, Aaron M; White, Andrew P; Vernochet, Cecile; Schulz, Tim J; Xue, Ruidan; Sass, Christina A; Huang, Tian Liang; Roberts-Toler, Carla; Weiner, Lauren S; Sze, Cathy; Chacko, Aron T; Deschamps, Laura N; Herder, Lindsay M; Truchan, Nathan; Glasgow, Allison L; Holman, Ashley R; Gavrila, Alina; Hasselgren, Per-Olof; Mori, Marcelo A; Molla, Michael; Tseng, Yu-Hua

    2013-05-01

    The imbalance between energy intake and expenditure is the underlying cause of the current obesity and diabetes pandemics. Central to these pathologies is the fat depot: white adipose tissue (WAT) stores excess calories, and brown adipose tissue (BAT) consumes fuel for thermogenesis using tissue-specific uncoupling protein 1 (UCP1). BAT was once thought to have a functional role in rodents and human infants only, but it has been recently shown that in response to mild cold exposure, adult human BAT consumes more glucose per gram than any other tissue. In addition to this nonshivering thermogenesis, human BAT may also combat weight gain by becoming more active in the setting of increased whole-body energy intake. This phenomenon of BAT-mediated diet-induced thermogenesis has been observed in rodents and suggests that activation of human BAT could be used as a safe treatment for obesity and metabolic dysregulation. In this study, we isolated anatomically defined neck fat from adult human volunteers and compared its gene expression, differentiation capacity and basal oxygen consumption to different mouse adipose depots. Although the properties of human neck fat vary substantially between individuals, some human samples share many similarities with classical, also called constitutive, rodent BAT.

  9. mTORC1 is Required for Brown Adipose Tissue Recruitment and Metabolic Adaptation to Cold

    PubMed Central

    Labbé, Sébastien M.; Mouchiroud, Mathilde; Caron, Alexandre; Secco, Blandine; Freinkman, Elizaveta; Lamoureux, Guillaume; Gélinas, Yves; Lecomte, Roger; Bossé, Yohan; Chimin, Patricia; Festuccia, William T.; Richard, Denis; Laplante, Mathieu

    2016-01-01

    In response to cold, brown adipose tissue (BAT) increases its metabolic rate and expands its mass to produce heat required for survival, a process known as BAT recruitment. The mechanistic target of rapamycin complex 1 (mTORC1) controls metabolism, cell growth and proliferation, but its role in regulating BAT recruitment in response to chronic cold stimulation is unknown. Here, we show that cold activates mTORC1 in BAT, an effect that depends on the sympathetic nervous system. Adipocyte-specific mTORC1 loss in mice completely blocks cold-induced BAT expansion and severely impairs mitochondrial biogenesis. Accordingly, mTORC1 loss reduces oxygen consumption and causes a severe defect in BAT oxidative metabolism upon cold exposure. Using in vivo metabolic imaging, metabolomics and transcriptomics, we show that mTORC1 deletion impairs glucose and lipid oxidation, an effect linked to a defect in tricarboxylic acid (TCA) cycle activity. These analyses also reveal a severe defect in nucleotide synthesis in the absence of mTORC1. Overall, these findings demonstrate an essential role for mTORC1 in the regulation of BAT recruitment and metabolism in response to cold. PMID:27876792

  10. Endocannabinoid regulation in white and brown adipose tissue following thermogenic activation

    PubMed Central

    Krott, Lucia M.; Piscitelli, Fabiana; Heine, Markus; Borrino, Simona; Scheja, Ludger; Silvestri, Cristoforo; Heeren, Joerg; Di Marzo, Vincenzo

    2016-01-01

    The endocannabinoids and their main receptor, cannabinoid type-1 (CB1), suppress intracellular cyclic AMP levels and have emerged as key players in the control of energy metabolism. CB1 agonists and blockers have been reported to influence the thermogenic function of white and brown adipose tissue (WAT and BAT), affecting body weight through the inhibition and stimulation of energy expenditure, respectively. The purpose of the current study was to investigate the regulation of the endocannabinoid system in WAT and BAT following exposure to either cold or specific agonism of β3-adrenoceptors using CL316,243 (CL), conditions known to cause BAT activation and WAT browning. To address this question, we performed quantitative PCR-based mRNA profiling of genes important for endocannabinoid synthesis, degradation, and signaling, and determined endocannabinoid levels by LC-MS in WAT and BAT of control, cold-exposed, and CL-treated wild-type mice as well as primary brown adipocytes. Treatment with CL and exposure to cold caused an upregulation of endocannabinoid levels and biosynthetic enzymes in WAT. Acute β3-adrenoceptor activation increased endocannabinoids and a subset of genes of biosynthesis in BAT and primary brown adipocytes. We suggest that the cold-mediated increase in endocannabinoid tone is part of autocrine negative feed-back mechanisms controlling β3-adrenoceptor-induced BAT activation and WAT browning. PMID:26768656

  11. Some like it cold: summer torpor by freetail bats in the Australian arid zone.

    PubMed

    Bondarenco, Artiom; Körtner, Gerhard; Geiser, Fritz

    2013-12-01

    Bats are among the most successful groups of Australian arid-zone mammals and, therefore, must cope with pronounced seasonal fluctuations in ambient temperature (T a), food availability and unpredictable weather patterns. As knowledge about the energy conserving strategies in desert bats is scant, we used temperature-telemetry to quantify the thermal physiology of tree-roosting inland freetail bats (Mormopterus species 3, 8.5 g, n = 8) at Sturt National Park over two summers (2010-2012), when T a was high and insects were relatively abundant. Torpor use and activity were affected by T a. Bats remained normothermic on the warmest days; they employed one "morning" torpor bout on most days and typically exhibited two torpor bouts on the coolest days. Overall, animals employed torpor on 67.9 % of bat-days and torpor bout duration ranged from 0.5 to 39.3 h. At any given T a, torpor bouts were longer in Mormopterus than in bats from temperate and subtropical habitats. Furthermore, unlike bats from other climatic regions that used only partial passive rewarming, Mormopterus aroused from torpor using either almost entirely passive (68.9 % of all arousals) or active rewarming (31.1 %). We provide the first quantitative data on torpor in a free-ranging arid-zone molossid during summer. They demonstrate that this desert bat uses torpor extensively in summer and often rewarms passively from torpor to maximise energy and water conservation.

  12. Laboratory Surveillance of Rabies in Humans, Domestic Animals, and Bats in Madagascar from 2005 to 2010

    PubMed Central

    Reynes, Jean-Marc; Andriamandimby, Soa Fy; Razafitrimo, Girard Marcelin; Razainirina, Josette; Jeanmaire, Elisabeth Marie; Bourhy, Hervé; Heraud, Jean-Michel

    2011-01-01

    Background. Rabies virus (RABV) has circulated in Madagascar at least since the 19th century. Objectives. To assess the circulation of lyssavirus in the island from 2005 to 2010. Materials and Methods. Animal (including bats) and human samples were tested for RABV and other lyssavirus using antigen, ribonucleic acid (RNA), and antibodies detection and virus isolation. Results. Half of the 437 domestic or tame wild terrestrial mammal brains tested were found RABV antigen positive, including 54% of the 341 dogs tested. This percentage ranged from 26% to 75% across the period. Nine of the 10 suspected human cases tested were laboratory confirmed. RABV circulation was confirmed in 34 of the 38 districts sampled. No lyssavirus RNA was detected in 1983 bats specimens. Nevertheless, antibodies against Lagos bat virus were detected in the sera of 12 among 50 Eidolon dupreanum specimens sampled. Conclusion. More than a century after the introduction of the vaccine, rabies still remains endemic in Madagascar. PMID:21991442

  13. Molecular diagnostics for the detection of Bokeloh bat lyssavirus in a bat from Bavaria, Germany.

    PubMed

    Freuling, Conrad M; Abendroth, Björn; Beer, Martin; Fischer, Melina; Hanke, Dennis; Hoffmann, Bernd; Höper, Dirk; Just, Frank; Mettenleiter, Thomas C; Schatz, Juliane; Müller, Thomas

    2013-11-06

    A brain sample of a Natterer's bat tested positive for rabies with classical virological techniques. Molecular techniques confirmed the presence of Bokeloh bat lyssavirus (BBLV) in Germany for the second time. Sequence analysis revealed a close genetic relationship to the initial German BBLV case. Using a TaqMan RT-PCR specific for BBLV viral RNA was detected in various other organs albeit with differences in the relative viral load. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Tempo and mode of antibat ultrasound production and sonar jamming in the diverse hawkmoth radiation.

    PubMed

    Kawahara, Akito Y; Barber, Jesse R

    2015-05-19

    The bat-moth arms race has existed for over 60 million y, with moths evolving ultrasonically sensitive ears and ultrasound-producing organs to combat bat predation. The evolution of these defenses has never been thoroughly examined because of limitations in simultaneously conducting behavioral and phylogenetic analyses across an entire group. Hawkmoths include >1,500 species worldwide, some of which produce ultrasound using genital stridulatory structures. However, the function and evolution of this behavior remain largely unknown. We built a comprehensive behavioral dataset of hawkmoth hearing and ultrasonic reply to sonar attack using high-throughput field assays. Nearly half of the species tested (57 of 124 species) produced ultrasound to tactile stimulation or playback of bat echolocation attack. To test the function of ultrasound, we pitted big brown bats (Eptesicus fuscus) against hawkmoths over multiple nights and show that hawkmoths jam bat sonar. Ultrasound production was immediately and consistently effective at thwarting attack and bats regularly performed catching behavior without capturing moths. We also constructed a fossil-calibrated, multigene phylogeny to study the evolutionary history and divergence times of these antibat strategies across the entire family. We show that ultrasound production arose in multiple groups, starting in the late Oligocene (∼ 26 Ma) after the emergence of insectivorous bats. Sonar jamming and bat-detecting ears arose twice, independently, in the Miocene (18-14 Ma) either from earless hawkmoths that produced ultrasound in response to physical contact only, or from species that did not respond to touch or bat echolocation attack.

  15. Seasonal shifts in the diet of the big brown bat (Eptesicus fuscus), Fort Collins, Colorado

    USGS Publications Warehouse

    Valdez, Ernest W.; O'Shea, Thomas J.

    2014-01-01

    Recent analyses suggest that the big brown bat (Eptesicus fuscus) may be less of a beetle specialist (Coleoptera) in the western United States than previously thought, and that its diet might also vary with temperature. We tested the hypothesis that big brown bats might opportunistically prey on moths by analyzing insect fragments in guano pellets from 30 individual bats (27 females and 3 males) captured while foraging in Fort Collins, Colorado, during May, late July–early August, and late September 2002. We found that bats sampled 17–20 May (n = 12 bats) had a high (81–83%) percentage of volume of lepidopterans in guano, with the remainder (17–19% volume) dipterans and no coleopterans. From 28 May–9 August (n = 17 bats) coleopterans dominated (74–98% volume). On 20 September (n = 1 bat) lepidopterans were 99% of volume in guano. Migratory miller moths (Euxoa auxiliaris) were unusually abundant in Fort Collins in spring and autumn of 2002 and are known agricultural pests as larvae (army cutworms), suggesting that seasonal dietary flexibility in big brown bats has economic benefits.

  16. A Standardized Procedure for a Pre-evaluation of the IED Instance

    NASA Astrophysics Data System (ADS)

    Panepinto, Deborah; Ruffino, Barbara; Zanetti, Mariachiara; Genon, Giuseppe

    2016-04-01

    This study presents a procedure, called EICS (Enterprise IPPC Compatibility Study) aimed at evaluating, by means of the calculation of three indexes, the compliance of the processes performed in an industrial plant with the guidelines provided by BREFs (BAT References) Documents. In fact, according to European Directive 2010/75/EU (concerning the Integrated Pollution Prevention and Control and repealing European Directive 2008/01/EC), industrial plants must require authorizations to the competent authority stating the conformity of their activity, in order to obtain this conformity they are advised to Best Available Technologies (BAT). The aim of the BATs is to avoid or minimize the impact of an industrial activity on the environment through the prevention of the atmospheric emissions, wastewater discharge and energetic consumption, and the correct waste management thus improving the efficiency of the plant. The procedure shown in the present paper has been tested on several types of industrial plant (cement plants, secondary smelt foundries, paper-mill, and automotive industries as regards their paint lines). In this paper, the application of EICS method to a cement plant is presented: the obtained results highlight a good correlation between the index values and the real situation of the plant.

  17. Great tits search for, capture, kill and eat hibernating bats

    PubMed Central

    Estók, Péter; Zsebők, Sándor; Siemers, Björn M.

    2010-01-01

    Ecological pressure paired with opportunism can lead to surprising innovations in animal behaviour. Here, we report predation of great tits (Parus major) on hibernating pipistrelle bats (Pipistrellus pipistrellus) at a Hungarian cave. Over two winters, we directly observed 18 predation events. The tits specifically and systematically searched for and killed bats for food. A substantial decrease in predation on bats after experimental provisioning of food to the tits further supports the hypothesis that bat-killing serves a foraging purpose in times of food scarcity. We finally conducted a playback experiment to test whether tits would eavesdrop on calls of awakening bats to find them in rock crevices. The tits could clearly hear the calls and were attracted to the loudspeaker. Records for tit predation on bats at this cave now span more than ten years and thus raise the question of whether cultural transmission plays a role for the spread of this foraging innovation. PMID:19740892

  18. Alphacoronaviruses in new World bats: Prevalence, persistence, phylogeny, and potential for interaction with humans

    USGS Publications Warehouse

    Osborne, C.; Cryan, P.M.; O'Shea, T.J.; Oko, L.M.; Ndaluka, C.; Calisher, C.H.; Berglund, A.D.; Klavetter, M.L.; Bowen, R.A.; Holmes, K.V.; Dominguez, S.R.

    2011-01-01

    Bats are reservoirs for many different coronaviruses (CoVs) as well as many other important zoonotic viruses. We sampled feces and/or anal swabs of 1,044 insectivorous bats of 2 families and 17 species from 21 different locations within Colorado from 2007 to 2009. We detected alphacoronavirus RNA in bats of 4 species: big brown bats (Eptesicus fuscus), 10% prevalence; long-legged bats (Myotis volans), 8% prevalence; little brown bats (Myotis lucifugus), 3% prevalence; and western long-eared bats (Myotis evotis), 2% prevalence. Overall, juvenile bats were twice as likely to be positive for CoV RNA as adult bats. At two of the rural sampling sites, CoV RNAs were detected in big brown and long-legged bats during the three sequential summers of this study. CoV RNA was detected in big brown bats in all five of the urban maternity roosts sampled throughout each of the periods tested. Individually tagged big brown bats that were positive for CoV RNA and later sampled again all became CoV RNA negative. Nucleotide sequences in the RdRp gene fell into 3 main clusters, all distinct from those of Old World bats. Similar nucleotide sequences were found in amplicons from gene 1b and the spike gene in both a big-brown and a long-legged bat, indicating that a CoV may be capable of infecting bats of different genera. These data suggest that ongoing evolution of CoVs in bats creates the possibility of a continued threat for emergence into hosts of other species. Alphacoronavirus RNA was detected at a high prevalence in big brown bats in roosts in close proximity to human habitations (10%) and known to have direct contact with people (19%), suggesting that significant potential opportunities exist for cross-species transmission of these viruses. Further CoV surveillance studies in bats throughout the Americas are warranted.

  19. Alphacoronaviruses in New World Bats: Prevalence, Persistence, Phylogeny, and Potential for Interaction with Humans

    USGS Publications Warehouse

    Osborne, Christina; Cryan, Paul M.; O'Shea, Thomas J.; Oko, Lauren M.; Ndaluka, Christina; Calisher, Charles H.; Berglund, Andrew D.; Klavetter, Mead L.; Holmes, Kathryn V.; Dominguez, Samuel R.; Montgomery, Joel Mark

    2011-01-01

    Bats are reservoirs for many different coronaviruses (CoVs) as well as many other important zoonotic viruses. We sampled feces and/or anal swabs of 1,044 insectivorous bats of 2 families and 17 species from 21 different locations within Colorado from 2007 to 2009. We detected alphacoronavirus RNA in bats of 4 species: big brown bats (Eptesicus fuscus), 10% prevalence; long-legged bats (Myotis volans), 8% prevalence; little brown bats (Myotis lucifugus), 3% prevalence; and western long-eared bats (Myotis evotis), 2% prevalence. Overall, juvenile bats were twice as likely to be positive for CoV RNA as adult bats. At two of the rural sampling sites, CoV RNAs were detected in big brown and long-legged bats during the three sequential summers of this study. CoV RNA was detected in big brown bats in all five of the urban maternity roosts sampled throughout each of the periods tested. Individually tagged big brown bats that were positive for CoV RNA and later sampled again all became CoV RNA negative. Nucleotide sequences in the RdRp gene fell into 3 main clusters, all distinct from those of Old World bats. Similar nucleotide sequences were found in amplicons from gene 1b and the spike gene in both a big-brown and a long-legged bat, indicating that a CoV may be capable of infecting bats of different genera. These data suggest that ongoing evolution of CoVs in bats creates the possibility of a continued threat for emergence into hosts of other species. Alphacoronavirus RNA was detected at a high prevalence in big brown bats in roosts in close proximity to human habitations (10%) and known to have direct contact with people (19%), suggesting that significant potential opportunities exist for cross-species transmission of these viruses. Further CoV surveillance studies in bats throughout the Americas are warranted.

  20. Strontium-90 and caesium-137 activity concentrations in bats in the Chernobyl exclusion zone.

    PubMed

    Gashchak, Sergey; Beresford, Nicholas Anthony; Maksimenko, Andrey; Vlaschenko, Anton S

    2010-11-01

    Bats are a protected species and as such may be an object of protection in radiological assessments of the environment. However, there have previously been only few radioecological studies of species of bats. In this paper, results for >140 measurements of (90)Sr and (137)Cs in 10 species of bats collected within the Chernobyl zone are presented. There was some indication of a decreasing transfer of (90)Sr with increasing deposition, although this was inconsistent across species and explained little of the observed variability. There was no difference between male and female bats in the transfer (expressed as the ratio of whole-body activity concentrations to those in soil) of either radionuclide. There was considerable variability in transfer across all species groups. At two sites where there were sufficient data, Eptesicus serotinus was found to have higher transfer than other species.

  1. Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice.

    PubMed

    Weiner, Juliane; Kranz, Mathias; Klöting, Nora; Kunath, Anne; Steinhoff, Karen; Rijntjes, Eddy; Köhrle, Josef; Zeisig, Vilia; Hankir, Mohammed; Gebhardt, Claudia; Deuther-Conrad, Winnie; Heiker, John T; Kralisch, Susan; Stumvoll, Michael; Blüher, Matthias; Sabri, Osama; Hesse, Swen; Brust, Peter; Tönjes, Anke; Krause, Kerstin

    2016-12-12

    The present study aimed to determine the effect of thyroid hormone dysfunction on brown adipose tissue activity and white adipose tissue browning in mice. Twenty randomized female C57BL/6NTac mice per treatment group housed at room temperature were rendered hypothyroid or hyperthyroid. In-vivo small animal 18 F-FDG PET/MRI was performed to determine the effects of hypo- and hyperthyroidism on BAT mass and BAT activity. Ex-vivo 14 C-acetate loading assay and assessment of thermogenic gene and protein expression permitted analysis of oxidative and thermogenic capacities of WAT and BAT of eu-, hyper and hypothyroid mice. 18 F-FDG PET/MRI revealed a lack of brown adipose tissue activity in hypothyroid mice, whereas hyperthyroid mice displayed increased BAT mass alongside enhanced 18 F-FDG uptake. In white adipose tissue of both, hyper- and hypothyroid mice, we found a significant induction of thermogenic genes together with multilocular adipocytes expressing UCP1. Taken together, these results suggest that both the hyperthyroid and hypothyroid state stimulate WAT thermogenesis most likely as a consequence of enhanced adrenergic signaling or compensation for impaired BAT function, respectively.

  2. Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization

    PubMed Central

    Muijres, Florian T.; Johansson, L. Christoffer; Winter, York; Hedenström, Anders

    2011-01-01

    Bats are unique among extant actively flying animals in having very flexible wings, controlled by multi-jointed fingers. This gives the potential for fine-tuned active control to optimize aerodynamic performance throughout the wingbeat and thus a more efficient flight. But how bat wing performance scales with size, morphology and ecology is not yet known. Here, we present time-resolved fluid wake data of two species of bats flying freely across a range of flight speeds using stereoscopic digital particle image velocimetry in a wind tunnel. From these data, we construct an average wake for each bat species and speed combination, which is used to estimate the flight forces throughout the wingbeat and resulting flight performance properties such as lift-to-drag ratio (L/D). The results show that the wake dynamics and flight performance of both bat species are similar, as was expected since both species operate at similar Reynolds numbers (Re) and Strouhal numbers (St). However, maximum L/D is achieved at a significant higher flight speed for the larger, highly mobile and migratory bat species than for the smaller non-migratory species. Although the flight performance of these bats may depend on a range of morphological and ecological factors, the differences in optimal flight speeds between the species could at least partly be explained by differences in their movement ecology. PMID:21367776

  3. Orthene? toxicity to little brown bats (Myotis lucifugus): Acetylcholinesterase inhibition, coordination loss, and mortality

    USGS Publications Warehouse

    Clark, D.R.; Rattner, B.A.

    1987-01-01

    The 24-h LD50 of Orhene (active ingredient acephate, acetylphosphoramidothioic acid o,s-dimethyl ester, CAS 30560-19-1) to little brown bats (Myotis lucifugus) was high (> 1,500 mg acephate/kg) and at least several times greater than the LD50 for mice (Mus musculus) (720 mg/kg). Twenty-four hours after dosing, all surviving mice appeared behaviorally normal, but 9 of 30 surviving bats could not right themselves when placed on their backs. When dead and incapacitated bats were combined to calculate an ED50 (median effective dose), the resultant estimate (687 mg/kg) did not differ (p > 0.05) from the LD50 for mice. Serum cholinesterase (ChE) activity in control bats was 3.2 times greater than in mice. The relationship between the naturally high level of ChE and the relative tolerance of bats to organophosphorus insecticides is unexplained. Toxicity of Orthene was clearly less than that reported elsewhere for methyl parathion (phosphorothioic acid o,o-dimethyl o-[4-nitrophenyl] ester, CAS 298-00-0). This finding may be useful in selection of a chemical for agricultural use, but conclusions about the safety of Orthene to this bat species, or to others, must remain tentative until confirmed by studies under field conditions. Because bats are long-lived with low reproductive rates and slow recruitment, any additional mortality in the wild could be critical to population survival.

  4. Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats

    PubMed Central

    Hong, Wei; Zhao, Huabin

    2014-01-01

    The bitter taste serves as an important natural defence against the ingestion of poisonous foods and is thus believed to be indispensable in animals. However, vampire bats are obligate blood feeders that show a reduced behavioural response towards bitter-tasting compounds. To test whether bitter taste receptor genes (T2Rs) have been relaxed from selective constraint in vampire bats, we sampled all three vampire bat species and 11 non-vampire bats, and sequenced nine one-to-one orthologous T2Rs that are assumed to be functionally conserved in all bats. We generated 85 T2R sequences and found that vampire bats have a significantly greater percentage of pseudogenes than other bats. These results strongly suggest a relaxation of selective constraint and a reduction of bitter taste function in vampire bats. We also found that vampire bats retain many intact T2Rs, and that the taste signalling pathway gene Calhm1 remains complete and intact with strong functional constraint. These results suggest the presence of some bitter taste function in vampire bats, although it is not likely to play a major role in food selection. Together, our study suggests that the evolutionary reduction of bitter taste function in animals is more pervasive than previously believed, and highlights the importance of extra-oral functions of taste receptor genes. PMID:24966321

  5. Molecular clock integration of brown adipose tissue formation and function

    PubMed Central

    Nam, Deokhwa; Yechoor, Vijay K.; Ma, Ke

    2016-01-01

    Abstract The circadian clock is an essential time-keeping mechanism that entrains internal physiology to environmental cues. Despite the well-established link between the molecular clock and metabolic homeostasis, an intimate interplay between the clock machinery and the metabolically active brown adipose tissue (BAT) is only emerging. Recently, we came to appreciate that the formation and metabolic functions of BAT, a key organ for body temperature maintenance, are under an orchestrated circadian clock regulation. Two complementary studies from our group uncover that the cell-intrinsic clock machinery exerts concerted control of brown adipogenesis with consequent impacts on adaptive thermogenesis, which adds a previously unappreciated temporal dimension to the regulatory mechanisms governing BAT development and function. The essential clock transcriptional activator, Bmal1, suppresses adipocyte lineage commitment and differentiation, whereas the clock repressor, Rev-erbα, promotes these processes. This newly discovered temporal mechanism in fine-tuning BAT thermogenic capacity may enable energy utilization and body temperature regulation in accordance with external timing signals during development and functional recruitment. Given the important role of BAT in whole-body metabolic homeostasis, pharmacological interventions targeting the BAT-modulatory activities of the clock circuit may offer new avenues for the prevention and treatment of metabolic disorders, particularly those associated with circadian dysregulation. PMID:27385482

  6. Acoustic surveys of Hawaiian Hoary Bats in Kahikinui Forest Reserve and Nakula Natural Area Reserve on the Island of Maui

    USGS Publications Warehouse

    Todd, Christopher M.; Pinzari, Corinna A.; Bonaccorso, Frank

    2016-01-01

    The Kahikinui Forest Reserve and the adjoining Nakula Natural Area Reserve (KFR-NNAR) was established in 2011 as a conservation area on the leeward slope of Haleakalā Volcano on the island of Maui to protect unique natural features and endangered species including the Hawaiian hoary bat, Lasiurus cinereus semotus. We recorded bat vocalizations from July 2012 to November 2014 using automated echolocation detectors at 14 point locations in the KFRNNAR. Our study area included remnants of recovering mesic montane forest with interspersed grasses (1,250‒1,850 m elevation, hereafter called “forest”) and xeric subalpine shrubland plant communities (1,860‒2,800 m, hereafter called “shrubland”). Monthly detections of Hawaiian hoary bats, Lasiurus cinereus semotus, within the KFR-NNAR identified areas of high and low detection probability as well as foraging activity. Sixty per cent of all detector-nights had confirmed bat vocalizations and included detections in every month of the study. Monthly detection probability values were highest from July to November 2012; these values were significantly greater than values measured in any month thereafter. Pooled values of detection probabilities, mean pulses/night, percentage of nights with feeding activity, and acoustic detections all were greater in the recovering forest zone than corresponding values from the shrublands. Our data provide baseline levels of hoary bat echolocation activity that may be compared with future studies in the KFR-NNAR relative to success criteria for Hawaiian hoary bat habitat restoration.

  7. Distribution, foraging behavior, and capture results of the spotted bat (Euderma maculatum) in central Oregon

    USGS Publications Warehouse

    Rodhouse, T.J.; McCaffrey, M.F.; Wright, R.G.

    2005-01-01

    The spotted bat (Euderma maculatum) has been virtually unknown in Oregon despite the existence of potential habitat in many areas of the state. In 2002 and 2003 we searched for spotted bats along the John Day, Deschutes, and Crooked Rivers and at a remote dry canyon southeast of the city of Bend in central Oregon. The species was documented through the use of mist-nets, a bat detector, and recognition of audible spotted bat calls. Spotted bats were found at 11 locations in 6 Oregon counties. Nightly activity patterns of spotted bats were unpredictable. Spotted bats were found in 78% of search areas but on only 48% of survey nights. We observed spotted bats foraging above fields and low upland slopes adjacent to rivers and creeks and along the rims of cliffs. Estimated flying heights of spotted bats ranged from 3 m to 50 m aboveground. The species was difficult to capture and was captured only after considerable experimentation with methods and materials. Three spotted bats were captured toward the end of the project in 2003 and accounted for only 0.5% of all bats captured during the study. Although we attached radio transmitters to 2 spotted bats, we found no roost locations. We believe additional spotted bat surveys in Oregon are warranted, especially in higher-elevation habitats, but recommend that to increase their effectiveness, surveys accommodate the unique foraging behavior of the species.

  8. Prevalence, diversity, and host associations of Bartonella strains in bats from Georgia (Caucasus)

    PubMed Central

    Bai, Ying; Osikowicz, Lynn; McKee, Clifton; Sidamonidze, Ketevan; Putkaradze, Davit; Imnadze, Paata; Kandaurov, Andrei; Kuzmin, Ivan; Kosoy, Michael

    2017-01-01

    Bartonella infections were investigated in seven species of bats from four regions of the Republic of Georgia. Of the 236 bats that were captured, 212 (90%) specimens were tested for Bartonella infection. Colonies identified as Bartonella were isolated from 105 (49.5%) of 212 bats Phylogenetic analysis based on sequence variation of the gltA gene differentiated 22 unique Bartonella genogroups. Genetic distances between these diverse genogroups were at the level of those observed between different Bartonella species described previously. Twenty-one reference strains from 19 representative genogroups were characterized using four additional genetic markers. Host specificity to bat genera or families was reported for several Bartonella genogroups. Some Bartonella genotypes found in bats clustered with those identified in dogs from Thailand and humans from Poland. PMID:28399125

  9. Skin and fur bacterial diversity and community structure on American southwestern bats: effects of habitat, geography and bat traits

    PubMed Central

    Hathaway, Jennifer J.M.; Kimble, Jason C.; Buecher, Debbie C.; Valdez, Ernest W.; Young, Jesse M.; Read, Kaitlyn J.H.; Northup, Diana E.

    2017-01-01

    Microorganisms that reside on and in mammals, such as bats, have the potential to influence their host’s health and to provide defenses against invading pathogens. However, we have little understanding of the skin and fur bacterial microbiota on bats, or factors that influence the structure of these communities. The southwestern United States offers excellent sites for the study of external bat bacterial microbiota due to the diversity of bat species, the variety of abiotic and biotic factors that may govern bat bacterial microbiota communities, and the lack of the newly emergent fungal disease in bats, white-nose syndrome (WNS), in the southwest. To test these variables, we used 16S rRNA gene 454 pyrosequencing from swabs of external skin and fur surfaces from 163 bats from 13 species sampled from southeastern New Mexico to northwestern Arizona. Community similarity patterns, random forest models, and generalized linear mixed-effects models show that factors such as location (e.g., cave-caught versus surface-netted) and ecoregion are major contributors to the structure of bacterial communities on bats. Bats caught in caves had a distinct microbial community compared to those that were netted on the surface. Our results provide a first insight into the distribution of skin and fur bat bacteria in the WNS-free environment of New Mexico and Arizona. More importantly, it provides a baseline of bat external microbiota that can be explored for potential natural defenses against pathogens. PMID:29093998

  10. Skin and fur bacterial diversity and community structure on American southwestern bats: effects of habitat, geography and bat traits.

    PubMed

    Winter, Ara S; Hathaway, Jennifer J M; Kimble, Jason C; Buecher, Debbie C; Valdez, Ernest W; Porras-Alfaro, Andrea; Young, Jesse M; Read, Kaitlyn J H; Northup, Diana E

    2017-01-01

    Microorganisms that reside on and in mammals, such as bats, have the potential to influence their host's health and to provide defenses against invading pathogens. However, we have little understanding of the skin and fur bacterial microbiota on bats, or factors that influence the structure of these communities. The southwestern United States offers excellent sites for the study of external bat bacterial microbiota due to the diversity of bat species, the variety of abiotic and biotic factors that may govern bat bacterial microbiota communities, and the lack of the newly emergent fungal disease in bats, white-nose syndrome (WNS), in the southwest. To test these variables, we used 16S rRNA gene 454 pyrosequencing from swabs of external skin and fur surfaces from 163 bats from 13 species sampled from southeastern New Mexico to northwestern Arizona. Community similarity patterns, random forest models, and generalized linear mixed-effects models show that factors such as location (e.g., cave-caught versus surface-netted) and ecoregion are major contributors to the structure of bacterial communities on bats. Bats caught in caves had a distinct microbial community compared to those that were netted on the surface. Our results provide a first insight into the distribution of skin and fur bat bacteria in the WNS-free environment of New Mexico and Arizona. More importantly, it provides a baseline of bat external microbiota that can be explored for potential natural defenses against pathogens.

  11. Skin and fur bacterial diversity and community structure on American southwestern bats: effects of habitat, geography and bat traits

    USGS Publications Warehouse

    Winter, Ara S.; Hathaway, Jennifer J. M.; Kimble, Jason C.; Buecher, Debbie C.; Valdez, Ernest W.; Porras-Alfaro, Andrea; Young, Jesse M.; Read, Kaitlyn J. H.; Northup, Diana E.

    2017-01-01

    Microorganisms that reside on and in mammals, such as bats, have the potential to influence their host’s health and to provide defenses against invading pathogens. However, we have little understanding of the skin and fur bacterial microbiota on bats, or factors that influence the structure of these communities. The southwestern United States offers excellent sites for the study of external bat bacterial microbiota due to the diversity of bat species, the variety of abiotic and biotic factors that may govern bat bacterial microbiota communities, and the lack of the newly emergent fungal disease in bats, white-nose syndrome (WNS), in the southwest. To test these variables, we used 16S rRNA gene 454 pyrosequencing from swabs of external skin and fur surfaces from 163 bats from 13 species sampled from southeastern New Mexico to northwestern Arizona. Community similarity patterns, random forest models, and generalized linear mixed-effects models show that factors such as location (e.g., cave-caught versus surface-netted) and ecoregion are major contributors to the structure of bacterial communities on bats. Bats caught in caves had a distinct microbial community compared to those that were netted on the surface. Our results provide a first insight into the distribution of skin and fur bat bacteria in the WNS-free environment of New Mexico and Arizona. More importantly, it provides a baseline of bat external microbiota that can be explored for potential natural defenses against pathogens.

  12. Secret science: tobacco industry research on smoking behaviour and cigarette toxicity.

    PubMed

    Hammond, David; Collishaw, Neil E; Callard, Cynthia

    2006-03-04

    A lack of scientific data remains the principal obstacle to regulating cigarette toxicity. In particular, there is an immediate need to improve our understanding of the interaction between smoking behaviour and product design, and its influence on cigarette deliveries. This article reviews internal tobacco industry documents on smoking behaviour research undertaken by Imperial Tobacco Limited (ITL) and British-American Tobacco (BAT). BAT documents indicate that smokers vary their puffing behaviour to regulate nicotine levels and compensate for low-yield cigarettes by smoking them more intensely. BAT research also shows that the tar and nicotine delivered to smokers is substantially greater than the machine-smoked yields reported to consumers and regulators. Internal documents describe a strategy to maximise this discrepancy through product design. In particular, BAT developed elastic cigarettes that produced low yields under standard testing protocols, whereas in consumers' hands they elicited more intensive smoking and provided higher concentrations of tar and nicotine to smokers. Documents also show that BAT pursued this product strategy despite the health risks to consumers and ethical concerns raised by senior scientists, and paired it with an equally successful marketing campaign that promoted these cigarettes as low-tar alternatives for health-concerned smokers. Overall, the documents seem to reveal a product strategy intended to exploit the limitations of the testing protocols and to intentionally conceal from consumers and regulators the potential toxicity of BAT products revealed by BAT's own research. Tobacco industry research underscores the serious limitations of the current cigarette testing protocols and the documents describe deceptive business practices that remain in place.

  13. Assessing bat detectability and occupancy with multiple automated echolocation detectors

    Treesearch

    Marcos P. Gorresen; Adam C. Miles; Christopher M. Todd; Frank J. Bonaccorso; Theodore J. Weller

    2008-01-01

    Occupancy analysis and its ability to account for differential detection probabilities is important for studies in which detecting echolocation calls is used as a measure of bat occurrence and activity. We examined the feasibility of remotely acquiring bat encounter histories to estimate detection probability and occupancy. We used echolocation detectors coupled o...

  14. Bats: Swift Shadows in the Twilight. The Wonder Series.

    ERIC Educational Resources Information Center

    Cooper, Ann C.

    This curriculum guide is all about bats and provides information through the telling of stories about bats and their history and folklore. The activities contained in this guide employ an interdisciplinary approach and use mazes, puzzles, model-building, and board games to interest and inform students. Topics covered include the physical…

  15. Effects of ethanol on food consumption and skin temperature in the Egyptian fruit bat (Rousettus aegyptiacus).

    PubMed

    Korine, Carmi; Sánchez, Francisco; Pinshow, Berry

    2011-09-01

    Since mammalian frugivores generally choose to eat ripe fruit in which ethanol concentration ([EtOH]) increases as the fruit ripens, we asked whether ethanol acts as an appetitive stimulant in the Egyptian fruit bat, Rousettus aegyptiacus, and also studied the effects of ethanol on their skin temperature (T(s)). We hypothesized that the responses of fruit bats to dietary ethanol are concentration dependent and tested the predictions that the bats' response is positive, i.e., they eat more when [EtOH] in the food is in the range found in naturally ripe fruit, while it negatively affects them at higher concentrations. We also tested the prediction that in winter, even when availability of fruit is low and thermoregulatory costs are high, ingestion of ethanol by fruit bats is low because assimilated ethanol reduces shivering thermogenesis and peripheral vasodilation; these, alone or together, are detrimental to the maintenance of body temperature (T(b)). In summer, captive bats offered food containing 0.1% ethanol significantly increased consumption over food with no ethanol; they did not change consumption when food contained 0.01, 0.3, or 0.5% ethanol; but significantly decreased consumption at higher levels of ethanol [EtOH], i.e., 1 and 2%. In winter, captive bats ate significantly less when their food contained 0.1% ethanol than when it contained 0, 0.3, or 0.5%. During summer, freshly caught bats ate significantly more ethanol-containing food than freshly caught bats in winter. Skin temperature (T(s)) in Egyptian fruit bats decreased significantly at an ambient temperature (T(a)) of 12 °C (winter conditions) after gavage with liquid food containing 1% ethanol. The effect was clearly temperature-dependent, since ethanol did not have the same effect on bats gavaged with food containing 1% or no ethanol at a T(a) of 25 °C (summer conditions). In conclusion, ethanol may act as an appetitive stimulant for Egyptian fruit bats at low concentrations, but only in summer. Bats are deterred by food containing [EtOH] corresponding to that in overripe, unpalatable fruit (1 and 2%). Furthermore, during winter, Egyptian fruit bats are deterred by ethanol-rich fruit, possibly due to the potential thermoregulatory consequences of ethanol consumption.

  16. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1

    PubMed Central

    Chouchani, Edward T.; Kazak, Lawrence; Jedrychowski, Mark P.; Lu, Gina Z.; Erickson, Brian K.; Szpyt, John; Pierce, Kerry A.; Laznik-Bogoslavski, Dina; Vetrivelan, Ramalingam; Clish, Clary B.; Robinson, Alan J.; Gygi, Steve P.; Spiegelman, Bruce M.

    2017-01-01

    Brown adipose tissue (BAT) can dissipate chemical energy as heat through thermogenic respiration, which requires uncoupling protein 1 (UCP1)1,2. Thermogenesis from BAT and beige adipose can combat obesity and diabetes3, encouraging investigation of factors that control UCP1-dependent respiration in vivo. Herein we show that acutely activated BAT thermogenesis is defined by a substantial increase in mitochondrial reactive oxygen species (ROS) levels. Remarkably, this process supports in vivo BAT thermogenesis, as pharmacological depletion of mitochondrial ROS results in hypothermia upon cold exposure, and inhibits UCP1-dependent increases in whole body energy expenditure. We further establish that thermogenic ROS alter BAT cysteine thiol redox status to drive increased respiration, and Cys253 of UCP1 is a key target. UCP1 Cys253 is sulfenylated during thermogenesis, while mutation of this site desensitizes the purine nucleotide inhibited state of the carrier to adrenergic activation and uncoupling. These studies identify BAT mitochondrial ROS induction as a mechanism that drives UCP1-dependent thermogenesis and whole body energy expenditure, which opens the way to develop improved therapeutic strategies for combating metabolic disorders. PMID:27027295

  17. Bats in a Farming Landscape Benefit from Linear Remnants and Unimproved Pastures

    PubMed Central

    Lentini, Pia E.; Gibbons, Philip; Fischer, Joern; Law, Brad; Hanspach, Jan; Martin, Tara G.

    2012-01-01

    Schemes designed to make farming landscapes less hostile to wildlife have been questioned because target taxa do not always respond in the expected manner. Microbats are often overlooked in this process, yet persist in agricultural landscapes and exert top-down control of crop pests. We investigated the relationship between microbats and measures commonly incorporated into agri-environment schemes, to derive management recommendations for their ongoing conservation. We used acoustic detectors to quantify bat species richness, activity, and feeding in 32 linear remnants and adjacent fields across an agricultural region of New South Wales, Australia. Nocturnal arthropods were simultaneously trapped using black-light traps. We recorded 91,969 bat calls, 17,277 of which could be attributed to one of the 13 taxa recorded, and 491 calls contained feeding buzzes. The linear remnants supported higher bat activity than the fields, but species richness and feeding activity did not significantly differ. We trapped a mean 87.6 g (±17.6 g SE) of arthropods per night, but found no differences in biomass between land uses. Wider linear remnants with intact native vegetation supported more bat species, as did those adjacent to unsealed, as opposed to sealed roads. Fields of unimproved native pastures, with more retained scattered trees and associated hollows and logs, supported the greatest bat species richness and activity. We conclude that the juxtaposition of linear remnants of intact vegetation and scattered trees in fields, coupled with less-intensive land uses such as unimproved pastures will benefit bat communities in agricultural landscapes, and should be incorporated into agri-environment schemes. In contrast, sealed roads may act as a deterrent. The “wildlife friendly farming” vs “land sparing” debate has so far primarily focussed on birds, but here we have found evidence that the integration of both approaches could particularly benefit bats. PMID:23155378

  18. Origins and early development of the concept that brown adipose tissue thermogenesis is linked to energy balance and obesity.

    PubMed

    Trayhurn, Paul

    2017-03-01

    Brown adipose tissue (BAT) was identified as a thermogenic organ in 1961, and in 1978 shown to be the major site of thermoregulatory non-shivering thermogenesis in rats acclimated to the cold. Investigations in the mid-late 1970s established the uncoupling of oxidative phosphorylation through a proton conductance pathway across the mitochondrial inner membrane as the mechanism for heat production in BAT, this being regulated by UCP1 which was first discovered as a 32,000 M r cold-inducible protein. These developments came when those concerned with nutritional energetics were proposing that thermogenesis is a significant factor in energy balance and the aetiology of obesity. A link with BAT was first demonstrated in obese ob/ob mice, which were shown to have decreased thermogenic activity in the tissue, and in rats exhibiting diet-induced thermogenesis (DIT) during overfeeding on a cafeteria diet where an activation of brown fat was evident. These pioneering observations led to extensive studies on BAT in different animal models of obesity, both genetic (particularly ob/ob and db/db mice, fa/fa rats) and experimentally-induced. In each case, indices of BAT activity and capacity (mitochondrial content, GDP binding, amount of UCP1) indicated that the tissue plays a role in DIT and that obesity is characterised by reduced thermogenesis. Links between BAT and whole-body energetics were also made in physiological situations such as lactation and fasting. Studies in the 1980s also provided clear evidence for the presence of BAT in adult humans, particularly through the detection of UCP1, and its activation in patients with phaeochromocytoma. Interest in BAT in energetics and obesity waned by the 1990s; the current major renewal of interest has undoubtedly been contingent on the pioneering developments that emerged some 40 years ago. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  19. DNA-based detection of the fungal pathogen Geomyces destructans in soil from bat hibernacula

    USGS Publications Warehouse

    Lindner, Daniel L.; Gargas, Andrea; Lorch, Jeffrey M.; Banik, Mark T.; Glaeser, Jessie; Kunz, Thomas H.; Blehert, David S.

    2011-01-01

    White-nose syndrome (WNS) is an emerging disease causing unprecedented morbidity and mortality among bats in eastern North America. The disease is characterized by cutaneous infection of hibernating bats by the psychrophilic fungus Geomyces destructans. Detection of G. destructans in environments occupied by bats will be critical for WNS surveillance, management and characterization of the fungal lifecycle. We initiated an rRNA gene region-based molecular survey to characterize the distribution of G. destructans in soil samples collected from bat hibernacula in the eastern United States with an existing PCR test. Although this test did not specifically detect G. destructans in soil samples based on a presence/absence metric, it did favor amplification of DNA from putative Geomyces species. Cloning and sequencing of PCR products amplified from 24 soil samples revealed 74 unique sequence variants representing 12 clades. Clones with exact sequence matches to G. destructans were identified in three of 19 soil samples from hibernacula in states where WNS is known to occur. Geomyces destructans was not identified in an additional five samples collected outside the region where WNS has been documented. This study highlights the diversity of putative Geomyces spp. in soil from bat hibernacula and indicates that further research is needed to better define the taxonomy of this genus and to develop enhanced diagnostic tests for rapid and specific detection of G. destructans in environmental samples.

  20. TRPV1 Activation Counters Diet-Induced Obesity Through Sirtuin-1 activation and PRDM-16 Deacetylation in Brown Adipose Tissue

    PubMed Central

    Baskaran, Padmamalini; Krishnan, Vivek; Fettel, Kevin; Gao, Peng; Zhu, Zhiming; Ren, Jun; Thyagarajan, Baskaran

    2017-01-01

    Background/Objective An imbalance between energy intake and expenditure leads to obesity. Increasing metabolism and thermogenesis in brown adipose tissue (BAT) can help in overcoming obesity. Here, we investigated the effect of activation of transient receptor potential vanilloid subfamily 1 (TRPV1) in the upregulation of thermogenic proteins in BAT to counter diet-induced obesity. Subjects/Methods We investigated the effect of dietary supplementation of capsaicin (TRPV1 agonist) on the expression of metabolically important thermogenic proteins in BAT of wild type and TRPV1−/− mice that received either a normal chow or high fat (± capsaicin; TRPV1 activator) diet by immunoblotting. We measured the metabolic activity, respiratory quotient and BAT lipolysis. Results CAP antagonized high fat diet (HFD)-induced obesity without decreasing energy intake in mice. HFD suppressed TRPV1 expression and activity in BAT and CAP countered this effect. HFD feeding caused glucose intolerance, hypercholesterolemia and decreased the plasma concentration of glucagon like peptide-1 and CAP countered these effects. HFD suppressed the expression of metabolically important thermogenic genes, ucp-1, bmp8b, sirtuin 1, pgc-1α and prdm-16 in BAT and CAP prevented this effect. CAP increased the phosphorylation of sirtuin 1 and induced an interaction between PPARγ with PRDM-16. Further, CAP treatment, in vitro, decreased the acetylation of PRDM-16, which was antagonized by inhibition of TRPV1 by capsazepine, chelation of intracellular Ca2+ by cell permeable BAPTA-AM or the inhibition of SIRT-1 by EX 527. Further, CAP supplementation, post HFD, promoted weight loss and enhanced the respiratory exchange ratio. CAP did not have any effect in TRPV1−/− mice. Conclusions Our data show that activation of TRPV1 in BAT enhances the expression of SIRT-1, which facilitates the deacetylation and interaction of PPARγ and PRDM-16. These data suggest that TRPV1 activation is a novel strategy to counter diet-induced obesity by enhancing metabolism and energy expenditure. PMID:28104916

  1. Fatty acid oxidation is required for active and quiescent brown adipose tissue maintenance and thermogenic programing.

    PubMed

    Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Wolfgang, Michael J

    2018-01-01

    To determine the role of fatty acid oxidation on the cellular, molecular, and physiologic response of brown adipose tissue to disparate paradigms of chronic thermogenic stimulation. Mice with an adipose-specific loss of Carnitine Palmitoyltransferase 2 (Cpt2 A-/- ), that lack mitochondrial long chain fatty acid β-oxidation, were subjected to environmental and pharmacologic interventions known to promote thermogenic programming in adipose tissue. Chronic administration of β3-adrenergic (CL-316243) or thyroid hormone (GC-1) agonists induced a loss of BAT morphology and UCP1 expression in Cpt2 A-/- mice. Fatty acid oxidation was also required for the browning of white adipose tissue (WAT) and the induction of UCP1 in WAT. In contrast, chronic cold (15 °C) stimulation induced UCP1 and thermogenic programming in both control and Cpt2 A-/- adipose tissue albeit to a lesser extent in Cpt2 A-/- mice. However, thermoneutral housing also induced the loss of UCP1 and BAT morphology in Cpt2 A-/- mice. Therefore, adipose fatty acid oxidation is required for both the acute agonist-induced activation of BAT and the maintenance of quiescent BAT. Consistent with this data, Cpt2 A-/- BAT exhibited increased macrophage infiltration, inflammation and fibrosis irrespective of BAT activation. Finally, obese Cpt2 A-/- mice housed at thermoneutrality exhibited a loss of interscapular BAT and were refractory to β3-adrenergic-induced energy expenditure and weight loss. Mitochondrial long chain fatty acid β-oxidation is critical for the maintenance of the brown adipocyte phenotype both during times of activation and quiescence. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  2. Experimental Evidence for the Effect of Small Wind Turbine Proximity and Operation on Bird and Bat Activity

    PubMed Central

    Minderman, Jeroen; Pendlebury, Chris J.; Pearce-Higgins, James W.; Park, Kirsty J.

    2012-01-01

    The development of renewable energy technologies such as wind turbines forms a vital part of strategies to reduce greenhouse gas emissions worldwide. Although large wind farms generate the majority of wind energy, the small wind turbine (SWT, units generating <50 kW) sector is growing rapidly. In spite of evidence of effects of large wind farms on birds and bats, effects of SWTs on wildlife have not been studied and are likely to be different due to their potential siting in a wider range of habitats. We present the first study to quantify the effects of SWTs on birds and bats. Using a field experiment, we show that bird activity is similar in two distance bands surrounding a sample of SWTs (between 6–18 m hub height) and is not affected by SWT operation at the fine scale studied. At shorter distances from operating turbines (0–5 m), bat activity (measured as the probability of a bat “pass” per hour) decreases from 84% (71–91%) to 28% (11–54%) as wind speed increases from 0 to 14 m/s. This effect is weaker at greater distances (20–25 m) from operating turbines (activity decreases from 80% (65–89%) to 59% (32–81%)), and absent when they are braked. We conclude that bats avoid operating SWTs but that this effect diminishes within 20 m. Such displacement effects may have important consequences especially in landscapes where suitable habitat is limiting. Planning guidance for SWTs is currently lacking. Based on our results we recommend that they are sited at least 20 m away from potentially valuable bat habitat. PMID:22859969

  3. Experimental evidence for the effect of small wind turbine proximity and operation on bird and bat activity.

    PubMed

    Minderman, Jeroen; Pendlebury, Chris J; Pearce-Higgins, James W; Park, Kirsty J

    2012-01-01

    The development of renewable energy technologies such as wind turbines forms a vital part of strategies to reduce greenhouse gas emissions worldwide. Although large wind farms generate the majority of wind energy, the small wind turbine (SWT, units generating <50 kW) sector is growing rapidly. In spite of evidence of effects of large wind farms on birds and bats, effects of SWTs on wildlife have not been studied and are likely to be different due to their potential siting in a wider range of habitats. We present the first study to quantify the effects of SWTs on birds and bats. Using a field experiment, we show that bird activity is similar in two distance bands surrounding a sample of SWTs (between 6-18 m hub height) and is not affected by SWT operation at the fine scale studied. At shorter distances from operating turbines (0-5 m), bat activity (measured as the probability of a bat "pass" per hour) decreases from 84% (71-91%) to 28% (11-54%) as wind speed increases from 0 to 14 m/s. This effect is weaker at greater distances (20-25 m) from operating turbines (activity decreases from 80% (65-89%) to 59% (32-81%)), and absent when they are braked. We conclude that bats avoid operating SWTs but that this effect diminishes within 20 m. Such displacement effects may have important consequences especially in landscapes where suitable habitat is limiting. Planning guidance for SWTs is currently lacking. Based on our results we recommend that they are sited at least 20 m away from potentially valuable bat habitat.

  4. Contributions of white and brown adipose tissues and skeletal muscles to acute cold-induced metabolic responses in healthy men

    PubMed Central

    Blondin, Denis P; Labbé, Sébastien M; Phoenix, Serge; Guérin, Brigitte; Turcotte, Éric E; Richard, Denis; Carpentier, André C; Haman, François

    2015-01-01

    Cold exposure stimulates the sympathetic nervous system (SNS), triggering the activation of cold-defence responses and mobilizing substrates to fuel the thermogenic processes. Although these processes have been investigated independently, the physiological interaction and coordinated contribution of the tissues involved in producing heat or mobilizing substrates has never been investigated in humans. Using [U-13C]-palmitate and [3-3H]-glucose tracer methodologies coupled with positron emission tomography using 11C-acetate and 18F-fluorodeoxyglucose, we examined the relationship between whole body sympathetically induced white adipose tissue (WAT) lipolysis and brown adipose tissue (BAT) metabolism and mapped the skeletal muscle shivering and metabolic activation pattern during a mild, acute cold exposure designed to minimize shivering response in 12 lean healthy men. Cold-induced increase in whole-body oxygen consumption was not independently associated with BAT volume of activity, BAT oxidative metabolism, or muscle metabolism or shivering intensity, but depended on the sum of responses of these two metabolic tissues. Cold-induced increase in non-esterified fatty acid (NEFA) appearance rate was strongly associated with the volume of metabolically active BAT (r = 0.80, P = 0.005), total BAT oxidative metabolism (r = 0.70, P = 0.004) and BAT glucose uptake (r = 0.80, P = 0.005), but not muscle glucose metabolism. The total glucose uptake was more than one order of magnitude greater in skeletal muscles compared to BAT during cold exposure (674 ± 124 vs. 12 ± 8 μmol min−1, respectively, P < 0.001). Glucose uptake demonstrated that deeper, centrally located muscles of the neck, back and inner thigh were the greatest contributors of muscle glucose uptake during cold exposure due to their more important shivering response. In summary, these results demonstrate for the first time that the increase in plasma NEFA appearance from WAT lipolysis is closely associated with BAT metabolic activation upon acute cold exposure in healthy men. In humans, muscle glucose utilization during shivering contributes to a much greater extent than BAT to systemic glucose utilization during acute cold exposure. PMID:25384777

  5. Anthropogenic impacts on Costa Rican bat parasitism are sex specific.

    PubMed

    Frank, Hannah K; Mendenhall, Chase D; Judson, Seth D; Daily, Gretchen C; Hadly, Elizabeth A

    2016-07-01

    While anthropogenic impacts on parasitism of wildlife are receiving growing attention, whether these impacts vary in a sex-specific manner remains little explored. Differences between the sexes in the effect of parasites, linked to anthropogenic activity, could lead to uneven sex ratios and higher population endangerment. We sampled 1108 individual bats in 18 different sites across an agricultural mosaic landscape in southern Costa Rica to investigate the relationships between anthropogenic impacts (deforestation and reductions in host species richness) and bat fly ectoparasitism of 35 species of Neotropical bats. Although female and male bat assemblages were similar across the deforestation gradient, bat fly assemblages tracked their hosts closely only on female bats. We found that in female hosts, parasite abundance per bat decreased with increasing bat species richness, while in male hosts, parasite abundance increased. We hypothesize the differences in the parasite-disturbance relationship are due to differences in roosting behavior between the sexes. We report a sex-specific parasite-disturbance relationship and argue that sex differences in anthropogenic impacts on wildlife parasitism could impact long-term population health and survival.

  6. Pupal deposition and ecology of bat flies (Diptera: Streblidae): Trichobius sp. (caecus group) in a Mexican cave habitat.

    PubMed

    Dittmar, Katharina; Dick, Carl W; Patterson, Bruce D; Whiting, Michael F; Gruwell, Matthew E

    2009-04-01

    We studied the deposition of pupae of the winged bat fly Trichobius sp. (caecus group; Diptera), an ectoparasite of Natalus stramineus (Chiroptera, Natalidae), in a natural cave in Tamaulipas, Mexico. For the first time, we show a strong spatial segregation of populations of a streblid bat fly at different stages of development. Using molecular techniques we were able to match developmental stages to adults. Only 5 pupae were present in the main bat roosts. The overwhelming majority occurred exclusively in the bat flyway passages at a considerable distance from roosting bats. Pupal density corresponded positively with the average flight height of bats in the cave passage. Taken together, observations suggest that these ectoparasites must actively seek out their hosts by moving onto passing or roosting bats. The scarceness of pupae in the main roost may be dictated by environmental constraints for their development. The estimated population of viable pupae far exceeds the population of imagoes on the bats, and predation on adults by spiders is common.

  7. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice.

    PubMed

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. © 2011 Villarroya et al.

  8. Thymidine Kinase 2 Deficiency-Induced Mitochondrial DNA Depletion Causes Abnormal Development of Adipose Tissues and Adipokine Levels in Mice

    PubMed Central

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R.; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. PMID:22216345

  9. Characteristics and Risk Perceptions of Ghanaians Potentially Exposed to Bat-Borne Zoonoses through Bushmeat.

    PubMed

    Kamins, Alexandra O; Rowcliffe, J Marcus; Ntiamoa-Baidu, Yaa; Cunningham, Andrew A; Wood, James L N; Restif, Olivier

    2015-03-01

    Emerging zoonotic pathogens from wildlife pose increasing public health threats globally. Bats, in particular, host an array of zoonotic pathogens, yet there is little research on how bats and humans interact, how people perceive bats and their accompanying disease risk, or who is most at risk. Eidolon helvum, the largest and most abundant African fruit bat species, is widely hunted and eaten in Ghana and also carries potentially zoonotic pathogens. This combination raises concerns, as hunting and butchering bushmeat are common sources of zoonotic transmission. Through a combination of interviews with 577 Ghanaians across southern Ghana, we identified the characteristics of people involved in the bat-bushmeat trade and we explored their perceptions of risk. Bat hunting, selling and consumption are widely distributed across regional and ethnic lines, with hotspots in certain localities, while butchering is predominantly done by women and active hunters. Interviewees held little belief of disease risk from bats, saw no ecological value in fruit bats and associated the consumption of bats with specific tribes. These data can be used to inform disease and conservation management plans, drawing on social contexts and ensuring that local voices are heard within the larger global effort to study and mitigate outbreaks.

  10. Trypanosome species, including Trypanosoma cruzi, in sylvatic and peridomestic bats of Texas, USA.

    PubMed

    Hodo, Carolyn L; Goodwin, Chloe C; Mayes, Bonny C; Mariscal, Jacqueline A; Waldrup, Kenneth A; Hamer, Sarah A

    2016-12-01

    In contrast to other mammalian reservoirs, many bat species migrate long-distances and have the potential to introduce exotic pathogens to new areas. Bats have long been associated with blood-borne protozoal trypanosomes of the Schizotrypanum subgenus, which includes the zoonotic parasite Trypanosoma cruzi, agent of Chagas disease. Another member of the subgenus, Trypanosoma dionisii, infects bats of Europe and South America, and genetic similarities between strains from the two continents suggest transcontinental movement of this parasite via bats. Despite the known presence of diverse trypanosomes in bats of Central and South America, and the presence of T. cruzi-infected vectors and wildlife in the US, the role of bats in maintaining and dispersing trypanosomes in the US has not yet been reported. We collected hearts and blood from 8 species of insectivorous bats from 30 counties across Texas. Using PCR and DNA sequencing, we tested 593 bats for trypanosomes and found 1 bat positive for T. cruzi (0.17%), 9 for T. dionisii (1.5%), and 5 for Blastocrithidia spp. (0.8%), a group of insect trypanosomes. The T. cruzi-infected bat was carrying TcI, the strain type associated with human disease in the US. In the T. dionisii-infected bats, we detected three unique variants associated with the three infected bat species. These findings represent the first report of T. cruzi in a bat in the US, of T. dionisii in North America, and of Blastocrithidia spp. in mammals, and underscore the importance of bats in the maintenance of trypanosomes, including agents of human and animal disease, across broad geographic locales. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Allergy to dexchlorpheniramine. Study of a case.

    PubMed

    Cáceres Calle, O; Fernández-Benítez, M

    2004-01-01

    Dexchlorpheniramine (DH) is a classical or first generation antihistamine belonging to the ethanolamine group. Adverse effects related to these antihistamines are frequent, but the hypersensitivity reactions described in the literature since 1940 are exceptional. We report the case of a 32-year-old woman who experienced two episodes of akathisia secondary to intravenous (i.v.) dexchlorpheniramine administration for a possible hypersensitivity reaction to local anesthetics. Allergological study consisted of the following tests: skin prick tests with routine allergens, with a negative result; skin prick and intradermal tests with local anesthetics and DH, with a positive result to DH in the intradermal skin test (+ +); serum specific IgE, which was within normal levels; histamine release test with DH with a negative result, and the basophil activation test (BAT) with local anesthetics and DH, which was positive for DH and weakly positive to Lidocaine. BAT is proving to be a highly useful tool in the field of drug allergy, with a higher sensitivity and specificity than other in vitro tests. Because it avoids the need for provocation tests, this is especially important in drug-induced allergic reactions in which in vivo tests are repeatedly negative despite a clear clinical history.

  12. North American Bats and Mines Project: A cooperative approach for integrating bat conservation and mine-land reclamation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducummon, S.L.

    Inactive underground mines now provide essential habitat for more than half of North America`s 44 bat species, including some of the largest remaining populations. Thousands of abandoned mines have already been closed or are slated for safety closures, and many are destroyed during renewed mining in historic districts. The available evidence suggests that millions of bats have already been lost due to these closures. Bats are primary predators of night-flying insects that cost American farmers and foresters billions of dollars annually, therefore, threats to bat survival are cause for serious concern. Fortunately, mine closure methods exist that protect both batsmore » and humans. Bat Conservation International (BCI) and the USDI-Bureau of Land Management founded the North American Bats and Mines Project to provide national leadership and coordination to minimize the loss of mine-roosting bats. This partnership has involved federal and state mine-land and wildlife managers and the mining industry. BCI has trained hundreds of mine-land and wildlife managers nationwide in mine assessment techniques for bats and bat-compatible closure methods, published technical information on bats and mine-land management, presented papers on bats and mines at national mining and wildlife conferences, and collaborated with numerous federal, state, and private partners to protect some of the most important mine-roosting bat populations. Our new mining industry initiative, Mining for Habitat, is designed to develop bat habitat conservation and enhancement plans for active mining operations. It includes the creation of cost-effective artificial underground bat roosts using surplus mining materials such as old mine-truck tires and culverts buried beneath waste rock.« less

  13. Active Listening in a Bat Cocktail Party: Adaptive Echolocation and Flight Behaviors of Big Brown Bats, Eptesicus fuscus, Foraging in a Cluttered Acoustic Environment.

    PubMed

    Warnecke, Michaela; Chiu, Chen; Engelberg, Jonathan; Moss, Cynthia F

    2015-09-01

    In their natural environment, big brown bats forage for small insects in open spaces, as well as in vegetation and in the presence of acoustic clutter. While searching and hunting for prey, bats experience sonar interference, not only from densely cluttered environments, but also from calls of conspecifics foraging in close proximity. Previous work has shown that when two bats compete for a single prey item in a relatively open environment, one of the bats may go silent for extended periods of time, which can serve to minimize sonar interference between conspecifics. Additionally, pairs of big brown bats have been shown to adjust frequency characteristics of their vocalizations to avoid acoustic interference in echo processing. In this study, we extended previous work by examining how the presence of conspecifics and environmental clutter influence the bat's echolocation behavior. By recording multichannel audio and video data of bats engaged in insect capture in open and cluttered spaces, we quantified the bats' vocal and flight behaviors. Big brown bats flew individually and in pairs in an open and cluttered room, and the results of this study shed light on the different strategies that this species employs to negotiate a complex and dynamic environment. © 2015 S. Karger AG, Basel.

  14. Efficacy of Visual Surveys for White-Nose Syndrome at Bat Hibernacula.

    PubMed

    Janicki, Amanda F; Frick, Winifred F; Kilpatrick, A Marm; Parise, Katy L; Foster, Jeffrey T; McCracken, Gary F

    2015-01-01

    White-Nose Syndrome (WNS) is an epizootic disease in hibernating bats caused by the fungus Pseudogymnoascus destructans. Surveillance for P. destructans at bat hibernacula consists primarily of visual surveys of bats, collection of potentially infected bats, and submission of these bats for laboratory testing. Cryptic infections (bats that are infected but display no visual signs of fungus) could lead to the mischaracterization of the infection status of a site and the inadvertent spread of P. destructans. We determined the efficacy of visual detection of P. destructans by examining visual signs and molecular detection of P. destructans on 928 bats of six species at 27 sites during surveys conducted from January through March in 2012-2014 in the southeastern USA on the leading edge of the disease invasion. Cryptic infections were widespread with 77% of bats that tested positive by qPCR showing no visible signs of infection. The probability of exhibiting visual signs of infection increased with sampling date and pathogen load, the latter of which was substantially higher in three species (Myotis lucifugus, M. septentrionalis, and Perimyotis subflavus). In addition, M. lucifugus was more likely to show visual signs of infection than other species given the same pathogen load. Nearly all infections were cryptic in three species (Eptesicus fuscus, M. grisescens, and M. sodalis), which had much lower fungal loads. The presence of M. lucifugus or M. septentrionalis at a site increased the probability that P. destructans was visually detected on bats. Our results suggest that cryptic infections of P. destructans are common in all bat species, and visible infections rarely occur in some species. However, due to very high infection prevalence and loads in some species, we estimate that visual surveys examining at least 17 individuals of M. lucifugus and M. septentrionalis, or 29 individuals of P. subflavus are still effective to determine whether a site has bats infected with P. destructans. In addition, because the probability of visually detecting the fungus was higher later in winter, surveys should be done as close to the end of the hibernation period as possible.

  15. Efficacy of Visual Surveys for White-Nose Syndrome at Bat Hibernacula

    PubMed Central

    Janicki, Amanda F.; Frick, Winifred F.; Kilpatrick, A. Marm; Parise, Katy L.; Foster, Jeffrey T.; McCracken, Gary F.

    2015-01-01

    White-Nose Syndrome (WNS) is an epizootic disease in hibernating bats caused by the fungus Pseudogymnoascus destructans. Surveillance for P. destructans at bat hibernacula consists primarily of visual surveys of bats, collection of potentially infected bats, and submission of these bats for laboratory testing. Cryptic infections (bats that are infected but display no visual signs of fungus) could lead to the mischaracterization of the infection status of a site and the inadvertent spread of P. destructans. We determined the efficacy of visual detection of P. destructans by examining visual signs and molecular detection of P. destructans on 928 bats of six species at 27 sites during surveys conducted from January through March in 2012–2014 in the southeastern USA on the leading edge of the disease invasion. Cryptic infections were widespread with 77% of bats that tested positive by qPCR showing no visible signs of infection. The probability of exhibiting visual signs of infection increased with sampling date and pathogen load, the latter of which was substantially higher in three species (Myotis lucifugus, M. septentrionalis, and Perimyotis subflavus). In addition, M. lucifugus was more likely to show visual signs of infection than other species given the same pathogen load. Nearly all infections were cryptic in three species (Eptesicus fuscus, M. grisescens, and M. sodalis), which had much lower fungal loads. The presence of M. lucifugus or M. septentrionalis at a site increased the probability that P. destructans was visually detected on bats. Our results suggest that cryptic infections of P. destructans are common in all bat species, and visible infections rarely occur in some species. However, due to very high infection prevalence and loads in some species, we estimate that visual surveys examining at least 17 individuals of M. lucifugus and M. septentrionalis, or 29 individuals of P. subflavus are still effective to determine whether a site has bats infected with P. destructans. In addition, because the probability of visually detecting the fungus was higher later in winter, surveys should be done as close to the end of the hibernation period as possible. PMID:26197236

  16. The use of ultrasound for communication by the big brown bat (Eptesicus fuscus)

    NASA Astrophysics Data System (ADS)

    Grilliot, Matthew E.

    2007-12-01

    Communication signals are important regulators of mating behavior in many animals. Various pre- and post-copulatory mechanisms have been suggested to play a role in the reproductive success and mating strategies of many mammals. Recent studies have cited sperm competition as a possible post-copulatory mechanism of selection in bats, but few studies have examined which pre-copulatory mechanisms influence mate selection. Although it is generally accepted that bats emit vocalizations that function for communication purposes as well as the more universally recognized echolocation function, there is lack of actual empirical support for this idea. In this dissertation, I test the hypothesis that ultrasonic vocalizations of big brown bats are sexually dimorphic and differ contextually in the mating season. I used playback experiments to test the response of male and female big brown bats to variations in ultrasonic vocalizations of the opposite sex and to determine if ultrasonic vocalizations are used for mate selection. My data suggest that males were likely to select ultrasonic vocalization of frequently copulating females, but females did not select ultrasonic vocalizations of frequently copulating males over infrequently copulating males. These results suggest that mate selection of male big brown bats is influenced by ultrasonic vocalizations of females.

  17. Intact or broken-apart RNA: an alternative concept for ALK fusion screening in non-small cell lung cancer (NSCLC).

    PubMed

    Kotoula, Vassiliki; Bobos, Mattheos; Vassilakopoulou, Maria; Tsolaki, Eleftheria; Chrisafi, Sofia; Psyrri, Amanda; Lazaridis, George; Papadopoulou, Kyriaki; Efstratiou, Ioannis; Michail-Strantzia, Catherine; Debelenko, Larisa V; Kosmidis, Paris; Fountzilas, George

    2015-01-01

    Anaplastic lymphoma kinase (ALK) break-apart fluorescent in situ hybridization (FISH) is currently used in diagnostics for the selection of non-small cell lung cancer (NSCLC) patients to receive crizotinib. We evaluated ALK status in NSCLC with a novel ALK mRNA test based on the break-apart FISH concept, which we called break-apart transcript (BAT) test. ALK5' and ALK3' transcript patterns were established with qPCR for ALK-expressing controls including fusion-negative neuroblastomas, as well as fusion-positive anaplastic large cell lymphomas and NSCLC. The BAT test was evaluated on 271 RNA samples from routinely processed paraffin NSCLC tissues. Test results were compared with ALK FISH (n=121), immunohistochemical (IHC) analysis (n=86), and automated quantitative analysis (AQUA, n=83). On the basis of the nonoverlapping ALK BAT patterns in ALK-expressing controls (P<0.0001), 8/174 adenocarcinomas (4.6%) among 259 informative NSCLC were predicted as fusion positive. Overall concordance for paired method results was high (94.1% to 98.8%) but mainly concerned negative prediction because of the limited availability of positive-matched cases. Tumors with 100% cytoplasmic IHC staining of any intensity (n=3) were positive for AQUA, FISH, and BAT test; tumors with lower IHC positivity and different staining patterns were AQUA-negative. Upon multiple reevaluations, ALK gene status was considered as originally misinterpreted by FISH in 3/121 cases (2.5%). Tumors with >4 ALK gene copies were associated with longer overall survival upon first-line chemotherapy. In conclusion, application of the ALK BAT test on routinely processed NSCLC tissues yields the same fusion partner independent information as ALK break-apart FISH but is more robust and cost-effective. The BAT concept may be considered for the development of further drug-predictive translocation tests.

  18. Detection of rhabdovirus viral RNA in oropharyngeal swabs and ectoparasites of Spanish bats.

    PubMed

    Aznar-Lopez, Carolina; Vazquez-Moron, Sonia; Marston, Denise A; Juste, Javier; Ibáñez, Carlos; Berciano, Jose Miguel; Salsamendi, Egoitz; Aihartza, Joxerra; Banyard, Ashley C; McElhinney, Lorraine; Fooks, Anthony R; Echevarria, Juan

    2013-01-01

    Rhabdoviruses infect a variety of hosts, including mammals, birds, reptiles, fish, insects and plants. As bats are the natural host for most members of the genus Lyssavirus, the specificity of the amplification methods used for active surveillance is usually restricted to lyssaviruses. However, the presence of other rhabdoviruses in bats has also been reported. In order to broaden the scope of such methods, a new RT-PCR, able to detect a diverse range of rhabdoviruses, was designed. The method detected 81 of 86 different rhabdoviruses. In total, 1488 oropharyngeal bat swabs and 38 nycteribiid samples were analysed, and 17 unique rhabdovirus-related sequences were detected. Phylogenetic analysis suggested that those sequences detected in bats did not constitute a monophyletic group, even when originating from the same bat species. However, all of the sequences detected in nycteribiids and one sequence obtained from a bat did constitute a monophyletic group with Drosophila melanogaster sigma rhabdovirus.

  19. Sensing in a noisy world: lessons from auditory specialists, echolocating bats.

    PubMed

    Corcoran, Aaron J; Moss, Cynthia F

    2017-12-15

    All animals face the essential task of extracting biologically meaningful sensory information from the 'noisy' backdrop of their environments. Here, we examine mechanisms used by echolocating bats to localize objects, track small prey and communicate in complex and noisy acoustic environments. Bats actively control and coordinate both the emission and reception of sound stimuli through integrated sensory and motor mechanisms that have evolved together over tens of millions of years. We discuss how bats behave in different ecological scenarios, including detecting and discriminating target echoes from background objects, minimizing acoustic interference from competing conspecifics and overcoming insect noise. Bats tackle these problems by deploying a remarkable array of auditory behaviors, sometimes in combination with the use of other senses. Behavioral strategies such as ceasing sonar call production and active jamming of the signals of competitors provide further insight into the capabilities and limitations of echolocation. We relate these findings to the broader topic of how animals extract relevant sensory information in noisy environments. While bats have highly refined abilities for operating under noisy conditions, they face the same challenges encountered by many other species. We propose that the specialized sensory mechanisms identified in bats are likely to occur in analogous systems across the animal kingdom. © 2017. Published by The Company of Biologists Ltd.

  20. A bony connection signals laryngeal echolocation in bats.

    PubMed

    Veselka, Nina; McErlain, David D; Holdsworth, David W; Eger, Judith L; Chhem, Rethy K; Mason, Matthew J; Brain, Kirsty L; Faure, Paul A; Fenton, M Brock

    2010-02-18

    Echolocation is an active form of orientation in which animals emit sounds and then listen to reflected echoes of those sounds to form images of their surroundings in their brains. Although echolocation is usually associated with bats, it is not characteristic of all bats. Most echolocating bats produce signals in the larynx, but within one family of mainly non-echolocating species (Pteropodidae), a few species use echolocation sounds produced by tongue clicks. Here we demonstrate, using data obtained from micro-computed tomography scans of 26 species (n = 35 fluid-preserved bats), that proximal articulation of the stylohyal bone (part of the mammalian hyoid apparatus) with the tympanic bone always distinguishes laryngeally echolocating bats from all other bats (that is, non-echolocating pteropodids and those that echolocate with tongue clicks). In laryngeally echolocating bats, the proximal end of the stylohyal bone directly articulates with the tympanic bone and is often fused with it. Previous research on the morphology of the stylohyal bone in the oldest known fossil bat (Onychonycteris finneyi) suggested that it did not echolocate, but our findings suggest that O. finneyi may have used laryngeal echolocation because its stylohyal bones may have articulated with its tympanic bones. The present findings reopen basic questions about the timing and the origin of flight and echolocation in the early evolution of bats. Our data also provide an independent anatomical character by which to distinguish laryngeally echolocating bats from other bats.

  1. Growth medium and incubation temperature alter the Pseudogymnoascus destructans transcriptome: implications in identifying virulence factors.

    PubMed

    Donaldson, Michael E; Davy, Christina M; Vanderwolf, Karen J; Willis, Craig K R; Saville, Barry J; Kyle, Christopher J

    2018-02-23

    Pseudogymnoascus destructans is the causal agent of bat white-nose syndrome (WNS), which is devastating some North American bat populations. Previous transcriptome studies provided insight regarding the molecular mechanisms involved in WNS; however, it is unclear how different environmental parameters could influence pathogenicity. This information could be useful in developing management strategies to mitigate the negative impacts of P. destructans on bats. We cultured three P. destructans isolates from Atlantic Canada on two growth media (potato dextrose agar and Sabouraud dextrose agar) that differ in their nitrogen source, and at two separate incubation temperatures (4 C and 15 C) that approximate the temperature range of bat hibernacula during the winter and a temperature within its optimal mycelial growth range. We conducted RNA sequencing to determine transcript levels in each sample and performed differential gene expression (DGE) analyses to test the influence of growth medium and incubation temperature on gene expression. We also compared our in vitro results with previous RNA-sequencing data sets generated from P. destructans growing on the wings of a susceptible host, Myotis lucifugus. Our findings point to a critical role for substrate and incubation temperature in influencing the P. destructans transcriptome. DGE analyses suggested that growth medium plays a larger role than temperature in determining P. destructans gene expression and that although the psychrophilic fungus responds to different nitrogen sources, it may have evolved for continued growth at a broad range of low temperatures. Further, our data suggest that down-regulation of the RNA-interference pathway and increased fatty acid metabolism are involved in the P. destructans-bat interaction. Finally, we speculate that to reduce the activation of host defense responses, P. destructans minimizes changes in the expression of genes encoding secreted proteins during bat colonization.

  2. Foodborne botulism treated with heptavalent botulism antitoxin.

    PubMed

    Hill, Stanley E; Iqbal, Raza; Cadiz, Christine L; Le, Jennifer

    2013-02-01

    To report a case of foodborne botulism and subsequent use of the investigational heptavalent botulism antitoxin (H-BAT). A 60-year-old man was hospitalized with blurred vision, diplopia, and dysarthria. On hospital day 2, the patient was transferred to the intensive care unit for progressive fatigable weakness with ptosis, dysphagia, dysarthria, and nausea. Secondary to worsening respiratory distress, the patient was intubated and placed on a ventilator. The patient could open his eyes only with assistance but still had normal strength in all extremities. H-BAT was administered 48 hours after presentation for possible botulism. The patient then revealed that he consumed home-canned corn several days prior to admission. On hospital day 8, botulinum neurotoxin was confirmed in the patient's serum and the home-canned corn. The patient slowly regained muscle strength and was discharged to a long-term acute care facility on hospital day 22. Foodborne botulism is caused by a neurotoxin from Clostridium botulinum and usually occurs after the consumption of improperly prepared home-canned food. Botulism is characterized by symmetrical descending paralysis that may progress to respiratory arrest. The standard confirmatory test for botulism is a mouse bioassay to prove the presence of botulinum neurotoxin. Outside of supportive care, the treatment options for botulism are limited. Individuals with botulism often require intensive care unit monitoring and potentially ventilatory support. H-BAT, the only treatment available for botulism in patients older than 1 year, is a purified and despeciated equine-derived immunoglobulin active against all known botulinum neurotoxins. H-BAT's despeciation significantly reduces the risk of hypersensitivity reactions, anaphylaxis, and serum sickness. In a confirmed case of foodborne botulism treated with H-BAT, the patient tolerated H-BAT and did not develop any hypersensitivity reactions or serum sickness.

  3. 49 CFR 40.267 - What problems always cause an alcohol test to be cancelled?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... always cause an alcohol test to be cancelled? As an employer, a BAT, or an STT, you must cancel an alcohol test if any of the following problems occur. These are “fatal flaws.” You must inform the DER that... the case of a screening test conducted on a saliva ASD or a breath tube ASD: (1) The STT or BAT reads...

  4. BATMAV: a 2-DOF bio-inspired flapping flight platform

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe; Seelecke, Stefan

    2010-04-01

    Due to the availability of small sensors, Micro-Aerial Vehicles (MAVs) can be used for detection missions of biological, chemical and nuclear agents. Traditionally these devices used fixed or rotary wings, actuated with electric DC motortransmission, a system which brings the disadvantage of a heavier platform. The overall objective of the BATMAV project is to develop a biologically inspired bat-like MAV with flexible and foldable wings for flapping flight. This paper presents a flight platform that features bat-inspired wings which are able to actively fold their elbow joints. A previous analysis of the flight physics for small birds, bats and large insects, revealed that the mammalian flight anatomy represents a suitable flight platform that can be actuated efficiently using Shape Memory Alloy (SMA) artificial-muscles. A previous study of the flight styles in bats based on the data collected by Norberg [1] helped to identify the required joint angles as relevant degrees of freedom for wing actuation. Using the engineering theory of robotic manipulators, engineering kinematic models of wings with 2 and 3-DOFs were designed to mimic the wing trajectories of the natural flier Plecotus auritus. Solid models of the bat-like skeleton were designed based on the linear and angular dimensions resulted from the kinematic models. This structure of the flight platform was fabricated using rapid prototyping technologies and assembled to form a desktop prototype with 2-DOFs wings. Preliminary flapping test showed suitable trajectories for wrist and wingtip that mimic the flapping cycle of the natural flyer.

  5. AgRP Neurons Control Systemic Insulin Sensitivity via Myostatin Expression in Brown Adipose Tissue.

    PubMed

    Steculorum, Sophie M; Ruud, Johan; Karakasilioti, Ismene; Backes, Heiko; Engström Ruud, Linda; Timper, Katharina; Hess, Martin E; Tsaousidou, Eva; Mauer, Jan; Vogt, Merly C; Paeger, Lars; Bremser, Stephan; Klein, Andreas C; Morgan, Donald A; Frommolt, Peter; Brinkkötter, Paul T; Hammerschmidt, Philipp; Benzing, Thomas; Rahmouni, Kamal; Wunderlich, F Thomas; Kloppenburg, Peter; Brüning, Jens C

    2016-03-24

    Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Experimental infection of Artibeus intermedius with a vampire bat rabies virus.

    PubMed

    Obregón-Morales, Cirani; Aguilar-Setién, Álvaro; Perea Martínez, Leonardo; Galvez-Romero, Guillermo; Martínez-Martínez, Flor Olivia; Aréchiga-Ceballos, Nidia

    2017-06-01

    Experimental infection of Artibeus intermedius, the great fruit-eating bat, was performed with vampire bat rabies isolates. Bats (n=35) were captured in the wild and quarantined prior to experimental infection. No rabies antibodies were detected by rapid fluorescent focus inhibition test (RFFIT) prior to infection. Three doses of rabies virus (RV) and three different routes of infection were used. One out of 35 bats died without showing any clinical signs at day 14 and was positive for rabies. None of the 34 other bats showed clinical signs for rabies, but high antibody titers were detected post-inoculation, suggesting either innate immune response to the vampire bat rabies virus or possible pre-exposure to RV and inoculation leading to a booster effect. Rabies virus was detected by hemi-nested RT-PCR (hnRT-PCR) in the brain (n=3), stomach (n=1) of bats that were negative by immunofluorescence and that survived rabies infection. The bat that died on day 14 was positive by hnRT-PCR on the brain, heart and liver. These results suggest that either previous non-lethal exposure to RV or natural low susceptibility to vampire bat viruses somehow protected Artibeus intermedius from clinical rabies infection leading to a marginal lethality effect on this bats species population in the wild. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Identification of Biocontrol Agents to Control the Fungal Pathogen, Geomyces destructans, in Bats

    NASA Astrophysics Data System (ADS)

    Braunstein, S.; Cheng, T.

    2013-12-01

    The fungal pathogen Geomyces destructans (Gd) causes the disease White-nose Syndrome (WNS) in bats and is estimated to have killed millions of bats since its emergence in North America in 2006. Gd is predicted to cause the local extinction of at least three bat species if rates of decline continue unabated. Given the devastating impacts of Gd to bat populations, identifying a viable method for controlling the pathogen is pertinent for conservation of affected bat species. Our work focuses on identifying naturally-occurring skin bacteria on bats that are antagonistic to Gd that could potentially be used as a biocontrol. We cultured bacteria from skin swabs taken from wild bats (Myotis lucifugus, Eptesicus fuscus, Myotis sodalis, Perimyotis subflavus). We conducted challenge experiments to identify bacterial strains that inhibited Gd growth. Bacteria that exhibited antifungal properties were identified using 16S and gyrB markers. Our methods identified several bacteria in the Pseudomonas fluorescens complex as potential biocontrol agents. Future work will continue to test the viability of these bacteria as biocontrol agents via experimental treatments with live captive bats. The failure of previous non-biocontrol methods highlights the importance of developing these bacteria as a biologically-friendly method for controlling Gd. A bat infected with Geomyces destructans. Photo by West Virginia Division of Natural Resources Bacterial culture from the swab of a bat's wings

  8. Bat Response To Carolina Bays and Wetland Restoration in the Southeastern U.S. Coastal Plain

    Treesearch

    Jennifer M. Menzel; Michael A. Menzel; John C. Kilgo; W. Mark Ford; John W. Edwards

    2005-01-01

    Bat activity in the southeastern United States is concentrated over riparian areas and wetland habitats. The restoration and creation of wetlands for mitigation purposes is becoming common in the Southeast. Understanding the effects of these restoration efforts on wetland flora and fauna is thus becoming increasingly important. Because bats (Order: Chiroptera) consist...

  9. Site-occupany of bats in relation to forested corridors

    Treesearch

    Chris D Hein; Steven B Castleberry; Karl V. Miller

    2009-01-01

    Although use of corridors by some wildlife species has been extensively examined, use by bats is poorly understood. From 1 June to 31 August (2004~200S), we used Anabat II detectors to examine bat activity and species occupancy relative to forested corridors on an intensively managed forest landscape in southern South Carolina, USA. We...

  10. Digenetic trematodes, Acanthatrium sp. and Lecithodendrium sp., as vectors of Neorickettsia risticii, the agent of Potomac horse fever.

    PubMed

    Pusterla, N; Johnson, E M; Chae, J S; Madigan, J E

    2003-12-01

    Neorickettsia (formerly Ehrlichia) risticii, the agent of Potomac horse fever (PHF), has been recently detected in trematode stages found in the secretions of freshwater snails and in aquatic insects. Insectivores, such as bats and birds, may serve as the definitive host of the trematode vector. To determine the definitive helminth vector, five bats (Myotis yumanensis) and three swallows (Hirundo rustica, Tachycineta bicolor) were collected from a PHF endemic location in northern California. Bats and swallows were dissected and their major organs examined for trematodes and for N. risticii DNA using a nested polymerase chain reaction (PCR) assay. Adult digenetic trematodes, Acanthatrium sp. and/or Lecithodendrium sp., were recovered from the gastrointestinal tract of all bats and from one swallow. The intestine of three bats, the spleen of two bats and one swallow as well as the liver of one swallow tested PCR positive for N. risticii. From a total of seven pools of identical digenetic trematodes collected from single hosts, two pools of Acanthatrium sp. and one pool of Lecithodendrium sp. tested PCR positive. The results of this investigation provide preliminary evidence that at least two trematodes in the family Lecithodendriidae are vectors of N. risticii. The data also suggest that bats and swallows not only act as a host for trematodes but also as a possible natural reservoir for N. risticii.

  11. Patterns of sexual size dimorphism in horseshoe bats: Testing Rensch's rule and potential causes.

    PubMed

    Wu, Hui; Jiang, Tinglei; Huang, Xiaobin; Feng, Jiang

    2018-02-08

    Rensch's rule, stating that sexual size dimorphism (SSD) becomes more evident and male-biased with increasing body size, has been well supported for taxa that exhibit male-biased SSD. Bats, primarily having female-biased SSD, have so far been tested for whether SSD allometry conforms to Rensch's rule in only three studies. However, these studies did not consider phylogeny, and thus the mechanisms underlying SSD variations in bats remain unclear. Thus, the present study reviewed published and original data, including body size, baculum size, and habitat types in 45 bats of the family Rhinolophidae to determine whether horseshoe bats follow Rensch's rule using a phylogenetic comparative framework. We also investigated the potential effect of postcopulatory sexual selection and habitat type on SSD. Our findings indicated that Rensch's rule did not apply to Rhinolophidae, suggesting that SSD did not significantly vary with increasing size. This pattern may be attributable interactions between weak sexual selection to male body size and strong fecundity selection for on female body size. The degree of SSD among horseshoe bats may be attributed to a phylogenetic effect rather than to the intersexual competition for food or to baculum length. Interestingly, we observed that species in open habitats exhibited greater SSD than those in dense forests, suggesting that habitat types may be associated with variations in SSD in horseshoe bats.

  12. Brown adipose tissue is involved in diet-induced thermogenesis and whole-body fat utilization in healthy humans

    PubMed Central

    Hibi, M; Oishi, S; Matsushita, M; Yoneshiro, T; Yamaguchi, T; Usui, C; Yasunaga, K; Katsuragi, Y; Kubota, K; Tanaka, S; Saito, M

    2016-01-01

    Background/Objectives: Brown adipose tissue (BAT) is a potential therapeutic target against obesity and diabetes through thermogenesis and substrate disposal with cold exposure. The role of BAT in energy metabolism under thermoneutral conditions, however, remains controversial. We assessed the contribution of BAT to energy expenditure (EE), particularly diet-induced thermogenesis (DIT), and substrate utilization in human adults. Methods: In this cross-sectional study, BAT activity was evaluated in 21 men using 18F-fluoro-2-deoxy-D-glucose positron emission tomography combined with computed tomography (18F-FDG-PET/CT) after cold exposure (19 °C). The subjects were divided into BAT-positive (n=13) and BAT-negative (n=8) groups according to the 18F-FDG-PET/CT findings. Twenty-four hour EE, DIT and respiratory quotient were measured using a whole-room indirect calorimeter at 27 °C. Results: Body composition, blood metabolites and 24-h EE did not differ between groups. DIT (%), calculated as DIT divided by total energy intake, however, was significantly higher in the BAT-positive group (BAT-positive: 9.7±2.5%, BAT-negative: 6.5±4.0%, P=0.03). The 24-h respiratory quotient was significantly lower (P=0.03) in the BAT-positive group (0.861±0.027) than in the BAT-negative group (0.889±0.024). Conclusion: DIT and fat utilization were higher in BAT-positive subjects compared to BAT-negative subjects, suggesting that BAT has a physiologic role in energy metabolism. PMID:27430878

  13. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction: safety and efficacy in patients with and without cardiac resynchronization therapy.

    PubMed

    Zile, Michael R; Abraham, William T; Weaver, Fred A; Butter, Christian; Ducharme, Anique; Halbach, Marcel; Klug, Didier; Lovett, Eric G; Müller-Ehmsen, Jochen; Schafer, Jill E; Senni, Michele; Swarup, Vijay; Wachter, Rolf; Little, William C

    2015-10-01

    Increased sympathetic and decreased parasympathetic activity contribute to heart failure (HF) symptoms and disease progression. Carotid baroreceptor stimulation (baroreflex activation therapy, BAT) results in centrally mediated reduction of sympathetic and increase in parasympathetic activity. Because patients treated with cardiac resynchronization therapy (CRT) may have less sympathetic/parasympathetic imbalance, we hypothesized that there would be differences in the response to BAT in patients with CRT vs. those without CRT. New York Heart Association (NYHA) Class III patients with an ejection fraction (EF) ≤35% were randomized (1 : 1) to ongoing guideline-directed medical and device therapy (GDMT, control) or ongoing GDMT plus BAT. Safety endpoint was system-/procedure-related major adverse neurological and cardiovascular events (MANCE). Efficacy endpoints were Minnesota Living with Heart Failure Quality of Life (QoL), 6-min hall walk distance (6MHWD), N-terminal pro-brain natriuretic peptide (NT-proBNP), left ventricular ejection fraction (LVEF), and HF hospitalization rate. In this sample, 146 patients were randomized (70 control; 76 BAT) and were 140 activated (45 with CRT and 95 without CRT). MANCE-free rate at 6 months was 100% in CRT and 96% in no-CRT group. At 6 months, in the no-CRT group, QoL score, 6MHWD, LVEF, NT-proBNP and HF hospitalizations were significantly improved in BAT patients compared with controls. Changes in efficacy endpoints in the CRT group favoured BAT; however, the improvements were less than in the no-CRT group and were not statistically different from control. BAT is safe and significantly improved QoL, exercise capacity, NTpro-BNP, EF, and rate of HF hospitalizations in GDMT-treated NYHA Class III HF patients. These effects were most pronounced in patients not treated with CRT. © 2015 The Authors European Journal of Heart Failure © 2015 European Society of Cardiology.

  14. Polarized skylight does not calibrate the compass system of a migratory bat

    PubMed Central

    Lindecke, Oliver; Voigt, Christian C.; Pētersons, Gunārs; Holland, Richard A.

    2015-01-01

    In a recent study, Greif et al. (Greif et al. Nat Commun 5, 4488. (doi:10.1038/ncomms5488)) demonstrated a functional role of polarized light for a bat species confronted with a homing task. These non-migratory bats appeared to calibrate their magnetic compass by using polarized skylight at dusk, yet it is unknown if migratory bats also use these cues for calibration. During autumn migration, we equipped Nathusius' bats, Pipistrellus nathusii, with radio transmitters and tested if experimental animals exposed during dusk to a 90° rotated band of polarized light would head in a different direction compared with control animals. After release, bats of both groups continued their journey in the same direction. This observation argues against the use of a polarization-calibrated magnetic compass by this migratory bat and questions that the ability of using polarized light for navigation is a consistent feature in bats. This finding matches with observations in some passerine birds that used polarized light for calibration of their magnetic compass before but not during migration. PMID:26382077

  15. Polarized skylight does not calibrate the compass system of a migratory bat.

    PubMed

    Lindecke, Oliver; Voigt, Christian C; Pētersons, Gunārs; Holland, Richard A

    2015-09-01

    In a recent study, Greif et al. (Greif et al. Nat Commun 5, 4488. (doi:10.1038/ncomms5488)) demonstrated a functional role of polarized light for a bat species confronted with a homing task. These non-migratory bats appeared to calibrate their magnetic compass by using polarized skylight at dusk, yet it is unknown if migratory bats also use these cues for calibration. During autumn migration, we equipped Nathusius' bats, Pipistrellus nathusii, with radio transmitters and tested if experimental animals exposed during dusk to a 90° rotated band of polarized light would head in a different direction compared with control animals. After release, bats of both groups continued their journey in the same direction. This observation argues against the use of a polarization-calibrated magnetic compass by this migratory bat and questions that the ability of using polarized light for navigation is a consistent feature in bats. This finding matches with observations in some passerine birds that used polarized light for calibration of their magnetic compass before but not during migration. © 2015 The Author(s).

  16. Development and characterization of fourteen novel microsatellite markers for the chestnut short-tailed fruit bat (Carollia castanea), and cross-amplification to related species.

    PubMed

    Cleary, Katherine A; Waits, Lisette P; Hohenlohe, Paul A

    2016-01-01

    Rapid anthropogenic land use change threatens the primary habitat of the Chestnut short-tailed bat (Carollia castanea) throughout much of its range. Information on population genetic structure can inform management strategies for this widespread frugivorous bat, and effective protection of C. castanea will also benefit the more than 20 mutualistic plant species of which this bat is the primary seed disperser. To facilitate understanding of population genetic structure in this species, fourteen novel microsatellite markers were developed using restriction-site-associated DNA libraries and Illumina sequencing and tested on 28 individuals from 13 locations in Costa Rica. These are the first microsatellite markers developed for C. castanea. All loci were polymorphic, with number of alleles ranging from 2-11 and average observed heterozygosity of 0.631. Markers were also cross-amplified in three additional frugivorous bat species threatened by habitat loss and fragmentation: Sowell's short-tailed bat (Carollia sowelli), Seba's short-tailed bat (Carollia perspicillata), and the Jamaican fruit bat (Artibeus jamaicensis), and 10, 11, and 8 were polymorphic, respectively.

  17. Behavior of bats at wind turbines

    PubMed Central

    Cryan, Paul. M.; Gorresen, P. Marcos; Hein, Cris D.; Schirmacher, Michael R.; Diehl, Robert H.; Huso, Manuela M.; Hayman, David T. S.; Fricker, Paul D.; Bonaccorso, Frank J.; Johnson, Douglas H.; Heist, Kevin; Dalton, David C.

    2014-01-01

    Wind turbines are causing unprecedented numbers of bat fatalities. Many fatalities involve tree-roosting bats, but reasons for this higher susceptibility remain unknown. To better understand behaviors associated with risk, we monitored bats at three experimentally manipulated wind turbines in Indiana, United States, from July 29 to October 1, 2012, using thermal cameras and other methods. We observed bats on 993 occasions and saw many behaviors, including close approaches, flight loops and dives, hovering, and chases. Most bats altered course toward turbines during observation. Based on these new observations, we tested the hypotheses that wind speed and blade rotation speed influenced the way that bats interacted with turbines. We found that bats were detected more frequently at lower wind speeds and typically approached turbines on the leeward (downwind) side. The proportion of leeward approaches increased with wind speed when blades were prevented from turning, yet decreased when blades could turn. Bats were observed more frequently at turbines on moonlit nights. Taken together, these observations suggest that bats may orient toward turbines by sensing air currents and using vision, and that air turbulence caused by fast-moving blades creates conditions that are less attractive to bats passing in close proximity. Tree bats may respond to streams of air flowing downwind from trees at night while searching for roosts, conspecifics, and nocturnal insect prey that could accumulate in such flows. Fatalities of tree bats at turbines may be the consequence of behaviors that evolved to provide selective advantages when elicited by tall trees, but are now maladaptive when elicited by wind turbines. PMID:25267628

  18. Behavior of bats at wind turbines.

    PubMed

    Cryan, Paul M; Gorresen, P Marcos; Hein, Cris D; Schirmacher, Michael R; Diehl, Robert H; Huso, Manuela M; Hayman, David T S; Fricker, Paul D; Bonaccorso, Frank J; Johnson, Douglas H; Heist, Kevin; Dalton, David C

    2014-10-21

    Wind turbines are causing unprecedented numbers of bat fatalities. Many fatalities involve tree-roosting bats, but reasons for this higher susceptibility remain unknown. To better understand behaviors associated with risk, we monitored bats at three experimentally manipulated wind turbines in Indiana, United States, from July 29 to October 1, 2012, using thermal cameras and other methods. We observed bats on 993 occasions and saw many behaviors, including close approaches, flight loops and dives, hovering, and chases. Most bats altered course toward turbines during observation. Based on these new observations, we tested the hypotheses that wind speed and blade rotation speed influenced the way that bats interacted with turbines. We found that bats were detected more frequently at lower wind speeds and typically approached turbines on the leeward (downwind) side. The proportion of leeward approaches increased with wind speed when blades were prevented from turning, yet decreased when blades could turn. Bats were observed more frequently at turbines on moonlit nights. Taken together, these observations suggest that bats may orient toward turbines by sensing air currents and using vision, and that air turbulence caused by fast-moving blades creates conditions that are less attractive to bats passing in close proximity. Tree bats may respond to streams of air flowing downwind from trees at night while searching for roosts, conspecifics, and nocturnal insect prey that could accumulate in such flows. Fatalities of tree bats at turbines may be the consequence of behaviors that evolved to provide selective advantages when elicited by tall trees, but are now maladaptive when elicited by wind turbines.

  19. Behavior of bats at wind turbines

    USGS Publications Warehouse

    Cryan, Paul M.; Gorresen, P. Marcos; Hine, Cris D.; Schirmacher, Michael; Diehl, Robert H.; Huso, Manuela M.; Hayman, David T.S.; Fricker, Paul D.; Bonaccorso, Frank J.; Johnson, Douglas H.; Heist, Kevin W.; Dalton, David C.

    2014-01-01

    Wind turbines are causing unprecedented numbers of bat fatalities. Many fatalities involve tree-roosting bats, but reasons for this higher susceptibility remain unknown. To better understand behaviors associated with risk, we monitored bats at three experimentally manipulated wind turbines in Indiana, United States, from July 29 to October 1, 2012, using thermal cameras and other methods. We observed bats on 993 occasions and saw many behaviors, including close approaches, flight loops and dives, hovering, and chases. Most bats altered course toward turbines during observation. Based on these new observations, we tested the hypotheses that wind speed and blade rotation speed influenced the way that bats interacted with turbines. We found that bats were detected more frequently at lower wind speeds and typically approached turbines on the leeward (downwind) side. The proportion of leeward approaches increased with wind speed when blades were prevented from turning, yet decreased when blades could turn. Bats were observed more frequently at turbines on moonlit nights. Taken together, these observations suggest that bats may orient toward turbines by sensing air currents and using vision, and that air turbulence caused by fast-moving blades creates conditions that are less attractive to bats passing in close proximity. Tree bats may respond to streams of air flowing downwind from trees at night while searching for roosts, conspecifics, and nocturnal insect prey that could accumulate in such flows. Fatalities of tree bats at turbines may be the consequence of behaviors that evolved to provide selective advantages when elicited by tall trees, but are now maladaptive when elicited by wind turbines.

  20. Bat Accelerated Regions Identify a Bat Forelimb Specific Enhancer in the HoxD Locus

    PubMed Central

    Mason, Mandy K.; VanderMeer, Julia E.; Zhao, Jingjing; Eckalbar, Walter L.; Logan, Malcolm; Illing, Nicola; Pollard, Katherine S.; Ahituv, Nadav

    2016-01-01

    The molecular events leading to the development of the bat wing remain largely unknown, and are thought to be caused, in part, by changes in gene expression during limb development. These expression changes could be instigated by variations in gene regulatory enhancers. Here, we used a comparative genomics approach to identify regions that evolved rapidly in the bat ancestor, but are highly conserved in other vertebrates. We discovered 166 bat accelerated regions (BARs) that overlap H3K27ac and p300 ChIP-seq peaks in developing mouse limbs. Using a mouse enhancer assay, we show that five Myotis lucifugus BARs drive gene expression in the developing mouse limb, with the majority showing differential enhancer activity compared to the mouse orthologous BAR sequences. These include BAR116, which is located telomeric to the HoxD cluster and had robust forelimb expression for the M. lucifugus sequence and no activity for the mouse sequence at embryonic day 12.5. Developing limb expression analysis of Hoxd10-Hoxd13 in Miniopterus natalensis bats showed a high-forelimb weak-hindlimb expression for Hoxd10-Hoxd11, similar to the expression trend observed for M. lucifugus BAR116 in mice, suggesting that it could be involved in the regulation of the bat HoxD complex. Combined, our results highlight novel regulatory regions that could be instrumental for the morphological differences leading to the development of the bat wing. PMID:27019019

  1. Potent Inhibition of Pseudogymnoascus destructans, the Causative Agent of White-Nose Syndrome in Bats, by Cold-Pressed, Terpeneless, Valencia Orange Oil.

    PubMed

    Boire, Nicholas; Zhang, Sean; Khuvis, Joshua; Lee, Rick; Rivers, Jennifer; Crandall, Philip; Keel, M Kevin; Parrish, Nicole

    2016-01-01

    The causative agent of White-nose Syndrome (WNS), Pseudogymnoascus destructans, has been shown to be fatal to several species of bats in North America. To date, no compounds or chemical control measures have been developed which eliminates the growth of the fungus in the environment or in affected animals. In the current study, we evaluated the activity of cold-pressed, terpeneless orange oil (CPT) against multiple isolates of P. destructans in vitro. For all assays, a modified Kirby-Bauer disk diffusion assay was used. Standardized spore suspensions were prepared, adjusted to a specific optical density, and used to plate fungal lawns. Plates were incubated at either 15°C or 4°C for up to 6 months and checked at regular intervals for growth. Once controls had grown, zones of inhibition were measured (mm) on test plates and compared to those obtained using current antifungal drugs. All P. destructans isolates were completely inhibited by 100% CPT (10 μL) at 1 month of incubation regardless of temperature (4°C and 15°C). Complete inhibition persisted up to 6 months following a single exposure at this concentration. Of the standard antifungals, only amphotericin B demonstrated any activity, resulting in zone diameters ranging from 58 mm to 74 mm. CPT, at the highest concentration tested (100%), had no significant effect against a variety of other environmental organisms including various filamentous fungi, bacteria and aerobic actinomycetes. Given that CPT is relatively non-toxic, the possibility exists that the all-natural, mixture could be used as an environmental pre-treatment to eradicate P. destructans from bat habitats. Additional studies are needed to assess any undesirable effects of CPT on bat behavior and health and overall impacts on other members of the interconnected ecosystem(s).

  2. Potent Inhibition of Pseudogymnoascus destructans, the Causative Agent of White-Nose Syndrome in Bats, by Cold-Pressed, Terpeneless, Valencia Orange Oil

    PubMed Central

    Boire, Nicholas; Zhang, Sean; Khuvis, Joshua; Lee, Rick; Rivers, Jennifer; Crandall, Philip; Keel, M. Kevin; Parrish, Nicole

    2016-01-01

    The causative agent of White-nose Syndrome (WNS), Pseudogymnoascus destructans, has been shown to be fatal to several species of bats in North America. To date, no compounds or chemical control measures have been developed which eliminates the growth of the fungus in the environment or in affected animals. In the current study, we evaluated the activity of cold-pressed, terpeneless orange oil (CPT) against multiple isolates of P. destructans in vitro. For all assays, a modified Kirby-Bauer disk diffusion assay was used. Standardized spore suspensions were prepared, adjusted to a specific optical density, and used to plate fungal lawns. Plates were incubated at either 15°C or 4°C for up to 6 months and checked at regular intervals for growth. Once controls had grown, zones of inhibition were measured (mm) on test plates and compared to those obtained using current antifungal drugs. All P. destructans isolates were completely inhibited by 100% CPT (10 μL) at 1 month of incubation regardless of temperature (4°C and 15°C). Complete inhibition persisted up to 6 months following a single exposure at this concentration. Of the standard antifungals, only amphotericin B demonstrated any activity, resulting in zone diameters ranging from 58 mm to 74 mm. CPT, at the highest concentration tested (100%), had no significant effect against a variety of other environmental organisms including various filamentous fungi, bacteria and aerobic actinomycetes. Given that CPT is relatively non-toxic, the possibility exists that the all-natural, mixture could be used as an environmental pre-treatment to eradicate P. destructans from bat habitats. Additional studies are needed to assess any undesirable effects of CPT on bat behavior and health and overall impacts on other members of the interconnected ecosystem(s). PMID:26849057

  3. Presence and absence of bats across habitat scales in the Upper Coastal Plain of South Carolina.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, W.Mark; Menzel, Jennifer M.; Menzel, Michael A.: Edwards, John W.

    Abstract During 2001, we used active acoustical sampling (Anabat II) to survey foraging habitat relationships of bats on the Savannah River Site (SRS) in the upper Coastal Plain of South Carolina. Using an a priori information-theoretic approach, we conducted logistic regression analysis to examine presence of individual bat species relative to a suite of microhabitat, stand, and landscape-level features such as forest structural metrics, forest type, proximity to riparian zones and Carolina bay wetlands, insect abundance, and weather. There was considerable empirical support to suggest that the majority of the activity of bats across most of the 6 species occurredmore » at smaller, stand-level habitat scales that combine measures of habitat clutter (e.g., declining forest canopy cover and basal area), proximity to riparian zones, and insect abundance. Accordingly, we hypothesized that most foraging habitat relationships were more local than landscape across this relatively large area for generalist species of bats. The southeastern myotis (Myotis austroriparius) was the partial exception, as its presence was linked to proximity of Carolina bays (best approximating model) and bottomland hardwood communities (other models with empirical support). Efforts at SRS to promote open longleaf pine (Pinus palustris) and loblolly pine (P. taeda) savanna conditions and to actively restore degraded Carolina bay wetlands will be beneficial to bats. Accordingly, our results should provide managers better insight for crafting guidelines for bat habitat conservation that could be linked to widely accepted land management and environmental restoration practices for the region.« less

  4. IMPACT OF BT ( BACILLUS THURINGIENSIS ) CROPS ON BAT ACTIVITY IN SOUTH TEXAS AGROECOSYSTEMS

    EPA Science Inventory

    The widespread adoption of transgenic insecticidal crops raises concerns that nontarget species may be harmed and food webs disrupted. The goal of this research is to determine how transgenic Bt (Bacillus thuringiensis) crops impact the activity of Brazilian freetailed bats (Tada...

  5. Evaluation of an auditory model for echo delay accuracy in wideband biosonar.

    PubMed

    Sanderson, Mark I; Neretti, Nicola; Intrator, Nathan; Simmons, James A

    2003-09-01

    In a psychophysical task with echoes that jitter in delay, big brown bats can detect changes as small as 10-20 ns at an echo signal-to-noise ratio of approximately 49 dB and 40 ns at approximately 36 dB. This performance is possible to achieve with ideal coherent processing of the wideband echoes, but it is widely assumed that the bat's peripheral auditory system is incapable of encoding signal waveforms to represent delay with the requisite precision or phase at ultrasonic frequencies. This assumption was examined by modeling inner-ear transduction with a bank of parallel bandpass filters followed by low-pass smoothing. Several versions of the filterbank model were tested to learn how the smoothing filters, which are the most critical parameter for controlling the coherence of the representation, affect replication of the bat's performance. When tested at a signal-to-noise ratio of 36 dB, the model achieved a delay acuity of 83 ns using a second-order smoothing filter with a cutoff frequency of 8 kHz. The same model achieved a delay acuity of 17 ns when tested with a signal-to-noise ratio of 50 dB. Jitter detection thresholds were an order of magnitude worse than the bat for fifth-order smoothing or for lower cutoff frequencies. Most surprising is that effectively coherent reception is possible with filter cutoff frequencies well below any of the ultrasonic frequencies contained in the bat's sonar sounds. The results suggest that only a modest rise in the frequency response of smoothing in the bat's inner ear can confer full phase sensitivity on subsequent processing and account for the bat's fine acuity or delay.

  6. 78 FR 8655 - Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing of Proposed Rule Change To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-68789; File No. SR-BATS-2013-005] Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing of Proposed Rule Change To Modify the Competitive Liquidity Provider Program to, Among Other Things, Modify the Calculation of Size Event Tests January 31, 2013. Pursuant to Section 19(b)(1) of...

  7. Isolation, characterization and prevalence of a novel Gammaherpesvirus in Eptesicus fuscus, the North American big brown bat.

    PubMed

    Subudhi, Sonu; Rapin, Noreen; Dorville, Nicole; Hill, Janet E; Town, Jennifer; Willis, Craig K R; Bollinger, Trent K; Misra, Vikram

    2018-03-01

    Little is known about the relationship of Gammaherpesviruses with their bat hosts. Gammaherpesviruses are of interest because of their long-term infection of lymphoid cells and their potential to cause cancer. Here, we report the characterization of a novel bat herpesvirus isolated from a big brown bat (Eptesicus fuscus) in Canada. The genome of the virus, tentatively named Eptesicus fuscus herpesvirus (EfHV), is 166,748 base pairs. Phylogenetically EfHV is a member of Gammaherpesvirinae, in which it belongs to the Genus Rhadinovirus and is closely related to other bat Gammaherpesviruses. In contrast to other known Gammaherpesviruses, the EfHV genome contains coding sequences similar to those of class I and II host major histocompatibility antigens. The virus is capable of infecting and replicating in human, monkey, cat and pig cell lines. Although we detected EfHV in 20 of 28 big brown bats tested, these bats lacked neutralizing antibodies against the virus. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Parallel evolution of the glycogen synthase 1 (muscle) gene Gys1 between Old World and New World fruit bats (Order: Chiroptera).

    PubMed

    Fang, Lu; Shen, Bin; Irwin, David M; Zhang, Shuyi

    2014-10-01

    Glycogen synthase, which catalyzes the synthesis of glycogen, is especially important for Old World (Pteropodidae) and New World (Phyllostomidae) fruit bats that ingest high-carbohydrate diets. Glycogen synthase 1, encoded by the Gys1 gene, is the glycogen synthase isozyme that functions in muscles. To determine whether Gys1 has undergone adaptive evolution in bats with carbohydrate-rich diets, in comparison to insect-eating sister bat taxa, we sequenced the coding region of the Gys1 gene from 10 species of bats, including two Old World fruit bats (Pteropodidae) and a New World fruit bat (Phyllostomidae). Our results show no evidence for positive selection in the Gys1 coding sequence on the ancestral Old World and the New World Artibeus lituratus branches. Tests for convergent evolution indicated convergence of the sequences and one parallel amino acid substitution (T395A) was detected on these branches, which was likely driven by natural selection.

  9. Evidence for Nipah virus recrudescence and serological patterns of captive Pteropus vampyrus

    PubMed Central

    SOHAYATI, A. R.; HASSAN, L.; SHARIFAH, S. H.; LAZARUS, K.; ZAINI, C. M.; EPSTEIN, J. H.; NAIM, N. SHAMSYUL; FIELD, H. E.; ARSHAD, S. S.; AZIZ, J. ABDUL; DASZAK, P.

    2012-01-01

    SUMMARY This study aimed to describe the transmission dynamics, the serological and virus excretion patterns of Nipah virus (NiV) in Pteropus vampyrus bats. Bats in captivity were sampled every 7–21 days over a 1-year period. The data revealed five NiV serological patterns categorized as high and low positives, waning, decreasing and increasing, and negative in these individuals. The findings strongly suggest that NiV circulates in wild bat populations and that antibody could be maintained for long periods. The study also found that pup and juvenile bats from seropositive dams tested seropositive, indicating that maternal antibodies against NiV are transmitted passively, and in this study population may last up to 14 months. NiV was isolated from the urine of one bat, and within a few weeks, two other seronegative bats seroconverted. Based on the temporal cluster of seroconversion, we strongly believe that the NiV isolated was recrudesced and then transmitted horizontally between bats during the study period. PMID:21524339

  10. Do greater mouse-eared bats experience a trade-off between energy conservation and learning?

    PubMed

    Ruczyński, Ireneusz; Clarin, Theresa M A; Siemers, Bjoern M

    2014-11-15

    Bats, some species of rodents and some birds are able to save energy during the summer period by decreasing their body temperature and falling into torpor. Some studies indicate that torpor prevents sleeping and causes effects similar to sleep deprivation. Impairment of processes stabilizing memory slows down learning accuracy and speed. We conducted two experiments to test whether greater mouse-eared bats, Myotis myotis, which commonly use torpor during the summer period, experience a trade-off between energy savings and learning abilities. We compared learning speed and accuracy in bats that were exposed to low (7°C) and higher ambient temperatures (22°C) between training and experimental sessions. Tests were conducted in experiments with food reward (food search) and without food reward (perch search). Time spent with the skin temperature above 30°C was significantly longer for bats exposed to 22°C than for those exposed to 7°C, and longer in experiments with food reward than without food reward. We observed only a very weak tendency for better accuracy and shorter search times in bats exposed to 22°C than in those exposed to 7°C. Our data indicate that memory consolidation of bats under natural conditions is not affected by daily torpor when bats are in good condition and may therefore defend against a rapid fall into torpor. We suggest that homeostatic processes connected with the circadian rhythm allow protection of the consolidation of memory for relatively simple tasks despite time spent in torpor. © 2014. Published by The Company of Biologists Ltd.

  11. PD-L1 is an activation-independent marker of brown adipocytes.

    PubMed

    Ingram, Jessica R; Dougan, Michael; Rashidian, Mohammad; Knoll, Marko; Keliher, Edmund J; Garrett, Sarah; Garforth, Scott; Blomberg, Olga S; Espinosa, Camilo; Bhan, Atul; Almo, Steven C; Weissleder, Ralph; Lodish, Harvey; Dougan, Stephanie K; Ploegh, Hidde L

    2017-09-21

    Programmed death ligand 1 (PD-L1) is expressed on a number of immune and cancer cells, where it can downregulate antitumor immune responses. Its expression has been linked to metabolic changes in these cells. Here we develop a radiolabeled camelid single-domain antibody (anti-PD-L1 VHH) to track PD-L1 expression by immuno-positron emission tomography (PET). PET-CT imaging shows a robust and specific PD-L1 signal in brown adipose tissue (BAT). We confirm expression of PD-L1 on brown adipocytes and demonstrate that signal intensity does not change in response to cold exposure or β-adrenergic activation. This is the first robust method of visualizing murine brown fat independent of its activation state.Current approaches to visualise brown adipose tissue (BAT) rely primarily on markers that reflect its metabolic activity. Here, the authors show that PD-L1 is expressed on brown adipocytes, does not change upon BAT activation, and that BAT volume in mice can be measured by PET-CT with a radiolabeled anti-PD-L1 antibody.

  12. Bats adjust their mouth gape to zoom their biosonar field of view

    PubMed Central

    Rydell, Jens; Amichai, Eran; Boonman, Arjan; Eitan, Ofri; Weiss, Anthony J.; Yovel, Yossi

    2015-01-01

    Active sensing, where sensory acquisition is actively modulated, is an inherent component of almost all sensory systems. Echolocating bats are a prime example of active sensing. They can rapidly adjust many of their biosonar parameters to optimize sensory acquisition. They dynamically adjust pulse design, pulse duration, and pulse rate within dozens of milliseconds according to the sensory information that is required for the task that they are performing. The least studied and least understood degree of freedom in echolocation is emission beamforming—the ability to change the shape of the sonar sound beam in a functional way. Such an ability could have a great impact on the bat’s control over its sensory perception. On the one hand, the bat could direct more energy into a narrow sector to zoom its biosonar field of view, and on the other hand, it could widen the beam to increase the space that it senses. We show that freely behaving bats constantly control their biosonar field of view in natural situations by rapidly adjusting their emitter aperture—the mouth gape. The bats dramatically narrowed the beam when entering a confined space, and they dramatically widened it within dozens of milliseconds when flying toward open space. Hence, mouth-emitting bats dynamically adjust their mouth gape to optimize the area that they sense with their echolocation system. PMID:25941395

  13. Involvement of sympathetic nervous system and brown fat in endotoxin-induced fever in rats.

    PubMed

    Jepson, M M; Millward, D J; Rothwell, N J; Stock, M J

    1988-11-01

    The object of this study was to assess the role of brown adipose tissue (BAT) and the sympathetic nervous system in the rise in heat production associated with endotoxin-induced fever. Oxygen consumption (VO2) was found to be significantly increased (28%) over a 4-h period after two doses of endotoxin (Escherichia coli lipopolysaccharide, 0.3 mg/100 g body wt) given 24 h apart. Injection of a mixed beta-adrenoceptor antagonist (propranolol) reduced VO2 by 14% in endotoxin-treated rats, whereas the selective beta 1- (atenolol) or beta 2- (ICI 118551) antagonists suppressed VO2 by 10%. These drugs did not affect VO2 in control animals. BAT thermogenic activity assessed from measurements of in vitro mitochondrial guanosine 5'-diphosphate (GDP) binding was elevated by 54% in interscapular BAT and by 171% in other BAT depots. Surgical denervation of one lobe of the interscapular depot prevented these responses. Endotoxin failed to stimulate GDP binding in rats fed protein-deficient diets. This may have been because BAT thermogenic activity was already elevated in control rats fed these diets or because endotoxin caused a marked suppression of food intake in the protein-deficient animals. The results indicate that sympathetic activation of BAT is involved in the thermogenic responses to endotoxin and that these can be modified by dietary manipulation.

  14. Building A New Kind of Graded-Z Shield for Swift's Burst Alert Telescope

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    2002-01-01

    The Burst Alert Telescope (BAT) on Swift has a graded-Z Shield that closes out the volume between the coded aperture mask and the Cadmium-Zinc-Telluride (CZT) detector array. The purpose of the 37 kilogram shield is to attenuate gamma rays that have not penetrated the coded aperture mask of the BAT instrument and are therefore a major source of noise on the detector array. Unlike previous shields made from plates and panels, this shield consists of multiple layers of thin metal foils (lead, tantalum, tin, and copper) that are stitched together much like standard multi-layer insulation blankets. The shield sections are fastened around BAT, forming a curtain around the instrument aperture. Strength tests were performed to validate and improve the design, and the shield will be vibration tested along with BAT in late 2002. Practical aspects such as the layup design, methods of manufacture, and testing of this new kind of graded-Z Shield are presented.

  15. Energetic benefits of enhanced summer roosting habitat for little brown bats (Myotis lucifugus) recovering from white-nose syndrome.

    PubMed

    Wilcox, Alana; Willis, Craig K R

    2016-01-01

    Habitat modification can improve outcomes for imperilled wildlife. Insectivorous bats in North America face a range of conservation threats, including habitat loss and white-nose syndrome (WNS). Even healthy bats face energetic constraints during spring, but enhancement of roosting habitat could reduce energetic costs, increase survival and enhance recovery from WNS. We tested the potential of artificial heating of bat roosts as a management tool for threatened bat populations. We predicted that: (i) after hibernation, captive bats would be more likely to select a roost maintained at a temperature near their thermoneutral zone; (ii) bats recovering from WNS at the end of hibernation would show a stronger preference for heated roosts compared with healthy bats; and (iii) heated roosts would result in biologically significant energy savings. We housed two groups of bats (WNS-positive and control) in separate flight cages following hibernation. Over 7.5 weeks, we quantified the presence of individuals in heated vs. unheated bat houses within each cage. We then used a series of bioenergetic models to quantify thermoregulatory costs in each type of roost under a number of scenarios. Bats preferentially selected heated bat houses, but WNS-affected bats were much more likely to use the heated bat house compared with control animals. Our model predicted energy savings of up to 81.2% for bats in artificially heated roosts if roost temperature was allowed to cool at night to facilitate short bouts of torpor. Our results are consistent with research highlighting the importance of roost microclimate and suggest that protection and enhancement of high-quality, natural roosting environments should be a priority response to a range of threats, including WNS. Our findings also suggest the potential of artificially heated bat houses to help populations recover from WNS, but more work is needed before these might be implemented on a large scale.

  16. Functional Organization and Dynamic Activity in the Superior Colliculus of the Echolocating Bat, Eptesicus fuscus.

    PubMed

    Wohlgemuth, Melville J; Kothari, Ninad B; Moss, Cynthia F

    2018-01-03

    Sensory-guided behaviors require the transformation of sensory information into task-specific motor commands. Prior research on sensorimotor integration has emphasized visuomotor processes in the context of simplified orienting movements in controlled laboratory tasks rather than an animal's more complete, natural behavioral repertoire. Here, we conducted a series of neural recording experiments in the midbrain superior colliculus (SC) of echolocating bats engaged in a sonar target-tracking task that invoked dynamic active sensing behaviors. We hypothesized that SC activity in freely behaving animals would reveal dynamic shifts in neural firing patterns within and across sensory, sensorimotor, and premotor layers. We recorded neural activity in the SC of freely echolocating bats (three females and one male) and replicated the general trends reported in other species with sensory responses in the dorsal divisions and premotor activity in ventral divisions of the SC. However, within this coarse functional organization, we discovered that sensory and motor neurons are comingled within layers throughout the volume of the bat SC. In addition, as the bat increased pulse rate adaptively to increase resolution of the target location with closing distance, the activity of sensory and vocal premotor neurons changed such that auditory response times decreased, and vocal premotor lead times shortened. This finding demonstrates that SC activity can be modified dynamically in concert with adaptive behaviors and suggests that an integrated functional organization within SC laminae supports rapid and local integration of sensory and motor signals for natural, adaptive behaviors. SIGNIFICANCE STATEMENT Natural sensory-guided behaviors involve the rapid integration of information from the environment to direct flexible motor actions. The vast majority of research on sensorimotor integration has used artificial stimuli and simplified behaviors, leaving open questions about nervous system function in the context of natural tasks. Our work investigated mechanisms of dynamic sensorimotor feedback control by analyzing patterns of neural activity in the midbrain superior colliculus (SC) of an echolocating bat tracking and intercepting moving prey. Recordings revealed that sensory and motor neurons comingle within laminae of the SC to support rapid sensorimotor integration. Further, we discovered that neural activity in the bat SC changes with dynamic adaptations in the animal's echolocation behavior. Copyright © 2018 the authors 0270-6474/18/380245-12$15.00/0.

  17. Do TSH, FT3, and FT4 Impact BAT Visualization of Clinical FDG-PET/CT Images?

    PubMed

    Nishii, Ryuichi; Nagamachi, Shigeki; Mizutani, Youichi; Terada, Tamasa; Kiyohara, Syogo; Wakamatsu, Hideyuki; Fujita, Seigo; Higashi, Tatsuya; Yoshinaga, Keiichiro; Saga, Tsuneo; Hirai, Toshinori

    2018-01-01

    We retrospectively analyzed activated BAT visualization on FDG-PET/CT in patients with various conditions and TH levels to clarify the relationships between visualization of BAT on FDG-PET/CT and the effect of TH. Patients who underwent clinical FDG-PET/CT were reviewed and we categorized patients into 5 groups: (i) thyroid hormone withdrawal (THW) group; (ii) recombinant human thyrotropin (rhTSH) group; (iii) hypothyroidism group; (iv) hyperthyroidism group; and (v) BAT group. A total of sixty-two FDG-PET/CT imaging studies in fifty-nine patients were performed. To compare each group, gender; age; body weight; serum TSH, FT3, and FT4 levels; and outside temperature were evaluated. No significant visualization of BAT was noted in any of the images in the THW, rhTSH, hypothyroidism, and hyperthyroidism groups. All patients in the BAT group were in a euthyroid state. When the BAT-negative and BAT-positive patient groups were compared, it was noted that the minimum and maximum temperature on the day of the PET study and maximum temperature of the one day before the PET study were significantly lower in BAT-positive group than in all those of other groups. Elevated TSH condition before RIT, hyperthyroidism, or hypothyroidism did not significantly impact BAT visualization of clinical FDG-PET/CT images.

  18. Insectivorous bats respond to vegetation complexity in urban green spaces.

    PubMed

    Suarez-Rubio, Marcela; Ille, Christina; Bruckner, Alexander

    2018-03-01

    Structural complexity is known to determine habitat quality for insectivorous bats, but how bats respond to habitat complexity in highly modified areas such as urban green spaces has been little explored. Furthermore, it is uncertain whether a recently developed measure of structural complexity is as effective as field-based surveys when applied to urban environments. We assessed whether image-derived structural complexity (MIG) was as/more effective than field-based descriptors in this environment and evaluated the response of insectivorous bats to structural complexity in urban green spaces. Bat activity and species richness were assessed with ultrasonic devices at 180 locations within green spaces in Vienna, Austria. Vegetation complexity was assessed using 17 field-based descriptors and by calculating the mean information gain (MIG) using digital images. Total bat activity and species richness decreased with increasing structural complexity of canopy cover, suggesting maneuverability and echolocation (sensorial) challenges for bat species using the canopy for flight and foraging. The negative response of functional groups to increased complexity was stronger for open-space foragers than for edge-space foragers. Nyctalus noctula , a species foraging in open space, showed a negative response to structural complexity, whereas Pipistrellus pygmaeus , an edge-space forager, was positively influenced by the number of trees. Our results show that MIG is a useful, time- and cost-effective tool to measure habitat complexity that complemented field-based descriptors. Response of insectivorous bats to structural complexity was group- and species-specific, which highlights the need for manifold management strategies (e.g., increasing or reinstating the extent of ground vegetation cover) to fulfill different species' requirements and to conserve insectivorous bats in urban green spaces.

  19. The Importance of Acacia Trees for Insectivorous Bats and Arthropods in the Arava Desert

    PubMed Central

    Hackett, Talya D.; Korine, Carmi; Holderied, Marc W.

    2013-01-01

    Anthropogenic habitat modification often has a profound negative impact on the flora and fauna of an ecosystem. In parts of the Middle East, ephemeral rivers (wadis) are characterised by stands of acacia trees. Green, flourishing assemblages of these trees are in decline in several countries, most likely due to human-induced water stress and habitat changes. We examined the importance of healthy acacia stands for bats and their arthropod prey in comparison to other natural and artificial habitats available in the Arava desert of Israel. We assessed bat activity and species richness through acoustic monitoring for entire nights and concurrently collected arthropods using light and pit traps. Dense green stands of acacia trees were the most important natural desert habitat for insectivorous bats. Irrigated gardens and parks in villages and fields of date palms had high arthropod levels but only village sites rivalled acacia trees in bat activity level. We confirmed up to 13 bat species around a single patch of acacia trees; one of the richest sites in any natural desert habitat in Israel. Some bat species utilised artificial sites; others were found almost exclusively in natural habitats. Two rare species (Barbastella leucomelas and Nycteris thebaica) were identified solely around acacia trees. We provide strong evidence that acacia trees are of unique importance to the community of insectivorous desert-dwelling bats, and that the health of the trees is crucial to their value as a foraging resource. Consequently, conservation efforts for acacia habitats, and in particular for the green more densely packed stands of trees, need to increase to protect this vital habitat for an entire community of protected bats. PMID:23441145

  20. A BAT-Centric Approach to the Treatment of Diabetes: Turn on the Brain.

    PubMed

    Hankir, Mohammed K; Cowley, Michael A; Fenske, Wiebke K

    2016-07-12

    The marked (18)F-flurodeoxyglucose uptake by brown adipose tissue (BAT) enabled its identification in human positron emission tomography imaging studies. In this Perspective, we discuss how glucose extraction by BAT and beige adipose tissue (BeAT) sufficiently impacts on glycemic control. We then present a unique overview of the central circuits modulated by gluco-regulatory hormones, temperature, and glucose itself, which converge on sympathetic preganglionic neurons and whose activation syphon circulating glucose into BAT/BeAT. Targeted stimulation of the sympathetic nervous system at specific nodes to selectively recruit BAT/BeAT may represent a safe and effective means of treating diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Northern California redwood forests provide important seasonal habitat for migrant bats

    Treesearch

    Theodore J. Weller; Craig A. Stricker

    2012-01-01

    Bats are known to roost in redwood forests year-round, but their activities outside the summer season are poorly understood. To improve understanding of the use of redwoods by resident and migrant bats, we conducted 74 mist net surveys between February 2008 and October 2010. Captures were dominated by Yuma myotis (M. yumanensis) in the summer and...

  2. Bat predation by spiders.

    PubMed

    Nyffeler, Martin; Knörnschild, Mirjam

    2013-01-01

    In this paper more than 50 incidences of bats being captured by spiders are reviewed. Bat-catching spiders have been reported from virtually every continent with the exception of Antarctica (≈ 90% of the incidences occurring in the warmer areas of the globe between latitude 30° N and 30° S). Most reports refer to the Neotropics (42% of observed incidences), Asia (28.8%), and Australia-Papua New Guinea (13.5%). Bat-catching spiders belong to the mygalomorph family Theraphosidae and the araneomorph families Nephilidae, Araneidae, and Sparassidae. In addition to this, an attack attempt by a large araneomorph hunting spider of the family Pisauridae on an immature bat was witnessed. Eighty-eight percent of the reported incidences of bat catches were attributable to web-building spiders and 12% to hunting spiders. Large tropical orb-weavers of the genera Nephila and Eriophora in particular have been observed catching bats in their huge, strong orb-webs (of up to 1.5 m diameter). The majority of identifiable captured bats were small aerial insectivorous bats, belonging to the families Vespertilionidae (64%) and Emballonuridae (22%) and usually being among the most common bat species in their respective geographic area. While in some instances bats entangled in spider webs may have died of exhaustion, starvation, dehydration, and/or hyperthermia (i.e., non-predation death), there were numerous other instances where spiders were seen actively attacking, killing, and eating the captured bats (i.e., predation). This evidence suggests that spider predation on flying vertebrates is more widespread than previously assumed.

  3. Bat Predation by Spiders

    PubMed Central

    Nyffeler, Martin; Knörnschild, Mirjam

    2013-01-01

    In this paper more than 50 incidences of bats being captured by spiders are reviewed. Bat-catching spiders have been reported from virtually every continent with the exception of Antarctica (∼90% of the incidences occurring in the warmer areas of the globe between latitude 30° N and 30° S). Most reports refer to the Neotropics (42% of observed incidences), Asia (28.8%), and Australia-Papua New Guinea (13.5%). Bat-catching spiders belong to the mygalomorph family Theraphosidae and the araneomorph families Nephilidae, Araneidae, and Sparassidae. In addition to this, an attack attempt by a large araneomorph hunting spider of the family Pisauridae on an immature bat was witnessed. Eighty-eight percent of the reported incidences of bat catches were attributable to web-building spiders and 12% to hunting spiders. Large tropical orb-weavers of the genera Nephila and Eriophora in particular have been observed catching bats in their huge, strong orb-webs (of up to 1.5 m diameter). The majority of identifiable captured bats were small aerial insectivorous bats, belonging to the families Vespertilionidae (64%) and Emballonuridae (22%) and usually being among the most common bat species in their respective geographic area. While in some instances bats entangled in spider webs may have died of exhaustion, starvation, dehydration, and/or hyperthermia (i.e., non-predation death), there were numerous other instances where spiders were seen actively attacking, killing, and eating the captured bats (i.e., predation). This evidence suggests that spider predation on flying vertebrates is more widespread than previously assumed. PMID:23516436

  4. Developments in the imaging of brown adipose tissue and its associations with muscle, puberty, and health in children.

    PubMed

    Hu, Houchun H; Gilsanz, Vicente

    2011-01-01

    Fusion positron emission and computed tomography (PET/CT) remains the gold-standard imaging modality to non-invasively study metabolically active brown adipose tissue (BAT). It has been widely applied to studies in adult cohorts. In contrast, the number of BAT studies in children has been few. This is largely limited by the elevated risk of ionizing radiation and radionuclide tracer usage by PET/CT and the ethical restriction of performing such exams on healthy children. However, metabolically active BAT has a significantly higher prevalence in pediatric patients, according to recent literature. Young cohorts thus represent an ideal population to examine the potential relationships of BAT to muscle development, puberty, disease state, and the accumulation of white adipose tissue. In turn, magnetic resonance imaging (MRI) represents the most promising modality to overcome the limitations of PET/CT. The development of rapid, repeatable MRI techniques to identify and quantify both metabolically active and inactive BAT non-invasively and without the use of exogenous contrast agents or the need for sedation in pediatric patients are critically needed to advance our knowledge of this tissue's physiology.

  5. Temporal variation in the organization of a Neotropical assemblage of leaf-nosed bats (Chiroptera: Phyllostomidae)

    NASA Astrophysics Data System (ADS)

    Ribeiro Mello, Marco Aurelio

    2009-03-01

    In the present study, I described the organization of a Neotropical bat assemblage, and tested whether this organization was variable in time. In an Atlantic Forest reserve in southeastern Brazil bats were captured monthly with mist nets over 4 years, and individuals were classified into guilds. I analyzed only leaf-nosed bats, and observed that guilds of fruit-eating bats dominated the assemblage. This pattern was repeated across months and years. However, among frugivores, canopy and understory guilds peaked during different months, but in both cases during the rainy season, while variation among habitat-opportunistic species was not explained by rainfall. The most reliable ecological service delivered by phyllostomid bats in the area is seed dispersal, although other services may be also important in particular seasons. My results suggest that the observed patterns of temporal species turnover are related to the abundance of preferred food items.

  6. Renewed mining and reclamation: Imapacts on bats and potential mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P.E.; Berry, R.D.

    Historic mining created new roosting habitat for many bat species. Now the same industry has the potential to adversely impact bats. Contemporary mining operations usually occur in historic districts; consequently the old workings are destroyed by open pit operations. Occasionally, underground techniques are employed, resulting in the enlargement or destruction of the original workings. Even during exploratory operations, historic mine openings can be covered as drill roads are bulldozed, or drills can penetrate and collapse underground workings. Nearby blasting associated with mine construction and operation can disrupt roosting bats. Bats can also be disturbed by the entry of mine personnelmore » to collect ore samples or by recreational mine explorers, since the creation of roads often results in easier access. In addition to roost disturbance, other aspects of renewed mining can have adverse impacts on bat populations, and affect even those bats that do not live in mines. Open cyanide ponds, or other water in which toxic chemicals accumulate, can poison bats and other wildlife. The creation of the pits, roads and processing areas often destroys critical foraging habitat, or change drainage patterns. Finally, at the completion of mining, any historic mines still open may be sealed as part of closure and reclamation activities. The net result can be a loss of bats and bat habitat. Conversely, in some contemporary underground operations, future roosting habitat for bats can be fabricated. An experimental approach to the creation of new roosting habitat is to bury culverts or old tires beneath waste rock. Mining companies can mitigate for impacts to bats by surveying to identify bat-roosting habitat, removing bats prior to renewed mining or closure, protecting non-impacted roost sites with gates and fences, researching to identify habitat requirements and creating new artificial roosts.« less

  7. Deconstructing the Essential Elements of Bat Flight

    NASA Astrophysics Data System (ADS)

    Tafti, Danesh; Viswanath, Kamal; Krishnamurthy, Nagendra

    2013-11-01

    There are over 1000 bat species worldwide with a wide range of wing morphologies. Bat wing motion is characterized by an active adaptive three-dimensional highly deformable wing surface which is distinctive in its complex kinematics facilitated by the skeletal and skin membrane manipulation, large deviations from the stroke plane, and large wing cambers. In this study we use measured wing kinematics of a fruit bat in a straight line climbing path to study the fluid dynamics and the forces generated by the wing using an Immersed Boundary Method. This is followed by a proper orthogonal decomposition to investigate the dimensional complexity as well as the key kinematic modes used by the bat during a representative flapping cycle. It is shown that the complex wing motion of the fruit bat can mostly be broken down into canonical descriptors of wing motion such as translation, rotation, out of stroke deviation, and cambering, which the bat uses with great efficacy to generate lift and thrust. Research supported through a grant from the Army Research Office (ARO). Bat wing kinemtaics was provided by Dr. Kenny Breuer, Brown University.

  8. Identification of Novel Betaherpesviruses in Iberian Bats Reveals Parallel Evolution

    PubMed Central

    Vázquez-Morón, Sonia; Aznar-López, Carolina; Ibáñez, Carlos; Garin, Inazio; Aihartza, Joxerra; Casas, Inmaculada; Tenorio, Antonio; Echevarría, Juan Emilio

    2016-01-01

    A thorough search for bat herpesviruses was carried out in oropharyngeal samples taken from most of the bat species present in the Iberian Peninsula from the Vespertilionidae, Miniopteridae, Molossidae and Rhinolophidae families, in addition to a colony of captive fruit bats from the Pteropodidae family. By using two degenerate consensus PCR methods targeting two conserved genes, distinct and previously unrecognized bat-hosted herpesviruses were identified for the most of the tested species. All together a total of 42 potentially novel bat herpesviruses were partially characterized. Thirty-two of them were tentatively assigned to the Betaherpesvirinae subfamily while the remaining 10 were allocated into the Gammaherpesvirinae subfamily. Significant diversity was observed among the novel sequences when compared with type herpesvirus species of the ICTV-approved genera. The inferred phylogenetic relationships showed that most of the betaherpesviruses sequences fell into a well-supported unique monophyletic clade and support the recognition of a new betaherpesvirus genus. This clade is subdivided into three major clades, corresponding to the families of bats studied. This supports the hypothesis of a species-specific parallel evolution process between the potentially new betaherpesviruses and their bat hosts. Interestingly, two of the betaherpesviruses’ sequences detected in rhinolophid bats clustered together apart from the rest, closely related to viruses that belong to the Roseolovirus genus. This suggests a putative third roseolo lineage. On the contrary, no phylogenetic structure was detected among several potentially novel bat-hosted gammaherpesviruses found in the study. Remarkably, all of the possible novel bat herpesviruses described in this study are linked to a unique bat species. PMID:28036408

  9. Recovery of little brown bats (Myotis lucifugus) from natural infection with Geomyces destructans, white-nose syndrome.

    PubMed

    Meteyer, Carol Uphoff; Valent, Mick; Kashmer, Jackie; Buckles, Elizabeth L; Lorch, Jeffrey M; Blehert, David S; Lollar, Amanda; Berndt, Douglas; Wheeler, Emily; White, C LeAnn; Ballmann, Anne E

    2011-07-01

    Geomyces destructans produces the white fungal growth on the muzzle and the tacky white discoloration on wings and ears that characterize white-nose syndrome (WNS) in cave-hibernating bats. To test the hypothesis that postemergent WNS-infected bats recover from infection with G. destructans, 30 little brown bats (Myotis lucifugus) were collected in May 2009 from a WNS-affected hibernation site in New Jersey. All bats were confirmed to be infected with G. destructans using a noninvasive fungal tape method to identify the conidia of G. destructans and polymerase chain reaction (PCR). The bats were then held in captivity and given supportive care for 70 days. Of the 26 bats that survived and were humanely killed after 70 days, 25 showed significant improvement in the external appearance of wing membranes, had no microscopic evidence of infection by G. destructans, and had wing tissue samples that were negative for G. destructans by PCR. A subset of the bats was treated topically at the beginning of the rehabilitation study with a dilute vinegar solution, but treatment with vinegar provided no added advantage to recovery. Provision of supportive care to homeothermic bats was sufficient for full recovery from WNS. One bat at day 70 still had both gross pathology and microscopic evidence of WNS in wing membranes and was PCR-positive for G. destructans. Dense aggregates of neutrophils surrounded the hyphae that remained in the wing membrane of this bat.

  10. Recovery of little brown bats (Myotis lucifugus) from natural infection with Geomyces destructans, white-nose syndrome

    USGS Publications Warehouse

    Meteyer, Carol Uphoff; Valent, Mick; Kashmer, Jackie; Buckles, Elizabeth L.; Lorch, Jeffrey M.; Blehert, David S.; Lollar, Amanda; Berndt, Douglas; Wheeler, Emily; White, C. LeAnn; Ballmann, Anne E.

    2011-01-01

    Geomyces destructans produces the white fungal growth on the muzzle and the tacky white discoloration on wings and ears that characterize white-nose syndrome (WNS) in cave-hibernating bats. To test the hypothesis that postemergent WNS-infected bats recover from infection with G. destructans, 30 little brown bats (Myotis lucifugus) were collected in May 2009 from a WNS-affected hibernation site in New Jersey. All bats were confirmed to be infected with G. destructans using a noninvasive fungal tape method to identify the conidia of G. destructans and polymerase chain reaction (PCR). The bats were then held in captivity and given supportive care for 70 days. Of the 26 bats that survived and were humanely killed after 70 days, 25 showed significant improvement in the external appearance of wing membranes, had no microscopic evidence of infection by G. destructans, and had wing tissue samples that were negative for G. destructans by PCR. A subset of the bats was treated topically at the beginning of the rehabilitation study with a dilute vinegar solution, but treatment with vinegar provided no added advantage to recovery. Provision of supportive care to homeothermic bats was sufficient for full recovery from WNS. One bat at day 70 still had both gross pathology and microscopic evidence of WNS in wing membranes and was PCR-positive for G. destructans. Dense aggregates of neutrophils surrounded the hyphae that remained in the wing membrane of this bat.

  11. Detection of potentially novel paramyxovirus and coronavirus viral RNA in bats and rats in the Mekong Delta region of southern Viet Nam.

    PubMed

    Berto, A; Anh, P H; Carrique-Mas, J J; Simmonds, P; Van Cuong, N; Tue, N T; Van Dung, N; Woolhouse, M E; Smith, I; Marsh, G A; Bryant, J E; Thwaites, G E; Baker, S; Rabaa, M A

    2018-02-01

    Bats and rodents are being increasingly recognized as reservoirs of emerging zoonotic viruses. Various studies have investigated bat viruses in tropical regions, but to date there are no data regarding viruses with zoonotic potential that circulate in bat and rat populations in Viet Nam. To address this paucity of data, we sampled three bat farms and three wet markets trading in rat meat in the Mekong Delta region of southern Viet Nam. Faecal and urine samples were screened for the presence of RNA from paramyxoviruses, coronaviruses and filoviruses. Paramyxovirus RNA was detected in 4 of 248 (1%) and 11 of 222 (4.9%) bat faecal and urine samples, respectively. Coronavirus RNA was detected in 55 of 248 (22%) of bat faecal samples; filovirus RNA was not detected in any of the bat samples. Further, coronavirus RNA was detected in 12 of 270 (4.4%) of rat faecal samples; all samples tested negative for paramyxovirus. Phylogenetic analysis revealed that the bat paramyxoviruses and bat and rat coronaviruses were related to viruses circulating in bat and rodent populations globally, but showed no cross-species mixing of viruses between bat and rat populations within Viet Nam. Our study shows that potentially novel variants of paramyxoviruses and coronaviruses commonly circulate in bat and rat populations in Viet Nam. Further characterization of the viruses and additional human and animal surveillance is required to evaluate the likelihood of viral spillover and to assess whether these viruses pose a risk to human health. © 2017 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.

  12. Intra- and interspecific responses to Rafinesque’s big-eared bat (Corynorhinus rafinesquii) social calls

    Treesearch

    S. Loeb; E. Britzke

    2010-01-01

    Bats respond to the calls of conspecifics as well as to calls of other species; however, few studies have attempted to quantify these responses or understand the functions of these calls. We tested the response of Rafinesque’s big-eared bats (Corynorhinus rafinesquii) to social calls as a possible method to increase capture success and to understand the function of...

  13. Serologic Evidence of Lyssavirus Infection in Bats, Cambodia

    PubMed Central

    Molia, Sophie; Audry, Laurent; Hout, Sotheara; Ngin, Sopheak; Walston, Joe; Bourhy, Hervé

    2004-01-01

    In Cambodia, 1,303 bats of 16 species were tested for lyssavirus. No lyssavirus nucleocapsid was detected in 1,283 brains tested by immunofluorescence assay. Antibodies against lyssaviruses were detected by enzyme-linked immunosorbent assay in 144 (14.7%) of 981 serum samples. Thirty of 187 serum samples contained neutralizing antibodies against different lyssaviruses. PMID:15663870

  14. Genetic divergence of rabies viruses from bat species of Colorado, USA

    USGS Publications Warehouse

    Shanker, V.; Orciari, L.A.; De Mattos, C.; Kuzmin, I.V.; Pape, W.J.; O'Shea, T.J.; Rupprecht, C.E.

    2005-01-01

    Molecular epidemiological studies have linked many cryptic human rabies cases in the United States with exposure to rabies virus (RV) variants associated with insectivorous bats. In Colorado, bats accounted for 98% of all reported animal rabies cases between 1977 and 1996. The genetic divergence of RV was investigated in bat and terrestrial animal specimens that were submitted for rabies diagnosis to the Colorado Department of Public Health and Environment (CDPHE), Colorado, USA. RV isolates from animal specimens across the United States were also included in the analysis. Phylogenetic analyses were performed on partial nucleoprotein (N) gene sequences, which revealed seven principal clades. RV associated with the colonial big brown bat, Eptesicus fuscus, an bats of the genus Myotis were found to segregate into two distinct clades (I and IV). Clade I was harbored by E. fuscus and Myotis species, but was also identified in terrestrial animals such as domestic cats and striped skunks (Mephitis mephitis). Clade IV was divided into subclades IVA, IVB, and IVC; IVA was identified in E. fuscus, and Myotis species bats, and also in a fox; subclades IVB and IVC circulated predominantly in E. fuscus. Clade II was formed by big free-tailed bat (Nyctinomops macrotis) and striped skunk (Mephitis mephitis) samples. Clade III included RVs that are maintained by generally solitary, migratory bats such as the silver-haired bat (Lasionycteris noctivagans) and bats of the genus Lasiurus. Big brown bats were found to harbor this RV variant. None of the Colorado specimens segregated with clades V and VII that harbor RVs associated with terrestrial animals. Different species of bats had the same RV variant, indicating active inter-species rabies transmission. In Colorado, animal rabies occurs principally in bats, and the identification of bat RVs in cat, gray fox Urocyon cinereoargenteus), and striped skunks demonstrated the importance of rabies spillover from bats to domestic and terrestrial wildlife species.

  15. Pathogenesis of bat rabies in a natural reservoir: Comparative susceptibility of the straw-colored fruit bat (Eidolon helvum) to three strains of Lagos bat virus.

    PubMed

    Suu-Ire, Richard; Begeman, Lineke; Banyard, Ashley C; Breed, Andrew C; Drosten, Christian; Eggerbauer, Elisa; Freuling, Conrad M; Gibson, Louise; Goharriz, Hooman; Horton, Daniel L; Jennings, Daisy; Kuzmin, Ivan V; Marston, Denise; Ntiamoa-Baidu, Yaa; Riesle Sbarbaro, Silke; Selden, David; Wise, Emma L; Kuiken, Thijs; Fooks, Anthony R; Müller, Thomas; Wood, James L N; Cunningham, Andrew A

    2018-03-01

    Rabies is a fatal neurologic disease caused by lyssavirus infection. People are infected through contact with infected animals. The relative increase of human rabies acquired from bats calls for a better understanding of lyssavirus infections in their natural hosts. So far, there is no experimental model that mimics natural lyssavirus infection in the reservoir bat species. Lagos bat virus is a lyssavirus that is endemic in straw-colored fruit bats (Eidolon helvum) in Africa. Here we compared the susceptibility of these bats to three strains of Lagos bat virus (from Senegal, Nigeria, and Ghana) by intracranial inoculation. To allow comparison between strains, we ensured the same titer of virus was inoculated in the same location of the brain of each bat. All bats (n = 3 per strain) were infected, and developed neurological signs, and fatal meningoencephalitis with lyssavirus antigen expression in neurons. There were three main differences among the groups. First, time to death was substantially shorter in the Senegal and Ghana groups (4 to 6 days) than in the Nigeria group (8 days). Second, each virus strain produced a distinct clinical syndrome. Third, the spread of virus to peripheral tissues, tested by hemi-nested reverse transcriptase PCR, was frequent (3 of 3 bats) and widespread (8 to 10 tissues positive of 11 tissues examined) in the Ghana group, was frequent and less widespread in the Senegal group (3/3 bats, 3 to 6 tissues positive), and was rare and restricted in the Nigeria group (1/3 bats, 2 tissues positive). Centrifugal spread of virus from brain to tissue of excretion in the oral cavity is required to enable lyssavirus transmission. Therefore, the Senegal and Ghana strains seem most suitable for further pathogenesis, and for transmission, studies in the straw-colored fruit bat.

  16. Pathogenesis of bat rabies in a natural reservoir: Comparative susceptibility of the straw-colored fruit bat (Eidolon helvum) to three strains of Lagos bat virus

    PubMed Central

    Suu-Ire, Richard; Banyard, Ashley C.; Breed, Andrew C.; Drosten, Christian; Eggerbauer, Elisa; Freuling, Conrad M.; Gibson, Louise; Goharriz, Hooman; Horton, Daniel L.; Jennings, Daisy; Kuzmin, Ivan V.; Marston, Denise; Ntiamoa-Baidu, Yaa; Riesle Sbarbaro, Silke; Selden, David; Wise, Emma L.; Kuiken, Thijs; Fooks, Anthony R.; Müller, Thomas; Wood, James L. N.; Cunningham, Andrew A.

    2018-01-01

    Rabies is a fatal neurologic disease caused by lyssavirus infection. People are infected through contact with infected animals. The relative increase of human rabies acquired from bats calls for a better understanding of lyssavirus infections in their natural hosts. So far, there is no experimental model that mimics natural lyssavirus infection in the reservoir bat species. Lagos bat virus is a lyssavirus that is endemic in straw-colored fruit bats (Eidolon helvum) in Africa. Here we compared the susceptibility of these bats to three strains of Lagos bat virus (from Senegal, Nigeria, and Ghana) by intracranial inoculation. To allow comparison between strains, we ensured the same titer of virus was inoculated in the same location of the brain of each bat. All bats (n = 3 per strain) were infected, and developed neurological signs, and fatal meningoencephalitis with lyssavirus antigen expression in neurons. There were three main differences among the groups. First, time to death was substantially shorter in the Senegal and Ghana groups (4 to 6 days) than in the Nigeria group (8 days). Second, each virus strain produced a distinct clinical syndrome. Third, the spread of virus to peripheral tissues, tested by hemi-nested reverse transcriptase PCR, was frequent (3 of 3 bats) and widespread (8 to 10 tissues positive of 11 tissues examined) in the Ghana group, was frequent and less widespread in the Senegal group (3/3 bats, 3 to 6 tissues positive), and was rare and restricted in the Nigeria group (1/3 bats, 2 tissues positive). Centrifugal spread of virus from brain to tissue of excretion in the oral cavity is required to enable lyssavirus transmission. Therefore, the Senegal and Ghana strains seem most suitable for further pathogenesis, and for transmission, studies in the straw-colored fruit bat. PMID:29505617

  17. Virus neutralising activity of African fruit bat (Eidolon helvum) sera against emerging lyssaviruses.

    PubMed

    Wright, Edward; Hayman, David T S; Vaughan, Aisling; Temperton, Nigel J; Wood, James L N; Cunningham, Andrew A; Suu-Ire, Richard; Weiss, Robin A; Fooks, Anthony R

    2010-12-20

    It is likely that phylogroup 2 lyssaviruses circulate within bat reservoirs. We adapted a pseudotype (pt) neutralisation assay (PNA) to a multiplex format enabling serosurveillance for Lagos bat virus (LBV), Mokola virus (MOKV) and West Caucasian bat virus (WCBV) in a potential reservoir, the African straw-coloured fruit bat, Eidolon helvum. Highly correlated titres were observed between single and multiplex PNAs using ptLBV and ptMOKV (r=0.97, p<0.0001), validating its use for bat serosurveillance. Of the bat serum samples screened 56% neutralised ptLBV, 27% ptMOKV and 1% ptWCBV. Mean VNAb titres were 1:266, 1:35 and 1:7 against ptLBV, ptMOKV and ptWCBV respectively. The high seroprevalence estimates suggest that the infection rate of LBV in E. helvum remains high enough to persist in this species. This supports the hypothesis that LBV is endemic in Ghanaian E. helvum and we speculate that LBV may have co-evolved with African megachiroptera. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Fur versus feathers: pollen delivery by bats and hummingbirds and consequences for pollen production.

    PubMed

    Muchhala, Nathan; Thomson, James D

    2010-06-01

    One floral characteristic associated with bat pollination (chiropterophily) is copious pollen production, a pattern we confirmed in a local comparison of hummingbird- and bat-adapted flowers from a cloud forest site in Ecuador. Previous authors have suggested that wasteful pollen transfer by bats accounted for the pattern. Here we propose and test a new hypothesis: bats select for increased pollen production because they can efficiently transfer larger amounts of pollen, which leads to a more linear male fitness gain curve for bat-pollinated plants. Flight cage experiments with artificial flowers and flowers of Aphelandra acanthus provide support for this hypothesis; in both instances, the amount of pollen delivered to stigmas by birds is not related to the amount of pollen removed from anthers on the previous visit, while the same function for bats increases linearly. Thus, increased pollen production will be linearly related to increased male reproductive success for bat flowers, while for bird flowers, increased pollen production leads to rapidly diminishing fitness returns. We speculate that fur takes up and holds more pollen than feathers, which seem to readily shed excess grains. Our gain-curve hypothesis may also explain why evolutionary shifts from bird to bat pollination seem more common than shifts in the opposite direction.

  19. Mating behavior as a possible cause of bat fatalities at wind turbines

    USGS Publications Warehouse

    Cryan, Paul M.

    2008-01-01

    Bats are killed by wind turbines in North America and Europe in large numbers, yet a satisfactory explanation for this phenomenon remains elusive. Most bat fatalities at turbines thus far occur during late summer and autumn and involve species that roost in trees. In this commentary I draw on existing literature to illustrate how previous behavioral observations of the affected species might help explain these fatalities. I hypothesize that tree bats collide with turbines while engaging in mating behaviors that center on the tallest trees in a landscape, and that such behaviors stem from 2 different mating systems (resource defense polygyny and lekking). Bats use vision to move across landscapes and might react to the visual stimulus of turbines as they do to tall trees. This scenario has serious conservation and management implications. If mating bats are drawn to turbines, wind energy facilities may act as population sinks and risk may be hard to assess before turbines are built. Researchers could observe bat behavior and experimentally manipulate trees, turbines, or other tall structures to test the hypothesis that tree bats mate at the tallest trees. If this hypothesis is supported, management actions aimed at decreasing the attractiveness of turbines to tree bats may help alleviate the problem.

  20. Patterns of Bat Distribution and Foraging Activity in a Highly Urbanized Temperate Environment

    PubMed Central

    2016-01-01

    Understanding how to manage biodiversity in urban areas will become increasingly important as density of humans residing in urban centers increases and urban areas expand. While considerable research has documented the shifts in biodiversity along urbanization gradients, much less work has focused on how characteristics of dense urban centers, effectively novel environments, influence behavior and biodiversity. Urban bats in San Francisco provide an opportunity to document changes in behavior and biodiversity to very high-density development. We studied (1) the distribution and abundance of bat foraging activity in natural areas; and (2) characteristics of natural areas that influence the observed patterns of distribution and foraging activity. We conducted acoustic surveys of twenty-two parks during 2008–2009. We confirmed the presence of four species of bats (Tadarida brasiliensis, Myotis yumanensis, Lasiurus blossevillii, and M. lucifugus). T. brasiliensis were found in all parks, while M. yumanensis occurred in 36% of parks. Results indicate that proximity to water, park size, and amount of forest edge best explained overall foraging activity. Proximity to water best explained species richness. M. yumanensis activity was best explained by reduced proportion of native vegetation as well as proximity to water. Activity was year round but diminished in December. We show that although bats are present even in very densely populated urban centers, there is a large reduction in species richness compared to that of outlying areas, and that most habitat factors explaining their community composition and activity patterns are similar to those documented in less urbanized environments. PMID:28030640

  1. Mitigating the effect of development on bats in England with derogation licensing.

    PubMed

    Stone, Emma Louise; Jones, Gareth; Harris, Stephen

    2013-12-01

    The Convention on Biological Diversity has catalyzed worldwide awareness of threats to biological diversity and stimulated global conservation strategies. These have led to national and international legislation and have generated debate about the most effective conservation actions. Under the EU Habitats Directive, all member states are obliged to establish a system for strict protection of species listed in Annex IV(a), which includes all bats. In England, this obligation has resulted in legislation that allows for derogation from strict protection under license, provided activities are undertaken to mitigate any potential negative effects on bat numbers. We used an evidence-based approach to assess the cost-effectiveness of mitigation strategies and the English bat-derogation licensing process as a whole. We analyzed data from 389 bat derogation licenses issued in England from 2003 to 2005 relating to 1776 roosts and 15 species to determine the nature and extent of development and mitigation activities and their effects on bats. Overall the effects of licensed activities on roosts were negative. Despite the level of protection afforded to bats, the majority (68%) of roosts for which derogation licenses were issued were destroyed. There were species-specific differences in the probability of roosts being destroyed, and impacts on roosts did not reflect a species' conservation status. Information provided by licensees was inadequate and inconsistent. Most licensees (67%) failed to submit postdevelopment reports, and postdevelopment monitoring was conducted at only 19% of sites. Despite a minimum of £4.13 million spent on mitigation structures for bats from 2003 to 2005, it was unclear whether the licensing process meets EU obligations. On the basis of our results, we believe there is a need to overhaul the licensing process, to establish a comprehensive, standardized postdevelopment monitoring system, and to demonstrate that mitigation is commensurate with Britain's legal obligations. Mitigando el Efecto del Desarrollo sobre los Murciélagos en Inglaterra con Licencias de Derogación. © 2013 Society for Conservation Biology.

  2. Presence and absence of bats across habitat scales in the Upper Coastal Plain of South Carolina

    Treesearch

    W. Mark Ford; Jennifer M. Menzel; Michael A. Menzel; John W. Edwards; John C. Kilgo

    2006-01-01

    During 2001, we used active acoustical sampling (Anabat II) to survey foraging habitat relationships of bats on the Savannah River Site (SRS) in the upper Coastal Plain of South Carolina. Using an a priori information-theoretic approach, we conducted logistic regression analysis to examine presence of individual bat species relative to a suite of microhabitat, stand,...

  3. Research and absence of bats across habitat scales in the upper coastal plain of South Carolina

    Treesearch

    W. Mark Ford; Jennifer M. Menzel; Michael A. Menzel; John W. Edwards; John C. Kilgo

    2006-01-01

    During 2001, we used active acoustical sampling (Anabat 11) to survey foraging habitat relationships of bats on the Savannah River Site (SRS) in the upper Coastal Plain of South Carolina. Using an a priori information-theoretic approach, we conducted logistic regression analysis to examine presence of individual bat species relative to a suite of microhabitat, stand,...

  4. Increased Brown Adipose Tissue Oxidative Capacity in Cold-Acclimated Humans

    PubMed Central

    Blondin, Denis P.; Labbé, Sébastien M.; Tingelstad, Hans C.; Noll, Christophe; Kunach, Margaret; Phoenix, Serge; Guérin, Brigitte; Turcotte, Éric E.; Carpentier, André C.

    2014-01-01

    Context: Recent studies examining brown adipose tissue (BAT) metabolism in adult humans have provided convincing evidence of its thermogenic potential and role in clearing circulating glucose and fatty acids under acute mild cold exposure. In contrast, early indications suggest that BAT metabolism is defective in obesity and type 2 diabetes, which may have important pathological and therapeutic implications. Although many mammalian models have demonstrated the phenotypic flexibility of this tissue through chronic cold exposure, little is known about the metabolic plasticity of BAT in humans. Objective: Our objective was to determine whether 4 weeks of daily cold exposure could increase both the volume of metabolically active BAT and its oxidative capacity. Design: Six nonacclimated men were exposed to 10°C for 2 hours daily for 4 weeks (5 d/wk), using a liquid-conditioned suit. Using electromyography combined with positron emission tomography with [11C]acetate and [18F]fluorodeoxyglucose, shivering intensity and BAT oxidative metabolism, glucose uptake, and volume before and after 4 weeks of cold acclimation were examined under controlled acute cold-exposure conditions. Results: The 4-week acclimation protocol elicited a 45% increase in BAT volume of activity (from 66 ± 30 to 95 ± 28 mL, P < .05) and a 2.2-fold increase in cold-induced total BAT oxidative metabolism (from 0.725 ± 0.300 to 1.591 ± 0.326 mL·s−1, P < .05). Shivering intensity was not significantly different before compared with after acclimation (2.1% ± 0.7% vs 2.0% ± 0.5% maximal voluntary contraction, respectively). Fractional glucose uptake in BAT increased after acclimation (from 0.035 ± 0.014 to 0.048 ± 0.012 min−1), and net glucose uptake also trended toward an increase (from 163 ± 60 to 209 ± 50 nmol·g−1·min−1). Conclusions: These findings demonstrate that daily cold exposure not only increases the volume of metabolically active BAT but also increases its oxidative capacity and thus its contribution to cold-induced thermogenesis. PMID:24423363

  5. Both brown adipose tissue and skeletal muscle thermogenesis processes are activated during mild to severe cold adaptation in mice.

    PubMed

    Bal, Naresh C; Singh, Sushant; Reis, Felipe C G; Maurya, Santosh K; Pani, Sunil; Rowland, Leslie A; Periasamy, Muthu

    2017-10-06

    Thermogenesis is an important homeostatic mechanism essential for survival and normal physiological functions in mammals. Both brown adipose tissue (BAT) ( i.e. uncoupling protein 1 (UCP1)-based) and skeletal muscle ( i.e. sarcolipin (SLN)-based) thermogenesis processes play important roles in temperature homeostasis, but their relative contributions differ from small to large mammals. In this study, we investigated the functional interplay between skeletal muscle- and BAT-based thermogenesis under mild versus severe cold adaptation by employing UCP1 -/- and SLN -/- mice. Interestingly, adaptation of SLN -/- mice to mild cold conditions (16 °C) significantly increased UCP1 expression, suggesting increased reliance on BAT-based thermogenesis. This was also evident from structural alterations in BAT morphology, including mitochondrial architecture, increased expression of electron transport chain proteins, and depletion of fat droplets. Similarly, UCP1 -/- mice adapted to mild cold up-regulated muscle-based thermogenesis, indicated by increases in muscle succinate dehydrogenase activity, SLN expression, mitochondrial content, and neovascularization, compared with WT mice. These results further confirm that SLN-based thermogenesis is a key player in muscle non-shivering thermogenesis (NST) and can compensate for loss of BAT activity. We also present evidence that the increased reliance on BAT-based NST depends on increased autonomic input, as indicated by abundant levels of tyrosine hydroxylase and neuropeptide Y. Our findings demonstrate that both BAT and muscle-based NST are equally recruited during mild and severe cold adaptation and that loss of heat production from one thermogenic pathway leads to increased recruitment of the other, indicating a functional interplay between these two thermogenic processes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. The role of ecological factors in shaping bat cone opsin evolution.

    PubMed

    Gutierrez, Eduardo de A; Schott, Ryan K; Preston, Matthew W; Loureiro, Lívia O; Lim, Burton K; Chang, Belinda S W

    2018-04-11

    Bats represent one of the largest and most striking nocturnal mammalian radiations, exhibiting many visual system specializations for performance in light-limited environments. Despite representing the greatest ecological diversity and species richness in Chiroptera, Neotropical lineages have been undersampled in molecular studies, limiting the potential for identifying signatures of selection on visual genes associated with differences in bat ecology. Here, we investigated how diverse ecological pressures mediate long-term shifts in selection upon long-wavelength ( Lws ) and short-wavelength ( Sws1 ) opsins, photosensitive cone pigments that form the basis of colour vision in most mammals, including bats. We used codon-based likelihood clade models to test whether ecological variables associated with reliance on visual information (e.g. echolocation ability and diet) or exposure to varying light environments (e.g. roosting behaviour and foraging habitat) mediated shifts in evolutionary rates in bat cone opsin genes. Using additional cone opsin sequences from newly sequenced eye transcriptomes of six Neotropical bat species, we found significant evidence for different ecological pressures influencing the evolution of the cone opsins. While Lws is evolving under significantly lower constraint in highly specialized high-duty cycle echolocating lineages, which have enhanced sonar ability to detect and track targets, variation in Sws1 constraint was significantly associated with foraging habitat, exhibiting elevated rates of evolution in species that forage among vegetation. This suggests that increased reliance on echolocation as well as the spectral environment experienced by foraging bats may differentially influence the evolution of different cone opsins. Our study demonstrates that different ecological variables may underlie contrasting evolutionary patterns in bat visual opsins, and highlights the suitability of clade models for testing ecological hypotheses of visual evolution. © 2018 The Author(s).

  7. Quantification of human and rodent brown adipose tissue function using 99mTc-methoxyisobutylisonitrile SPECT/CT and 18F-FDG PET/CT.

    PubMed

    Cypess, Aaron M; Doyle, Ashley N; Sass, Christina A; Huang, Tian Lian; Mowschenson, Peter M; Rosen, Harold N; Tseng, Yu-Hua; Palmer, Edwin L; Kolodny, Gerald M

    2013-11-01

    For brown adipose tissue (BAT) to be effective at consuming calories, its blood flow must increase enough to provide sufficient fuel to sustain energy expenditure and also transfer the heat created to avoid thermal injury. Here we used a combination of human and rodent models to assess changes in BAT blood flow and glucose utilization. (99m)Tc-methoxyisobutylisonitrile (MIBI) SPECT (n = 7) and SPECT/CT (n = 74) scans done in adult humans for parathyroid imaging were reviewed for uptake in regions consistent with human BAT. Site-directed biopsies of subcutaneous and deep neck fat were obtained for electron microscopy and gene expression profiling. In mice, tissue perfusion was measured with (99m)Tc-MIBI (n = 16) and glucose uptake with (18)F-FDG (n = 16). Animals were kept fasting overnight, anesthetized with pentobarbital, and given intraperitoneally either the β3-adrenergic receptor agonist CL-316,243, 1 mg/kg (n = 8), or saline (n = 8) followed by radiotracer injection 5 min later. After 120 min, the mice were imaged using SPECT/CT or PET/CT. Vital signs were recorded over 30 min during the imaging. BAT, white adipose tissue (WAT), muscle, liver, and heart were resected, and tissue uptake of both (99m)Tc-MIBI and (18)F-FDG was quantified by percentage injected dose per gram of tissue and normalized to total body weight. In 5.4% of patients (4/74), (99m)Tc-MIBI SPECT/CT showed increased retention in cervical and supraclavicular fat that displayed multilocular lipid droplets, dense capillary investment, and a high concentration of ovoid mitochondria. Expression levels of the tissue-specific uncoupling protein-1 were 180 times higher in BAT than in subcutaneous WAT (P < 0.001). In mice, BAT tissue perfusion increased by 61% (P < 0.01), with no significant changes in blood flow to WAT, muscle, heart, or liver. CL-316,243 increased glucose uptake in BAT even more, by 440% (P < 0.01). Pharmacologic activation of BAT requires increased blood flow to deliver glucose and oxygen for thermogenesis. However, the glucose consumption far exceeds the vascular response. These findings demonstrate that activated BAT increases glucose uptake beyond what might occur by increased blood flow alone and suggest that activated BAT likely uses glucose for nonthermogenic purposes.

  8. 40 CFR Table 2 to Part 455 - Organic Pesticide Active Ingredient Effluent Limitations Best Available Technology Economically...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Organic Pesticide Active Ingredient Effluent Limitations Best Available Technology Economically Achievable (BAT) and Pretreatment Standards for... Economically Achievable (BAT) and Pretreatment Standards for Existing Sources (PSES) Pesticide kg/kkg (lb/1,000...

  9. Conservation implications of physiological carry-over effects in bats recovering from white-nose syndrome.

    PubMed

    Davy, Christina M; Mastromonaco, Gabriela F; Riley, Julia L; Baxter-Gilbert, James H; Mayberry, Heather; Willis, Craig K R

    2017-06-01

    Although it is well documented that infectious diseases can pose threats to biodiversity, the potential long-term consequences of pathogen exposure on individual fitness and its effects on population viability have rarely been studied. We tested the hypothesis that pathogen exposure causes physiological carry-over effects with a pathogen that is uniquely suited to this question because the infection period is specific and time limited. The fungus Pseudogymnoascus destructans causes white-nose syndrome (WNS) in hibernating bats, which either die due to the infection while hibernating or recover following emergence from hibernation. The fungus infects all exposed individuals in an overwintering site simultaneously, and bats that survive infection during hibernation clear the pathogen within a few weeks following emergence. We quantified chronic stress during the active season, when bats are not infected, by measuring cortisol in bat claws. Free-ranging Myotis lucifugus who survived previous exposure to P. destructans had significantly higher levels of claw cortisol than naïve individuals. Thus, cryptic physiological carry-over effects of pathogen exposure may persist in asymptomatic, recovered individuals. If these effects result in reduced survival or reproductive success, they could also affect population viability and even act as a third stream in the extinction vortex. For example, significant increases in chronic stress, such as those indicated here, are correlated with reduced reproductive success in a number of species. Future research should directly explore the link between pathogen exposure and the viability of apparently recovered populations to improve understanding of the true impacts of infectious diseases on threatened populations. © 2016 Society for Conservation Biology.

  10. Efferent projection from the preoptic area for the control of non-shivering thermogenesis in rats

    PubMed Central

    Chen, Xiao-Ming; Hosono, Takayoshi; Yoda, Tamae; Fukuda, Yutaka; Kanosue, Kazuyuki

    1998-01-01

    To investigate the characteristics of efferent projections from the preoptic area for the control of non-shivering thermogenesis, we tested the effects of thermal or chemical stimulation, and transections of the preoptic area on the activity of interscapular brown adipose tissue in cold-acclimated and non-acclimated anaesthetized rats.Electrical stimulation of the ventromedial hypothalamic nucleus (VMH) elicited non-shivering thermogenesis in the brown adipose tissue (BAT); warming the preoptic area to 41.5 °C completely suppressed the thermogenic response.Injections of d,l-homocysteic acid (DLH; 0.5 mm, 0.3 μl) into the preoptic area also significantly attenuated BAT thermogenesis, whereas injections of control vehicle had no effect.Transections of the whole hypothalamus in the coronal plane at the level of the paraventricular nucleus induced rapid and large rises in BAT and rectal temperatures. This response was not blocked by pretreatment with indomethacin. The high rectal and BAT temperatures were sustained more than 1 h, till the end of the experiment. Bilateral knife cuts that included the medial forebrain bundle but not the paraventricular nuclei elicited similar rises in BAT and rectal temperatures. Medial knife cuts had no effect.These results suggest that warm-sensitive neurones in the preoptic area contribute a larger efferent signal for non-shivering thermogenesis than do cold-sensitive neurones, and that the preoptic area contributes a tonic inhibitory input to loci involved with non-shivering thermogenesis. This efferent inhibitory signal passes via lateral, but not medial, hypothalamic pathways. PMID:9769429

  11. Serendipitous Discovery of an Immunoglobulin-Binding Autotransporter in Bordetella Species▿

    PubMed Central

    Williams, Corinne L.; Haines, Robert; Cotter, Peggy A.

    2008-01-01

    We describe the serendipitous discovery of BatB, a classical-type Bordetella autotransporter (AT) protein with an ∼180-kDa passenger domain that remains noncovalently associated with the outer membrane. Like genes encoding all characterized protein virulence factors in Bordetella species, batB transcription is positively regulated by the master virulence regulatory system BvgAS. BatB is predicted to share similarity with immunoglobulin A (IgA) proteases, and we showed that BatB binds Ig in vitro. In vivo, a Bordetella bronchiseptica ΔbatB mutant was unable to overcome innate immune defenses and was cleared from the lower respiratory tracts of mice more rapidly than wild-type B. bronchiseptica. This defect was abrogated in SCID mice, suggesting that BatB functions to resist clearance during the first week postinoculation in a manner dependent on B- and T-cell-mediated activities. Taken together with the previous demonstration that polymorphonuclear neutrophils (PMN) are critical for the control of B. bronchiseptica in mice, our data support the hypothesis that BatB prevents nonspecific antibodies from facilitating PMN-mediated clearance during the first few days postinoculation. Neither of the strictly human-adapted Bordetella subspecies produces a fully functional BatB protein; nucleotide differences within the putative promoter region prevent batB transcription in Bordetella pertussis, and although expressed, the batB gene of human-derived Bordetella parapertussis (B. parapertussishu) contains a large in-frame deletion relative to batB of B. bronchiseptica. Taken together, our data suggest that BatB played an important role in the evolution of virulence and host specificity among the mammalian-adapted bordetellae. PMID:18426869

  12. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats

    PubMed Central

    Denzinger, Annette; Schnitzler, Hans-Ulrich

    2013-01-01

    Throughout evolution the foraging and echolocation behaviors as well as the motor systems of bats have been adapted to the tasks they have to perform while searching and acquiring food. When bats exploit the same class of environmental resources in a similar way, they perform comparable tasks and thus share similar adaptations independent of their phylogeny. Species with similar adaptations are assigned to guilds or functional groups. Habitat type and foraging mode mainly determine the foraging tasks and thus the adaptations of bats. Therefore, we use habitat type and foraging mode to define seven guilds. The habitat types open, edge and narrow space are defined according to the bats' echolocation behavior in relation to the distance between bat and background or food item and background. Bats foraging in the aerial, trawling, flutter detecting, or active gleaning mode use only echolocation to acquire their food. When foraging in the passive gleaning mode bats do not use echolocation but rely on sensory cues from the food item to find it. Bat communities often comprise large numbers of species with a high diversity in foraging areas, foraging modes, and diets. The assignment of species living under similar constraints into guilds identifies patterns of community structure and helps to understand the factors that underlie the organization of highly diverse bat communities. Bat species from different guilds do not compete for food as they differ in their foraging behavior and in the environmental resources they use. However, sympatric living species belonging to the same guild often exploit the same class of resources. To avoid competition they should differ in their niche dimensions. The fine grain structure of bat communities below the rather coarse classification into guilds is determined by mechanisms that result in niche partitioning. PMID:23840190

  13. Effects of training with a dynamic moment of inertia bat on swing performance.

    PubMed

    Liu, Chiang; Liu, Ya-Chen; Kao, Ying-Chieh; Shiang, Tzyy-Yuang

    2011-11-01

    The purpose of this study was to investigate the effects of the 8-week dynamic moment of inertia (DMOI) bat training on swing velocity, batted-ball speed, hitting distance, muscle power, and grip force. The DMOI bat is characterized in that the bat could be swung more easily by reducing the moment of inertia at the initial stage of swing without decreasing the bat weight and has a faster swing velocity and lower muscle activity. Seventeen varsity baseball players were randomly assigned to the DMOI bat training group (n = 9) and the normal bat training group (n = 8). The training protocol was 7 swings each set, 5-8 sets each time, 3 times each week, and 8 weeks' training period. The results showed that the swing training with the DMOI bat for 8 weeks significantly increased swing velocity by about 6.20% (96.86 ± 8.48 vs. 102.82 ± 9.93 km·h(-1)), hitting distance by about 6.69% (80.06 ± 9.16 vs. 84.99 ± 7.26 m), muscle power of the right arm by about 12.04% (3.34 ± 0.41 vs. 3.74 ± 0.61 m), and muscle power of the left arm by about 8.23% (3.36 ± 0.46 vs. 3.61 ± 0.39 m) (p < 0.05). Furthermore, the DMOI bat training group had a significantly better change percentage in swing velocity, hitting distance, and grip force of the left hand than did the normal bat training group (p < 0.05). The findings suggested that the swing training with the DMOI bat has a positive benefit on swing performance and that the DMOI bat could be used as a new training tool in baseball.

  14. Differential Evolution of Antiretroviral Restriction Factors in Pteropid Bats as Revealed by APOBEC3 Gene Complexity

    PubMed Central

    Hayward, Joshua A; Tachedjian, Mary; Cui, Jie; Cheng, Adam Z; Johnson, Adam; Baker, Michelle L; Harris, Reuben S; Wang, Lin-Fa

    2018-01-01

    Abstract Bats have attracted attention in recent years as important reservoirs of viruses deadly to humans and other mammals. These infections are typically nonpathogenic in bats raising questions about innate immune differences that might exist between bats and other mammals. The APOBEC3 gene family encodes antiviral DNA cytosine deaminases with important roles in the suppression of diverse viruses and genomic parasites. Here, we characterize pteropid APOBEC3 genes and show that species within the genus Pteropus possess the largest and most diverse array of APOBEC3 genes identified in any mammal reported to date. Several bat APOBEC3 proteins are antiviral as demonstrated by restriction of retroviral infectivity using HIV-1 as a model, and recombinant A3Z1 subtypes possess strong DNA deaminase activity. These genes represent the first group of antiviral restriction factors identified in bats with extensive diversification relative to homologues in other mammals. PMID:29617834

  15. Habitat use and foraging behavior of Townsend's big-eared bat (Corynorhinus townsendii) in coastal California

    USGS Publications Warehouse

    Fellers, Gary M.; Pierson, Elizabeth D.

    2002-01-01

    Radiotracking studies of Townsend's big-eared bat (Corynorhinus townsendii) were conducted in grazed grassland and coastal forest (California bay, Douglas-fir, and redwood) at Point Reyes National Seashore in coastal central California. Radiotagged bats were used to determine the foraging patterns of both female and male bats and to locate alternate roost sites. The animals showed considerable loyalty to their primary roost sites even though the study was conducted after the nursery period had ended, when the bats would normally be dispersing for the season. Foraging patterns differed between male and female bats, with females traveling greater distances than males. Males consistently stayed close to the maternity colony both during day and night. Both sexes flew in the immediate vicinity of vegetation, both when foraging and when traveling from the roost to foraging areas. Foraging activity was concentrated primarily along the edges of riparian vegetation.

  16. Differential Evolution of Antiretroviral Restriction Factors in Pteropid Bats as Revealed by APOBEC3 Gene Complexity.

    PubMed

    Hayward, Joshua A; Tachedjian, Mary; Cui, Jie; Cheng, Adam Z; Johnson, Adam; Baker, Michelle L; Harris, Reuben S; Wang, Lin-Fa; Tachedjian, Gilda

    2018-07-01

    Bats have attracted attention in recent years as important reservoirs of viruses deadly to humans and other mammals. These infections are typically nonpathogenic in bats raising questions about innate immune differences that might exist between bats and other mammals. The APOBEC3 gene family encodes antiviral DNA cytosine deaminases with important roles in the suppression of diverse viruses and genomic parasites. Here, we characterize pteropid APOBEC3 genes and show that species within the genus Pteropus possess the largest and most diverse array of APOBEC3 genes identified in any mammal reported to date. Several bat APOBEC3 proteins are antiviral as demonstrated by restriction of retroviral infectivity using HIV-1 as a model, and recombinant A3Z1 subtypes possess strong DNA deaminase activity. These genes represent the first group of antiviral restriction factors identified in bats with extensive diversification relative to homologues in other mammals.

  17. Encoding of head direction by hippocampal place cells in bats.

    PubMed

    Rubin, Alon; Yartsev, Michael M; Ulanovsky, Nachum

    2014-01-15

    Most theories of navigation rely on the concept of a mental map and compass. Hippocampal place cells are neurons thought to be important for representing the mental map; these neurons become active when the animal traverses a specific location in the environment (the "place field"). Head-direction cells are found outside the hippocampus, and encode the animal's head orientation, thus implementing a neural compass. The prevailing view is that the activity of head-direction cells is not tuned to a single place, while place cells do not encode head direction. However, little work has been done to investigate in detail the possible head-directional tuning of hippocampal place cells across species. Here we addressed this by recording the activity of single neurons in the hippocampus of two evolutionarily distant bat species, Egyptian fruit bat and big brown bat, which crawled randomly in three different open-field arenas. We found that a large fraction of hippocampal neurons, in both bat species, showed conjunctive sensitivity to the animal's spatial position (place field) and to its head direction. We introduced analytical methods to demonstrate that the head-direction tuning was significant even after controlling for the behavioral coupling between position and head direction. Surprisingly, some hippocampal neurons preserved their head direction tuning even outside the neuron's place field, suggesting that "spontaneous" extra-field spikes are not noise, but in fact carry head-direction information. Overall, these findings suggest that bat hippocampal neurons can convey both map information and compass information.

  18. Anatomical location of Periglischrus iheringi(Acari: Spinturnicidae) associated with the great fruit-eating bat (Chiroptera: Phyllostomidae).

    PubMed

    Almeida, Juliana; Serra-Freire, Nicolau; Peracchi, Adriano

    2015-01-01

    Spinturnicid mites are ectoparasites that infest the wings of bats, and species of the genus Periglischrus Kolenati, 1857 are associated exclusively with bats of the family Phyllostomidae. We tested the hypothesis that a long-term evolutionary association led P. iheringi to choose very specific wing locations to infest the great fruit-eating bats, Artibeus lituratus. Seven anatomical wing regions and the uropatagium from 140 bats were analyzed and a total of 78 parasites were collected. Periglischrus iheringi had a significant preference for the plagiopatagium and dactylopatgium major wing regions (i.e., large, proximal regions) and infestation was directly correlated to area (r=0.9744). However, other factors may also influence mite choice, such as higher and more stable temperature and humidity, vascularization and lower risk of displacement.

  19. Do TSH, FT3, and FT4 Impact BAT Visualization of Clinical FDG-PET/CT Images?

    PubMed Central

    Nagamachi, Shigeki; Mizutani, Youichi; Terada, Tamasa; Kiyohara, Syogo; Wakamatsu, Hideyuki; Fujita, Seigo; Higashi, Tatsuya; Yoshinaga, Keiichiro; Saga, Tsuneo; Hirai, Toshinori

    2018-01-01

    Objective We retrospectively analyzed activated BAT visualization on FDG-PET/CT in patients with various conditions and TH levels to clarify the relationships between visualization of BAT on FDG-PET/CT and the effect of TH. Methods Patients who underwent clinical FDG-PET/CT were reviewed and we categorized patients into 5 groups: (i) thyroid hormone withdrawal (THW) group; (ii) recombinant human thyrotropin (rhTSH) group; (iii) hypothyroidism group; (iv) hyperthyroidism group; and (v) BAT group. A total of sixty-two FDG-PET/CT imaging studies in fifty-nine patients were performed. To compare each group, gender; age; body weight; serum TSH, FT3, and FT4 levels; and outside temperature were evaluated. Results No significant visualization of BAT was noted in any of the images in the THW, rhTSH, hypothyroidism, and hyperthyroidism groups. All patients in the BAT group were in a euthyroid state. When the BAT-negative and BAT-positive patient groups were compared, it was noted that the minimum and maximum temperature on the day of the PET study and maximum temperature of the one day before the PET study were significantly lower in BAT-positive group than in all those of other groups. Conclusions Elevated TSH condition before RIT, hyperthyroidism, or hypothyroidism did not significantly impact BAT visualization of clinical FDG-PET/CT images. PMID:29666563

  20. Spike Neuromorphic VLSI-Based Bat Echolocation for Micro-Aerial Vehicle Guidance

    DTIC Science & Technology

    2007-03-31

    IFinal 03/01/04 - 02/28/07 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Neuromorphic VLSI-based Bat Echolocation for Micro-aerial 5b.GRANTNUMBER Vehicle...uncovered interesting new issues in our choice for representing the intensity of signals. We have just finished testing the first chip version of an echo...timing-based algorithm (’openspace’) for sonar-guided navigation amidst multiple obstacles. 15. SUBJECT TERMS Neuromorphic VLSI, bat echolocation

Top