Science.gov

Sample records for activation-regulated chemokine tarc

  1. Molecular cloning of the feline thymus and activation-regulated chemokine cDNA and its expression in lesional skin of cats with eosinophilic plaque.

    PubMed

    Maeda, Sadatoshi; Okayama, Taro; Ohmori, Keitaro; Masuda, Kenichi; Ohno, Koichi; Tsujimoto, Hajime

    2003-02-01

    Thymus and activation-regulated chemokine (TARC) is a member of CC chemokine and plays an essential role in recruitment of CC chemokine receptor 4 positive Th2 cells to allergic lesion. To investigate the association of TARC in allergic inflammation of cats, a TARC cDNA was cloned from feline thymus by RT-PCR with 3' rapid amplification of cDNA ends (RACE) method. The feline TARC clone contained a full length open reading frame encoding 99 amino acids which shared 80.8%, 72.5%, 65.6% and 67.8% homology with dog, human, mouse and rat homologues, respectively. Expression of TARC mRNA was detected not only in thymus but also in spleen, lung, lymph node, kidney, small intestine, colon and skin of the normal cat tissues examined. Furthermore, it was found that TARC mRNA was strongly expressed in lesional skin of cats with eosinophilic plaque. The present results demonstrated that TARC might be involved in the pathogenesis of eosinophilic plaque in cats.

  2. High expression of the CC chemokine TARC in Reed-Sternberg cells. A possible explanation for the characteristic T-cell infiltratein Hodgkin's lymphoma.

    PubMed

    van den Berg, A; Visser, L; Poppema, S

    1999-06-01

    Hodgkin's lymphoma is characterized by the combination of Reed-Sternberg (R-S) cells and a prominent inflammatory cell infiltrate. One of the intriguing questions regarding this disease is what is causing the influx of T lymphocytes into the involved tissues. We applied the serial analysis of gene expression (SAGE) technique on the Hodgkin's lymphoma-derived cell line L428 and on an Epstein-Barr virus (EBV)-transformed lymphoblastoid B-cell line. A frequently expressed tag in L428 corresponded to the T-cell-directed CC chemokine TARC. Reverse transcription polymerase chain reaction analyses demonstrated expression of TARC in nodular sclerosis (NS) and mixed cellularity (MC) classical Hodgkin's lymphomas but not in NLP Hodgkin's lymphoma, anaplastic large-cell lymphomas, and large-B-cell lymphomas with CD30 positivity. Two of five cases of T-cell-rich B-cell lymphoma (TCRBCL) were TARC positive. RNA in situ hybridization (ISH) showed a strong signal for TARC in the cytoplasm of R-S cells, and immunohistochemical staining confirmed the presence of the TARC protein in the R-S cells of NS and MC Hodgkin's lymphomas. The lymphocytic and histiocytic (L&H)-type cells of nodular lymphocyte predominance Hodgkin's lymphoma and the neoplastic cells of non-Hodgkin's lymphomas with the exception of two cases of TCRBCL did not stain for TARC. TARC is known to bind to the CCR4 receptor, which is expressed on activated Th2 lymphocytes. The immunophenotype of lymphocytes surrounding R-S cells is indeed Th2-like, and by RNA ISH these lymphocytes showed a positive signal for the chemokine receptor CCR4. The findings suggest that production of TARC by the R-S cells may explain the characteristic T-cell infiltrate in classical Hodgkin's lymphoma.

  3. DIESEL EXHAUST PARTICLE COMPOSITION AND THE METHOD OF SONICATION INFLUENCE THE ADJUVANCY EFFECT AND TARC PRODUCTION

    EPA Science Inventory

    Numerous reports have shown diesel exhaust particles (DEP) can act as an immunological adjuvant in asthma. Recent interest has focused on thymus and activation-regulated chemokine (TARC) as an important modulator of this effect. This study evaluated the adjuvancy effects of thr...

  4. Serum thymus and activation-regulated chemokine level monitoring may predict disease relapse detected by PET scan after reduced-intensity allogeneic stem cell transplantation in patients with Hodgkin lymphoma.

    PubMed

    Farina, Lucia; Rezzonico, Francesca; Spina, Francesco; Dodero, Anna; Mazzocchi, Arabella; Crippa, Flavio; Alessi, Alessandra; Dalto, Serena; Viviani, Simonetta; Corradini, Paolo

    2014-12-01

    Patients with relapsed and refractory Hodgkin lymphoma (HL) may experience long-term survival after allogeneic stem cell transplantation (alloSCT), but disease recurrence represents the main cause of treatment failure. Positron-emission tomography (PET)-positive patients after alloSCT have a dismal outcome. Serum thymus and activation-regulated chemokine (TARC) is produced by Reed-Sternberg cells and may be a marker of disease. Our study aimed at assessing whether TARC levels after alloSCT correlated with disease status and whether TARC monitoring could increase the ability to predict relapse. Twenty-four patients were evaluated in a prospective observational study. TARC serum level and PET were assessed before and after alloSCT during the follow-up (median, 30 months; range, 2 to 54). Before alloSCT, the median TARC level was 721 pg/mL (range, 209 to 1332) in PET-negative patients and 2542 pg/mL (range, 94 to 13,870) in PET-positive patients. After alloSCT, TARC was 620 pg/mL (range, 12 to 4333) in persistently PET-negative patients compared with 22,397 pg/mL (range, 602 to 106,578) in PET-positive patients (P < .0001). In 7 patients who relapsed after alloSCT, TARC level increased progressively even before PET became positive, with a median fold increase of 3.19 (range, 1.66 to 7.11) at relapse. The cut-off value of 1726 pg/mL had a sensitivity of 100% and a specificity of 71% for PET positivity. Patients with at least 1 TARC value above 1726 pg/mL during the first year after alloSCT had a worse progression-free survival (P = .031). In conclusion, TARC was correlated with disease status and its monitoring may be able to predict PET positivity after alloSCT, thus potentially allowing an early immune manipulation.

  5. Cultivated ginseng inhibits 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in NC/Nga mice and TNF-α/IFN-γ-induced TARC activation in HaCaT cells.

    PubMed

    Choi, Jae Ho; Jin, Sun Woo; Park, Bong Hwan; Kim, Hyung Gyun; Khanal, Tilak; Han, Hwa Jeong; Hwang, Yong Pil; Choi, Jun Min; Chung, Young Chul; Hwang, Sang Kyu; Jeong, Tae Cheon; Jeong, Hye Gwang

    2013-06-01

    Ginseng contains many bioactive constituents, including various ginsenosides that are believed to have anti-allergic, anti-oxidant, and immunostimulatory activities; however, its effects on atopic dermatitis (AD) remain unclear. In the current study, we hypothesized that cultivated ginseng (CG) would inhibit 2,4-dinitrochlorobenzene (DNCB)-induced AD-like skin lesions in NC/Nga mice by regulating the T helper (Th)1/Th2 balance. Also, CG inhibits TNF-α/IFN-γ-induced thymus- and activation-regulated chemokine (TARC) expression through nuclear factor-kappa B (NF-κB)-dependent signaling in HaCaT cells. CG ameliorated DNCB-induced dermatitis severity, serum levels of IgE and TARC, and mRNA expression of TARC, TNF-α, IFN-γ, IL-4, IL-5, and IL-13 in mice. Histopathological examination showed reduced thickness of the epidermis/dermis and dermal infiltration of inflammatory cells in the ears. Furthermore, CG suppressed the TNF-α/IFN-γ-induced mRNA expression of TARC in HaCaT cells. CG inhibited TNF-α/IFN-γ-induced NF-κB activation. These results suggest that CG inhibited the development of the AD-like skin symptoms by modulating Th1 and Th2 responses in the skin lesions in mice and TARC expression by suppressing TNF-α/IFN-γ-induced NF-κB activation in keratinocytes, and so may be a useful tool in the therapy of AD-like skin symptoms.

  6. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells

    SciTech Connect

    Choi, Hyeon-Jae; Lee, Jin-Hwee; Jung, Yi-Sook

    2014-05-02

    Highlights: • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced TARC and MDC expression in HaCaT cells. • PKCζ, p38 MAPK, or NF-κB mediate TNF-α/IFN-γ-induced TARC and MDC expression. • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced activation of PKCζ, p38 MAPK, or NF-κB. • (+)-Nootkatone suppresses chemokine expression by inhibiting of PKCζ and p38 pathways. - Abstract: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.

  7. Piercing tool, Transportation Accident Resistant Container (TARC)

    SciTech Connect

    Lari, P.

    1994-08-01

    Transportation Accident Resistant Containers (TARC)s are used for enhanced safety during movement of nuclear weapons. Its design features a tough stainless steel outer skin, redwood for impact mitigation and fire protection and a rugged aluminum inner container. Redwood absorbs impact energy by crushing, similar to the way foam crushes in other containers. Redwood also functions to insulate the weapon from heat and fire. When a TARC is involved in a fire, the redwood will slowly burn forming a good insulating char. The redwood can continue to smolder once the fire is out. To ensure the smolder is extinguished, water can be directed into any accident caused hole in the skin. If no hole exists, it may be necessary to create one. This document discusses tool selection, testing, and a simple but effective method of creating an access hole in the outer skin large enough to apply fire fighting techniques.

  8. Surfactant protein D, Club cell protein 16, Pulmonary and activation-regulated chemokine, C-reactive protein, and Fibrinogen biomarker variation in chronic obstructive lung disease.

    PubMed

    Lock-Johansson, Sofie; Vestbo, Jørgen; Sorensen, Grith Lykke

    2014-11-25

    Chronic obstructive pulmonary disease (COPD) is a multifaceted condition that cannot be fully described by the severity of airway obstruction. The limitations of spirometry and clinical history have prompted researchers to investigate a multitude of surrogate biomarkers of disease for the assessment of patients, prediction of risk, and guidance of treatment. The aim of this review is to provide a comprehensive summary of observations for a selection of recently investigated pulmonary inflammatory biomarkers (Surfactant protein D (SP-D), Club cell protein 16 (CC-16), and Pulmonary and activation-regulated chemokine (PARC/CCL-18)) and systemic inflammatory biomarkers (C-reactive protein (CRP) and fibrinogen) with COPD. The relevance of these biomarkers for COPD is discussed in terms of their biological plausibility, their independent association to disease and hard clinical outcomes, their modification by interventions, and whether changes in clinical outcomes are reflected by changes in the biomarker.

  9. Saussurea lappa alleviates inflammatory chemokine production in HaCaT cells and house dust mite-induced atopic-like dermatitis in Nc/Nga mice.

    PubMed

    Lim, Hye-Sun; Ha, Hyekyung; Lee, Mee-Young; Jin, Seong-Eun; Jeong, Soo-Jin; Jeon, Woo-Young; Shin, Na-Ra; Sok, Dai-Eun; Shin, Hyeun-Kyoo

    2014-01-01

    Saussurea lappa is a traditional herbal medicine used for to treat various inflammatory diseases. In this study, we investigated the protective effects of S. lappa against atopic dermatitis using human keratinocyte HaCaT cells, murine mast cell line MC/9 cells, and a house dust mite-induced atopic dermatitis model of Nc/Nga mice. Treatment with the S. lappa caused a significant reduction in the mRNA levels and production of inflammatory chemokines and cytokine, including thymus- and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC), regulated on activation, normal T-cell expressed and secreted (RANTES), and interleukin-8 (IL-8) in tumor necrosis factor-α/interferone-γ-stimulated HaCaT cells. S. lappa exhibited the significant reduction in histamine production in MC/9 cells. In the atopic dermatitis model, S. lappa significantly reduced the dermatitis score and serum IgE and TARC levels. In addition, the back skin and ears of S. lappa-treated Nc/Nga mice exhibited reduced histological manifestations of atopic skin lesions such as erosion, hyperplasia of the epidermis and dermis, and inflammatory cell infiltration. In conclusion, an extract of S. lappa effectively suppressed the development of atopic dermatitis, which was closely related to the reduction of chemokines and cytokine. Our study suggests that S. lappa may be a potential treatment for atopic dermatitis.

  10. Ma Huang Tang Suppresses the Production and Expression of Inflammatory Chemokines via Downregulating STAT1 Phosphorylation in HaCaT Keratinocytes

    PubMed Central

    Jin, Seong-Eun; Lee, Mee-Young

    2016-01-01

    Ma huang tang (MHT) is a traditional herbal medicine comprising six medicinal herbs and is used to treat influenza-like illness. However, the effects of MHT on inflammatory skin diseases have not been verified scientifically. We investigated determining the inhibitory effects of MHT against inflammation responses in skin using HaCaT human keratinocyte cells. We found that MHT suppressed production of thymus and activation-regulated chemokine (TARC/CCL17), macrophage-derived chemokine (MDC/CCL22), regulated on activation of normal T-cell expressed and secreted (RANTES/CCL5), and interleukin-8 (IL-8) in tumor necrosis factor-α (TNF-α) and interferon-γ- (IFN-γ-) stimulated HaCaT cells. Consistently, MHT suppressed the mRNA expression of TARC, MDC, RANTES, and IL-8 in TNF-α and IFN-γ-stimulated cells. Additionally, MHT inhibited TNF-α and IFN-γ-stimulated signal transducer and activator of transcription 1 (STAT1) phosphorylation in a dose-dependent manner and nuclear translocation in HaCaT cells. Our finding indicates that MHT inhibits production and expression of inflammatory chemokines in the stimulated keratinocytes by downregulating STAT1 phosphorylation, suggesting that MHT may be a possible therapeutic agent for inflammatory skin diseases. PMID:27847527

  11. Novel CC chemokine receptor 4 antagonist RS-1154 inhibits ovalbumin-induced ear swelling in mice.

    PubMed

    Nakagami, Yasuhiro; Kawashima, Kayo; Yonekubo, Kazuki; Etori, Maki; Jojima, Takaaki; Miyazaki, Shojiro; Sawamura, Ryoko; Hirahara, Kazuki; Nara, Futoshi; Yamashita, Makoto

    2009-12-10

    CC chemokine ligand 17 (CCL17/thymus and activation-regulated chemokine: TARC) and CCL22 (macrophage-derived chemokine: MDC) selectively bind to CC chemokine receptor 4 (CCR4). The CCR4 system is considered to be responsible for the pathology of allergic diseases such as atopic dermatitis. To find and develop potential medicines against allergic diseases, we screened an in-house library to search for compounds having a profile as a CCR4 antagonist. From among the screening hits, we focused on 3-{2-[(2R)-2-phenyl-4-(4-pyridin-4-ylbenzyl)morpholin-2-yl]ethyl}quinazoline-2,4(1H,3H)-dione (named RS-1154), which had been newly synthesized in our laboratory. This compound inhibited the binding of [(125)I]CCL17 to human CCR4-expressing CHO cells with an IC(50) value of 27.7 nM and moreover inhibited CCL17-induced migration of DO11.10 mice-derived T helper 2 cells with an IC(50) value of 1.5 nM in vitro. We then examined the effect of RS-1154 in an ovalbumin-induced ear swelling assay. The ear thickness was decreased by intravenous administration of anti-CCL17 or anti-CCL22 antibodies, suggesting that the CCR4 system is involved in the ear swelling. Though partially, the oral administration of RS-1154 also significantly ameliorated the ear swelling at the doses of 30 and 100 mg/kg. Furthermore, the serum level of interleukin-4 decreased after the administration of RS-1154. In this study, we succeeded in obtaining a newly-synthesized compound, RS-1154, which has a potential to inhibit the chemotaxis of T helper 2 cells in vitro and to ameliorate ovalbumin-induced ear swelling in vivo. These results raise the possibility that RS-1154 or one of derivatives might become a therapeutic agent for atopic dermatitis patients.

  12. Alantolactone from Saussurea lappa Exerts Antiinflammatory Effects by Inhibiting Chemokine Production and STAT1 Phosphorylation in TNF-α and IFN-γ-induced in HaCaT cells.

    PubMed

    Lim, Hye-Sun; Jin, Sung-Eun; Kim, Ohn-Soon; Shin, Hyeun-Kyoo; Jeong, Soo-Jin

    2015-07-01

    Skin inflammation is the most common condition seen in dermatology practice and can be caused by various allergic reactions and certain toxins or chemicals. In the present study, we investigated the antiinflammatory effects of Saussurea lappa, a medicinal herb, and its marker compounds alantolactone, caryophyllene, costic acid, costunolide, and dehydrocostuslactone in the HaCaT human keratinocyte cell line. HaCaT cells were stimulated with tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), and treated with S. lappa or each of five marker compounds. Chemokine production and expression were analyzed by enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction, respectively. Phosphorylation of signal transducer and activator of transcription (STAT) 1 was determined by immunoblotting. Stimulation with TNF-α and IFN-γ significantly increased the production of the following chemokines: thymus-regulated and activation-regulated chemokine (TARC): regulated on activation, normal T-cell expressed and secreted (RANTES): macrophage-derived chemokine (MDC): and interleukin-8 (IL-8). By contrast, S. lappa and the five marker compounds significantly reduced the production of these chemokines by TNF-α and IFN-γ-treated cells. S. lappa and alantolactone suppressed the TNF-α and IFN-γ-stimulated increase in the phosphorylation of STAT1. Our results demonstrate that alantolactone from S. lappa suppresses TNF-α and IFN-γ-induced production of RANTES and IL-8 by blocking STAT1 phosphorylation in HaCaT cells.

  13. Positive Relationship between Total Antioxidant Status and Chemokines Observed in Adults

    PubMed Central

    Li, Yanli; Browne, Richard W.; Bonner, Matthew R.; Deng, Furong; Tian, Lili; Mu, Lina

    2014-01-01

    Objective. Human evidence is limited regarding the interaction between oxidative stress biomarkers and chemokines, especially in a population of adults without overt clinical disease. The current study aims to examine the possible relationships of antioxidant and lipid peroxidation markers with several chemokines in adults. Methods. We assessed cross-sectional associations of total antioxidant status (TAS) and two lipid peroxidation markers malondialdehyde (MDA) and thiobarbituric acid reactive substances (TBARS) with a suite of serum chemokines, including CXCL-1 (GRO-α), CXCL-8 (IL-8), CXCL-10 (IP-10), CCL-2 (MCP-1), CCL-5 (RANTES), CCL-8 (MCP-2), CCL-11 (Eotaxin-1), and CCL-17 (TARC), among 104 Chinese adults without serious preexisting clinical conditions in Beijing before 2008 Olympics. Results. TAS showed significantly positive correlations with MCP-1 (r = 0.15751, P = 0.0014), MCP-2 (r = 0.3721, P = 0.0001), Eotaxin-1 (r = 0.39598, P < 0.0001), and TARC (r = 0.27149, P = 0.0053). The positive correlations remained unchanged after controlling for age, sex, body mass index, smoking, and alcohol drinking status. No associations were found between any of the chemokines measured in this study and MDA or TBARS. Similar patterns were observed when the analyses were limited to nonsmokers. Conclusion. Total antioxidant status is positively associated with several chemokines in this adult population. PMID:25254081

  14. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and T regulatory cells

    PubMed Central

    Olkhanud, Purevdorj B.; Baatar, Dolgor; Bodogai, Monica; Hakim, Fran; Gress, Ronald; Anderson, Robin L.; Deng, Jie; Xu, Mai; Briest, Susanne; Biragyn, Arya

    2009-01-01

    Cancer metastasis is a leading cause of cancer morbidity and mortality. More needs to be learned about mechanisms that control this process. In particular, the role of chemokine receptors in metastasis remains controversial. Here, using a highly metastatic breast cancer (4T1) model, we demonstrate that lung metastasis is a feature of only a proportion of the tumor cells that express CCR4. Moreover, the primary tumor growing in mammary pads activates remotely the expression of TARC/CCL17 and MDC/CCL22 in the lungs. These chemokines acting through CCR4 attract both tumor and immune cells. However, CCR4 mediated chemotaxis was not sufficient to produce metastasis, as tumor cells in the lung were efficiently eliminated by NK cells. Lung metastasis required CCR4+ Tregs which directly killed NK cells utilizing beta-galactoside-binding protein. Thus, strategies that abrogate any part of this process should improve the outcome through activation of effector cells and prevention of tumor cell migration. We confirm this prediction by killing CCR4+ cells through delivery of TARC-fused toxins or depleting Tregs and preventing lung metastasis. PMID:19567680

  15. Chemokines and immunity

    PubMed Central

    Palomino, Diana Carolina Torres; Marti, Luciana Cavalheiro

    2015-01-01

    Chemokines are a large family of small cytokines and generally have low molecular weight ranging from 7 to 15kDa. Chemokines and their receptors are able to control the migration and residence of all immune cells. Some chemokines are considered pro-inflammatory, and their release can be induced during an immune response at a site of infection, while others are considered homeostatic and are involved in controlling of cells migration during tissue development or maintenance. The physiologic importance of this family of mediators is resulting from their specificity − members of the chemokine family induce recruitment of well-defined leukocyte subsets. There are two major chemokine sub-families based upon cysteine residues position: CXC and CC. As a general rule, members of the CXC chemokines are chemotactic for neutrophils, and CC chemokines are chemotactic for monocytes and sub-set of lymphocytes, although there are some exceptions. This review discusses the potential role of chemokines in inflammation focusing on the two best-characterized chemokines: monocyte chemoattractant protein-1, a CC chemokine, and interleukin-8, a member of the CXC chemokine sub-family. PMID:26466066

  16. Chemokines in cancer.

    PubMed

    Chow, Melvyn T; Luster, Andrew D

    2014-12-01

    Chemokines are chemotactic cytokines that control the migration of cells between tissues and the positioning and interactions of cells within tissue. The chemokine superfamily consists of approximately 50 endogenous chemokine ligands and 20 G protein-coupled seven-transmembrane spanning signaling receptors. Chemokines mediate the host response to cancer by directing the trafficking of leukocytes into the tumor microenvironment. This migratory response is complex and consists of diverse leukocyte subsets with both antitumor and protumor activities. Although chemokines were initially appreciated as important mediators of immune cell migration, we now know that they also play important roles in the biology of nonimmune cells important for tumor growth and progression. Chemokines can directly modulate the growth of tumors by inducing the proliferation of cancer cells and preventing their apoptosis. They also direct tumor cell movement required for metastasis. Chemokines can also indirectly modulate tumor growth through their effects on tumor stromal cells and by inducing the release of growth and angiogenic factors from cells in the tumor microenvironment. In this Masters of Immunology primer, we focus on recent advances in understanding the complex nature of the chemokine system in tumor biology with a focus on how the chemokine system could be used to augment cancer immunotherapeutic strategies to elicit a more robust and long-lasting host antitumor immune response.

  17. Chemokines, chemokine receptors and the gastrointestinal system

    PubMed Central

    Miyazaki, Hiroshi; Takabe, Kazuaki; Yeudall, W Andrew

    2013-01-01

    The biological properties of tumor cells are known to be regulated by a multitude of cytokines and growth factors, which include epidermal growth factor receptor agonists and members of the transforming growth factor β family. Furthermore, the recent explosion of research in the field of chemokine function as mediators of tumor progression has led to the possibility that these small, immunomodulatory proteins also play key roles in carcinogenesis and may, therefore, be potential targets for novel therapeutic approaches. In this review, we will summarize recently reported findings in chemokine biology with a focus on the gastrointestinal tract. PMID:23704819

  18. I-TAC is a dominant chemokine in controlling skin intragraft inflammation via recruiting CXCR3+ cells into the graft.

    PubMed

    Li, Baohua; Xu, Wei; Xu, Lin; Jiang, Zhenggang; Wen, Zhenke; Li, Kang; Xiong, Sidong

    2010-01-01

    Chemokines play a critical role in the acute transplant rejection. In order to provide an overview of the chemokine expression during the course of acute allograft rejection, the intragraft expression profile of 11 chemokines representative of all four chemokine subfamilies was analyzed in a murine skin transplantation model of acute rejection. It was found that RANTES/CCL5, TARC/CCL17 and FKN/CX(3)CL1 were expressed at equivalent levels in iso- and allografts. However, the other eight chemokines expression was up-regulated to some extent in allograft compared with that in isograft. The levels of MIP-1alpha/CCL3, MIP-3alpha/CCL20 and CTACK/CCL27 were progressively increased from early stage (day 3 post-transplantation) to late stage (day 11). Mig/CXCL9, IP-10/CXCL10, I-TAC/CXCL11, CXCL16 and LTN/XCL1 expression was elevated at middle stage (day 7), and peaked at late stage. Among the up-regulated chemokines, I-TAC was the most obviously elevated chemokine. Therefore, the effect of I-TAC on the skin acute allograft rejection was evaluated. Block of I-TAC by the intradermal injection of anti-I-TAC monoclonal antibody (mAb) reduced the number of CXCR3(+) cells in skin allograft and significantly prolonged the skin allograft survival. The mAb treatment did not influence the proliferation of the intragraft infiltrating cells in response to the allogeneic antigens, but significantly decreased the number of the infiltrating cells and consequently lowered the secretion of IFN-gamma and TNF-alpha. These data indicate I-TAC might be a dominant chemokine involved in the intradermal infiltration and I-TAC-targeted intervening strategies would have potential application for the alleviation of acute transplant rejection.

  19. A Blood-Based Screening Tool for Alzheimer's Disease That Spans Serum and Plasma: Findings from TARC and ADNI

    PubMed Central

    Barber, Robert; Huebinger, Ryan; Wilhelmsen, Kirk; Edwards, Melissa; Graff-Radford, Neill; Doody, Rachelle; Diaz-Arrastia, Ramon

    2011-01-01

    Context There is no rapid and cost effective tool that can be implemented as a front-line screening tool for Alzheimer's disease (AD) at the population level. Objective To generate and cross-validate a blood-based screener for AD that yields acceptable accuracy across both serum and plasma. Design, Setting, Participants Analysis of serum biomarker proteins were conducted on 197 Alzheimer's disease (AD) participants and 199 control participants from the Texas Alzheimer's Research Consortium (TARC) with further analysis conducted on plasma proteins from 112 AD and 52 control participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI). The full algorithm was derived from a biomarker risk score, clinical lab (glucose, triglycerides, total cholesterol, homocysteine), and demographic (age, gender, education, APOE*E4 status) data. Major Outcome Measures Alzheimer's disease. Results 11 proteins met our criteria and were utilized for the biomarker risk score. The random forest (RF) biomarker risk score from the TARC serum samples (training set) yielded adequate accuracy in the ADNI plasma sample (training set) (AUC = 0.70, sensitivity (SN) = 0.54 and specificity (SP) = 0.78), which was below that obtained from ADNI cerebral spinal fluid (CSF) analyses (t-tau/Aβ ratio AUC = 0.92). However, the full algorithm yielded excellent accuracy (AUC = 0.88, SN = 0.75, and SP = 0.91). The likelihood ratio of having AD based on a positive test finding (LR+) = 7.03 (SE = 1.17; 95% CI = 4.49–14.47), the likelihood ratio of not having AD based on the algorithm (LR−) = 3.55 (SE = 1.15; 2.22–5.71), and the odds ratio of AD were calculated in the ADNI cohort (OR) = 28.70 (1.55; 95% CI = 11.86–69.47). Conclusions It is possible to create a blood-based screening algorithm that works across both serum and plasma that provides a comparable screening accuracy to that obtained from CSF analyses. PMID:22163278

  20. Chemokines and skin diseases.

    PubMed

    Sugaya, Makoto

    2015-04-01

    Chemokines are small molecules that induce chemotaxis and activation of certain subsets of leukocytes. The expression patterns of chemokines and chemokine receptors are specific to certain organs and cells. Therefore, chemokines are important to elucidate the mechanism of organ-specific human diseases. CCL17 expressed by Langerhans cells, blood endothelial cells, and fibroblasts plays a key role in attracting Th2 cells and tumor cells of adult T-cell leukemia/lymphoma and mycosis fungoides/Sézary syndrome into the skin, developing various Th2-type inflammatory skin diseases as well as cutaneous lymphoma. CCL11 and CCL26 expressed by skin-resident cells, such as fibroblasts, blood endothelial cells, and keratinocytes, induce infiltration of CCR3-expressing cells such as Th2 cells and eosinophils. CCL11 may also serve as an autocrine as well as a paracrine in anaplastic large cell lymphoma. CX3CL1 expressed on blood endothelial cells leads to infiltration of CX3CR1(+) immune cells, such as mast cells, neutrophils, and macrophages, playing important roles in wound healing, tumor immunity, and vasculitis. Biologics targeting chemokines and their receptors are promising strategies for various skin diseases that are resistant to the current therapy.

  1. Chemokines in atherosclerosis: proceedings resumed.

    PubMed

    Zernecke, Alma; Weber, Christian

    2014-04-01

    Chemokines play important roles in atherosclerotic vascular disease. Expressed by not only cells of the vessel wall but also emigrated leukocytes, chemokines were initially discovered to direct leukocytes to sites of inflammation. However, chemokines can also exert multiple functions beyond cell recruitment. Here, we discuss novel and recently emerging aspects of chemokines and their involvement in atherosclerosis. While reviewing newly identified roles of chemokines and their receptors in monocyte and neutrophil recruitment during atherogenesis and atheroregression, we also revisit homeostatic functions of chemokines, including their roles in cell homeostasis and foam cell formation. The functional diversity of chemokines in atherosclerosis warrants a clear-cut mechanistic dissection and stage-specific assessment to better appreciate the full scope of their actions in vascular inflammation and to identify pathways that harbor the potential for a therapeutic targeting of chemokines in atherosclerosis.

  2. Chemokines and Chemokine Receptors in the Development of Lupus Nephritis

    PubMed Central

    2016-01-01

    Lupus nephritis (LN) is a major cause of morbidity and mortality in the patients with systemic lupus erythematosus (SLE), an autoimmune disease with damage to multiple organs. Leukocyte recruitment into the inflamed kidney is a critical step to promote LN progression, and the chemokine/chemokine receptor system is necessary for leukocyte recruitment. In this review, we summarize recent studies on the roles of chemokines and chemokine receptors in the development of LN and discuss the potential and hurdles of developing novel, chemokine-based drugs to treat LN. PMID:27403037

  3. Neutralizing nanobodies targeting diverse chemokines effectively inhibit chemokine function.

    PubMed

    Blanchetot, Christophe; Verzijl, Dennis; Mujić-Delić, Azra; Bosch, Leontien; Rem, Louise; Leurs, Rob; Verrips, C Theo; Saunders, Michael; de Haard, Hans; Smit, Martine J

    2013-08-30

    Chemokine receptors and their ligands play a prominent role in immune regulation but many have also been implicated in inflammatory diseases such as multiple sclerosis, rheumatoid arthritis, allograft rejection after transplantation, and also in cancer metastasis. Most approaches to therapeutically target the chemokine system involve targeting of chemokine receptors with low molecular weight antagonists. Here we describe the selection and characterization of an unprecedented large and diverse panel of neutralizing Nanobodies (single domain camelid antibodies fragment) directed against several chemokines. We show that the Nanobodies directed against CCL2 (MCP-1), CCL5 (RANTES), CXCL11 (I-TAC), and CXCL12 (SDF-1α) bind the chemokines with high affinity (at nanomolar concentration), thereby blocking receptor binding, inhibiting chemokine-induced receptor activation as well as chemotaxis. Together, we show that neutralizing Nanobodies can be selected efficiently for effective and specific therapeutic treatment against a wide range of immune and inflammatory diseases.

  4. Novel antiviral activity of chemokines

    SciTech Connect

    Nakayama, Takashi; Shirane, Jumi; Hieshima, Kunio; Shibano, Michiko; Watanabe, Masayasu; Jin, Zhe; Nagakubo, Daisuke; Saito, Takuya; Shimomura, Yoshikazu; Yoshie, Osamu . E-mail: o.yoshie@med.kindai.ac.jp

    2006-07-05

    Antimicrobial peptides are a diverse family of small, mostly cationic polypeptides that kill bacteria, fungi and even some enveloped viruses, while chemokines are a group of mostly cationic small proteins that induce directed migration of leukocytes through interactions with a group of seven transmembrane G protein-coupled receptors. Recent studies have shown that antimicrobial peptides and chemokines have substantially overlapping functions. Thus, while some antimicrobial peptides are chemotactic for leukocytes, some chemokines can kill a wide range of bacteria and fungi. Here, we examined a possible direct antiviral activity of chemokines against an enveloped virus HSV-1. Among 22 human chemokines examined, chemokines such as MIP-1{alpha}/CCL3, MIP-1{beta}/CCL4 and RANTES/CCL5 showed a significant direct antiviral activity against HSV-1. It is intriguing that these chemokines are mostly known to be highly expressed by effector CD8{sup +} T cells. The chemokines with a significant anti-HSV-1 activity commonly bound to HSV-1 virions via envelope glycoprotein gB. Electron microscopy revealed that the chemokines with a significant anti-HSV-1 activity were commonly capable of generating pores in the envelope of HSV-1. Thus, some chemokines have a significant direct antiviral activity against HSV-1 in vitro and may have a potential role in host defense against HSV-1 as a direct antiviral agent.

  5. Chemokines in cancer related inflammation

    SciTech Connect

    Allavena, Paola; Germano, Giovanni; Marchesi, Federica; Mantovani, Alberto

    2011-03-10

    Chemokines are key players of the cancer-related inflammation. Chemokine ligands and receptors are downstream of genetic events that cause neoplastic transformation and are abundantly expressed in chronic inflammatory conditions which predispose to cancer. Components of the chemokine system affect multiple pathways of tumor progression including: leukocyte recruitment, neo-angiogenesis, tumor cell proliferation and survival, invasion and metastasis. Evidence in pre-clinical and clinical settings suggests that the chemokine system represents a valuable target for the development of innovative therapeutic strategies.

  6. Interactions between Chemokines

    PubMed Central

    Cook, Anna; Hippensteel, Randi; Shimizu, Saori; Nicolai, Jaclyn; Fatatis, Alessandro; Meucci, Olimpia

    2010-01-01

    The soluble form of the chemokine fractalkine/CX3CL1 regulates microglia activation in the central nervous system (CNS), ultimately affecting neuronal survival. This study aims to determine whether CXCL12, another chemokine constitutively expressed in the CNS (known as stromal cell-derived factor 1; SDF-1), regulates cleavage of fractalkine from neurons. To this end, ELISA was used to measure protein levels of soluble fractalkine in the medium of rat neuronal cultures exposed to SDF-1. Gene arrays, quantitative RT-PCR, and Western blot were used to measure overall fractalkine expression in neurons. The data show that the rate of fractalkine shedding in healthy cultures positively correlates with in vitro differentiation and survival. In analogy to non-neuronal cells, metalloproteinases (ADAM10/17) are involved in cleavage of neuronal fractalkine as indicated by studies with pharmacologic inhibitors. Moreover, treatment of the neuronal cultures with SDF-1 stimulates expression of the inducible metalloproteinase ADAM17 and increases soluble fractalkine content in culture medium. The effect of SDF-1 is blocked by an inhibitor of both ADAM10 and -17, but only partially affected by a more specific inhibitor of ADAM10. In addition, SDF-1 also up-regulates expression of the fractalkine gene. Conversely, exposure of neurons to an excitotoxic stimulus (i.e. NMDA) inhibits α-secretase activity and markedly diminishes soluble fractalkine levels, leading to cell death. These results, along with previous findings on the neuroprotective role of both SDF-1 and fractalkine, suggest that this novel interaction between the two chemokines may contribute to in vivo regulation of neuronal survival by modulating microglial neurotoxic properties. PMID:20124406

  7. [Interceptors:--"silent" chemokine receptors].

    PubMed

    Grodecka, Magdalena; Waśniowska, Kazimiera

    2007-01-01

    The physiological effect caused by chemokines is regulated by interactions with a group of rodopsin-like G protein-coupled receptors (GPCRs). These receptors share a number of common features: the polypeptide chain is a 7-transmembrane ?-helix (7 TMD motif) and the region involved in G-protein interaction (the DRYLAIV sequence) is located in the second transmembrane loop. So far, 19 chemokine receptors have been identified. Three of them (Duffy glycoprotein, D6, and CCX-CKR proteins), although structurally related to other GPCRs, lack the ability of G-protein signal transduction. Instead, they efficiently internalize their cognate ligands, regulating chemokine levels in various body compartments. These three proteins are suggested to form a distinct chemokine receptor family, designated "interceptors" or "silent" chemokine receptors.

  8. Structural perspectives on antimicrobial chemokines

    PubMed Central

    Nguyen, Leonard T.; Vogel, Hans J.

    2012-01-01

    Chemokines are best known as signaling proteins in the immune system. Recently however, a large number of human chemokines have been shown to exert direct antimicrobial activity. This moonlighting activity appears to be related to the net high positive charge of these immune signaling proteins. Chemokines can be divided into distinct structural elements and some of these have been studied as isolated peptide fragments that can have their own antimicrobial activity. Such peptides often encompass the α-helical region found at the C-terminal end of the parent chemokines, which, similar to other antimicrobial peptides, adopt a well-defined membrane-bound amphipathic structure. Because of their relatively small size, intact chemokines can be studied effectively by NMR spectroscopy to examine their structures in solution. In addition, NMR relaxation experiments of intact chemokines can provide detailed information about the intrinsic dynamic behavior; such analyses have helped for example to understand the activity of TC-1, an antimicrobial variant of CXCL7/NAP-2. With chemokine dimerization and oligomerization influencing their functional properties, the use of NMR diffusion experiments can provide information about monomer-dimer equilibria in solution. Furthermore, NMR chemical shift perturbation experiments can be used to map out the interface between self-associating subunits. Moreover, the unusual case of XCL1/lymphotactin presents a chemokine that can interconvert between two distinct folds in solution, both of which have been elucidated. Finally, recent advances have allowed for the determination of the structures of chemokines in complex with glycosaminoglycans, a process that could interfere with their antimicrobial activity. Taken together, these studies highlight several different structural facets that contribute to the way in which chemokines exert their direct microbicidal actions. PMID:23293636

  9. Down-regulation of E-cadherin in human bronchial epithelial cells leads to epidermal growth factor receptor-dependent Th2 cell-promoting activity.

    PubMed

    Heijink, Irene H; Kies, P Marcel; Kauffman, Henk F; Postma, Dirkje S; van Oosterhout, Antoon J M; Vellenga, Edo

    2007-06-15

    Airway epithelial cells are well-known producers of thymus- and activation-regulated chemokine (TARC), a Th2 cell-attracting chemokine that may play an important role in the development of allergic airway inflammation. However, the mechanism responsible for up-regulation of TARC in allergy is still unknown. In the asthmatic airways, loss of expression of the cell-cell contact molecule E-cadherin and reduced epithelial barrier function has been observed, which may be the result of an inadequate repair response. Because E-cadherin also suppressed multiple signaling pathways, we studied whether disruption of E-cadherin-mediated cell contact may contribute to increased proallergic activity of epithelial cells, e.g., production of the chemokine TARC. We down-regulated E-cadherin in bronchial epithelial cells by small interference RNA and studied effects on electrical resistance, signaling pathways, and TARC expression (by electric cell-substrate impedance sensing, immunodetection, immunofluorescent staining, and real-time PCR). Small interference RNA silencing of E-cadherin resulted in loss of E-cadherin-mediated junctions, enhanced phosphorylation of epidermal growth factor receptor (EGFR), and the downstream targets MEK/ERK-1/2 and p38 MAPK, finally resulting in up-regulation of TARC as well as thymic stromal lymphopoietin expression. The use of specific inhibitors revealed that the effect on TARC is mediated by EGFR-dependent activation of the MAPK pathways. In contrast to TARC, expression of the Th1/Treg cell-attracting chemokine RANTES was unaffected by E-cadherin down-regulation. In summary, we show that loss of E-cadherin-mediated epithelial cell-cell contact by damaging stimuli, e.g., allergens, may result in reduced suppression of EGFR-dependent signaling pathways and subsequent induction of Th2 cell-attracting molecule TARC. Thus, disruption of intercellular epithelial contacts may specifically promote Th2 cell recruitment in allergic asthma.

  10. Chemokines and BPH/LUTS.

    PubMed

    Macoska, Jill A

    2011-01-01

    A wealth of published studies indicate that a variety of chemokines are actively secreted by the prostatic microenvironment consequent to disruptions in normal tissue homeostasis due to the aging process or inflammatory responses. The accumulation of senescent stromal fibroblasts, and, possibly, epithelial cells, may serve as potential driving forces behind chemokine secretion in the aging and enlarged human prostate. Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) and histological inflammation may also potentially serve as rich sources of chemokine secretion in the prostate. Once bound to their cognate receptors, chemokines can stimulate powerful pro-proliferation signal transduction pathways and thus function as potent growth factors in the development and progression of Benign Prostatic Hyperplasia (BPH) and lower urinary tract symptoms (LUTS). These functions have been amply demonstrated experimentally and particularly point to robust Mitogen Activated Protein Kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling, as well as global transcriptional responses, which mediate chemokine-stimulated cellular proliferative responses. A small body of literature also suggests that chemokine-mediated angiogenesis may comprise a contributing factor to BPH/LUTS development and progression. Thus, the observed low-level secretion of multiple chemokines within the aging prostatic microenvironment may promote a concomitant low-level, but cumulative, over-proliferation of both stromal fibroblastic and epithelial cell types associated with increased prostatic volume. Though the accumulated evidence is far from complete and suffers from some rather extensive gaps in knowledge, it argues favorably for the conclusion that chemokines can, and likely do, promote prostatic enlargement and the associated lower urinary tract symptoms, and justifies further investigations examining chemokines as potential therapeutic targets to delay or ablate BPH/LUTS initiation and

  11. Chemokines: novel targets for breast cancer metastasis

    PubMed Central

    Ali, Simi; Lazennec, Gwendal

    2007-01-01

    Recent studies have highlighted the possible involvement of chemokines and their receptors in breast cancer progression and metastasis. Chemokines and their receptors constitute a superfamily of signalling factors whose prognosis value in breast cancer progression remains unclear. We will examine here the expression pattern of chemokines and their receptors in mammary gland physiology and carcinogenesis. The nature of the cells producing chemokines or harboring chemokine receptors appears to be crucial in certain conditions for example, the infiltration of the primary tumor by leukocytes and angiogenesis. In addition, chemokines, their receptors and the interaction with glycosaminoglycan (GAGs) are key players in the homing of cancer cells to distant metastasis sites. Several lines of evidence, including in vitro and in vivo models, suggest that the mechanism of action of chemokines in cancer development involves the modulation of proliferation, apoptosis, invasion, leukocyte recruitment or angiogenesis. Furthermore, we will discuss the regulation of chemokine network in tumor neovascularity by decoy receptors. The reasons accounting for the deregulation of chemokines and chemokine receptors expression in breast cancer are certainly crucial for the comprehension of chemokine role in breast cancer and are in several cases linked to estrogen receptor status. The targeting of chemokines and chemokine receptors by antibodies, small molecule antagonists, viral chemokine binding proteins and heparins appears as promising tracks to develop therapeutic strategies. Thus there is significant interest in developing strategies to antagonize the chemokine function, and an opportunity to interfere with metastasis, the leading cause of death in most patients. PMID:17717637

  12. Chemokine Oligomerization in Cell Signaling and Migration

    PubMed Central

    Wang, Xu; Sharp, Joshua S.; Handel, Tracy M.; Prestegard, James H.

    2014-01-01

    Chemokines are small proteins best known for their role in controlling the migration of diverse cells, particularly leukocytes. Upon binding to their G-protein-coupled receptors on the leukocytes, chemokines stimulate the signaling events that cause cytoskeletal rearrangements involved in cell movement, and migration of the cells along chemokine gradients. Depending on the cell type, chemokines also induce many other types of cellular responses including those related to defense mechanisms, cell proliferation, survival, and development. Historically, most research efforts have focused on the interaction of chemokines with their receptors, where monomeric forms of the ligands are the functionally relevant state. More recently, however, the importance of chemokine interactions with cell surface glycosaminoglycans has come to light, and in most cases appears to involve oligomeric chemokine structures. This review summarizes existing knowledge relating to the structure and function of chemokine oligomers, and emerging methodology for determining structures of complex chemokine assemblies in the future. PMID:23663982

  13. Chemokine signaling: rules of attraction.

    PubMed

    Schier, Alexander F

    2003-03-04

    The chemokine SDF-1 and its receptor CXCR4 control cell migration in the immune and nervous systems. Recent studies in zebrafish have shown that SDF-1 and CXCR4 also guide the migration of germ cells and sensory organs of the lateral line.

  14. Citrullinated Chemokines in Rheumatoid Arthritis

    DTIC Science & Technology

    2015-10-01

    Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send...inflammatory properties in RA pathogenesis. 15. SUBJECT TERMS Citrullination, chemokines, chemotaxis, rheumatoid arthritis, immunology 16. SECURITY

  15. Chemokine RANTES in atopic dermatitis.

    PubMed

    Glück, J; Rogala, B

    1999-01-01

    Chemokines play a key role in inflammatory diseases. The aim of this study was to estimate chemokine RANTES in the sera of patients with atopic dermatitis (AD) and to analyze the correlation between RANTES serum level and the immunological and clinical parameters of the disease. Serum levels of RANTES (ELISA; R&D Systems), total IgE and specific IgE (FEIA; Pharmacia CAP System) were estimated in 24 patients with AD, 28 patients with pollinosis (PL) and 22 healthy nonatopic subjects (HC). The division of the AD group into a pure AD (pAD) subgroup, without a coexisting respiratory allergy, and a subgroup of patients with AD and a respiratory allergy (AD+AO) was done according to Wütrich. Levels of RANTES were higher in the AD group than in the HC group and the PL group. RANTES levels did not differ among subgroups with various clinical scores and between the pAD and AD+AO subgroups. There were no correlations between levels of RANTES and total IgE. Significant positive correlations between serum levels of RANTES and Dermatophagoides farinae and cat dander-specific IgE were found in the AD group. We conclude that the serum level of chemokine RANTES differs patients with AD from patients with PL. The increase of RANTES concentration in the serum of patients with AD depends neither on a clinical picture nor an IgE system.

  16. Chemokine gene variants in schizophrenia.

    PubMed

    Dasdemir, Selcuk; Kucukali, Cem Ismail; Bireller, Elif Sinem; Tuzun, Erdem; Cakmakoglu, Bedia

    2016-08-01

    Background Chemokines are known to play a major role in driving inflammation and immune responses in several neuroinflammatory diseases, including multiple sclerosis, Alzheimer's disease and Parkinson's disease. Inflammation has also been implicated in the pathogenesis of schizophrenia. Aim We aimed to investigate a potential link between chemokines and schizophrenia and analyze the role of MCP-1-A2518G, SDF-1-3'A, CCR5-delta32, CCR5-A55029G, CXCR4-C138T and CCR2-V64I gene polymorphisms in the Turkish population. Methods Genotyping was conducted by PCR-RFLP based on 140 patients and 123 unrelated healthy controls to show the relation between chemokine gene variants and schizophrenia risk. Results Frequencies of CCR5-A55029G A genotypes and CCR5-A55029G AG genotypes were found higher in patients than the controls and even also CCR2-V64I WT: CCR5-A55029G A and CCR2-V64I 64I: CCR5-A55029G A haplotypes significantly associated according to Bonferroni correction. However, no significant association was found for any of the other polymorphisms with the risk of schizophrenia. Conclusions Our findings suggest that CCR5-A55029G polymorphisms and CCR2-V64I WT: CCR5-A55029G A and CCR2-V64I 64I: CCR5-A55029G A haplotypes might have association with schizophrenia pathogenesis.

  17. Targeting the chemokines in cardiac repair.

    PubMed

    Cavalera, Michele; Frangogiannis, Nikolaos G

    2014-01-01

    Chemokines are a family of chemotactic cytokines that play an essential role in leukocyte trafficking. Upregulation of both CC and CXC chemokines is a hallmark of the inflammatory and reparative response following myocardial infarction. Release of danger signals from dying cells and damaged extracellular matrix activates innate immune pathways that stimulate chemokine synthesis. Cytokineand chemokine-driven adhesive interactions between endothelial cells and leukocytes mediate extravasation of immune cells into the infarct. CXC chemokines (such as interleukin-8) are bound to glycosaminoglycans on the endothelial surface and activate captured neutrophils, inducing expression of integrins. CC chemokines (such as monocyte chemoattractant protein (MCP)-1) mediate recruitment of proinflammatory and phagocytotic mononuclear cells into the infarct. CC Chemokines may also regulate late infiltration of the healing infarct with inhibitory leukocytes that suppress inflammation and restrain the post-infarction immune response. Non-hematopoietic cells are also targeted by chemokines; in healing infarcts, the CXC chemokine Interferon-γ inducible Protein (IP)-10 exerts antifibrotic actions, inhibiting fibroblast migration. Another member of the CXC subfamily, Stromal cell-derived Factor (SDF)-1, may protect the infarcted heart by activating pro-survival signaling in cardiomyocytes, while exerting angiogenic actions through chemotaxis of endothelial progenitors. Several members of the chemokine family may be promising therapeutic targets to attenuate adverse remodeling in patients with myocardial infarction.

  18. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists.

    PubMed

    Ajram, Laura; Begg, Malcolm; Slack, Robert; Cryan, Jenni; Hall, David; Hodgson, Simon; Ford, Alison; Barnes, Ashley; Swieboda, Dawid; Mousnier, Aurelie; Solari, Roberto

    2014-04-15

    The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in internalization, and if antagonists binding to the CCR4 receptor could themselves evoke receptor internalization. CCL22 binding coupled CCR4 efficiently to β-arrestin and stimulated GTPγS binding however CCL17 did not couple to β-arrestin and only partially stimulated GTPγS binding. CCL22 potently induced internalization of almost all cell surface CCR4, while CCL17 showed only weak effects. We describe four small molecule antagonists that were demonstrated to bind to two distinct allosteric sites on the CCR4 receptor, and while both classes inhibited agonist ligand binding and chemotaxis, one of the allosteric sites also evoked receptor internalization. Furthermore, we also characterize an N-terminally truncated version of CCL22 which acts as a competitive antagonist at the orthosteric site, and surprisingly also evokes receptor internalization without demonstrating any agonist activity. Collectively this study demonstrates that orthosteric and allosteric antagonists of the CCR4 receptor are capable of evoking receptor internalization, providing a novel strategy for drug discovery against this class of target.

  19. Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies

    PubMed Central

    Kufareva, Irina; Salanga, Catherina L.; Handel, Tracy M.

    2015-01-01

    The control of cell migration by chemokines involves interactions with two types of receptors: seven transmembrane chemokine-type G protein-coupled receptors and cell surface or extracellular matrix associated glycosaminoglycans. Coordinated interaction of chemokines with both types of receptors is required for directional migration of cells in numerous physiological and pathological processes. Accumulated structural information, culminating most recently in the structure of a chemokine receptor in complex with a chemokine, has led to a view where chemokine oligomers bind to glycosaminoglycans through epitopes formed when chemokine subunits come together, while chemokine monomers bind to receptors in a pseudo two-step mechanism of receptor activation. Exploitation of this structural knowledge has and will continue to provide important information for therapeutic strategies, as described in this review. PMID:25708536

  20. New chemokine targets for asthma therapy.

    PubMed

    Garcia, Gilles; Godot, Véronique; Humbert, Marc

    2005-03-01

    Chemokines and chemokine receptors are part of a complex network of molecules that play a key role in leukocyte migration and activation. The chemokine family role is crucial in the immune system, orchestrating innate and acquired immune responses, but also in allergic inflammation. A subset of chemokines, including CCL11, CCL24, CCL26, CCL7, CCL13, CCL17, and CCL22 is highly expressed by the three main cell types involved in allergic inflammation: eosinophils, basophils, and Th2 lymphocytes. In vitro and in vivo experimental studies in murine models of asthma as well as evidence from patients with asthma confirm the role of these chemokines and their receptors, including CCR3, CCR4, and CCR8, establishing a subset of chemokine/chemokine receptor that is potentially important in allergic inflammation. Recent data support the concept that interfering with chemokines or chemokine receptors represents a new approach in allergy therapy. However, even if some of them have been shown to be effective in animal models, none is as yet used in human patients.

  1. Differential structural remodelling of heparan sulfate by chemokines: the role of chemokine oligomerization

    PubMed Central

    Migliorini, Elisa; Salanga, Catherina L.; Thakar, Dhruv

    2017-01-01

    Chemokines control the migration of cells in normal physiological processes and in the context of disease such as inflammation, autoimmunity and cancer. Two major interactions are involved: (i) binding of chemokines to chemokine receptors, which activates the cellular machinery required for movement; and (ii) binding of chemokines to glycosaminoglycans (GAGs), which facilitates the organization of chemokines into haptotactic gradients that direct cell movement. Chemokines can bind and activate their receptors as monomers; however, the ability to oligomerize is critical for the function of many chemokines in vivo. Chemokine oligomerization is thought to enhance their affinity for GAGs, and here we show that it significantly affects the ability of chemokines to accumulate on and be retained by heparan sulfate (HS). We also demonstrate that several chemokines differentially rigidify and cross-link HS, thereby affecting HS rigidity and mobility, and that HS cross-linking is significantly enhanced by chemokine oligomerization. These findings suggest that chemokine–GAG interactions may play more diverse biological roles than the traditional paradigms of physical immobilization and establishment of chemokine gradients; we hypothesize that they may promote receptor-independent events such as physical re-organization of the endothelial glycocalyx and extracellular matrix, as well as signalling through proteoglycans to facilitate leukocyte adhesion and transmigration. PMID:28123055

  2. Tyrosine sulfation influences the chemokine binding selectivity of peptides derived from chemokine receptor CCR3.

    PubMed

    Zhu, John Z; Millard, Christopher J; Ludeman, Justin P; Simpson, Levi S; Clayton, Daniel J; Payne, Richard J; Widlanski, Theodore S; Stone, Martin J

    2011-03-08

    The interactions of chemokines with their G protein-coupled receptors play critical roles in the control of leukocyte trafficking in normal homeostasis and in inflammatory responses. Tyrosine sulfation is a common post-translational modification in the amino-terminal regions of chemokine receptors. However, tyrosine sulfation of chemokine receptors is commonly incomplete or heterogeneous. To investigate the possibility that differential sulfation of two adjacent tyrosine residues could bias the responses of chemokine receptor CCR3 to different chemokines, we have studied the binding of three chemokines (eotaxin-1/CCL11, eotaxin-2/CCL24, and eotaxin-3/CCL26) to an N-terminal CCR3-derived peptide in each of its four possible sulfation states. Whereas the nonsulfated peptide binds to the three chemokines with approximately equal affinity, sulfation of Tyr-16 gives rise to 9-16-fold selectivity for eotaxin-1 over the other two chemokines. Subsequent sulfation of Tyr-17 contributes additively to the affinity for eotaxin-1 and eotaxin-2 but cooperatively to the affinity for eotaxin-3. The doubly sulfated peptide selectively binds to both eotaxin-1 and eotaxin-3 approximately 10-fold more tightly than to eotaxin-2. Nuclear magnetic resonance chemical shift mapping indicates that these variations in affinity probably result from only subtle differences in the chemokine surfaces interacting with these receptor peptides. These data support the proposal that variations in sulfation states or levels may regulate the responsiveness of chemokine receptors to their cognate chemokines.

  3. The Anti-inflammatory Protein TSG-6 Regulates Chemokine Function by Inhibiting Chemokine/Glycosaminoglycan Interactions*

    PubMed Central

    Dyer, Douglas P.; Salanga, Catherina L.; Johns, Scott C.; Valdambrini, Elena; Fuster, Mark M.; Milner, Caroline M.; Day, Anthony J.; Handel, Tracy M.

    2016-01-01

    TNF-stimulated gene-6 (TSG-6) is a multifunctional protein secreted in response to pro-inflammatory stimuli by a wide range of cells, including neutrophils, monocytes, and endothelial cells. It has been shown to mediate anti-inflammatory and protective effects when administered in disease models, in part, by reducing neutrophil infiltration. Human TSG-6 inhibits neutrophil migration by binding CXCL8 through its Link module (Link_TSG6) and interfering with the presentation of CXCL8 on cell-surface glycosaminoglycans (GAGs), an interaction that is vital for the function of many chemokines. TSG-6 was also found to interact with chemokines CXCL11 and CCL5, suggesting the possibility that it may function as a broad specificity chemokine-binding protein, functionally similar to those encoded by viruses. This study was therefore undertaken to explore the ability of TSG-6 to regulate the function of other chemokines. Herein, we demonstrate that Link_TSG6 binds chemokines from both the CXC and CC families, including CXCL4, CXCL12, CCL2, CCL5, CCL7, CCL19, CCL21, and CCL27. We also show that the Link_TSG6-binding sites on chemokines overlap with chemokine GAG-binding sites, and that the affinities of Link_TSG6 for these chemokines (KD values 1–85 nm) broadly correlate with chemokine-GAG affinities. Link_TSG6 also inhibits chemokine presentation on endothelial cells not only through a direct interaction with chemokines but also by binding and therefore masking the availability of GAGs. Along with previous work, these findings suggest that TSG-6 functions as a pluripotent regulator of chemokines by modulating chemokine/GAG interactions, which may be a major mechanism by which TSG-6 produces its anti-inflammatory effects in vivo. PMID:27044744

  4. Neuroinflammation in Alzheimer’s disease: chemokines produced by astrocytes and chemokine receptors

    PubMed Central

    Liu, Chang; Cui, Guohong; Zhu, Meiping; Kang, Xiangping; Guo, Haidong

    2014-01-01

    Chemokines secreted by astrocytes play multiple roles in the pathology of Alzheimer’s disease, a chronic inflammation disorder of central nervous system. The level of chemokines in serum, cerebrospinal fluid and brain tissue and their receptors both significantly changed in patients with Alzheimer’s disease. In this review, we briefly summarized the involvement of astrocytes and chemokines in Alzheimer’s disease, and the role of chemokine/chemokine receptors in the occurrence and development of Alzheimer’s disease. Clarification of the involvement of chemokines and their receptors, such as MCP-1/CCR2, fractalkine/CX3CR1, SDF-1α/CXCR4, MIP-1α/CCR5, IP-10/CXCR3, IL-8/CXCR1, CXCR2, and RANTES/CCR1, CCR3, CCR5, will provide a new strategy and more specific targets for the treatment of Alzheimer’s disease. PMID:25674199

  5. Is secondary lymphoid-organ chemokine (SLC/CCL21) much more than a constitutive chemokine?

    PubMed

    Serra, H M; Baena-Cagnani, C E; Eberhard, Y

    2004-11-01

    Chemokines are a superfamily of small cytokines with activities ranging from leukocyte traffick to hematopoiesis, angiogenesis, and tissue organogenesis. Secondary lymphoid-organ chemokine (SLC/CCL21) was originally reported as a chemokine constitutively expressed by stromal cells and high endothelial venules in secondary lymphoid tissues and endothelium of afferent lymphatics, directing CCR7+ cells. More recently, others and we have demonstrated that SLC/CCL21 is up-regulated in different skin inflammatory conditions. Thereafter, this molecule is much more than a constitutive chemokine, which could play a role in effector and regulatory immune functions.

  6. Neuronal Chemokines: Versatile Messengers In Central Nervous System Cell Interaction

    PubMed Central

    de Haas, A. H.; van Weering, H. R. J.; de Jong, E. K.; Boddeke, H. W. G. M.

    2007-01-01

    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemokines are generally found under both physiological and pathological conditions. Whereas many reports describe chemokine expression in astrocytes and microglia and their role in the migration of leukocytes into the CNS, only few studies describe chemokine expression in neurons. Nevertheless, the expression of neuronal chemokines and the corresponding chemokine receptors in CNS cells under physiological and pathological conditions indicates that neuronal chemokines contribute to CNS cell interaction. In this study, we review recent studies describing neuronal chemokine expression and discuss potential roles of neuronal chemokines in neuron–astrocyte, neuron–microglia, and neuron–neuron interaction. PMID:17952658

  7. Development of operational models of receptor activation including constitutive receptor activity and their use to determine the efficacy of the chemokine CCL17 at the CC chemokine receptor CCR4.

    PubMed

    Slack, R J; Hall, D A

    2012-07-01

    BACKGROUND AND PURPOSE The operational model provides a key conceptual framework for the analysis of pharmacological data. However, this model does not include constitutive receptor activity, a frequent phenomenon in modern pharmacology, particularly in recombinant systems. Here, we developed extensions of the operational model which include constitutive activity and applied them to effects of agonists at the chemokine receptor CCR4. EXPERIMENTAL APPROACH The effects of agonists of CCR4 on [(35) S]GTPγS binding to recombinant cell membranes and on the filamentous (F-) actin content of human CD4(+) CCR4(+) T cells were determined. The basal [(35) S]GTPγS binding was changed by varying the GDP concentration whilst the basal F-actin contents of the higher expressing T cell populations were elevated, suggesting constitutive activity of CCR4. Both sets of data were analysed using the mathematical models. RESULTS The affinity of CCL17 (also known as TARC) derived from analysis of the T cell data (pK(a) = 9.61 ± 0.17) was consistent with radioligand binding experiments (9.50 ± 0.11) while that from the [(35) S]GTPγS binding experiments was lower (8.27 ± 0.09). Its intrinsic efficacy differed between the two systems (110 in T cells vs. 11). CONCLUSIONS AND IMPLICATIONS The presence of constitutive receptor activity allows the absolute intrinsic efficacy of agonists to be determined without a contribution from the signal transduction system. Intrinsic efficacy estimated in this way is consistent with Furchgott's definition of this property. CCL17 may have a higher intrinsic efficacy at CCR4 in human T cells than that expressed recombinantly in CHO cells.

  8. Borrelia burgdorferi induces chemokines in human monocytes.

    PubMed Central

    Sprenger, H; Krause, A; Kaufmann, A; Priem, S; Fabian, D; Burmester, G R; Gemsa, D; Rittig, M G

    1997-01-01

    Lyme disease is clinically and histologically characterized by strong inflammatory reactions that contrast the paucity of spirochetes at lesional sites, indicating that borreliae induce mechanisms that amplify the inflammatory response. To reveal the underlying mechanisms of chemoattraction and activation of responding leukocytes, we investigated the induction of chemokines in human monocytes exposed to Borrelia burgdorferi by a dose-response and kinetic analysis. Lipopolysaccharide (LPS) derived from Escherichia coli was used as a positive control stimulus. The release of the CXC chemokines interleukin-8 (IL-8) and GRO-alpha and the CC chemokines MIP-1alpha, MCP-1, and RANTES was determined by specific enzyme-linked immunosorbent assays, and the corresponding gene expression patterns were determined by Northern blot analysis. The results showed a rapid and strong borrelia-inducible gene expression which was followed by the release of chemokines with peak levels after 12 to 16 h. Spirochetes and LPS were comparably effective in stimulating IL-8, GRO-alpha, MCP-1, and RANTES expression, whereas MIP-1alpha production preceded and exceeded chemokine levels induced by LPS. Unlike other bacteria, the spirochetes themselves did not bear or release factors with intrinsic chemotactic activity for monocytes or neutrophils. Thus, B. burgdorferi appears to be a strong inducer of chemokines which may, by the attraction and activation of phagocytic leukocytes, significantly contribute to inflammation and tissue damage observed in Lyme disease. PMID:9353009

  9. Dysregulated Chemokine Receptor Expression and Chemokine-Mediated Cell Trafficking in Pediatric Patients with ESRD

    PubMed Central

    Sherry, Barbara; Dai, Wei Wei; Lesser, Martin L.; Trachtman, Howard

    2008-01-01

    Background and objectives: Children and adolescents with ESRD on dialysis are susceptible to serious bacterial infections (SBI). Chemokines and chemokine receptors play a critical role in modulating macrophage and neutrophil function. This study examined the hypothesis that expression and/or function of these molecules is dysregulated in patients with ESRD, contributing to leukocyte dysfunction. Design setting, participants, & measurements: Pediatric patients, age 6 mo to 18 yr, with ESRD treated with either hemodialysis or peritoneal dialysis were enrolled in this prospective, nontherapeutic study. Blood was collected for plasma chemokine levels, chemokine receptor profiling by flow cytometry, and functional chemotaxis studies on neutrophils and mononuclear cells. Results: ESRD in children was associated with reduced expression of the chemokine receptors CXCR1 and chemokine (C-C motif) receptor 2 (CCR2) on circulating neutrophils and monocytes, respectively. When ESRD patients were divided into two subgroups, those who were infection-free and those who had three or more SBI in the preceding year, the differences in chemokine receptor expression were statistically significant compared with control subjects only in those with recurrent infection. In addition to the effects of ESRD on baseline chemokine receptor expression, the hemodialysis procedure itself acutely lowered neutrophil CXCR1 and monocyte CCR2 expression. Furthermore, neutrophil and monocyte responsiveness to chemokine-mediated trafficking signals was impaired in all ESRD patients studied. This abnormality was independent of the level of chemokine receptor expression on the leukocytes. Conclusions: The data presented in this study suggest that chemokine receptor dysregulation contributes to leukocyte dysfunction in patients with ESRD. This alteration is especially prominent in ESRD patients with recurrent infection. PMID:18235145

  10. Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology.

    PubMed

    Ransohoff, Richard M

    2009-11-20

    There are several molecular entities common to the immune and nervous systems. Salient among them are the chemokines and their receptors, which play remarkably varied and potent roles in immunobiology and neurobiology. This review limns several illustrative examples and presents general principles of chemokine action that are manifest in both systems. These include the following: (1) chemokines tend equally to arrest cells and to make them move, in the process of positioning target cells with spatiotemporal precision; (2) signaling and nonsignaling receptors collaborate to adjust the chemokine environment for maximal efficacy; and (3) expression of a single chemokine receptor on circulating blood cells and parenchymal cells is often used to coordinate complex tissue responses. The challenge is to integrate knowledge of the roles of key receptors (as well as their ligands) into a coherent account of events during pathologic processes, in order to guide therapeutic development.

  11. Significance of chemokine and chemokine receptors in head and neck squamous cell carcinoma: A critical review.

    PubMed

    da Silva, Janine Mayra; Soave, Danilo Figueiredo; Moreira Dos Santos, Tálita Pollyanna; Batista, Aline Carvalho; Russo, Remo Castro; Teixeira, Mauro Martins; da Silva, Tarcília Aparecida

    2016-05-01

    Chemokines are small chemotactic proteins that coordinate circulation of immune/inflammatory cells throughout body compartments. Because of this property chemokines and their cell surface receptors are implicated in several physiological and pathological conditions, including cancer. These molecules are expressed by neoplastic or stromal cells and have effects at tumor primary site (e.g. stimulating angiogenesis and tumor cells motility) and lymph nodes (creating a gradient to direct migration of neoplastic cells). In this article we review the current knowledge about the function(s) of chemokines and receptors in squamous cell carcinoma from the oral cavity and head and neck region. Accumulating evidence suggests some chemokine(s) and receptor(s) as potential targets in adjuvant therapies for these malignancies.

  12. Cysteine Cathepsins Activate ELR Chemokines and Inactivate Non-ELR Chemokines.

    PubMed

    Repnik, Urska; Starr, Amanda E; Overall, Christopher M; Turk, Boris

    2015-05-29

    Cysteine cathepsins are primarily lysosomal proteases involved in general protein turnover, but they also have specific proteolytic functions in antigen presentation and bone remodeling. Cathepsins are most stable at acidic pH, although growing evidence indicates that they have physiologically relevant activity also at neutral pH. Post-translational proteolytic processing of mature chemokines is a key, yet underappreciated, level of chemokine regulation. Although the role of selected serine proteases and matrix metalloproteases in chemokine processing has long been known, little has been reported about the role of cysteine cathepsins. Here we evaluated cleavage of CXC ELR (CXCL1, -2, -3, -5, and -8) and non-ELR (CXCL9-12) chemokines by cysteine cathepsins B, K, L, and S at neutral pH by high resolution Tris-Tricine SDS-PAGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Whereas cathepsin B cleaved chemokines especially in the C-terminal region, cathepsins K, L, and S cleaved chemokines at the N terminus with glycosaminoglycans modulating cathepsin processing of chemokines. The functional consequences of the cleavages were determined by Ca(2+) mobilization and chemotaxis assays. We show that cysteine cathepsins inactivate and in some cases degrade non-ELR CXC chemokines CXCL9-12. In contrast, cathepsins specifically process ELR CXC chemokines CXCL1, -2, -3, -5, and -8 N-terminally to the ELR motif, thereby generating agonist forms. This study suggests that cysteine cathepsins regulate chemokine activity and thereby leukocyte recruitment during protective or pathological inflammation.

  13. Quercetin Blocks Airway Epithelial Cell Chemokine Expression

    PubMed Central

    Nanua, Suparna; Zick, Suzanna M.; Andrade, Juan E.; Sajjan, Umadevi S.; Burgess, John R.; Lukacs, Nicholas W.; Hershenson, Marc B.

    2006-01-01

    Quercetin (3,3′,4′,5,7-pentahydroxyflavone), a dietary flavonoid, is an inhibitor of phosphatidylinositol (PI) 3-kinase and potent antioxidant. We hypothesized that quercetin blocks airway epithelial cell chemokine expression via PI 3-kinase–dependent mechanisms. Pretreatment with quercetin and the PI 3–kinase inhibitor LY294002 each reduced TNF-α–induced IL-8 and monocyte chemoattractant protein (MCP)-1 (also called CCL2) expression in cultured human airway epithelial cells. Quercetin also inhibited TNF-α–induced PI 3-kinase activity, Akt phosphorylation, intracellular H2O2 production, NF-κB transactivation, IL-8 promoter activity, and steady-state mRNA levels, consistent with the notion that quercetin inhibits chemokine expression by attenuating NF-κB transactivation via a PI 3-kinase/Akt-dependent pathway. Quercetin also reduced TNF-α–induced chemokine secretion in the presence of the transcriptional inhibitor actinomycin D, while inducing phosphorylation of eukaryotic translation initiation factor (eIF)-2α, suggesting that quercetin attenuates chemokine expression by post-transcriptional as well as transcriptional mechanisms. Finally, we tested the effects of quercetin in cockroach antigen–sensitized and –challenged mice. These mice show MCP-1–dependent airways hyperresponsiveness and inflammation. Quercetin significantly reduced lung MCP-1 and methacholine responsiveness. We conclude that quercetin blocks airway cell chemokine expression via transcriptional and post-transcriptional pathways. PMID:16794257

  14. Potential Role of Chemokines in Fracture Repair

    PubMed Central

    Edderkaoui, Bouchra

    2017-01-01

    Chemokines are a family of small cytokines that share a typical key structure that is stabilized by disulfide bonds between the cysteine residues at the NH2-terminal of the protein, and they are secreted by a great variety of cells in several different conditions. Their function is directly dependent on their interactions with their receptors. Chemokines are involved in cell maturation and differentiation, infection, autoimmunity, cancer, and, in general, in any situation where immune components are involved. However, their role in postfracture inflammation and fracture healing is not yet well established. In this article, we will discuss the response of chemokines to bone fracture and their potential roles in postfracture inflammation and healing based on data from our studies and from other previously published studies. PMID:28303118

  15. Molecular piracy of chemokine receptors by herpesviruses.

    PubMed

    Murphy, P M

    1994-01-01

    To succeed as a biological entity, viruses must exploit normal cellular functions and elude the host immune system; they often do so by molecular mimicry. One way that mimicry may occur is when viruses copy and modify host genes. The best studied examples of this are the oncogenes of RNA retroviruses, but a growing number of examples are also known for DNA viruses. So far they all come from just two groups of DNA viruses, the herpesviruses and poxviruses, and the majority of examples are for genes whose products regulate immune responses, such as cytokines, cytokine receptors, and complement control proteins. This review will focus on human and herpesvirus receptors for chemokines, a family of leukocyte chemoattractant and activating factors that are thought to be important mediators of inflammation. Although the biological roles of the viral chemokine receptor homologues are currently unknown, their connection to specific sets of chemokines has suggested a number of possible functions.

  16. Dysregulation of Chemokine/Chemokine Receptor Axes and NK Cell Tissue Localization during Diseases.

    PubMed

    Bernardini, Giovanni; Antonangeli, Fabrizio; Bonanni, Valentina; Santoni, Angela

    2016-01-01

    Chemokines are small chemotactic molecules that play key roles in physiological and pathological conditions. Upon signaling via their specific receptors, chemokines regulate tissue mobilization and trafficking of a wide array of immune cells, including natural killer (NK) cells. Current research is focused on analyzing changes in chemokine/chemokine receptor expression during various diseases to interfere with pathological trafficking of cells or to recruit selected cell types to specific tissues. NK cells are a heterogeneous lymphocyte population comprising several subsets endowed with distinct functional properties and mainly representing distinct stages of a linear development process. Because of their different functional potential, the type of subset that accumulates in a tissue drives the final outcome of NK cell-regulated immune response, leading to either protection or pathology. Correspondingly, chemokine receptors, including CXCR4, CXCR3, and CX3CR1, are differentially expressed by NK cell subsets, and their expression levels can be modulated during NK cell activation. At first, this review will summarize the current knowledge on the contribution of chemokines to the localization and generation of NK cell subsets in homeostasis. How an inappropriate chemotactic response can lead to pathology and how chemokine targeting can therapeutically affect tissue recruitment/localization of distinct NK cell subsets will also be discussed.

  17. Dysregulation of Chemokine/Chemokine Receptor Axes and NK Cell Tissue Localization during Diseases

    PubMed Central

    Bernardini, Giovanni; Antonangeli, Fabrizio; Bonanni, Valentina; Santoni, Angela

    2016-01-01

    Chemokines are small chemotactic molecules that play key roles in physiological and pathological conditions. Upon signaling via their specific receptors, chemokines regulate tissue mobilization and trafficking of a wide array of immune cells, including natural killer (NK) cells. Current research is focused on analyzing changes in chemokine/chemokine receptor expression during various diseases to interfere with pathological trafficking of cells or to recruit selected cell types to specific tissues. NK cells are a heterogeneous lymphocyte population comprising several subsets endowed with distinct functional properties and mainly representing distinct stages of a linear development process. Because of their different functional potential, the type of subset that accumulates in a tissue drives the final outcome of NK cell-regulated immune response, leading to either protection or pathology. Correspondingly, chemokine receptors, including CXCR4, CXCR3, and CX3CR1, are differentially expressed by NK cell subsets, and their expression levels can be modulated during NK cell activation. At first, this review will summarize the current knowledge on the contribution of chemokines to the localization and generation of NK cell subsets in homeostasis. How an inappropriate chemotactic response can lead to pathology and how chemokine targeting can therapeutically affect tissue recruitment/localization of distinct NK cell subsets will also be discussed. PMID:27766097

  18. Chemokines and chemokine receptors in chronic lymphocytic leukemia (CLL): from understanding the basics towards therapeutic targeting.

    PubMed

    Burger, Jan A

    2010-12-01

    Chemokines and their receptors organize the recruitment and positioning of cells at each stage of the immune response, a system critically dependent upon coordination to get the right cells to the right place at the right time. Chemokine receptors expressed on CLL B cells are thought to function in a similar fashion, regulating the trafficking of the leukemia cells between blood, lymphoid organs, and the bone marrow, and within sub compartments within these tissues, in concert with adhesion molecules and other guidance cues. CLL cells not only respond to chemokines secreted in the microenvironment, the leukemia cells also secrete chemokines in response to external signals, such as B cell receptor engagement. These CLL cell-derived chemokines facilitate interactions between CLL cells, T cells, and other immune cells that shape the CLL microenvironment. CXCR4, the most prominent chemokine receptor in CLL, is now targeted in a first clinical trial, emphasizing that chemokines and their receptors have become a highly dynamic translational research field.

  19. Environmental Factors Impacting Bone-Relevant Chemokines

    PubMed Central

    Smith, Justin T.; Schneider, Andrew D.; Katchko, Karina M.; Yun, Chawon; Hsu, Erin L.

    2017-01-01

    Chemokines play an important role in normal bone physiology and the pathophysiology of many bone diseases. The recent increased focus on the individual roles of this class of proteins in the context of bone has shown that members of the two major chemokine subfamilies—CC and CXC—support or promote the formation of new bone and the remodeling of existing bone in response to a myriad of stimuli. These chemotactic molecules are crucial in orchestrating appropriate cellular homing, osteoblastogenesis, and osteoclastogenesis during normal bone repair. Bone healing is a complex cascade of carefully regulated processes, including inflammation, progenitor cell recruitment, differentiation, and remodeling. The extensive role of chemokines in these processes and the known links between environmental contaminants and chemokine expression/activity leaves ample opportunity for disruption of bone healing by environmental factors. However, despite increased clinical awareness, the potential impact of many of these environmental factors on bone-related chemokines is still ill defined. A great deal of focus has been placed on environmental exposure to various endocrine disruptors (bisphenol A, phthalate esters, etc.), volatile organic compounds, dioxins, and heavy metals, though mainly in other tissues. Awareness of the impact of other less well-studied bone toxicants, such as fluoride, mold and fungal toxins, asbestos, and chlorine, is also reviewed. In many cases, the literature on these toxins in osteogenic models is lacking. However, research focused on their effects in other tissues and cell lines provides clues for where future resources could be best utilized. This review aims to serve as a current and exhaustive resource detailing the known links between several classes of high-interest environmental pollutants and their interaction with the chemokines relevant to bone healing. PMID:28261155

  20. Subsets of myeloid-derived suppressor cells in hepatocellular carcinoma express chemokines and chemokine receptors differentially.

    PubMed

    Zhao, Wenxiu; Xu, Yaping; Xu, Jianfeng; Wu, Duan; Zhao, Bixing; Yin, Zhenyu; Wang, Xiaomin

    2015-06-01

    Tumors induce the recruitment and expansion of myeloid-derived suppressor cells (MDSCs), a heterogeneous population of cells that can be further sub-divided into polymorphonuclear Ly6G(+) PMN-MDSCs and monocytic Ly6G(-) Mo-MDSCs. To identify chemokines and chemokine-related genes that are differentially expressed within the tumor microenvironment in these two MDSC subsets, we established an orthotopic hepatocellular carcinoma model in immunocompetent mice. Splenic PMN-MDSCs and Mo-MDSCs were isolated to >95% homogeneity by flow cytometry. Using a real-time PCR array, we investigated the expression of 84 genes encoding chemokines and cytokines, chemokine receptors, and related signaling molecules involved with chemotaxis. Clustering analysis suggested that a core set of chemokine-related genes is expressed in both PMN-MDSC and Mo-MDSC populations, but that the expression profile is broader for Mo-MDSCs. Furthermore, 11 genes are more highly expressed in PMN-MDSCs and 12 genes are more highly expressed in Mo-MDSCs. Among these, PMN-MDSCs express Cxcr1, Cxcr2 and Il1b at 33.03- to 109.76-fold higher levels than in Mo-MDSCs, and Mo-MDSCs express eight genes (Ccr2, Ccr5, Cmklr1, Cx3cr1, Ccr3, Ccl9, Cmtm3 and Cxcl16) at 30.2 to 515.5-fold higher levels than in PMN-MDSCs. These results suggest that the profile of chemokines and chemokine-related genes is more expansive for Mo-MDSCs than for PMN-MDSCs. The differential expression of chemokines and chemokine-associated genes may regulate the presence and activity of PMN-MDSCs and Mo-MDSCs in the tumor microenvironment.

  1. Chemokines as effector and target molecules in vascular biology.

    PubMed

    Sozzani, Silvano; Del Prete, Annalisa; Bonecchi, Raffaella; Locati, Massimo

    2015-08-01

    Chemokines are key mediators of inflammation. In pathological tissues, the main roles of chemokines are to regulate leucocyte accumulation through the activation of oriented cell migration and the activation of limited programs of gene transcription. Through these activities, chemokines exert many crucial functions, including the regulation of angiogenesis. The 'chemokine system' is tightly regulated at several levels, such as the post-transcriptional processing of ligands, the regulation of the expression and function of the receptors and through the expression of molecules known as 'atypical chemokine receptors', proteins that function as chemokine scavenging and presenting molecules. Several experimental evidence obtained in vitro, in animal models and in human studies, has defined a crucial role of chemokines in cardiovascular diseases. An intense area of research is currently exploring the possibility to develop new effective therapeutic strategies through the identification of chemokine receptor antagonists.

  2. Chemotaxis, chemokine receptors and human disease.

    PubMed

    Jin, Tian; Xu, Xuehua; Hereld, Dale

    2008-10-01

    Cell migration is involved in diverse physiological processes including embryogenesis, immunity, and diseases such as cancer and chronic inflammatory disease. The movement of many cell types is directed by extracellular gradients of diffusible chemicals. This phenomenon, referred to as "chemotaxis", was first described in 1888 by Leber who observed the movement of leukocytes toward sites of inflammation. We now know that a large family of small proteins, chemokines, serves as the extracellular signals and a family of G-protein-coupled receptors (GPCRs), chemokine receptors, detects gradients of chemokines and guides cell movement in vivo. Currently, we still know little about the molecular machineries that control chemokine gradient sensing and migration of immune cells. Fortunately, the molecular mechanisms that control these fundamental aspects of chemotaxis appear to be evolutionarily conserved, and studies in lower eukaryotic model systems have allowed us to form concepts, uncover molecular components, develop new techniques, and test models of chemotaxis. These studies have helped our current understanding of this complicated cell behavior. In this review, we wish to mention landmark discoveries in the chemotaxis research field that shaped our current understanding of this fundamental cell behavior and lay out key questions that remain to be addressed in the future.

  3. Actions of Thyroid Hormone Analogues on Chemokines

    PubMed Central

    Glinsky, Gennadi V.

    2016-01-01

    The extracellular domain of plasma membrane integrin αvβ3 contains a receptor for thyroid hormone (L-thyroxine, T4; 3,5,3′-triiodo-L-thyronine, T3); this receptor also binds tetraiodothyroacetic acid (tetrac), a derivative of T4. Tetrac inhibits the binding of T4 and T3 to the integrin. Fractalkine (CX3CL1) is a chemokine relevant to inflammatory processes in the CNS that are microglia-dependent but also important to normal brain development. Expression of the CX3CL1 gene is downregulated by tetrac, suggesting that T4 and T3 may stimulate fractalkine expression. Independently of its specific receptor (CX3CR1), fractalkine binds to αvβ3 at a site proximal to the thyroid hormone-tetrac receptor and changes the physical state of the integrin. Tetrac also affects expression of the genes for other CNS-relevant chemokines, including CCL20, CCL26, CXCL2, CXCL3, and CXCL10. The chemokine products of these genes are important to vascularity of the brain, particularly of the choroid plexus, to inflammatory processes in the CNS and, in certain cases, to neuroprotection. Thyroid hormones are known to contribute to regulation of each of these CNS functions. We propose that actions of thyroid hormone and hormone analogues on chemokine gene expression contribute to regulation of inflammatory processes in brain and of brain blood vessel formation and maintenance. PMID:27493972

  4. Chemokines and Chemokine Receptors in Susceptibility to HIV-1 Infection and Progression to AIDS

    PubMed Central

    Chatterjee, Animesh; Rathore, Anurag; Vidyant, Sanjukta; Kakkar, Kavita; Dhole, Tapan N.

    2012-01-01

    A multitude of host genetic factors plays a crucial role in susceptibility to HIV-1 infection and progression to AIDS, which is highly variable among individuals and populations. This review focuses on the chemokine-receptor and chemokine genes, which were extensively studied because of their role as HIV co-receptor or co-receptor competitor and influences the susceptibility to HIV-1 infection and progression to AIDS in HIV-1 infected individuals. PMID:22377730

  5. Chemokines and chemokine receptors as promoters of prostate cancer growth and progression.

    PubMed

    Salazar, Nicole; Castellan, Miguel; Shirodkar, Samir S; Lokeshwar, Bal L

    2013-01-01

    Prostate cancer (CaP) is estimated to be first in incidence among cancers, with more than 240,000 new cases in 2012 in the United States. Chemokines and their receptors provide survival, proliferation, and invasion characteristics to CaP cells in both primary sites of cancer and metastatic locations. The emerging data demonstrate that many chemokines and their receptors are involved in the multistep process of CaP, leading to metastasis, and, further, that these factors act cooperatively to enhance other mechanisms of tumor cell survival, growth, and metastasis. Changes of chemokine receptor cohorts may be necessary to activate tumor-promoting signals. Chemokine receptors can activate downstream effectors, such as mitogen-activated protein kinases, by complex mechanisms of ligand-dependent activation of cryptic growth factors; guanosine triphosphate-binding, protein-coupled activation of survival kinases; or transactivation of other receptors such as ErbB family members. We describe vanguard research in which more than the classic view of chemokine receptor biology was clarified. Control of chemokines and inhibition of their receptor activation may add critical tools to reduce tumor growth, especially in chemo-hormonal refractory CaP that is both currently incurable and the most aggressive form of the disease, accounting for most of the more than 28,000 annual deaths.

  6. Pathophysiological roles of chemokines in human reproduction: an overview.

    PubMed

    Kitaya, Kotaro; Yamada, Hisao

    2011-05-01

    Chemokines are a group of small cytokines that have an ability to induce leukocyte migration. Chemokines exert their functions by binding and activating specific G protein-coupled receptors. Studies have unveiled pleiotropic bioactivities of chemokines in various phenomena ranging from immunomodulation, embryogenesis, and homeostasis to pathogenesis. In the mammalian reproductive system, chemokines unexceptionally serve in multimodal events that are closely associated with establishment, maintenance, and deterioration of fecundity. The aim of this review is to update the knowledge on chemokines in male and female genital organs, with a focus on their potential pathophysiological roles in human reproduction.

  7. The structural role of receptor tyrosine sulfation in chemokine recognition

    PubMed Central

    Ludeman, Justin P; Stone, Martin J

    2014-01-01

    Tyrosine sulfation is a post-translational modification of secreted and transmembrane proteins, including many GPCRs such as chemokine receptors. Most chemokine receptors contain several potentially sulfated tyrosine residues in their extracellular N-terminal regions, the initial binding site for chemokine ligands. Sulfation of these receptors increases chemokine binding affinity and potency. Although receptor sulfation is heterogeneous, insights into the molecular basis of sulfotyrosine (sTyr) recognition have been obtained using purified, homogeneous sulfopeptides corresponding to the N-termini of chemokine receptors. Receptor sTyr residues bind to a shallow cleft defined by the N-loop and β3-strand elements of cognate chemokines. Tyrosine sulfation enhances the affinity of receptor peptides for cognate chemokines in a manner dependent on the position of sulfation. Moreover, tyrosine sulfation can alter the selectivity of receptor peptides among several cognate chemokines for the same receptor. Finally, binding to receptor sulfopeptides can modulate the oligomerization state of chemokines, thereby influencing the ability of a chemokine to activate its receptor. These results increase the motivation to investigate the structural basis by which tyrosine sulfation modulates chemokine receptor activity and the biological consequences of this functional modulation. Linked ArticlesThis article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-5 PMID:24116930

  8. Platelet-derived chemokines: pathophysiology and therapeutic aspects.

    PubMed

    Flad, Hans-Dieter; Brandt, Ernst

    2010-07-01

    The identification of chemokines in blood platelets has strengthened our view of these cells as participants in immune host defense. Platelet chemokines representing prestored and rapidly releasable proteins may play a major role as first-line inflammatory mediators. This is evident from their capability to recruit early inflammatory cells such as neutrophil granulocytes and monocytes and even to exhibit direct antimicrobial activity. However, insight is growing that platelet chemokines may be also long-term regulators, e.g., by activating T lymphocytes, by modulating the formation of endothelium and even thrombocytopoiesis itself. This review deals with the individual and cooperative functionality of platelet chemokines, as well as their potential as a basis for therapeutic intervention in the pathology of inflammation, infection, allergy and tumors. Within this context, therapeutic strategies based on the use of antibodies, modified chemokines, chemokine-binding proteins and chemokine receptor antagonists as well as first clinical studies will be addressed.

  9. Cloning and characterization of exodus, a novel beta-chemokine.

    PubMed

    Hromas, R; Gray, P W; Chantry, D; Godiska, R; Krathwohl, M; Fife, K; Bell, G I; Takeda, J; Aronica, S; Gordon, M; Cooper, S; Broxmeyer, H E; Klemsz, M J

    1997-05-01

    Chemokines are a family of related proteins that regulate leukocyte infiltration into inflamed tissue. Some chemokines such as MIP-1 alpha also inhibit hematopoietic progenitor cell proliferation. Recently, three chemokines, MIP-1 alpha, MIP-1 beta, and RANTES, have been found to significantly decrease human immunodeficiency virus production from infected T cells. We report here the cloning and characterization of a novel human chemokine termed Exodus for its chemotactic properties. This novel chemokine is distantly related to other chemokines (28% homology with MIP-1 alpha) and shares several biological activities. Exodus is expressed preferentially in lymphocytes and monocytes, and its expression is markedly upregulated by mediators of inflammation such as tumor necrosis factor or lipopolysaccharide. Purified synthetic Exodus was found to inhibit proliferation of myeloid progenitors in colony formation assays. Exodus also stimulated chemotaxis of peripheral blood mononuclear cells. The sequence homology, expression, and biological activity indicate that Exodus represents a novel divergent beta-chemokine.

  10. Chemokine modulation of the tumor microenvironment.

    PubMed

    Richmond, Ann

    2010-06-01

    Coverage on: Shields, J.D., Kourtis, I.C., Tomei, A.A., Roberts, J.M. & Swartz,M.A. (2010). Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science. E Pub, March 25, 2010; and Kim, M.Y., Oskarsson, T., Acharyya, S.,Nguyen, D.X., Zhang, X.H., Norton, L. & Massague, J. (2009). Tumor self-seeding by circulating cancer cells. Cell, 139,1315-1326.

  11. Role of chemokines and chemokine receptors in shaping the effector phase of the antitumor immune response.

    PubMed

    Franciszkiewicz, Katarzyna; Boissonnas, Alexandre; Boutet, Marie; Combadière, Christophe; Mami-Chouaib, Fathia

    2012-12-15

    Immune system-mediated eradication of neoplastic cells requires induction of a strong long-lasting antitumor T-cell response. However, generation of tumor-specific effector T cells does not necessarily result in tumor clearance. CTL must first be able to migrate to the tumor site, infiltrate the tumor tissue, and interact with the target to finally trigger effector functions indispensable for tumor destruction. Chemokines are involved in circulation, homing, retention, and activation of immunocompetent cells. Although some of them are known to contribute to tumor growth and metastasis, others are responsible for changes in the tumor microenvironment that lead to extensive infiltration of lymphocytes, resulting in tumor eradication. Given their chemoattractive and activating properties, a role for chemokines in the development of the effector phase of the antitumor immune response has been suggested. Here, we emphasize the role of the chemokine-chemokine receptor network at multiple levels of the T-cell-mediated antitumor immune response. The identification of chemokine-dependent molecular mechanisms implicated in tumor-specific CTL trafficking, retention, and regulation of their in situ effector functions may offer new perspectives for development of innovative immunotherapeutic approaches to cancer treatment.

  12. Mechanisms and implications of air pollution particle associations with chemokines

    SciTech Connect

    Seagrave, JeanClare

    2008-11-01

    Inflammation induced by inhalation of air pollutant particles has been implicated as a mechanism for the adverse health effects associated with exposure to air pollution. The inflammatory response is associated with upregulation of various pro-inflammatory cytokines and chemokines. We have previously shown that diesel exhaust particles (DEP), a significant constituent of air pollution particulate matter in many urban areas, bind and concentrate IL-8, an important human neutrophil-attracting chemokine, and that the chemokine remains biologically active. In this report, we examine possible mechanisms of this association and the effects on clearance of the chemokine. The binding appears to be the result of ionic interactions between negatively charged particles and positively charged chemokine molecules, possibly combined with intercalation into small pores in the particles. The association is not limited to diesel exhaust particles and IL-8: several other particle types also adsorb the chemokine and several other cytokines are adsorbed onto the diesel particles. However, there are wide ranges in the effectiveness of various particle types and various cytokines. Finally, male Fisher 344 rats were intratracheally instilled with chemokine alone or combined with diesel exhaust or silica particles under isofluorane anesthesia. In contrast to silica particles, which do not bind the chemokine, the presence of diesel exhaust particles, which bind the chemokine, prolonged the retention of the chemokine.

  13. Structural Analysis of Chemokine Receptor-Ligand Interactions.

    PubMed

    Arimont, Marta; Sun, Shan-Liang; Leurs, Rob; Smit, Martine; de Esch, Iwan J P; de Graaf, Chris

    2017-03-10

    This review focuses on the construction and application of structural chemokine receptor models for the elucidation of molecular determinants of chemokine receptor modulation and the structure-based discovery and design of chemokine receptor ligands. A comparative analysis of ligand binding pockets in chemokine receptors is presented, including a detailed description of the CXCR4, CCR2, CCR5, CCR9, and US28 X-ray structures, and their implication for modeling molecular interactions of chemokine receptors with small-molecule ligands, peptide ligands, and large antibodies and chemokines. These studies demonstrate how the integration of new structural information on chemokine receptors with extensive structure-activity relationship and site-directed mutagenesis data facilitates the prediction of the structure of chemokine receptor-ligand complexes that have not been crystallized. Finally, a review of structure-based ligand discovery and design studies based on chemokine receptor crystal structures and homology models illustrates the possibilities and challenges to find novel ligands for chemokine receptors.

  14. Profiling Heparin-Chemokine Interactions Using Synthetic Tools

    PubMed Central

    de Paz, Jose L.; Moseman, E. Ashley; Noti, Christian; Polito, Laura; von Andrian, Ulrich H.; Seeberger, Peter H.

    2009-01-01

    Glycosaminoglycans (GAGs), such as heparin or heparan sulfate, are required for the in vivo function of chemokines. Chemokines play a crucial role in the recruitment of leukocyte subsets to sites of inflammation and lymphocytes trafficking. GAG-chemokine interactions mediate cell migration and determine which leukocyte subsets enter tissues. Identifying the exact GAC sequences that bind to particular chemokines is key to understand chemokine function at the molecular level and develop strategies to interfere with chemokine-mediated processes. Here, we characterize the heparin binding profiles of eight chemokines (CCL21, IL-8, CXCL12, CXCL13, CCL19, CCL25, CCL28, and CXCL16) by employing heparin microarrays containing a small library of synthetic heparin oligosaccharides. The chemokines differ significantly in their interactions with heparin oligosaccharides: While some chemokines, (e.g., CCL21) strongly bind to a hexasaccharide containing the GlcNSO3(6-OSO3)-IdoA(2-OSO3) repeating unit, CCL19 does not bind and CXCL12 binds only weakly. The carbohydrate microarray binding results were validated by surface plasmon resonance experiments. In vitro chemotaxis assays revealed that dendrimers coated with the fully sulfated heparin hexasaccharide inhibit lymphocyte migration toward CCL21. Migration toward CXCL12 or CCL19 was not affected. These in vitro homing assays indicate that multivalent synthetic heparin dendrimers inhibit the migration of lymphocytes toward certain chemokine gradients by blocking the formation of a chemokine concentration gradient on GAG endothelial chains. These findings are in agreement with preliminary in vivo measurements of circulating lymphocytes. The results presented here contribute to the understanding of GAG-chemokine interactions, a first step toward the design of novel drugs that modulate chemokine activity. PMID:18030990

  15. Chemokines and their receptors in central nervous system disease.

    PubMed

    Biber, Knut; de Jong, Eiko K; van Weering, Hilmar R J; Boddeke, Hendrikus W G M

    2006-01-01

    Almost a decade ago, it was discovered that the human deficiency virus (HIV) makes use of chemokine receptors to infect blood cells. This appreciation of the clinical relevance of specific chemokine receptors has initiated a considerable boost in the field of chemokine research. It is clear today that chemokine signaling orchestrates the immune system and is widely involved in both physiological and pathophysiological processes. Since the chemokine system offers various targets through which pathology could be influenced, most pharmaceutical companies have chosen this system as a therapeutic target for a variety of diseases. Here recent developments concerning the role of chemokines in diseases of the central nervous system (CNS) as well as their possible therapeutic relevance are discussed.

  16. CXC and CC Chemokines as Angiogenic Modulators in Nonhaematological Tumors

    PubMed Central

    Bracarda, Sergio; Nabissi, Massimo; Massari, Francesco; Bria, Emilio; Tortora, Giampaolo; Santoni, Giorgio; Cascinu, Stefano

    2014-01-01

    Chemokines are a superfamily of structurally homologous heparin-binding proteins that includes potent inducers and inhibitors of angiogenesis. The imbalance between angiogenic and angiostatic chemokine activities can lead to abnormalities, such as chronic inflammation, dysplastic transformation, and even tumor development and spreading. In this review, we summarize the current literature regarding the role of chemokines as modulators of tumor angiogenesis and their potential role as therapeutic targets in patients with nonhaematological tumors. PMID:24971349

  17. Chemokines: key players in cancer progression and metastasis

    PubMed Central

    Singh, Rajesh; Lilladr, James W.; Singh, Shailesh

    2013-01-01

    Instructed cell migration is a fundamental component of various biological systems and is critical to the pathogenesis of many diseases including cancer. Role of chemokines in providing navigational cues to migrating cancer cells bearing specific receptors is well established. However, functional mechanisms of chemokine are not well implicit, which is crucial for designing new therapeutics to control tumor growth and metastasis. Multiple functions and mode of actions have been advocated for chemokines and their receptors in the progression of primary and secondary tumors. In this review, we have discussed current advances in understanding the role of the chemokines and their corresponding receptor in tumor progression and metastasis. PMID:21622291

  18. Pouncing on the chemokine receptor Chimera.

    PubMed

    Mascolini, M

    1997-08-01

    Scientists are seeking to unravel the mystery of chemokine receptors in an attempt to develop treatments for HIV infection; however, receptor experts are realizing that the picture is more complicated than they first imagined. Scientists want to know, among other things, what parts of each coreceptor are essential for viral fusion with target cells, what makes macrophage-tropic viruses switch their preference to T-lymphocytes, why HIV goes after chemokine receptors in the first place, and how fusion and entry occur. Other issues discussed include whether blocking coreceptors for HIV will actually curb this disease, virus turnover in monkey studies showing that SIV may go through the cycle as many as 100 times per day, and studies showing that the first days of infection may predict the course of disease. Final comments concern the use of ritonavir plus indinavir in treatment combinations for children with HIV and the latest progress toward vaccine development. Understanding these and other puzzles might help scientists to develop drugs to block receptors active in HIV infection and perhaps curb HIV. More than 14 biotechnology and pharmaceutical firms are working to design coreceptor blockers, despite the opinions of several leading researchers that the drugs are not terribly promising. Dr. Anthony Fauci, director of the National Institute for Allergy and Infectious Disease (NIAID), notes that a famous attempt to block HIV's primary receptor failed, and David Ho, the man who demonstrated why CD4 would not work as therapy, is similarly cautious. According to Ho, drug makers will have no trouble developing compounds that keep HIV off chemokine receptors, such as CCR5 or CXCR4, but whether those compounds will slow disease progression is another question.

  19. Chemokines in Innate and Adaptive Granuloma Formation

    PubMed Central

    Chensue, Stephen W.

    2012-01-01

    Granulomas are cellular inflammations that vary widely in histologic appearance depending upon the inciting agent and immunologic status of the responding host. Despite their heterogeneity, granulomas are at their core an ancient innate sequestration response characterized by the accumulation of mononuclear phagocytes. In fact, this innate cellular response was first observed by Metchnikov in simple invertebrates. Among higher vertebrates, environmental pressures have resulted in the evolution of more sophisticated adaptive immune responses which can be superimposed upon and modify the character of granulomatous inflammation. Compared to immune responses that rapidly neutralize and eliminate infectious agents, the granuloma represents a less desirable “fall back” response which still has value to the host but can be co-opted by certain infectious agents and contribute to bystander organ damage. Understanding granulomas requires an analysis of the complex interplay of innate and adaptive molecular signals that govern the focal accumulation and activity of their cellular components. Among these signals, small molecular weight chemoattractant proteins known as chemokines are potentially important contributors as they participate in both directing leukocyte migration and function. This tract will discuss the contribution of chemokines to the development of innate and adaptive granuloma formation, as well as describe their relationship to more recently evolved cytokines generated during adaptive immune responses. PMID:23444049

  20. Structure of mouse IP-10, a chemokine

    SciTech Connect

    Jabeen, Talat; Leonard, Philip; Jamaluddin, Haryati; Acharya, K. Ravi

    2008-06-01

    The structure of mouse IP-10 shows a novel tetrameric association. Interferon-γ-inducible protein (IP-10) belongs to the CXC class of chemokines and plays a significant role in the pathophysiology of various immune and inflammatory responses. It is also a potent angiostatic factor with antifibrotic properties. The biological activities of IP-10 are exerted by interactions with the G-protein-coupled receptor CXCR3 expressed on Th1 lymphocytes. IP-10 thus forms an attractive target for structure-based rational drug design of anti-inflammatory molecules. The crystal structure of mouse IP-10 has been determined and reveals a novel tetrameric association. In the tetramer, two conventional CXC chemokine dimers are associated through their N-terminal regions to form a 12-stranded elongated β-sheet of ∼90 Å in length. This association differs significantly from the previously studied tetramers of human IP-10, platelet factor 4 and neutrophil-activating peptide-2. In addition, heparin- and receptor-binding residues were mapped on the surface of IP-10 tetramer. Two heparin-binding sites were observed on the surface and were present at the interface of each of the two β-sheet dimers. The structure supports the formation of higher order oligomers of IP-10, as observed in recent in vivo studies with mouse IP-10, which will have functional relevance.

  1. Chemokine Involvement in Fetal and Adult Wound Healing

    PubMed Central

    Balaji, Swathi; Watson, Carey L.; Ranjan, Rajeev; King, Alice; Bollyky, Paul L.; Keswani, Sundeep G.

    2015-01-01

    Significance: Fetal wounds heal with a regenerative phenotype that is indistinguishable from surrounding skin with restored skin integrity. Compared to this benchmark, all postnatal wound healing is impaired and characterized by scar formation. The biologic basis of the fetal regenerative phenotype can serve as a roadmap to recapitulating regenerative repair in adult wounds. Reduced leukocyte infiltration, likely mediated, in part, through changes in the chemokine milieu, is a fundamental feature of fetal wound healing. Recent Advances: The contributions of chemokines to wound healing are a topic of active investigation. Recent discoveries have opened the possibility of targeting chemokines therapeutically to treat disease processes and improve healing capability, including the possibility of achieving a scarless phenotype in postnatal wounds. Critical Issues: Successful wound healing is a complex process, in which there is a significant interplay between multiple cell types, signaling molecules, growth factors, and extracellular matrix. Chemokines play a crucial role in this interplay and have been shown to have different effects in various stages of the healing process. Understanding how these chemokines are locally produced and regulated during wound healing and how the chemokine milieu differs in fetal versus postnatal wounds may help us identify ways in which we can target chemokine pathways. Future Directions: Further studies on the role of chemokines and their role in the healing process will greatly advance the potential for using these molecules as therapeutic targets. PMID:26543680

  2. Production of recombinant chemokines and validation of refolding

    PubMed Central

    Veldkamp, Christopher T.; Koplinski, Chad A.; Jensen, Davin R.; Peterson, Francis C.; Smits, Kaitlin M.; Smith, Brittney L.; Johnson, Scott K.; Lettieri, Christina; Buchholz, Wallace G.; Solheim, Joyce C.; Volkman, Brian F.

    2016-01-01

    The diverse roles of chemokines in normal immune function and many human diseases have motivated numerous investigations into the structure and function of this family of proteins. Recombinant chemokines are often used to study how chemokines coordinate the trafficking of immune cells in various biological contexts. A reliable source of biologically active protein is vital for any in vitro or in vivo functional analysis. In this chapter, we describe a general method for the production of recombinant chemokines and robust techniques for efficient refolding that ensure consistently high biological activity. Considerations for initiating development of protocols consistent with Current Good Manufacturing Practices (cGMPs) to produce biologically active chemokines suitable for use in clinical trials are also discussed. PMID:26921961

  3. MicroRNA-155 regulates monocyte chemokine and chemokine receptor expression in Rheumatoid Arthritis

    PubMed Central

    Elmesmari, Aziza; Fraser, Alasdair R.; Wood, Claire; Gilchrist, Derek; Vaughan, Diane; Stewart, Lynn; McSharry, Charles; McInnes, Iain B.

    2016-01-01

    Objective. To test the hypothesis that miR-155 regulates monocyte migratory potential via modulation of chemokine and chemokine receptor expression in RA, and thereby is associated with disease activity. Methods. The miR-155 copy-numbers in monocytes from peripheral blood (PB) of healthy (n = 22), RA (n = 24) and RA SF (n = 11) were assessed by real time-PCR using synthetic miR-155 as a quantitative standard. To evaluate the functional impact of miR-155, human monocytes were transfected with control or miR-155 mimic, and the effect on transcript levels, and production of chemokines was evaluated by Taqman low-density arrays and multiplex assays. A comparative study evaluated constitutive chemokine receptor expression in miR-155−/− and wild-type murine (CD115 + Ly6C + Ly6G−) monocytes. Results. Compared with healthy monocytes, the miR-155 copy-number was higher in RA, peripheral blood (PB) and SF monocytes (PB P < 0.01, and SF P < 0.0001). The miR-155 copy-number in RA PB monocytes was higher in ACPA-positive compared with ACPA-negative patients (P = 0.033) and correlated (95% CI) with DAS28 (ESR), R = 0.728 (0.460, 0.874), and with tender, R = 0.631 (0.306, 0.824) and swollen, R = 0.503 (0.125, 0.753) joint counts. Enforced-expression of miR-155 in RA monocytes stimulated the production of CCL3, CCL4, CCL5 and CCL8; upregulated CCR7 expression; and downregulated CCR2. Conversely, miR155−/− monocytes showed downregulated CCR7 and upregulated CCR2 expression. Conclusion. Given the observed correlations with disease activity, these data provide strong evidence that miR-155 can contribute to RA pathogenesis by regulating chemokine production and pro-inflammatory chemokine receptor expression, thereby promoting inflammatory cell recruitment and retention in the RA synovium. PMID:27411480

  4. Neuronal Activity Regulates Hippocampal miRNA Expression

    PubMed Central

    Eacker, Stephen M.; Keuss, Matthew J.; Berezikov, Eugene; Dawson, Valina L.; Dawson, Ted M.

    2011-01-01

    Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA) represent a relatively recently discovered player in the regulation of translation in the nervous system. We have conducted an in depth analysis of how neuronal activity regulates miRNA expression in the hippocampus. Using deep sequencing we exhaustively identify all miRNAs, including 15 novel miRNAs, expressed in hippocampus of the adult mouse. We identified 119 miRNAs documented in miRBase but less than half of these miRNA were expressed at a level greater than 0.1% of total miRNA. Expression profiling following induction of neuronal activity by electroconvulsive shock demonstrates that most miRNA show a biphasic pattern of expression: rapid induction of specific mature miRNA expression followed by a decline in expression. These results have important implications into how miRNAs influence activity-dependent translational control. PMID:21984899

  5. Activity-Regulated Genes as Mediators of Neural Circuit Plasticity

    PubMed Central

    Leslie, Jennifer H.; Nedivi, Elly

    2011-01-01

    Modifications of neuronal circuits allow the brain to adapt and change with experience. This plasticity manifests during development and throughout life, and can be remarkably long lasting. Many electrophysiological and molecular mechanisms are common to the seemingly diverse types of activity-dependent functional adaptation that take place during developmental critical periods, learning and memory, and alterations to sensory map representations in the adult. Experience-dependent plasticity is triggered when neuronal excitation activates cellular signaling pathways from the synapse to the nucleus that initiate new programs of gene expression. The protein products of activity-regulated genes then work via a diverse array of cellular mechanisms to modify neuronal functional properties. They fine-tune brain circuits by strengthening or weakening synaptic connections or by altering synapse numbers. Their effects are further modulated by posttranscriptional regulatory mechanisms, often also dependent on activity, that control activity-regulated gene transcript and protein function. Thus, the cellular response to neuronal activity integrates multiple tightly coordinated mechanisms to precisely orchestrate long-lasting, functional and structural changes in brain circuits. PMID:21601615

  6. Chemokines, chemokine receptors and adhesion molecules on different human endothelia: discriminating the tissue-specific functions that affect leucocyte migration

    PubMed Central

    HILLYER, P; MORDELET, E; FLYNN, G; MALE, D

    2003-01-01

    The selective accumulation of different leucocyte populations during inflammation is regulated by adhesion molecules and chemokines expressed by vascular endothelium. This study examined how chemokine production and the expression of adhesion molecules and chemokine receptors vary between endothelia from different vascular beds. Human saphenous vein endothelium was compared with lung and dermal microvascular endothelia and with umbilical vein endothelium and a bone-marrow endothelial cell line. All endothelia produced CCL2 and CXCL8 constitutively, whereas CXCL10 and CCL5 were only secreted after tumour necrosis factor (TNF)-α or interferon (IFN)-γ stimulation. In combination with TNF-α, IFN-γ suppressed CXCL8 but enhanced CCL5 and CXCL10, whereas transforming growth factor (TGF)-β reduced secretion of all chemokines. Basal chemokine secretion was higher from umbilical vein than other endothelial cells. Chemokine receptors, CXCR1, CXCR3 and CCR3, were present on all endothelia but highest on saphenous vein. CCR4, CCR5, CCR6, CXCR2, CXCR4 and CXCR5 were also detected at variable levels on different endothelia. The variation between endothelia in chemokine secretion was much greater than the variations in adhesion molecules, both on resting cells and following cytokine stimulation. These results indicate that it is the tissue-specific variations in endothelial chemokine secretion rather than variations in adhesion molecules that can explain the different patterns of inflammation and leucocyte traffic seen in non-lymphoid tissues. PMID:14632748

  7. Platelet factor 4: a chemokine enigma.

    PubMed

    Slungaard, Arne

    2005-06-01

    Platelet factor 4 (PF4) is a platelet alpha-granule protein sequenced over 25 years ago that is a founding member of the C-X-C chemokine family, yet its physiologic function has yet to be definitively established. Initial investigations focused on possible procoagulant roles for PF4 in platelet function and plasmatic coagulation. Subsequent in vitro studies have, however, described a puzzling array of other apparently unrelated biologic functions, including inhibition of angiogenesis and hematopoiesis, promotion of neutrophil adhesion, and activation, enhancement of oxy-LDL binding to the LDL receptor and stimulation of anti-coagulant activated protein C generation by the thrombomodulin/protein C system. Preliminary studies with a just-described PF4 knockout mouse line support a role for PF4 in platelet-dependent thrombosis in vivo.

  8. Monitoring Chemokine Receptor Trafficking by Confocal Immunofluorescence Microscopy

    PubMed Central

    Marchese, Adriano

    2016-01-01

    Here, we describe a protocol to detect chemokine receptor CXCR4 by confocal immunofluorescence microscopy in HeLa cells treated with its chemokine ligand CXCL12. Typically, ligand-activated chemokine receptors undergo a multistep process of desensitization and/or internalization from the plasma membrane in order to terminate signaling. Once internalized to endosomes, chemokine receptors readily enter the recycling pathway and return to the cell surface, giving rise to resensitization of signaling. The chemokine receptor CXCR4, when activated by CXCL12 is also internalized to endosomes, but in contrast to many chemokine receptors it is mainly sorted to the degradative pathway, contributing to a loss in the cellular complement of CXCR4 and long-term downregulation of signaling. The trafficking of CXCR4 from early endosomes to lysosomes can be easily detected by confocal immunofluorescence microscopy by immunostaining fixed cells for the receptor and with markers of these vesicular compartments. This approach is advantageous because it can be used to identify factors that regulate the trafficking of CXCR4 from early endosomes to lysosomes. The protocol described here focuses on CXCR4, but it can be easily adapted to other chemokine receptors. PMID:26921951

  9. Cobalt ions induce chemokine secretion in primary human osteoblasts.

    PubMed

    Queally, J M; Devitt, B M; Butler, J S; Malizia, A P; Murray, D; Doran, P P; O'Byrne, J M

    2009-07-01

    Chemokines are major regulators of the inflammatory response and have been shown to play an important role in periprosthetic osteolysis. Titanium particles have previously been shown to induce IL-8 and MCP-1 secretion in osteoblasts. These chemokines result in the chemotaxis and activation of neutrophils and macrophages, respectively. Despite a resurgence in the use of cobalt-chromium-molybdenum alloys in metal-on-metal arthroplasty, cobalt and chromium ion toxicity in the periprosthetic area has been insufficiently studied. In this study we investigate the in vitro effect of cobalt ions on primary human osteoblast activity. We demonstrate that cobalt ions rapidly induce the protein secretion of IL-8 and MCP-1 in primary human osteoblasts. This elevated chemokine secretion is preceded by an increase in the transcription of the corresponding chemokine gene. Using a Transwell migration chemotaxis assay we also demonstrate that the chemokines secreted are capable of inducing neutrophil and macrophage migration. Furthermore, cobalt ions significantly inhibit osteoblast function as demonstrated by reduced alkaline phosphatase activity and calcium deposition. In aggregate these data demonstrate that cobalt ions can activate transcription of the chemokine genes IL-8 and MCP-1 in primary human osteoblasts. Cobalt ions are not benign and may play an important role in the pathogenesis of osteolysis by suppressing osteoblast function and stimulating the production and secretion of chemokines that attract inflammatory and osteoclastic cells to the periprosthetic area.

  10. Epac Activation Regulates Human Mesenchymal Stem Cells Migration and Adhesion.

    PubMed

    Yu, Jiao-Le; Deng, Ruixia; Chung, Sookja K; Chan, Godfrey Chi-Fung

    2016-04-01

    How to enhance the homing of human mesenchymal stem cells (hMSCs) to the target tissues remains a clinical challenge nowadays. To overcome this barrier, the mechanism responsible for the hMSCs migration and engraftment has to be defined. Currently, the exact mechanism involved in migration and adhesion of hMSCs remains unknown. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, may have a potential role in regulating cells adhesion and migration by triggering the downstream Rap family signaling cascades. However, the exact role of Epac in cells homing is elusive. Our study evaluated the role of Epac in the homing of hMSCs. We confirmed that hMSCs expressed functional Epac and its activation enhanced the migration and adhesion of hMSCs significantly. The Epac activation was further found to be contributed directly to the chemotactic responses induced by stromal cell derived factor-1 (SDF-1) which is a known chemokine in regulating hMSCs homing. These findings suggested Epac is connected to the SDF-1 signaling cascades. In conclusion, our study revealed that Epac plays a role in hMSCs homing by promoting adhesion and migration. Appropriate manipulation of Epac may enhance the homing of hMSCs and facilitate their future clinical applications.

  11. Mechanisms of Regulation of the Chemokine-Receptor Network

    PubMed Central

    Stone, Martin J.; Hayward, Jenni A.; Huang, Cheng; E. Huma, Zil; Sanchez, Julie

    2017-01-01

    The interactions of chemokines with their G protein-coupled receptors promote the migration of leukocytes during normal immune function and as a key aspect of the inflammatory response to tissue injury or infection. This review summarizes the major cellular and biochemical mechanisms by which the interactions of chemokines with chemokine receptors are regulated, including: selective and competitive binding interactions; genetic polymorphisms; mRNA splice variation; variation of expression, degradation and localization; down-regulation by atypical (decoy) receptors; interactions with cell-surface glycosaminoglycans; post-translational modifications; oligomerization; alternative signaling responses; and binding to natural or pharmacological inhibitors. PMID:28178200

  12. ACKR2: An Atypical Chemokine Receptor Regulating Lymphatic Biology

    PubMed Central

    Bonavita, Ornella; Mollica Poeta, Valeria; Setten, Elisa; Massara, Matteo; Bonecchi, Raffaella

    2017-01-01

    The lymphatic system plays an important role in the induction of the immune response by transporting antigens, inflammatory mediators, and leukocytes from peripheral tissues to draining lymph nodes. It is emerging that lymphatic endothelial cells (LECs) are playing an active role in this context via the expression of chemokines, inflammatory mediators promoting cell migration, and chemokine receptors. Particularly, LECs express atypical chemokine receptors (ACKRs), which are unable to promote conventional signaling and cell migration while they are involved in the regulation of chemokine availability. Here, we provide a summary of the data on the role of ACKR2 expressed by lymphatics, indicating an essential role for this ACKRs in the regulation of the inflammation and the immune response in different pathological conditions, including infection, allergy, and cancer. PMID:28123388

  13. Amine oxidase activity regulates the development of pulmonary fibrosis.

    PubMed

    Marttila-Ichihara, Fumiko; Elima, Kati; Auvinen, Kaisa; Veres, Tibor Z; Rantakari, Pia; Weston, Christopher; Miyasaka, Masayuki; Adams, David; Jalkanen, Sirpa; Salmi, Marko

    2017-03-01

    In pulmonary fibrosis, an inflammatory reaction and differentiation of myofibroblasts culminate in pathologic deposition of collagen. Amine oxidase copper containing-3 (AOC3) is a cell-surface expressed oxidase that regulates leukocyte extravasation. Here we analyzed the potential role of AOC3 using gene-modified and inhibitor-treated mice in a bleomycin-induced pulmonary fibrosis model. Inflammation and fibrosis of lungs were assessed by histologic, flow cytometric, and quantitative PCR analysis. AOC3-deficient mice showed a 30-50% reduction in fibrosis, collagen synthesis, numbers of myofibroblasts, and accumulation of CD4(+) lymphocytes, NK T cells, macrophages, and type 2 innate lymphoid cells compared with wild-type control mice. AOC3 knock-in mice, which express a catalytically inactive form of AOC3, were also protected from lung fibrosis. In wild-type mice, a small-molecule AOC3 inhibitor treatment reduced leukocyte infiltration, myofibroblast differentiation, and fibrotic injury both in prophylactic and early therapeutic settings by about 50% but was unable to reverse the established fibrosis. AOC3 was also induced in myofibroblasts in human idiopathic pulmonary fibrosis. Thus, the oxidase activity of AOC3 contributes to the development of lung fibrosis mainly by regulating the accumulation of pathogenic leukocyte subtypes, which drive the fibrotic response.-Marttila-Ichihara, F., Elima, K., Auvinen, K., Veres, T. Z., Rantakari, P., Weston, C., Miyasaka, M., Adams, D., Jalkanen, S., Salmi, M. Amine oxidase activity regulates the development of pulmonary fibrosis.

  14. In vivo regulation of chemokine activity by post-translational modification.

    PubMed

    Moelants, Eva A V; Mortier, Anneleen; Van Damme, Jo; Proost, Paul

    2013-07-01

    Cytokines and chemokines represent two important groups of proteins that control the immune system. Dysregulation of the network in which these immunomodulators function can result in uncontrolled inflammation leading to various diseases, including rheumatoid arthritis, characterized by chronic inflammation and bone erosion. Chemokine activity is regulated at multiple levels, such as post-translational modification (PTM) of chemokines and their receptors by specific enzymes including proteases and peptidylarginine deiminases. Many in vitro experiments underscore the importance of post-translational processing of human chemokines. PTMs may enhance or reduce chemokine activity or may alter the receptor specificity of chemokine ligands. However, identification of chemokine isoforms in physiological in vivo settings forms the ultimate proof that PTM of chemokines is relevant in regulating the biological activity of these molecules. This review summarizes current knowledge on the in vivo role for PTMs in the regulation of chemokine activity.

  15. A novel highly potent therapeutic antibody neutralizes multiple human chemokines and mimics viral immune modulation.

    PubMed

    Scalley-Kim, Michelle L; Hess, Bruce W; Kelly, Ryan L; Krostag, Anne-Rachel F; Lustig, Kurt H; Marken, John S; Ovendale, Pamela J; Posey, Aaron R; Smolak, Pamela J; Taylor, Janelle D L; Wood, C L; Bienvenue, David L; Probst, Peter; Salmon, Ruth A; Allison, Daniel S; Foy, Teresa M; Raport, Carol J

    2012-01-01

    Chemokines play a key role in leukocyte recruitment during inflammation and are implicated in the pathogenesis of a number of autoimmune diseases. As such, inhibiting chemokine signaling has been of keen interest for the development of therapeutic agents. This endeavor, however, has been hampered due to complexities in the chemokine system. Many chemokines have been shown to signal through multiple receptors and, conversely, most chemokine receptors bind to more than one chemokine. One approach to overcoming this complexity is to develop a single therapeutic agent that binds and inactivates multiple chemokines, similar to an immune evasion strategy utilized by a number of viruses. Here, we describe the development and characterization of a novel therapeutic antibody that targets a subset of human CC chemokines, specifically CCL3, CCL4, and CCL5, involved in chronic inflammatory diseases. Using a sequential immunization approach, followed by humanization and phage display affinity maturation, a therapeutic antibody was developed that displays high binding affinity towards the three targeted chemokines. In vitro, this antibody potently inhibits chemotaxis and chemokine-mediated signaling through CCR1 and CCR5, primary chemokine receptors for the targeted chemokines. Furthermore, we have demonstrated in vivo efficacy of the antibody in a SCID-hu mouse model of skin leukocyte migration, thus confirming its potential as a novel therapeutic chemokine antagonist. We anticipate that this antibody will have broad therapeutic utility in the treatment of a number of autoimmune diseases due to its ability to simultaneously neutralize multiple chemokines implicated in disease pathogenesis.

  16. Characterization of cellular infiltrate, detection of chemokine receptor CCR5 and interleukin-8 and RANTES chemokines in adult periodontitis.

    PubMed

    Gamonal, J; Acevedo, A; Bascones, A; Jorge, O; Silva, A

    2001-06-01

    Leukocyte migration is essential for immune surveillance of tissues by focusing immune cells to sites of antigenic challenge. The control of leukocyte migration depends on the combined actions of adhesion molecules and a vast array of chemokines and their receptors. The purpose of the present study was to investigate the involvement of Interleukin-8 (IL-8), RANTES, the associated infiltrating cells and expression of CCR5 chemokine receptors in periodontitis; furthermore, the effect of periodontal therapy on these parameters was evaluated. Patients included in the study had moderate to advanced periodontal disease with at least 5-6 teeth with probing depth > 6 mm, attachment loss > or =3 mm and extensive radiographic bone loss. The inflammatory infiltrate was analyzed by immunohistochemistry in gingival biopsies obtained from subjects at the beginning of the study and 2 months after periodontal treatment. Gingival crevicular fluid (GCF) was collected for 30 seconds using periopaper strips, and chemokines were quantified by ELISA. The cellular components of the inflammatory infiltrate included B (CD19) and T (CD3, CD4+ and CD8+) lymphocytes and monocytes/macrophages (CD11c). CCR5 chemokine receptor expressing cells were exclusively found in periodontitis gingiva. IL-8 and RANTES were detected in the periodontitis group, obtaining a total amount of 212.5 pg and 42.0 pg, respectively. However, IL-8 was also detectable in the GCF of the healthy group (total amount of 44.8 pg). Periodontal therapy reduced the cell number in the infiltrate and the levels of IL-8 and RANTES, suggesting a relationship between these chemokines and periodontal status. We propose that the presence of these chemokines and the expression of chemokine receptors may represent a marker of lymphocyte subsets with the ability to migrate to inflammatory sites.

  17. Structural basis of ligand interaction with atypical chemokine receptor 3

    NASA Astrophysics Data System (ADS)

    Gustavsson, Martin; Wang, Liwen; van Gils, Noortje; Stephens, Bryan S.; Zhang, Penglie; Schall, Thomas J.; Yang, Sichun; Abagyan, Ruben; Chance, Mark R.; Kufareva, Irina; Handel, Tracy M.

    2017-01-01

    Chemokines drive cell migration through their interactions with seven-transmembrane (7TM) chemokine receptors on cell surfaces. The atypical chemokine receptor 3 (ACKR3) binds chemokines CXCL11 and CXCL12 and signals exclusively through β-arrestin-mediated pathways, without activating canonical G-protein signalling. This receptor is upregulated in numerous cancers making it a potential drug target. Here we collected over 100 distinct structural probes from radiolytic footprinting, disulfide trapping, and mutagenesis to map the structures of ACKR3:CXCL12 and ACKR3:small-molecule complexes, including dynamic regions that proved unresolvable by X-ray crystallography in homologous receptors. The data are integrated with molecular modelling to produce complete and cohesive experimentally driven models that confirm and expand on the existing knowledge of the architecture of receptor:chemokine and receptor:small-molecule complexes. Additionally, we detected and characterized ligand-induced conformational changes in the transmembrane and intracellular regions of ACKR3 that elucidate fundamental structural elements of agonism in this atypical receptor.

  18. Chemokines and their receptors in the allergic airway inflammatory process.

    PubMed

    Velazquez, Juan Raymundo; Teran, Luis Manuel

    2011-08-01

    The development of the allergic airway disease conveys several cell types, such as T-cells, eosinophils, mast cells, and dendritic cells, which act in a special and temporal synchronization. Cellular mobilization and its complex interactions are coordinated by a broad range of bioactive mediators known as chemokines. These molecules are an increasing family of small proteins with common structural motifs and play an important role in the recruitment and cell activation of both leukocytes and resident cells at the allergic inflammatory site via their receptors. Trafficking and recruitment of cell populations with specific chemokines receptors assure the presence of reactive allergen-specific T-cells in the lung, and therefore the establishment of an allergic inflammatory process. Different approaches directed against chemokines receptors have been developed during the last decades with promising therapeutic results in the treatment of asthma. In this review we explore the role of the chemokines and chemokine receptors in allergy and asthma and discuss their potential as targets for therapy.

  19. Chemokine overexpression in the skin by biolistic DNA delivery.

    PubMed

    Jalili, Ahmad

    2013-01-01

    Chemokines are a family of small, secreted proteins that function in leukocyte and tumor cell trafficking and recruiting. CC chemokine ligand 21 (CCL21)/secondary lymphoid chemokine (SLC) belongs to the inflammatory subgroup of chemokines and is expressed by stromal cells in the T-cell-rich zones of peripheral lymph nodes, afferent lymphatic endothelial cells and high endothelial venules. CCR7 (both in human and mouse) and CXCR3 (in mouse) are expressed by the most potent antigen-presenting cells (dendritic cells), naïve/central memory, and effector T cells, respectively. Inflammation in the skin can induce expression of CCL21 which is subsequently drained into loco-regional lymph nodes responsible for co-localization of antigen-presenting cells and T lymphocytes, a prerequisite for induction of adaptive immune responses. Here, skin functions as a remote control for induction of targeted cell migration in vivo. This chapter describes Gene Gun administration of plasmid DNA expressing functionally active CCL21 (as an example of a chemokine) into the skin in mice and subsequent functional evaluation of the transgene expression in vivo.

  20. Chemokine response in mice infected with Mycobacterium tuberculosis.

    PubMed Central

    Rhoades, E R; Cooper, A M; Orme, I M

    1995-01-01

    We show here that infection of murine macrophages with various strains of Mycobacterium tuberculosis induces the rapid in vitro expression of genes encoding chemokines macrophage inflammatory protein 1 alpha and macrophage inflammatory protein 2, which recruit neutrophils to sites of infection, and macrophage-recruiting chemokines 10-kDa, interferon-inducible protein (IP-10) and macrophage chemotactic protein 1. Three strains of M. tuberculosis, Erdman and the clinical isolates CSU 22 and CSU 46, induced similar levels of secretion of macrophage chemotactic protein 1 from infected macrophage monolayers; however, the Erdman strain failed to induce levels of secretion of tumor necrosis factor alpha similar to those induced by either CSU 22 or CSU 46. Using a low-dose aerosol infection model, we also found that while the Erdman strain induced negligible increases in chemokine mRNA levels in the lungs, infection with either CSU 22 or CSU 46 resulted in greater levels of mRNA production for all four chemokines tested. The growth of these strains in the lungs was, however, equally well contained by acquired host immunity. These data allow us to hypothesize that the chemokine response in the lungs probably does not control the protective granulomatous response and that perhaps other T-cell- or macrophage-associated cytokines such as tumor necrosis factor alpha or interleukin 12 may be involved in this process. PMID:7558294

  1. Genome Diversification Mechanism of Rodent and Lagomorpha Chemokine Genes

    PubMed Central

    Shibata, Kanako; Yoshie, Osamu; Tanase, Sumio

    2013-01-01

    Chemokines are a large family of small cytokines that are involved in host defence and body homeostasis through recruitment of cells expressing their receptors. Their genes are known to undergo rapid evolution. Therefore, the number and content of chemokine genes can be quite diverse among the different species, making the orthologous relationships often ambiguous even between closely related species. Given that rodents and rabbit are useful experimental models in medicine and drug development, we have deduced the chemokine genes from the genome sequences of several rodent species and rabbit and compared them with those of human and mouse to determine the orthologous relationships. The interspecies differences should be taken into consideration when experimental results from animal models are extrapolated into humans. The chemokine gene lists and their orthologous relationships presented here will be useful for studies using these animal models. Our analysis also enables us to reconstruct possible gene duplication processes that generated the different sets of chemokine genes in these species. PMID:23991422

  2. Structural basis of ligand interaction with atypical chemokine receptor 3

    PubMed Central

    Gustavsson, Martin; Wang, Liwen; van Gils, Noortje; Stephens, Bryan S.; Zhang, Penglie; Schall, Thomas J.; Yang, Sichun; Abagyan, Ruben; Chance, Mark R.; Kufareva, Irina; Handel, Tracy M.

    2017-01-01

    Chemokines drive cell migration through their interactions with seven-transmembrane (7TM) chemokine receptors on cell surfaces. The atypical chemokine receptor 3 (ACKR3) binds chemokines CXCL11 and CXCL12 and signals exclusively through β-arrestin-mediated pathways, without activating canonical G-protein signalling. This receptor is upregulated in numerous cancers making it a potential drug target. Here we collected over 100 distinct structural probes from radiolytic footprinting, disulfide trapping, and mutagenesis to map the structures of ACKR3:CXCL12 and ACKR3:small-molecule complexes, including dynamic regions that proved unresolvable by X-ray crystallography in homologous receptors. The data are integrated with molecular modelling to produce complete and cohesive experimentally driven models that confirm and expand on the existing knowledge of the architecture of receptor:chemokine and receptor:small-molecule complexes. Additionally, we detected and characterized ligand-induced conformational changes in the transmembrane and intracellular regions of ACKR3 that elucidate fundamental structural elements of agonism in this atypical receptor. PMID:28098154

  3. Cytokines and chemokines in neuromyelitis optica: pathogenetic and therapeutic implications.

    PubMed

    Uzawa, Akiyuki; Mori, Masahiro; Masahiro, Mori; Kuwabara, Satoshi

    2014-01-01

    Neuromyelitis optica (NMO) is characterized by severe optic neuritis and longitudinally extensive transverse myelitis. The discovery of an NMO-specific autoantibody to the aquaporin-4 (AQP4) water channel has improved knowledge of NMO pathogenesis. Many studies have focused on inflammatory and pathological biomarkers of NMO, including cytokines and chemokines. Increased concentrations of T helper (Th)17- and Th2-related cytokines and chemokines may be essential factors for developing NMO inflammatory lesions. For example, interleukin-6 could play important roles in NMO pathogenesis, as it is involved in the survival of plasmablasts that produce anti-AQP4 antibody in peripheral circulation and in the enhancement of inflammation in the central nervous system. Therefore, assessment of these useful biomarkers may become a supportive criterion for diagnosing NMO. Significant advances in the understanding of NMO pathogenesis will lead to the development of novel treatment strategies. This review focuses on the current advances in NMO immunological research, particularly that of cytokines and chemokines.

  4. Evidence for chemokine synergy during neutrophil migration in ARDS

    PubMed Central

    Williams, Andrew E; José, Ricardo J; Mercer, Paul F; Brealey, David; Parekh, Dhruv; Thickett, David R; O'Kane, Cecelia; McAuley, Danny F; Chambers, Rachel C

    2017-01-01

    Background Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterised by pulmonary oedema, respiratory failure and severe inflammation. ARDS is further characterised by the recruitment of neutrophils into the lung interstitium and alveolar space. Objectives The factors that regulate neutrophil infiltration into the inflamed lung and our understanding of the pathomechanisms in ARDS remain incomplete. This study aimed at determining the role of the chemokine (C-C motif) ligand (CCL)2 and CCL7 in ARDS. Methods CCL2 and CCL7 protein levels were measured in bronchoalveolar lavage (BAL) fluid obtained from lipopolysaccharide(LPS)-challenged human volunteers and two separate cohorts of patients with ARDS. Neutrophil chemotaxis to ARDS BAL fluid was evaluated and the contribution of each was assessed and compared with chemokine (C-X-C motif) ligand 8 (CXCL8). Chemokine receptor expression on neutrophils from blood or BAL fluid of patients with ARDS was analysed by flow cytometry. Results CCL2 and CCL7 were significantly elevated in BAL fluid recovered from LPS-challenged volunteers and patients with ARDS. BAL fluid from patients with ARDS was highly chemotactic for human neutrophils and neutralising either CCL2 or CCL7 attenuated the neutrophil chemotactic response. Moreover, CCL2 and CCL7 synergised with CXCL8 to promote neutrophil migration. Furthermore, neutrophils isolated from the blood or BAL fluid differentially regulated the cell surface expression of chemokine (C-X-C motif) receptor 1 and C-C chemokine receptor type 2 during ARDS. Conclusion This study highlights important inflammatory chemokines involved in regulating neutrophil migration, which may have potential value as therapeutic targets for the treatment of ARDS. PMID:27496101

  5. Inhibitory effects of heartwood extracts of Broussonetia kazinoki Sieb on the development of atopic dermatitis in NC/Nga mice.

    PubMed

    Lee, Jun-Kyoung; Ha, Hyekyung; Lee, Ho-Young; Park, Sang-Joon; Jeong, Seung-ll; Choi, Young-Jae; Shin, Hyeun Kyoo

    2010-01-01

    We investigated the effects of a topically applied extract of the heartwood of Broussonetia kazinoki Sieb (B. kazinoki) on atopic dermatitis (AD)-like skin lesions induced by an extract of the house-dust mite Dermatophagoides farina in NC/Nga mice. We found that topically applied B. kazinoki extract suppressed the histological manifestations of AD-like skin lesions, and decreased the levels of plasma immunoglobulin E (IgE) and interleukin-4 (IL-4) in the mice. Moreover, B. kazinoki inhibited the induction of thymus-and-activation-regulated chemokine (TARC/CCL17), macrophage-derived chemokine (MDC/CCL22), and regulated-on-activation-normal T cell-expressed-and-secreted chemokine (RANTES/CCL5) in HaCaT cells activated by tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma). In conclusion, our results suggest that B. kazinoki extract has therapeutic advantages in the treatment of AD.

  6. Dual GPCR and GAG mimicry by the M3 chemokine decoy receptor

    SciTech Connect

    Alexander-Brett, Jennifer M.; Fremont, Daved H.

    2008-09-23

    Viruses have evolved a myriad of evasion strategies focused on undermining chemokine-mediated immune surveillance, exemplified by the mouse {gamma}-herpesvirus 68 M3 decoy receptor. Crystal structures of M3 in complex with C chemokine ligand 1/lymphotactin and CC chemokine ligand 2/monocyte chemoattractant protein 1 reveal that invariant chemokine features associated with G protein-coupled receptor binding are primarily recognized by the decoy C-terminal domain, whereas the N-terminal domain (NTD) reconfigures to engage divergent basic residue clusters on the surface of chemokines. Favorable electrostatic forces dramatically enhance the association kinetics of chemokine binding by M3, with a primary role ascribed to acidic NTD regions that effectively mimic glycosaminoglycan interactions. Thus, M3 employs two distinct mechanisms of chemical imitation to potently sequester chemokines, thereby inhibiting chemokine receptor binding events as well as the formation of chemotactic gradients necessary for directed leukocyte trafficking.

  7. An atypical addition to the chemokine receptor nomenclature: IUPHAR Review 15.

    PubMed

    Bachelerie, Françoise; Graham, Gerard J; Locati, Massimo; Mantovani, Alberto; Murphy, Philip M; Nibbs, Robert; Rot, Antal; Sozzani, Silvano; Thelen, Marcus

    2015-08-01

    Chemokines and their receptors are essential regulators of in vivo leukocyte migration and, some years ago, a systematic nomenclature system was developed for the chemokine receptor family. Chemokine receptor biology and biochemistry was recently extensively reviewed. In this review, we also highlighted a new component to the nomenclature system that incorporates receptors previously known as 'scavenging', or 'decoy', chemokine receptors on the basis of their lack of classical signalling responses to ligand binding and their general ability to scavenge, or sequester, their cognate chemokine ligands. These molecules are now collectively referred to as 'atypical chemokine receptors', or ACKRs, and play fundamental roles in regulating in vivo responses to chemokines. This commentary highlights this new addition to the chemokine receptor nomenclature system and provides brief information on the four receptors currently covered by this nomenclature.

  8. An atypical addition to the chemokine receptor nomenclature: IUPHAR Review 15

    PubMed Central

    Bachelerie, Françoise; Graham, Gerard J; Locati, Massimo; Mantovani, Alberto; Murphy, Philip M; Nibbs, Robert; Rot, Antal; Sozzani, Silvano; Thelen, Marcus

    2015-01-01

    Chemokines and their receptors are essential regulators of in vivo leukocyte migration and, some years ago, a systematic nomenclature system was developed for the chemokine receptor family. Chemokine receptor biology and biochemistry was recently extensively reviewed. In this review, we also highlighted a new component to the nomenclature system that incorporates receptors previously known as ‘scavenging’, or ‘decoy’, chemokine receptors on the basis of their lack of classical signalling responses to ligand binding and their general ability to scavenge, or sequester, their cognate chemokine ligands. These molecules are now collectively referred to as ‘atypical chemokine receptors’, or ACKRs, and play fundamental roles in regulating in vivo responses to chemokines. This commentary highlights this new addition to the chemokine receptor nomenclature system and provides brief information on the four receptors currently covered by this nomenclature. PMID:25958743

  9. Development of specific cytokine and Chemokine ELISAs for Bottlenose Dolphins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Earlier detection of changes in the health status of bottlenose dolphins (Tursiops truncatus) is expected to further improve their medical care. Cytokines and chemokines are critical mediators of the cellular immune response, and studies have suggested that these molecules may serve as important bio...

  10. Characterization of the "CCR5" Chemokine Receptor Gene

    ERIC Educational Resources Information Center

    Thomas, John C.

    2004-01-01

    The life cycle of retroviruses is an essential topic of modern cell biology instruction. Furthermore, the process of HIV viral entry into the cell is a question of great interest in basic and clinical biology. This paper describes how students can easily recover their own DNA, amplify a portion of the "CCR5" chemokine receptor gene, characterize…

  11. SMM-chemokines: a class of unnatural synthetic molecules as chemical probes of chemokine receptor biology and leads for therapeutic development.

    PubMed

    Kumar, Santosh; Choi, Won-Tak; Dong, Chang-Zhi; Madani, Navid; Tian, Shaomin; Liu, Dongxiang; Wang, Youli; Pesavento, James; Wang, Jun; Fan, Xuejun; Yuan, Jian; Fritzsche, Wayne R; An, Jing; Sodroski, Joseph G; Richman, Douglas D; Huang, Ziwei

    2006-01-01

    Chemokines and their receptors play important roles in numerous physiological and pathological processes. To develop natural chemokines into receptor probes and inhibitors of pathological processes, the lack of chemokine-receptor selectivity must be overcome. Here, we apply chemical synthesis and the concept of modular modifications to generate unnatural synthetically and modularly modified (SMM)-chemokines that have high receptor selectivity and affinity, and reduced toxicity. A proof of the concept was shown by transforming the nonselective viral macrophage inflammatory protein-II into new analogs with enhanced selectivity and potency for CXCR4 or CCR5, two principal coreceptors for human immunodeficiency virus (HIV)-1 entry. These new analogs provided insights into receptor binding and signaling mechanisms and acted as potent HIV-1 inhibitors. These results support the concept of SMM-chemokines for studying and controlling the function of other chemokine receptors.

  12. Differential expression of cytokines, chemokines and chemokine receptors in patients with coronary artery disease.

    PubMed

    de Oliveira, Rômulo Tadeu Dias; Mamoni, Ronei Luciano; Souza, José Roberto Matos; Fernandes, Juliano Lara; Rios, Francisco José O; Gidlund, Magnus; Coelho, Otávio Rizzi; Blotta, Maria Heloisa Souza Lima

    2009-07-24

    Monocytes/macrophages and lymphocytes have a key role in the pathogenesis of atherosclerosis through the production of inflammatory and anti-inflammatory cytokines. We evaluated mRNA expression and protein production of CCL2, CXCL8, CXCL9, CXCL10, IFN-gamma and IL-10 in vitro as well as the expression of the CCR2 and CXCR3 receptors in peripheral blood mononuclear cells (PBMCs) of patients with coronary artery disease (CAD) and healthy controls in the presence or absence of oxidized LDL (oxLDL). Patients with CAD showed higher constitutive expression of CCL2, CXCL8, CXCL9, CXCL10 and IFN-gamma mRNA and, after stimulation with oxLDL, higher expression of CCL2 and CXCL8 mRNA than the control group. We also detected higher levels of CCL2 and CXCL8 in supernatants of oxLDL-stimulated PBMCs from CAD patients than in corresponding supernatants from controls. Patients with CAD had a higher percentage of constitutive CCR2(+) and CXCR3(+) cells after stimulation with oxLDL. Among CAD patients, the main differences between the stable (SA) and unstable angina (UA) groups were lower IL-10 mRNA production in the latter group. Altogether, our data suggest that PBMCs from CAD patients are able to produce higher concentrations of chemokines and cytokines involved in the regulation of monocyte and lymphocyte migration and retention in atherosclerotic lesions.

  13. Dual Targeting of the Chemokine Receptors CXCR4 and ACKR3 with Novel Engineered Chemokines*

    PubMed Central

    Hanes, Melinda S.; Salanga, Catherina L.; Chowdry, Arnab B.; Comerford, Iain; McColl, Shaun R.; Kufareva, Irina; Handel, Tracy M.

    2015-01-01

    The chemokine CXCL12 and its G protein-coupled receptors CXCR4 and ACKR3 are implicated in cancer and inflammatory and autoimmune disorders and are targets of numerous antagonist discovery efforts. Here, we describe a series of novel, high affinity CXCL12-based modulators of CXCR4 and ACKR3 generated by selection of N-terminal CXCL12 phage libraries on live cells expressing the receptors. Twelve of 13 characterized CXCL12 variants are full CXCR4 antagonists, and four have Kd values <5 nm. The new variants also showed high affinity for ACKR3. The variant with the highest affinity for CXCR4, LGGG-CXCL12, showed efficacy in a murine model for multiple sclerosis, demonstrating translational potential. Molecular modeling was used to elucidate the structural basis of binding and antagonism of selected variants and to guide future designs. Together, this work represents an important step toward the development of therapeutics targeting CXCR4 and ACKR3. PMID:26216880

  14. Regulation of inflammatory chemokine receptors on blood T cells associated to the circulating versus liver chemokines in dengue fever.

    PubMed

    de-Oliveira-Pinto, Luzia Maria; Marinho, Cíntia Ferreira; Povoa, Tiago Fajardo; de Azeredo, Elzinandes Leal; de Souza, Luiza Assed; Barbosa, Luiza Damian Ribeiro; Motta-Castro, Ana Rita C; Alves, Ada M B; Ávila, Carlos André Lins; de Souza, Luiz José; da Cunha, Rivaldo Venâncio; Damasco, Paulo Vieira; Paes, Marciano Viana; Kubelka, Claire Fernandes

    2012-01-01

    Little is known about the role of chemokines/chemokines receptors on T cells in natural DENV infection. Patients from DENV-2 and -3- outbreaks were studied prospectively during the acute or convalescent phases. Expression of chemokine receptor and activation markers on lymphocyte subpopulations were determined by flow cytometry analysis, plasma chemokine ligands concentrations were measured by ELISA and quantification of CCL5/RANTES(+) cells in liver tissues from fatal dengue cases was performed by immunochemistry. In the acute DENV-infection, T-helper/T-cytotoxic type-1 cell (Th1/Tc1)-related CCR5 is significantly higher expressed on both CD4 and CD8 T cells. The Th1-related CXCR3 is up-regulated among CD4 T cells and Tc2-related CCR4 is up-regulated among CD8 T cells. In the convalescent phase, all chemokine receptor or chemokine ligand expression tends to reestablish control healthy levels. Increased CCL2/MCP-1 and CCL4/MIP-1β but decreased CCL5/RANTES levels were observed in DENV-patients during acute infection. Moreover, we showed an increased CD107a expression on CCR5 or CXCR3-expressing T cells and higher expression of CD29, CD44(HIGH) and CD127(LOW) markers on CCR4-expressing CD8 T cells in DENV-patients when compared to controls. Finally, liver from dengue fatal patients showed increased number of cells expressing CCL5/RANTES in three out of four cases compared to three death from a non-dengue patient. In conclusion, both Th1-related CCR5 and CXCR3 among CD4 T cells have a potential ability to exert cytotoxicity function. Moreover, Tc1-related CCR5 and Tc2-related CCR4 among CD8 T cells have a potential ability to exert effector function and migration based on cell markers evaluated. The CCR5 expression would be promoting an enhanced T cell recruitment into liver, a hypothesis that is corroborated by the CCL5/RANTES increase detected in hepatic tissue from dengue fatal cases. The balance between protective and pathogenic immune response mediated by

  15. Modulation of chemokine and chemokine receptor expression following infection of porcine macrophages with African swine fever virus

    PubMed Central

    Fishbourne, Emma; Abrams, Charles C.; Takamatsu, Haru-H.; Dixon, Linda K.

    2013-01-01

    African swine fever virus (ASFV) is the only member of the Asfarviridae, a large DNA virus family which replicates predominantly in the cytoplasm. Most isolates cause a fatal haemorrhagic disease in domestic pigs, although some low virulence isolates cause little or no mortality. The modulation of chemokine responses following infection of porcine macrophages with low and high virulence isolates was studied to indicate how this may be involved in the induction of pathogenesis and of effective immune responses. Infection with both low and high virulence isolates resulted in down-regulation of mRNA levels for chemokines CCL2, CCL3L, CXCL2 and chemokine receptors CCR1, CCR5, CXCR3, CXCR4 and up-regulation in expression of mRNAs for CCL4, CXCL10 and chemokine receptor CCR7. Levels of CCL4, CXCL8, CXCL10 mRNAs were higher in macrophages infected with low virulence isolate OURT88/3 compared to high virulence isolate Benin 97/1. Levels of CXCL8 and CCL2 protein were significantly reduced in supernatants from macrophages infected with Benin 97/1 isolate compared to OURT88/3 and mock-infected macrophages. There was also a decreased chemotactic response of donor cells exposed to supernatants from Benin 97/1 infected macrophages compared to those from OURT88/3 and mock-infected macrophages. The data show that infection of macrophages with the low virulence strain OURT88/3 induces higher expression of key inflammatory chemokines compared to infection with high virulence strain Benin 97/1. This may be important for the induction of effective protective immunity that has been observed in pigs immunised with the OURT88/3 isolate. PMID:23265239

  16. Modulation of chemokine and chemokine receptor expression following infection of porcine macrophages with African swine fever virus.

    PubMed

    Fishbourne, Emma; Abrams, Charles C; Takamatsu, Haru-H; Dixon, Linda K

    2013-03-23

    African swine fever virus (ASFV) is the only member of the Asfarviridae, a large DNA virus family which replicates predominantly in the cytoplasm. Most isolates cause a fatal haemorrhagic disease in domestic pigs, although some low virulence isolates cause little or no mortality. The modulation of chemokine responses following infection of porcine macrophages with low and high virulence isolates was studied to indicate how this may be involved in the induction of pathogenesis and of effective immune responses. Infection with both low and high virulence isolates resulted in down-regulation of mRNA levels for chemokines CCL2, CCL3L, CXCL2 and chemokine receptors CCR1, CCR5, CXCR3, CXCR4 and up-regulation in expression of mRNAs for CCL4, CXCL10 and chemokine receptor CCR7. Levels of CCL4, CXCL8, CXCL10 mRNAs were higher in macrophages infected with low virulence isolate OURT88/3 compared to high virulence isolate Benin 97/1. Levels of CXCL8 and CCL2 protein were significantly reduced in supernatants from macrophages infected with Benin 97/1 isolate compared to OURT88/3 and mock-infected macrophages. There was also a decreased chemotactic response of donor cells exposed to supernatants from Benin 97/1 infected macrophages compared to those from OURT88/3 and mock-infected macrophages. The data show that infection of macrophages with the low virulence strain OURT88/3 induces higher expression of key inflammatory chemokines compared to infection with high virulence strain Benin 97/1. This may be important for the induction of effective protective immunity that has been observed in pigs immunised with the OURT88/3 isolate.

  17. The role of chemokines in hypertension and consequent target organ damage.

    PubMed

    Rudemiller, Nathan P; Crowley, Steven D

    2017-03-06

    Immune cells infiltrate the kidney, vasculature, and central nervous system during hypertension, consequently amplifying tissue damage and/or blood pressure elevation. Mononuclear cell motility depends partly on chemokines, which are small cytokines that guide cells through an increasing concentration gradient via ligation of their receptors. Tissue expression of several chemokines is elevated in clinical and experimental hypertension. Likewise, immune cells have enhanced chemokine receptor expression during hypertension, driving immune cell infiltration and inappropriate inflammation in cardiovascular control centers. T lymphocytes and monocytes/macrophages are pivotal mediators of hypertensive inflammation, and these cells migrate in response to several chemokines. As powerful drivers of diapedesis, the chemokines CCL2 and CCL5 have long been implicated in hypertension, but experimental data highlight divergent, context-specific effects of these chemokines on blood pressure and tissue injury. Several other chemokines, particularly those of the CXC family, contribute to blood pressure elevation and target organ damage. Given the significant interplay and chemotactic redundancy among chemokines during disease, future work must not only describe the actions of individual chemokines in hypertension, but also characterize how manipulating a single chemokine modulates the expression and/or function of other chemokines and their cognate receptors. This information will facilitate the design of precise chemotactic immunotherapies to limit cardiovascular and renal morbidity in hypertensive patients.

  18. Chemokines derived from soluble fusion proteins expressed in Escherichia coli are biologically active

    SciTech Connect

    Magistrelli, Giovanni; Gueneau, Franck; Muslmani, Machadiya; Ravn, Ulla; Kosco-Vilbois, Marie; Fischer, Nicolas . E-mail: nfischer@novimmune.com

    2005-08-26

    Chemokines are a class of low molecular weight proteins that are involved in leukocytes trafficking. Due to their involvement in recruiting immune cells to sites of inflammation, chemokines, and chemokine receptors have become an attractive class of therapeutic targets. However, when expressed in Escherichia coli chemokines are poorly soluble and accumulate in inclusion bodies. Several purification methods have been described but involve time-consuming refolding, buffer exchange, and purification steps that complicate expression of these proteins. Here, we describe a simple and reliable method to express chemokines as fusions to the protein NusA. The fusion proteins were largely found in the soluble fraction and could be readily purified in a single step. Proteolytic cleavage was used to obtain soluble recombinant chemokines that were found to be very active in a novel in vitro chemotaxis assays. This method could be applied to several {alpha} and {beta} human chemokines, suggesting that it is generally applicable to this class of proteins.

  19. The fine balance of chemokines during disease: trafficking, inflammation, and homeostasis.

    PubMed

    Cardona, Sandra M; Garcia, Jenny A; Cardona, Astrid E

    2013-01-01

    The action of chemokines (or "chemotactic cytokines") is recognized as an integral part of inflammatory and regulatory processes. Leukocyte mobilization during physiological conditions, trafficking of various cell types during pathological conditions, cell activation, and angiogenesis are among the target functions exerted by chemokines upon signaling via their specific receptors. Current research is focused in analyzing changes in chemokine/chemokine receptor patterns during various diseases with the aim to modulate pathological trafficking of cells, or to attract particular cell types to specific tissues. This review focuses on defining the role(s) of certain chemokine ligands and receptors in inflammatory neurological conditions such as multiple sclerosis. In addition, the role(s) of chemokines in neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease is also described, as well as the contribution of chemokines to the pathogenesis of cancer, diabetes, and cardiovascular disease.

  20. Transendothelial migration of lymphocytes mediated by intraendothelial vesicle stores rather than by extracellular chemokine depots.

    PubMed

    Shulman, Ziv; Cohen, Shmuel J; Roediger, Ben; Kalchenko, Vyacheslav; Jain, Rohit; Grabovsky, Valentin; Klein, Eugenia; Shinder, Vera; Stoler-Barak, Liat; Feigelson, Sara W; Meshel, Tsipi; Nurmi, Susanna M; Goldstein, Itamar; Hartley, Olivier; Gahmberg, Carl G; Etzioni, Amos; Weninger, Wolfgang; Ben-Baruch, Adit; Alon, Ronen

    2011-12-04

    Chemokines presented by the endothelium are critical for integrin-dependent adhesion and transendothelial migration of naive and memory lymphocytes. Here we found that effector lymphocytes of the type 1 helper T cell (T(H)1 cell) and type 1 cytotoxic T cell (T(C)1 cell) subtypes expressed adhesive integrins that bypassed chemokine signals and established firm arrests on variably inflamed endothelial barriers. Nevertheless, the transendothelial migration of these lymphocytes strictly depended on signals from guanine nucleotide-binding proteins of the G(i) type and was promoted by multiple endothelium-derived inflammatory chemokines, even without outer endothelial surface exposure. Instead, transendothelial migration-promoting endothelial chemokines were stored in vesicles docked on actin fibers beneath the plasma membranes and were locally released within tight lymphocyte-endothelial synapses. Thus, effector T lymphocytes can cross inflamed barriers through contact-guided consumption of intraendothelial chemokines without surface-deposited chemokines or extraendothelial chemokine gradients.

  1. Molecular characterization and expression analysis of nine CC chemokines in half-smooth tongue sole, Cynoglossus semilaevis.

    PubMed

    Hao, Lian-xu; Li, Mo-fei

    2015-12-01

    Chemokines are a large, diverse group of small cytokines that can be classified into several families, including the CC chemokine family, which plays a pivotal role in host defense by inducing leukocyte chemotaxis under physiological and inflammatory conditions. Here we studied 9 CC chemokines from half-smooth tongue sole (Cynoglossus semilaevis). Phylogenetic analysis divided these chemokines into four groups. The tissue specific expression patterns of the 9 chemokines under normal physiological conditions varied much, with most chemokines highly expressed in immune organs, while some other chemokines showing high expression levels in non-immune organs. In addition, the 9 chemokines exhibited similar or distinctly different expression profiles in response to the challenge of virus and intracellular and extracellular bacterial pathogens. These results indicate that in tongue sole, CC chemokines may be involved in different immune responses as homeostatic or inflammatory chemokines.

  2. Cultured rat microglia express functional beta-chemokine receptors.

    PubMed

    Boddeke, E W; Meigel, I; Frentzel, S; Gourmala, N G; Harrison, J K; Buttini, M; Spleiss, O; Gebicke-Härter, P

    1999-08-03

    We have investigated the functional expression of the beta-chemokine receptors CCR1 to 5 in cultured rat microglia. RT-PCR analysis revealed constitutive expression of CCR1, CCR2 and CCR5 mRNA. The beta-chemokines MCP-1 (1-30 nM) as well as RANTES and MIP-1alpha (100-1000 nM) evoked calcium transients in control and LPS-treated microglia. Whereas, the response to MCP-1 was dependent on extracellular calcium the response to RANTES was not. The effect of MCP-1 but not that of RANTES was inhibited by the calcium-induced calcium release inhibitor ryanodine. Calcium responses to MCP-1- and RANTES were observed in distinct populations of microglia.

  3. Tropoelastin regulates chemokine expression in fibroblasts in Costello syndrome

    SciTech Connect

    Tatano, Yutaka; Fujinawa, Reiko; Kozutsumi, Yasunori; Takahashi, Tsutomu; Tsuji, Daisuke; Takeuchi, Naohiro; Tsuta, Kohji; Takada, Goro; Sakuraba, Hitoshi; Itoh, Kohji

    2008-08-08

    Costello syndrome is a multiple congenital anomaly associated with growth and mental retardation, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Comprehensive expression analysis revealed remarkable up-regulation of several cytokines and chemokines including Gro family proteins, interleukin-1{beta} (IL-1{beta}), IL-8 and MCP-1 but down-regulation of extracellular matrix components including collagens and proteoglycans of skin fibroblasts derived from a Japanese Costello syndrome patient characterized by significantly reduced tropoelastin mRNA, impaired elastogenesis and enhanced cell proliferation. In contrast, decreases in these chemokines and IL-1{beta} expression were observed in Costello fibroblastic cell lines stably expressing the bovine tropoelastin (btEln) gene and in restored elastic fibers. These results strongly suggest that the human TE gene (ELN) transfer could be applicable for the gene therapy of a group of Costello syndrome patients with reduced ELN gene expression.

  4. Epithelial Anion Transport as Modulator of Chemokine Signaling

    PubMed Central

    Schnúr, Andrea; Hegyi, Péter; Rousseau, Simon; Lukacs, Gergely L.; Veit, Guido

    2016-01-01

    The pivotal role of epithelial cells is to secrete and absorb ions and water in order to allow the formation of a luminal fluid compartment that is fundamental for the epithelial function as a barrier against environmental factors. Importantly, epithelial cells also take part in the innate immune system. As a first line of defense they detect pathogens and react by secreting and responding to chemokines and cytokines, thus aggravating immune responses or resolving inflammatory states. Loss of epithelial anion transport is well documented in a variety of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, pancreatitis, and cholestatic liver disease. Here we review the effect of aberrant anion secretion with focus on the release of inflammatory mediators by epithelial cells and discuss putative mechanisms linking these transport defects to the augmented epithelial release of chemokines and cytokines. These mechanisms may contribute to the excessive and persistent inflammation in many respiratory and gastrointestinal diseases. PMID:27382190

  5. Characterisation of SNP haplotype structure in chemokine and chemokine receptor genes using CEPH pedigrees and statistical estimation.

    PubMed

    Clark, Vanessa J; Dean, Michael

    2004-03-01

    Chemokine signals and their cell-surface receptors are important modulators of HIV-1 disease and cancer. To aid future case/control association studies, aim to further characterise the haplotype structure of variation in chemokine and chemokine receptor genes. To perform haplotype analysis in a population-based association study, haplotypes must be determined by estimation, in the absence of family information or laboratory methods to establish phase. Here, test the accuracy of estimates of haplotype frequency and linkage disequilibrium by comparing estimated haplotypes generated with the expectation maximisation (EM) algorithm to haplotypes determined from Centre d'Etude Polymorphisme Humain (CEPH) pedigree data. To do this, they have characterised haplotypes comprising alleles at 11 biallelic loci in four chemokine receptor genes (CCR3, CCR2, CCR5 and CCRL2), which span 150 kb on chromosome 3p21, and haplotyes of nine biallelic loci in six chemokine genes [MCP-1(CCL2), Eotaxin(CCL11), RANTES(CCL5), MPIF-1(CCL23), PARC(CCL18) and MIP-1alpha(CCL3)] on chromosome 17q11-12. Forty multi-generation CEPH families, totalling 489 individuals, were genotyped by the TaqMan 5'-nuclease assay. Phased haplotypes and haplotypes estimated from unphased genotypes were compared in 103 grandparents who were assumed to have mated at random. For the 3p21 single nucleotide polymorphism (SNP) data, haplotypes determined by pedigree analysis and haplotypes generated by the EM algorithm were nearly identical. Linkage disequilibrium, measured by the D' statistic, was nearly maximal across the 150 kb region, with complete disequilibrium maintained at the extremes between CCR3-Y17Y and CCRL2-I243V. D'-values calculated from estimated haplotypes on 3p21 had high concordance with pairwise comparisons between pedigree-phased chromosomes. Conversely, there was less agreement between analyses of haplotype frequencies and linkage disequilibrium using estimated haplotypes when compared with

  6. Chemokines Associated with Pathologic Responses to Orthopedic Implant Debris

    PubMed Central

    Hallab, Nadim J.; Jacobs, Joshua J.

    2017-01-01

    Despite the success in returning people to health saving mobility and high quality of life, the over 1 million total joint replacements implanted in the US each year are expected to eventually fail after approximately 15–25 years of use, due to slow progressive subtle inflammation to implant debris compromising the bone implant interface. This local inflammatory pseudo disease state is primarily caused by implant debris interaction with innate immune cells, i.e., macrophages. This implant debris can also activate an adaptive immune reaction giving rise to the concept of implant-related metal sensitivity. However, a consensus of studies agree the dominant form of this response is due to innate reactivity by macrophages to implant debris danger signaling (danger-associated molecular pattern) eliciting cytokine-based and chemokine inflammatory responses. This review covers implant debris-induced release of the cytokines and chemokines due to activation of the innate (and the adaptive) immune system and how this leads to subsequent implant failure through loosening and osteolysis, i.e., what is known of central chemokines (e.g., IL-8, monocyte chemotactic protein-1, MIP-1, CCL9, CCL10, CCL17, and CCL22) associated with implant debris reactivity as related to the innate immune system activation/cytokine expression, e.g., danger signaling (e.g., IL-1β, IL-18, IL-33, etc.), toll-like receptor activation (e.g., IL-6, tumor necrosis factor α, etc.), bone catabolism (e.g., TRAP5b), and hypoxia responses (HIF-1α). More study is needed, however, to fully understand these interactions to effectively counter cytokine- and chemokine-based orthopedic implant-related inflammation. PMID:28154552

  7. Chemokine and cytokine levels in inflammatory bowel disease patients.

    PubMed

    Singh, Udai P; Singh, Narendra P; Murphy, E Angela; Price, Robert L; Fayad, Raja; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2016-01-01

    Crohn's disease (CD) and ulcerative colitis (UC), two forms of inflammatory bowel disease (IBD), are chronic, relapsing, and tissue destructive lesions that are accompanied by the uncontrolled activation of effector immune cells in the mucosa. Recent estimates indicate that there are 1.3 million annual cases of IBD in the United States, 50% of which consists of CD and 50% of UC. Chemokines and cytokines play a pivotal role in the regulation of mucosal inflammation by promoting leukocyte migration to sites of inflammation ultimately leading to tissue damage and destruction. In recent years, experimental studies in rodents have led to a better understanding of the role played by these inflammatory mediators in the development and progression of colitis. However, the clinical literature on IBD remains limited. Therefore, the aim of this study was to evaluate systemic concentrations of key chemokines and cytokines in forty-two IBD patients with a range of disease activity compared to levels found in ten healthy donors. We found a significant increase in an array of chemokines including macrophage migration factor (MIF), CCL25, CCL23, CXCL5, CXCL13, CXCL10, CXCL11, MCP1, and CCL21 in IBD patients as compared to normal healthy donors (P<0.05). Further, we also report increases in the inflammatory cytokines IL-16, IFN-γ, IL-1β and TNF-α in IBD patients when compared to healthy donors (P<0.05). These data clearly indicate an increase in circulating levels of specific chemokines and cytokines that are known to modulate systemic level through immune cells results in affecting local intestinal inflammation and tissue damage in IBD patients. Blockade of these inflammatory mediators should be explored as a mechanism to alleviate or even reverse symptoms of IBD.

  8. Systemic chemokine levels, coronary heart disease, and ischemic stroke events

    PubMed Central

    Canouï-Poitrine, F.; Luc, G.; Mallat, Z.; Machez, E.; Bingham, A.; Ferrieres, J.; Ruidavets, J.-B.; Montaye, M.; Yarnell, J.; Haas, B.; Arveiler, D.; Morange, P.; Kee, F.; Evans, A.; Amouyel, P.; Ducimetiere, P.

    2011-01-01

    Objectives: To quantify the association between systemic levels of the chemokine regulated on activation normal T-cell expressed and secreted (RANTES/CCL5), interferon-γ-inducible protein-10 (IP-10/CXCL10), monocyte chemoattractant protein-1 (MCP-1/CCL2), and eotaxin-1 (CCL11) with future coronary heart disease (CHD) and ischemic stroke events and to assess their usefulness for CHD and ischemic stroke risk prediction in the PRIME Study. Methods: After 10 years of follow-up of 9,771 men, 2 nested case-control studies were built including 621 first CHD events and 1,242 matched controls and 95 first ischemic stroke events and 190 matched controls. Standardized hazard ratios (HRs) for each log-transformed chemokine were estimated by conditional logistic regression. Results: None of the 4 chemokines were independent predictors of CHD, either with respect to stable angina or to acute coronary syndrome. Conversely, RANTES (HR = 1.70; 95% confidence interval [CI] 1.05–2.74), IP-10 (HR = 1.53; 95% CI 1.06–2.20), and eotaxin-1 (HR = 1.59; 95% CI 1.02–2.46), but not MCP-1 (HR = 0.99; 95% CI 0.68–1.46), were associated with ischemic stroke independently of traditional cardiovascular risk factors, hs-CRP, and fibrinogen. When the first 3 chemokines were included in the same multivariate model, RANTES and IP-10 remained predictive of ischemic stroke. Their addition to a traditional risk factor model predicting ischemic stroke substantially improved the C-statistic from 0.6756 to 0.7425 (p = 0.004). Conclusions: In asymptomatic men, higher systemic levels of RANTES and IP-10 are independent predictors of ischemic stroke but not of CHD events. RANTES and IP-10 may improve the accuracy of ischemic stroke risk prediction over traditional risk factors. PMID:21849651

  9. Similar pattern of chemokines after acute viral and bacterial infection.

    PubMed

    Vyas, Ashish Kumar

    2017-01-27

    Read with great interest the article by Cavalcanti et al (1). Which describes the levels of chemokine such as MCP-1, RANETS, MIG and IP-10 in children with sepsis community acquired pneumonia and skin abscess. Author has found increased levels of RANETS in all infections mentioned above. Interestingly IP-10 was significantly increased in sepsis groups with low levels of MCP1. This article is protected by copyright. All rights reserved.

  10. Involvement of chemokine receptors in breast cancer metastasis

    NASA Astrophysics Data System (ADS)

    Müller, Anja; Homey, Bernhard; Soto, Hortensia; Ge, Nianfeng; Catron, Daniel; Buchanan, Matthew E.; McClanahan, Terri; Murphy, Erin; Yuan, Wei; Wagner, Stephan N.; Barrera, Jose Luis; Mohar, Alejandro; Verástegui, Emma; Zlotnik, Albert

    2001-03-01

    Breast cancer is characterized by a distinct metastatic pattern involving the regional lymph nodes, bone marrow, lung and liver. Tumour cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokines and their receptors. Here we report that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases. Their respective ligands CXCL12/SDF-1α and CCL21/6Ckine exhibit peak levels of expression in organs representing the first destinations of breast cancer metastasis. In breast cancer cells, signalling through CXCR4 or CCR7 mediates actin polymerization and pseudopodia formation, and subsequently induces chemotactic and invasive responses. In vivo, neutralizing the interactions of CXCL12/CXCR4 significantly impairs metastasis of breast cancer cells to regional lymph nodes and lung. Malignant melanoma, which has a similar metastatic pattern as breast cancer but also a high incidence of skin metastases, shows high expression levels of CCR10 in addition to CXCR4 and CCR7. Our findings indicate that chemokines and their receptors have a critical role in determining the metastatic destination of tumour cells.

  11. Chemokine Function in Periodontal Disease and Oral Cavity Cancer

    PubMed Central

    Sahingur, Sinem Esra; Yeudall, W. Andrew

    2015-01-01

    The chemotactic cytokines, or chemokines, comprise a superfamily of polypeptides with a wide range of activities that include recruitment of immune cells to sites of infection and inflammation, as well as stimulation of cell proliferation. As such, they function as antimicrobial molecules and play a central role in host defenses against pathogen challenge. However, their ability to recruit leukocytes and potentiate or prolong the inflammatory response may have profound implications for the progression of oral diseases such as chronic periodontitis, where tissue destruction may be widespread. Moreover, it is increasingly recognized that chronic inflammation is a key component of tumor progression. Interaction between cancer cells and their microenvironment is mediated in large part by secreted factors such as chemokines, and serves to enhance the malignant phenotype in oral and other cancers. In this article, we will outline the biological and biochemical mechanisms of chemokine action in host–microbiome interactions in periodontal disease and in oral cancer, and how these may overlap and contribute to pathogenesis. PMID:25999952

  12. Novel chemokine-like activities of histones in tumor metastasis

    PubMed Central

    Chen, Ruochan; Xie, Yangchun; Zhong, Xiao; Fu, Yongmin; Huang, Yan; Zhen, Yixiang; Pan, Pinhua; Wang, Haichao; Bartlett, David L.; Billiar, Timothy R.; Lotze, Michael T.; Zeh, Herbert J.; Fan, Xue-Gong; Tang, Daolin; Kang, Rui

    2016-01-01

    Histones are intracellular nucleosomal components and extracellular damage-associated molecular pattern molecules that modulate chromatin remodeling, as well as the immune response. However, their extracellular roles in cell migration and invasion remain undefined. Here, we demonstrate that histones are novel regulators of tumor metastasis with chemokine-like activities. Indeed, exogenous histones promote both hepatocellular carcinoma (HCC) cell migration and invasion through toll-like receptor (TLR)4, but not TLR2 or the receptor for advanced glycosylation end product. TLR4-mediated activation of nuclear factor-κB (NF-κB) by extracellular signal-regulated kinase (ERK) is required for histone-induced chemokine (e.g., C-C motif ligand 9/10) production. Pharmacological and genetic inhibition of TLR4-ERK-NF-κB signaling impairs histone-induced chemokine production and HCC cell migration. Additionally, TLR4 depletion (by using TLR4−/− mice and TLR4-shRNA) or inhibition of histone release/activity (by administration of heparin and H3 neutralizing antibody) attenuates lung metastasis of HCC cells injected via the tail vein of mice. Thus, histones promote tumor metastasis of HCC cells through the TLR4-NF-κB pathway and represent novel targets for treating patients with HCC. PMID:27623211

  13. Chemokine receptors as new molecular targets for antiviral therapy.

    PubMed

    Santoro, F; Vassena, L; Lusso, P

    2004-04-01

    Extraordinary advancements have been made over the past decade in our understanding of the molecular mechanism of human immunodeficiency virus (HIV) entry into cells. The external HIV envelope glycoprotein, gp120, sequentially interacts with two cellular receptor molecules, the CD4 glycoprotein and a chemokine receptor, such as CCR5 or CXCR4, leading to the activation of the fusogenic domain of the transmembrane viral glycoprotein, gp41, which changes its conformation to create a hairpin structure that eventually triggers fusion between the viral and cellular membranes. Each of these discrete steps in the viral entry process represents a potential target for new antiviral agents. Current efforts to develop safe and effective HlV entry inhibitors are focused on naturally occurring proteins (e.g., chemokines, antibodies), engineered or modified derivatives of natural proteins (e.g., multimerized soluble CD4, gp41--or chemokine--derived synthetic peptides), as well as small synthetic compounds obtained either by high-throughput screening of large compound libraries or by structure-guided rational design. The recent introduction in therapy of the first fusion inhibitor, the gp41-derived synthetic peptide T20, heralds a new era in the treatment of AIDS, which will hopefully lead to more effective multi-drug regimens with reduced adverse effects for the patients.

  14. Genomic identification of chemokines and cytokines in opossum.

    PubMed

    Wong, Emily S W; Papenfuss, Anthony T; Belov, Katherine

    2011-03-01

    The cytokine repertoire of marsupials is largely unknown. The sequencing of the opossum genome has expedited the identification of many immune genes. However, many genes have not been identified using automated annotation pipelines because of high levels of sequence divergence. To fill gaps in our knowledge of the cytokine gene complement in marsupials, we searched the genome assembly of the gray short-tailed opossum for chemokine, interleukin, colony-stimulating factor, tumor necrosis factor, and transforming growth factor genes. In particular, we focused on genes that were not previously identified through Ensembl's automatic annotations. We report that the vast majority of cytokines are conserved, with direct orthologs between therian species. The major exceptions are chemokine genes, which show lineage-specific duplication/loss. Thirty-six chemokines were identified in opossum, including a lineage-specific expansion of macrophage inflammatory protein family genes. Divergent cytokines IL7, IL9, IL31, IL33, and CSF2 were identified. This is the first time IL31 and IL33 have been described outside of eutherian species. The high levels of similarities between the cytokine gene repertoires of therians suggest that the marsupial immune response is highly similar to eutherians.

  15. CXCR4 chemokine receptor signaling mediates pain in diabetic neuropathy

    PubMed Central

    2014-01-01

    Background Painful Diabetic Neuropathy (PDN) is a debilitating syndrome present in a quarter of diabetic patients that has a substantial impact on their quality of life. Despite this significant prevalence and impact, current therapies for PDN are only partially effective. Moreover, the cellular mechanisms underlying PDN are not well understood. Neuropathic pain is caused by a variety of phenomena including sustained excitability in sensory neurons that reduces the pain threshold so that pain is produced in the absence of appropriate stimuli. Chemokine signaling has been implicated in the pathogenesis of neuropathic pain in a variety of animal models. We therefore tested the hypothesis that chemokine signaling mediates DRG neuronal hyperexcitability in association with PDN. Results We demonstrated that intraperitoneal administration of the specific CXCR4 antagonist AMD3100 reversed PDN in two animal models of type II diabetes. Furthermore DRG sensory neurons acutely isolated from diabetic mice displayed enhanced SDF-1 induced calcium responses. Moreover, we demonstrated that CXCR4 receptors are expressed by a subset of DRG sensory neurons. Finally, we observed numerous CXCR4 expressing inflammatory cells infiltrating into the DRG of diabetic mice. Conclusions These data suggest that CXCR4/SDF-1 signaling mediates enhanced calcium influx and excitability in DRG neurons responsible for PDN. Simultaneously, CXCR4/SDF-1 signaling may coordinate inflammation in diabetic DRG that could contribute to the development of pain in diabetes. Therefore, targeting CXCR4 chemokine receptors may represent a novel intervention for treating PDN. PMID:24961298

  16. Dynamics and thermodynamic properties of CXCL7 chemokine.

    PubMed

    Herring, Charles A; Singer, Christopher M; Ermakova, Elena A; Khairutdinov, Bulat I; Zuev, Yuriy F; Jacobs, Donald J; Nesmelova, Irina V

    2015-11-01

    Chemokines form a family of signaling proteins mainly responsible for directing the traffic of leukocytes, where their biological activity can be modulated by their oligomerization state. We characterize the dynamics and thermodynamic stability of monomer and homodimer structures of CXCL7, one of the most abundant platelet chemokines, using experimental methods that include circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy, and computational methods that include the anisotropic network model (ANM), molecular dynamics (MD) simulations and the distance constraint model (DCM). A consistent picture emerges for the effects of dimerization and Cys5-Cys31 and Cys7-Cys47 disulfide bonds formation. The presence of disulfide bonds is not critical for maintaining structural stability in the monomer or dimer, but the monomer is destabilized more than the dimer upon removal of disulfide bonds. Disulfide bonds play a key role in shaping the characteristics of native state dynamics. The combined analysis shows that upon dimerization flexibly correlated motions are induced between the 30s and 50s loop within each monomer and across the dimer interface. Interestingly, the greatest gain in flexibility upon dimerization occurs when both disulfide bonds are present, and the homodimer is least stable relative to its two monomers. These results suggest that the highly conserved disulfide bonds in chemokines facilitate a structural mechanism that is tuned to optimally distinguish functional characteristics between monomer and dimer.

  17. CXC chemokines and leukocyte chemotaxis in common carp (Cyprinus carpio L.).

    PubMed

    Huising, Mark O; Stolte, Ellen; Flik, Gert; Savelkoul, Huub F J; Verburg-van Kemenade, B M Lidy

    2003-12-01

    CXC chemokines, structurally recognizable by the position of four conserved cysteine residues, are prominent mediators of chemotaxis. Here we report a novel carp CXC chemokine obtained through homology cloning and compare it with fish orthologues genes and with a second, recently elucidated, carp CXC chemokine. Phylogenetic analyses clearly show that neither CXC chemokine resembles any of the mammalian CXC chemokines in particular. However, basal expression is most prominent in immune organs like anterior kidney and spleen, suggesting involvement in the immune response. Furthermore we show that anterior kidney phagocyte-enriched leukocyte suspensions express both chemokines and that this expression is upregulated by brief (4 h) stimulation with PMA, but not lipopolysaccharide. Neutrophilic granulocyte-enriched leukocytes display chemotaxis to human recombinant CXCL8 (hrCXCL8; interleukin-8), confirming CXC chemokine mediated chemotaxis of neutrophilic granulocytes in teleost fish. Factors secreted from carp phagocytes are also capable of inducing chemotaxis and secretion of these factors into culture supernatants is upregulated by PMA. Finally we demonstrate involvement of both CXC chemokines as well as CXCR1 and CXCR2 in acute Argulus japonicus infection. Collectively the data presented implicate the involvement of CXC chemokines in chemotaxis of fish neutrophils in a fashion that shares characteristics with the mammalian situation. However, the CXC chemokines involved differ enough from those involved in neutrophil chemotaxis in mammals to warrant their own nomenclature.

  18. Modulation of Chemokine Receptor Function by Cholesterol: New Prospects for Pharmacological Intervention.

    PubMed

    Legler, Daniel F; Matti, Christoph; Laufer, Julia M; Jakobs, Barbara D; Purvanov, Vladimir; Uetz-von Allmen, Edith; Thelen, Marcus

    2017-04-01

    Chemokine receptors are seven transmembrane-domain receptors belonging to class A of G-protein-coupled receptors (GPCRs). The receptors together with their chemokine ligands constitute the chemokine system, which is essential for directing cell migration and plays a crucial role in a variety of physiologic and pathologic processes. Given the importance of orchestrating cell migration, it is vital that chemokine receptor signaling is tightly regulated to ensure appropriate responses. Recent studies highlight a key role for cholesterol in modulating chemokine receptor activities. The steroid influences the spatial organization of GPCRs within the membrane bilayer, and consequently can tune chemokine receptor signaling. The effects of cholesterol on the organization and function of chemokine receptors and GPCRs in general include direct and indirect effects (Fig. 1). Here, we review how cholesterol and some key metabolites modulate functions of the chemokine system in multiple ways. We emphasize the role of cholesterol in chemokine receptor oligomerization, thereby promoting the formation of a signaling hub enabling integration of distinct signaling pathways at the receptor-membrane interface. Moreover, we discuss the role of cholesterol in stabilizing particular receptor conformations and its consequence for chemokine binding. Finally, we highlight how cholesterol accumulation, its deprivation, or cholesterol metabolites contribute to modulating cell orchestration during inflammation, induction of an adaptive immune response, as well as to dampening an anti-tumor immune response.

  19. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors.

    PubMed

    Bachelerie, Francoise; Ben-Baruch, Adit; Burkhardt, Amanda M; Combadiere, Christophe; Farber, Joshua M; Graham, Gerard J; Horuk, Richard; Sparre-Ulrich, Alexander Hovard; Locati, Massimo; Luster, Andrew D; Mantovani, Alberto; Matsushima, Kouji; Murphy, Philip M; Nibbs, Robert; Nomiyama, Hisayuki; Power, Christine A; Proudfoot, Amanda E I; Rosenkilde, Mette M; Rot, Antal; Sozzani, Silvano; Thelen, Marcus; Yoshie, Osamu; Zlotnik, Albert

    2014-01-01

    Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome

  20. International Union of Pharmacology. LXXXIX. Update on the Extended Family of Chemokine Receptors and Introducing a New Nomenclature for Atypical Chemokine Receptors

    PubMed Central

    Bachelerie, Francoise; Ben-Baruch, Adit; Burkhardt, Amanda M.; Combadiere, Christophe; Farber, Joshua M.; Graham, Gerard J.; Horuk, Richard; Sparre-Ulrich, Alexander Hovard; Locati, Massimo; Luster, Andrew D.; Mantovani, Alberto; Matsushima, Kouji; Nibbs, Robert; Nomiyama, Hisayuki; Power, Christine A.; Proudfoot, Amanda E. I.; Rosenkilde, Mette M.; Rot, Antal; Sozzani, Silvano; Thelen, Marcus; Yoshie, Osamu; Zlotnik, Albert

    2014-01-01

    Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145–176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human

  1. Chemokines in and out of the central nervous system: much more than chemotaxis and inflammation.

    PubMed

    Cardona, Astrid E; Li, Meizhang; Liu, Liping; Savarin, Carine; Ransohoff, Richard M

    2008-09-01

    Actions of chemokines and the interaction with specific receptors go beyond their original, defined role of recruiting leukocytes to inflamed tissues. Chemokine receptor expression in peripheral elements and resident cells of the central nervous system (CNS) represents a relevant communication system during neuroinflammatory conditions. The following examples are described in this review: Chemokine receptors play important homeostatic properties by regulating levels of specific ligands in blood and tissues during healthy and pathological conditions; chemokines and their receptors are clearly involved in leukocyte extravasation and recruitment to the CNS, and current studies are directed toward understanding the interaction between chemokine receptors and matrix metalloproteinases in the process of blood brain barrier breakdown. We also propose novel functions of chemokine receptors during demyelination/remyelination, and developmental processes.

  2. Semiquantitation of human chemokine mRNA levels with a newly constructed multispecific competitor fragment.

    PubMed

    Dumoulin, F L; Altfeld, M; Rockstroh, J K; Leifeld, L; Sauerbruch, T; Spengler, U

    1999-04-22

    Chemokines are a group of inducible, locally acting proinflammatory cytokines which have been implicated in the pathogenesis of a variety of diseases. Important members of the group include monocyte chemoattractant protein (MCP)-1, -2, -3, macrophage inhibitory protein (MIP)-1alpha, -1beta and RANTES (regulated upon activation, normal T expressed and secreted). To facilitate further investigation of the human chemokines, we have constructed a novel multispecific competitor fragment containing primer binding sites for the CC-chemokines MCP-1, MCP-2, MCP-3, MIP-1alpha, MIP-1beta and RANTES, the CXC-chemokines MIP-2alpha, MIP-2beta as well as for the housekeeping gene beta-actin. Using this competitor fragment we can demonstrate reliable semiquantitation of reverse transcribed chemokine mRNAs. The assay should be useful for further studies, in particular for the semiquantitation of chemokine mRNA species from small cell or tissue specimens.

  3. Transmembrane chemokines act as receptors in a novel mechanism termed inverse signaling

    PubMed Central

    Hattermann, Kirsten; Gebhardt, Henrike; Krossa, Sebastian; Ludwig, Andreas; Lucius, Ralph

    2016-01-01

    The transmembrane chemokines CX3CL1/fractalkine and CXCL16 are widely expressed in different types of tumors, often without an appropriate expression of their classical receptors. We observed that receptor-negative cancer cells could be stimulated by the soluble chemokines. Searching for alternative receptors we detected that all cells expressing or transfected with transmembrane chemokine ligands bound the soluble chemokines with high affinity and responded by phosphorylation of intracellular kinases, enhanced proliferation and anti-apoptosis. This activity requires the intracellular domain and apparently the dimerization of the transmembrane chemokine ligand. Thus, shed soluble chemokines can generate auto- or paracrine signals by binding and activating their transmembrane forms. We term this novel mechanism “inverse signaling”. We suppose that inverse signaling is an autocrine feedback and fine-tuning system in the communication between cells that in tumors supports stabilization and proliferation. DOI: http://dx.doi.org/10.7554/eLife.10820.001 PMID:26796342

  4. GPR35/CXCR8 IS THE RECEPTOR OF THE MUCOSAL CHEMOKINE CXCL17

    PubMed Central

    Maravillas-Montero, José L.; Burkhardt, Amanda M.; Hevezi, Peter A.; Carnevale, Christina D.; Smit, Martine J.; Zlotnik, Albert

    2015-01-01

    Chemokines are chemotactic cytokines that direct the traffic of leukocytes and other cells in the body. Chemokines bind to G protein-coupled receptors (GPCRs) expressed on target cells to initiate signaling cascades and induce chemotaxis. Although the cognate receptors of most chemokines have been identified, the receptor for the mucosal chemokine CXCL17 is still undefined. Here we show that GPR35 is the receptor of CXCL17. GPR35 is expressed in mucosal tissues, in CXCL17-responsive monocytes, and in the THP-1 monocytoid cell line. Transfection of GPR35 into Ba/F3 cells rendered them responsive to CXCL17 as measured by calcium mobilization assays. Furthermore, GPR35 expression is downregulated in the lungs of Cxcl17-/- mice, which exhibit defects in macrophage recruitment to the lungs. We conclude that GPR35 is a novel chemokine receptor, and suggest that it should be named chemokine (C-X-C motif) receptor 8 (CXCR8). PMID:25411203

  5. Secondary Lymphoid Tissue Chemokine as an Immunotherapeutic Against Primary and Metastatic Breast Cancer

    DTIC Science & Technology

    2006-05-01

    CCR7 , which binds the chemokine secondary lymphoid chemokine (SLC, also called CCL21). In Task 1, we examined the effect of SLC/CCL21 administered via...express a common receptor, CCR7 , which binds secondary lymphoid tissue chemokine (SLC, also known as CCL21). Expression of CCR7 allows these cells to...for characterization and quantification of tumor- infiltrating DCs, T cells, and NK cells. Mice that received the experimental and control

  6. Secondary Lymphoid Tissue Chemokine as an Immunotherapeutic Against Primary and Metastatic Breast Cancer

    DTIC Science & Technology

    2005-05-01

    common receptor, CCR7 , which binds the chemokine SLC/CCL21. SLC/CCL21 is normally expressed in the lymphoid organs and coordinates the interactions...dendritic cells (DCs). T cells and DCs, as well as natural killer (NK) cells (which also have anti-tumor activity), express a common receptor, CCR7 , which...binds secondary lymphoid tissue chemokine (SLC, also known as CCL21). Expression of CCR7 allows these cells to migrate along gradients of this chemokine

  7. [The diagnostic role of chemokines and their receptors in chronic hepatitis C].

    PubMed

    Sysoev, K A; Chukhlovin, A B; Totolian, A A

    2013-02-01

    The chronic hepatitis C is characterized by the increase of inflammatory disorders and progression of fibrosis of liver The corresponding immunologic mechanisms of hepatic lesions are still undiscovered. The actual review presents the analysis of scientific publications and genuine research data concerning the role of chemokines in pathogenesis of chronic hepatitis C. The chemokines are small cationic proteins enhancing transit and precipitation of migrating cells (leucocytes mainly) in tissues and organs. The significant role of chemokines in tissue homeostasis, in case of inflammation, wound healing and cell proliferation is demonstrated. The particular kinds of chemokines are produced by different types of cells and impact target cells through their specific receptors. According the data of various studies, chemokines and chemokine receptors of CC-families and CXC-families are involved in fibrosing processes and anti-inflammatory activation of hepatic-biliary system under chronic hepatitis C. The diversity of producers and targets of chemokines in liver is very pronounced: hepatocytes, stellar cells, endothelium cells, macrophages (Kupffer cells), dendritic cells, lymphocytes and monocytes. The review considers pathogenesis of chronic hepatitis C from the standpoint of participation of chemokines and chemokine receptors at different stages of cellular transit. The most important cellpopulations involved into pathologic changes under chronic hepatitis C are characterized. The decrease of expression of such gens as CCR1, CCR2, CCR3, and CCR5 in blood leucocytes deserves additional studies to establish their diagnostic values as a marker of disorders of immune system in patients with chronic hepatitis C.

  8. Selective human endothelial cell activation by chemokines as a guide to cell homing.

    PubMed

    Crola Da Silva, Claire; Lamerant-Fayel, Nathalie; Paprocka, Maria; Mitterrand, Michèle; Gosset, David; Dus, Danuta; Kieda, Claudine

    2009-03-01

    An original model of organo-specific, immortalized and stabilized endothelial cell lines was used to delineate the part played by some chemokines (CCL21, CX3CL1, CCL5 and CXCL12) and their receptors in endothelium organo-specificity. Chemokine receptor expression and chemokine presentation were investigated on organo-specific human endothelial cell lines. Although the chemokines showed distinct binding patterns for the various endothelial cell lines, these were not correlated with the expression of the corresponding receptors (CX3CR1, CXCR4, CCR5 and CCR7). Experiments with CCL21 on peripheral lymph node endothelial cells demonstrated that the chemokine did not co-localize with its receptor but was associated with extracellular matrix components. The specific activity of chemokines was clearly shown to be related to the endothelial cell origin. Indeed, CX3CL1 and CCL21 promoted lymphocyte recruitment by endothelial cells from the appendix and peripheral lymph nodes, respectively, while CX3CL1 pro-angiogenic activity was restricted to endothelial cells from the appendix and skin. The high specificity of the chemokine/endothelium interaction allowed the design of a direct in vitro endothelial cell targeting assay. This unique cellular model demonstrated a fundamental role for chemokines in conferring on the endothelium its organo-specificity and its potential for tissue targeting through the selective binding, presentation and activation properties of chemokines.

  9. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model.

    PubMed

    Kleist, Andrew B; Getschman, Anthony E; Ziarek, Joshua J; Nevins, Amanda M; Gauthier, Pierre-Arnaud; Chevigné, Andy; Szpakowska, Martyna; Volkman, Brian F

    2016-08-15

    Chemokine receptor (CKR) signaling forms the basis of essential immune cellular functions, and dysregulated CKR signaling underpins numerous disease processes of the immune system and beyond. CKRs, which belong to the seven transmembrane domain receptor (7TMR) superfamily, initiate signaling upon binding of endogenous, secreted chemokine ligands. Chemokine-CKR interactions are traditionally described by a two-step/two-site mechanism, in which the CKR N-terminus recognizes the chemokine globular core (i.e. site 1 interaction), followed by activation when the unstructured chemokine N-terminus is inserted into the receptor TM bundle (i.e. site 2 interaction). Several recent studies challenge the structural independence of sites 1 and 2 by demonstrating physical and allosteric links between these supposedly separate sites. Others contest the functional independence of these sites, identifying nuanced roles for site 1 and other interactions in CKR activation. These developments emerge within a rapidly changing landscape in which CKR signaling is influenced by receptor PTMs, chemokine and CKR dimerization, and endogenous non-chemokine ligands. Simultaneous advances in the structural and functional characterization of 7TMR biased signaling have altered how we understand promiscuous chemokine-CKR interactions. In this review, we explore new paradigms in CKR signal transduction by considering studies that depict a more intricate architecture governing the consequences of chemokine-CKR interactions.

  10. Therapeutic implications of chemokine-mediated pathways in atherosclerosis: realistic perspectives and utopias.

    PubMed

    Apostolakis, Stavros; Amanatidou, Virginia; Spandidos, Demetrios A

    2010-09-01

    Current perspectives on the pathogenesis of atherosclerosis strongly support the involvement of inflammatory mediators in the establishment and progression of atherosclerostic lesions. Chemokine-mediated mechanisms are potent regulators of such processes by orchestrating the interactions of inflammatory cellular components of the peripheral blood with cellular components of the arterial wall. The increasing evidence supporting the role of chemokine pathways in atherosclerosis renders chemokine ligands and their receptors potential therapeutic targets. In the following review, we aim to highlight the special structural and functional features of chemokines and their receptors in respect to their roles in atherosclerosis, and examine to what extent available data can be applied in disease management practices.

  11. CXCR3: latest evidence for the involvement of chemokine signaling in bone cancer pain.

    PubMed

    Guo, Genhua; Gao, Feng

    2015-03-01

    Growing evidence indicates that chemokines participate in the generation and maintenance of bone cancer pain (BCP). Recent work in Exp Neurol by Guan et al. (2015) demonstrated the involvement of spinal chemokine receptor CXCR3 and its downstream PI3K/Akt and Raf/MEK/ERK signaling pathways in BCP. This work provides new evidence to support that chemokines participate in central sensitization in BCP condition. Reviewed evidence suggests that few chemokines have been proved to be related to cancer pain. The underlying relationship between CXCR3 signaling and BCP condition requires further study.

  12. Chemokines in Cancer Development and Progression and Their Potential as Targeting Molecules for Cancer Treatment

    PubMed Central

    Mukaida, Naofumi; Sasaki, So-ichiro; Baba, Tomohisa

    2014-01-01

    Chemokines were initially identified as bioactive substances, which control the trafficking of inflammatory cells including granulocytes and monocytes/macrophages. Moreover, chemokines have profound impacts on other types of cells associated with inflammatory responses, such as endothelial cells and fibroblasts. These observations would implicate chemokines as master regulators in various inflammatory responses. Subsequent studies have further revealed that chemokines can regulate the movement of a wide variety of immune cells including lymphocytes, natural killer cells, and dendritic cells in both physiological and pathological conditions. These features endow chemokines with crucial roles in immune responses. Furthermore, increasing evidence points to the vital effects of several chemokines on the proliferative and invasive properties of cancer cells. It is widely acknowledged that cancer develops and progresses to invade and metastasize in continuous interaction with noncancerous cells present in cancer tissues, such as macrophages, lymphocytes, fibroblasts, and endothelial cells. The capacity of chemokines to regulate both cancerous and noncancerous cells highlights their crucial roles in cancer development and progression. Here, we will discuss the roles of chemokines in carcinogenesis and the possibility of chemokine targeting therapy for the treatment of cancer. PMID:24966464

  13. CXC-type chemokines promote myofibroblast phenoconversion and prostatic fibrosis.

    PubMed

    Gharaee-Kermani, Mehrnaz; Kasina, Sathish; Moore, Bethany B; Thomas, Dafydd; Mehra, Rohit; Macoska, Jill A

    2012-01-01

    Recent studies from our group suggest that extracellular matrix (ECM) deposition and fibrosis characterize the peri-urethral prostate tissues of some men suffering from Lower Urinary Tract Symptoms (LUTS) and that fibrosis may be a contributing factor to the etiology of LUTS. Fibrosis can generally be regarded as an errant wound-healing process in response to chronic inflammation, and several studies have shown that the aging prostate tissue microenvironment is rich with inflammatory cells and proteins. However, it is unclear whether these same inflammatory proteins, particularly CXC-type chemokines, can mediate myofibroblast phenoconversion and the ECM deposition necessary for the development of prostatic tissue fibrosis. To examine this, immortalized and primary prostate stromal fibroblasts treated with TGF-β1, CXCL5, CXCL8, or CXCL12 were evaluated morphologically by microscopy, by immunofluorescence and qRT-PCR for αSMA, collagen 1, vimentin, calponin, and tenascin protein and transcript expression, and by gel contraction assays for functional myofibroblast phenoconversion. The results of these studies showed that that immortalized and primary prostate stromal fibroblasts are induced to express collagen 1 and 3 and αSMA gene transcripts and proteins and to undergo complete and functional myofibroblast phenoconversion in response to CXC-type chemokines, even in the absence of exogenous TGF-β1. Moreover, CXCL12-mediated myofibroblast phenoconversion can be completely abrogated by inhibition of the CXCL12 receptor, CXCR4. These findings suggest that CXC-type chemokines, which comprise inflammatory proteins known to be highly expressed in the aging prostate, can efficiently and completely mediate myofibroblast phenoconversion and may thereby promote fibrotic changes in prostate tissue architecture associated with the development and progression of male lower urinary tract dysfunction.

  14. CXC-Type Chemokines Promote Myofibroblast Phenoconversion and Prostatic Fibrosis

    PubMed Central

    Gharaee-Kermani, Mehrnaz; Kasina, Sathish; Moore, Bethany B.; Thomas, Dafydd; Mehra, Rohit; Macoska, Jill A.

    2012-01-01

    Recent studies from our group suggest that extracellular matrix (ECM) deposition and fibrosis characterize the peri-urethral prostate tissues of some men suffering from Lower Urinary Tract Symptoms (LUTS) and that fibrosis may be a contributing factor to the etiology of LUTS. Fibrosis can generally be regarded as an errant wound-healing process in response to chronic inflammation, and several studies have shown that the aging prostate tissue microenvironment is rich with inflammatory cells and proteins. However, it is unclear whether these same inflammatory proteins, particularly CXC-type chemokines, can mediate myofibroblast phenoconversion and the ECM deposition necessary for the development of prostatic tissue fibrosis. To examine this, immortalized and primary prostate stromal fibroblasts treated with TGF-β1, CXCL5, CXCL8, or CXCL12 were evaluated morphologically by microscopy, by immunofluorescence and qRT-PCR for αSMA, collagen 1, vimentin, calponin, and tenascin protein and transcript expression, and by gel contraction assays for functional myofibroblast phenoconversion. The results of these studies showed that that immortalized and primary prostate stromal fibroblasts are induced to express collagen 1 and 3 and αSMA gene transcripts and proteins and to undergo complete and functional myofibroblast phenoconversion in response to CXC-type chemokines, even in the absence of exogenous TGF-β1. Moreover, CXCL12-mediated myofibroblast phenoconversion can be completely abrogated by inhibition of the CXCL12 receptor, CXCR4. These findings suggest that CXC-type chemokines, which comprise inflammatory proteins known to be highly expressed in the aging prostate, can efficiently and completely mediate myofibroblast phenoconversion and may thereby promote fibrotic changes in prostate tissue architecture associated with the development and progression of male lower urinary tract dysfunction. PMID:23173053

  15. Activated platelets signal chemokine synthesis by human monocytes.

    PubMed Central

    Weyrich, A S; Elstad, M R; McEver, R P; McIntyre, T M; Moore, K L; Morrissey, J H; Prescott, S M; Zimmerman, G A

    1996-01-01

    Human blood monocytes adhere rapidly and for prolonged periods to activated platelets that display P-selectin, an adhesion protein that recognizes a specific ligand on leukocytes, P-selectin glycoprotein-1. We previously demonstrated that P-selectin regulates expression and secretion of cytokines by stimulated monocytes when it is presented in a purified, immobilized form or by transfected cells. Here we show that thrombin-activated platelets induce the expression and secretion of monocyte chemotactic protein-1 and IL-8 by monocytes. Enhanced monokine synthesis requires engagement of P-selectin glycoprotein-1 on the leukocyte by P-selectin on the platelet. Secretion of the chemokines is not, however, directly signaled by P-selectin; instead, tethering of the monocytes by P-selectin is required for their activation by RANTES (regulated upon activation normal T cell expressed presumed secreted), a platelet chemokine not previously known to induce immediate-early gene products in monocytes. Adhesion of monocytes to activated platelets results in nuclear translocation of p65 (RelA), a component of the NF-kappaB family of transcription factors that binds kappaB sequences in the regulatory regions of monocyte chemotactic protein-1, IL-8, and other immediate-early genes. However, expression of tissue factor, a coagulation protein that also has a kappaB sequence in the 5' regulatory region of its gene, is not induced in monocytes adherent to activated platelets. Thus, contact of monocytes with activated platelets differentially affects the expression of monocyte products. These experiments suggest that activated platelets regulate chemokine secretion by monocytes in inflammatory lesions in vivo and provide a model for the study of gene regulation in cell-cell interactions. PMID:8617886

  16. Decidual Cell Regulation of Natural Killer Cell–Recruiting Chemokines

    PubMed Central

    Lockwood, Charles J.; Huang, S. Joseph; Chen, Chie-Pein; Huang, Yingqun; Xu, Jie; Faramarzi, Saeed; Kayisli, Ozlem; Kayisli, Umit; Koopman, Louise; Smedts, Dineke; Buchwalder, Lynn F.; Schatz, Frederick

    2014-01-01

    First trimester human decidua is composed of decidual cells, CD56brightCD16− decidual natural killer (dNK) cells, and macrophages. Decidual cells incubated with NK cell–derived IFN-γ and either macrophage-derived TNF-α or IL-1β synergistically enhanced mRNA and protein expression of IP-10 and I-TAC. Both chemokines recruit CXCR3-expressing NK cells. This synergy required IFN-γ receptor 1 and 2 mediation via JAK/STAT and NFκB signaling pathways. However, synergy was not observed on neutrophil, monocyte, and NK cell–recruiting chemokines. Immunostaining of first trimester decidua localized IP-10, I-TAC, IFN-γR1, and -R2 to vimentin-positive decidual cells versus cytokeratin-positive interstitial trophoblasts. Flow cytometry identified high CXCR3 levels on dNK cells and minority peripheral CD56brightCD16− pNK cells and intermediate CXCR3 levels on the majority of CD56dimCD16+ pNK cells. Incubation of pNK cells with either IP-10 or I-TAC elicited concentration-dependent enhanced CXCR3 levels and migration of both pNK cell subsets that peaked at 10 ng/mL, whereas each chemokine at a concentration of 50 ng/mL inhibited CXCR3 expression and pNK cell migration. Deciduae from women with preeclampsia, a leading cause of maternal and fetal morbidity and mortality, displayed significantly lower dNK cell numbers and higher IP-10 and I-TAC levels versus gestational age–matched controls. Significantly elevated IP-10 levels in first trimester sera from women eventually developing preeclampsia compared with controls, identifying IP-10 as a novel, robust early predictor of preeclampsia. PMID:23973270

  17. Structural And Functional Characterization of CC Chemokine CCL14

    SciTech Connect

    Blain, K.Y.; Kwiatkowski, W.; Zhao, Q.; Fleur, D.La; Naik, C.; Chun, T.-W.; Tsareva, T.; Kanakaraj, P.; Laird, M.W.; Shah, R.; George, L.; Sanyal, I.; Moore, P.A.; Demeler, B.; Choe, S.

    2009-06-02

    CC chemokine ligand 14, CCL14, is a human CC chemokine that is of recent interest because of its natural ability, upon proteolytic processing of the first eight NH{sub 2}-terminal residues, to bind to and signal through the human immunodeficiency virus type-1 (HIV-1) co-receptor, CC chemokine receptor 5 (CCR5). We report X-ray crystallographic structures of both full-length CCL14 and signaling-active, truncated CCL14 [9-74] determined at 2.23 and 1.8 {angstrom}, respectively. Although CCL14 and CCL14 [9-74] differ in their ability to bind CCR5 for biological signaling, we find that the NH{sub 2}-terminal eight amino acids (residues 1 through 8) are completely disordered in CCL14 and both show the identical mode of the dimeric assembly characteristic of the CC type chemokine structures. However, analytical ultracentrifugation studies reveal that the CCL14 is stable as a dimer at a concentration as low as 100 nM, whereas CCL14 [9-74] is fully monomeric at the same concentration. By the same method, the equilibrium between monomers of CCL14 [9-74] and higher order oligomers is estimated to be of EC{sub 1,4} = 4.98 {mu}M for monomer-tetramer conversion. The relative instability of CCL14 [9-74] oligomers as compared to CCL14 is also reflected in the K{sub d}'s that are estimated by the surface plasmon resonance method to be {approx}9.84 and 667 nM for CCL14 and CCL14 [9-74], respectively. This {approx}60-fold difference in stability at a physiologically relevant concentration can potentially account for their different signaling ability. Functional data from the activity assays by intracellular calcium flux and inhibition of CCR5-mediated HIV-1 entry show that only CCL14 [9-74] is fully active at these near-physiological concentrations where CCL14 [9-74] is monomeric and CCL14 is dimeric. These results together suggest that the ability of CCL14 [9-74] to monomerize can play a role for cellular activation.

  18. 77 FR 3488 - Agency Information Collection Activities: Regulations Relating to Recordation and Enforcement of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... intellectual property rights for which federal law provides import protection. Respondents may submit their... Collection Activities: Regulations Relating to Recordation and Enforcement of Trademarks and Copyrights... Recordation and Enforcement of Trademarks and Copyrights (Part 133 of the CBP Regulations). This request...

  19. 75 FR 39701 - Agency Information Collection Activities: Regulations Relating to Recordation and Enforcement of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Regulations Relating to Recordation and Enforcement of Trademarks and Copyrights AGENCY: U.S. Customs and Border... existing information collection: 1651-0123. SUMMARY: U.S. Customs and Border Protection (CBP) of...

  20. 78 FR 1220 - Agency Information Collection Activities: Regulations Relating to Recordation and Enforcement of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... Management and Budget. Comments should be addressed to the OMB Desk Officer for U.S. Customs and Border... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Regulations Relating to Recordation and Enforcement of Trademarks and Copyrights AGENCY: U.S. Customs and...

  1. Expression of cell adhesion molecules, chemokines and chemokine receptors involved in leukocyte traffic in rats undergoing autoimmune orchitis.

    PubMed

    Guazzone, V A; Jacobo, P; Denduchis, B; Lustig, L

    2012-05-01

    The testis is considered an immunologically privileged site where germ cell antigens are protected from autoimmune attack. Yet in response to infections, inflammatory diseases, or trauma, there is an influx of leukocytes to testicular interstitium. Interactions between endothelial cells (EC) and circulating leukocytes are implicated in the initiation and evolution of inflammatory processes. Chemokines are a family of chemoattractant cytokines characterized by their ability to both recruit and activate cells. Thus, we investigated the expression of CCL3, its receptors, and adhesion molecules CD31 and CD106 in an in vivo model of experimental autoimmune orchitis (EAO). In EAO, the highest content of CCL3 in testicular fluid coincides with onset of the disease. However, CCL3 released in vitro by testicular macrophages is higher during the immunization period. The specific chemokine receptors, CCR1 and CCR5, were expressed by testicular monocytes/macrophages and an increased number of CCR5+ cells was associated with the degree of testicular lesion. EC also play an essential role by facilitating leukocyte recruitment via their ability to express cell surface adhesion molecules that mediate interactions with leukocytes in the bloodstream. Rats with EAO showed a significant increase in the percentage of CD31+ EC that upregulate the expression of CD106. The percentage of leukocytes isolated from peripheral blood and lymph nodes expressing CD49d (CD106 ligand) also increases during orchitis. These data suggest that cell adhesion molecules, in conjunction with chemokines, contribute to the formation of a chemotactic gradient within the testis, causing the leukocyte infiltration characteristic of EAO histopathology.

  2. [Chemokines and attraction of myeloid cells in peripheral neuropathic pains].

    PubMed

    Sapienza, Anaïs; Réaux-Le Goazigo, Annabelle; Rostène, William; Mélik-Parsadaniantz, Stéphane

    2014-01-01

    Chronic neuropathic pain has become a real social issue, due to the difficulty of its treatment and by the major impairment to quality of life that it causes in every day behavior. Understanding neurobiological basis and pathophysiological causes of diverse painful syndromes constantly evolves and reports the complexity of its mechanisms. Unfortunately this complexity makes it difficult to discover effective treatments against chronic pain syndromes, in particular as regards peripheral neuropathic pains. Recent studies reveal that, during chronic peripheral neuropathy, inflammatory mediators (in particular chemokines), besides their implications in the modulation of nociceptive messages and central neuroinflammatory mechanisms, play a critical role in the orchestration of the immune response induced by a peripheral nerve lesion. In this review, after a brief introduction about chemokines and their role in neuromodulation of the nociceptive message, we will attempt to define their functions and implications in the immune response associated to peripheral neuropathies. Thus, perfectly understanding the molecular and cellular communications between the nervous system and the immune system will be useful for the future development of novel and innovative therapeutic strategies against these highly disabling pathologies.

  3. Chemokine Prostate Cancer Biomarkers — EDRN Public Portal

    Cancer.gov

    STUDY DESIGN 1. The need for pre-validation studies. Preliminary data from our laboratory demonstrates a potential utility for CXCL5 and CXCL12 as biomarkers to distinguish between patients at high-risk versus low-risk for harboring prostate malignancies. However, this pilot and feasibility study utilized a very small sample size of 51 patients, which limited the ability of this study to adequately assess certain technical aspects of the ELISA technique and statistical aspects of we propose studies designed assess the robustness (Specific Aim 1) and predictive value (Specific Aim 2) of these markers in a larger study population. 2. ELISA Assays. Serum, plasma, or urine chemokine levels are assessed using 50 ul frozen specimen per sandwich ELISA in duplicate using the appropriate commercially-available capture antibodies, detection antibodies, and standard ELISA reagents (R&D; Systems), as we have described previously (15, 17, 18). Measures within each patient group are regarded as biological replicates and permit statistical comparisons between groups. For all ELISAs, a standard curve is generated with the provided standards and utilized to calculate the quantity of chemokine in the sample tested. These assays provide measures of protein concentration with excellent reproducibility, with replicate measures characterized by standard deviations from the mean on the order of <3%.

  4. Analysis of Chemokine Receptor Trafficking by Site-Specific Biotinylation

    PubMed Central

    Liebick, Marcel; Schläger, Christian; Oppermann, Martin

    2016-01-01

    Chemokine receptors undergo internalization and desensitization in response to ligand activation. Internalized receptors are either preferentially directed towards recycling pathways (e.g. CCR5) or sorted for proteasomal degradation (e.g. CXCR4). Here we describe a method for the analysis of receptor internalization and recycling based on specific Bir A-mediated biotinylation of an acceptor peptide coupled to the receptor, which allows a more detailed analysis of receptor trafficking compared to classical antibody-based detection methods. Studies on constitutive internalization of the chemokine receptors CXCR4 (12.1% ± 0.99% receptor internalization/h) and CCR5 (13.7% ± 0.68%/h) reveals modulation of these processes by inverse (TAK779; 10.9% ± 0.95%/h) or partial agonists (Met-CCL5; 15.6% ± 0.5%/h). These results suggest an actively driven internalization process. We also demonstrate the advantages of specific biotinylation compared to classical antibody detection during agonist-induced receptor internalization, which may be used for immunofluorescence analysis as well. Site-specific biotinylation may be applicable to studies on trafficking of transmembrane proteins, in general. PMID:27310579

  5. Regulation of pulmonary fibrosis by chemokine receptor CXCR3

    PubMed Central

    Jiang, Dianhua; Liang, Jiurong; Hodge, Jennifer; Lu, Bao; Zhu, Zhou; Yu, Shuang; Fan, Juan; Gao, Yunfei; Yin, Zhinan; Homer, Robert; Gerard, Craig; Noble, Paul W.

    2004-01-01

    CXC chemokine receptor 3 (CXCR3) is the receptor for the IFN-γ–inducible C-X-C chemokines MIG/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. CXCR3 is expressed on activated immune cells and proliferating endothelial cells. The role of CXCR3 in fibroproliferation has not been investigated. We examined the role of CXCR3 in pulmonary injury and repair in vivo. CXCR3-deficient mice demonstrated increased mortality with progressive interstitial fibrosis relative to WT mice. Increased fibrosis occurred without increased inflammatory cell recruitment. CXCR3 deficiency resulted in both a reduced early burst of IFN-γ production and decreased expression of CXCL10 after lung injury. We identified a relative deficiency in lung NK cells in the unchallenged CXCR3-deficient lung and demonstrated production of IFN-γ by WT lung NK cells in vivo following lung injury. The fibrotic phenotype in the CXCR3-deficient mice was significantly reversed following administration of exogenous IFN-γ or restoration of endogenous IFN-γ production by adoptive transfer of WT lymph node and spleen cells. Finally, pretreatment of WT mice with IFN-γ–neutralizing Ab’s enhanced fibrosis following lung injury. These data demonstrate a nonredundant role for CXCR3 in limiting tissue fibroproliferation and suggest that this effect may be mediated, in part, by the innate production of IFN-γ following lung injury. PMID:15254596

  6. Chemokine guided angiogenesis directs coronary vasculature formation in zebrafish

    PubMed Central

    Harrison, Michael R.M.; Bussmann, Jeroen; Huang, Ying; Zhao, Long; Osorio, Arthela; Burns, C. Geoffrey; Burns, Caroline E.; Sucov, Henry M.; Siekmann, Arndt F.; Lien, Ching-Ling

    2015-01-01

    SUMMARY Interruption of coronary blood supply severely impairs heart function with often-fatal consequences for heart disease patients. However the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine-signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults. PMID:26017769

  7. [Hypothalamic inflammation and energy balance deregulations: focus on chemokines.

    PubMed

    Le Thuc, Ophélia; Rovère, Carole

    2016-01-01

    The hypothalamus is a key brain region in the regulation of energy balance. It especially controls food intake and both energy storage and expenditure through integration of humoral, neural and nutrient-related signals and cues. Hypothalamic neurons and glial cells act jointly to orchestrate, both spatially and temporally, regulated metabolic functions of the hypothalamus. Thus, the existence of a causal link between hypothalamic inflammation and deregulations of feeding behavior, such as involuntary weight-loss or obesity, has been suggested. Among the inflammatory mediators that could induce deregulations of hypothalamic control of the energy balance, chemokines represent interesting candidates. Indeed, chemokines, primarily known for their chemoattractant role of immune cells to the inflamed site, have also been suggested capable of neuromodulation. Thus, chemokines could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators that are involved in the maintenance of energy balance. Here, we relate, on one hand, recent results showing the primary role of the central chemokinergic signaling CCL2/CCR2 for metabolic and behavioral adaptation to high-grade inflammation, especially loss of appetite and weight, through its activity on hypothalamic neurons producing the orexigenic peptide Melanin-Concentrating Hormone (MCH) and, on the other hand, results that suggest that chemokines could also deregulate hypothalamic neuropeptidergic circuits to induce an opposite phenotype and eventually participate in the onset/development of obesity. In more details, we will emphasize a study recently showing, in a model of high-grade acute inflammation of LPS injection in mice, that central CCL2/CCR2 signaling is of primary importance for several aspects explaining weight loss associated with inflammation: after LPS injection, animals lose weight, reduce their food intake, increase their fat oxidation (thus energy consumption from

  8. Identification of a novel CXCL1-like chemokine gene in macaques and its inactivation in hominids.

    PubMed

    Nomiyama, Hisayuki; Otsuka-Ono, Kaori; Miura, Retsu; Osada, Naoki; Terao, Keiji; Yoshie, Osamu; Kusuda, Jun

    2007-01-01

    Chemokines are a rapidly evolving cytokine gene family. Because of various genome rearrangements after divergence of primates and rodents, humans and mice have different sets of chemokine genes, with humans having members outnumbering those of mice. Here, we report the occurrence of lineage-specific chemokine gene generation or inactivation events within primates. By using human chemokine sequences as queries, we isolated a novel cynomolgus macaque CXC chemokine cDNA. The encoded chemokine, termed CXCL1L (from CXCL1-like) showed the highest similarity to human CXCL1. A highly homologous gene was also found in the rhesus macaque genome. By comparing the genome organization of the major CXC chemokine clusters among the primates, we found that one copy of the duplicated CXCL1 genes turned into a pseudogene in the hominids, whereas the gene in macaques has been maintained as a functionally active CXCL1L. In addition, cynomolgus macaque was found to contain an additional CXC chemokine highly homologous to CXCL3, termed CXCL3L (from CXCL3-like). These results demonstrate the birth-and-death process of a new gene in association with gene duplication within the primates.

  9. Evolution and function of chemokine receptors in the immune system of lower vertebrates.

    PubMed

    Bajoghli, Baubak

    2013-07-01

    Chemokine receptors and their counterpart ligands are one of the evolutionary innovations of vertebrates. They play a guiding role in the coordination of cell trafficking in many biological processes. Comparative syntenic and phylogenetic analyses provide insight into the evolution of chemokine receptors and suggest that the repertoire of chemokine receptors varies in each species, regardless of the evolutionary position of the species. Despite the rapid evolution of chemokine receptors, the expression and function of orthologous chemokine receptors in lower and higher vertebrates are very similar. This is also true for the chemokine ligands that have been examined so far, such as CXCL8, CXCL12, and CCL25. As examples, this review will discuss how the evolution of the chemokine receptor CXCR4 is coincident with the emergence of lymphocytes in jawless vertebrates (lamprey); and that, in jawed vertebrates, CXCR4 and CCR9 are involved in thymus colonization. In myeloid cells, the function of CXCR1 in neutrophils and the expression of CXCR3 in macrophages and DCs are evolutionarily conserved between fish and mammals. In this context, medaka and zebrafish are outstanding models for studying the function of chemokines and their receptors.

  10. The exodus subfamily of CC chemokines inhibits the proliferation of chronic myelogenous leukemia progenitors.

    PubMed

    Hromas, R; Cripe, L; Hangoc, G; Cooper, S; Broxmeyer, H E

    2000-02-15

    Chemokines are a family of related proteins that regulate leukocyte infiltration into inflamed tissue and play important roles in disease processes. Among the biologic activities of chemokines is inhibition of proliferation of normal hematopoietic progenitors. However, chemokines that inhibit normal progenitors rarely inhibit proliferation of hematopoietic progenitors from patients with chronic myelogenous leukemia (CML). We and others recently cloned a subfamily of CC chemokines that share similar amino-terminal peptide sequences and a remarkable ability to chemoattract T cells. These chemokines, Exodus-1/LARC/MIP-3alpha, Exodus-2/SLC/6Ckine/TCA4, and Exodus-3/CKbeta11/MIP-3beta, were found to inhibit proliferation of normal human marrow progenitors. The study described here found that these chemokines also inhibited the proliferation of progenitors in every sample of marrow from patients with CML that was tested. This demonstration of consistent inhibition of CML progenitor proliferation makes the 3 Exodus chemokines unique among chemokines. (Blood. 2000;95:1506-1508)

  11. Structural insights into the interaction between a potent anti-inflammatory protein, viral CC chemokine inhibitor (vCCI), and the human CC chemokine, Eotaxin-1.

    PubMed

    Kuo, Nai-Wei; Gao, Yong-Guang; Schill, Megan S; Isern, Nancy; Dupureur, Cynthia M; Liwang, Patricia J

    2014-03-07

    Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirus-encoded protein viral CC chemokine inhibitor (vCCI), a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes and may represent a potent method to stop inflammation. Previously, our structure of the vCCI·MIP-1β (macrophage inflammatory protein-1β) complex indicated that vCCI uses negatively charged residues in β-sheet II to interact with positively charged residues in the MIP-1β N terminus, 20s region and 40s loop. However, the interactions between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), a CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCI·MIP-1β complex and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin-1. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1 (monocyte chemoattractant protein-1), MIP-1β, and RANTES (regulated on activation normal T cell expressed and secreted), were determined as 1.1, 1.2, and 0.22 nm, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and multiple CC chemokines.

  12. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor

    SciTech Connect

    Burg, John S.; Ingram, Jessica R.; Venkatakrishnan, A.J.; Jude, Kevin M.; Dukkipati, Abhiram; Feinberg, Evan N.; Angelini, Alessandro; Waghray, Deepa; Dror, Ron O.; Ploegh, Hidde L.; Garcia, K. Christopher

    2015-03-05

    Chemokines are small proteins that function as immune modulators through activation of chemokine G protein-coupled receptors (GPCRs). Several viruses also encode chemokines and chemokine receptors to subvert the host immune response. How protein ligands activate GPCRs remains unknown. We report the crystal structure at 2.9 angstrom resolution of the human cytomegalovirus GPCR US28 in complex with the chemokine domain of human CX3CL1 (fractalkine). The globular body of CX3CL1 is perched on top of the US28 extracellular vestibule, whereas its amino terminus projects into the central core of US28. The transmembrane helices of US28 adopt an active-state-like conformation. Atomic-level simulations suggest that the agonist-independent activity of US28 may be due to an amino acid network evolved in the viral GPCR to destabilize the receptor’s inactive state.

  13. Enhancement of Chemokine Function as an Immunomodulatory Strategy Employed by Human Herpesviruses

    PubMed Central

    Viejo-Borbolla, Abel; Martinez-Martín, Nadia; Nel, Hendrik J.; Rueda, Patricia; Martín, Rocío; Blanco, Soledad; Arenzana-Seisdedos, Fernando; Thelen, Marcus; Fallon, Padraic G.; Alcamí, Antonio

    2012-01-01

    Herpes simplex virus (HSV) types 1 and 2 are highly prevalent human neurotropic pathogens that cause a variety of diseases, including lethal encephalitis. The relationship between HSV and the host immune system is one of the main determinants of the infection outcome. Chemokines play relevant roles in antiviral response and immunopathology, but the modulation of chemokine function by HSV is not well understood. We have addressed the modulation of chemokine function mediated by HSV. By using surface plasmon resonance and crosslinking assays we show that secreted glycoprotein G (SgG) from both HSV-1 and HSV-2 binds chemokines with high affinity. Chemokine binding activity was also observed in the supernatant of HSV-2 infected cells and in the plasma membrane of cells infected with HSV-1 wild type but not with a gG deficient HSV-1 mutant. Cell-binding and competition experiments indicate that the interaction takes place through the glycosaminoglycan-binding domain of the chemokine. The functional relevance of the interaction was determined both in vitro, by performing transwell assays, time-lapse microscopy, and signal transduction experiments; and in vivo, using the air pouch model of inflammation. Interestingly, and in contrast to what has been observed for previously described viral chemokine binding proteins, HSV SgGs do not inhibit chemokine function. On the contrary, HSV SgGs enhance chemotaxis both in vitro and in vivo through increasing directionality, potency and receptor signaling. This is the first report, to our knowledge, of a viral chemokine binding protein from a human pathogen that increases chemokine function and points towards a previously undescribed strategy of immune modulation mediated by viruses. PMID:22319442

  14. Stratum Corneum Tape Stripping: Monitoring of Inflammatory Mediators in Atopic Dermatitis Patients Using Topical Therapy

    PubMed Central

    Koppes, Sjors A.; Brans, Richard; Ljubojevic Hadzavdic, Suzana; Frings-Dresen, Monique H.W.; Rustemeyer, Thomas; Kezic, Sanja

    2016-01-01

    Objective The aim of this study was to explore the tape strip sampling technique in the assessment of stratum corneum levels of inflammatory mediators in a clinical trial setting. Methods Thirty-eight inflammatory mediators were analyzed by a multiplex-assay in the stratum corneum, collected by adhesive tapes before and after 6 weeks of therapy, in mild and moderate atopic dermatitis (AD) patients (n = 90). Treatment was a ceramide- and magnesium-containing emollient. Results Twenty-four mediators could quantitatively be determined. The Th2 mediators interleukin (IL)-4, IL-13, CCL2 (monocyte chemotactic protein-1), CCL22 (macrophage-derived chemokine), and CCL17 [thymus and activation-regulated chemokine (TARC)] were significantly decreased after therapy as well as IL-1β, IL-2, IL-8 (CXCL8), IL-10, acute-phase protein serum amyloid A, C-reactive protein, and vascular adhesion molecule-1. The decrease of CCL17 and IL-8 was correlated with the decrease in disease severity in a subgroup of moderate AD individuals. Conclusion Stratum corneum tape stripping offers a minimally invasive approach for studying local levels of immunomodulatory molecules in the skin. CCL17 (TARC) and IL-8 were found to be the most promising biomarkers of AD and might be useful for investigating the course of skin diseases and the effect of local therapy. PMID:27584583

  15. Evolution of Osteocrin as an activity-regulated factor in the primate brain.

    PubMed

    Ataman, Bulent; Boulting, Gabriella L; Harmin, David A; Yang, Marty G; Baker-Salisbury, Mollie; Yap, Ee-Lynn; Malik, Athar N; Mei, Kevin; Rubin, Alex A; Spiegel, Ivo; Durresi, Ershela; Sharma, Nikhil; Hu, Linda S; Pletikos, Mihovil; Griffith, Eric C; Partlow, Jennifer N; Stevens, Christine R; Adli, Mazhar; Chahrour, Maria; Sestan, Nenad; Walsh, Christopher A; Berezovskii, Vladimir K; Livingstone, Margaret S; Greenberg, Michael E

    2016-11-10

    Sensory stimuli drive the maturation and function of the mammalian nervous system in part through the activation of gene expression networks that regulate synapse development and plasticity. These networks have primarily been studied in mice, and it is not known whether there are species- or clade-specific activity-regulated genes that control features of brain development and function. Here we use transcriptional profiling of human fetal brain cultures to identify an activity-dependent secreted factor, Osteocrin (OSTN), that is induced by membrane depolarization of human but not mouse neurons. We find that OSTN has been repurposed in primates through the evolutionary acquisition of DNA regulatory elements that bind the activity-regulated transcription factor MEF2. In addition, we demonstrate that OSTN is expressed in primate neocortex and restricts activity-dependent dendritic growth in human neurons. These findings suggest that, in response to sensory input, OSTN regulates features of neuronal structure and function that are unique to primates.

  16. Chemokine induction by all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia: triggering the differentiation syndrome.

    PubMed

    Luesink, Maaike; Pennings, Jeroen L A; Wissink, Willemijn M; Linssen, Peter C M; Muus, Petra; Pfundt, Rolph; de Witte, Theo J M; van der Reijden, Bert A; Jansen, Joop H

    2009-12-24

    In acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA) and/or arsenic trioxide can induce a differentiation syndrome (DS) with massive pulmonary infiltration of differentiating leukemic cells. Because chemokines are implicated in migration and extravasation of leukemic cells, chemokines might play a role in DS. ATRA stimulation of the APL cell line NB4 induced expression of multiple CC-chemokines (CCLs) and their receptors (> 19-fold), resulting in increased chemokine levels and chemotaxis. Induction of CCL2 and CCL24 was directly mediated by ligand-activated retinoic acid receptors. In primary leukemia cells derived from APL patients at diagnosis, ATRA induced chemokine production as well. Furthermore, in plasma of an APL patient with DS, we observed chemokine induction, suggesting that chemokines might be important in DS. Dexamethasone, which efficiently reduces pulmonary chemokine production, did not inhibit chemokine induction in APL cells. Finally, chemokine production was also induced by arsenic trioxide as single agent or in combination with ATRA. We propose that differentiation therapy may induce chemokine production in the lung and in APL cells, which both trigger migration of leukemic cells. Because dexamethasone does not efficiently reduce leukemic chemokine production, pulmonary infiltration of leukemic cells may induce an uncontrollable hyperinflammatory reaction in the lung.

  17. Soluble chemokine receptor CXCR4 is present in human sera.

    PubMed

    Malvoisin, Etienne; Livrozet, Jean-Michel; Makloufi, Djamila; Vincent, Nadine

    2011-07-15

    A soluble form of the chemokine receptor CXCR4 was detected in human sera by isoelectric focusing and Western blotting. Sera of patients and normal subjects were analyzed using a panel of specific antibodies. Compared with controls, high levels of serum CXCR4 were found in patients with inflammatory bowel diseases. Serum CXCR4 levels in the majority of HIV patients were similar to those in healthy controls. A sensitive polyclonal antibody was developed in rabbit immunized with a maltose binding protein (MBP) construct expressing the full-length CXCR4. Using anti-MBPCXCR4 antibody, the level of CXCR4 in sera of a majority of patients with fibrosis was very low. The potential of serum CXCR4 as a new diagnostic biomarker warrants further investigation.

  18. Role of Chemokines in Shaping Macrophage Activity in AMD.

    PubMed

    Rutar, Matt; Provis, Jan M

    2016-01-01

    Age-related macular degeneration (AMD) is a multifactorial disorder that affects millions of individuals worldwide. While the advent of anti-VEGF therapy has allowed for effective treatment of neovascular 'wet' AMD, no treatments are available to mitigate the more prevalent 'dry' forms of the disease. A role for inflammatory processes in the progression of AMD has emerged over a period of many years, particularly the characterisation of leukocyte infiltrates in AMD-affected eyes, as well as in animal models. This review focuses on the burgeoning understanding of chemokines in the retina, and their potential role in shaping the recruitment and activation of macrophages in AMD. Understanding the mechanisms which promote macrophage activity in the degenerating retina may be key to controlling the potentially devastating consequences of inflammation in diseases such as AMD.

  19. Viral mimicry of cytokines, chemokines and their receptors.

    PubMed

    Alcami, Antonio

    2003-01-01

    Viruses have evolved elegant mechanisms to evade detection and destruction by the host immune system. One of the evasion strategies that have been adopted by large DNA viruses is to encode homologues of cytokines, chemokines and their receptors--molecules that have a crucial role in control of the immune response. Viruses have captured host genes or evolved genes to target specific immune pathways, and so viral genomes can be regarded as repositories of important information about immune processes, offering us a viral view of the host immune system. The study of viral immunomodulatory proteins might help us to uncover new human genes that control immunity, and their characterization will increase our understanding of not only viral pathogenesis, but also normal immune mechanisms. Moreover, viral proteins indicate strategies of immune modulation that might have therapeutic potential.

  20. Chemokine receptor CXCR4: role in gastrointestinal cancer.

    PubMed

    Lombardi, Lucia; Tavano, Francesca; Morelli, Franco; Latiano, Tiziana Pia; Di Sebastiano, Pierluigi; Maiello, Evaristo

    2013-12-01

    Chemokines (CK)s, small proinflammatory chemoattractant cytokines that bind to specific G-protein coupled seven-span transmembrane receptors, are major regulators of cell trafficking and adhesion. The CXCL12 [stromal cell-derived factor-1 (SDF-1)] binds primarily to CXC receptor 4 (CXCR4; CD184). The binding of CXCL12 to CXCR4 induces intracellular signaling through several divergent pathways initiating signals related to chemotaxis, cell survival and/or proliferation, increase in intracellular calcium, and gene transcription. CXCR4 is expressed on multiple cell types including lymphocytes, hematopoietic stem cells, endothelial and epithelial cells, and cancer cells. One of the most intriguing and perhaps important roles that CKs and the CK receptors have is in regulating metastasis. Here, CK receptors may potentially facilitate tumor dissemination at each of the key steps of metastasis, including adherence of tumor cells to endothelium, extravasation from blood vessels, metastatic colonization, angiogenesis, proliferation, and protection from the host response via activation of key survival pathways such as ERK/MAPK, PI-3K/Akt/mTOR, or Jak/STAT, etc. In addition, it is increasingly recognized that CKs play an important role in facilitating communication between cancer cells and non-neoplatic cells in the tumor microenvironment (TME), including endothelial cells and fibroblasts, promoting the infiltration, activation of neutrophils, and tumor-associated macrophages within the TME. In this review, we mainly focus on the roles of chemokines CXCL12 and its cognate receptors CXCR4 as they pertain to cancer progression. In particular, we summarizes our current understanding regarding the contribution of CXCR4 and SDF-1 to gastrointestinal tumor behavior and its role in local progression, dissemination, and immune evasion of tumor cells. Also, describes recent therapeutic approaches that target these receptors or their ligands.

  1. Distinct Cytokine and Chemokine Profiles in Autism Spectrum Disorders

    PubMed Central

    Han, Yvonne M. Y.; Cheung, Winnie K. Y.; Wong, Chun Kwok; Sze, Sophia L.; Cheng, Timmy W. S.; Yeung, Michael K.; Chan, Agnes S.

    2017-01-01

    Previous studies have shown that immunological factors are involved in the pathogenesis of autism spectrum disorders (ASDs). However, this research has been conducted almost exclusively in Western contexts, and only a handful of studies on immune measures have been conducted in Asian populations, such as Chinese populations. The present study examined whether immunological abnormalities are associated with cognitive deficits and problem behaviors in Chinese children with ASD and whether these children show different immunological profiles. Thirteen typically developing (TD) children and 22 children with ASD, aged 6–17 years, participated voluntarily in the study. Executive functions and short-term memory were measured using neuropsychological tests, and behavioral measures were assessed using parent ratings. The children were also assessed on immunological measures, specifically, the levels of cytokines and chemokines in the blood serum. Children with ASD showed greater deficits in cognitive functions, as well as altered levels of immunological measures, including CCL2, CCL5, and CXCL9 levels, compared to TD children, and the cognitive functions and associated behavioral deficits of children with ASD were significantly associated with different immunological measures. The children were further sub-classified into ASD with only autistic features (ASD-only) or ASD comorbid with attention deficit hyperactivity disorder (ASD + ADHD). The comorbidity results showed that there were no differences between the two groups of ASD children in any of the cognitive or behavioral measures. However, the results pertaining to immunological measures showed that the children with ASD-only and ASD + ADHD exhibited distinct cytokine and chemokine profiles and that abnormal immunologic function was associated with cognitive functions and inattention/hyperactivity symptoms. These results support the notion that altered immune functions may play a role in the selective

  2. CC Chemokine Ligand 18 in ANCA-Associated Crescentic GN.

    PubMed

    Brix, Silke R; Stege, Gesa; Disteldorf, Erik; Hoxha, Elion; Krebs, Christian; Krohn, Sonja; Otto, Benjamin; Klätschke, Kristin; Herden, Elisabeth; Heymann, Felix; Lira, Sergio A; Tacke, Frank; Wolf, Gunter; Busch, Martin; Jabs, Wolfram J; Özcan, Fedai; Keller, Frieder; Beige, Joachim; Wagner, Karl; Helmchen, Udo; Noriega, Mercedes; Wiech, Thorsten; Panzer, Ulf; Stahl, Rolf A K

    2015-09-01

    ANCA-associated vasculitis is the most frequent cause of crescentic GN. To define new molecular and/or cellular biomarkers of this disease in the kidney, we performed microarray analyses of renal biopsy samples from patients with ANCA-associated crescentic GN. Expression profiles were correlated with clinical data in a prospective study of patients with renal ANCA disease. CC chemokine ligand 18 (CCL18), acting through CC chemokine receptor 8 (CCR8) on mononuclear cells, was identified as the most upregulated chemotactic cytokine in patients with newly diagnosed ANCA-associated crescentic GN. Macrophages and myeloid dendritic cells in the kidney were detected as CCL18-producing cells. The density of CCL18(+) cells correlated with crescent formation, interstitial inflammation, and impairment of renal function. CCL18 protein levels were higher in sera of patients with renal ANCA disease compared with those in sera of patients with other forms of crescentic GN. CCL18 serum levels were higher in patients who suffered from ANCA-associated renal relapses compared with those in patients who remained in remission. Using a murine model of crescentic GN, we explored the effects of the CCL18 murine functional analog CCL8 and its receptor CCR8 on kidney function and morphology. Compared with wild-type mice, Ccr8(-/-) mice had significantly less infiltration of pathogenic mononuclear phagocytes. Furthermore, Ccr8(-/-) mice maintained renal function better and had reduced renal tissue injury. In summary, our data indicate that CCL18 drives renal inflammation through CCR8-expressing cells and could serve as a biomarker for disease activity and renal relapse in ANCA-associated crescentic GN.

  3. Structural Insights into the Interaction Between a Potent Anti-Inflammatory Protein, Viral CC Chemokine Inhibitor (vCCI), and the Human CC Chemokine, Eotaxin-1

    SciTech Connect

    Kuo, Nai-Wei; Gao, Yong; Schill, Megan S.; Isern, Nancy G.; Dupureur, Cynthia M.; Liwang, Patricia J.

    2014-01-30

    Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirusencoded protein vCCI, a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes, and may represent a potent method to stop inflammation. Previously, our structure of the vCCI:MIP-1β complex indicated that vCCI uses negatively charged residues in β-sheet II to interact with positively charged residues in the MIP-1βN-terminus, 20’s region and 40’s loop. However, the interactions between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), another CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCI:MIP-1βcomplex, and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin. Compared to wild-type eotaxin, single, double, or triple mutations at these critical charged residues weaken the binding. One exception is the K47A mutation that exhibits increased affinity for vCCI, which can be explained structurally. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1, MIP-1β and RANTES, were determined as 1.09 nM, 1.16 nM, and 0.22 nM, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and different CC chemokines.

  4. Enhanced monocyte migration to CXCR3 and CCR5 chemokines in COPD.

    PubMed

    Costa, Claudia; Traves, Suzanne L; Tudhope, Susan J; Fenwick, Peter S; Belchamber, Kylie B R; Russell, Richard E K; Barnes, Peter J; Donnelly, Louise E

    2016-04-01

    Chronic obstructive pulmonary disease (COPD) patients exhibit chronic inflammation, both in the lung parenchyma and the airways, which is characterised by an increased infiltration of macrophages and T-lymphocytes, particularly CD8+ cells. Both cell types can express chemokine (C-X-C motif) receptor (CXCR)3 and C-C chemokine receptor 5 and the relevant chemokines for these receptors are elevated in COPD. The aim of this study was to compare chemotactic responses of lymphocytes and monocytes of nonsmokers, smokers and COPD patients towards CXCR3 ligands and chemokine (C-C motif) ligand (CCL)5. Migration of peripheral blood mononuclear cells, monocytes and lymphocytes from nonsmokers, smokers and COPD patients toward CXCR3 chemokines and CCL5 was analysed using chemotaxis assays. There was increased migration of peripheral blood mononuclear cells from COPD patients towards all chemokines studied when compared with nonsmokers and smokers. Both lymphocytes and monocytes contributed to this enhanced response, which was not explained by increased receptor expression. However, isolated lymphocytes failed to migrate and isolated monocytes from COPD patients lost their enhanced migratory capacity. Both monocytes and lymphocytes cooperate to enhance migration towards CXCR3 chemokines and CCL5. This may contribute to increased numbers of macrophages and T-cells in the lungs of COPD patients, and inhibition of recruitment using selective antagonists might be a treatment to reduce the inflammatory response in COPD.

  5. Chemokine-enhanced chemotaxis of lymphangioleiomyomatosis cells with mutations in the tumor suppressor TSC2 gene.

    PubMed

    Pacheco-Rodriguez, Gustavo; Kumaki, Fumiyuki; Steagall, Wendy K; Zhang, Yi; Ikeda, Yoshihiko; Lin, Jing-Ping; Billings, Eric M; Moss, Joel

    2009-02-01

    Lymphangioleiomyomatosis (LAM) is characterized by cystic lung destruction caused by LAM cells (smooth-muscle-like cells) that have mutations in the tumor suppressor genes tuberous sclerosis complex (TSC) 1 or 2 and have the capacity to metastasize. Since chemokines and their receptors function in chemotaxis of metastatic cells, we hypothesized that LAM cells may be recruited by chemokine(s) in the lung. Quantification of 25 chemokines in bronchoalveolar lavage fluid from LAM patients and healthy volunteers revealed that concentrations of CCL2, CXCL1, and CXCL5 were significantly higher in samples from LAM patients than those from healthy volunteers. In vitro, CCL2 or MCP-1 induced selective migration of cells, showing loss of heterozygosity of TSC2 from a heterogeneous population of cells grown from explanted LAM lungs. Additionally, the frequencies of single-nucleotide polymorphisms in the CCL2 gene promoter region differed significantly in LAM patients and healthy volunteers (p = 0.018), and one polymorphism was associated significantly more frequently with the decline of lung function. The presence (i.e., potential functionality) of chemokine receptors was evaluated using immunohistochemistry in lung sections from 30 LAM patients. Expression of chemokines and these receptors varied among LAM patients and differed from that seen in some cancers (e.g., breast cancer and melanoma cells). These observations are consistent with the notion that chemokines such as CCL2 may serve to determine mobility and specify the site of metastasis of the LAM cell.

  6. Endogenous ligand bias by chemokines: implications at the front lines of infection and leukocyte trafficking.

    PubMed

    Zidar, David A

    2011-06-01

    Chemokine receptors are a group of homologous seven transmembrane receptors (7TMR) that direct cell migration. Their ligands comprise a family of proteins that share structural, biochemical, and physiological features to govern leukocyte trafficking. Multiple endogenous chemokines with overlapping function have evolved for the majority of chemokine receptors. This duplicity of ligands has traditionally been seen to confer physiologic redundancy, especially as it pertains to chemotaxis mediated through G-protein activation. Yet, several recent reports also suggest that chemokine receptors are capable of differential signaling in a ligand-specific manner. This review will explore emerging concepts related to ligand bias at chemokine receptors. Recent studies show that although the endogenous ligands of CCR7 have apparent equipotency for G-protein signaling, they differentially activate the G-protein coupled receptor kinase (GRK)/β-arrestin system to selectively control receptor desensitization. In contrast, similar studies using endogenous ligands for CCR5, a human immunodeficiency virus (HIV) co-receptor, suggest this receptor is not subject to ligand bias by its principle chemokines. Nonetheless, this receptor does appear to be capable of biased agonism by synthetic chemokine analogues. These observations provide compelling evidence that ligand bias exists both as a naturally relevant and therapeutically important phenomenon. This review will highlight the evidence for differential signaling by CCR7 and CCR5, speculate on the physiologic relevance, and discuss the rationale behind the development of biased agonists for the treatment of HIV infection.

  7. The role of chemokines in acute and chronic hepatitis C infection.

    PubMed

    Fahey, Stephen; Dempsey, Eugene; Long, Aideen

    2014-01-01

    Hepatitis C imposes a significant burden on global healthcare. Chronic infection is associated with progressive inflammation of the liver which typically manifests in cirrhosis, organ failure and cancer. By virtue of elaborate evasion strategies, hepatitis C virus (HCV) succeeds as a persistent human virus. It has an extraordinary capacity to subvert the immune response enabling it to establish chronic infections and associated liver disease. Chemokines are low molecular weight chemotactic peptides that mediate the recruitment of inflammatory cells into tissues and back into the lymphatics and peripheral blood. Thus, they are central to the temporal and spatial distribution of effector and regulatory immune cells. The interactions between chemokines and their cognate receptors help shape the immune response and therefore, have a major influence on the outcome of infection. However, chemokines represent a target for modulation by viruses including the HCV. HCV is known to modulate chemokine expression in vitro and may therefore enable its survival by subverting the immune response in vivo through altered leukocyte chemotaxis resulting in impaired viral clearance and the establishment of chronic low-grade inflammation. In this review, the roles of chemokines in acute and chronic HCV infection are described with a particular emphasis placed on chemokine modulation as a means of immune subversion. We provide an in depth discussion of the part played by chemokines in mediating hepatic fibrosis while addressing the potential applications for these chemoattractants in prognostic medicine.

  8. Impact of genetic variations in C-C chemokine receptors and ligands on infectious diseases.

    PubMed

    Qidwai, Tabish; Khan, M Y

    2016-10-01

    Chemokine receptors and ligands are crucial for extensive immune response against infectious diseases such as malaria, leishmaniasis, HIV and tuberculosis and a wide variety of other diseases. Role of chemokines are evidenced in the activation and regulation of immune cell migration which is important for immune response against diseases. Outcome of disease is determined by complex interaction among pathogen, host genetic variability and surrounding milieu. Variation in expression or function of chemokines caused by genetic polymorphisms could be associated with attenuated immune responses. Exploration of chemokine genetic polymorphisms in therapeutic response, gene regulation and disease outcome is important. Infectious agents in human host alter the expression of chemokines via epigenetic alterations and thus contribute to disease pathogenesis. Although some fragmentary data are available on chemokine genetic variations and their contribution in diseases, no unequivocal conclusion has been arrived as yet. We therefore, aim to investigate the association of CCR5-CCL5 and CCR2-CCL2 genetic polymorphisms with different infectious diseases, transcriptional regulation of gene, disease severity and response to therapy. Furthermore, the role of epigenetics in genes related to chemokines and infectious disease are also discussed.

  9. The Role of Chemokines in Mesenchymal Stem Cell Homing to Wounds

    PubMed Central

    Hocking, Anne M.

    2015-01-01

    Significance: Mesenchymal stem cells (MSCs) are being administered to cutaneous wounds with the goal of accelerating wound closure and promoting regeneration instead of scar formation. An ongoing challenge for cell-based therapies is achieving effective and optimal targeted delivery and engraftment at the site of injury. Contributing to this challenge is our incomplete understanding of endogenous MSC homing to sites of injury. Recent Advances: Chemokines and their receptors are now recognized as important mediators of stem cell homing. To date, the most studied chemokine–chemokine receptor axis in MSC homing to wounds is CXCL12-CXCR4 but recent work suggests that CCL27-CCR10 and CCL21-CCR7 may also be involved. Critical Issues: Strategies to enhance chemokine-mediated MSC homing to wounds are using a variety of approaches to amplify the chemokine signal at the wound site and/or overexpress specific chemokine receptors on the surface of the MSC. Future Directions: Harnessing chemokine signaling may enhance the therapeutic effects of stem cell therapy by increasing the number of both exogenous and endogenous stem cells recruited to the site of injury. Alternatively, chemokine-based therapies directly targeting endogenous stem cells may circumvent the need for the time-consuming and costly isolation and expansion of autologous stem cells prior to therapeutic administration. PMID:26543676

  10. Hostility is related to clusters of T-cell cytokines and chemokines in healthy men.

    PubMed

    Mommersteeg, Paula M C; Vermetten, Eric; Kavelaars, Annemieke; Geuze, Elbert; Heijnen, Cobi J

    2008-09-01

    Hostility is a risk factor for adverse health outcomes as diverse as cardiovascular disease and post-traumatic stress disorder (PTSD). Cytokines have been suggested to mediate this relationship. We investigated whether in healthy men a relation existed between hostility and T-cell mitogen-induced cytokines and chemokines. Male Dutch military personnel (n=304) were included before deployment. Eleven cytokines and chemokines were measured in supernatants of T-cell mitogen-stimulated whole blood cultures by multiplex immunoassay. Factor analysis was used to identify clusters of cytokines and chemokines. In a regression analysis hostility was related to the cytokine/chemokine clusters, and the potential risk factors age, BMI, smoking, drinking, previous deployment, early life trauma and depression. Explorative factor analysis showed four functional clusters; a pro-inflammatory factor (IL-2, TNFalpha, IFNgamma), an anti-inflammatory factor (IL-4, IL-5, IL-10), IL-6/chemokine factor (IL-6, MCP-1, RANTES, IP-10), and MIF. Hostility was significantly related to decreased IL-6/chemokine secretion and increased pro- and anti-inflammatory cytokines. There was an inverse relation between age and hostility scores. Early life trauma and depression were positively and independently related to hostility as well. This study represents a novel way of investigating the relation between cytokines and psychological characteristics. Cytokines/chemokines clustered into functional factors, which were related to hostility in healthy males. Moreover this relation appeared to be independent of reported depression and early trauma.

  11. Extracellular disulfide bridges serve different purposes in two homologous chemokine receptors, CCR1 and CCR5.

    PubMed

    Rummel, Pia C; Thiele, Stefanie; Hansen, Lærke S; Petersen, Trine P; Sparre-Ulrich, Alexander H; Ulven, Trond; Rosenkilde, Mette M

    2013-09-01

    In addition to the 7 transmembrane receptor (7TM)-conserved disulfide bridge between transmembrane (TM) helix 3 and extracellular loop (ECL)-2, chemokine receptors (CCR) contain a disulfide bridge between the N terminus and what previously was believed to be ECL-3. Recent crystal and NMR structures of the CXC chemokine receptors (CXCR) CXCR4 and CXCR1, combined with structural analysis of all endogenous chemokine receptors indicate that this chemokine receptor-conserved bridge in fact connects the N terminus to the top of TM-7. By employing chemokine ligands that mainly target extracellular receptor regions and small-molecule ligands that predominantly interact with residues in the main binding crevice, we show that the 7TM-conserved bridge is essential for all types of ligand-mediated activation, whereas the chemokine-conserved bridge is dispensable for small-molecule activation in CCR1. However, in striking contrast to previous studies in other chemokine receptors, high-affinity CCL3 chemokine binding was maintained in the absence of either bridge. In the highly related CCR5, a completely different dependency was observed as neither activation nor binding of the same chemokines was retained in the absence of either bridge. In contrast, both bridges were dispensable for activation by the same small molecules. This indicates that CCR5 activity is independent of extracellular regions, whereas in CCR1 the preserved folding of ECL-2 is necessary for activation. These results indicate that conserved structural features in a receptor subgroup do not necessarily provide specific traits for the whole subgroup but rather provide unique traits to the single receptors.

  12. Chemokines as Therapeutic Targets to Improve Healing Efficiency of Chronic Wounds

    PubMed Central

    Satish, Latha

    2015-01-01

    Significance: Impaired wound healing leading to chronic wounds is an important clinical problem that needs immediate attention to develop new effective therapies. Members of the chemokine family seem to be attractive and amenable to stimulate the healing process in chronic wounds. Targeting specific chemokines and/or their receptors has the potential to modify chronic inflammation to acute inflammation, which will hasten the healing process. Recent Advances: Over the years, expression levels of various chemokines and their receptors have been identified as key players in the inflammatory phase of wound healing. In addition, they contribute to regulating other phases of wound healing making them key targets for novel therapies. Understanding the signaling pathways of these chemokines will provide valuable clues for modulating their function to enhance the wound healing process. Critical Issues: Inflammation, an important first-stage process in wound healing, is dysregulated in chronic wounds; emerging studies show that chemokines play a crucial role in regulating inflammation. The knowledge gained so far is still limited in understanding the enormous complexity of the chemokine network during inflammation not just in chronic wounds but also in acute (normal) wounds. A much better understanding of the individual chemokines will pave the way for better targets and therapies to improve the healing efficiency of chronic wounds. Future Directions: Effective understanding of the interaction of chemokines and their receptors during chronic wound healing would facilitate the design of novel therapeutic drugs. Development of chemokine-based drugs targeting specific inflammatory cells will be invaluable in the treatment of chronic wounds, in which inflammation plays a major role. PMID:26543679

  13. Inflammatory Cytokines Induce Expression of Chemokines by Human Retinal Cells: Role in Chemokine Receptor Mediated Age-related Macular Degeneration.

    PubMed

    Nagineni, Chandrasekharam N; Kommineni, Vijay K; Ganjbaksh, Nader; Nagineni, Krishnasai K; Hooks, John J; Detrick, Barbara

    2015-11-01

    Chemokine reeptor-3 (CCR-3) was shown to be associated with choroidal neovascularization (CNV) in age-related macular degeneration (AMD). AMD is a vision threatening retinal disease that affects the aging population world-wide. Retinal pigment epithelium and choroid in the posterior part of the retina are the key tissues targeted in the pathogenesis of CNV in AMD. We used human retinal pigment epithelial (HRPE) and choroidal fibroblast (HCHF) cells, prepared from aged adult human donor eyes, to evaluate the expression of major CCR-3 ligands, CCL-5, CCL -7, CCL-11,CCL-24 and CCL-26. Microarray analysis of gene expression in HRPE cells treated with inflammatory cytokine mix (ICM= IFN-γ+TNF-α+IL-1β) revealed 75 and 23-fold increase in CCL-5 and CCL-7 respectively, but not CCL-11, CCL-24 and CCL-26. Chemokine secretion studies of the production of CCL5 and CCL7 by HRPE corroborated with the gene expression analysis data. When the HRPE cells were treated with either individual cytokines or the ICM, both CCL-5 and CCL-7 were produced in a dose dependent manner. Similar to the gene expression data, the ICM did not enhance HRPE production of CCL-11, CCL-24 and CCL-26. CCL-11 and CCL-26 were increased with IL-4 treatment and this HRPE production was augmented in the presence of TNF-α and IL1β. When HCHF cells were treated with either individual cytokines or the ICM, both CCL-5 and CCL-7 were produced in a dose dependent fashion. IL-4 induced low levels of CCL-11 and CCL-26 in HCHF and this production was significantly enhanced by TNF-α. Under these conditions, neither HRPE nor HCHF were demonstrated to produce CCL-24. These data demonstrate that chronic inflammation triggers CCL-5 and CCL-7 release by HRPE and HCHF and the subsequent interactions with CCR3 may participate in pathologic processes in AMD.

  14. Visualizing Chemokine-Dependent T Cell Activation and Migration in Response to Central Nervous System Infection

    PubMed Central

    Carson, Monica J.; Wilson, Emma H.

    2014-01-01

    In response to central nervous system (CNS) injury and infection, astrocytes, neurons, and CNS vasculature express several chemokines, including CCL21. Quantitative polymerase chain reaction (qPCR), western blot, and immunohistochemical methods can quantify mRNA and protein expression. However, these methods do not quantify chemokine bioavailability and bioactivity, variables modified by many environ mental factors including composition of extracellular matrix (ECM). Here we illustrate how two-photon microscopy and carboxyfluorescein succinimidyl ester (CFSE or CFDA SE) labeling of T cells coupled with flow cytometry can be used as tools to assess chemokine-mediated regulation of T cell proliferation, activation, and migration. PMID:23625499

  15. A20 regulates IL-1-induced tolerant production of CXC chemokines in human mesangial cells via inhibition of MAPK signaling

    PubMed Central

    Luo, Hongbo; Liu, Yuming; Li, Qian; Liao, Lingjuan; Sun, Ruili; Liu, Xueting; Jiang, Manli; Hu, Jinyue

    2015-01-01

    Chemokines and chemokine receptors are involved in the resolution or progression of renal diseases. Locally secreted chemokines mediated leukocyte recruitment during the initiation and amplification phase of renal inflammation. However, the regulation of chemokine induction is not fully understood. In this study, we found that IL-1 induced a significant up-regulation of CXC chemokines CXCL1, 2, and 8 at both mRNA and protein levels in human mesangial cells. The induction of chemokines was tolerant, as the pre-treatment of HMC with IL-1 down-regulated the induction of chemokines induced by IL-1 re-stimulation. IL-1 up-regulated the ubiquintin-editing enzyme A20. A20 over-expression down-regulated IL-1-induced up-regulation of chemokines, and A20 down-regulation reversed chemokine inhibition induced by IL-1 pre-treatment, suggested that A20 played important roles in the tolerant production of chemokines. Unexpectedly, A20 over- expression inhibited the activation of ERK, JNK, and P38, but did not inhibit the activation of NF-κB. In addition, both IL-1 treatment and A20 over-expression induced the degradation of IRAK1, an important adaptor for IL-1R1 signaling, and A20 inhibition by RNA interference partly reversed the degradation of IRAK1. Taken together, IL-1-induced A20 negatively regulated chemokine production, suggesting that A20 may be an important target for the prevention and control of kidney inflammation. PMID:26648169

  16. Anti-infective peptide IDR-1002 augments monocyte chemotaxis towards CCR5 chemokines.

    PubMed

    Madera, Laurence; Hancock, Robert E W

    2015-08-28

    Innate defense regulator (IDR) peptides are a class of immunomodulators which enhance and modulate host innate immune responses against microbial pathogens. While IDR-mediated protection against a range of bacterial pathogens is dependent on enhanced monocyte recruitment to the site of infection, the mechanisms through which they increase monocyte trafficking remain unclear. In this study, anti-infective peptide IDR-1002 was shown to enhance monocyte chemotaxis towards chemokines CCL3 and CCL5. This enhancement correlated with the selective upregulation of CCR5 surface expression by peptide-treated monocytes. It was found that IDR-1002 enhancement of monocyte chemotaxis was fully dependent on CCR5 function. Furthermore, IDR-1002 enhanced chemokine-induced monocyte p38 MAPK phosphorylation in a CCR5-dependent fashion. Overall, these results indicate that peptide IDR-1002 can selectively influence monocyte recruitment by host chemokines through the regulation of chemokine receptors.

  17. Chemokines and Heart Disease: A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems

    PubMed Central

    Dusi, Veronica; Ghidoni, Alice; Ravera, Alice; De Ferrari, Gaetano M.; Calvillo, Laura

    2016-01-01

    Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described. PMID:27242392

  18. Bivalent Ligands Targeting Chemokine Receptor Dimerization: Molecular Design and Functional Studies

    PubMed Central

    Arnatt, Christopher Kent; Zhang, Yan

    2015-01-01

    Increasing evidence has shown that chemokine receptors may form functional dimers with unique pharmacological profiles. A common practice to characterize such G protein-coupled receptor dimerization processes is to apply bivalent ligands as chemical probes which can interact with both receptors simultaneously. Currently, two chemokine receptor dimers have been studied by applying bivalent compounds: the CXCR4-CXCR4 homodimer and the CCR5-MOR heterodimer. These bivalent compounds have revealed how dimerization influences receptor function and may lead to novel therapeutics. Future design of bivalent ligands for chemokine receptor dimers may be aided with the recently available CXCR4 homodimer, and CCR5 monomer crystal structures by more accurately simulating chemokine receptors and their dimers. PMID:25159160

  19. RGS1 regulates myeloid cell accumulation in atherosclerosis and aortic aneurysm rupture through altered chemokine signalling

    PubMed Central

    Patel, Jyoti; McNeill, Eileen; Douglas, Gillian; Hale, Ashley B.; de Bono, Joseph; Lee, Regent; Iqbal, Asif J.; Regan-Komito, Daniel; Stylianou, Elena; Greaves, David R.; Channon, Keith M.

    2015-01-01

    Chemokine signalling drives monocyte recruitment in atherosclerosis and aortic aneurysms. The mechanisms that lead to retention and accumulation of macrophages in the vascular wall remain unclear. Regulator of G-Protein Signalling-1 (RGS1) deactivates G-protein signalling, reducing the response to sustained chemokine stimulation. Here we show that Rgs1 is upregulated in atherosclerotic plaque and aortic aneurysms. Rgs1 reduces macrophage chemotaxis and desensitizes chemokine receptor signalling. In early atherosclerotic lesions, Rgs1 regulates macrophage accumulation and is required for the formation and rupture of Angiotensin II-induced aortic aneurysms, through effects on leukocyte retention. Collectively, these data reveal a role for Rgs1 in leukocyte trafficking and vascular inflammation and identify Rgs1, and inhibition of chemokine receptor signalling as potential therapeutic targets in vascular disease. PMID:25782711

  20. Chemokine signaling directs trunk lymphatic network formation along the preexisting blood vasculature.

    PubMed

    Cha, Young Ryun; Fujita, Misato; Butler, Matthew; Isogai, Sumio; Kochhan, Eva; Siekmann, Arndt F; Weinstein, Brant M

    2012-04-17

    The lymphatic system is crucial for fluid homeostasis, immune responses, and numerous pathological processes. However, the molecular mechanisms responsible for establishing the anatomical form of the lymphatic vascular network remain largely unknown. Here, we show that chemokine signaling provides critical guidance cues directing early trunk lymphatic network assembly and patterning. The chemokine receptors Cxcr4a and Cxcr4b are expressed in lymphatic endothelium, whereas chemokine ligands Cxcl12a and Cxcl12b are expressed in adjacent tissues along which the developing lymphatics align. Loss- and gain-of-function studies in zebrafish demonstrate that chemokine signaling orchestrates the stepwise assembly of the trunk lymphatic network. In addition to providing evidence for a lymphatic vascular guidance mechanism, these results also suggest a molecular basis for the anatomical coalignment of lymphatic and blood vessels.

  1. Synergy between coproduced CC and CXC chemokines in monocyte chemotaxis through receptor-mediated events.

    PubMed

    Gouwy, Mieke; Struyf, Sofie; Noppen, Samuel; Schutyser, Evemie; Springael, Jean-Yves; Parmentier, Marc; Proost, Paul; Van Damme, Jo

    2008-08-01

    CC and CXC chemokines coinduced in fibroblasts and leukocytes by cytokines and microbial agents determine the number of phagocytes infiltrating into inflamed tissues. Interleukin-8/CXCL8 and stromal cell-derived factor-1/CXCL12 significantly and dose-dependently increased the migration of monocytes, expressing the corresponding CXC chemokine receptors CXCR2 and CXCR4, toward suboptimal concentrations of the monocyte chemotactic proteins CCL2 or CCL7. These findings were confirmed using different chemotaxis assays and monocytic THP-1 cells. In contrast, the combination of two CC chemokines (CCL2 plus CCL7) or two CXC chemokines (CXCL8 plus CXCL12) did not provide synergy in monocyte chemotaxis. These data show that chemokines competing for related receptors and using similar signaling pathways do not synergize. Receptor heterodimerization is probably not essential for chemokine synergy as shown in CXCR4/CCR2 cotransfectants. It is noteworthy that CCL2 mediated extracellular signal-regulated kinase 1/2 phosphorylation and calcium mobilization was significantly enhanced by CXCL8 in monocytes, indicating cooperative downstream signaling pathways during enhanced chemotaxis. Moreover, in contrast to intact CXCL12, truncated CXCL12(3-68), which has impaired receptor signaling capacity but can still desensitize CXCR4, was unable to synergize with CCL2 in monocytic cell migration. Furthermore, AMD3100 and RS102895, specific CXCR4 and CCR2 inhibitors, respectively, reduced the synergistic effect between CCL2 and CXCL12 significantly. These data indicate that for synergistic interaction between chemokines binding and signaling of the two chemokines via their proper receptors is necessary.

  2. Campylobacter jejuni Induces Secretion of Proinflammatory Chemokines from Human Intestinal Epithelial Cells

    DTIC Science & Technology

    2005-02-02

    Helicobacter pylori stimulated gastric epithelial cells induces cyclooxygenase 2 expression and activation in T cells. Gut 52:1257–1264. 4. Hickey, T...9090–9095. 9. Sieveking, D., H. M. Mitchell, and A. S. Day. 2004. Gastric epithelial cell CXC chemokine secretion following Helicobacter pylori infection...Yamaoka, Y., M. Kita, T. Kodama, N. Sawai, T. Tanahashi, K. Kashima, and J. Imanishi. 1998. Chemokines in the gastric mucosa in Helicobacter pylori infection

  3. Campylobacter jejuni Induces Secretion of Proinflammatory Chemokines from Human Intestinal Epithelial Cells

    DTIC Science & Technology

    2005-07-01

    Gudis, T. Tsukui, and C. Sakamoto. 2003. Monocyte chemoat- tractant protein 1 (MCP-1) released from Helicobacter pylori stimulated gastric epithelial...S. Day. 2004. Gastric epithelial cell CXC chemokine secretion following Helicobacter pylori infection in vitro. J. Gastroenterol. Hepatol. 19:982...K. Kashima, and J. Imanishi. 1998. Chemokines in the gastric mucosa in Helicobacter pylori infection. Gut 42:609–617. 15. Yang, S. K., L. Eckmann, A

  4. CC-chemokine class inhibition attenuates pathological angiogenesis while preserving physiological angiogenesis.

    PubMed

    Ridiandries, Anisyah; Tan, Joanne T M; Ravindran, Dhanya; Williams, Helen; Medbury, Heather J; Lindsay, Laura; Hawkins, Clare; Prosser, Hamish C G; Bursill, Christina A

    2017-03-01

    Increasing evidence shows that CC-chemokines promote inflammatory-driven angiogenesis, with little to no effect on hypoxia-mediated angiogenesis. Inhibition of the CC-chemokine class may therefore affect angiogenesis differently depending on the pathophysiological context. We compared the effect of CC-chemokine inhibition in inflammatory and physiological conditions. In vitro, the broad-spectrum CC-chemokine inhibitor "35K" inhibited inflammatory-induced endothelial cell proliferation, migration, and tubulogenesis, with more modest effects in hypoxia. In vivo, adenoviruses were used to overexpress 35K (Ad35K) and GFP (AdGFP, control virus). Plasma chemokine activity was suppressed by Ad35K in both models. In the periarterial femoral cuff model of inflammatory-driven angiogenesis, overexpression of 35K inhibited adventitial neovessel formation compared with control AdGFP-infused mice. In contrast, 35K preserved neovascularization in the hindlimb ischemia model and had no effect on physiological neovascularization in the chick chorioallantoic membrane assay. Mechanistically, 2 key angiogenic proteins (VEGF and hypoxia-inducible factor-1α) were conditionally regulated by 35K, such that expression was inhibited in inflammation but was unchanged in hypoxia. In conclusion, CC-chemokine inhibition by 35K suppresses inflammatory-driven angiogenesis while preserving physiological ischemia-mediated angiogenesis via conditional regulation of VEGF and hypoxia-inducible factor-1α. CC-chemokine inhibition may be an alternative therapeutic strategy for suppressing diseases associated with inflammatory angiogenesis without inducing the side effects caused by global inhibition.- Ridiandries, A., Tan, J. T. M., Ravindran, D., Williams, H., Medbury, H. J., Lindsay, L., Hawkins, C., Prosser, H. C. G., Bursill, C. A. CC-chemokine class inhibition attenuates pathological angiogenesis while preserving physiological angiogenesis.

  5. An ectromelia virus protein that interacts with chemokines through their glycosaminoglycan binding domain.

    PubMed

    Ruiz-Argüello, M Begoña; Smith, Vincent P; Campanella, Gabriele S V; Baleux, Françoise; Arenzana-Seisdedos, Fernando; Luster, Andrew D; Alcami, Antonio

    2008-01-01

    Poxviruses encode a number of secreted virulence factors that modulate the host immune response. The vaccinia virus A41 protein is an immunomodulatory protein with amino acid sequence similarity to the 35-kDa chemokine binding protein, but the host immune molecules targeted by A41 have not been identified. We report here that the vaccinia virus A41 ortholog encoded by ectromelia virus, a poxvirus pathogen of mice, named E163 in the ectromelia virus Naval strain, is a secreted 31-kDa glycoprotein that selectively binds a limited number of CC and CXC chemokines with high affinity. A detailed characterization of the interaction of ectromelia virus E163 with mutant forms of the chemokines CXCL10 and CXCL12alpha indicated that E163 binds to the glycosaminoglycan binding site of the chemokines. This suggests that E163 inhibits the interaction of chemokines with glycosaminoglycans and provides a mechanism by which E163 prevents chemokine-induced leukocyte migration to the sites of infection. In addition to interacting with chemokines, E163 can interact with high affinity with glycosaminoglycan molecules, enabling E163 to attach to cell surfaces and to remain in the vicinity of the sites of viral infection. These findings identify E163 as a new chemokine binding protein in poxviruses and provide a molecular mechanism for the immunomodulatory activity previously reported for the vaccinia virus A41 ortholog. The results reported here also suggest that the cell surface and extracellular matrix are important targeting sites for secreted poxvirus immune modulators.

  6. Chemokine CXCL1 mediated neutrophil recruitment: Role of glycosaminoglycan interactions

    PubMed Central

    Sawant, Kirti V.; Poluri, Krishna Mohan; Dutta, Amit K.; Sepuru, Krishna Mohan; Troshkina, Anna; Garofalo, Roberto P.; Rajarathnam, Krishna

    2016-01-01

    The chemokine CXCL1/MGSA plays a pivotal role in the host immune response by recruiting and activating neutrophils for microbial killing at the tissue site. CXCL1 exists reversibly as monomers and dimers, and mediates its function by binding glycosaminoglycans (GAG) and CXCR2 receptor. We recently showed that both monomers and dimers are potent CXCR2 agonists, the dimer is the high-affinity GAG ligand, lysine and arginine residues located in two non-overlapping domains mediate GAG interactions, and there is extensive overlap between GAG and receptor-binding domains. To understand how these structural properties influence in vivo function, we characterized peritoneal neutrophil recruitment of a trapped monomer and trapped dimer and a panel of WT lysine/arginine to alanine mutants. Monomers and dimers were active, but WT was more active indicating synergistic interactions promote recruitment. Mutants from both domains showed reduced GAG heparin binding affinities and reduced neutrophil recruitment, providing compelling evidence that both GAG-binding domains mediate in vivo trafficking. Further, mutant of a residue that is involved in both GAG binding and receptor signaling showed the highest reduction in recruitment. We conclude that GAG interactions and receptor activity of CXCL1 monomers and dimers are fine-tuned to regulate neutrophil trafficking for successful resolution of tissue injury. PMID:27625115

  7. Tissue factor-dependent chemokine production aggravates experimental colitis.

    PubMed

    Queiroz, Karla C S; Van 't Veer, Cornelis; Van Den Berg, Yascha; Duitman, Janwillem; Versteeg, Henri H; Aberson, Hella L; Groot, Angelique P; Verstege, Marleen I; Roelofs, Joris J T H; Te Velde, Anje A; Spek, C Arnold

    2011-01-01

    Tissue factor (TF) is traditionally known as the initiator of blood coagulation, but TF also plays an important role in inflammatory processes. Considering the pivotal role of coagulation in inflammatory bowel disease, we assessed whether genetic ablation of TF limits experimental colitis. To this end, wild-type and TF-deficient (TFlow) mice were treated with 1.5% dextran sulfate sodium (DSS) for 7 d, and effects on disease severity, cytokine production and leukocyte recruitment were examined. Clinical and histological parameters showed that the severity of colitis was reduced in both heterozygous and homozygous TFlow mice compared with controls. Most notably, edema, granulocyte numbers at the site of inflammation and cytokine levels were reduced in TFlow mice. Although anticoagulant treatment with dalteparin of wild-type mice reduced local fibrin production and cytokine levels to a similar extent as in TFlow mice, it did not affect clinical and histological parameters of experimental colitis. Mechanistic studies revealed that TF expression did not influence the intrinsic capacity of granulocytes to migrate. Instead, TF enhanced granulocyte migration into the colon by inducing high levels of the granulocyte chemoattractant keratinocyte-derived chemokine (KC). Taken together, our data indicate that TF plays a detrimental role in experimental colitis by signal transduction-dependent KC production in colon epithelial cells, thereby provoking granulocyte influx with subsequent inflammation and organ damage.

  8. Plasmodium genetic loci linked to host cytokine and chemokine responses

    PubMed Central

    Pattaradilokrat, Sittiporn; Li, Jian; Wu, Jian; Qi, Yanwei; Eastman, Richard T.; Zilversmit, Martine; Nair, Sethu C.; Huaman, Maria Cecilia; Quinones, Mariam; Jiang, Hongying; Li, Na; Zhu, Jun; Zhao, Keji; Kaneko, Osamu; Long, Carole A.; Su, Xin-zhuan

    2014-01-01

    Both host and parasite factors contribute to disease severity of malaria infection; however, the molecular mechanisms responsible for the disease and the host-parasite interactions involved remain largely unresolved. To investigate effects of parasite factors on host immune responses and pathogenesis, we measured levels of plasma cytokines/chemokines (CC) and growth rates in mice infected with two Plasmodium yoelii strains having different virulence phenotypes and in progeny from a genetic cross of the two parasites. Quantitative trait loci (QTL) analysis linked levels of many CCs, particularly IL-1β, IP-10, IFN-γ, MCP-1, and MIG, and early parasite growth rate to loci on multiple parasite chromosomes, including chromosomes 7, 9, 10, 12, and 13. Comparison of the genome sequences spanning the mapped loci revealed various candidate genes. The loci on chromosome 7 and 13 had significant (p < 0.005) additive effects on IL-1β, IL-5, and IP-10 responses, and the chromosome 9 and 12 loci had significant (p = 0.017) interaction. Infection of knockout mice showed critical roles of MCP-1 and IL-10 in parasitemia control and host mortality. These results provide important information for better understanding of malaria pathogenesis and can be used to examine the role of these factors in human malaria infection. PMID:24452266

  9. Plasmodium genetic loci linked to host cytokine and chemokine responses.

    PubMed

    Pattaradilokrat, S; Li, J; Wu, J; Qi, Y; Eastman, R T; Zilversmit, M; Nair, S C; Huaman, M C; Quinones, M; Jiang, H; Li, N; Zhu, J; Zhao, K; Kaneko, O; Long, C A; Su, X-z

    2014-01-01

    Both host and parasite factors contribute to disease severity of malaria infection; however, the molecular mechanisms responsible for the disease and the host-parasite interactions involved remain largely unresolved. To investigate the effects of parasite factors on host immune responses and pathogenesis, we measured levels of plasma cytokines/chemokines (CCs) and growth rates in mice infected with two Plasmodium yoelii strains having different virulence phenotypes and in progeny from a genetic cross of the two parasites. Quantitative trait loci (QTL) analysis linked levels of many CCs, particularly IL-1β, IP-10, IFN-γ, MCP-1 and MIG, and early parasite growth rate to loci on multiple parasite chromosomes, including chromosomes 7, 9, 10, 12 and 13. Comparison of the genome sequences spanning the mapped loci revealed various candidate genes. The loci on chromosomes 7 and 13 had significant (P<0.005) additive effects on IL-1β, IL-5 and IP-10 responses, and the chromosome 9 and 12 loci had significant (P=0.017) interaction. Infection of knockout mice showed critical roles of MCP-1 and IL-10 in parasitemia control and host mortality. These results provide important information for a better understanding of malaria pathogenesis and can be used to examine the role of these factors in human malaria infection.

  10. The Role of Chemokines in Fibrotic Wound Healing

    PubMed Central

    Ding, Jie; Tredget, Edward E.

    2015-01-01

    Significance: Main dermal forms of fibroproliferative disorders are hypertrophic scars (HTS) and keloids. They often occur after cutaneous wound healing after skin injury, or keloids even form spontaneously in the absence of any known injury. HTS and keloids are different in clinical performance, morphology, and histology, but they all lead to physical and psychological problems for survivors. Recent Advances: Although the mechanism of wound healing at cellular and tissue levels has been well described, the molecular pathways involved in wound healing, especially fibrotic healing, is incompletely understood. Critical Issues: Abnormal scars not only lead to increased health-care costs but also cause significant psychological problems for survivors. A plethora of therapeutic strategies have been used to prevent or attenuate excessive scar formation; however, most therapeutic approaches remain clinically unsatisfactory. Future Directions: Effective care depends on an improved understanding of the mechanisms that cause abnormal scars in patients. A thorough understanding of the roles of chemokines in cutaneous wound healing and abnormal scar formation will help provide more effective preventive and therapeutic strategies for dermal fibrosis as well as for other proliferative disorders. PMID:26543681

  11. Chemokine receptor patterns in lymphocytes mirror metastatic spreading in melanoma

    PubMed Central

    Jacquelot, Nicolas; Enot, David P.; Flament, Caroline; Vimond, Nadège; Blattner, Carolin; Pitt, Jonathan M.; Roberti, María Paula; Daillère, Romain; Vétizou, Marie; Poirier-Colame, Vichnou; Semeraro, Michaëla; Caignard, Anne; Slingluff, Craig L.; Sallusto, Federica; Rusakiewicz, Sylvie; Weide, Benjamin; Marabelle, Aurélien; Kohrt, Holbrook; Dalle, Stéphane; Cavalcanti, Andréa; Kroemer, Guido; Di Giacomo, Anna Maria; Maio, Michele; Wong, Phillip; Yuan, Jianda; Wolchok, Jedd; Umansky, Viktor; Eggermont, Alexander

    2016-01-01

    Melanoma prognosis is dictated by tumor-infiltrating lymphocytes, the migratory and functional behavior of which is guided by chemokine or cytokine gradients. Here, we retrospectively analyzed the expression patterns of 9 homing receptors (CCR/CXCR) in naive and memory CD4+ and CD8+ T lymphocytes in 57 patients with metastatic melanoma (MMel) with various sites of metastases to evaluate whether T cell CCR/CXCR expression correlates with intratumoral accumulation, metastatic progression, and/or overall survival (OS). Homing receptor expression on lymphocytes strongly correlated with MMel dissemination. Loss of CCR6 or CXCR3, but not cutaneous lymphocyte antigen (CLA), on circulating T cell subsets was associated with skin or lymph node metastases, loss of CXCR4, CXCR5, and CCR9 corresponded with lung involvement, and a rise in CCR10 or CD103 was associated with widespread dissemination. High frequencies of CD8+CCR9+ naive T cells correlated with prolonged OS, while neutralizing the CCR9/CCL25 axis in mice stimulated tumor progression. The expansion of CLA-expressing effector memory CD8+ T cells in response to a single administration of CTLA4 blockade predicted disease control at 3 months in 47 patients with MMel. Thus, specific CCR/CXCR expression patterns on circulating T lymphocytes may guide potential diagnostic and therapeutic approaches. PMID:26854930

  12. Small molecule antagonists for chemokine CCR3 receptors.

    PubMed

    Willems, Lianne I; Ijzerman, Ad P

    2010-09-01

    The chemokine receptor CCR3 is believed to play a role in the development of allergic diseases such as asthma, atopic dermatitis, and allergic rhinitis. Despite the conflicting results that have been reported regarding the importance of eosinophils and CCR3 in allergic inflammation, inhibition of this receptor with small molecule antagonists is thought to provide a valuable approach for the treatment of these diseases. This review describes the structure-activity relationships (SAR) of small molecule CCR3 antagonists as reported in the scientific and patent literature. Various chemical classes of small molecule CCR3 antagonists have been described so far, including (bi)piperidine and piperazine derivatives, N-arylalkylpiperidine urea derivatives and (N-ureidoalkyl)benzylpiperidines, phenylalanine derivatives, morpholinyl derivatives, pyrrolidinohydroquinazolines, arylsulfonamides, amino-alkyl amides, imidazole- and pyrimidine-based antagonists, and bicyclic diamines. The (N-ureidoalkyl)benzylpiperidines are the best studied class in view of their generally high affinity and antagonizing potential. For many of these antagonists subnanomolar IC(50) values were reported for binding to CCR3 along with the ability to effectively inhibit intracellular calcium mobilization and eosinophil chemotaxis induced by CCR3 agonist ligands in vitro.

  13. [Chemokine Receptor-5 and Graft-versus-Host Disease].

    PubMed

    Yuan, Jing; Liu, Wei; Ren, Han-Yun

    2015-06-01

    Chemokine receptor-5 (CCR5) belongs to a G-protein coupled receptors superfamily. It is mainly expressed on a wide variety of immune cells. CCR5 can bind with its specific ligands, which plays very important roles in inflammatory cell growth, differentiation, activation, adhesion and migration. CCR5 was identified as a co-receptor for human immunodeficiency virus type-1 (HIV-1) to infect CD4+ T cells. In addition, CCR5 not only participates in the pathogenic mechanisms of many inflammation disease such as AIDS, auto-immune disease, and atherosclerosis, but also plays important roles in the development of acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Recent studies using murine models have demonstrated the critical role of CCR5 and its ligands which direct T-cell infiltration and recruitment into target tissues during acute GVHD. CCR5 has become the focus of intense interest and discussion, and this review will attempt to describe what is understood about the structure and function, internalization, signal transduction of CCR5, in order to investigate the relationship between CCR5 and acute GVHD.

  14. The effects and comparative differences of neutrophil specific chemokines on neutrophil chemotaxis of the neonate.

    PubMed

    Fox, Samuel E; Lu, Wenge; Maheshwari, Akhil; Christensen, Robert D; Calhoun, Darlene A

    2005-02-07

    Neutrophil specific chemokines are potent chemoattractants for neutrophils. IL-8/CXCL8 is the most extensively studied member of this group, and its concentrations increase during inflammatory conditions of the newborn infant including sepsis and chronic lung disease. A significant amount of information exists on the effects of IL-8/CXCL8 on neutrophil chemotaxis of neonates, but little is known about the other neutrophil specific chemokines. The aim of this study was to determine the relative potency of the neutrophil specific chemokines on chemotaxis of neonatal neutrophils and to compare this effect with the effect on adult neutrophils. Neutrophils were isolated from cord blood or healthy adult donors and incubated in a Neuroprobe chemotaxis chamber. Chemokine concentrations ranging from 1-1000 ng/mL were used. Differences in chemotactic potency existed among the seven neutrophil specific chemokines. Specifically, at 100 ng/mL, the order was IL-8/CXCL8>GRO-alpha/CXCL1>GCP-2/CXCL6>NAP-2/CXCL7>ENA-78/CXCL5>GRO-gamma/CXCL2>GRO-beta/CXCL3. This pattern was observed for adult and neonatal neutrophils. We conclude that (1) neutrophils from cord blood exhibit the same pattern of potency for each ELR chemokine as neutrophils from adults, and (2) migration of neonatal neutrophils is significantly less than that of adults at every concentration examined except the lowest (1 ng/mL).

  15. Chemokines CCL2, 3, 14 stimulate macrophage bone marrow homing, proliferation, and polarization in multiple myeloma.

    PubMed

    Li, Yi; Zheng, Yuhuan; Li, Tianshu; Wang, Qiang; Qian, Jianfei; Lu, Yong; Zhang, Mingjun; Bi, Enguang; Yang, Maojie; Reu, Frederic; Yi, Qing; Cai, Zhen

    2015-09-15

    We previously showed that macrophages (MΦs) infiltrate the bone marrow (BM) of patients with myeloma and may play a role in drug resistance. This study analyzed chemokines expressed by myeloma BM that are responsible for recruiting monocytes to the tumor bed. We found that chemokines CCL3, CCL14, and CCL2 were highly expressed by myeloma and BM cells, and the levels of CCL14 and CCL3 in myeloma BM positively correlated with the percentage of BM-infiltrating MΦs. In vitro, these chemokines were responsible for chemoattracting human monocytes to tumor sites and in vivo for MΦ infiltration into myeloma-bearing BM in the 5TGM1 mouse model. Surprisingly, we also found that these chemokines stimulated MΦ in vitro proliferation induced by myeloma cells and in vivo in a human myeloma xenograft SCID mouse model. The chemokines also activated normal MΦ polarization and differentiation into myeloma-associated MΦs. Western blot analysis revealed that these chemokines promoted growth and survival signaling in MΦs via activating the PI3K/Akt and ERK MAPK pathways and c-myc expression. Thus, this study provides novel insight into the mechanism of MΦ infiltration of BM and also potential targets for improving the efficacy of chemotherapy in myeloma.

  16. Polarization of chemokine receptors to the leading edge during lymphocyte chemotaxis.

    PubMed

    Nieto, M; Frade, J M; Sancho, D; Mellado, M; Martinez-A, C; Sánchez-Madrid, F

    1997-07-07

    Leukocyte migration in response to cell attractant gradients or chemotaxis is a key phenomenon both in cell movement and in the inflammatory response. Chemokines are quite likely to be the key molecules directing migration of leukocytes that involve cell polarization with generation of specialized cell compartments. The precise mechanism of leukocyte chemoattraction is not known, however. In this study, we demonstrate that the CC chemokine receptors CCR2 and CCR5, but not cytokine receptors such as interleukin (IL)-2Ralpha, IL-2Rbeta, tumor necrosis factor receptor 1, or transforming growth factor betaR, are redistributed to a pole in T cells that are migrating in response to chemokines. Immunofluorescence and confocal microscopy studies show that the chemokine receptors concentrate at the leading edge of the cell on the flattened cell-substratum contact area, induced specifically by the signals that trigger cell polarization. The redistribution of chemokine receptors is blocked by pertussis toxin and is dependent on cell adhesion through integrin receptors, which mediate cell migration. Chemokine receptor expression on the leading edge of migrating polarized lymphocytes appears to act as a sensor mechanism for the directed migration of leukocytes through a chemoattractant gradient.

  17. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus.

    PubMed

    Alejo, Alí; Ruiz-Argüello, M Begoña; Ho, Yin; Smith, Vincent P; Saraiva, Margarida; Alcami, Antonio

    2006-04-11

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis.

  18. Molecular characterization of miiuy croaker CC chemokine gene and its expression following Vibrio anguillarum injection.

    PubMed

    Cheng, Yuan-zhi; Wang, Ri-xin; Sun, Yue-na; Xu, Tian-jun

    2011-07-01

    A CC chemokine gene was isolated from miiuy croaker (Miichthys miiuy) by expressed sequence tag analysis. The Mimi-CC cDNA contains an open reading frame of 429 nucleotides encoding 142 amino acid residues. The deduced Mimi-CC possesses the typical arrangement of four cysteines as found in other known CC chemokines (C³¹, C³², C⁵⁶, and C⁷⁰). It shares 15.3%-37.4% identity to CC chemokines of mammal and teleost. Phylogenetic analysis showed that miiuy croaker was most closely related to Atlantic cod. Genomic analysis revealed that Mimi-CC gene consists of four exons and three introns, which is not typical of CC chemokines but resembles that of CXC chemokines. Real-time quantitative RT-PCR demonstrated that Mimi-CC is constitutively expressed in most tissues including lymphoid organs, and the highest expression of Mimi-CC transcripts in normal tissues was observed in muscle. Challenge of miiuy croaker with Vibrio anguillarum resulted in significant changes in the expression of CC chemokine transcripts in four tissues, especially in kidney and spleen.

  19. Phylogenetic analysis of vertebrate CXC chemokines reveals novel lineage specific groups in teleost fish.

    PubMed

    Chen, Jun; Xu, Qiaoqing; Wang, Tiehui; Collet, Bertrand; Corripio-Miyar, Yolanda; Bird, Steve; Xie, Ping; Nie, Pin; Secombes, Christopher J; Zou, Jun

    2013-10-01

    In this study, we have identified 421 molecules across the vertebrate spectrum and propose a unified nomenclature for CXC chemokines in fish, amphibians and reptiles based on phylogenetic analysis. Expanding on earlier studies in teleost fish, lineage specific CXC chemokines that have no apparent homologues in mammals were confirmed. Furthermore, in addition to the two subgroups of the CXCL8 homologues known in teleost fish, a third group was identified (termed CXCL8_L3), as was a further subgroup of the fish CXC genes related to CXCL11. Expression of the CXC chemokines found in rainbow trout, Oncorhynchus mykiss, was studied in response to stimulation with inflammatory and antiviral cytokines, and bacterial. Tissue distribution analysis revealed distinct expression profiles for these trout CXC chemokines. Lastly three of the trout chemokines, including two novel fish specific CXC chemokines containing three pairs of cysteines, were produced as recombinant proteins and their effect on trout leucocyte migration studied. These molecules increased the relative expression of CD4 and MCSFR in migrated cells in an in vitro chemotaxis assay.

  20. A microfluidic device for measuring cell migration towards substrate-bound and soluble chemokine gradients

    PubMed Central

    Schwarz, Jan; Bierbaum, Veronika; Merrin, Jack; Frank, Tino; Hauschild, Robert; Bollenbach, Tobias; Tay, Savaş; Sixt, Michael; Mehling, Matthias

    2016-01-01

    Cellular locomotion is a central hallmark of eukaryotic life. It is governed by cell-extrinsic molecular factors, which can either emerge in the soluble phase or as immobilized, often adhesive ligands. To encode for direction, every cue must be present as a spatial or temporal gradient. Here, we developed a microfluidic chamber that allows measurement of cell migration in combined response to surface immobilized and soluble molecular gradients. As a proof of principle we study the response of dendritic cells to their major guidance cues, chemokines. The majority of data on chemokine gradient sensing is based on in vitro studies employing soluble gradients. Despite evidence suggesting that in vivo chemokines are often immobilized to sugar residues, limited information is available how cells respond to immobilized chemokines. We tracked migration of dendritic cells towards immobilized gradients of the chemokine CCL21 and varying superimposed soluble gradients of CCL19. Differential migratory patterns illustrate the potential of our setup to quantitatively study the competitive response to both types of gradients. Beyond chemokines our approach is broadly applicable to alternative systems of chemo- and haptotaxis such as cells migrating along gradients of adhesion receptor ligands vs. any soluble cue. PMID:27819270

  1. Stomata actively regulate internal aeration of the sacred lotus Nelumbo nucifera.

    PubMed

    Matthews, Philip G D; Seymour, Roger S

    2014-02-01

    The sacred lotus Nelumbo nucifera (Gaertn.) possesses a complex system of gas canals that channel pressurized air from its leaves, down through its petioles and rhizomes, before venting this air back to the atmosphere through large stomata found in the centre of every lotus leaf. These central plate stomata (CPS) lie over a gas canal junction that connects with two-thirds of the gas canals within the leaf blade and with the larger of two discrete pairs of gas canals within the petiole that join with those in the rhizome. It is hypothesized that the lotus actively regulates the pressure, direction and rate of airflow within its gas canals by opening and closing these stomata. Impression casting the CPS reveal that they are open in the morning, close at midday and reopen in the afternoon. The periodic closure of the CPS during the day coincides with a temporary reversal in airflow direction within the petiolar gas canals. Experiments show that the conductance of the CPS decreases in response to increasing light level. This behaviour ventilates the rhizome and possibly directs benthic CO2 towards photosynthesis in the leaves. These results demonstrate a novel function for stomata: the active regulation of convective airflow.

  2. Tet1 is critical for neuronal activity-regulated gene expression and memory extinction.

    PubMed

    Rudenko, Andrii; Dawlaty, Meelad M; Seo, Jinsoo; Cheng, Albert W; Meng, Jia; Le, Thuc; Faull, Kym F; Jaenisch, Rudolf; Tsai, Li-Huei

    2013-09-18

    The ten-eleven translocation (Tet) family of methylcytosine dioxygenases catalyze oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and promote DNA demethylation. Despite the abundance of 5hmC and Tet proteins in the brain, little is known about the functions of the neuronal Tet enzymes. Here, we analyzed Tet1 knockout mice (Tet1KO) and found downregulation of multiple neuronal activity-regulated genes, including Npas4, c-Fos, and Arc. Furthermore, Tet1KO animals exhibited abnormal hippocampal long-term depression and impaired memory extinction. Analysis of the key regulatory gene, Npas4, indicated that its promoter region, containing multiple CpG dinucleotides, is hypermethylated in both naive Tet1KO mice and after extinction training. Such hypermethylation may account for the diminished expression of Npas4 itself and its downstream targets, impairing transcriptional programs underlying cognitive processes. In summary, we show that neuronal Tet1 regulates normal DNA methylation levels, expression of activity-regulated genes, synaptic plasticity, and memory extinction.

  3. A YAC contig of the human CC chemokine genes clustered on chromosome 17q11.2

    SciTech Connect

    Naruse, Kuniko |; Nomiyama, Hisayuki; Miura, Retsu

    1996-06-01

    CC chemokines are cytokines that attract and activate leukocytes. The human genes for the CC chemokines are clustered on chromosome 17. To elucidate the genomic organization of the CC chemokine genes, we constructed a YAC contig comprising 34 clones. The contig was shown to contain all 10 CC chemokine genes reported so far, except for one gene whose nucleotide sequence is not available. The contig also contains 4 CC chemokine-like genes, which were deposited in GenBank as ESTs and are here referred to as NCC-1, NCC-2, NCC-3, and NCC-4. Within the contig, the CC chemokine genes were localized in two regions. In addition, the CC chemokine genes were localized in two regions. In addition, the CC chemokine genes were more precisely mapped on chromosome 17q11.2 using a somatic cell hybrid cell DNA panel containing various portions of human chromosome 17. Interestingly, a reciprocal translocation t(Y;17) breakpoint, contained in the hybrid cell line Y1741, lay between the two chromosome 17 chemokine gene regions covered by our YAC contig. From these results, the order and the orientation of CC chemokine genes on chromosome 17 were determined as follows: centromere-neurofibromatosis 1-(MCP-3, MCP-1, NCC-1, I-309)-Y1741 breakpoint-RANTES-(LD78{gamma}, AT744.2, LD78{beta})-(NCC-3, NCC-2, AT744.1, LD78{alpha})-NCC-4-retinoic acid receptor {alpha}-telomere. 22 refs., 1 fig., 2 tabs.

  4. Heterologous Quaternary Structure of CXCL12 and its Relationship to the CC Chemokine Family

    SciTech Connect

    Murphy, J.; Yuan, H; Kong, Y; Xiong, Y; Lolis, E

    2010-01-01

    X-ray crystallographic studies reveal that CXCL12 is able to form multiple dimer types, a traditional CXC dimer and a 'CC-like' form. Phylogenetic analysis of all known human chemokines demonstrates CXCL12 is more closely related to the CC chemokine class than other CXC chemokines. These observations indicate that CXCL12 contains genomic and structural elements characteristic of both CXC and CC chemokines.Chemokines are members of a superfamily of proteins involved in the migration of cells to the proper anatomical position during embryonic development or in response to infection or stress during an immune response. There are two major (CC and CXC) and two minor (CX3C and XC) families based on the sequence around the first conserved cysteine. The topology of all structures is essentially identical with a flexible N-terminal region of 3-8 amino acids, a 10-20 residue N-terminal loop, a short 3{sub 10}-helix, three {beta}-strands, and a {alpha}-helix. The major consequence of the subtle difference between the families occurs at the oligomeric level. Monomers of the CC, CXC, and CX3C families form dimers in a family-specific manner. The XCL1 chemokine is a monomer that can interconvert between two folded states. All chemokines activate GPCRs according to family-specificity, however there are a few examples of chemokines crossing the family boundary to function as antagonists. A two-stage mechanism for chemokine activation of GPCRs has been proposed. The N-terminal region of the receptor interacts with the chemokine, followed by receptor activation by the chemokine N-terminal region. Monomeric chemokines have been demonstrated to be the active form for receptor function. There are numerous examples of both chemokines and their receptors forming dimers. While family-specific dimerization may be an attractive explanation for why specific chemokines only activate GPCRs within their own family, the role of dimers in the function of chemokines has not been resolved. Given

  5. Pro-inflammatory chemokine-chemokine receptor interactions within the Ewing sarcoma microenvironment determine CD8(+) T-lymphocyte infiltration and affect tumour progression.

    PubMed

    Berghuis, Dagmar; Santos, Susy J; Baelde, Hans J; Taminiau, Antonie Hm; Egeler, R Maarten; Schilham, Marco W; Hogendoorn, Pancras Cw; Lankester, Arjan C

    2011-02-01

    Ewing sarcoma is an aggressive round cell sarcoma with poor patient prognosis, particularly in cases of advanced-stage disease. Dynamic tumor-host immune interations within the tumor microenvironment may polarize in situ immune responses and shape tumor development and/or progression. To gain insight into the nature of tumour-host immune interactions within the Ewing sarcoma microenvironment, the presence and spatial distribution of infiltrating CD8(+) /CD4(+) T-lymphocytes were evaluated in therapy-naive Ewing sarcoma. Expression profiling of 40 different chemokines and several chemokine receptors was performed in therapy-naive tumours and cell lines by qPCR, immunohistochemistry, and flow cytometry. Considerable inter-tumour variation was observed regarding density, type, and distribution of infiltrating T-lymphocytes. Tumour-infiltrating T-cells contained significantly higher percentages of CD8(+) T-lymphocytes as compared to stroma-infiltrating cells, suggesting preferential migration of this T-cell type into tumour areas. Gene expression levels of several type 1-associated, pro-inflammatory chemokines (CXCR3- and CCR5-ligands CXCL9, CXCL10, and CCL5) correlated positively with infiltrating (CD8(+) ) T-lymphocyte numbers expressing corresponding chemokine receptors. Survival analyses demonstrated an impact of tumour-infiltrating, and not stroma-infiltrating, CD8(+) T-lymphocytes on tumour progression. At protein level, both tumour and stromal cells expressed the IFNγ-inducible chemokines CXCL9 and CXCL10. CCR5-ligand CCL5 was exclusively expressed by non-tumoural stromal/infiltrating cells. Together, our results indicate that an inflammatory immune microenvironment with high expression of type 1-associated chemokines may be critical for the recruitment of (CD8(+) ) T-lymphocytes expressing corresponding chemokine receptors. The observed impact of tumour-infiltrating (CD8(+) ) T-lymphocytes is consistent with a role for adaptive anti-tumour immunity in the

  6. VCC-1, a novel chemokine, promotes tumor growth

    SciTech Connect

    Weinstein, Edward J.; Head, Richard; Griggs, David W.; Sun Duo; Evans, Robert J.; Swearingen, Michelle L.; Westlin, Marisa M.; Mazzarella, Richard . E-mail: richard.a.mazzarella@pfizer.com

    2006-11-10

    We have identified a novel human gene by transcriptional microarray analysis, which is co-regulated in tumors and angiogenesis model systems with VEGF expression. Isolation of cDNA clones containing the full-length VCC-1 transcript from both human and mouse shows a 119 amino acid protein with a 22 amino acid cleavable signal sequence in both species. Comparison of the protein product of this gene with hidden Markov models of all known proteins shows weak but significant homology with two known chemokines, SCYA17 and SCYA16. Northern analysis of human tissues detects a 1 kb band in lung and skeletal muscle. Murine VCC-1 expression can also be detected in lung as well as thyroid, submaxillary gland, epididymis, and uterus tissues by slot blot analysis. By quantitative real time RT-PCR 71% of breast tumors showed 3- to 24-fold up-regulation of VCC-1. In situ hybridization of breast carcinomas showed strong expression of the gene in both normal and transformed mammary gland ductal epithelial cells. In vitro, human microvascular endothelial cells grown on fibronectin increase VCC-1 expression by almost 100-fold. In addition, in the mouse angioma endothelial cell line PY4.1 the gene was over-expressed by 28-fold 6 h after induction of tube formation while quiescent and proliferating cells showed no change. VCC-1 expression is also increased by VEGF and FGF treatment, about 6- and 5-fold, respectively. Finally, 100% of mice injected with NIH3T3 cells over-expressing VCC-1 develop rapidly progressing tumors within 21 days while no growth is seen in any control mice injected with NIH3T3 cells containing the vector alone. These results strongly suggest that VCC-1 plays a role in angiogenesis and possibly in the development of tumors in some tissue types.

  7. Characterization of the Chemokine CXCL11-Heparin Interaction Suggests Two Different Affinities for Glycosaminoglycans*

    PubMed Central

    Severin, India C.; Gaudry, Jean-Philippe; Johnson, Zoë; Kungl, Andreas; Jansma, Ariane; Gesslbauer, Bernd; Mulloy, Barbara; Power, Christine; Proudfoot, Amanda E. I.; Handel, Tracy

    2010-01-01

    Chemokines orchestrate the migration of leukocytes in the context of homeostasis and inflammation. In addition to interactions of chemokines with receptors on migrating cells, these processes require interactions of chemokines with glycosaminoglycans (GAGs) for cell surface localization. Most chemokines are basic proteins with Arg/Lys/His residue clusters functioning as recognition epitopes for GAGs. In this study we characterized the GAG-binding epitopes of the chemokine I-TAC/CXCL11. Four separate clusters of basic residues were mutated to alanine and tested for their ability to bind to GAGs in vitro and to activate the receptor, CXCR3. Mutation of a set of basic residues in the C-terminal helix (the 50s cluster, 57KSKQAR62) along with Lys17, significantly impaired heparin binding in vitro, identifying these residues as components of the dominant epitope. However, this GAG mutant retained nearly wild type receptor binding affinity, and its ability to induce cell migration in vitro was only mildly perturbed. Nevertheless, the mutant was unable to induce cell migration in vivo, establishing a requirement of CXCL11 for GAG binding for in vivo function. These studies also led to some interesting findings. First, CXCL11 exhibits conformational heterogeneity, as evidenced by the doubling of peaks in its HSQC spectra. Second, it exhibits more than one affinity state for both heparin and CXCR3, which may be related to its structural plasticity. Finally, although the binding affinities of chemokines for GAGs are typically weaker than interactions with receptors, the high affinity GAG binding state of CXCL11 is comparable with typical receptor binding affinities, suggesting some unique properties of this chemokine. PMID:20363748

  8. Antimicrobial effects of interferon-inducible CXC chemokines against Bacillus anthracis spores and bacilli.

    PubMed

    Crawford, Matthew A; Zhu, Yinghua; Green, Candace S; Burdick, Marie D; Sanz, Patrick; Alem, Farhang; O'Brien, Alison D; Mehrad, Borna; Strieter, Robert M; Hughes, Molly A

    2009-04-01

    Based on previous studies showing that host chemokines exert antimicrobial activities against bacteria, we sought to determine whether the interferon-inducible Glu-Leu-Arg-negative CXC chemokines CXCL9, CXCL10, and CXCL11 exhibit antimicrobial activities against Bacillus anthracis. In vitro analysis demonstrated that all three CXC chemokines exerted direct antimicrobial effects against B. anthracis spores and bacilli including marked reductions in spore and bacillus viability as determined using a fluorometric assay of bacterial viability and CFU determinations. Electron microscopy studies revealed that CXCL10-treated spores failed to undergo germination as judged by an absence of cytological changes in spore structure that occur during the process of germination. Immunogold labeling of CXCL10-treated spores demonstrated that the chemokine was located internal to the exosporium in association primarily with the spore coat and its interface with the cortex. To begin examining the potential biological relevance of chemokine-mediated antimicrobial activity, we used a murine model of inhalational anthrax. Upon spore challenge, the lungs of C57BL/6 mice (resistant to inhalational B. anthracis infection) had significantly higher levels of CXCL9, CXCL10, and CXCL11 than did the lungs of A/J mice (highly susceptible to infection). Increased CXC chemokine levels were associated with significantly reduced levels of spore germination within the lungs as determined by in vivo imaging. Taken together, our data demonstrate a novel antimicrobial role for host chemokines against B. anthracis that provides unique insight into host defense against inhalational anthrax; these data also support the notion for an innovative approach in treating B. anthracis infection as well as infections caused by other spore-forming organisms.

  9. Laminar chemokine mRNA concentrations in horses with carbohydrate overload-induced laminitis.

    PubMed

    Faleiros, Rafael R; Leise, Britta S; Watts, Mauria; Johnson, Philip J; Black, Samuel J; Belknap, James K

    2011-11-15

    Chemokines play a vital role in leukocyte activation and emigration that reportedly plays a central role in laminar injury in equine laminitis. The purpose of this study was to evaluate the pattern of laminar chemokine expression in horses in the classical carbohydrate overload (CHO)-model of laminitis. Laminar samples were obtained 24h following water administration in the control group (CON, n=8), and at the onset of fever (≥ 102°F, 12-22 h post CHO, DEV group, n=8) and at the onset of lameness (20-48 h post CHO, LAM group, n=8) in induced horses. Real time quantitative PCR was performed on all samples in order to determine laminar mRNA concentrations of both CXC chemokines (CXCL1, CXCL6, CXCL8) and CC chemokines (CCL2 [MCP-1], CCL3 [MIP-1α], and CCL8 [MCP-2]). Data were subjected to ANOVA followed by Student-Newman-Keuls (P<0.05). Laminar mRNA concentrations for all CXC chemokines were increased (P<0.05) at both the DEV and LAM horses when compared to the control horses, whereas mRNA concentrations of CCL2 and CCL8 were only increased in the LAM horses when compared to controls and the DEV horses. When taken in context with our previous studies, CXCL1, CXCL6 and CXCL8 increases precede peak laminar leukocyte accumulation. Additionally, CCL2 and CCL8 expression corroborate previous reports of monocyte/macrophage accumulation in affected laminae. Compared with previous studies, our findings demonstrate that increased laminar CXC chemokine expression consistently precedes peak leukocyte accumulation and onset of lameness in CHO laminitis models. Chemokine antagonists may be considered as possible therapeutic targets to decrease the influx of leukocytes that occurs during the development of equine laminitis.

  10. Structural Mechanism of Allosteric Activity Regulation in a Ribonucleotide Reductase with Double ATP Cones.

    PubMed

    Johansson, Renzo; Jonna, Venkateswara Rao; Kumar, Rohit; Nayeri, Niloofar; Lundin, Daniel; Sjöberg, Britt-Marie; Hofer, Anders; Logan, Derek T

    2016-06-07

    Ribonucleotide reductases (RNRs) reduce ribonucleotides to deoxyribonucleotides. Their overall activity is stimulated by ATP and downregulated by dATP via a genetically mobile ATP cone domain mediating the formation of oligomeric complexes with varying quaternary structures. The crystal structure and solution X-ray scattering data of a novel dATP-induced homotetramer of the Pseudomonas aeruginosa class I RNR reveal the structural bases for its unique properties, namely one ATP cone that binds two dATP molecules and a second one that is non-functional, binding no nucleotides. Mutations in the observed tetramer interface ablate oligomerization and dATP-induced inhibition but not the ability to bind dATP. Sequence analysis shows that the novel type of ATP cone may be widespread in RNRs. The present study supports a scenario in which diverse mechanisms for allosteric activity regulation are gained and lost through acquisition and evolutionary erosion of different types of ATP cone.

  11. Regulation of Chemokine Activity – A Focus on the Role of Dipeptidyl Peptidase IV/CD26

    PubMed Central

    Metzemaekers, Mieke; Van Damme, Jo; Mortier, Anneleen; Proost, Paul

    2016-01-01

    Chemokines are small, chemotactic proteins that play a crucial role in leukocyte migration and are, therefore, essential for proper functioning of the immune system. Chemokines exert their chemotactic effect by activation of chemokine receptors, which are G protein-coupled receptors (GPCRs), and interaction with glycosaminoglycans (GAGs). Furthermore, the exact chemokine function is modulated at the level of posttranslational modifications. Among the different types of posttranslational modifications that were found to occur in vitro and in vivo, i.e., proteolysis, citrullination, glycosylation, and nitration, NH2-terminal proteolysis of chemokines has been described most intensively. Since the NH2-terminal chemokine domain mediates receptor interaction, NH2-terminal modification by limited proteolysis or amino acid side chain modification can drastically affect their biological activity. An enzyme that has been shown to provoke NH2-terminal proteolysis of various chemokines is dipeptidyl peptidase IV or CD26. This multifunctional protein is a serine protease that preferably cleaves dipeptides from the NH2-terminal region of peptides and proteins with a proline or alanine residue in the penultimate position. Various chemokines possess such a proline or alanine residue, and CD26-truncated forms of these chemokines have been identified in cell culture supernatant as well as in body fluids. The effects of CD26-mediated proteolysis in the context of chemokines turned out to be highly complex. Depending on the chemokine ligand, loss of these two NH2-terminal amino acids can result in either an increased or a decreased biological activity, enhanced receptor specificity, inactivation of the chemokine ligand, or generation of receptor antagonists. Since chemokines direct leukocyte migration in homeostatic as well as pathophysiologic conditions, CD26-mediated proteolytic processing of these chemotactic proteins may have significant consequences for appropriate functioning

  12. Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain.

    PubMed

    Szabo, Imre; Chen, Xiao-Hong; Xin, Li; Adler, Martin W; Howard, O M Z; Oppenheim, Joost J; Rogers, Thomas J

    2002-08-06

    The chemokines use G protein-coupled receptors to regulate the migratory and proadhesive responses of leukocytes. Based on observations that G protein-coupled receptors undergo heterologous desensitization, we have examined the ability of chemokines to also influence the perception of pain by cross-desensitizing opioid G protein-coupled receptors function in vitro and in vivo. We find that the chemotactic activities of both mu- and delta-opioid receptors are desensitized following activation of the chemokine receptors CCR5, CCR2, CCR7, and CXCR4 but not of the CXCR1 or CXCR2 receptors. Furthermore, we also find that pretreatment with RANTES/CCL5, the ligand for CCR1, and CCR5 or SDF-1alpha/CXCL12, the ligand for CXCR4, followed by opioid administration into the periaqueductal gray matter of the brain results in an increased rat tail flick response to a painful stimulus. Because chemokine administration into the periaqueductal gray matter inhibits opioid-induced analgesia, we propose that the activation of proinflammatory chemokine receptors down-regulates the analgesic functions of opioid receptors, and this enhances the perception of pain at inflammatory sites.

  13. Chemokines integrate JAK/STAT and G-protein pathways during chemotaxis and calcium flux responses.

    PubMed

    Soriano, Silvia F; Serrano, Antonio; Hernanz-Falcón, Patricia; Martín de Ana, Ana; Monterrubio, María; Martínez, Carlos; Rodríguez-Frade, J Miguel; Mellado, Mario

    2003-05-01

    The JAK/STAT (Janus kinase / signaling transducer and activator of transcription) signaling pathway is implicated in converting stationary epithelial cells to migratory cells. In mammals, migratory responses are activated by chemoattractant proteins, including chemokines. We found that by binding to seven-transmembrane G-protein-coupled receptors, chemokines activate the JAK/STAT pathway to trigger chemotactic responses. We show that chemokine-mediated JAK/STAT activation is critical for G-protein induction and for phospholipase C-beta dependent Ca(2+) flux; in addition, pharmacological inhibition of JAK or mutation of the JAK kinase domain causes defects in both responses. Furthermore, G alpha(i) association with the receptor is dependent on JAK activation, and the chemokine-mediated Ca(2+) flux that requires phospholipase C-beta activity takes place downstream of JAK kinases. The chemokines thus employ a mechanism that links heterologous signaling pathways--G proteins and tyrosine kinases--in a network that may be essential for mediating their pleiotropic responses.

  14. Differential chemokine expression following respiratory virus infection reflects Th1- or Th2-biased immunopathology.

    PubMed

    Culley, Fiona J; Pennycook, Alasdair M J; Tregoning, John S; Hussell, Tracy; Openshaw, Peter J M

    2006-05-01

    Respiratory syncytial virus (RSV) is a major viral pathogen of infants that also reinfects adults. During RSV infection, inflammatory host cell recruitment to the lung plays a central role in determining disease outcome. Chemokines mediate cell recruitment to sites of inflammation and are influenced by, and influence, the production of cytokines. We therefore compared chemokine production in a mouse model of immunopathogenic RSV infection in which either Th1 or Th2 immunopathology is induced by prior sensitization to individual RSV proteins. Chemokine expression profiles were profoundly affected by the nature of the pulmonary immunopathology: "Th2" immunopathology in BALB/c mice was associated with increased and prolonged expression of CCL2 (MCP-1), CXCL10 (IP-10), and CCL11 (eotaxin) starting within 24 h of challenge. C57BL/6 mice with "Th2" pathology (enabled by a deficiency of CD8+ cells) also showed increased CCL2 production. No differences in chemokine receptor expression were detected. Chemokine blockers may therefore be of use for children with bronchiolitis.

  15. Chemokine Receptor-Specific Antibodies in Cancer Immunotherapy: Achievements and Challenges

    PubMed Central

    Vela, Maria; Aris, Mariana; Llorente, Mercedes; Garcia-Sanz, Jose A.; Kremer, Leonor

    2015-01-01

    The 1990s brought a burst of information regarding the structure, expression pattern, and role in leukocyte migration and adhesion of chemokines and their receptors. At that time, the FDA approved the first therapeutic antibodies for cancer treatment. A few years later, it was reported that the chemokine receptors CXCR4 and CCR7 were involved on directing metastases to liver, lung, bone marrow, or lymph nodes, and the over-expression of CCR4, CCR6, and CCR9 by certain tumors. The possibility of inhibiting the interaction of chemokine receptors present on the surface of tumor cells with their ligands emerged as a new therapeutic approach. Therefore, many research groups and companies began to develop small molecule antagonists and specific antibodies, aiming to neutralize signaling from these receptors. Despite great expectations, so far, only one anti-chemokine receptor antibody has been approved for its clinical use, mogamulizumab, an anti-CCR4 antibody, granted in Japan to treat refractory adult T-cell leukemia and lymphoma. Here, we review the main achievements obtained with anti-chemokine receptor antibodies for cancer immunotherapy, including discovery and clinical studies, proposed mechanisms of action, and therapeutic applications. PMID:25688243

  16. Berberine suppresses migration of MCF-7 breast cancer cells through down-regulation of chemokine receptors

    PubMed Central

    Ahmadiankia, Naghmeh; Moghaddam, Hamid Kalalian; Mishan, Mohammad Amir; Bahrami, Ahmad Reza; Naderi-Meshkin, Hojjat; Bidkhori, Hamid Reza; Moghaddam, Maryam; Mirfeyzi, Seyed Jamal Aldin

    2016-01-01

    Objective(s): Berberine is one of the main alkaloids and it has been proven to have different pharmacological effects including inhibition of cell cycle and progression of apoptosis in various cancerous cells; however, its effects on cancer metastasis are not well known. Cancer cells obtain the ability to change their chemokine system and convert into metastatic cells. In this study, we examined the effect of berberine on breast cancer cell migration and its probable interaction with the chemokine system in cancer cells. Materials and Methods: The MCF-7 breast cancer cell line was cultured, and then, treated with berberine (10, 20, 40 and 80 μg/ml) for 24 hr. MTT assay was used in order to determine the cytotoxic effect of berberine on MCF-7 breast cancer cells. Wound healing assay was applied to determine the inhibitory effect of berberine on cell migration. Moreover, real-time quantitative PCR analysis of selected chemokine receptors was performed to determine the probable molecular mechanism underlying the effect of berberine on breast cancer cell migration. Results: The results of wound healing assay revealed that berberine decreases cell migration. Moreover, we found that the mRNA levels of some chemokine receptors were reduced after berberine treatment, and this may be the underlying mechanism for decreased cell migration. Conclusion: Our results indicate that berberine might be a potential preventive biofactor for human breast cancer metastasis by targeting chemokine receptor genes. PMID:27081456

  17. Pathogen-induced chemokine secretion from model intestinal epithelium is inhibited by lipoxin A4 analogs.

    PubMed Central

    Gewirtz, A T; McCormick, B; Neish, A S; Petasis, N A; Gronert, K; Serhan, C N; Madara, J L

    1998-01-01

    Enteric pathogens induce intestinal epithelium to secrete chemokines that direct movement of polymorphonuclear leukocytes. Mechanisms that might downregulate secretion of these proinflammatory chemokines and thus contain intestinal inflammation have not yet been elucidated. The antiinflammatory activities exhibited by the arachidonate metabolite lipoxin A4 (LXA4) suggests that this eicosanoid, which is biosynthesized in vivo at sites of inflammation, might play such a role. We investigated whether chemokine secretion could be regulated by stable analogs of LXA4. Monolayers of T84 intestinal epithelial cells were infected with Salmonella typhimurium, which elicits secretion of distinct apical (pathogen-elicited epithelial chemoattractant) and basolateral (IL-8) chemokines. Stable analogs of LXA4 inhibited S. typhimurium-induced (but not phorbol ester-induced) secretion of both IL-8 and pathogen-elicited epithelial chemoattractant. LXA4 stable analogs did not alter bacterial adherence to nor internalization by epithelia, indicating that LXA4 stable analogs did not block all signals that Salmonella typhimurium activates in intestinal epithelia, but likely led to attenuation of signals that mediate chemokine secretion. Inhibition of S. typhimurium-induced IL-8 secretion by LXA4 analogs was concentration- (IC50 approximately 1 nM) and time-dependent (maximal inhibition approximately 1 h). As a result of these effects, LXA4 stable analogs inhibited the ability of bacteria-infected epithelia to direct polymorphonuclear leukocyte movement. These data suggest that LXA4 and its stable analogs may be useful in downregulating active inflammation at mucosal surfaces. PMID:9576749

  18. CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: A systematic review.

    PubMed

    Kothur, Kavitha; Wienholt, Louise; Brilot, Fabienne; Dale, Russell C

    2016-01-01

    Despite improved understanding of the pathogenesis of neuroinflammatory disorders of the brain and development of new diagnostic markers, our biomarker repertoire to demonstrate and monitor inflammation remains limited. Using PubMed database, we reviewed 83 studies on CSF cytokines and chemokines and describe the pattern of elevation and possible role of cytokines/chemokines as biomarkers in viral and autoimmune inflammatory neurological disorders of the CNS. Despite inconsistencies and overlap of cytokines and chemokines in different neuroinflammation syndromes, there are some trends regarding the pattern of cytokines/chemokine elevation. Namely B cell markers, such as CXCL13 and BAFF are predominantly investigated and found to be elevated in autoantibody-associated disorders, whereas interferon gamma (IFN-γ) is elevated mainly in viral encephalitis. Th2 and Th17 cytokines are frequently elevated in acute disseminated encephalomyelitis (ADEM) and neuromyelitis optica (NMO), whereas Th1 and Th17 cytokines are more commonly elevated in multiple sclerosis (MS). Cytokine/chemokine profiling might provide new insights into disease pathogenesis, and improve our ability to monitor inflammation and response to treatment.

  19. Multiple Myeloma Impairs Bone Marrow Localization of Effector Natural Killer Cells by Altering the Chemokine Microenvironment.

    PubMed

    Ponzetta, Andrea; Benigni, Giorgia; Antonangeli, Fabrizio; Sciumè, Giuseppe; Sanseviero, Emilio; Zingoni, Alessandra; Ricciardi, Maria Rosaria; Petrucci, Maria Teresa; Santoni, Angela; Bernardini, Giovanni

    2015-11-15

    Natural killer (NK) cells are key innate immune effectors against multiple myeloma, their activity declining in multiple myeloma patients with disease progression. To identify the mechanisms underlying NK cell functional impairment, we characterized the distribution of functionally distinct NK cell subsets in the bone marrow of multiple myeloma-bearing mice. Herein we report that the number of KLRG1(-) NK cells endowed with potent effector function rapidly and selectively decreases in bone marrow during multiple myeloma growth, this correlating with decreased bone marrow NK cell degranulation in vivo. Altered NK cell subset distribution was dependent on skewed chemokine/chemokine receptor axes in the multiple myeloma microenvironment, with rapid downmodulation of the chemokine receptor CXCR3 on NK cells, increased CXCL9 and CXCL10, and decreased CXCL12 expression in bone marrow. Similar alterations in chemokine receptor/chemokine axes were observed in patients with multiple myeloma. Adoptive transfer experiments demonstrated that KLRG1(-) NK cell migration to the bone marrow was more efficient in healthy than multiple myeloma-bearing mice. Furthermore, bone marrow localization of transferred CXCR3-deficient NK cells with respect to wild type was enhanced in healthy and multiple myeloma-bearing mice, suggesting that CXCR3 restrains bone marrow NK cell trafficking. Our results indicate that multiple myeloma-promoted CXCR3 ligand upregulation together with CXCL12 downmodulation act as exit signals driving effector NK cells outside the bone marrow, thus weakening the antitumor immune response at the primary site of tumor growth.

  20. CCL2 nitration is a negative regulator of chemokine-mediated inflammation

    PubMed Central

    Barker, Catriona E.; Thompson, Sarah; O’Boyle, Graeme; Lortat-Jacob, Hugues; Sheerin, Neil S.; Ali, Simi; Kirby, John A.

    2017-01-01

    Chemokines promote leukocyte recruitment during inflammation. The oxidative burst is an important effector mechanism, this leads to the generation of reactive nitrogen species (RNS), including peroxynitrite (ONOO). The current study was performed to determine the potential for nitration to alter the chemical and biological properties of the prototypical CC chemokine, CCL2. Immunofluorescence was performed to assess the presence of RNS in kidney biopsies. Co-localisation was observed between RNS-modified tyrosine residues and the chemokine CCL2 in diseased kidneys. Nitration reduced the potential of CCL2 to stimulate monocyte migration in diffusion gradient chemotaxis assays (p < 0.05). This was consistent with a trend towards reduced affinity of the nitrated chemokine for its cognate receptor CCR2b. The nitrated chemokine was unable to induce transendothelial monocyte migration in vitro and failed to promote leukocyte recruitment when added to murine air pouches (p < 0.05). This could potentially be attributed to reduced glycosaminoglycan binding ability, as surface plasmon resonance spectroscopy showed that nitration reduced heparan sulphate binding by CCL2. Importantly, intravenous administration of nitrated CCL2 also inhibited the normal recruitment of leukocytes to murine air pouches filled with unmodified CCL2. Together these data suggest that nitration of CCL2 during inflammation provides a mechanism to limit and resolve acute inflammation. PMID:28290520

  1. Emerging importance of chemokine receptor CXCR3 and its ligands in cardiovascular diseases.

    PubMed

    Altara, Raffaele; Manca, Marco; Brandão, Rita D; Zeidan, Asad; Booz, George W; Zouein, Fouad A

    2016-04-01

    The CXC chemokines, CXCL4, -9, -10, -11, CXCL4L1, and the CC chemokine CCL21, activate CXC chemokine receptor 3 (CXCR3), a cell-surface G protein-coupled receptor expressed mainly by Th1 cells, cytotoxic T (Tc) cells and NK cells that have a key role in immunity and inflammation. However, CXCR3 is also expressed by vascular smooth muscle and endothelial cells, and appears to be important in controlling physiological vascular function. In the last decade, evidence from pre-clinical and clinical studies has revealed the participation of CXCR3 and its ligands in multiple cardiovascular diseases (CVDs) of different aetiologies including atherosclerosis, hypertension, cardiac hypertrophy and heart failure, as well as in heart transplant rejection and transplant coronary artery disease (CAD). CXCR3 ligands have also proven to be valid biomarkers for the development of heart failure and left ventricular dysfunction, suggesting an underlining pathophysiological relation between levels of these chemokines and the development of adverse cardiac remodelling. The observation that several of the above-mentioned chemokines exert biological actions independent of CXCR3 provides both opportunities and challenges for developing effective drug strategies. In this review, we provide evidence to support our contention that CXCR3 and its ligands actively participate in the development and progression of CVDs, and may additionally have utility as diagnostic and prognostic biomarkers.

  2. CCL2 nitration is a negative regulator of chemokine-mediated inflammation.

    PubMed

    Barker, Catriona E; Thompson, Sarah; O'Boyle, Graeme; Lortat-Jacob, Hugues; Sheerin, Neil S; Ali, Simi; Kirby, John A

    2017-03-14

    Chemokines promote leukocyte recruitment during inflammation. The oxidative burst is an important effector mechanism, this leads to the generation of reactive nitrogen species (RNS), including peroxynitrite (ONOO). The current study was performed to determine the potential for nitration to alter the chemical and biological properties of the prototypical CC chemokine, CCL2. Immunofluorescence was performed to assess the presence of RNS in kidney biopsies. Co-localisation was observed between RNS-modified tyrosine residues and the chemokine CCL2 in diseased kidneys. Nitration reduced the potential of CCL2 to stimulate monocyte migration in diffusion gradient chemotaxis assays (p < 0.05). This was consistent with a trend towards reduced affinity of the nitrated chemokine for its cognate receptor CCR2b. The nitrated chemokine was unable to induce transendothelial monocyte migration in vitro and failed to promote leukocyte recruitment when added to murine air pouches (p < 0.05). This could potentially be attributed to reduced glycosaminoglycan binding ability, as surface plasmon resonance spectroscopy showed that nitration reduced heparan sulphate binding by CCL2. Importantly, intravenous administration of nitrated CCL2 also inhibited the normal recruitment of leukocytes to murine air pouches filled with unmodified CCL2. Together these data suggest that nitration of CCL2 during inflammation provides a mechanism to limit and resolve acute inflammation.

  3. Characterization of CXC-type chemokine molecules in early Xenopus laevis development.

    PubMed

    Goto, Toshiyasu; Michiue, Tatsuo; Ito, Yuzuru; Asashima, Makoto

    2013-01-01

    Chemokine molecules play important roles in the immune system. However, several chemokine molecules are expressed during early development before the immune system is established. Using reverse transcription–polymerase chain reaction (RT-PCR) and overexpression of chemokine molecules, we identified and characterized Xenopus laevis CXC-type chemokine ligands (XCXCL13L1, XCXCL13L2, XCXCLa, XCXCLb, XCXCLd, and XCXCLe) and receptors (XCXCR1/2, XCXCR3, XCXCR5, XCXCR6, and XCXCRa) during early development. The CXC-type ligands have low identity with genes for human CXC ligands (CXCL). With the exception of XCXCRa, the CXC receptors (CXCR) identified in the present study had high (40%–65%) identity with human CXCR genes. Although the expression patterns for the CXCL and CXCR genes differed, transcript levels for all genes were very low during early embryogenesis. Overexpression of XCXCL13L1, XCXCL13L2, XCXCLa, XCXCR3, XCXCR6, and XCXCRa interfered with gastrulation and neural fold closure. The results of the present study suggest that several chemokine molecules are related to cell movements during early morphogenesis.

  4. Syndecan-1 shedding facilitates the resolution of neutrophilic inflammation by removing sequestered CXC chemokines

    PubMed Central

    Hayashida, Kazutaka; Parks, William C.

    2009-01-01

    Heparan sulfate binds to and regulates many inflammatory mediators in vitro, suggesting that it serves an important role in directing the progression and outcome of inflammatory responses in vivo. Here, we evaluated the role of syndecan-1, a major heparan sulfate proteoglycan, in modulating multiorgan host injury responses in murine endotoxemia. The extent of systemic inflammation was similar between endotoxemic syndecan-1–null and wild-type mice. However, high levels of CXC chemokines (KC and MIP-2), particularly at later times after LPS, were specifically sustained in multiple organs in syndecan-1–null mice and associated with exaggerated neutrophilic inflammation, organ damage, and lethality. Syndecan-1 shedding was activated in several organs of endotoxemic wild-type mice, and this associated closely with the removal of tissue-bound CXC chemokines and resolution of accumulated neutrophils. Moreover, administration of a shedding inhibitor exacerbated disease by impeding the removal of CXC chemokines and neutrophils, whereas administration of heparan sulfate inhibited the accumulation of CXC chemokines and neutrophils in tissues and attenuated multiorgan injury and lethality. These data show that syndecan-1 shedding is a critical endogenous mechanism that facilitates the resolution of neutrophilic inflammation by aiding the clearance of proinflammatory chemokines in a heparan sulfate–dependent manner. PMID:19638625

  5. Expression of Chemokine XCL2 and CX3CL1 in Lung Cancer

    PubMed Central

    Zhou, Bing; Xu, Heyun; Ni, Kewei; Ni, Xuming; Shen, Jian

    2016-01-01

    Background Chemokines are a family of small proteins secreted by cells with chemotactic activity, and they play important roles in cell adhesion. However, the expression of chemokine XCL2 and CX3CL1 in lung cancers in different pathological stages remains unclear. Material/Methods XCL2 and CX3CL1 expression in lung cancers and adjacent non-cancerous tissues was detected by quantitative PCR and ELISA. The relative expression of both chemokines in lung cancers in different pathological stages was compared by immunohistochemical assay. Results The relative expression level of XCL2 and CX3CL1 in lung cancer was significantly higher compared with adjacent normal tissues (P<0.001). The expression level of both chemokines was significantly increased with higher pathological stages, as indicated by immunohistochemical assay (P<0.05 or P <0.001). Their expression level in cancers with higher numbers of metastatic lymph nodes was also significantly increased compared with cancers with lower numbers of metastatic lymph nodes (P<0.05 or P<0.001). Conclusions The expression of XCL2 and CX3CL1 increases with increasing degree of malignancy, indicating that both chemokines might be important targets in gene therapy for lung cancer. PMID:27156946

  6. Neuronal apoptotic signaling pathways probed and intervened by synthetically and modularly modified (SMM) chemokines.

    PubMed

    Choi, Won-Tak; Kaul, Marcus; Kumar, Santosh; Wang, Jun; Kumar, I M Krishna; Dong, Chang-Zhi; An, Jing; Lipton, Stuart A; Huang, Ziwei

    2007-03-09

    As the main coreceptors for human immunodeficiency virus type 1 (HIV-1) entry, CXCR4 and CCR5 play important roles in HIV-associated dementia (HAD). HIV-1 glycoprotein gp120 contributes to HAD by causing neuronal damage and death, either directly by triggering apoptotic pathways or indirectly by stimulating glial cells to release neurotoxins. Here, to understand the mechanism of CXCR4 or CCR5 signaling in neuronal apoptosis associated with HAD, we have applied synthetically and modularly modified (SMM)-chemokine analogs derived from natural stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II as chemical probes of the mechanism(s) whereby these SMM-chemokines prevent or promote neuronal apoptosis. We show that inherently neurotoxic natural ligands of CXCR4, such as stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II, can be modified to protect neurons from apoptosis induced by CXCR4-preferring gp120(IIIB), and that the inhibition of CCR5 by antagonist SMM-chemokines, unlike neuroprotective CCR5 natural ligands, leads to neurotoxicity by activating a p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Furthermore, we discover distinct signaling pathways activated by different chemokine ligands that are either natural agonists or synthetic antagonists, thus demonstrating a chemical biology strategy of using chemically engineered inhibitors of chemokine receptors to study the signaling mechanism of neuronal apoptosis and survival.

  7. CXC chemokines and their receptors: a case for a significant biological role in cutaneous wound healing.

    PubMed

    Zaja-Milatovic, Snjezana; Richmond, Ann

    2008-11-01

    Wound healing requires a complex series of reactions and interactions among cells and their mediators, resulting in an overlapping series of events including coagulation, inflammation, epithelialization, formation of granulation tissue, matrix and scar formation. Cytokines and chemokines promote inflammation, angiogenesis, facilitate the passage of leukocytes from circulation into the tissue, and contribute to the regulation of epithelialization. They integrate inflammatory events and reparative processes that are important for modulating wound healing. Thus both cytokines and chemokines are important targets for therapeutic intervention. The chemokine-mediated regulation of angiogenesis is highly sophisticated, fine tuned, and involves pro-angiogenic chemokines, including CXCL1-3, 5-8 and their receptors, CXCR1 and CXCR2. CXCL1 and CXCR2 are expressed in normal human epidermis and are further induced during the wound healing process of human burn wounds, especially during the inflammatory, epithelialization and angiogenic processes. Human skin explant studies also show CXCR2 is expressed in wounded keratinocytes and Th/1/Th2 cytokine modulation of CXCR2 expression correlates with proliferation of epidermal keratinocytes. Murine excision wound healing, chemical burn wounds and skin organ culture systems are valuable models for examining the role of inflammatory cytokines and chemokines in wound healing.

  8. CXC motif chemokine receptor 4 gene polymorphism and cancer risk

    PubMed Central

    Wu, Yang; Zhang, Chun; Xu, Weizhang; Zhang, Jianzhong; Zheng, Yuxiao; Lu, Zipeng; Liu, Dongfang; Jiang, Kuirong

    2016-01-01

    Abstract Background: Previous epidemiological studies have reported the relationship between CXC motif chemokine receptor 4 (CXCR4) synonymous polymorphism (rs2228014), and risk of cancer, but the results remained conflicting and controversial. Therefore, this study was devised to evaluate the genetic effects of the rs2228014 polymorphism on cancer risk in a large meta-analysis. Methods: The computer-based databases (EMBASE, Web of Science, and PubMed) were searched for all relevant studies evaluating rs2228014 and susceptibility to cancer. In the analysis, pooled odds ratios (ORs) with its corresponding 95% confidence intervals (CIs) were calculated in 5 genetic models to assess the genetic risk. Egger regression and Begg funnel plots test were conducted to appraise the publication bias. Results: Data on rs2228014 polymorphism and overall cancer risk were available for 3684 cancer patients and 5114 healthy controls participating in 11 studies. Overall, a significantly increased risk of cancer was associated with rs2228014 polymorphism in homozygote model (OR = 2.01, 95% CI: 1.22–3.33) and in recessive model (OR = 1.97, 95% CI: 1.23–3.16). When stratified by ethnicity, the results were positive only in Asian populations (heterozygote model: OR = 1.36, 95% CI: 1.13–1.65; homozygote model: OR = 2.43, 95% CI: 1.21–4.91; dominant model: OR = 1.47, 95% CI: 1.13–1.90; recessive model: OR = 2.25, 95% CI: 1.13–4.48; and allele model: OR = 1.48, 95% CI: 1.10–1.99). Besides, in the subgroup analysis by source of control, the result was significant only in population-based control (homozygote model: OR = 2.39, 95% CI: 1.06–5.40; recessive model: pooled OR = 2.24, 95% CI: 1.02–4.96). Conclusion: In general, our results first indicated that the rs2228014 polymorphism in CXCR4 gene is correlated with an increased risk of cancer, especially among Asian ethnicity. Large, well-designed epidemiological studies are required to verify the current findings. PMID

  9. The Role of Chemokines in Promoting Colorectal Cancer Invasion/Metastasis

    PubMed Central

    Itatani, Yoshiro; Kawada, Kenji; Inamoto, Susumu; Yamamoto, Takamasa; Ogawa, Ryotaro; Taketo, Makoto Mark; Sakai, Yoshiharu

    2016-01-01

    Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Although most of the primary CRC can be removed by surgical resection, advanced tumors sometimes show recurrences in distant organs such as the liver, lung, lymph node, bone or peritoneum even after complete resection of the primary tumors. In these advanced and metastatic CRC, it is the tumor-stroma interaction in the tumor microenvironment that often promotes cancer invasion and/or metastasis through chemokine signaling. The tumor microenvironment contains numerous host cells that may suppress or promote cancer aggressiveness. Several types of host-derived myeloid cells reside in the tumor microenvironment, and the recruitment of them is under the control of chemokine signaling. In this review, we focus on the functions of chemokine signaling that may affect tumor immunity by recruiting several types of bone marrow-derived cells (BMDC) to the tumor microenvironment of CRC. PMID:27136535

  10. Role of cytokines and chemokines in alcohol-induced tumor promotion

    PubMed Central

    Chen, Danlei; Zhang, Fengyun; Ren, Haifeng; Luo, Jia; Wang, Siying

    2017-01-01

    Excessive chronic alcohol consumption has become a worldwide health problem. The oncogenic effect of chronic alcohol consumption is one of the leading concerns. The mechanisms of alcohol-induced tumorigenesis and tumor progression are largely unknown, although many factors have been implicated in the process. This review discusses the recent progress in this research area with concentration on alcohol-induced dysregulation of cytokines and chemokines. Based on the available evidence, we propose that alcohol promotes tumor progression by the dysregulation of the cytokine/chemokine system. In addition, we discuss specific transcription factors and signaling pathways that are involved in the action of these cytokines/chemokines and the oncogenic effect of alcohol. This review provides novel insight into the mechanisms of alcohol-induced tumor promotion. PMID:28360527

  11. Oral inflammation, a role for antimicrobial peptide modulation of cytokine and chemokine responses.

    PubMed

    Brogden, Kim A; Johnson, Georgia K; Vincent, Steven D; Abbasi, Taher; Vali, Shireen

    2013-10-01

    Acute and chronic inflammation commonly occurs throughout the oral cavity. The most common causes are physical damage and microbial infections, and less frequently immune reactions and malignant changes. All of these processes result in the induction of antimicrobial peptides, chemokines and cytokines that lead to cellular infiltrates, a vascular response, tissue destruction and cellular proliferation. A fascinating concept developing in the current literature suggests that antimicrobial peptides modulate the production of chemokines, cytokines and other cellular mediators and that this may have a larger ramification as an underlying mechanism mediating inflammation. Here, we propose that the ability of antimicrobial peptides to induce chemokines and anti-inflammatory or proinflammatory cytokines plays an important role in the early events of oral inflammation and may be a target for the prevention or treatment of oral inflammatory conditions.

  12. Structure of the CCR5 Chemokine Receptor-HIV Entry Inhibitor Maraviroc Complex

    SciTech Connect

    Tan, Qiuxiang; Zhu, Ya; Li, Jian; Chen, Zhuxi; Han, Gye Won; Kufareva, Irina; Li, Tingting; Ma, Limin; Fenalti, Gustavo; Li, Jing; Zhang, Wenru; Xie, Xin; Yang, Huaiyu; Jiang, Hualiang; Cherezov, Vadim; Liu, Hong; Stevens, Raymond C.; Zhao, Qiang; Wu, Beili

    2013-10-21

    The CCR5 chemokine receptor acts as a co-receptor for HIV-1 viral entry. Here we report the 2.7 angstrom–resolution crystal structure of human CCR5 bound to the marketed HIV drug maraviroc. The structure reveals a ligand-binding site that is distinct from the proposed major recognition sites for chemokines and the viral glycoprotein gp120, providing insights into the mechanism of allosteric inhibition of chemokine signaling and viral entry. A comparison between CCR5 and CXCR4 crystal structures, along with models of co-receptor–gp120-V3 complexes, suggests that different charge distributions and steric hindrances caused by residue substitutions may be major determinants of HIV-1 co-receptor selectivity. These high-resolution insights into CCR5 can enable structure-based drug discovery for the treatment of HIV-1 infection.

  13. The Role of Chemokines in Promoting Colorectal Cancer Invasion/Metastasis.

    PubMed

    Itatani, Yoshiro; Kawada, Kenji; Inamoto, Susumu; Yamamoto, Takamasa; Ogawa, Ryotaro; Taketo, Makoto Mark; Sakai, Yoshiharu

    2016-04-28

    Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Although most of the primary CRC can be removed by surgical resection, advanced tumors sometimes show recurrences in distant organs such as the liver, lung, lymph node, bone or peritoneum even after complete resection of the primary tumors. In these advanced and metastatic CRC, it is the tumor-stroma interaction in the tumor microenvironment that often promotes cancer invasion and/or metastasis through chemokine signaling. The tumor microenvironment contains numerous host cells that may suppress or promote cancer aggressiveness. Several types of host-derived myeloid cells reside in the tumor microenvironment, and the recruitment of them is under the control of chemokine signaling. In this review, we focus on the functions of chemokine signaling that may affect tumor immunity by recruiting several types of bone marrow-derived cells (BMDC) to the tumor microenvironment of CRC.

  14. Plasmatic proinflammatory chemokines levels are tricky markers to monitoring HTLV-1 carriers.

    PubMed

    Chaves, Daniel Gonçalves; Sales, Camila Campos; de Cássia Gonçalves, Poliane; da Silva-Malta, Maria Clara Fernandes; Romanelli, Luiz Cláudio; Ribas, João Gabriel; de Freitas Carneiro-Proietti, Anna Bárbara; Martins, Marina Lobato

    2016-08-01

    The human T-cell leukemia virus type 1 (HTLV-1) is present throughout the world and is associated with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and other inflammatory conditions. The pathogenesis of HAM/TSP involves a chronic inflammatory response in central nervous system (CNS), with the presence of HTLV-1 infected cells and HTLV-1-specific CD8+ lymphocytes. Chemokines may have a role in the infiltration of these cells into the CNS. In this context, the present study analyzed the level of plasmatic chemokines CCL2 (MCP-1), CCL5 (RANTES), IL8 (CXCL8), CXCL9 (MIG), and CXCL10 (IP-10) and HTLV-1 proviral load from peripheral blood in 162 asymptomatic carriers and 136 HAM/TSP patients to determine the differences that be associated with the clinical status of the HTLV-1 infection. The results showed that patients with HAM/TSP have significantly higher levels of IL8 and CXCL9, and that the level of IL8, CXCL9 and CXCL10 was significantly greater in HTLV-1 infected individuals with high (>1%) than those with low proviral load (<1%). However, the levels of the chemokines tested have not showed high sensitivity to discriminate HAM/TSP patients from asymptomatic carriers. In addition, chemokine profiles in asymptomatic carriers and HAM/TSP groups were similar, with no significant increased frequency of higher producers of chemokines in HAM/TSP individuals. Results indicate that the heterogeneity of the individuals in the groups regarding time of infection, duration of disease, proviral load level and other possible confound factors may impair the use of chemokines levels to monitor HTLV-1 carriers in clinical practice. J. Med. Virol. 88:1438-1447, 2016. © 2016 Wiley Periodicals, Inc.

  15. The chemotaxis of M1 and M2 macrophages is regulated by different chemokines.

    PubMed

    Xuan, Wenjuan; Qu, Qing; Zheng, Biao; Xiong, Sidong; Fan, Guo-Huang

    2015-01-01

    The homing of proinflammatory (M1) and the "alternatively activated" anti-inflammatory (M2) macrophages plays a different role in the process of inflammation. Chemokines are the major mediators of macrophage chemotaxis, but how they differentially regulate M1 and M2 macrophages remains largely unclear. In the present study, we attempted to screen chemokines that differentially induce chemotaxis of M1 and M2 macrophages and to explore the underlying mechanism. Among the 41 chemokines that specifically bind to 20 chemokine receptors, CCL19, CCL21, CCL24, CCL25, CXCL8, CXCL10, and XCL2 specifically induced M1 macrophage chemotaxis, whereas CCL7 induced chemotaxis of both M1 and M2 macrophages. Whereas the differential effects of these chemokines on M1/M2 macrophage chemotaxis could be attributable to the predominant expression of their cognate receptors on the macrophage subsets, CCR7, the receptor for CCL19/CCL21, appeared to be an exception. Immunoblot analysis indicated an equivalent level of CCR7 in the whole cell lysate of M1 and M2 macrophages, but CCL19 and CCL21 only induced M1 macrophage chemotaxis. Both immunoblot and confocal microscopy analyses demonstrated that CCR7 was predominantly expressed on the cell surface of M1 but in the cytosol of M2 macrophages before ligand stimulation. As a result, CCL19 or CCL21 induced activation of both MEK1-ERK1/2 and PI3K-AKT cascades in M1 but not in M2 macrophages. Intriguingly, CCL19/CCL21-mediated M1 macrophage chemotaxis was blocked by specific inhibition of PI3K rather than MEK1. Together, these findings suggest that recruitment of M1 and M2 macrophages is fine tuned by different chemokines with the involvement of specific signaling pathways.

  16. Dual effects of noradrenaline on astroglial production of chemokines and pro-inflammatory mediators

    PubMed Central

    2013-01-01

    Background Noradrenaline (NA) is known to limit neuroinflammation. However, the previously described induction by NA of a chemokine involved in the progression of immune/inflammatory processes, such as chemokine (C-C motif) ligand 2 (CCL2)/monocyte chemotactic protein-1 (MCP-1), apparently contradicts NA anti-inflammatory actions. In the current study we analyzed NA regulation of astroglial chemokine (C-X3-C motif) ligand 1 (CX3CL1), also known as fractalkine, another chemokine to which both neuroprotective and neurodegenerative actions have been attributed. In addition, NA effects on other chemokines and pro-inflammatory mediators were also analyzed. Methods Primary astrocyte-enriched cultures were obtained from neonatal Wistar rats. These cells were incubated for different time durations with combinations of NA and lipopolysaccharide (LPS). The expression and synthesis of different proteins was measured by RT-PCR and enzyme-linked immunosorbent assay (ELISA) or enzyme immunoassays. Data were analyzed by one-way analysis of variance (ANOVA), followed by Newman-Keuls multiple comparison tests. Results The data presented here show that in control conditions, NA induces the production of CX3CL1 in rat cultured astrocytes, but in the presence of an inflammatory stimulus, such as LPS, NA has the opposite effect inhibiting CX3CL1 production. This inversion of NA effect was also observed for MCP-1. Based on the observation of this dual action, NA regulation of different chemokines and pro-inflammatory cytokines was also analyzed, observing that in most cases NA exerts an inhibitory effect in the presence of LPS. One characteristic exception was the induction of cyclooxygenase-2 (COX-2), where a summative effect was detected for both LPS and NA. Conclusion These data suggest that NA effects on astrocytes can adapt to the presence of an inflammatory agent reducing the production of certain cytokines, while in basal conditions NA may have the opposite effect and help to

  17. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists

    SciTech Connect

    Zheng, Yi; Qin, Ling; Zacarías, Natalia V. Ortiz; de Vries, Henk; Han, Gye Won; Gustavsson, Martin; Dabros, Marta; Zhao, Chunxia; Cherney, Robert J.; Carter, Percy; Stamos, Dean; Abagyan, Ruben; Cherezov, Vadim; Stevens, Raymond C.; IJzerman, Adriaan P.; Heitman, Laura H.; Tebben, Andrew; Kufareva, Irina; Handel, Tracy M.

    2016-12-07

    CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2–chemokine axis. To aid drug discovery efforts5, here we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein–protein interactions, receptor–chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.

  18. An inflammatory CC chemokine of Cynoglossus semilaevis is involved in immune defense against bacterial infection.

    PubMed

    Li, Yong-xin; Sun, Jin-sheng; Sun, Li

    2011-09-01

    Chemokines are a family of small cytokines that regulate leukocyte migration. Based on the arrangement of the first two cysteine residues, chemokines are classified into four groups called CXC(α), CC(β), C, and CX(3)C. In this study, we identified a CC chemokine, CsCCK1, from half-smooth tongue sole (Cynoglossus semilaevis) and analyzed its biological activity. The deduced amino acid sequence of CsCCK1 contains 111 amino acid residues and is phylogenetically belonging to the CCL19/21/25 group of CC chemokines. CsCCK1 possesses a DCCL motif that is highly conserved among CC chemokines. Quantitative real time RT-PCR analysis showed that the expression of CsCCK1 was relatively abundant in immune organs under normal physiological conditions and was upregulated by experimental infection of a bacterial pathogen. Purified recombinant CsCCK1 (rCsCCK1) induced chemotaxis in peripheral blood leukocytes (PBL) of both tongue sole and turbot (Scophthalmus maximus) in a dose-dependent manner. Mutation of the CC residues in the DCCL motif by serine substitution completely abolished the biological activity of rCsCCK1. When rCsCCK1, but not the mutant protein, was added to the cell culture of PBL, it enhanced cellular resistance against intracellular bacterial infection. Taken together, these results indicate that CsCCK1 is a functional CC chemokine whose biological activity depends on the DCCL motif and that CsCCK1 plays a role in host immune defense against bacterial infection.

  19. Effects of Low Level Laser Therapy on Ovalbumin-Induced Mouse Model of Allergic Rhinitis

    PubMed Central

    Choi, Binhye; Chang, Mun Seog; Ryu, Bongha; Kim, Jinsung

    2013-01-01

    Introduction. This study was designed to investigate the effects of low level laser therapy (LLLT) on experimental allergic rhinitis (AR) models induced by ovalbumin. Materials and Methods. AR was induced by 1% ovalbumin in mice. Twenty-four mice were divided into 4 groups: normal, control, low, and high dose irradiation. Low and high dose LLLT were irradiated once a day for 7 days. Total IgE, cytokines concentrations (IL-4 and IFN-γ), and thymus and activation regulated chemokine (TARC) were measured. Histological changes in the nasal mucosal tissue by laser irradiation were examined. Results. LLLT significantly inhibited total IgE, IL-4, and TARC expression in ovalbumin-induced mice at low dose irradiation. The protein expression level of IL-4 in spleen was inhibited in low dose irradiation significantly. IL-4 expression in EL-4 cells was inhibited in a dose dependent manner. Histological damages of the epithelium in the nasal septum were improved by laser irradiation with marked improvement at low dose irradiation. Conclusion. These results suggest that LLLT might serve as a new therapeutic tool in the treatment of AR with more effectiveness at low dose irradiation. To determine the optimal dose of laser irradiation and action mechanisms of laser therapy, further studies will be needed. PMID:24319484

  20. Recent advances in understanding the roles of vascular endothelial cells in allergic inflammation.

    PubMed

    Shoda, Tetsuo; Futamura, Kyoko; Orihara, Kanami; Emi-Sugie, Maiko; Saito, Hirohisa; Matsumoto, Kenji; Matsuda, Akio

    2016-01-01

    Allergic disorders commonly involve both chronic tissue inflammation and remodeling caused by immunological reactions to various antigens on tissue surfaces. Due to their anatomical location, vascular endothelial cells are the final responders to interact with various exogenous factors that come into contact with the epithelial surface, such as pathogen-associated molecular patterns (PAMPs) and antigens. Recent studies have shed light on the important roles of endothelial cells in the development and exacerbation of allergic disorders. For instance, endothelial cells have the greatest potential to produce several key molecules that are deeply involved in allergic inflammation, such as periostin and thymus and activation-regulated chemokine (TARC/CCL17). Additionally, endothelial cells were recently shown to be important functional targets for IL-33--an essential regulator of allergic inflammation. Notably, almost all endothelial cell responses and functions involved in allergic inflammation are not suppressed by corticosteroids. These corticosteroid-refractory endothelial cell responses and functions include TNF-α-associated angiogenesis, leukocyte adhesion, IL-33-mediated responses and periostin and TARC production. Therefore, these unique responses and functions of endothelial cells may be critically involved in the pathogenesis of various allergic disorders, especially their refractory processes. Here, we review recent studies, including ours, which have elucidated previously unknown pathophysiological roles of vascular endothelial cells in allergic inflammation and discuss the possibility of endothelium-targeted therapy for allergic disorders.

  1. Comprehensive analysis of chemokines and cytokines secreted in the peritoneal cavity during laparotomy.

    PubMed

    Kawashima, Rei; Kawamura, Yuki I; Oshio, Tomoyuki; Mizutani, Noriko; Okada, Toshihiko; Kawamura, Yutaka J; Konishi, Fumio; Dohi, Taeko

    2012-01-01

    We recently found that chemokine-driven peritoneal cell aggregation is the primary mechanism of postoperative adhesion in a mouse model. To investigate this in humans, paired samples of peritoneal lavage fluid were obtained from seven patients immediately after incision (preoperative) and before closure (postoperative), and were assayed for the presence of 27 cytokines and chemokines using multiplex beads assay. As a result, IL-6 and CCL5 showed the most striking increase during operation. Recombinant CCL5 or lavage fluid induced chemotaxis of human peripheral blood mononuclear cells. We propose that CCL5 is possibly involved in the mechanism of postoperative adhesion in humans.

  2. Chemokines: structure, receptors and functions. A new target for inflammation and asthma therapy?

    PubMed Central

    Voss, H-P.; Timmerman, H.

    1996-01-01

    Five to 10% of the human population have a disorder of the respiratory tract called ‘asthma’. It has been known as a potentially dangerous disease for over 2000 years, as it was already described by Hippocrates and recognized as a disease entity by Egyptian and Hebrew physicians. At the beginning of this decade, there has been a fundamental change in asthma management. The emphasis has shifted from symptom relief with bronchodilator therapies (e.g. β2-agonists) to a much earlier introduction of anti-inflammatory treatment (e.g. corticosteroids). Asthma is now recognized to be a chronic inflammatory disease of the airways, involving various inflammatory cells and their mediators. Although asthma has been the subject of many investigations, the exact role of the different inflammatory cells has not been elucidated completely. Many suggestions have been made and several cells have been implicated in the pathogenesis of asthma, such as the eosinophils, the mast cells, the basophils and the lymphocytes. To date, however, the relative importance of these cells is not completely understood. The cell type predominantly found in the asthmatic lung is the eosinophil and the recruitment of these eosinophils can be seen as a characteristic of asthma. In recent years much attention is given to the role of the newly identified chemokines in asthma pathology. Chemokines are structurally and functionally related 8–10 kDa peptides that are the products of distinct genes clustered on human chromosomes 4 and 17 and can be found at sites of inflammation. They form a superfamily of proinflammatory mediators that promote the recruitment of various kinds of leukocytes and lymphocytes. The chemokine superfamily can be divided into three subgroups based on overall sequence homology. Although the chemokines have highly conserved amino acid sequences, each of the chemokines binds to and induces the chemotaxis of particular classes of white blood cells. Certain chemokines stimulate the

  3. Cytokines and Chemokines as Regulators of Skeletal Muscle Inflammation: Presenting the Case of Duchenne Muscular Dystrophy

    PubMed Central

    De Bleecker, Jan L.

    2013-01-01

    Duchenne muscular dystrophy is a severe inherited muscle disease that affects 1 in 3500 boys worldwide. Infiltration of skeletal muscle by inflammatory cells is an important facet of disease pathophysiology and is strongly associated with disease severity in the individual patient. In the chronic inflammation that characterizes Duchenne muscle, cytokines and chemokines are considered essential activators and recruiters of inflammatory cells. In addition, they provide potential beneficiary effects on muscle fiber damage control and tissue regeneration. In this review, current knowledge of cytokine and chemokine expression in Duchenne muscular dystrophy and its relevant animal disease models is listed, and implications for future therapeutic avenues are discussed. PMID:24302815

  4. Genome-wide identification of neuronal activity-regulated genes in Drosophila

    PubMed Central

    Chen, Xiao; Rahman, Reazur; Guo, Fang; Rosbash, Michael

    2016-01-01

    Activity-regulated genes (ARGs) are important for neuronal functions like long-term memory and are well-characterized in mammals but poorly studied in other model organisms like Drosophila. Here we stimulated fly neurons with different paradigms and identified ARGs using high-throughput sequencing from brains as well as from sorted neurons: they included a narrow set of circadian neurons as well as dopaminergic neurons. Surprisingly, many ARGs are specific to the stimulation paradigm and very specific to neuron type. In addition and unlike mammalian immediate early genes (IEGs), fly ARGs do not have short gene lengths and are less enriched for transcription factor function. Chromatin assays using ATAC-sequencing show that the transcription start sites (TSS) of ARGs do not change with neural firing but are already accessible prior to stimulation. Lastly based on binding site enrichment in ARGs, we identified transcription factor mediators of firing and created neuronal activity reporters. DOI: http://dx.doi.org/10.7554/eLife.19942.001 PMID:27936378

  5. Chemokine-cytokine cross-talk. The ELR+ CXC chemokine LIX (CXCL5) amplifies a proinflammatory cytokine response via a phosphatidylinositol 3-kinase-NF-kappa B pathway.

    PubMed

    Chandrasekar, Bysani; Melby, Peter C; Sarau, Henry M; Raveendran, Muthuswamy; Perla, Rao P; Marelli-Berg, Federica M; Dulin, Nickolai O; Singh, Ishwar S

    2003-02-14

    It is well established that cytokines can induce the production of chemokines, but the role of chemokines in the regulation of cytokine expression has not been fully investigated. Exposure of rat cardiac-derived endothelial cells (CDEC) to lipopolysaccharide-induced CXC chemokine (LIX), and to a lesser extent to KC and MIP-2, activated NF-kappaB and induced kappaB-driven promoter activity. LIX did not activate Oct-1. LIX-induced interleukin-1beta and tumor necrosis factor-alpha promoter activity, and up-regulated mRNA expression. Increased transcription and mRNA stability both contributed to cytokine expression. LIX-mediated cytokine gene transcription was inhibited by interleukin-10. Transient overexpression of kinase-deficient NF-kappaB-inducing kinase (NIK) and IkappaB kinase (IKK), and dominant negative IkappaB significantly inhibited LIX-mediated NF-kappaB activation in rat CDEC. Inhibition of G(i) protein-coupled signal transduction, poly(ADP-ribose) polymerase, phosphatidylinositol 3-kinase, and the 26 S proteasome significantly inhibited LIX-mediated NF-kappaB activation and cytokine gene transcription. Blocking CXCR2 attenuated LIX-mediated kappaB activation and kappaB-driven promoter activity in rat CDEC that express both CXCR1 and -2, and abrogated its activation in mouse CDEC that express only CXCR2. These results indicate that LIX activates NF-kappaB and induces kappaB-responsive proinflammatory cytokines via either CXCR1 or CXCR2, and involved phosphatidylinositol 3-kinase, NIK, IKK, and IkappaB. Thus, in addition to attracting and activating neutrophils, the ELR(+) CXC chemokines amplify the inflammatory cascade, stimulating local production of cytokines that have negative inotropic and proapoptotic effects.

  6. Molecular cloning of porcine chemokine CXC motif ligand 2 (CXCL2) and mapping to the SSC8

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal recognition of pregnancy is accompanied by inflammatory responses with leukocytosis and increased levels of cytokines and chemokines. Human trophoblast cells secrete chemokine CXC motif ligand 1 (CXCL1)/Gro-a and other chemotactic proteins, while monocytes co-cultured with trophoblast cells...

  7. Genetic Subtype-Independent Inhibition of Human Immunodeficiency Virus Type 1 Replication by CC and CXC Chemokines

    PubMed Central

    Trkola, Alexandra; Paxton, William A.; Monard, Simon P.; Hoxie, James A.; Siani, Michael A.; Thompson, Darren A.; Wu, Lijun; Mackay, Charles R.; Horuk, Richard; Moore, John P.

    1998-01-01

    We have studied the breadth and potency of the inhibitory actions of the CC chemokines macrophage inhibitory protein 1α (MIP-1α), MIP-1β, and RANTES against macrophage-tropic (M-tropic) primary isolates of human immunodeficiency virus type 1 (HIV-1) and of the CXC chemokine stromal cell-derived factor 1α against T-cell-tropic (T-tropic) isolates, using mitogen-stimulated primary CD4+ T cells as targets. There was considerable interisolate variation in the sensitivity of HIV-1 to chemokine inhibition, which was especially pronounced for the CC chemokines and M-tropic strains. However, this variation was not obviously dependent on the genetic subtype (A through F) of the virus isolates. Peripheral blood mononuclear cell donor-dependent variation in chemokine inhibition potency was also observed. Among the CC chemokines, the rank order for potency (from most to least potent) was RANTES, MIP-1β, MIP-1α. Some M-tropic isolates, unexpectedly, were much more sensitive to RANTES than to MIP-1β, whereas other isolates showed sensitivities comparable to those of these two chemokines. Down-regulation of the CCR5 and CXCR4 receptors occurred in cells treated with the cognate chemokines and probably contributes to anti-HIV-1 activity. Thus, for CCR5, the rank order for down-regulation was also RANTES, MIP-1β, MIP-1α. PMID:9420238

  8. Structural basis of receptor sulfotyrosine recognition by a CC chemokine: the N-terminal region of CCR3 bound to CCL11/eotaxin-1.

    PubMed

    Millard, Christopher J; Ludeman, Justin P; Canals, Meritxell; Bridgford, Jessica L; Hinds, Mark G; Clayton, Daniel J; Christopoulos, Arthur; Payne, Richard J; Stone, Martin J

    2014-11-04

    Trafficking of leukocytes in immune surveillance and inflammatory responses is activated by chemokines engaging their receptors. Sulfation of tyrosine residues in peptides derived from the eosinophil chemokine receptor CCR3 dramatically enhances binding to cognate chemokines. We report the structural basis of this recognition and affinity enhancement. We describe the structure of a CC chemokine (CCL11/eotaxin-1) bound to a fragment of a chemokine receptor: residues 8–23 of CCR3, including two sulfotyrosine residues. We also show that intact CCR3 is sulfated and sulfation enhances receptor activity. The CCR3 sulfotyrosine residues form hydrophobic, salt bridge and cation-p interactions with residues that are highly conserved in CC chemokines. However, the orientation of the chemokine relative to the receptor N terminus differs substantially from those observed for two CXC chemokines, suggesting that initial binding of the receptor sulfotyrosine residues guides subsequent steps in receptor activation, thereby influencing the receptor conformational changes and signaling.

  9. Molecular requirements for sorting of the chemokine interleukin-8/CXCL8 to endothelial Weibel-Palade bodies.

    PubMed

    Hol, Johanna; Küchler, Axel M; Johansen, Finn-Eirik; Dalhus, Bjørn; Haraldsen, Guttorm; Oynebråten, Inger

    2009-08-28

    Sorting of proteins to Weibel-Palade bodies (WPB) of endothelial cells allows rapid regulated secretion of leukocyte-recruiting P-selectin and chemokines as well as procoagulant von Willebrand factor (VWF). Here we show by domain swap studies that the exposed aspartic acid in loop 2 (Ser(44)-Asp(45)-Gly(46)) of the CXC chemokine interleukin (IL)-8 is crucial for targeting to WPB. Loop 2 also governs sorting of chemokines to alpha-granules of platelets, but the fingerprint of the loop 2 of these chemokines differs from that of IL-8. On the other hand, loop 2 of IL-8 closely resembles a surface-exposed sequence of the VWF propeptide, the region of VWF that directs sorting of the protein to WPB. We conclude that loop 2 of IL-8 constitutes a critical signal for sorting to WPB and propose a general role for this loop in the sorting of chemokines to compartments of regulated secretion.

  10. Active regulation of longitudinal arch compression and recoil during walking and running.

    PubMed

    Kelly, Luke A; Lichtwark, Glen; Cresswell, Andrew G

    2015-01-06

    The longitudinal arch (LA) of the human foot compresses and recoils in response to being cyclically loaded. This has typically been considered a passive process, however, it has recently been shown that the plantar intrinsic foot muscles have the capacity to actively assist in controlling LA motion. Here we tested the hypothesis that intrinsic foot muscles, abductor hallucis (AH), flexor digitorum brevis (FDB) and quadratus plantae (QP), actively lengthen and shorten during the stance phase of gait in response to loading of the foot. Nine participants walked at 1.25 m s⁻¹ and ran at 2.78 and 3.89 m s⁻¹ on a force-instrumented treadmill while foot and ankle kinematics were recorded according to a multisegment foot model. Muscle-tendon unit (MTU) lengths, determined from the foot kinematics, and intramuscular electromyography (EMG) signals were recorded from AH, FDB and QP. Peak EMG amplitude was determined during the stance phase for each participant at each gait velocity. All muscles underwent a process of slow active lengthening during LA compression, followed by a rapid shortening as the arch recoiled during the propulsive phase. Changes in MTU length and peak EMG increased significantly with increasing gait velocity for all muscles. This is the first in vivo evidence that the plantar intrinsic foot muscles function in parallel to the plantar aponeurosis, actively regulating the stiffness of the foot in response to the magnitude of forces encountered during locomotion. These muscles may therefore contribute to power absorption and generation at the foot, limit strain on the plantar aponeurosis and facilitate efficient foot ground force transmission.

  11. Activity Regulation by Fibrinogen and Fibrin of Streptokinase from Streptococcus Pyogenes

    PubMed Central

    Huish, Sian; Thelwell, Craig

    2017-01-01

    Streptokinase is a virulence factor of streptococci and acts as a plasminogen activator to generate the serine protease plasmin which promotes bacterial metastasis. Streptokinase isolated from group C streptococci has been used therapeutically as a thrombolytic agent for many years and its mechanism of action has been extensively studied. However, group A streptococci are associated with invasive and potentially fatal infections, but less detail is available on the mechanism of action of streptokinase from these bacteria. We have expressed recombinant streptokinase from a group C strain to investigate the therapeutic molecule (here termed rSK-H46A) and a molecule isolated from a cluster 2a strain from group A (rSK-M1GAS) which is known to produce the fibrinogen binding, M1 protein, and is associated with life-threatening disease. Detailed enzyme kinetic models have been prepared which show how fibrinogen-streptokinase-plasminogen complexes regulate plasmin generation, and also the effect of fibrin interactions. As is the case with rSK-H46A our data with rSK-M1GAS support a “trigger and bullet” mechanism requiring the initial formation of SK•plasminogen complexes which are replaced by more active SK•plasmin as plasmin becomes available. This model includes the important fibrinogen interactions that stimulate plasmin generation. In a fibrin matrix rSK-M1GAS has a 24 fold higher specific activity than the fibrin-specific thrombolytic agent, tissue plasminogen activator, and 15 fold higher specific activity than rSK-H46A. However, in vivo fibrin specificity would be undermined by fibrinogen stimulation. Given the observed importance of M1 surface receptors or released M1 protein to virulence of cluster 2a strain streptococci, studies on streptokinase activity regulation by fibrin and fibrinogen may provide additional routes to addressing bacterial invasion and infectious diseases. PMID:28125743

  12. Active regulation of longitudinal arch compression and recoil during walking and running

    PubMed Central

    Kelly, Luke A.; Lichtwark, Glen; Cresswell, Andrew G.

    2015-01-01

    The longitudinal arch (LA) of the human foot compresses and recoils in response to being cyclically loaded. This has typically been considered a passive process, however, it has recently been shown that the plantar intrinsic foot muscles have the capacity to actively assist in controlling LA motion. Here we tested the hypothesis that intrinsic foot muscles, abductor hallucis (AH), flexor digitorum brevis (FDB) and quadratus plantae (QP), actively lengthen and shorten during the stance phase of gait in response to loading of the foot. Nine participants walked at 1.25 m s−1 and ran at 2.78 and 3.89 m s−1 on a force-instrumented treadmill while foot and ankle kinematics were recorded according to a multisegment foot model. Muscle–tendon unit (MTU) lengths, determined from the foot kinematics, and intramuscular electromyography (EMG) signals were recorded from AH, FDB and QP. Peak EMG amplitude was determined during the stance phase for each participant at each gait velocity. All muscles underwent a process of slow active lengthening during LA compression, followed by a rapid shortening as the arch recoiled during the propulsive phase. Changes in MTU length and peak EMG increased significantly with increasing gait velocity for all muscles. This is the first in vivo evidence that the plantar intrinsic foot muscles function in parallel to the plantar aponeurosis, actively regulating the stiffness of the foot in response to the magnitude of forces encountered during locomotion. These muscles may therefore contribute to power absorption and generation at the foot, limit strain on the plantar aponeurosis and facilitate efficient foot ground force transmission. PMID:25551151

  13. Chemokine-mobilized adult stem cells; defining a better hematopoietic graft.

    PubMed

    Pelus, L M; Fukuda, S

    2008-03-01

    Stem cell research is currently focused on totipotent stem cells and their therapeutic potential, however adult stem cells, while restricted to differentiation within their tissue or origin, also have therapeutic utility. Transplantation with bone marrow hematopoietic stem cells (HSC) has been used for curative therapy for decades. More recently, alternative sources of HSC, particularly those induced to exit marrow or mobilize to peripheral blood by G-CSF, have become the most widely used hematopoietic graft and show significant superiority to marrow HSC. The chemokine/chemokine receptor axis also mobilizes HSC that occurs more rapidly than with G-CSF. In mice, the HSC and progenitor cells (HPC) mobilized by the CXCR2 receptor agonist GRObeta can be harvested within minutes of administration and show significantly lower levels of apoptosis, enhanced homing to marrow, expression of more activated integrin receptors and superior repopulation kinetics and more competitive engraftment than the equivalent cells mobilized by G-CSF. These characteristics suggest that chemokine axis-mobilized HSC represent a population of adult stem cells distinct from those mobilized by G-CSF, with superior therapeutic potential. It remains to be determined if the chemokine mobilization axis can be harnessed to mobilize other populations of unique adult stem cells with clinical utility.

  14. Timely interaction between prostaglandin and chemokine signaling is a prerequisite for successful fertilization.

    PubMed

    Tamba, Shigero; Yodoi, Rieko; Segi-Nishida, Eri; Ichikawa, Atsushi; Narumiya, Shuh; Sugimoto, Yukihiko

    2008-09-23

    Timely interaction between the egg and sperm is required for successful fertilization; however, little is known about the signaling therein. Prostaglandin (PG) E receptor EP2-deficient (Ptger2(-/-)) female mice exhibit a severe fertilization defect. We investigated the molecular events leading to this failure. We found increased gene expression for chemokines, such as Ccl2, Ccl7, and Ccl9, in Ptger2(-/-) cumulus cells (the somatic cells surrounding the egg) compared with wild-type cells. Furthermore, under physiological conditions, cumulus-derived chemokine signaling was found to have a dual action; CCL7 facilitates sperm migration to the cumulus-egg complex and integrin-mediated cumulus extracellular matrix (ECM) assembly to protect eggs. However, in the absence of PGE(2)-EP2 signaling, chronic CCL7 signaling results in excessive integrin engagement to the ECM, making the cumulus ECM resistant to sperm hyaluronidase, thereby preventing sperm penetration. Our findings indicate that PGE(2)-EP2 signaling negatively regulates the autocrine action of chemokines and prevents excessive cumulus ECM assembly. This interaction between PG and chemokine signaling is required for successful fertilization.

  15. The role of chemokines in term and premature rupture of the fetal membranes: a review.

    PubMed

    Gomez-Lopez, Nardhy; Laresgoiti-Servitje, Estibalitz; Olson, David M; Estrada-Gutiérrez, Guadalupe; Vadillo-Ortega, Felipe

    2010-05-01

    Several studies indicate that at the choriodecidual interface, where maternal and fetal tissues make contact, a network of signals is established during labor that includes infiltration of leukocytes and secretion of pro-inflammatory cytokines. In this review, we provide an overview of the inflammatory milieu present in the choriodecidua during membrane rupture, describe the recruitment and homing of leukocytes to the reproductive tissues, and detail specific actions of the key chemokines released by the choriodecidual cells. These data lend further support to the hypothesis that labor is an inflammatory response, wherein the infiltrated leukocytes in the choriodecidua interface could be contributing to the creation of a microenvironment leading to collagenolysis, which would promote the rupture of these tissues during labor. In addition to the available information describing biological actions of chemokines during various pathological conditions such as infection, preterm labor and preterm rupture of membranes suggest that these compounds play important roles in other gestational events such as cervical dilation and myometrial contractions. Even though we do not know the totality of biochemical signals that integrate the molecular dialogue between leukocytes and the various gestational tissues, it is becoming increasingly evident that this microenvironment is characterized, at least in part, by the differential expression and secretion of chemokines that induce selective trafficking of leukocyte subsets to the fetal membranes. Therefore, chemokines should be considered as important regulatory molecules with the ability to initiate the events that characterize normal and pathological labor.

  16. CC chemokines induce neutrophils to chemotaxis, degranulation, and alpha-defensin release.

    PubMed

    Jan, Ming-Shiou; Huang, Yi-Hsien; Shieh, Biehuoy; Teng, Ru-Hsiu; Yan, Yao-Pei; Lee, Yuan-Ti; Liao, Ko-Kaung; Li, Ching

    2006-01-01

    We have previously shown that a Taiwanese cohort of HIV-uninfected individuals was associated with the significantly elevated levels of serum beta-chemokines, macrophage inflammatory protein (MIP-1)-alpha and MIP-beta, and RANTES. In the present study, we report that the members of this cohort have significantly greater numbers of lower buoyant-density neutrophils in their blood, which leads to further investigation of the effects of beta-chemokines on neutrophils. By electron and confocal microscopic techniques and FACScan, the results demonstrated that MIP-1alpha, MIP-beta, and/or RANTES readily activated the cells to release a large quantity of alpha-defensins in vitro through the degranulation process, which was the cause of low-buoyant-density neutrophil production. The purified neutrophils underwent chemotaxis and increased phagocytic capability when beta-chemokines were present. Only when using all 3 neutralizing antibodies for CCR1, CCR3, and CCR5 could the chemotaxis of neutrophils be inhibited completely, suggesting that these receptors are involved in transducing activating signals. Because neutrophils are the most abundant white blood cells that can be activated simultaneously to release alpha-defensins and because these proteins are antiviral, including anti-HIV, our results support the hypothesis that in addition to beta-chemokines, the innate immunity of the cohort plays a role in inhibiting the transmission of HIV.

  17. The Role of CC-Chemokines in the Regulation of Angiogenesis

    PubMed Central

    Ridiandries, Anisyah; Tan, Joanne T. M.; Bursill, Christina A.

    2016-01-01

    Angiogenesis, the formation of new blood vessels, is critical for survival and in the regenerative response to tissue injury or ischemia. However, in diseases such as cancer and atherosclerosis, inflammation can cause unregulated angiogenesis leading to excessive neovascularization, which exacerbates disease. Current anti-angiogenic therapies cause complete inhibition of both inflammatory and ischemia driven angiogenesis causing a range of side effects in patients. Specific inhibition of inflammation-driven angiogenesis would therefore be immensely valuable. Increasing evidence suggests that the CC-chemokine class promotes inflammation-driven angiogenesis, whilst there is little evidence for a role in ischemia-mediated angiogenesis. The differential regulation of angiogenesis by CC-chemokines suggests it may provide an alternate strategy to treat angiogenesis associated pathological diseases. The focus of this review is to highlight the significant role of the CC-chemokine class in inflammation, versus ischemia driven angiogenesis, and to discuss the related pathologies including atherosclerosis, cancer, and rheumatoid arthritis. We examine the pros and cons of anti-angiogenic therapies currently in clinical trials. We also reveal novel therapeutic strategies that cause broad-spectrum inhibition of the CC-chemokine class that may have future potential for the specific inhibition of inflammatory angiogenesis. PMID:27834814

  18. Biased agonism as a mechanism for differential signaling by chemokine receptors.

    PubMed

    Rajagopal, Sudarshan; Bassoni, Daniel L; Campbell, James J; Gerard, Norma P; Gerard, Craig; Wehrman, Tom S

    2013-12-06

    Chemokines display considerable promiscuity with multiple ligands and receptors shared in common, a phenomenon that is thought to underlie their biochemical "redundancy." Their receptors are part of a larger seven-transmembrane receptor superfamily, commonly referred to as G protein-coupled receptors, which have been demonstrated to be able to signal with different efficacies to their multiple downstream signaling pathways, a phenomenon referred to as biased agonism. Biased agonism has been primarily reported as a phenomenon of synthetic ligands, and the biologic prevalence and importance of such signaling are unclear. Here, to assess the presence of biased agonism that may underlie differential signaling by chemokines targeting the same receptor, we performed a detailed pharmacologic analysis of a set of chemokine receptors with multiple endogenous ligands using assays for G protein signaling, β-arrestin recruitment, and receptor internalization. We found that chemokines targeting the same receptor can display marked differences in their efficacies for G protein- or β-arrestin-mediated signaling or receptor internalization. This ligand bias correlates with changes in leukocyte migration, consistent with different mechanisms underlying the signaling downstream of these receptors induced by their ligands. These findings demonstrate that biased agonism is a common and likely evolutionarily conserved biological mechanism for generating qualitatively distinct patterns of signaling via the same receptor in response to different endogenous ligands.

  19. Chemokine-leukocyte interactions. The voodoo that they do so well.

    PubMed

    Taub, D D

    1996-12-01

    Leukocyte recruitment from the circulation into inflammatory tissues requires a series of soluble and cell-bound signals between the responding leukocyte and vascular endothelial barrier. Chemotactic factors are believed to be responsible for this selective adhesion and transmigration. A superfamily of small, soluble, structurally-related molecules called 'chemokines' have been identified and shown to selectively promote the rapid adhesion and chemotaxis of a variety of leukocyte subtypes both in vivo and in vitro. Chemokines are produced by almost every cell type in the body in response to a number of inflammatory signals, in particular those which activate leukocyte-endothelial cell interactions. These molecules also appear to play important roles in hematopoesis, cellular activation, and leukocyte effector functions. In addition, chemokines have been found in the tissues of a variety of disease states characterized by distinct leukocytic infiltrates, including rheumatoid arthritis, sepsis, atherosclerosis, asthma, psoriasis, ischemia/reperfusion injury, HIV replication, and a variety of pulmonary disease states. This review will primarily focus on the role of chemokines in cell adhesion and trafficking as well as their role as effector molecules.

  20. Chemokine Adjuvanted Electroporated-DNA Vaccine Induces Substantial Protection from Simian Immunodeficiency Virus Vaginal Challenge

    PubMed Central

    Hutnick, N A; Moldoveanu, Z; Hunter, M; Reuter, M; Yuan, S; Yan, J; Ginsberg, A; Sylvester, A; Pahar, B; Carnathan, D; Kathuria, N; Khan, A S; Montefiori, D; Sardesai, N Y; Betts, M R; Mestecky, J; Marx, P; Weiner, D B

    2015-01-01

    There have been encouraging results for the development of an effective HIV vaccine. However, many questions remain regarding the quality of immune responses and the role of mucosal antibodies. We addressed some of these issues by using a simian immunodeficiency virus (SIV) DNA vaccine adjuvanted with plasmid-expressed mucosal chemokines combined with an intravaginal SIV challenge in rhesus macaque (RhM) model. We previously reported on the ability of CCR9 and CCR10 ligand (L) adjuvants to enhance mucosal and systemic IgA and IgG in small animals. In this study, RhMs were intramuscularly immunized five times with either DNA or DNA plus chemokine adjuvant delivered by electroporation followed by challenge with SIVsmE660. Sixty-eight percent of all vaccinated animals (P=0.0016) remained either uninfected or had aborted infection compared to only 14% in the vaccine naïve group. The highest protection was observed in the CCR10L chemokines group, where 6 of 9 animals had aborted infection and two remained uninfected, leading to 89% protection (P=0.0003). The induction of mucosal SIV-specific antibodies and neutralization titers correlated with trends in protection. These results indicate the need to further investigate the contribution of chemokine adjuvants to modulate immune responses and the role of mucosal antibodies in SIV/HIV protection. PMID:25943275

  1. The chemokine CXCL16 modulates neurotransmitter release in hippocampal CA1 area

    PubMed Central

    Di Castro, Maria Amalia; Trettel, Flavia; Milior, Giampaolo; Maggi, Laura; Ragozzino, Davide; Limatola, Cristina

    2016-01-01

    Chemokines have several physio-pathological roles in the brain. Among them, the modulation of synaptic contacts and neurotransmission recently emerged as crucial activities during brain development, in adulthood, upon neuroinflammation and neurodegenerative diseases. CXCL16 is a chemokine normally expressed in the brain, where it exerts neuroprotective activity against glutamate-induced damages through cross communication with astrocytes and the involvement of the adenosine receptor type 3 (A3R) and the chemokine CCL2. Here we demonstrated for the first time that CXCL16 exerts a modulatory activity on inhibitory and excitatory synaptic transmission in CA1 area. We found that CXCL16 increases the frequency of the miniature inhibitory synaptic currents (mIPSCs) and the paired-pulse ratio (PPR) of evoked IPSCs (eIPSCs), suggesting a presynaptic modulation of the probability of GABA release. In addition, CXCL16 increases the frequency of the miniature excitatory synaptic currents (mEPSCs) and reduces the PPR of evoked excitatory transmission, indicating that the chemokine also modulates and enhances the release of glutamate. These effects were not present in the A3RKO mice and in WT slices treated with minocycline, confirming the involvement of A3 receptors and introducing microglial cells as key mediators of the modulatory activity of CXCL16 on neurons. PMID:27721466

  2. Atypical chemokine receptor ACKR2 controls branching morphogenesis in the developing mammary gland.

    PubMed

    Wilson, Gillian J; Hewit, Kay D; Pallas, Kenneth J; Cairney, Claire J; Lee, Kit M; Hansell, Christopher A; Stein, Torsten; Graham, Gerard J

    2017-01-01

    Macrophages are important regulators of branching morphogenesis during development and postnatally in the mammary gland. Regulation of macrophage dynamics during these processes can therefore have a profound impact on development. We demonstrate here that the developing mammary gland expresses high levels of inflammatory CC-chemokines, which are essential in vivo regulators of macrophage migration. We further demonstrate that the atypical chemokine receptor ACKR2, which scavenges inflammatory CC-chemokines, is differentially expressed during mammary gland development. We have previously shown that ACKR2 regulates macrophage dynamics during lymphatic vessel development. Here, we extend these observations to reveal a novel role for ACKR2 in regulating the postnatal development of the mammary gland. Specifically, we show that Ackr2(-/-) mice display precocious mammary gland development. This is associated with increased macrophage recruitment to the developing gland and increased density of the ductal epithelial network. These data demonstrate that ACKR2 is an important regulator of branching morphogenesis in diverse biological contexts and provide the first evidence of a role for chemokines and their receptors in postnatal development processes.

  3. Quantitative comparison of C-X-C chemokines produced by endotoxin-stimulated human alveolar macrophages.

    PubMed

    Goodman, R B; Strieter, R M; Frevert, C W; Cummings, C J; Tekamp-Olson, P; Kunkel, S L; Walz, A; Martin, T R

    1998-07-01

    The C-X-C chemokines are a structurally related and functionally redundant family of proteins with neutrophil chemotactic activity. Many of the C-X-C chemokines are produced by endotoxin-stimulated alveolar macrophages (AMs), but knowledge of their relative quantities and their relative contributions to the total chemotactic activity released from these cells is incomplete. Human AMs were stimulated with or without Escherichia coli endotoxin for 2, 4, 8, and 24 h. The mRNA sequences of interleukin (IL)-8, the 78-amino acid epithelial cell-derived neutrophil activator (ENA-78), growth-related protein (GRO) alpha, GRObeta, and GROgamma were cloned by PCR and identified by sequence analysis. The relative mRNA quantities were compared by Northern analysis, and IL-8 was found to predominate. Similarly, IL-8 protein concentrations in the cell supernatants were consistently higher than either the ENA-78 or GRO concentration, and by 24 h, IL-8 concentrations were 10-fold higher than those of the other C-X-C chemokines. Blocking polyclonal antibodies to IL-8 substantially reduced the chemotactic activity in the AM supernatants, whereas antibodies to ENA-78 and GRO had little or no effect. We conclude that IL-8 is the predominant C-X-C chemokine and the dominant neutrophil chemoattractant accumulating in 24-h supernatants of lipopolysaccharide-stimulated human AMs. These studies provide insight into potentially effective strategies of interrupting AM-derived inflammatory signals in the lungs.

  4. Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development.

    PubMed

    Marques, Rafael E; Guabiraba, Rodrigo; Del Sarto, Juliana L; Rocha, Rebeca F; Queiroz, Ana Luiza; Cisalpino, Daniel; Marques, Pedro E; Pacca, Carolina C; Fagundes, Caio T; Menezes, Gustavo B; Nogueira, Maurício L; Souza, Danielle G; Teixeira, Mauro M

    2015-08-01

    Dengue is a mosquito-borne disease that affects millions of people worldwide yearly. Currently, there is no vaccine or specific treatment available. Further investigation on dengue pathogenesis is required to better understand the disease and to identify potential therapeutic targets. The chemokine system has been implicated in dengue pathogenesis, although the specific role of chemokines and their receptors remains elusive. Here we describe the role of the CC-chemokine receptor CCR5 in Dengue virus (DENV-2) infection. In vitro experiments showed that CCR5 is a host factor required for DENV-2 replication in human and mouse macrophages. DENV-2 infection induces the expression of CCR5 ligands. Incubation with an antagonist prevents CCR5 activation and reduces DENV-2 positive-stranded (+) RNA inside macrophages. Using an immunocompetent mouse model of DENV-2 infection we found that CCR5(-/-) mice were resistant to lethal infection, presenting at least 100-fold reduction of viral load in target organs and significant reduction in disease severity. This phenotype was reproduced in wild-type mice treated with CCR5-blocking compounds. Therefore, CCR5 is a host factor required for DENV-2 replication and disease development. Targeting CCR5 might represent a therapeutic strategy for dengue fever. These data bring new insights on the association between viral infections and the chemokine receptor CCR5.

  5. Chemokine receptor CCR5 and CXCR4 might influence virus replication during IBDV infection.

    PubMed

    Ou, Changbo; Wang, Qiuxia; Yu, Yan; Zhang, Yanhong; Ma, Jinyou; Kong, Xianghui; Liu, Xingyou

    2017-03-27

    Both CCR5 and CXCR4 are important chemokine receptors and take vital role in migration, development and distribution of T cells, however, whether they will influence the process of T cell infiltration into bursa of Fabricius during infectious bursal disease virus (IBDV) infection is unclear. In the current study, CCR5 and CXCR4 antagonists, Maraviroc and AMD3100, were administrated into chickens inoculated with IBDV, and the gene levels of IBDV VP2, CCR5, CXCR4 and related cytokines were determined by real-time PCR. The results showed that large number of T cells began to migrate into the bursae on Day 3 post infection with IBDV and the mRNA of chemokine receptors CCR5 and CXCR4 began to increase on Day 1. Moreover, antagonist treatments have increased the VP2, CCR5 and CXCR4 gene transcriptions and influenced on the gene levels of IL-2, IL-6, IL-8, IFN-γ, TGF-β4, MHC-I and MDA5. In conclusion, the chemokine receptors CCR5 and CXCR4 might influence virus replication during IBDV infection and further study would focus on the interaction between chemokine receptors and their ligands.

  6. Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors.

    PubMed

    Lechner, Melissa G; Russell, Sarah M; Bass, Rikki S; Epstein, Alan L

    2011-11-01

    In this article, the role of chemokines and costimulatory molecules in the immunotherapy of experimental murine solid tumors and immunotherapy used in ongoing clinical trials are presented. Chemokine networks regulate physiologic cell migration that may be disrupted to inhibit antitumor immune responses or co-opted to promote tumor growth and metastasis in cancer. Recent studies highlight the potential use of chemokines in cancer immunotherapy to improve innate and adaptive cell interactions and to recruit immune effector cells into the tumor microenvironment. Another critical component of antitumor immune responses is antigen priming and activation of effector cells. Reciprocal expression and binding of costimulatory molecules and their ligands by antigen-presenting cells and naive lymphocytes ensures robust expansion, activity and survival of tumor-specific effector cells in vivo. Immunotherapy approaches using agonist antibodies or fusion proteins of immunomodulatory molecules significantly inhibit tumor growth and boost cell-mediated immunity. To localize immune stimulation to the tumor site, a series of fusion proteins consisting of a tumor-targeting monoclonal antibody directed against tumor necrosis and chemokines or costimulatory molecules were generated and tested in tumor-bearing mice. While several of these reagents were initially shown to have therapeutic value, combination therapies with methods to delete suppressor cells had the greatest effect on tumor growth. In conclusion, a key conclusion that has emerged from these studies is that successful immunotherapy will require both advanced methods of immunostimulation and the removal of immunosuppression in the host.

  7. Signal transmission through the CXC chemokine receptor 4 (CXCR4) transmembrane helices

    PubMed Central

    Wescott, Melanie P.; Kufareva, Irina; Paes, Cheryl; Goodman, Jason R.; Thaker, Yana; Puffer, Bridget A.; Berdougo, Eli; Rucker, Joseph B.; Handel, Tracy M.; Doranz, Benjamin J.

    2016-01-01

    The atomic-level mechanisms by which G protein-coupled receptors (GPCRs) transmit extracellular ligand binding events through their transmembrane helices to activate intracellular G proteins remain unclear. Using a comprehensive library of mutations covering all 352 residues of the GPCR CXC chemokine receptor 4 (CXCR4), we identified 41 amino acids that are required for signaling induced by the chemokine ligand CXCL12 (stromal cell-derived factor 1). CXCR4 variants with each of these mutations do not signal properly but remain folded, based on receptor surface trafficking, reactivity to conformationally sensitive monoclonal antibodies, and ligand binding. When visualized on the structure of CXCR4, the majority of these residues form a continuous intramolecular signaling chain through the transmembrane helices; this chain connects chemokine binding residues on the extracellular side of CXCR4 to G protein-coupling residues on its intracellular side. Integrated into a cohesive model of signal transmission, these CXCR4 residues cluster into five functional groups that mediate (i) chemokine engagement, (ii) signal initiation, (iii) signal propagation, (iv) microswitch activation, and (v) G protein coupling. Propagation of the signal passes through a “hydrophobic bridge” on helix VI that coordinates with nearly every known GPCR signaling motif. Our results agree with known conserved mechanisms of GPCR activation and significantly expand on understanding the structural principles of CXCR4 signaling. PMID:27543332

  8. Chemokine-adjuvanted electroporated DNA vaccine induces substantial protection from simian immunodeficiency virus vaginal challenge.

    PubMed

    Kutzler, M A; Wise, M C; Hutnick, N A; Moldoveanu, Z; Hunter, M; Reuter, M A; Yuan, S; Yan, J; Ginsberg, A A; Sylvester, A; Pahar, B; Carnathan, D G; Kathuria, N; Khan, A S; Montefiori, D; Sardesai, N Y; Betts, M R; Mestecky, J; Marx, P A; Weiner, D B

    2016-01-01

    There have been encouraging results for the development of an effective HIV vaccine. However, many questions remain regarding the quality of immune responses and the role of mucosal antibodies. We addressed some of these issues by using a simian immunodeficiency virus (SIV) DNA vaccine adjuvanted with plasmid-expressed mucosal chemokines combined with an intravaginal SIV challenge in rhesus macaque (RhM) model. We previously reported on the ability of CCR9 and CCR10 ligand (L) adjuvants to enhance mucosal and systemic IgA and IgG responses in small animals. In this study, RhMs were intramuscularly immunized five times with either DNA or DNA plus chemokine adjuvant delivered by electroporation followed by challenge with SIVsmE660. Sixty-eight percent of all vaccinated animals (P<0.01) remained either uninfected or had aborted infection compared with only 14% in the vaccine naïve group. The highest protection was observed in the CCR10L chemokines group, where six of nine animals had aborted infection and two remained uninfected, leading to 89% protection (P<0.001). The induction of mucosal SIV-specific antibodies and neutralization titers correlated with trends in protection. These results indicate the need to further investigate the contribution of chemokine adjuvants to modulate immune responses and the role of mucosal antibodies in SIV/HIV protection.

  9. Atypical chemokine receptor ACKR2 controls branching morphogenesis in the developing mammary gland

    PubMed Central

    Hewit, Kay D.; Pallas, Kenneth J.; Cairney, Claire J.; Lee, Kit M.; Hansell, Christopher A.; Stein, Torsten

    2017-01-01

    Macrophages are important regulators of branching morphogenesis during development and postnatally in the mammary gland. Regulation of macrophage dynamics during these processes can therefore have a profound impact on development. We demonstrate here that the developing mammary gland expresses high levels of inflammatory CC-chemokines, which are essential in vivo regulators of macrophage migration. We further demonstrate that the atypical chemokine receptor ACKR2, which scavenges inflammatory CC-chemokines, is differentially expressed during mammary gland development. We have previously shown that ACKR2 regulates macrophage dynamics during lymphatic vessel development. Here, we extend these observations to reveal a novel role for ACKR2 in regulating the postnatal development of the mammary gland. Specifically, we show that Ackr2−/− mice display precocious mammary gland development. This is associated with increased macrophage recruitment to the developing gland and increased density of the ductal epithelial network. These data demonstrate that ACKR2 is an important regulator of branching morphogenesis in diverse biological contexts and provide the first evidence of a role for chemokines and their receptors in postnatal development processes. PMID:27888192

  10. Peroxisome proliferator-activated receptor agonists modulate neuropathic pain: a link to chemokines?

    PubMed Central

    Freitag, Caroline M.; Miller, Richard J.

    2014-01-01

    Chronic pain presents a widespread and intractable medical problem. While numerous pharmaceuticals are used to treat chronic pain, drugs that are safe for extended use and highly effective at treating the most severe pain do not yet exist. Chronic pain resulting from nervous system injury (neuropathic pain) is common in conditions ranging from multiple sclerosis to HIV-1 infection to type II diabetes. Inflammation caused by neuropathy is believed to contribute to the generation and maintenance of neuropathic pain. Chemokines are key inflammatory mediators, several of which (MCP-1, RANTES, MIP-1α, fractalkine, SDF-1 among others) have been linked to chronic, neuropathic pain in both human conditions and animal models. The important roles chemokines play in inflammation and pain make them an attractive therapeutic target. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors known for their roles in metabolism. Recent research has revealed that PPARs also play a role in inflammatory gene repression. PPAR agonists have wide-ranging effects including inhibition of chemokine expression and pain behavior reduction in animal models. Experimental evidence suggests a connection between the pain ameliorating effects of PPAR agonists and suppression of inflammatory gene expression, including chemokines. In early clinical research, one PPARα agonist, palmitoylethanolamide (PEA), shows promise in relieving chronic pain. If this link can be better established, PPAR agonists may represent a new drug therapy for neuropathic pain. PMID:25191225

  11. Smoothing T cell roads to the tumor: Chemokine post-translational regulation.

    PubMed

    Molon, Barbara; Viola, Antonella; Bronte, Vincenzo

    2012-05-01

    We described a novel tumor-associated immunosuppressive mechanism based on post-translational modifications of chemokines by reactive nitrogen species (RNS). To overcome tumor immunosuppressive hindrances, we designed and developed a new drug, AT38, that inhibits RNS generation at the tumor site. Combinatorial approaches with AT38 boost the effectiveness of cancer immunotherapy protocols.

  12. Chemokines induce axon outgrowth downstream of Hepatocyte Growth Factor and TCF/β-catenin signaling

    PubMed Central

    Bhardwaj, Deepshikha; Náger, Mireia; Camats, Judith; David, Monica; Benguria, Alberto; Dopazo, Ana; Cantí, Carles; Herreros, Judit

    2013-01-01

    Axon morphogenesis is a complex process regulated by a variety of secreted molecules, including morphogens and growth factors, resulting in the establishment of the neuronal circuitry. Our previous work demonstrated that growth factors [Neurotrophins (NT) and Hepatocyte Growth Factor (HGF)] signal through β-catenin during axon morphogenesis. HGF signaling promotes axon outgrowth and branching by inducing β-catenin phosphorylation at Y142 and transcriptional regulation of T-Cell Factor (TCF) target genes. Here, we asked which genes are regulated by HGF signaling during axon morphogenesis. An array screening indicated that HGF signaling elevates the expression of chemokines of the CC and CXC families. In line with this, CCL7, CCL20, and CXCL2 significantly increase axon outgrowth in hippocampal neurons. Experiments using blocking antibodies and chemokine receptor antagonists demonstrate that chemokines act downstream of HGF signaling during axon morphogenesis. In addition, qPCR data demonstrates that CXCL2 and CCL5 expression is stimulated by HGF through Met/b-catenin/TCF pathway. These results identify CC family members and CXCL2 chemokines as novel regulators of axon morphogenesis downstream of HGF signaling. PMID:23641195

  13. Solution structure of the complex between poxvirus-encoded CC chemokine inhibitor vCCI and human MIP-1β

    SciTech Connect

    Zhang, Li; DeRider, Michele; McCornack, Milissa A.; Jao, Chris; Isern, Nancy G.; Ness, Traci; Moyer, Richard; Liwang, Patricia J.

    2006-09-19

    Chemokines (chemotactic cytokines) comprise a large family of proteins that recruit and activate leukocytes, giving chemokines a major role in both the immune response and inflammation-related diseases. The poxvirus-encoded viral CC chemokine inhibitor (vCCI) binds to many CC chemokines with high affinity, acting as a potent inhibitor of chemokine action. We have used heteronuclear multidimensional NMR to determine the first structure of an orthopoxvirus vCCI in complex with a human CC chemokine MIP-1β. vCCI binds to the chemokine with 1:1 stoichiometry, using residues from its β-sheet II to interact with the a surface of MIP-1β that includes the N-terminus, the following residues in the so-called N-loop20’s region, and the 40’s loop. This structure reveals a general strategy of vCCI for selective chemokine binding, as vCCI appears to interact most stronglyinteracts most directly with residues that are conserved among a subset of CC chemokines, but are not conservednot among the other chemokine subfamilies. This structure reveals a general strategy of vCCI for selective chemokine binding. Chemokines play critical roles in the immune system, causing chemotaxis of a variety of cells to sites of infection and inflammation, as well as mediating cell homing and immune system development 1(Baggiolini 2001). To date, about 50 chemokines have been identified, and these small proteins (7-14 kDa) are believed to function by binding with endothelial or matrix glycosaminoglycans to form a concentration gradient that is then sensed by high affinity, 7-transmembrane domain G-protein coupled chemokine receptors on the surface of immune cells surface. The chemokine system is critical for host defense in healthy individuals, butand can also lead to diseases including asthma, arthritis, and atherosclerosis in the case of malfunction, often due to inappropriate inflammation and subsequent tissue damage 2(Gerard and Rollins 2001). There are four subfamilies of chemokines, CC

  14. Chemokine binding protein ‘M3’ limits atherosclerosis in apolipoprotein E-/- mice

    PubMed Central

    Ravindran, Dhanya; Ridiandries, Anisyah; Vanags, Laura Z.; Henriquez, Rodney; Cartland, Siân; Tan, Joanne T. M.; Bursill, Christina A.

    2017-01-01

    Chemokines are important in macrophage recruitment and the progression of atherosclerosis. The ‘M3’ chemokine binding protein inactivates key chemokines involved in atherosclerosis (e.g. CCL2, CCL5 and CX3CL1). We aimed to determine the effect of M3 on plaque development and composition. In vitro chemotaxis studies confirmed that M3 protein inhibited the activity of chemokines CCL2, CCL5 and CX3CL1 as primary human monocyte migration as well as CCR2-, CCR5- and CX3CR1-directed migration was attenuated by M3. In vivo, adenoviruses encoding M3 (AdM3) or green fluorescence protein (AdGFP; control) were infused systemically into apolipoprotein (apo)-E-/- mice. Two models of atherosclerosis development were used in which the rate of plaque progression was varied by diet including: (1) a ‘rapid promotion’ model (6-week high-fat-fed) and (2) a ‘slow progression’ model (12-week chow-fed). Plasma chemokine activity was suppressed in AdM3-infused mice as indicated by significantly less monocyte migration towards AdM3 mouse plasma ex vivo (29.56%, p = 0.014). In the ‘slow progression’ model AdM3 mice had reduced lesion area (45.3%, p = 0.035) and increased aortic smooth muscle cell α-actin expression (60.3%, p = 0.014). The reduction in lesion size could not be explained by changes in circulating inflammatory monocytes as they were higher in the AdM3 group. In the ‘rapid promotion’ model AdM3 mice had no changes in plaque size but reduced plaque macrophage content (46.8%, p = 0.006) and suppressed lipid deposition in thoracic aortas (66.9%, p<0.05). There was also a reduction in phosphorylated p65, the active subunit of NF-κb, in the aortas of AdM3 mice (37.3%, p<0.0001). M3 inhibited liver CCL2 concentrations in both models with no change in CCL5 or systemic chemokine levels. These findings show M3 causes varying effects on atherosclerosis progression and plaque composition depending on the rate of lesion progression. Overall, our studies support a

  15. Environmental Mold and Mycotoxin Exposures Elicit Specific Cytokine and Chemokine Responses

    PubMed Central

    Rosenblum Lichtenstein, Jamie H.; Hsu, Yi-Hsiang; Gavin, Igor M.; Donaghey, Thomas C.; Molina, Ramon M.; Thompson, Khristy J.; Chi, Chih-Lin; Gillis, Bruce S.; Brain, Joseph D.

    2015-01-01

    Background Molds can cause respiratory symptoms and asthma. We sought to use isolated peripheral blood mononuclear cells (PBMCs) to understand changes in cytokine and chemokine levels in response to mold and mycotoxin exposures and to link these levels with respiratory symptoms in humans. We did this by utilizing an ex vivo assay approach to differentiate mold-exposed patients and unexposed controls. While circulating plasma chemokine and cytokine levels from these two groups might be similar, we hypothesized that by challenging their isolated white blood cells with mold or mold extracts, we would see a differential chemokine and cytokine release. Methods and Findings Peripheral blood mononuclear cells (PBMCs) were isolated from blood from 33 patients with a history of mold exposures and from 17 controls. Cultured PBMCs were incubated with the most prominent Stachybotrys chartarum mycotoxin, satratoxin G, or with aqueous mold extract, ionomycin, or media, each with or without PMA. Additional PBMCs were exposed to spores of Aspergillus niger, Cladosporium herbarum and Penicillium chrysogenum. After 18 hours, cytokines and chemokines released into the culture medium were measured by multiplex assay. Clinical histories, physical examinations and pulmonary function tests were also conducted. After ex vivo PBMC exposures to molds or mycotoxins, the chemokine and cytokine profiles from patients with a history of mold exposure were significantly different from those of unexposed controls. In contrast, biomarker profiles from cells exposed to media alone showed no difference between the patients and controls. Conclusions These findings demonstrate that chronic mold exposures induced changes in inflammatory and immune system responses to specific mold and mycotoxin challenges. These responses can differentiate mold-exposed patients from unexposed controls. This strategy may be a powerful approach to document immune system responsiveness to molds and other inflammation

  16. Broad-Spectrum Inhibition of the CC-Chemokine Class Improves Wound Healing and Wound Angiogenesis

    PubMed Central

    Ridiandries, Anisyah; Bursill, Christina; Tan, Joanne

    2017-01-01

    Angiogenesis is involved in the inflammation and proliferation stages of wound healing, to bring inflammatory cells to the wound and provide a microvascular network to maintain new tissue formation. An excess of inflammation, however, leads to prolonged wound healing and scar formation, often resulting in unfavourable outcomes such as amputation. CC-chemokines play key roles in the promotion of inflammation and inflammatory-driven angiogenesis. Therefore, inhibition of the CC-chemokine class may improve wound healing. We aimed to determine if the broad-spectrum CC-chemokine inhibitor “35K” could accelerate wound healing in vivo in mice. In a murine wound healing model, 35K protein or phosphate buffered saline (PBS, control) were added topically daily to wounds. Cohorts of mice were assessed in the early stages (four days post-wounding) and in the later stages of wound repair (10 and 21 days post-wounding). Topical application of the 35K protein inhibited CC-chemokine expression (CCL5, CCL2) in wounds and caused enhanced blood flow recovery and wound closure in early-mid stage wounds. In addition, 35K promoted neovascularisation in the early stages of wound repair. Furthermore, 35K treated wounds had significantly lower expression of the p65 subunit of NF-κB, a key inflammatory transcription factor, and augmented wound expression of the pro-angiogenic and pro-repair cytokine TGF-β. These findings show that broad-spectrum CC-chemokine inhibition may be beneficial for the promotion of wound healing. PMID:28098795

  17. Molecular cloning, characterization and expression analysis of a CC chemokine gene from miiuy croaker (Miichthys miiuy).

    PubMed

    Cheng, Yuanzhi; Sun, Yuena; Shi, Ge; Wang, Rixin; Xu, Tianjun

    2012-12-01

    Chemokines are a family of structurally related chemotactic cytokines that regulate the migration of leukocytes, under both physiological and inflammatory conditions. A partial cDNA of CC chemokine gene designed as Mimi-CC3 was isolated from miiuy croaker (Miichthys miiuy) spleen cDNA library. Unknown 3' part of the cDNA was amplified by 3'-RACE. The complete cDNA of Mimi-CC3 contains an 89-nt 5'-UTR, a 303-nt open reading frame and a 441-nt 3'-UTR. Three exons and two introns were identified in Mimi-CC3. The deduced Mimi-CC3 protein sequences contain a 22 amino acids signal peptide and a 78 amino acids mature polypeptide, which possesses the typical arrangement of four cysteines as found in other known CC chemokines. It shares low amino acid sequence identities with most other fish and mammalian CC chemokines (less than 54.1 %), but shares very high identities with large yellow croaker CC chemokine (94.6 %). Phylogenetic analysis showed that Mimi-CC3 gene may have an orthologous relationship with mammalian/amphibian CCL25 gene. Tissue expression distributed analysis showed that Mimi-CC3 gene was constitutively expressed in all nine tissues examined, although at different levels. Upon stimulated with Vibrio anguillarum, the time-course analysis using a real-time PCR showed that Mimi-CC3 transcript in kidney and liver was obviously up-regulated and reached the peak levels, followed by a recovery. Mimi-CC3 expression in kidney was more strongly increased than in liver. However, down-regulation was observed in spleen. These results indicated that Mimi-CC3 plays important roles in miiuy croaker immune response as well as in homeostatic mechanisms.

  18. Broad-Spectrum Inhibition of the CC-Chemokine Class Improves Wound Healing and Wound Angiogenesis.

    PubMed

    Ridiandries, Anisyah; Bursill, Christina; Tan, Joanne

    2017-01-13

    Angiogenesis is involved in the inflammation and proliferation stages of wound healing, to bring inflammatory cells to the wound and provide a microvascular network to maintain new tissue formation. An excess of inflammation, however, leads to prolonged wound healing and scar formation, often resulting in unfavourable outcomes such as amputation. CC-chemokines play key roles in the promotion of inflammation and inflammatory-driven angiogenesis. Therefore, inhibition of the CC-chemokine class may improve wound healing. We aimed to determine if the broad-spectrum CC-chemokine inhibitor "35K" could accelerate wound healing in vivo in mice. In a murine wound healing model, 35K protein or phosphate buffered saline (PBS, control) were added topically daily to wounds. Cohorts of mice were assessed in the early stages (four days post-wounding) and in the later stages of wound repair (10 and 21 days post-wounding). Topical application of the 35K protein inhibited CC-chemokine expression (CCL5, CCL2) in wounds and caused enhanced blood flow recovery and wound closure in early-mid stage wounds. In addition, 35K promoted neovascularisation in the early stages of wound repair. Furthermore, 35K treated wounds had significantly lower expression of the p65 subunit of NF-κB, a key inflammatory transcription factor, and augmented wound expression of the pro-angiogenic and pro-repair cytokine TGF-β. These findings show that broad-spectrum CC-chemokine inhibition may be beneficial for the promotion of wound healing.

  19. A copper-hydrogen peroxide redox system induces dityrosine cross-links and chemokine oligomerisation.

    PubMed

    MacGregor, Helen J; Kato, Yoji; Marshall, Lindsay J; Nevell, Thomas G; Shute, Janis K

    2011-12-01

    The activity of the chemoattractant cytokines, the chemokines, in vivo is enhanced by oligomerisation and aggregation on glycosaminoglycan (GAG), particularly heparan sulphate, side chains of proteoglycans. The chemokine RANTES (CCL5) is a T-lymphocyte and monocyte chemoattractant, which has a minimum tetrameric structure for in vivo activity and a propensity to form higher order oligomers. RANTES is unusual among the chemokines in having five tyrosine residues, an amino acid susceptible to oxidative cross-linking. Using fluorescence emission spectroscopy, Western blot analysis and LCMS-MS, we show that a copper/H2O2 redox system induces the formation of covalent dityrosine cross-links and RANTES oligomerisation with the formation of tetramers, as well as higher order oligomers. Amongst the transition metals tested, namely copper, nickel, mercury, iron and zinc, copper appeared unique in this respect. At high (400 μM) concentrations of H2O2, RANTES monomers, dimers and oligomers are destroyed, but heparan sulphate protects the chemokine from oxidative damage, promoting dityrosine cross-links and multimer formation under oxidative conditions. Low levels of dityrosine cross-links were detected in copper/H2O2-treated IL-8 (CXCL8), which has one tyrosine residue, and none were detected in ENA-78 (CXCL5), which has none. Redox-treated RANTES was fully functional in Boyden chamber assays of T-cell migration and receptor usage on activated T-cells following RANTES oligomerisation was not altered. Our results point to a protective, anti-oxidant, role for heparan sulphate and a previously unrecognised role for copper in chemokine oligomerisation that may offer an explanation for the known anti-inflammatory effect of copper-chelators such as penicillamine and tobramycin.

  20. CREB- and NF-κB-Regulated CXC Chemokine Gene Expression in Lung Carcinogenesis

    PubMed Central

    Sun, Hongxia; Chung, Wen-Cheng; Ryu, Seung-Hee; Ju, Zhenlin; Tran, Hai T.; Kim, Edward; Kurie, Jonathan M.; Koo, Ja Seok

    2009-01-01

    The recognition of the importance of angiogenesis in tumor progression has led to the development of antiangiogenesis as a new strategy for cancer treatment and prevention. By modulating tumor microenvironment and inducing angiogenesis, the proinflammatory cytokine interleukine (IL)-1 β has been reported to promote tumor development. However, the factors mediating IL-1β-induced angiogenesis in non-small cell lung cancer (NSCLC) and the regulation of these angiogenic factors by IL-1β are less clear. Here, we report that IL-1β upregulated an array of proangiogenic CXC chemokine genes in NSCLC cell line A549 and in normal human tracheobronchial epithelium (NHTBE) cells, as determined by microarray analysis. Further analysis revealed that IL-1β induced much higher protein levels of CXC chemokines in NSCLC cells than in NHTBE cells. Conditioned medium from IL-1β treated A549 cells markedly increased endothelial cell migration, which was suppressed by neutralizing antibodies against CXCL5 and CXCR2. We also found that IL-1β-induced CXC chemokine gene overexpression in NSCLC cells was abrogated with the knockdown of CREB or NF-κB. Moreover, the expression of the CXC chemokine genes as well as CREB and NF-κB activities were greatly increased in tumorigenic NSCLC cell line compared with normal, premalignant immortalized or non-tumorigenic cell lines. A disruptor of the interaction between CREB-binding protein (CBP) and transcription factors such as CREB and NF-κB, 2-naphthol-AS-E-phosphate (KG-501), inhibited IL-1β-induced CXC chemokine gene expression and angiogenic activity in NSCLC. We propose that targeting CREB or NF-κB using small molecule inhibitors, such as KG-501, holds promise as a preventive and/or therapeutic approach for NSCLC. PMID:19138976

  1. The chemokinome superfamily: II. The 64 CC chemokines in channel catfish and their involvement in disease and hypoxia responses.

    PubMed

    Fu, Qiang; Yang, Yujia; Li, Chao; Zeng, Qifan; Zhou, Tao; Li, Ning; Liu, Yang; Li, Yun; Wang, Xiaozhu; Liu, Shikai; Li, Daoji; Liu, Zhanjiang

    2017-03-18

    Chemokines are a superfamily of structurally related chemotactic cytokines exerting significant roles in regulating cell migration and activation. Based on the arrangement of the first four cysteine residues, they are classified into CC, CXC, C and CX3C subfamilies. In this study, a complete set of 64 CC chemokine ligand (CCL) genes was systematically identified, annotated, and characterized from the channel catfish genome. Extensive phylogenetic and comparative genomic analyses supported their annotations, allowing establishment of their orthologies, revealing fish-specific CC chemokines and the expansion of CC chemokines in the teleost genomes through lineage-specific tandem duplications. With 64 genes, the channel catfish genome harbors the largest numbers of CC chemokines among all the genomes characterized to date, however, they fall into 11 distinct CC chemokine groups. Analysis of gene expression after bacterial infections indicated that the CC chemokines were regulated in a gene-specific and time-dependent manner. While only one member of CCL19 (CCL19a.1) was significantly up-regulated after Edwardsiella ictaluri infection, all CCL19 members (CCL19a.1, CCL19a.2 and CCL19b) were significantly induced after Flavobacterium columnare infection. In addition, CCL19a.1, CCL19a.2 and CCL19b were also drastically up-regulated in ESC-susceptible fish, but not in resistant fish, suggesting potential significant roles of CCL19 in catfish immune responses. High expression levels of certain CC appeared to be correlated with susceptibility to diseases and intolerance to hypoxia.

  2. Truncation of CXCL12 by CD26 reduces its CXC chemokine receptor 4- and atypical chemokine receptor 3-dependent activity on endothelial cells and lymphocytes.

    PubMed

    Janssens, Rik; Mortier, Anneleen; Boff, Daiane; Ruytinx, Pieter; Gouwy, Mieke; Vantilt, Bo; Larsen, Olav; Daugvilaite, Viktorija; Rosenkilde, Mette M; Parmentier, Marc; Noppen, Sam; Liekens, Sandra; Van Damme, Jo; Struyf, Sofie; Teixeira, Mauro M; Amaral, Flávio A; Proost, Paul

    2017-05-15

    The chemokine CXCL12 or stromal cell-derived factor 1/SDF-1 attracts hematopoietic progenitor cells and mature leukocytes through the G protein-coupled CXC chemokine receptor 4 (CXCR4). In addition, it interacts with atypical chemokine receptor 3 (ACKR3 or CXCR7) and glycosaminoglycans. CXCL12 activity is regulated through posttranslational cleavage by CD26/dipeptidyl peptidase 4 that removes two NH2-terminal amino acids. CD26-truncated CXCL12 does not induce calcium signaling or chemotaxis of mononuclear cells. CXCL12(3-68) was chemically synthesized de novo for detailed biological characterization. Compared to unmodified CXCL12, CXCL12(3-68) was no longer able to signal through CXCR4 via inositol trisphosphate (IP3), Akt or extracellular signal-regulated kinases 1 and 2 (ERK1/2). Interestingly, the recruitment of β-arrestin 2 to the cell membrane via CXCR4 by CXCL12(3-68) was abolished, whereas a weakened but significant β-arrestin recruitment remained via ACKR3. CXCL12-induced endothelial cell migration and signal transduction was completely abrogated by CD26. Intact CXCL12 hardly induced lymphocyte migration upon intra-articular injection in mice. In contrast, oral treatment of mice with the CD26 inhibitor sitagliptin reduced CD26 activity and CXCL12 cleavage in blood plasma. The potential of CXCL12 to induce intra-articular lymphocyte infiltration was significantly increased in sitagliptin-treated mice and CXCL12(3-68) failed to induce migration under both CD26-inhibiting and non-inhibiting conditions. In conclusion, CD26-cleavage skews CXCL12 towards β-arrestin dependent recruitment through ACKR3 and destroys the CXCR4-mediated lymphocyte chemoattractant properties of CXCL12 in vivo. Hence, pharmacological CD26-blockade in tissues may enhance CXCL12-induced inflammation.

  3. Chemokines in cerebrospinal fluid correlate with cerebral metabolite patterns in HIV-infected individuals.

    PubMed

    Letendre, Scott L; Zheng, Jialin C; Kaul, Marcus; Yiannoutsos, Constantin T; Ellis, Ronald J; Taylor, Michael J; Marquie-Beck, Jennifer; Navia, Bradford

    2011-02-01

    Chemokines influence HIV neuropathogenesis by affecting the HIV life cycle, trafficking of macrophages into the nervous system, glial activation, and neuronal signaling and repair processes; however, knowledge of their relationship to in vivo measures of cerebral injury is limited. The primary objective of this study was to determine the relationship between a panel of chemokines in cerebrospinal fluid (CSF) and cerebral metabolites measured by proton magnetic resonance spectroscopy (MRS) in a cohort of HIV-infected individuals. One hundred seventy-one stored CSF specimens were assayed from HIV-infected individuals who were enrolled in two ACTG studies that evaluated the relationship between neuropsychological performance and cerebral metabolites. Concentrations of six chemokines (fractalkine, IL-8, IP-10, MCP-1, MIP-1β, and SDF-1) were measured and compared with cerebral metabolites individually and as composite neuronal, basal ganglia, and inflammatory patterns. IP-10 and MCP-1 were the chemokines most strongly associated with individual cerebral metabolites. Specifically, (1) higher IP-10 levels correlated with lower N-acetyl aspartate (NAA)/creatine (Cr) ratios in the frontal white matter and higher MI/Cr ratios in all three brain regions considered and (2) higher MCP-1 levels correlated with lower NAA/Cr ratios in frontal white matter and the parietal cortex. IP-10, MCP-1, and IL-8 had the strongest associations with patterns of cerebral metabolites. In particular, higher levels of IP-10 correlated with lower neuronal pattern scores and higher basal ganglia and inflammatory pattern scores, the same pattern which has been associated with HIV-associated neurocognitive disorders (HAND). Subgroup analysis indicated that the effects of IP-10 and IL-8 were influenced by effective antiretroviral therapy and that memantine treatment may mitigate the neuronal effects of IP-10. This study supports the role of chemokines in HAND and the validity of MRS as an assessment

  4. Acute alcohol intoxication suppresses the pulmonary ELR-negative CXC chemokine response to lipopolysaccharide.

    PubMed

    Happel, Kyle I; Rudner, Xiaowen; Quinton, Lee J; Movassaghi, Jennifer L; Clark, Charles; Odden, Anthony R; Zhang, Ping; Bagby, Gregory J; Nelson, Steve; Shellito, Judd E

    2007-08-01

    Alcohol abuse impairs the pulmonary immune response to infection and increases the morbidity and mortality of bacterial pneumonia. Acute alcohol intoxication suppresses lung expression of CXC chemokines bearing the Glu-Leu-Arg motif (ELR+) following lipopolysaccharide (LPS) challenge, but its effect on the structurally related ELR- CXC chemokines, which attract T cells, is unknown. We therefore investigated the effect of acute alcohol intoxication on the pulmonary response to intratracheal (i.t.) LPS challenge for the ELR- CXC chemokines monokine induced by gamma (MIG or CXCL9), interferon-inducible protein 10 (IP-10 or CXCL10), and interferon-inducible T cell alpha chemoattractant (I-TAC or CXCL11). Male C57BL/6 or C3H/HeN mice were given an intraperitoneal injection of ethanol (3.0 g/kg) or phosphate buffered saline 30 min before i.t. LPS challenge. Chemokine mRNA transcripts were measured at 0, 2, 6, and 16 h. Acute alcohol intoxication inhibited the lung's expression of all three chemokine genes in response to LPS. Lung IFN-gamma mRNA was also inhibited by acute intoxication over the same time course. The in vitro effect of ethanol on chemokine secretion was further studied in the MH-S alveolar macrophage cell line. IP-10, MIG, and I-TAC in response to LPS were enhanced by exogenous interferon (IFN)-gamma, and these responses were blunted by exposure to ethanol. Alcohol exposure did not affect MH-S cell nuclear factor kappa beta p65 nuclear localization during challenge, despite dose-dependent inhibition of Erk 1/2 phosphorylation. In addition, phospho-signal transduction and activator of transcription 1 was not decreased in the presence of acute ethanol, thereby indicating that acute intoxication does not affect IFN-gamma signaling in MH-S cells. Recruitment of CD3+ T cells into the alveolar space 4 days after LPS challenge was moderately impaired by acute ethanol intoxication. These results implicate acute ethanol intoxication as a significant inhibitor of

  5. Chemokines and cytokines network in the pathogenesis of the inflammatory skin diseases: atopic dermatitis, psoriasis and skin mastocytosis.

    PubMed

    Nedoszytko, Bogusław; Sokołowska-Wojdyło, Małgorzata; Ruckemann-Dziurdzińska, Katarzyna; Roszkiewicz, Jadwiga; Nowicki, Roman J

    2014-05-01

    Chemokines are signaling peptides which regulate cell trafficking and provide control of the tissue-specific cell homing. In the skin, chemokines are secreted both by the resident cells such as keratinocytes, melanocytes, fibroblasts, dendritic cells and mast cells, as well as by infiltrated cells - lymphocytes, eosinophils, and monocytes. Chemokines, together with cytokines, participate in induction and maintenance of inflammation in the skin and regulate the composition of the cellular infiltrates. Inflammation within the skin is a feature shared by atopic dermatitis and psoriasis, two of the most common dermatoses. Accumulation of activated mast cells in the affected skin is seen both in atopic dermatitis and in psoriasis. This paper presents a concise overview of the current knowledge on the role chemokines have in pathogenesis of atopic dermatitis, psoriasis, and mastocytosis, a disease caused directly by the accumulation and activation of mast cells in the skin.

  6. Sex Hormones Coordinate Neutrophil Immunity in the Vagina by Controlling Chemokine Gradients.

    PubMed

    Lasarte, Sandra; Samaniego, Rafael; Salinas-Muñoz, Laura; Guia-Gonzalez, Mauriel A; Weiss, Linnea A; Mercader, Enrique; Ceballos-García, Elena; Navarro-González, Teresa; Moreno-Ochoa, Laura; Perez-Millan, Federico; Pion, Marjorie; Sanchez-Mateos, Paloma; Hidalgo, Andres; Muñoz-Fernandez, Maria A; Relloso, Miguel

    2016-02-01

    Estradiol-based contraceptives and hormonal replacement therapy predispose women to Candida albicans infections. Moreover, during the ovulatory phase (high estradiol), neutrophil numbers decrease in the vaginal lumen and increase during the luteal phase (high progesterone). Vaginal secretions contain chemokines that drive neutrophil migration into the lumen. However, their expression during the ovarian cycle or in response to hormonal treatments are controversial and their role in vaginal defense remains unknown.To investigate the transepithelial migration of neutrophils, we used adoptive transfer of Cxcr2(-/-) neutrophils and chemokine immunofluorescence quantitative analysis in response to C. albicans vaginal infection in the presence of hormones.Our data show that the Cxcl1/Cxcr2 axis drives neutrophil transepithelial migration into the vagina. Progesterone promotes the Cxcl1 gradient to favor neutrophil migration. Estradiol disrupts the Cxcl1 gradient and favors neutrophil arrest in the vaginal stroma; as a result, the vagina becomes more vulnerable to pathogens.

  7. Analysis of the antimicrobial activities of a chemokine-derived peptide (CDAP-4) on Pseudomonas aeruginosa

    SciTech Connect

    Martinez-Becerra, Francisco; Dominguez-Ramirez, Lenin; Mendoza-Hernandez, Guillermo; Lopez-Vidal, Yolanda; Soldevila, Gloria . E-mail: garciaze@servidor.unam.mx

    2007-04-06

    Chemokines are key molecules involved in the control of leukocyte trafficking. Recently, a novel function as antimicrobial proteins has been described. CCL13 is the only member of the MCP chemokine subfamily displaying antimicrobial activity. To determine Key residues involved in its antimicrobial activity, CCL13 derived peptides were synthesized and tested against several bacterial strains, including Pseudomonas aeruginosa. One of these peptides, corresponding to the C-terminal region of CCL13 (CDAP-4) displayed good antimicrobial activity. Electron microscopy studies revealed remarkable morphological changes after CDAP-4 treatment. By computer modeling, CDAP-4 in {alpha} helical configuration generated a positive electrostatic potential that extended beyond the surface of the molecule. This feature is similar to other antimicrobial peptides. Altogether, these findings indicate that the antimicrobial activity was displayed by CCL13 resides to some extent at the C-terminal region. Furthermore, CDAP-4 could be considered a good antimicrobial candidate with a potential use against pathogens including P. aeruginosa.

  8. Strong Expression of Chemokine Receptor CXCR4 by Renal Cell Carcinoma Correlates with Advanced Disease

    PubMed Central

    Wehler, Thomas C.; Graf, Claudine; Biesterfeld, Stefan; Brenner, Walburgis; Schadt, Jörg; Gockel, Ines; Berger, Martin R.; Thüroff, Joachim W.; Galle, Peter R.; Moehler, Markus; Schimanski, Carl C.

    2008-01-01

    Diverse chemokines and their receptors have been associated with tumor growth, tumor dissemination, and local immune escape. In different tumor entities, the level of chemokine receptor CXCR4 expression has been linked with tumor progression and decreased survival. The aim of this study was to evaluate the influence of CXCR4 expression on the progression of human renal cell carcinoma. CXCR4 expression of renal cell carcinoma was assessed by immunohistochemistry in 113 patients. Intensity of CXCR4 expression was correlated with both tumor and patient characteristics. Human renal cell carcinoma revealed variable intensities of CXCR4 expression. Strong CXCR4 expression of renal cell carcinoma was significantly associated with advanced T-status (P = .039), tumor dedifferentiation (P = .0005), and low hemoglobin (P = .039). In summary, strong CXCR4 expression was significantly associated with advanced dedifferentiated renal cell carcinoma. PMID:19266088

  9. Decoding the chemokine network that links leukocytes with decidual cells and the trophoblast during early implantation

    PubMed Central

    Ramhorst, Rosanna; Grasso, Esteban; Paparini, Daniel; Hauk, Vanesa; Gallino, Lucila; Calo, Guillermina; Vota, Daiana; Pérez Leirós, Claudia

    2016-01-01

    ABSTRACT Chemokine network is central to the innate and adaptive immunity and entails a variety of proteins and membrane receptors that control physiological processes such as wound healing, angiogenesis, embryo growth and development. During early pregnancy, the chemokine network coordinates not only the recruitment of different leukocyte populations to generate the maternal-placental interface, but also constitutes an additional checkpoint for tissue homeostasis maintenance. The normal switch from a pro-inflammatory to an anti-inflammatory predominant microenvironment characteristic of the post-implantation stage requires redundant immune tolerance circuits triggered by key master regulators. In this review we will focus on the recruitment and conditioning of maternal immune cells to the uterus at the early implantation period with special interest on high plasticity macrophages and dendritic cells and their ability to induce regulatory T cells. We will also point to putative immunomodulatory polypeptides involved in immune homeostasis maintenance at the maternal-placental interface. PMID:26891097

  10. Differential effects of protein kinase C inhibitors on chemokine production in human synovial fibroblasts.

    PubMed Central

    Jordan, N. J.; Watson, M. L.; Yoshimura, T.; Westwick, J.

    1996-01-01

    1. Rheumatoid arthritis is associated with the accumulation and activation of selected populations of inflammatory cells within the arthritic joint. One putative signal for this process is the production, by resident cells, of a group of inflammatory mediators known as the chemokines. 2. The chemokines interleukin-8 (IL-8), monocyte chemotactic protein-1 (MCP-1) and RANTES (regulated on activation normal T-cell expressed and presumably secreted) are target-cell specific chemoattractants produced by synovial fibroblasts in response to stimulation with interleukin-1 alpha (IL-1 alpha) or tumour necrosis factor alpha (TNF alpha). The signalling pathways involved in their production are not well defined. We therefore used four different protein kinase C inhibitors to investigate the role of this kinase in the regulation of chemokine mRNA and protein expression in human cultured synovial fibroblasts. 3. The non-selective PKC inhibitor, staurosporine (1-300 nM) significantly increased the production of IL-1 alpha-induced IL-8 mRNA and protein. A specific PKC inhibitor, chelerythrine chloride (0.1-3 microM), also caused a small concentration-dependent increase in IL-8 mRNA and protein production. In contrast, 3-[1-[3-(amidinothio)propyl]-3-indoly]-4-(1-methyl-3-indolyl )- 1H-pyrrole-2,5-dione methanesulphonate (Ro 31-8220) and 2[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3- yl)-maleimide (GF 109203X), two selective PKC inhibitors of the substituted bisindolylmaleimide family had a concentration-dependent biphasic effect on IL-1 alpha or TNF alpha-induced chemokine expression. At low concentrations they caused a stimulation in chemokine production, which was especially evident at the mRNA level. At higher concentrations both inhibited IL-1 alpha or TNF alpha-induced chemokine mRNA and protein production. Ro 31-8220 was 10 fold more potent than GF 109203X, with an IC50 of 1.6 +/- 0.08 microM (mean +/- s.e.mean, n = 4) for IL-1 alpha induced IL-8 production. Ro 31

  11. Targeting chemokine receptors in disease – a case study of CCR4

    PubMed Central

    Solari, Roberto; Pease, James E.

    2015-01-01

    Since their early 1990s, the chemokine receptor family of G protein-coupled receptors (GPCRs) has been the source of much pharmacological endeavour. Best known for their key roles in recruiting leukocytes to sites of infection and inflammation, the receptors present themselves as plausible drug targets for therapeutic intervention. In this article, we will focus our attention upon CC Chemokine Receptor Four (CCR4) which has been implicated in diseases as diverse as allergic asthma and lymphoma. We will review the discovery of the receptors and their ligands, their perceived roles in disease and the successful targeting of CCR4 by both small molecule antagonists and monoclonal antibodies. We will also discuss future directions and strategies for drug discovery in this field. PMID:25981299

  12. Targeting chemokine receptors in disease--a case study of CCR4.

    PubMed

    Solari, Roberto; Pease, James E

    2015-09-15

    Since their early 1990s, the chemokine receptor family of G protein-coupled receptors (GPCRs) has been the source of much pharmacological endeavour. Best known for their key roles in recruiting leukocytes to sites of infection and inflammation, the receptors present themselves as plausible drug targets for therapeutic intervention. In this article, we will focus our attention upon CC Chemokine Receptor Four (CCR4) which has been implicated in diseases as diverse as allergic asthma and lymphoma. We will review the discovery of the receptors and their ligands, their perceived roles in disease and the successful targeting of CCR4 by both small molecule antagonists and monoclonal antibodies. We will also discuss future directions and strategies for drug discovery in this field.

  13. Interactions of the Chemokine CCL5/RANTES with Medium Sized Chondroitin Sulfate Ligands

    PubMed Central

    Deshauer, Courtney; Morgan, Ashli M.; Ryan, Eathen O.; Handel, Tracy M.; Prestegard, James H.; Wang, Xu

    2015-01-01

    Summary Interactions of the chemokine CCL5 (RANTES) with glycosaminoglycans (GAGs) are crucial to the CCL5-mediated inflammation process. However, structural information on interactions between CCL5 and longer GAG fragments is lacking. In this study, the interactions between oligosaccharides derived from chondroitin sulfate and a dimeric variant of CCL5 were investigated using solution NMR. The data indicate that, in addition to the BBXB motif in the 40s loop, GAGs also contact residues in the N-loop in a manner similar to interactions between chemokine and the receptor N-terminus, and leading to possible stabilization of the dimer. Using TEMPO-tagged hexasaccharides, the binding orientation of the hexasaccharides was shown to be highly dependent on the sulfation pattern of the GalNAc groups. Finally, a model of the CCL5 dimer complexed to CS hexasaccharides was constructed using paramagnetic relaxation enhancement and intra- and inter-molecular NOEs constraints. PMID:25982530

  14. Dynamic filopodia are required for chemokine-dependent intracellular polarization during guided cell migration in vivo.

    PubMed

    Meyen, Dana; Tarbashevich, Katsiaryna; Banisch, Torsten U; Wittwer, Carolina; Reichman-Fried, Michal; Maugis, Benoît; Grimaldi, Cecilia; Messerschmidt, Esther-Maria; Raz, Erez

    2015-04-15

    Cell migration and polarization is controlled by signals in the environment. Migrating cells typically form filopodia that extend from the cell surface, but the precise function of these structures in cell polarization and guided migration is poorly understood. Using the in vivo model of zebrafish primordial germ cells for studying chemokine-directed single cell migration, we show that filopodia distribution and their dynamics are dictated by the gradient of the chemokine Cxcl12a. By specifically interfering with filopodia formation, we demonstrate for the first time that these protrusions play an important role in cell polarization by Cxcl12a, as manifested by elevation of intracellular pH and Rac1 activity at the cell front. The establishment of this polarity is at the basis of effective cell migration towards the target. Together, we show that filopodia allow the interpretation of the chemotactic gradient in vivo by directing single-cell polarization in response to the guidance cue.

  15. Inhibition of T-tropic HIV Strains by Selective Antagonization of the Chemokine Receptor CXCR4

    PubMed Central

    Schols, Dominique; Struyf, Sofie; Damme, Jo Van; Esté, José A.; Henson, Geoffrey; Clercq, Erik De

    1997-01-01

    Bicyclams are a novel class of antiviral compounds that are highly potent and selective inhibitors of the replication of HIV-1 and HIV-2. Surprisingly, however, when the prototype compound AMD3100 was tested against M-tropic virus strains such as BaL, ADA, JR-CSF, and SF-162 in human peripheral blood mononuclear cells, the compound was completely inactive. Because of the specific and potent inhibitory effect of AMD3100 on T-tropic viruses, but not M-tropic viruses, it was verified that AMD3100 interacts with the CXC-chemokine receptor CXCR4, the main coreceptor used by T-tropic viruses. AMD3100 dose dependently inhibited the binding of a specific CXCR4 monoclonal antibody to SUP-T1 cells as measured by flow cytometry. It did not inhibit the binding of the biotinylated CC-chemokine macrophage inflammatory protein (MIP) 1α or MIP-1β, ligands for the chemokine receptor CCR5 (the main coreceptor for M-tropic viruses). In addition, AMD3100 completely blocked (a) the Ca2+ flux at 100 ng/ml in lymphocytic SUP-T1 and monocytic THP-1 cells, and (b) the chemotactic responses of THP-1 cells induced by stromal cell–derived factor 1α, the natural ligand for CXCR4. Finally, AMD3100 had no effect on the Ca2+ flux induced by the CC-chemokines MIP-1α, regulated on activation normal T cell expressed and secreted (RANTES; also a ligand for CCR5), or monocyte chemoattractant protein 3 (a ligand for CCR1 and CCR2b), nor was it able to induce Ca2+ fluxes by itself. The bicyclams are, to our knowledge, the first low molecular weight anti-HIV agents shown to act as potent and selective CXCR4 antagonists. PMID:9334378

  16. Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4.

    PubMed

    Schols, D; Struyf, S; Van Damme, J; Esté, J A; Henson, G; De Clercq, E

    1997-10-20

    Bicyclams are a novel class of antiviral compounds that are highly potent and selective inhibitors of the replication of HIV-1 and HIV-2. Surprisingly, however, when the prototype compound AMD3100 was tested against M-tropic virus strains such as BaL, ADA, JR-CSF, and SF-162 in human peripheral blood mononuclear cells, the compound was completely inactive. Because of the specific and potent inhibitory effect of AMD3100 on T-tropic viruses, but not M-tropic viruses, it was verified that AMD3100 interacts with the CXC-chemokine receptor CXCR4, the main coreceptor used by T-tropic viruses. AMD3100 dose dependently inhibited the binding of a specific CXCR4 monoclonal antibody to SUP-T1 cells as measured by flow cytometry. It did not inhibit the binding of the biotinylated CC-chemokine macrophage inflammatory protein (MIP) 1alpha or MIP-1beta, ligands for the chemokine receptor CCR5 (the main coreceptor for M-tropic viruses). In addition, AMD3100 completely blocked (a) the Ca2+ flux at 100 ng/ml in lymphocytic SUP-T1 and monocytic THP-1 cells, and (b) the chemotactic responses of THP-1 cells induced by stromal cell-derived factor 1alpha, the natural ligand for CXCR4. Finally, AMD3100 had no effect on the Ca2+ flux induced by the CC-chemokines MIP-1alpha, regulated on activation normal T cell expressed and secreted (RANTES; also a ligand for CCR5), or monocyte chemoattractant protein 3 (a ligand for CCR1 and CCR2b), nor was it able to induce Ca2+ fluxes by itself. The bicyclams are, to our knowledge, the first low molecular weight anti-HIV agents shown to act as potent and selective CXCR4 antagonists.

  17. Single-Cell Analysis of Mast Cell Degranulation Induced by Airway Smooth Muscle-Secreted Chemokines

    PubMed Central

    Manning, Benjamin M.; Meyer, Audrey F.; Gruba, Sarah M.; Haynes, Christy L.

    2015-01-01

    Background Asthma is a chronic inflammatory disease characterized by narrowed airways, bronchial hyper-responsiveness, mucus hyper-secretion, and airway remodeling. Mast cell (MC) infiltration into airway smooth muscle (ASM) is a defining feature of asthma, and ASM regulates the inflammatory response by secreting chemokines, including CXCL10 and CCL5. Single cell analysis offers a unique approach to study specific cellular signaling interactions within large and complex signaling networks such as the inflammatory microenvironment in asthma. Methods Carbon fiber microelectrode amperometry was used to study the effects of ASM–secreted chemokines on mouse peritoneal MC degranulation. Results MC degranulation in response to CXCL10 and CCL5 was monitored at the single cell level. Relative to IgE-mediated degranulation, CXCL10- and CCL5-stimulated MCs released a decreased amount of serotonin per granule with fewer release events per cell. Decreased serotonin released per granule was correlated with increased spike half-width and rise-time values. Conclusions MCs are directly activated with ASM-associated chemokines. CXCL10 and CCL5 induce less robust MC degranulation compared to IgE- and A23187-stimulation. The kinetics of MC degranulation are signaling pathway-dependent, suggesting a biophysical mechanism of regulated degranulation that incorporates control over granule trafficking, transport, and docking machinery. General Significance The biophysical mechanisms, including variations in number of exocytotic release events, serotonin released per granule, and the membrane kinetics of exocytosis that underlie MC degranulation in response to CXCL10 and CCL5 were characterized at the single cell level. These findings clarify the function of ASM-derived chemokines as instigators of MC degranulation relative to classical mechanisms of MC stimulation. PMID:25986989

  18. Melanoma brain metastasis globally reconfigures chemokine and cytokine profiles in patient cerebrospinal fluid.

    PubMed

    Lok, Edwin; Chung, Amy S; Swanson, Kenneth D; Wong, Eric T

    2014-04-01

    The aggressiveness of melanoma is believed to be correlated with tumor-stroma-associated immune cells. Cytokines and chemokines act to recruit and then modulate the activities of these cells, ultimately affecting disease progression. Because melanoma frequently metastasizes to the brain, we asked whether global differences in immunokine profiles could be detected in the cerebrospinal fluid (CSF) of melanoma patients and reveal aspects of tumor biology that correlate with patient outcomes. We therefore measured the levels of 12 cytokines and 12 chemokines in melanoma patient CSF and the resulting data were analyzed to develop unsupervised hierarchical clustergrams and heat maps. Unexpectedly, the overall profiles of immunokines found in these samples showed a generalized reconfiguration of their expression in melanoma patient CSF, resulting in the segregation of individuals with melanoma brain metastasis from nondisease controls. Chemokine CCL22 and cytokines IL1α, IL4, and IL5 were reduced in most samples, whereas a subset including CXCL10, CCL4, CCL17, and IL8 showed increased expression. Further, analysis of clusters identified within the melanoma patient set comparing patient outcome suggests that suppression of IL1α, IL4, IL5, and CCL22, with concomitant elevation of CXCL10, CCL4, and CCL17, may correlate with more aggressive development of brain metastasis. These results suggest that global immunokine suppression in the host, together with a selective increase in specific chemokines, constitute a predominant immunomodulatory feature of melanoma brain metastasis. These alterations likely drive the course of this disease in the brain and variations in the immune profiles of individual patients may predict outcomes.

  19. Streptococcus agalactiae CspA is a serine protease that inactivates chemokines.

    PubMed

    Bryan, Joshua D; Shelver, Daniel W

    2009-03-01

    Streptococcus agalactiae (group B Streptococcus [GBS]) remains a leading cause of invasive infections in neonates and has emerged as a pathogen of the immunocompromised and elderly populations. The virulence mechanisms of GBS are relatively understudied and are still poorly understood. Previous evidence indicated that the GBS cspA gene is necessary for full virulence and the cleavage of fibrinogen. The predicted cspA product displays homology to members of the extracellular cell envelope protease family. CXC chemokines, many of which can recruit neutrophils to sites of infection, are important signaling peptides of the immune system. In this study, we purified CspA and demonstrated that it readily cleaved the CXC chemokines GRO-alpha, GRO-beta, GRO-gamma, neutrophil-activating peptide 2 (NAP-2), and granulocyte chemotactic protein 2 (GCP-2) but did not cleave interleukin-8. CspA did not cleave a panel of other test substrates, suggesting that it possesses a certain degree of specificity. CXC chemokines also underwent cleavage by whole GBS cells in a cspA-dependent manner. CspA abolished the abilities of three representative CXC chemokines, GRO-gamma, NAP-2, and GCP-2, to attract and activate neutrophils. Genetic and biochemical evidence indicated that CspA is a serine protease with S575 at its active site. D180 was also implicated as part of the signature serine protease catalytic triad, and both S575 and D180 were required for both N-terminal and C-terminal autocatalytic processing of CspA.

  20. Synthetic heparan sulfate dodecasaccharides reveal single sulfation site interconverts CXCL8 and CXCL12 chemokine biology.

    PubMed

    Jayson, Gordon C; Hansen, Steen U; Miller, Gavin J; Cole, Claire L; Rushton, Graham; Avizienyte, Egle; Gardiner, John M

    2015-09-18

    The multigram-scale synthesis of a sulfation-site programmed heparin-like dodecasaccharide is described. Evaluation alongside dodecasaccharides lacking this single glucosamine O6-sulfation, or having per-O6-sulfation, shows that site-specific modification of the terminal glucosamine dramatically interconverts regulation of in vitro and in vivo biology mediated by the two important chemokines, CXCL12 (SDF1α) or CXCL8 (IL-8).

  1. A Role for the Chemokine Receptor CCR6 in Mammalian Sperm Motility and Chemotaxis

    PubMed Central

    Caballero-Campo, Pedro; Buffone, Mariano G.; Benencia, Fabian; Conejo-García, José R.; Rinaudo, Paolo F.; Gerton, George L.

    2013-01-01

    Although recent evidence indicates that several chemokines and defensins, well-known as inflammatory mediators, are expressed in the male and female reproductive tracts, the location and functional significance of chemokine networks in sperm physiology and sperm reproductive tract interactions are poorly understood. To address this deficiency in our knowledge, we examined the expression and function in sperm of CCR6, a receptor common to several chemoattractant peptides, and screened several reproductive tract fluids for the presence of specific ligands. CCR6 protein is present in mouse and human sperm and mainly localized in the sperm tail with other minor patterns in sperm from mice (neck and acrosomal region) and men (neck and midpiece regions). As expected from the protein immunoblotting and immunofluorescence results, mouse Ccr6 mRNA is expressed in the testis. Furthermore, the Defb29 mRNA encoding the CCR6 ligand, β-defensin DEFB29, is expressed at high levels in the epididymis. As determined by protein chip analysis, several chemokines (including some that act through CCR6, such as CCL20/MIP-3α (formerly Macrophage Inflammatory Protein 3α) and protein hormones were present in human follicular fluid, endometrial secretions, and seminal plasma. In functional chemotaxis assays, capacitated human sperm exhibited a directional movement towards CCL20, and displayed modifications in motility parameters. Our data indicate that chemokine ligand/receptor interactions in the male and female genital tracts promote sperm motility and chemotaxis under non-inflammatory conditions. Therefore, some of the physiological reactions mediated by CCR6 ligands in male reproduction extend beyond a pro-inflammatory response and might find application in clinical reproduction and/or contraception. PMID:23765988

  2. The chemokine CX3CL1 promotes trafficking of dendritic cells through inflamed lymphatics

    PubMed Central

    Johnson, Louise A.; Jackson, David G.

    2013-01-01

    Summary Tissue inflammation is characterised by increased trafficking of antigen-loaded dendritic cells (DCs) from the periphery via afferent lymphatics to draining lymph nodes, with a resulting stimulation of ongoing immune responses. Transmigration across lymphatic endothelium constitutes the first step in this process and is known to involve the chemokine CCL21 and its receptor CCR7. However, the precise details of DC transit remain obscure and it is likely that additional chemokine-receptor pairs have roles in lymphatic vessel entry. Here, we report that the transmembrane chemokine CX3CL1 (fractalkine) is induced in inflamed lymphatic endothelium, both in vitro in TNF-α-treated human dermal lymphatic endothelial cells (HDLECs) and in vivo in a mouse model of skin hypersensitivity. However, unlike blood endothelial cells, which express predominantly transmembrane CX3CL1 as a leukocyte adhesion molecule, HDLECs shed virtually all CX3CL1 at their basolateral surface through matrix metalloproteinases. We show for the first time that both recombinant soluble CX3CL1 and endogenous secreted CX3CL1 promote basolateral-to-luminal migration of DCs across HDLEC monolayers in vitro. Furthermore, we show in vivo that neutralising antibodies against CX3CL1 dramatically reduce allergen-induced trafficking of cutaneous DCs to draining lymph nodes as assessed by FITC skin painting in mice. Finally, we show that deletion of the CX3CL1 receptor in Cx3cr1−/− DCs results in markedly delayed lymphatic trafficking in vivo and impaired translymphatic migration in vitro, thus establishing a previously unrecognised role for this atypical chemokine in regulating DC trafficking through the lymphatics. PMID:24006262

  3. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion

    PubMed Central

    Koenen, Andrea; Babendreyer, Aaron; Schumacher, Julian; Pasqualon, Tobias; Schwarz, Nicole; Seifert, Anke; Deupi, Xavier

    2017-01-01

    The CXC-chemokine receptor 6 (CXCR6) is a class A GTP-binding protein-coupled receptor (GPCRs) that mediates adhesion of leukocytes by interacting with the transmembrane cell surface-expressed chemokine ligand 16 (CXCL16), and also regulates leukocyte migration by interacting with the soluble shed variant of CXCL16. In contrast to virtually all other chemokine receptors with chemotactic activity, CXCR6 carries a DRF motif instead of the typical DRY motif as a key element in receptor activation and G protein coupling. In this work, modeling analyses revealed that the phenylalanine F3.51 in CXCR6 might have impact on intramolecular interactions including hydrogen bonds by this possibly changing receptor function. Initial investigations with embryonic kidney HEK293 cells and further studies with monocytic THP-1 cells showed that mutation of DRF into DRY does not influence ligand binding, receptor internalization, receptor recycling, and protein kinase B (AKT) signaling. Adhesion was slightly decreased in a time-dependent manner. However, CXCL16-induced calcium signaling and migration were increased. Vice versa, when the DRY motif of the related receptor CX3CR1 was mutated into DRF the migratory response towards CX3CL1 was diminished, indicating that the presence of a DRF motif generally impairs chemotaxis in chemokine receptors. Transmembrane and soluble CXCL16 play divergent roles in homeostasis, inflammation, and cancer, which can be beneficial or detrimental. Therefore, the DRF motif of CXCR6 may display a receptor adaptation allowing adhesion and cell retention by transmembrane CXCL16 but reducing the chemotactic response to soluble CXCL16. This adaptation may avoid permanent or uncontrolled recruitment of inflammatory cells as well as cancer metastasis. PMID:28267793

  4. Regulation of Chemokine Expression by Lipopolysaccharide In Vitro and In Vivo

    DTIC Science & Technology

    2002-06-10

    chemotaxis, its release from the Gβγ subunits is necessary for cell migration (204). The Gβγ subunits activate phospholipase C ( PLC ) β2 and PLCβ3, which...expression and production of the monokine induced by IFN- gamma (MIG), IFN-inducible T cell alpha chemoattractant (I-TAC), and IFN- gamma -inducible...influx of inflammatory cells into host tissues which is mediated predominantly by the localized production of chemokines. The influx and activation of

  5. Evolution of the ability to modulate host chemokine networks via gene duplication in human cytomegalovirus (HCMV).

    PubMed

    Scarborough, Jessica A; Paul, John R; Spencer, Juliet V

    2017-03-14

    Human cytomegalovirus (HCMV) is a widespread pathogen that is particularly skillful at evading immune detection and defense mechanisms, largely due to extensive co-evolution with its host. One aspect of this co-evolution involves the acquisition of virally encoded G protein-coupled receptors (GPCRs) with homology to the chemokine receptor family. GPCRs are the largest family of cell surface proteins, found in organisms from yeast to humans, and they regulate a variety of cellular processes including development, sensory perception, and immune cell trafficking. The US27 and US28 genes are encoded by human and primate CMVs, but homologs are not found in the genomes of viruses infecting rodents or other species. Phylogenetic analysis was used to investigate the US27 and US28 genes, which are adjacent in the unique short (US) region of the HCMV genome, and their relationship to one another and to human chemokine receptor genes. The results indicate that both US27 and US28 share the same common ancestor with human chemokine receptor CX3CR1, suggesting that a single host gene was captured and a subsequent viral gene duplication event occurred. The US28 gene product (pUS28) has maintained the function of the ancestral gene and has the ability to bind and signal in response to CX3CL1/fractalkine, the natural ligand for CX3CR1. In contrast, pUS27 does not bind to any known chemokine ligand, and the sequence has diverged significantly, highlighted by the fact that pUS27 currently exhibits greater sequence similarity to human CCR1. While the evolutionary advantage of the gene duplication and neofunctionalization event remains unclear, the US27 and US28 genes are highly conserved among different HCMV strains and retained even in laboratory strains that have lost many virulence genes, suggesting that US27 and US28 have each evolved distinct, important functions during virus infection.

  6. Reduced locomotor activity and exploratory behavior in CC chemokine receptor 4 deficient mice.

    PubMed

    Ambrée, Oliver; Klassen, Irene; Förster, Irmgard; Arolt, Volker; Scheu, Stefanie; Alferink, Judith

    2016-11-01

    Chemokines and their receptors are key regulators of immune cell trafficking and activation. Recent findings suggest that they may also play pathophysiological roles in psychiatric diseases like depression and anxiety disorders. The CC chemokine receptor 4 (CCR4) and its two ligands, CCL17 and CCL22, are functionally involved in neuroinflammation as well as anti-infectious and autoimmune responses. However, their influence on behavior remains unknown. Here we characterized the functional role of the CCR4-CCL17 chemokine-receptor axis in the modulation of anxiety-related behavior, locomotor activity, and object exploration and recognition. Additionally, we investigated social exploration of CCR4 and CCL17 knockout mice and wild type (WT) controls. CCR4 knockout (CCR4(-/-)) mice exhibited fewer anxiety-related behaviors in the elevated plus-maze, diminished locomotor activity, exploratory behavior, and social exploration, while their recognition memory was not affected. In contrast, CCL17 deficient mice did not show an altered behavior compared to WT mice regarding locomotor activity, anxiety-related behavior, social exploration, and object recognition memory. In the dark-light and object recognition tests, CCL17(-/-) mice even covered longer distances than WT mice. These data demonstrate a mechanistic or developmental role of CCR4 in the regulation of locomotor and exploratory behaviors, whereas the ligand CCL17 appears not to be involved in the behaviors measured here. Thus, either CCL17 and the alternative ligand CCL22 may be redundant, or CCL22 is the main activator of CCR4 in these processes. Taken together, these findings contribute to the growing evidence regarding the involvement of chemokines and their receptors in the regulation of behavior.

  7. LXR activation inhibits chemokine-induced CD4-positive lymphocyte migration.

    PubMed

    Walcher, Daniel; Vasic, Dusica; Heinz, Philipp; Bach, Helga; Durst, Renate; Hausauer, Angelina; Hombach, Vinzenz; Marx, Nikolaus

    2010-07-01

    Migration of CD4-positive lymphocytes into the vessel wall is a critical step in atherogenesis. Recent data suggest that CD4-positive lymphocytes express the nuclear transcription factors Liver-X-Receptor (LXR) alpha and beta with an effect of LXR activators on TH1-cytokine release from these cells. However, the role of LXR in lymphocyte migration remains currently unexplored. Therefore, the present study investigated whether LXR activation might modulate chemokine-induced migration of these cells. Stimulation of CD4-positive lymphocytes with SDF-1 leads to a 2.5 +/- 0.8-fold increase in cell migration (P < 0.05; n = 12). Pretreatment of cells with the LXR activator T0901317 reduces this effect in a concentration-dependent manner to a maximal 0.9 +/- 0.4-fold induction at 1 micromol/L T0901317 (P < 0.05 compared to SDF-1-treated cells; n = 12). Similar results were obtained with the LXR activator GW3965. The effect of LXR activators on CD4-positive lymphocyte migration was mediated through an early inhibition of chemokine-induced PI-3 kinase activity as determined by PI-3 kinase activity assays. Downstream, T0901317 inhibited activation of the small GTPase Rac and phosphorylation of the myosin light chain (MLC). Moreover, LXR activator treatment reduced f-actin formation as well as ICAM3 translocation to the uropod of the cell, thus interfering with two important steps in T cell migration. Transfection of CD4-positive lymphocytes with LXRalpha/beta siRNA abolished T0901317 inhibitory effect on MLC phosphorylation and ICAM3 translocation. LXR activation by T0901317 or GW3965 inhibits chemokine-induced migration of CD4-positive lymphocytes. Given the crucial importance of chemokine-induced T cell migration in early atherogenesis, LXR activators may be promising tools to modulate this effect.

  8. ETV5 regulates sertoli cell chemokines involved in mouse stem/progenitor spermatogonia maintenance.

    PubMed

    Simon, Liz; Ekman, Gail C; Garcia, Thomas; Carnes, Kay; Zhang, Zhen; Murphy, Theresa; Murphy, Kenneth M; Hess, Rex A; Cooke, Paul S; Hofmann, Marie-Claude

    2010-10-01

    Spermatogonial stem cells are the only stem cells in the body that transmit genetic information to offspring. Although growth factors responsible for self-renewal of these cells are known, the factors and mechanisms that attract and physically maintain these cells within their microenvironment are poorly understood. Mice with targeted disruption of Ets variant gene 5 (Etv5) show total loss of stem/progenitor spermatogonia following the first wave of spermatogenesis, resulting in a Sertoli cell-only phenotype and aspermia. Microarray analysis of primary Sertoli cells from Etv5 knockout (Etv5(-/-)) versus wild-type (WT) mice revealed significant decreases in expression of several chemokines. Chemotaxis assays demonstrated that migration of stem/progenitor spermatogonia toward Etv5(-/-) Sertoli cells was significantly decreased compared to migration toward WT Sertoli cells. Interestingly, differentiating spermatogonia, spermatocytes, and round spermatids were not chemoattracted by WT Sertoli cells, whereas stem/progenitor spermatogonia showed a high and significant chemotactic index. Rescue assays using recombinant chemokines indicated that C-C-motif ligand 9 (CCL9) facilitates Sertoli cell chemoattraction of stem/progenitor spermatogonia, which express C-C-receptor type 1 (CCR1). In addition, there is protein-DNA interaction between ETV5 and Ccl9, suggesting that ETV5 might be a direct regulator of Ccl9 expression. Taken together, our data show for the first time that Sertoli cells are chemoattractive for stem/progenitor spermatogonia, and that production of specific chemokines is regulated by ETV5. Therefore, changes in chemokine production and consequent decreases in chemoattraction by Etv5(-/-) Sertoli cells helps to explain stem/progenitor spermatogonia loss in Etv5(-/-) mice.

  9. Chemokines and other GPCR ligands synergize in receptor-mediated migration of monocyte-derived immature and mature dendritic cells.

    PubMed

    Gouwy, Mieke; Struyf, Sofie; Leutenez, Lien; Pörtner, Noëmie; Sozzani, Silvano; Van Damme, Jo

    2014-03-01

    Dendritic cells (DCs) are potent antigen presenting cells, described as the initiators of adaptive immune responses. Immature monocyte-derived DCs (MDDC) showed decreased CD14 expression, increased cell surface markers DC-SIGN and CD1a and enhanced levels of receptors for the chemokines CCL3 (CCR1/CCR5) and CXCL8 (CXCR1/CXCR2) compared with human CD14⁺ monocytes. After further MDDC maturation by LPS, the markers CD80 and CD83 and the chemokine receptors CXCR4 and CCR7 were upregulated, whereas CCR1, CCR2 and CCR5 expression was reduced. CCL3 dose-dependently synergized with CXCL8 or CXCL12 in chemotaxis of immature MDDC. CXCL12 augmented the CCL3-induced ERK1/2 and Akt phosphorylation in immature MDDC, although the synergy between CCL3 and CXCL12 in chemotaxis of immature MDDC was dependent on the Akt signaling pathway but not on ERK1/2 phosphorylation. CCL2 also synergized with CXCL12 in immature MDDC migration. Moreover, two CXC chemokines not sharing receptors (CXCL12 and CXCL8) cooperated in immature MDDC chemotaxis, whereas two CC chemokines (CCL3 and CCL7) sharing CCR1 did not. Further, the non-chemokine G protein-coupled receptor ligands chemerin and fMLP synergized with respectively CCL7 and CCL3 in immature MDDC signaling and migration. Finally, CXCL12 and CCL3 did not cooperate, but CXCL12 synergized with CCL21 in mature MDDC chemotaxis. Thus, chemokine synergy in immature and mature MDDC migration is dose-dependently regulated by chemokines via alterations in their chemokine receptor expression pattern according to their role in immune responses.

  10. Human β defensin-3 induces chemokines from monocytes and macrophages: diminished activity in cells from HIV-infected persons.

    PubMed

    Petrov, Velizar; Funderburg, Nicholas; Weinberg, Aaron; Sieg, Scott

    2013-12-01

    Human β defensin-3 (hBD-3) is an antimicrobial peptide with diverse functionality. We investigated the capacity of hBD-3 and, for comparison, Pam3CSK4 and LL-37 to induce co-stimulatory molecules and chemokine expression in monocytes. These stimuli differentially induced CD80 and CD86 on the surface of monocytes and each stimulant induced a variety of chemokines including monocyte chemoattractant protein 1 (MCP-1), Gro-α, macrophage-derived chemokine (MDC) and macrophage inflammatory protein 1β (MIP1β), while only hBD-3 and Pam3CSK4 significantly induced the angiogenesis factor, vascular endothelial growth factor (VEGF). Human BD-3 induced similar chemokines in monocyte-derived macrophages and additionally induced expression of Regulated upon activation normal T-cell expressed and presumably secreted (RANTES) in these cells. Comparison of monocytes from HIV(+) and HIV(-) donors indicated that monocytes from HIV(+) donors were more likely to spontaneously express certain chemokines (MIP-1α, MIP-1β and MCP-1) and less able to increase expression of other molecules in response to hBD-3 (MDC, Gro-α and VEGF). Chemokine receptor expression (CCR5, CCR2 and CXCR2) was relatively normal in monocytes from HIV(+) donors compared with cells from HIV(-) donors with the exception of diminished expression of the receptor for MDC, CCR4, which was reduced in the patrolling monocyte subset (CD14(+)  CD16(++) ) of HIV(+) donors. These observations implicate chemokine induction by hBD-3 as a potentially important mechanism for orchestrating cell migration into inflamed tissues. Alterations in chemokine production or their receptors in monocytes of HIV-infected persons could influence cell migration and modify the effects of hBD-3 at sites of inflammation.

  11. CsCCL17, a CC chemokine of Cynoglossus semilaevis, induces leukocyte trafficking and promotes immune defense against viral infection.

    PubMed

    Hu, Yong-Hua; Zhang, Jian

    2015-08-01

    CC chemokines are the largest subfamily of chemokines, which are important components of the innate immune system. To date, sequences of several CC chemokines have been identified in half-smooth tongue sole (Cynoglossus semilaevis); however, the activities and functions of these putative chemokines remain unknown. Herein, we characterized a CC chemokine, CsCCL17, from tongue sole, and examined its activity. CsCCL17 contains a 303 bp open reading frame, which encodes a polypeptide of 100 amino acids with a molecular mass of 12 kDa CsCCL17 is phylogenetically related to the CCL17/22 group of CC chemokines and possesses the typical arrangement of four cysteines and an SCCR motif found in known CC chemokines. Under normal physiological conditions, CsCCL17 expression was detected in spleen, liver, heart, gill, head kidney, muscle, brain, and intestine. When the fish were infected by bacterial and viral pathogens, CsCCL17 expression was significantly up-regulated in a time-dependent manner. Chemotactic analysis showed that recombinant CsCCL17 (rCsCCL17) induced migration of peripheral blood leukocytes. A mutagenesis study showed that when the two cysteine residues in the SCCR motif were replaced by serine, no apparent chemotactic activity was observed in the mutant protein rCsCCL17M. rCsCCL17 enhanced the resistance of tongue sole against viral infection, but rCsCCL17M lacked this antiviral effect. Taken together, these findings indicate that CsCCL17 is a functional CC chemokine with the ability to recruit leukocytes and enhance host immune defense in a manner that requires the conserved SCCR motif.

  12. The chemokine CXCL13 (BCA-1) inhibits FGF-2 effects on endothelial cells.

    PubMed

    Spinetti, G; Camarda, G; Bernardini, G; Romano Di Peppe, S; Capogrossi, M C; Napolitano, M

    2001-11-23

    Several chemokines, belonging to both the CXC and CC classes, act as positive or negative regulators of angiogenesis. We sought to investigate the role of CXCL13, B cell-attracting chemokine 1 (BCA-1), also known as B-lymphocyte chemoattractant (BLC), on endothelial cell functions. We tested the effect of CXCL13 on HUVEC chemotaxis and proliferation in the presence of fibroblast growth factor (FGF)-2 and found that such chemokine inhibits FGF-2-induced functions, while is not active by itself. To test whether other FGF-2-mediated biological activities may be affected, we evaluated the ability of CXCL13 to rescue HUVEC from starvation-induced apoptosis, as FGF-2 is a survival factor for endothelial cells, and found that CXCL13 partially inhibits such rescue. Multiple mechanisms may be responsible for these biological activities as CXCL13 displaces FGF-2 binding to endothelial cells, inhibits FGF-2 homodimerization, and induces the formation of CXCL13-FGF-2 heterodimers. Our data suggest that CXCL13 may modulate angiogenesis by interfering with FGF-2 activity.

  13. Chemokine Receptor CXCR4 as a Therapeutic Target for Neuroectodermal Tumors

    PubMed Central

    Shim, Hyunsuk; Oishi, Shinya; Fujii, Nobutaka

    2011-01-01

    Chemokines (chemotactic cytokines) are a family of proteins associated with the trafficking and activation of leukocytes and other cell types in immune surveillance and inflammatory response. Besides their roles in the immune system, they play pleiotropic roles in tumor initiation, promotion, and progression. Chemokines can be classified into four subfamilies of chemokines, CXC, CC, C, or CX3C, based on their number and spacing of conserved cysteine residues near the N-terminus. This CXC subfamily can be further subclassified into two groups, depending on the presence or absence of a tripeptide motif glutamic acid–leucine–arginine (ELR) in the N-terminal domain. ELR-CXCL12, which binds to CXCR4 has been frequently implicated in various cancers. Over the past several years, studies have increasingly shown that the CXCR4/CXCL12 axis plays critical roles in tumor progression, such as invasion, angiogenesis, survival, homing to metastatic sites. This review focuses on involvement of CXCR4/CXCL12 interaction in neuroectodermal cancers and their therapeutic potentials. As an attractive therapeutic target of CXCR4/CXCL12 axis for cancer chemotherapy, development history and application of CXCR4 antagonists are described. PMID:19084067

  14. A Potential Contribution of Chemokine Network Dysfunction to the Depressive Disorders.

    PubMed

    Ślusarczyk, Joanna; Trojan, Ewa; Chwastek, Jakub; Głombik, Katarzyna; Basta-Kaim, Agnieszka

    2016-01-01

    In spite of many years of research, the pathomechanism of depression has not yet been elucidated. Among many hypotheses, the immune theory has generated a substantial interest. Up till now, it has been thought that depression is accompanied by the activation of inflammatory response and increase in pro-inflammatory cytokine levels. However, recently this view has become controversial, mainly due to the family of small proteins called chemokines. They play a key role in the modulation of peripheral function of the immune system by controlling immune reactions, mediating immune cell communication, and regulating chemotaxis and cell adhesion. Last studies underline significance of chemokines in the central nervous system, not only in the neuromodulation but also in the regulation of neurodevelopmental processes, neuroendocrine functions and in mediating the action of classical neurotransmitters. Moreover, it was demonstrated that these proteins are responsible for maintaining interactions between neuronal and glial cells both in the developing and adult brain also in the course of diseases. This review outlines the role of chemokine in the central nervous system under physiological and pathological conditions and their involvement in processes underlying depressive disorder. It summarizes the most important data from experimental and clinical studies.

  15. Allograft inflammatory factor-1 stimulates chemokine production and induces chemotaxis in human peripheral blood mononuclear cells.

    PubMed

    Kadoya, Masatoshi; Yamamoto, Aihiro; Hamaguchi, Masahide; Obayashi, Hiroshi; Mizushima, Katsura; Ohta, Mitsuhiro; Seno, Takahiro; Oda, Ryo; Fujiwara, Hiroyoshi; Kohno, Masataka; Kawahito, Yutaka

    2014-06-06

    Allograft inflammatory factor-1 (AIF-1) is expressed by macrophages, fibroblasts, endothelial cells and smooth muscle cells in immune-inflammatory disorders such as systemic sclerosis, rheumatoid arthritis and several vasculopathies. However, its molecular function is not fully understood. In this study, we examined gene expression profiles and induction of chemokines in monocytes treated with recombinant human AIF (rhAIF-1). Using the high-density oligonucleotide microarray technique, we compared mRNA expression profiles of rhAIF-1-stimulated CD14(+) peripheral blood mononuclear cells (CD14(+) PBMCs) derived from healthy volunteers. We demonstrated upregulation of genes for several CC chemokines such as CCL1, CCL2, CCL3, CCL7, and CCL20. Next, using ELISAs, we confirmed that rhAIF-1 promoted the secretion of CCL3/MIP-1α and IL-6 by CD14(+) PBMCs, whereas only small amounts of CCL1, CCL2/MCP-1, CCL7/MCP-3 and CCL20/MIP-3α were secreted. Conditioned media from rhAIF-1stimulated CD14(+) PBMCs resulted in migration of PBMCs. These findings suggest that AIF-1, which induced chemokines and enhanced chemotaxis of monocytes, may represent a molecular target for the therapy of immune-inflammatory disorders.

  16. Thermodynamic and mechanical effects of disulfide bonds in CXCLl7 chemokine

    NASA Astrophysics Data System (ADS)

    Singer, Christopher

    Chemokines are a family of signaling proteins mainly responsible for the chemotaxis of leukocytes, where their biological activity is modulated by their oligomerization state. Here, the dynamics and thermodynamic stability are characterized in monomer and homodimer structures of CXCL7, one of the most abundant platelet chemokines. The effects of dimerization and disulfide bond formation are investigated using computational methods that include molecular dynamics (MD) simulations and the Distance Constraint Model (DCM). A consistent picture emerges for the effect of dimerization and role of the Cys5-Cys31 and Cys7- Cys47 disulfide bonds. Surprisingly, neither disulfide bond is critical for maintaining structural stability in the monomer or dimer, although the monomer is destabilized more than the dimer upon removal of disulfide bonds. Instead, it is found that disulfide bonds influence the native state dynamics as well as modulates the relative stability between monomer and dimer. The combined analysis elucidates how CXCL7 is mechanically stable as a monomer, and how upon dimerization flexibly correlated motions are induced between the 30s and 50s loop within each monomer and across the dimer interface. Interestingly, the greatest gain in flexibility upon dimerization occurs when both disulfide bonds are present in each domain, and the homodimer is least stable relative to its two monomers. These results suggest the highly conserved disulfide bonds in chemokines facilitate a structural mechanism for distinguishing functional characteristics between monomer and dimer.

  17. Cancer cell chemokines direct chemotaxis of activated stellate cells in pancreatic ductal adenocarcinoma.

    PubMed

    Roy, Ishan; Boyle, Kathleen A; Vonderhaar, Emily P; Zimmerman, Noah P; Gorse, Egal; Mackinnon, A Craig; Hwang, Rosa F; Franco-Barraza, Janusz; Cukierman, Edna; Tsai, Susan; Evans, Douglas B; Dwinell, Michael B

    2017-03-01

    The mechanisms by which the extreme desmoplasia observed in pancreatic tumors develops remain unknown and its role in pancreatic cancer progression is unsettled. Chemokines have a key role in the recruitment of a wide variety of cell types in health and disease. Transcript and protein profile analyses of human and murine cell lines and human tissue specimens revealed a consistent elevation in the receptors CCR10 and CXCR6, as well as their respective ligands CCL28 and CXCL16. Elevated ligand expression was restricted to tumor cells, whereas receptors were in both epithelial and stromal cells. Consistent with its regulation by inflammatory cytokines, CCL28 and CCR10, but not CXCL16 or CXCR6, were upregulated in human pancreatitis tissues. Cytokine stimulation of pancreatic cancer cells increased CCL28 secretion in epithelial tumor cells but not an immortalized activated human pancreatic stellate cell line (HPSC). Stellate cells exhibited dose- and receptor-dependent chemotaxis in response to CCL28. This functional response was not linked to changes in activation status as CCL28 had little impact on alpha smooth muscle actin levels or extracellular matrix deposition or alignment. Co-culture assays revealed CCL28-dependent chemotaxis of HPSC toward cancer but not normal pancreatic epithelial cells, consistent with stromal cells being a functional target for the epithelial-derived chemokine. These data together implicate the chemokine CCL28 in the inflammation-mediated recruitment of cancer-associated stellate cells into the pancreatic cancer parenchyma.

  18. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells

    PubMed Central

    Spiess, Katja; Jeppesen, Mads G.; Malmgaard-Clausen, Mikkel; Krzywkowski, Karen

    2017-01-01

    Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment of human cytomegalovirus (HCMV) infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP) consisted of a variant (F49A) of CX3CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin A (PE). Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1) altered chemokine sequence (K14A, F49L, and F49E), (2) shortened and elongated linker region, and (3) modified toxin domain. Only F49L-FTP displayed higher selectivity in its binding to US28 versus CX3CR1, the endogenous receptor for CX3CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate for HCMV treatment. Many viruses encode internalizing receptors suggesting that not only HCMV but also, for instance, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus may be targeted by FTPs. PMID:28251165

  19. Role of lymphoid chemokines in the development of functional ectopic lymphoid structures in rheumatic autoimmune diseases.

    PubMed

    Corsiero, Elisa; Bombardieri, Michele; Manzo, Antonio; Bugatti, Serena; Uguccioni, Mariagrazia; Pitzalis, Costantino

    2012-07-30

    A sizeable subset of patients with the two most common organ-specific rheumatic autoimmune diseases, rheumatoid arthritis (RA) and Sjögren's syndrome (SS) develop ectopic lymphoid structures (ELS) in the synovial tissue and salivary glands, respectively. These structures are characterized by perivascular (RA) and periductal (SS) clusters of T and B lymphocytes, differentiation of high endothelial venules and networks of stromal follicular dendritic cells (FDC). Accumulated evidence from other and our group demonstrated that the formation and maintenance of ELS in these chronic inflammatory conditions is critically dependent on the ectopic expression of lymphotoxins (LT) and lymphoid chemokines CXCL13, CCL19, CCL21 and CXCL12. In this review we discuss recent advances highlighting the cellular and molecular mechanisms, which regulate the formation of ELS in RA and SS, with particular emphasis on the role of lymphoid chemokines. In particular, we shall focus on the evidence that in the inflammatory microenvironment of the RA synovium and SS salivary glands, several cell types, including resident epithelial, stromal and endothelial cells as well as different subsets of infiltrating immune cells, have been shown to be capable of producing lymphoid chemokines. Finally, we summarize accumulating data supporting the conclusion that ELS in RA and SS represent functional niches for B cells to undergo affinity maturation, clonal selection and differentiation into plasma cells autoreactive against disease-specific antigens, thus contributing to humoral autoimmunity over and above that of secondary lymphoid organs.

  20. Chemokine 25–induced signaling suppresses colon cancer invasion and metastasis

    PubMed Central

    Chen, Huanhuan Joyce; Edwards, Robert; Tucci, Serena; Bu, Pengcheng; Milsom, Jeff; Lee, Sang; Edelmann, Winfried; Gümüs, Zeynep H.; Shen, Xiling; Lipkin, Steven

    2012-01-01

    Chemotactic cytokines (chemokines) can help regulate tumor cell invasion and metastasis. Here, we show that chemokine 25 (CCL25) and its cognate receptor chemokine receptor 9 (CCR9) inhibit colorectal cancer (CRC) invasion and metastasis. We found that CCR9 protein expression levels were highest in colon adenomas and progressively decreased in invasive and metastatic CRCs. CCR9 was expressed in both primary tumor cell cultures and colon-cancer-initiating cell (CCIC) lines derived from early-stage CRCs but not from metastatic CRC. CCL25 stimulated cell proliferation by activating AKT signaling. In vivo, systemically injected CCR9+ early-stage CCICs led to the formation of orthotopic gastrointestinal xenograft tumors. Blocking CCR9 signaling inhibited CRC tumor formation in the native gastrointestinal CCL25+ microenvironment, while increasing extraintestinal tumor incidence. NOTCH signaling, which promotes CRC metastasis, increased extraintestinal tumor frequency by stimulating CCR9 proteasomal degradation. Overall, these data indicate that CCL25 and CCR9 regulate CRC progression and invasion and further demonstrate an appropriate in vivo experimental system to study CRC progression in the native colon microenvironment. PMID:22863617

  1. Coordinated Post-Transcriptional Regulation of the Chemokine System: Messages from CCL2

    PubMed Central

    Panganiban, Ronaldo P.; Vonakis, Becky M.; Ishmael, Faoud T.

    2014-01-01

    The molecular cross-talk between epithelium and immune cells in the airway mucosa is a key regulator of homeostatic immune surveillance and is crucially involved in the development of chronic lung inflammatory diseases. The patterns of gene expression that follow the sensitization process occurring in allergic asthma and chronic rhinosinusitis and those present in the neutrophilic response of other chronic inflammatory lung diseases such as chronic obstructive pulmonary disease (COPD) are tightly regulated in their specificity. Studies exploring the global transcript profiles associated with determinants of post-transcriptional gene regulation (PTR) such as RNA-binding proteins (RBP) and microRNAs identified several of these factors as being crucially involved in controlling the expression of chemokines upon airway epithelial cell stimulation with cytokines prototypic of Th1- or Th2-driven responses. These studies also uncovered the participation of these pathways to glucocorticoids' inhibitory effect on the epithelial chemokine network. Unmasking the molecular mechanisms of chemokine PTR may likely uncover novel therapeutic strategies for the blockade of proinflammatory pathways that are pathogenetic for asthma, COPD, and other lung inflammatory diseases. PMID:24697203

  2. Critical roles of chemokine receptor CCR5 in regulating glioblastoma proliferation and invasion.

    PubMed

    Zhao, Lanfu; Wang, Yuan; Xue, Yafei; Lv, Wenhai; Zhang, Yufu; He, Shiming

    2015-11-01

    Glioblastoma (GBM) is the most prevalent malignant primary brain tumor in adults and exhibits a spectrum of aberrantly aggressive phenotype. Tumor cell proliferation and invasion are critically regulated by chemokines and their receptors. Recent studies have shown that the chemokine CCL5 and its receptor CCR5 play important roles in tumor invasion and metastasis. Nonetheless, the roles of the CCR5 in GBM still remain unclear. The present study provides the evidence that the chemokine receptor CCR5 is highly expressed and associated with poor prognosis in human GBM. Mechanistically, CCL5-CCR5 mediates activation of Akt, and subsequently induces proliferation and invasive responses in U87 and U251 cells. Moreover, down-regulation of CCR5 significantly inhibited the growth of glioma in U87 tumor xenograft mouse model. Finally, high CCR5 expression in GBM is correlated with increased p-Akt expression in patient samples. Together, these findings suggest that the CCR5 is a critical molecular event associated with gliomagenesis.

  3. A Potential Contribution of Chemokine Network Dysfunction to the Depressive Disorders

    PubMed Central

    Ślusarczyk, Joanna; Trojan, Ewa; Chwastek, Jakub; Głombik, Katarzyna; Basta-Kaim, Agnieszka

    2016-01-01

    In spite of many years of research, the pathomechanism of depression has not yet been elucidated. Among many hypotheses, the immune theory has generated a substantial interest. Up till now, it has been thought that depression is accompanied by the activation of inflammatory response and increase in pro-inflammatory cytokine levels. However, recently this view has become controversial, mainly due to the family of small proteins called chemokines. They play a key role in the modulation of peripheral function of the immune system by controlling immune reactions, mediating immune cell communication, and regulating chemotaxis and cell adhesion. Last studies underline significance of chemokines in the central nervous system, not only in the neuromodulation but also in the regulation of neurodevelopmental processes, neuroendocrine functions and in mediating the action of classical neurotransmitters. Moreover, it was demonstrated that these proteins are responsible for maintaining interactions between neuronal and glial cells both in the developing and adult brain also in the course of diseases. This review outlines the role of chemokine in the central nervous system under physiological and pathological conditions and their involvement in processes underlying depressive disorder. It summarizes the most important data from experimental and clinical studies. PMID:26893168

  4. CCR5 (chemokine receptor-5) DNA-polymorphism influences the severity of rheumatoid arthritis.

    PubMed

    Zapico, I; Coto, E; Rodríguez, A; Alvarez, C; Torre, J C; Alvarez, V

    2000-01-01

    Chemokines are critical for the inflammatory process in autoimmune diseases such as rheumatoid arthritis (RA). The chemokine receptor-5 (CCR5) mediates chemotaxis by CC-chemokines and is expressed by lymphocytes with the Th1 phenotype and monocyte/macrophages. A 32 bp deletion in the CCR5 (CCR5-delta 32 allele) abolishes receptor expression in homozygotes, while CCR5-delta 32 carriers would express less receptor than wild-type homozygotes. This polymorphism is related to the resistance to HIV-1 infection and progression towards AIDS. We hypothesized that the CCR5-delta 32 allele may modulate the severity of disease in RA. A total of 160 RA-patients (71 and 89 with severe and non-severe phenotypes, respectively) and 500 healthy individuals from the same Caucasian population (Asturias, northern Spain) were genotyped. Carriers of the CCR5-delta 32 allele were at a significantly higher frequency (P = 0.012) in non-severe compared to severe patients (17% vs 4%). Our results suggest that the CCR5-delta 32 polymorphism is a genetic marker related to the severity of RA.

  5. Construction, purification, and immunogenicity of recombinant cystein-cystein type chemokine receptor 5 vaccine.

    PubMed

    Wu, Kongtian; Xue, Xiaochang; Wang, Zenglu; Yan, Zhen; Shi, Jihong; Han, Wei; Zhang, Yingqi

    2006-09-01

    Cystein-Cystein type chemokine receptor 5 (CCR5) is a seven-transmembrane, G-protein coupled receptor. It is a major coreceptor with CD4 glycoprotein mediating cellular entry of CCR5 strains of HIV-1. A lack of cell-surface expression of CCR5 found in the homozygous Delta32 CCR5 mutation, upregulation of CC chemokines and antibodies to CCR5 are associated with resistance to HIV infection. In addition, CCR5 can be blocked by three CC chemokines and antibodies to three extracellular domains of CCR5. Consequently, CCR5 is considered an attractive therapeutic target against HIV infection. In the current study, we constructed a recombinant vaccine by coupling a T helper epitope AKFVAAWTLKAA (PADRE) to the N terminus of CCR5 extracellular domains (PADRE-CCR5) and expressed this protein in Escherichia coli. We have developed an inexpensive and scalable purification process for the fusion protein from inclusion bodies and the final yields of 6mg purified fusion protein per gram of cell paste was obtained. The immunogenicity of the recombinant vaccine generated was examined in BALB/c mice. Sera from the vaccinated mice demonstrated high-titer specific antibodies to the recombinant vaccine, suggesting that PADRE-rCCR5 may be used as a candidate of active CCR5 vaccine.

  6. Identification and Preparation of a Novel Chemokine Receptor-Binding Domain in the Cytoplasmic Regulator FROUNT.

    PubMed

    Sonoda, Akihiro; Yoshinaga, Sosuke; Yunoki, Kaori; Ezaki, Soichiro; Yano, Kotaro; Takeda, Mitsuhiro; Toda, Etsuko; Terashima, Yuya; Matsushima, Kouji; Terasawa, Hiroaki

    2017-03-24

    FROUNT is a cytoplasmic protein that binds to the membrane-proximal C-terminal regions (Pro-Cs) of chemokine receptors, CCR2 and CCR5. The FROUNT-chemokine receptor interactions play a pivotal role in the migration of inflammatory immune cells, indicating the potential of FROUNT as a drug target for inflammatory diseases. To provide the foundation for drug development, structural information of the Pro-C binding region of FROUNT is desired. Here, we defined the novel structural domain (FNT-CB), which mediates the interaction with the chemokine receptors. A recombinant GST-tag-fused FNT-CB protein expression system was constructed. The protein was purified by affinity chromatography and then subjected to in-gel protease digestion of the GST-tag. The released FNT-CB was further purified by anion-exchange and size-exclusion chromatography. Purified FNT-CB adopts a helical structure, as indicated by CD. NMR line-broadening indicated that weak aggregation occurred at sub-millimolar concentrations, but the line-broadening was mitigated by using a deuterated sample in concert with transverse relaxation-optimized spectroscopy. The specific binding of FNT-CB to CCR2 Pro-C was confirmed by the fluorescence-based assay. The improved NMR spectral quality and the retained functional activity of FNT-CB support the feasibility of further structural and functional studies targeted at the anti-inflammatory drug development.

  7. SpeB of Streptococcus pyogenes Differentially Modulates Antibacterial and Receptor Activating Properties of Human Chemokines

    PubMed Central

    Egesten, Arne; Olin, Anders I.; Linge, Helena M.; Yadav, Manisha; Mörgelin, Matthias; Karlsson, Anna; Collin, Mattias

    2009-01-01

    Background CXC chemokines are induced by inflammatory stimuli in epithelial cells and some, like MIG/CXCL9, IP–10/CXCL10 and I–TAC/CXCL11, are antibacterial for Streptococcus pyogenes. Methodology/Principal Findings SpeB from S. pyogenes degrades a wide range of chemokines (i.e. IP10/CXCL10, I-TAC/CXCL11, PF4/CXCL4, GROα/CXCL1, GROβ/CXCL2, GROγ/CXCL3, ENA78/CXCL5, GCP-2/CXCL6, NAP-2/CXCL7, SDF-1/CXCL12, BCA-1/CXCL13, BRAK/CXCL14, SRPSOX/CXCL16, MIP-3α/CCL20, Lymphotactin/XCL1, and Fractalkine/CX3CL1), has no activity on IL-8/CXCL8 and RANTES/CCL5, partly degrades SRPSOX/CXCL16 and MIP-3α/CCL20, and releases a 6 kDa CXCL9 fragment. CXCL10 and CXCL11 loose receptor activating and antibacterial activities, while the CXCL9 fragment does not activate the receptor CXCR3 but retains its antibacterial activity. Conclusions/Significance SpeB destroys most of the signaling and antibacterial properties of chemokines expressed by an inflamed epithelium. The exception is CXCL9 that preserves its antibacterial activity after hydrolysis, emphasizing its role as a major antimicrobial on inflamed epithelium. PMID:19274094

  8. The CXC-chemokine, H174: expression in the central nervous system.

    PubMed

    Luo, Y; Kim, R; Gabuzda, D; Mi, S; Collins-Racie, L A; Lu, Z; Jacobs, K A; Dorf, M E

    1998-12-01

    H174 is a new member of the CXC-chemokine family. A cDNA probe containing the entire H174 coding region recognized a predominant inducible transcript of approximately 1.5 kb expressed in interferon (IFN) activated astrocytoma and monocytic cell lines. H174 message can be induced following IFN-alpha, IFN-beta, or IFN-gamma stimulation. H174 message was also detected in IFN treated cultures of primary human astrocytes, but was absent in unstimulated astrocytes. H174, like IP10 and Mig, lacks the ELR sequence associated with the neutrophil specificity characteristic of most CXC-chemokines. Preliminary experiments suggest H174, IP10 and Mig are independently regulated. Recombinant H174 is a weak chemoattractant for monocyte-like cells. H174 can also stimulate calcium flux responses. The data support the classification of H174 as a member of a subfamily of interferon-gamma inducible non-ELR CXC-chemokines. Brain tissues were obtained at autopsy from one patient with AIDS dementia, one patient with multiple sclerosis, and two normal control patients. H174 and Mig were detected by RT-PCR in brain tissue cDNA derived from the patients with pathological conditions associated with activated astrocytes but not in cDNA from control specimens.

  9. Disulfide Trapping for Modeling and Structure Determination of Receptor:Chemokine Complexes

    PubMed Central

    Kufareva, Irina; Gustavsson, Martin; Holden, Lauren G.; Qin, Ling; Zheng, Yi; Handel, Tracy M.

    2016-01-01

    Despite the recent breakthrough advances in GPCR crystallography, structure determination of protein-protein complexes involving chemokine receptors and their endogenous chemokine ligands remains challenging. Here we describe disulfide trapping, a methodology for generating irreversible covalent binary protein complexes from unbound protein partners by introducing two cysteine residues, one per interaction partner, at selected positions within their interaction interface. Disulfide trapping can serve at least two distinct purposes: (i) stabilization of the complex to assist structural studies, and/or (ii) determination of pairwise residue proximities to guide molecular modeling. Methods for characterization of disulfide-trapped complexes are described and evaluated in terms of throughput, sensitivity, and specificity towards the most energetically favorable cross-links. Due to abundance of native disulfide bonds at receptor:chemokine interfaces, disulfide trapping of their complexes can be associated with intramolecular disulfide shuffling and result in misfolding of the component proteins; because of this, evidence from several experiments is typically needed to firmly establish a positive disulfide crosslink. An optimal pipeline that maximizes throughput and minimizes time and costs by early triage of unsuccessful candidate constructs is proposed. PMID:26921956

  10. Lymphocyte crawling and transendothelial migration require chemokine triggering of high-affinity LFA-1 integrin.

    PubMed

    Shulman, Ziv; Shinder, Vera; Klein, Eugenia; Grabovsky, Valentin; Yeger, Orna; Geron, Erez; Montresor, Alessio; Bolomini-Vittori, Matteo; Feigelson, Sara W; Kirchhausen, Tomas; Laudanna, Carlo; Shakhar, Guy; Alon, Ronen

    2009-03-20

    Endothelial chemokines are instrumental for integrin-mediated lymphocyte adhesion and transendothelial migration (TEM). By dissecting how chemokines trigger lymphocyte integrins to support shear-resistant motility on and across cytokine-stimulated endothelial barriers, we found a critical role for high-affinity (HA) LFA-1 integrin in lymphocyte crawling on activated endothelium. Endothelial-presented chemokines triggered HA-LFA-1 and adhesive filopodia at numerous submicron dots scattered underneath crawling lymphocytes. Shear forces applied to endothelial-bound lymphocytes dramatically enhanced filopodia density underneath crawling lymphocytes. A fraction of the adhesive filopodia invaded the endothelial cells prior to and during TEM and extended large subluminal leading edge containing dots of HA-LFA-1 occupied by subluminal ICAM-1. Memory T cells generated more frequent invasive filopodia and transmigrated more rapidly than their naive counterparts. We propose that shear forces exerted on HA-LFA-1 trigger adhesive and invasive filopodia at apical endothelial surfaces and thereby promote lymphocyte crawling and probing for TEM sites.

  11. Interferon-gamma associated cytokines and chemokines produced by spleen cells from Brucella-immune mice.

    PubMed

    Paranavitana, Chrysanthi; Zelazowska, Elzbieta; Izadjoo, Mina; Hoover, David

    2005-04-21

    It is known that interferon (IFN)-gamma plays a critical role in protection against brucellosis. In this study we have investigated several cytokines and chemokines that are associated with IFN-gamma for potential in vitro correlates of protection. We cultured spleen cells in vitro from mice immunized orally with a live, attenuated Brucella melitensis vaccine candidate (WR201) and stimulated these cells with a lysate of B. melitensis. Differential gene expression of several cytokines and chemokines in stimulated spleen cells was analysed by real-time PCR, and secreted proteins were determined by ELISA. Immunized mice produced higher levels of both protein and gene transcripts for IFN-gamma, interleukin (IL)-2, IL-18 and MIP1-alpha. Immunized mice also had elevated gene expression levels for IL12-p40, IL23-p19, IP-10, MIG and MCP-1 when compared to normal mice. In this study we have identified new cytokines and chemokines as potential immune correlates in responses to protection in Brucella-vaccinated mice.

  12. Effector CD8^+ T cells migrate via chemokine-enhanced generalized L'evy walks

    NASA Astrophysics Data System (ADS)

    Banigan, Edward; Harris, Tajie; Christian, David; Liu, Andrea; Hunter, Christopher

    2012-02-01

    Chemokines play a central role in regulating processes essential to the immune function of T cells, such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. In order to understand the role of the chemokine CXCL10 during chronic infection by the parasite T. gondii, we analyze tracks of migrating CD8^+ T cells in brain tissue. Surprisingly, we find that T cell motility is not described by a Brownian walk, but instead is consistent with a generalized L'evy walk consisting of L'evy-distributed runs alternating with pauses of L'evy-distributed durations. According to our model, this enables T cells to find rare targets more than an order of magnitude more efficiently than Brownian random walkers. The chemokine CXCL10 increases the migration speed without changing the character of the walk statistics. Thus, CD8^+ T cells use an efficient search strategy to facilitate an effective immune response, and CXCL10 aids them in shortening the average time to find rare targets.

  13. Cloning and expression analysis of three novel CC chemokine genes from Japanese flounder (Paralichthys olivaceus).

    PubMed

    Zou, Gang-gang; Nozaki, Reiko; Kondo, Hidehiro; Hirono, Ikuo

    2014-10-01

    Chemokines are small cytokines secreted by various cell types. They not only function in cell activation, differentiation and trafficking, but they also have influences on many biological processes. In this study, three novel CC chemokine genes Paol-SCYA105, 106 and 107 in Japanese flounder (Paralichthys olivaceus) were cloned and characterized. Paol-SCYA105 was mainly detected in gill, kidney and spleen, Paol-SCYA106 was detected in all tissues examined and Paol-SCYA107 was mainly detected in the spleen and kidney. Paol-SCYA105 and Paol-SCYA106 gene expressions peaked in kidney at day 3 after viral hemorrhagic septicemia virus infection and decreased at day 6, but Paol-SCYA106 still remained at a high level at day 6. Paol-SCYA107 gene expression was significantly up-regulated in kidney at day 6 after viral hemorrhagic septicemia virus infection. In response to infection by Gram-negative Edwardsiella tarda and Gram-positive Streptococcus iniae in kidney, only Paol-SCYA106 gene expression significantly increased. Together, these results indicate that these three novel CC chemokines are involved in the immune response against pathogen infections.

  14. Profile of Cytokines and Chemokines Triggered by Wild-Type Strains of Rabies Virus in Mice

    PubMed Central

    Appolinário, Camila Michele; Allendorf, Susan Dora; Peres, Marina Gea; Ribeiro, Bruna Devidé; Fonseca, Clóvis R.; Vicente, Acácia Ferreira; de Paula Antunes, João Marcelo A.; Megid, Jane

    2016-01-01

    Rabies is a lethal infectious disease that causes 55,000 human deaths per year and is transmitted by various mammalian species, such as dogs and bats. The host immune response is essential for avoiding viral progression and promoting viral clearance. Cytokines and chemokines are crucial in the development of an immediate antiviral response; the rabies virus (RABV) attempts to evade this immune response. The virus's capacity for evasion is correlated with its pathogenicity and the host's inflammatory response, with highly pathogenic strains being the most efficient at hijacking the host's defense mechanisms and thereby decreasing inflammation. The purpose of this study was to evaluate the expression of a set of cytokine and chemokine genes that are related to the immune response in the brains of mice inoculated intramuscularly or intracerebrally with two wild-type strains of RABV, one from dog and the other from vampire bat. The results demonstrated that the gene expression profile is intrinsic to the specific rabies variant. The prompt production of cytokines and chemokines seems to be more important than their levels of expression for surviving a rabies infection. PMID:26711511

  15. Lidocaine reduces neutrophil recruitment by abolishing chemokine-induced arrest and transendothelial migration in septic patients.

    PubMed

    Berger, Christian; Rossaint, Jan; Van Aken, Hugo; Westphal, Martin; Hahnenkamp, Klaus; Zarbock, Alexander

    2014-01-01

    The inappropriate activation, positioning, and recruitment of leukocytes are implicated in the pathogenesis of multiple organ failure in sepsis. Although the local anesthetic lidocaine modulates inflammatory processes, the effects of lidocaine in sepsis are still unknown. This double-blinded, prospective, randomized clinical trial was conducted to investigate the effect of lidocaine on leukocyte recruitment in septic patients. Fourteen septic patients were randomized to receive either a placebo (n = 7) or a lidocaine (n = 7) bolus (1.5 mg/kg), followed by continuous infusion (100 mg/h for patients >70 kg or 70 mg/h for patients <70 kg) over a period of 48 h. Selectin-mediated slow rolling, chemokine-induced arrest, and transmigration were investigated by using flow chamber and transmigration assays. Lidocaine treatment abrogated chemokine-induced neutrophil arrest and significantly impaired neutrophil transmigration through endothelial cells by inhibition of the protein kinase C-θ while not affecting the selectin-mediated slow leukocyte rolling. The observed results were not attributable to changes in surface expression of adhesion molecules or selectin-mediated capturing capacity, indicating a direct effect of lidocaine on signal transduction in neutrophils. These data suggest that lidocaine selectively inhibits chemokine-induced arrest and transmigration of neutrophils by inhibition of protein kinase C-θ while not affecting selectin-mediated slow rolling. These findings may implicate a possible therapeutic role for lidocaine in decreasing the inappropriate activation, positioning, and recruitment of leukocytes during sepsis.

  16. Angiogenic CXC chemokine expression during differentiation of human mesenchymal stem cells towards the osteoblastic lineage.

    PubMed

    Bischoff, D S; Zhu, J H; Makhijani, N S; Kumar, A; Yamaguchi, D T

    2008-02-15

    The potential role of ELR(+) CXC chemokines in early events in bone repair was studied using human mesenchymal stem cells (hMSCs). Inflammation, which occurs in the initial phase of tissue healing in general, is critical to bone repair. Release of cytokines from infiltrating immune cells and injured bone can lead to recruitment of MSCs to the region of repair. CXC chemokines bearing the Glu-Leu-Arg (ELR) motif are also released by inflammatory cells and serve as angiogenic factors stimulating chemotaxis and proliferation of endothelial cells. hMSCs, induced to differentiate with osteogenic medium (OGM) containing ascorbate, beta-glycerophosphate (beta-GP), and dexamethasone (DEX), showed an increase in mRNA and protein secretion of the ELR(+) CXC chemokines CXCL8 and CXCL1. CXCL8 mRNA half-life studies reveal an increase in mRNA stability upon OGM stimulation. Increased expression and secretion is a result of DEX in OGM and is dose-dependent. Inhibition of the glucocorticoid receptor with mifepristone only partially inhibits DEX-stimulated CXCL8 expression indicating both glucocorticoid receptor dependent and independent pathways. Treatment with signal transduction inhibitors demonstrate that this expression is due to activation of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways and is mediated through the G(alphai)-coupled receptors. Angiogenesis assays demonstrate that OGM-stimulated conditioned media containing secreted CXCL8 and CXCL1 can induce angiogenesis of human microvascular endothelial cells in an in vitro Matrigel assay.

  17. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis

    PubMed Central

    Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6-/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6-/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6-/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6-/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis. PMID:26691857

  18. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis.

    PubMed

    Affò, Silvia; Rodrigo-Torres, Daniel; Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6-/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6-/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6-/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6-/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis.

  19. Expression Profile of Intravitreous Cytokines, Chemokines and Growth Factors in Patients with Fuchs Heterochromic Iridocyclitis

    PubMed Central

    Suzuki, Kaori; Suzuki, Yukihiko; Matsumoto, Mitsuo; Nakazawa, Mitsuru

    2010-01-01

    Purpose To report the postoperative courses of 2 patients with Fuchs heterochromic iridocyclitis (FHI) and the concentrations of various cytokines, chemokines and growth factors in vitreous fluid samples to obtain insights into pathobiochemical aspects. Subjects: The patients were a 27- and a 47-year-old woman. Phacoemulsification and aspiration, intraocular lens (IOL) implantation, and pars plana vitrectomy were performed to treat their cataracts and vitreous opacities. During their early postoperative periods, inflammatory cells precipitated on the IOL and intraocular pressure was increased in both patients. Methods At the time of surgery, undiluted vitreous fluid specimens were collected. The concentrations of multiple cytokines, chemokines and growth factors were measured by a bead array immunodetection system. Results The levels of interleukin-1ra, −5, −6, −8, −10 and −13, interferon-inducible 10-kDa protein, monocyte chemoattractant protein 1, macrophage inflammatory protein 1β, and regulated upon activation, normal T-cell expressed and secreted (RANTES) were significantly elevated in vitreous fluid in both patients. Conclusion Although the postoperative course was generally favorable in patients with FHI, steroid instillation was necessary for a few months postoperatively, as precipitates easily formed on the IOL surface and elevated intraocular pressure. The profiles of intravitreal concentrations of cytokines, chemokines and growth factors may characterize postoperative inflammatory reactions. PMID:20737053

  20. A proinflammatory chemokine, CCL3, sensitizes the heat- and capsaicin-gated ion channel TRPV1.

    PubMed

    Zhang, Ning; Inan, Saadet; Inan, Sadeet; Cowan, Alan; Sun, Ronghua; Wang, Ji Ming; Rogers, Thomas J; Caterina, Michael; Oppenheim, Joost J

    2005-03-22

    Pain, a critical component of host defense, is one hallmark of the inflammatory response. We therefore hypothesized that pain might be exacerbated by proinflammatory chemokines. To test this hypothesis, CCR1 was cotransfected into human embryonic kidney (HEK)293 cells together with transient receptor potential vanilloid 1 (TRPV1), a cation channel required for certain types of thermal hyperalgesia. In these cells, capsaicin and anandamide induced Ca(2+) influx mediated by TRPV1. When CCR1:TRPV1/HEK293 cells were pretreated with CCL3, the sensitivity of TRPV1, as indicated by the Ca(2+) influx, was increased approximately 3-fold. RT-PCR analysis showed that a spectrum of chemokine and cytokine receptors is expressed in rat dorsal root ganglia (DRG). Immunohistochemical staining of DRG showed that CCR1 is coexpressed with TRPV1 in >85% of small-diameter neurons. CCR1 on DRG neurons was functional, as demonstrated by CCL3-induced Ca(2+) ion influx and PKC activation. Pretreatment with CCL3 enhanced the response of DRG neurons to capsaicin or anandamide. This sensitization was inhibited by pertussis toxin, U73122, or chelerythrine chloride, inhibitors of Gi-protein, phospholipase C, and protein kinase C, respectively. Intraplantar injection of mice with CCL3 decreased their hot-plate response latency. That a proinflammatory chemokine, by interacting with its receptor on small-diameter neurons, sensitizes TRPV1 reveals a previously undescribed mechanism of receptor cross-sensitization that may contribute to hyperalgesia during inflammation.

  1. The Role of Cytokines, Chemokines, and Growth Factors in the Pathogenesis of Pityriasis Rosea

    PubMed Central

    Drago, Francesco; Ciccarese, Giulia; Broccolo, Francesco; Ghio, Massimo; Contini, Paola; Thanasi, Hajdhica; Parodi, Aurora

    2015-01-01

    Introduction. Pityriasis rosea (PR) is an exanthematous disease related to human herpesvirus- (HHV-) 6/7 reactivation. The network of mediators involved in recruiting the infiltrating inflammatory cells has never been studied. Object. To investigate the levels of serum cytokines, growth factors, and chemokines in PR and healthy controls in order to elucidate the PR pathogenesis. Materials and Methods. Interleukin- (IL-) 1, IL-6, IL-17, interferon- (IFN-) γ, tumor necrosis factor- (TNF-) α, vascular endothelial growth factor (VEGF), granulocyte colony stimulating factor (G-CSF), and chemokines, CXCL8 (IL-8) and CXCL10 (IP-10), were measured simultaneously by a multiplex assay in early acute PR patients' sera and healthy controls. Subsequently, sera from PR patients were analysed at 3 different times (0, 15, and 30 days). Results and discussion. Serum levels of IL-17, IFN-γ, VEGF, and IP-10 resulted to be upregulated in PR patients compared to controls. IL-17 has a key role in host defense against pathogens stimulating the release of proinflammatory cytokines/chemokines. IFN-γ has a direct antiviral activity promoting NK cells and virus specific T cells cytotoxicity. VEGF stimulates vasculogenesis and angiogenesis. IP-10 can induce chemotaxis, apoptosis, cell growth, and angiogenesis. Conclusions. Our findings suggest that these inflammatory mediators may modulate PR pathogenesis in synergistic manner. PMID:26451078

  2. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells.

    PubMed

    Spiess, Katja; Jeppesen, Mads G; Malmgaard-Clausen, Mikkel; Krzywkowski, Karen; Kledal, Thomas N; Rosenkilde, Mette M

    2017-01-01

    Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment of human cytomegalovirus (HCMV) infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP) consisted of a variant (F49A) of CX3CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin A (PE). Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1) altered chemokine sequence (K14A, F49L, and F49E), (2) shortened and elongated linker region, and (3) modified toxin domain. Only F49L-FTP displayed higher selectivity in its binding to US28 versus CX3CR1, the endogenous receptor for CX3CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate for HCMV treatment. Many viruses encode internalizing receptors suggesting that not only HCMV but also, for instance, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus may be targeted by FTPs.

  3. [The role of CC-chemokine ligand 2 in the development of psychic dependence on methamphetamine].

    PubMed

    Saika, Fumihiro; Kiguchi, Norikazu; Kishioka, Shiroh

    2015-10-01

    Addiction is described as a chronic neurological disorder associated with plasticity in the mesolimbic system. Recently, it has been suggested that neuroinflammation plays an important role in the induction of neuronal plasticity and the formation of pathogenesis in chronic neurological disorders. Therefore, we examined the role of CC-chemokine ligand 2 (CCL2), a proinflammatory chemokine, in the development of psychic dependence on methamphetamine. In mice treated with methamphetamine, CCL2 mRNA was significantly increased in prefrontal cortex and nucleus accumbens. Moreover, phosphorylated tyrosine hydroxylase serine40 (pTH Ser40) levels in the ventral tegmental area (VTA) were increased by methamphetamine. Similarly, pTH Ser40 levels in the VTA were also increased by the intracerebroventricular administration of recombinant CCL2. The increment of pTH Ser40 levels in the VTA by methamphetamine was attenuated by RS504393, a selective CC-chemokine receptor 2 (CCR2) antagonist, indicating that the increased CCL2 activates the brain reward system via CCR2 activation. In the conditioned place preference test, methamphetamine produced place preference in a dose-dependent manner, which was attenuated by RS504393. These results suggest that the activation of the brain reward system via CCL2-CCR2 pathway plays an important role in the development of psychic dependence on methamphetamine.

  4. Analysis of Chemokines and Receptors Expression Profile in the Myelin Mutant Taiep Rat

    PubMed Central

    Soto-Rodriguez, Guadalupe; Gonzalez-Barrios, Juan-Antonio; Martinez-Fong, Daniel; Blanco-Alvarez, Victor-Manuel; Eguibar, Jose R.; Ugarte, Araceli; Martinez-Perez, Francisco; Millán-Perez Peña, Lourdes; Pazos-Salazar, Nidia-Gary; Torres-Soto, Maricela; Garcia-Robles, Guadalupe; Tomas-Sanchez, Constantino

    2015-01-01

    Taiep rat has a failure in myelination and remyelination processes leading to a state of hypomyelination throughout its life. Chemokines, which are known to play a role in inflammation, are also involved in the remyelination process. We aimed to demonstrate that remyelination-stimulating factors are altered in the brainstem of 1- and 6-month-old taiep rats. We used a Rat RT2 Profiler PCR Array to assess mRNA expression of 84 genes coding for cytokines, chemokines, and their receptors. We also evaluated protein levels of CCL2, CCR1, CCR2, CCL5, CCR5, CCR8, CXCL1, CXCR2, CXCR4, FGF2, and VEGFA by ELISA. Sprague-Dawley rats were used as a control. PCR Array procedure showed that proinflammatory cytokines were not upregulated in the taiep rat. In contrast, some mRNA levels of beta and alpha chemokines were upregulated in 1-month-old rats, but CXCR4 was downregulated at their 6 months of age. ELISA results showed that CXCL1, CCL2, CCR2, CCR5, CCR8, and CXCR4 protein levels were decreased in brainstem at the age of 6 months. These results suggest the presence of a chronic neuroinflammation process with deficiency of remyelination-stimulating factors (CXCL1, CXCR2, and CXCR4), which might account for the demyelination in the taiep rat. PMID:25883747

  5. Induction of cytokines and chemokines by Toll-like receptor signaling: strategies for control of inflammation.

    PubMed

    Zeytun, Ahmet; Chaudhary, Anu; Pardington, Paige; Cary, R; Gupta, Goutam

    2010-01-01

    Recognition of the pathogen-associated molecular pattern (PAMP) by host Toll-like receptors (TLR) is an important component of the innate immune response for countering against invading viruses, bacteria, and fungi. Upon PAMP recognition, the TLR induces intracellular signaling cascades that involve adapter, signalosome, and transcription factor complexes and result in the production of both pro- and anti-inflammatory cytokines and chemokines. An inflammatory response for a short duration can be beneficial because it helps to clear the infectious agent. However, prolonged inflammation can be detrimental because it may cause host toxicity and tissue damage. Indeed, excessive production of inflammatory cytokines and chemokines via TLR pathways is often associated with many inflammatory and autoimmune diseases. Therefore, fine control of inflammation in the TLR pathway is highly desirable for effective host defense. In this article, we review intrinsic control mechanisms that include a balance between pro-inflammatory and anti-inflammatory cytokines and chemokines, production of host effectors, and regulation at the level of adapter, signalosome, and transcription factor complexes in the TLR pathways. We also discuss how understanding of the TLR signaling steps leads to the development of small-molecule drugs that can interfere with the formation of active adapter, signalosome, and adapter complexes.

  6. Simultaneous measurement of serum chemokines in autoimmune thyroid diseases: possible role of IP-10 in the inflammatory response.

    PubMed

    Hiratsuka, Izumi; Itoh, Mitsuyasu; Yamada, Hiroya; Yamamoto, Keiko; Tomatsu, Eisuke; Makino, Masaki; Hashimoto, Shuji; Suzuki, Atsushi

    2015-01-01

    Autoimmune thyroid diseases (AITDs), including Graves' diseases (GD) and Hashimoto's thyroiditis (HT), are the most common autoimmune diseases, and are mainly mediated by T cells that produce cytokines and chemokines in abnormal amounts. Few reports have described the circulating chemokines active in AITDs. Recently, we used a new multiplex immunobead assay to simultaneously measure cytokines and chemokines in small volume serum samples from patients with AITDs. We measured 23 selected serum chemokines in patients with GD (n=45) or HT (n=26), and healthy controls (n=9). GD patients were further classified as either untreated, intractable, or in remission, while HT patients were classified as either hypothyroid or euthyroid. Of the 23 serum chemokines assayed, only the serum level of IP-10 (CXCL10/interferon-γ-inducible protein 10) was elevated, depending on disease activity, in GD or HT compared with healthy controls. However, the serum level of IP-10 was also increased in both untreated GD patients and hypothyroid HT patients, suggesting that levels of this cytokine may not be affected by disease specificity. In conclusion, autoimmune inflammation in patients with AITD is closely related to the level of the serum chemokine, IP-10. Therefore, IP-10 might be a good biomarker for tissue inflammation in the thyroid, but not a useful biomarker for predicting disease specific activity, the progression of AITDs, or responsiveness to treatment because of its independence from thyroid function or disease specificity.

  7. Differential subnetwork of chemokines/cytokines in human, mouse, and rat brain cells after oxygen-glucose deprivation.

    PubMed

    Du, Yang; Deng, Wenjun; Wang, Zixing; Ning, MingMing; Zhang, Wei; Zhou, Yiming; Lo, Eng H; Xing, Changhong

    2016-01-01

    Mice and rats are the most commonly used animals for preclinical stroke studies, but it is unclear whether targets and mechanisms are always the same across different species. Here, we mapped the baseline expression of a chemokine/cytokine subnetwork and compared responses after oxygen-glucose deprivation in primary neurons, astrocytes, and microglia from mouse, rat, and human. Baseline profiles of chemokines (CX3CL1, CXCL12, CCL2, CCL3, and CXCL10) and cytokines (IL-1α, IL-1β, IL-6, IL-10, and TNFα) showed significant differences between human and rodents. The response of chemokines/cytokines to oxygen-glucose deprivation was also significantly different between species. After 4 h oxygen-glucose deprivation and 4 h reoxygenation, human and rat neurons showed similar changes with a downregulation in many chemokines, whereas mouse neurons showed a mixed response with up- and down-regulated genes. For astrocytes, subnetwork response patterns were more similar in rats and mice compared to humans. For microglia, rat cells showed an upregulation in all chemokines/cytokines, mouse cells had many down-regulated genes, and human cells showed a mixed response with up- and down-regulated genes. This study provides proof-of-concept that species differences exist in chemokine/cytokine subnetworks in brain cells that may be relevant to stroke pathophysiology. Further investigation of differential gene pathways across species is warranted.

  8. The {beta}-chemokines CCL2 and CCL7 are two novel differentiation factors for midbrain dopaminergic precursors and neurons

    SciTech Connect

    Edman, Linda C.; Mira, Helena; Arenas, Ernest

    2008-06-10

    {beta}-chemokines are secreted factors that regulate diverse functions in the adult brain, such as neuro-immune responses and neurotransmission, but their function in the developing brain is largely unknown. We recently found that the orphan nuclear receptor, Nurr1, up regulates CCL2 and CCL7 in neural stem cells, suggesting a possible function of {beta}-chemokines in midbrain development. Here we report that two {beta}-chemokines, CCL2 and CCL7, and two of their receptors, CCR1 and CCR2, are expressed and developmentally regulated in the ventral midbrain (VM). Moreover, we found that the expression of CCL7 was down regulated in the Nurr1 knockout mice, linking CCL7 to dopamine (DA) neuron development. When the function of CCL2 and CCL7 was examined, we found that they selectively enhanced the differentiation of Nurr1+ precursors into DA neurons, but not their survival or progenitor proliferation in primary precursor cultures. Moreover, both CCL2 and CCL7 promoted neuritogenesis in midbrain DA neuron cultures. Thus, our results show for the first time a function of {beta}-chemokines in the developing brain and identify {beta}-chemokines as novel class of pro-differentiation factors for midbrain DA neurons. These data also suggest that {beta}-chemokines may become useful tools to enhance the differentiation of DA cell preparations for cell replacement therapy and drug discovery in Parkinson's disease (PD)

  9. The chemokine network. II. On how polymorphisms and alternative splicing increase the number of molecular species and configure intricate patterns of disease susceptibility

    PubMed Central

    Colobran, R; Pujol-Borrell, R; Armengol, M P; Juan, M

    2007-01-01

    In this second review on chemokines, we focus on the polymorphisms and alternative splicings and on their consequences in disease. Because chemokines are key mediators in the pathogenesis of inflammatory, autoimmune, vascular and neoplastic disorders, a large number of studies attempting to relate particular polymorphisms of chemokines to given diseases have already been conducted, sometimes with contradictory results. Reviewing the published data, it becomes evident that some chemokine genes that are polymorphic have alleles that are found repeatedly, associated with disease of different aetiologies but sharing some aspects of pathogenesis. Among CXC chemokines, single nucleotide polymorphisms (SNPs) in the CXCL8 and CXCL12 genes stand out, as they have alleles associated with many diseases such as asthma and human immunodeficiency virus (HIV), respectively. Of CC chemokines, the stronger associations occur among alleles from SNPs in CCL2 and CCL5 genes and a number of inflammatory conditions. To understand how chemokines contribute to disease it is also necessary to take into account all the isoforms resulting from differential splicing. The first part of this review deals with polymorphisms and the second with the diversity of molecular species derived from each chemokine gene due to alternative splicing phenomena. The number of molecular species and the level of expression of each of them for every chemokine and for each functionally related group of chemokines reaches a complexity that requires new modelling algorithms akin to those proposed in systems biology approaches. PMID:17848170

  10. Chlorella vulgaris Attenuates Dermatophagoides Farinae-Induced Atopic Dermatitis-Like Symptoms in NC/Nga Mice.

    PubMed

    Kang, Heerim; Lee, Chang Hyung; Kim, Jong Rhan; Kwon, Jung Yeon; Seo, Sang Gwon; Han, Jae Gab; Kim, Byung Gon; Kim, Jong-Eun; Lee, Ki Won

    2015-09-02

    Atopic dermatitis (AD) is a chronic and inflammatory skin disease that can place a significant burden on quality of life for patients. AD most frequently appears under the age of six and although its prevalence is increasing worldwide, therapeutic treatment options are limited. Chlorella vulgaris (CV) is a species of the freshwater green algae genus chlorella, and has been reported to modulate allergy-inducible factors when ingested. Here, we examined the effect of CV supplementation on AD-like symptoms in NC/Nga mice. CV was orally administrated for six weeks while AD-like symptoms were induced via topical application of Dermatophagoides farinae extract (DFE). CV treatment reduced dermatitis scores, epidermal thickness, and skin hydration. Histological analysis also revealed that CV treatment reduced DFE-induced eosinophil and mast cell infiltration into the skin, while analysis of serum chemokine levels indicated that CV treatment downregulated thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) levels. In addition, CV treatment downregulated mRNA expression levels of IL-4 and IFN-γ. Taken together, these results suggest that CV extract may have potential as a nutraceutical ingredient for the prevention of AD.

  11. Chlorella vulgaris Attenuates Dermatophagoides Farinae-Induced Atopic Dermatitis-Like Symptoms in NC/Nga Mice

    PubMed Central

    Kang, Heerim; Lee, Chang Hyung; Kim, Jong Rhan; Kwon, Jung Yeon; Seo, Sang Gwon; Han, Jae Gab; Kim, Byung Gon; Kim, Jong-Eun; Lee, Ki Won

    2015-01-01

    Atopic dermatitis (AD) is a chronic and inflammatory skin disease that can place a significant burden on quality of life for patients. AD most frequently appears under the age of six and although its prevalence is increasing worldwide, therapeutic treatment options are limited. Chlorella vulgaris (CV) is a species of the freshwater green algae genus chlorella, and has been reported to modulate allergy-inducible factors when ingested. Here, we examined the effect of CV supplementation on AD-like symptoms in NC/Nga mice. CV was orally administrated for six weeks while AD-like symptoms were induced via topical application of Dermatophagoides farinae extract (DFE). CV treatment reduced dermatitis scores, epidermal thickness, and skin hydration. Histological analysis also revealed that CV treatment reduced DFE-induced eosinophil and mast cell infiltration into the skin, while analysis of serum chemokine levels indicated that CV treatment downregulated thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) levels. In addition, CV treatment downregulated mRNA expression levels of IL-4 and IFN-γ. Taken together, these results suggest that CV extract may have potential as a nutraceutical ingredient for the prevention of AD. PMID:26404252

  12. Endotoxin-induced cytokine and chemokine expression in the HIV-1 transgenic rat

    PubMed Central

    2012-01-01

    Background Repeated exposure to a low dose of a bacterial endotoxin such as lipopolysaccharide (LPS) causes immune cells to become refractory to a subsequent endotoxin challenge, a phenomenon known as endotoxin tolerance (ET). During ET, there is an imbalance in pro- and anti-inflammatory cytokine and chemokine production, leading to a dysregulated immune response. HIV-1 viral proteins are known to have an adverse effect on the immune system. However, the effects of HIV-1 viral proteins during ET have not been investigated. Methods In this study, HIV-1 transgenic (HIV-1Tg) rats and control F344 rats (n = 12 ea) were randomly treated with 2 non-pyrogenic doses of LPS (LL) to induce ET, or saline (SS), followed by a high challenge dose of LPS (LL+L, SS+L) or saline (LL+S, SS+S). The gene expression of 84 cytokines, chemokines, and their receptors in the brain and spleen was examined by relative quantitative PCR using a PCR array, and protein levels in the brain, spleen, and serum of 7 of these 84 genes was determined using an electrochemiluminescent assay. Results In the spleen, there was an increase in key pro-inflammatory (IL1α, IL-1β, IFN-γ) and anti-inflammatory (IL-10) cytokines, and inflammatory chemokines (Ccl2, Ccl7, and Ccl9,) in response to LPS in the SS+L and LL+L (ET) groups of both the HIV-1Tg and F344 rats, but was greater in the HIV-1Tg rats than in the F344. In the ET HIV-1Tg and F344 (LL+L) rats in the spleen, the LPS-induced increase in pro-inflammatory cytokines was diminished and that of the anti-inflammatory cytokine was enhanced compared to the SS+L group rats. In the brain, IL-1β, as well as the Ccl2, Ccl3, and Ccl7 chemokines were increased to a greater extent in the HIV-1Tg rats compared to the F344; whereas Cxcl1, Cxcl10, and Cxcl11 were increased to a greater extent in the F344 rats compared to the HIV-1Tg rats in the LL+L and SS+L groups. Conclusion Our data indicate that the continuous presence of HIV-1 viral proteins can have tissue

  13. Mitochondrial metabolism during daily torpor in the dwarf Siberian hamster: role of active regulated changes and passive thermal effects.

    PubMed

    Brown, Jason C L; Gerson, Alexander R; Staples, James F

    2007-11-01

    During daily torpor in the dwarf Siberian hamster, Phodopus sungorus, metabolic rate is reduced by 65% compared with the basal rate, but the mechanisms involved are contentious. We examined liver mitochondrial respiration to determine the possible role of active regulated changes and passive thermal effects in the reduction of metabolic rate. When assayed at 37 degrees C, state 3 (phosphorylating) respiration, but not state 4 (nonphosphorylating) respiration, was significantly lower during torpor compared with normothermia, suggesting that active regulated changes occur during daily torpor. Using top-down elasticity analysis, we determined that these active changes in torpor included a reduced substrate oxidation capacity and an increased proton conductance of the inner mitochondrial membrane. At 15 degrees C, mitochondrial respiration was at least 75% lower than at 37 degrees C, but there was no difference between normothermia and torpor. This implies that the active regulated changes are likely more important for reducing respiration at high temperatures (i.e., during entrance) and/or have effects other than reducing respiration at low temperatures. The decrease in respiration from 37 degrees C to 15 degrees C resulted predominantly from a considerable reduction of substrate oxidation capacity in both torpid and normothermic animals. Temperature-dependent changes in proton leak and phosphorylation kinetics depended on metabolic state; proton leakiness increased in torpid animals but decreased in normothermic animals, whereas phosphorylation activity decreased in torpid animals but increased in normothermic animals. Overall, we have shown that both active and passive changes to oxidative phosphorylation occur during daily torpor in this species, contributing to reduced metabolic rate.

  14. Isolation and characterization of Exodus-2, a novel C-C chemokine with a unique 37-amino acid carboxyl-terminal extension.

    PubMed

    Hromas, R; Kim, C H; Klemsz, M; Krathwohl, M; Fife, K; Cooper, S; Schnizlein-Bick, C; Broxmeyer, H E

    1997-09-15

    Chemokines are a group of small, homologous proteins that regulate leukocyte migration, hemopoiesis, and HIV-1 absorption. We report here the cloning and characterization of a novel murine and human C-C chemokine termed Exodus-2 for its similarity to Exodus-1/MIP-3alpha/LARC, and its chemotactic ability. This novel chemokine has a unique 36 or 37 (murine and human, respectively) amino acid carboxyl-terminal extension not seen in any other chemokine family member. Purified recombinant Exodus-2 was found to have two activities classically associated with chemokines: inhibiting hemopoiesis and stimulating chemotaxis. However, Exodus-2 also had unusual characteristics for C-C chemokines. It selectively stimulated the chemotaxis of T-lymphocytes and was preferentially expressed in lymph node tissue. The combination of these characteristics may be a functional correlate for the unique carboxyl-terminal structure of Exodus-2.

  15. Doxycycline and Benznidazole Reduce the Profile of Th1, Th2, and Th17 Chemokines and Chemokine Receptors in Cardiac Tissue from Chronic Trypanosoma cruzi-Infected Dogs

    PubMed Central

    de Paula Costa, Guilherme; Lopes, Laís Roquete; Horta, Aline Luciano; Pontes, Washington Martins; Milanezi, Cristiane M.; Guedes, Paulo Marcos da Mata; de Lima, Wanderson Geraldo; Schulz, Richard

    2016-01-01

    Chemokines (CKs) and chemokine receptors (CKR) promote leukocyte recruitment into cardiac tissue infected by the Trypanosoma cruzi. This study investigated the long-term treatment with subantimicrobial doses of doxycycline (Dox) in association, or not, with benznidazole (Bz) on the expression of CK and CKR in cardiac tissue. Thirty mongrel dogs were infected, or not, with the Berenice-78 strain of T. cruzi and grouped according their treatments: (i) two months after infection, Dox (50 mg/kg) 2x/day for 12 months; (ii) nine months after infection, Bz (3,5 mg/kg) 2x/day for 60 days; (iii) Dox + Bz; and (iv) vehicle. After 14 months of infection, hearts were excised and processed for qPCR analysis of Th1 (CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL11), Th2 (CCL1, CCL17, CCL24, and CCL26), Th17 (CCL20) CKs, Th1 (CCR5, CCR6, and CXCR3), and Th2/Th17 (CCR3, CCR4, and CCR8) CKR, as well as IL-17. T. cruzi infection increases CCL1, CCL2, CCL4, CCL5, CCL17, CXCL10, and CCR5 expression in the heart. Dox, Bz, or Dox + Bz treatments cause a reversal of CK and CKR and reduce the expression of CCL20, IL-17, CCR6, and CXCR3. Our data reveal an immune modulatory effect of Dox with Bz, during the chronic phase of infection suggesting a promising therapy for cardiac protection. PMID:27688600

  16. Roflumilast n-oxide associated with PGE2 prevents the neutrophil elastase-induced production of chemokines by epithelial cells.

    PubMed

    Victoni, Tatiana; Gicquel, Thomas; Bodin, Aude; Daude, Marion; Tenor, Hermann; Valença, Samuel; Devillier, Philippe; Porto, Luis Cristovão; Lagente, Vincent; Boichot, Elisabeth

    2016-01-01

    Neutrophil chemotaxis is involved in the lung inflammatory process in conditions such as chronic obstructive pulmonary disease (COPD). Neutrophil elastase (NE), one of the main proteases produced by neutrophils, has an important role in the inflammatory process via the release of chemokines from airway epithelial cells. It was recently shown that roflumilast N-oxide has therapeutic potential in COPD. The aim of the present study was to investigate roflumilast N-oxide's effect on NE-induced chemokine production and signaling pathways in A549 epithelial cells. A549 cells were incubated with NE for 30min, washed with PBS and then cultured for 2h (for measurement of mRNA expression) and 24h (for chemokine release) or for 5 to 30min (for protein phosphorylation assays). Prior to the addition of NE, cells were also pre-incubated with prostaglandin E2 (PGE2), alone and in combination with roflumilast N-oxide. Addition of NE was associated with elevated chemokine production by A549 cells and induction of the p38α pathway. In contrast when combined with PGE2, the roflumilast N-oxide had an additive effect on the inhibition of NE-induced chemokine release and p38α and other kinases activation. In conclusion, we demonstrated that NE is able to increase the release of chemokines from epithelial cells via the activation of p38α MAP-kinase and that roflumilast N-oxide when combined with PGE2 lowers NE-induced kinase activation and chemokine production.

  17. Increased cytokine/chemokines in serum from asthmatic and non-asthmatic patients with viral respiratory infection

    PubMed Central

    Giuffrida, María J; Valero, Nereida; Mosquera, Jesús; Alvarez de Mon, Melchor; Chacín, Betulio; Espina, Luz Marina; Gotera, Jennifer; Bermudez, John; Mavarez, Alibeth

    2014-01-01

    Background Respiratory viral infections can induce different cytokine/chemokine profiles in lung tissues and have a significant influence on patients with asthma. There is little information about the systemic cytokine status in viral respiratory-infected asthmatic patients compared with non-asthmatic patients. Objectives The aim of this study was to determine changes in circulating cytokines (IL-1β, TNF-α, IL-4, IL-5) and chemokines (MCP1: monocyte chemoattractant protein-1 and RANTES: regulated on activation normal T cell expressed and secreted) in patients with an asthmatic versus a non-asthmatic background with respiratory syncytial virus, parainfluenza virus or adenovirus respiratory infection. In addition, human monocyte cultures were incubated with respiratory viruses to determine the cytokine/chemokine profiles. Patients/Methods Patients with asthmatic (n = 34) and non-asthmatic (n = 18) history and respiratory infections with respiratory syncytial virus, parainfluenza, and adenovirus were studied. Healthy individuals with similar age and sex (n = 10) were used as controls. Cytokine/chemokine content in blood and culture supernatants was determined by ELISA. Monocytes were isolated by Hystopaque gradient and cocultured with each of the above-mentioned viruses. Results Similar increased cytokine concentrations were observed in asthmatic and non-asthmatic patients. However, higher concentrations of chemokines were observed in asthmatic patients. Virus-infected monocyte cultures showed similar cytokine/chemokine profiles to those observed in the patients. Conclusions Circulating cytokine profiles induced by acute viral lung infection were not related to asthmatic status, except for chemokines that were already increased in the asthmatic status. Monocytes could play an important role in the increased circulating concentration of cytokines found during respiratory viral infections. PMID:23962134

  18. Serum amyloid A chemoattracts immature dendritic cells and indirectly provokes monocyte chemotaxis by induction of cooperating CC and CXC chemokines.

    PubMed

    Gouwy, Mieke; De Buck, Mieke; Pörtner, Noëmie; Opdenakker, Ghislain; Proost, Paul; Struyf, Sofie; Van Damme, Jo

    2015-01-01

    Serum amyloid A (SAA) is an acute phase protein that is upregulated in inflammatory diseases and chemoattracts monocytes, lymphocytes, and granulocytes via its G protein-coupled receptor formyl peptide receptor like 1/formyl peptide receptor 2 (FPRL1/FPR2). Here, we demonstrated that the SAA1α isoform also chemoattracts monocyte-derived immature dendritic cells (DCs) in the Boyden and μ-slide chemotaxis assay and that its chemotactic activity for monocytes and DCs was indirectly mediated via rapid chemokine induction. Indeed, SAA1 induced significant amounts (≥5 ng/mL) of macrophage inflammatory protein-1α/CC chemokine ligand 3 (MIP-1α/CCL3) and interleukin-8/CXC chemokine ligand 8 (IL-8/CXCL8) in monocytes and DCs in a dose-dependent manner within 3 h. However, SAA1 also directly activated monocytes and DCs for signaling and chemotaxis without chemokine interference. SAA1-induced monocyte migration was nevertheless significantly prevented (60-80% inhibition) in the constant presence of desensitizing exogenous MIP-1α/CCL3, neutralizing anti-MIP-1α/CCL3 antibody, or a combination of CC chemokine receptor 1 (CCR1) and CCR5 antagonists, indicating that this endogenously produced CC chemokine was indirectly contributing to SAA1-mediated chemotaxis. Further, anti-IL-8/CXCL8 antibody neutralized SAA1-induced monocyte migration, suggesting that endogenous IL-8/CXCL8 acted in concert with MIP-1α/CCL3. This explained why SAA1 failed to synergize with exogenously added MIP-1α/CCL3 or stromal cell-derived factor-1α (SDF-1α)/CXCL12 in monocyte and DC chemotaxis. In addition to direct leukocyte activation, SAA1 induces a chemotactic cascade mediated by expression of cooperating chemokines to prolong leukocyte recruitment to the inflammatory site.

  19. Pertussis toxin inhibits early chemokine production to delay neutrophil recruitment in response to Bordetella pertussis respiratory tract infection in mice.

    PubMed

    Andreasen, Charlotte; Carbonetti, Nicholas H

    2008-11-01

    Pertussis is an acute respiratory disease of humans caused by the bacterium Bordetella pertussis. Pertussis toxin (PT) plays a major role in the virulence of this pathogen, including important effects that it has soon after inoculation. Studies in our laboratory and other laboratories have indicated that PT inhibits early neutrophil influx to the lungs and airways in response to B. pertussis respiratory tract infection in mice. Previous in vitro and in vivo studies have shown that PT can affect neutrophils directly by ADP ribosylating G(i) proteins associated with surface chemokine receptors, thereby inhibiting neutrophil migration in response to chemokines. However, in this study, by comparing responses to wild-type (WT) and PT-deficient strains, we found that PT has an indirect inhibitory effect on neutrophil recruitment to the airways in response to infection. Analysis of lung chemokine expression indicated that PT suppresses early neutrophil recruitment by inhibiting chemokine upregulation in alveolar macrophages and other lung cells in response to B. pertussis infection. Enhancement of early neutrophil recruitment to the airways in response to WT infection by addition of exogenous keratinocyte-derived chemokine, one of the dominant neutrophil-attracting chemokines in mice, further revealed an indirect effect of PT on neutrophil chemotaxis. Additionally, we showed that intranasal administration of PT inhibits lipopolysaccharide-induced chemokine gene expression and neutrophil recruitment to the airways, presumably by modulation of signaling through Toll-like receptor 4. Collectively, these results demonstrate how PT inhibits early inflammatory responses in the respiratory tract, which reduces neutrophil influx in response to B. pertussis infection, potentially providing an advantage to the pathogen in this interaction.

  20. Chemokine production and pattern recognition receptor (PRR) expression in whole blood stimulated with pathogen-associated molecular patterns (PAMPs).

    PubMed

    Møller, Anne-Sophie W; Ovstebø, Reidun; Haug, Kari Bente F; Joø, Gun Britt; Westvik, Ase-Brit; Kierulf, Peter

    2005-12-21

    Recognition of conserved bacterial structures called pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), may lead to induction of a variety of "early immediate genes" such as chemokines. In the current study, we have in an ex vivo whole blood model studied the induction of the chemokines MIP-1alpha, MCP-1 and IL-8 by various PAMPs. The rate of appearance of Escherichia coli-Lipopolysaccharide (LPS) induced chemokines differed. The production of MIP-1alpha and IL-8 was after 1 h of stimulation significantly higher when compared to unstimulated whole blood, whereas MCP-1 was not significantly elevated until after 3 h. At peak levels the MIP-1alpha concentration induced by E. coli-LPS was 3-5-fold higher than MCP-1 and IL-8. By specific cell depletion, we demonstrated that all three chemokines were mainly produced by monocytes. However, the mRNA results showed that IL-8 was induced in both monocytes and granulocytes. The production of all three chemokines, induced by the E. coli-LPS and Neisseria meningitidis-LPS, was significantly inhibited by antibodies against CD14 and TLR4, implying these receptors to be of importance for the effects of LPS in whole blood. The chemokine production induced by lipoteichoic acid (LTA) and non-mannose-capped lipoarabinomannan (AraLAM) was, however, less efficiently blocked by antibodies against CD14 and TLR2. E. coli-LPS and LTA induced a dose-dependent increase of CD14, TLR2 and TLR4 expression on monocytes in whole blood. These data show that PAMPs may induce chemokine production in whole blood and that antibodies against PRRs inhibit the production to different extent.

  1. Profiling the MAPK/ERK dependent and independent activity regulated transcriptional programs in the murine hippocampus in vivo

    PubMed Central

    Blüthgen, Nils; van Bentum, Mirjam; Merz, Barbara; Kuhl, Dietmar; Hermey, Guido

    2017-01-01

    Activity-dependent alteration of the transcriptional program is central for shaping neuronal connectivity. Constitutively expressed transcription factors orchestrate the initial response to neuronal stimulation and serve as substrates for second messenger-regulated kinase signalling cascades. The mitogen-activated protein kinase ERK conveys signalling from the synapse to the nucleus but its genetic signature following neuronal activity has not been revealed. The goal of the present study was to identify ERK dependent and independent activity regulated transcriptional programs in the murine hippocampus. We used generalized seizures combined with the pharmacological intervention of MEK activation as an in vivo model to determine the complete transcriptional program initiated by ERK after neuronal activity. Our survey demonstrates that the induction of a large number of activity-regulated genes, including Arc/Arg3.1, Arl5b, Gadd45b, Homer1, Inhba and Zwint, is indeed dependent on ERK phosphorylation. In contrast, expression of a small group of genes, including Npas4, Arl4d, Errfi1, and Rgs2, is only partially dependent or completely independent (Ppp1r15a) of this signalling pathway. Among the identified transcripts are long non-coding (lnc) RNAs and induction of LincPint and splice variants of NEAT1 are ERK dependent. Our survey provides a comprehensive analysis of the transcriptomic response conveyed by ERK signalling in the hippocampus. PMID:28349920

  2. Soluble M3 proteins of murine gammaherpesviruses 68 and 72 expressed in Escherichia coli: analysis of chemokine-binding properties.

    PubMed

    Matúšková, R; Pančík, P; Štibrániová, I; Belvončíková, P; Režuchová, I; Kúdelová, M

    2015-12-01

    M3 protein of murine gammaherpesvirus 68 (MHV-68) was identified as a viral chemokine-binding protein 3 (vCKBP-3) capable to bind a broad spectrum of chemokines and their receptors. During both acute and latent infection MHV-68 M3 protein provides a selective advantage for the virus by inhibiting the antiviral and inflammatory response. A unique mutation Asp307Gly was identified in the M3 protein of murine gammaherpesvirus 72 (MHV-72), localized near chemokine-binding domain. Study on chemokine-binding properties of MHV-72 M3 protein purified from medium of infected cells implied reduced binding to some chemokines when compared to MHV-68 M3 protein. It was suggested that the mutation in the M3 protein might be involved in the attenuation of immune response to infection with MHV-72. Recently, Escherichia coli cells were used to prepare native recombinant M3 proteins of murine gammaherpesviruses 68 and 72 (Pančík et al., 2013). In this study, we assessed the chemokine-binding properties of three M3 proteins prepared in E. coli Rosetta-gami 2 (DE3) cells, the full length M3 protein of both MHV-68 and MHV-72 and MHV-68 M3 protein truncated in the signal sequence (the first 24 aa). They all displayed binding activity to human chemokines CCL5 (RANTES), CXCL8 (IL-8), and CCL3 (MIP-1α). The truncated MHV-68 M3 protein had more than twenty times reduced binding activity to CCL5, but only about five and three times reduced binding to CXCL8 and CCL3 when compared to its full length counterpart. Binding of the full length MHV-72 M3 protein to all chemokines was reduced when compared to MHV-68 M3 protein. Its binding to CCL5 and CCL3 was reduced over ten and seven times. However, its binding to CXCL8 was only slightly reduced (64.8 vs 91.8%). These data implied the significance of the signal sequence and also of a single mutation (at aa 307) for efficient M3 protein binding to some chemokines.

  3. The chemokines CCR1 and CCRL2 have a role in colorectal cancer liver metastasis.

    PubMed

    Akram, Israa G; Georges, Rania; Hielscher, Thomas; Adwan, Hassan; Berger, Martin R

    2016-02-01

    C-C chemokine receptor type 1 (CCR1) and chemokine C-C motif receptor-like 2 (CCRL2) have not yet been sufficiently investigated for their role in colorectal cancer (CRC). Here, we investigated their expression in rat and human CRC samples, their modulation of expression in a rat liver metastasis model, as well as the effects on cellular properties resulting from their knockdown. One rat and five human colorectal cancer cell lines were used. CC531 rat colorectal cells were injected via the portal vein into rats and re-isolated from rat livers after defined periods. Following mRNA isolation, the gene expression was investigated by microarray. In addition, all cell lines were screened for mRNA expression of CCR1 and CCRL2 by reverse transcription polymerase chain reaction (RT-PCR). Cell lines with detectable expression were used for knockdown experiments; and the respective influence was determined on the cells' proliferation, scratch closure, and colony formation. Finally, specimens from the primaries of 50 patients with CRC were monitored by quantitative RT-PCR for CCR1 and CCRL2 expression levels. The microarray studies showed peak increases of CCR1 and CCRL2 in the early phase of liver colonization. Knockdown was sufficient at mRNA but only moderate at protein levels and resulted in modest but significant inhibition of proliferation (p < 0.05), scratch closure, and colony formation (p < 0.05). All human CRC samples were positive for CCR1 and CCRL2 and showed a significant pairwise correlation (p < 0.0004), but there was no correlation with tumor stage or age of patients. In summary, the data point to an important role of CCR1 and CCRL2 under conditions of organ colonization and both chemokine receptors qualify as targets of treatment during early colorectal cancer liver metastasis.

  4. The chemokine receptor CXCR7 is highly expressed in human glioma cells and mediates antiapoptotic effects.

    PubMed

    Hattermann, Kirsten; Held-Feindt, Janka; Lucius, Ralph; Müerköster, Susanne Sebens; Penfold, Mark E T; Schall, Thomas J; Mentlein, Rolf

    2010-04-15

    The chemokine CXCL12/stromal cell-derived factor-1 and its receptor CXCR4 play a major role in tumor invasion, proliferation, and metastasis. Recently, CXCR7 was identified as a novel, alternate receptor for CXCL12 and CXCL11/I-TAC. Because both chemokines are expressed abundantly in human astrocytomas and glioblastomas, we investigated the occurrence and function of both receptors in astroglial tumors. In situ, CXCR7 is highly expressed on tumor endothelial, microglial, and glioma cells whereas CXCR4 has a much more restricted localization; CXCL12 is often colocalized with CXCR7. CXCR7 transcription in tumor homogenates increased with malignancy. In vitro, CXCR7 was highly expressed in all glioma cell lines investigated whereas CXCR4 was only scarcely transcribed on one of eight lines. In contrast, a tumor stem-like cell line preferentially expressed CXCR4 which diminished upon differentiation, whereas CXCR7 increased drastically. Stimulation of CXCR7-positive glioma cells (CXCR4- and CXCR3-negative) by CXCL12 induced transient phosphorylation of extracellular signal-regulated kinases Erk1/2, indicating that the receptor is functionally active. The phosphoinositide-specific phospholipase C inhibitor U73122 effectively inhibited Erk activation and suggests that the mitogen-activated protein kinase pathway is activated indirectly. Whereas proliferation and migration were little influenced, chemokine stimulation prevented camptothecin- and temozolomide-induced apoptosis. The selective CXCR7 antagonist CCX733 reduced the antiapoptotic effects of CXCL12 as shown by nuclear (Nicoletti) staining, caspase-3/7 activity assays, and cleavage of poly(ADP-ribose) polymerase-1. Thus, CXCR7 is a functional receptor for CXCL12 in astrocytomas/glioblastomas and mediates resistance to drug-induced apoptosis. Whereas CXCR7 is found on "differentiated" glioma cells, the alternate receptor CXCR4 is also localized on glioma stem-like cells.

  5. Synovial chemokine expression and relationship with knee symptoms in patients with meniscal tears

    PubMed Central

    Nair, Anjali; Gan, Justin; Bush-Joseph, Charles; Verma, Nikhil; Tetreault, Matthew W.; Saha, Kanta; Margulis, Arkady; Fogg, Louis; Scanzello, Carla R.

    2015-01-01

    Objective In patients with knee OA, synovitis is associated with knee pain and symptoms. We previously identified synovial mRNA expression of a set of chemokines (CCL19, IL-8, CCL5, XCL-1, CCR7) associated with synovitis in patients with meniscal tears but without radiographic OA. CCL19 and CCR7 were also associated with knee symptoms. This study sought to validate expression of these chemokines and association with knee symptoms in more typical patients presenting for meniscal arthroscopy, many who have pre-existing OA. Design Synovial biopsies and fluid (SF) were collected from patients undergoing meniscal arthroscopy. Synovial mRNA expression was measured using quantitative RT-PCR. The Knee Injury and Osteoarthritis Outcome Score (KOOS) was administered preoperatively. Regression analyses determined if associations between chemokine mRNA levels and KOOS scores were independent of other factors including radiographic OA. CCL19 in SF was measured by ELISA, and compared to patients with advanced knee OA and asymptomatic organ donors. Results 90% of patients had intra-operative evidence of early cartilage degeneration. CCL19, IL-8, CCL5, XCL1, CCR7 transcripts were detected in all patients. Synovial CCL19 mRNA levels independently correlated with KOOS Activities of Daily Living scores (95% CI [-8.071, -0.331], p= 0.036), indicating higher expression was associated with more knee-related dysfunction. SF CCL19 was detected in 7 of 10 patients, compared to 4 of 10 asymptomatic donors. Conclusion In typical patients presenting for meniscal arthroscopy, synovial CCL19 mRNA expression was associated with knee-related difficulty with activities of daily living, independent of other factors including presence of radiographic knee OA. PMID:25724256

  6. Delta-Like Ligand 4 Modulates Liver Damage by Down-Regulating Chemokine Expression.

    PubMed

    Shen, Zhe; Liu, Yan; Dewidar, Bedair; Hu, Junhao; Park, Ogyi; Feng, Teng; Xu, Chengfu; Yu, Chaohui; Li, Qi; Meyer, Christoph; Ilkavets, Iryna; Müller, Alexandra; Stump-Guthier, Carolin; Munker, Stefan; Liebe, Roman; Zimmer, Vincent; Lammert, Frank; Mertens, Peter R; Li, Hai; Ten Dijke, Peter; Augustin, Hellmut G; Li, Jun; Gao, Bin; Ebert, Matthias P; Dooley, Steven; Li, Youming; Weng, Hong-Lei

    2016-07-01

    Disrupting Notch signaling ameliorates experimental liver fibrosis. However, the role of individual Notch ligands in liver damage is unknown. We investigated the effects of Delta-like ligand 4 (Dll4) in liver disease. DLL4 expression was measured in 31 human liver tissues by immunohistochemistry. Dll4 function was examined in carbon tetrachloride- and bile duct ligation-challenged mouse models in vivo and evaluated in hepatic stellate cells, hepatocytes, and Kupffer cells in vitro. DLL4 was expressed in patients' Kupffer and liver sinusoidal endothelial cells. Recombinant Dll4 protein (rDll4) ameliorated hepatocyte apoptosis, inflammation, and fibrosis in mice after carbon tetrachloride challenge. In vitro, rDll4 significantly decreased lipopolysaccharide-dependent chemokine expression in both Kupffer and hepatic stellate cells. In bile duct ligation mice, rDll4 induced massive hepatic necrosis, resulting in the death of all animals within 1 week. Inflammatory cell infiltration and chemokine ligand 2 (Ccl2) expression were significantly reduced in rDll4-receiving bile duct ligation mice. Recombinant Ccl2 rescued bile duct ligation mice from rDll4-mediated death. In patients with acute-on-chronic liver failure, DLL4 expression was inversely associated with CCL2 abundance. Mechanistically, Dll4 regulated Ccl2 expression via NF-κB. Taken together, Dll4 modulates liver inflammatory response by down-regulating chemokine expression. rDll4 application results in opposing outcomes in two models of liver damage. Loss of DLL4 may be associated with CCL2-mediated cytokine storm in patients with acute-on-chronic liver failure.

  7. Adaptive Gene Loss? Tracing Back the Pseudogenization of the Rabbit CCL8 Chemokine.

    PubMed

    van der Loo, Wessel; Magalhaes, Maria João; de Matos, Ana Lemos; Abrantes, Joana; Yamada, Fumio; Esteves, Pedro J

    2016-08-01

    Studies of the process of pseudogenization have widened our understanding of adaptive evolutionary change. In Rabbit, an alteration at the second extra-cellular loop of the CCR5 chemokine receptor was found to be associated with the pseudogenization of one of its prime ligands, the chemokine CCL8. This relationship has raised questions about the existence of a causal link between both events, which would imply adaptive gene loss. This hypothesis is evaluated here by tracing back the history of the genetic modifications underlying the chemokine pseudogenization. The obtained data indicate that mutations at receptor and ligand genes occurred after the lineage split of New World Leporids versus Old World Leporids and prior to the generic split of the of Old World species studied, which occurred an estimated 8-9 million years ago. More important, they revealed the emergence, before this zoographical split, of a "slippery" nucleotide motif (CCCCGGG) at the 3' region of CCL8-exon2. Such motives are liable of generating +1G or -1G frameshifts, which could, however, be overcome by "translesion" synthesis or somatic reversion. The CCL8 pseudogenization in the Old World lineage was apparently initiated by three synapomorphic point mutations at the exon2-intron2 boundary which provide at short range premature terminating codons, independently of the reading frame imposed by the slippery motif. The presence of this motif in New World Leporids might allow verifying this scenario. The importance of CCL8-CCR5 signaling in parasite-host interaction would suggest that the CCL8 knock-out in Old World populations might be related to changes in pathogenic environment.

  8. Increased plasma chemokine levels in children with Prader-Willi syndrome.

    PubMed

    Butler, Merlin G; Hossain, Waheeda; Sulsona, Carlos; Driscoll, Daniel J; Manzardo, Ann M

    2015-03-01

    Prader-Willi syndrome (PWS) is caused by loss of paternally expressed genes from the 15q11-q13 region and reportedly rearranged as a cause of autism. Additionally, increased inflammatory markers and features of autism are reported in PWS. Cytokines encoded by genes involved with inflammation, cell proliferation, migration, and adhesion play a role in neurodevelopment and could be disturbed in PWS as abnormal plasma cytokine levels are reported in autism. We analyzed 41 plasma cytokines in a cohort of well-characterized children with PWS between 5 and 11 years of age and unaffected unrelated siblings using multiplex sandwich immunoassays with the Luminex magnetic-bead based platform. Data were analyzed using ANOVA testing for effects of diagnosis, gender, body mass index (BMI) and age on the 24 cytokines meeting laboratory criteria for inclusion. No significant effects were observed for age, gender or BMI. The log-transformed levels of the 24 analyzable cytokines were examined simultaneously using MANOVA adjusting for age and gender and a main effect of diagnosis was found (P-value <0.03). Four of 24 plasma cytokine levels (MCP1, MDC, Eotaxin, RANTES) were significantly higher in children with PWS compared with controls and classified as bioinflammatory chemokines supporting a disturbed immune response unrelated to obesity status. BMI was not statistically different in the two subject groups (PWS or unaffected unrelated siblings) and chemokine levels were not correlated with percentage of total body fat. Additional studies are required to identify whether possible early immunological disturbances and chemokine inflammatory processes found in PWS may contribute to neurodevelopment and behavioral features.

  9. Pancreatic cancer cell migration and metastasis is regulated by chemokine-biased agonism and bioenergetic signaling

    PubMed Central

    Roy, Ishan; McAllister, Donna M.; Gorse, Egal; Dixon, Kate; Piper, Clinton T.; Zimmerman, Noah P.; Getschman, Anthony E.; Tsai, Susan; Engle, Dannielle D.; Evans, Douglas B.; Volkman, Brian F.; Kalyanaraman, Balaraman; Dwinell, Michael B.

    2015-01-01

    Patients with pancreatic ductal adenocarcinoma (PDAC) invariably succumb to metastatic disease, but the underlying mechanisms that regulate PDAC cell movement and metastasis remain little understood. In this study, we investigated the effects of the chemokine gene CXCL12, which is silenced in PDAC tumors yet is sufficient to suppress growth and metastasis when re-expressed. Chemokines like CXCL12 regulate cell movement in a biphasic pattern, with peak migration typically in the low nanomolar concentration range. Herein, we tested the hypothesis that the biphasic cell migration pattern induced by CXCL12 reflected a bias of agonist bioenergetic signaling that might be exploited to interfere with PDAC metastasis. In human and murine PDAC cell models, we observed that non-migratory doses of CXCL12 were sufficient to decrease oxidative phosphorylation and glycolytic capacity and to increase levels of phosphorylated forms of the master metabolic kinase AMPK. Those same doses of CXCL12 locked myosin light chain into a phosphorylated state, thereby decreasing F-actin polymerization and preventing cell migration in a manner dependent upon AMPK and the calcium-dependent kinase CAMKII. Notably, at elevated concentrations of CXCL12 that were insufficient to trigger chemotaxis of PDAC cells, AMPK blockade resulted in increased cell movement. In two preclinical mouse models of PDAC, administration of CXCL12 decreased tumor dissemination, supporting our hypothesis that chemokine-biased agonist signaling may offer a useful therapeutic strategy. Our results offer a mechanistic rationale for further investigation of CXCL12 as a potential therapy to prevent or treat PDAC metastasis. PMID:26330165

  10. CHEMOKINES REGULATE THE MIGRATION OF NEURAL PROGENITORS TO SITES OF NEUROINFLAMMATION

    PubMed Central

    Belmadani, Abdelhak; Tran, Phuong B.; Ren, Dongjun; Miller, Richard J.

    2009-01-01

    Many studies have shown that transplanted or endogenous neural progenitor cells will migrate towards damaged areas of the brain. However, the mechanism underlying this effect is not clear. Here we report that, using hippocampal slice cultures, grafted neural progenitor cells (NPs) migrate towards areas of neuroinflammation, and that chemokines are a major regulator of this process. Migration of NPs was observed after injecting an inflammatory stimulus into the area of the fimbria, and transplanting green fluorescent protein (EGFP)-labeled NPs into the dentate gyrus (DG) of cultured hippocampal slices. 3–7 days following transplantation, EGFP-NPs in control slices showed little tendancy to migrate and had differentiated into neurons and glia. In contrast, in slices injected with inflammatory stimuli, EGFP-NPs migrated towards the site of the injection. NPs in these slices also survived less well. The inflammatory stimuli used were either a combination of the cytokines TNF-α and IFN-γ, the bacterial toxin LPS, the HIV-1 coat protein gp120 or a β-amyloid expressing adenovirus. We showed that these inflammatory stimuli increased the synthesis of numerous chemokines and cytokines by hippocampal slices. When EGFP-NPs from CCR2 ko mice were transplanted into slices they exhibited little migration towards sites of inflammation. Similarly, wild type EGFP-NPs exhibited little migration towards inflammatory sites when transplanted into slices prepared from MCP-1 ko mice. These data indicate that factors secreted by sites of neuroinflammation are attractive to neural progenitors and suggest that chemokines such as MCP-1 play an important role in this process. PMID:16554469

  11. Chemokines in the cerebrospinal fluid of patients with active and stable relapsing-remitting multiple sclerosis.

    PubMed

    Moreira, M A; Souza, A L S; Lana-Peixoto, M A; Teixeira, M M; Teixeira, A L

    2006-04-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the human central nervous system. Although its etiology is unknown, the accumulation and activation of mononuclear cells in the central nervous system are crucial to its pathogenesis. Chemokines have been proposed to play a major role in the recruitment and activation of leukocytes in inflammatory sites. They are divided into subfamilies on the basis of the location of conserved cysteine residues. We determined the levels of some CC and CXC chemokines in the cerebrospinal fluid (CSF) of 23 relapsing-remitting MS patients under interferon-ss-1a therapy and 16 control subjects using ELISA. MS patients were categorized as having active or stable disease. CXCL10 was significantly increased in the CSF of active MS patients (mean +/- SEM, 369.5 +/- 69.3 pg/mL) when compared with controls (178.5 +/- 29.1 pg/mL, P < 0.05). CSF levels of CCL2 were significantly lower in active MS (144.7 +/- 14.4 pg/mL) than in controls (237.1 +/- 16.4 pg/mL, P < 0.01). There was no difference in the concentration of CCL2 and CXCL10 between patients with stable MS and controls. CCL5 was not detectable in the CSF of most patients or controls. The qualitative and quantitative differences of chemokines in CSF during relapses of MS suggest that they may be useful as a marker of disease activity and of the mechanisms involved in the pathogenesis of the disease.

  12. A Chemokine Expressed in Lymphoid High Endothelial Venules Promotes the Adhesion and Chemotaxis of Naive T Lymphocytes

    NASA Astrophysics Data System (ADS)

    Gunn, Michael D.; Tangemann, Kirsten; Tam, Carmen; Cyster, Jason G.; Rosen, Steven D.; Williams, Lewis T.

    1998-01-01

    Preferential homing of naive lymphocytes to secondary lymphoid organs is thought to involve the action of chemokines, yet no chemokine has been shown to have either the expression pattern or the activities required to mediate this process. Here we show that a chemokine represented in the EST database, secondary lymphoid-tissue chemokine (SLC), is expressed in the high endothelial venules of lymph nodes and Peyer's patches, in the T cell areas of spleen, lymph nodes, and Peyer's patches, and in the lymphatic endothelium of multiple organs. SLC is a highly efficacious chemoattractant for lymphocytes with preferential activity toward naive T cells. Moreover, SLC induces firm adhesion of naive T lymphocytes via β 2 integrin binding to the counter receptor, intercellular adhesion molecule-1, a necessary step for lymphocyte recruitment. SLC is the first chemokine demonstrated to have the characteristics required to mediate homing of lymphocytes to secondary lymphoid organs. In addition, the expression of SLC in lymphatic endothelium suggests that the migration of lymphocytes from tissues into efferent lymphatics may be an active process mediated by this molecule.

  13. Chemokines and relapses in childhood acute lymphoblastic leukemia: A role in migration and in resistance to antileukemic drugs.

    PubMed

    Gómez, Ana M; Martínez, Carolina; González, Miguel; Luque, Alfonso; Melen, Gustavo J; Martínez, Jesús; Hortelano, Sonsoles; Lassaletta, Álvaro; Madero, Luís; Ramírez, Manuel

    2015-10-01

    We studied whether chemokines may have a role in relapses in childhood acute lymphoblastic leukemia (ALL). We compared the levels of chemokine receptors in marrow samples from 82 children with ALL at diagnosis versus 15 at relapses, and quantified the levels of chemokines in central system fluid (CSF) samples. The functional role of specific chemokines was studied in vitro and in vivo. The expression of some chemokine receptors was upregulated upon leukemic relapse, both in B- and in T-ALL, and in cases of medullary and extramedullary involvement. CXCL10 induced chemotaxis in leukemic cell lines and in primary leukemic cells, depending upon the levels of CXCR3 expression. CXCL10 specifically diminished chemotherapy-induced apoptosis on ALL cells expressing CXCR3, partially inhibiting caspase activation and maintaining the levels of the antiapoptotic protein Bcl-2. Finally, immunodeficient mice engrafted with CXCR3-expressing human leukemic cells showed decreased infiltration of marrow, spleen, and CNS after receiving a CXCR3-antagonist molecule. CXCR3 signaling in ALL may have a dual function: chemotactic for the localisation of leukemic blasts in specific niches, and it may also confer resistance to chemotherapy, enhancing the chances for relapses.

  14. Multiple roles of chemokine CXCL12 in the central nervous system: A migration from immunology to neurobiology

    PubMed Central

    Li, Meizhang; Ransohoff, Richard M.

    2008-01-01

    Chemotactic cytokines (chemokines) have been traditionally defined as small (10–14 kDa) secreted leukocyte chemoattractants. However, chemokines and their cognate receptors are constitutively expressed in the central nervous system (CNS) where immune activities are under stringent control. Why and how the CNS uses the chemokine system to carry out its complex physiological functions has intrigued neurobiologists. Here, we focus on chemokine CXCL12 and its receptor CXCR4 that have been widely characterized in peripheral tissues and delineate their main functions in the CNS. Extensive evidence supports CXCL12 as a key regulator for early development of the CNS. CXCR4 signaling is required for the migration of neuronal precursors, axon guidance/pathfinding and maintenance of neural progenitor cells (NPCs). In the mature CNS, CXCL12 modulates neurotransmission, neurotoxicity and neuroglial interactions. Thus, chemokines represent an inherent system that helps establish and maintain CNS homeostasis. In addition, growing evidence implicates altered expression of CXCL12 and CXCR4 in the pathogenesis of CNS disorders such as HIV-associated encephalopathy, brain tumor, stroke and multiple sclerosis (MS), making them the plausible targets for future pharmacological intervention. PMID:18177992

  15. Role of Chemokine Network in the Development and Progression of Ovarian Cancer: A Potential Novel Pharmacological Target

    PubMed Central

    Barbieri, Federica; Bajetto, Adriana; Florio, Tullio

    2010-01-01

    Ovarian cancer is the most common type of gynecologic malignancy. Despite advances in surgery and chemotherapy, the survival rate is still low since most ovarian cancers relapse and become drug-resistant. Chemokines are small chemoattractant peptides mainly involved in the immune responses. More recently, chemokines were also demonstrated to regulate extra-immunological functions. It was shown that the chemokine network plays crucial functions in the tumorigenesis in several tissues. In particular the imbalanced or aberrant expression of CXCL12 and its receptor CXCR4 strongly affects cancer cell proliferation, recruitment of immunosuppressive cells, neovascularization, and metastasization. In the last years, several molecules able to target CXCR4 or CXCL12 have been developed to interfere with tumor growth, including pharmacological inhibitors, antagonists, and specific antibodies. This chemokine ligand/receptor pair was also proposed to represent an innovative therapeutic target for the treatment of ovarian cancer. Thus, a thorough understanding of ovarian cancer biology, and how chemokines may control these different biological activities might lead to the development of more effective therapies. This paper will focus on the current biology of CXCL12/CXCR4 axis in the context of understanding their potential role in ovarian cancer development. PMID:20049170

  16. Chemokine biomarkers in central nervous system tissue and cerebrospinal fluid in the Theiler's virus model mirror those in multiple sclerosis.

    PubMed

    Pachner, Andrew R; Li, Libin; Gilli, Francesca

    2015-12-01

    Chemokines have increasingly been implicated in inflammatory and infectious disease of the central nervous system, both as biomarkers and as molecules important in pathogenesis. Multiple sclerosis is a disabling disease of unknown etiology, and recently chemokines have been identified as being upregulated molecules in the disease. We were interested in how the chemokine expression patterns in the central nervous system of a viral model of multiple sclerosis, Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), compared to that in humans with multiple sclerosis. Cerebrospinal fluid and spinal cord tissue were analyzed for expression of a range of cytokines and chemokines. Three chemokines, CXCL10, CXCL9, and CCL5 were strongly and specifically upregulated in both the cerebrospinal fluid and spinal cord in chronic disease, a pattern identical to that in multiple sclerosis. These data, the first study of cytokines in central nervous system tissue and cerebrospinal fluid in TMEV-IDD, support the hypothesis that multiple sclerosis is caused by chronic infection with an as-yet unidentified pathogen, possibly a picornavirus.

  17. 12-Chemokine Gene Signature Identifies Lymph Node-like Structures in Melanoma: Potential for Patient Selection for Immunotherapy?

    NASA Astrophysics Data System (ADS)

    Messina, Jane L.; Fenstermacher, David A.; Eschrich, Steven; Qu, Xiaotao; Berglund, Anders E.; Lloyd, Mark C.; Schell, Michael J.; Sondak, Vernon K.; Weber, Jeffrey S.; Mulé, James J.

    2012-10-01

    We have interrogated a 12-chemokine gene expression signature (GES) on genomic arrays of 14,492 distinct solid tumors and show broad distribution across different histologies. We hypothesized that this 12-chemokine GES might accurately predict a unique intratumoral immune reaction in stage IV (non-locoregional) melanoma metastases. The 12-chemokine GES predicted the presence of unique, lymph node-like structures, containing CD20+ B cell follicles with prominent areas of CD3+ T cells (both CD4+ and CD8+ subsets). CD86+, but not FoxP3+, cells were present within these unique structures as well. The direct correlation between the 12-chemokine GES score and the presence of unique, lymph nodal structures was also associated with better overall survival of the subset of melanoma patients. The use of this novel 12-chemokine GES may reveal basic information on in situ mechanisms of the anti-tumor immune response, potentially leading to improvements in the identification and selection of melanoma patients most suitable for immunotherapy.

  18. Induction of the MCP chemokine cluster cascade in the periphery by cancer cell-derived Ccl3.

    PubMed

    Farmaki, Elena; Kaza, Vimala; Papavassiliou, Athanasios G; Chatzistamou, Ioulia; Kiaris, Hippokratis

    2017-03-28

    The induction of localized pro-inflammatory niches in the periphery is instrumental in metastasis. In order to better understand how tumors engage distal sites and activate a pro-inflammatory response we utilized syngeneic breast cancers as a model and showed that soluble factors from the neoplastic epithelium activate the expression of the monocyte chemoattractive protein (MCP) chemokines of the mouse 11C cluster that include Ccl1, Ccl2, Ccl7, Ccl8, Ccl11 and Ccl12. Tissues such as the lungs and the brain, that are more prone to colonization by breast cancer cells, were more sensitive to MCP cluster chemokine induction than others such as the liver. Subsequent analyses involving chemokine arrays in breast cancer cells and media followed by functional validation assays in in vitro and in vivo identified the cytokine Ccl3 as the principle mediator of the communication between the neoplastic epithelium and the peripheral tissues in terms of MCP cluster chemokine induction. Our results show that MCP chemokines are activated in peripheral tissues of breast cancer-bearing mice, by a mechanism that involves breast cancer cell-derived Ccl3. Interference with the expression of cancer cell-derived Ccl3 may find application in the management of breast cancer metastases.

  19. Potential of CXCR4/CXCL12 Chemokine Axis in Cancer Drug Delivery

    PubMed Central

    Wang, Yan; Xie, Ying; Oupický, David

    2016-01-01

    This review discusses the potential of CXCR4 chemokine receptor in the design of anticancer and antimetastatic drug delivery systems. The role of CXCR4 in cancer progression and metastasis is discussed in the context of the development of several types of drug delivery strategies. Overview of drug delivery systems targeted to cancers that overexpress CXCR4 is provided, together with the main types of CXCR4-binding ligands used in targeting applications. Drug delivery applications that take advantage of CXCR4 inhibition to achieve enhanced anticancer and antimetastatic activity of combination treatments are also discussed. PMID:27088072

  20. Differential Modulation of Retinal Degeneration by Ccl2 and Cx3cr1 Chemokine Signalling

    PubMed Central

    Luhmann, Ulrich F. O.; Lange, Clemens A.; Robbie, Scott; Munro, Peter M. G.; Cowing, Jill A.; Armer, Hannah E. J.; Luong, Vy; Carvalho, Livia S.; MacLaren, Robert E.; Fitzke, Frederick W.; Bainbridge, James W. B.; Ali, Robin R.

    2012-01-01

    Microglia and macrophages are recruited to sites of retinal degeneration where local cytokines and chemokines determine protective or neurotoxic microglia responses. Defining the role of Ccl2-Ccr2 and Cx3cl1-Cx3cr1 signalling for retinal pathology is of particular interest because of its potential role in age-related macular degeneration (AMD). Ccl2, Ccr2, and Cx3cr1 signalling defects impair macrophage trafficking, but have, in several conflicting studies, been reported to show different degrees of age-related retinal degeneration. Ccl2/Cx3cr1 double knockout (CCDKO) mice show an early onset retinal degeneration and have been suggested as a model for AMD. In order to understand phenotypic discrepancies in different chemokine knockout lines and to study how defects in Ccl2 and/or Cx3cr1 signalling contribute to the described early onset retinal degeneration, we defined primary and secondary pathological events in CCDKO mice. To control for genetic background variability, we compared the original phenotype with that of single Ccl2, Cx3cr1 and Ccl2/Cx3cr1 double knockout mice obtained from backcrosses of CCDKO with C57Bl/6 mice. We found that the primary pathological event in CCDKO mice develops in the inferior outer nuclear layer independently of light around postnatal day P14. RPE and vascular lesions develop secondarily with increasing penetrance with age and are clinically similar to retinal telangiectasia not to choroidal neovascularisation. Furthermore, we provide evidence that a third autosomal recessive gene causes the degeneration in CCDKO mice and in all affected re-derived lines and subsequently demonstrated co-segregation of the naturally occurring RD8 mutation in the Crb1 gene. By comparing CCDKO mice with re-derived CCl2−/−/Crb1Rd8/RD8, Cx3cr1−/−/Crb1Rd8/RD8 and CCl2−/−/Cx3cr1−/−/Crb1Rd8/RD8 mice, we observed a differential modulation of the retinal phenotype by genetic background and both chemokine signalling pathways. These findings

  1. Topically applied recombinant chemokine analogues fully protect macaques from vaginal simian-human immunodeficiency virus challenge.

    PubMed

    Veazey, Ronald S; Ling, Binhua; Green, Linda C; Ribka, Erin P; Lifson, Jeffrey D; Piatak, Michael; Lederman, Michael M; Mosier, Donald; Offord, Robin; Hartley, Oliver

    2009-05-15

    Effective strategies for preventing human immunodeficiency virus infection are urgently needed, but recent failures in key clinical trials of vaccines and microbicides highlight the need for new approaches validated in relevant animal models. Here, we show that 2 new chemokine (C-C motif) receptor 5 inhibitors, 5P12-RANTES (regulated on activation, normal T cell expressed and secreted) and 6P4-RANTES, fully protect against infection in the rhesus vaginal challenge model. These highly potent molecules, which are amenable to low-cost production, represent promising new additions to the microbicides pipeline.

  2. Polymorphisms of key chemokine genes and survival of non-small cell lung cancer in Chinese.

    PubMed

    Ma, Hongxia; Shu, Yongqian; Pan, Shiyang; Chen, Jiaping; Dai, Juncheng; Jin, Guangfu; Hu, Zhibin; Shen, Hongbing

    2011-11-01

    Chemokines play an important role in the pathogenesis of non-small cell lung cancer (NSCLC). Although the deregulations of chemokines have been reported to be associated with the development and progression of many human cancers including lung cancer, polymorphisms of chemokine genes have not been examined with the survival of NSCLC. We systematically investigated associations of 23 common potentially functional SNPs in the key chemokine genes (CCL2, CCL5, CCL8, CCL20, CCL22, CXCL1, CXCL6, CXCL9 and CXCL12) with the survival of NSCLC in a case cohort of 568 NSCLC patients in a Chinese population. The results showed that variant genotypes of CCL2 rs3760396 and CCL8 rs3138035 were associated with a significantly decreased risk of death for NSCLC (dominant model: adjusted HR=0.65, 95% CI=0.48-0.89 for rs3760396; dominant model: adjusted HR=0.65, 95% CI=0.49-0.86 for rs3138035), while CXCL12 rs1804429 was associated with an increased risk of death for NSCLC (CC vs AA: adjusted HR=6.03, 95% CI=1.44-25.24). Further stepwise regression analysis suggested that only rs3138035, a SNP located at 5'-flanking region of CCL8, was an independently favorable factor for the prognosis of NSCLC and the protective effect was more evident in smokers (adjusted HR=0.61, 95% CI=0.42-0.87), patients with squamous cell cancer (adjusted HR=0.58, 95% CI=0.35-0.96), patients with early stage (adjusted HR=0.32, 95% CI=0.15-0.67) and patients treated with surgical operation (adjusted HR=0.47, 95% CI=0.31-0.71). In addition, the interaction analysis demonstrated that stage and surgical operation interacted with the genetic effect of rs3138035 in relation to NSCLC survival (adjusted P(interaction)=0.02 and 0.01, respectively). These findings suggest that CCL8 rs3138035 may be one of the candidate biomarkers for NSCLC survival and may modify death risk associated with stage and surgical operation. Larger studies incorporating functional evaluations are warranted to validate our findings.

  3. Diversity and Inter-Connections in the CXCR4 Chemokine Receptor/Ligand Family: Molecular Perspectives

    PubMed Central

    Pawig, Lukas; Klasen, Christina; Weber, Christian; Bernhagen, Jürgen; Noels, Heidi

    2015-01-01

    CXCR4 and its ligand CXCL12 mediate the homing of progenitor cells in the bone marrow and their recruitment to sites of injury, as well as affect processes such as cell arrest, survival, and angiogenesis. CXCL12 was long thought to be the sole CXCR4 ligand, but more recently the atypical chemokine macrophage migration inhibitory factor (MIF) was identified as an alternative, non-cognate ligand for CXCR4 and shown to mediate chemotaxis and arrest of CXCR4-expressing T-cells. This has complicated the understanding of CXCR4-mediated signaling and associated biological processes. Compared to CXCL12/CXCR4-induced signaling, only few details are known on MIF/CXCR4-mediated signaling and it remains unclear to which extent MIF and CXCL12 reciprocally influence CXCR4 binding and signaling. Furthermore, the atypical chemokine receptor 3 (ACKR3) (previously CXCR7) has added to the complexity of CXCR4 signaling due to its ability to bind CXCL12 and MIF, and to evoke CXCL12- and MIF-triggered signaling independently of CXCR4. Also, extracellular ubiquitin (eUb) and the viral protein gp120 (HIV) have been reported as CXCR4 ligands, whereas viral chemokine vMIP-II (Herpesvirus) and human β3-defensin (HBD-3) have been identified as CXCR4 antagonists. This review will provide insight into the diversity and inter-connections in the CXCR4 receptor/ligand family. We will discuss signaling pathways initiated by binding of CXCL12 vs. MIF to CXCR4, elaborate on how ACKR3 affects CXCR4 signaling, and summarize biological functions of CXCR4 signaling mediated by CXCL12 or MIF. Also, we will discuss eUb and gp120 as alternative ligands for CXCR4, and describe vMIP-II and HBD-3 as antagonists for CXCR4. Detailed insight into biological effects of CXCR4 signaling und underlying mechanisms, including diversity of CXCR4 ligands and inter-connections with other (chemokine) receptors, is clinically important, as the CXCR4 antagonist AMD3100 has been approved as stem cell mobilizer in specific

  4. A CCL chemokine-derived peptide (CDIP-2) exerts anti-inflammatory activity via CCR1, CCR2 and CCR3 chemokine receptors: Implications as a potential therapeutic treatment of asthma.

    PubMed

    Méndez-Enríquez, E; Medina-Tamayo, J; Soldevila, G; Fortoul, T I; Anton, B; Flores-Romo, L; García-Zepeda, E A

    2014-05-01

    Allergic asthma is a chronic inflammatory disease characterized by the accumulation of eosinophils, Th2 cells and mononuclear cells in the airways, leading to changes in lung architecture and subsequently reduced respiratory function. We have previously demonstrated that CDIP-2, a chemokine derived peptide, reduced in vitro chemotaxis and decreased cellular infiltration in a murine model of allergic airway inflammation. However, the mechanisms involved in this process have not been identified yet. Now, we found that CDIP-2 reduces chemokine-mediated functions via interactions with CCR1, CCR2 and CCR3. Moreover, using bone marrow-derived eosinophils, we demonstrated that CDIP-2 modifies the calcium fluxes induced by CCL11 and down-modulated CCR3 expression. Finally, CDIP-2 treatment in a murine model of OVA-induced allergic airway inflammation reduced leukocyte recruitment and decreases production of cytokines. These data suggest that chemokine-derived peptides represent new therapeutic tools to generate more effective antiinflammatory drugs.

  5. Vascular Stem/Progenitor Cell Migration Induced by Smooth Muscle Cell‐Derived Chemokine (C‐C Motif) Ligand 2 and Chemokine (C‐X‐C motif) Ligand 1 Contributes to Neointima Formation

    PubMed Central

    Yu, Baoqi; Wong, Mei Mei; Potter, Claire M. F.; Simpson, Russell M. L.; Karamariti, Eirini; Zhang, Zhongyi; Zeng, Lingfang; Warren, Derek; Hu, Yanhua

    2016-01-01

    Abstract Recent studies have shown that Sca‐1+ (stem cell antigen‐1) stem/progenitor cells within blood vessel walls may contribute to neointima formation, but the mechanism behind their recruitment has not been explored. In this work Sca‐1+ progenitor cells were cultivated from mouse vein graft tissue and found to exhibit increased migration when cocultured with smooth muscle cells (SMCs) or when treated with SMC‐derived conditioned medium. This migration was associated with elevated levels of chemokines, CCL2 (chemokine (C‐C motif) ligand 2) and CXCL1 (chemokine (C‐X‐C motif) ligand 1), and their corresponding receptors on Sca‐1+ progenitors, CCR2 (chemokine (C‐C motif) receptor 2) and CXCR2 (chemokine (C‐X‐C motif) receptor 2), which were also upregulated following SMC conditioned medium treatment. Knockdown of either receptor in Sca‐1+ progenitors significantly inhibited cell migration. The GTPases Cdc42 and Rac1 were activated by both CCL2 and CXCL1 stimulation and p38 phosphorylation was increased. However, only Rac1 inhibition significantly reduced migration and p38 phosphorylation. After Sca‐1+ progenitors labeled with green fluorescent protein (GFP) were applied to the adventitial side of wire‐injured mouse femoral arteries, a large proportion of GFP‐Sca‐1+‐cells were observed in neointimal lesions, and a marked increase in neointimal lesion formation was seen 1 week post‐operation. Interestingly, Sca‐1+ progenitor migration from the adventitia to the neointima was abrogated and neointima formation diminished in a wire injury model using CCL2−/− mice. These findings suggest vascular stem/progenitor cell migration from the adventitia to the neointima can be induced by SMC release of chemokines which act via CCR2/Rac1/p38 and CXCR2/Rac1/p38 signaling pathways. Stem Cells 2016;34:2368–2380 PMID:27300479

  6. Cutting edge: JAM-C controls homeostatic chemokine secretion in lymph node fibroblastic reticular cells expressing thrombomodulin.

    PubMed

    Frontera, Vincent; Arcangeli, Marie-Laure; Zimmerli, Claudia; Bardin, Florence; Obrados, Elodie; Audebert, Stéphane; Bajenoff, Marc; Borg, Jean-Paul; Aurrand-Lions, Michel

    2011-07-15

    The development and maintenance of secondary lymphoid organs, such as lymph nodes, occur in a highly coordinated manner involving lymphoid chemokine production by stromal cells. Although developmental pathways inducing lymphoid chemokine production during organogenesis are known, signals maintaining cytokine production in adults are still elusive. In this study, we show that thrombomodulin and platelet-derived growth factor receptor α identify a population of fibroblastic reticular cells in which chemokine secretion is controlled by JAM-C. We demonstrate that Jam-C-deficient mice and mice treated with Ab against JAM-C present significant decreases in stromal cell-derived factor 1α (CXCL12), CCL21, and CCL19 intranodal content. This effect is correlated with reduced naive T cell egress from lymph nodes of anti-JAM-C-treated mice.

  7. CXC Chemokine CXCL12 and Its Receptor CXCR4 in Tree Shrews (Tupaia belangeri): Structure, Expression and Function

    PubMed Central

    Meng, Shengke; Zhang, Lichao; Wang, Wenxue; Jiang, Zongmin; Yu, Min; Cui, Qinghua; Li, Meizhang

    2014-01-01

    Chemokines are small secreted proteins functionally involved in the immune system's regulation of lymphocyte migration across numerous mammalian species. Given its growing popularity in immunological models, we investigated the structure and function of chemokine CXCL12 protein in tree shrews. We found that CXCL12 and its receptor CXCR4 in tree shrew had structural similarities to their homologous human proteins. Phylogenetic analysis supports the view that tree shrew is evolutionarily-close to the primates. Our results also showed that the human recombinant CXCL12 protein directly enhanced the migration of tree shrew's lymphocytes in vitro, while AMD3100 enhanced the mobilization of hematopoietic progenitor cells (HPCs) from bone marrow into peripheral blood in tree shrew in vivo. Collectively, these findings suggested that chemokines in tree shrews may play the same or similar roles as those in humans, and that the tree shrew is a viable animal model for studying human immunological diseases. PMID:24858548

  8. CXC chemokine CXCL12 and its receptor CXCR4 in tree shrews (Tupaia belangeri): structure, expression and function.

    PubMed

    Chen, Guiyuan; Wang, Wei; Meng, Shengke; Zhang, Lichao; Wang, Wenxue; Jiang, Zongmin; Yu, Min; Cui, Qinghua; Li, Meizhang

    2014-01-01

    Chemokines are small secreted proteins functionally involved in the immune system's regulation of lymphocyte migration across numerous mammalian species. Given its growing popularity in immunological models, we investigated the structure and function of chemokine CXCL12 protein in tree shrews. We found that CXCL12 and its receptor CXCR4 in tree shrew had structural similarities to their homologous human proteins. Phylogenetic analysis supports the view that tree shrew is evolutionarily-close to the primates. Our results also showed that the human recombinant CXCL12 protein directly enhanced the migration of tree shrew's lymphocytes in vitro, while AMD3100 enhanced the mobilization of hematopoietic progenitor cells (HPCs) from bone marrow into peripheral blood in tree shrew in vivo. Collectively, these findings suggested that chemokines in tree shrews may play the same or similar roles as those in humans, and that the tree shrew is a viable animal model for studying human immunological diseases.

  9. Data report on inflammatory C-C chemokines among insulin-using women with diabetes mellitus and breast cancer.

    PubMed

    Wintrob, Zachary A P; Hammel, Jeffrey P; Nimako, George K; Fayazi, Zahra S; Gaile, Dan P; Davis, Erin E; Forrest, Alan; Ceacareanu, Alice C

    2017-04-01

    Injectable insulin use may interfere with pro-inflammatory cytokines' production and, thus, play a role in the activation of tumor-associated macrophages - a process mainly influenced by inflammatory C-C chemokines. The data presented shows the relationship between pre-existing use of injectable insulin in women diagnosed with breast cancer and type 2 diabetes mellitus, the inflammatory C-C chemokine profiles at the time of breast cancer diagnosis, and subsequent cancer outcomes. A Pearson correlation analysis stratified by insulin use and controls is also provided. We present the observed relationship between the investigated C-C chemokines and between each of these biomarkers and previously reported adipokines levels in this study population [1].

  10. Emerging role of chemokine CC motif ligand 4 related mechanisms in diabetes mellitus and cardiovascular disease: friends or foes?

    PubMed

    Chang, Ting-Ting; Chen, Jaw-Wen

    2016-08-24

    Chemokines are critical components in pathology. The roles of chemokine CC motif ligand 4 (CCL4) and its receptor are associated with diabetes mellitus (DM) and atherosclerosis cardiovascular diseases. However, due to the complexity of these diseases, the specific effects of CCL4 remain unclear, although recent reports have suggested that multiple pathways are related to CCL4. In this review, we provide an overview of the role and potential mechanisms of CCL4 and one of its major receptors, fifth CC chemokine receptor (CCR5), in DM and cardiovascular diseases. CCL4-related mechanisms, including CCL4 and CCR5, might provide potential therapeutic targets in DM and/or atherosclerosis cardiovascular diseases.

  11. Activity-regulated, cytoskeleton-associated protein (Arc) is essential for visceral endoderm organization during early embryogenesis.

    PubMed

    Liu, D; Bei, D; Parmar, H; Matus, A

    2000-04-01

    Activity-regulated, cytoskeleton-associated protein (Arc) was first identified as an immediate-early gene regulated by synaptic activity. We have studied its functional role in vivo using a gene-targeting approach. We found that Arc is encoded by a single exon, and Arc mRNA is ubiquitously expressed in early mouse embryos. Homozygous Arc mutants are severely growth-retarded, fail to gastrulate and subsequently die before day 8.5 of embryogenesis. Further analysis revealed severe disorganization of visceral endoderm formation, and total separation and ectopic location of embryonic and extraembryonic structure. These findings demonstrate that Arc function is essential for early embryo development and patterning in mice, and support the hypothesis that signaling from visceral endoderm is essential for normal patterning of the extraembryonic and embryonic structure.

  12. Natural killer cells produce T cell-recruiting chemokines in response to antibody-coated tumor cells.

    PubMed

    Roda, Julie M; Parihar, Robin; Magro, Cynthia; Nuovo, Gerard J; Tridandapani, Susheela; Carson, William E

    2006-01-01

    In the current report, we have examined the ability of natural killer (NK) cells to produce T cell-recruiting chemokines following dual stimulation with interleukin (IL)-2 or IL-12 and human breast cancer cells coated with an antitumor antibody (trastuzumab). NK cells stimulated in this manner secreted an array of T cell-recruiting chemotactic factors, including IL-8, macrophage-derived chemokine, macrophage inflammatory protein 1alpha (MIP-1alpha), monocyte chemoattractant protein 1, and regulated on activation, normal T-cell expressed and secreted (RANTES), whereas stimulation of NK cells with either agent alone had minimal effect. Furthermore, these factors were functional for T-cell chemotaxis as culture supernatants derived from costimulated NK cells induced migration of both naïve and activated T cells in an in vitro chemotaxis assay. T-cell migration was significantly reduced when neutralizing antibodies to IL-8, MIP-1alpha, or RANTES were added to culture supernatants before their use in the chemotaxis assay. In addition, coadministration of trastuzumab-coated tumor cells and IL-12 to mice led to enhanced serum MIP-1alpha. As a clinical correlate, we examined the chemokine content of serum samples from breast cancer patients enrolled on a phase I trial of trastuzumab and IL-12, and found elevated levels of IL-8, RANTES, IFN-gamma inducible protein 10, monokine induced by IFN-gamma, and MIP-1alpha, specifically in those patients that experienced a clinical benefit. Sera from these patients exhibited the ability to direct T-cell migration in a chemotaxis assay, and neutralization of chemokines abrogated this effect. These data are the first to show chemokine production by NK cells, specifically in response to stimulation with antibody-coated tumor cells, and suggest a potential role for NK cell-derived chemokines in patients receiving therapeutic monoclonal antibodies.

  13. Equine herpesvirus type-1 modulates CCL2, CCL3, CCL5, CXCL9, and CXCL10 chemokine expression.

    PubMed

    Wimer, Christine L; Damiani, Armando; Osterrieder, Nikolaus; Wagner, Bettina

    2011-04-15

    Equine herpesvirus type 1 (EHV-1) is highly prevalent in horses and causes rhinopneumonitis, abortion, and encephalopathy. Studies on the related human herpes simplex virus and of murine models of EHV-1 suggest that chemokines play important roles in coordinating of innate and adaptive immune responses, and thus effective control of herpesvirus infection and prevention of severe clinical disease. Here, equine peripheral blood mononuclear cells (PBMC) were infected with one of three EHV-1 strains, which differ in pathogenicity (RacL11, NY03=abortogenic, Ab4=neurogenic). Changes in CCL2, CCL3, CCL5, CXCL9 and CXCL10 chemokine gene expression relative to non-infected PBMC were measured by real-time PCR. CXCL9 and CXCL10 gene expression was up-regulated 10h post infection and decreased to the level of non-infected cells after 24h. CCL2 and CCL3 were significantly down-regulated 24h post infection with NY03 and Ab4. CCL5 was up-regulated 24h after infection with RacL11. Ab4 infected PBMC had significantly lower expression of all chemokines except CCL2 24h post infection then RacL11 infected cells. While there was not a significant difference between NY03 and the other strains, there was a trend with each chemokine toward NY03 inducing less expression then RacL11 but more then Ab4. The data suggested that EHV-1 infection of PBMC induced up-regulation of inflammatory chemokines CCL5, CXCL9 and CXCL10, and down-regulation of chemotactic CCL2 and CCL3. The data also implies that different EHV-1 strains have varying effects on all five chemokines, with the nuropathogenic strain, Ab4, having the greatest suppressive potential.

  14. Chemokines fail to up-regulate beta 1 integrin-dependent adhesion in human Th2 T lymphocytes.

    PubMed

    Clissi, B; D'Ambrosio, D; Geginat, J; Colantonio, L; Morrot, A; Freshney, N W; Downward, J; Sinigaglia, F; Pardi, R

    2000-03-15

    Th1 and Th2 cells are functionally distinct subsets of CD4+ T lymphocytes whose tissue-specific homing to sites of inflammation is regulated in part by the differential expression of P- and E-selectin ligands and selected chemokine receptors. Here we investigated the expression and function of beta 1 integrins in Th1 and Th2 cells polarized in vitro. Th1 lymphocytes adhere transiently to the extracellular matrix ligands laminin 1 and fibronectin in response to chemokines such as RANTES and stromal cell-derived factor-1, and this process is paralleled by the activation of the Rac1 GTPase and by a rapid burst of actin polymerization. Selective inhibitors of phosphoinositide-3 kinase prevent efficiently all of the above processes, whereas the protein kinase C inhibitor bisindolylmaleimide prevents chemokine-induced adhesion without affecting Rac1 activation and actin polymerization. Notably, chemokine-induced adhesion to beta 1 integrin ligands is markedly reduced in Th2 cells. Such a defect cannot be explained by a reduced sensitivity to chemokine stimulation in this T cell subset, nor by a defective activation of the signaling cascade involving phosphoinositide-3 kinase, Rac1, and actin turnover, as all these processes are activated at comparable levels by chemokines in the two subsets. We propose that reduced beta 1 integrin-mediated adhesion in Th2 cells may restrain their ability to invade and/or reside in sites of chronic inflammation, which are characterized by thickening of basement membranes and extensive fibrosis, requiring efficient interaction with organized extracellular matrices.

  15. C-reactive protein (CRP) induces chemokine secretion via CD11b/ICAM-1 interaction in human adherent monocytes.

    PubMed

    Montecucco, Fabrizio; Steffens, Sabine; Burger, Fabienne; Pelli, Graziano; Monaco, Claudia; Mach, François

    2008-10-01

    Several studies support C-reactive protein (CRP) as a systemic cardiovascular risk factor. The recent detection of CRP in arterial intima suggests a dual activity in atherosclerosis as a circulating and tissue mediator on vascular and immune cells. In the present paper, we focused on the inflammatory effects of CRP on human monocytes, which were isolated by Ficoll-Percoll gradients and cultured in adherence to polystyrene, endothelial cell monolayer, or in suspension. Chemokine levels, adhesion molecule, and chemokine receptor expression were detected by ELISA, flow cytometry, and real-time RT-PCR. Migration assays were performed in a Boyden chamber. Stimulation with CRP induced release of CCL2, CCL3, and CCL4 in adherent monocytes through the binding to CD32a, CD32b, and CD64, whereas no effect was observed in suspension culture. This was associated with CRP-induced up-regulation of adhesion molecules membrane-activated complex 1 (Mac-1) and ICAM-1 on adherent monocytes. Blockade of Mac-1/ICAM-1 interaction inhibited the CRP-induced chemokine secretion. In addition, CRP reduced mRNA and surface expression of corresponding chemokine receptors CCR1, CCR2, and CCR5 in adherent monocytes. This effect was a result of chemokine secretion, as coincubation with neutralizing anti-CCL2, anti-CCL3, and anti-CCL4 antibodies reversed the effect of CRP. Accordingly, a reduced migration of CRP-treated monocytes to CCL2 and CCL3 was observed. In conclusion, our data suggest an in vitro model to study CRP activities in adherent and suspension human monocytes. CRP-mediated induction of adhesion molecules and a decrease of chemokine receptors on adherent monocytes might contribute to the retention of monocytes within atherosclerotic lesions and recruitment of other circulating cells.

  16. Pathway-selective suppression of chemokine receptor signaling in B cells by LPS through downregulation of PLC-β2.

    PubMed

    Shirakawa, Aiko-Konno; Liao, Fang; Zhang, Hongwei H; Hedrick, Michael N; Singh, Satya P; Wu, Dianqing; Farber, Joshua M

    2010-11-01

    Lymphocyte activation leads to changes in chemokine receptor expression. There are limited data, however, on how lymphocyte activators can alter chemokine signaling by affecting downstream pathways. We hypothesized that B cell-activating agents might alter chemokine responses by affecting downstream signal transducers, and that such effects might differ depending on the activator. We found that activating mouse B cells using either anti-IgM or lipopolysaccharide (LPS) increased the surface expression of CCR6 and CCR7 with large increases in chemotaxis to their cognate ligands. By contrast, while anti-IgM also led to enhanced calcium responses, LPS-treated cells showed only small changes in calcium signaling as compared with cells that were freshly isolated. Of particular interest, we found that LPS caused a reduction in the level of B-cell phospholipase C (PLC)-β2 mRNA and protein. Data obtained using PLC-β2(-/-) mice showed that the β2 isoform mediates close to one-half the chemokine-induced calcium signal in resting and anti-IgM-activated B cells, and we found that calcium signals in the LPS-treated cells were boosted by increasing the level of PLC-β2 using transfection, consistent with a functional effect of downregulating PLC-β2. Together, our results show activator-specific effects on responses through B-cell chemokine receptors that are mediated by quantitative changes in a downstream signal-transducing protein, revealing an activity for LPS as a downregulator of PLC-β2, and a novel mechanism for controlling chemokine-induced signals in lymphocytes.

  17. Tissue-specific regulation of CXCL9/10/11 chemokines in keratinocytes: Implications for oral inflammatory disease

    PubMed Central

    Marshall, Alison; Celentano, Antonio; Cirillo, Nicola; McCullough, Michael; Porter, Stephen

    2017-01-01

    The IFN-γ-inducible chemokines CXCL9, CXCL10, and CXCL11 play a key role in many inflammatory conditions, particularly those mediated by T cells. Therefore, the production of these chemokines in peripheral tissues could be instrumental in the pathophysiology of tissue-specific immunological diseases such as oral lichen planus (OLP). In the present study, we assessed the production of keratinocyte-derived CXCL9/10/11 under basal and inflammatory conditions and investigated whether these chemokines were involved in the pathogenesis of OLP. We used semi-quantitative PCR, ELISA, chemotaxis assays, and fluorescence-activated cell sorting (FACS) to assess the expression and functional role of CXCL9/10/11 in oral keratinocytes (three strains of normal human oral keratinocytes (NHOK), and the H357 oral cancer cell line) in the presence or absence of IFN-γ. CXCL9/10/11 were also assessed in tissues from normal patients and those with oral lichen planus (OLP). The time course study in oral keratinocytes treated with IFN-γ showed that expression of CXCL9/10/11 chemokines was significantly enhanced by IFN-γ in a time-dependent manner. In particular, CXCL10, a prominent chemokine that was overexpressed by IFN-γ-stimulated NHOK, was able to effectively recruit CD4 lymphocytes, mainly CD4+CD45RA- cells. Significantly higher levels of CXCL9/10/11 were found in tissues from patients with OLP compared to normal oral mucosa. Taken together, the results demonstrate that normal oral keratinocytes produce chemotactic molecules that mediate T cell recruitment. This study furthers understanding of chemokine production in oral keratinocytes and their role in the pathophysiology of oral mucosa, with particular relevance to OLP. PMID:28253295

  18. Disruption of mTORC1 in Macrophages Decreases Chemokine Gene Expression and Atherosclerosis

    PubMed Central

    Ai, Ding; Jiang, Hongfeng; Westerterp, Marit; Murphy, Andrew J.; Wang, Mi; Ganda, Anjali; Abramowicz, Sandra; Welch, Carrie; Almazan, Felicidad; Zhu, Yi; Miller, Yury I; Tall, Alan R.

    2014-01-01

    Rationale The mammalian target of rapamycin complex 1 (mTORC1) inhibitor, rapamycin, has been shown to decrease atherosclerosis, even while increasing plasma LDL levels. This suggests an anti-atherogenic effect possibly mediated by modulation of inflammatory responses in atherosclerotic plaques. Objective To assess the role of macrophage mTORC1 in atherogenesis. Methods and Results We transplanted bone marrow from mice in which a key mTORC1 adaptor, Raptor, was deleted in macrophages by Cre/loxP recombination (Mac-RapKO mice) into Ldlr-/- mice and then fed them the Western-type diet (WTD). Atherosclerotic lesions from Mac-RapKO mice showed decreased infiltration of macrophages, lesion size and chemokine gene expression compared with control mice. Treatment of macrophages with minimally modified LDL (mmLDL) resulted in increased levels of chemokine mRNAs and STAT3 phosphorylation; these effects were reduced in Mac-RapKO macrophages. While wild-type and Mac-RapKO macrophages showed similar STAT3 phosphorylation on Tyr705, Mac-RapKO macrophages showed decreased STAT3 Ser727 phosphorylation in response to mmLDL treatment and decreased Ccl2 promoter binding of STAT3. Conclusions The results demonstrate cross-talk between nutritionally-induced mTORC1 signaling and mmLDL-mediated inflammatory signaling via combinatorial phosphorylation of STAT3 in macrophages, leading to increased STAT3 activity on the CCL2 (MCP-1)promoter with pro-atherogenic consequences. PMID:24687132

  19. Role of cytokines and chemokines in non-alcoholic fatty liver disease

    PubMed Central

    Braunersreuther, Vincent; Viviani, Giorgio Luciano; Mach, François; Montecucco, Fabrizio

    2012-01-01

    Non-alcoholic fatty liver disease (NAFLD) includes a variety of histological conditions (ranging from liver steatosis and steatohepatitis, to fibrosis and hepatocarcinoma) that are characterized by an increased fat content within the liver. The accumulation/deposition of fat within the liver is essential for diagnosis of NAFLD and might be associated with alterations in the hepatic and systemic inflammatory state. Although it is still unclear if each histological entity represents a different disease or rather steps of the same disease, inflammatory processes in NAFLD might influence its pathophysiology and prognosis. In particular, non-alcoholic steatohepatitis (the most inflamed condition in NAFLDs, which more frequently evolves towards chronic and serious liver diseases) is characterized by a marked activation of inflammatory cells and the upregulation of several soluble inflammatory mediators. Among several mediators, cytokines and chemokines might play a pivotal active role in NAFLD and are considered as potential therapeutic targets. In this review, we will update evidence from both basic research and clinical studies on the potential role of cytokines and chemokines in the pathophysiology of NAFLD. PMID:22371632

  20. Fas/CD95-induced chemokines can serve as "find-me" signals for apoptotic cells.

    PubMed

    Cullen, Sean P; Henry, Conor M; Kearney, Conor J; Logue, Susan E; Feoktistova, Maria; Tynan, Graham A; Lavelle, Ed C; Leverkus, Martin; Martin, Seamus J

    2013-03-28

    Apoptosis is commonly thought to represent an immunologically silent or even anti-inflammatory mode of cell death, resulting in cell clearance in the absence of explicit activation of the immune system. However, here we show that Fas/CD95-induced apoptosis is associated with the production of an array of cytokines and chemokines, including IL-6, IL-8, CXCL1, MCP-1, and GMCSF. Fas-induced production of MCP-1 and IL-8 promoted chemotaxis of phagocytes toward apoptotic cells, suggesting that these factors serve as "find-me" signals in this context. We also show that RIPK1 and IAPs are required for optimal production of cytokines and chemokines in response to Fas receptor stimulation. Consequently, a synthetic IAP antagonist potently suppressed Fas-dependent expression of multiple proinflammatory mediators and inhibited Fas-induced chemotaxis. Thus, in addition to provoking apoptosis, Fas receptor stimulation can trigger the secretion of chemotactic factors and other immunologically active proteins that can influence immune responsiveness toward dying cells.

  1. The Homeostatic Chemokine CCL21 Predicts Mortality in Aortic Stenosis Patients and Modulates Left Ventricular Remodeling

    PubMed Central

    Finsen, Alexandra Vanessa; Ueland, Thor; Sjaastad, Ivar; Ranheim, Trine; Ahmed, Mohammed S.; Dahl, Christen P.; Askevold, Erik T.; Aakhus, Svend; Husberg, Cathrine; Fiane, Arnt E.; Lipp, Martin; Gullestad, Lars; Christensen, Geir; Aukrust, Pål; Yndestad, Arne

    2014-01-01

    Background CCL21 acting through CCR7, is termed a homeostatic chemokine. Based on its role in concerting immunological responses and its proposed involvement in tissue remodeling, we hypothesized that this chemokine could play a role in myocardial remodeling during left ventricular (LV) pressure overload. Methods and Results Our main findings were: (i) Serum levels of CCL21 were markedly raised in patients with symptomatic aortic stenosis (AS, n = 136) as compared with healthy controls (n = 20). (ii) A CCL21 level in the highest tertile was independently associated with all-cause mortality in these patients. (iii) Immunostaining suggested the presence of CCR7 on macrophages, endothelial cells and fibroblasts within calcified human aortic valves. (iv). Mice exposed to LV pressure overload showed enhanced myocardial expression of CCL21 and CCR7 mRNA, and increased CCL21 protein levels. (v) CCR7−/− mice subjected to three weeks of LV pressure overload had similar heart weights compared to wild type mice, but increased LV dilatation and reduced wall thickness. Conclusions Our studies, combining experiments in clinical and experimental LV pressure overload, suggest that CCL21/CCR7 interactions might be involved in the response to pressure overload secondary to AS. PMID:25398010

  2. Epilepsy, Seizures, and Inflammation: Role of the C-C Motif Ligand 2 Chemokine.

    PubMed

    Bozzi, Yuri; Caleo, Matteo

    2016-06-01

    Epilepsy is a chronic disorder characterized by spontaneous recurrent seizures. Several lines of evidence demonstrate that inflammatory processes within the brain parenchyma contribute to recurrence and precipitation of seizures. In both epileptic patients and animal models, seizures upregulate inflammatory mediators, which in turn may enhance brain excitability. We recently showed that the C-C motif ligand 2 (CCL2) chemokine (also known as monocyte chemoattractant protein-1 [MCP-1]) mediates the seizure-promoting effects of inflammation. Systemic inflammatory challenge in chronically epileptic mice markedly enhanced seizure frequency and upregulated CCL2 expression in the brain. Selective pharmacological blockade of CCL2 synthesis or C-C chemokine receptor type 2 (CCR2) significantly suppressed inflammation-induced seizures. These results have important implications for the development of novel anticonvulsant therapies: drugs interfering with CCL2 signaling are used clinically for several human disorders and might be redirected for use in pharmacoresistant epilepsy. Here we review the role of CCL2/CCR2 signaling in linking systemic inflammation with seizure susceptibility and discuss some open questions that arise from our recent studies.

  3. Therapeutic potential of the chemokine receptor CXCR4 antagonists as multifunctional agents.

    PubMed

    Tsutsumi, Hiroshi; Tanaka, Tomohiro; Ohashi, Nami; Masuno, Hiroyuki; Tamamura, Hirokazu; Hiramatsu, Kenichi; Araki, Takanobu; Ueda, Satoshi; Oishi, Shinya; Fujii, Nobutaka

    2007-01-01

    The chemokine receptor CXCR4 possesses multiple critical functions in normal and pathologic physiology. CXCR4 is a G-protein-coupled receptor that transduces signals of its endogenous ligand, the chemokine CXCL12 (stromal cell-derived factor-1, SDF-1). The interaction between CXCL12 and CXCR4 plays an important role in the migration of progenitors during embryologic development of the cardiovascular, hemopoietic, central nervous systems, and so on. This interaction is also known to be involved in several intractable disease processes, including HIV infection, cancer cell metastasis, leukemia cell progression, rheumatoid arthritis (RA), and pulmonary fibrosis. It is conjectured that this interaction may be a critical therapeutic target in all of these diseases, and several CXCR4 antagonists have been proposed as potential drugs. Fourteen-mer peptides, T140 and its analogues, were previously developed in our laboratory as specific CXCR4 antagonists that were identified as HIV-entry inhibitors, anti-cancer-metastatic agents, anti-chronic lymphocytic/acute lymphoblastic leukemia agents, and anti-RA agents. Cyclic pentapeptides, such as FC131 [cyclo(D-Tyr-Arg-Arg-L-3-(2-naphthyl)alanine-Gly)], were also previously found as CXCR4 antagonist leads based on pharmacophores of T140. This review article describes the elucidation of multiple functions of CXCR4 antagonists and the development of a number of low-molecular weight CXCR4 antagonists involving FC131 analogues and other compounds with different scaffolds including linear-type structures.

  4. Plasmodium falciparum proteins involved in cytoadherence of infected erythrocytes to chemokine CX3CL1

    PubMed Central

    Hermand, Patricia; Cicéron, Liliane; Pionneau, Cédric; Vaquero, Catherine; Combadière, Christophe; Deterre, Philippe

    2016-01-01

    Malaria caused by Plasmodium falciparum is associated with cytoadherence of infected red blood cells (iRBC) to endothelial cells. Numerous host molecules have been involved in cytoadherence, including the adhesive chemokine CX3CL1. Most of the identified parasite ligands are from the multigenic and hypervariable Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family which makes them poor targets for the development of a broadly protective vaccine. Using proteomics, we have identified two 25-kDa parasite proteins with adhesive properties for CX3CL1, called CBP for CX3CL1 Binding Proteins. CBPs are coded by single-copy genes with little polymorphic variation and no homology with other P. falciparum gene products. Specific antibodies raised against epitopes from the predicted extracellular domains of each CBP efficiently stain the surface of RBC infected with trophozoites or schizonts, which is a strong indication of CBP expression at the surface of iRBC. These anti-CBP antibodies partially neutralize iRBC adherence to CX3CL1. This adherence is similarly inhibited in the presence of peptides from the CBP extracellular domains, while irrelevant peptides had no such effect. CBP1 and CBP2 are new P. falciparum ligands for the human chemokine CX3CL1. The identification of this non-polymorphic P. falciparum factors provides a new avenue for innovative vaccination approaches. PMID:27653778

  5. The CCR6/CCL20 Chemokine Axis in HIV Immunity and Pathogenesis.

    PubMed

    Lee, Adrian Yong Sing; Körner, Heinrich

    2016-12-21

    Recent studies in human immunodeficiency virus (HIV) have garnered interest for the role of CC chemokine receptor 6 (CCR6) and its known ligands, CCL20 and human β-defensins, in viral entry, dissemination and anti-viral immunity. Several studies have suggested that CCR6 may also act as a weak co-receptor of HIV entry, in addition to the canonical CXCR4 and CCR5.However, the pathogenic significance has yet to be demonstrated as the observations for preferential infection of CD4+CCR6+ over CD4+CCR6¯ T cells appear to be independent of CCR6 expression. This indicates means for preferential infection other than CCR6 co-receptor use. Attention has also turned to the inadvertent role for the CCR6/CCL20 axis in attracting key immune cells, including TH17 cells and DCs, to sites of infection and propagating the virus to other sites of the body. This review article will summarise the latest evidence that the CCR6/CCL20 chemokine axis is playing an important role in HIV pathogenesis and immunity. Further work with in vivo studies are needed to establish the biological, and hence, therapeutic, significance of these findings.

  6. The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2

    PubMed Central

    Rodríguez-Frade, José Miguel; Vila-Coro, Antonio J.; Martín de Ana, Ana; Albar, Juan Pablo; Martínez-A., Carlos; Mellado, Mario

    1999-01-01

    Cytokines interact with hematopoietin superfamily receptors and stimulate receptor dimerization. We demonstrate that chemoattractant cytokines (chemokines) also trigger biological responses through receptor dimerization. Functional responses are induced after pairwise crosslinking of chemokine receptors by bivalent agonistic antichemokine receptor mAb, but not by their Fab fragments. Monocyte chemoattractant protein (MCP)-1-triggered receptor dimerization was studied in human embryonic kidney (HEK)-293 cells cotransfected with genes coding for the CCR2b receptor tagged with YSK or Myc sequences. After MCP-1 stimulation, immunoprecipitation with Myc-specific antibodies revealed YSK-tagged receptors in immunoblotting. Receptor dimerization also was validated by chemical crosslinking in both HEK-293 cells and the human monocytic cell line Mono Mac 1. Finally, we constructed a loss-of-function CCR2bY139F mutant that acted as a dominant negative, blocking signaling through the CCR2 wild-type receptor. This study provides functional support for a model in which the MCP-1 receptor is activated by ligand-induced homodimerization, allowing discussion of the similarities between bacterial and leukocyte chemotaxis. PMID:10097088

  7. Chemokines, selectins and intracellular calcium flux: temporal and spatial cues for leukocyte arrest

    PubMed Central

    Dixit, Neha; Simon, Scott I.

    2012-01-01

    Leukocyte trafficking to acute sites of injury or infection requires spatial and temporal cues that fine tune precise sites of firm adhesion and guide migration to endothelial junctions where they undergo diapedesis to sites of insult. Many detailed studies on the location and gradient of chemokines such as IL-8 and other CXCR ligands reveal that their recognition shortly after selectin-mediated capture and rolling exerts acute effects on integrin activation and subsequent binding to their ligands on the endothelium, which directs firm adhesion, adhesion strengthening, and downstream migration. In this process, G-protein coupled receptor (GPCR) signaling has been found to play an integral role in activating and mobilizing intracellular stores of calcium, GTPases such as Rap-1 and Rho and cytokeletal proteins such as Talin and F-actin to facilitate cell polarity and directional pseudopod formation. A critical question remaining is how intracellular Ca2+ flux from CRAC channels such as Orai1 synergizes with cytosolic stores to mediate a rapid flux which is critical to the onset of PMN arrest and polarization. Our review will highlight a specific role for calcium as a signaling messenger in activating focal clusters of integrins bound to the cytoskeleton which allows the cell to attain a migratory phenotype. The precise interplay between chemokines, selectins, and integrins binding under the ubiquitous presence of shear stress from blood flow provides an essential cooperative signaling mechanism for effective leukocyte recruitment. PMID:22787461

  8. Regulation of Chemokine Signal Integration by Activator of G-Protein Signaling 4 (AGS4)

    PubMed Central

    Robichaux, William G.; Branham-O’Connor, Melissa; Hwang, Il-Young; Vural, Ali; Kehrl, Johne H.

    2017-01-01

    Activator of G-protein signaling 4 (AGS4)/G-protein signaling modulator 3 (Gpsm3) contains three G-protein regulatory (GPR) motifs, each of which can bind Gαi-GDP free of Gβγ. We previously demonstrated that the AGS4-Gαi interaction is regulated by seven transmembrane-spanning receptors (7-TMR), which may reflect direct coupling of the GPR-Gαi module to the receptor analogous to canonical Gαβγ heterotrimer. We have demonstrated that the AGS4-Gαi complex is regulated by chemokine receptors in an agonist-dependent manner that is receptor-proximal. As an initial approach to investigate the functional role(s) of this regulated interaction in vivo, we analyzed leukocytes, in which AGS4/Gpsm3 is predominantly expressed, from AGS4/Gpsm3-null mice. Loss of AGS4/Gpsm3 resulted in mild but significant neutropenia and leukocytosis. Dendritic cells, T lymphocytes, and neutrophils from AGS4/Gpsm3-null mice also exhibited significant defects in chemoattractant-directed chemotaxis and extracellular signal-regulated kinase activation. An in vivo peritonitis model revealed a dramatic reduction in the ability of AGS4/Gpsm3-null neutrophils to migrate to primary sites of inflammation. Taken together, these data suggest that AGS4/Gpsm3 is required for proper chemokine signal processing in leukocytes and provide further evidence for the importance of the GPR-Gαi module in the regulation of leukocyte function. PMID:28062526

  9. KLF2 deficiency in T cells results in unrestrained cytokine production and bystander chemokine receptor upregulation

    PubMed Central

    Weinreich, Michael A.; Takada, Kensuke; Skon, Cara; Reiner, Steven L.; Jameson, Stephen C.; Hogquist, Kristin A.

    2009-01-01

    SUMMARY The transcription factor KLF2 regulates T cell trafficking by promoting expression of the lipid binding receptor, S1P1, and the selectin, CD62L. Recently, it was proposed that KLF2 also represses the expression of chemokine receptors. We confirm the upregulation of the chemokine receptor CXCR3 on KLF2 deficient T cells. However, we show that this is a cell nonautonomous effect, as revealed by CXCR3 upregulation on WT bystander cells in mixed bone marrow chimeras with KLF2 deficient cells. Furthermore, we show that KLF2 deficient T cells overproduce IL-4, leading to the upregulation of CXCR3 through an IL-4 receptor and eomesodermin dependent pathway. Consistent with the increased IL-4 production, we find high levels of serum IgE in mice with T cell specific KLF2 deficiency. Our findings support a model where KLF2 regulates T cell trafficking by direct regulation of S1P1 and CD62L, and restrains spontaneous cytokine production in naive T cells. PMID:19592277

  10. Dynamic switching mechanisms of a CC chemokine, CCL5 (RANTES). A simulation study

    NASA Astrophysics Data System (ADS)

    Peter, Emanuel; Pivkin, Igor

    CCL5 (RANTES) belongs to the class of pro-inflammatory chemokines which are part of the human immune-response. It is known to activate leukocytes through its associated chemokine receptor 5 (CCR5) and plays a key role in several malignancies, including HIV-1 infections and cancer. In this talk, we present our results from enhanced sampling simulations of the CCL5 (RANTES) monomer. We find that this protein can adopt 2 different conformations : a globular form, with an orthogonal alignment of the N-terminal part, and a 'cis' form, in which the N-terminus is aligned parallel to the β-strand interface. A detailed analysis of the structure reveals that each of these states is stabilized by salt-bridges along the sequence, and corresponds to a defined dihedral-geometry of the 2 disulfide bridges Cys10-34 and Cys11-50. We derive a uniform distribution of transitions from the globular form of CCL5 (RANTES), and find that each of the main conformers adopts different electrostatic patterns.

  11. Genetic polymorphism of chemokine receptors CCR2 and CCR5 in Swedish cervical cancer patients.

    PubMed

    Zheng, Biying; Wiklund, Fredrik; Gharizadeh, Baback; Sadat, Mehdi; Gambelunghe, Giovanni; Hallmans, Göran; Dillner, Joakim; Wallin, Keng-Ling; Ghaderi, Mehran

    2006-01-01

    Chemokines are chemotactic cytokines that orchestrate leukocyte trafficking in tissues, thus, playing an important role in regulation of immunological processes. The aim of this study was to investigate the association of human papillomavirus (HPV) infection and cervical cancer with two DNA polymorphisms of the chemokine receptors CCR5-delta32 and CCR2-64I. The study material consisted of 50 cervical intraepithelial neoplasia (CIN) cases and 50 of age and sampling-date matched controls, 100 invasive cervix cancer cases and 100 of their corresponding matched disease-free controls. Pyrosequencing was employed to genotype the CCR2-64I polymorphism. CCR5-delta32 was genotyped using standard PCR fragment length analysis. The frequencies of CCR2 and CCR5 genotypes from 150 patients and 150 healthy controls were representative of the general population according to the Hardy-Weinberg equilibrium analysis. Risk association was computed with conditional logistic regression analysis. HPV-positive individuals with the rare CCR5deelta32/delta32 genotype have a risk of 4.58 (CI = 0.40-52.64, p-value = 0.045) compare to HPV negative group. The delta-32 mutation on the CCR locus is imperceptibly associated with increased risk of HPV infection. In total, cervical neoplasia was not associated with genetic polymorphism of CCR2 and CCR5.

  12. Murine Cytomegalovirus Deubiquitinase Regulates Viral Chemokine Levels To Control Inflammation and Pathogenesis

    PubMed Central

    Hilterbrand, Adam T.; Boutz, Daniel R.; Marcotte, Edward M.

    2017-01-01

    ABSTRACT Maintaining control over inflammatory processes represents a paradox for viral pathogens. Although many viruses induce host inflammatory responses to facilitate infection, control is necessary to avoid overactivation. One way is through the manipulation of proinflammatory chemokine levels, both host and viral. Murine cytomegalovirus (MCMV), a model betaherpesvirus, encodes a viral C-C chemokine, MCK2, which promotes host inflammatory responses and incorporates into virions to facilitate viral dissemination. Here, we show that the activity of M48, the conserved MCMV deubiquitinating enzyme (DUB), regulates MCK2 levels during infection. Inactivation of M48 DUB activity results in viral attenuation and exacerbates virally induced, MCK2-dependent inflammatory responses. M48 DUB activity also influences MCK2 incorporation into virions. Importantly, attenuation of DUB-mutant virus acute replication in vitro and in vivo is largely ameliorated by targeted deletion of MCK2. Thus, uncontrolled MCK2 levels appear to mediate DUB-mutant virus attenuation in specific tissues or cell types. This demonstrates that MCMV M48 DUB activity plays a previously unappreciated role in controlling MCK2 levels, thereby managing MCK2-dependent processes. These findings reveal a novel intrinsic control mechanism of virally induced inflammation and support the identification of betaherpesvirus DUBs as possible new targets for antiviral therapies. PMID:28096485

  13. Tobacco smoke induces production of chemokine CCL20 to promote lung cancer.

    PubMed

    Wang, Gui-Zhen; Cheng, Xin; Li, Xin-Chun; Liu, Yong-Qiang; Wang, Xian-Quan; Shi, Xu; Wang, Zai-Yong; Guo, Yong-Qing; Wen, Zhe-Sheng; Huang, Yun-Chao; Zhou, Guang-Biao

    2015-07-10

    Tobacco kills nearly 6 million people each year, and 90% of the annual 1.59 million lung cancer deaths worldwide are caused by cigarette smoke. Clinically, a long latency is required for individuals to develop lung cancer since they were first exposed to smoking. In this study, we aimed to identify clinical relevant inflammatory factors that are critical for carcinogenesis by treating normal human lung epithelial cells with tobacco carcinogen nicotine-derived nitrosaminoketone (NNK) for a long period (60 days) and systematic screening in 84 cytokines/chemokines. We found that a chemokine CCL20 was significantly up-regulated by NNK, and in 78/173 (45.1%) patients the expression of CCL20 was higher in tumor samples than their adjacent normal lung tissues. Interestingly, CCL20 was up-regulated in 48/92 (52.2%) smoker and 29/78 (37.2%) nonsmoker patients (p = 0.05), and high CCL20 was associated with poor prognosis. NNK induced the production of CCL20, which promoted lung cancer cell proliferation and migration. In addition, an anti-inflammation drug, dexamethasone, inhibited NNK-induced CCL20 production and suppressed lung cancer in vitro and in vivo. These results indicate that CCL20 is crucial for tobacco smoke-caused lung cancer, and anti-CCL20 could be a rational approach to fight against this deadly disease.

  14. Elevation of CXCR3-binding chemokines in urine indicates acute renal-allograft dysfunction.

    PubMed

    Hu, Huaizhong; Aizenstein, Brian D; Puchalski, Alice; Burmania, Jeanine A; Hamawy, Majed M; Knechtle, Stuart J

    2004-03-01

    A noninvasive urinary test that diagnoses acute renal allograft dysfunction would benefit renal transplant patients. We aimed to develop a rapid urinary diagnostic test by detecting chemokines. Seventy-three patients with renal allograft dysfunction prompting biopsy and 26 patients with stable graft function were recruited. Urinary levels of CXCR3-binding chemokines, monokine induced by IFN-gamma (Mig/CXCL9), IFN-gamma-induced protein of 10 kDa (IP-10/CXCL10), and IFN-inducible T-cell chemoattractant (I-TAC/CXCL11), were determined by a particle-based triplex assay. IP-10, Mig and I-TAC were significantly elevated in renal graft recipients with acute rejection, acute tubular injury and BK virus nephritis. Using 100 pg/mL as the threshold level, both IP-10 and Mig had diagnostic value (sensitivity 86.4%; specificity 91.3%) in differentiating acute graft dysfunction from other clinical conditions. In terms of monitoring the response to antirejection therapy, this urinary test is more sensitive and predictive than serum creatinine. These results indicate that this rapid test is clinically useful.

  15. Humoral Immune Pressure Selects for HIV-1 CXC-chemokine Receptor 4-using Variants.

    PubMed

    Lin, Nina; Gonzalez, Oscar A; Registre, Ludy; Becerril, Carlos; Etemad, Behzad; Lu, Hong; Wu, Xueling; Lockman, Shahin; Essex, Myron; Moyo, Sikhulile; Kuritzkes, Daniel R; Sagar, Manish

    2016-06-01

    Although both C-C chemokine receptor 5 (CCR5)- and CXC chemokine receptor 4 (CXCR4)-using HIV-1 strains cause AIDS, the emergence of CXCR4-utilizing variants is associated with an accelerated decline in CD4+ T cells. It remains uncertain if CXCR4-using viruses hasten disease or if these variants only emerge after profound immunological damage. We show that exclusively CXCR4- as compared to cocirculating CCR5-utilizing variants are less sensitive to neutralization by both contemporaneous autologous plasma and plasma pools from individuals that harbor only CCR5-using HIV-1. The CXCR4-utilizing variants, however, do not have a global antigenic change because they remain equivalently susceptible to antibodies that do not target coreceptor binding domains. Studies with envelope V3 loop directed antibodies and chimeric envelopes suggest that the neutralization susceptibility differences are potentially influenced by the V3 loop. In vitro passage of a neutralization sensitive CCR5-using virus in the presence of autologous plasma and activated CD4+ T cells led to the emergence of a CXCR4-utilizing virus in 1 of 3 cases. These results suggest that in some but not necessarily all HIV-1 infected individuals humoral immune pressure against the autologous virus selects for CXCR4-using variants, which potentially accelerates disease progression. Our observations have implications for using antibodies for HIV-1 immune therapy.

  16. Chemokine-Targeted Mouse Models of Human Primary and Metastatic Colorectal Cancer

    PubMed Central

    Chen, Huanhuan Joyce; Sun, Jian; Huang, Zhiliang; Hou, Harry; Arcilla, Myra; Rakhilin, Nikolai; Joe, Daniel J.; Choi, Jiahn; Gadamsetty, Poornima; Milsom, Jeff; Nandakumar, Govind; Longman, Randy; Zhou, Xi Kathy; Edwards, Robert; Chen, Jonlin; Chen, Kai Yuan; Bu, Pengcheng; Wang, Lihua; Xu, Yitian; Munroe, Robert; Abratte, Christian; Miller, Andrew D.; Gümüş, Zeynep H.; Shuler, Michael; Nishimura, Nozomi; Edelmann, Winfried; Shen, Xiling; Lipkin, Steven M.

    2015-01-01

    Current orthotopic xenograft models of human colorectal cancer (CRC) require surgery and do not robustly form metastases in the liver, the most common site clinically. CCR9 traffics lymphocytes to intestine and colorectum. We engineered use of the chemokine receptor CCR9 in CRC cell lines and patient-derived cells to create primary gastrointestinal (GI) tumors in immunodeficient mice by tail-vein injection rather than surgery. The tumors metastasize inducibly and robustly to the liver. Metastases have higher DKK4 and NOTCH signaling levels and are more chemoresistant than paired sub-cutaneous xenografts. Using this approach, we generated 17 chemokine-targeted mouse models (CTMMs) that recapitulate the majority of common human somatic CRC mutations. We also show that primary tumors can be modeled in immunocompetent mice by microinjecting CCR9-expressing cancer cell lines into early-stage mouse blastocysts, which induces central immune tolerance. We expect that CTMMs will facilitate investigation of the biology of CRC metastasis and drug screening. PMID:26006007

  17. Neolignans from the Arils of Myristica fragrans as Potent Antagonists of CC Chemokine Receptor 3.

    PubMed

    Morikawa, Toshio; Hachiman, Ikuko; Matsuo, Kazuhiko; Nishida, Eriko; Ninomiya, Kiyofumi; Hayakawa, Takao; Yoshie, Osamu; Muraoka, Osamu; Nakayama, Takashi

    2016-08-26

    CC chemokine receptor 3 (CCR3) is expressed selectively in eosinophils, basophils, and some Th2 cells and plays a major role in allergic diseases. A methanol extract from the arils of Myristica fragrans inhibited CC chemokine ligand 11-induced chemotaxis in CCR3-expressing L1.2 cells at 100 μg/mL. From this extract, eight new neolignans, maceneolignans A-H (1-8), were isolated, and their stereostructures were elucidated from their spectroscopic values and chemical properties. Of those constituents, compounds 1, 4, 6, and 8 and (+)-erythro-(7S,8R)-Δ(8')-7-hydroxy-3,4-methylenedioxy-3',5'-dimethoxy-8-O-4'-neolignan (11), (-)-(8R)-Δ(8')-3,4-methylenedioxy-3',5'-dimethoxy-8-O-4'-neolignan (17), (+)-licarin A (20), nectandrin B (25), verrucosin (26), and myristicin (27) inhibited CCR3-mediated chemotaxis at a concentration of 1 μM. Among them, 1 (EC50 1.6 μM), 6 (1.5 μM), and 8 (1.4 μM) showed relatively strong activities, which were comparable to that of a synthetic CCR3 selective antagonist, SB328437 (0.78 μM).

  18. Effects of cobalt chloride on nitric oxide and cytokines/chemokines production in microglia.

    PubMed

    Mou, Yan Hua; Yang, Jing Yu; Cui, Nan; Wang, Ji Ming; Hou, Yue; Song, Shuang; Wu, Chun Fu

    2012-05-01

    The involvement of microglial activation in metal neurotoxicity is becoming increasingly recognized. Some metal ions, such as zinc (II) and manganese (II), have been recently reported as microglial activators to induce the release of inflammatory mediators including cytokines, chemokines and nitric oxide (NO) which are involved in the pathogenesis of neurological diseases. Cobalt is essential for human life. However, excessive cobalt is cytotoxic and neurotoxic. In the present study, we determined cobalt-induced production of NO and cytokines/chemokines in N9 cells, a murine microglial cell line. High levels of cobalt significantly up-regulated iNOS mRNA and protein expression, which resulted in the release of NO. Cobalt induced the production of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) in a concentration- and time-dependent manner in both N9 cells and primary mouse microglia and increased lipopolysaccharides (LPS)-induced cytokine production. Further study showed that cobalt induced cytokine production by a mechanism involving both nuclear factor kappa B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) signaling pathways. The involvement of reactive oxygen species (ROS) in microglial activation was also confirmed. These findings suggested that cobalt neurotoxicity should be attributed not only directly to neuronal damage but also indirectly to microglial activation which might potentiate neuronal injury via elevation of proinflammatory mediator levels.

  19. p53-dependent expression of CXCR5 chemokine receptor in MCF-7 breast cancer cells.

    PubMed

    Mitkin, Nikita A; Hook, Christina D; Schwartz, Anton M; Biswas, Subir; Kochetkov, Dmitry V; Muratova, Alisa M; Afanasyeva, Marina A; Kravchenko, Julia E; Bhattacharyya, Arindam; Kuprash, Dmitry V

    2015-03-19

    Elevated expression of chemokine receptors in tumors has been reported in many instances and is related to a number of survival advantages for tumor cells including abnormal activation of prosurvival intracellular pathways. In this work we demonstrated an inverse correlation between expression levels of p53 tumor suppressor and CXCR5 chemokine receptor in MCF-7 human breast cancer cell line. Lentiviral transduction of MCF-7 cells with p53 shRNA led to elevated CXCR5 at both mRNA and protein levels. Functional activity of CXCR5 in p53-knockdown MCF-7 cells was also increased as shown by activation of target gene expression and chemotaxis in response to B-lymphocyte chemoattractant CXCL13. Using deletion analysis and site-directed mutagenesis of the cxcr5 gene promoter and enhancer elements, we demonstrated that p53 appears to act upon cxcr5 promoter indirectly, by repressing the activity of NFκB transcription factors. Using chromatin immunoprecipitation and reporter gene analysis, we further demonstrated that p65/RelA was able to bind the cxcr5 promoter in p53-dependent manner and to directly transactivate it when overexpressed. Through the described mechanism, elevated CXCR5 expression may contribute to abnormal cell survival and migration in breast tumors that lack functional p53.

  20. CXCR3 chemokine receptor signaling mediates itch in experimental allergic contact dermatitis.

    PubMed

    Qu, Lintao; Fu, Kai; Yang, Jennifer; Shimada, Steven G; LaMotte, Robert H

    2015-09-01

    Persistent itch is a common symptom of allergic contact dermatitis (ACD) and represents a significant health burden. The chemokine CXCL10 is predominantly produced by epithelial cells during ACD. Although the chemokine CXCL10 and its receptor CXCR3 are implicated in the pathophysiology of ACD, it is largely unexplored for itch and pain accompanying this disorder. Here, we showed that CXCL10 and CXCR3 mRNA, protein, and signaling activity were upregulated in the dorsal root ganglion after contact hypersensitivity (CHS), a murine model of ACD, induced by squaric acid dibutylester. CXCL10 directly activated a subset of cutaneous dorsal root ganglion neurons innervating the area of CHS through neuronal CXCR3. In behavioral tests, a CXCR3 antagonist attenuated spontaneous itch- but not pain-like behaviors directed to the site of CHS. Injection of CXCL10 into the site of CHS elicited site-directed itch- but not pain-like behaviors, but neither type of CXCL10-evoked behaviors was observed in control mice. These results suggest that CXCL10/CXCR3 signaling mediates allergic itch but not inflammatory pain in the context of skin inflammation. Thus, upregulation of CXCL10/CXCR3 signaling in sensory neurons may contribute to itch associated with ACD. Targeting the CXCL10/CXCR3 signaling might be beneficial for the treatment of allergic itch.

  1. Airway Epithelium Interactions with Aeroallergens: Role of Secreted Cytokines and Chemokines in Innate Immunity

    PubMed Central

    Gandhi, Vivek D.; Vliagoftis, Harissios

    2015-01-01

    Airway epithelial cells are the first line of defense against the constituents of the inhaled air, which include allergens, pathogens, pollutants, and toxic compounds. The epithelium not only prevents the penetration of these foreign substances into the interstitium, but also senses their presence and informs the organism’s immune system of the impending assault. The epithelium accomplishes the latter through the release of inflammatory cytokines and chemokines that recruit and activate innate immune cells at the site of assault. These epithelial responses aim to eliminate the inhaled foreign substances and minimize their detrimental effects to the organism. Quite frequently, however, the innate immune responses of the epithelium to inhaled substances lead to chronic and high level release of pro-inflammatory mediators that may mediate the lung pathology seen in asthma. The interactions of airway epithelial cells with allergens will be discussed with particular focus on interactions-mediated epithelial release of cytokines and chemokines and their role in the immune response. As pollutants are other major constituents of inhaled air, we will also discuss how pollutants may alter the responses of airway epithelial cells to allergens. PMID:25883597

  2. Ligustrazine attenuates inflammation and the associated chemokines and receptors in ovalbumine-induced mouse asthma model.

    PubMed

    Wei, Ying; Liu, Jiaqi; Zhang, Hongying; Du, Xin; Luo, Qingli; Sun, Jing; Liu, Feng; Li, Mihui; Xu, Fei; Wei, Kai; Dong, Jingcheng

    2016-09-01

    Ligustrazine which is isolated from Chinese herb ligusticum chuanxiong hort, has been widely used in traditional Chinese medicine (TCM) for asthma treatment. In this study, we aim to observe the effect of ligustrazine on inflammation and the associated chemokines and receptors in ovalbumin (OVA)-induced mouse asthma model. Our data demonstrates that ligustrazine suppresses airway hyperresponsiveness to methacholine and lung inflammation in OVA-induced mouse asthma model. Ligustrazine also induces inhibition of inflammatory cells including neutrophils, lymphocytes and eosinophils. In addition, ligustrazine significantly reduces IL-4, IL-5, IL-17A, CCL3, CCL19 and CCL21 level in BALF of asthma mice. Furthermore, ligustrazine induces down-regulation of CCL19 receptor CCR7, STAT3 and p38 MAPK protein expression. Collectively, these results suggest that ligustrazine is effective in attenuation of allergic airway inflammatory changes and related chemokines and receptors in OVA-induced asthma model, and this action might be associated with inhibition of STAT3 and p38 MAPK pathway, which indicates that ligustrazine may be used as a potential therapeutic method to treat asthma.

  3. Chemokines and atherosclerosis: focus on the CX3CL1/CX3CR1 pathway

    PubMed Central

    Apostolakis, Stavros; Spandidos, Demetrios

    2013-01-01

    Atherosclerosis is currently considered an inflammatory disease. Much attention has been focused on the potential role of inflammatory mediators as prognostic/diagnostic markers or therapeutic targets of atherosclerotic cardiovascular disease. CX3CL1 (or fractalkine) is a structurally and functionally unique chemokine with a well documented role in atherosclerosis. In its membrane bound form it promotes the firm adhesion of rolling leucocytes onto the vessel wall, while in its soluble form it serves as a potent chemoattractant for CX3CR1-expressing cells. Additionally, CX3CL1 exerts cytotoxic effects on the endothelium as well as anti-apoptotic and proliferative effects on vascular cells, affecting the context and stability of the atherosclerotic plaque. Studies on animal models have shown that the blockade of the CX3CL1/CX3CR1 pathway ameliorates the severity of atherosclerosis, while genetic epidemiology has confirmed that a genetically-defined less active CX3CL1/CX3CR1 pathway is associated with a reduced risk of atherosclerotic disease in humans. Although several studies support an important pathogenic role of CX3CL1/CX3CR1 in atherogenesis and plaque destabilization, this does not necessarily suggest that this pathway is a suitable therapeutic target or that CX3CL1 can serve as a prognostic/diagnostic biomarker. Further studies on the CX3CL1/CX3CR1 chemokine pathway are clearly warranted to justify the clinical relevance of its role in atherosclerosis. PMID:23974513

  4. The chemokine receptor CCR7 promotes mammary tumorigenesis through amplification of stem-like cells.

    PubMed

    Boyle, S T; Ingman, W V; Poltavets, V; Faulkner, J W; Whitfield, R J; McColl, S R; Kochetkova, M

    2016-01-07

    The chemokine receptor CCR7 is widely implicated in breast cancer pathobiology. Although recent reports correlated high CCR7 levels with more advanced tumor grade and poor prognosis, limited in vivo data are available regarding its specific function in mammary gland neoplasia and the underlying mechanisms involved. To address these questions we generated a bigenic mouse model of breast cancer combined with CCR7 deletion, which revealed that CCR7 ablation results in a considerable delay in tumor onset as well as significantly reduced tumor burden. Importantly, CCR7 was found to exert its function by regulating mammary cancer stem-like cells in both murine and human tumors. In vivo experiments showed that loss of CCR7 activity either through deletion or pharmacological antagonism significantly decreased functional pools of stem-like cells in mouse primary mammary tumors, providing a mechanistic explanation for the tumor-promoting role of this chemokine receptor. These data characterize the oncogenic properties of CCR7 in mammary epithelial neoplasia and point to a new route for therapeutic intervention to target evasive cancer stem cells.

  5. ORMDL3 is an inducible lung epithelial gene regulating metalloproteases, chemokines, OAS, and ATF6.

    PubMed

    Miller, Marina; Tam, Arvin B; Cho, Jae Youn; Doherty, Taylor A; Pham, Alexa; Khorram, Naseem; Rosenthal, Peter; Mueller, James L; Hoffman, Hal M; Suzukawa, Maho; Niwa, Maho; Broide, David H

    2012-10-09

    Orosomucoid like 3 (ORMDL3) has been strongly linked with asthma in genetic association studies, but its function in asthma is unknown. We demonstrate that in mice ORMDL3 is an allergen and cytokine (IL-4 or IL-13) inducible endoplasmic reticulum (ER) gene expressed predominantly in airway epithelial cells. Allergen challenge induces a 127-fold increase in ORMDL3 mRNA in bronchial epithelium in WT mice, with lesser 15-fold increases in ORMDL-2 and no changes in ORMDL-1. Studies of STAT-6-deficient mice demonstrated that ORMDL3 mRNA induction highly depends on STAT-6. Transfection of ORMDL3 in human bronchial epithelial cells in vitro induced expression of metalloproteases (MMP-9, ADAM-8), CC chemokines (CCL-20), CXC chemokines (IL-8, CXCL-10, CXCL-11), oligoadenylate synthetases (OAS) genes, and selectively activated activating transcription factor 6 (ATF6), an unfolded protein response (UPR) pathway transcription factor. siRNA knockdown of ATF-6α in lung epithelial cells inhibited expression of SERCA2b, which has been implicated in airway remodeling in asthma. In addition, transfection of ORMDL3 in lung epithelial cells activated ATF6α and induced SERCA2b. These studies provide evidence of the inducible nature of ORMDL3 ER expression in particular in bronchial epithelial cells and suggest an ER UPR pathway through which ORMDL3 may be linked to asthma.

  6. Peripheral blood monocyte-derived chemokine blockade prevents murine transfusion-related acute lung injury (TRALI).

    PubMed

    McKenzie, Christopher G J; Kim, Michael; Singh, Tarandeep K; Milev, Youli; Freedman, John; Semple, John W

    2014-05-29

    Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related mortality and can occur with any type of transfusion. TRALI is thought to be primarily mediated by donor antibodies activating recipient neutrophils resulting in pulmonary endothelial damage. Nonetheless, details regarding the interactions between donor antibodies and recipient factors are unknown. A murine antibody-mediated TRALI model was used to elucidate the roles of the F(ab')2 and Fc regions of a TRALI-inducing immunoglobulin G anti-major histocompatibility complex (MHC) class I antibody (34.1.2s). Compared with intact antibody, F(ab')2 fragments significantly increased serum levels of the neutrophil chemoattractant macrophage inflammatory protein 2 (MIP-2); however, pulmonary neutrophil levels were only moderately increased, and no pulmonary edema or mortality occurred. Fc fragments did not modulate any of these parameters. TRALI induction by intact antibody was completely abrogated by in vivo peripheral blood monocyte depletion by gadolinium chloride (GdCl3) or chemokine blockade with a MIP-2 receptor antagonist but was restored upon repletion with purified monocytes. The results suggest a two-step process for antibody-mediated TRALI induction: the first step involves antibody binding its cognate antigen on blood monocytes, which generates MIP-2 chemokine production that is correlated with pulmonary neutrophil recruitment; the second step occurs when antibody-coated monocytes increase Fc-dependent lung damage.

  7. Extracellular Histones Induce Chemokine Production in Whole Blood Ex Vivo and Leukocyte Recruitment In Vivo.

    PubMed

    Westman, Johannes; Papareddy, Praveen; Dahlgren, Madelene W; Chakrakodi, Bhavya; Norrby-Teglund, Anna; Smeds, Emanuel; Linder, Adam; Mörgelin, Matthias; Johansson-Lindbom, Bengt; Egesten, Arne; Herwald, Heiko

    2015-12-01

    The innate immune system relies to a great deal on the interaction of pattern recognition receptors with pathogen- or damage-associated molecular pattern molecules. Extracellular histones belong to the latter group and their release has been described to contribute to the induction of systemic inflammatory reactions. However, little is known about their functions in the early immune response to an invading pathogen. Here we show that extracellular histones specifically target monocytes in human blood and this evokes the mobilization of the chemotactic chemokines CXCL9 and CXCL10 from these cells. The chemokine induction involves the toll-like receptor 4/myeloid differentiation factor 2 complex on monocytes, and is under the control of interferon-γ. Consequently, subcutaneous challenge with extracellular histones results in elevated levels of CXCL10 in a murine air pouch model and an influx of leukocytes to the site of injection in a TLR4 dependent manner. When analyzing tissue biopsies from patients with necrotizing fasciitis caused by Streptococcus pyogenes, extracellular histone H4 and CXCL10 are immunostained in necrotic, but not healthy tissue. Collectively, these results show for the first time that extracellular histones have an important function as chemoattractants as their local release triggers the recruitment of immune cells to the site of infection.

  8. Effects of chemokine (C-C motif) ligand 1 on microglial function.

    PubMed

    Akimoto, Nozomi; Ifuku, Masataka; Mori, Yuki; Noda, Mami

    2013-07-05

    Microglia, which constitute the resident macrophages of the central nervous system (CNS), are generally considered as the primary immune cells in the brain and spinal cord. Microglial cells respond to various factors which are produced following nerve injury of multiple aetiologies and contribute to the development of neuronal disease. Chemokine (C-C motif) ligand 1 (CCL-1), a well-characterized chemokine secreted by activated T cells, has been shown to play an important role in neuropathic pain induced by nerve injury and is also produced in various cell types in the CNS, especially in dorsal root ganglia (DRG). However, the role of CCL-1 in the CNS and the effects on microglia remains unclear. Here we showed the multiple effects of CCL-1 on microglia. We first showed that CCR-8, a specific receptor for CCL-1, was expressed on primary cultured microglia, as well as on astrocytes and neurons, and was upregulated in the presence of CCL-1. CCL-1 at concentration of 1 ng/ml induced chemotaxis, increased motility at a higher concentration (100 ng/ml), and increased proliferation and phagocytosis of cultured microglia. CCL-1 also activated microglia morphologically, promoted mRNA levels for brain-derived neurotrophic factor (BDNF) and IL-6, and increased the release of nitrite from microglia. These indicate that CCL-1 has a role as a mediator in neuron-glia interaction, which may contribute to the development of neurological diseases, especially in neuropathic pain.

  9. Dynamic filopodia are required for chemokine-dependent intracellular polarization during guided cell migration in vivo

    PubMed Central

    Meyen, Dana; Tarbashevich, Katsiaryna; Banisch, Torsten U; Wittwer, Carolina; Reichman-Fried, Michal; Maugis, Benoît; Grimaldi, Cecilia; Messerschmidt, Esther-Maria; Raz, Erez

    2015-01-01

    Cell migration and polarization is controlled by signals in the environment. Migrating cells typically form filopodia that extend from the cell surface, but the precise function of these structures in cell polarization and guided migration is poorly understood. Using the in vivo model of zebrafish primordial germ cells for studying chemokine-directed single cell migration, we show that filopodia distribution and their dynamics are dictated by the gradient of the chemokine Cxcl12a. By specifically interfering with filopodia formation, we demonstrate for the first time that these protrusions play an important role in cell polarization by Cxcl12a, as manifested by elevation of intracellular pH and Rac1 activity at the cell front. The establishment of this polarity is at the basis of effective cell migration towards the target. Together, we show that filopodia allow the interpretation of the chemotactic gradient in vivo by directing single-cell polarization in response to the guidance cue. DOI: http://dx.doi.org/10.7554/eLife.05279.001 PMID:25875301

  10. Abrogation of CC chemokine receptor 9 ameliorates ventricular remodeling in mice after myocardial infarction

    PubMed Central

    Huang, Yan; Wang, Dandan; Wang, Xin; Zhang, Yijie; Liu, Tao; Chen, Yuting; Tang, Yanhong; Wang, Teng; Hu, Dan; Huang, Congxin

    2016-01-01

    CC chemokine receptor 9 (CCR9), which is a unique receptor for CC chemokine ligand (CCL25), is mainly expressed on lymphocytes, dendritic cells (DCs) and monocytes/macrophages. CCR9 mediates the chemotaxis of inflammatory cells and participates in the pathological progression of inflammatory diseases. However, the role of CCR9 in the pathological process of myocardial infarction (MI) remains unexplored; inflammation plays a key role in this process. Here, we used CCR9 knockout mice to determine the functional significance of CCR9 in regulating post-MI cardiac remodeling and its underlying mechanism. MI was induced by surgical ligation of the left anterior descending coronary artery in CCR9 knockout mice and their CCR9+/+ littermates. Our results showed that the CCR9 expression levels were up-regulated in the hearts of the MI mice. Abrogation of CCR9 improved the post-MI survival rate and left ventricular (LV) dysfunction and decreased the infarct size. In addition, the CCR9 knockout mice exhibited attenuated inflammation, apoptosis, structural and electrical remodeling compared with the CCR9+/+ MI mice. Mechanistically, CCR9 mainly regulated the pathological response by interfering with the NF-κB and MAPK signaling pathways. In conclusion, the data reveal that CCR9 serves as a novel modulator of pathological progression following MI through NF-κB and MAPK signaling. PMID:27585634

  11. Vesicular Trafficking and Signaling for Cytokine and Chemokine Secretion in Mast Cells

    PubMed Central

    Blank, Ulrich; Madera-Salcedo, Iris Karina; Danelli, Luca; Claver, Julien; Tiwari, Neeraj; Sánchez-Miranda, Elizabeth; Vázquez-Victorio, Genaro; Ramírez-Valadez, Karla Alina; Macias-Silva, Marina; González-Espinosa, Claudia

    2014-01-01

    Upon activation mast cells (MCs) secrete numerous inflammatory compounds stored in their cytoplasmic secretory granules by a process called anaphylactic degranulation, which is responsible for type I hypersensitivity responses. Prestored mediators include histamine and MC proteases but also some cytokines and growth factors making them available within minutes for a maximal biological effect. Degranulation is followed by the de novo synthesis of lipid mediators such as prostaglandins and leukotrienes as well as a vast array of cytokines, chemokines, and growth factors, which are responsible for late phase inflammatory responses. While lipid mediators diffuse freely out of the cell through lipid bilayers, both anaphylactic degranulation and secretion of cytokines, chemokines, and growth factors depends on highly regulated vesicular trafficking steps that occur along the secretory pathway starting with the translocation of proteins to the endoplasmic reticulum. Vesicular trafficking in MCs also intersects with endocytic routes, notably to form specialized cytoplasmic granules called secretory lysosomes. Some of the mediators like histamine reach granules via specific vesicular monoamine transporters directly from the cytoplasm. In this review, we try to summarize the available data on granule biogenesis and signaling events that coordinate the complex steps that lead to the release of the inflammatory mediators from the various vesicular carriers in MCs. PMID:25295038

  12. Utilization of C-C chemokine receptor 5 by the envelope glycoproteins of a pathogenic simian immunodeficiency virus, SIVmac239.

    PubMed Central

    Marcon, L; Choe, H; Martin, K A; Farzan, M; Ponath, P D; Wu, L; Newman, W; Gerard, N; Gerard, C; Sodroski, J

    1997-01-01

    We examined chemokine receptors for the ability to facilitate the infection of CD4-expressing cells by viruses containing the envelope glycoproteins of a pathogenic simian immunodeficiency virus, SIVmac239. Expression of either human or simian C-C chemokine receptor CCR5 allowed the SIVmac239 envelope glycoproteins to mediate virus entry and cell-to-cell fusion. Thus, distantly related immunodeficiency viruses such as SIV and the primary human immunodeficiency virus type 1 isolates can utilize CCR5 as an entry cofactor. PMID:9032394

  13. Interleukin-17 (IL-17) expression is reduced during acute myocardial infarction: role on chemokine receptor expression in monocytes and their in vitro chemotaxis towards chemokines.

    PubMed

    Troitskaya, Maria; Baysa, Anton; Vaage, Jarle; Sand, Kristin L; Maghazachi, Azzam A; Valen, Guro

    2012-11-30

    The roles of immune cells and their soluble products during myocardial infarction (MI) are not completely understood. Here, we observed that the percentages of IL-17, but not IL-22, producing cells are reduced in mice splenocytes after developing MI. To correlate this finding with the functional activity of IL-17, we sought to determine its effect on monocytes. In particular, we presumed that this cytokine might affect the chemotaxis of monocytes important for cardiac inflammation and remodeling. We observed that IL-17 tends to reduce the expression of two major chemokine receptors involved in monocyte chemotaxis, namely CCR2 and CXCR4. Further analysis showed that monocytes pretreated with IL-17 have reduced in vitro chemotaxis towards the ligand for CCR2, i.e., MCP-1/CCL2, and the ligand for CXCR4, i.e., SDF-1α/CXCL12. Our results support the possibility that IL-17 may be beneficial in MI, and this could be due to its ability to inhibit the migration of monocytes.

  14. Inflammatory chemokines and their receptors in human visceral leishmaniasis: Gene expression profile in peripheral blood, splenic cellular sources and their impact on trafficking of inflammatory cells.

    PubMed

    Singh, Neetu; Sundar, Shyam

    2017-02-18

    Chemokines play an important role in determining cellular composition at inflammatory sites, and as such, influence disease outcome. In this study, we investigated the expression profile and splenic cellular source of various inflammatory chemokines and their receptors in human visceral leishmaniasis (VL). The expression of chemokines or their receptors was measured at the gene and protein level by employing real time qPCR and a cytometric bead array assay, respectively. In addition, the cellular source of chemokines and their receptors in the spleen was identified employing gene expression analyses in sequentially selected cell subsets. We identified elevated expression of CXCL10, CXCL9, CXCL8, and decreased CCL2 from VL patients. Further, we found reduced expression of the chemokine receptors CXCR1, CXCR2, CXCR3 and CCR2, but increased expression of CCR7 on VL PBMC, compared to endemic healthy controls. Additionally, splenic monocytes were found to be the major source of CXCL10, CXCL9 and CCR2, whereas T cells were the main source of CXCR3 and CCR7. We also report a strong association between plasma IFN-γ and CXCL-10, CXCL-9 levels. Enhanced parasite burden positively correlates with increased expression of CXCL10, CXCL9, IFN-γ and IL-10. Overall our result indicates that VL patients have an elevated inflammatory chemokine milieu which correlated with disease severity. However, expression of their chemokine receptors was significantly impaired, which may have contributed to reduced frequencies of blood monocytes and neutrophils in peripheral blood. In contrast, enhanced expression of CCR7 was associated with increased numbers of activated T cells in circulation. These findings highlight the importance of chemokines for recruitment of various cell populations in VL, and the knowledge gained may help in global understandings of the complex interaction between chemokines and pathological processes, and therefore will contribute towards the design of novel

  15. Rescue from acute neuroinflammation by pharmacological chemokine-mediated deviation of leukocytes

    PubMed Central

    2012-01-01

    Background Neutrophil influx is an important sign of hyperacute neuroinflammation, whereas the entry of activated lymphocytes into the brain parenchyma is a hallmark of chronic inflammatory processes, as observed in multiple sclerosis (MS) and its animal models of experimental autoimmune encephalomyelitis (EAE). Clinically approved or experimental therapies for neuroinflammation act by blocking leukocyte penetration of the blood brain barrier. However, in view of unsatisfactory results and severe side effects, complementary therapies are needed. We have examined the effect of chlorite-oxidized oxyamylose (COAM), a potent antiviral polycarboxylic acid on EAE. Methods EAE was induced in SJL/J mice by immunization with spinal cord homogenate (SCH) or in IFN-γ-deficient BALB/c (KO) mice with myelin oligodendrocyte glycoprotein peptide (MOG35-55). Mice were treated intraperitoneally (i.p.) with COAM or saline at different time points after immunization. Clinical disease and histopathology were compared between both groups. IFN expression was analyzed in COAM-treated MEF cell cultures and in sera and peritoneal fluids of COAM-treated animals by quantitative PCR, ELISA and a bioassay on L929 cells. Populations of immune cell subsets in the periphery and the central nervous system (CNS) were quantified at different stages of disease development by flow cytometry and differential cell count analysis. Expression levels of selected chemokine genes in the CNS were determined by quantitative PCR. Results We discovered that COAM (2 mg i.p. per mouse on days 0 and 7) protects significantly against hyperacute SCH-induced EAE in SJL/J mice and MOG35-55-induced EAE in IFN-γ KO mice. COAM deviated leukocyte trafficking from the CNS into the periphery. In the CNS, COAM reduced four-fold the expression levels of the neutrophil CXC chemokines KC/CXCL1 and MIP-2/CXCL2. Whereas the effects of COAM on circulating blood and splenic leukocytes were limited, significant alterations were