Science.gov

Sample records for activator phorbol 12-myristate

  1. Phorbol ester phorbol-12-myristate-13-acetate promotes anchorage-independent growth and survival of melanomas through MEK-independent activation of ERK1/2

    SciTech Connect

    Jorgensen, Kjersti; Skrede, Martina; Cruciani, Veronique; Mikalsen, Svein-Ole; Slipicevic, Ana; Florenes, Vivi Ann . E-mail: v.a.florenes@labmed.uio.no

    2005-04-01

    The phorbol ester, phorbol-12-myristate-13-acetate (PMA), an activator of PKCs, is known to stimulate the in vitro growth of monolayer cultures of normal human melanocytes whereas it inhibits the growth of most malignant melanoma cell lines. We examined the effect of PMA on proliferation and survival of melanoma cells grown as multicellular aggregates in suspension (spheroids), and aimed to elucidate downstream targets of PKC signaling. In contrast to monolayer cultures, PMA increased cell proliferation as well as protected melanoma cells from suspension-mediated apoptosis (anoikis). Supporting the importance of PKC in anchorage-independent growth, treatment of anoikis-resistant melanoma cell lines with antisense oligonucleotides against PKC-{alpha}, or the PKC inhibitor Goe6976, strongly induced anoikis. PMA induced activation of ERK1/2, but this effect was not prevented by the MEK inhibitors PD98059 or by U0126. Whereas PD98059 treatment alone led to marked activation of the pro-apoptotic Bim and Bad proteins and significantly increased anoikis, these effects were clearly reversed by PMA. In conclusion, our results indicate that the protective effect of PMA on anchorage-independent survival of melanoma cells at least partly is mediated by MEK-independent activation of ERK1/2 and inactivation of downstream pro-apoptotic effector proteins.

  2. Antioxidant and Antiradical Activities of Manihot esculenta Crantz (Euphorbiaceae) Leaves and Other Selected Tropical Green Vegetables Investigated on Lipoperoxidation and Phorbol-12-myristate-13-acetate (PMA) Activated Monocytes

    PubMed Central

    Tsumbu, Cesar N.; Deby-Dupont, Ginette; Tits, Monique; Angenot, Luc; Franck, Thierry; Serteyn, Didier; Mouithys-Mickalad, Ange

    2011-01-01

    Abelmoschus esculentus (Malvaceae), Hibiscus acetosella (Malvaceae), Manihot esculenta Crantz (Euphorbiaceae) and Pteridium aquilinum (Dennstaedtiaceae) leaves are currently consumed as vegetables by migrants from sub-Saharan Africa living in Western Europe and by the people in the origin countries, where these plants are also used in the folk medicine. Manihot leaves are also eaten in Latin America and some Asian countries. This work investigated the capacity of aqueous extracts prepared from those vegetables to inhibit the peroxidation of a linoleic acid emulsion. Short chain, volatile C-compounds as markers of advanced lipid peroxidation were measured by gas chromatography by following the ethylene production. The generation of lipid hydroperoxides, was monitored by spectroscopy using N-N′-dimethyl-p-phenylene-diamine (DMPD). The formation of intermediate peroxyl, and other free radicals, at the initiation of the lipid peroxidation was investigated by electron spin resonance, using α-(4-pyridyl-1-oxide)-N-tert-butylnitrone as spin trap agent. The ability of the extracts to decrease the cellular production of reactive oxygen species (ROS) in “inflammation like” conditions was studied by fluorescence technique using 2′,7′-dichlorofluorescine-diacetate as fluorogenic probe, in a cell model of human monocytes (HL-60 cells) activated with phorbol ester. Overall the extracts displayed efficient concentration-dependent inhibitory effects. Their total polyphenol and flavonoid content was determined by classic colorimetric methods. An HPLC-UV/DAD analysis has clearly identified the presence of some polyphenolic compounds, which explains at least partially the inhibitions observed in our models. The role of these plants in the folk medicine by sub-Saharan peoples as well as in the prevention of oxidative stress and ROS related diseases requires further consideration. PMID:22254126

  3. Inhibition of bone collagen synthesis by the tumor promoter phorbol 12-myristate 13-acetate.

    PubMed

    Feyen, J H; Petersen, D N; Kream, B E

    1988-04-01

    We characterized the effect of the tumor promoter phorbol 12-myristate 13-acetate (PMA) on osteoblast function and DNA synthesis in 21-day-old fetal rat calvaria maintained in organ culture. Protein synthesis was determined by measuring the incorporation of [3H]proline into collagenase-digestible (CDP) and noncollagen protein (NCP), respectively. Alkaline phosphatase activity was assessed as the release of p-nitrophenol from p-nitrophenol phosphate. DNA synthesis was determined by the incorporation of [3H]thymidine into acid-insoluble bone and total DNA content. PMA at 3-100 ng/ml (4-133 nM) caused a dose-related inhibition of collagen synthesis that was observed 6 hours after adding PMA to calvaria. PMA inhibited collagen synthesis in the osteoblast-rich central bone of calvaria but did not alter collagen synthesis in the periosteum. There was little effect of PMA on noncollagen protein synthesis in the central bone or periosteum. Phorbol esters that do not promote tumor formation in vivo did not alter collagen synthesis in calvaria. PMA stimulated prostaglandin E2 (PGE2) production in calvaria, but indomethacin did not alter the inhibitory effect of PMA on bone collagen synthesis. PMA decreased alkaline phosphatase activity measured after 48 hr of culture and increased the incorporation of [3H]thymidine into bone and DNA content after 96 hr of culture. These data indicate that PMA inhibits collagen synthesis and alkaline phosphatase activity, while stimulating DNA synthesis, suggesting that activation of protein kinase C might regulate osteoblast function and bone cell replication.

  4. Contraction of rat thoracic aorta strips induced by phorbol 12-myristate 13-acetate

    SciTech Connect

    Itoh, H.; Lederis, K.

    1987-02-01

    Phorbol 12-myristate 13-acetate (PMA) induced a slow and progressive increase in tension of rat thoracic aorta strips in the presence of extracellular CaS . Complete relaxation could not be obtained in CaS -free buffer containing 1 mM ethyleneglycol-bis(US -aminoethylether)-N,N'-tetraacetic acid (EGTA) and 10 X M PMA. In the absence of extracellular CaS , PMA (10 X M) induced a small but sustained contraction which was not altered by the addition of another 2 mM EGTA and 3 x 10 V M verapamil. Papaverine (10 U M) relaxed the PMA-induced contraction to the base line, but phentolamine (10 V M), cyproheptadine (10 V M), atropine (10 V M) and tetrodotoxine (10 W M) did not change the contraction. CaS -depleted muscle strips, prepared by four repeated applications of 10 X M norepinephrine in CaS -free buffer, were contracted by 10 X M PMA, but at a lower maximum tension than nontreated strips. The action of PMA on rat aorta strips in CaS -free buffer did not require the presence of the adventitial layer or endothelial cells. These results suggest that PMA may induce activation of protein kinase C and smooth muscle contraction in the absence of extracellular CaS , without an increase in myoplasmic CaS .

  5. Effects of phorbol 12-myristate 13-acetate and cortisol interaction on steroid-binding capacity in the rat.

    PubMed Central

    Janssens, J P; de Loecker, W

    1979-01-01

    The specificity of the cortisol-receptor protein is examined in plasma and liver cytosol of rats. Phorbol 12-myristate 13-acetate does not inhibit the binding of cortisol to transcortin, nor does it affect the binding capacity of dexamethasone to the intracellular glucocorticoid receptor, but, by interacting with the cortisol molecule, it interferes with hormone-mediated processes in the cell. PMID:534535

  6. Control of macrophage cell differentiation in human promyelocytic HL-60 leukemia cells by 1,25-dihydroxyvitamin D/sub 3/ and phorbol-12-myristate-13-acetate

    SciTech Connect

    Murao, S.; Gemmell, M.A.; Callaham, M.F.; Anderson, N.L.; Huberman, E.

    1983-10-01

    Human promyelocytic leukemia cells (HL-60) were induced to differentiate into macrophage-like cells in a dose (3 x 10/sup -10/ to 10/sup -7/ M) and time (1 to 6 days)-dependent manner by 1,25-dihydroxyvitamin D/sub 3/ and the tumor promoter, phorbol-12-myristate-13-acetate. Differentiation was determined by an increase in the percentage of morphologically mature cells, in lysozyme and nonspecific esterase activities, and in reactivity with the murine OKM1 monoclonal antibody. Two HL-60 cell variants, designated as R-80 and B-II, were also examined. R-80 cells, which are resistant to induction of cell differentiation by phorbol-12-myristate-13-acetate, also exhibited resistance, although to a lesser degree, to induction of cell differentiation by 1,25-dihydroxyvitamin D/sub 3/. Te resistance to the action of the two compounds is presumably not due to similar binding sites for the two inducers, since 1,25-dihydroxyvitamin D/sub 3/ was unable to compete for the phorbol diester binding sites as measured by (/sup 3/H)phorbol-12,13-dibutyrate binding. B-II cells were resistant to induction of cell differentiation by 1,25-dihydroxyvitamin D/sub 3/, phorbol-12-myristate-13-acetate, retinoic acid, and dimethyl sulfoxide. Two-dimensional electrophoretic analysis of HL-60 cell protein patterns indicated that treatment of the HL-60 cells with 1,25-dihydroxyvitamin D/sub 3/, phorbol-12-myristate-13-acetate, retinoic acid, and dimethyl sulfoxide caused the cells to express various monocyte-macrophage and granulocyte marker proteins. These results indicate that 1,25-dihydroxyvitamin D/sub 3/ induces in the HL-60 cells a phenotype that resembles, but is not identical to, that of peripheral monocytes-macrophages. 40 references, 3 figures, 1 table.

  7. Nanomechanical measurement of adhesion and migration of leukemia cells with phorbol 12-myristate 13-acetate treatment

    PubMed Central

    Zhou, Zhuo Long; Ma, Jing; Tong, Ming-Hui; Chan, Barbara Pui; Wong, Alice Sze Tsai; Ngan, Alfonso Hing Wan

    2016-01-01

    The adhesion and traction behavior of leukemia cells in their microenvironment is directly linked to their migration, which is a prime issue affecting the release of cancer cells from the bone marrow and hence metastasis. In assessing the effectiveness of phorbol 12-myristate 13-acetate (PMA) treatment, the conventional batch-cell transwell-migration assay may not indicate the intrinsic effect of the treatment on migration, since the treatment may also affect other cellular behavior, such as proliferation or death. In this study, the pN-level adhesion and traction forces between single leukemia cells and their microenvironment were directly measured using optical tweezers and traction-force microscopy. The effects of PMA on K562 and THP1 leukemia cells were studied, and the results showed that PMA treatment significantly increased cell adhesion with extracellular matrix proteins, bone marrow stromal cells, and human fibroblasts. PMA treatment also significantly increased the traction of THP1 cells on bovine serum albumin proteins, although the effect on K562 cells was insignificant. Western blots showed an increased expression of E-cadherin and vimentin proteins after the leukemia cells were treated with PMA. The study suggests that PMA upregulates adhesion and thus suppresses the migration of both K562 and THP1 cells in their microenvironment. The ability of optical tweezers and traction-force microscopy to measure directly pN-level cell–protein or cell–cell contact was also demonstrated. PMID:27994457

  8. Nanomechanical measurement of adhesion and migration of leukemia cells with phorbol 12-myristate 13-acetate treatment.

    PubMed

    Zhou, Zhuo Long; Ma, Jing; Tong, Ming-Hui; Chan, Barbara Pui; Wong, Alice Sze Tsai; Ngan, Alfonso Hing Wan

    The adhesion and traction behavior of leukemia cells in their microenvironment is directly linked to their migration, which is a prime issue affecting the release of cancer cells from the bone marrow and hence metastasis. In assessing the effectiveness of phorbol 12-myristate 13-acetate (PMA) treatment, the conventional batch-cell transwell-migration assay may not indicate the intrinsic effect of the treatment on migration, since the treatment may also affect other cellular behavior, such as proliferation or death. In this study, the pN-level adhesion and traction forces between single leukemia cells and their microenvironment were directly measured using optical tweezers and traction-force microscopy. The effects of PMA on K562 and THP1 leukemia cells were studied, and the results showed that PMA treatment significantly increased cell adhesion with extracellular matrix proteins, bone marrow stromal cells, and human fibroblasts. PMA treatment also significantly increased the traction of THP1 cells on bovine serum albumin proteins, although the effect on K562 cells was insignificant. Western blots showed an increased expression of E-cadherin and vimentin proteins after the leukemia cells were treated with PMA. The study suggests that PMA upregulates adhesion and thus suppresses the migration of both K562 and THP1 cells in their microenvironment. The ability of optical tweezers and traction-force microscopy to measure directly pN-level cell-protein or cell-cell contact was also demonstrated.

  9. Expression of the human B-cell surface protein CD20: alteration by phorbol 12-myristate 13-acetate

    SciTech Connect

    Valentine, M.A.; Cotner, T.; Gaur, L.; Torres, R.; Clark, E.A.

    1987-11-01

    The monoclonal antibody 1F5 recognizes human B-cell surface protein CD20 and can activate resting B cells; with this antibody the authors found CD20 to be a 35/37-kDa non-disulfide-linked protein. The protein has a pI of 7.5-8.0 and is phosphorylated in B-cell lines, tonsillar B cells, and peripheral blood B cells. Both CD20 surface expression and phosphorylation are increased on buoyant tonsillar B cells activated in vivo. Because phorbol 12-myristate 13-acetate (PMA) supports the activation signal initiated by monoclonal antibody 1F5, they studied the effect of PMA on CD20 expression. After brief incubation with mitogenic levels of PMA, the number of dense tonsillar B cells positive for CD20 protein transiently decreased. Paradoxically, the cells remaining positive had more surface CD20 than did control cells, and these remaining surface CD20 molecules were hyperphosphorylated. Furthermore, PMA not only induced phosphorylation of CD20 protein on Raji cells but also increased the internalization of CD20 molecules; both phosphorylation and internalization of CD20 molecules were decreased with the protein kinase C inhibitor palmitoyl carnitine. Conditions that increase CD20 phosphorylation are shown also to increase surface mobility of the molecule, suggesting that CD20 protein internalization may be a critical early event for B-cell entry into the G/sub 1/ phase of the cell cycle.

  10. Phorbol 12-myristate 13-acetate prevents isoproterenol-induced morphological change in cultured vascular smooth muscle cells

    SciTech Connect

    Nabika, Toru; Chaldakov, G.N.; Nara, Yasuo; Endo, Jiro; Yamori, Yukio )

    1988-10-01

    The effect of phorbol 12-myristate 13-acetate (PMA) on isoproterenol (ISO)- and dibutyryl cAMP (dBcAMP)-induced morphological change and cytoskeletal reorganization was studied in cultured vascular smooth muscle cells (VSMC) using the fluorescence staining of actin and microtubules. The treatment of VSMC with 1.0 {mu}M of ISO or with 1.0 mM of dBcAMP for 90 min induced the disruption of actin-containing stress fibers followed by cytoplasmic arborization. The addition of 100 nM of PMA prevented both the destruction of actin fibers and cell arborization induced either by ISO or by dBcAMP. These results indicated that the inhibition of arborization by PMA was mediated through the activation of protein kinase C. Colchicine at 5.0 {mu}M also had an inhibitory effect on ISO- and dBcAMP-induced cell arborization. However, immunofluorescence studies revealed that colchicine but not PMA elicited the reorganization of microtubules, suggesting that the effect of PMA was mediated through a mechanism different from that of colchicine. The observations indicated that the morphology of VSMC was regulated through the alteration of cytoskeletal organization induced by cAMP-mediated and by protein kinase C-dependent systems.

  11. Stimulation of progesterone production by phorbol-12-myristate 13-acetate (PMA) in cultured Leydig tumor cells

    SciTech Connect

    Chaudhary, L.R.; Raju, V.S.; Stocco, D.M.

    1987-05-01

    It has been shown that addition of hCG or c-AMP to cultured Leydig tumor cells (MA-10) increases synthesis of progesterone as the major steroid. To investigate the possible involvement of protein kinase C (PK-C) in the regulation of steroid synthesis, the authors have studied the effect of PMA, an activator of PK-C, on progesterone production in MA-10 cells. The addition of PMA (100 ng/ml) stimulated steroid production whereas 4 -phorbol-12,13-didecanoate, an inactive phorbol ester, did not have any effects. Like hCG and c-AMP, PMA-stimulated progesterone production was inhibited by cycloheximide. hCG-stimulated steroid synthesis was inhibited by PMA. The addition of PMA to MA-10 Leydig cells further increased the c-AMP-stimulated progesterone production. To determine whether c-AMP has a obligatory role in the regulation of steroid production, the effect of adenylate cyclase inhibitor, 9-(tetrahydro-2-furyl)adenine (TFA), was studied on progesterone production in the presence of hCG. At lower dose (17 ng/ml) hCG-stimulated intracellular c-AMP levels and steroid production were inhibited by TFA (300 M). At higher dose of hCG (34 ng/ml) TFA did not inhibit the hCG-stimulated intracellular c-AMP levels, however, progesterone production was inhibited. Results suggest that the action of hCG, c-AMP and PMA in controlling steroidogenesis might be regulated by similar but different mechanisms.

  12. The effect of lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA) on whole blood oxidative response as assessed by luminol-amplified chemiluminescence in dairy cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The differences between lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA) on whole blood oxidative response using luminol-amplified chemiluminescence (CL) are currently unknown in cattle. Luminol-dependent CL measures the amount of reactive oxygen species released from leukocytes a...

  13. Galangin and kaempferol suppress phorbol-12-myristate-13-acetate-induced matrix metalloproteinase-9 expression in human fibrosarcoma HT-1080 cells.

    PubMed

    Choi, Yu Jung; Lee, Young Hun; Lee, Seung-Taek

    2015-01-01

    Matrix metalloproteinase (MMP)-9 degrades type IV collagen in the basement membrane and plays crucial roles in several pathological implications, including tumorigenesis and inflammation. In this study, we analyzed the effect of flavonols on MMP-9 expression in phorbol-12-myristate-13-acetate (PMA)-induced human fibrosarcoma HT-1080 cells. Galangin and kaempferol efficiently decreased MMP-9 secretion, whereas fisetin only weakly decreased its secretion. Galangin and kaempferol did not affect cell viability at concentrations up to 30 μM. Luciferase reporter assays showed that galangin and kaempferol decrease transcription of MMP-9 mRNA. Moreover, galangin and kaempferol strongly reduce IκBα phosphorylation and significantly decrease JNK phosphorylation. These results indicate that galangin and kaempferol suppress PMA-induced MMP-9 expression by blocking activation of NF-κB and AP-1. Therefore, these flavonols could be used as chemopreventive agents to lower the risk of diseases involving MMP-9.

  14. ERK2-Pyruvate Kinase Axis Permits Phorbol 12-Myristate 13-Acetate-induced Megakaryocyte Differentiation in K562 Cells*

    PubMed Central

    Chaman, Noor; Iqbal, Mohammad Askandar; Siddiqui, Farid Ahmad; Gopinath, Prakasam; Bamezai, Rameshwar N. K.

    2015-01-01

    Metabolic changes that contribute to differentiation are not well understood. Overwhelming evidence shows the critical role of glycolytic enzyme pyruvate kinase (PK) in directing metabolism of proliferating cells. However, its role in metabolism of differentiating cells is unclear. Here we studied the role of PK in phorbol 12-myristate 13-acetate (PMA)-induced megakaryocytic differentiation in human leukemia K562 cells. We observed that PMA treatment decreased cancer-type anabolic metabolism but increased ATP production, along with up-regulated expression of two PK isoforms (PKM2 and PKR) in an ERK2-dependent manner. Interestingly, silencing of PK (PKM2 and PKR) inhibited PMA-induced megakaryocytic differentiation, as revealed by decreased expression of megakaryocytic differentiation marker CD61 and cell cycle behavior. Further, PMA-induced ATP production reduced greatly upon PK silencing, suggesting that PK is required for ATP synthesis. In addition to metabolic effects, PMA treatment also translocated PKM2, but not PKR, into nucleus. ERK1/2 knockdowns independently and together suggested the role of ERK2 in the up-regulation of both the isoforms of PK, proposing a role of ERK2-PK isoform axis in differentiation. Collectively, our findings unravel ERK2 guided PK-dependent metabolic changes during PMA induction, which are important in megakaryocytic differentiation. PMID:26269597

  15. ERK2-Pyruvate Kinase Axis Permits Phorbol 12-Myristate 13-Acetate-induced Megakaryocyte Differentiation in K562 Cells.

    PubMed

    Chaman, Noor; Iqbal, Mohammad Askandar; Siddiqui, Farid Ahmad; Gopinath, Prakasam; Bamezai, Rameshwar N K

    2015-09-25

    Metabolic changes that contribute to differentiation are not well understood. Overwhelming evidence shows the critical role of glycolytic enzyme pyruvate kinase (PK) in directing metabolism of proliferating cells. However, its role in metabolism of differentiating cells is unclear. Here we studied the role of PK in phorbol 12-myristate 13-acetate (PMA)-induced megakaryocytic differentiation in human leukemia K562 cells. We observed that PMA treatment decreased cancer-type anabolic metabolism but increased ATP production, along with up-regulated expression of two PK isoforms (PKM2 and PKR) in an ERK2-dependent manner. Interestingly, silencing of PK (PKM2 and PKR) inhibited PMA-induced megakaryocytic differentiation, as revealed by decreased expression of megakaryocytic differentiation marker CD61 and cell cycle behavior. Further, PMA-induced ATP production reduced greatly upon PK silencing, suggesting that PK is required for ATP synthesis. In addition to metabolic effects, PMA treatment also translocated PKM2, but not PKR, into nucleus. ERK1/2 knockdowns independently and together suggested the role of ERK2 in the up-regulation of both the isoforms of PK, proposing a role of ERK2-PK isoform axis in differentiation. Collectively, our findings unravel ERK2 guided PK-dependent metabolic changes during PMA induction, which are important in megakaryocytic differentiation.

  16. Double minute chromatin bodies and other chromosome alterations in human myeloid HL-60 leukemia cells susceptible or resistant to induction of differentiation by phorbol-12-myristate-13-acetate

    SciTech Connect

    Au, W.W.; Callaham, M.F.; Workman, M.L.; Huberman, E.

    1983-12-01

    An analysis of the chromosomal karyotype of the human promyelocytic HL-60 leukemia cell line and of a number of its sublines that exhibit varying degrees of resistance to induction of differentiation by phorbol-12-myristate-13-acetate was conducted. The HL-60 cell line and the derived sublines contained two consistent marker chromosomes (9p- and t(10;13)), which suggested that they have a common and possibly clonal origin. HL-60 cells that are susceptible to phorbol-12-myristate-13-acetate-induced cell differentiation contained double minute chromatine bodies. The sublines with different degrees of resistance showed a corresponding sequential reduction of double minute chromatin bodies in metaphase cells. This loss of double minute chromatin bodies was not associated with an appearance of homogeneously staining chromosomal regions. Resistant and susceptible HL-60 cell differed also in a number of other chromosomal alteration, including gains or losses involving chromosomes 5, 8, 11, 13, 16, and 17. Thus, it is suggested that acquisition of resistance to phorbol-12-myristate-13-acetate-induced cell differentiation in the HL-60 cells may involve one or more of the above chromosomal changes.

  17. Sp1 involvement in the 4beta-phorbol 12-myristate 13-acetate (TPA)-mediated increase in resistance to methotrexate in Chinese hamster ovary cells.

    PubMed

    Noé, V; Alemany, C; Nicolás, M; Ciudad, C J

    2001-06-01

    4beta-Phorbol 12-myristate 13-acetate (TPA) increases the number of colonies resistant to methotrexate (MTX), mainly by amplification of the dihydrofolate reductase (dhfr) locus. We showed previously that inhibition of protein kinase C (PKC) prevents this resistance. Here, we studied the molecular changes involved in the development of TPA-mediated MTX resistance in Chinese hamster ovary (CHO) cells. TPA incubation increased the expression and activity of DHFR. Because Sp1 controls the dhfr promoter, we determined the effect of TPA on the expression of Sp1 and its binding to DNA. TPA incubation increased Sp1 binding and the levels of Sp1 protein. The latter effect was due to an increase in Sp1 mRNA. Dephosphorylation of nuclear extracts from control or TPA-treated cells reduced the binding of Sp1. Stable transfectants of PKCalpha showed increased Sp1 binding, and when treated with MTX, developed a greater number of resistant colonies than control cells. Seventy-five percent of the isolated colonies showed increased copy number for the dhfr gene. Transient expression of PKCalpha increased DHFR activity. Over-expression of Sp1 increased resistance to MTX, and inhibition of Sp1 binding by mithramycin decreased this resistance. We conclude that one mechanism by which TPA enhances MTX resistance, mainly by gene amplification, is through an increase in Sp1 expression which leads to DHFR activation.

  18. Involvement of phorbol-12-myristate-13-acetate-induced protein 1 in goniothalamin-induced TP53-dependent and -independent apoptosis in hepatocellular carcinoma-derived cells

    SciTech Connect

    Kuo, Kung-Kai; Chen, Yi-Ling; Chen, Lih-Ren; Li, Chien-Feng; Lan, Yu-Hsuan; Chang, Fang-Rong; Wu, Yang-Chang; Shiue, Yow-Ling

    2011-10-01

    The objective was to investigate the upstream apoptotic mechanisms that were triggered by a styrylpyrone derivative, goniothalamin (GTN), in tumor protein p53 (TP53)-positive and -negative hepatocellular carcinoma (HCC)-derived cells. Effects of GTN were evaluated by the flow cytometry, alkaline comet assay, immunocytochemistry, small-hairpin RNA interference, mitochondria/cytosol fractionation, quantitative reverse transcription-polymerase chain reaction, immunoblotting analysis and caspase 3 activity assays in two HCC-derived cell lines. Results indicated that GTN triggered phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, also known as NOXA)-mediated apoptosis via TP53-dependent and -independent pathways. In TP53-positive SK-Hep1 cells, GTN furthermore induced TP53 transcription-dependent and -independent apoptosis. After GTN treatment, accumulation of reactive oxygen species, formation of DNA double-strand breaks, transactivation of TP53 and/or PMAIP1 gene, translocation of TP53 and/or PMAIP1 proteins to mitochondria, release of cytochrome c from mitochondria, cleavage of caspases and induction of apoptosis in both cell lines were sustained. GTN might represent a novel class of anticancer drug that induces apoptosis in HCC-derived cells through PMAIP1 transactivation regardless of the status of TP53 gene. - Highlights: > Goniothalamin (GTN) induced apoptosis in hepatocellular carcinomas-derived cells. > The apoptosis induced by GTN is PMAIP1-dependent, regardless of TP53 status. > The apoptosis induced by GTN might be TP53 transcription-dependent or -independent. > GTN-induced apoptosis is mitochondria- and caspases-mediated.

  19. Phorbol 12-myristate 13-acetate induces protein kinase ceta-specific proliferative response in astrocytic tumor cells.

    PubMed

    Hussaini, I M; Karns, L R; Vinton, G; Carpenter, J E; Redpath, G T; Sando, J J; VandenBerg, S R

    2000-07-21

    Protein kinase C (PKC) activation has been implicated in cellular proliferation in neoplastic astrocytes. The roles for specific PKC isozymes in regulating this glial response, however, are not well understood. The aim of this study was to characterize the expression of PKC isozymes and the role of PKC-eta expression in regulating cellular proliferation in two well characterized astrocytic tumor cell lines (U-1242 MG and U-251 MG) with different properties of growth in cell culture. Both cell lines expressed an array of conventional (alpha, betaI, betaII, and gamma) and novel (theta and epsilon) PKC isozymes that can be activated by phorbol myristate acetate (PMA). Another novel PKC isozyme, PKC-eta, was only expressed by U-251 MG cells. In contrast, PKC-delta was readily detected in U-1242 MG cells but was present only at low levels in U-251 MG cells. PMA (100 nm) treatment for 24 h increased cell proliferation by over 2-fold in the U-251 MG cells, whereas it decreased the mitogenic response in the U-1242 MG cells by over 90%. When PKC-eta was stably transfected into U-1242 MG cells, PMA increased cell proliferation by 2.2-fold, similar to the response of U-251 MG cells. The cell proliferation induced by PMA in both the U-251 MG and U-1242-PKC-eta cells was blocked by the PKC inhibitor bisindolylmaleimide (0.5 micrometer) and the MEK inhibitor, PD 98059 (50 micrometer). Transient transfection of wild type U-251 with PKC-eta antisense oligonucleotide (1 micrometer) also blocked the PMA-induced increase in [(3)H]thymidine incorporation. The data demonstrate that two glioblastoma lines, with functionally distinct proliferative responses to PMA, express different novel PKC isozymes and that the differential expression of PKC-eta plays a determining role in the different proliferative capacity.

  20. A Metabolic Shift toward Pentose Phosphate Pathway Is Necessary for Amyloid Fibril- and Phorbol 12-Myristate 13-Acetate-induced Neutrophil Extracellular Trap (NET) Formation*

    PubMed Central

    Azevedo, Estefania P.; Rochael, Natalia C.; Guimarães-Costa, Anderson B.; de Souza-Vieira, Thiago S.; Ganilho, Juliana; Saraiva, Elvira M.; Palhano, Fernando L.; Foguel, Debora

    2015-01-01

    Neutrophils are the main defense cells of the innate immune system. Upon stimulation, neutrophils release their chromosomal DNA to trap and kill microorganisms and inhibit their dissemination. These chromatin traps are termed neutrophil extracellular traps (NETs) and are decorated with granular and cytoplasm proteins. NET release can be induced by several microorganism membrane components, phorbol 12-myristate 13-acetate as well as by amyloid fibrils, insoluble proteinaceous molecules associated with more than 40 different pathologies among other stimuli. The intracellular signaling involved in NET formation is complex and remains unclear for most tested stimuli. Herein we demonstrate that a metabolic shift toward the pentose phosphate pathway (PPP) is necessary for NET release because glucose-6-phosphate dehydrogenase (G6PD), an important enzyme from PPP, fuels NADPH oxidase with NADPH to produce superoxide and thus induce NETs. In addition, we observed that mitochondrial reactive oxygen species, which are NADPH-independent, are not effective in producing NETs. These data shed new light on how the PPP and glucose metabolism contributes to NET formation. PMID:26198639

  1. Micromanipulation of adhesion of phorbol 12-myristate-13-acetate-stimulated T lymphocytes to planar membranes containing intercellular adhesion molecule-1.

    PubMed Central

    Tözeren, A; Mackie, L H; Lawrence, M B; Chan, P Y; Dustin, M L; Springer, T A

    1992-01-01

    This paper presents an analytical and experimental methodology to determine the physical strength of cell adhesion to a planar membrane containing one set of adhesion molecules. In particular, the T lymphocyte adhesion due to the interaction of the lymphocyte function associated molecule 1 on the surface of the cell, with its counter-receptor, intercellular adhesion molecule-1 (ICAM-1), on the planar membrane, was investigated. A micromanipulation method and mathematical analysis of cell deformation were used to determine (a) the area of conjugation between the cell and the substrate and (b) the energy that must be supplied to detach a unit area of the cell membrane from its substrate. T lymphocytes stimulated with phorbol 12-myristate-13-acetate (PMA) conjugated strongly with the planar membrane containing purified ICAM-1. The T lymphocytes attached to the planar membrane deviated occasionally from their round configuration by extending pseudopods but without changing the size of the contact area. These adherent cells were dramatically deformed and then detached when pulled away from the planar membrane by a micropipette. Detachment occurred by a gradual decrease in the radius of the contact area. The physical strength of adhesion between a PMA-stimulated T lymphocyte and a planar membrane containing 1,000 ICAM-1 molecules/micron 2 was comparable to the strength of adhesion between a cytotoxic T cell and its target cell. The comparison of the adhesive energy density, measured at constant cell shape, with the model predictions suggests that the physical strength of cell adhesion may increase significantly when the adhesion bonds in the contact area are immobilized by the actin cytoskeleton. Images FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 8 FIGURE 9 PMID:1358239

  2. The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus.

    PubMed

    Lund, Maria E; To, Joyce; O'Brien, Bronwyn A; Donnelly, Sheila

    2016-03-01

    The human monocytic cell line, THP-1, is the most widely used model for primary human monocytes/macrophages. This is because, following differentiation using phorbol 12-myristate 13-acetate (PMA), THP-1 cells acquire a macrophage-like phenotype, which mimics, in many respects, primary human macrophages. Despite the widespread use of THP-1 cells in studies elucidating macrophage responses to inflammatory stimuli, as well as the development and screening of potential therapeutics, there is currently no standardised protocol for the reliable differentiation of THP-1 monocytes to a macrophage phenotype using PMA. Consequently, reports using THP-1 cells have demonstrated significant phenotypic and functional differences between resultant THP-1 macrophage populations, which are largely attributable to the varying PMA differentiation methods used. Thus, to guarantee consistency and reproducibility between studies, and to ensure the relevance of THP-1 cells as an appropriate model for primary human macrophages, it is crucial to develop a standardised protocol for the differentiation of THP-1 macrophages. Accordingly, we compared the function and phenotype of THP-1 macrophages generated using the range of published PMA differentiation protocols, specifically in response to the pro-inflammatory stimulus, lipopolysaccharide (LPS). Our results demonstrated that the function of the resultant THP-1 macrophage populations, as determined by tumour necrosis factor (TNF) secretion in response to LPS stimulation, varied significantly, and was dependent upon the concentration of PMA used to stimulate the differentiation of monocytes, and the period of rest following PMA exposure. These data indicate that exposure of monocytic THP-1 cells to 25 nM PMA over 48 h, followed by a recovery period of 24h in culture in the absence of PMA, was the optimal protocol for the differentiation of THP-1 cells.

  3. Anti-edema effects of brown seaweed (Undaria pinnatifida) extract on phorbol 12-myristate 13-acetate-induced mouse ear inflammation.

    PubMed

    Khan, Mohammed Nurul Absar; Yoon, Seung-Je; Choi, Jae-Suk; Park, Nam Gyu; Lee, Hyung-Ho; Cho, Ji-Young; Hong, Yong-Ki

    2009-01-01

    The brown seaweed Undaria pinnatifida (Harvey) Suringar is used in traditional medicine to treat fever, urination problems, lumps and swelling, and as a dietary supplement for post-childbirth women. We examined the anti-inflammatory activities of the seaweed. The methanol extract of the seaweed was active against mouse ear edema induced by phorbol myristate acetate (PMA), with an IC(50) of 10.3 mg/ml. The extract reduced the edema to a half-maximal level when applied at the concentration of 40 mg/ml within 3 hours before or 2 hours after application of PMA. Extract taken from the blade section of the seaweed demonstrated the highest activity. The Northern form of U. pinnatifida was more active than the Southern form. In the analgesic test, the methanol extract suppressed the acetic acid-induced writhing response, with an IC(50) of 0.48 g/kg body weight. The extract also demonstrated antipyretic activity in yeast-induced hyperthermic mice. Activity-related constituents were arachidonic, eicosapentaenoic, and stearidonic acids.

  4. Prevention of neuronal apoptosis by phorbol ester-induced activation of protein kinase C: blockade of p38 mitogen-activated protein kinase.

    PubMed

    Behrens, M M; Strasser, U; Koh, J Y; Gwag, B J; Choi, D W

    1999-01-01

    Consistent with previous studies on cell lines and non-neuronal cells, specific inhibitors of protein kinase C induced mouse primary cultured neocortical neurons to undergo apoptosis. To examine the complementary hypothesis that activating protein kinase C would attenuate neuronal apoptosis, the cultures were exposed for 1 h to phorbol-12-myristate-13-acetate, which activated protein kinase C as evidenced by downstream enhancement of the mitogen-activated protein kinase pathway. Exposure to phorbol-12-myristate-13-acetate, or another active phorbol ester, phorbol-12,13-didecanoate, but not to the inactive ester, 4alpha-phorbol-12,13-didecanoate, markedly attenuated neuronal apoptosis induced by serum deprivation. Phorbol-12-myristate-13-acetate also attenuated neuronal apoptosis induced by exposure to beta-amyloid peptide 1-42, or oxygen-glucose deprivation in the presence of glutamate receptor antagonists. The neuroprotective effects of phorbol-12-myristate-13-acetate were blocked by brief (non-toxic) concurrent exposure to the specific protein kinase C inhibitors, but not by a specific mitogen-activated protein kinase 1 inhibitor. Phorbol-12-myristate-13-acetate blocked the induction of p38 mitogen-activated protein kinase activity and specific inhibition of this kinase by SB 203580 attenuated serum deprivation-induced apoptosis. c-Jun N-terminal kinase 1 activity was high at rest and not modified by phorbol-12-myristate-13-acetate treatment. These data strengthen the idea that protein kinase C is a key modulator of several forms of central neuronal apoptosis, in part acting through inhibition of p38 mitogen-activated protein kinase regulated pathways.

  5. Phorbol ester and spontaneous activity in SHR aorta

    SciTech Connect

    Moisey, D.M.; Cox, R.H.

    1986-03-01

    Thoracic aortas (TA) were excised from 6-week old SHR and WKY. 2mm rings were mounted isometrically at optimum preload. Spontaneous rhythmical activity developed in TA from SHR and had a frequency of 3-4/min with varying periods of quiescence between bursts of activity. The spontaneous activity often produced an increase in tension development which was associated with increased frequency of oscillations. Verapamil (10/sup -7/ M) or Ca/sup + +/-free solution added during the contractile phase resulted in an immediate loss of tension and spontaneous activity. Addition of ouabain (10/sup -4/ M) during the contractile phase of spontaneous activity, increased the frequency of oscillations which appeared to fuse into a tetanus. Spontaneous rhythmical activity was infrequently observed in TA from WKY. However, addition of phorbol 12-myristate-13 acetate (TPA), frequently induced spontaneous rhythmic oscillations associated with tension development in TA from WKY. TPA contracted the SHR TA and increased the frequency of oscillations. SHR TA were more sensitive to TPA than WKY. This study demonstrates (1) spontaneous rhythmical activity, independent of agonist stimulation in TA from 6-week old SHR and (2) TPA induced spontaneous oscillatory activity. The mechanism underlying the spontaneous oscillatory activity may involve membrane coupling events and Na-pump difference between SHR and WKY.

  6. Stimulation of dopamine synthesis and activation of tyrosine hydroxylase by phorbol diesters in rat striatum

    SciTech Connect

    Onali, P.; Olianas, M.C.

    1987-03-23

    In rat striatal synaptosomes, 4..beta..-phorbol 12-myristate 13-acetate (PMA) and 4 ..beta..-phorbol 12,13-dibutyrate (PDBu), two activators of Ca/sup 2 +/-phospholipid-dependent protein kinase (protein kinase C) increased dopamine (DA) synthesis measured by following the release of /sup 14/CO/sub 2/ from L-(1-/sup 14/C) tyrosine. Maximal stimulation (21-28% increase of basal rate) was produced by 0.5 ..mu..M PMA and 1 ..mu..M PDBu. 4 ..beta..-Phorbol and 4 ..beta..-phorbol 13-acetate, which are not activators of protein kinase C, were ineffective at 1 ..mu..M. PMA did not change the release of /sup 14/CO/sub 2/ from L-(1-/sup 14/C)DOPA. Addition of 1 mM EGTA to a Ca/sup 2 +/-free incubation medium failed to affect PMA stimulation. KCl (60 mM) enhanced DA synthesis by 25%. Exposure of synaptosomes to either PMA or PDBu prior to KCl addition resulted in a more than additive increase (80-100%) of DA synthesis. A similar synergistic effect was observed when the phorbol diesters were combined with either veratridine or d-amphetamine but not with forskolin and dibutyryl cyclic AMP. Pretreatment of striatal synaptosomes with phorbol diesters produced an activation of tyrosine hydroxylase (TH) associated with a 60% increase of the Vmax and a decrease of the Km for the pterine cofactor 6-methyl-5,6,7,8-tetrahydropterin. These results indicate that protein kinase C participates in the regulation of striatal TH in situ and that its activation may act synergistically with DA releasing agents in stimulating DA synthesis. 37 references, 3 figures, 3 tables.

  7. Phorbol ester induces elevated oxidative activity and alkalization in a subset of lysosomes

    SciTech Connect

    Chen, Chii-Shiarng )

    2002-01-01

    Background: Lysosomes are acidic organelles that play multiple roles in various cellular oxidative activities such as the oxidative burst during cytotoxic killing. It remains to be determined how lysosomal lumen oxidative activity and pH interact and are regulated. Here, I report the use of fluorescent probes to measure oxidative activity and pH of lysosomes in live macrophages upon treatment with the tumor promotor phorbol 12-myristate 13-acetate (PMA), and provide novel insight regarding the regulation of lysosomal oxidative activity and pH. Results: The substrate used to measure oxidative activity was bovine serum albumin covalently coupled to dihydro-2?, 4,5,6,7,7?-hexafluorofluorescein (OxyBURST Green H2HFF BSA). During pulse-chase procedures with live macrophages, this reduced dye was internalized through an endocytic pathway and accumulated in the lysosomes. Oxidation of this compound results in a dramatic increase of fluorescence intensity. By using low-light level fluorescence microscopy, I determined that phorbol ester treatment results in increased oxidative activity and pH elevation in different subsets of lysosomes. Furthermore, lysosomes with stronger oxidative activity tended to exclude the acidotropic lysosomal indicator, and thus exhibit higher alkalinity. Conclusions: Results indicate that there is a regulatory mechanism between lysosomal oxidative activity and pH. Activation of lysosomal Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase by phorbol ester may result in increase of intralysosomal O2?- and H2O2, concurrent with pH elevation due to consumption of H+ and generation of OH-. Furthermore, effect of phorbol ester on elevated oxidative activity and pH is heterogeneous among total lysosomal population. Higher oxidative activity and/or pH are only observed in subsets of lysosomes.

  8. Phorbol ester activation of chloride current in guinea-pig ventricular myocytes.

    PubMed Central

    Shuba, L. M.; Asai, T.; McDonald, T. F.

    1996-01-01

    1. Although earlier studies with phorbol esters indicate that protein kinase C (PKC) may be an important regulator of Cl- current (Icl) in cardiac cells, there is a need for additional quantitative data and investigation of conflicting findings. Our objectives were to measure the magnitude, time course, and concentration-dependence of Icl activated in guinea-pig ventricular myocytes by phorbol 12-myristate 13-acetate (PMA), evaluate its PKC dependence, and examine its modification by external and internal ions. 2. The whole-cell patch clamp technique was used to apply short depolarizing and hyperpolarizing pulses to myocytes superfused with Na(+)-, K(+)-, Ca(2+)-free solution (36 degrees C) and dialysed with Cs+ solution. Stimulation of membrane currents by PMA (threshold < or = 1nM, EC50 approximately equal to 14 nM, maximal 40% increase with > or = 100 nM) plateaued within 6-10 min. 3. PMA-activated current was time-independent, and suppressed by l mM 9-anthracenecarboxylic acid (9-AC). Its reversal potential (Erev) was sensitive to changes in the Cl- gradient, and outward rectification of the current-voltage (I-V) relationship was more pronounced with 30 mM than 140 mM Cl- dialysate. 4. The relative permeability of PMA-activated channels estimated from Erev measurements was I- > Cl- > > aspartate. Channel activation was independent of external Na+. 5. PMA failed to activate Icl in myocytes pretreated with 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) or dialysed with pCa 10.5 solution. Lack of response to 4 alpha-phorbol 12, 13-didecanoate (alpha PDD) was a further indication of mediation by PKC. 6. Icl induced by 2 microM forskolin was far larger than that induced by PMA, suggesting that endogenous protein kinase A is a much stronger Cl- channel activator than endogenous PKC in these myocytes. 7. The macroscopic properties of PMA-induced Icl appear to be indistinguishable from those of PKA-activated Icl. We discount stimulation of PKA by PMA as an

  9. Activation of protein kinase C by phorbol ester increases red blood cell scramblase activity and external phosphatidylserine.

    PubMed

    Barber, Latorya A; Palascak, Mary B; Qi, Xiaoyang; Joiner, Clinton H; Franco, Robert S

    2015-11-01

    Externalization of phosphatidylserine (PS) is thought to contribute to sickle cell disease (SCD) pathophysiology. The red blood cell (RBC) aminophospholipid translocase (APLT) mediates the transport of PS from the outer to the inner RBC membrane leaflet to maintain an asymmetric distribution of PL, while phospholipid scramblase (PLSCR) equilibrates PL across the RBC membrane, promoting PS externalization. We previously identified an association between PS externalization level and PLSCR activity in sickle RBC under basal conditions. Other studies showed that activation of protein kinase C (PKC) by PMA (phorbol-12-myristate-13-acetate) causes increased external PS on RBC. Therefore, we hypothesized that PMA-activated PKC stimulates PLSCR activity in RBC and thereby contributes to increased PS externalization. In the current studies, we show that PMA treatment causes immediate and variable PLSCR activation and subsequent PS externalization in control and sickle RBC. While TfR+ sickle reticulocytes display some endogenous PLSCR activity, we observed a robust activation of PLSCR in sickle reticulocytes treated with PMA. The PKC inhibitor, chelerythrine (Chel), significantly inhibited PMA-dependent PLSCR activation and PS externalization. Chel also inhibited endogenous PLSCR activity in sickle reticulocytes. These data provide evidence that PKC mediates PS externalization in RBC through activation of PLSCR.

  10. Regulation of thyroid peroxidase activity by thyrotropin, epidermal growth factor and phorbol ester in porcine thyroid follicles cultured in suspension

    SciTech Connect

    Kasai, Kikuo; Hiraiwa, Masaki; Emoto, Tatsushi; Hattori, Yoshiyuki; Shimoda, Shin-Ichi ); Ohmori, Takeshi; Koizumi, Narumi; Hosoya, Toichiro )

    1989-01-01

    The activity of thyroid peroxidase (TPO) in porcine follicles cultured for 96 h in suspension with five hormones (5H) still attained over 50% of that in the freshly isolated follicles. On the other hand, the activity in those cultured with 5H + TSH (6H) was several times higher than that cultured with 5H after 96 h, although an initial decrease of TPO activity during the first 24 h of culture was observed in both conditions. The ability of follicles to metabolize iodide when cultured with 6H for 96 h was also several times higher than that of those cultured with 5H. The half-maximal dose of TSH for stimulation of TPO activity and iodide metabolism was 0.03 - 0.04 mU/ml and the effect was mediated by cAMP. These results indicate that in porcine thyroid follicles in primary suspension culture, TPO activity as well as the ability of iodide metabolism is induced by chronic TSH stimulation. In addition, epidermal growth factor and phorbol 12-myristate 13-acetate completely inhibited TSH stimulation on both activities and also basal (5H) activity of iodide metabolism.

  11. Specific binding of phorbol ester tumor promoters

    PubMed Central

    Driedger, Paul E.; Blumberg, Peter M.

    1980-01-01

    [20-3H]Phorbol 12,13-dibutyrate bound to particulate preparations from chicken embryo fibroblasts in a specific, saturable, reversible fashion. Equilibrium binding occurred with a Kd of 25 nM; this value is very close to the 50% effective dose (ED50), 50 nM, previously determined for the biological response (induction of fibronectin loss) in growing chicken embryo fibroblasts. At saturation, 1.4 pmol of [20-3H]phorbol 12,13-dibutyrate was bound per mg of protein (approximately 7 × 104 molecules per cell). Binding was inhibited by phorbol 12-myristate 13-acetate (Ki = 2 nM), mezerein (Ki = 180 nM), phorbol 12,13-dibenzoate (Ki = 180 nM), phorbol 12,13-diacetate (Ki = 1.7 μM), phorbol 12,13,20-triacetate (Ki = 39 μM), and phorbol 13-acetate (Ki = 120 μM). The measured Ki values are all within a factor of 3.5 of the ED50 values of these derivatives for inducing loss of fibronectin in intact cells. Binding was not inhibited by the inactive compounds phorbol (10 μg/ml) and 4α-phorbol 12,13-didecanoate (10 μg/ml) or by the inflammatory but nonpromoting phorbol-related diterpene esters resiniferatoxin (100 ng/ml) and 12-deoxyphorbol 13-isobutyrate 20-acetate (100 ng/ml). These data suggest that biological responses to the phorbol esters in chicken embryo fibroblasts are mediated by this binding activity and that the binding activity corresponds to the phorbol ester target in mouse skin involved in tumor promotion. Binding was not inhibited by the nonphorbol promoters anthralin (1 μM), phenol (1 mM), iodoacetic acid (1.7 μM), and cantharidin (75 μM), or by epidermal growth factor (100 ng/ml), dexamethasone acetate (2 μM), retinoic acid (10 μM), or prostaglandin E2 (1 μM). These agents thus appear to act at a target distinct from that of the phorbol esters. PMID:6965793

  12. Phorbol esters alter adenylate cyclase responses to vasoactive intestinal peptide and forskolin in the GH cell line

    SciTech Connect

    Summers, S.; Florio, T.; Cronin, M.

    1986-05-01

    Activation of protein kinase C with phorbol ester modifies cyclic AMP production in several anterior pituitary cell systems. In the GH cell line from a rat pituitary tumor, exposure to phorbol 12-myristate 13-acetate (PMA: 100 nM) for 30 minutes significantly reduces vasoactive intestinal peptide (VIP: 100 nM) stimulated adenylate cyclase (AC) activity in subsequent membrane preparations to 62 + 4% of control (n = 6 independent studies). In contrast, these same membrane preparations respond to forskolin (1 ..mu..M) with significantly more activity, 130 +/- 6% of controls (n = 6 independent studies). Finally, phorbol ester does not block an inhibitory hormone input into the AC system; somatostatin (100 nM) reduction of VIP-stimulated AC activity is not significantly different in membrane preparations from PMA treated and control cells (n = 3 independent studies). These other findings lead the authors to propose that protein kinase C can modify several sites in the AC complex in anterior pituitary cells.

  13. Biological responsiveness to the phorbol esters and specific binding of (/sup 3/H)phorbol 12,13-dibutyrate in the nematode Caenorhabditis elegans, a manipulable genetic system

    SciTech Connect

    Lew, K.K.; Chritton, S.; Blumberg, P.M.

    1982-01-01

    Because of its suitability for genetic studies, the nematode Caenorhabditis elegans was examined for its responsiveness to the phorbol esters. Phorbol 12-myristate 13-acetate had three effects. It inhibited the increase in animal size during growth; it decreased the yield of progeny; and it caused uncoordinated movement of the adult. The effects on nematode size, progeny yield, and movement were quantitated. Concentrations of phorbol 12-myristate 13-acetate yielding half-maximal responses were 440, 460, and 170 nM, respectively. As was expected from the biological responsiveness of the nematodes, specific, saturable binding of phorbol ester to nematode extracts was found. (/sup 3/H)phorbol 12,13-dibutyrate bound with a dissociation constant of 26.8 +/- 3.9 nM. At saturation, 5.7 +/- 1.4 pmole/mg protein was bound.

  14. Phorbol diesters inhibit enzymatic hydrolysis of diacylglycerols in vitro.

    PubMed Central

    Chabbott, H; Cabot, M C

    1986-01-01

    The effect of phorbol 12-myristate 13-acetate (PMA) on diacylglycerol lipase activity was examined in rat serum, tissue, and cellular preparations by using di[14C]oleoylglycerol, [3H]palmitoylacetylglycerol, and membrane-resident phospholipase C-generated diacylglycerols as substrates. These experiments were conducted to address whether phorbol esters can mimic diacylglycerols in interacting with enzymes other than protein kinase C. Serum hydrolysis of palmitoylacetylglycerol, assayed by the formation of [3H]palmitic acid, was inhibited by PMA, 4-O-methyl-PMA, or phorbol 12,13-dibutyrate (in order of decreasing potency). The hydrolysis of palmitoylacetylglycerol was inhibited more than 40% by the addition of PMA at a 1:1 molar ratio with substrate. The inhibition resembled the competitive type, with a Ki of approximately 2.7 microM. PMA in the 10-60 microM range also inhibited hydrolysis of palmitoylacetylglycerol by lipases from rat brain microsomes and by homogenates of C3H/10T1/2 mouse fibroblasts. PMA was likewise inhibitory when assayed in an intramembrane enzyme-substrate milieu in which diacylglycerols were generated, in situ, by treatment of [3H]palmitate-labeled cell homogenates with phospholipase C. Collectively, these data demonstrate that PMA, which is now thought to act by mimicry of diacylglycerols, can inhibit the action of diacylglycerol lipase. It is possible that such a mechanism is linked to the multiplicity of responses elicited by phorbol diesters and that other agents may function by means of enzyme interactions (post-phospholipase C) to influence the levels of the cellular diacylglycerol mediators. PMID:3458169

  15. Specific binding of phorbol ester tumor promoters to intact primary epidermal cells from Sencar mice

    SciTech Connect

    Solanki, V.; Slaga, T.J.

    1981-04-01

    The binding of (20-/sup 3/H)phorbol 12,13-dibutyrate ((/sup 3/H)PDB) to intact living epidermal cells in monolayer culture was characterized. At 37/sup 0/C, the maximum specific (/sup 3/H)PDB binding (binding displaceable by 30 ..mu..M unlabeled PDB) was attained in 15 to 20 min and was followed by a rapid decrease (down regulation) of radioactivity bound to the cells. The activity lost by the cells during this decrease was found in the incubation medium. Prior exposure of cells to phorbol 12-myristate 13-acetate (PMA; 12-O-tetradecanoylphorbol 13-acetate) but not to phorbol for 2 h at 37/sup 0/C caused approx. 55% reduction in the number of measurable binding sites for (/sup 3/H)PDB. The down regulation was temperature sensitive; there was no loss of radioactivity after 1 h at 4/sup 0/C. The specific binding of (/sup 3/H)PDB at 4/sup 0/C reached equilibrium in 15 to 20 min and was saturable and freely reversible. At equilibrium, epidermal cells contained 1.2 x 10/sup 5/ binding sites per cell, and binding sites had a K/sub D/ of 10 nM. Specificity of binding was shown by the observation that the biologically active phorbol esters PMA and 12-deoxyphorbol 13-decanoate inhibited the binding, whereas the inactive parent compound phorbol and the nonphorbol tumor promoter anthralin did not have any effect. The abilities of these compounds to inhibit (/sup 3/H)PDB binding directly correlates with their tumor promoting activities. Epidermal cells exposed to retinoic acid or fluocinolone acetonide for 24 h had similar (/sup 3/H)PDB binding characteristics as untreated cells suggesting that inhibition of tumor promotion induced by these compounds is not mediated through alterations in the phorbol ester binding sites.

  16. Specific binding of phorbol ester tumor promoters to intact primary epidermal cells from Sencar mice.

    PubMed Central

    Solanki, V; Slaga, T J

    1981-01-01

    The binding of [20-3H]phorbol 12,13-dibutyrate ([3H]PDB) to intact living epidermal cells in monolayer culture was characterized. At 37 degrees C, the maximum specific [3H]PDB binding (binding displaceable by 30 microM unlabeled PDB) was attained in 15--20 min and was followed by a rapid decrease (down regulation) of radioactivity bound to the cells. The activity lost by the cells during this decrease was found in the incubation medium. Prior exposure of cells to phorbol 12-myristate 13-acetate (PMA; 12-O-tetradecanoylphorbol 13-acetate) but not to phorbol for 2 hr at 37 degrees C caused approximately 55% reduction in the number of measurable binding sites for [3H]PDB. The down regulation was temperature sensitive; there was no loss of radioactivity after 1 hr at 4 degrees C. The specific binding of [3H]PDB at 4 degrees C reached equilibrium in 15--20 min and was saturable and freely reversible. At equilibrium, epidermal cells contained 1.2 x 10(5) binding sites per cell, and binding sites had a KD of 10 nM. Specificity of binding was shown by the observation that the biologically active phorbol esters PMA and 12-deoxyphorbol 13-decanoate inhibited the binding, whereas the inactive parent compound phorbol and the nonphorbol tumor promoter anthralin did not have any effect. The abilities of these compounds to inhibit [3H]PDB binding directly correlates with their tumor promoting activities. Epidermal cells exposed to retinoic acid or fluocinolone acetonide for 24 hr had similar [3H]PDB binding characteristics as untreated cells suggesting that inhibition of tumor promotion induced by these compounds is not mediated through alterations in the phorbol ester binding sites. PMID:6941309

  17. Phorbol ester stimulates secretory activity while inhibiting receptor-activated aminopyrine uptake by gastric glands

    SciTech Connect

    Brown, M.R.; Chew, C.S.

    1986-03-05

    Both cyclic AMP-dependent and -independent secretagogues stimulate pepsinogen release, respiration and H/sup +/ secretory activity (AP uptake) in rabbit gastric glands. 12-O-tetradecanoylphorbol-13-acetate (T), a diacyglycerol analog, activates protein kinase C (PKC) and stimulates secretion in many systems. T stimulated respiration and pepsinogen release by glands and increased AP uptake by both glands and purified parietal cells. However, T reduced AP uptake by glands stimulated with carbachol (C) or histamine (H) with an apparent IC/sub 50/ of 1 nM. Preincubation with T for 30 min produced maximum inhibition which was not reversed by removal of T. T accelerated the decline of the transient C peak while the late steady state response to H was most inhibited. H-stimulated AP uptake was also inhibited by 50 ..mu..g/ml 1-oleoyl-2-acetyl-glycerol, a reported PKC activator, but not by the inactive phorbol, 4..cap alpha..-phorbol-12,13-didecanoate. In contrast, T potentiated AP uptake by glands stimulated with submaximal doses of dibutyryl cyclic AMP. These results suggest inhibition by T is a specific effect of PKC activators. The differing effects of T on secretion indicators may result from a dual action of T on receptor and post-receptor intracellular events.

  18. Degradation of Jatropha curcas phorbol esters derived from Jatropha oil cake and their tumor-promoting activity.

    PubMed

    Nakao, Motoyuki; Hasegawa, Go; Yasuhara, Tadashi; Ishihara, Yoko

    2015-04-01

    Large amount of oil cake is generated during biodiesel production from Jatropha seeds. Although Jatropha oil cake is rich in plant nutrients, presence of toxic phorbol esters restricts the usage of oil cake as a fertilizer. The objective of this study is to evaluate the components and tumor promoting activity of phorbol esters in Jatropha oil cake-supplemented soil and plants grown in the treated soil. Contents and their biological activity of Jatropha phorbol esters in soil and plants were sequentially analyzed by high-performance liquid chromatography (HPLC) and in vitro cell transformation assay, respectively. Disappearance of Jatropha phorbol-ester-specific peaks were followed with HPLC during incubation of Jatropha oil cake with soil for five weeks. Along with the degradation of Jatropha phorbol ester in soil, tumor-promoting activity in the sample was also attenuated and ultimately disappeared. Jatropha phorbol esters and tumor promoting activity were not detected from mustard spinach grown in the Jatropha oil cake-supplemented soil. In addition, the esterase KM109 degrades DHPB (see definition below; Jatropha phorbol ester) and reduced its tumor-promoting activity. From these data, we conclude: (1) components and tumor promoting activity of Jatropha phorbol esters in the oil cake disappeared completely by incubation with soil for five-week, (2) Jatropha phorbol esters did not transfer into plants grown in the Jatropha oil cake-supplemented soil, and (3) DHPB can be degraded by esterase from soil bacterium. These observations are useful for utilization of Jatropha oil cake as a fertilizer.

  19. Activation of p38 and JNK MAPK pathways abrogates requirement for new protein synthesis for phorbol ester mediated induction of select MMP and TIMP genes.

    PubMed

    Sampieri, Clara L; Nuttall, Robert K; Young, David A; Goldspink, Deborah; Clark, Ian M; Edwards, Dylan R

    2008-03-01

    The human matrix metalloproteinase (MMP) gene family includes 24 genes whose regulated expression, together with that of four tissue inhibitors of metalloproteinases (TIMPs), is essential in tissue remodelling and cell signalling. Quantitative real-time-PCR (qPCR) analysis was used to evaluate the shared and unique patterns of control of these two gene families in human MRC-5 and WI-38 fibroblasts in response to the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate (PMA). The requirement for ongoing translation was analysed using three protein synthesis inhibitors, anisomycin, cycloheximide and emetine. PMA induced MMP1, 3, 8, 9, 10, 12, 13, 14 and TIMP1 and TIMP3 RNAs after 4-8 h, and induction of all except MMP9 and TIMP3 was blocked by all protein synthesis inhibitors. However, even though all inhibitors effectively blocked translation, PMA-induction of MMP9 and TIMP3 was blocked by emetine but was insensitive to cycloheximide and anisomycin. Anisomycin alone induced MMP9 and TIMP3, along with MMP25 and MMP19. The extracellular signal-regulated kinases (ERKs)-1/2 were strongly activated by PMA, while anisomycin activated the c-Jun N-terminal kinase (JNK) and p38 pathways, and cycloheximide activated p38, but emetine had no effect on the stress-activated mitogen-activated protein kinase (MAPK) pathways. The involvement of the p38 and JNK pathways in the selective effects of anisomycin and cycloheximide on MMP/TIMP expression was supported by use of pharmacological inhibitors. These data confirm that most inducible MMPs and TIMP1 behave as "late" activated, protein synthesis-dependent genes in fibroblasts. However, the requirement of protein synthesis for PMA-induction of MMPs and TIMPs is not universal, since it is abrogated for MMP9 and TIMP3 by stimulation of the stress-activated MAPK pathways. The definition of clusters of co-regulated genes among the two gene families will aid in bioinformatic dissection of control mechanisms.

  20. Decrease of epidermal histidase activity by tumor-promoting phorbol esters.

    PubMed

    Colburn, N H; Lau, S; Head, R

    1975-11-01

    The potent skin tumor promoter (12-O-tetradecanoyl phorbol-13-acetate (TPA) stimulates epidermal macromolecular synthesis as well as proliferation, but little is known of specific functional aberrations produced by TPA. This report presents results of a study on the effects of TPA on epidermal histidase (L-histidine ammonia lyase), an enzyme found in normal epidermis but not in dermis or in mouse squamous cell carcinomas. Histidase activity was assayed on postmitochondrial supernatants obtained from hairless mouse epidermis after removal by keratotome. Topical TPA treatment at doses active in tumor promotion (1.7 to 17.0 nmoles/application) produced dose-dependent decreases in epidermal histidase specific activity at 19 hr posttreatment. The onset of the decrease occurred at 12 hr with recovery to control level specific activity by 5 days, showing kinetics similar to those obtained for stimulation of DNA synthesis. This decrease in histidase could not be attributed to a general inhibition of soluble protein synthesis or to the appearance of an inhibitor of histidase activity. The strong promoter TPA produced a greater histidase decrease than did the moderate promoter and mitogen 12,13-didecanoyl phorbol at equimolar dose, while phorbol, a nonpromoter and nonmitogen, produced no effects on histidase. The relationship of this histidase depression to tumor promotion and not initiation is further indicated by the finding that (a) Tween 60, a structurally unrelated tumor promotor, also produced a decrease in histidase; and (b) the tumor initiator urethan and an initiating dose of 9,10-dimethybenz(a)anthracene showed no effects on histadase activity.

  1. Lymphocyte activation by OKT3: cyclosporine sensitivity and synergism with phorbol ester.

    PubMed Central

    Kay, J E; Benzie, C R

    1986-01-01

    Lymphocyte activation by the mitogenic monoclonal antibody OKT3 is less effective than activation by mitogenic lectins such as phytohaemagglutinin (PHA) and concanavalin A (Con A). Activation by OKT3 is also very sensitive to inhibition by cyclosporine (CSA), which selectively inhibits Ca2+-activated steps in the activation process. In addition, the magnitude of the OKT3 response can be raised to that seen with mitogenic lectins by coincubation with phorbol esters (which activate protein kinase C). These observations suggest that OKT3 may deliver efficiently the Ca2+ signal involved in the initiation of lymphocyte activation, and that the comparatively weak overall response is due to a failure to generate a second signal, probably the activation of protein kinase C, as efficiently as the mitogenic lectins. PMID:3485075

  2. Characterization of a phorbol ester-stimulated S6 kinase from MDCK renal epithelial cells

    SciTech Connect

    Meier, K.E.; Krebs, E.G.

    1987-05-01

    Increased phosphorylation of S6, a 40S ribosomal subunit protein, is observed in mammalian cells in response to growth factors and phorbol esters. The goal of this study was to identify the S6 kinase that is stimulated by phorbol ester treatment of MDCK cells. MDCK clone D1 cells express high levels of protein kinase C(PKC). PKC and S6 kinase activities were measured following DEAE-Sephacel fractionation of cytosol; this procedure separated the two kinase activities. When confluent MDCK-D1 cells were exposed to 100 nM phorbol 12-myristate 13-acetate (PMA), 95% of the total cellular PKC activity became associated with the particulate fraction within 1 hour. Cytosolic S6 kinase activity was maximal by 1 hour and then declined thereafter, preceding any detectable loss of total cellular PKC. The PMA-responsive S6 kinase was partially purified from MDCK-D1 cytosol by consecutive steps of DEAE-Sephacel, ammonium sulfate precipitation, Ultrogel AcA 34, heparin-agarose, and Ultrogel AcA 34. The partially-purified enzyme had an apparent molecular size of approximately 80 kDa. In addition to S6, the enzyme phosphorylated synthetic peptides based on the carboxyl terminal sequence of S6. S6 kinase activity utilized ATP but not GTP, and was inhibited by heparin, NaCl, and ..beta..-glycerophosphate. In conclusion, a phorbol ester-stimulated S6 kinase has been partially purified from an epithelial cell line. This kinase is distinct from PKC.

  3. Phorbol ester-stimulated phosphorylation of keratinocyte transglutaminase in the membrane anchorage region.

    PubMed Central

    Chakravarty, R; Rong, X H; Rice, R H

    1990-01-01

    The membrane-bound transglutaminase of cultured keratinocytes became radioactively labelled upon addition of [32P]Pi to the medium. Transglutaminase phosphorylation was also demonstrable using particulate material isolated from cell homogenates. Compatible with mediation of the labelling by protein kinase C, the degree of phosphorylation in intact cells was stimulated approx. 5-fold in 4 h on treatment with the tumour-promoting phorbol ester phorbol 12-myristate 13-acetate, but not by phorbol. The extent of labelling was virtually unaffected by cycloheximide inhibition of protein synthesis, indicating that it arose primarily through turnover of phosphate in the membrane-bound enzyme. Phosphoamino acid analysis detected labelling only of serine residues. Most of the label was removed by trypsin release of the enzyme from the particulate fraction of cell homogenates, which deletes a membrane anchorage region of approximately 10 kDa. Upon trypsin treatment of the enzyme after immunoprecipitation, the phosphate label was recovered in soluble peptide material with a size of several thousand Da or less. Indicative of fragmentation of the membrane anchorage region, this material was separable by h.p.l.c. into two equally labelled peptides. Moreover, when the enzyme was labelled with [3H]palmitate or [3H]myristate, the fatty-acid-labelled peptide material required non-ionic detergent for solubilization and was separable from the phosphate-labelled material by gel filtration. Phorbol ester treatment of cultured keratinocytes in high- or low- Ca2(+)-containing medium was not accompanied by an appreciable protein-synthesis-independent change in transglutaminase activity. Independent of possible alteration of the intrinsic catalytic activity of the enzyme, phosphorylation may well modulate its interaction with substrate proteins, a potential site for physiological regulation. Images Fig. 1. Fig. 3. PMID:1977383

  4. Phorbol esters modulate cyclic AMP accumulation in porcine thyroid cells

    SciTech Connect

    Emoto, T.; Kasai, K.; Hiraiwa, M.; Shimoda, S.

    1988-01-01

    In cultured porcine thyroid cells, during 60 min incubation phorbol 12-myristate 13-acetate (PMA) had no effect on basal cyclic AMP accumulation and slightly stimulated cyclic AMP accumulation evoked by thyroid stimulating hormone (TSH) or forskolin. Cholera toxin-induced cyclic AMP accumulation was significantly stimulated by PMA. On the other hand, cyclic AMP accumulation evoked by prostaglandin E/sub 1/ or E/sub 2/ (PGE/sub 1/ and PGE/sub 2/) was markedly depressed by simultaneous addition of PMA. These opposing effects of PMA on cyclic AMP accumulation evoked by PGE and cholera toxin were observed in a dose-related fashion, with half-maximal effect of around 10/sup -9/ M in either case. The almost same effects of PMA on cyclic AMP accumulation in basal and stimulated conditions were also observed in freshly prepared thyroid cells. The present study was performed in the presence of phosphodiesterase inhibitor, 3-iso-butyl-1-methylxanthine (IBMX), indicating that PMA affected adenylate cyclase activity. Therefore, it is suggested that PMA may modulate the production of cyclic AMP in response to different stimuli, possibly by affecting several sites in the adenylate cyclase complex in thyroid cells.

  5. Activation of protein kinase C inhibits potassium currents in cultured endothelial cells.

    PubMed

    Zhang, H; Weir, B; Daniel, E E

    1995-04-01

    The effect of protein kinase C on potassium channels in cultured endothelial cells was investigated by using whole-cell patch-clamp techniques. Activation of protein kinase C by phorbol 12-myristate 13-acetate (PMA) and phorbol 12,13-dibutyrate (PDBu), but not phorbol 12-monomyristate (PMM), an inactive analogue of phorbol esters, depressed an outward calcium-dependent potassium current. The inhibitory actions of PMA and PDBu could be reversed by the kinase inhibitor H-7. Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum calcium pump, and LP-805, a novel vasodilator which also releases endothelium-derived relaxing factors, activated the outward calcium-dependent potassium conductance. PMA and PDBu, but not PMM, reduced the outward conductance induced by cyclopiazonic acid and LP-805. These effects of PMA and PDBu on potassium currents may be mediated either by phosphorylation of ion channels, or by decreasing intracellular calcium concentration.

  6. Inhibition of alpha interferon but not gamma interferon signal transduction by phorbol esters is mediated by a tyrosine phosphatase.

    PubMed Central

    Petricoin, E; David, M; Igarashi, K; Benjamin, C; Ling, L; Goelz, S; Finbloom, D S; Larner, A C

    1996-01-01

    Previous studies have indicated that the expression of viral oncoproteins, cell transformation, or phorbol ester treatment of cells can inhibit alpha/beta interferon (IFN-alpha/beta)-induced gene expression. The mechanisms by which these promoters of cell growth exert their inhibitory effects vary, but in most instances they involve a disruption of the IFN-alpha/beta-induced transcription complex ISGF3 such that the DNA-binding component of this complex (the 48-kDa ISGF3gamma protein) does not bind to the interferon-stimulated response element (ISRE). In this report, we demonstrated that phorbol ester treatment of human peripheral blood monocytes dramatically inhibits activation of IFN-alpha/B-stimulated early response genes but by a mechanism which does not involve abrogation of the ISRE binding of ISGF3gamma. Phorbol ester treatment of monocytes inhibited IFN alpha-stimulated tyrosine phosphorylation of the transcription factors Stat1alpha, Stat2, and Stat3 and of the tyrosine kinase Tyk2 but had no effect on IFN-gamma activation of Stat1alpha. IFNalpha-stimulated tyrosine phosphorylation of Jak1 and the alpha subunit of the IFN-alpha receptor were unaffected by phorbol 12-myristate 13-acetate (PMA). Moreover, PMA caused the dephosphorylation of Tyk2 but not of Jak1, which was activated by IFN. Pretreatment of cells with vanadate prevented the effects of PMA with regard to PMA-induced Tyk2 dephosphorylation. These observations suggest that PMA exerts its inhibitory effects by activation of a tyrosine phosphatase which selectively regulates Tyk2 but not Jak1 activity. PMID:8657115

  7. Five new phorbol esters with cytotoxic and selective anti-inflammatory activities from Croton tiglium.

    PubMed

    Wang, Jun-Feng; Yang, Sheng-Hui; Liu, Yan-Qun; Li, Din-Xiang; He, Wei-Jun; Zhang, Xiao-Xiao; Liu, Yong-Hong; Zhou, Xiao-Jiang

    2015-05-01

    Five new phorbol esters, (four phorbol diesters, 1-4, and one 4-deoxy-4α-phorbol diester, 5), as well as four known phorbol esters analogues (6-9) were isolated and identified from the branches and leaves of Croton tiglium. Their structures were elucidated mainly by extensive NMR spectroscopic, and mass spectrometric analysis. Among them, compound (1) was the first example of a naturally occurring phorbol ester with the 20-aldehyde group. Compounds 2-5, and 7-9 showed potent cytotoxicity against the K562, A549, DU145, H1975, MCF-7, U937, SGC-7901, HL60, Hela, and MOLT-4 cell lines, with IC50 values ranging from 1.0 to 43 μM, while none of the compounds exhibited cytotoxic effects on normal human cell lines 293T and LX-2, respectively. In addition, compound 3 exhibited moderate COX-1 and COX-2 inhibition, with IC50 values of 0.14 and 8.5 μM, respectively.

  8. Neutrophil beta-adrenergic receptor responses are potentiated by acute exposure to phorbol ester without changes in receptor distribution or coupling

    SciTech Connect

    Kilfeather, S.A.; Stein, M.; O'Malley, K. )

    1991-01-01

    Exposure to the phorbol ester, phorbol 12-myristate, 13-acetate for 10 minutes enhanced cyclic AMP accumulation in human neutrophils under basal conditions and in response to the beta-adrenergic receptor agonist isoproterenol (ISO, 1{mu}M) and the adenylate cyclase activator forskolin (FSK, 10mM). Potentiation of responses to ISO by PMA was dose-dependent between 0.1 and 100nM PMA. The diacylglycerol analogue, 1-oleoyl-2-actylgylcerol (OAG) (50 {mu}M) also elevated beta-receptor responses, but 4beta-phorbol (100nM), lacking the capacity to activate PMA, was ineffective. Short-term exposure to the peptide n-formylmethionine leucyl-phenylalanine (FMLP, 1 {mu}M) also elevated neutrophil cyclic AMP accumulation. All potentiating effects of PMA on cyclic AMP production were inhibited by the protein kinase inhibitor 1-(5-isoquinolinylsulphonyl)-2-methylpiperazine (H{sub 7}). PMA had no apparent effect on beta-receptor agonist-affinity, distribution between cell-surface and internalized compartments, or the capacity of ISO to induce beta-receptor internalization. Responses to FSK or ISO in terms of fold-stimulation of basal cyclic AMP accumulation int he presence of PMA were not elevated by PMA.

  9. Alterations in polyamine levels induced by phorbol diesters and other agents that promote differentiation in human promyelocytic leukemia cells

    SciTech Connect

    Huberman, E.; Weeks, C.; Herrmann, A.; Callaham, M.; Slaga, T.

    1981-02-01

    Polyamine levels were evaluated in human HL-60 promyelocytic leukemia cells after treatment with inducers of terminal differentiation. Differentiation in these cells was determined by increases in the percentage of morphologically mature cells and in lysozyme activity. Treatment of the HL-60 cells with phorbol 12-myristate-13-acetate (PMA), phorbol 12,13-didecanoate or other inducers of terminal differentiation such as dimethylsulfoxide and retinoic acid resulted in increased levels of putrescine. However, no increase in putrescine could be detected after PMA treatment of a HL-60 cell variant that exhibited a decreased susceptibility to PMA-induced terminal differentiation. Similarly, no increase in putrescine was observed with two nontumor-promoters (phorbol 12,13-diacetate and 4-O-methyl-PMA) or with anthralin, a non-phorbol tumor promoter. In addition to enhancing putrescine levels, PMA also increased the amount of spermidine and decreased the amount of spermine. The increase in putrescine and spermidine preceded the expression of the various differentiation markers. Unlike the changes observed in the polyamine levels after PMA treatment, the activities of ornithine and S-adenosylmethionine decarboxylases, which are polyamine biosynthetic enzymes, did not significantly change. ..cap alpha..-Methylornithine and ..cap alpha..-difluoromethylornithine and methylglyoxal bis(guanylhydrazone), which are inhibitors of the polyamine biosynthetic enzymes, did not affect differentiation in control or PMA-treated cells. Because of these observations, we suggest that the change in polyamine levels involve biochemical pathways other than the known biosynthetic ones. By-products of these pathways may perhaps be the controlling factors involved in the induction of terminal differentiation in the HL-60 and other cell types as well.

  10. Stimulation of prostaglandin E/sub 2/ production by phorbol esters and epidermal growth factor in porcine thyroid cells

    SciTech Connect

    Kasai, K.; Hiraiwa, M.; Emoto, T.; Akimoto, K.; Takaoka, T.; Shimoda, S.I.

    1987-07-13

    Effects of phorbol esters and epidermal growth factor (EGF) on prostaglandin E/sub 2/ production by cultured porcine thyroid cells were examined. Both phorbol 12-myristate 13-acetate (PMA) and EGF stimulated prostaglandin E/sub 2/ production by the cells in dose related fashion. PMA stimulated prostaglandin E/sub 2/ production over fifty-fold with the dose of 10/sup -7/ M compared with control. EGF (10/sup -7/ M) also stimulated it about ten-fold. The ED/sub 50/ values of PMA and EGF were respectively around 1 x 10/sup -9/ M and 5 x 10/sup -10/ M. Thyroid stimulating hormone (TSH), however, did not stimulate prostaglandin E/sub 2/ production from 1 to 24-h incubation. The release of radioactivity from (/sup 3/H)-arachidonic acid prelabeled cells was also stimulated by PMA and EGF, but not by TSH. These results indicate that both PMA and EGF are potent stimulators of prostaglandin E/sub 2/ production, associated with the activity to stimulate arachidonic acid release in porcine thyroid cells. 36 references, 2 figures, 1 table.

  11. Identification, activity, and structural studies of peptides incorporating the phorbol ester-binding domain of protein kinase C.

    PubMed Central

    Wender, P A; Irie, K; Miller, B L

    1995-01-01

    The family of homologous enzymes known as protein kinase C (PKC) has been the object of intense interest because of its crucial role in cellular signal transduction. Although considerable information about the activation of PKC has been gained through structure-activity, molecular modeling, and synthetic studies of both natural and designed activators, information about the structure of PKC itself has been limited by its large size and requirement for phospholipid cofactors. Additionally, difficulties in the purification of truncated mutants of PKC have thus far prevented their analysis by nuclear magnetic resonance (NMR) or x-ray crystallographic methods. We describe the identification, synthesis, ligand-binding analysis, cofactor requirements, and preliminary NMR evaluation of two subdomains (peptides B and C) of the regulatory domain of PKC-gamma. Peptides B and C bind [3H]phorbol 12,13-dibutyrate with good affinity (Kd = 6.4 microM and 414 nM, respectively) in the presence of phosphatidylserine. In comparison, the binding affinity of [3H]phorbol 12,13-dibutyrate for PKC was found to be 2.6 nM. Like PKC itself, these peptides also recognize other PKC activators, including dioctanoylglycerol and teleocidin B-4, and exhibit an ability to differentiate phorbol ester from its C-4 epimer. NMR studies of PKC subdomains are also described, indicating that both peptides B and C are well behaved in solution and do not exhibit any concentration-dependent changes. Finally, these studies reveal that peptide B becomes conformationally ordered only in the presence of phospholipid, suggesting that the regulatory domain of PKC itself might be organized for activation only when associated with the lipid bilayer, where its activator (diacylglycerol) is encountered. PMID:7816824

  12. Insulin and phorbol ester stimulate conductive Na/sup +/ transport through a common pathway

    SciTech Connect

    Civan, M.M.; Peterson-Yantorno, K.; O'Brien, T.G.

    1988-02-01

    Insulin stimulates Na/sup +/ transport across frog skin, toad urinary bladder, and the distal renal nephron. This stimulation reflects an increase in apical membrane Na/sup +/ permeability and a stimulation of the basolateral membrane Na,K-exchange pump. Considerable indirect evidence has suggested that the apical natriferic effect of insulin is mediated by activation of protein kinase C. However, no direct information has been available documenting that insulin and protein kinase C indeed share a common pathway in stimulating Na/sup +/ transport across frog skin. In the present work, the authors have studied the interaction of insulin and phorbol 12-myristate 13-acetate (PMA), a documented activator of protein kinase C. Preincubation of skins with 1,2-dioctanoylglycerol, another activator of protein kinase C, increases baseline Na/sup +/ transport and reduces the subsequent natriferic response to PMA. Preincubation with PMA markedly reduces the subsequent natriferic action of insulin. This effect does not appear to primarily reflect PMA-induced internalization of insulin receptors. The insulin receptors are localized on the basolateral surface of frog skin, but the application of PMA to this surface is much less effective than mucosal treatment in reducing the response to insulin. The current results provide documentation that insulin and protein kinase C share a common pathway in stimulating Na/sup +/ transport across frog skin. The data are consistent with the concept that the natriferic effect of insulin on frog skin is, at least in part, mediated by activation of protein kinase C.

  13. Active Oxygen Metabolites and Thromboxane in Phorbol Myristate Acetate Toxicity to the Isolated, Perfused Rat Lung.

    NASA Astrophysics Data System (ADS)

    Carpenter, Laurie Jean

    When administered intravenously or intratracheally to rats, rabbits and sheep, phorbol myristate acetate (PMA) produces changes in lung morphology and function are similar to those seen in humans with the adult respiratory distress syndrome (ARDS). Therefore, it is thought that information about the mechanism of ARDS development can be gained from experiments using PMA-treated animals. Currently, the mechanisms by which PMA causes pneumotoxicity are unknown. Results from other studies in rabbits and in isolated, perfused rabbit lungs suggest that PMA-induced lung injury is mediated by active oxygen species from neutrophils (PMN), whereas studies in sheep and rats suggest that PMN are not required for the toxic response. The role of PMN, active oxygen metabolites and thromboxane (TxA_2) in PMA-induced injury to isolated, perfused rat lungs (IPLs) was examined in this thesis. To determine whether PMN were required for PMA to produce toxicity to the IPL, lungs were perfused for 30 min with buffer containing various concentrations of PMA (in the presence or absence of PMN). When concentrations >=q57 ng/ml were added to medium devoid of added PMN, perfusion pressure and lung weight increased. When a concentration of PMA (14-28 ng/ml) that did not by itself cause lungs to accumulate fluid was added to the perfusion medium containing PMN (1 x 10 ^8), perfusion pressure increased, and lungs accumulated fluid. These results indicate that high concentrations of PMA produce lung injury which is independent of PMN, whereas injury induced by lower concentrations is PMN-dependent. To examine whether active oxygen species were involved in mediating lung injury induced by PMA and PMN, lungs were coperfused with the oxygen radical scavengers SOD and/or catalase. Coperfusion with either or both of these enzymes totally protected lungs against injury caused by PMN and PMA. These results suggest that active oxygen species (the hydroxyl radical in particular), mediate lung injury in

  14. Effects of phorbol esters and secretagogues on nitrobenzylthioinosine binding to nucleoside transporters and nucleoside uptake in cultured chromaffin cells.

    PubMed Central

    Delicado, E G; Sen, R P; Miras-Portugal, M T

    1991-01-01

    Secretagogues inhibited adenosine uptake in chromaffin cells without causing apparent changes in the uptake affinity. The inhibition caused by carbachol, nicotine and acetylcholine reached 50%. This inhibition was reproduced by the action of protein kinase C activators such as phorbol 12-myristate 13-acetate (PMA; 100 nM), phorbol 12,13-dibutyrate (PDBu; 100 nM), dicaproin (10 micrograms/ml) and tricaprylin (10 micrograms/ml), with inhibitions of Vmax. of 18, 20, 37 and 47% respectively. No changes in the affinity of uptake were observed with these effectors. Down-regulation of protein kinase C by phorbol esters decreased the inhibitory effects of carbachol on adenosine uptake. Binding studies with nitrobenzylthioinosine (NBTI) showed a similar decrease in the number of transporters when chromaffin cells were treated with the same effectors used for the uptake studies. The high-affinity dissociation constants showed minor changes with respect to the control. The ratio between maximal uptake capacity and the transporter number per cell was not significantly modified by the action of secretagogues or direct effectors of protein kinase C. The number of high-affinity binding sites for NBTI was decreased in cellular homogenates by the direct action of protein kinase C activators, with staurosporine able to reverse this action. Protein kinase C from bovine brain in the presence of ATP and effectors, decreased the number of high-affinity NBTI-binding sites in purified chromaffin cell plasma membranes. These data suggest the possibility of a molecular modification at the transporter level. PMID:1953658

  15. Cardiomyocytes from phorbol myristate acetate-activated mesenchymal stem cells restore electromechanical function in infarcted rat hearts

    PubMed Central

    Song, Heesang; Hwang, Hye Jin; Chang, Woochul; Song, Byeong-Wook; Cha, Min-Ji; Lim, Soyeon; Choi, Eun Ju; Ham, Onju; Lee, Chang Youn; Park, Jun-Hee; Lee, Se-Yeon; Choi, Eunmi; Lee, Chungkeun; Lee, Myoungho; Lee, Moon-Hyoung; Kim, Sung-Hou; Jang, Yangsoo; Hwang, Ki-Chul

    2011-01-01

    Despite the safety and feasibility of mesenchymal stem cell (MSC) therapy, an optimal cell type has not yet emerged in terms of electromechanical integration in infarcted myocardium. We found that poor to moderate survival benefits of MSC-implanted rats were caused by incomplete electromechanical integration induced by tissue heterogeneity between myocytes and engrafted MSCs in the infarcted myocardium. Here, we report the development of cardiogenic cells from rat MSCs activated by phorbol myristate acetate, a PKC activator, that exhibited high expressions of cardiac-specific markers and Ca2+ homeostasis-related proteins and showed adrenergic receptor signaling by norepinephrine. Histological analysis showed high connexin 43 coupling, few inflammatory cells, and low fibrotic markers in myocardium implanted with these phorbol myristate acetate-activated MSCs. Infarct hearts implanted with these cells exhibited restoration of conduction velocity through decreased tissue heterogeneity and improved myocardial contractility. These findings have major implications for the development of better cell types for electromechanical integration of cell-based treatment for infarcted myocardium. PMID:21173226

  16. Epidermal growth factor (EGF) stimulated Ca/sup 2 +/ mobilization in hepatocytes is abolished by phorbol esters, pertussis toxin and partial hepatectomy

    SciTech Connect

    Johnson, R.M.; Garrison, J.C.

    1986-05-01

    EGF has been demonstrated to increase free intracellular Ca/sup 2 +/ levels in isolated hepatocytes putatively by generation of the second messenger inositol trisphosphate (IP/sub 3/). Pretreatment of cells with phorbol 12-myristate 13-acetate (PMA) inhibited the EGF (66 nM) stimulated Ca/sup 2 +/ response as measured by quin2. Inhibition by PMA was maximal within 3 min and was concentration dependent (IC/sub 50/ = 13.5 nM). Four other active phorbol ester analogues blocked the Ca/sup 2 +/ response while inactive analogues did not. EGF was unable to increase intracellular Ca/sup 2 +/ levels in hepatocytes isolated from rats treated with pertussis toxin for 72 hrs. Neither PMA nor toxin pretreatment was able to inhibit the Ca/sup 2 +/ response to angiotensin II (Ang II). In hepatocytes isolated 24 hrs after partial hepatectomy, the Ca/sup 2 +/ response to EGF (as measured by phosphorylase activity, EC/sub 50/ = 5 nM) was completely abolished and remained attenuated for 7 days post-hepatectomy. The Ca/sup 2 +/ response to Ang II in this model system was also blunted but required 3 days for development of the full effect and within 7 days full activity is nearly restored. The results suggest that fundamental differences exist in the transduction mechanisms used by these two Ca/sup 2 +/-linked hormones to mobilize intracellular Ca/sup 2 +/ (and putatively increase IP/sub 3/ formation).

  17. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy

    NASA Astrophysics Data System (ADS)

    Xu, Yingying; Wang, Liming; Bai, Ru; Zhang, Tianlu; Chen, Chunying

    2015-09-01

    Monocytes/macrophages are important constituents of the innate immune system. Monocyte-macrophage differentiation is not only crucial for innate immune responses, but is also related to some cardiovascular diseases. Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials because of their broad-spectrum antimicrobial properties. However, the effect of AgNPs on the functions of blood monocytes is scarcely reported. Here, we report the impedance effect of AgNPs on THP-1 monocyte differentiation, and that this effect was mediated by autophagy blockade and lysosomal impairment. Firstly, AgNPs inhibit phorbol 12-myristate 13-acetate (PMA)-induced monocyte differentiation by down-regulating both expression of surface marker CD11b and response to lipopolysaccharide (LPS) stimulation. Secondly, autophagy is activated during PMA-induced THP-1 monocyte differentiation, and the autophagy inhibitor chloroquine (CQ) can inhibit this process. Thirdly, AgNPs block the degradation of the autophagy substrate p62 and induce autophagosome accumulation, which demonstrates the blockade of autophagic flux. Fourthly, lysosomal impairments including alkalization and decrease of lysosomal membrane stability were observed in AgNP-treated THP-1 cells. In conclusion, we demonstrate that the impedance of monocyte-macrophage differentiation by AgNPs is mediated by autophagy blockade and lysosomal dysfunction. Our results suggest that crosstalk exists in different biological effects induced by AgNPs.

  18. Isolation of Phorbol Esters from Euphorbia grandicornis and Evaluation of Protein Kinase C- and Human Platelet-Activating Effects of Euphorbiaceae Diterpenes.

    PubMed

    Tsai, Ju-Ying; Rédei, Dóra; Forgo, Peter; Li, Yu; Vasas, Andrea; Hohmann, Judit; Wu, Chin-Chung

    2016-10-28

    Human platelets contain conventional (α and β) and novel isoforms of PKC (δ and θ), and PKC activation can result in platelet aggregation and secretion reaction that are important for thrombus formation. Several tumor-promoting Euphorbiaceae diterpenes are known to act as direct activators of PKC, but many types of such diterpenes have not been studied as platelet stimulators. In the present study, two new and five known phorbol esters were isolated from Euphorbia grandicornis. Two of the isolated phorbol esters together with compounds representing ingenane, jatrophane, and myrsinane structural types were studied on PKC activation and platelet stimulation. The investigated phorbol esters and ingenane esters induced blood platelet aggregation and ATP secretion. PKC activation was demonstrated by inducing membrane translocation of PKCs, phosphorylation of PKC substrates, and activation of PKC signaling pathways. The PKC-activating effect of the compounds correlated well with their efficacy to cause platelet stimulation. Moreover, by using an isoform-specific PKC inhibitor, it was found that besides conventional PKCs novel PKCs also play a positive role in platelet activation caused by phorbol/ingenane esters, especially in regulating platelet aggregation. The present results suggest that platelets afford a useful model for studying PKC activators of natural origin or their chemical derivatives.

  19. Effects of inorganic iodide, epidermal growth factor and phorbol ester on hormone synthesis by porcine thyroid follicles cultured in suspension

    SciTech Connect

    Kasai, Kikuo; Ichimura, Kenichi; Banba, Nobuyuki; Emoto, Tatsushi; Hiraiwa, Masaki; Hishinuma, Akira; Hattori, Yoshiyuki; Shimoda, Shinichi ); Yamaguchi, Fumihiko; Hosoya, Toichiro )

    1992-01-01

    Porcine thyroid follicles cultured in suspension for 96 h synthesized and secreted thyroid hormones in the presence of thyrotropin (TSH). The secretion of newly synthesized hormones was assessed by determining in the contents of thyroxine (T{sub 4}) and triiodothyronine (T{sub 3}) in the media and by paperchromatographic analysis of {sup 125}I-labeled hormones in the media where the follicles were cultured in the presence and absence of inhibitors of hormone synthesis. The hormone synthesis and secretion was modified by exogenously added NaI. The maximal response was obtained at 1 {mu}M. Thyroid peroxidase (TPO) activity in the cultured follicles with TSH for 96 h was dose-dependently inhibited by NaI. One hundred {mu}M and NaI completely inhibited TSH-induced TPO activity. Moreover, both epidermal growth factor and phorbol 12-myristate 13-acetate inhibited de novo hormone synthesis. An induction of TPO activity by TSH was also inhibited by either agent. These data provide direct evidences that thyroid hormone synthesis is regulated by NaI as well as TSH at least in part via regulation of TPO activity and also that both EGF and PMA are inhibitory on thyroid hormone formation.

  20. ROCK mediates phorbol ester-induced apoptosis in prostate cancer cells via p21Cip1 up-regulation and JNK.

    PubMed

    Xiao, Liqing; Eto, Masumi; Kazanietz, Marcelo G

    2009-10-23

    It is established that androgen-dependent prostate cancer cells undergo apoptosis upon treatment with phorbol esters and related analogs, an effect primarily mediated by PKCdelta. Treatment of LNCaP prostate cancer cells with phorbol 12-myristate 13-acetate (PMA) causes a strong and sustained activation of RhoA and its downstream effector ROCK (Rho kinase) as well as the formation of stress fibers. These effects are impaired in cells subjected to PKCdelta RNA interference depletion. Functional studies revealed that expression of a dominant negative RhoA mutant or treatment with the ROCK inhibitor Y-27632 inhibits the apoptotic effect of PMA in LNCaP cells. Remarkably, the cytoskeleton inhibitors cytochalasin B and blebbistatin blocked not only PMA-induced apoptosis but also the activation of JNK, a mediator of the cell death effect by the phorbol ester. In addition, we found that up-regulation of the cell cycle inhibitor p21(Cip1) is required for PMA-induced apoptosis and that inhibitors of ROCK or the cytoskeleton organization prevent p21(Cip1) induction. Real time PCR analysis and reporter gene assay revealed that PMA induces p21(Cip1) transcriptionally in a ROCK- and cytoskeleton-dependent manner. p21(Cip1) promoter analysis revealed that PMA induction is dependent on Sp1 elements in the p21(Cip1) promoter but independent of p53. Taken together, our studies implicate ROCK-mediated up-regulation of p21(Cip1) and the cytoskeleton in PKCdelta-dependent apoptosis in prostate cancer cells.

  1. Enhancement of adenylate cyclase activity by phorbol ester: effects on the inhibitory pathway in S49 lymphoma cells

    SciTech Connect

    Bell, J.D.; Brunton, L.L.

    1986-05-01

    12-0-tetradecanoylphorbol-13-acetate (TPA) enhances the apparent V/sub max/ of adenylate cyclase (AC) in S49 lymphoma cells. This effect does not result from an increased rate of activation of the catalytic subunit by the stimulatory GTP binding transducer protein (G/sub s/). In wild type (WT) membranes this enhancement seems to involve a GTP binding protein since TPA enhances forskolin-stimulated AC activity by 30% in the presence of GTP (10 ..mu..M) or Gpp(NH)p (1 ..mu..M) but not in the absence of guanine nucleotide. The authors obtain comparable results in the cyc- variant that lacks the GTP binding subunit of G/sub s/ responsible for stimulating AC, suggesting the importance of a different GTP binding protein. Blockade of the activity of the inhibitory GTP binding protein (G/sub i/) by high concentrations of Mg/sup + +/ (approx.100 mM) or Mn/sup + +/ (approx.1 mM) abolishes the effect of TPA to enhance AC activity in WT membranes. The time course of Gpp(NH)p-mediated inhibition of AC reveals a characteristic lag prior to steady state, indicative of the rate of G/sub i/ activation; TPA increases this lag 3-4 fold. The authors conclude that reduction in the rate of activation of G/sub i/ by guanine nucleotide is one mechanism by which phorbol esters enhance guanine nucleotide-dependent activity of AC, hypothetically via the phosphorylation of G/sub i/ by protein kinase C.

  2. Multiple effects of phorbol esters on hormone-sensitive adenylate cyclase activity in S49 lymphoma cells

    SciTech Connect

    Bell, J.D.; Brunton, L.L.

    1987-06-01

    In S49 lymphoma cells, 12-O-tetradecanoyl phorbol-13-acetate (TPA) enhances adenylate cyclase activity and doubles cAMP accumulation in response to ..beta..-adrenergic stimulation at 37/sup 0/C, putatively via the action of protein kinase C. at 27/sup 0/C, TPA has the opposite effect, inhibiting cAMP production in response to isoproterenol by approx. 25%. TPA also inhibits the response to prostaglandin E/sub 1/ (PGE/sub 1/), another stimulant of hormone-sensitive adenylate cyclase in these cells, by 30% at 37/sup 0/C and almost 50% at 27/sup 0/C. In contrast, TPA enhances responses to forskolin and cholera toxin at both 27 and 37/sup 0/C. In membranes from cells treated with TPA, PGE/sub 1/-stimulated adenylate cyclase activity is inhibited by 50%, whereas the catalytic activity stimulated by NaF or forskolin is enhanced. TPA reduces the potency of both PGE/sub 1/ and isoproterenol for cAMP generation by 50%. TPA causes a similar decrease in ..beta..-adrenergic agonist affinity with no reduction in the density of either antagonist of agonist binding sites in wild type cells and in cells lacking the ..cap alpha..-subunit of the stimulatory transducer protein (G/sub s/) (cyc/sup -/) or lacking functional receptor G/sub s/ coupling (UNC). Therefore, TPA has at least three functionally distinct effects on hormone-sensitive adenylate cyclase in S49 cells. The authors conclude that multiple and opposing effects of TPA on hormone-sensitive adenylate cyclase occur simultaneously within the same cell, affecting the responses to several agonists differently. In addition, the data offer a mechanism by which a cell can achieve heterogeneous efficacies to hormones that activate adenylate cyclase.

  3. Regulation of ATP-sensitive K sup + channels in insulinoma cells: Activation by somatostatin and protein kinase C and the role of cAMP

    SciTech Connect

    De Weille, J.R.; Schmid-Antomarchi, H.; Fosset, M.; Lazdunski, M. )

    1989-04-01

    The actions of somatostatin and of the phorbol ester 4{beta}-phorbol 12-myristate 13-acetate (PMA) were studied in rat insulinoma (RINm5F) cells by electrophysiological and {sup 86}Rb{sup +} flux techniques. Both PMA and somatostatin hyperpolarize insulinoma cells by activating ATP-sensitive K{sup +} channels. The presence of intracellular GTP is required for the somatostatin effects. PMA- and somatostatin-induced hyperpolarization and channel activity are inhibited by the sulfonylurea glibenclamide. Glibenclamide-sensitive {sup 86}Rb{sup +} efflux from insulinoma cells is stimulated by somatostatin in a dose-dependent manner (half maximal effect at 0.7 nM) and abolished by pertussis toxin pretreatment. Mutual roles of a GTP-binding protein, of protein kinase C, and of cAMP in the regulation of ATP-sensitive K{sup +} channels are discussed.

  4. Differential role of protein kinase C in desensitization of muscarinic receptor induced by phorbol esters and receptor agonists

    SciTech Connect

    Lai, Wi Sheung.

    1989-01-01

    PKC, a phorbol ester receptor, copurified with specific binding sites of ({sup 3}H)phorbol-12,13,-dibutyrate (({sup 3}H)PDBu). The specific binding of ({sup 3}H)PDBu to intact cells was saturable to a single class of binding sites. The PKC and phorbol ester receptors in N1E-115 cells can be down regulated by prolonged phorbol ester incubation. Phorbol 12-myristate 13-acetate (PMA) suppressed muscarinic receptor-mediated cyclic GMP response in a time-dependent and a concentration-dependent fashion and the suppressive effect of PMA could be attenuated by a protein kinase inhibitor, H-7, as well as by down-regulation of the PKC through long-term incubation with PDBu. Exposure of the cells to the muscarinic agonist carbamylcholine also desensitized subsequent CBC-mediated cyclic GMP response. However, pretreatment with carbamylcholine did not desensitize histamine-induced cyclic GMP formation while treatment with PMA suppressed this histamine-mediated response. Preincubation of the cells with CBC, but not with phorbol ester, resulted in down-regulation of muscarinic receptors. The loss of muscarinic receptors induced by agonist even occurred when the phosphoinositide hydrolysis response was suppressed.

  5. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    PubMed

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function

  6. Identification of cis-acting sequences responsible for phorbol ester induction of human serum amyloid A gene expression via a nuclear factor kB-like transcription factor

    SciTech Connect

    Edbrooke, M.R.; Cheshire, J.K.; Woo, P.; Burt, B.W.

    1989-05-01

    The authors have analyzed the 5'-flanking region of one of the genes coding for the human acute-phase protein, serum amyloid A (SAA). They found that SAA mRNA could be increased fivefold in transfected cells by treatment with phorbol 12-myristate 13-acetate (PMA). To analyze this observation further, they placed a 265-base-pair 5' SAA fragment upstream of the reporter chloramphenicol acetyltransferase (CAT) gene and transfected this construct into HeLa cells. PMA treatment of these transient transfectants resulted in increased CAT expression. Nuclear proteins from PMA-treated HeLa cells bound to this DNA fragment, and methylation interference analysis showed that the binding was specific to the sequence GGGACTTTCC (between -82 and -91), a sequence previously described by others as the binding site for the nuclear factor NF/kappa/B. In a cotransfection competition experiment, they could abolish PMA-induced CAT activity by using cloned human immunodeficiency virus long-terminal-repeat DNA containing the NF/kappa/B-binding sequence. The same long-terminal-repeat DNA containing mutant NF/kappa/B-binding sequences did not affect CAT expression, which suggested that binding by an NF/kappa/B-like factor is required for increased SAA transcription.

  7. Dynamic membrane-cytoskeletal interactions: specific association of integrin and talin arises in vivo after phorbol ester treatment of peripheral blood lymphocytes.

    PubMed Central

    Burn, P; Kupfer, A; Singer, S J

    1988-01-01

    Members of the family of transmembrane integral membrane proteins called integrins have been implicated in forming attachments to actin microfilaments of the cytoskeleton. These attachments are thought to involve one or more intervening peripheral membrane proteins linked to integrin. To detect such possible linkages in vivo, the integrin molecules on the surfaces of intact chicken peripheral blood lymphocytes were collected into caps by cross-linking with specific antibodies, and the capped cells were examined by double immunofluorescence to determine whether particular cytoskeletal proteins were co-collected with the integrin. With resting lymphocytes, the capping of integrin did not result in any detectable redistribution of either talin, vinculin, or alpha-actinin inside the cells. However, if the capping was carried out upon the addition of phorbol 12-myristate 13-acetate (PMA) to the cells, then talin, but not vinculin or alpha-actinin, was found associated with the integrin caps. PMA is known to activate protein kinase C. These results suggest that after, but not before, PMA stimulation of intact cells, talin becomes linked either directly or indirectly with integrin, reflecting the formation of a membrane-cytoskeletal association that is metabolically regulated. Images PMID:3124107

  8. Effects of phorbol ester on contraction, intracellular pH and intracellular Ca2+ in isolated mammalian ventricular myocytes.

    PubMed Central

    MacLeod, K T; Harding, S E

    1991-01-01

    1. We have investigated the actions of certain phorbol esters on the intracellular pH, intracellular Ca2+ and contractility of isolated rat and guinea-pig cardiac myocytes. Intracellular pH was measured using 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) and intracellular Ca2+ was measured using Fura-2. 2. Application of the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (also called phorbol 12-myristate 13-acetate) (TPA) (which activates protein kinase C) to rat cardiac myocytes significantly increased cell shortening by 116 +/- 34% (n = 8) (p less than 0.02). The rate of change of cell length during contraction (i.e. +dL/dt) increased from 67.2 +/- 8.7 microns/s to 127.7 +/- 14.1 microns/s (n = 7). The rate of change of cell length during relaxation (-dL/dt) increased from 55.8 +/- 7.4 microns/s to 118.9 +/- 12.1 microns/s (n = 7). Time to peak shortening was unchanged. 3. Application of 4 alpha-phorbol 12,13-didecanoate, which does not activate protein kinase C, did not affect rat myocyte contractility. An insignificant decrease in contractility (by 7.5 +/- 7.5%) was observed (n = 5). The positive inotropic effect of TPA may therefore be evoked through an activation of protein kinase C. 4. In rat myocytes we have measured the changes of pHi and contractility (cell shortening) during an alkalosis and acidosis induced by exposure to and subsequent removal of NH4Cl both in the presence and absence of TPA. Recovery times from an acid load were significantly (p less than 0.05) enhanced by 15.1 +/- 6.9% (n = 13) in the presence of TPA. Recovery times of cell shortening were also more rapid (p less than 0.05) by an average of 59.1 +/- 10.6% (n = 5) in the presence of TPA. Recovery times were unchanged in the presence of 4-phorbol 12,13-didecanoate (which does not activate protein kinase C). 5. Since pHi recovery of an isolated myocyte from an acid load is partially inhibited by the presence of 1 mM-amiloride and inhibited by removing extracellular Na

  9. Immune-suppressive activity of punicalagin via inhibition of NFAT activation

    SciTech Connect

    Lee, Sang-Ik; Kim, Byoung-Soo; Kim, Kyoung-Shin; Lee, Samkeun; Shin, Kwang-Soo; Lim, Jong-Soon

    2008-07-11

    Since T cell activation is central to the development of autoimmune diseases, we screened a natural product library comprising 1400 samples of medicinal herbal extracts, to identify compounds that suppress T cell activity. Punicalagin (PCG) isolated from the fruit of Punica granatum was identified as a potent immune suppressant, based on its inhibitory action on the activation of the nuclear factor of activated T cells (NFAT). PCG downregulated the mRNA and soluble protein expression of interleukin-2 from anti-CD3/anti-CD28-stimulated murine splenic CD4+ T cells and suppressed mixed leukocytes reaction (MLR) without exhibiting cytotoxicity to the cells. In vivo, the PCG treatment inhibited phorbol 12-myristate 13-acetate (PMA)-induced chronic ear edema in mice and decreased CD3+ T cell infiltration of the inflamed tissue. These results suggest that PCG could be a potential candidate for the therapeutics of various immune pathologies.

  10. Protein kinase C phosphorylates topoisomerase II: topoisomerase activation and its possible role in phorbol ester-induced differentiation of HL-60 cells

    SciTech Connect

    Sahyoun, N.; Wolf, M.; Besterman, J.; Hsieh, T.S.; Sander, M.; LeVine H. III; Chang, K.J.; Cuatrecasas, P.

    1986-03-01

    DNA topoisomerase II from Drosophila was phosphorylated effectively by protein kinase C. With a K/sub m/ of about 100 nM, the reaction was rapid, occurring at 4/sup 0/C as well as at 30/sup 0/C and requiring as little as 0.6 ng of the protein kinase per 170 ng of topoisomerase. About 0.85 mol of phosphate could be incorporated per mol of topoisomerase II, with phosphoserine as the only phospho amino acid produced. The reaction was dependent on Ca/sup 2 +/ and phosphatidylserine and was stimulated by phorbol esters. Calmodulin-dependent protein kinase II, but not cyclic AMP-dependent protein kinase, was also able to phosphorylate the topoisomerase. Phosphorylation of topoisomerase II by protein kinase C resulted in appreciable activation of the topoisomerase, suggesting that it may represent a possible target for the regulation of nuclear events by protein kinase C. This possibility is supported by the finding that the phorbol ester-induced differentiation of HL-60 cells was blocked by the topoisomerase II inhibitors novobiocin and 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA), but not by the inactive analog o-AMSA.

  11. Phorbol ester induced phosphorylation of the estrogen receptor in intact MCF-7 human breast cancer cells

    SciTech Connect

    Knabbe, C.; Lippman, M.E.; Greene, G.L.; Dickson, R.B.

    1986-05-01

    Recent studies with a variety of cellular receptors have shown that phorbol ester induced phosphorylation modulates ligand binding and function. In this study the authors present direct evidence that the estrogen receptor in MCF-7 human breast cancer cells is a phosphoprotein whose phosphorylation state can be enhanced specifically by phorbol-12-myristate-13-acetate (PMA). Cells were cultured to 6h in the presence of (/sup 32/P)-orthophosphate. Whole cell extracts were immunoprecipitated with a monoclonal antibody (D58) against the estrogen receptor and subjected to SDS-polyacrylamide electrophoresis. Autoradiography showed a specific band in the region of 60-62 kDa which was significantly increased in preparations from PMA treated cells. Phospho-amino acid analysis demonstrated specific phosphorylation of serine and threonine residues. Cholera toxin or forskolin did not change the phosphorylation state of this protein. In a parallel binding analysis PMA led to a rapid decrease of estrogen binding sites. The estrogen induction of both progesterone receptors and growth in semisolid medium was blocked by PMA, whereas the estrogen induction of the 8kDa protein corresponding to the ps2 gene product and of the 52 kDa protein was not affected. In conclusion, phorbol esters can induce phosphorylation of the estrogen receptor. This process may be associated with the inactivation of certain receptor functions.

  12. Surface expression of Mo3e antigen by activated human monocytes and U-937 cells

    SciTech Connect

    Todd R.F. III; Bury, M.J.; Liu, D.Y.

    1986-03-05

    The surface expression of a protease-sensitive antigen, Mo3e, by activated human monocytes and U-937 cells is a plasma membrane feature of the activated state. Mo3e, which is an 80 kD protein on Western blot analysis, may represent the surface receptor for migration inhibitory factor (MIF), as evidenced by inhibition of MIF responsiveness produced by anti-Mo3e monoclonal antibody. Mo3e is barely detectable (by surface immunofluorescence) on freshly isolated monocytes but becomes expressed in high antigen density during 18-24 hrs culture in medium containing E. coli lipopolysaccharide (> 1 ng/ml), 4..beta..-phorbol 12-myristate 13-acetate (PMA) (5-10 nM), or muramyl dipeptide (0.1-1 ..mu..M). In U-937 cells, Mo3e surface expression is detectable after 24 hrs exposure to PMA and other pharmacological activators of protein kinase C: 4..beta..-phorbol 12, 13 dibutyrate, 4..beta..-phorbol 12, 13 didecanoate, mezerein, or Sn-1,2-dioctanoylglycerol. The biologically-inactivate phorbol compounds, 4..cap alpha..-phorbol 12, 13 didecanoate and 4/sub ..beta../-phorbol do not stimulate Mo3e expression. The calcium ionophore, ionomycin, has a synergistic effect on Mo3e expression stimulated by PMA; conversely, calcium antagonists block PMA-induced Mo3e expression. These results suggest the involvement of protein kinase C activation and intracellular calcium mobilization in the stimulated expression of Mo3e by activated human mononuclear phagocytes.

  13. Tyrosine hydroxylase is activated and phosphorylated at different sites in rat pheochromocytoma PC 12 cells treated with phorbol ester and forskolin

    SciTech Connect

    Tachikawa, E.; Tank, A.W.; Weiner, D.H.; Mosimann, W.F.; Yanagihara, N.; Weiner, N.

    1986-03-01

    The effects of phorbol ester (4..beta..-phorbol, 12..beta..-myristate, 13..cap alpha..-acetate; TPA), an activator of Ca/sup + +//phospholipid-dependent protein kinase (PK-C), and forskolin, which stimulates adenylate cyclase and cyclic AMP-dependent protein kinase (cAMP-PK), on the activation and phosphorylation of tyrosine hydroxylase (TH) in rat pheochromocytoma (PC 12) cells were examined. Incubation of the cells with TPA (0.01-1 ..mu..M) or forskolin (0.01-0.1 ..mu..M) produces increases in activation and phosphorylation of TH in a concentration-dependent manner. The stimulatory effects of TPA are dependent on extracellular Ca/sup + +/ and are inhibited by pretreatment of the cells with trifluoperazine (TFP). The effects of forskolin are independent of Ca/sup + +/ and are not inhibited by TFP. In cells treated with forskolin, the time course of the increase in cAMP correlates with the increases in TH activity and phosphorylation. cAMP levels do not increase in cells treated with TPA. There is an increase in the phosphorylation of only one tryptic phosphopeptide derived from TH in cells treated with either forskolin or TPA. The peptide phosphorylated in TPA-treated cells exhibits different elution characteristics on HPLC from that in forskolin-treated cells. The authors conclude that TH in PC 12 cells is phosphorylated on different sites by cAMP-PK and PK-C. Phosphorylation of either of these sites is associated with enzyme activation.

  14. Critical role of s465 in protein kinase C-increased rat glutamate transporter type 3 activity.

    PubMed

    Baik, Hee Jung; Huang, Yueming; Washington, Jacqueline M; Zuo, Zhiyi

    2009-01-01

    Glutamate transporters, also called excitatory amino acid transporters (EAATs), uptake extracellular glutamate and regulate neurotransmission. Activation of protein kinase C (PKC) increases the activity of EAAT type 3 (EAAT3), the major neuronal EAAT. We designed this study to determine which amino acid residue(s) in EAAT3 may be involved in this PKC effect. Selective potential PKC phosphorylation sites were mutated. These EAAT3 mutants were expressed in the Xenopus oocytes. Phorbol 12-myristate 13-acetate, a PKC activator, significantly increased wild-type EAAT3 activity. Mutation of serine 465 to alanine or aspartic acid, but not the mutation of threonine 5 to alanine, abolished PKC-increased EAAT3 activity. Our results suggest a critical role of serine 465 in the increased EAAT3 activity by PKC activation.

  15. Topical application of a platelet activating factor receptor agonist suppresses phorbol ester-induced acute and chronic inflammation and has cancer chemopreventive activity in mouse skin.

    PubMed

    Sahu, Ravi P; Rezania, Samin; Ocana, Jesus A; DaSilva-Arnold, Sonia C; Bradish, Joshua R; Richey, Justin D; Warren, Simon J; Rashid, Badri; Travers, Jeffrey B; Konger, Raymond L

    2014-01-01

    Platelet activating factor (PAF) has long been associated with acute edema and inflammatory responses. PAF acts by binding to a specific G-protein coupled receptor (PAF-R, Ptafr). However, the role of chronic PAF-R activation on sustained inflammatory responses has been largely ignored. We recently demonstrated that mice lacking the PAF-R (Ptafr-/- mice) exhibit increased cutaneous tumorigenesis in response to a two-stage chemical carcinogenesis protocol. Ptafr-/- mice also exhibited increased chronic inflammation in response to phorbol ester application. In this present study, we demonstrate that topical application of the non-hydrolysable PAF mimetic (carbamoyl-PAF (CPAF)), exerts a potent, dose-dependent, and short-lived edema response in WT mice, but not Ptafr -/- mice or mice deficient in c-Kit (c-KitW-sh/W-sh mice). Using an ear inflammation model, co-administration of topical CPAF treatment resulted in a paradoxical decrease in both acute ear thickness changes associated with a single PMA application, as well as the sustained inflammation associated with chronic repetitive PMA applications. Moreover, mice treated topically with CPAF also exhibited a significant reduction in chemical carcinogenesis. The ability of CPAF to suppress acute and chronic inflammatory changes in response to PMA application(s) was PAF-R dependent, as CPAF had no effect on basal or PMA-induced inflammation in Ptafr-/- mice. Moreover, c-Kit appears to be necessary for the anti-inflammatory effects of CPAF, as CPAF had no observable effect in c-KitW-sh/W-sh mice. These data provide additional evidence that PAF-R activation exerts complex immunomodulatory effects in a model of chronic inflammation that is relevant to neoplastic development.

  16. Coordinated activation of mitochondrial respiration and exocytosis mediated by PKC signaling in pancreatic β cells.

    PubMed

    Santo-Domingo, Jaime; Chareyron, Isabelle; Dayon, Loïc; Núñez Galindo, Antonio; Cominetti, Ornella; Pilar Giner Giménez, María; De Marchi, Umberto; Canto, Carles; Kussmann, Martin; Wiederkehr, Andreas

    2017-03-01

    Mitochondria play a central role in pancreatic β-cell nutrient sensing by coupling their metabolism to plasma membrane excitability and insulin granule exocytosis. Whether non-nutrient secretagogues stimulate mitochondria as part of the molecular mechanism to promote insulin secretion is not known. Here, we show that PKC signaling, which is employed by many non-nutrient secretagogues, augments mitochondrial respiration in INS-1E (rat insulinoma cell line clone 1E) and human pancreatic β cells. The phorbol ester, phorbol 12-myristate 13-acetate, accelerates mitochondrial respiration at both resting and stimulatory glucose concentrations. A range of inhibitors of novel PKC isoforms prevent phorbol ester-induced respiration. Respiratory response was blocked by oligomycin that demonstrated PKC-dependent acceleration of mitochondrial ATP synthesis. Enhanced respiration was observed even when glycolysis was bypassed or fatty acid transport was blocked, which suggested that PKC regulates mitochondrial processes rather than upstream catabolic fluxes. A phosphoproteome study of phorbol ester-stimulated INS-1E cells maintained under resting (2.5 mM) glucose revealed a large number of phosphorylation sites that were altered during short-term activation of PKC signaling. The data set was enriched for proteins that are involved in gene expression, cytoskeleton remodeling, secretory vesicle transport, and exocytosis. Interactome analysis identified PKC, C-Raf, and ERK1/2 as the central phosphointeraction cluster. Prevention of ERK1/2 signaling by using a MEK1 inhibitor caused a marked decreased in phorbol 12-myristate 13-acetate-induced mitochondrial respiration. ERK1/2 signaling module therefore links PKC activation to downstream mitochondrial activation. We conclude that non-nutrient secretagogues act, in part, via PKC and downstream ERK1/2 signaling to stimulate mitochondrial energy production to compensate for energy expenditure that is linked to β-cell activation

  17. Macelignan inhibits histamine release and inflammatory mediator production in activated rat basophilic leukemia mast cells.

    PubMed

    Han, Young Sun; Kim, Myung-Suk; Hwang, Jae-Kwan

    2012-10-01

    Type I allergy is characterized by the release of granule-associated mediators, lipid-derived substances, cytokines, and chemokines by activated mast cells. To evaluate the anti-allergic effects of macelignan isolated from Myristica fragrans Houtt., we determined its ability to inhibit calcium (Ca(2+)) influx, degranulation, and inflammatory mediator production in RBL-2 H3 cells stimulated with A23187 and phorbol 12-myristate 13-acetate. Macelignan inhibited Ca(2+) influx and the secretion of β-hexosaminidase, histamine, prostaglandin E(2), and leukotriene C(4); decreased mRNA levels of cyclooxygenase-2, 5-lipoxygenase, interleukin-4 (IL-4), IL-13, and tumor necrosis factor-α; and attenuated phosphorylation of Akt and the mitogen-activated protein kinases extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase. These results indicate the potential of macelignan as a type I allergy treatment.

  18. Effects of antiinflammatory agents on mouse skin tumor promotion, epidermal DNA synthesis, phorbol ester-induced cellular proliferation, and production of plasminogen activator.

    PubMed

    Viaje, A; Slaga, T J; Wigler, M; Weinstein, I B

    1977-05-01

    The antinflammatory ateroids fluocinoine acetonide, fluocinonide, and fluclorolone acetonide were found to be very effectiveinhibitory agents of mouse skin tumor promotion. These steroids also drastically inhibited epidermal DNA synthesis and epidermal cellular proliferation induced by a phorbal ester tumor promoter. In addition, these compounds were potent inhibitors, of plasminogen activator production in tumor cell cultures. The clinically used non-steroidal antiinflammatory agents oxyphenbutazone, indomethacin, and Seclazone also inhibite tumor promotion but were much less effective. Although these agents are useful against inflammatory disorders in general when given p.o., in our studies they had little effect on inflammation and epidermal cellular proliferation induced by a phorbol ester tumor promoter when given topically. The afore mentioned nonsteroidal antiinflammatory agents also had little effect on epidermal DNA synthesis. Oxyphenbutazone and indomethacin were less potent inhibitors of plasminogen activator production in tumor cells than were the antiinflammatory steroids, and Seclazone produced a negligible inhibition. There is, therefore, a general correlation in the potencies of a series of steroidal antiinflammatory agents for inhibition of tumor promotion and their ability to inhibit plasminogen activator production by tumor cell cultures and epidermal DNA synthesis.

  19. Enhanced cAMP accumulation by a phorbol ester in cerebral cortical cells

    SciTech Connect

    Beeler, J.F.; Davis, C.W.

    1987-05-01

    Phorbol 12-myristate-13-acetate (PMA) was found to be selective in its ability to alter cAMP accumulations in cultured rat cerebral cortical cells. Basal levels of cAMP in cultured neuronal and nonneuronal cells preincubated in the absence or presence of PMA were 14 pmol/mg protein and 16 pmol/mg protein, respectively. Adenosine increased cAMP levels in a dose-dependent manner. cAMP accumulation in response to low concentrations of adenosine was not significantly altered by pretreatment with PMA but marked potentiation of adenosine elicited accumulations was observed at 10 and 100 ..mu..M adenosine. Longer preincubation with PMA resulted in a decreased ability of PMA to enhance adenosine elicited accumulations of cAMP. PMA did not significantly alter cAMP accumulation by forskolin (FOR) and enhanced norepinephrine stimulated cAMP by only 2-fold. For similarly potentiated adenosine/sub 2/ (A/sub 2/)- receptor elicited accumulation of cAMP which could be further enhanced by PMA. These results suggest that the effects of the phorbol ester are more specific for potentiating adenosine stimulated cAMP accumulation and may occur as a result of a more efficient coupling between the A/sub 2/-receptor, N-protein and adenylate cyclase.

  20. ACE expression in monocytes is induced by cytokines, phorbol ester and steroid

    SciTech Connect

    Lazarus, D.; Lanzillo, J.; Fanburg, B. )

    1991-03-15

    Angiotensin converting enzyme (ACE) levels are elevated in the serum and peripheral blood monocytes (PBM) of patients with granulomatous diseases. However, the role of ACE in (Mo) physiology and the regulation of the inflammatory response is not well understood. Since Mo can be stimulated to form giant cells using phorbol esters, glucocorticoids or certain inflammatory cytokines, the authors examined production of ACE protein by normal PBM, a Mo-like cell line, THP-1, and a macrophage-like cell line, U937 following stimulation with these agents. Using a sensitive ELISA assay, they found that in U937 cells, expression of ACE protein increased by 3.4 fold with dexamethasone, 3.7. fold with phorbol 12-myristate acetate (PMA), and 5.8 fold with the two agents combined. The cytokines IL-4 and GM-CSF substantially increased ACE expression, by 7.6 and 7.7 fold respectively, with maximal effect at 0.01 U/ml, while IFN-{gamma} and TNF-{alpha} had little effect. Similar results were found with PBM and THP-1 cells. The combination of dexamethasone and PMA also induced homotypic cluster formation in PBM, suggesting a correlation between cell adhesion and ACE production. The authors conclude that ACE expression in monocytes and macrophages is stimulated by low concentration of glucocorticoids and certain inflammatory cytokines. ACE may participate in the initiation and propagation of granulomatous inflammatory processes.

  1. Internalization and recycling of 5-HT2A receptors activated by serotonin and protein kinase C-mediated mechanisms

    PubMed Central

    Bhattacharyya, Samarjit; Puri, Sapna; Miledi, Ricardo; Panicker, Mitradas M.

    2002-01-01

    Serotonin (5-HT), a major neurotransmitter, has a large number of G protein-coupled receptors in mammals. On activation by exposure to their ligand, 5-HT2 receptor subtypes increase IP3 levels and undergo desensitization and internalization. To visualize the receptor in cells during these processes, we have constructed a 5-HT2A-enhanced GFP (SR2-GFP) fusion receptor. We show that this fusion receptor undergoes internalization on exposure to its natural ligand, 5-HT. Because 5-HT2A receptors activate the phospholipase C pathway, we studied the effect of protein kinase C (PKC) on the internalization process and found that activation of PKC by its specific activator phorbol 12-myristate 13-acetate, in the absence of 5-HT, leads to internalization of the receptor. Moreover, inhibition of PKC by its inhibitor sphingosine in the presence of 5-HT prevents the internalization process, suggesting that activation of PKC is sufficient and necessary for the internalization of 5-HT2A receptors. We also show that SR2-GFP recycles back to the plasma membrane after 5-HT-dependent internalization, suggesting a mechanism for resensitization. In addition, receptors that have been internalized on addition of phorbol 12-myristate 13-acetate in the absence of 5-HT also recycle to the surface, with a time course similar to that seen after activation of the receptors by 5-HT. Our study suggests that 5-HT2A receptors internalize and return to the surface after both serotonin- and PKC-mediated processes. This study reveals a role for PKC in receptor internalization and also shows that 5-HT2A receptors are recycled. PMID:12388782

  2. Non-small cell lung cancer-derived soluble mediators enhance apoptosis in activated T lymphocytes through an I kappa B kinase-dependent mechanism.

    PubMed

    Batra, Raj K; Lin, Ying; Sharma, Sherven; Dohadwala, Mariam; Luo, Jie; Pold, Mehis; Dubinett, Steven M

    2003-02-01

    T lymphocyte survival is critical for the development and maintenance of an effective host antitumor immune response; however, the tumor environment can negatively impact T-cell survival. Lymphocytes exposed to tumor supernatants (TSNs) were evaluated for apoptosis after mitogen stimulation. TSN was observed to significantly enhance phorbol 12-myristate 13-acetate/ionomycin- and anti-CD3-stimulated lymphocyte apoptosis. Enhanced lymphocyte apoptosis was associated with an impairment of nuclear factor kappa B nuclear translocation and diminished I kappa B alpha degradation. In lymphocytes stimulated after exposure to TSNs, cytoplasmic I kappa B alpha persisted as a result of alterations in I kappa B kinase (IKK) activity. Accordingly, although there were no apparent differences in IKK component concentrations, lymphocytes preexposed to TSNs exhibited markedly reduced IKK activity. We conclude that non-small cell lung cancer-derived soluble factors promote apoptosis in activated lymphocytes by an IKK-dependent pathway.

  3. Cell-type-specific activity of the human papillomavirus type 18 upstream regulatory region in transgenic mice and its modulation by tetradecanoyl phorbol acetate and glucocorticoids.

    PubMed Central

    Cid, A; Auewarakul, P; Garcia-Carranca, A; Ovseiovich, R; Gaissert, H; Gissmann, L

    1993-01-01

    The upstream regulatory region (URR) of human papillomavirus type 18 (HPV-18) harbors transcriptional promoter and enhancer elements which are thought to determine the cell-type specificity of the virus. In order to study the regulation of HPV-18 expression in vivo, we constructed transgenic mice carrying the bacterial lacZ gene under the control of the HPV-18 URR. Analysis of beta-galactosidase activity by histochemical staining of tissue sections of four independent transgenic mice showed that the viral promoter was specifically active in epithelial cells within a variety of organs (e.g., tongue, ovary, uterus, testis, and small intestine). Very strong staining was observed in newborn transgenic mice in contrast to a weak activity found during fetal life. Determination of beta-galactosidase activity in crude extracts from tissues of three lines of transgenic mice proved to be a useful tool for a quantitative analysis of transgene expression. In mice from two different transgenic lines treated with dexamethasone such measurements revealed a biphasic effect of the hormone on the activity of the enzyme in the stratified epithelium of the tongue (transient increase followed by a decrease). Northern (RNA) blot analysis showed similar changes in beta-galactosidase mRNA in that tissue. Treatment with tetradecanoyl phorbol acetate (TPA) led to a twofold increase in both enzymatic activity and mRNA levels. Finally, combined treatments with dexamethasone and TPA showed that both factors interfered with each other in their respective effects on transgene expression, suggesting that a cross-talk mechanism between transcription factors could be involved in the regulation of the HPV-18 URR. Images PMID:8411377

  4. PP2B-mediated Dephosphorylation of c-Jun C Terminus Regulates Phorbol Ester-induced c-Jun/Sp1 Interaction in A431 Cells

    PubMed Central

    Chen, Ben-Kuen; Huang, Chi-Chen; Chang, Wei-Chiao; Chen, Yun-Ju; Kikkawa, Ushio; Nakahama, Ken-ichi; Morita, Ikuo

    2007-01-01

    The c-Jun/Sp1 interaction is essential for growth factor- and phorbol 12-myristate 13-acetate (PMA)-induced genes expression, including human 12(S)-lipoxygenase, keratin 16, cytosolic phospholipase A2, p21WAF1/CIP1, and neuronal nicotinic acetylcholine receptor β4. Here, we examined the mechanism underlying the PMA-induced regulation on the interaction between c-Jun and Sp1. We found that treatment of cells with PMA induced a dephosphorylation at the C terminus of c-Jun at Ser-243 and a concomitant inhibition of PP2B by using PP2B small interfering RNA, resulting in reduction of PMA-induced gene expression as well as the c-Jun/Sp1 interaction. The c-Jun mutant TAM-67-3A, which contains three substitute alanines at Thr-231, Ser-243, and Ser-249 compared with TAM-67, binds more efficaciously with Sp1 and is about twice as efficacious as TAM-67 in inhibiting the PMA-induced activation of the 12(S)-lipoxygenase promoter. Importantly, PP2B not only dephosphorylates the c-Jun at Ser-243 but also interacts with c-Jun in PMA-treated cells. PMA stimulates the association of the PP2B/c-Jun/Sp1 complex with the promoter. These findings indicate the dephosphorylation of c-Jun C terminus is required for the c-Jun/Sp1 interaction and reveal that PP2B plays an important role in regulating c-Jun/Sp1 interaction in PMA-induced gene expression. PMID:17215518

  5. PDGF-induced receptor phosphorylation and phosphoinositide hydrolysis are unaffected by protein kinase C activation in mouse swiss 3T3 and human skin fibroblasts

    SciTech Connect

    Sturani, E.; Vicentini, L.M.; Zippel, R.; Toschi, L.; Pandiella-Alonso, A.; Comoglio, P.M.; Meldolesi, J.

    1986-05-29

    Short (1-10 min) pretreatment of intact cells with activators of protein kinase C (e.g. phorbol-12 myristate, 13-acetate, PMA) affects the activity of a variety of surface receptors (for growth factors, hormones and neurotransmitters), with inhibition of transmembrane signal generation. In two types of fibroblasts it is demonstrated that the PDGF receptor is unaffected by PMA. Exposure to PMA at concentrations up to 100 nM for 10 min failed to inhibit either one of the agonist-induced, receptor-coupled responses of PDGF: the autophosphorylation of receptor molecules at tyrosine residues, and the hydrolysis of membrane polyphosphoinositides. In contrast, the EGF receptor autophosphorylation (in A 431 cells) and the bombesin-induced phosphoinositide hydrolysis were readily inhibited by PMA.

  6. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo

    SciTech Connect

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan; Surh, Young-Joon

    2013-09-06

    Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.

  7. Distinct PKC isoforms mediate the activation of cPLA2 and adenylyl cyclase by phorbol ester in RAW264.7 macrophages

    PubMed Central

    Lin, Wan-W; Chen, Bin C

    1998-01-01

    The modulatory effects of protein kinase C (PKC) on the activation of cytosolic phospholipase A2 (cPLA2) and adenylyl cyclase (AC) have recently been described. Since the signalling cascades associated with these events play critical roles in various functions of macrophages, we set out to investigate the crosstalk between PKC and the cPLA2 and AC pathways in mouse RAW 264.7 macrophages and to determine the involvement of individual PKC isoforms. The cPLA2 and AC pathways were studied by measuring the potentiation by the phorbol ester PMA of ionomycin-induced arachidonic acid (AA) release and prostagladin E1 (PGE1)-stimulated cyclic AMP production, respectively.PMA at 1 μM caused a significant increase in AA release both in the presence (371%) and absence (67%) of ionomycin induction, while exposure of RAW 264.7 cells to PMA increased PGE1 stimulation of cyclic AMP levels by 208%.Treatment of cells with staurosporine and Ro 31-8220 inhibited the PMA-induced potentiation of both AA release and cyclic AMP accumulation, while Go 6976 (an inhibitor of classical PKC isoforms) and LY 379196 (a specific inhibitor of PKCβ) inhibited the AA response but failed to affect the enhancement of the cyclic AMP response by PMA.Long term pretreatment of cells with PMA abolished the subsequent effect of PMA in potentiating AA release, but only inhibited the cyclic AMP response by 42%.Neither PD 98059, an inhibitor of MEK, nor genistein, an inhibitor of tyrosine kinases, had any effect on the ability of PMA to potentiate AA or cyclic AMP production.The potentiation of AA release, but not of cyclic AMP formation, by PMA was sensitive to inhibition by wortmannin. This effect was unrelated to the inhibition of PKC activation as deduced from the translocation of PKC activity to the cell membrane.Western blot analysis revealed the presence of eight PKC isoforms (α, βI, βII, δ, ε, μ λ and ξ) in RAW 264.7 cells and PMA was shown to induce the translocation of the α, βI, βII,

  8. Dissimilar effects of phorbol ester and diacylglycerol derivative on protein kinase activity in the monoblastoid U937 cell.

    PubMed

    Ways, D K; Dodd, R C; Earp, H S

    1987-07-01

    Mechanism, in addition to protein kinase C activation may mediate 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulated differentiation of leukemic cells. We compared the effect of pretreating intact monoblastoid U937 cells with TPA or the diacylglycerol derivative, 1-oleoyl-2-acetylglycerol (OAG), by studying the protein kinase C dependent and independent histone phosphotransferase activity, the phosphorylation of endogenous substrates, and the ability to stimulate differentiation. In cellular fractions derived from cells treated with TPA or OAG, cytosolic protein kinase C activity decreased. In the detergent extracted particulate fraction, TPA produced a time and dose dependent decrease in protein kinase C activity. In contrast, OAG increased particulate protein kinase C activity. In addition, the particulate fraction derived from cells treated with TPA exhibited increased phosphatidyl serine and diolein independent histone phosphotransferase activity as well as an increase in the phosphorylation of two endogenous substrates with molecular weights of 120,000 and 80,000. OAG did not mimic these effects. When exposed to 32P-labeled intact cells, OAG and TPA stimulated phosphorylation of three substrates. Thus, the inability of OAG to mimic the effects of TPA was not due to lack of protein kinase C activation. TPA, but not OAG, stimulated differentiation of the U937 cell to a monocyte-like cell. These data demonstrate that TPA and OAG have dissimilar effects on protein kinase activity and differentiation in the U937 monoblastoid cell.

  9. Activation of human papillomavirus type 18 gene expression by herpes simplex virus type 1 viral transactivators and a phorbol ester

    SciTech Connect

    Gius, D.; Laimins, L.A.

    1989-02-01

    Several viral trans-activators and a tumor promoter were examined for the ability to activate human papillomavirus type 18 (HPV-18) gene expression. A plasmid containing the HPV-18 noncoding region placed upstream of the chloramphenicol acetyltransferase reporter gene was cotransfected with different herpes simplex virus type 1 (HSV-1) genes into several cell lines. Both HSV-1 TIF and ICPO activated HPV-18 expression; however, activation by TIF was observed only in epithelial cells, while ICPO stimulated expression in a wide variety of cells. The element activated by both TIF and ICOP was mapped to a 229-base-pair fragment which also contains an HPV-18 epithelial cell-preferred enhancer. The inclusion of a papillomavirus E2 trans-activator with TIF and ICOP further increased HPV-18 expression. In contrast, the HSV-1 ICP4 and ICP27 genes, as well as the human T-cell lymphotropic virus type I and human immunodeficiency virus type 1 tat genes, were found to have no effect on HPV-18 expression. In transient assays, the addition of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) also activated HPV-18 expression. The region of HPV-18 activated by TPA was localized to a sequence which is homologous to other TPA-responsive elements.

  10. Phorbol Ester Effects on Neurotransmission: Interaction with Neurotransmitters and Calcium in Smooth Muscle

    NASA Astrophysics Data System (ADS)

    Baraban, Jay M.; Gould, Robert J.; Peroutka, Stephen J.; Snyder, Solomon H.

    1985-01-01

    Stimulation of the phosphatidylinositol cycle by neurotransmitters generates diacylglycerol, an activator of protein kinase C, which may regulate some forms of neurotransmission. Phorbol esters, potent inflammatory and tumorpromoting compounds, also activate protein kinase C. We demonstrate potent and selective effects of phorbol esters on smooth muscle, indicating a role for protein kinase C in neurotransmission. In rat vas deferens and dog basilar artery, phorbol esters synergize with calcium to mimic the contractile effects of neurotransmitters that act through the phosphatidylinositol cycle. In guinea pig ileum and rat uterus, phorbol esters block contractions produced by these neurotransmitters.

  11. Anti-inflammatory activity of the oriental herb medicine, Arisaema cum Bile, in LPS-induced PMA-differentiated THP-1 cells.

    PubMed

    Ahn, Chang-Bum; Je, Jae-Young

    2012-06-01

    Arisaema cum Bile is widely used as a folk medicine in Korea. However, the systematic biological properties of Arisaema cum Bile have seldom been addressed. In this study, we evaluated the anti-inflammatory activity of Arisaema cum Bile extract on lipopolysaccharide (LPS)-induced inflammation in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages. The Arisaema cum Bile extract markedly inhibited the production of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, and also suppressed the mRNA and protein expressions of these cytokines. Furthermore, the Arisaema cum Bile extract also inhibited LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and gene expressions in PMA-differentiaed THP-1 macrophages. These results suggest that Arisaema cum Bile extract may have potential for development into an effective anti-inflammatory agent, and/or as an ingredient of functional foods.

  12. Protein Kinase C Regulates Ionic Conductance in Hippocampal Pyramidal Neurons: Electrophysiological Effects of Phorbol Esters

    NASA Astrophysics Data System (ADS)

    Baraban, Jay M.; Snyder, Solomon H.; Alger, Bradley E.

    1985-04-01

    The vertebrate central nervous system contains very high concentrations of protein kinase C, a calcium-and phospholipid-stimulated phosphorylating enzyme. Phorbol esters, compounds with inflammatory and tumor-promoting properties, bind to and activate this enzyme. To clarify the role of protein kinase C in neuronal function, we have localized phorbol ester receptors in the rat hippocampus by autoradiography and examined the electrophysiological effects of phorbol esters on hippocampal pyramidal neurons in vitro. Phorbol esters blocked a calcium-dependent potassium conductance. In addition, phorbol esters blocked the late hyperpolarization elicited by synaptic stimulation even though other synaptic potentials were not affected. The potencies of several phorbol esters in exerting these actions paralleled their affinities for protein kinase C, suggesting that protein kinase C regulates membrane ionic conductance.

  13. Vanadium promotes hydroxyl radical formation by activated human neutrophils.

    PubMed

    Fickl, Heidi; Theron, Annette J; Grimmer, Heidi; Oommen, Joyce; Ramafi, Grace J; Steel, Helen C; Visser, Susanna S; Anderson, Ronald

    2006-01-01

    This study was undertaken to investigate the effects of vanadium in the +2, +3, +4, and +5 valence states on superoxide generation, myeloperoxidase (MPO) activity, and hydroxyl radical formation by activated human neutrophils in vitro, using lucigenin-enhanced chemiluminescence (LECL), autoiodination, and electron spin resonance with 5,5-dimethyl-l-pyrroline N-oxide as the spin trap, respectively. At concentrations of up to 25 microM, vanadium, in the four different valence states used, did not affect the LECL responses of neutrophils activated with either the chemoattractant, N-formyl-l-methionyl-l-leucyl-l-phenylalanine (1 microM), or the phorbol ester, phorbol 12-myristate 12-acetate (25 ng/ml). However, exposure to vanadium in the +2, +3, and +4, but not the +5, valence states was accompanied by significant augmentation of hydroxyl radical formation by activated neutrophils and attenuation of MPO-mediated iodination. With respect to hydroxyl radical formation, similar effects were observed using cell-free systems containing either hydrogen peroxide (100 microM) or xanthine/xanthine oxidase together with vanadium (+2, +3, +4), while the activity of purified MPO was inhibited by the metal in these valence states. These results demonstrate that vanadium in the +2, +3, and +4 valence states interacts prooxidatively with human neutrophils, competing effectively with MPO for hydrogen peroxide to promote formation of the highly toxic hydroxyl radical.

  14. Protein kinase C-{beta}, fibronectin, {alpha}{sub 5}{beta}{sub 1}-integrin and tumor necrosis factor-{alpha} are required for phorbol diester-induced apoptosis in human myeloid leukemia cells in human myeloid leukemia cells.

    SciTech Connect

    Laouar, A.; Glesne, D.; Huberman, E.

    2001-12-01

    The human myeloid HL-60 cell line and its cell variant HL-525 were used to study signaling events leading to apoptosis induction by phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC) enzymes. Unlike parental cells, HL-525 cells are PKC-{beta} deficient and resistant to PMA-induced apoptosis. These cells regain susceptibility to apoptosis induction after transfection with a PKC-{beta} expression vector. By using this vector and specific neutralizing monoclonal antibodies (mAbs), it was established that PMA-induced apoptosis also called for an interaction between cell-surface {alpha}{sub 5}{beta}{sub 1}-integrin and its deposited ligand fibronectin (FN), which is downstream of PKC-{beta} activation. Experiments with mAbs, the PKC-{beta} vector, and exogenous FN revealed that the next step entailed an interaction between secreted tumor necrosis factor-{alpha} and its type I receptor. By using a sphingomyelinase inhibitor, it was concluded that the subsequent step involved ceramide production. Moreover, a permeable ceramide was effective in inducing apoptosis in both HL-60 and HL-525 cells, and this induction was caspase-1 and/or -4 dependent because an inhibitor of these caspases abrogated the induced apoptosis. Based on these and related differentiation studies, we conclude that the above signaling events, the early ones in particular, are shared with PMA-induced macrophage differentiation in the HL-60 cells. It is likely that once these cells acquire their macrophage phenotype and perform their tasks, they become superfluous and are eliminated from the body by a self-triggered apoptotic process that involves our proposed signaling scheme.

  15. Differential effects of protein kinase C activation on 5-HT1A receptor coupling to Ca2+ and K+ currents in rat serotonergic neurones.

    PubMed Central

    Chen, Y; Penington, N J

    1996-01-01

    1. Activation of the enzyme protein kinase C (PKC) partially uncouples receptors from the inhibition of Ca2+ current. We have studied the effect of PKC activation on 5-HT1A receptor coupling of Ca2+ currents and 5-HT-induced K+ current (IK,5-HT) in acutely isolated adult rat dorsal raphe neurones. 2. The phorbol ester 4 beta-phorbol 12-myristate, 13-acetate (PMA; 1 microM) did not significantly alter the peak Ca2+ current. A maximal dose of 5-HT inhibited Ca2+ current on average by 52%; after application of PMA, the inhibition was only 30% and the effect was irreversible for the duration of the experiment. 3. The inactive phorbol ester 4 alpha-phorbol (1 microM) did not reduce the effectiveness of 5-HT. When the kinase inhibitor staurosporine (ST; 200 nM) was added, PMA reduced the effect of 5-HT by only 13.9%. ST partially prevented or reversed the effect of PMA, depending on the order of addition. 4. The voltage-dependent rate or re-inhibition by 5-HT was reduced by PMA, suggesting that fewer activated G-protein subunits are available to interact with Ca2+ channel after the action of PMA. 5. In contrast, PMA (1 microM) did not have a significant effect on IK,5-HT. 6. PKC activation has an inhibitory effect on one branch of the 5-HT1A receptor transduction fork, namely inhibition of Ca2+ influx, but not on the activation of IK,5-HT. PMID:8910201

  16. Reactive oxygen species mediate phorbol ester-stimulated cAMP response in human eosinophils.

    PubMed

    Ezeamuzie, Charles I; Taslim, Najla

    2006-08-14

    Recently, we showed that phorbol 12-myristate 13-acetate (PMA) can cause a direct, PKC-dependent, stimulation of intracellular cAMP in human eosinophils. Since PMA also stimulates the release of reactive oxygen species in these cells, we have investigated whether reactive oxygen species are involved in the cAMP response. Provided eosinophils were incubated for <20 min at 37 degrees C before stimulation, PMA potently stimulated cAMP generation that surpassed that of histamine. Pre-treatment of the cells with the NADPH oxidase inhibitors, diphenyleneiodonium (DPI) and apocynin, strongly inhibited the cAMP production induced by PMA, but not that induced by histamine. This treatment also strongly inhibited the release of superoxide anions (O(2)(-)). The cAMP response was also inhibited by pre-treatment with the specific peroxide scavenger, ebselen, but not superoxide dismutase, or NG-nitro-l-arginine methyl ester (L-NAME), thus, suggesting the possible involvement of a peroxide rather than O(2)(-) or nitric oxide (NO). These results reveal a novel involvement of intracellular reactive oxygen species in protein kinase C (PKC)-dependent stimulation of cAMP production in human eosinophils.

  17. Enhanced histamine production through the induction of histidine decarboxylase expression by phorbol ester in Jurkat cells.

    PubMed

    Nagashima, Yusuke; Kako, Koichiro; Kim, Jun-Dal; Fukamizu, Akiyoshi

    2012-11-01

    Histamine (HA), a mediator of inflammation, type I allergic responses and neurotransmission, is synthesized from L-histidine, the reaction of which is catalyzed by histidine decarboxylase (HDC). HDC has been reported to be induced by various stimuli, not only in mast cells and basophils, but also in T lymphocytes and macrophages. Although its mRNA has been shown to be increased in Jurkat cells when treated with phorbol 12-myristate 13-acetate (TPA), little is known concerning the induced production of HA by HDC. The present study quantified the trace amounts of intracellular HA using ultra-high liquid chromatography in combination with the 6-aminoquinoline carbamate-derivatization technique. To test whether the cellular level of HA is elevated by the induction of HDC in Jurkat cells treated with TPA, the peak corresponding to authentic HA in the cell lysate was fractioned and its molecular weight determined by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry. The results of this study show that the HA level is increased by the induction of HDC expression by TPA in Jurkat cells. Therefore, this method is useful in elucidating the physiological significance of HA production.

  18. Comparison of the hypertrophic effect of phorbol ester, norepinephrine, angiotensin II and contraction on cultured cardiomyocytes

    SciTech Connect

    Allo, S.N.; Carl, L.L.; Morgan, H.E. )

    1991-03-15

    Phorbol 12-myristate 13-acetate (PMA), norepinephrine (NE), angiotensin II (AII) and contraction stimulate cardiomyocyte growth. Differences exist in the time course and extent of protein and RNA accumulation. Cells plated at 4 {times} 10{sup 6} cells/60mm dish and arrested with 50 mM KCl demonstrated no significant growth. Treatment with PMA stimulated growth to a maximum of 17% at 48 h. In contrast, maximal stimulation of growth was 36% at 48 h and 31% at 72 h for contracting and NE treated cells, respectively. Maximal stimulation of the capacity for protein synthesis was 32% for PMA treated cells at 24 h as compared to 59% and 77% for NE treated and contracting cells respectively at 72 h. In support of a primary role for altered capacity in the regulation of protein synthesis, there was a significant correlation between RNA and protein content independent of the stimulus used. AII increased RNA content by 28% at 48h, but had no effect on growth up to 72h. Treatment with staurosporine blocked the stimulation of growth, suggestive of a role for protein kinase C (PKC). However, the inhibition of contraction-induced growth was due in part to a reduction in the rate of contraction. It was concluded that: significant differences existed in the time course of growth stimulation and RNA accumulation, depending on the stimulus; and growth inhibition by staurosporine is suggestive of an important role of PKC in hypertrophic growth induced by these stimuli.

  19. Diacylglycerol generated by exogenous phospholipase C activates the mitogen-activated protein kinase pathway independent of Ras- and phorbol ester-sensitive protein kinase C: dependence on protein kinase C-zeta.

    PubMed Central

    van Dijk, M; Muriana, F J; van Der Hoeven, P C; de Widt, J; Schaap, D; Moolenaar, W H; van Blitterswijk, W J

    1997-01-01

    The role of diacylglycerol (DG) formation from phosphatidylcholine in mitogenic signal transduction is poorly understood. We have generated this lipid at the plasma membrane by treating Rat-1 fibroblasts with bacterial phosphatidylcholine-specific phospholipase C (PC-PLC). This treatment leads to activation of mitogen-activated protein kinase (MAPK). However, unlike platelet-derived growth factor (PDGF) or epidermal growth factor (EGF), PC-PLC fails to activate Ras and to induce DNA synthesis, and activates MAPK only transiently (<45 min). Down-regulation of protein kinase C (PKC) -alpha, -delta and -epsilon isotypes has little or no effect on MAPK activation by either PC-PLC or growth factors. However, Ro 31-8220, a highly selective inhibitor of all PKC isotypes, including atypical PKC-zeta but not Raf-1, blocks MAPK activation by PDGF and PC-PLC, but not that by EGF, suggesting that atypical PKC mediates the PDGF and PC-PLC signal. In line with this, PKC-zeta is activated by PC-PLC and PDGF, but not by EGF, as shown by a kinase assay in vitro, using biotinylated epsilon-peptide as a substrate. Furthermore, dominant-negative PKC-zeta inhibits, while (wild-type) PKC-zeta overexpression enhances MAPK activation by PDGF and PC-PLC. The results suggest that DG generated by PC-PLC can activate the MAPK pathway independent of Ras and phorbol-ester-sensitive PKC but, instead, via PKC-zeta. PMID:9169602

  20. Mechanism of inhibition of protein kinase C by 14-3-3 isoforms. 14-3-3 isoforms do not have phospholipase A2 activity.

    PubMed Central

    Robinson, K; Jones, D; Patel, Y; Martin, H; Madrazo, J; Martin, S; Howell, S; Elmore, M; Finnen, M J; Aitken, A

    1994-01-01

    The ability of individual members of the 14-3-3 protein family to inhibit protein kinase C (PKC) has been studied by using a synthetic peptide based on the specific 80 kDa substrate for PKC (MARCKS protein) in two different assay systems. Recombinant 14-3-3 and isoforms renatured by a novel method after separation by reverse-phase h.p.l.c. were studied. The detailed effects of diacylglycerol and the phorbol ester phorbol 12-myristate 13-acetate on the inhibition were also investigated. This suggests that one of the sites of interaction of 14-3-3 may be the cysteine-rich (C1) domain in PKC. Since a region in secreted phospholipase A2 (PLA2) shares similarity with this domain, the ability of 14-3-3 to interact with mammalian PLA2 was studied. Cytosolic PLA2 has some similarity to the C2 region of PKC, and the effect of 14-3-3 on this class of PLA2 was also analysed. In contrast with a previous report, no PLA2 activity was found in brain 14-3-3, nor in any of the recombinant proteins tested. These include zeta 14-3-3 isoform, on which the original observation was made. Images Figure 2 PMID:8192676

  1. Suppressed PHA Activation of T Lymphocytes in Simulated Microgravity is Restored by Direct Activation of Protein Kinase C with Phorbol Ester

    NASA Technical Reports Server (NTRS)

    Cooper, David; Pellis, Neal R.

    1997-01-01

    Various aspects of spaceflight, including microgravity, cosmic radiation, and physiological stress, may perturb immune function. We sought to understand the impact of microgravity alone on the cellular mechanisms critical to immunity. We utilized clinostatic RWV bioreactors that simulate aspects of microgravity to analyze the response of human PBMC to polyclonal activation. PHA responsiveness in the RWV was almost completely diminished. IL-2 and IFN-gamma secretion was reduced whereas IL- 1 beta and IL-6 secretion was increased, suggesting that monocytes may not be as adversely affected by simulated microgravity as T cells. Activation marker expression (CD25, CD69, CD71) was significantly reduced in RWV cultures. Furthermore, addition of exogenous IL-2 to these cultures did not restore proliferation. Reduced cell-cell and cell-substratum interactions may play a role in the loss of PHA responsiveness. However, PHA activation in Teflon culture bags that limit cell-substratum interactions did not suppress PHA activation. Furthermore, increasing cell density and, therefore, cell-cell interactions in the RWV cultures did not help restore PHA activation. However, placing PBMC within small collagen beads did partially restore PHA responsiveness. Activation of both PBMC and purified T cells with PMA and ionomycin was unaffected by RWV culture, indicating that signaling mechanisms downstream of PKC activation and calcium flux are not sensitive to simulated microgravity. Furthermore, submitogenic doses of PMA alone but not ionomycin alone restored PHA responsiveness of PBMC in RWV culture. Thus, our data indicate that during polyclonal activation the signaling pathways upstream of PKC activation are sensitive to simulated microgravity.

  2. Phosphatidylinositol 4,5-bisphosphate competitively inhibits phorbol ester binding to protein kinase C

    SciTech Connect

    Chauhan, A.; Cauhan, V.P.S.; Deshmukh, D.S.; Brokerhoff, H. )

    1989-06-13

    Calcium phospholipid dependent protein kinase C (PKC) is activated by diacylglycerol (DG) and by phorbol esters and is recognized to be the phorbol ester receptor of cells; DG displaces phorbol ester competitively from PKC. A phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}), can also activate PKC in the presence of phosphatidylserine (PS) and Ca{sup 2+} with a K{sub PIP{sub 2}} of 0.04 mol %. Preliminary experiments have suggested a common binding site for PIP{sub 2} and DG on PKC. Here, the authors investigate the effect of PIP{sub 2} on phorbol ester binding to PKC in a mixed micellar assay. In the presence of 20 mol % PS, PIP{sub 2} inhibited specific binding of ({sup 3}H)phorbol 12,13-dibutyrate (PDBu) in a dose-dependent fashion up to 85% at 1 mol %. Inhibition of binding was more pronounced with PIP{sub 2} than with DG. Scatchard analysis indicated that the decrease in binding of PDBu in the presence of PIP{sub 2} is the result of an altered affinity for the phorbol ester rather than of a change in maximal binding. The plot of apparent dissociation constants (K{sub d{prime}}) against PIP{sub 2} concentration was linear over a range of 0.01-1 mol % with a K{sub i} of 0.043 mol % and confirmed the competitive nature of inhibition between PDBu and PIP{sub 2}. Competition between PIP{sub 2} and phorbol ester could be determined in a liposomal assay system also. These results indicate that PIP{sub 2}, DG, and phorbol ester all compete for the same activator-receiving region on the regulatory moiety of protein kinase C, and they lend support to the suggestion that PIP{sub 2} is a primary activator of the enzyme.

  3. Effects of phorbol esters on fluid transport and blood flow in the small intestine

    SciTech Connect

    Sjoeqvist, A.; Henderson, L.S.; Fondacaro, J.D.

    1986-07-01

    Studies were designed to examine the effects of phorbol esters on intestinal fluid transport and blood flow in the anesthetized cat and enteropooling in the conscious rat. Intraluminal administration of phorbol ester into a segment of isolated small bowel produced a copious intestinal secretion and a concomitant mesenteric hyperemia in the cat. Net fluid movement in the intestine was converted from absorption in the control state to secretion following phorbol ester administration. Intravenous atropine reduced the phorbol ester-induced secretion by 56%; clonidine abolished the remaining secretory response. In the rat, intragastric administration of phorbol ester produced enteropooling comparable to that of other potent intestinal secretagogues. Since phorbol esters are known to activate protein kinase C, these suggest that activation of protein kinase C in the small intestine may lead to a full secretory response. The evidence suggests that this secretion is accompanied by a metabolic hyperemia. These results suggest that protein kinase C plays an important role in the regulation of intestinal fluid transport.

  4. Detoxification of toxic phorbol esters from Malaysian Jatropha curcas Linn. kernel by Trichoderma spp. and endophytic fungi.

    PubMed

    Najjar, Azhar; Abdullah, Norhani; Saad, Wan Zuhainis; Ahmad, Syahida; Oskoueian, Ehsan; Abas, Faridah; Gherbawy, Youssuf

    2014-02-05

    The presence of phorbol esters (PEs) with toxic properties limits the use of Jatropha curcas kernel in the animal feed industry. Therefore, suitable methods to detoxify PEs have to be developed to render the material safe as a feed ingredient. In the present study, the biological treatment of the extracted PEs-rich fraction with non-pathogenic fungi (Trichoderma harzianum JQ350879.1, T. harzianum JQ517493.1, Paecilomyces sinensis JQ350881.1, Cladosporium cladosporioides JQ517491.1, Fusarium chlamydosporum JQ350882.1, F. chlamydosporum JQ517492.1 and F. chlamydosporum JQ350880.1) was conducted by fermentation in broth cultures. The PEs were detected by liquid chromatography-diode array detector-electrospray ionization mass spectrometry (LC-DAD-ESIMS) and quantitatively monitored by HPLC using phorbol-12-myristate 13-acetate as the standard. At day 30 of incubation, two T. harzianum spp., P. sinensis and C. cladosporioides significantly (p < 0.05) removed PEs with percentage losses of 96.9%-99.7%, while F. chlamydosporum strains showed percentage losses of 88.9%-92.2%. All fungal strains could utilize the PEs-rich fraction for growth. In the cytotoxicity assay, cell viabilities of Chang liver and NIH 3T3 fibroblast cell lines were less than 1% with the untreated PEs-rich fraction, but 84.3%-96.5% with the fungal treated PEs-rich fraction. There was no inhibition on cell viability for normal fungal growth supernatants. To conclude, Trichoderma spp., Paecilomyces sp. and Cladosporium sp. are potential microbes for the detoxification of PEs.

  5. Detoxification of Toxic Phorbol Esters from Malaysian Jatropha curcas Linn. Kernel by Trichoderma spp. and Endophytic Fungi

    PubMed Central

    Najjar, Azhar; Abdullah, Norhani; Saad, Wan Zuhainis; Ahmad, Syahida; Oskoueian, Ehsan; Abas, Faridah; Gherbawy, Youssuf

    2014-01-01

    The presence of phorbol esters (PEs) with toxic properties limits the use of Jatropha curcas kernel in the animal feed industry. Therefore, suitable methods to detoxify PEs have to be developed to render the material safe as a feed ingredient. In the present study, the biological treatment of the extracted PEs-rich fraction with non-pathogenic fungi (Trichoderma harzianum JQ350879.1, T. harzianum JQ517493.1, Paecilomyces sinensis JQ350881.1, Cladosporium cladosporioides JQ517491.1, Fusarium chlamydosporum JQ350882.1, F. chlamydosporum JQ517492.1 and F. chlamydosporum JQ350880.1) was conducted by fermentation in broth cultures. The PEs were detected by liquid chromatography-diode array detector-electrospray ionization mass spectrometry (LC-DAD-ESIMS) and quantitatively monitored by HPLC using phorbol-12-myristate 13-acetate as the standard. At day 30 of incubation, two T. harzianum spp., P. sinensis and C. cladosporioides significantly (p < 0.05) removed PEs with percentage losses of 96.9%–99.7%, while F. chlamydosporum strains showed percentage losses of 88.9%–92.2%. All fungal strains could utilize the PEs-rich fraction for growth. In the cytotoxicity assay, cell viabilities of Chang liver and NIH 3T3 fibroblast cell lines were less than 1% with the untreated PEs-rich fraction, but 84.3%–96.5% with the fungal treated PEs-rich fraction. There was no inhibition on cell viability for normal fungal growth supernatants. To conclude, Trichoderma spp., Paecilomyces sp. and Cladosporium sp. are potential microbes for the detoxification of PEs. PMID:24504029

  6. Modulation of hyaluronan synthase activity in cellular membrane fractions.

    PubMed

    Vigetti, Davide; Genasetti, Anna; Karousou, Evgenia; Viola, Manuela; Clerici, Moira; Bartolini, Barbara; Moretto, Paola; De Luca, Giancarlo; Hascall, Vincent C; Passi, Alberto

    2009-10-30

    Hyaluronan (HA), the only non-sulfated glycosaminoglycan, is involved in morphogenesis, wound healing, inflammation, angiogenesis, and cancer. In mammals, HA is synthesized by three homologous HA synthases, HAS1, HAS2, and HAS3, that polymerize the HA chain using UDP-glucuronic acid and UDP-N-acetylglucosamine as precursors. Since the amount of HA is critical in several pathophysiological conditions, we developed a non-radioactive assay for measuring the activity of HA synthases (HASs) in eukaryotic cells and addressed the question of HAS activity during intracellular protein trafficking. We prepared three cellular fractions: plasma membrane, cytosol (containing membrane proteins mainly from the endoplasmic reticulum and Golgi), and nuclei. After incubation with UDP-sugar precursors, newly synthesized HA was quantified by polyacrylamide gel electrophoresis of fluorophore-labeled saccharides and high performance liquid chromatography. This new method measured HAS activity not only in the plasma membrane fraction but also in the cytosolic membranes. This new technique was used to evaluate the effects of 4-methylumbeliferone, phorbol 12-myristate 13-acetate, interleukin 1beta, platelet-derived growth factor BB, and tunicamycin on HAS activities. We found that HAS activity can be modulated by post-translational modification, such as phosphorylation and N-glycosylation. Interestingly, we detected a significant increase in HAS activity in the cytosolic membrane fraction after tunicamycin treatment. Since this compound is known to induce HA cable structures, this result links HAS activity alteration with the capability of the cell to promote HA cable formation.

  7. Nineteen-Step Total Synthesis of (+)-Phorbol

    PubMed Central

    Kawamura, Shuhei; Chu, Hang; Felding, Jakob; Baran, Phil S.

    2016-01-01

    Phorbol, the flagship member of the tigliane diterpene family, has been known for over 80 years and has attracted attention from scores of chemists and biologists due to its intriguing chemical structure and the medicinal potential of phorbol esters.1 Access to useful quantities of phorbol and related analogs has relied upon isolation from natural sources and semisynthesis. Despite relentless efforts spanning 40 years, chemical synthesis has been unable to compete with these strategies due to its sheer complexity and unusual oxidation pattern. In fact, purely synthetic enantiopure phorbol has remained elusive and efforts on the synthetic biology side have not led to even the simplest members of this terpene family. Recently the chemical syntheses of eudesmanes,2 germacrenes,3 taxanes,4,5 and ingenanes6-8 have all benefited from a strategy inspired by the logic of two-phase terpene biosynthesis where powerful C–C bond constructions and C–H bond oxidations go hand in hand. In this manuscript, we show how a two-phase terpene synthesis strategy can be enlisted to achieve the first enantiospecific total synthesis of (+)-phorbol in only 19 steps from the abundant monoterpene (+)-3-carene. The purpose of this route is not to displace isolation/semisynthesis as a means to generate the natural product per se, but rather to enable access to analogs containing unique oxidation patterns that are otherwise inaccessible. PMID:27007853

  8. Modulatory activities of Agelanthus dodoneifolius (Loranthaceae) extracts on stimulated equine neutrophils and myeloperoxidase activity.

    PubMed

    Boly, Raïnatou; Dessy, Stéphanie; Kohnen, Stephan; Kini, Félix; Lompo, Marius; Mouithys-Mickalad, Ange; Guissou, Innocent Pierre; Dubois, Jacques; Deby-Dupont, Ginette; Serteyn, Didier; Franck, Thierry

    2011-08-01

    Agelanthus dodoneifolius DC Danser (Loranthaceae) is used for the treatment of various diseases including asthma. The aqueous and hydroalcoholic extracts have been reported to have anti-inflammatory, spasmolytic and bronchorelaxant activities. The present study investigates the effects of the aqueous decoction and the diethyl ether, ethyl acetate and butanolic fractions of Agelanthus dodoneifolius DC Danser (Loranthaceae) on reactive oxygen species (ROS) production and myeloperoxidase (MPO) release by phorbol 12-myristate 13-acetate (PMA)-stimulated equine neutrophils and on purified equine MPO activity. ROS production and MPO release by the PMA-stimulated neutrophils were measured by the lucigenin-enhanced chemiluminescence and ELISA assays, respectively. Specific immunological extraction followed by enzymatic detection (SIEFED) was used to specifically measure the equine MPO activity. Identification and quantification of the individual and total phenolic and flavonoid compounds were performed using UPLC-MS/MS equipment and colorimetric methods involving Folin-Ciocalteu and AlCl₃, respectively. All the tested extracts displayed dose-dependent inhibitory effects on the oxidant activities of neutrophils; a stronger effect was observed with the organic fractions than the aqueous decoction. These findings could be correlated with a high content of phenolic and flavonoid compounds. The results confirm the previously shown anti-inflammatory effect of Agelanthus dodoneifolius and its potential use for the treatment of neutrophil-dependent inflammatory diseases.

  9. Caffeic acid phenethyl ester inhibits T-cell activation by targeting both nuclear factor of activated T-cells and NF-kappaB transcription factors.

    PubMed

    Márquez, Nieves; Sancho, Rocío; Macho, Antonio; Calzado, Marco A; Fiebich, Bernd L; Muñoz, Eduardo

    2004-03-01

    Caffeic acid phenethyl ester (CAPE), which is derived from the propolis of honeybee hives, has been shown to reveal anti-inflammatory properties. Since T-cells play a key role in the onset of several inflammatory diseases, we have evaluated the immunosuppressive activity of CAPE in human T-cells, discovering that this phenolic compound is a potent inhibitor of early and late events in T-cell receptor-mediated T-cell activation. Moreover, we found that CAPE specifically inhibited both interleukin (IL)-2 gene transcription and IL-2 synthesis in stimulated T-cells. To further characterize the inhibitory mechanisms of CAPE at the transcriptional level, we examined the DNA binding and transcriptional activities of nuclear factor (NF)-kappaB, nuclear factor of activated cells (NFAT), and activator protein-1 (AP-1) transcription factors in Jurkat cells. We found that CAPE inhibited NF-kappaB-dependent transcriptional activity without affecting the degradation of the cytoplasmic NF-kappaB inhibitory protein, IkappaBalpha. However, both NF-kappaB binding to DNA and transcriptional activity of a Gal4-p65 hybrid protein were clearly prevented in CAPE-treated Jurkat cells. Moreover, CAPE inhibited both the DNA-binding and transcriptional activity of NFAT, a result that correlated with its ability to inhibit phorbol 12-myristate 13-acetate plus ionomycin-induced NFAT1 dephosphorylation. These findings provide new insights into the molecular mechanisms involved in the immunomodulatory and anti-inflammatory activities of this natural compound.

  10. Activity of protein kinase C during the differentiation of chick limb bud mesenchymal cells.

    PubMed

    Sonn, J K; Solursh, M

    1993-07-01

    To investigate the relationship between protein kinase C (PKC) and chondrogenesis, PKC activity was assayed in cultures of stage 23/24 chick limb bud mesenchymal cells under various conditions. PKC activities of cytosolic and particulate fractions were low in 1 day cultured cells. As chondrogenesis proceeds, cytosolic PKC activity increased more than twofold, while that of the particulate fraction increased only slightly. Three days' treatment of cultures with phorbol-12-myristate-13-acetate (PMA, 5 x 10(-8) M) inhibited chondrogenesis judged by the accumulation of Alcian blue bound to the extracellular matrix and depressed PKC activity in cytosolic fraction. When cells were grown for 3 days in control medium after 3 days' treatment with PMA, chondrogenesis resumed and PKC activity recovered to normal values. PKC activity in cultures plated at low density (5 x 10(6) cells/ml) where chondrogenesis is reduced was as low as that in 1 day cultured cells plated at high density (2 x 10(7) cells/ml) or that in PMA treated cells. On the other hand, staurosporine promoted chondrogenesis without affecting PKC activity. Furthermore, reversal of PMA's inhibitory effect on chondrogenesis by staurosporine was not accompanied by recovery of PKC activity. These data indicate that increases in PKC activity is closely related to chondrogenesis and that PMA inhibits chondrogenesis by depressing PKC. However, staurosporine's enhancing effect on chondrogenesis is not related to PKC activity.

  11. Differential regulation by agonist and phorbol ester of cloned m1 and m2 muscarinic acetylcholine receptors in mouse Y1 adrenal cells and in Y1 cells deficient in cAMP-dependent protein kinase

    SciTech Connect

    Scherer, N.M.; Nathanson, N.M. )

    1990-09-11

    Cloned muscarinic acetylcholine m1 and m2 receptors were expressed in stably transfected mouse Y1 adrenal cells and in a variant Y1 line, Kin-8, which is deficient in cAMP-dependent protein kinase activity (PKA{sup {minus}}). m1 and m2 receptors were rapidly internalized following exposure of transfected PKA{sup +} or PKA{sup {minus}} cells to the muscarinic agonist carbachol. Thus, agonist-dependent internalization of m1 and m2 did not require PKA activity. A differential effect of PKA on regulation by agonist of the m2 receptor, but not the m1 receptor, was unmasked in PKA{sup {minus}} cells. These data indicate that the basal activity of PKA may modulate the agonist-dependent internalization of the m2 receptor, but not the m1 receptor. The internalization of the m1 and m2 receptors in both PKA{sup +} and PKA{sup {minus}} cells was accompanied by desensitization of functional responses. Exposure of PKA{sup +} cells to 10{sup {minus}7} M phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, resulted in a 30 {plus minus} 9% decrease in the number of m1 receptors on the cell surface. The m2 receptor was not internalized following treatment of either PKA{sup +} or PKA{sup {minus}} cells with PMA. Thus, the m1 and m2 receptors show differential sensitivity to internalization by PMA. Agonist-dependent internalization of the m1 receptor appeared to be independent of activation of PKC because (1) agonist-dependent internalization of m1 was not attenuated in PKA{sup {minus}} cells, (2) the rate and extent of internalization of m1 in cells exposed to PMA were less than those in cells exposed to agonist, and (3) treatment of cells with concanavalin A selectivity blocked internalization of m1 in cells exposed to PMA, but not to agonist. The effects of agonist and PMA on receptor internalization were not additive. Exposure of PKA{sup +} or PKA{sup {minus}} cells to PMA reduced the magnitude of pilocarpine-stimulated PI hydrolysis by about 25%.

  12. Andrographolide suppresses thymic stromal lymphopoietin in phorbol myristate acetate/calcium ionophore A23187-activated mast cells and 2,4-dinitrofluorobenzene-induced atopic dermatitis-like mice model

    PubMed Central

    Li, Chun-xiao; Li, Hua-guo; Zhang, Hui; Cheng, Ru-hong; Li, Ming; Liang, Jian-ying; Gu, Yan; Ling, Bo; Yao, Zhi-rong; Yu, Hong

    2016-01-01

    Background Atopic dermatitis (AD) is one of the most common inflammatory cutaneous diseases. Thymic stromal lymphopoietin (TSLP) has been demonstrated to be an important immunologic factor in the pathogenesis of AD. The production of TSLP can be induced by a high level of intracellular calcium concentration and activation of the receptor-interacting protein 2/caspase-1/NF-κB pathway. Andrographolide (ANDRO), a natural bicyclic diterpenoid lactone, has been found to exert anti-inflammatory effects in gastrointestinal inflammatory disorders through suppressing the NF-κB pathway. Objective To explore the effect of ANDRO on the production of TSLP in human mast cells and AD mice model. Methods We utilized enzyme-linked immunosorbent assay, real-time reverse transcription polymerase chain reaction analysis, Western blot analysis, and immunofluorescence staining assay to investigate the effects of ANDRO on AD. Results ANDRO ameliorated the increase in the intracellular calcium, protein, and messenger RNA levels of TSLP induced by phorbol myristate acetate/calcium ionophore A23187, through the blocking of the receptor-interacting protein 2/caspase-1/NF-κB pathway in human mast cell line 1 cells. ANDRO, via oral or local administration, also attenuated clinical symptoms in 2,4-dinitrofluorobenzene-induced AD mice model and suppressed the levels of TSLP in lesional skin. Conclusion Taken together, ANDRO may be a potential therapeutic agent for AD through suppressing the expression of TSLP. PMID:26929603

  13. Number of Hydroxyl Groups on the B-Ring of Flavonoids Affects Their Antioxidant Activity and Interaction with Phorbol Ester Binding Site of PKCδ C1B Domain: In Vitro and in Silico Studies.

    PubMed

    Kongpichitchoke, Teeradate; Hsu, Jue-Liang; Huang, Tzou-Chi

    2015-05-13

    Although flavonoids have been reported for their benefits and nutraceutical potential use, the importance of their structure on their beneficial effects, especially on signal transduction mechanisms, has not been well clarified. In this study, three flavonoids, pinocembrin, naringenin, and eriodictyol, were chosen to determine the effect of hydroxyl groups on the B-ring of flavonoid structure on their antioxidant activity. In vitro assays, including DPPH scavenging activity, ROS quantification by flow cytometer, and proteins immunoblotting, and in silico analysis by molecular docking between the flavonoids and C1B domain of PKCδ phorbol ester binding site were both used to complete this study. Eriodictyol (10 μM), containing two hydroxyl groups on the B-ring, exhibited significantly higher (p < 0.05) antioxidant activity than pinocembrin and naringenin. The IC50 values of eriodictyol, naringenin, and pinocembrin were 17.4 ± 0.40, 30.2 ± 0.61, and 44.9 ± 0.57 μM, respectively. In addition, eriodictyol at 10 μM remarkably inhibited the phosphorylation of PKCδ at 63.4% compared with PMA-activated RAW264.7, whereas pinocembrin and naringenin performed inhibition activity at 76.8 and 72.6%, respectively. According to the molecular docking analysis, pinocembrin, naringenin, and eriodictyol showed -CDOCKER_energy values of 15.22, 16.95, and 21.49, respectively, reflecting that eriodictyol could bind with the binding site better than the other two flavonoids. Interestingly, eriodictyol had a remarkably different pose to bind with the kinase as a result of the two hydroxyl groups on its B-ring, which consequently contributed to greater antioxidant activity over pinocembrin and naringenin.

  14. Luminol-, isoluminol- and lucigenin-enhanced chemiluminescence of rat blood phagocytes stimulated with different activators.

    PubMed

    Pavelkova, Martina; Kubala, Lukas

    2004-01-01

    Luminol-, isoluminol- or lucigenin-enhanced chemiluminescence (CL) was used to measure the production of reactive oxygen species by rat blood leukocytes. Opsonized zymosan (OZ), phorbol-12-myristate-13-acetate (PMA), calcium ionophore A23187 (Ca-I) or N-formyl-Met-Leu-Phe (fMLP) were used as activators. The CL signal of isolated blood leukocytes decreased in rank order of luminol > isoluminol > lucigenin. The kinetic profiles of luminol- and isoluminol-enhanced CL were similar upon stimulation by each activator tested. The remarkably higher luminol and isoluminol CL responses were obtained after OZ stimulation when compared with other activators. However, when lucigenin was used, the PMA- and OZ-stimulated CL were comparable. The presence of plasma increased OZ-activated CL because of the enhanced phagocytosis of OZ. This was demonstrated by determining the phagocytosis of the fluorescent OZ using a flow cytometer. In contrast, the presence of plasma decreased PMA-activated CL, due to the antioxidant properties of plasma as determined by the CL method. As far as whole blood is concerned, only OZ activated luminol-enhanced CL was reliable. Blood volumes over 5 microL decreased CL activity due to the scavenging ability of erythrocytes. The results suggest that 0.5 microL whole blood is sufficient for routine luminol-enhanced CL analysis of whole blood oxidative burst in rats.

  15. Propofol reverses oxidative stress-attenuated glutamate transporter EAAT3 activity: evidence of protein kinase C involvement.

    PubMed

    Yun, Jung-Yeon; Park, Kum-Suk; Kim, Jin-Hee; Do, Sang-Hwan; Zuo, Zhiyi

    2007-06-22

    The authors investigated the effects of propofol on EAAT3 (excitatory amino acid transporter 3) activity under oxidative stress induced by tert-butyl hydroperoxide (t-BHP), and the mediation of these effects by protein kinase C (PKC). Rat EAAT3 was expressed in Xenopus oocytes and L-glutamate (30 microM)-induced membrane currents were measured using the two-electrode voltage clamp technique. Exposure of these oocytes to t-BHP (1-20 mM) for 10 min dose-dependently decreased EAAT3 activity, and t-BHP (5 mM) significantly decreased the Vmax, but not the Km of EAAT3 for glutamate, and propofol (1-100 microM) dose-dependently reversed this t-BHP-attenuated EAAT3 activity. Phorbol-12-myristate-13-acetate (a PKC activator), also abolished this t-BHP-induced reduction in EAAT3 activity, whereas staurosporine (a PKC inhibitor), significantly decreased EAAT3 activity. However, as compared with staurosporine or t-BHP alone, t-BHP and staurosporine in combination did not further reduce EAAT3 activity. A similar pattern was observed for chelerythrine (also a PKC inhibitor). In oocytes pretreated with combinations of t-BHP and PMA (or staurosporine), propofol failed to change EAAT3 activity. Our results suggest that propofol restores oxidative stress-reduced EAAT3 activity and that these effects of propofol may be PKC-mediated.

  16. Protein kinase C activity in boar sperm.

    PubMed

    Teijeiro, J M; Marini, P E; Bragado, M J; Garcia-Marin, L J

    2017-03-01

    Male germ cells undergo different processes within the female reproductive tract to successfully fertilize the oocyte. These processes are triggered by different extracellular stimuli leading to activation of protein phosphorylation. Protein kinase C (PKC) is a key regulatory enzyme in signal transduction mechanisms involved in many cellular processes. Studies in boar sperm demonstrated a role for PKC in the intracellular signaling involved in motility and cellular volume regulation. Experiments using phorbol 12-myristate 13-acetate (PMA) showed increases in the Serine/Threonine phosphorylation of substrates downstream of PKC in boar sperm. In order to gain knowledge about those cellular processes regulated by PKC, we evaluate the effects of PMA on boar sperm motility, lipid organization of plasma membrane, integrity of acrosome membrane and sperm agglutination. Also, we investigate the crosstalk between PKA and PKC intracellular pathways in spermatozoa from this species. The results presented here reveal a participation of PKC in sperm motility regulation and membrane fluidity changes, which is probably associated to acrosome reaction and to agglutination. Also, we show the existence of a hierarchy in the kinases pathway. Previous works on boar sperm suggest a pathway in which PKA is positioned upstream to PKC and this new results support such model.

  17. Flow cytometric assessment of activation of peripheral blood platelets in dogs with normal platelet count and asymptomatic thrombocytopenia.

    PubMed

    Żmigrodzka, M; Guzera, M; Winnicka, A

    2016-01-01

    Platelets play a crucial role in hemostasis. Their activation has not yet been evaluated in healthy dogs with a normal and low platelet count. The aim of this study was to determine the influence of activators on platelet activation in dogs with a normal platelet count and asymptomatic thrombocytopenia. 72 clinically healthy dogs were enrolled. Patients were allocated into three groups. Group 1 consisted of 30 dogs with a normal platelet count, group 2 included 22 dogs with a platelet count between 100 and 200×109/l and group 3 consisted of 20 dogs with a platelet count lower than 100×109/l. Platelet rich-plasma (PRP) was obtained from peripheral blood samples using tripotassium ethylenediaminetetraacetic acid (K3-EDTA) as anticoagulant. Next, platelets were stimulated using phorbol-12-myristate-13-acetate or thrombin, stabilized using procaine or left unstimulated. The expression of CD51 and CD41/CD61 was evaluated. Co-expression of CD41/CD61 and Annexin V served as a marker of platelet activation. The expression of CD41/CD61 and CD51 did not differ between the 3 groups. Thrombin-stimulated platelets had a significantly higher activity in dogs with a normal platelet count than in dogs with asymptomatic thrombocytopenia. Procaine inhibited platelet activity in all groups. In conclusion, activation of platelets of healthy dogs in vitro varied depending on the platelet count and platelet activator.

  18. Fibronectin Fragment Activation of Proline-rich Tyrosine Kinase PYK2 Mediates Integrin Signals Regulating Collagenase-3 Expression by Human Chondrocytes through a Protein Kinase C-dependent Pathway*

    PubMed Central

    Loeser, Richard F.; Forsyth, Christopher B.; Samarel, Allen M.; Im, Hee-Jeong

    2010-01-01

    Fibronectin fragments (FN-f), including the 110-kDa fragment that binds the α5β1 integrin, stimulate collagenase-3 (MMP-13) production and cartilage destruction. In the present study, treatment of chondrocytes with the 110-kDa FN-f or an activating antibody to the α5β1 integrin was found to increase tyrosine autophosphorylation (Tyr-402) of the proline-rich tyrosine kinase-2 (PYK2) without significant change in autophosphorylation (Tyr-397) of focal adhesion kinase (FAK). The tyrosine kinase inhibitor tyrphostin A9, shown previously to block a PYK2-dependent pathway, blocked the FN-f-stimulated increase in MMP-13, whereas tyrphostin A25 did not. FN-f-stimulated PYK2 phosphorylation and MMP-13 production was also blocked by reducing intracellular calcium levels. Adenovirally mediated overexpression of wild type but not mutant PYK2 resulted in increased MMP-13 production. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate stimulated PYK2 phosphorylation and MMP-13 production. MMP-13 expression stimulated by either phorbol 12-myristate 13-acetate or FN-f was blocked by PKC inhibitors including the PKCδ inhibitor rottlerin. Furthermore, PKCδ translocation from cytosol to membrane was noted within 5 min of stimulation with FN-f. Immortalized human chondrocytes, transiently transfected with MMP-13 promoter-luciferase reporter constructs, showed increased promoter activity after FN-f treatment that was inhibited by co-transfection with either of two dominant negative mutants of PYK2 (Y402F and K457A). No inhibition was seen after co-transfection with wild type PYK2, a dominant negative of FAK (FRNK) or empty vector plasmid. FN-f-stimulated MMP-13 promoter activity was also inhibited by chemical inhibitors of ERK, JNK, and p38 mitogen-activated protein (MAP) kinases or by co-transfection of dominant negative MAP kinase mutant constructs. These studies have identified a novel pathway for the MAP kinase regulation of MMP-13 production which involves

  19. Effect of phorbol esters on mitochondrial actions of glucagon

    SciTech Connect

    Cardellach, F.; Moehren, G.; Hoek, J.B.

    1987-05-01

    Glucagon generates different second messenger signals in liver. It increases cAMP levels and elevates cytosolic Ca/sup 2 +/ levels by degradation of polyphosphoinositides. The phorbol ester 12-0-tetradecanoyl phorbol 13-acetate (TPA) inhibits glucagon-induced calcium mobilization, but not cAMP formation. TPA can thus be used to assess the role of Ca/sup 2 +/ and cAMP in the activation of mitochondrial processes. In isolated hepatocytes, glucagon increased the steady state NAD(P)H level, probably by activating mitochondrial Ca/sup 2 +/ dependent dehydrogenases. TPA inhibited the glucagon-induced NAD(P) reduction without affecting phosphorylase activation. The effects of glucagon and TPA on mitochondrial respiratory activity and calcium retention were tested after isolation of the mitochondria from perfused livers. Electron transport rates were increased by 15-25% and calcium retention time was increased four-fold after glucagon treatment. When livers were pretreated with TPA, glucagon had no effect on electron transport activity, but calcium retention was increased by the same factor. The results suggest that glucagon-induced calcium mobilization is required for the stimulation of the respiratory activity but not for the increased capacity to retain a calcium overload in the mitochondria.

  20. Protein kinase C activity is altered in HL60 cells exposed to 60 Hz AC electric fields

    SciTech Connect

    Holian, O.; Reyes, H.M.; Attar, B.M.; Walter, R.J.; Astumian, R.D.; Lee, R.C.

    1996-12-31

    The authors examined the effects of electric fields (EFs) on the activity and subcellular distribution of protein kinase C (PKC) of living HL60 cells. Sixty Hertz AC sinusoidal EFs (1.5--1,000 mV/cm p-p) were applied for 1 h to cells (10{sup 7}/ml) in Teflon chambers at 37 C in the presence or absence of 2 {micro}M phorbol 12-myristate 13-acetate (PMA). PMA stimulation alone evoked intracellular translocation of PKC from the cytosolic to particulate fractions. In cells that were exposed to EFs (100--1,000 mV/cm) without PMA, a loss of PKC activity from the cytosol, but no concomitant rise in particulate PKC activity, was observed. In the presence of PMA, EFs (33--330 mV/cm) also accentuated the expected loss of PKC activity from the cytosol and augmented the rise in PKC activity in the particulate fraction. These data show that EFs alone or combined with PMA promote down-regulation of cytosolic PKC activity similar to that evoked by mitogens and tumor promoters but that it does not elicit the concomitant rise in particulate activity seen with those agents.

  1. Riluzole attenuates excitatory amino acid transporter type 3 activity in Xenopus oocytes via protein kinase C inhibition.

    PubMed

    Choi, Jung-Seok; Ryu, Jung-Hee; Zuo, Zhiyi; Yang, Seong-Mi; Chang, Hye-Won; Do, Sang-Hwan

    2013-08-05

    This study aimed to evaluate the effect of riluzole on the activity of excitatory amino acid transporter type 3 (EAAT3), a neuronal glutamate transporter, and to investigate the role of protein kinase C (PKC) in this effect. EAAT3 expression was induced in Xenopus oocytes by injecting EAAT3 mRNA. Using the two-electrode voltage clamping method, membrane currents were recorded before, during, and after applying l-glutamate (30 μM) in the absence and presence of prior incubation with riluzole (0.3-100 μM). To study the effect of PKC on the riluzole-induced change in EAAT3 activity, oocytes were preincubated with 100 μM phorbol-12-myristate-13-acetate (PMA), a PKC activator, or PKC inhibitors (2 µM staurosporine and 100 µM chelerythrine) before the recording. Responses were quantified by integrating current traces and are reported in microCoulombs (μC). Riluzole reduced EAAT3 activity in a concentration-dependent manner (0.3-100 μM). Treatment of oocytes with PMA significantly increased the baseline and riluzole-reduced EAAT activity (P<0.05). In addition, treatment of oocytes with PKC inhibitors reduced basal transporter currents, but did not show a further significant decrease in the riluzole-reduced EAAT3 activity. These results suggest that riluzole reduces EAAT3 activity through PKC inhibition.

  2. New lanostanes and naphthoquinones isolated from Antrodia salmonea and their antioxidative burst activity in human leukocytes.

    PubMed

    Shen, Chien-Chang; Shen, Yuh-Chiang; Wang, Yea-Hwey; Lin, Lie-Chwen; Don, Ming-Jaw; Liou, Kuo-Tong; Wang, Wen-Yen; Hou, Yu-Chang; Chang, Tun-Tschu

    2006-02-01

    Four new compounds were isolated from the basidiomata of the fungus Antrodia salmonea, a newly identified species of Antrodia (Aphyllophorales) in Taiwan. These new compounds are named as lanosta-8,24-diene-3beta,15alpha,21-triol (1), 24-methylenelanost-8-ene-3beta,15alpha,21-triol (2), 2,3-dimethoxy-5-(2',5'-dimethoxy-3',4'-methylenedioxyphenyl)-7-methyl-[1,4]-naphthoquinone (3), and 2,3-dimethoxy-6-(2',5'-dimethoxy-3',4'-methylenedioxyphenyl)-7-methyl-[1,4]-naphthoquinone (4), respectively. Their structures were elucidated by spectroscopic methods. An in vitro cellular functional assay was performed to evaluate their anti-oxidative burst activity in human leukocytes. They showed inhibitory effects against phorbol 12-myristate-13-acetate (PMA), a direct protein kinase C activator, induced oxidative burst in neutrophils (PMN) and mononuclear cells (MNC) with 50 % inhibitory concentration (IC(50)) ranging from 3.5 to 25.8 microM. The potency order of these compounds in PMA-activated leukocytes was as 1 > 3 > 4 > 2. They were relatively less effective in formyl-Met-Leu-Phe (fMLP), a G-protein coupled receptor agonist, induced oxidative burst, except for compounds 3 and 4 in fMLP-activated PMN. These results indicated that three (1, 3, and 4) of these four newly identified compounds displayed anti-oxidative effect in human leukocytes with different potency and might confer anti-inflammatory activity to these drugs.

  3. Regulation of synthesis and activity of NAD(+)-dependent 15-hydroxy-prostaglandin dehydrogenase (15-PGDH) by dexamethasone and phorbol ester in human erythroleukemia (HEL) cells

    SciTech Connect

    Xun, C.Q.; Ensor, C.M.; Tai, H.H. )

    1991-06-28

    Dexamethasone stimulated 15-PGDH activity in HEL cells in a time and concentration dependent manner. Increase in 15-PGDH activity by dexamethasone was found to be accompanied by an increase in enzyme synthesis as revealed by Western blot and (35S)methionine labeling studies. In addition to dexamethasone, other anti-inflammatory steroids also increased 15-PGDH activity in the order of their glucocorticoid activity. Among sex steroids only progesterone increased significantly 15-PGDH activity. 12-0-Tetradecanoylphorbol-13-acetate (TPA) also induced the synthesis of 15-PGDH but inhibited the enzyme activity. It appears that TPA caused a time dependent inactivation of 15-PGDH by a protein kinase C mediated mechanism.

  4. Antiallergic Phorbol Ester from the Seeds of Aquilaria malaccensis

    PubMed Central

    Korinek, Michal; Wagh, Vitthal D.; Lo, I-Wen; Hsu, Yu-Ming; Hsu, Hsue-Yin; Hwang, Tsong-Long; Wu, Yang-Chang; Cheng, Yuan-Bin; Chen, Bing-Hung; Chang, Fang-Rong

    2016-01-01

    The Aquilaria malaccensis (Thymelaeaceae) tree is a source of precious fragrant resin, called agarwood, which is widely used in traditional medicines in East Asia against diseases such as asthma. In our continuous search for active natural products, A. malaccensis seeds ethanolic extract demonstrated antiallergic effect with an IC50 value less than 1 µg/mL. Therefore, the present research aimed to purify and identify the antiallergic principle of A. malaccensis through a bioactivity-guided fractionation approach. We found that phorbol ester-rich fraction was responsible for the antiallergic activity of A. malaccensis seeds. One new active phorbol ester, 12-O-(2Z,4E,6E)-tetradeca-2,4,6-trienoylphorbol-13-acetate, aquimavitalin (1) was isolated. The structure of 1 was assigned by means of 1D and 2D NMR data and high-resolution mass spectrometry (HR-MS). Aquimavitalin (1) showed strong inhibitory activity in A23187- and antigen-induced degranulation assay with IC50 values of 1.7 and 11 nM, respectively, with a therapeutic index up to 71,000. The antiallergic activities of A. malaccensis seeds and aquimavitalin (1) have never been revealed before. The results indicated that A. malaccensis seeds and the pure compound have the potential for use in the treatment of allergy. PMID:27007372

  5. Antiallergic Phorbol Ester from the Seeds of Aquilaria malaccensis.

    PubMed

    Korinek, Michal; Wagh, Vitthal D; Lo, I-Wen; Hsu, Yu-Ming; Hsu, Hsue-Yin; Hwang, Tsong-Long; Wu, Yang-Chang; Cheng, Yuan-Bin; Chen, Bing-Hung; Chang, Fang-Rong

    2016-03-21

    The Aquilaria malaccensis (Thymelaeaceae) tree is a source of precious fragrant resin, called agarwood, which is widely used in traditional medicines in East Asia against diseases such as asthma. In our continuous search for active natural products, A. malaccensis seeds ethanolic extract demonstrated antiallergic effect with an IC50 value less than 1 µg/mL. Therefore, the present research aimed to purify and identify the antiallergic principle of A. malaccensis through a bioactivity-guided fractionation approach. We found that phorbol ester-rich fraction was responsible for the antiallergic activity of A. malaccensis seeds. One new active phorbol ester, 12-O-(2Z,4E,6E)-tetradeca-2,4,6-trienoylphorbol-13-acetate, aquimavitalin (1) was isolated. The structure of 1 was assigned by means of 1D and 2D NMR data and high-resolution mass spectrometry (HR-MS). Aquimavitalin (1) showed strong inhibitory activity in A23187- and antigen-induced degranulation assay with IC50 values of 1.7 and 11 nM, respectively, with a therapeutic index up to 71,000. The antiallergic activities of A. malaccensis seeds and aquimavitalin (1) have never been revealed before. The results indicated that A. malaccensis seeds and the pure compound have the potential for use in the treatment of allergy.

  6. Involvement of Transducer of Regulated cAMP Response Element-Binding Protein Activity on Corticotropin Releasing Hormone Transcription

    PubMed Central

    Liu, Ying; Coello, Ana G.; Grinevich, Valery; Aguilera, Greti

    2010-01-01

    We have recently shown that phospho-cAMP response element-binding protein (CREB) is essential but not sufficient for activation of CRH transcription, suggesting the requirement of a coactivator. Here, we test the hypothesis that the CREB coactivator, transducer of regulated CREB activity (TORC), is required for activation of CRH transcription, using the cell line 4B and primary cultures of hypothalamic neurons. Immunohistochemistry and Western blot experiments in 4B cells revealed time-dependent nuclear translocation of TORC1,TORC 2, and TORC3 by forskolin [but not by the phorbol ester, phorbol 12-myristate 13-acetate (PMA)] in a concentration-dependent manner. In reporter gene assays, cotransfection of TORC1 or TORC2 potentiated the stimulatory effect of forskolin on CRH promoter activity but had no effect in cells treated with PMA. Knockout of endogenous TORC using silencing RNA markedly inhibited forskolin-activated CRH promoter activity in 4B cells, as well as the induction of endogenous CRH primary transcript by forskolin in primary neuronal cultures. Coimmunoprecipitation and chromatin immunoprecipitation experiments in 4B cells revealed association of CREB and TORC in the nucleus, and recruitment of TORC2 by the CRH promoter, after 20-min incubation with forskolin. These studies demonstrate a correlation between nuclear translocation of TORC with association to the CRH promoter and activation of CRH transcription. The data suggest that TORC is required for transcriptional activation of the CRH promoter by acting as a CREB coactivator. In addition, cytoplasmic retention of TORC during PMA treatment is likely to explain the failure of phorbolesters to activate CRH transcription in spite of efficiently phosphorylating CREB. PMID:20080871

  7. Ca2+/Calmodulin-Dependent Kinase Kinase α Is Expressed by Monocytic Cells and Regulates the Activation Profile

    PubMed Central

    Guest, Christopher B.; Deszo, Eric L.; Hartman, Matthew E.; York, Jason M.; Kelley, Keith W.; Freund, Gregory G.

    2008-01-01

    Macrophages are capable of assuming numerous phenotypes in order to adapt to endogenous and exogenous challenges but many of the factors that regulate this process are still unknown. We report that Ca2+/calmodulin-dependent kinase kinase α (CaMKKα) is expressed in human monocytic cells and demonstrate that its inhibition blocks type-II monocytic cell activation and promotes classical activation. Affinity chromatography with paramagnetic beads isolated an approximately 50 kDa protein from nuclear lysates of U937 human monocytic cells activated with phorbol-12-myristate-13-acetate (PMA). This protein was identified as CaMKKα by mass spectrometry and Western analysis. The function of CaMKKα in monocyte activation was examined using the CaMKKα inhibitors (STO-609 and forskolin) and siRNA knockdown. Inhibition of CaMKKα, enhanced PMA-dependent CD86 expression and reduced CD11b expression. In addition, inhibition was associated with decreased translocation of CaMKKα to the nucleus. Finally, to further examine monocyte activation profiles, TNFα and IL-10 secretion were studied. CaMKKα inhibition attenuated PMA-dependent IL-10 production and enhanced TNFα production indicating a shift from type-II to classical monocyte activation. Taken together, these findings indicate an important new role for CaMKKα in the differentiation of monocytic cells. PMID:18270593

  8. Regulation of the expression and activity of glucose and lactic acid metabolism-related genes by protein kinase C in skeletal muscle cells.

    PubMed

    Otake, Sho; Kobayashi, Masaki; Narumi, Katsuya; Sasaki, Shotaro; Kikutani, Yurika; Furugen, Ayako; Watanabe, Meguho; Takahashi, Natsuko; Ogura, Jiro; Yamaguchi, Hiroaki; Iseki, Ken

    2013-01-01

    Protein kinase C (PKC) modulators are very attractive therapeutic targets in cancer. Since most cancer cells display increased glycolysis, elucidations of the effects of PKC activation on glycolysis is necessary for the development of effective medicine. In the present study, to clarify the role of PKC in the regulation of glycolysis, we examined the effect of phorbol 12-myristate 13-acetate (PMA), a PKC activator, on the expression and activity of glucose and lactic acid metabolism-related genes in human rhabdomyosarcoma cells (RD cells). In parallel to increases in glucose uptake and mRNA levels of glucose transporters (GLUTs) induced by PMA treatment for 6 h, the hexokinase (HK) mRNA level and activity were also significantly increased in RD cells. On the other hand, a significant increase in lactate dehydrogenase (LDH) mRNA level and activity was seen when the cells were incubated with PMA for 24 h, but not for 6 or 12 h, and was associated with lactic acid production. These effects by PMA treatment were markedly suppressed by Bisindolylmaleimide (BIM), a PKC inhibitor. Furthermore, chetomin, a hypoxia-inducible factor 1 (HIF-1) inhibitor, completely abrogated the increment of LDH mRNA level and activity as well as monocarboxylate transporter (MCT) 4, a lactic acid efflux transporter. In conclusion, we found that HK and LDH activity induced by PKC activation was associated with the glucose uptake and lactic acid level and that LDH and MCT4 are modulated by a common factor, HIF-1.

  9. Phorbol esters induce multidrug resistance in human breast cancer cells

    SciTech Connect

    Fine, R.L.; Patel, J.; Chabner, B.A.

    1988-01-01

    Mechanisms responsible for broad-based resistance to antitumor drugs derived from natural products (multidrug resistance) are incompletely understood. Agents known to reverse the multidrug-resistant phenotype (verapamil and trifluoperazine) can also inhibit the activity of protein kinase C. When the authors assayed human breast cancer cell lines for protein kinase C activity, they found that enzyme activity was 7-fold higher in the multidrug-resistance cancer cells compared with the control, sensitive parent cells. Exposure of drug-sensitive cells to the phorbol ester phorbol 12,13-dibutyate (P(BtO)/sub 2/) led to an increase in protein kinase C activity and induced a drug-resistance phenotype, whereas exposure of drug-resistant cells to P(BtO)/sub 2/ further increased drug resistance. In sensitive cells, this increased resistance was accomplished by a 3.5-fold increased phosphorylation of a 20-kDa particulate protein and a 35-40% decreased intracellular accumulation of doxorubicin and vincristine. P(BtO)/sub 2/ induced resistance to agents involved in the multidrug-resistant phenotype (doxorubicin and vincristine) but did not affect sensitivity to an unrelated alkylating agent (melphalan). The increased resistance was partially or fully reversible by the calcium channel blocker verapamil and by the calmodulin-antagonist trifluoperazine. These data suggest that stimulation of protein kinase C playus a role in the drug-transport changes in multidrug-resistant cells. This may occur through modulation of an efflux pump by protein phosphorylation.

  10. Single Cell Analysis of Leukocyte Protease Activity Using Integrated Continuous-Flow Microfluidics.

    PubMed

    Jing, Tengyang; Lai, Zhangxing; Wu, Lidan; Han, Jongyoon; Lim, Chwee Teck; Chen, Chia-Hung

    2016-12-06

    Leukocytes are the essential cells of the immune system that protect the human body against bacteria, viruses, and other foreign invaders. Secretory products of individual leukocytes, such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase (ADAMs), are critical for regulating the inflammatory response and mediating host defense. Conventional single cell analytical methods, such as flow cytometry for cellular surface biomarker studies, are insufficient for performing functional assays of the protease activity of individual leukocytes. Here, an integrated continuous-flow microfluidic assay is developed to effectively detect secretory protease activity of individual viable leukocytes. Leukocytes in blood are first washed on-chip with defined buffer to remove background activity, followed by encapsulating individual leukocytes with protease sensors in water-in-oil droplets and incubating for 1 h to measure protease secretion. With this design, single leukocyte protease profiles under naive and phorbol 12-myristate 13-acetate (PMA)-stimulated conditions are reliably measured. It is found that PMA treatment not only elevates the average protease activity level but also reduces the cellular heterogeneity in protease secretion, which is important in understanding immune capability and the disease condition of individual patients.

  11. Positive Regulation of Interleukin-2 Expression by a Pseudokinase, Tribbles 1, in Activated T Cells.

    PubMed

    Miyajima, Chiharu; Itoh, Yuka; Inoue, Yasumichi; Hayashi, Hidetoshi

    2015-01-01

    Tribbles 1 (TRB1), a member of the Tribbles family, is a pseudokinase that is conserved among species and implicated in various human diseases including leukemia, cardiovascular diseases, and metabolic disorders. However, the role of TRB1 in the immune response is not understood. To evaluate this role, we examined regulation of TRB1 expression and the function of TRB1 in interleukin-2 (IL-2) induction in Jurkat cells, a human acute T cell leukemia cell line. We found that TRB1 was strongly induced by phorbol 12-myristate 13-acetate (PMA) and ionomycin in these cells. IL-2 expression was induced in Jurkat cells activated by PMA and ionomycin; however, knockdown of TRB1 resulted in decreased induction of IL-2. TRB1 null Jurkat cells established using the CRISPR/Cas9 system also showed reduction of IL-2 expression on PMA/ionomycin stimulation. TRB1 knockdown also markedly inhibited IL-2 promoter activation. To determine the mechanism of the stimulatory effect on IL-2 induction, we focused on histone deacetylases (HDACs), and found that HDAC1 preferentially interacts with TRB1. TRB1 suppressed the interaction of HDAC1 with nuclear factor of activated T cells 2 (NFAT2), which is a crucial transcription factor for IL-2 induction. These results indicate that TRB1 is a positive regulator of IL-2 induction in activated T cells.

  12. Effect of cinnamon water extract on monocyte-to-macrophage differentiation and scavenger receptor activity

    PubMed Central

    2014-01-01

    Background Water soluble cinnamon extract has been shown to increase insulin sensitivity and modulate macrophage activation, a desirable trait for the management of obesity or atherosclerosis. Our present study investigated whether cinnamon water extract (CWE) may influence the differentiation of monocytes into macrophages and the activity of macrophage scavenger receptors, commonly observed in atherosclerotic lesions. Methods We investigated the effect of CWE on the expression of various surface markers and the uptake of acetylated low density lipoprotein (LDL) in phorbol-12-myristate-13-acetate (PMA)-stimulated THP-1 cells. The protein levels of PMA or macrophage-colony stimulating factor (M-CSF)-stimulated type 1 macrophage scavenger receptor (SRA) were analyzed. Finally, the role of extracellar signal-related kinase (ERK) 1/2 in SRA synthesis and the effect of CWE on PMA-stimulated ERK1/2 were determined. Results CWE inhibited the differentiation of monocyte by decreasing the expression of CD11b, CD36 and SRA and the uptake of acetyl LDL. CWE suppressed the upregulation of SRA by M-CSF and modulated ERK1/2 activity, which was required for PMA-induced SRA synthesis. Conclusions Our results demonstrate that CWE was able to interfere with monocyte differentiation and macrophage scavenger activity, indicating its potential in preventing the development of atherosclerotic lesions. PMID:24602512

  13. Emodin augments calcium activated chloride channel in colonic smooth muscle cells by Gi/Go protein.

    PubMed

    Xu, Long; Ting-Lou; Lv, Nonghua; Zhu, Xuan; Chen, Youxiang; Yang, Jing

    2009-08-01

    Emodin is a natural anthraquinone in rhubarb. It has been identified as a prokinetic drug for gastrointestinal motility in Chinese traditional medicine. Emodin contracts smooth muscle by increasing the concentration of intracellular Ca(2+). In many smooth muscles, increasing intracellular Ca(2+) activates Ca(2+)-activated Cl(-) channels (ClCA). The study was aimed to investigate the effects of emodin on ClCA channels in colonic smooth muscle. 4 channel physiology signal acquire system was used to measure isometric contraction of smooth muscle strips. ClCA currents were recorded by EPC10 with perforated whole cell model. Emodin contracted strips and cells in colonic smooth muscle and augmented ClCA currents. Niflumic acid (NFA) and 4', 4'-diisothiostilbene-2, 2-disulfonic acid (DIDS) blocked the effects. Gi/Go protein inhibits protein kinase A (PKA) and protein kinase C (PKC), and PKA and PKC reduced ClCA currents. Pertussis toxin (PTX, a special inhibitor of Gi/Go protein), 8-bromoadenosine 38, 58-cyclic monophosphate (8-BrcAMP, a membrane-permeant protein kinase A activator) and Phorbol-12-myristate-13-acetate (PMA, a membrane-permeant protein kinase C activator) inhibited the effects on ClCA currents significantly. Our findings suggest that emodin augments ClCA channels to contract smooth muscle in colon, and the effect is induced mostly by enhancement of membrane Gi/Go protein signal transducer pathway.

  14. Synergy between phorbol esters, 1-oleyl-2-acetylglycerol, urushiol, and calcium ionophore in eliciting aggregation of marine sponge cells.

    PubMed

    Weissmann, G; Azaroff, L; Davidson, S; Dunham, P

    1986-05-01

    Aggregation of marine sponge cells (Microciona prolifera) resembles stimulus-response coupling of higher organisms in which activation of protein kinase C and movements of intracellular Ca provide twin signals. We now report that activators of protein kinase C (phorbol esters) and ionomycin act synergistically to aggregate sponge cells. Surprisingly--since extracellular Ca is required for integrity of the species-specific aggregation factor--synergistic aggregation proceeded in the complete absence of added extracellular Ca (2.5-20 mM EDTA). The order of activity of phorbol esters and related compounds was that of their effect on protein kinase C (phorbol myristate acetate, phorbol dibutyrate greater than phorbol diacetate much greater than phorbol, 4 alpha-phorbol). 1-Oleyl, 2-acetylglycerol a synthetic activator of protein kinase C, also showed synergy with ionomycin. Phorbol esters and 1-oleyl, 2-acetylglycerol acted in synergy with ionomycin to liberate membrane Ca as detected by decreased fluorescence of chlortetracycline in prelabeled cells. Moreover, urushiol, the toxic principle of poison ivy, but not pentadecanylcatechol, its inert analogue, showed synergy with ionomycin. Synergistic aggregation was inhibited by calmidazolium (10 microM), piroxicam (20-100 microM), and pertussis toxin (20 micrograms/ml). The data not only confirm that marine sponge cell aggregation follows the general sequence of stimulus-response coupling in the cells of higher organisms but also support, in this most ancient of multicellular creatures, the hypothesis that mobilization of intracellular Ca and activation of protein kinase C provide the twin signals for cell activation in the absence of added extracellular Ca.

  15. Murine B7 antigen provides an efficient costimulatory signal for activation of murine T lymphocytes via the T-cell receptor/CD3 complex.

    PubMed Central

    Reiser, H; Freeman, G J; Razi-Wolf, Z; Gimmi, C D; Benacerraf, B; Nadler, L M

    1992-01-01

    We demonstrate that the murine B7 (mB7) protein is a potent costimulatory molecule for the activation of resting murine CD4+ T cells through the T-cell receptor (TCR)/CD3 complex. Stable mB7-transfected Chinese hamster ovary cells, but not vector-transfected controls, synergize with anti-CD3 monoclonal antibody and Con A-induced T-cell activation, resulting ultimately in proliferation. mB7 exerted its effect by inducing production of interleukin 2 and expression of the interleukin 2 receptor. Thus, mB7 costimulates T-cell activation through the TCR/CD3 complex by positively modulating the normal pathway of T-cell expansion. In contrast to the pronounced effect of mB7 on the activation of T cells through the TCR/CD3 complex, the mB7-transfected CHO cell line costimulated T-cell activation via the glycosylphosphatidylinositol-anchored proteins Thy-1 and Ly-6A.2 only inefficiently. Finally, the combination of a calcium ionophore and mB7 is not sufficient to cause T-cell proliferation, while the combination of a calcium ionophore and phorbol 12-myristate 13-acetate (PMA) stimulates T cells efficiently. The signals that mB7 and PMA provide for murine T lymphocyte activation are therefore not interchangeable, although both costimulate activation through the TCR/CD3 complex. Images PMID:1370349

  16. A natural xanthone increases catalase activity but decreases NF-kappa B and lipid peroxidation in U-937 and HepG2 cell lines.

    PubMed

    Sahoo, Binay K; Zaidi, Adeel H; Gupta, Pankaj; Mokhamatam, Raveendra B; Raviprakash, Nune; Mahali, Sidhartha K; Manna, Sunil K

    2015-10-05

    Mangiferin, a C-glycosyl xanthone, has shown anti-inflammatory, antioxidant, and anti-tumorigenic activities. In the present study, we investigated the molecular mechanism for the antioxidant property of mangiferin. Considering the role of nuclear transcription factor kappa B (NF-κB) in inflammation and tumorigenesis, we hypothesized that modulating its activity will be a viable therapeutic target in regulating the redox-sensitive ailments. Our results show that mangiferin blocks several inducers, such as tumor necrosis factor (TNF), lypopolysaccharide (LPS), phorbol-12-myristate-13-acetate (PMA) or hydrogen peroxide (H2O2) mediated NF-κB activation via inhibition of reactive oxygen species generation. In silico docking studies predicted strong binding energy of mangiferin to the active site of catalase (-9.13 kcal/mol), but not with other oxidases such as myeloperoxidase, glutathione peroxidase, or inducible nitric oxide synthase. Mangiferin increased activity of catalase by 44%, but had no effect on myeloperoxidase activity in vitro. Fluorescence spectroscopy further revealed the binding of mangiferin to catalase at the single site with binding constant and binding affinity of 3.1×10(-7) M(-1) and 1.046 respectively. Mangiferin also inhibits TNF-induced lipid peroxidation and thereby protects apoptosis. Hence, mangiferin with its ability to inhibit NF-κB and increase the catalase activity may prove to be a potent therapeutic.

  17. Acrylonitrile-induced extracellular signal-regulated kinase (ERK) activation via protein kinase C (PKC) in SK-N-SH neuroblastoma cells.

    PubMed

    Chantara, Wantika; Watcharasit, Piyajit; Thiantanawat, Apinya; Satayavivad, Jutamaad

    2006-01-01

    Acrylonitrile (ACN) is classified by IARC as a probable carcinogen. Chronic exposure to ACN increases the incidence of tumors in various organs of test animals, including the brain and lung. ERK1/2 activation plays crucial roles in cell proliferation and is involved in many steps of tumor progression. Therefore, this study examined whether ACN altered the activation state of ERK1/2 in human neuroblastoma SK-N-SH cells. Treatment of these cells with ACN greatly increased phosphorylation of ERK1/2 in dose- and time-dependent manners. This effect was inhibited by PD 98059 and U 0126, specific inhibitors of MEK, indicating that MEK, an upstream activator of ERK1/2, was directly involved in ACN-induced ERK1/2 activation. Furthermore, the activation of ERK1/2 by ACN was attenuated by inhibition of PKC with GF 109203X, rottlerin and prolonged incubation with PMA (phorbol 12-myristate 13-acetate). This demonstrated the participation of PKC in the ACN-stimulated activation of ERK1/2. Taken together, our results indicate that ACN-induced ERK1/2 activation involves PKC through a MEK-dependent pathway.

  18. Thapsigargin suppresses phorbol ester-dependent human involucrin promoter activity by suppressing CCAAT-enhancer-binding protein alpha (C/EBPalpha) DNA binding.

    PubMed Central

    Balasubramanian, S; Agarwal, C; Efimova, T; Dubyak, G R; Banks, E; Welter, J; Eckert, R L

    2000-01-01

    Human involucrin (hINV) is a keratinocyte differentiation marker expressed in the suprabasal epidermal layers. In cultured keratinocytes hINV mRNA levels are increased 10-fold by a 24-h treatment with 50 ng/ml PMA, an agent that promotes keratinocyte differentiation. Previous studies show that thapsigargin (TGN), an agent that depletes intracellular calcium stores, inhibits keratinocyte differentiation. In the present study we show that TGN inhibits the PMA-dependent, differentiation-associated, increase in hINV mRNA levels and hINV promoter activity. Inhibition is half-maximal at 10 nM and maximal at 100 nM TGN. Neither basal hINV promoter activity nor glyceraldehyde-3-phosphate dehydrogenase mRNA levels are inhibited. Mutation of a functionally important CAATT-enhancer-binding protein (C/EBP) site within the hINV promoter proximal regulatory region eliminates the regulation, suggesting that TGN may effect C/EBP-dependent promoter activation. Consistent with this hypothesis, TGN inhibits C/EBPalpha-dependent promoter activation via a mechanism that involves inhibition of C/EBPalpha binding to DNA without changing C/EBPalpha protein levels. These results suggest that TGN interferes with hINV expression by interfering with C/EBP transcription-factor function. PMID:10970794

  19. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo.

    PubMed

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan; Surh, Young-Joon

    2013-09-06

    Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.

  20. Inhibition of NF-IL6 activity by manassantin B, a dilignan isolated from Saururus chinensis, in phorbol myristate acetate-stimulated U937 promonocytic cells.

    PubMed

    Son, Kyung-No; Song, In-sung; Shin, Yong-Hyun; Pai, Tong-Kun; Chung, Dae-Kyun; Baek, Nam-In; Lee, Jung Joon; Kim, Jiyoung

    2005-08-31

    Mannasantin B, a dilignan structurally related to manssantin A, is an inhibitor of NF-kappaB transactivation. In the present study, we found that it inhibited PMA-induced expression of IL-1beta, IL-1beta mRNA, and IL-1beta promoter activity in U937 cells with IC50 values of about 50 nM. It also inhibited NF-IL6- and NF-kappaB-induced activation of IL-1beta, with IC50 values of 78 nM and 1.6 microM, respectively, revealing a potent inhibitory effect on NF-IL6. Electrophoretic mobility shift assays showed that manassantin B had an inhibitory effect on DNA binding by NF-IL6, but not by NF-kappaB. Further analysis revealed that transactivation by NF-IL6 was also inhibited. Our results indicate that manassantin B suppresses expression of IL-1beta in promonocytic cells by inhibiting not only NF-kappaB but also NF-IL6 activity. Furthermore, our observations suggest that manassantin B may be clinically useful as a potent inhibitor of NF-IL6 activity.

  1. Gliadins induce TNFalpha production through cAMP-dependent protein kinase A activation in intestinal cells (Caco-2).

    PubMed

    Laparra Llopis, José Moisés; Sanz Herranz, Yolanda

    2010-06-01

    Celiac disease is an autoimmune enteropathy caused by a permanent intolerance to gliadins. In this study the effects of two gliadin-derived peptides (PA2, PQPQLPYPQPQLP and PA9, QLQPFPQPQLPY) on TNFalpha production by intestinal epithelial cells (Caco-2) and whether these effects were related to protein kinase A (PKA) and/or -C (PKC) activities have been evaluated. Caco-2 cell cultures were challenged with several sets of gliadin peptides solutions (0.25 mg/mL), with/without different activators of PKA or PKC, bradykinin (Brdkn) and pyrrolidine dithiocarbamate (PDTC). The gliadin-derived peptides assayed represent the two major immunodominant epitopes of the peptide 33-mer of alpha-gliadin (56-88) (LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF). Both peptides induced the TNFalpha production triggering the inflammatory cell responses, the PA2 being more effective. The addition of the peptides in the presence of dibutyril cyclic AMP (cAMP), Brdkn or PDTC, inhibited the TNFalpha production. The PKC-activator phorbol 12-myristate 13-diacetate additionally increased the PA2- and PA9-induced TNFalpha production. These results link the gliadin-derived peptides induced TNFalpha production through cAMP-dependent PKA activation, where ion channels controlling calcium influx into cells could play a protective role, and requires NF-kappaB activation.

  2. Gamma irradiation enhances biological activities of mulberry leaf extract

    NASA Astrophysics Data System (ADS)

    Cho, Byoung-Ok; Che, Denis Nchang; Yin, Hong-Hua; Jang, Seon-Il

    2017-04-01

    The purpose of this study was to investigate the influence of irradiation on the anti-oxidative, anti-inflammatory and whitening effects of mulberry leaf extract. This was done by comparing the phenolic contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effects; 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) radical scavenging effects; in vitro tyrosinase inhibitory effects and the production of IL-6, TNF-α, PGE2, and NO in lipopolysaccharide-stimulated RAW264.7 macrophages and the production of IL-6 and TNF-α in phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated HMC-1 cells, respectively. The results showed that irradiated mulberry leaf extract possesses more anti-oxidant, anti-inflammatory, and tyrosinase inhibitory activities than their non-irradiated counterpart, probably due to increase in phenolic contents induced by gamma irradiation at dose of 10kGy. This research stresses on the importance of irradiation in functional foods.

  3. Inhibitory effect of arctigenin on lymphocyte activation stimulated with PMA/ionomycin.

    PubMed

    Sun, Cheng-Hong; Lai, Xin-Qiang; Zhang, Li; Yao, Jing-Chun; Guan, Yong-Xia; Pan, Li-Hong; Yan, Ying

    2014-04-01

    This study investigated the effect of arctigenin (Arc) on the cell activation, cytokines expression, proliferation, and cell-cycle distribution of mouse T lymphocytes. Mouse lymphocytes were prepared from lymph node and treated with Phorbol-12-myristate-13-acetate (PMA)/Ionimycin (Ion) and/or Arc. CD69, CD25, cytokines, proliferation and cell cycle were assayed by flow cytometry. The results showed that, at concentrations of less than 1.00 micromol x L(-1), Arc expressed non-obvious cell damage to cultured lymphocytes, however, it could significantly down-regulate the expression of CD69 and CD25, as well as TNF-alpha, IFN-gamma, IL-2, IL-4, IL-6 and IL-10 on PMA/Ion stimulated lymphocytes. At the same time, Arc could also inhibit the proliferation of PMA/Ion-activated lymphocytes and exhibited lymphocyte G 0/G1 phase cycle arrest. These results suggest that Arc possesses significant anti-inflammatory effects that may be mediated through the regulation of cell activation, cytokines expression and cell proliferation.

  4. CD107a as a marker of activation in chicken cytotoxic T cells.

    PubMed

    Wattrang, Eva; Dalgaard, Tina S; Norup, Liselotte R; Kjærup, Rikke B; Lundén, Anna; Juul-Madsen, Helle R

    2015-04-01

    The study aimed to evaluate cell surface mobilisation of CD107a as a general activation marker on chicken cytotoxic T cells (CTL). Experiments comprised establishment of an in vitro model for activation-induced CD107a mobilisation and design of a marker panel for the detection of CD107a mobilisation on chicken CTL isolated from different tissues. Moreover, CD107a mobilisation was analysed on CTL isolated from airways of infectious bronchitis virus (IBV)-infected birds direct ex vivo and upon in vitro stimulation. Results showed that phorbol 12-myristate 13-acetate (PMA) in combination with ionomycin was a consistent inducer of CD107a cell surface mobilisation on chicken CTL in a 4h cell culture model. In chickens experimentally infected with IBV, higher frequencies of CTL isolated from respiratory tissues were positive for CD107a on the cell surface compared to those from uninfected control chickens indicating in vivo activation. Moreover, upon in vitro PMA+ ionomycin stimulation, higher proportions of CTL isolated from the airways of IBV-infected chickens showed CD107a mobilisation compared to those from uninfected control chickens. Monitoring of CD107a cell surface mobilisation may thus be a useful tool for studies of chicken CTL cytolytic potential both in vivo and in vitro.

  5. Regulation of Cop9 signalosome activity by the EF-hand Ca2+-binding protein tescalcin

    PubMed Central

    Levay, Konstantin; Slepak, Vladlen Z.

    2014-01-01

    ABSTRACT The Ca2+-binding protein tescalcin is known to be involved in hematopoietic cell differentiation; however, this mechanism is poorly understood. Here, we identify CSN4 (subunit 4 of the COP9 signalosome) as a novel binding partner of tescalcin. The COP9 signalosome (CSN) is a multiprotein complex that is essential for development in all eukaryotes. This interaction is selective, Ca2+-dependent and involves the PCI domain of CSN4 subunit. We then investigated tescalcin and CSN activity in human erythroleukemia HEL and promyelocytic leukemia K562 cells and find that phorbol 12-myristate 13-acetate (PMA)-induced differentiation, resulting in the upregulation of tescalcin, coincides with reduced deneddylation of cullin-1 (Cul1) and stabilization of p27Kip1 – molecular events that are associated with CSN activity. The knockdown of tescalcin led to an increase in Cul1 deneddylation, expression of F-box protein Skp2 and the transcription factor c-Jun, whereas the levels of cell cycle regulators p27Kip1 and p53 decreased. These effects are consistent with the hypothesis that tescalcin might play a role as a negative regulator of CSN activity towards Cul1 in the process of induced cell differentiation. PMID:24659803

  6. Long non-coding RNA Malat1 promotes neurite outgrowth through activation of ERK/MAPK signalling pathway in N2a cells.

    PubMed

    Chen, Lei; Feng, Peimin; Zhu, Xi; He, Shixu; Duan, Jialan; Zhou, Dong

    2016-11-01

    Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are playing critical roles in neurogenesis, yet the underlying molecular mechanisms remain largely elusive. Neurite outgrowth is an early step in neuronal differentiation and regeneration. Using in vitro differentiation of neuroblastoma-derived Neuro-2a (N2a) cell as a model, we performed expression profiling to identify lncRNAs putatively relevant for neurite outgrowth. We identified that Metastasis-associated lung adenocarcinoma transcript 1 (Malat1) was one of the most significantly up-regulated lncRNAs during N2a cell differentiation. Malat1 knockdown resulted in defects in neurite outgrowth as well as enhanced cell death. To pinpoint signalling pathways perturbed by Malat1 depletion, we then performed a reporter-based screening to examine the activities of 50 signalling pathways in Malat1 knockdown cells. We found that Malat1 knockdown resulted in conspicuous inhibition of Mitogen-Activated Protein Kinase (MAPK) signaling pathway as well as abnormal activation of Peroxisome proliferator-activated receptor (PPAR) and P53 signalling pathway. Inhibition of ERK/MAPK pathway with PD98059 potently blocked N2a cell neurite outgrowth, whereas phorbol 12-myristate 13-acetate-induced ERK activation rescued defects in neurite outgrowth and cell death induced by Malat1 depletion. Together, our results established a critical role of Malat1 in the early step of neuronal differentiation through activating ERK/MAPK signalling pathway.

  7. Phorbol esters broaden the action potential in CA1 hippocampal pyramidal cells.

    PubMed

    Storm, J F

    1987-03-20

    Intracellular recordings were made from CA1 pyramidal cells in rat hippocampal slices. Single action potentials were elicited by injection of brief current pulses. Bath application of phorbol esters (4 beta-phorbol-12,13-diacetate, 0.3-5 microM; or 4 beta-phorbol-12,13-dibutyrate, 5-10 microM) broadened the action potential in each of the cells tested (n = 9). The broadening reflected slowing of the repolarization, whereas the upstroke of the spike was unchanged. This effect may enhance transmitter release from synaptic terminals, and contribute to enhancement of synaptic transmission through activation of protein kinase C, a mechanism which has been associated with long term potentiation.

  8. Lipoarabinomannan of Mycobacterium tuberculosis promotes protein tyrosine dephosphorylation and inhibition of mitogen-activated protein kinase in human mononuclear phagocytes. Role of the Src homology 2 containing tyrosine phosphatase 1.

    PubMed

    Knutson, K L; Hmama, Z; Herrera-Velit, P; Rochford, R; Reiner, N E

    1998-01-02

    Lipoarabinomannan (LAM) is a putative virulence factor of Mycobacterium tuberculosis that inhibits monocyte functions, and this may involve antagonism of cell signaling pathways. The effects of LAM on protein tyrosine phosphorylation in cells of the human monocytic cell line THP-1 were examined. LAM promoted tyrosine dephosphorylation of multiple cell proteins and attenuated phorbol 12-myristate 13-acetate-induced activation of mitogen-activated protein kinase. To examine whether these effects of LAM could be related to activation of a phosphatase, fractions from LAM-treated cells were analyzed for dephosphorylation of para-nitrophenol phosphate. The data show that LAM induced increased phosphatase activity associated with the membrane fraction. The Src homology 2 containing tyrosine phosphatase 1 (SHP-1) is important for signal termination and was examined as a potential target of LAM. Exposure of cells to LAM brought about (i) an increase in tyrosine phosphorylation of SHP-1, and (ii) translocation of the phosphatase to the membrane. Phosphatase assay of SHP-1 immunoprecipitated from LAM-treated cells, using phosphorylated mitogen-activated protein kinase as substrate, indicated that LAM promoted increased activity of SHP-1 in vivo. LAM also activated SHP-1 directly in vitro. Exposure of cells to LAM also attenuated the expression of tumor necrosis factor-alpha, interleukin-12, and major histocompatibility class II molecules. These results suggest that one mechanism by which LAM deactivates monocytes involves activation of SHP-1.

  9. Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway.

    PubMed Central

    Schulte, T W; Blagosklonny, M V; Romanova, L; Mushinski, J F; Monia, B P; Johnston, J F; Nguyen, P; Trepel, J; Neckers, L M

    1996-01-01

    The serine/threonine kinase Raf-1 functions downstream of Rats in a signal transduction cascade which transmits mitogenic stimuli from the plasma membrane to the nucleus. Raf-1 integrates signals coming from extracellular factors and, in turn, activates its substrate, MEK kinase. MEK activates mitogen-activated protein kinase (MAPK), which phosphorylates other kinases as well as transcription factors. Raf-1 exists in a complex with HSP90 and other proteins. The benzoquinone ansamycin geldanamycin (GA) binds to HSP90 and disrupts the Raf-1-HSP90 multimolecular complex, leading to destabilization of Raf-1. In this study, we examined whether Raf-1 destabilization is sufficient to block the Raf-1-MEK-MAPK signalling pathway and whether GA specifically inactivates the Raf-1 component of this pathway. Using the model system of NIH 3T3 cells stimulated with phorbol 12-myristate 13-acetate (PMA), we show that GA does not affect the ability of protein kinase C alpha to be activated by phorbol esters, but it does block activation of MEK and MAPK. Further, GA does not decrease the activity of constitutively active MEK in transiently transfected cells. Finally, disruption of the Raf-1-MEK-MAPK signalling pathway by GA prevents both the PMA-induced proliferative response and PMA-induced activation of a MAPK-sensitive nuclear transcription factor. Thus, we demonstrate that interaction between HSP90 and Raf-1 is a sine qua non for Raf stability and function as a signal transducer and that the effects observed cannot be attributed to a general impairment of protein kinase function. PMID:8816498

  10. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression in Jurkat Cells.

    PubMed

    Pan, Yao; Wei, Xuetao; Hao, Weidong

    2015-08-28

    Trichloroethylene (TCE) is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells.

  11. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression inJurkat Cells

    PubMed Central

    Pan, Yao; Wei, Xuetao; Hao, Weidong

    2015-01-01

    Trichloroethylene (TCE) is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells. PMID:26343699

  12. Activity of phospholipase C and release of prostaglandin F2 alpha by endometrial tissue from ovariectomized ewes receiving progesterone and estradiol.

    PubMed

    Raw, R E; Silvia, W J

    1991-03-01

    Progesterone and estradiol interact to regulate secretion of prostaglandin (PG) F2 alpha from the ovine endometrium in response to oxytocin. Two experiments were conducted to determine if these effects were due to changes in activity of phospholipase C or in the second messenger responsive pathways that regulate production of PGF2 alpha. In both experiments, ovariectomized ewes were assigned to one of four treatment groups (control, estradiol, progesterone, progesterone and estradiol). Steroids were administered, in vivo, to mimic the changes that occur during the estrous cycle. On Day 16 of steroid treatment, endometrial tissue was collected and incubated, in vitro, to measure activity of phospholipase C and release of PGF2 alpha. Treatment with progesterone, in vivo, enhanced basal and oxytocin-induced activity of phospholipase C and release of PGF2 alpha, in vitro. Estradiol suppressed oxytocin-induced activity of phospholipase C, both in the presence and absence of progesterone. In contrast to its effects on phospholipase C, estradiol inhibited basal and oxytocin-induced release of PGF2 alpha when administered alone, but not when administered with progesterone. Steroids had similar effects on the release of PGF2 alpha induced by phorbol 12-myristate 13-acetate and A23187. It was concluded that progesterone and estradiol regulate endometrial release of PGF2 alpha by affecting both the activity of phospholipase C and its associated second messenger responsive pathways that may regulate production of PGF2 alpha.

  13. Inhibitory effects of kaempferol on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9.

    PubMed

    Li, Chenglin; Zhao, Yuanwei; Yang, Dan; Yu, Yanyan; Guo, Hao; Zhao, Ziming; Zhang, Bei; Yin, Xiaoxing

    2015-02-01

    Matrix metalloproteinases (MMPs) have been regarded as major critical molecules assisting tumor cells during metastasis, for excessive ECM (ECM) degradation, and cancer cell invasion. In the present study, in vitro and in vivo assays were employed to examine the inhibitory effects of kaempferol, a natural polyphenol of flavonoid family, on tumor metastasis. Data showed that kaempferol could inhibit adhesion, migration, and invasion of MDA-MB-231 human breast carcinoma cells. Moreover, kaempferol led to the reduced activity and expression of MMP-2 and MMP-9, which were detected by gelatin zymography, real-time PCR, and western blot analysis, respectively. Further elucidation of the mechanism revealed that kaempferol treatment inhibited the activation of transcription factor activator protein-1 (AP-1) and MAPK signaling pathway. Moreover, kaempferol repressed phorbol-12-myristate-13-acetate (PMA)-induced MMP-9 expression and activity through suppressing the translocation of protein kinase Cδ (PKCδ) and MAPK signaling pathway. Our results also indicated that kaempferol could block the lung metastasis of B16F10 murine melanoma cells as well as the expression of MMP-9 in vivo. Taken together, these results demonstrated that kaempferol could inhibit cancer cell invasion through blocking the PKCδ/MAPK/AP-1 cascade and subsequent MMP-9 expression and its activity. Therefore, kaempferol might act as a therapeutic potential candidate for cancer metastasis.

  14. Induction of megakaryocytic colony-stimulating activity in mouse skin by inflammatory agents and tumor promoters

    SciTech Connect

    Clark, D.A.; Dessypris, E.N.; Koury, M.J.

    1987-03-01

    The production of megakaryocytic colony-stimulating activity (MEG-CSA) was assayed in acetic acid extracts of skin from mice topically treated with inflammatory and tumor-promoting agents. A rapid induction of MEG-CSA was found in skin treated both with phorbol 12-myristate 13-acetate (PMA), a strong tumor promoter, and with mezerein, a weak tumor promoter, but no induction was found in untreated skin. The time course of induction of MEG-CSA following treatment of skin with PMA or mezerein was very similar to that previously demonstrated for the induction of granulocyte-macrophage colony-stimulating activity in mouse skin by these agents. The induced MEG-CSA was found in both the epidermis and the dermis. Pretreatment of the skin with US -methasone abrogated the MEG-CSA induction. The cell number response curve suggests that the MEG-CSA acts directly on the progenitor cells of the megakaryocyte colonies. That topical administration of diterpene esters results in the rapid, local induction of MEG-CSA which can be blocked by US -methasone pretreatment suggests a mechanism for the thrombocytosis associated with some inflammatory states. The indirect action in which diterpene esters induce in certain cells the production or release of growth regulatory factors for other cell types may also aid in understanding their carcinogenic properties.

  15. Selenium- and Tellurium-Based Antioxidants for Modulating Inflammation and Effects on Osteoblastic Activity

    PubMed Central

    Lu, Xi; Mestres, Gemma; Singh, Vijay Pal; Effati, Pedram; Poon, Jia-Fei; Engman, Lars; Karlsson Ott, Marjam

    2017-01-01

    Increased oxidative stress plays a significant role in the etiology of bone diseases. Heightened levels of H2O2 disrupt bone homeostasis, leading to greater bone resorption than bone formation. Organochalcogen compounds could act as free radical trapping agents or glutathione peroxidase mimetics, reducing oxidative stress in inflammatory diseases. In this report, we synthesized and screened a library of organoselenium and organotellurium compounds for hydrogen peroxide scavenging activity, using macrophagic cell lines RAW264.7 and THP-1, as well as human mono- and poly-nuclear cells. These cells were stimulated to release H2O2, using phorbol 12-myristate 13-acetate, with and without organochalogens. Released H2O2 was then measured using a chemiluminescent assay over a period of 2 h. The screening identified an organoselenium compound which scavenged H2O2 more effectively than the vitamin E analog, Trolox. We also found that this organoselenium compound protected MC3T3 cells against H2O2-induced toxicity, whereas Trolox did not. The organoselenium compound exhibited no cytotoxicity to the cells and had no deleterious effects on cell proliferation, viability, or alkaline phosphatase activity. The rapidity of H2O2 scavenging and protection suggests that the mechanism of protection is due to the direct scavenging of extracellular H2O2. This compound is a promising modulators of inflammation and could potentially treat diseases involving high levels of oxidative stress. PMID:28216602

  16. Bioassay-guided isolation and identification of anti-platelet-active compounds from the root of Ashitaba (Angelica keiskei Koidz.).

    PubMed

    Son, Dong Ju; Park, Ye Oak; Yu, Chengguang; Lee, Sung Eun; Park, Young Hyun

    2014-01-01

    Platelet aggregation is fundamental to a wide range of physiological and pathological processes, including the induction of thrombosis and arteriosclerosis. Anti-platelet activity of a crude methanol extract and solvent fractions of Ashitaba roots (Angelica keiskei Koidz.) was evaluated using a turbidimetric method using washed rabbit platelets. We identified the anti-platelet activities of two chalcones, 4-hydroxyderricin and xanthoangelol, isolated from the ethyl acetate-soluble fraction of Ashitaba roots by using a bioassay-guided isolation method. 4-Hydroxyderricin and xanthoangelol effectively inhibited platelet aggregation induced by collagen (IC50 of 41.9 and 35.9 μM, respectively), platelet-activating factor (IC50 of 46.1 and 42.3 μM, respectively) and phorbol 12-myristate 13-acetate (IC50 of 16.5 and 45.9 μM, respectively). These compounds did not inhibit thrombin-induced platelet aggregation (IC50 of>80 μM). The results suggest that the chalcones 4-hydroxyderricin and xanthoangelol may be potent anti-thrombotic components of A. keiskei Koidz.

  17. Regulation of endothelial protein C receptor shedding by cytokines is mediated through differential activation of MAP kinase signaling pathways

    SciTech Connect

    Menschikowski, Mario; Hagelgans, Albert; Eisenhofer, Graeme; Siegert, Gabriele

    2009-09-10

    The endothelial protein C receptor (EPCR) plays a pivotal role in coagulation, inflammation, cell proliferation, and cancer, but its activity is markedly changed by ectodomain cleavage and release as the soluble protein (sEPCR). In this study we examined the mechanisms involved in the regulation of EPCR shedding in human umbilical endothelial cells (HUVEC). Interleukin-1{beta} (IL-1{beta}) and tumor necrosis factor-{alpha} (TNF-{alpha}), but not interferon-{gamma} and interleukin-6, suppressed EPCR mRNA transcription and cell-associated EPCR expression in HUVEC. The release of sEPCR induced by IL-1{beta} and TNF-{alpha} correlated with activation of p38 MAPK and c-Jun N-terminal kinase (JNK). EPCR shedding was also induced by phorbol 12-myristate 13-acetate, ionomycin, anisomycin, thiol oxidants or alkylators, thrombin, and disruptors of lipid rafts. Both basal and induced shedding of EPCR was blocked by the metalloproteinase inhibitors, TAPI-0 and GM6001, and by the reduced non-protein thiols, glutathione, dihydrolipoic acid, dithiothreitol, and N-acetyl-L-cysteine. Because other antioxidants and scavengers of reactive oxygen species failed to block the cleavage of EPCR, a direct suppression of metalloproteinase activity seems responsible for the observed effects of reduced thiols. In summary, the shedding of EPCR in HUVEC is effectively regulated by IL-1{beta} and TNF-{alpha}, and downstream by MAP kinase signaling pathways and metalloproteinases.

  18. DA-9601 inhibits activation of the human mast cell line HMC-1 through inhibition of NF-kappaB.

    PubMed

    Lee, S; Park, H-H; Son, H-Y; Ha, J-H; Lee, M-G; Oh, T-Y; Sohn, D H; Jeong, T C; Lee, S H; Son, J-K; Lee, S G; Jun, C-D; Kim, S-H

    2007-03-01

    Mast cell-mediated allergic inflammation is involved in many diseases such as asthma, sinusitis, and rheumatoid arthritis. Mast cells induce synthesis and production of pro-inflammatory cytokines including tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 with immune regulatory properties. The formulated ethanol extract of Artemisia asiatica Nakai (DA-9601) has been reported to have antioxidative and anti-inflammatory activities. In this report, we investigated the effect of DA-9601 on the expression of pro-inflammatory cytokines by the activated human mast cell line HMC-1 and studied its possible mechanisms of action. DA-9601 dose-dependently decreased the gene expression and production of TNF-alpha, IL-1beta, and IL-6 on phorbol 12-myristate 13-acetate (PMA)- and calcium ionophore A23187-stimulated HMC-1 cells. In addition, DA-9601 attenuated PMA- and A23187-induced activation of NF-kappaB as indicated by inhibition of degradation of IkappaBalpha, nuclear translocation of NF-kappaB, NF-kappaB/DNA binding, and NF-kappaB-dependent gene reporter assay. Our in vitro studies provide evidence that DA-9601 might contribute to the treatment of mast cell-derived allergic inflammatory diseases.

  19. Hsian-tsao (Mesona procumbens Heml.) prevents against rat liver fibrosis induced by CCl(4) via inhibition of hepatic stellate cells activation.

    PubMed

    Shyu, Ming-Huan; Kao, Tzu-Chien; Yen, Gow-Chin

    2008-12-01

    In this study, the protective effect of extract of Hsian-tsao (Mesona procumbens) (EHT) against liver fibrogenesis in carbon tetrachloride (CCl(4))-injured rats was evaluated. The inhibitory effect of oleanolic acid (OA) and ursolic acid (UA), which are the active compounds in EHT, on the activation of hepatic stellate cells (HSC) was also determined. The results showed that EHT at a dosage of 1.2g/kg of b.w. significantly reduced the liver injury induced by CCl(4) in rats. It also decreased the activity of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and the deposition of collagen in the liver. Oral administration of EHT reduced the levels of alpha-smooth muscle actin (alpha-SMA) and the activity of metalloproteinases (MMPs) in rats injured by treatment with CCl(4). In addition, we performed experiments with the rat hepatic stellate cell line HSC-T6 in which we induced the expression of MMP-2 and alpha-SMA with phorbol-12-myristate-13-acetate (PMA). Treating these cells with OA (20microM) or UA (10microM) caused a decrease in the levels of both proteins. Taken together, our data indicate that EHT can efficiently inhibit CCl(4)-induced liver fibrosis in rats. EHT may therefore be a useful functional food for preventing liver fibrosis.

  20. Effect of PMA-induced protein kinase C activation on development and apoptosis in early zebrafish embryos.

    PubMed

    Hrubik, Jelena; Glisic, Branka; Samardzija, Dragana; Stanic, Bojana; Pogrmic-Majkic, Kristina; Fa, Svetlana; Andric, Nebojsa

    2016-12-01

    Protein kinase C (PKC) isoforms have been implicated in several key steps during early development, but the consequences of xenobiotic-induced PKC activation during early embryogenesis are still unknown. In this study, zebrafish embryos were exposed to a range of phorbol 12-myristate 13-acetate (PMA) concentrations (0-200μg/L) at different time points after fertilization. Results showed that 200μgPMA/L caused development of yolk bags, cardiac edema, slow blood flow, pulsating blood flow, slow pulse, elongated heart, lack of tail fins, curved tail, and coagulation. PMA exposure decreased survival rate of the embryos starting within the first 24h and becoming more pronounced after prolonged exposure (96h). PMA increased the number of apoptotic cells in the brain region as demonstrated by acridine orange staining and caused up-regulation of caspase 9 (casp9) and p53 up-regulated modulator of apoptosis (puma) mRNA in whole embryos. PMA caused oxidative stress in the embryos as demonstrated by decreased mRNA expression of catalase and superoxide dismutase 2. Inhibition of Pkc with GF109203X improved overall survival rate, reduced apoptosis in the brain and decreased expression of casp9 and puma in the PMA-exposed embryos. However, Pkc inhibition neither prevented development of deformities nor reversed oxidative stress in the PMA-exposed embryos. These data suggest that direct over-activation of Pkc during early embryogenesis of zebrafish is associated with apoptosis and decreased survival rate of the embryos.

  1. Activation and regulation of arachidonic acid release in rabbit peritoneal neutrophils

    SciTech Connect

    Tao, W.

    1988-01-01

    Arachidonic acid release in rabbit neutrophils can be enhanced by the addition of chemotactic fMet-Leu-Phe, platelet-activating factor, PAF, or the calcium ionophore A23187. Over 80% of the release ({sup 3}H)arachidonic acid comes from phosphatidylcholine and phosphatidylinositol. The release is dose-dependent and increases with increasing concentration of the stimulus. The A23187-induced release increases with increasing time of the stimulation. ({sup 3}H)arachidonic acid release, but not the rise in the concentration of intracellular calcium, is inhibited in pertussis toxin-treated neutrophils stimulated with PAF. The ({sup 3}H)arachidonic acid released by A23187 is potentiated while that release by fMET-Leu-Phe or PAF is inhibited in phorbol 12-myristate 13-acetate, PMA, treated rabbit neutrophils. The protein kinase C inhibitor 1-(5-isoquinoline sulfonyl)-2-methylpiperazine, H-7, has no effect on the potentiation by PMA of the A23187-induced release, it prevents the inhibition by PMA of the release produced by PAF or fMet-Leu-Phe. In addition, PMA increases arachidonic acid release in H-7-treated cells stimulated with fMet-Leu-Phe. The diacylglycerol kinase inhibitor R59022 increases the level of diacylglycerol in neutrophils stimulated with fMet-Leu-Phe. Furthermore, R59022 potentiates ({sup 3}H) arachidonic acid release produced by fMet-Leu-Phe. This potentiation is not inhibited by H-7, in fact, it is increased in H-7-treated neutrophils.

  2. Stimulation of fibroblast proliferation by neokyotorphin requires Ca influx and activation of PKA, CaMK II and MAPK/ERK.

    PubMed

    Sazonova, Olga V; Blishchenko, Elena Yu; Tolmazova, Anna G; Khachin, Dmitry P; Leontiev, Konstantin V; Karelin, Andrey A; Ivanov, Vadim T

    2007-01-01

    Neokyotorphin [TSKYR, hemoglobin alpha-chain fragment (137-141)] has previously been shown to enhance fibroblast proliferation, its effect depending on cell density and serum level. Here we show the dependence of the effect of neokyotorphin on cell type and its correlation with the effect of protein kinase A (PKA) activator 8-Br-cAMP, but not the PKC activator 4beta-phorbol 12-myristate, 13-acetate (PMA). In L929 fibroblasts, the proliferative effect of neokyotorphin was suppressed by the Ca2+ L-type channel inhibitors verapamil or nifedipine, the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester, kinase inhibitors H-89 (PKA), KN-62 (Ca2+/calmodulin-dependent kinase II) and PD98059 (mitogen-activated protein kinase). The proliferative effect of 8-Br-cAMP was also suppressed by KN-62 and PD98059. PKC suppression (downregulation with PMA or inhibition with bisindolylmaleimide XI) did not affect neokyotorphin action. The results obtained point to a cAMP-like action for neokyotorphin.

  3. Epidermal growth factor (EGF)-stimulated inositol phosphate formation in hepatocytes is abolished by pertussis toxin and phorbol esters

    SciTech Connect

    Johnson, R.M.; Garrison, J.C.

    1987-05-01

    The EGF-stimulated rise in intracellular Ca/sup 2 +/ (Ca/sup 2 +/)/sub i/ and Ca/sup 2 +/-dependent protein phosphorylation events in isolated hepatocytes are blocked by pertussis toxin and phorbol ester pretreatment. The present study characterized the EGF-stimulated formation of inositol 1,4,5-trisphosphate (Ins(1,4,5)P/sub 3/) and inositol 1,3,4-trisphosphate (Ins(1,3,4)P/sub 3/) in hepatocytes using HPLC methodology to separate the InsP/sub 3/ isomers. Both 66 nM EGF and 10 nM angiotensin II (ANG II) caused a rapid increase in the Ins(1,4,5)P/sub 3/ isomer although EGF-stimulated formation was smaller. At a concentration of ANG II (0.1 nM) which gave an equivalent rise in (Ca/sup 2 +/)/sub i/ as 66 nM EGF, the kinetics and magnitude of Ins(1,4,5)P/sub 3/ formation were similar. EGF or ANG II-stimulated formation of the Ins(1,3,4)P/sub 3/ isomer was more gradual and increased beyond the level of Ins(1,4,5)P/sub 3/ after 60 sec. The initial EGF and ANG II-stimulated increase in both InsP/sub 3/ isomers was not affected by removing external Ca/sup 2 +/ with a 10-fold excess of EGTA. Pretreatment of rats with pertussis toxin for 72 hrs blocked the ability of EGF to increase Ins(1,4,5)P/sub 3/ but did not affect the increase due to ANG II. Three main pretreatment of cells with 1 ..mu..g/ml phorbol 12-myristate-13-acetate (PMA) also inhibited the EGF-stimulated Ins(1,4,5)P/sub 3/ formation. PMA slightly attenuated Ins(1,4,5)P/sub 3/ formation stimulated by 0.1 nM ANG II but not enough to affect the Ca/sup 2 +/ signal. These data suggest that the signal transduction system used by EGF receptors to increase Ins (1,4,5)P/sub 3/ in hepatocytes is somehow different from that used by ANG II receptors.

  4. The role of phosphorylation in activation of the alpha 6A beta 1 laminin receptor.

    PubMed

    Hogervorst, F; Kuikman, I; Noteboom, E; Sonnenberg, A

    1993-09-05

    The phorbol ester phorbol 12-myristate 13-acetate (PMA) induces phosphorylation of serine residues in the cytoplasmic domain of the alpha 6A integrin subunit, as well as activation of the alpha 6A beta 1 laminin receptor. We examined whether phosphorylation correlates with the induction of high affinity binding of laminin by the alpha 6A beta 1 receptor. Two potential phosphorylation sites for protein kinase C, serine 1041 and serine 1048, are present in the cytoplasmic domain of the alpha 6A subunit. We introduced point mutations into the alpha 6A cDNA, replacing either one or both of the serine residues with alanine. Wild-type and mutant alpha 6A cDNAs were transfected into K562 cells. All alpha 6A subunit mutants were expressed at levels similar to those of wild-type alpha 6A and formed heterodimers with endogenous beta 1. Analysis of the phosphorylation state of wild-type and mutant alpha 6A subunits in resting K562 cells and after treatment with PMA showed that serine 1041, but not serine 1048, is the target residue of PMA-induced phosphorylation. Cells expressing alpha 6A mutant subunits or wild-type alpha 6A transfectants all bound laminin in the presence, but not in the absence of PMA; however, the extent of binding differed. Cells transfected with alpha 6A containing the serine to alanine mutation showed a 2-3-fold higher binding to laminin than cells transfected with alpha 6A containing serine 1041. The results indicate that phosphorylation of the alpha 6A cytoplasmic domain is not required for the induction of high affinity of the alpha 6A beta 1 receptor by PMA, and suggest that, in contrast, it may reduce the affinity of this integrin for ligand.

  5. Anti-allergic effect of the naturally-occurring conjugated linolenic acid isomer, jacaric acid, on the activated human mast cell line-1

    PubMed Central

    LIU, WAI NAM; LEUNG, KWOK NAM

    2015-01-01

    The present study aimed to investigate the immunomodulatory effect of jacaric acid, a naturally-occurring conjugated linolenic acid isomer that can be found in jacaranda seed oil, on the activated human mast cell line-1 (HMC-1). Our previous studies have demonstrated that jacaric acid only exerted minimal, if any, cytotoxicity on normal murine cells. In the present study, jacaric acid at concentrations ≤100 µM did not exhibit direct cytotoxicity on human peripheral blood mononuclear cells after 72 h of incubation, as determined by the MTT reduction assay. By contrast, jacaric acid could alleviate the calcium ionophore A23187 and phorbol 12-myristate 13-acetate-triggered allergic response in the HMC-1 cells at concentrations that were non-cytotoxic to the HMC-1 cells. Following pre-treatment with jacaric acid, the secretion of two inflammatory mediators, β-N-acetylglucosaminidase and tryptase, as well as the T helper 2 cytokines [interleukin (IL)-4 and IL-13] was significantly reduced in HMC-1 cells. The alleviation of allergic response was accompanied by downregulation of the matrix metalloproteinase-2 and −9 proteins and upregulation of the tissue inhibitor of metalloproteinase-1 protein. Collectively, the results indicated that the naturally-occurring jacaric acid exhibits a suppressive effect on the allergic response in activated human mast cells in vitro, and this could not be attributed to the direct cytotoxicity of jacaric acid on the treated cells. PMID:26623027

  6. Anti-allergic effect of the naturally-occurring conjugated linolenic acid isomer, jacaric acid, on the activated human mast cell line-1.

    PubMed

    Liu, Wai Nam; Leung, Kwok Nam

    2015-11-01

    The present study aimed to investigate the immunomodulatory effect of jacaric acid, a naturally-occurring conjugated linolenic acid isomer that can be found in jacaranda seed oil, on the activated human mast cell line-1 (HMC-1). Our previous studies have demonstrated that jacaric acid only exerted minimal, if any, cytotoxicity on normal murine cells. In the present study, jacaric acid at concentrations ≤100 µM did not exhibit direct cytotoxicity on human peripheral blood mononuclear cells after 72 h of incubation, as determined by the MTT reduction assay. By contrast, jacaric acid could alleviate the calcium ionophore A23187 and phorbol 12-myristate 13-acetate-triggered allergic response in the HMC-1 cells at concentrations that were non-cytotoxic to the HMC-1 cells. Following pre-treatment with jacaric acid, the secretion of two inflammatory mediators, β-N-acetylglucosaminidase and tryptase, as well as the T helper 2 cytokines [interleukin (IL)-4 and IL-13] was significantly reduced in HMC-1 cells. The alleviation of allergic response was accompanied by downregulation of the matrix metalloproteinase-2 and -9 proteins and upregulation of the tissue inhibitor of metalloproteinase-1 protein. Collectively, the results indicated that the naturally-occurring jacaric acid exhibits a suppressive effect on the allergic response in activated human mast cells in vitro, and this could not be attributed to the direct cytotoxicity of jacaric acid on the treated cells.

  7. Sinomenine influences capacity for invasion and migration in activated human monocytic THP-1 cells by inhibiting the expression of MMP-2, MMP-9, and CD147

    PubMed Central

    Ou, Yang-qiong; Chen, Li-hua; Li, Xue-jun; Lin, Zhi-bin; Li, Wei-dong

    2009-01-01

    Aim: The aim of this study was to investigate the mechanism of the effects of Sinomenine (SIN) on the invasion and migration ability of activated human monocytic THP-1 cells (A-THP-1). Sinomenine is a pure alkaloid extracted from the Chinese medical plant Sinomenium acutum. Methods: Human monocytic THP-1 cells were induced to differentiate into macrophages with phorbol 12-myristate 13-acetate (PMA). Cells were treated with different concentrations of SIN. The invasion and migration ability of cells was tested by in vitro transwell assays. The levels of CD147 and MMPs were evaluated by flow cytometric analysis and zymographic analysis, respectively. The mRNA expression of CD147, MMP-2, and MMP-9 was measured by RT-PCR. Results: The invasion and migration ability of A-THP-1 cells was significantly inhibited by SIN in a concentration-dependent fashion; at the same time, the levels of CD147, MMP-2, and MMP-9 were markedly down-regulated. This inhibitory effect was most notable at concentrations of 0.25 mmol/L and 1.00 mmol/L (P<0.01). Conclusion: A possible mechanism of the inhibitory effect of SIN on cell invasion and migration ability is repression of the expression of MMP-2 and MMP-9, which strongly correlates with the inhibition of CD147 activity. PMID:19305422

  8. Activation of the human. beta. sub 2 -interferon/hepatocyte-stimulating factor/interleukin 6 promoter by cytokines, viruses, and second messenger agonists

    SciTech Connect

    Ray, A.; Tatter, S.B.; May, L.T.; Sehgal, P.B. )

    1988-09-01

    The hallmark of {beta}{sub 2}-interferon (IFN-{beta}{sub 2})/hepatocyte-stimulating factor/interleukin 6 gene expression is its inducibility in different types of human cells (fibroblasts, monocytes, epithelial cells, and endothelial cells) by different stimuli, which include cytokines such as tumor necrosis factor, interleukin 1 (IL-1) and platelet-derived growth factor, different viruses, and bacterial products such as endotoxin. The activation by cytokines, viruses, and second messenger agonists of the IFN-{beta}{sub 2} promoter linked to the bacterial chloramphenicol acetyltransferase (CAT) gene was studied after transfection into HeLa cells. A chimeric gene containing IFN-{beta}{sub 2} DNA from -1180 to +13 linked to the CAT gene was inducible {approx}10-fold by phorbol 12-myristate 13-acetate (PMA), followed, in decreasing order, by pseudorabies and Sendai viruses; serum; the cytokines tumor necrosis factor, IL-1, and epidermal growth factor; the cAMP agonists BrcAMP and forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine; poly(I){center dot}poly(C); 1,2-diacylglycerol and the calcium ionophore A23187. The region between -225 and -113 in IFN-{beta}{sub 2}, which contains DNA motifs similar to the regulatory elements in the human c-fos gene, appears to contain the major cis-acting regulatory elements responsible for the activation of the IFN-{beta}{sub 2} promoter by several different cytokines, viruses, and second messenger agonists.

  9. Ethanol extract of Lophatheri Herba exhibits anti-cancer activity in human cancer cells by suppression of metastatic and angiogenic potential

    PubMed Central

    Kim, Aeyung; Im, Minju; Gu, Min Jung; Ma, Jin Yeul

    2016-01-01

    Lophatheri Herba (LH), dried leaf of Lophatherum gracile Brongn, has long been used to reduce thirst and treat fever and inflammation in Chinese medicine. Recent studies have shown that LH has anti-viral, anti-bacterial, anti-cancer, anti-oxidant, diuretic, and hyperglycemic properties. However, the effects of an ethanol extract of L. herba (ELH), at non-cytotoxic doses, on the metastatic and angiogenic abilities of malignant tumor cells have not been reported. We found that ELH significantly suppressed p38, JNK, and NF-κB activation and proteolytic activities under phorbol 12-myristate 13-acetate (PMA) stimulation, thus leading to a decrease in metastatic potential, including migration and invasion. In addition, ELH suppressed tumor-induced angiogenesis, including migration and tube formation in human umbilical vein endothelial cells (HUVECs) and microvessel sprouting from aortic rings via decreasing the pro-angiogenic factors in tumors. Interestingly, in ovo xenografts ELH-treated HT1080 cells did not increase in volume and eventually disappeared, owing to a lack of angiogenesis. Daily oral administration of ELH at 50 and 100 mg/kg markedly inhibited metastatic colonization of B16F10 cells in the lungs of C57BL/6J mice and caused no apparent side effects. These data collectively indicate that ELH is safe and may be useful for managing metastasis and growth of malignant cancers. PMID:27808120

  10. Protein kinase C involvement in homologous desensitization of delta-opioid receptor coupled to Gi1-phospholipase C activation in Xenopus oocytes.

    PubMed

    Ueda, H; Miyamae, T; Hayashi, C; Watanabe, S; Fukushima, N; Sasaki, Y; Iwamura, T; Misu, Y

    1995-11-01

    We have developed the coexpression system of both delta-opioid receptor (DOR1) and M2-muscarinic receptor (M2) which mediate agonist-evoked currents due to common post-receptor mechanisms including Gi1 and phospholipase C (PLC) activation in Xenopus oocytes reconstituted with Gi1 alpha. The DOR1-currents by 100 nM D-Ser2-leu-enkephalin-Thr6 (DSLET) were selectively desensitized by 10 nM phorbol 12-myristate 13-acetate (PMA). The PMA-desensitization of DSLET-currents was abolished in the presence of calphostin C, a protein kinase C inhibitor, or reversed by an intracellular injection of calcineurin, a protein phosphatase 2B. When a higher concentration (3 microM) of DSLET was used, DSLET-currents were rapidly desensitized by repeated challenges of DSLET itself. However, repeated challenges of 10 microM ACh caused no influence on such DSLET- or M2-currents. The desensitization of DSLET-currents was selectively reversed by protein kinase C inhibitors. Similar results were also obtained with various delta-opioid agonists. These results suggest that protein kinase C is involved in the homologous desensitization of delta-opioid receptors.

  11. Sp1 binds two sites in the CD11c promoter in vivo specifically in myeloid cells and cooperates with AP1 to activate transcription.

    PubMed Central

    Noti, J D; Reinemann, B C; Petrus, M N

    1996-01-01

    The leukocyte integrin gene, CD11c, is transcriptionally regulated and is expressed predominantly on differentiated cells of the myelomonocytic lineage. In this study we have demonstrated that the regions -72 to -63 and -132 to -104 of the CD11c promoter contain elements responsible for phorbol ester-induced differentiation of the myeloid cell line HL60. DNase I footprinting analysis revealed that these regions can bind purified Sp1, and supershift analysis with Sp1 antibody confirmed that Sp1 in HL60 nuclear extracts could bind these regions. Transfection analysis of CD11c promoter-chloramphenicol acetyltransferase constructs containing deletions of these Sp1-binding sites revealed that these sites are essential for expression of the CD11c gene in HL60 cells but not in the T-cell line Molt4 or the cervical carcinoma cell line HeLa. Moreover, cotransfection of pPacSp1 along with these CD11c promoter-chloramphenicol acetyltransferase constructs into Sp1-deficient Drosophila Schneider 2 cells verified that these sites are essential for Sp1-dependent expression of the CD11c promoter. In vivo genomic footprinting revealed that Sp1 contacts the CD11c promoter within the regions -69 to -63 and -116 to -105 in phorbol 12-myristate 13-acetate-differentiated HL60 cells but not in undifferentiated HL60 cells or in Molt4 or HeLa cells. Cotransfection assays in HL60 cells revealed that Sp1 acts synergistically with Ap1 to activate CD11c. Further, both Sp1 sites are capable of cooperating with AP1. In vitro DNase I footprinting analysis with purified Sp1 and c-jun proteins showed that Sp1 binding could facilitate binding of c-jun. We propose that myeloid-specific expression of the CD11c promoter and is facilitated by cooperative interaction between the Sp1- and Ap1-binding sites. PMID:8649405

  12. Luminol-dependent photoemission from single neutrophil stimulated by phorbol ester and calcium ionophore--role of degranulation and myeloperoxidase

    SciTech Connect

    Suematsu, M.; Oshio, C.; Miura, S.; Suzuki, M.; Houzawa, S.; Tsuchiya, M.

    1988-08-30

    Luminol-dependent photonic burst from phorbol ester-treated single neutrophil was visually investigated by using an ultrasensitive photonic image intensifier microscope. Neutrophils stimulated by phorbol myristate acetate (0.1 microgram/ml) alone produced a negligible level of photonic activities in the presence of luminol (10 micrograms/ml). The additional application of 0.1 microM Ca2+ ionophore A23187 induced explosive changes of photonic burst corresponding to the distribution of neutrophils, and these photonic activities were gradually spread to extracellular space. Sodium azide, which prevents myeloperoxidase activity, inhibited Ca2+ ionophore-induced photonic burst from phorbol ester-treated neutrophil. These findings suggest a prerequisite role of degranulation and myeloperoxidase release in luminol-dependent photoemission from stimulated neutrophils.

  13. Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo.

    PubMed

    Healy, Laura D; Puy, Cristina; Fernández, José A; Mitrugno, Annachiara; Keshari, Ravi S; Taku, Nyiawung A; Chu, Tiffany T; Xu, Xiao; Gruber, András; Lupu, Florea; Griffin, John H; McCarty, Owen J T

    2017-04-13

    Activated protein C (APC) is a multi-functional serine protease with anticoagulant, cytoprotective, and anti-inflammatory activities. In addition to the cytoprotective effects of APC on endothelial cells, podocytes, and neurons, APC cleaves and detoxifies extracellular histones, a major component of neutrophil extracellular traps (NETs). NETs promote pathogen clearance but also can lead to thrombosis; the pathways that negatively regulate NETosis are largely unknown. Thus, we studied whether APC is capable of directly inhibiting NETosis via receptor-mediated cell signaling mechanisms. Here, by quantifying extracellular DNA or myeloperoxidase, we demonstrate that APC binds human leukocytes and prevents activated platelet supernatant or phorbol 12-myristate 13-acetate (PMA) from inducing NETosis. Of note, APC proteolytic activity was required for inhibiting NETosis. Moreover, antibodies against the neutrophil receptors endothelial protein C receptor (EPCR), protease activated receptor 3 (PAR3), and macrophage-1 antigen (Mac-1) blocked APC inhibition of NETosis. Select mutations in the Gla and protease domains of recombinant APC caused a loss of NETosis. Interestingly, pretreatment of neutrophils with APC prior to induction of NETosis inhibited platelet adhesion to NETs. Lastly, in a non-human primate model of E. coli-induced sepsis, pre-treatment of animals with APC abrogated release of myeloperoxidase from neutrophils, a marker of neutrophil activation. These findings suggest that the anti-inflammatory function of APC at therapeutic concentrations may include the inhibition of NETosis in an EPCR-, PAR3-, and Mac-1-dependent manner, providing additional mechanistic insight into the diverse functions of neutrophils and APC in disease states including sepsis.

  14. Phorbol esters inhibit alpha/sub 1/-adrenergic receptor stimulated phosphoinositide hydrolysis and contraction in rat aorta

    SciTech Connect

    Not Available

    1986-03-01

    The mechanisms of pharmacomechanical coupling in vascular tissue are at the present time unclear. The authors and others have proposed that receptor-induced activation of phosphoinositide (PI) hydrolysis may be involved. To investigate this possibility they studied the actions of two biologically active phorbol esters: phorbol dibutyrate (PDB) and phorbol myristate diacetate (PMA) on receptor-stimulated PI hydrolysis in rat aortic rings. They found both PDB (IC/sub 5//sup 0/ approx. 5nM) and PMA (IC/sub 50/ approx. 30 nM) but not 4-..cap alpha..-phorbol (IC32%/sub 0/ > 10,000 nM) inhibited norepinephrine-stimulated PI hydrolysis. In the presence of the calcium channel antagonist nitrendipine, PDB potently inhibited both the phasic and tonic components of norepinephrine-induced vascular contraction. In the presence of 10/sup -7/M nitrendipine, PDB had an IC/sub 50/ for contraction of approximately 10nM. The results thus suggest a functional coupling between ..cap alpha../sub 1/-adrenergic receptor-stimulated PI hydrolysis and vascular contraction. The findings further imply a mode of feed-back regulation in vascular tissue involving phorbol ester and receptor-stimulated PI hydrolysis.

  15. Activation of muscarinic receptors in porcine airway smooth muscle elicits a transient increase in phospholipase D activity.

    PubMed

    Mamoon, A M; Smith, J; Baker, R C; Farley, J M

    1999-01-01

    Phospholipase D (PLD) is a phosphodiesterase that catalyses hydrolysis of phosphatidylcholine to produce phosphatidic acid and choline. In the presence of ethanol, PLD also catalyses the formation of phosphatidylethanol, which is a unique characteristic of this enzyme. Muscarinic receptor-induced changes in the activity of PLD were investigated in porcine tracheal smooth muscle by measuring the formation of [3H]phosphatidic acid ([3H]PA) and [3H]phosphatidylethanol ([3H]PEth) after labeling the muscle strips with [3H]palmitic acid. The cholinergic receptor agonist acetylcholine (Ach) significantly but transiently increased formation of both [3H]PA and [3H]PEth in a concentration-dependent manner (>105-400% vs. controls in the presence of 10(-6) to 10(-4) M Ach) when pretreated with 100 mM ethanol. The Ach receptor-mediated increase in PLD activity was inhibited by atropine (10(-6) M), indicating that activation of PLD occurred via muscarinic receptors. Activation of protein kinase C (PKC) by phorbol-12-myristate-13-acetate (PMA) increased PLD activity that was effectively blocked by the PKC inhibitors calphostin C (10(-8) to 10(-6) M) and GFX (10(-8) to 10(-6) M). Ach-induced increases in PLD activity were also significantly, but incompletely, inhibited by both GFX and calphostin C. From the present data, we conclude that in tracheal smooth muscle, muscarinic acetylcholine receptor-induced PLD activation is transient in nature and coupled to these receptors via PKC. However, PKC activation is not solely responsible for Ach-induced activation of PLD in porcine tracheal smooth muscle.

  16. TTRAP, a novel protein that associates with CD40, tumor necrosis factor (TNF) receptor-75 and TNF receptor-associated factors (TRAFs), and that inhibits nuclear factor-kappa B activation.

    PubMed

    Pype, S; Declercq, W; Ibrahimi, A; Michiels, C; Van Rietschoten, J G; Dewulf, N; de Boer, M; Vandenabeele, P; Huylebroeck, D; Remacle, J E

    2000-06-16

    CD40 belongs to the tumor necrosis factor (TNF) receptor family. CD40 signaling involves the recruitment of TNF receptor-associated factors (TRAFs) to its cytoplasmic domain. We have identified a novel intracellular CD40-binding protein termed TRAF and TNF receptor-associated protein (TTRAP) that also interacts with TNF-R75 and CD30. The region of the CD40 cytoplasmic domain that is required for TTRAP association overlaps with the TRAF6 recognition motif. Association of TTRAP with CD40 increases profoundly in response to treatment of cells with CD40L. Interestingly, TTRAP also associates with TRAFs, with the highest affinity for TRAF6. In transfected cells, TTRAP inhibits in a dose-dependent manner the transcriptional activation of a nuclear factor-kappaB (NF-kappaB)-dependent reporter mediated by CD40, TNF-R75 or Phorbol 12-myristate 13-acetate (PMA) and to a lesser extent by TRAF2, TRAF6, TNF-alpha, or interleukin-1beta (IL-1beta). TTRAP does not affect stimulation of NF-kappaB induced by overexpression of the NF-kappaB-inducing kinase (NIK), the IkappaB kinase alpha (IKKalpha), or the NF-kappaB subunit P65/RelA, suggesting it acts upstream of the latter proteins. Our results indicate that we have isolated a novel regulatory factor that is involved in signal transduction by distinct members of the TNF receptor family.

  17. Suplatast tosilate alleviates nasal symptoms through the suppression of nuclear factor of activated T-cells-mediated IL-9 gene expression in toluene-2,4-diisocyanate-sensitized rats.

    PubMed

    Mizuguchi, Hiroyuki; Orimoto, Naoki; Kadota, Takuya; Kominami, Takahiro; Das, Asish K; Sawada, Akiho; Tamada, Misaki; Miyagi, Kohei; Adachi, Tsubasa; Matsumoto, Mayumi; Kosaka, Tomoya; Kitamura, Yoshiaki; Takeda, Noriaki; Fukui, Hiroyuki

    2016-03-01

    Histamine H1 receptor (H1R) gene is upregulated in patients with pollinosis; its expression level is highly correlated with the nasal symptom severity. Antihistamines are widely used as allergy treatments because they inhibit histamine signaling by blocking H1R or suppressing H1R signaling as inverse agonists. However, long-term treatment with antihistamines does not completely resolve toluene-2,4-diisocyanate (TDI)-induced nasal symptoms, although it can decrease H1R gene expression to the basal level, suggesting additional signaling is responsible for the pathogenesis of the allergic symptoms. Here, we show that treatment with suplatast tosilate in combination with antihistamines markedly alleviates nasal symptoms in TDI-sensitized rats. Suplatast suppressed TDI-induced upregulation of IL-9 gene expression. Suplatast also suppressed ionomycin/phorbol-12-myristate-13-acetate-induced upregulation of IL-2 gene expression in Jurkat cells, in which calcineurin (CN)/nuclear factor of activated T-cells (NFAT) signaling is known to be involved. Immunoblot analysis demonstrated that suplatast inhibited binding of NFAT to DNA. Furthermore, suplatast suppressed ionomycin-induced IL-9 mRNA upregulation in RBL-2H3 cells, in which CN/NFAT signaling is also involved. These data suggest that suplatast suppressed NFAT-mediated IL-9 gene expression in TDI-sensitized rats and this might be the underlying mechanism of the therapeutic effects of combined therapy of suplatast with antihistamine.

  18. Structural modifications induced by TPA (12-O-tetradecanoyl phorbol-13-acetate) in sea urchin eggs.

    PubMed

    Ciapa, B; Crossley, I; De Renzis, G

    1988-07-01

    We investigated the effect of the phorbol ester TPA (12-O-tetradecanoyl phorbol 13-acetate) on the egg morphology of the sea urchin Arbacia lixula. Our study indicates that TPA alters the cortical region of the egg: the pigment granules migrate toward the surface, while cortical granules detach from the plasma membrane. Cortical granule exocytosis did not occur but the endocytosis process was turned on. Prolonged treatment of the eggs by TPA partially inhibits the cortical granule exocytosis normally triggered by fertilization. We discuss the effects of TPA in terms of its interaction with the Ca2+ pool and cytoskeletal structures. In order to discern the respective roles of pHi and protein kinase C activity in endocytosis process activation, we compared the ultrastructural effects of TPA and ammonia. Finally, the role of pigment vesicles in egg metabolism activation is discussed.

  19. Nicotine decreases the activity of glutamate transporter type 3.

    PubMed

    Yoon, Hea-Jo; Lim, Young-Jin; Zuo, Zhiyi; Hur, Wonseok; Do, Sang-Hwan

    2014-02-10

    Nicotine, the main ingredient of tobacco, elicits seizures in animal models and cigarette smoking is regarded as a behavioral risk factor associated with epilepsy or seizures. In the hippocampus, the origin of nicotine-induced seizures, most glutamate uptake could be performed primarily by excitatory amino acid transporter type 3 (EAAT3). An association between temporal lobe epilepsy and EAAT3 downregulation has been reported. Therefore, we hypothesized that nicotine may elicit seizures through the attenuation of EAAT3 activity. We investigated chronic nicotine exposure (72 h) cause reduction of the activity of EAAT3 in a Xenopus oocyte expression system using a two-electrode voltage clamp. The roles of protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K) were also determined. Nicotine (0.001-1 μM) resulted in a time- and dose-dependent decrease in EAAT3 activity with maximal inhibition at nicotine concentrations of 0.03 μM or higher and at an exposure time of 72 h. Vmax on the glutamate response was significantly reduced in the nicotine group (0.03 μM for 72 h), but the Km value of EAAT3 for glutamate was not altered. When nicotine-exposed oocytes (0.03 μM for 72 h) were pretreated with phorbol-12-myristate-13-acetate (PMA, a PKC activator), the nicotine-induced reduction in EAAT3 activity was abolished. PKC inhibitors (staurosporine, chelerythrine, and calphostin C) significantly reduced basal EAAT3 activity, but there were no significant differences among the PKC inhibitors, nicotine, and PKC inhibitors+nicotine groups. Similar response patterns were observed among PI3K inhibitors (wortmannin and LY294002), nicotine, and PI3K inhibitors+nicotine. In conclusion, this study suggests that nicotine decreases EAAT3 activity, and that this inhibition seems to be dependent on PKC and PI3K. Our results may provide an additional mechanism for nicotine-induced seizure.

  20. Inhibition of Chlamydia psittaci in oxidatively active thioglycolate-elicited macrophages: distinction between lymphokine-mediated oxygen-dependent and oxygen-independent macrophage activation.

    PubMed Central

    Byrne, G I; Faubion, C L

    1983-01-01

    Immune sensitization of spleen cells was required to generate lymphokines (LK) that activated thioglycolate-elicited peritoneal macrophages (thio MACs) to respond via both oxygen-dependent and oxygen-independent systems. LK produced by incubating spleen cells from immunized A/J and LAF mice with concanavalin A stimulated a response by thio MACs to phorbol-12-myristate-13-acetate (PMA)-induced chemiluminescence and activated these cells to inhibit intracellular Chlamydia psittaci replication. Concanavalin A-incubated spleen cell preparations from unimmunized animals stimulated neither PMA-induced chemiluminescence nor antichlamydial activity. Activated thio MACs demonstrated a rapid chemiluminescence response to the intracellular protozoan Toxoplasma gondii, but C. psittaci did not induce chemiluminescence in LK-activated thio MACs, although cells exposed to C. psittaci retained their responsiveness to PMA-induced chemiluminescence. The PMA-induced response was inhibited by the addition of exogenous superoxide dismutase and catalase and was therefore related to the production of superoxide anion (O2 . -) and H2O2 by these cells. LK preparations incubated at 56 degrees C before macrophage treatment retained antichlamydial activity, but heated preparations no longer stimulated thio MACs to respond in the chemiluminescence assay. These data provide evidence that macrophage oxygen-dependent and oxygen-independent systems are simultaneously activated by LK, and these preparations comprise at least two distinct activities. The portion responsible for activating oxygen-dependent systems (PMA-induced chemiluminescence) is heat labile, whereas the portion responsible for activating oxygen-independent systems is heat stable. It is the latter system that results in restriction of chlamydial growth and in vitro parasite persistence. PMID:6840848

  1. Protein kinase C and epidermal growth factor stimulation of Raf1 potentiates adenylyl cyclase type 6 activation in intact cells.

    PubMed

    Beazely, Michael A; Alan, Jamie K; Watts, Val J

    2005-01-01

    Adenylyl cyclase type 6 (AC6) activity is inhibited by protein kinase C (PKC) in vitro; however, in intact cells, PKC activation does not inhibit the activity of transiently expressed AC6. To investigate the effects of PKC activation on AC6 activity in intact cells, we constructed human embryonic kidney (HEK) 293 cells that stably express wild-type AC6 (AC6-WT) or an AC6 mutant lacking a PKC and cyclic AMP-dependent protein kinase (PKA) phosphorylation site, Ser674 (AC6-S674A). In contrast to in vitro observations, we observed a PKC-mediated enhancement of forskolin- and isoproterenol-stimulated cyclic AMP accumulation in HEK-AC6 cells. Phorbol 12-myristate 13-acetate also potentiated cyclic AMP accumulation in cells expressing endogenous AC6, including Chinese hamster ovary cells and differentiated Cath.a differentiated cells. In HEK-AC6-S674A cells, the potentiation of AC6 stimulation was significantly greater than in cells expressing AC6-WT. The positive effect of PKC activation on AC6 activity seemed to involve Raf1 kinase because the Raf1 inhibitor 3-(3,5-dibromo-4-hydroxybenzylidene-5-iodo-1,3-dihydro-indol-2-one (GW5074) inhibited the PKC potentiation of AC6 activity. Furthermore, the forskolin-stimulated activity of a recombinant AC6 in which the putative Raf1 regulatory sites have been eliminated was not potentiated by activation of PKC. The ability of Raf1 to regulate AC6 may involve a direct interaction because AC6 and a constitutively active Raf1 construct were coimmunoprecipitated. In addition, we report that epidermal growth factor receptor activation also enhances AC6 signaling in a Raf1-dependent manner. These data suggest that Raf1 potentiates drug-stimulated cyclic AMP accumulation in cells expressing AC6 after activation of multiple signaling pathways.

  2. Polyphenol Content and Modulatory Activities of Some Tropical Dietary Plant Extracts on the Oxidant Activities of Neutrophils and Myeloperoxidase

    PubMed Central

    Tsumbu, Cesar N.; Deby-Dupont, Ginette; Tits, Monique; Angenot, Luc; Frederich, Michel; Kohnen, Stephane; Mouithys-Mickalad, Ange; Serteyn, Didier; Franck, Thierry

    2012-01-01

    Young leaves of Manihot esculenta Crantz (Euphorbiaceae), Abelmoschus esculentus (Malvaceae), Hibiscus acetosella (Malvaceae) and Pteridium aquilinum (Dennstaedtiaceae) are currently consumed as green vegetables by peoples in sub-Saharan Africa, Latin America, Asia and their migrants living in Western Europe. Sub-Saharan peoples use Manihot, Abelmoschus and Hibiscus also in the folk medicine to alleviate fever and pain, in the treatment of conjunctivitis, rheumatism, hemorrhoid, abscesses, ... The present study investigates the effects of aqueous extracts of those plants on the production of reactive oxygen species (ROS) and the release of myeloperoxidase (MPO) by equine neutrophils activated with phorbol 12-myristate 13-acetate (PMA). The ROS production was measured by lucigenin-enhanced chemiluminescence (CL), and the release of total MPO by an ELISA method. The study also investigates the effect of the extracts on the activity of MPO by studying its nitration activity on tyrosine and by using a new technique called SIEFED (Specific Immunological Extraction Followed by Enzymatic Detection) that allows studying the direct interaction of compounds with the enzyme. In all experiments, the aqueous extracts of the plants developed concentration-dependent inhibitory effects. A moderate heat treatment did not significantly modify the inhibitory capacity of the extracts in comparison to not heated ones. Total polyphenol and flavonoid contents were determined with an HPLC-UV/DAD analysis and a spectroscopic method using Folin-Ciocalteu reagent. Some polyphenols with well-known antioxidant activities (caffeic acid, chlorogenic acid, hyperoside, rosmarinic acid and rutin) were found in the extracts and may partly explain the inhibitory activities observed. The role of those dietary and medicinal plants in the treatment of ROS-dependent inflammatory diseases could have new considerations for health. PMID:22312276

  3. Conversion of protein kinase C from a Ca/sup 2 +/-dependent to an independent form of phorbol ester-binding protein by digestion with trypsin

    SciTech Connect

    Huang, K.P.; Huang, F.L.

    1986-08-29

    Tryptic fragments of protein kinase C containing the kinase (45 KDa) and phorbol ester-binding activity (38 KDa) were separated by Mono O column chromatography. The purified phorbol ester-binding fragment exhibits a higher affinity for phosphatidylserine than the native enzyme but comparable Kd for (/sup 3/H)phorbol 12,13-dibutyrate as the native enzyme. This proteolytic fragment binds phorbol ester equally efficient either in the presence or absence of Ca/sup 2 +/ and the addition of the kinase fragment did not restore the Ca/sup 2 +/-requirement for the binding. These results indicate that protein kinase C is composed of two functionally distinct units which can be expressed independently after limited proteolysis with trypsin.

  4. Light induced degradation of phorbol esters.

    PubMed

    Yunping, Bu; Ha, Bui Thi Ngoc; Eunice, Yeo; Chueng, Lo Loong; Yan, Hong

    2012-10-01

    Jatropha curcas (Jatropha) is a tropical shrub that is gaining popularity as a biofuel feedstock plant. Phorbol esters (PEs) are tetracyclic tiglian diterpenoids that are present in Jatropha seeds and other parts of plant. Epidermal cell irritating and cancer promoting PEs not only reduce commercial values of Jatropha seed cake but also cause some safety and environment concerns on PE leaching to soil. A simple bioassay of PE toxicity was conducted by incubating 48 h old brine shrimp (Artemia salina) nauplii with Jatropha oil for 24 h. 1-4% of Jatropha oil (corresponding to PE concentration of 25-100 mg L(-1)) had mortality rate of 5-95%, with LC50 estimated to be 2.7% of oil or 67 mg L(-1) of PE. Jatropha oil was incubated with clay or black soil (autoclaved or non-autoclaved) in the darkness or under sunlight for different periods of time before oil was re-extracted and tested for PE content by HPLC and for remaining toxicity with the brine shrimp bioassay. Under sunlight, PE decreased to non-detectable level within six days. Toxicity reduced to less than 5% mortality rate that is comparable to rapeseed oil control within the same period. In contrast, PE level and toxicity remained little changed when Jatropha oil was incubated in the darkness. Such PE degradation/detoxification was also found independent of the presence of soil or soil microorganisms. We conclude that sunlight directly degrades and detoxifies PEs and this finding should alleviate the concern on long term environmental impact of PE leaching.

  5. Gabapentin inhibits the activity of the rat excitatory glutamate transporter 3 expressed in Xenopus oocytes.

    PubMed

    Gil, Yang Sook; Kim, Jong Hak; Kim, Chi Hyo; Han, Jong In; Zuo, Zhiyi; Baik, Hee Jung

    2015-09-05

    Gabapentin, a derivative of γ-aminobutyric acid (GABA), is used to treat epilepsy and neuropathic pain. The pharmacological mechanisms for gabapentin effects are not completely elucidated. We investigated the effect of gabapentin on the activity of excitatory amino acid transporter 3 (EAAT3) that can regulate extracellular glutamate concentrations. EAAT3 was expressed in Xenopus oocytes. Membrane currents were recorded after application of l-glutamate in the presence or absence of different concentrations of gabapentin (1-300μM) by using a two-electrode voltage clamp. To determine the effect of gabapentin on Vmax and Km of EAAT3 for l-glutamate, l-glutamate at 3-300μM was used. To study the effects of protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K) on gabapentin-induced changes in EAAT3 activity, oocytes were incubated with the PKC activator (Phorbol 12-myristate 13-acetate, PMA), the PKC inhibitors (chelerythrine or staurosporine), and the PI3K inhibitor wortmannin. Gabapentin decreased EAAT3 activity in a concentration-dependent manner and EAAT3 activity was significantly inhibited by 10-300μM gabapentin. Gabapentin significantly decreased Vmax without affecting Km. PMA increased EAAT3 activity; however, gabapentin attenuated the PMA-induced increase in EAAT3 activity. Pre-incubation of oocytes with chelerythrine, staurosporine, or wortmannin decreased basal EAAT3 activity, which was further reduced by gabapentin. We conclude that gabapentin decreases EAAT3 activity at clinically relevant and higher concentrations, in which PKC and PI3K may not be involved. The results suggest that EAAT3 might not be a target for the anticonvulsant action of gabapentin.

  6. Tumor promoting phorbol diesters: substrates for diacylglycerol lipase

    SciTech Connect

    Cabot, M.C.

    1984-08-30

    Enzyme activity in rat serum was examined utilizing the potent tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and various glycerolipids as substrates. The serum activity was specific for hydrolysis of the long chain tetradecanoate moiety of TPA, hydrolyzed mono- and diacylglycerols, but was not effective against triacylglycerols, cholesterylesters, or phospholipids. Heating the enzyme preparation at 56/sup 0/C for 1 min was dually effective in reducing the hydrolysis of both TPA and dioleoylglycerol by 83-86% of control levels. The potent diacylglycerol lipase inhibitor, RHC 80267, inhibited the hydrolysis of TPA in the 0.2-1.0 ..mu..M range and was also a potent blocker of monoacyl- and diacylglycerol hydrolysis. In substrate competition studies, exogenous unlabeled TPA was added to the (/sup 14/C)dioleoylglycerol-containing reaction mixture, however, this produced an approximate 3-fold stimulation of (/sup 14/)dioleoylglycerol hydrolysis. Although we have not established whether the hydrolysis of TPA and diacylglycerol is the work of one enzyme, the effectiveness of the specific lipase inhibitor, RHC 80267, demonstrates that diacylglycerol lipase can utilize TPA as substrate, a finding never before documented. This point is of interest in light of the theory that phorbol esters act by mimicry of the natural lipid mediator, diacylglycerols. 44 references, 3 figures, 1 table.

  7. Irradiation with narrowband-ultraviolet B suppresses phorbol ester-induced up-regulation of H1 receptor mRNA in HeLa cells.

    PubMed

    Kitamura, Yoshiaki; Mizuguchi, Hiroyuki; Okamoto, Kentaro; Kitayama, Mika; Fujii, Tatsuya; Fujioka, Akira; Matsushita, Toshio; Mukai, Takashi; Kubo, Yoshiaki; Kubo, Nobuo; Fukui, Hiroyuki; Takeda, Noriaki

    2016-01-01

    Conclusion These findings suggest that low dose irradiation with 310 nm NB-UVB specifically suppressed the up-regulation of H1R gene expression without inducing apoptosis and that UVB of shorter or longer wavelength than 310 nm NB-UVB had no such effects. Objective To develop a narrowband-ultraviolet B(NB-UVB) phototherapy for allergic rhinitis, this study investigated the effects of irradiation with NB-UVB at wavelength of 310 nm on phorbol-12-myristate-13-acetate (PMA)-induced up-regulation of histamine H1 receptor (H1R) mRNA in HeLa cells. Methods The mRNA levels of H1R in HeLa cells were measured using real-time RT-PCR. Apoptosis were evaluated with DNA fragmentation assay. Results PMA induced a significant increase in H1R mRNA expression in HeLa cells. Irradiation with 305 nm UVB and 310 nm NB-UVB, but not with 315 nm UVB at doses of 200 and 300 mJ/cm(2) significantly suppressed PMA-induced up-regulation of H1R mRNA. At a dose of 200 mJ/cm(2), irradiation with 305 nm UVB, but not with 310 nm NB-UVB, induced apoptosis, although exposure of the cells to both 305 and 310 nm UVB induced apoptosis at a dose of 300 mJ/cm(2) after PMA treatment in HeLa cells. Conversely, irradiation with 315 nm UVB at doses of 200 and 300 mJ/cm(2) did not induce apoptosis.

  8. Caffeine-induced inhibition of the activity of glutamate transporter type 3 expressed in Xenopus oocytes.

    PubMed

    Shin, Hyun-Jung; Ryu, Jung-Hee; Kim, Sang-Tae; Zuo, Zhiyi; Do, Sang-Hwan

    2013-02-27

    Caffeine has been known to trigger seizures, however, the precise mechanism about the proconvulsive effect of caffeine remains unclear. Glutamate transporters play an important role to maintain the homeostasis of glutamate concentration in the brain tissue. Especially, dysfunction of excitatory amino acid transporter type 3 (EAAT3) can lead to seizures. We investigated the effects of caffeine on the activity of EAAT3 and the involvement of protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K). Rat EAAT3 was expressed in Xenopus oocytes by injecting EAAT3 mRNA. l-Glutamate (30μM)-induced inward currents were recorded via the two-electrode voltage clamp method. Caffeine decreased EAAT3 activity in a dose-dependent manner. Caffeine (30μM for 3min) significantly reduced V(max), but did not alter K(m) value of EAAT3 for glutamate. When preincubated oocytes with phorbol-12-myristate-13-acetate (PMA, a PKC activator) were exposed to caffeine, PMA-induced increase in EAAT3 activity was abolished. Two PKC inhibitors (chelerythrine and staurosporine) significantly reduced basal EAAT3 activity. Whereas, there were no significant differences among the PKC inhibitors, caffeine, and PKC inhibitors+caffeine groups. In similarly fashion, wortmannin (a PI3K inhibitor) significantly decreased EAAT3 activity, however no statistical differences were observed among the wortmannin, caffeine, and wortmannin+caffeine groups. Our results demonstrate that caffeine attenuates EAAT3 activity and this reducing effect of caffeine seems to be mediated by PKC and PI3K.

  9. Activation of Group I Metabotropic Glutamate Receptors Potentiates Heteromeric Kainate Receptors

    PubMed Central

    Wetherington, Jonathon; Shaw, Renee; Serrano, Geidy; Swanger, Sharon; Dingledine, Raymond

    2013-01-01

    Kainate receptors (KARs), a family of ionotropic glutamate receptors, are widely expressed in the central nervous system and are critically involved in synaptic transmission. KAR activation is influenced by metabotropic glutamate receptor (mGlu) signaling, but the underlying mechanisms are not understood. We undertook studies to examine how mGlu modulation affects activation of KARs. Confocal immunohistochemistry of rat hippocampus and cultured rat cortex revealed colocalization of the high-affinity KAR subunits with group I mGlu receptors. In hippocampal and cortical cultures, the calcium signal caused by activation of native KARs was potentiated by activation of group I mGlu receptors. In Xenopus laevis oocytes, activation of group I mGlu receptors potentiated heteromeric but not homomeric KAR-mediated currents, with no change in agonist potency. The potentiation of heteromeric KARs by mGlu1 activation was attenuated by GDPβS, blocked by an inhibitor of phospholipase C or the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA), prolonged by the phosphatase inhibitor okadaic acid, but unaffected by the tyrosine kinase inhibitor lavendustin A. Protein kinase C (PKC) inhibition reduced the potentiation by mGlu1 of GluK2/GluK5, and conversely, direct activation of PKC by phorbol 12-myristate,13-acetate potentiated GluK2/GluK5. Using site-directed mutagenesis, we identified three serines (Ser833, Ser836, and Ser840) within the membrane proximal region of the GluK5 C-terminal domain that, in combination, are required for mGlu1-mediated potentiation of KARs. Together, these data suggest that phosphorylation of key residues in the C-terminal domain changes the overall charge of this domain, resulting in potentiated agonist responses. PMID:23066089

  10. Investigation of MEK activity in COS7 cells entering mitosis.

    PubMed

    Shi, Huaiping; Zhang, Tianying; Yi, Yongqing; Luo, Jun

    2014-12-01

    Although the mitogen-activated protein kinase (MAPK) pathway has been extensively investigated, numerous events remain unclear. In the present study, we examined mitogen-activated protein kinase kinase (MEK) expression from interphase to mitosis. Following nocodazole treatment, COS7 cells gradually became round as early as 4 h after treatment. Cyclin B1 expression gradually increased from 4 to 24 h in the presence of nocodazole. When cells were treated with nocodazole for 4 h, the level of epidermal growth factor (EGF)-mediated MEK phosphorylation did not significantly change between nocodazole-untreated and -treated (4 h) cells (P>0.05). However, EGF-mediated MEK phosphorylation was significantly inhibited upon treatment with nocodazole for 8 and 24 h compared to nocodazole-untreated cells (P<0.05). MEK phosphorylation levels were comparable between 1, 5, 10 and 50 ng/ml EGF treatments. Phorbol 12-myristic 13-acetate (PMA) did not activate MEK in mitotic cells. Following treatment of COS7 cells at the interphase with AG1478 or U0126, MEK phosphorylation was blocked. In addition, the investigation of the expression of proteins downstream of MEK demonstrated that EGF does not significantly affect the phosphorylation level of extracellular-signal-regulated kinase (ERK), ribosomal protein S6 kinase (RSK) and Elk in mitotic cells (P>0.05). The results showed that MEK expression is gradually inhibited from cell interphase to mitosis, and that MEK downstream signaling is affected by this inhibition, which probably reflects the requirements of cell physiology during mitosis.

  11. Mechanisms for cardiac depression induced by phorbol myristate acetate in working rat hearts.

    PubMed Central

    Karmazyn, M.; Watson, J. E.; Moffat, M. P.

    1990-01-01

    1. The effects of the phorbol ester, phorbol myristate acetate (PMA) were examined on function and energy metabolism in the isolated working heart of the rat. 2. At a concentration of 10(-9) M PMA produced a rapid loss in cardiac function in terms of aortic flow rate (AFR) and coronary flow rates (CFR) whereas a similar concentration of 4 alpha-phorbol 12,13-didecanoate was ineffective. At a concentration of 10(-10) M, the PMA-induced depression was more gradual but nevertheless very pronounced with an almost total loss in AFR after 30 min perfusion. The reduction in CFR was more moderate than that observed with respect to AFR. 3. The protein kinase C (PKC) inhibitor (+/-)-1-O-hexadecyl-2-O-acylglycerol significantly attenuated the loss in AFR and CFR following addition of PMA. 4. Two inhibitors of Na+/H+ exchange, amiloride and quinacrine, totally prevented the reduction in AFR. Although the PMA-induced depression in CFR was also attenuated by both amiloride and quinacrine, these effects were not significant, probably reflecting the less pronounced effect of PMA on this parameter. 5. Nifedipine, a dihydropyridine calcium channel blocker reduced PMA toxicity to a similar degree as Na+/N+ exchange inhibition whereas the calcium channel agonist Bay K 8644 was without effect. 6. Tissue content of energy metabolites including high energy phosphates, total adenine nucleotides or lactate were not significantly affected by PMA perfusion. 7. We conclude that PKC activation is necessary for phorbol ester-induced cardiac dysfunction.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2207502

  12. Effect of phorbol esters on contractile state and calcium flux in cultured chick heart cells

    SciTech Connect

    Leatherman, G.F.; Kim, D.; Smith, T.W.

    1987-07-01

    Phorbol esters are potent tumor promoters that have been widely used in studies of transmembrane signaling because of their ability to activate protein kinase C. To study the effect of phorbol esters (and indirectly, the role of protein kinase C) on the cardiac muscle contractility, the authors examined the effects of phorbol myristate acetate (PMA) on contractile state, transmembrane /sup 45/Ca fluxes, and cytosolic free Ca concentration ((Ca)/sub i/) using spontaneously contracting cultured chick ventricular cells. PMA produced a concentration- and time-dependent decrease in the amplitude of cell motion (half maximum inhibitory concentration) with maximal effect observed at 1 ..mu..M. PMA (1 ..mu..M) reduced /sup 45/Ca uptake rate by 16 /plus minus/ 4% and the size of the rapidly exchangeable Ca pool by 11 /plus minus/ 2%, but did not alter the /sup 45/Ca efflux rate. In fura-2-loaded cells. PMA produced a decrease in (Ca)/sub i/ from 96 /plus minus/ 7 to 72 /plus minus/ 5 nM with a time course similar to that of alteration in contractile amplitude. These results indicate that PMA influences transsarcolemmal Ca uptake, and thus the excitation-contraction process, and suggest that protein kinase C may modulate myocardial Ca homeostassis and contractile state.

  13. Arachidonic acid increases choline acetyltransferase activity in spinal cord neurons through a protein kinase C-mediated mechanism.

    PubMed

    Chalimoniuk, Malgorzata; King-Pospisil, Kelley; Pedersen, Ward A; Malecki, Andrzej; Wylegala, Edward; Mattson, Mark P; Hennig, Bernhard; Toborek, Michal

    2004-08-01

    Arachidonic acid (AA) plays an important role as a signaling factor in the CNS. Therefore, exposure to AA may affect cholinergic neurons in the spinal cord. To test this hypothesis, mRNA expression and activity of choline acetyltransferase (ChAT) was measured in cultured spinal cord neurons treated with increasing concentrations (0.1-10 microm) of AA. Exposure to AA increased mRNA levels and activity of ChAT in dose- and time-dependent manners. The most marked effect of AA on ChAT expression was observed in spinal cord neurons treated with 10 microm AA for 1 h. To study the mechanisms associated with these effects, ChAT mRNA levels and activity were measured in cultured spinal cord neurons exposed to AA and inhibitors of protein kinase C (PKC), such as 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dichloride (H-7) and chelerythrine. Inhibition of PKC completely prevented an AA-induced increase in ChAT expression. In addition, exposure of spinal cord neurons to phorbol-12-myristate-13-acetate (PMA), an activator of PKC, mimicked AA-induced stimulation of ChAT activity. The AA-mediated increase in ChAT mRNA levels and activity was also prevented by treatments with EGTA, indicating the role of calcium metabolism in induction of this enzyme. In contrast, treatments with 7-nitroindazole (7-NI, a specific inhibitor of neuronal nitric oxide synthase), sodium vanadate (NaV, a non-specific inhibitor of phosphatases), and N-acetyl-cysteine (NAC, an antioxidant) had no effect on AA-induced changes in ChAT activity. The protein synthesis inhibitor cycloheximide completely blocked AA-mediated increase in ChAT activity. These results indicate that the AA-evoked increase in ChAT activity in spinal cord neurons is mediated by PKC, presumably at the transcriptional level.

  14. Anti-inflammatory activity of Chios mastic gum is associated with inhibition of TNF-alpha induced oxidative stress

    PubMed Central

    2011-01-01

    Background Gum of Chios mastic (Pistacia lentiscus var. chia) is a natural antimicrobial agent that has found extensive use in pharmaceutical products and as a nutritional supplement. The molecular mechanisms of its anti-inflammatory activity, however, are not clear. In this work, the potential role of antioxidant activity of Chios mastic gum has been evaluated. Methods Scavenging of superoxide radical was investigated by electron spin resonance and spin trapping technique using EMPO spin trap in xanthine oxidase system. Superoxide production in endothelial and smooth muscle cells stimulated with TNF-α or angiotensin II and treated with vehicle (DMSO) or mastic gum (0.1-10 μg/ml) was measured by DHE and HPLC. Cellular H2O2 was measured by Amplex Red. Inhibition of protein kinase C (PKC) with mastic gum was determined by the decrease of purified PKC activity, by inhibition of PKC activity in cellular homogenate and by attenuation of superoxide production in cells treated with PKC activator phorbol 12-myristate 13-acetate (PMA). Results Spin trapping study did not show significant scavenging of superoxide by mastic gum itself. However, mastic gum inhibited cellular production of superoxide and H2O2 in dose dependent manner in TNF-α treated rat aortic smooth muscle cells but did not affect unstimulated cells. TNF-α significantly increased the cellular superoxide production by NADPH oxidase, while mastic gum completely abolished this stimulation. Mastic gum inhibited the activity of purified PKC, decreased PKC activity in cell homogenate, and attenuated superoxide production in cells stimulated with PKC activator PMA and PKC-dependent angiotensin II in endothelial cells. Conclusion We suggest that mastic gum inhibits PKC which attenuates production of superoxide and H2O2 by NADPH oxidases. This antioxidant property may have direct implication to the anti-inflammatory activity of the Chios mastic gum. PMID:21645369

  15. Progesterone increases the activity of glutamate transporter type 3 expressed in Xenopus oocytes.

    PubMed

    Son, Ilsoon; Shin, Hyun-Jung; Ryu, Jung-Hee; Kim, Hae-Kyoung; Do, Sang-Hwan; Zuo, Zhiyi

    2013-09-05

    Progesterone is an important sex hormone for pregnancy and also has neuroprotective and anticonvulsant effects. It is well-known that full-term parturients become more susceptible to volatile anesthetics. Glutamate transporters are important for preventing neurotoxicity and anesthetic action in the central nervous system. We investigated the effects of progesterone on the activity of glutamate transporter type 3 (EAAT3), the major neuronal EAAT. EAAT3 was expressed in Xenopus laevis oocytes by injecting its mRNA. Oocytes were incubated with diluted progesterone for 72 h. Two-electrode voltage clamping was used to measure membrane currents before, during, and after applying 30 μML-glutamate. Progesterone (1-100 nM) significantly increased EAAT3 activity in a dose-dependent manner. Our kinetic study showed that the Vmax was increased in the progesterone group compared with that in the control group (2.7 ± 0.2 vs. 3.6 ± 0.2μC for control group vs. progesterone group; n=18-23; P<0.05), however, Km was unaltered (46.7 ± 10.2μM vs. 55.9 ± 10.5μM for control group vs. progesterone group; n=18-23; P>0.05). Phorbol-12-myristate-13-acetate, a protein kinase C (PKC) activator, did not change progesterone-enhanced EAAT3 activity. Inhibitors of PKC or phosphatidylinositol 3-kinase (PI3K) abolished the progesterone-induced increases in EAAT3 activity. Our results suggest that progesterone enhances EAAT3 activity and that PKC and PI3K are involved in mediating these effects. These effects of progesterone may contribute to its anticonvulsant and anesthesia-related properties.

  16. The angiotensin receptor type 1-Gq protein-phosphatidyl inositol phospholipase Cbeta-protein kinase C pathway is involved in activation of proximal tubule Na+-ATPase activity by angiotensin(1-7) in pig kidneys.

    PubMed

    Lara, Lucienne S; Correa, Juliana S; Lavelle, Anouchka B; Lopes, Anibal G; Caruso-Neves, Celso

    2008-05-01

    In a previous study, we observed that angiotensin(1-7) (Ang(1-7)) stimulates proximal tubule Na+-ATPase activity through the angiotensin receptor type 1 (AT1R). Here we aimed to study the signalling pathways involved. Our results show that the stimulatory effect of Ang(1-7) on Na+-ATPase activity through AT1R involves a Gq protein-phosphatidyl inositol-phospholipase Cbeta (PI-PLCbeta) pathway because: (1) the effect was reversed by GDPbetaS, a non-hydrolysable GDP analogue, and by a monoclonal Gq protein antibody; (2) the effect was similar and not additive to that of GTPgammaS, a non-hydrolysable GTP analogue; (3) Ang(1-7) induced a rapid decrease (30 s) in phosphatidylinositol 4,5-bisphosphate levels, a PI-PLCbeta substrate; and (4) U73122, a specific inhibitor of PI-PLCbeta, abolished Ang(1-7)-induced stimulation of Na+-ATPase activity. Angiotensin(1-7) increased the protein kinase C (PKC) activity similarly to phorbol-12-myristate-13-acetate (PMA), an activator of PKC. This effect was reversed by losartan, a specific antagonist of AT1R. The stimulatory effects of Ang(1-7) and PMA on Na+-ATPase activity are similar, non-additive and reversed by calphostin C, a specific inhibitor of PKC. A catalytic subunit of PKC (PKC-M) increased the Na+-ATPase activity. These data show that Ang(1-7) stimulates Na+-ATPase activity through the AT1R-Gq protein-PI-PLCbeta-PKC pathway. This effect is similar to that described for angiotensin II, showing for the first time that these compounds could have similar effects in the renal system.

  17. Suppression of extracellular signal-related kinase and activation of p38 MAPK are two critical events leading to caspase-8- and mitochondria-mediated cell death in phytosphingosine-treated human cancer cells.

    PubMed

    Park, Moon-Taek; Choi, Jung-A; Kim, Min-Jeong; Um, Hong-Duck; Bae, Sangwoo; Kang, Chang-Mo; Cho, Chul-Koo; Kang, Seongman; Chung, Hee Yong; Lee, Yun-Sil; Lee, Su-Jae

    2003-12-12

    We previously demonstrated that the phytosphingosine-induced apoptosis was accompanied by the concomitant induction of both the caspase-8-mediated and mitochondrial activation-mediated apoptosis pathways. In the present study, we investigated the role of mitogen-activated protein kinases (MAPKs) in the activation of these two distinct cell death pathways induced by phytosphingosine in human cancer cells. Phytosphingosine caused strong induction of caspase-8 activity and caspase-independent Bax translocation to the mitochondria. A rapid decrease of phosphorylated ERK1/2 and a marked increase of p38 MAPK phosphorylation were observed within 10 min after phytosphingosine treatment. Activation of ERK1/2 by pretreatment with phorbol 12-myristate 13-acetate or forced expression of ERK1/2 attenuated phytosphingosine-induced caspase-8 activation. However, Bax translocation and caspase-9 activation was unaffected, indicating that down-regulation of the ERK activity is specifically required for the phytosphingosine-induced caspase-8-dependent cell death pathway. On the other hand, treatment with SB203580, a p38 MAPK-specific inhibitor, or expression of a dominant negative form of p38 MAPK suppressed phytosphingosine-induced translocation of the proapoptotic protein, Bax, from the cytosol to mitochondria, cytochrome c release, and subsequent caspase-9 activation but did not affect caspase-8 activation, indicating that activation of p38 MAPK is involved in the mitochondrial activation-mediated cell death pathway. Our results suggest that phytosphingosine can utilize two different MAPK signaling pathways for amplifying the apoptosis cascade, enhancing the understanding of the molecular mechanisms utilized by naturally occurring metabolites to regulate cell death. Molecular dissection of the signaling pathways that activate the apoptotic cell death machinery is critical for both our understanding of cell death events and development of cancer therapeutic agents.

  18. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression

    PubMed Central

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-01-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP-1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP-1 cells were differentiated to macrophages by phorbol 12-myristate 13-acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon-γ (IFN-γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription-quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme-linked immunosorbent assay. IRF5 protein and nuclei co-localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN-γ stimulation-induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156

  19. Alpha(1)-acid glycoprotein is contained in bovine neutrophil granules and released after activation.

    PubMed

    Rahman, Mizanur M D; Miranda-Ribera, Alba; Lecchi, Cristina; Bronzo, Valerio; Sartorelli, Paola; Franciosi, Federica; Ceciliani, Fabrizio

    2008-09-15

    The present study was designed to investigate the capability of bovine neutrophil granulocytes to produce the minor acute phase protein alpha(1)-acid glycoprotein (AGP, Orososmucoid). Bovine neutrophils contain a high MW (50-60kDa) AGP isoform (PMN-AGP), as determined by Western blotting and confirmed by fluorescence microscopy. The presence of AGP in bovine neutrophils has been confirmed by fluorescence immunocytometry. In addition, bovine neutrophils contain also a 42-45kDa isoform, which has the same MW as plasma-, liver-delivered, AGP. cDNA sequence of plasma- and PMN-AGP revealed that (i) the two proteins are products of the same gene; (ii) the differences in molecular weight are due do different post-translational modifications. This result was confirmed by deglycosylation of the two glycoforms. Exocytosis studies showed that isolated neutrophils exposed to several challengers, including Zymosan activated serum (ZAS) and phorbol 12-myristate 13-acetate (PMA), which mimic the inflammatory activation, released PMN-AGP as early as 15min. AGP's mRNA is physiologically expressed by mature resting neutrophils. Real-time PCR on LPS, ZAS and PMA challenged cells revealed that the level of expression apparently does not increase after inflammatory activation. Collectively, the findings reported in this paper proved that PMN-AGP: (i) is a hyperglycosylated glycoform of plasma AGP, (ii) is stored in granules, and (iii) is released by neutrophils in response to activation. Due to its anti-inflammatory activity, PMN-AGP may work as a fine tuning of the neutrophils functions in the inflammatory focus, i.e. it can reduce the damages caused by an excess of inflammatory response.

  20. 12-Deoxyphorbols Promote Adult Neurogenesis by Inducing Neural Progenitor Cell Proliferation via PKC Activation

    PubMed Central

    Geribaldi-Doldán, Noelia; Flores-Giubi, Eugenia; Murillo-Carretero, Maribel; García-Bernal, Francisco; Carrasco, Manuel; Macías-Sánchez, Antonio J.; Domínguez-Riscart, Jesús; Verástegui, Cristina; Hernández-Galán, Rosario

    2016-01-01

    Background: Neuropsychiatric and neurological disorders frequently occur after brain insults associated with neuronal loss. Strategies aimed to facilitate neuronal renewal by promoting neurogenesis constitute a promising therapeutic option to treat neuronal death-associated disorders. In the adult brain, generation of new neurons occurs physiologically throughout the entire life controlled by extracellular molecules coupled to intracellular signaling cascades. Proteins participating in these cascades within neurogenic regions constitute potential pharmacological targets to promote neuronal regeneration of injured areas of the central nervous system. Methodology: We have performed in vitro and in vivo approaches to determine neural progenitor cell proliferation to understand whether activation of kinases of the protein kinase C family facilitates neurogenesis in the adult brain. Results: We have demonstrated that protein kinase C activation by phorbol-12-myristate-13-acetate induces neural progenitor cell proliferation in vitro. We also show that the nontumorogenic protein kinase C activator prostratin exerts a proliferative effect on neural progenitor cells in vitro. This effect can be reverted by addition of the protein kinase C inhibitor G06850, demonstrating that the effect of prostratin is mediated by protein kinase C activation. Additionally, we show that prostratin treatment in vivo induces proliferation of neural progenitor cells within the dentate gyrus of the hippocampus and the subventricular zone. Finally, we describe a library of diterpenes with a 12-deoxyphorbol structure similar to that of prostratin that induces a stronger effect than prostratin on neural progenitor cell proliferation both in vitro and in vivo. Conclusions: This work suggests that protein kinase C activation is a promising strategy to expand the endogenous neural progenitor cell population to promote neurogenesis and highlights the potential of 12-deoxyphorbols as pharmaceutical

  1. Tephrosia purpurea alleviates phorbol ester-induced tumor promotion response in murine skin.

    PubMed

    Saleem, M; Ahmed Su; Alam, A; Sultana, S

    2001-02-01

    In recent years, considerable emphasis has been placed on identifying new cancer chemopreventive agents, which could be useful for the human population. Tephrosia purpurea has been shown to possess significant activity against hepatotoxicity, pharmacological and physiological disorders. Earlier we showed that Tephrosia purpurea inhibits benzoyl peroxide-mediated cutaneous oxidative stress and toxicity. In the present study, we therefore assessed the effect of Tephrosia purpurea on 12-O-tetradecanoyl phorbal-13-acetate (TPA; a well-known phorbol ester) induced cutaneous oxidative stress and toxicity in murine skin. The pre-treatment of Swiss albino mice with Tephrosia purpurea prior to application of croton oil (phorbol ester) resulted in a dose-dependent inhibition of cutaneous carcinogenesis. Skin tumor initiation was achieved by a single topical application of 7,12-dimethyl benz(a)anthracene (DMBA) (25 microg per animal per 0.2 ml acetone) to mice. Ten days later tumor promotion was started by twice weekly topical application of croton oil (0.5% per animal per 0.2 ml acetone, v /v). Topical application of Tephrosia purpurea 1 h prior to each application of croton oil (phorbol ester) resulted in a significant protection against cutaneous carcinogenesis in a dose-dependent manner. The animals pre-treated with Tephrosia purpurea showed a decrease in both tumor incidence and tumor yield as compared to the croton oil (phorbol ester)-treated control group. In addition, a significant reduction in TPA-mediated induction in cutaneous ornithine decarboxylase (ODC) activity and [3H]thymidine incorporation was also observed in animals pre-treated with a topical application of Tephrosia purpurea. The effect of topical application of Tephrosia purpurea on TPA-mediated depletion in the level of enzymatic and non-enzymatic molecules in skin was also evaluated and it was observed that topical application of Tephrosia purpurea prior to TPA resulted in the significant recovery of

  2. The general anesthetic propofol excites nociceptors by activating TRPV1 and TRPA1 rather than GABAA receptors.

    PubMed

    Fischer, Michael J M; Leffler, Andreas; Niedermirtl, Florian; Kistner, Katrin; Eberhardt, Mirjam; Reeh, Peter W; Nau, Carla

    2010-11-05

    Anesthetic agents can induce a paradox activation and sensitization of nociceptive sensory neurons and, thus, potentially facilitate pain processing. Here we identify distinct molecular mechanisms that mediate an activation of sensory neurons by 2,6-diisopropylphenol (propofol), a commonly used intravenous anesthetic known to elicit intense pain upon injection. Clinically relevant concentrations of propofol activated the recombinant transient receptor potential (TRP) receptors TRPA1 and TRPV1 heterologously expressed in HEK293t cells. In dorsal root ganglion (DRG) neurons, propofol-induced activation correlated better to expression of TRPA1 than of TRPV1. However, pretreatment with the protein kinase C activator 4β-phorbol 12-myristate 13-acetate (PMA) resulted in a significantly sensitized propofol-induced activation of TRPV1 in DRG neurons as well as in HEK293t cells. Pharmacological and genetic silencing of both TRPA1 and TRPV1 only partially abrogated propofol-induced responses in DRG neurons. The remaining propofol-induced activation was abolished by the selective γ-aminobutyric acid, type A (GABA(A)) receptor antagonist picrotoxin. Propofol but not GABA evokes a release of calcitonin gene-related peptide, a key component of neurogenic inflammation, from isolated peripheral nerves of wild-type but not TRPV1 and TRPA1-deficient mice. Moreover, propofol but not GABA induced an intense pain upon intracutaneous injection. As both the release of calcitonin gene-related peptide and injection pain by propofol seem to be independent of GABA(A) receptors, our data identify TRPV1 and TRPA1 as key molecules for propofol-induced excitation of sensory neurons. This study warrants further investigations into the role of anesthetics to induce nociceptor sensitization and to foster postoperative pain.

  3. Effect of leptin on activation and cytokine synthesis in peripheral blood lymphocytes of malnourished infected children

    PubMed Central

    Rodríguez, L; Graniel, J; Ortiz, R

    2007-01-01

    Malnutrition compromises immune function, resulting in reduced resistance to infection. Recent animal and human studies have suggested that leptin is capable of modulating the immune response and that its levels, which are regulated by nutritional status, fall rapidly during starvation. Leptin deficiency is associated with impaired cell-mediated immunity, an increased incidence of infectious disease and an associated increase in mortality. The purpose of this study was to examine the effect of leptin on activation and cytokine production in peripheral blood T cells from malnourished children. The data obtained in the present study demonstrate that leptin produced an increase in the percentage of CD4+ and CD8+ cells producing interleukin (IL)-2 and interferon (IFN)-γ in 24-h cultures. Moreover, leptin decreased the percentage of CD4+ and CD8+ cells producing IL-4 and IL-10, and enhanced activation of circulating T cells when co-stimulated by phorbol 12-myristate 13 acetate (PMA)–ionomycin. Leptin enhanced the expression of activation markers CD69 and CD25 in both CD4+ and CD8+ cells after 5 h of stimulation. In conclusion, the results obtained show that leptin modulates CD4+ and CD8+ cell activation towards a T helper 1 (Th1) phenotype by stimulating the synthesis of IL-2 and IFN-γ. In contrast, leptin decreases IL-4 and IL-10 production. Moreover, leptin enhanced the expression of CD69 and CD25 on CD4+ and CD8+ cells after stimulation with PMA–ionomycin. PMID:17355247

  4. Thioredoxin-1/peroxiredoxin-1 as sensors of oxidative stress mediated by NADPH oxidase activity in atherosclerosis.

    PubMed

    Madrigal-Matute, Julio; Fernandez-Garcia, Carlos-Ernesto; Blanco-Colio, Luis Miguel; Burillo, Elena; Fortuño, Ana; Martinez-Pinna, Roxana; Llamas-Granda, Patricia; Beloqui, Oscar; Egido, Jesus; Zalba, Guillermo; Martin-Ventura, José Luis

    2015-09-01

    To assess the potential association between TRX-1/PRX-1 and NADPH oxidase (Nox) activity in vivo and in vitro, TRX-1/PRX-1 levels were assessed by ELISA in 84 asymptomatic subjects with known phagocytic NADPH oxidase activity and carotid intima-media thickness (IMT). We found a positive correlation between TRX-1/PRX-1 and NADPH oxidase-dependent superoxide production (r=0.48 and 0.47; p<0.001 for both) and IMT (r=0.31 and 0.36; p<0.01 for both) adjusted by age and sex. Moreover, asymptomatic subjects with plaques have higher PRX-1 and TRX plasma levels (p<0.01 for both). These data were confirmed in a second study in which patients with carotid atherosclerosis showed higher PRX-1 and TRX plasma levels than healthy subjects (p<0.001 for both). In human atherosclerotic plaques, the NADPH oxidase subunit p22phox colocalized with TRX-1/PRX-1 in macrophages (immunohistochemistry). In monocytes and macrophages, phorbol 12-myristate 13-acetate (PMA) induced NADPH activation and TRX-1/PRX-1 release to the extracellular medium, with a concomitant decrease in their intracellular levels, which was reversed by the NADPH inhibitor apocynin (Western blot). In loss-of-function experiments, genetic silencing of the NADPH oxidase subunit Nox2 blocked PMA-induced intracellular TRX-1/PRX-1 downregulation in macrophages. Furthermore, the PMA-induced release of TRX-1/PRX-1 involves the modulation of their redox status and exosome-like vesicles. TRX-1/PRX-1 levels are associated with NADPH oxidase-activity in vivo and in vitro. These data could suggest a coordinated antioxidant response to oxidative stress in atherothrombosis.

  5. 4-Methylcoumarin Derivatives Inhibit Human Neutrophil Oxidative Metabolism and Elastase Activity

    PubMed Central

    Fuzissaki, Carolina N.; Andrade, Micássio F.; Azzolini, Ana Elisa C.S.; Taleb-Contini, Silvia H.; Vermelho, Roberta B.; Lopes, João Luis C.; Lucisano-Valim, Yara Maria

    2013-01-01

    Abstract Increased neutrophil activation significantly contributes to the tissue damage in inflammatory illnesses; this phenomenon has motivated the search for new compounds to modulate their effector functions. Coumarins are natural products that are widely consumed in the human diet. We have evaluated the antioxidant and immunomodulator potential of five 4-methylcoumarin derivatives. We found that the 4-methylcoumarin derivatives inhibited the generation of reactive oxygen species by human neutrophils triggered by serum-opsonized zymosan or phorbol-12-myristate-13-acetate; this inhibition occurred in a concentration-dependent manner, as revealed by lucigenin- and luminol-enhanced chemiluminescence assays. Cytotoxicity did not mediate this inhibitory effect. The 7,8-dihydroxy-4-methylcoumarin suppressed the neutrophil oxidative metabolism more effectively than the 6,7- and 5,7-dihydroxy-4-methylcoumarins, but the 5,7- and 7,8-diacetoxy-4-methylcoumarins were less effective than their hydroxylated counterparts. An analysis of the biochemical pathways suggested that the 6,7- and 7,8-dihydroxy-4-methylcoumarins inhibit the protein kinase C-mediated signaling pathway, but 5,7-dihydroxy-4-methylcoumarin, as well as 5,7- and 7,8-diacetoxy-4-methylcoumarins do not significantly interfere in this pathway of the activation of the human neutrophil oxidative metabolism. The 4-methylcoumarin derivatives bearing the catechol group suppressed the elastase and myeloperoxidase activity and reduced the 1,1-diphenyl-2-picrylhydrazyl free radical the most strongly. Interestingly, the 5,7-dihydroxy-4-methylcoumarin scavenged hypochlorous acid more effectively than the o-dihydroxy-substituted 4-methylcoumarin derivatives, and the diacetoxylated 4-methylcoumarin derivatives scavenged hypochlorous acid as effectively as the 7,8-dihydroxy-4-methylcoumarin. The significant influence of small structural modifications in the inhibitory potential of 4-methylcoumarin derivatives on the

  6. Basiliolides, a class of tetracyclic C19 dilactones from Thapsia garganica, release Ca(2+) from the endoplasmic reticulum and regulate the activity of the transcription factors nuclear factor of activated T cells, nuclear factor-kappaB, and activator protein 1 in T lymphocytes.

    PubMed

    Navarrete, Carmen; Sancho, Rocío; Caballero, Francisco J; Pollastro, Federica; Fiebich, Bernd L; Sterner, Olov; Appendino, Giovanni; Muñoz, Eduardo

    2006-10-01

    Calcium concentration within the endoplasmic reticulum (ER) plays an essential role in cell physiology. We have investigated the effects of basiliolides, a novel class of C19 dilactones isolated from Thapsia garganica, on Ca(2+) mobilization in T cells. Basiliolide A1 induced a rapid mobilization of intracellular Ca(2+) in the leukemia T-cell line Jurkat. First, a rapid calcium peak was observed and inhibited by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester. This initial calcium mobilization was followed by a sustained elevation, mediated by the entry of extracellular calcium through store-operated calcium release-activated Ca(2+) (CRAC) channels and sensitive to inhibition by EGTA, and by the CRAC channel inhibitor N-{4-[3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl}-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP-2). Basiliolide A1 mobilized Ca(2+) from ER stores, but in contrast to thapsigargin, it did not induce apoptosis. Basiliolide A1 induced nuclear factor of activated T cells 1 dephosphorylation and activation that was inhibited by BTP-2 and cyclosporine A. In addition, we found that basiliolide A1 alone did not mediate IkappaBalpha degradation or RelA phosphorylation (ser536), but it synergized with phorbol 12-myristate 13-acetate to induce a complete degradation of the nuclear factor-kappaB inhibitory protein and to activate the c-Jun NH(2)-terminal kinase. Moreover, basiliolide A1 regulated both interleukin-2 and tumor necrosis factor-alpha gene expression at the transcriptional level. In basiliolide B, oxidation of one of the two geminal methyls to a carboxymethyl group retained most of the activity of basiliolide A1. In contrast, basiliolide C, where the 15-carbon is oxidized to an acetoxymethine, was much less active. These findings qualify these compounds as new probes to investigate intracellular calcium homeostasis.

  7. Inhibitory effects of the standardized extract (DA-9601) of Artemisia asiatica Nakai on phorbol ester-induced ornithine decarboxylase activity, papilloma formation, cyclooxygenase-2 expression, inducible nitric oxide synthase expression and nuclear transcription factor kappa B activation in mouse skin.

    PubMed

    Seo, Hyo-Joung; Park, Kwang-Kyun; Han, Seong Su; Chung, Won-Yoon; Son, Mi-Won; Kim, Won-Bae; Surh, Young-Joon

    2002-08-01

    Artemisia asiatica Nakai has been used in traditional Asian medicine for the treatment of inflammatory and other disorders. Previous studies have revealed that the formulated ethanol extract (DA-9601) of A. asiatica has pronounced antioxidative and antiinflammatory activities and exhibits cytoprotective effects against experimentally induced gastrointestinal, hepatic and pancreatic damage. In the present study, we assessed the inhibitory effect of DA-9601 on tumor promotion, which is closely linked to inflammatory tissue damage. As an initial approach to evaluating the possible antitumor-promoting potential of DA-9601, its effects on TPA-induced ear edema were examined in female ICR mice. Pretreatment of the inner surface of the mouse ear with DA-9601 30 min prior to topical application of TPA inhibited ear edema at 5 hr. TPA-stimulated expression of epidermal COX-2 and iNOS was also mitigated by topical application of the same extract. Moreover, DA-9601 abrogated the TPA-mediated activation of NF-kappa B/Rel and AP-1 in mouse epidermis. Suppression of epidermal NF-kappa B by DA-9601 appeared to be mediated in part through inhibition of I kappa B alpha degradation, thereby blocking the nuclear translocation of p65, the functional subunit of NF-kappa B. DA-9601 also significantly suppressed TPA-induced ODC activity and papilloma formation in mouse skin. Taken together, these findings suggest that DA-9601 derived from A. asiatica possesses potential chemopreventive activities.

  8. Differential inhibitory effects of 2-azafluorenones on PI-PLC activation but not on PC-PLC- or PC-PLD-activation induced by histamine, PAF, PMA or A23187 in C6 glioma cells.

    PubMed

    Wang, Hai-Long; Wang, Li-Chuan; Wei, Jiann-Wu

    2013-02-28

    In this study, C6 glioma cells were used to test the effects of 2-azafluorenone and its related compounds on membrane phosphatidylinositol (PI) and phosphatidylcholine (PC) turnover. An increase of [³H]-labeled inositol phosphate (IP1) formation by histamine (100 μM) or A23187 (100 nM) via the activation of phosphatidylinositol-specific phospholipase C (PI-PLC) to breakdown labeled substrate was observed, and this effect could be partially blocked by about half at 100 μM of 2-azafluorenones. Histamine induced the increase of IP1 formation, but failed to cause an increase in extracellularly releasing of [3H]choline metabolites, or intracellular accumulation of [³H]phosphscholine. However, platelet activation factor (PAF) from 0.2 to 1 μM, and phorbol 12-myristate-13-acetate (PMA) at 1 μM caused an increase in extracellularly releasing of [³H]choline metabolites, and intracellular accumulation of [³H]phosphocholine via the activation on phosphatidylcholine (PC)-PLC. These responses of PAF and PMA were not affected by 2-azafluorenone or 4-methyl-2-azafluorenone even at high concentration (10⁻⁴ M). A23187 induced an increase of intracellular [³H]choline release via the activation of PCphospholipase D (PLD). This increasing effect of 100 nM A23187 was not affected by 2-azafluorenone or 4-methyl-2-azafluorenone even at a high concentration of 10⁻⁴ M. In summary, the inhibitory effect of 2-azafluorenone and its related compound 4-methyl-2-azafluorenone was observed selectively on PIPLC, but not on PC-PLC or PC-PLD based on changes of products after the activation of these enzymes.

  9. Epidermal cell proliferation and promoting ability of phorbol esters.

    PubMed

    Slaga, T J; Scribner, J D; Viaje, A

    1976-11-01

    Dose-response relationships on the abilities of several phorbol ester tumor promoters to promote skin tumors after 7,12-dimethylbenz[a]anthracene initiation and to bring about edema, inflammation, and epidermal hyperplasia were determined in female Charles River CD-1 mice. The promoting ability of the potent synthetic promoter, phorbol-12,13-dioctanoate (PdiC8), was determined over a dose range of 0.1-10 mug/application. Administration of PdiC8 two times weekly at dosages of 4, 6, 8, and 10 mug gave little variation in tumor response. A dose-dependent tumor response occurred at doses of 1-4 mug PdiC8. Only 1 papilloma was observed when PdiC8 was given twice weekly at a dose of 0.1 or 0.5 mug. A similar dose-response relation was observed for the ability of PdiC8 to stimulate epidermal hyperplasia. Investigations of other phorbol esters revealed an excellent correlation between their promoting ability and their ability to induce epidermal hyperplasia; however, that was not the case for compounds outside the phorbol ester series (i.e., acetic acid, cantharidin, and ethylphenylpropiolate).

  10. Alphaxalone, a neurosteroid anaesthetic, increases the activity of the glutamate transporter type 3 expressed in Xenopus oocytes.

    PubMed

    Ryu, Junghee; Cheong, Il-Young; Do, Sang-Hwan; Zuo, Zhiyi

    2009-01-05

    Glutamate transporters may be important targets for anaesthetic action in the central nervous system. The authors investigated the effects of alphaxalone, an intravenous neurosteroid anaesthetic, on the activity of glutamate transporter type 3 (EAAT3). EAAT3 was expressed in Xenopus oocytes by injecting its mRNA. Two-electrode voltage clamping was used to record membrane currents before, during, and after applying L-glutamate (30 microM) in the presence or absence of alphaxalone. Responses were quantified by integrating current traces and are reported in microCoulombs (microC). Results are presented as means+/-S.E.M. L-Glutamate induced inward currents in EAAT3 expressing oocytes, and these currents were dose-dependently increased by alphaxalone. Alphaxalone at 0.01 to 3 microM significantly increased the inward currents. In addition, the treatment of oocytes with phorbol-12-myristate-13-acetate (PMA), a protein kinase C (PKC) activator, significantly increased the transporter currents (1.0+/-0.2 to 1.4+/-0.2 microC; P<0.05). However, treatment with PMA plus alphaxalone did not increase responses further as compared with PMA or alphaxalone alone. Furthermore, pretreatment of oocytes with chelerythrine or staurosporine, two PKC inhibitors, did not affect basal transporter currents, but did significantly reduce alphaxalone-enhanced EAAT3 activity; whereas oocytes pretreated with wortmannin, a phosphatidylinositol 3-kinase (PI3K) inhibitor, showed significant reductions in basal and alphaxalone-enhanced EAAT3 activities. The above results suggest that alphaxalone enhances EAAT3 activity and that PKC and PI3K are involved in this effect.

  11. Induction of ANGPTL4 expression in human airway smooth muscle cells by PMA through activation of PKC and MAPK pathways.

    PubMed

    Stapleton, Cliona M; Joo, Joung Hyuck; Kim, Yong-Sik; Liao, Grace; Panettieri, Reynold A; Jetten, Anton M

    2010-02-15

    In this study, we demonstrate that protein kinase C (PKC) activators, including phorbol-12-myristate-13-acetate (PMA), 1,2-dioctanoyl-sn-glycerol (DOG), and platelet-derived growth factor alpha are potent inducers of angiopoietin-like protein 4 (ANGPTL4) expression in several normal lung cell types and carcinoma cell lines. In human airway smooth muscle (HASM) cells induction of ANGPTL4 expression is observed as early as 2 h after the addition of PMA. PMA also increases the level of ANGPTL4 protein released in the medium. PKC inhibitors Ro31-8820 and Gö6983 greatly inhibit the induction of ANGPTL4 mRNA by PMA suggesting that this up-regulation involves activation of PKC. Knockdown of several PKCs by corresponding siRNAs suggest a role for PKCalpha. PMA does not activate MAPK p38 and p38 inhibitors have little effect on the induction of ANGPTL4 indicating that p38 is not involved in the regulation of ANGPTL4 by PMA. In contrast, treatment of HASM by PMA induces phosphorylation and activation of Ra, MEK1/2, ERK1/2, JNK, Elk-1, and c-Jun. The Ras inhibitor manumycin A, the MEK1/2 inhibitor U0126, and the JNK inhibitor SP600125, greatly reduce the increase in ANGPTL4 expression by PMA. Knockdown of MEK1/2 and JNK1/2 expression by corresponding siRNAs inhibits the induction of ANGPTL4. Our observations suggest that the induction of ANGPTL4 by PMA in HASM involves the activation of PKC, ERK, and JNK pathways. This induction may play a role in tissue remodeling during lung injury and be implicated in several lung pathologies.

  12. Impaired surface expression of PAF receptors on human neutrophils is dependent upon cell activation.

    PubMed

    Zhou, W; Javors, M A; Olson, M S

    1994-02-01

    The capacity of human neutrophils to bind PAF was rapidly diminished upon cell stimulation with both physiological agonists (N-formylmethionylleucylphenylalanine (FMLP), leukotriene B4 (LTB4)) and pharmacologic agonists (phorbol 12-myristate 13-acetate (PMA), A23187). As a consequence, PAF responses in neutrophils were blunted, as monitored by an inhibition of intracellular Ca2+ mobilization. Downregulation of the PAF receptor in neutrophils by diverse agonists was temperature-sensitive and required intact cells. Scatchard analysis of binding data revealed that PAF binding sites were lost without an appreciable change in the affinity of the ligand for the receptor. The binding of the PAF receptor antagonist WEB2086 to neutrophils decreased in parallel with PAF binding. PMA-induced PAF receptor downregulation was staurosporine-sensitive while PAF receptor downregulation by A23187, FMLP, or LTB4 was staurosporine-resistant. Both neutrophil aggregation (a form of intercellular adhesion) and PAF receptor downregulation occurred only at high concentrations of agonists while other signaling processes such as the increase in [Ca2+]i, PKC activation, and PAF synthesis were stimulated at low concentrations of agonists. Furthermore, agonist-induced PAF receptor downregulation was observed only under conditions in which the activated neutrophils were stirred (or shaken) and were allowed to aggregate. Additionally, chelation of extracellular Ca2+ with EGTA minimized cell aggregation and also inhibited PAF receptor downregulation. While the nature of the biochemical signal or the physical changes in the plasma membrane associated with aggregation or that follow aggregation remain to be elucidated it is clear that full expression of cell activation (i.e., neutrophil aggregation) is required for PAF receptor downregulation.

  13. Basal and inducible anti-inflammatory epoxygenase activity in endothelial cells

    SciTech Connect

    Askari, Ara A.; Thomson, Scott; Edin, Matthew L.; Lih, Fred B.; Zeldin, Darryl C.; Bishop-Bailey, David

    2014-04-04

    Highlights: • We examined epoxygenase product formation and regulation in endothelial cells. • The epoxygenase CYP2J2 is an LPS (TLR-4) inducible enzyme in endothelial cells. • The endothelial cell line EA.Hy926 synthesises epoxygenase products. • Inhibition of endothelial epoxygenases increases TNFα secretion. • Soluble epoxide hydrolase inhibitors reduce inflammation-induced TNFα and NFκB. - Abstract: The roles of CYP lipid-metabolizing pathways in endothelial cells are poorly understood. Human endothelial cells expressed CYP2J2 and soluble epoxide hydrolase (sEH) mRNA and protein. The TLR-4 agonist LPS (1 μg/ml; 24 h) induced CYP2J2 but not sEH mRNA and protein. LC–MS/MS analysis of the stable commonly used human endothelial cell line EA.Hy926 showed active epoxygenase and epoxide hydrolase activity: with arachidonic acid (stable epoxide products 5,6-DHET, and 14,15-DHET), linoleic acid (9,10-EPOME and 12,13-EPOME and their stable epoxide hydrolase products 9,10-DHOME and 12,13-DHOME), docosahexaenoic acid (stable epoxide hydrolase product 19,20-DiHDPA) and eicosapentaenoic acid (stable epoxide hydrolase product 17,18-DHET) being formed. Inhibition of epoxygenases using either SKF525A or MS-PPOH induced TNFα release, but did not affect LPS, IL-1β, or phorbol-12-myristate-13-acetate (PMA)-induced TNFα release. In contrast, inhibition of soluble epoxide hydrolase by AUDA or TPPU inhibited basal, LPS, IL-1β and PMA induced TNFα release, and LPS-induced NFκB p65 nuclear translocation. In conclusion, human endothelial cells contain a TLR-4 regulated epoxygenase CYP2J2 and metabolize linoleic acid > eicosapentaenoic acid > arachidonic acid > docosahexaenoic acid to products with anti-inflammatory activity.

  14. Comparison of transcriptional response to phorbol ester, bryostatin 1, and bryostatin analogs in LNCaP and U937 cancer cell lines provides insight into their differential mechanism of action.

    PubMed

    Kedei, N; Telek, A; Michalowski, A M; Kraft, M B; Li, W; Poudel, Y B; Rudra, A; Petersen, M E; Keck, G E; Blumberg, P M

    2013-02-01

    Bryostatin 1, like the phorbol esters, binds to and activates protein kinase C (PKC) but paradoxically antagonizes many but not all phorbol ester responses. Previously, we have compared patterns of biological response to bryostatin 1, phorbol ester, and the bryostatin 1 derivative Merle 23 in two human cancer cell lines, LNCaP and U937. Bryostatin 1 fails to induce a typical phorbol ester biological response in either cell line, whereas Merle 23 resembles phorbol ester in the U937 cells and bryostatin 1 in the LNCaP cells. Here, we have compared the pattern of their transcriptional response in both cell lines. We examined by qPCR the transcriptional response as a function of dose and time for a series of genes regulated by PKCs. In both cell lines bryostatin 1 differed primarily from phorbol ester in having a shorter duration of transcriptional modulation. This was not due to bryostatin 1 instability, since bryostatin 1 suppressed the phorbol ester response. In both cell lines Merle 23 induced a pattern of transcription largely like that of phorbol ester although with a modest reduction at later times in the LNCaP cells, suggesting that the difference in biological response of the two cell lines to Merle 23 lies downstream of this transcriptional regulation. For a series of bryostatins and analogs which ranged from bryostatin 1-like to phorbol ester-like in activity on the U937 cells, the duration of transcriptional response correlated with the pattern of biological activity, suggesting that this may provide a robust platform for structure activity analysis.

  15. Activation of Protein Kinase Cα by EPAC1 Is Required for the ERK- and CCAAT/Enhancer-binding Protein β-dependent Induction of the SOCS-3 Gene by Cyclic AMP in COS1 Cells*

    PubMed Central

    Borland, Gillian; Bird, Rebecca J.; Palmer, Timothy M.; Yarwood, Stephen J.

    2009-01-01

    We recently found that induction of the anti-inflammatory SOCS-3 gene by cyclic AMP occurs through novel cyclic AMP-dependent protein kinase-independent mechanisms involving activation of CCAAT/enhancer-binding protein (C/EBP) transcription factors, notably C/EBPβ, by the cyclic AMP GEF EPAC1 and the Rap1 GTPase. In this study we show that down-regulation of phospholipase (PL) Cϵ with small interfering RNA or blockade of PLC activity with chemical inhibitors ablates exchange protein directly activated by cyclic AMP (EPAC)-dependent induction of SOCS-3 in COS1 cells. Consistent with this, stimulation of cells with 1-oleoyl-2-acetyl-sn-glycerol and phorbol 12-myristate 13-acetate, both cell-permeable analogues of the PLC product diacylglycerol, are sufficient to induce SOCS-3 expression in a Ca2+-dependent manner. Moreover, the diacylglycerol- and Ca2+-dependent protein kinase C (PKC) isoform PKCα becomes activated following cyclic AMP elevation or EPAC stimulation. Conversely, down-regulation of PKC activity with chemical inhibitors or small interfering RNA-mediated depletion of PKCα or -δ blocks EPAC-dependent SOCS-3 induction. Using the MEK inhibitor U0126, we found that activation of ERK MAPKs is essential for SOCS-3 induction by either cyclic AMP or PKC. C/EBPβ is known to be phosphorylated and activated by ERK. Accordingly, we found ERK activation to be essential for cyclic AMP-dependent C/EBP activation and C/EBPβ-dependent SOCS-3 induction by cyclic AMP and PKC. Moreover, overexpression of a mutant form of C/EBPβ (T235A), which lacks the ERK phosphorylation site, blocks SOCS-3 induction by cyclic AMP and PKC in a dominant-negative manner. Together, these results indicate that EPAC mediates novel regulatory cross-talk between the cyclic AMP and PKC signaling pathways leading to ERK- and C/EBPβ-dependent induction of the SOCS-3 gene. PMID:19423709

  16. A phorbol ester response element within the human T-cell receptor beta-chain enhancer.

    PubMed Central

    Prosser, H M; Wotton, D; Gegonne, A; Ghysdael, J; Wang, S; Speck, N A; Owen, M J

    1992-01-01

    The activity of the T-cell receptor beta-chain gene enhancer is increased by activators of the protein kinase C pathway during T-cell activation. Analysis of mutant enhancer constructs identified two elements, beta E2 and beta E3, conferring phorbol ester inducibility. Multimerized beta E2 acted in isolation as a phorbol ester-responsive element. Both beta E2 and beta E3, which contain a consensus Ets-binding site, were shown to bind directly to the product of the c-ets-1 protooncogene. Both regions also bound a second factor, core-binding factor. Mutation of the beta E2 Ets site abolished the inducibility of the beta E2 multimer. beta E2 and beta E3 Ets site mutations also profoundly affected activity and inducibility of the enhancer. In contrast, enhancer activity but not its inducibility was affected by mutation of the beta E2 core-binding factor site. Cotransfection studies showed that Ets-1 specifically repressed activity of the multimerized beta E2 element and the complete T-cell receptor beta-chain enhancer. These data show that the T-cell receptor beta-chain enhancer responds to protein kinase C-mediated activation signals via a functional domain, composed of two elements, which contains binding sites for Ets transcription factors and which is negatively regulated by Ets-1. Images PMID:1409722

  17. Antioxidant activity of Calendula officinalis extract: inhibitory effects on chemiluminescence of human neutrophil bursts and electron paramagnetic resonance spectroscopy.

    PubMed

    Braga, Pier Carlo; Dal Sasso, Monica; Culici, Maria; Spallino, Alessandra; Falchi, Mario; Bertelli, Aldo; Morelli, Roberto; Lo Scalzo, Roberto

    2009-01-01

    There is growing interest in natural chemical compounds from aromatic, spicy, medicinal and other plants with antioxidant properties in order to find new sources of compounds inactivating free radicals generated by metabolic pathways within body tissue and cells, mainly polymorphonuclear leukocytes (PMNs) whose overregulated recruitment and activation generate a large amount of reactive oxygen species (ROS) and reactive nitrogen species (RNS), leading to an imbalance of redox homeostasis and oxidative stress. The aim of this study was to examine whether a propylene glycol extract of Calendula officinalis interferes with ROS and RNS during the PMN respiratory bursts, and to establish the lowest concentration at which it still exerts antioxidant activity by means of luminol-amplified chemiluminescence. Electron paramagnetic resonance (EPR) spectroscopy was also used in order to confirm the activity of the C. officinalis extract. The C. officinalis extract exerted its anti-ROS and anti-RNS activity in a concentration-dependent manner, with significant effects being observed at even very low concentrations: 0.20 microg/ml without L-arginine, 0.10 microg/ml when L-arginine was added to the test with phorbol 12-myristate 13-acetate and 0.05 microg/ml when it was added to the test with N-formyl-methionyl-leucyl-phenylalanine. The EPR study confirmed these findings, 0.20 microg/ml being the lowest concentration of C. officinalis extract that significantly reduced 2,2-diphenyl-1-picrylhydrazyl. These findings are interesting for improving the antioxidant network and restoring the redox balance in human cells with plant-derived molecules as well as extending the possibility of antagonizing the oxidative stress generated in living organisms when the balance is in favor of free radicals as a result of the depletion of cell antioxidants.

  18. Modulation of the hyperpolarization-activated Cl- current in human intestinal T84 epithelial cells by phosphorylation.

    PubMed Central

    Fritsch, J; Edelman, A

    1996-01-01

    1. Hyperpolarization-activated Cl- currents (ICl,hyp) were investigated in the T84 human adenocarcinoma cell line, using the patch-clamp whole-cell configuration. 2. During whole-cell recording with high-chloride and ATP-containing internal solutions, hyperpolarizing jumps from a holding potential of 0 mV elicited slow inward current relaxations, carried by Cl- and detected at membrane potentials more negative than -40 mV. Analysis of the relative permeabilities to monovalent anions gave the following sequence: Cl- > Br- > I- > glutamate. 3. ICl,hyp was partially inhibited by 1 mM diphenylamine-2-carboxylic acid or 0.1 mM 5-nitro-2-(3-phenylpropylamino)-benzoate, and was completely blocked by Cd2+ (> 300 microM). It was insensitive to 1 mM external 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid or 1 mM Ba2+. 4. ICl,hyp was inhibited by external application of 500 microM cptcAMP (8-(4-chlorophenylthio)-adenosine 3':5'-cyclic monophosphate) or 500 nM of the protein kinase C activator, phorbol 12-myristate, 13-acetate. 5. (i) Omission of ATP from the pipette solution, (ii) ATP replacement by the non-hydrolysable ATP analogue 5'-adenylylimidodiphosphate, and (iii) inhibition of protein kinase C by staurosporine or calphostin C accelerated the activation kinetics of the current and increased its amplitude, but did not alter its pharmacological properties. 6. We conclude that hyperpolarization-activated Cl- channels similar to those of ClC-2 channels (mammalian homologue of Torpedo chloride channel ClC-0) are present in T84 cells, and that their gating properties are modulated by phosphorylation. PMID:8745282

  19. Modulation of transglutaminase 2 activity in H9c2 cells by PKC and PKA signalling: a role for transglutaminase 2 in cytoprotection

    PubMed Central

    Almami, Ibtesam; Dickenson, John M; Hargreaves, Alan J; Bonner, Philip L R

    2014-01-01

    BACKGROUND AND PURPOSE Tissue transglutaminase (TG2) has been shown to mediate cell survival in many cell types. In this study, we investigated whether the role of TG2 in cytoprotection was mediated by the activation of PKA and PKC in cardiomyocyte-like H9c2 cells. EXPERIMENTAL APPROACH H9c2 cells were extracted following stimulation with phorbol-12-myristate-13-acetate (PMA) and forskolin. Transglutaminase activity was determined using an amine incorporating and a protein crosslinking assay. The presence of TG isoforms (TG1, 2, 3) was determined using Western blot analysis. The role of TG2 in PMA- and forskolin-induced cytoprotection was investigated by monitoring H2O2-induced oxidative stress in H9c2 cells. KEY RESULTS Western blotting showed TG2 >> TG1 protein expression but no detectable TG3. The amine incorporating activity of TG2 in H9c2 cells increased in a time and concentration-dependent manner following stimulation with PMA and forskolin. PMA and forskolin-induced TG2 activity was blocked by PKC (Ro 31-8220) and PKA (KT 5720 and Rp-8-Cl-cAMPS) inhibitors respectively. The PMA- and forskolin-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Immunocytochemistry revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (β-tubulin) and novel (α-actinin) protein substrates for TG2. Pretreatment with PMA and forskolin reversed H2O2-induced decrease in MTT reduction and release of LDH. TG2 inhibitors R283 and Z-DON blocked PMA- and forskolin-induced cytoprotection. CONCLUSIONS AND IMPLICATIONS TG2 activity was stimulated via PKA- and PKC-dependent signalling pathways in H9c2 cells These results suggest a role for TG2 in cytoprotection induced by these kinases. PMID:24821315

  20. Dexmedetomidine increases the activity of excitatory amino acid transporter type 3 expressed in Xenopus oocytes: the involvement of protein kinase C and phosphatidylinositol 3-kinase.

    PubMed

    Do, Sang-Hwan; Park, Seong-Joo; Shin, Hyun-Jung; Paik, Hye-Sun; Zuo, Zhiyi; Yoon, Hea-Jo; Ryu, Jung-Hee

    2014-09-05

    Dexmedetomidine, an α2 adrenergic agonist, has neuroprotective and anticonvulsant properties in addition to its sedative and anxiolytic effects. We hypothesized that dexmedetomidine would increase the activity of excitatory amino acid transporter type 3 (EAAT3) and that this effect would involve protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K), two protein kinases known to regulate EAAT3 activity. EAAT3 was expressed in Xenopus oocytes by injecting its mRNA. Two-electrode voltage clamping was used to record membrane currents before, during, and after application of 30 μM l-glutamate in the presence of 0.1-30 nM dexmedetomidine. Dexmedetomidine-treated oocytes were also exposed to a PKC activator (phorbol-12-myristate-13-acetate [PMA]), PKC inhibitors (chelerythrine, staurosporine, and calphostin C), and PI3K inhibitors (wortmannin and LY294002) before current measurement. Dexmedetomidine application resulted in a concentration-dependent increase in the EAAT3 activity in response to l-glutamate. The kinetic study showed that dexmedetomidine significantly increased the Vmax without changing Km. Treatment of oocytes with PMA significantly increased transporter currents compared with controls, but treatment with dexmedetomidine plus PMA did not further increase the response compared with PMA or dexmedetomidine alone. In addition, pre-treatment of oocytes with PKC inhibitors and PI3K inhibitors significantly abolished the dexmedetomidine-enhanced EAAT3 activity. These results suggest that dexmedetomidine increases the activity of EAAT3 expressed in Xenopus oocytes. PKC and PI3K seem to mediate this effect. These findings may explain the neuroprotective and anticonvulsant effects of dexmedetomidine.

  1. Potent stimulation of large-conductance Ca2+-activated K+ channels by rottlerin, an inhibitor of protein kinase C-delta, in pituitary tumor (GH3) cells and in cortical neuronal (HCN-1A) cells.

    PubMed

    Wu, Sheng-Nan; Wang, Ya-Jean; Lin, Ming-Wei

    2007-03-01

    The effects of rottlerin, a known inhibitor of protein kinase C-delta activation, on ion currents were investigated in pituitary tumor (GH3) cells. Rottlerin (0.3-100 microM) increased the amplitude of Ca2+-activated K+ current (I K(Ca)) in a concentration-dependent manner with an EC50 value of 1.7 microM. In intracellular perfusion with rottlerin (1 microM) or staurosporine (10 microM), phorbol 12-myristate 13-acetate-induced inhibition of I K(Ca) in these cells was abolished. In cell-attached mode, rottlerin applied on the extracellular side of the membrane caused activation of large-conductance Ca2+-activated K+ (BK(Ca)) channels, and a further application of BAPTA-AM (10 microM) to the bath had no effect on rottlerin-stimulated channel activity. When cells were exposed to rottlerin, the activation curve of these channels was shifted to less positive potential with no change in the slope factor. Rottlerin increased BK(Ca)-channel activity in outside-out patches. Its change in kinetic behavior of BK(Ca) channels is primarily due to an increase in mean open time. With the aid of minimal kinetic scheme, a quantitative description of rottlerin stimulation on BK(Ca) channels in GH3 cells was also provided. Under current-clamp configuration, rottlerin (1 microM) decreased the firing of action potentials. I K(Ca) elicited by simulated action potential waveforms was enhanced by this compound. In human cortical HCN-1A cells, rottlerin (1 microM) could also interact with the BK(Ca) channel to stimulate I K(Ca). Therefore, rottlerin may directly activate BK(Ca) channels in neurons or endocrine cells.

  2. (Accumulation of methyl-deficient rat liver messenger ribonucleic acid on ethionine administration). Progress report. [Methyltransferase activity in Ehrlich ascites tumor cells and effects of phorbol ester on methyltransferase activity

    SciTech Connect

    Borek, E.

    1980-01-01

    Enzyme fractions were isolated from Ehrlich ascites cells which introduced methyl groups into methyl deficient rat liver mRNA and unmethylated vaccinia mRNA. The methyl groups were incorporated at the 5' end into cap 1 structures by the viral enzyme, whereas both cap 0 and cap 1 structures were formed by the Ehrlich ascites cell enzymes. Preliminary results indicate the presence of adenine N/sup 6/-methyltransferase activity in Ehrlich ascites cells. These results indicate that mRNA deficient in 5'-cap methylation and in internal methylation of adenine accumulated in rats on exposure to ethionine. The methyl-deficient mRNA isolated from the liver of ethionine-fed rats differed in its translational properties from mRNA isolated from control animals. Preliminary experiments indicate that single topical application of 17n moles of TPA to mouse skin altered tRNA methyltransferases. The extent of methylation was increased over 2-fold in mouse skin treated with TPA for 48 hours. These changes have been observed as early as 12 hours following TPA treatment. In contrast, the application of initiating dose of DMBA had no effect on these enzymes. It should be emphasized that the changes in tRNA methyltransferases produced by TPA are not merely an increase of the concentration of the enzyme, rather that they represent alterations of specificity of a battery of enzymes. In turn the change in enzyme specificity can produce alterations in the structure of tRNA. (ERB)

  3. Studies on glycogen autophagy: effects of phorbol myristate acetate, ionophore A23187, or phentolamine.

    PubMed

    Kalamidas, S A; Kotoulas, O B; Hann, A C

    2002-06-15

    The effects of agents that could manipulate the lysosomal calcium such as phorbol myristate acetate, ionophore A23187, and phentolamine on the lysosomal glycogen degradation were studied by electron microscopy, morphometric analysis, and biochemical assays in newborn rat hepatocytes. Phorbol myristate acetate, which promotes the input of calcium to lysosomes, increased the total volume of autophagic vacuoles and the activity of lysosomal glycogen-hydrolyzing acid alpha 1,4 glucosidase and decreased the fractional volume of undigested glycogen inside the autophagic vacuoles and also decreased the activity of acid mannose 6-phosphatase. Ionophore A23187, which releases lysosomal calcium, produced opposite results in these enzyme activities. Phentolamine, an alpha-adrenergic blocking agent which interferes with the generation of phosphoinositides and may activate the lysosomal calcium uptake pump, increased the total volume of autophagic vacuoles and the activity of lysosomal glycogen-hydrolyzing acid glucosidase and decreased the fractional volume of undigested glycogen inside the autophagic vacuoles. The results of this study constitute evidence that changes in lysosomal calcium may influence certain aspects of autophagy, including the degradation of glycogen inside the autophagic vacuoles. They also support our previous postulate [Kalamidas and Kotoulas (2000a,b) Histol Histopathol 15:29-35, 1011-1018] that stimulation of autophagic mechanisms in newborn rat hepatocytes may be associated with acid mannose 6-phosphatase activity-deficient lysosomes.

  4. Protein kinase C activation inhibits eosinophil degranulation through stimulation of intracellular cAMP production.

    PubMed

    Ezeamuzie, Charles I; Taslim, Najla

    2004-11-01

    The mechanism of inhibition of eosinophil degranulation by protein kinase C (PKC) was investigated in complement C5a (C5a)-stimulated degranulation of highly purified human eosinophils using the specific PKC activator - phorbol 12-myristate 13-acetate (PMA). C5a-induced release of eosinophil peroxidase and eosinophil cationic protein was potently inhibited in a concentration-dependent manner by PMA (IC(50): 3 and 5 nM, respectively). The inhibition by PMA, but not histamine, was significantly reversed by the specific, but isoform nonselective, PKC inhibitor Ro 31-8220 (1 microM). In the presence of phosphodiesterase inhibitor rolipram (5 microM), PMA stimulated a pronounced concentration-dependent increase in intracellular cAMP, with a potency 400 times that of histamine (EC(50): 55 nM vs 22.5 microM). The inactive PMA analogue, 4alpha-PMA, had no such effect. The cAMP production by PMA, but not histamine, was significantly reversed by Ro 31-8220 (1 microM) and the selective inhibitor of the novel PKCdelta, rottlerin (1-3 microM), but not the selective inhibitor of the classical PKC isoforms, Gö 6976 (0.01-0.1 microM). Western blot analysis revealed the presence of six PKC isoforms (alpha, betaI, betaII, delta, iota and zeta) in isolated eosinophils. Chelation of internal or external calcium had no effect on PMA-induced cAMP response, but abolished that induced by histamine. There was a good correlation between increase in intracellular cAMP and inhibition of degranulation. These results show, for the first time, that in human eosinophils, PMA, via activation of PKCdelta isoform, can stimulate cAMP production, and that this may be the basis for its potent anti-degranulatory effect.

  5. Protein kinase C activation inhibits eosinophil degranulation through stimulation of intracellular cAMP production

    PubMed Central

    Ezeamuzie, Charles I; Taslim, Najla

    2004-01-01

    The mechanism of inhibition of eosinophil degranulation by protein kinase C (PKC) was investigated in complement C5a (C5a)-stimulated degranulation of highly purified human eosinophils using the specific PKC activatorphorbol 12-myristate 13-acetate (PMA). C5a-induced release of eosinophil peroxidase and eosinophil cationic protein was potently inhibited in a concentration-dependent manner by PMA (IC50: 3 and 5 nM, respectively). The inhibition by PMA, but not histamine, was significantly reversed by the specific, but isoform nonselective, PKC inhibitor Ro 31-8220 (1 μM). In the presence of phosphodiesterase inhibitor rolipram (5 μM), PMA stimulated a pronounced concentration-dependent increase in intracellular cAMP, with a potency 400 times that of histamine (EC50: 55 nM vs 22.5 μM). The inactive PMA analogue, 4α-PMA, had no such effect. The cAMP production by PMA, but not histamine, was significantly reversed by Ro 31-8220 (1 μM) and the selective inhibitor of the novel PKCδ, rottlerin (1–3 μM), but not the selective inhibitor of the classical PKC isoforms, Gö 6976 (0.01–0.1 μM). Western blot analysis revealed the presence of six PKC isoforms (α, βI, βII, δ, ι and ζ) in isolated eosinophils. Chelation of internal or external calcium had no effect on PMA-induced cAMP response, but abolished that induced by histamine. There was a good correlation between increase in intracellular cAMP and inhibition of degranulation. These results show, for the first time, that in human eosinophils, PMA, via activation of PKCδ isoform, can stimulate cAMP production, and that this may be the basis for its potent anti-degranulatory effect. PMID:15504748

  6. Dependence of Phospholipase D1 Multi-monoubiquitination on Its Enzymatic Activity and Palmitoylation*

    PubMed Central

    Yin, Hao; Gui, Yu; Du, Guangwei; Frohman, Michael A.; Zheng, Xi-Long

    2010-01-01

    Phospholipase D (PLD) is an important lipase in many cellular processes, including vesicular trafficking, cell survival, and cell migration. In the present study, we show that PLD1, but not PLD2, is posttranslationally modified by multi-monoubiquitination. Intriguingly, suppression of lipase activity either by mutation of the HKD motif (PLD1 H896R, K898R, or D903A) or the phosphatidylinositol 4,5-bisphosphate binding motif (PLD1 R691G,R695G) or through use of PLD-selective inhibitors impaired the ubiquitination of PLD1, although stimulation of lipase activity by phorbol 12-myristate 13-acetate did not enhance its ubiquitination. A palmitoylation-deficient mutant PLD1 allele, which exhibits altered patterns of vesicular trafficking, had significantly lower levels of monoubiquitination. In addition, the expression of ubiquitin-fused PLD1 induced aberrantly enlarged vesicles partially co-localized with the Golgi complex but not with early endosomes. The altered localization was reduced by the K898R mutation, suggesting a role of multi-monoubiquitination in PLD1 subcellular localization. Surprisingly, the degradation of PLD1, but not of PLD1 K898R or PLD2, was blocked by inhibitors of proteasomes but not by inhibitors of lysosomes or other proteases, suggesting a role of the ubiquitination in proteasomal degradation of PLD1. In summary, our studies show that PLD1, but not PLD2, is multi-monoubiquitinated. The ubiquitination modification might represent a novel regulatory mechanism in PLD1 functioning, particularly in the context of subcellular trafficking between different membrane compartments. PMID:20189990

  7. Anisi stellati fructus extract attenuates the in vitro and in vivo metastatic and angiogenic potential of malignant cancer cells by downregulating proteolytic activity and pro-angiogenic factors.

    PubMed

    Kim, Aeyung; Im, Minju; Ma, Jin Yeul

    2014-11-01

    Anisi stellati fructus (ASF), commonly known as star anise, has long been used as a traditional Chinese medicine to treat inflammation, nervousness, insomnia and pain. In recent studies, it has been demonstrated that ASF possesses anti-bacterial, anti-fungal and anti-oxidant activities, as well as exhibits inhibitory effects on capillary‑like tube formation in human umbilical vein endothelial cells (HUVECs). However, the effects of ASF extract on the metastatic potential of malignant tumor cells have not been examined. In this study, we found that daily oral administration of ASF (50 mg/kg) remarkably reduced the number of pulmonary metastatic colonies of B16F10 cells in C57BL/6J mice with no observed systemic toxicity. In an in vitro system, ASF inhibited metastatic properties, including anchorage‑independent colony formation, migration and invasion. Upon phorbol 12-myristate 13-acetate (PMA) stimulation, the mRNA levels of matrix metalloproteinases (MMPs) -9, -13, -14 and urokinase plasminogen activator (uPA) decreased in a dose-dependent manner with ASF treatment. Gelatinase, type I collagenase, and uPA activities were also suppressed efficiently by ASF treatment. In response to PMA, NF-κB and AP-1 activation as well as p38 phosphorylation, which are crucial for MMP activation, were significantly decreased by ASF. In particular, ASF considerably inhibited tumor-induced HUVEC migration and tube formation and suppressed in vivo tumor-induced angiogenesis via a reduction of pro-angiogenic factors in tumors. These results collectively indicate that ASF might be useful in the management of metastatic malignant tumors.

  8. Activation of p44/42 MAPK plays a role in the TBT-induced loss of human natural killer (NK) cell function.

    PubMed

    Dudimah, Fred D; Griffey, Denisha; Wang, Xiaofei; Whalen, Margaret M

    2010-10-01

    Natural killer (NK) cells destroy (lyse) tumor cells, virally infected cells, and antibody-coated cells. Previous studies indicated that exposure to the environmental contaminant tributyltin (TBT) decreases the lytic function of NK cells and activates mitogen-activated protein kinases (MAPK), including p44/42 (Aluoch and Whalen Toxicology 209:263-277, 2005). If activation of p44/42 is required for TBT-induced decreases of lytic function, then activation of p44/42 to similar extents by pharmacological agents such as phorbol 12-myristate 13-acetate (PMA) should mimic to some extent changes induced in NK cells with TBT exposures. NK cells were exposed to PMA concentrations between 0.25 and 10 nM for 10 min, 1 h, and 6 h before determining the lytic function ((51)Cr release assay) and phosphorylation state of MAPKs (Western blot). A 1-h exposure of NK cells to 5 nM PMA resulted in a loss of lytic function of 47%. Western blot analysis showed that a 1-h exposure to 5 nM PMA caused a sixfold increase in phospho-p44/42 levels. Previous studies showed a fivefold increase in phospho-p44/42 in response to a 1-h exposure to 300 nM TBT. Exposure to 300 nM TBT caused about a 40% decrease in lytic function. This study supports the hypothesis that p44/42 activation (as seen with TBT exposures) can cause a loss of NK-cell lytic function.

  9. Butrin, Isobutrin, and Butein from Medicinal Plant Butea monosperma Selectively Inhibit Nuclear Factor-κB in Activated Human Mast Cells: Suppression of Tumor Necrosis Factor-α, Interleukin (IL)-6, and IL-8

    PubMed Central

    Rasheed, Zafar; Akhtar, Nahid; Khan, Abubakar; Khan, Khursheed A.

    2010-01-01

    Activation of mast cells in rheumatoid synovial tissue has often been associated with tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8 production and disease pathogenesis by adjacent cell types. Butea monosperma (BM) is a well known medicinal plant in India and the tropics. The aim of this study was to examine whether a standardized extract of BM flower (BME) could inhibit inflammatory reactions in human mast cells (HMC) using activated HMC-1 cells as a model. Four previously characterized polyphenols—butrin, isobutrin, isocoreopsin, and butein—were isolated from BME by preparative thin layer chromatography, and their purity and molecular weights were determined by liquid chromatography/mass spectrometry analysis. Our results showed that butrin, isobutrin, and butein significantly reduced the phorbol 12-myristate 13-acetate and calcium ionophore A23187-induced inflammatory gene expression and production of TNF-α, IL-6, and IL-8 in HMC-1 cells by inhibiting the activation of NF-κB. In addition, isobutrin was most potent in suppressing the NF-κB p65 activation by inhibiting IκBα degradation, whereas butrin and butein were relatively less effective. In vitro kinase activity assay revealed that isobutrin was a potent inhibitor of IκB kinase complex activity. This is the first report identifying the molecular basis of the reported anti-inflammatory effects of BME and its constituents butrin, isobutrin, and butein. The novel pharmacological actions of these polyphenolic compounds indicate potential therapeutic value for the treatment of inflammatory and other diseases in which activated mast cells play a role. PMID:20164300

  10. Roxatidine attenuates mast cell-mediated allergic inflammation via inhibition of NF-κB and p38 MAPK activation

    PubMed Central

    Lee, Minho; Lee, Na Young; Chung, Kyung-Sook; Cheon, Se-Yun; Lee, Kyung-Tae; An, Hyo-Jin

    2017-01-01

    Roxatidine is an active metabolite of roxatidine acetate hydrochloride which is a histamine H2-receptor antagonist that is used to treat gastric and duodenal ulcers. In this study, we investigated the anti-allergic inflammatory effects and the underlying molecular mechanism of roxatidine in phorbol 12-myristate 13-acetate and calcium ionophore (PMACI)-stimulated human mast cells-1 (HMC-1), compound 48/80-induced anaphylactic animal model and chemical allergen-induced contact hypersensitivity (CHS) models. Roxatidine suppressed the mRNA and protein expression of inflammatory cytokines such as TNF-α, IL-6, and IL-1β in PMACI-stimulated HMC-1 and compound 48/80-induced anaphylactic mice. In addition, roxatidine attenuated PMACI-induced nuclear translocation of NF-κB and the phosphorylation of MKK3/6 and MK2, which are both involved in the p38 MAPK pathway. Furthermore, we observed that roxatidine suppressed the activation of caspase-1, an IL-1β converting enzyme, in PMACI-stimulated HMC-1 and compound 48/80-induced anaphylactic mice. In CHS model, roxatidine significantly reduced ear swelling, increased number of mast cells, production levels of cytokines and migration of dendritic cells. Our findings provide evidence that the anti-allergic inflammatory properties of roxatidine are mediated by the inhibition of NF-κB and caspase-1 activation, p38 MAPK pathway and mast cell-derived cytokine production. Taken together, the in vitro and in vivo anti-allergic inflammatory effects suggest a possible therapeutic application of roxatidine in allergic inflammatory diseases. PMID:28139747

  11. Oxygen-sensitive reduction in Ca²⁺-activated K⁺ channel open probability in turtle cerebrocortex.

    PubMed

    Rodgers-Garlick, C I; Hogg, D W; Buck, L T

    2013-05-01

    In response to low ambient oxygen levels the western painted turtle brain undergoes a large depression in metabolic rate which includes a decrease in neuronal action potential frequency. This involves the arrest of N-methyl-D-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) currents and paradoxically an increase in γ-aminobutyric acid receptor (GABAR) currents in turtle cortical neurons. In a search for other oxygen-sensitive channels we discovered a Ca(2+)-activated K(+) channel (K(Ca)) that exhibited a decrease in open time in response to anoxia. Single-channel recordings of K(Ca) activity were obtained in cell-attached and excised inside-out patch configurations from neurons in cortical brain sheets bathed in either normoxic or anoxic artificial cerebrospinal fluid (aCSF). The channel has a slope conductance of 223pS, is activated in response to membrane depolarization, and is controlled in a reversible manner by free [Ca(2+)] at the intracellular membrane surface. In the excised patch configuration anoxia had no effect on K(Ca) channel open probability (P(open)); however, in cell-attached mode, there was a reversible fivefold reduction in P(open) (from 0.5 ± 0.05 to 0.1 ± 0.03) in response to 30-min anoxia. The inclusion of the potent protein kinase C (PKC) inhibitor chelerythrine prevented the anoxia-mediated decrease in P(open) while drip application of a phorbol ester PKC activator decreased P(open) during normoxia (from normoxic 0.4 ± 0.05 to phorbol-12-myristate-13-acetate (PMA) 0.1 ± 0.02). Anoxia results in a slight depolarization of turtle pyramidal neurons (∼8 mV) and an increase in cytosolic [Ca(2+)]; therefore, K(Ca) arrest is likely important to prevent Ca(2+) activation during anoxia and to reduce the energetic cost of maintaining ion gradients. We conclude that turtle pyramidal cell Ca(2+)-activated K(+) channels are oxygen-sensitive channels regulated by cytosolic factors and are likely

  12. Kinase-dependent activation of voltage-gated Ca2+ channels by ET-1 in pulmonary arterial myocytes during chronic hypoxia.

    PubMed

    Luke, Trevor; Maylor, Julie; Undem, Clark; Sylvester, J T; Shimoda, Larissa A

    2012-05-15

    Exposure to chronic hypoxia (CH) causes pulmonary hypertension. The vasoconstrictor endothelin-1 (ET-1) is thought to play a role in the development of hypoxic pulmonary hypertension. In pulmonary arterial smooth muscle cells (PASMCs) from chronically hypoxic rats, ET-1 signaling is altered, with the ET-1-induced change in intracellular calcium concentration (Δ[Ca(2+)](i)) occurring through activation of voltage-dependent Ca(2+) channels (VDCC) even though ET-1-induced depolarization via inhibition of K(+) channels is lost. The mechanism underlying this response is unclear. We hypothesized that activation of VDCCs by ET-1 following CH might be mediated by protein kinase C (PKC) and/or Rho kinase, both of which have been shown to phosphorylate and activate VDCCs. To test this hypothesis, we examined the effects of PKC and Rho kinase inhibitors on the ET-1-induced Δ[Ca(2+)](i) in PASMCs from rats exposed to CH (10% O(2), 3 wk) using the Ca(2+)-sensitive dye fura 2-AM and fluorescent microscopy techniques. We found that staurosporine and GF109203X, inhibitors of PKC, and Y-27632 and HA 1077, Rho kinase inhibitors, reduced the ET-1-induced Δ[Ca(2+)](i) by >70%. Inhibition of tyrosine kinases (TKs) with genistein or tyrphostin A23, or combined inhibition of PKC, TKs, and Rho kinase, reduced the Δ[Ca(2+)](i) to a similar extent as inhibition of either PKC or Rho kinase alone. The ability of PKC or Rho kinase to activate VDCCs in our cells was verified using phorbol 12-myristate 13-acetate and GTP-γ-S. These results suggest that following CH, the ET-1-induced Δ[Ca(2+)](i) in PASMCs occurs via Ca(2+) influx through VDCCs mediated primarily by PKC, TKs, and Rho kinase.

  13. Correction of Aberrant NADPH Oxidase Activity in Blood-Derived Mononuclear Cells from Type II Diabetes Mellitus Patients by a Naturally Fermented Papaya Preparation

    PubMed Central

    Dickerson, Ryan; Deshpande, Bhakthi; Gnyawali, Urmila; Lynch, Debbie; Gordillo, Gayle M.; Schuster, Dara; Osei, Kwame

    2012-01-01

    Abstract Supplementation of standardized fermented papaya preparation (FPP) to adult diabetic mice improves dermal wound healing outcomes. Peripheral blood mononuclear cells (PBMC) from type II diabetes mellitus (T2DM) patients elicit a compromised respiratory burst activity resulting in increased risk of infections for the diabetic patients. Aims: The objectives of the current study were to determine the effect of FPP supplementation on human diabetic PBMC respiratory burst activity and to understand underlying mechanisms of such action of FPP. Results: When stimulated with phorbol 12-myristate 13-acetate, the production of reactive oxygen species by T2DM PBMC was markedly compromised compared to that of the PBMC from non-DM donors. FPP treated ex vivo improved respiratory burst outcomes in T2DM PBMC. FPP treatment significantly increased phosphorylation of the p47phox subunit of NADPH oxidase. In addition, the protein and mRNA expression of Rac2 was potently upregulated after FPP supplemention. The proximal human Rac2 gene promoter is G–C rich and contains consensus binding sites for Sp1 and AP-1. While FPP had no significant effect on the AP-1 DNA binding activity, the Sp1 DNA binding activity was significantly upregulated in PBMC after treatment of the cells with FPP. Innovation: This work provided first evidence that compromised respiratory burst performance of T2DM PBMC may be corrected by a nutritional supplement. Conclusion: FPP can correct respiratory burst performance of T2DM PBMC via an Sp-1-dependant pathway. Studies testing the outcome of FPP supplementation in diabetic patients are warranted. Antioxid. Redox Signal. 17, 485–491. PMID:22369197

  14. Identification of protein kinase C activation as a novel mechanism for RGS2 protein upregulation through phenotypic screening of natural product extracts.

    PubMed

    Raveh, Avi; Schultz, Pamela J; Aschermann, Lauren; Carpenter, Colleen; Tamayo-Castillo, Giselle; Cao, Shugeng; Clardy, Jon; Neubig, Richard R; Sherman, David H; Sjögren, Benita

    2014-10-01

    Biochemical high-throughput screening is widely used in drug discovery, using a variety of small molecule libraries. However, broader screening strategies may be more beneficial to identify novel biologic mechanisms. In the current study we used a β-galactosidase complementation method to screen a selection of microbial-derived pre-fractionated natural product extracts for those that increase regulator of G protein signaling 2 (RGS2) protein levels. RGS2 is a member of a large family of proteins that all regulate signaling through G protein-coupled receptors (GPCRs) by accelerating GTPase activity on active Gα as well as through other mechanisms. RGS2(-/-) mice are hypertensive, show increased anxiety, and are prone to heart failure. RGS2 has a very short protein half-life due to rapid proteasomal degradation, and we propose that enhancement of RGS2 protein levels could be a beneficial therapeutic strategy. Bioassay-guided fractionation of one of the hit strains yielded a pure compound, Indolactam V, a known protein kinase C (PKC) activator, which selectively increased RGS2 protein levels in a time- and concentration-dependent manner. Similar results were obtained with phorbol 12-myristate 13-acetate as well as activation of the Gq-coupled muscarinic M3 receptor. The effect on RGS2 protein levels was blocked by the nonselective PKC inhibitor Gö6983 (3-[1-[3-(dimethylamino)propyl]-5-methoxy-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione), the PKCβ-selective inhibitor Ruboxastaurin, as well as small interfering RNA-mediated knockdown of PKCβ. Indolactam V-mediated increases in RGS2 protein levels also had functional effects on GPCR signaling. This study provides important proof-of-concept for our screening strategy and could define a negative feedback mechanism in Gq/Phospholipase C signaling through RGS2 protein upregulation.

  15. CHBPR-Angiotensin II stimulates renin in inner medullary collecting duct cells via PKC and independent of ENaC and mineralocorticoid receptor activity

    PubMed Central

    Gonzalez, Alexis A.; Liu, Liu; Lara, Lucienne S.; Seth, Dale M; Navar, L. Gabriel; Prieto, Minolfa C

    2011-01-01

    Collecting duct (CD) renin is stimulated by angiotensin (Ang) II providing a pathway for Ang I generation and further conversion to Ang II. Ang II stimulates epithelial sodium channel (ENaC) via Ang II type 1 receptor (AT1R) and increases mineralocorticoid receptor (MR) activity due to increased aldosterone release. Our objective was to determine if CD renin augmentation is mediated directly by AT1R or via ENaC and MR. In vivo studies examined the effects of ENaC blockade (amiloride; 5 mg/kg/day) on CD renin expression and urinary renin content (URC) in Ang II-infused rats (80 ng/min, 2 weeks). Ang II infusion increased systolic blood pressure (SBP), medullary renin mRNA, URC and intrarenal Ang II levels. Amiloride co-treatment did not alter these responses despite reduction in the rate of progression of SBP. In primary cultures of inner medullary CD (IMCD) cells, renin mRNA and (pro)renin protein levels increased with Ang II (100 nmol/L), and candesartan (AT1R antagonist) prevented this effect. Aldosterone (10−10 to 10−7 mol/L) with or without amiloride did not modify the upregulation of renin mRNA in Ang II treated cells. However, inhibition of protein kinase C (PKC) with calphostin C prevented the Ang II-mediated increases in renin mRNA and (pro)renin protein levels. Furthermore, PKC activation with phorbol 12-myristate 13-acetate (PMA) increased renin expression to the same extent as Ang II. These data indicate that AT1R-mediated increase in CD renin is induced directly by Ang II via PKC pathway and that this regulation is independent of MR activation or ENaC activity. PMID:21282553

  16. High D-glucose reduces SLC29A1 promoter activity and adenosine transport involving specific protein 1 in human umbilical vein endothelium.

    PubMed

    Puebla, Carlos; Farías, Marcelo; González, Marcelo; Vecchiola, Andrea; Aguayo, Claudio; Krause, Bernardo; Pastor-Anglada, Marçal; Casanello, Paola; Sobrevia, Luis

    2008-06-01

    High D-glucose reduces human equilibrative nucleoside transporter 1 (hENT1)-mediated adenosine uptake involving endothelial nitric oxide synthase (eNOS), mitogen-activated protein (MAP) kinase kinases 1 and 2/MAP kinases p42/44 (MEK/ERKs), and protein kinase C (PKC) activation in human umbilical vein endothelium (HUVEC). Since NO represses SLC29A1 gene (hENT1) promoter activity we studied whether D-glucose-reduced hENT1-adenosine transport results from lower SLC29A1 expression in HUVEC primary cultures. HUVEC incubation (24 h) with high D-glucose (25 mM) reduced hENT1-adenosine transport and pGL3-hENT1(-1114) construct SLC29A1 reporter activity compared with normal D-glucose (5 mM). High D-glucose also reduced pGL3-hENT1(-1114) reporter activity compared with cells transfected with pGL3-hENT1(-795) construct. N(G)-nitro-L-arginine methyl ester (L-NAME, NOS inhibitor), PD-98059 (MEK1/2 inhibitor), and/or calphostin C (PKC inhibitor) blocked D-glucose effects. Insulin (1 nM) and phorbol 12-myristate 13-acetate (PMA, 100 nM, PKC activator), but not 4alpha-phorbol 12,13-didecanoate (4alphaPDD, 100 nM, PMA less active analogue) reduced hENT1-adenosine transport. L-NAME and PD-98059 blocked insulin effects. L-NAME, PD-98059, and calphostin C increased hENT1 expression without altering protein or mRNA stability. High D-glucose increased Sp1 transcription factor protein abundance and binding to SLC29A1 promoter, phenomena blocked by L-NAME, PD-98059, and calphostin C. Sp1 overexpression reduced SLC29A1 promoter activity in normal D-glucose, an effect reversed by L-NAME and further reduced by S-nitroso-N-acetyl-L,D-penicillamine (SNAP, NO donor) in high D-glucose. Thus, reduced hENT1-mediated adenosine transport in high D-glucose may result from increased Sp1 binding to SLC29A1 promoter down-regulating hENT1 expression. This phenomenon depends on eNOS, MEK/ERKs, and PKC activity, suggesting potential roles for these molecules in hyperglycemia-associated endothelial

  17. Muscarinic receptor activation of phosphatidylcholine hydrolysis. Relationship to phosphoinositide hydrolysis and diacylglycerol metabolism

    SciTech Connect

    Martinson, E.A.; Goldstein, D.; Brown, J.H. )

    1989-09-05

    We examined the relationship between phosphatidylcholine (PC) hydrolysis, phosphoinositide hydrolysis, and diacylglycerol (DAG) formation in response to muscarinic acetylcholine receptor (mAChR) stimulation in 1321N1 astrocytoma cells. Carbachol increases the release of (3H)choline and (3H)phosphorylcholine ((3H)Pchol) from cells containing (3H)choline-labeled PC. The production of Pchol is rapid and transient, while choline production continues for at least 30 min. mAChR-stimulated release of Pchol is reduced in cells that have been depleted of intracellular Ca2+ stores by ionomycin pretreatment, whereas choline release is unaffected by this pretreatment. Phorbol 12-myristate 13-acetate (PMA) increases the release of choline, but not Pchol, from 1321N1 cells, and down-regulation of protein kinase C blocks the ability of carbachol to stimulate choline production. Taken together, these results suggest that Ca2+ mobilization is involved in mAChR-mediated hydrolysis of PC by a phospholipase C, whereas protein kinase C activation is required for mAChR-stimulated hydrolysis of PC by a phospholipase D. Both carbachol and PMA rapidly increase the formation of (3H)phosphatidic acid ((3H)PA) in cells containing (3H)myristate-labeled PC. (3H)Diacylglycerol ((3H)DAG) levels increase more slowly, suggesting that the predominant pathway for PC hydrolysis is via phospholipase D. When cells are labeled with (3H)myristate and (14C)arachidonate such that there is a much greater 3H/14C ratio in PC compared with the phosphoinositides, the 3H/14C ratio in DAG and PA increases with PMA treatment but decreases in response to carbachol.

  18. Phorbol diesters and transferrin modulate lymphoblastoid cell transferrin receptor expression by two different mechanisms

    SciTech Connect

    Alcantara, O.; Phillips, J.L.; Boldt, D.H.

    1986-12-01

    Expression of transferrin receptors (TfR) by activated lymphocytes is necessary for lymphocyte DNA synthesis and proliferation. Regulation of TfR expression, therefore, is a mechanism by which the lymphocyte's proliferative potential may be directed and controlled. The authors studied mechanisms by which lymphoblastoid cells modulate TfR expression during treatment with phorbol diesters or iron transferrin (FeTf), agents which cause downregulation of cell surface TfR. Phorbol diester-induced TfR downregulation occurred rapidly, being detectable at 2 min and reaching maximal decreases of 50% by 15 min. It was inhibited by cold but not by agents that destabilize cytoskeletal elements. Furthermore, this downregulation was reversed rapidly by washing or by treatment with the membrane interactive agent, chlorpromazine. In contrast, FeTf-induced TfR downregulation occurred slowly. Decreased expression of TfR was detectable only after 15 min and maximal downregulation was achieved after 60 min. Although FeTf-induced downregulation also was inhibited by cold, it was inhibited in addition by a group of microtubule destabilizing agents (colchicine, vinblastine, podophyllotoxin) or cytochalasin B, a microfilament inhibitor. Furthermore, FeTf-induced downregulation was not reversed readily by washing or by treatment with chlorpromazine. Phorbol diesters cause TfR downregulation by a cytoskeleton-independent mechanism. These data indicate that TfR expression is regulated by two independent mechanisms in lymphoblastoid cells, and they provide the possibility that downregulation of TfR by different mechanisms may result in different effects in these cells.

  19. Isoquercitrin suppresses the expression of histamine and pro-inflammatory cytokines by inhibiting the activation of MAP Kinases and NF-κB in human KU812 cells.

    PubMed

    Li, Li; Zhang, Xiao-Hui; Liu, Guang-Rong; Liu, Chang; Dong, Yin-Mao

    2016-06-01

    Mast cells and basophils are multifunctional effector cells that contain abundant secretory granules in their cytoplasm. Both cell types are involved in a variety of inflammatory and immune events, producing an array of inflammatory mediators, such as cytokines. The aim of the study was to examine whether isoquercitrin modulates allergic and inflammatory reactions in the human basophilic KU812 cells and to elucidate its influence on the phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation. The KU812 cells were stimulated with phorbol-12-myristate 13-acetate plus the calcium ionophore A23187 (PMACI). The inhibitory effects of isoquercitrin on the productions of histamine and pro-inflammatory cytokines in the stimulated KU812 cells were measured using cytokine-specific enzyme-linked immunosorbent (ELISA) assays. Western blotting analysis was used to assess the effects of isoquercitrin on the MAPKs and NF-κB protein levels. Our results indicated that the isoquercitrin treatment of PMACI-stimulated KU812 cells significantly reduced the production of histamine and the pro-inflammatory cytokines, such as interleukin (IL)-6, IL-8, IL-1β, and tumor necrosis factor (TNF)-α. The treated cells exhibited decreased phosphorylation of extracellular signal-regulated kinase (ERK), revealing the role of ERK MAPK in isoquercitrin-mediated allergy inhibition. Furthermore, isoquercitrin suppressed the PMACI-mediated activation of NF-κB in the human basophil cells. In conclusion, the results from the present study provide insights into the potential therapeutic use of isoquercitrin for the treatment of inflammatory and allergic reactions.

  20. Selective inhibition of beta(2)-adrenergic receptor-mediated cAMP generation by activation of the P2Y(2) receptor in mouse pineal gland tumor cells.

    PubMed

    Suh, B C; Kim, J S; Namgung, U; Han, S; Kim, K T

    2001-06-01

    Rhythmic noradrenergic signaling from the hypothalamic clock in the suprachiasmatic nucleus to the pineal gland causes an increase in intracellular cAMP which regulates the circadian fluctuation of melatonin synthesis. The activation of phospholipase C (PLC)-coupled P2Y(2) receptors upon treatment with ATP and UTP exclusively inhibited the isoproterenol-stimulated cAMP production in mouse pineal gland tumor cells. However, the activation of other PLC-coupled receptors including P2Y(1) and bombesin receptors had little or no effect on the isoproterenol-stimulated cAMP production. Also, ATP did not inhibit cAMP production caused by forskolin, prostaglandin E(2), or the adenosine analog NECA. These results suggest a selective coupling between signalings of P2Y(2) and beta(2)-adrenergic receptors. The binding of [(3)H]CGP12177 to beta(2)-adrenergic receptors was not effected by the presence of ATP or UTP. Ionomycin decreased the isoproterenol-stimulated cAMP production, whereas phorbol 12-myristate 13-acetate slightly potentiated the isoproterenol response. Chelation of intracellular Ca(2+), however, had little effect on the ATP-induced inhibition of cAMP production, while it completely reversed the ionomycin-induced inhibition. Treatment of cells with pertussis toxin almost completely blocked the inhibitory effect of nucleotides. Pertussis toxin also inhibited the nucleotide-induced increase in intracellular Ca(2+) and inositol 1,4,5-trisphosphate production by 30-40%, suggesting that the ATP-mediated inhibition of the cAMP generation and the partial activation of PLC are mediated by pertussis toxin-sensitive G(i)-protein. We conclude that one of the functions of P2Y(2) receptors on the pineal gland is the selective inhibition of beta-adrenergic receptor-mediated signaling pathways via the inhibitory G-proteins.

  1. Definition of a GC-rich motif as regulatory sequence of the human IL-3 gene: coordinate regulation of the IL-3 gene by CLE2/GC box of the GM-CSF gene in T cell activation.

    PubMed

    Nishida, J; Yoshida, M; Arai, K; Yokota, T

    1991-03-01

    The human IL-3 gene, located on chromosome 5, contains several cis-acting DNA sequences, i.e. CLE (conserved lymphokine element) and a GC-rich region, similar to the GM-CSF gene. To investigate the role of these elements, the 5' flanking region of the IL-3 gene was attached to a bacterial chloramphenicol acetyltransferase (CAT) gene. The fusion plasmids were analyzed by an in vitro transcription system using Jurkat cell nuclear extract prepared from cells stimulated with phorbol-12-myristate-13-acetate and calcium ionophore (PMA/A23187), introduced into Jurkat cells, expressed transiently, and stimulated by co-transfection of human T cell leukemia virus type I (HTLV-I) encoded transactivator, p40tax. The GC-rich region enhanced TATA-dependent transcription in the in vitro transcription system and also strongly responded to p40tax stimulation in the in vivo cotransfection assay. Using this GC-rich region as a probe, we identified a constitutive DNA-protein complex, alpha, whose binding specificity correlates with transcription activity. However, this element is not sufficient for the expression of the IL-3 gene in response to T cell activation signals (PMA/A23187) and no sequence was found within the IL-3 gene which mediates the response to PMA/A23187. The enhancer sequence which responds to T cell activation signals may be located outside the IL-3 gene and may be shared by other lymphokines, possibly by GM-CSF. We propose that the GM-CSF enhancer (CLE2/GC box) which mediates the response to T cell activation signals may stimulate the expression of the IL-3 gene.

  2. Protein kinase C promotes apoptosis in LNCaP prostate cancer cells through activation of p38 MAPK and inhibition of the Akt survival pathway.

    PubMed

    Tanaka, Yuichi; Gavrielides, M Veronica; Mitsuuchi, Yasuhiro; Fujii, Teruhiko; Kazanietz, Marcelo G

    2003-09-05

    Activation of protein kinase C (PKC) by phorbol esters or diacylglycerol mimetics induces apoptosis in androgen-dependent prostate cancer cells, an effect that involves both the activation of the classic PKC alpha and the novel PKC delta isozymes (Fujii, T., García-Bermejo, M. L., Bernabó, J. L., Caamaño, J., Ohba, M., Kuroki, T., Li, L., Yuspa, S. H., and Kazanietz, M. G. (2000) J. Biol. Chem. 275, 7574-7582 and Garcia-Bermejo, M. L., Leskow, F. C., Fujii, T., Wang, Q., Blumberg, P. M., Ohba, M., Kuroki, T., Han, K. C., Lee, J., Marquez, V. E., and Kazanietz, M. G. (2002) J. Biol. Chem. 277, 645-655). In the present study we explored the signaling events involved in this PKC-mediated effect, using the androgen-dependent LNCaP cell line as a model. Stimulation of PKC by phorbol 12-myristate 13-acetate (PMA) leads to the activation of ERK1/2, p38 MAPK, and JNK in LNCaP cells. Here we present evidence that p38 MAPK, but not JNK, mediates PKC-induced apoptosis. Because LNCaP cells have hyperactivated Akt function due to PTEN inactivation, we examined whether this survival pathway could be affected by PKC activation. Interestingly, activation of PKC leads to a rapid and reversible dephosphorylation of Akt, an effect that was prevented by the pan-PKC inhibitor GF109302X and the cPKC inhibitor Gö6976. In addition, the diacylglycerol mimetic agent HK654, which selectively stimulates PKC alpha in LNCaP cells, also induced the dephosphorylation of Akt in LNCaP cells. Inactivation of Akt function by PKC does not involve the inhibition of PI3K, and it is prevented by okadaic acid, suggesting the involvement of a phosphatase 2A in PMA-induced Akt dephosphorylation. Finally, we show that, when an activated form of Akt is delivered into LNCaP cells by either transient transfection or adenoviral infection, the apoptotic effect of PMA is significantly reduced. Our results highlight a complex array of signaling pathways regulated by PKC isozymes in LNCaP prostate cancer cells

  3. Adrenergic regulation and diurnal rhythm of p38 mitogen-activated protein kinase phosphorylation in the rat pineal gland.

    PubMed

    Chik, C L; Mackova, M; Price, D; Ho, A K

    2004-11-01

    In this study, we investigated adrenergic and photoneural regulation of p38MAPK phosphorylation in the rat pineal gland. Norepinephrine (NE), the endogenous neurotransmitter, dose-dependently increased the levels of phosphorylated MAPK kinase 3/6 (MKK3/6) and p38MAPK in rat pinealocytes. Time-course studies showed a gradual increase in MKK3/6 and p38MAPK phosphorylation that peaked between 1 and 2 h and persisted for 4 h post NE stimulation. In cells treated with NE for 2 and 4 h, the inclusion of prazosin or propranolol reduced NE-induced MKK3/6 and p38MAPK phosphorylation, indicating involvement of both alpha- and beta-adrenergic receptors for the sustained response. Whereas treatment with dibutyryl cAMP or ionomycin mimicked the NE-induced MKK3/6 and p38MAPK phosphorylation, neither dibutyryl cGMP nor 4beta-phorbol 12-myristate 13-acetate had an effect. The NE-induced increase in MKK3/6 and p38MAPK phosphorylation was blocked by KT5720 (a protein kinase A inhibitor) and KN93 (a Ca(2+)/calmodulin-dependent kinase inhibitor), but not by KT5823 (a protein kinase G inhibitor) or calphostin C (a protein kinase C inhibitor). In animals housed under a lighting regimen with 12 h of light, MKK3/6 and p38MAPK phosphorylation increased in the rat pineal gland at zeitgeber time 18. The nocturnal increase in p38MAPK phosphorylation was blocked by exposing the animal to constant light and reduced by treatment with propranolol, a beta-adrenergic blocker. Together, our results indicate that activation of p38MAPK is under photoneural control in the rat pineal gland and that protein kinase A and intracellular Ca(2+) signaling pathways are involved in NE regulation of p38MAPK.

  4. Intra-lesional injection of the novel PKC activator EBC-46 rapidly ablates tumors in mouse models.

    PubMed

    Boyle, Glen M; D'Souza, Marjorie M A; Pierce, Carly J; Adams, Ryan A; Cantor, Aaron S; Johns, Jenny P; Maslovskaya, Lidia; Gordon, Victoria A; Reddell, Paul W; Parsons, Peter G

    2014-01-01

    Intra-lesional chemotherapy for treatment of cutaneous malignancies has been used for many decades, allowing higher local drug concentrations and less toxicity than systemic agents. Here we describe a novel diterpene ester, EBC-46, and provide preclinical data supporting its use as an intra-lesional treatment. A single injection of EBC-46 caused rapid inflammation and influx of blood, followed by eschar formation and rapid tumor ablation in a range of syngeneic and xenograft models. EBC-46 induced oxidative burst from purified human polymorphonuclear cells, which was prevented by the Protein Kinase C inhibitor bisindolylmaleimide-1. EBC-46 activated a more specific subset of PKC isoforms (PKC-βI, -βII, -α and -γ) compared to the structurally related phorbol 12-myristate 13-acetate (PMA). Although EBC-46 showed threefold less potency for inhibiting cell growth than PMA in vitro, it was more effective for cure of tumors in vivo. No viable tumor cells were evident four hours after injection by ex vivo culture. Pharmacokinetic profiles from treated mice indicated that EBC-46 was retained preferentially within the tumor, and resulted in significantly greater local responses (erythema, oedema) following intra-lesional injection compared with injection into normal skin. The efficacy of EBC-46 was reduced by co-injection with bisindolylmaleimide-1. Loss of vascular integrity following treatment was demonstrated by an increased permeability of endothelial cell monolayers in vitro and by CD31 immunostaining of treated tumors in vivo. Our results demonstrate that a single intra-lesional injection of EBC-46 causes PKC-dependent hemorrhagic necrosis, rapid tumor cell death and ultimate cure of solid tumors in pre-clinical models of cancer.

  5. Intra-Lesional Injection of the Novel PKC Activator EBC-46 Rapidly Ablates Tumors in Mouse Models

    PubMed Central

    Pierce, Carly J.; Adams, Ryan A.; Cantor, Aaron S.; Johns, Jenny P.; Maslovskaya, Lidia; Gordon, Victoria A.; Reddell, Paul W.; Parsons, Peter G.

    2014-01-01

    Intra-lesional chemotherapy for treatment of cutaneous malignancies has been used for many decades, allowing higher local drug concentrations and less toxicity than systemic agents. Here we describe a novel diterpene ester, EBC-46, and provide preclinical data supporting its use as an intra-lesional treatment. A single injection of EBC-46 caused rapid inflammation and influx of blood, followed by eschar formation and rapid tumor ablation in a range of syngeneic and xenograft models. EBC-46 induced oxidative burst from purified human polymorphonuclear cells, which was prevented by the Protein Kinase C inhibitor bisindolylmaleimide-1. EBC-46 activated a more specific subset of PKC isoforms (PKC-βI, -βII, -α and -γ) compared to the structurally related phorbol 12-myristate 13-acetate (PMA). Although EBC-46 showed threefold less potency for inhibiting cell growth than PMA in vitro, it was more effective for cure of tumors in vivo. No viable tumor cells were evident four hours after injection by ex vivo culture. Pharmacokinetic profiles from treated mice indicated that EBC-46 was retained preferentially within the tumor, and resulted in significantly greater local responses (erythema, oedema) following intra-lesional injection compared with injection into normal skin. The efficacy of EBC-46 was reduced by co-injection with bisindolylmaleimide-1. Loss of vascular integrity following treatment was demonstrated by an increased permeability of endothelial cell monolayers in vitro and by CD31 immunostaining of treated tumors in vivo. Our results demonstrate that a single intra-lesional injection of EBC-46 causes PKC-dependent hemorrhagic necrosis, rapid tumor cell death and ultimate cure of solid tumors in pre-clinical models of cancer. PMID:25272271

  6. Effects of activation of protein kinase C (PKC) on the hormonal stimulation and inhibition of cAMP formation in intact human platelets

    SciTech Connect

    Williams, K.A.; Haslam, R.J.

    1986-05-01

    Washed platelets, labelled by preincubation with (/sup 3/H)adenine and (/sup 32/P)P/sub i/, were studied in the presence of indomethacin, phosphocreatine and creatine phosphokinase to block thromboxane A/sub 2/ formation and inhibitory effects of released ADP. Addition of phorbol 12-myristate 13-acetate (PMA) or 1,2-dioctanoyl-glycerol (diC/sub 8/) decreased the initial rate of accumulation of (/sup 3/H)cAMP observed with PGE/sub 1/ and 3-isobutyl 1- methylxanthine. Maximal decreases of 31% (1 ..mu..M PMA) and 42% (100 ..mu..M diC/sub 8/) were obtained. Also, the inhibition of (/sup 3/H)cAMP formation by epinephrine (5 ..mu..M) was decreased from 68% to 16% and 31% by 1..mu..M PMA and 100 ..mu..M diC/sub 8/, respectively. The effects of increasing concentrations of PMA and diC/sub 8/ on the stimulation of (/sup 3/H)cAMp formation by PGE/sub 1/ and on the inhibitory action of epinephrine correlated with increases in /sup 32/P incorporation into the major substrate of PKC (P47) and into two other polypeptides (P41 and P20). These results suggested that activation of PKC might explain the failure of some aggregating agents (e.g. PAF and vasopressin) to inhibit adenylate cyclase in intact platelets, although they are inhibitory with isolated membranes. However, comparison of the effects of PMA and these aggregating agents on the phosphorylation of platelet polypeptides indicated that activation of PKC by aggregating agents is inadequate to block their inhibitory effects on adenylate cyclase, when PGE/sub 1/ is present.

  7. Inhibition of protein kinase C α/βII and activation of c-Jun NH2-terminal kinase mediate glycyrrhetinic acid induced apoptosis in non-small cell lung cancer NCI-H460 cells.

    PubMed

    Song, Junho; Ko, Hyun-suk; Sohn, Eun Jung; Kim, Bonglee; Kim, Jung Hyo; Kim, Hee Jeong; Kim, Chulwoo; Kim, Jai-eun; Kim, Sung-Hoon

    2014-02-15

    Though glycyrrhetinic acid (GA) from Glycyrrhiza glabra was known to exert antioxidant, antifilarial, hepatoprotective, anti-inflammatory and anti-tumor effects, the antitumor mechanism of GA was not clearly elucidated in non-small cell lung cancer cells (NSCLCCs). Thus, in the present study, the underlying apoptotic mechanism of GA was examined in NCI-H460 NSCLCCs. GA significantly suppressed the viability of NCI-H460 and A549 non-small lung cancer cells. Also, GA significantly increased the sub G1 population by cell cycle analysis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells in a concentration dependent manner in NCI-H460 non-small lung cancer cells. Consistently, GA cleaved poly (ADP-ribosyl) polymerase (PARP), caspase 9/3, attenuated the expression of Bcl-XL, Bcl-2, Cyclin D1 and Cyclin E in NCI-H460 cells. Interestingly, GA attenuated the phosphorylation of protein kinase C (PKC) α/βII and extracellular activated protein kinase (ERK) as well as activated the phosphorylation of PKC δ and c-Jun NH2-terminal kinase in NCI-H460 cells. Conversely, PKC promoter phorbol 12-myristate 13-acetate (PMA) and JNK inhibitor SP600125 reversed the cleavages of caspase 3 and PARP induced by GA in NCI-H460 cells. Overall, our findings suggest that GA induces apoptosis via inhibition of PKC α/βII and activation of JNK in NCI-H460 non-small lung cancer cells as a potent anticancer candidate for lung cancer treatment.

  8. Down-modulation of receptors for phorbol ester tumor promoter in primary epidermal cells

    SciTech Connect

    Solanki, V.; Slaga, T.J.

    1982-01-01

    The specific (20-/sup 3/H)phorbol 12,13-dibutyrate ((/sup 3/H)PDBu) binding to intact epidermal cells displayed the phenomenon of down-modulation, i.e., the specific binding of (/sup 3/H)PDBu to its receptors on primary epidermal cells reached a maximum within 1 h and steadily declined thereafter. The apparent down-modulation of radiolabel resulted from a partial loss in the total number of receptors; the affinity of receptors for the ligand was essentially unchanged. A number of agents such as chloroquine, methylamine, or arginine which are known to prevent clustering, down-modulation, and/or internalization of several hormone receptors did not affect the down-modulation of phorbol ester receptors. Furthermore, cycloheximide had no effect either on down-modulation or on the binding capacity of cells. The surface binding capacity of down-modulated cells following a 90-min incubation with unlabeled ligand was almost returned to normal within 1 h. The effect of the antidepressant drug chlorpromazine, which is known to interact with calmodulin, on (/sup 3/H)PDBu binding was also investigated. Our data indicate that the effect of chlorpromazine on (/sup 3/H)PDBu binding is probably unrelated to its calmodulin-binding activity.

  9. Phorbol ester and epidermal growth factor enhance the expression of two inducible prostaglandin H synthase genes in rat tracheal epithelial cells.

    PubMed

    Hamasaki, Y; Kitzler, J; Hardman, R; Nettesheim, P; Eling, T E

    1993-07-01

    Previous studies from our laboratory suggested that phorbol 12-myristate 13-acetate (TPA) stimulates prostaglandin E2 (PGE2) production by inducing de novo synthesis of prostaglandin H synthase (PHS) in a rat tracheal cell line. We report here an extension of this work to further elucidate the mechanisms by which TPA (and epidermal growth factor) stimulates PGE2 production. We used the rat tracheal cell line EGV6, which has a lower basal level of PGE2 production and responds to TPA and EGF stimulation with a much greater increase in PGE2 synthesis than the previously used cell line, Incubation of EGV6 cultures with TPA or EGF resulted in a time- and dose-dependent increase in PGE2 synthesis up to 40-fold and 6-fold, respectively. Serum also stimulated PGE2 synthesis, while bombesin, retinoic acid, and bacterial lipopolysaccharide did not. PHS protein levels in microsomal preparations from the cells were estimated by Western analysis. Antibodies raised against murine PHS-2 cross reacted with the EGV-6 PHS while several antibody preparations that react with PHS-1 from ram or mouse reacted poorly with the cellular preparation. TPA treatment increased the de novo synthesis of PHS-2 while dexamethasone treatment reduced the response to TPA. Northern blot analysis of mRNA from EGV6 cultures using a ram PHS cDNA revealed a 2.8- and a 4.5- to 4.9-kb (designated 4.9 kb) transcript. Treatment with TPA or EGF increased the expression of both transcripts and this effect was further enhanced by cyclohexamide. To further define the PHS mRNA species of EGV6 cells, two well-characterized murine PHS cDNA probes were used. The constitutive murine PHS cDNA probe hybridized only with the 2.8-kb transcript, and the inducible murine PHS cDNA hybridized only with the 4.9-kb transcript. The rates of induction as well as degradation of the 4.9-kb PHS mRNA were much more rapid than those of the 2.8-kb mRNA species. Dexamethasone partially inhibited the induction of both PHS transcripts by

  10. Toll-like receptor 2 activation by β2→1-fructans protects barrier function of T84 human intestinal epithelial cells in a chain length-dependent manner.

    PubMed

    Vogt, Leonie M; Meyer, Diederick; Pullens, Gerdie; Faas, Marijke M; Venema, Koen; Ramasamy, Uttara; Schols, Henk A; de Vos, Paul

    2014-07-01

    Dietary fiber intake is associated with lower incidence and mortality from disease, but the underlying mechanisms of these protective effects are unclear. We hypothesized that β2→1-fructan dietary fibers confer protection on intestinal epithelial cell barrier function via Toll-like receptor 2 (TLR2), and we studied whether β2→1-fructan chain-length differences affect this process. T84 human intestinal epithelial cell monolayers were incubated with 4 β2→1-fructan formulations of different chain-length compositions and were stimulated with the proinflammatory phorbol 12-myristate 13-acetate (PMA). Transepithelial electrical resistance (TEER) was analyzed by electric cell substrate impedance sensing (ECIS) as a measure for tight junction-mediated barrier function. To confirm TLR2 involvement in barrier modulation by β2→1-fructans, ECIS experiments were repeated using TLR2 blocking antibody. After preincubation of T84 cells with short-chain β2→1-fructans, the decrease in TEER as induced by PMA (62.3 ± 5.2%, P < 0.001) was strongly attenuated (15.2 ± 8.8%, P < 0.01). However, when PMA was applied first, no effect on recovery was observed during addition of the fructans. By blocking TLR2 on the T84 cells, the protective effect of short-chain β2→1-fructans was substantially inhibited. Stimulation of human embryonic kidney human TLR2 reporter cells with β2→1-fructans induced activation of nuclear factor kappa-light-chain-enhancer of activated B cells, confirming that β2→1-fructans are specific ligands for TLR2. To conclude, β2→1-fructans exert time-dependent and chain length-dependent protective effects on the T84 intestinal epithelial cell barrier mediated via TLR2. These results suggest that TLR2 located on intestinal epithelial cells could be a target of β2→1-fructan-mediated health effects.

  11. A receptor model for tumor promoters: rational superposition of teleocidins and phorbol esters.

    PubMed Central

    Itai, A; Kato, Y; Tomioka, N; Iitaka, Y; Endo, Y; Hasegawa, M; Shudo, K; Fujiki, H; Sakai, S

    1988-01-01

    Four 12-O-tetradecanoyl-13-O-acetylphorbol-type tumor promoters--teleocidin, phorbol ester, aplysiatoxin, and ingenol ester--are superposed in an attempt to understand their common biological activity on the assumption that they may bind to the same receptor site. A method using three-dimensional computer graphics was applied for superposing molecules and receptor mapping. The main feature of the method is that molecules are superposed in terms of spatial arrangement of physical and chemical properties but not in terms of the atomic positions as in conventional methods. This led to successful extraction of common structural features required for potent tumor-promoting activity: two hydrogen donors, a hydrogen acceptor, and a large lipophilic group. Their mutual spatial arrangements are most important for biological activity. Images PMID:3131760

  12. Platelet-derived growth factor mimics phorbol diester action on epidermal growth factor receptor phosphorylation at threonine-654

    SciTech Connect

    Davis, R.J.; Czech, M.P.

    1985-06-01

    Addition of platelet-derived growth factor (PDGF) to quiescent WI-38 human fetal lung fibroblasts mimics the effect of tumor-promoting phorbol diesters to inhibit the high-affinity binding of SVI-labeled epidermal growth factor ( SVI-EGF). PDGF, like phorbol diesters, was found to increase the phosphorylation state of EGF receptors immunoprecipitated from intact fibroblasts that were labeled to equilibrium with (TSP)phosphate. Phosphoamino acid analysis of the EGF receptors indicated that both PDGF and phorbol diesters increased the level of (TSP)phosphoserine and (TSP)phosphothreonine. Phosphopeptide mapping of the EGF receptor demonstrated that PDGF increased the phosphorylation of several sites and induced the phosphorylation of a site that was not observed to be phosphorylated on EGF receptors isolated from control cells. This latter phosphorylation site on the EGF receptor was identified as threonine-654. These results are consistent with the hypothesis that increases in diacylglycerol and CaS levels caused by addition of PDGF to fibroblasts activate protein kinase C and that this kinase, at least in part, mediates the effect of PDGF on the phosphorylation of the EGF receptor. The data further suggest that protein kinase C may play an important role in the regulation of cellular metabolism and proliferation by PDGF.

  13. Identification of the phorbol ester receptor in human and avian erythrocytes

    SciTech Connect

    Kramer, C.M.; Sando, J.J.; Speizer, L.A.

    1986-05-01

    The ability of phorbol esters to inhibit the uptake of a fluorescent glucose analogue in goose but not human erythrocytes is consistent with earlier reports that the human red blood cell lacks the phorbol ester receptor. However, they have located specific phorbol 12,13-dibutyrate binding sites in both human and goose erythrocytes. Human and goose red blood cells contain 2 classes of phorbol ester receptors with similar affinities, however the human erythrocyte contains 1/3 as many phorbol ester receptors as does the goose red blood cell. An additional contrast in the binding of phorbol esters to human and goose red blood cells is the temperature-induced enhancement of binding to goose, but not human erythrocytes. Equilibrium phorbol ester binding to goose red blood cells at 37/sup 0/C is enhanced 3.3 +/- 0.4 times that amount bound at 4/sup 0/C. Equilibrium binding of phorbol esters to human erythrocytes is identical at both temperatures. In vivo and in vitro phosphorylation profiles of C-kinase substrates also differ between the human and goose erythrocyte.

  14. PKC-dependent activation of human K2P18.1 K+ channels

    PubMed Central

    Rahm, Ann-Kathrin; Gierten, Jakob; Kisselbach, Jana; Staudacher, Ingo; Staudacher, Kathrin; Schweizer, Patrick A; Becker, Rüdiger; Katus, Hugo A; Thomas, Dierk

    2012-01-01

    BACKGROUND AND PURPOSE Two-pore-domain K+ channels (K2P) mediate K+ background currents that modulate the membrane potential of excitable cells. K2P18.1 (TWIK-related spinal cord K+ channel) provides hyperpolarizing background currents in neurons. Recently, a dominant-negative loss-of-function mutation in K2P18.1 has been implicated in migraine, and activation of K2P18.1 channels was proposed as a therapeutic strategy. Here we elucidated the molecular mechanisms underlying PKC-dependent activation of K2P18.1 currents. EXPERIMENTAL APPROACH Human K2P18.1 channels were heterologously expressed in Xenopus laevis oocytes, and currents were recorded with the two-electrode voltage clamp technique. KEY RESULTS Stimulation of PKC using phorbol 12-myristate-13-acetate (PMA) activated the hK2P18.1 current by 3.1-fold in a concentration-dependent fashion. The inactive analogue 4α-PMA had no effect on channel activity. The specific PKC inhibitors bisindolylmaleimide I, Ro-32-0432 and chelerythrine reduced PMA-induced channel activation indicating that PKC is involved in this effect of PMA. Selective activation of conventional PKC isoforms with thymeleatoxin (100 nM) did not reproduce K2P18.1 channel activation. Current activation by PMA was not affected by pretreatment with CsA (calcineurin inhibitor) or KT 5720 (PKA inhibitor), ruling out a significant contribution of calcineurin or cross-talk with PKA to the PKC-dependent hK2P18.1 activation. Finally, mutation of putative PKC phosphorylation sites did not prevent PMA-induced K2P18.1 channel activation. CONCLUSIONS AND IMPLICATIONS We demonstrated that activation of hK2P18.1 (TRESK) by PMA is mediated by PKC stimulation. Hence, PKC-mediated activation of K2P18.1 background currents may serve as a novel molecular target for migraine treatment. PMID:22168364

  15. Effect of phorbol esters on iron uptake in human hematopoietic cell lines

    SciTech Connect

    Testa, U.; Titeux, M.; Louache, F.; Thomopoulos, P.; Rochant, H.

    1984-11-01

    We have investigated the effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on iron uptake into human hematopoietic cell lines K562, U937, and HL-60. TPA inhibited both cell growth and iron uptake by these cell lines. This effect was rapid, which is typical of phorbol esters which are biologically active, and it occurred at very low concentrations of TPA. This effect of TPA was dependent upon an inhibition of the transferrin-binding capacity as estimated on intact cells. However, experiments with transferrin binding on cell samples dissolved in 1% Triton X-100 showed that TPA-treated cells exhibited a transferrin-binding capacity similar to that of control cells. On the basis of this result, it is suggested that TPA modified a part of transferrin receptors present in the cells; as a result of this modification, these receptors became unavailable for binding transferrin, but they remained physically present in the cell. Other compounds capable of inducing the differentiation of leukemic cells, such as dimethyl sulfoxide, butyrate, retinoic acid, and 1 alpha,25-dihydroxy-vitamin D3, did not acutely inhibit iron uptake. We also investigated the effect of TPA on transferrin receptors in a cellular system in which phorbol esters stimulate cell proliferation. At 16 X 10(-9) M, TPA markedly stimulated the proliferation of T-lymphocytes. However, in spite of this marked stimulation of cell proliferation, TPA-stimulated lymphocytes exhibited a transferrin-binding capacity much inferior to cells stimulated by other mitogens, such as phytohemagglutinin.

  16. Effect of phorbol ester on the release of atrial natriuretic peptide from the hypertrophied rat myocardium.

    PubMed Central

    Kinnunen, P.; Taskinen, T.; Järvinen, M.; Ruskoaho, H.

    1991-01-01

    1. To determine the cellular mechanisms of atrial natriuretic peptide (ANP) release from ventricular cardiomyocytes, the secretory and the cardiac effects of a phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), known to stimulate protein kinase C activity in heart cells, were studied in isolated, perfused heart preparations from 2- and 21-month-old Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. TPA was added to the perfusion fluid for 30 min at a concentration of 46 nM after removal of atrial tissue. Additionally, atrial and ventricular levels of immunoreactive ANP (IR-ANP) and ANP mRNA, the distribution of ANP within ventricles as well as the relative contribution of atria and ventricles in the release of ANP were studied. 2. Ventricular hypertrophy that gradually developed in hypertensive rats resulted in remarkable augmentation of ANP gene expression, as reflected by elevated levels of immunoreactive ANP and ANP mRNA. The total amount of IR-ANP in the ventricles of the SHR rats increased 41 fold and ANP mRNA levels 12.9 fold from the age of 2 to 21 months. At the age of 21 months, levels of IR-ANP and ANP mRNA in the ventricles of SHR rats were 5.4 fold and 3.7 fold higher, respectively, than in the normotensive WKY rats. Immunohistochemical studies demonstrated ANP granules within the hypertrophic ventricles of the old SHR rats, but not within normal ventricular tissue. 3. In isolated perfused heart preparations, the severely hypertrophied ventricular tissue of SHR rats after atrialectomy secreted more ANP into the perfusate than did the control hearts.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 PMID:1826618

  17. Effects of phorbol ester on cholecystokinin octapeptide-evoked exocrine pancreatic secretion in the rat.

    PubMed Central

    Francis, L P; Camello, P J; Singh, J; Salido, G M; Madrid, J A

    1990-01-01

    1. A comparative study was made of the effect of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) on cholecystokinin octapeptide-evoked exocrine pancreatic secretion in the anaesthetized rat and isolated permeabilized pancreatic acinar cells. 2. Cholecystokinin octapeptide (CCK8; 0.10-6.40 nmol (kg body weight)-1) induced dose-dependent increases in pancreatic juice flow, total protein output and amylase release in the anaesthetized rat. 3. Administration of TPA (10(-8) mol (kg body weight)-1) in combination with CCK8 resulted in marked attenuation of the CCK8-evoked secretory response. 4. Simultaneous injection of polymyxin B (10(-8) mol (kg body weight)-1), an inhibitor of protein kinase C, with TPA and CCK8 reversed the inhibitory effect of the phorbol ester on CCK8-induced pancreatic juice flow, total protein output and amylase release. 5. In permeabilized rat pancreatic acini CCK8 (10(-13)-10(-9) M) elicited dose-dependent increases in [3H]leucine-labelled protein secretion (3H-labelled protein release). Combining TPA (10(-8) M) with CCK8 resulted in an inhibition of the CCK8-induced 3H-labelled protein release especially at lower concentrations of CCK8. At higher concentrations of CCK8, TPA was unable to inhibit the CCK8-evoked 3H-labelled protein release. Again, polymyxin B reversed the TPA-induced inhibition of CCK8-evoked 3H-labelled protein output. 6. The results indicate that protein kinase C activation may play an important physiological role in modulating the CCK8-evoked secretory response in rat pancreas in vivo and in vitro. PMID:1712842

  18. Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide

    PubMed Central

    Vellani, Vittorio; Mapplebeck, Sarah; Moriondo, Andrea; Davis, John B; McNaughton, Peter A

    2001-01-01

    The effects of activation of protein kinase C (PKC) on membrane currents gated by capsaicin, protons, heat and anandamide were investigated in primary sensory neurones from neonatal rat dorsal root ganglia (DRG) and in HEK293 cells (human embryonic kidney cell line) transiently or stably expressing the human vanilloid receptor hVR1. Maximal activation of PKC by a brief application of phorbol 12-myristate 13-acetate (PMA) increased the mean membrane current activated by a low concentration of capsaicin by 1.65-fold in DRG neurones and 2.18-fold in stably transfected HEK293 cells. Bradykinin, which activates PKC, also enhanced the response to capsaicin in DRG neurones. The specific PKC inhibitor RO31-8220 prevented the enhancement caused by PMA. Activation of PKC did not enhance the membrane current at high concentrations of capsaicin, showing that PKC activation increases the probability of channel opening rather than unmasking channels. Application of PMA alone activated an inward current in HEK293 cells transiently transfected with VR1. The current was suppressed by the VR1 antagonist capsazepine. PMA did not, however, activate a current in the large majority of DRG neurones nor in HEK293 cells stably transfected with VR1. Removing external Ca2+ enhanced the response to a low concentration of capsaicin 2.40-fold in DRG neurones and 3.42-fold in HEK293 cells. Activation of PKC in zero Ca2+ produced no further enhancement of the response to capsaicin in either DRG neurones or HEK293 cells stably transfected with VR1. The effects of PKC activation on the membrane current gated by heat, anandamide and low pH were qualitatively similar to those on the capsaicin-gated current. The absence of a current activated by PMA in most DRG neurones or in stably transfected HEK293 cells suggests that activation of PKC does not directly open VR1 channels, but instead increases the probability that they will be activated by capsaicin, heat, low pH or anandamide. Removal of calcium

  19. Cloning and characterization of the major promoter of the human protein kinase C beta gene. Regulation by phorbol esters.

    PubMed

    Obeid, L M; Blobe, G C; Karolak, L A; Hannun, Y A

    1992-10-15

    The expression of the beta isoenzyme for protein kinase C is regulated developmentally and in response to inducers of cell differentiation (such as phorbol esters and 1 alpha,25-dihydroxyvitamin D3). The 5' segment of the gene for protein kinase C beta was cloned from a human leukocyte genomic library in EMBL3 bacteriophage. This segment of the gene (greater than 54 kilobases in length) encompassed the coding sequence for the amino-terminal regulatory domain of the enzyme, the 5'-untranslated region, and the 5'-flanking region. Initiation of transcription was identified by S1 nuclease analysis and confirmed by RNase protection analysis at 197 base pairs 5' of the initiator ATG. Sequence analysis of the 5'-flanking region revealed it to be extremely G+C-rich (> 80%) with many features of a CpG island. Comparison of sequence with known cis-regulatory motifs disclosed a number of potential regulatory elements including an octamer binding motif at -76, Sp1-binding sites at -94 and -63, E boxes at -110, -26, and +18, an AP-1 site at -442, and an AP-2 site at -330. To demonstrate promoter activity, a 630-base pair fragment extending from -587 to +43 was subcloned in front of a promoterless luciferase gene. This fragment was able to drive the expression of luciferase in transient transfections of human hematopoietic cells. Deletion analysis demonstrated that a fragment -111 to +43 was necessary and sufficient for promoter activity; this fragment did not contain TATA or CAAT motifs. The promoter was stimulated 8-20-fold by phorbol esters accounting for the previously observed transcriptional activation of protein kinase C beta. This phorbol ester responsiveness was conferred by the basal promoter (-111 to +43) and was independent of the AP-1 site. These results define a novel mechanism of protein kinase C autoregulation at a transcriptional level.

  20. The Phorbol Ester Fraction from Jatropha curcas Seed Oil: Potential and Limits for Crop Protection against Insect Pests

    PubMed Central

    Ratnadass, Alain; Wink, Michael

    2012-01-01

    The physic nut shrub, Jatropha curcas (Euphorbiaceae), has been considered as a “miracle tree”, particularly as a source of alternate fuel. Various extracts of the plant have been reported to have insecticidal/acaricidal or molluscicidal/anthelminthic activities on vectors of medical or veterinary interest or on agricultural or non-agricultural pests. Among those extracts, the phorbol ester fraction from seed oil has been reported as a promising candidate for use as a plant-derived protectant of a variety of crops, from a range of pre-harvest and post-harvest insect pests. However, such extracts have not been widely used, despite the “boom” in the development of the crop in the tropics during recent years, and societal concerns about overuse of systemic chemical pesticides. There are many potential explanations to such a lack of use of Jatropha insecticidal extracts. On the one hand, the application of extracts potentially harmful to human health on stored food grain, might not be relevant. The problem of decomposition of phorbol esters and other compounds toxic to crop pests in the field needing further evaluation before such extracts can be widely used, may also be a partial explanation. High variability of phorbol ester content and hence of insecticidal activity among physic nut cultivars/ecotypes may be another. Phytotoxicity to crops may be further limitation. Apparent obstacles to a wider application of such extracts are the costs and problems involved with registration and legal approval. On the other hand, more studies should be conducted on molluscicidal activity on slugs and land snails which are major pests of crops, particularly in conservation agriculture systems. Further evaluation of toxicity to natural enemies of insect pests and studies on other beneficial insects such as pollinators are also needed. PMID:23203190

  1. Phorbol esters potentiate the induction of class I HLA expression by interferon alpha.

    PubMed Central

    Erusalimsky, J D; Kefford, R F; Gilmore, D J; Milstein, C

    1989-01-01

    We have studied the effect of phorbol esters on the induction of class I histocompatibility antigen (HLA) expression by interferons (IFNs) in the T-cell line MOLT-4 and in the MOLT-4 mutant YHHH. Addition of IFN-alpha to phorbol 12,13-dibutyrate-pretreated MOLT-4 cells causes a greater than 20-fold increase in the expression of class I HLA, as compared to a 4- to 7-fold IFN-alpha-induced increase in control cells. Pretreatment with phorbol 12,13-dibutyrate does not alter the class I HLA response to IFN-gamma or the responses of other IFN-induced genes. This effect of phorbol 12,13-dibutyrate reproduces in MOLT-4 cells the phenotype of the mutant YHHH, which also displays a selective enhanced class I HLA response to IFN-alpha. Pretreatment of YHHH with phorbol 12,13-dibutyrate does not affect any of the responses induced by IFN. These findings suggest the existence of a phorbol ester-sensitive factor, inducible in MOLT-4 and constitutively expressed or modified in YHHH, which operates in the pathway of induction of class I HLA by IFN-alpha but not in the pathway used by IFN-gamma. Images PMID:2494657

  2. Phorbol esters potentiate the induction of class I HLA expression by interferon. alpha

    SciTech Connect

    Erusalimsky, J.D.; Kefford, R.F.; Gilmore, D.J.; Milstein, C. )

    1989-03-01

    The authors have studied the effect of phorbol esters on the induction of class I histocompatibility antigen (HLA) expression by interferons (IFNs) in the T-cell line MOLT-4 and in the MOLT-4 mutant YHHH. Addition of IFN-{alpha} to phorbol 12,13-dibutyrate-pretreated MOLT-4 cells causes a >20-fold increase in the expression of class I HLA, as compared to a 4- to 7-fold IFN-{alpha}-induced increase in control cells. Pretreatment with phorbol 12,13-dibutyrate does not alter the class I HLA response to IFN-{gamma} or the responses of other IFN-induced genes. This effect of phorbol 12,13-dibutyrate reproduces in MOLT-4 cells the phenotype of the mutant YHHH, which also displays a selective enhanced class I HLA response to IFN-{alpha}. Pretreatment of YHHH with phorbol 12,13-dibutyrate does not affect any of the responses induced by IFN. These findings suggest the existence of a phorbol ester-sensitive factor, inducible in MOLT-4 and constitutively expressed or modified in YHHH, which operates in the pathway of induction of class I HLA by IFN-{alpha} but not in the pathway used by IFN-{gamma}.

  3. Vaccinia virus K1 ankyrin repeat protein inhibits NF-κB activation by preventing RelA acetylation.

    PubMed

    Bravo Cruz, Ariana G; Shisler, Joanna L

    2016-10-01

    The vaccinia virus (VACV) K1 protein inhibits dsRNA-dependent protein kinase (PKR) activation. A consequence of this function is that K1 inhibits PKR-induced NF-κB activation during VACV infection. However, transient expression of K1 also inhibits Toll-like receptor (TLR)-induced NF-κB activation. This suggests that K1 has a second NF-κB inhibitory mechanism that is PKR-independent. This possibility was explored by expressing K1 independently of infection and stimulating NF-κB under conditions that minimized or excluded PKR activation. K1 inhibited both TNF- and phorbol 12-myristate 13-acetate (PMA)-induced NF-κB activation, as detected by transcription of synthetic (e.g. luciferase) and natural (e.g. CXCL8) genes controlled by NF-κB. K1 also inhibited NF-κB activity in PKRkd cells, cells that have greatly decreased amounts of PKR. K1 no longer prevented IκBα degradation or NF-κB nuclear translocation in the absence of PKR, suggesting that K1 acted on a nuclear event. Indeed, K1 was present in the nucleus and cytoplasm of stimulated and unstimulated cells. K1 inhibited acetylation of the RelA (p65) subunit of NF-κB, a nuclear event known to be required for NF-κB activation. Moreover, p65-CBP (CREB-binding protein) interactions were blocked in the presence of K1. However, K1 did not preclude NF-κB binding to oligonucleotides containing κB-binding sites. The current interpretation of these data is that NF-κB-promoter interactions still occur in the presence of K1, but NF-κB cannot properly trigger transcriptional activation because K1 antagonizes acetylation of RelA. Thus, in comparison to all known VACV NF-κB inhibitory proteins, K1 acts at one of the most downstream events of NF-κB activation.

  4. Tumor-promoting phorbol diesters cause the phosphorylation of epidermal growth factor receptors in normal human fibroblasts at threonine-654.

    PubMed Central

    Davis, R J; Czech, M P

    1985-01-01

    The effect of tumor-promoting phorbol diesters to potentiate the action of epidermal growth factor (EGF) on cell proliferation is associated with phosphorylation of EGF receptors, acute depression of EGF binding, and inhibition of EGF receptor tyrosine kinase activity. In the present studies, normal human fibroblasts and A431 carcinoma cells were labeled with [32P]phosphate and treated with and without 10 nM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA). The EGF receptors then were isolated by immunoprecipitation and digested with trypsin. Analysis of the labeled receptor phosphopeptides by reversed-phase HPLC revealed that PMA induces the phosphorylation of a unique phosphopeptide containing [32P]phosphothreonine. Comparison of several chemical and physical properties of the 32P-labeled phosphopeptide with the primary structure of the EGF receptor suggested the identify Lys-Arg-Thr(P)-Leu-Arg. This was confirmed by direct demonstration that a synthetic peptide of this structure comigrates during HPLC and electrophoresis with the 32P-labeled phosphopeptide isolated from the EGF receptors of normal human fibroblasts. The phosphorylated site on the peptide corresponds to threonine-654 of the EGF receptor, which is located on the cytoplasmic side of the plasma membrane nine residues distant from the transmembrane domain. These data indicate that phosphorylation of the EGF receptor in human fibroblasts and A431 cells at threonine-654 may regulate the EGF receptor tyrosine kinase activity and the binding of EGF. Images PMID:2984676

  5. Molecular Basis for Failure of “Atypical” C1 Domain of Vav1 to Bind Diacylglycerol/Phorbol Ester*

    PubMed Central

    Geczy, Tamas; Peach, Megan L.; El Kazzouli, Saïd; Sigano, Dina M.; Kang, Ji-Hye; Valle, Christopher J.; Selezneva, Julia; Woo, Wonhee; Kedei, Noemi; Lewin, Nancy E.; Garfield, Susan H.; Lim, Langston; Mannan, Poonam; Marquez, Victor E.; Blumberg, Peter M.

    2012-01-01

    C1 domains, the recognition motif of the second messenger diacylglycerol and of the phorbol esters, are classified as typical (ligand-responsive) or atypical (not ligand-responsive). The C1 domain of Vav1, a guanine nucleotide exchange factor, plays a critical role in regulation of Vav activity through stabilization of the Dbl homology domain, which is responsible for exchange activity of Vav. Although the C1 domain of Vav1 is classified as atypical, it retains a binding pocket geometry homologous to that of the typical C1 domains of PKCs. This study clarifies the basis for its failure to bind ligands. Substituting Vav1-specific residues into the C1b domain of PKCδ, we identified five crucial residues (Glu9, Glu10, Thr11, Thr24, and Tyr26) along the rim of the binding cleft that weaken binding potency in a cumulative fashion. Reciprocally, replacing these incompatible residues in the Vav1 C1 domain with the corresponding residues from PKCδ C1b (δC1b) conferred high potency for phorbol ester binding. Computer modeling predicts that these unique residues in Vav1 increase the hydrophilicity of the rim of the binding pocket, impairing membrane association and thereby preventing formation of the ternary C1-ligand-membrane binding complex. The initial design of diacylglycerol-lactones to exploit these Vav1 unique residues showed enhanced selectivity for C1 domains incorporating these residues, suggesting a strategy for the development of ligands targeting Vav1. PMID:22351766

  6. A2A adenosine-receptor-mediated facilitation of noradrenaline release in rat tail artery involves protein kinase C activation and betagamma subunits formed after alpha2-adrenoceptor activation.

    PubMed

    Fresco, Paula; Oliveira, Jorge M A; Kunc, Filip; Soares, Ana Sofia; Rocha-Pereira, Carolina; Gonçalves, Jorge; Diniz, Carmen

    2007-07-01

    This work aimed to investigate the molecular mechanisms involved in the interaction of alpha2-adrenoceptors and adenosine A2A-receptor-mediated facilitation of noradrenaline release in rat tail artery, namely the type of G-protein involved in this effect and the step or steps where the signalling cascades triggered by alpha2-adrenoceptors and A2A-receptors interact. The selective adenosine A2A-receptor agonist 2-p-(2-carboxy ethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680; 100 nM) enhanced tritium overflow evoked by trains of 100 pulses at 5 Hz. This effect was abolished by the selective adenosine A2A-receptor antagonist 5-amino-7-(2-phenyl ethyl)-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo [1,5-c]pyrimidine (SCH 58261; 20 nM) and by yohimbine (1 microM). CGS 21680-mediated effects were also abolished by drugs that disrupted G(i/o)-protein coupling with receptors, PTX (2 microg/ml) or NEM (40 microM), by the anti-G(salpha) peptide (2 microg/ml) anti-G(betagamma) peptide (10 microg/ml) indicating coupling of A2A-receptors to G(salpha) and suggesting a crucial role for G(betagamma) subunits in the A(2A)-receptor-mediated enhancement of tritium overflow. Furthermore, phorbol 12-myristate 13-acetate (PMA; 1 microM) or forskolin (1 microM), direct activators of protein kinase C and of adenylyl cyclase, respectively, also enhanced tritium overflow. In addition, PMA-mediated effects were not observed in the presence of either yohimbine or PTX. Results indicate that facilitatory adenosine A2A-receptors couple to G(salpha) subunits which is essential, but not sufficient, for the release facilitation to occur, requiring the involvement of G(i/o)-protein coupling (it disappears after disruption of G(i/o)-protein coupling, PTX or NEM) and/or G(betagamma) subunits (anti-G(betagamma)). We propose a mechanism for the interaction in study suggesting group 2 AC isoforms as a plausible candidate for the interaction site, as these isoforms can integrate inputs from G

  7. Phorbol ester-mediated desensitization of histamine Hl receptors on a cultured smooth muscle cell line

    SciTech Connect

    Mitsuhashi, M.; Payan, D.G.

    1988-01-01

    The present study was undertaken in order to examine the effect of protein kinase C (PKC) on histamine Hl receptors, (HlR) present on the smooth muscle cell line, DDT/sub 1/MF-2. (/sup 3/H)-pyrilamine binding revealed that specific (/sup 3/H)-pyrilamine binding sites were reduced be pretreatment with 12-O-tetra-decanoylphorbol-13-acetate (TPA), an activator of PKC, but not the Kd. The TPA analogue, 4..cap alpha.. phorbol 12,13-didecanoate, which does not activate PKC, failed to induce down-regulation of HlR. TPA-induced down regulation of HlR was inhibited by pretreatment with 1-(5-Isoquinilinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), a PKC inhibitor, in a dose dependent manner. The H-7 analogue, H-8, which is a less potent inhibitor of PKC, but a potent inhibitor of cyclic nucleotide dependent protein kinase, had no effect on HlR. Moreover, treatment with TPA inhibited histamine-induced increases in (Ca/sup 2 +/)/sub i/ in cells loaded with the fluorescent indicator, indo-1. These data suggest that HlR in DDT/sub 1/MF-2 cells were functionally regulated by PKC.

  8. Protection against apoptosis in chicken bursa and thymus cells by phorbol ester in vitro

    SciTech Connect

    Asakawa, J.; Thorbecke, G.J. )

    1991-03-15

    Programmed suicide or apoptosis, due to activation of endogenous nucleases, occurs in immature CD4{sup {minus}}85{sup {minus}} mammalian thymus cells. Like the thymus, the bursa of Fabricius is a site of massive lymphopoiesis accompanied by cell death in vivo. In the present study the authors have, therefore, examined whether chicken bursa and thymus cells exhibit apoptosis. Bursa and thymus cells from SC chickens, 4-10 weeks of age, were incubated for 8-24 hrs with various reagents. Genomic DNA was isolated, electrophoresed in 3% Nusieve agarose gels, and examined for patterns of DNA fragmentation. A laddering of DNA in multiples of 200 base pairs, indicative of apoptosis, was observed with both bursa and thymus cells. These patterns of DNA fragmentation from bursa cells could be prevented by adding phorbol myristic acetate during culture and, more effectively, by PMA plus ionomycin, but not by ionomycin alone or by anti-{mu}. PMA did not affect the patterns of DNA fragmentation seen with spleen cells. Addition of the protein kinase C inhibitor staurosporin inhibited the preventive effect of PMA on apoptosis. PMA also greatly promoted the survival of bursa cells in culture, as assayed by percentage cell death and by {sup 3}H-thymidine incorporation. It is concluded that bursa and thymus cells from the chicken exhibit apoptosis. The data further suggest that protein kinase C activation protects apoptosis in cultured bursa cells.

  9. Potentiation of phorbol ester-induced coronary vasoconstriction in dogs following endothelium disruption

    SciTech Connect

    Roberts, R.B.; Ku, D.D.

    1986-03-05

    In the present study, the effect of phorbol ester, 12-0-tetradecanoylphorbol 13-acetate (TPA), activation of protein kinase C on coronary vascular reactivity was studied in isolated dog coronary arteries. Addition of TPA (10-100 nM) produced a slow, time- and dose-dependent contraction reaching a maximum at approx 2-3 hrs and was essentially irreversible upon washing. Disruption of the endothelium(EC) greatly accelerated the development as well as increase the magnitude of TPA contraction (50-100%). Prior treatment of vessels with phentolamine (1..mu..M), cyproheptadine (1..mu..H) and ibuprofen (1..mu..g/ml) did not alter the TPA contraction. Furthermore, in contrast to previously reported calcium-dependence of TPA contraction in other vessels, complete removal of extracellular calcium (Ca/sub 0/) or addition of 1..mu..M nimodipine after TPA(30nM) resulted in only 32 +/- 4% and 25 +/- 3% reversal of TPA contraction, respectively. Addition of amiloride (10..mu..M to 1mM), however, resulted in a dose-dependent reversal of TPA contraction. The results of the present study indicate that a similar activation of protein kinase C by TPA leads to potent coronary vasoconstriction, which is not completely dependent on Ca/sub 0/. More importantly, these results further support their hypothesis that EC also functions as an inhibitory barrier to prevent circulating vasoconstrictors from exerting their deleterious constrictory effects.

  10. Treatment with protein kinase C activator is effective for improvement of male pronucleus formation and further embryonic development of sperm-injected oocytes in pigs.

    PubMed

    Nakai, M; Ito, J; Kashiwazaki, N; Men, N T; Tanihara, F; Noguchi, J; Kaneko, H; Onishi, A; Kikuchi, K

    2016-03-01

    To assist the process of oocyte activation, which is essential for promotion of fertilization events, i.e., resumption of meiosis, extrusion of the second polar body and formation of the pronucleus (PN), artificial stimuli such as an electrical pulse have been applied to porcine oocytes after injection of sperm. However, the efficiency of fertilization and embryonic development remains low. It is well known that in vertebrates, inactivation of mitogen-activated protein (MAP) kinase is required for oocyte activation. We have hypothesized that even after electrical stimulation of sperm-injected oocytes, MAP kinase may not be inactivated. As it has been reported that MAP kinase activity is regulated by protein kinase C, we examined the effectiveness of phorbol 12-myristate 13-acetate (PMA), a protein kinase C activator, for improvement of fertilization and embryonic development of sperm-injected porcine oocytes. First, we examined the concentrations (0, 0.01, 0.1, 1, and 10 μM) and durations (0, 1, 3, 5 hours) of PMA treatment that were efficient for the extrusion of two polar bodies and formation of two PNs (2PB+2PN) and embryonic development. When the sperm-injected oocytes were treated with 0.01-μM PMA for 3 hours after electrical stimulation, the rates of 2PB+2PN and embryonic development were higher than those in the other treatment groups. We then examined the effect of PMA treatment (0.01 μM, 3 hours) on MAP kinase activity. Unexpectedly, after electrical stimulation, the activity remained low until PN formation, irrespective of whether or not the oocytes had been treated with PMA. On the other hand, transformation of the injected sperm nucleus into the male PN was accelerated after the PMA treatment. Our present results suggest that the low efficiency of fertilization and embryonic development in sperm-injected oocytes is not due to high activity of MAP kinase but due to poor transformation of the injected sperm nucleus into the male PN. Furthermore, a

  11. A self-inactivating retrovector incorporating the IL-2 promoter for activation-induced transgene expression in genetically engineered T-cells

    PubMed Central

    Jaalouk, Diana E; Lejeune, Laurence; Couture, Clément; Galipeau, Jacques

    2006-01-01

    Background T-cell activation leads to signaling pathways that ultimately result in induction of gene transcription from the interleukin-2 (IL-2) promoter. We hypothesized that the IL-2 promoter or its synthetic derivatives can lead to T-cell specific, activation-induced transgene expression. Our objective was to develop a retroviral vector for stable and activation-induced transgene expression in T-lymphocytes. Results First, we compared the transcriptional potency of the full-length IL-2 promoter with that of a synthetic promoter composed of 3 repeats of the Nuclear Factor of Activated T-Cells (NFAT) element following activation of transfected Jurkat T-cells expressing the large SV40 T antigen (Jurkat TAg). Although the NFAT3 promoter resulted in a stronger induction of luciferase reporter expression post stimulation, the basal levels of the IL-2 promoter-driven reporter expression were much lower indicating that the IL-2 promoter can serve as a more stringent activation-dependent promoter in T-cells. Based on this data, we generated a self-inactivating retroviral vector with the full-length human IL-2 promoter, namely SINIL-2pr that incorporated the enhanced green fluorescent protein (EGFP) fused to herpes simplex virus thymidine kinase as a reporter/suicide "bifunctional" gene. Subsequently, Vesicular Stomatitis Virus-G Protein pseudotyped retroparticles were generated for SINIL-2pr and used to transduce the Jurkat T-cell line and the ZAP-70-deficient P116 cell line. Flow cytometry analysis showed that EGFP expression was markedly enhanced post co-stimulation of the gene-modified cells with 1 μM ionomycin and 10 ng/ml phorbol 12-myristate 13-acetate (PMA). This activation-induced expression was abrogated when the cells were pretreated with 300 nM cyclosporin A. Conclusion These results demonstrate that the SINIL-2pr retrovector leads to activation-inducible transgene expression in Jurkat T-cell lines. We propose that this design can be potentially exploited in

  12. Pyrimidinoceptor-mediated activation of phospholipase C and phospholipase A2 in RAW 264.7 macrophages.

    PubMed Central

    Lin, W. W.; Lee, Y. T.

    1996-01-01

    1. As well as the presence of P2Z purinoceptors previously found in macrophages, we identified pyrimidinoceptors in RAW 264.7 cells, which activate phospholipase C (PLC) and phospholipase A2 (PLA2). 2. The relative potency of agonists to stimulate inositol phosphate (IP) formation and arachidonic acid (AA) release was UTP = UDP > > ATP, ATP gamma S, 2MeSATP. For both signalling pathways, the EC50 values for UTP and UDP (3 microM) were significantly lower than that for ATP and all other analogues tested (> 100 microM). 3. UTP and UDP displayed no additivity in terms of IP formation and AA release at maximally effective concentrations. 4. UTP-, but not ATP-, evoked AA release was 60% inhibited by pertussis toxin (PTX), while stimulation of IP formation by both agonists was unaffected. Short-term treatment with phorbol 12-myristate 13-acetate (PMA) led to a dose-dependent inhibition of IP responses to UTP and UDP, but failed to affect the AA responses. Removal of extracellular Ca2+ inhibited the PI response to UTP, but abolished its AA response. 5. ATP-induction of these two transmembrane signal pathways was decreased in high Mg(2+)-containing medium but potentiated by the removal of extracellular Mg2+. 6. Suramin and reactive blue displayed equal potency to inhibit the IP responses of UTP and ATP. 7. Both UTP and UDP (0.1-100 microM) induced a sustained increase in [Ca2+]i which lasted for more than 10 min. 8. Taken together, these results indicate that in mouse RAW 264.7 macrophages, pyrimidinoceptors with specificity for UTP and UDP mediate the activation of PLC and cytosolic (c) PLA2. The activation of PLC is via a PTX-insensitive G protein, whereas that of cPLA2 is via a PTX-sensitive G protein-dependent pathway. The sustained Ca2+ influx caused by UTP contributes to the activation of cPLA2. RAW 264.7 cells also possess P2z purinoceptors which mediate ATP(4-)-induced PLC and PLA2 activation. Images Figure 3 PMID:8886407

  13. Diacylglycerol analogues activate second messenger-operated calcium channels exhibiting TRPC-like properties in cortical neurons.

    PubMed

    Tu, Peng; Kunert-Keil, Christiane; Lucke, Silke; Brinkmeier, Heinrich; Bouron, Alexandre

    2009-01-01

    The lipid diacylglycerol (DAG) analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) was used to verify the existence of DAG-sensitive channels in cortical neurons dissociated from E13 mouse embryos. Calcium imaging experiments showed that OAG increased the cytosolic concentration of Ca(2+) ([Ca(2+)]i) in nearly 35% of the KCl-responsive cells. These Ca(2+) responses disappeared in a Ca(2+)-free medium supplemented with EGTA. Mn(2+) quench experiments showed that OAG activated Ca(2+)-conducting channels that were also permeant to Ba(2+). The OAG-induced Ca(2+) responses were unaffected by nifedipine or omega-conotoxin GVIA (Sigma-Aldrich, Saint-Quentin Fallavier, France) but blocked by 1-[beta-(3-(4-Methoxyphenyl)propoxy)-4-methoxyphenethyl]-1H-imidazole hydrochloride (SKF)-96365 and Gd(3+). Replacing Na(+) ions with N-methyl-D-glucamine diminished the amplitude of the OAG-induced Ca(2+) responses showing that the Ca(2+) entry was mediated via Na(+)-dependent and Na(+)-independent mechanisms. Experiments carried out with the fluorescent Na(+) indicator CoroNa Green showed that OAG elevated [Na(+)]i. Like OAG, the DAG lipase inhibitor RHC80267 increased [Ca(2+)]i but not the protein kinase C activator phorbol 12-myristate 13-acetate. Moreover, the OAG-induced Ca(2+) responses were not regulated by protein kinase C activation or inhibition but they were augmented by flufenamic acid which increases currents through C-type transient receptor potential protein family (TRPC) 6 channels. In addition, application of hyperforin, a specific activator of TRPC6 channels, elevated [Ca(2+)]i. Whole-cell patch-clamp recordings showed that hyperforin activated non-selective cation channels. They were blocked by SKF-96365 but potentiated by flufenamic acid. Altogether, our data show the presence of hyperforin- and OAG-sensitive Ca(2+)-permeable channels displaying TRPC6-like properties. This is the first report revealing the existence of second messenger-operated channels in cortical

  14. Increased phorbol 12,13-dibutyrate (PDBu) receptor function associated with sickle red cell membrane ghosts

    SciTech Connect

    Ramachandran, M.; Nair, C.N.; Abraham, E.C.

    1987-05-01

    The biological receptor for tumor-promoting phorbol esters has been identified as the CaS /phospholipid dependent enzyme, protein kinase C. In the red cell, this enzyme is mainly cytosolic but becomes translocated to the membrane if the cellular CaS is allowed to rise. Since cellular CaS in sickle red cells is high, it was reasoned that this enzyme may become more membrane-bound. In fact, the authors noticed a four-fold increase in the binding of TH-PDBu by membrane ghosts isolated from sickle red cells compared to normal red cells (pmoles PDBu bound/mg protein; normal = 0.3 vs sickle cell = 1.4). Attempts to assay the enzyme directly as phospholipid-activated TSP incorporation into the acid-precipitable membrane proteins also indicated a two-fold increase in the radiolabelling of sickle cell membrane ghosts. Autophosphorylation of membrane proteins and analysis of the phosphorylation profile by SDS-PAGE and autoradiography revealed phosphorylation predominantly of bands 3, 4.1 and 4.9 which are known protein kinase C substrates for the red cell enzyme. The increased membrane-associated protein kinase C in sickle red cells may have a bearing on the altered membrane properties reported in this condition.

  15. A pseudosubstrate of PKC inhibits the phorbol dibutyrate (PDBu) effect on permeabilized smooth muscle

    SciTech Connect

    Sullivan, T.S.; Wells, J.N. )

    1991-03-11

    Phorbol esters can induce contraction of vascular smooth muscle and potentiate calcium-induced contractions of permeabilized smooth muscle strips. The authors have used a synthetic peptide inhibitor based on residues 19-31 of PKC (PKC-I) to determine the importance of PKC in the PDBu potentiation of calcium-induced contractions in permeabilized coronary artery smooth muscle. Although peptides similar to PKC-I have been shown to also inhibit MLCK in vitro, MLCK was presumably not inhibited in our system since 30 {mu}M PKC-I alone did not alter the calcium-induced contractions. However, the potentiation of these contractions by 1 {mu}M PDBu was reduced by about 50% in the presence of 10 {mu}M PKC-I, and the potentiation was completely abolished by 30 {mu}M PKC-I. These data indicate that, in this system, PKC is not involved in calcium-induced contractions but that activation of PKC may be the mechanism by which PDBu potentiates calcium-induced contractions in permeabilized coronary artery smooth muscle.

  16. Role of Protein Kinase C, PI3-kinase and Tyrosine Kinase in Activation of MAP Kinase by Glucose and Agonists of G-protein Coupled Receptors in INS-1 Cells

    PubMed Central

    Böcker, Dietmar

    2001-01-01

    MAP (mitogen-activated protein) kinase (also called Erk 1/2) plays a crucial role in cell proliferation and differentiation. Its impact on secretory events is less well established. The interplay of protein kinase C (PKC), PI3-kinase nd cellular tyrosine kinase with MAP kinase activity using inhibitors and compounds such as glucose, phorbol 12-myristate 13-acetate (PMA) and agonists of G-protein coupled receptors like gastrin releasing peptide (GRP), oxytocin (OT) and glucose-dependent insulinotropic peptide (GIP) was investigated in INS-1 cells, an insulin secreting cell line. MAP kinase activity was determined by using a peptide derived from the EGF receptor as a MAP kinase substrate and [ P 32 ]ATP. Glucose as well as GRP, OT and GIP exhibited a time-dependent increase in MAP kinase activity with a maximum at time point 2.5 min. All further experiments were performed using 2.5 min incubations. The flavone PD 098059 is known to bind to the inactive forms of MEK1 (MAPK/ERK-Kinase) thus preventing activation by upstream activators. 20 μM PD 098059 ( IC 50 =51 μM) inhibited MAP kinase stimulated by either glucose, GRP, OT, GIP or PMA. Inhibiton (“downregulation”) of PKC by a long term (22h) pretreatment with 1 μM PMA did not influence MAP kinase activity when augmented by either of the above mentioned compound. To investigate whether PI3-kinase and cellular tyrosine kinase are involved in G-protein mediated effects on MAP kinase, inhibitors were used: 100 nM wortmannin (PI3-kinase inhibitor) reduced the effects of GRP, OT and GIP but not that of PMA; 100 μM genistein (tyrosine kinase inhibitor) inhibited the stimulatory effect of either above mentioned compound on MAP kinase activation. Inhibition of MAP kinase by 20 μM PD 098059 did not influence insulin secretion modulated by either compound (glucose, GRP, OT or GIP). [ H 3 ]Thymidine incorporation, however, was severely inhibited by PD 098059. Thus MAP kinase is important for INS-1 cell proliferation but

  17. Despite large-scale T cell activation, only a minor subset of T cells responding in vitro to Actinobacillus actinomycetemcomitans differentiate into effector T cells.

    PubMed

    Zadeh, H H; Tanavoli, S; Haines, D D; Kreutzer, D L

    2000-06-01

    Recent studies in our laboratory have demonstrated that Actinobacillus actinomycetemcomitans has a potent T cell stimulatory effect, activating more than half of all T cells. However, since the fate of these activated T cells was not known, the present study sought to determine whether all of these T cells differentiate into effector cells. To that end, the intracellular expression of T cell cytokines (IL-2, IFN-gamma, IL-4 and IL-10) in response to A. actinomycetemcomitans was determined by flow cytometry. Results demonstrated a time-dependent increase in the expression of the cytokines, most reaching peak levels at 24-48 h. At 48 h, the proportion of T cells expressing each of the cytokines were as follows: IL-2 (1.7%+/-0.3), IFN-gamma (1.8%+/-0.5), IL-4 (1.0%+/-0.2) and IL-10 (1.5%+/-0.5). These data indicated that only 2-5% of all T cells stimulated with A. actinomycetemcomitans expressed any T cell cytokines. The finding of large-scale T cell activation in the absence of cytokine expression suggests that the activation of T cells in response to A. actinomycetemcomitans is incomplete. To investigate this phenomenon, peripheral blood mononuclear cells (PBMC) were cultured with A. actinomycetemcomitans for 24 h followed by sorting of the activated (CD69+) cells by immunomagnetic separation and restimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin. Results demonstrated that nearly 90% of the T cells were unresponsive to further restimulation. A possible explanation for this unresponsiveness is the induction of clonal anergy among the responding T cells. To determine possible preferential effects of the stimulation on specific cytokines, the expression of each cytokine among T cells responding to A. actinomycetemcomitans was compared to the maximum levels achieved by PMA + ionomycin stimulation. Results showed that number of IL-2+ and IFN-gamma+ T cells observed in response to A. actinomycetemcomitans were between 2% and 7% of those seen in

  18. Insulin reverses the growth retardation effect of phorbol ester in chicken embryos during organogenesis

    SciTech Connect

    Girbau, M.; Bassas, L.; Roth, J.; de Pablo, F. )

    1989-01-01

    The tumor promoting phorbol esters can affect early embryonic development by causing interference with the normal pathways of cellular growth and differentiation. The present study was designed to: (a) define a time in organogenesis when a vertebrate embryo model, the chicken, was sensitive to the phorbol ester 12-0-tetradecanoil-13-acetate (TPA), and (b) attempt a rescue of the embryos disturbed by TPA with simultaneous addition of insulin. In embryos treated at days 2 and 3 of development, TPA caused dose-dependent mortality. Survivors were biochemically retarded as indicated by their decreased weight, protein, DNA, RNA, total creatine kinase, triglycerides, phospholipids and cholesterol contents. When intermediated doses of TPA were applied together with insulin the embryonic growth disturbance was largely antagonized. These data, generated with an in vivo whole embryo, support the strong link between the mode of action of insulin and signal transduction mechanisms typical of phorbol esters.

  19. Transforming Growth Factor-β-Activated Kinase 1 Is Required for Human FcγRIIIb-Induced Neutrophil Extracellular Trap Formation.

    PubMed

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMNs) are the most abundant leukocytes in the blood. PMN migrates from the circulation to sites of infection where they are responsible for antimicrobial functions. PMN uses phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. Several stimuli, including bacteria, fungi, and parasites, and some pharmacological compounds, such as Phorbol 12-myristate 13-acetate (PMA), are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. Recently, it was reported that FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. Direct cross-linking of FcγRIIA or integrins did not promote NET formation. FcγRIIIb-induced NET formation presented different kinetics from PMA-induced NET formation, suggesting differences in signaling. Because FcγRIIIb also induces a strong activation of extracellular signal-regulated kinase (ERK) and nuclear factor Elk-1, and the transforming growth factor-β-activated kinase 1 (TAK1) has recently been implicated in ERK signaling, in the present report, we explored the role of TAK1 in the signaling pathway activated by FcγRIIIb leading to NET formation. FcγRIIIb was stimulated by specific monoclonal antibodies, and NET formation was evaluated in the presence or absence of pharmacological inhibitors. The antibiotic LL Z1640-2, a selective inhibitor of TAK1 prevented FcγRIIIb-induced, but not PMA-induced NET formation. Both PMA and FcγRIIIb cross-linking induced phosphorylation of ERK. But, LL Z1640-2 only inhibited the FcγRIIIb-mediated activation of ERK. Also, only FcγRIIIb, similarly to transforming growth factor-β-induced TAK1 phosphorylation. A MEK (ERK kinase)-specific inhibitor was able to prevent ERK phosphorylation induced by both PMA and FcγRIIIb. These data show for the first time that FcγRIIIb cross-linking activates TAK1, and that this kinase is required for triggering the MEK/ERK signaling pathway to NETosis.

  20. Transforming Growth Factor-β-Activated Kinase 1 Is Required for Human FcγRIIIb-Induced Neutrophil Extracellular Trap Formation

    PubMed Central

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMNs) are the most abundant leukocytes in the blood. PMN migrates from the circulation to sites of infection where they are responsible for antimicrobial functions. PMN uses phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. Several stimuli, including bacteria, fungi, and parasites, and some pharmacological compounds, such as Phorbol 12-myristate 13-acetate (PMA), are efficient inducers of NETs. Antigen–antibody complexes are also capable of inducing NET formation. Recently, it was reported that FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. Direct cross-linking of FcγRIIA or integrins did not promote NET formation. FcγRIIIb-induced NET formation presented different kinetics from PMA-induced NET formation, suggesting differences in signaling. Because FcγRIIIb also induces a strong activation of extracellular signal-regulated kinase (ERK) and nuclear factor Elk-1, and the transforming growth factor-β-activated kinase 1 (TAK1) has recently been implicated in ERK signaling, in the present report, we explored the role of TAK1 in the signaling pathway activated by FcγRIIIb leading to NET formation. FcγRIIIb was stimulated by specific monoclonal antibodies, and NET formation was evaluated in the presence or absence of pharmacological inhibitors. The antibiotic LL Z1640-2, a selective inhibitor of TAK1 prevented FcγRIIIb-induced, but not PMA-induced NET formation. Both PMA and FcγRIIIb cross-linking induced phosphorylation of ERK. But, LL Z1640-2 only inhibited the FcγRIIIb-mediated activation of ERK. Also, only FcγRIIIb, similarly to transforming growth factor-β-induced TAK1 phosphorylation. A MEK (ERK kinase)-specific inhibitor was able to prevent ERK phosphorylation induced by both PMA and FcγRIIIb. These data show for the first time that FcγRIIIb cross-linking activates TAK1, and that this kinase is required for triggering the MEK/ERK signaling pathway to

  1. Calcineurin potentiates activation of the granulocyte-macrophage colony-stimulating factor gene in T cells: involvement of the conserved lymphokine element 0.

    PubMed Central

    Tsuboi, A; Masuda, E S; Naito, Y; Tokumitsu, H; Arai, K; Arai, N

    1994-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-2 (IL-2) are produced by stimulation with phorbol-12-myristate acetate (PMA) and calcium ionophore (A23187) in human T cell leukemia Jurkat cells. The expression of GM-CSF and IL-2 is inhibited by immunosuppressive drugs such as cyclosporin A (CsA) and FK506. Earlier studies on the IL-2 gene expression showed that overexpression of calcineurin (CN), a Ca2+/calmodulin-dependent protein phosphatase, can stimulate transcription from the IL-2 promoter through the NF-AT-binding site. In this study, we obtained evidence that transfection of the cDNAs for CN A (catalytic) and CN B (regulatory) subunits also augments transcription from the GM-CSF promoter and recovers the transcription inhibited by CsA. The constitutively active type of the CN A subunit, which lacks the auto-inhibitory and calmodulin-binding domains, acts in synergy with PMA to activate transcription from the GM-CSF promoter. We also found that the active CN partially replaces calcium ionophore in synergy with PMA to induce expression of endogenous GM-CSF and IL-2. By multimerizing the regulatory elements of the GM-CSF promoter, we found that one of the target sites for the CN action is the conserved lymphokine element 0 (CLE0), located at positions between -54 and -40. Mobility shift assays showed that the CLE0 sequence has an AP1-binding site and is associated with an NF-AT-like factor, termed NF-CLE0 gamma. NF-CLE0 gamma binding is induced by PMA/A23187 and is inhibited by treatment with CsA. These results suggest that CN is involved in the coordinated induction of the GM-CSF and IL-2 genes and that the CLE0 sequence of the GM-CSF gene is a functional analogue of the NF-AT-binding site in the IL-2 promoter, which mediates signals downstream of T cell activation. Images PMID:8186461

  2. Generation of cytotoxic T lymphocytes (CTL) with phorbol ester and calcium ionophore

    SciTech Connect

    Tuttle, T.M.; Bear, H.D. )

    1991-03-15

    Stimulation of lymphocytes with viable tumor cells can induce cytotoxic T lymphocytes (CTL) against autologous tumor. However, sufficient numbers of tumor cells are not always available for such stimulation, and high dose interleukin-2 (IL-2) is often required for growth. Using the weakly immunogenic methylcholanthrene-induced sarcoma MCA105, the authors demonstrate here that CTLs can be expected by pharmacologic manipulation of protein kinase C (PKC) and intracellular calcium with phorbol dibutyrate (PD-Bu) and ionomycin (Io), respectively. Lymphocytes were obtained from the spleens and ipsilateral popliteal draining lymph nodes (DLN) 10 days after the footpad injection of viable MCA105 tumor cells. The cells were stimulated with autologous tumor and 20U/ml IL-2 for 7 days and then treated with PDBu and Io and expanded in culture with 20U/ml IL-2 for an additional 14 days. The lymphocytes from the spleens and DLNs demonstrated significant expansion and marked cytotoxicity against MCA105. In another regimen, lymphocytes from the DLNs of tumor-bearing mice were stimulated directly with PDBu and Io without prior in vitro exposure to autologous tumor and expanded in culture with 20U/ml IL-2. The expansion of these lymphocytes was 500 fold and the cytotoxicity against MCA 105 remained high. Lymphocytes expanded with PDBu and Io also killed MCA102, but normal spleen cells expanded in the same way had no cytotoxic activity. The authors conclude that PKC activators coupled with calcium ionophores and low-dose IL-2 can generate CTL when little or no antigen is available.

  3. RAS–Mitogen-Activated Protein Kinase Signal Is Required for Enhanced PD-L1 Expression in Human Lung Cancers

    PubMed Central

    Sumimoto, Hidetoshi; Takano, Atsushi; Teramoto, Koji; Daigo, Yataro

    2016-01-01

    Ectopic programmed cell death ligand 1 (PD-L1) expression in non-small cell lung cancers (NSCLCs) is related to immune evasion by cancer, and it is a molecular target of immune checkpoint therapies. Although some altered signals in NSCLCs are responsible for ectopic PD-L1 expression, the precise mechanisms remain obscure. Because we found a higher frequency of EGFR/KRAS mutations in NSCLC cell lines with high PD-L1 expression (p < 0.001), we evaluated the relationships between downstream signals and PD-L1 expression, particularly in three KRAS-mutant adenocarcinoma cell lines. The MEK inhibitor U0126 (20 μM) significantly decreased the surface PD-L1 levels by 50–60% compared with dimethyl sulfoxide (p < 0.0001). Phorbol 12-myristate 13-acetate stimulation (100 nM, 15 min) increased (p < 0.05) and two ERK2 siRNAs as well as KRAS siRNAs decreased (p < 0.05) PD-L1 expression. The transcriptional activity of the potential AP-1 site (+4785 to +5056 from the transcription start site) in the PD-L1 gene was demonstrated by luciferase assays, which was inhibited by U0126. The chromatin immunoprecipitation assay demonstrated the binding of cJUN to the AP-1 site. Two STAT3 siRNAs decreased PD-L1 expression by 10–32% in two of the three KRAS-mutant lung adenocarcinoma cell lines (p < 0.05), while the PI3K inhibitor LY294002 (40 μM) did not change the expression level. Supervised cluster analysis and gene set enrichment analysis between the PD-L1-high and -low NSCLCs revealed a correlation between PD-L1 expression and genes/pathways related to cell motility/adhesion. These results indicate that MAPK signaling is the dominant downstream signal responsible for ectopic PD-L1 expression, in which STAT3 is also involved to some extent. Furthermore, MAPK signaling may control the expression of PD-L1 and several genes related to enhanced cell motility. Our findings suggest that MAPK, along with STAT3, is important for determining PD-L1 expression, which could be useful for

  4. Curcumin Represses NLRP3 Inflammasome Activation via TLR4/MyD88/NF-κB and P2X7R Signaling in PMA-Induced Macrophages

    PubMed Central

    Kong, Fanqi; Ye, Bozhi; Cao, Jiatian; Cai, Xueli; Lin, Lu; Huang, Shanjun; Huang, Weijian; Huang, Zhouqing

    2016-01-01

    Aims: In the NOD-like receptor (NLR) family, the pyrin domain containing 3 (NLRP3) inflammasome is closely related to the progression of atherosclerosis. This study aimed to assess the effects of curcumin on NLRP3 inflammasome in phorbol 12-myristate 13-acetate (PMA)-induced macrophages and explore its underlying mechanism. Methods: Human monocytic THP-1 cells were pretreated with curcumin for 1 h and subsequently induced with PMA for 48 h. Total protein was collected for Western blot analysis. Cytokine interleukin (IL)-1β release and nuclear factor kappa B (NF-κB) p65 translocation were detected by ELISA assay and cellular NF-κB translocation kit, respectively. Results: Curcumin significantly reduced the expression of NLRP3 and cleavage of caspase-1 and IL-1β secretion in PMA-induced macrophages. Moreover, Bay (a NF-κB inhibitor) treatment considerably suppressed the expression of NLRP3 inflammasome in PMA-induced THP-1 cells. Curcumin also markedly inhibited the upregulation of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphorylation level of IκB-α, and activation of NF-κB in PMA-induced macrophages. In addition, purinergic 2X7 receptor (P2X7R) siRNA was administered, and it significantly decreased NLRP3 inflammasome expression in PMA-induced macrophages. Furthermore, curcumin reversed PMA-stimulated P2X7R activation, which further reduced the expression of NLRP3 and cleavage of caspase-1 and IL-1β secretion. Silencing of P2X7R using siRNA also suppressed the activation of NF-κB pathway in PMA-induced macrophages, but P2X7R-silenced cells did not significantly decrease the expression of TLR4 and MyD88. Conclusion: Curcumin inhibited NLRP3 inflammasome through suppressing TLR4/MyD88/NF-κB and P2X7R pathways in PMA-induced macrophages. PMID:27777559

  5. Point mutations in the Moloney murine leukemia virus enhancer identify a lymphoid-specific viral core motif and 1,3-phorbol myristate acetate-inducible element.

    PubMed Central

    Speck, N A; Renjifo, B; Hopkins, N

    1990-01-01

    The transcriptional enhancer of the Moloney murine leukemia virus (MoMLV) is organized as a 75-base-pair repeat, and in each copy of the repeat there are multiple binding sites for nuclear factors. We have introduced point mutations into each of the known nuclear factor-binding sites in the MoMLV enhancer, in both copies of the direct repeat, and have analyzed the transcriptional activity conferred by the mutated enhancers by transient-expression assays in both hematopoietic and nonhematopoietic cell lines. Mutation of individual binding sites in the MoMLV enhancer has moderate effects (less than 2-fold to 20-fold) on transcription in six independent cell lines. Several mutations decreased transcription from the MoMLV enhancer ubiquitously (the leukemia virus factor b site and the glucocorticoid response element), whereas others affected transcription specifically in lymphoid cell lines (core motif) or, more significantly, in fibroblasts (nuclear factor 1 site). The transcriptional activity of the MoMLV enhancer can be induced 8- to 10-fold by 1,3-phorbol myristate acetate in Jurkat T cells. Mutations in any of three adjacent binding sites (leukemia virus factor b and c sites and the core motif) within a 28-base-pair region in the center of the direct repeat sequence of the MoMLV enhancer completely attenuate the response to 1,3-phorbol myristate acetate. Images PMID:2104942

  6. Cyclic AMP-dependent protein kinase regulates basal and cyclic AMP-stimulated but not phorbol ester-stimulated transcription of the tyrosine hydroxylase gene.

    PubMed

    Kim, K S; Tinti, C; Song, B; Cubells, J F; Joh, T H

    1994-09-01

    To define the precise role of cyclic AMP (cAMP)-dependent protein kinase (PKA) in transcriptional regulation of the tyrosine hydroxylase (TH) gene, we performed transient cotransfection analyses of a reporter construct containing the upstream 2,400 bp sequence of the rat TH gene with expression plasmids encoding a heat-stable specific inhibitor of PKA (PKI), a mutant regulatory subunit of PKA, or the catalytic subunit of PKA. Inhibition of PKA activity by expression of either PKI or mutant regulatory subunit blocked cAMP-stimulated induction and reduced basal transcription of the TH-reporter construct. Expression of the catalytic subunit of PKA induced the expression of the TH-reporter construct up to 50-fold in a dose-dependent manner. Primer extension analysis confirmed that PKA-mediated induction of TH-reporter expression occurred at the correct transcription initiation site. Expression of PKI did not affect induction following phorbol ester treatment, suggesting that PKA and protein kinase C (PKC) induce TH transcription by independent mechanisms. Finally, a double mutation within the cAMP response element (CRE) of TH2400-CAT diminished its basal and forskolin-stimulated transcription to the level of the promoterless plasmid, pBLCAT3, but did not alter the induction following treatment with phorbol ester, indicating that the CRE is not required for PKC-mediated transcriptional induction. Our results indicate that PKA, via the CRE, plays a crucial role for basal and cAMP-inducible transcription of the TH gene.

  7. Phorbol ester-inducible T-cell-specific expression of variant mouse mammary tumor virus long terminal repeats

    SciTech Connect

    Theunissen, H.J.M.; Paardekooper, M.; Maduro, L.J.; Michalides, R.J.A.M.; Nusse, R. )

    1989-08-01

    Acquired proviruses of mouse mammary tumor virus (MMTV) in T-cell leukemias of male GR mice have rearrangements in the U3 region of their long terminal repeats (LTR). In contrast to the endogenous nonrearranged MMTV proviruses, these mutated copies are highly expressed in leukemic T cells. To investigate whether the sequence alterations in the LTR are responsible for the high expression of rearranged MMTV proviruses, the authors made constructs in which normal and variant LTRs drive the bacterial reporter gene chloramphenicol acetyltransferase (CAT). Two different rearranged LTRs were used, one containing a 420-base-pair (bp) deletion (L13) and another carrying a 456-bp deletion plus an 82-bp insertion (L42). These constructs were transfected into murine (GRSL) and human (MOLT-4) T-cell lines that either had or had not been treated with phorbol ester (12-O-tetradecanoylphorbol-13-acetate (TPA)). In GRSL cells, the L13-LTR-CAT construct showed transcriptional activity that was further enhanced by TPA. In MOLT-4 cells, both variant LTRs were active, but only after stimulation with TPA. In contrast, normal(N)-LTR-CAT constructs were not expressed, irrespective of TPA addition. They conclude that the LTR rearrangements generate TPA responsiveness and contribute to T-cell-specific expression of MMTV variants.

  8. Phorbol ester stimulation of RasGRP1 regulates the sodium-chloride cotransporter by a PKC-independent pathway

    PubMed Central

    Ko, Benjamin; Joshi, Leena M.; Cooke, Leslie L.; Vazquez, Norma; Musch, Mark W.; Hebert, Steven C.; Gamba, Gerardo; Hoover, Robert S.

    2007-01-01

    The sodium-chloride cotransporter (NCC) is the principal salt-absorptive pathway in the mammalian distal convoluted tubule (DCT) and is the site of action of one of the most effective classes of antihypertensive medications, thiazide diuretics. We developed a cell model system to assess NCC function in a mammalian cell line that natively expresses NCC, the mouse DCT (mDCT) cell line. We used this system to study the complex regulation of NCC by the phorbol ester (PE) 12-O-tetradecanoylphorbol-13-acetate (TPA), a diacylglycerol (DAG) analog. It has generally been thought that PEs mediate their effects on transporters through the activation of PKC. However, there are at least five other DAG/PE targets. Here we describe how one of those alternate targets of DAG/PE effects, Ras guanyl-releasing protein 1 (RasGRP1), mediates the PE-induced suppression of function and the surface expression of NCC. Functional assessment of NCC by using thiazide-sensitive 22Na+ uptakes revealed that TPA completely suppresses NCC function. Biotinylation experiments demonstrated that this result was primarily because of decreased surface expression of NCC. Although inhibitors of PKC had no effect on this suppression, MAPK inhibitors completely prevented the TPA effect. RasGRP1 activates the MAPK pathway through activation of the small G protein Ras. Gene silencing of RasGRP1 prevented the PE-mediated suppression of NCC activity, the activation of the H-Ras isoform of Ras, and the activation of ERK1/2 MAPK. This finding confirmed the critical role of RasGRP1 in mediating the PE-induced suppression of NCC activity through the stimulation of the MAPK pathway. PMID:18077438

  9. Modulation by cyclic AMP and phorbol myristate acetate of cephaloridine-induced injury in rat renal cortical slices.

    PubMed

    Kohda, Y; Gemba, M

    2001-01-01

    Intracellular signaling pathways of cAMP and protein kinase C (PKC) have been suggested to modulate the generation of free radicals. We investigated the effects of cAMP and phorbol myristate acetate (PMA), a PKC activator, on cephaloridine (CER)-induced renal cell injury, which has been reported to be due to the generation of free radicals. Incubation of rat renal cortical slices with CER resulted in increases in lipid peroxidation and lactate dehydrogenase (LDH) release and in decreases in gluconeogenesis and p-aminohippurate (PAH) accumulation in rat renal cortical slices, suggesting free radical-induced injury in slices exposed to CER. A derivative of cAMP ameliorated not only the increase in lipid peroxidation but also the renal cell damage induced by CER. This amelioration by a cAMP derivative of lipid peroxidation and renal cell damage caused by CER was blocked by KT 5720, a protein kinase A (PKA) inhibitor. Lipid peroxidation and the indices of cell injury were increased by PMA. PMA also enhanced CER-induced lipid peroxidation and cell damage in the slices. This enhancement by PMA of CER-induced injury was blocked by H-7, a PKC inhibitor. These results indicated that intracellular signaling pathways of cAMP and PKC modulate free radical-mediated nephrotoxicity induced by CER.

  10. 4-Methylumbelliferone inhibits the phosphorylation of hyaluronan synthase 2 induced by 12-O-tetradecanoyl-phorbol-13-acetate.

    PubMed

    Kuroda, Yoshiyuki; Kasai, Kosuke; Nanashima, Naoki; Nozaka, Hiroyuki; Nakano, Manabu; Chiba, Mitsuru; Yoneda, Masahiko; Nakamura, Toshiya

    2013-04-01

    The effect of 4-methylumbelliferone (MU), a hyaluronan synthase-suppressor, on O-linked β-Nacetylglucosaminylation (O-GlcNAcylation) was investigated in cultured human skin fibroblasts, and we found that MU stimulated O-GlcNAcylation of the cellular proteins. Since O-GlcNAcylation affects protein phosphorylation via Ser/Thr kinases, we examined the effect of MU on both the phosphorylation of hyaluronan synthase 2 (HAS2) and hyaluronan production. The cells were cultured in the presence or absence of 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and MU independently or in combination. The protein fraction of each cell culture was extracted and divided into 2 parts-phosphorylated and non-phosphorylated fractions-by immobilized metal-affinity chromatography. The hyaluronan level in the medium was determined by an ELISA-like assay. Addition of MU decreased the level of hyaluronan in the medium and that of HAS2 in the phosphorylated protein fraction. On the contrary, the addition of TPA increased the levels of both of them. Interestingly, the combination of TPA and MU lowered the levels of them in treated cells as compared to those in untreated control cells. These results suggest that TPA activated protein kinase C (PKC), which stimulates the phosphorylation of HAS2, and increased hyaluronan production. Further, MU may inhibit the phosphorylation of HAS2 by PKC through the stimulation of O-GlcNAcylation.

  11. Dmrt1 Expression Is Regulated by Follicle-Stimulating Hormone and Phorbol Esters in Postnatal Sertoli Cells*

    PubMed Central

    CHEN, JIANG KAI; HECKERT, LESLIE L.

    2006-01-01

    Dmrt1 is a recently described gene that is expressed exclusively in the testis and is required for postnatal testis differentiation. Here we describe the expression of Dmrt1 in postnatal rat testis and Sertoli cells. RNase protection analysis was used to examine Dmrt1 messenger RNA (mRNA) levels in intact testis during postnatal development and in primary cultures of Sertoli cells under various culture conditions. We show that Dmrt1 mRNA levels rise significantly beginning approximately 10 days after birth and remain elevated until after the third postnatal week. Thereafter, mRNA levels drop coincident with the proliferation of germ cells in the testis. In freshly isolated Sertoli cells, Dmrt1 mRNA levels were robust but decreased significantly when the cells were placed in culture for 24 h. Treatment of Sertoli cells with either FSH or 8-bromo-cAMP resulted in a significant rise in Dmrt1 mRNA levels. This cAMP response was sensitive to treatment with the transcriptional inhibitor actinomycin D but not to the translational inhibitor cycloheximide. The cAMP-dependent rise in Dmrt1 mRNA also required activation of protein kinase A, as mRNA induction was sensitive to the inhibitor H89. Studies also show that Dmrt1 expression was inhibited by phorbol esters (PMA) but only modestly effected by serum. PMID:11181532

  12. Stimulation of phosphatidylinositol hydrolysis, protein kinase C translocation, and mitogen-activated protein kinase activity by bradykinin in rat ventricular myocytes: dissociation from the hypertrophic response.

    PubMed Central

    Clerk, A; Gillespie-Brown, J; Fuller, S J; Sugden, P H

    1996-01-01

    In ventricular myocytes cultured from neonatal rat hearts, bradykinin (BK), kallidin or BK(1-8) [(Des-Arg9)BK] stimulated PtdinsP2 hydrolysis by 3-4-fold. EC50 values were 6 nM (BK), 2 nM (kallidin), and 14 microM [BK(1-8)]. BK or kallidin stimulated the rapid (less than 30 s) translocation of more than 80% of the novel protein kinase C (PKC) isoforms nPKC-delta and nPKC-epsilon from the soluble to the particulate fraction. EC50 values for nPKC-delta translocation by BK or kallidin were 10 and 2 nM respectively. EC50 values for nPKC-epsilon translocation by BK or kallidin were 2 and 0.6 nM respectively. EC50 values for the translocation of nPKC-delta and nPKC-epsilon by BK(1-8) were more than 5 microM. The classical PKC, cPKC-alpha, and the atypical PKC, nPKC-zeta, did not translocate. BK caused activation and phosphorylation of p42-mitogen-activated protein kinase (MAPK) (maximal at 3-5 min, 30-35% of p42-MAPK phosphorylated). p44-MAPK was similarly activated. EC50 values for p42/p44-MAPK activation by BK were less than 1 nM whereas values for BK(1-8) were more than 10 microM. The order of potency [BK approximately equal to kallidin >> BK (1-8)] for the stimulation of PtdInsP2 hydrolysis, nPKC-delta and nPKC-epsilon translocation, and p42/p44-MAPK activities suggests involvement of the B2 BK receptor subtype. In addition, stimulation of all three processes by BK was inhibited by the B2BK receptor-selective antagonist HOE140 but not by the B1-selective antagonist Leu8BK(1-8). Exposure of cells to phorbol 12-myristate 13-acetate for 24 h inhibited subsequent activation of p42/p44-MAPK by BK suggesting participation of nPKC (and possibly cPKC) isoforms in the activation process. Thus, like hypertrophic agents such as endothelin-1 (ET-1) and phenylephrine (PE), BK activates PtdInsP2 hydrolysis, translocates nPKC-delta, and nPKC-epsilon, and activates p42/p44-MAPK. However, in comparison with ET-1 and PE, BK was only weakly hypertrophic as assessed by cell morphology

  13. Beta/sub 1/-adrenoceptors in rat hepatoma, desensitization by isoproterenol and phorbol-myristate-acetate

    SciTech Connect

    Garcia-Sainz, J.A.; Alcantara, R.; Hernandez-Sotomayor, S.M.T.; Mas-Oliva, J.

    1989-01-01

    The beta-adrenergic responsiveness of hepatocytes obtained from hypothyroid rats and of a transplantable hepatoma cell line (AS-30D) were studied by measuring the accumulation of cyclic AMP. The potency order for agonists in hepatocytes was: isoproterenol > epinephrine >> norepinephrine whereas in the hepatoma cells the potency order was: isoproterenol > norepinephrine /equivalent to/ epinephrine. The effect of isoproterenol was antagonized in hepatocytes by low concentrations of ICI 118551 and only partially by concentrations of atenolol as high as 100 ..mu..M. In hepatome cells the effect of isoproterenol was inhibited by both antagonists with the potency order atenolol > ICI 118551. These data indicate that in hepatocytes the effect is mediated by beta/sub 2/-adrenoceptors whereas in hepatoma cells it is through beta/sub 1/-adrenoceptors. Preincubation of hepatoma cells with isoproterenol or phorbol-myristate-acetate diminished the subsequent beta-adrenergic responsiveness of the cells. Interestingly, when both isoproterenol and phorbol-myristate-acetate were present during the preincubation the beta-adrenergic desensitization observed was bigger than that induced by any of these agents alone.

  14. Induction of phosphorylation and cell surface redistribution of acetylcholine receptors by phorbol ester and carbamylcholine in cultured chick muscle cells

    PubMed Central

    1988-01-01

    We have investigated the mechanisms regulating the clustering of nicotinic acetylcholine receptor (AChR) on the surface of cultured embryonic chick muscle cells. Treatment of these cells with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), a potent activator of protein kinase C, was found to cause a rapid dispersal of AChR clusters, as monitored by fluorescence microscopy of cells labeled with tetramethylrhodamine-conjugated alpha-bungarotoxin. The loss of AChR clusters was not accompanied by an appreciable change in the amount of AChR on the surface of these cells, as measured by the specific binding of [125I]Bgt. Analysis of the phosphorylation pattern of immunoprecipitable AChR subunits showed that the gamma- and delta- subunits are phosphorylated by endogenous protein kinase activity in the intact muscle cells, and that the delta-subunit displays increased phosphorylation in response to TPA. Structural analogues of TPA which do not stimulate protein kinase C have no effect on AChR surface topography or phosphorylation. Exposure of chick myotubes to the cholinergic agonist carbamylcholine was found to cause a dispersal of AChR clusters with a time course similar to that of TPA. Like TPA, carbamylcholine enhances the phosphorylation of the delta-subunit of AChR. The carbamylcholine-induced redistribution and phosphorylation of AChR is blocked by the nicotinic AChR antagonist d-tubocurarine. TPA and carbamylcholine have no effect on cell morphology during the time- course of these experiments. These findings indicate that cell surface topography of AChR may be regulated by phosphorylation of its subunits and suggest a mechanism for dispersal of AChR clusters by agonist activation. PMID:3417778

  15. Liver protective effect of ursodeoxycholic acid includes regulation of ADAM17 activity

    PubMed Central

    2013-01-01

    Background Ursodeoxycholic acid (UDCA) is used to treat primary biliary cirrhosis, intrahepatic cholestasis, and other cholestatic conditions. Although much has been learned about the molecular basis of the disease pathophysiology, our understanding of the effects of UDCA remains unclear. Possibly underlying its cytoprotective, anti-apoptotic, anti-oxidative effects, UDCA was reported to regulate the expression of TNFα and other inflammatory cytokines. However, it is not known if this effect involves also modulation of ADAM family of metalloproteinases, which are responsible for release of ectodomains of inflammatory cytokines from the cell surface. We hypothesized that UDCA modulates ADAM17 activity, resulting in amelioration of cholestasis in a murine model of bile duct ligation (BDL). Methods The effect of UDCA on ADAM17 activity was studied using the human liver hepatocellular carcinoma cell line HepG2. Untransfected cells or cells ectopically expressing human ADAM17 were cultured with or without UDCA and further activated using phorbol-12-myristate-13-acetate (PMA). The expression and release of ADAM17 substrates, TNFα, TGFα, and c-Met receptor (or its soluble form, sMet) were evaluated using ELISA and quantitative real-time (qRT) PCR. Immunoblotting analyses were conducted to evaluate expression and activation of ADAM17 as well as the level of ERK1/2 phosphorylation after UDCA treatment. The regulation of tissue inhibitor of metalloproteinases-1 (TIMP-1) by UDCA was studied using zymography and qRT-PCR. A mouse model of acute cholestasis was induced by common BDL technique, during which mice received daily orogastric gavage with either UDCA or vehicle only. Liver injury was quantified using alkaline phosphatase (ALP), relative liver weight, and confirmed by histological analysis. ADAM17 substrates in sera were assessed using a bead multiplex assay. Results UDCA decreases amount of shed TNFα, TGFα, and sMet in cell culture media and the phosphorylation of

  16. Regulation of osteosarcoma EGF receptor affinity by phorbol ester and cyclic AMP

    SciTech Connect

    Borst, S.E.; Catherwood, B.D. )

    1989-04-01

    We studied the binding and degradation of 125I-labeled epidermal growth factor (EGF) by UMR-106 osteosarcoma cells and the regulation of EGF receptor affinity for EGF by the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and by treatments that raise intracellular levels of cyclic AMP. Cell surface binding of (125I)EGF to A431 cells reached a plateau after a 30 minute incubation at 37 degrees C but was undetectable in UMR-106 cells. Degradation of (125I)EGF proceeded at a 50-fold higher rate in A431 cells on a per cell basis, but receptor-bound (125I)EGF was internalized and degraded at a 3.5-fold higher rate by UMR-106 cells on a per receptor basis. At 4 degrees C, (125I)EGF labeled a single class of surface binding sites in the UMR-106 cell. Treatment with TPA at 37 degrees C reduced subsequent cell surface binding of (125I)EGF at 4 degrees C a maximum of 80% with an IC50 of 1.25 ng/ml. Maximal TPA reduction of (125I)EGF binding was observed within 5-15 minutes and was due to a reduction in the affinity of cell surface receptors of (125I)EGF without a change in receptor density. Pretreatment of the cells for 4 h with 30 microM forskolin, 1 mM isobutylmethylxanthine (IBMX) plus 30 microM forskolin, or 1 mM IBMX plus 100 ng/ml parathyroid hormone (PTH) attenuated the loss in (125I)EGF binding caused by a subsequent dose of 10 ng/ml of TPA by 17% (p less than 0.0005), 39% (p less than 0.0002), and 35% (p less than 0.002), respectively.

  17. Bovine somatotropin attenuates phorbol ester-induced prostaglandin F2alpha production in bovine endometrial cells.

    PubMed

    Badinga, L; Guzeloglu, A; Thatcher, W W

    2002-03-01

    The recent observation that bovine somatotropin (bST) treatment at a timed insemination improves pregnancy rates in lactating dairy cows raises the possibility that growth hormone (GH) may modulate the endocrine and biochemical cross talk between the conceptus and maternal uterus at the time of pregnancy establishment in cattle. The objective of this study was to characterize the cellular and molecular mechanisms by which exogenous GH affects phorbol ester-induced prostaglandin F2alpha (PGF2alpha) production in cultured bovine endometrial (BEND) cells. Serum-deprived BEND cells were incubated with or without recombinant bovine GH (rbGH), insulin-like growth factor (IGF)-I, recombinant bovine interferon (rbIFN)-tau or a combination of rbGH + rbIFN-tau for 3 h and then treated with phorbol 12,13-dibutyrate (PDBu) for an additional 6 h. Exogenous PDBu increased PGF2alpha secretion and steady-state levels of COX-2 mRNA within 3 h. Priming of BEND cells with rbGH reduced PGF2alpha response to PDBu, whereas cotreatment with IGF-I amplified PDBu induction of PGF2alpha. Preincubation of cell monolayers with rbIFN-tau suppressed PGF2alpha and COX-2 mRNA responses to PDBu. Inhibitory effects of rbGH and rbIFN-tau on PDBu-induced PGF2alpha production were additive. Results provide the first direct evidence that supplemental bST may interact with conceptus-secreted IFN-tau to modulate PGF2alpha secretion at the critical time of maternal recognition of pregnancy.

  18. Differential regulation by phorbol ester of formyl-methionyl peptide and leukotriene B sub 4 receptors on human neutrophils

    SciTech Connect

    Goldman, D.W.; Chung, S.; Richards, S. )

    1991-03-15

    Activation of protein kinase C (PKC) with suboptimal does of phorbol myristyl acetate (PMA) will increase fMP receptor expression with parallel potentiation of superoxide generation. PMA-induced changes in leukotriene B{sub 4} (LTB{sub 4}) receptor expression were assessed in parallel with fMP receptor expression to determine if these two independent receptor classes are regulated in a similar manner by PKC. The relative density of fMP receptors was assessed by flow cytometry. The relative density of receptors for LTB{sub 4} was quantitated by incubating 2 {times} 10{sup 6} Ns with 10nM({sup 3}H)-LTB{sub 4} and determining the amount of radioactivity bound after filtration on glass fiber filters. Incubation of N with 10ng/mL PMA induced a 3.2-fold increase in fMP receptor expression by 5 min which was sustained for up to 15 min. In contrast, LTB{sub 4} receptor density decreased by 36% within 5 min. in response to 10 ng/mL PMA. Staurosporine, a potent antagonist of PKC, had no effect of fMP receptor expression but markedly enhanced LTB{sub 4} receptor expression by 1.7-fold at 200nM. PKC acts to decrease the surface expression of LTB{sub 4} receptors in contrast to the enhancement of fMP receptor expression, suggesting in contrast to the enhancement of fMP receptor expression, suggesting that potentiation of N function by PMA may be stimulus-specific.

  19. Anti-Inflammatory Activity of Haskap Cultivars is Polyphenols-Dependent

    PubMed Central

    Rupasinghe, H. P. Vasantha; Boehm, Mannfred M. A.; Sekhon-Loodu, Satvir; Parmar, Indu; Bors, Bob; Jamieson, Andrew R.

    2015-01-01

    Haskap (Lonicera caerulea L.) berries have long been used for their health promoting properties against chronic conditions. The current study investigated the effect of Canadian haskap berry extracts on pro-inflammatory cytokines using a human monocytic cell line THP-1 derived macrophages stimulated by lipopolysaccharide. Methanol extracts of haskap from different growing locations in Canada were prepared and characterized for their total phenolic profile using colorimetric assays and liquid chromatography—Mass spectrometry (UPLC-MS/MS). Human THP-1 monocytes were seeded in 24-well plates (5 × 105/well) and treated with phorbol 12-myristate 13-acetate (PMA, 0.1 μg/mL) for 48 h to induce macrophage differentiation. After 48 h, the differentiated macrophages were washed with Hank’s buffer and treated with various concentrations of test compounds for 4 h, followed by the lipopolysaccharide (LPS)-stimulation (18 h). Borealis cultivar showed the highest phenolic content, flavonoid content and anthocyanin content (p < 0.05). A negative correlation existed between the polyphenol concentration of the extracts and pro-inflammatory cytokines: Interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), prostaglandin (PGE2), and cyclooxygenase-2 (COX-2) enzyme. Borealis exhibited comparable anti-inflammatory effects to COX inhibitory drug, diclofenac. The results showed that haskap berry polyphenols has the potential to act as an effective inflammation inhibitor. PMID:26043379

  20. Endomorphins 1 and 2 modulate chemotaxis, phagocytosis and superoxide anion production by microglia.

    PubMed

    Azuma, Y; Ohura, K; Wang, P L; Shinohara, M

    2001-09-03

    We evaluate the role of endomorphins 1 and 2 on microglial functions. Endomorphins 1 and 2 blocked phagocytosis of Escherichia coli. In addition, both markedly inhibited chemotaxis toward zymosan-activated serum. In contrast, when microglia was preincubated with these endomorphins, followed by incubation with LPS before stimulation with phorbol 12-myristate 13-acetate (PMA) at 200 nM, they potentiated superoxide anion production. Furthermore, when microglia was preincubated with these endomorphins together with PMA at 20 nM, followed by stimulation with PMA at 200 nM, superoxide anion production was potentiated. These results suggest that endomorphins 1 and 2 modulate phagocytosis, chemotaxis and superoxide anion production by microglia.

  1. Rapid isolation and purification of phorbol esters from Jatropha curcas by high-speed countercurrent chromatography.

    PubMed

    Hua, Wan; Hu, Huiling; Chen, Fang; Tang, Lin; Peng, Tong; Wang, Zhanguo

    2015-03-18

    In this work, a high-speed countercurrent chromatography (HSCCC) method was established for the preparation of phorbol esters (PEs) from Jatropha curcas. n-Hexane-ethyl acetate-methanol-water (1.5:1.5:1.2:0.5, v/v) was selected as the optimum two-phase solvent system to separate and purify jatropha factor C1 (JC1) with a purity of 85.2%, as determined by HPLC, and to obtain a mixture containing four or five PEs. Subsequently, continuous semipreparative HPLC was applied to further purify JC1 (99.8% as determined by HPLC). In addition, UPLC-PDA and UPLC-MS were established and successfully used to evaluate the isolated JC1 and PE-rich crude extract. The purity of JC1 was only 87.8% by UPLC-UV. A peak (a compound highly similar to JC1) was indentified as the isomer of JC1 by comparing the characteristic UV absorption and MS spectra. Meanwhile, this strategy was also applied to analyze the PE-rich crude extract from J. curcas. It is interesting that there may be more than 15 PEs according to the same quasi-molecular ion peaks, highly similar sequence-specific fragment ions, and similar UV absorption spectrum.

  2. Distribution of Spinal Sensitization Evoked by Inflammatory Pain Using Local Spinal Cord Glucose Utilization Combined with (3) H-Phorbol 12,13-Dibutyrate Binding in Rats.

    PubMed

    Seiko, Yasuda; Kozo, Ishikawa; Yoshihiro, Matsumoto; Toru, Ariyoshi; Hironori, Sasaki; Yuika, Ida; Yasutake, Iwanaga; Hae-Kyu, Kim; Osamu, Nakanishi; Toshizo, Ishikawa

    2013-01-01

    Aims. Hyperalgesia following tissue injury is induced by plasticity in neurotransmission. Few investigators have considered the ascending input which activates the superficial of spinal cord. The aim was to examine neurotransmission and nociceptive processing in the spinal cord after mustard-oil (MO) injection. Both in vitro and in vivo autoradiographs were employed for neuronal activity and transmission in discrete spinal cord regions using the (14)C-2-deoxyglucose method and (3)H-phorbol 12,13-dibutyrate ((3)H-PDBu) binding sites. Methods. To quantify the hyperalgesia evoked by MO, the flinching was counted for 60 min after MO (20%, 50 μL) injection in Wistar rats. Simultaneous determination of (14)C-2-deoxyglucose and (3)H-PDBu binding was used for a direct observation of neuronal/metabolic changes and intracellular signaling in the spinal cord. Results. MO injection evoked an increase in flinching for 60 min. LSCGU significantly increased in the Rexed I-II with (3)H-PDBu binding in the ipsilateral side of spinal cord. Discussion. We clearly demonstrated that the hyperalgesia is primarily relevant to increased neuronal activation with PKC activation in the Rexed I-II of the spinal cord. In addition, functional changes such as "neuronal plasticity" may result in increased neuronal excitability and a central sensitization.

  3. Distribution of Spinal Sensitization Evoked by Inflammatory Pain Using Local Spinal Cord Glucose Utilization Combined with 3H-Phorbol 12,13-Dibutyrate Binding in Rats

    PubMed Central

    Seiko, Yasuda; Kozo, Ishikawa; Yoshihiro, Matsumoto; Toru, Ariyoshi; Hironori, Sasaki; Yuika, Ida; Yasutake, Iwanaga; Hae-Kyu, Kim; Osamu, Nakanishi; Toshizo, Ishikawa

    2013-01-01

    Aims. Hyperalgesia following tissue injury is induced by plasticity in neurotransmission. Few investigators have considered the ascending input which activates the superficial of spinal cord. The aim was to examine neurotransmission and nociceptive processing in the spinal cord after mustard-oil (MO) injection. Both in vitro and in vivo autoradiographs were employed for neuronal activity and transmission in discrete spinal cord regions using the 14C-2-deoxyglucose method and 3H-phorbol 12,13-dibutyrate (3H-PDBu) binding sites. Methods. To quantify the hyperalgesia evoked by MO, the flinching was counted for 60 min after MO (20%, 50 μL) injection in Wistar rats. Simultaneous determination of 14C-2-deoxyglucose and 3H-PDBu binding was used for a direct observation of neuronal/metabolic changes and intracellular signaling in the spinal cord. Results. MO injection evoked an increase in flinching for 60 min. LSCGU significantly increased in the Rexed I-II with 3H-PDBu binding in the ipsilateral side of spinal cord. Discussion. We clearly demonstrated that the hyperalgesia is primarily relevant to increased neuronal activation with PKC activation in the Rexed I-II of the spinal cord. In addition, functional changes such as “neuronal plasticity” may result in increased neuronal excitability and a central sensitization. PMID:27335874

  4. Inhibition of Nef- and phorbol ester-induced CD4 degradation by macrolide antibiotics.

    PubMed Central

    Luo, T; Anderson, S J; Garcia, J V

    1996-01-01

    Human immunodeficiency virus type 1 (HIV-1) is the causative agent of AIDS. The simian immunodeficiency virus (SIV) causes a similar syndrome in macaques. The product of the nef gene of SIV has been shown to be important for virus replication and disease progression in vivo. In vitro, both SIV and HIV Nef downregulate surface expression of CD4 and accelerate total CD4 turnover. The mechanism by which Nef downregulates CD4 has not been established. A current model suggests that Nef enhances cell surface CD4 endocytosis and degradation in lysosomes. However, this was recently challenged when CD4 was found to accumulate in early endosomes of cells expressing Nef. Because inhibition of Nef function might halt virus replication and disease progression, we tested two macrolide antibiotics for their ability to inhibit Nef function. Concanamycin B (ConB) and bafilomycin A1 (BFLA1) are specific inhibitors of acidification of cell endosomes and lysosomes and, unlike other inhibitors, do not affect transport. Although ConB (25 nM) and BFLA1 (100 nM) blocked phorbol myristate acetate- and Nef-induced CD4 degradation in human monocyte U937 cells, CD4 surface expression was not recovered. Instead, CD4 accumulated in lysosomes. To determine if Nef is directly responsible for CD4 degradation or if they bind to each other in a manner similar to Vpu, transcripts of human CD4 and HIV-1 nef were cotranslated in vitro. Our results indicate that under our experimental conditions, Nef does not affect CD4 stability and does not associate with CD4 in this in vitro system. Our data suggest that (i) CD4 downregulation by Nef results in degradation of CD4 in lysosomes, (ii) inhibition of CD4 degradation by macrolide antibiotics does not restore surface expression, and (iii) the inhibition of CD4 expression by Nef appears to be indirect and is likely to involve cellular factors. PMID:8627671

  5. Phorbol myristate acetate and catechol as skin cocarcinogens in SENCAR mice

    SciTech Connect

    Van Duuren, B.L.; Melchionne, S.; Seidman, I.

    1986-09-01

    The enhancement of the carcinogenicity of benzo(a) pyrene (B(a)P) and ..beta..-propiolactone (BPL) by the mouse skin cocarcinogens phorbol myristate acetate (PMA) and catechol were examined in female SENCAR mice, 30 per group. The carcinogen and cocarcinogen were applied simultaneously, three times weekly for 490-560 days. B(a)P and BPL were used at constant doses of 5 and 50 ..mu..g, respectively, in all experiments. PMA was used at three doses, 2.5, 1.0, and 0.5 ..mu..g per application, and catechol was used at one dose, 2 mg per application. Control groups included animals that received carcinogen only, cocarcinogen only, acetone only, and no treatment. The carcinogenicity of B(a)P and BPL were enhanced by the cocarcinogens, particularly in terms of tumor multiplicity. For both carcinogens, the most marked cocarcinogenic effects were observed at the lowest dose of PMA used (0.5 ..mu..g per application). This observation applied for days to first tumor, animals with tumors, tumor multiplicity, and incidence of malignant skin tumors. Catechol applied alone did not induce any tumors; with PMA alone there were significant incidences of benign and malignant tumors, e.g., at a dose of only 0.5 ..mu..g per application, 15 of 30 animals had 28 tumors, 5 of which were squamous carcinomas. In two-stage carcinogenesis experiments with 7,12-dimethylbenz(a)anthracene (DMBA) as initiator and PMA as promoter, SENCAR mice showed a greater susceptibility to tumor induction when compared to ICR/Ha mice used in earlier work. This susceptibility was most notable in terms of rate of tumor appearance and tumor multiplicity.

  6. Ric-8A gene deletion or phorbol ester suppresses tumorigenesis in a mouse model of GNAQQ209L-driven melanoma

    PubMed Central

    Patel, B R; Tall, G G

    2016-01-01

    The heterotrimeric G protein α subunit oncogenes GNAQ or GNA11 carry Q209X or R183X activating mutations and are present with ~90% frequency in human uveal melanomas. Forced expression of GNAQ/11Q209L in melanocytes is sufficient to drive metastatic melanoma in immune-compromised mice. No known drugs directly target these oncogenic G proteins. Ric-8A is the molecular chaperone that selectively folds Gαq/i/13 subunits. Targeting Ric-8A serves as a rational, yet unexplored approach to reduce the functional abundance of oncogenic Gαq/11 in order to blunt cancer signaling. Here, using mouse melanocyte cell graft tumorigenesis models, we determined that Ric-8A genetic ablation attenuated the abundance and melanoma-driving potential of Gαq-Q209L. A new conditional Ric-8AFlox/Flox; Rosa-CreER+/− mouse strain was derived and used as a tissue source to culture an immortalized, tamoxifen-inducible Ric-8A knockout melanocyte cell line that required 12-O-tetradecanoylphorbol-13-acetate (TPA, phorbol ester) for growth. The cell line failed to grow tumors when grafted into immune-compromised mice regardless of Ric-8A expression. Stable expression of human GNAQQ209L, but not GNAQWT in the cell line promoted TPA-independent cell proliferation, and upon cell grafting in mice, the initiation and robust growth of darkly-pigmented melanoma tumors. Deletion of Ric-8A in GNAQQ209L cells restored TPA-dependent growth, reduced Gαq-Q209L below detectable levels and completely mitigated tumorigenesis from primary or secondary cell line grafts. Interestingly, TPA treatment of cultured GNAQQ209L cells or host animals grafted with GNAQQ209L cells also sharply reduced Gαq-Q209L abundance and tumorigenic capacity. Finally, tumorigenesis initiated from GNAQQ209L cell grafts, followed by host mouse systemic tamoxifen treatment to delete Ric-8A in the grafted cells completely abrogated GNAQQ209L-driven tumor progression unless a stable human RIC-8A transgene was used to rescue the floxed

  7. Protein kinase C activators inhibit capillary endothelial cell growth

    SciTech Connect

    Doctrow, S.R.

    1986-05-01

    Phorbol 12,13-dibutyrate (PDBu) binds specifically to bovine capillary endothelial (BCE) cells (K/sub d/ = 8nM) and inhibits the proliferation (K/sub 50/ = 6 +/- 4 nM). Under similar conditions, PDBu does not inhibit the growth of bovine aortic endothelial or smooth muscle cells. PDBu markedly attenuates the response of BCE cells to purified human hepatoma-derived growth factor which, in the absence of PDBu, stimulates BCE cell growth by about 3-fold. Several observations suggest that the inhibition of BCE cell growth by PDBu is mediated by protein kinase C: (1) different phorbol compounds inhibit BCE cell growth according to the relative potencies as protein kinase C activators (12-tetradecanoylphorbol 13-acetate > PDBu >> phorbol 12,13-diacetate >>>..beta..-phorbol; ..cap alpha..-phorbol 12,13-didecanoate). (2) Specific binding of PDBu to BCE cells is displaced by sn-1,2-dioctanoylglycerol (diC/sub 8/), a protein kinase C activator and an analog of the putative second messenger activating this kinase in vivo. The weak protein kinase C activator, sn-1,2-dibutyrylglycerol, does not affect PDBu binding. (3) A cytosolic extract from BCE cells contains a Ca/sup 2 +//phosphatidylserine-dependent kinase that is activated by diC/sub 8/ and PDBu, but not by ..beta..-phorbol. These results support a role for protein kinase C in suppressing capillary endothelial cell growth and may therefore have implications in the intracellular regulation of angiogenesis.

  8. Phorbol ester and A23187 have additive but mechanistically separate effects on vasopressin action in rabbit collecting tubule.

    PubMed Central

    Ando, Y; Jacobson, H R; Breyer, M D

    1988-01-01

    Activation of protein kinase C (PKC) and elevation of intracellular calcium ion concentration ([Ca++]i) result from phosphatidylinositol biphosphate (PIP2) breakdown. We previously demonstrated that PKC activation inhibits arginine vasopressin (AVP)-induced osmotic water flow in rabbit cortical collecting tubule (CCT) perfused in vitro at 37 degrees C. To estimate the potential significance of PIP2 turnover as a modulator of water transport in this nephron segment, we examined the effect of Ca on AVP action and explored the mechanisms of action of PKC and increased [Ca++]i. In rabbit CCTs perfused at 37 degrees C, pretreatment with bath A23187 (2 x 10(-8) M, 2 x 10(-6) M), a Ca ionophore, almost totally suppressed AVP (10 microU/ml)-induced peak hydraulic conductivity (Lp). The suppression by 2 x 10(-8) M A23187 was as potent as that by 2 x 10(-6) M A23187, and significant even when it was administered 10 min after AVP. When phorbol myristate acetate (PMA, 10(-9) M), a PKC activator, and A23187 (2 x 10(-8) M) were placed in the bath simultaneously, the combined suppressive effect on peak Lp was greater than that of either inhibitor alone. However, the mechanisms of inhibition by PMA and A23187 were different. While both 10(-7) and 10(-9) M PMA suppression are primarily post-cAMP, A23187 predominantly suppressed a pre-cAMP step: 10(-4) M chlorophenylthio-cAMP-induced peak Lp was not affected by 2 x 10(-8) M A23187, and only partially inhibited by 2 x 10(-6) M A23187. The PMA (10(-7) M) suppression of AVP-induced peak Lp was totally reversed by bath staurosporine (10(-7) M), a PKC inhibitor, but not attenuated by either bath indomethacin (5 x 10(-6) M) or low Ca (1-2 x 10(-6) M) bath medium. In contrast, the A23187 (2 x 10(-8) M) suppression of the peak Lp was not affected by staurosporine, but was significantly reversed by indomethacin or low Ca bath medium. We conclude: (a) Elevation of [Ca++]i, as well as activation of PKC, suppresses the hydroosmotic effect of

  9. Fluorescent redox dyes. 1. Production of fluorescent formazan by unstimulated and phorbol ester- or digitonin-stimulated Ehrlich ascites tumor cells.

    PubMed

    Stellmach, J

    1984-01-01

    The reduction of a new series of tetrazolium salts to red fluorescent formazans by Ehrlich ascites tumor cells is described. The qualitative effect on this reaction of two cell surface-active compounds and of six exogenous electron carriers was investigated by varying the incubation conditions. After incubation of Ehrlich ascites cells with the new colourless, water soluble 5-cyan-2.3-ditolyltetrazolium salts, bright red water-insoluble formazan crystals on the cell surface can be observed under fluorescence microscopy. The production of formazan is enhanced by 12-0-tetradecanoyl-phorbol-13-acetate (TPA) or digitonin (DIG), two potent stimulators of oxygen consumption or by the electron carriers phenazine methosulphate (PMS), 1-methoxy-phenazine methosulphate (MPMS), meldola blue (MB), methylene blue (MTB), and 2.6-dichlorindophenol (DCIP). These results provide further evidence for the existence of redox enzymes bound to the plasma membrane of intact ascites cells and for a free radical mechanism of tetrazolium salt reduction. The fluorescence property of the new redox dyes offers the advantage of high sensitivity. Moreover, their greater homogeneity relative to the commonly used di-tetrazolium salts lowers the chances of misinterpretations due to impurities. The possible application of these new mono-tetrazolium salts to cytochemical investigations of oxidative metabolic reactions is discussed.

  10. Phorbol ester stimulates membrane association of protein kinase C and inhibits spontaneous Ca/sup 2 +/ dependent sarcoplasmic reticulum Ca/sup 2 +/ release in rat cardiac cells

    SciTech Connect

    Capogrossi, M.C.; Kaku, T.; Filburn, C.H.; Pelto, D.J.; Hansford, R.G.; Lakatta, E.G.

    1986-03-01

    Spontaneous oscillatory Ca/sup 2 +/ release from sarcoplasmic reticulum (SR) occurs in rat cardiac myocytes at hyperpolarized membrane potentials and is manifested as contractile waves (W). W frequency varies with SR functional status and cell Ca/sup 2 +/ loading. In myocyte suspensions (Hepes buffer, 37/sup 0/C (Ca/sup 2 +/) = 1.0mM) phorbol myristate acetate, PMA, (10/sup -7/ M) increased protein kinase C activity in membranes as a fraction of total (PKCAM) fivefold with a t 1/2 of < 30 sec (n = 3) and decreased W frequency in individual myocytes (n = 8). This effect varied directly and linearly with baseline W frequency, r = .94, p < .001). Dioctanoyl glycerol (10 ..mu.. M) had a similar effect on W. The PMA effect to decrease W frequency could be a direct one on SR or result from a reduction in cell Ca/sup 2 +/. The time course of PKCAM change is sufficiently rapid for it to mediate the effect on W. Thus, enhanced PKCAM may exert negative feedback control on Ca/sup 2 +/ mobilization during ..cap alpha..-adrenergic stimulation.

  11. Induction of c-fos and c-myc mRNA by epidermal growth factor or calcium ionophore is cAMP dependent.

    PubMed Central

    Ran, W; Dean, M; Levine, R A; Henkle, C; Campisi, J

    1986-01-01

    Phorbol esters activate protein kinase C and induce expression of the c-fos and c-myc protooncogenes in density-arrested BALB/c 3T3 (A31) cells; in contrast, epidermal growth factor (EGF) does not activate protein kinase C and is a poor inducer of c-fos and c-myc in these confluent cells. We show that, when A31 cells were subconfluent and made quiescent by serum deprivation, the phorbol ester phorbol 12-myristate 13-acetate induced c-fos and c-myc mRNA poorly, whereas EGF was a better inducer. Another platelet-derived growth factor-inducible gene, JE, did not show this differential regulation by phorbol 12-myristate 13-acetate and EGF. The ability of EGF to induce protooncogene mRNA was associated with elevated levels of intracellular cAMP. First, serum-deprived cells maintained cAMP at about 2-fold higher level than density-arrested cells. Second, induction was greatly enhanced by cholera toxin and 3-isobutyl-1-methylxanthine, which increased intracellular cAMP 3- to 10-fold. The calcium ionophore A23187 mimicked EGF in that it elevated c-fos and c-myc mRNA when administered with cholera toxin and isobutylmethylxanthine. Neither cholera toxin and isobutyl-methylxanthine nor A23187 appreciably induced these mRNAs when used alone. Our results suggest that c-fos and c-myc expression can be regulated by an EGF-directed pathway that utilizes calcium and cAMP as cooperating cytoplasmic messengers. Images PMID:2430281

  12. Involvement of the antioxidative property of morusin in blocking phorbol ester-induced malignant transformation of JB6 P(+) mouse epidermal cells.

    PubMed

    Cheng, Pai-Shan; Hu, Chao-Chin; Wang, Chau-Jong; Lee, Yean-Jang; Chung, Wei-Chia; Tseng, Tsui-Hwa

    2017-02-25

    Chemoprevention has been acknowledged as an important and practical strategy for managing cancer. We have previously synthesized morusin, a prenylated flavonoid that exhibits anti-cancer progression activity. In the present study, we evaluated the anti-cancer promotion potential of morusin by using the mouse epidermal JB6 P(+) cell model. Extensive evidence shows that tumor promotion by phorbol esters is due to the stimulation of reactive oxygen species (ROS). Therefore, the effect of morusin on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ROS production was assessed. Noncytotoxic concentrations of morusin were found to dose-dependently reduce TPA-induced ROS production. Moreover, morusin inhibited TPA-induced activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κB) activation, which can mediate cell proliferation and malignant transformation. Furthermore, morusin inhibited the TPA upregulation of cyclooxygenase 2 (COX-2), which may be regulated by AP-1 and NF-κB. In addition, noncytotoxic concentrations of morusin reduced the TPA-promoted cell growth of JB6 P(+) cells and inhibited TPA-induced malignant properties, such as cytoskeletal rearrangement and cell migration of JB6 P(+) cells. Similar to the effects of glutathione (GSH) pretreatment, morusin inhibited TPA-induced expression of N-cadeherin and vimentin, which are malignant cell surface proteins. Finally, morusin treatment dose-dependently suppressed the TPA-induced anchorage-independent cell transformation of JB6 P(+) cells. In conclusion, our results evidence that morusin possesses anti-cancer promotion potential because of its antioxidant property, which mediates multiple transformation-associated gene expression.

  13. Phorbol ester-treated human acute myeloid leukemia cells secrete G-CSF, GM-CSF and erythroid differentiation factor into serum-free media in primary culture.

    PubMed

    Scher, W; Eto, Y; Ejima, D; Den, T; Svet-Moldavsky, I A

    1990-12-10

    Upon treatment with the phorbol ester, tetradecanoylphorbol 13-acetate (PMA), peripheral mononuclear blood cells from patients with acute myeloid leukemia secrete into serum-free cell-conditioned media (PMA-CCM) at least three distinct nondialysable 'hematopoietic' factors: granulocyte-colony-stimulating factor (G-CSF), granulocyte/macrophage-colony-stimulating factor (GM-CSF) and erythroid differentiation factor (EDF, activin A). G-CSF was identified by its stimulation of [3H]thymidine incorporation into a G-CSF-responsive cell line, NSF-60, and the inhibition of its stimulation by a G-CSF-specific monoclonal antibody (MAB). GM-CSF was identified by its stimulation of [3H]thymidine incorporation into a GM-CSF-responsive line, TALL-101, and the inhibition of its stimulation by a GM-CSF-specific MAB. EDF was identified by its ability to stimulate erythroid differentiation in mouse erythroleukemia cell lines, its identical retention times to those of authentic EDF on three successive reverse-phase HPLC columns and characterization of its penultimate N-terminal residue as leucine which is the same as that of authentic EDF. Both authentic EDF and the erythroid-stimulating activity in PMA-CCM were found to act synergistically with a suboptimal inducing concentration of a well-studied inducing agent, dimethyl sulfoxide, in inducing erythroid differentiation. In addition, a fourth activity was observed in PMA-CCM: normal human fetal bone marrow cell-proliferation stimulating activity (FBMC-PSA). FBMC-PSA was identified by its ability to stimulate the growth of granulocytes and macrophages in FBMC suspension cultures, which neither recombinant G-CSF or GM-CSF were found to do.

  14. Interaction between constitutively expressed heat shock protein, Hsc 70, and cysteine string protein is important for cortical granule exocytosis in Xenopus oocytes.

    PubMed

    Smith, Geoffrey B; Umbach, Joy A; Hirano, Arlene; Gundersen, Cameron B

    2005-09-23

    In many species, binding of sperm to the egg initiates cortical granule exocytosis, an event that contributes to a sustained block of polyspermy. Interestingly, cortical granule exocytosis can be elicited in immature Xenopus oocytes by the protein kinase C activator, phorbol-12-myristate-13-acetate. In this study, we investigated the role of cysteine string protein (csp) in phorbol-12-myristate-13-acetate-evoked cortical granule exocytosis. Prior work indicated that csp is associated with cortical granules of Xenopus oocytes. In oocytes exhibiting >20-fold overexpression of full-length Xenopus csp, cortical granule exocytosis was reduced by approximately 80%. However, csp overexpression did not affect constitutive exocytosis. Subcellular fractionation and confocal fluorescence microscopy revealed that little or none of the overexpressed csp was associated with cortical granules. This accumulation of csp at sites other than cortical granules suggested that mislocalized csp might sequester a protein that is important for regulated exocytosis. Because the NH2-terminal region of csp includes a J-domain, which interacts with constitutively expressed 70-kDa heat shock proteins (Hsc 70), we evaluated the effect of overexpressing the J-domain of csp. Although the native J-domain of csp inhibited cortical granule exocytosis, point mutations that interfere with J-domain binding to Hsc 70 eliminated this inhibition. These data indicate that csp interaction with Hsc 70 molecular chaperones is vital for regulated secretion in Xenopus oocytes.

  15. Anti-inflammatory effects of zinc in PMA-treated human gingival fibroblast cells

    PubMed Central

    Kim, Sangwoo; Jeon, Sangmi; Hui, Zheng; Kim, Young; Im, Yeonggwan; Lim, Wonbong; Kim, Changsu; Choi, Hongran; Kim, Okjoon

    2015-01-01

    Objectives: Abnormal cellular immune response has been considered to be responsible for oral lesions in recurrent aphthous stomatitis. Zinc has been known to be an essential nutrient metal that is necessary for a broad range of biological activities including antioxidant, immune mediator, and anti-inflammatory drugs in oral mucosal disease. The objective of this study was to investigate the effects of zinc in a phorbol-12-myristate-13-acetate (PMA)-treated inflammatory model on human gingival fibroblast cells (hGFs). Study Design: Cells were pre-treated with zinc chloride, followed by PMA in hGFs. The effects were assessed on cell viability, cyclooxygenease-1,2(COX-1/2) protein expression, PGE2 release, ROS production and cytokine release, Results: The effects were assessed on cell viability, COX1/2 protein expression, PGE2 release, ROS production, cytokine release. The results showed that, in the presence of PMA, zinc treatment leads to reduce the production of ROS, which results in decrease of COX-2 expression and PGE2 release. Conclusions: Thus, we suggest that zinc treatment leads to the mitigation of oral inflammation and may prove to be an alternative treatment for recurrent aphthous stomatitis. Key words:Zinc, inflammatory response, cytokines, phorbol-12-myristate-13-acetate, gingival fibroblasts cells. PMID:25662537

  16. Interaction between Constitutively Expressed Heat Shock Protein, Hsc 70, and Cysteine String Protein Is Important for Cortical Granule Exocytosis in Xenopus Oocytes*

    PubMed Central

    Smith, Geoffrey B.; Umbach, Joy A.; Hirano, Arlene; Gundersen, Cameron B.

    2013-01-01

    In many species, binding of sperm to the egg initiates cortical granule exocytosis, an event that contributes to a sustained block of polyspermy. Interestingly, cortical granule exocytosis can be elicited in immature Xenopus oocytes by the protein kinase C activator, phorbol-12-myristate-13-acetate. In this study, we investigated the role of cysteine string protein (csp) in phorbol-12-myristate-13-acetate-evoked cortical granule exocytosis. Prior work indicated that csp is associated with cortical granules of Xenopus oocytes. In oocytes exhibiting >20-fold overexpression of full-length Xenopus csp, cortical granule exocytosis was reduced by ~80%. However, csp overexpression did not affect constitutive exocytosis. Subcellular fractionation and confocal fluorescence microscopy revealed that little or none of the overexpressed csp was associated with cortical granules. This accumulation of csp at sites other than cortical granules suggested that mislocalized csp might sequester a protein that is important for regulated exocytosis. Because the NH2-terminal region of csp includes a J-domain, which interacts with constitutively expressed 70-kDa heat shock proteins (Hsc 70), we evaluated the effect of overexpressing the J-domain of csp. Although the native J-domain of csp inhibited cortical granule exocytosis, point mutations that interfere with J-domain binding to Hsc 70 eliminated this inhibition. These data indicate that csp interaction with Hsc 70 molecular chaperones is vital for regulated secretion in Xenopus oocytes. PMID:16055447

  17. Effects of Phorbol Esters and Lipopolysaccharide on Endothelial Cell Microfilaments: Laser Scanning Confocal Microscopy and Quantitative Morphometry of Dose Dependent Changes

    DTIC Science & Technology

    1988-11-29

    the same ECmo (1-5 nM) for both biochemical and morphological processes. -PDB was less potent in inducing the disruption of microfilament structure...but the agent was less potent than PMA, with an ECmo of about 80 nM. The agent 4a-phorbol, which is not a tumor-promoter, had no effect on the

  18. Inhibitory action of sphingosine, sphinganine and dexamethasone on glucose uptake: Studies with hydrogen peroxide and phorbol ester

    SciTech Connect

    Murray, D.K.; Hill, M.E.; Nelson, D.H. )

    1990-01-01

    The mechanism of the inhibitory action of glucocorticoids on glucose uptake is incompletely understood. Treatment with corticosteriods of cells in which glucose uptake is stimulated at insulin postbinding and postreceptor sites may clarify the site of the steroid inhibitory action. Hydrogen peroxide, which has been shown to stimulate the insulin receptor tyrosine kinase, and phorbol myristate acetate (PMA) which stimulates protein kinase C were, therefore, used as stimulators of glucose transport in this study. These studies demonstrate that dexamethasone and the sphingoid bases, sphinganine and sphingosine, inhibit glucose uptake that has been stimulated at either the receptor kinase or protein kinase C level in both 3T3-L1 and 3T3-C2 cells. These data confirm glucocorticoid inhibitory action at a post binding level and support the suggestion that some corticosteriod inhibitory effects may be mediated by an action on sphingolipid metabolism.

  19. Increased glucose transport in response to phorbol ester growth factors, and insulin: relationship to phosphorylation of the glucose transporter

    SciTech Connect

    Allard, W.J.; Gibbs, E.M.; Witters, L.A.; Lienhard, G.E.

    1986-05-01

    The authors have examined the relationship between the increase in glucose transport induced by phorbol myristate acetate (PMA), EGF, PDGF, and insulin and the phosphorylation state of the glucose transporter in human fibroblasts. To assay transport, cells were cultured in medium with 10% serum for 5 days and then for 2 days in phosphate-free medium with 5% serum. Exposure to each agonist stimulated transport, as measured by the uptake of /sup 3/H-2-deoxyglucose over a 2 min period. Values for maximal percent stimulation, time needed to reach maximal stimulation, and concentration required to achieve half-maximal stimulation were as follows: PMA, 80%, 30 min, 2 nM; EGF, 30%, 10 min, 0.2 nM; Insulin, 45%, 10 min, 17 nM. In the case of PDGF, uptake was stimulated 65% by treatment with 0.7 or 1.4 nM for 20 min. Phosphorylation of the glucose transporter was measured in cells cultured for 5-7 days in medium with 10% serum and exposed to 670 ..mu..Ci/ml /sup 32/P/sub i/ for 100 min. The agonist was then added at a saturating dose for 20 min, and the glucose transporter was immunoprecipitated from cell lysates using a monoclonal antibody. Under these conditions, no basal phosphorylation of the transporter was detected, and only phorbol ester stimulated significant incorporation of phosphate into the transport protein. Experiments are currently in progress to quantitate transporter phosphorylation under conditions identical to those used for the assay of transport. These results suggest that while the transporter is a substrate for protein kinase C in vivo, phosphorylation of the transporter is not required for increased transport in response to growth factors and insulin.

  20. Effects of phorbol 12,13-diacetate and its influence on spasmogenic responses in normal and sensitized guinea-pig trachea.

    PubMed

    De Diego, A; Cortijo, J; Villagrasa, V; Perpiñá, M; Esplugues, J; Morcillo, E J

    1995-09-01

    We have studied the effects of phorbol 12,13-diacetate (PDA) and its influence on a variety of spasmogenic responses in trachea isolated from normal and sensitized guinea-pigs. Tracheal preparations were denuded of epithelium, treated with indomethacin (2.8 microM), and cooled to 20 degrees C. In these experimental conditions, tracheal strips contracted to PDA (0.1 nM-1 microM). Contractions to PDA (1 microM) were greater in sensitized tissues. In normal trachea, contractions to PDA (0.1 microM) were depressed by H-7, 1-(5-isoquinolinyl-sulphonyl)-2-methylpiperazine, (50 microM), amiloride (10 microM), verapamil (10 microM) and Ca(2+)-free exposure. Similar effects were obtained in sensitized trachea except that PDA-induced contraction was resistant to verapamil and Ca(2+)-free exposure. Cooling (20 degrees C) of normal trachea substantially depressed the response to CaCl2 (in K(+)-depolarized tissues), KCl, histamine and 5-hydroxytryptamine without affecting the spasm induced by acetylcholine. This inhibitory effect of cooling was not observed in sensitized trachea. PDA (0.1 microM) did not affect spasmogenic responses at 37 degrees C but counteracted the inhibitory effect of cooling in normal trachea. PDA had no effect on sensitized tissues. PDA (0.1-1 microM) did not alter Ca(2+)-induced contraction of skinned normal and sensitized trachea. These results support the hypothesis that intracellularly stored Ca2+ plays an important role in the activation of sensitized tracheal muscle.

  1. Phorbol ester and B cell-stimulatory factor synergize to induce B-chronic lymphocytic leukemia cells to simultaneous immunoglobulin secretion and DNA synthesis.

    PubMed

    Carlsson, M; Matsson, P; Rosén, A; Sundström, C; Tötterman, T H; Nilsson, K

    1988-11-01

    This paper discusses the response of two B cell-type chronic lymphocytic leukemia (B-CLL) clones, 173 and 183, to the phorbol ester TPA combined with a B cell-stimulatory factor (BSF) derived from a T helper cell hybridoma (MP6). Previous studies with 173 and 183 cells have consistently shown that TPA alone induces differentiation but no proliferation. However, when the two clones were exposed to TPA plus BSF-MP6, not only differentiation but also DNA synthesis was observed. Compared with TPA exposure alone, the fraction of cells with induced lymphoblastoid-plasmacytoid morphology increased and Ig secretion was enhanced. By a 1-hr TPA pulse followed by BSF-MP6, the DNA synthesis was further augmented, but less maturation was observed. T cell and monocyte removal, using cell sorting, showed that the DNA synthesis induced was independent of these cell types, also under serum-free conditions. Quantitation of several cell cycle-associated surface Ags showed that the 4F2, Ba, Bac-1, and cD23 Ags increased while the CD37 decreased in expression upon addition of BSF-MP6. We conclude that B-CLLs are inducible by TPA and BSF-MP6 not only to differentiation, but also to DNA synthesis even under serum-free conditions in vitro. The results furthermore suggest that the very low proliferation activity in B-CLL tumors in vivo may reflect a relative deficiency of proper growth and differentiation factors or a subnormal response of B-CLL cells to such factors.

  2. Transplacental arsenic plus postnatal 12-O-teradecanoyl phorbol-13-acetate exposures associated with hepatocarcinogenesis induce similar aberrant gene expression patterns in male and female mouse liver

    SciTech Connect

    Liu Jie . E-mail: Liu6@niehs.nih.gov; Xie Yaxiong; Merrick, B. Alex; Shen Jun; Ducharme, Danica M.K.; Collins, Jennifer; Diwan, Bhalchandra A.; Logsdon, Daniel; Waalkes, Michael P.

    2006-06-15

    Our prior work shows that in utero arsenic exposure alone is a complete transplacental carcinogen, producing hepatocellular carcinoma in adult male offspring but not in females. In a follow-up study to potentially promote arsenic-initiated tumors, mice were exposed to arsenic (85 ppm) from gestation day 8 to 18 and then exposed to 12-O-teradecanoyl phorbol-13-acetate (TPA), a well-known tumor promoter after weaning. The dermal application of TPA (2 {mu}g/0.1 ml acetone, twice/week for 21 weeks) after transplacental arsenic did not further increase arsenic-induced liver tumor formation in adult males but significantly increased liver tumor formation in adult females. Thus, for comparison, liver tumors and normal liver samples taken from adult male and female mice at necropsy were analyzed for aberrant gene/protein expression by microarray, real-time RT-PCR and Western blot analysis. Arsenic/TPA treatment resulted in increased expression of {alpha}-fetoprotein, k-ras, c-myc, estrogen receptor-{alpha}, cyclin D1, cdk2na, plasminogen activator inhibitor-1, cytokeratin-8, cytokeratin-18, glutathione S-transferases and insulin-like growth factor binding proteins in liver and liver tumors from both male and female mice. Arsenic/TPA also decreased the expression of BRCA1, betaine-homocysteine methyltransferase, CYP7B1, CYP2F2 and insulin-like growth factor-1 in normal and cancerous livers. Alterations in these gene products were associated with arsenic/TPA-induced liver tumors, regardless of sex. Thus, transplacental arsenic plus postnatal TPA exposure induced similar aberrant gene expression patterns in male and female mouse liver, which are persistent and potentially important to the mechanism of arsenic initiation of hepatocarcinogenesis.

  3. Differential effects of histone deacetylase inhibitors on phorbol ester- and TGF-beta1 induced murine tissue inhibitor of metalloproteinases-1 gene expression.

    PubMed

    Young, David A; Billingham, Olivia; Sampieri, Clara L; Edwards, Dylan R; Clark, Ian M

    2005-04-01

    Expression of the tissue inhibitor of metalloproteinases-1 (Timp-1) gene can be induced by either phorbol myristate acetate (PMA) or transforming growth factor beta1 (TGF-beta1), although the signalling pathways involved are not clearly defined. Canonically, histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA) or sodium butyrate (NaB) increase total cellular histone acetylation and activate expression of susceptible genes. Remarkably, PMA and TGF-beta1 stimulation of Timp-1 show a differential response to TSA or NaB. TSA or NaB potentiate PMA-induced Timp-1 expression but repress TGF-beta1-induced Timp-1 expression. The repression of TGF-beta1-induced Timp-1 by TSA was maximal at 5 ng.mL(-1), while for the superinduction of PMA-induced Timp-1 expression, the maximal dose is > 500 ng x mL(-1) TSA. A further HDACi, valproic acid, did not block TGF-beta1-induced Timp-1 expression, demonstrating that different HDACs impact on the induction of Timp-1. For either PMA or TGF-beta1 to induce Timp-1 expression, new protein synthesis is required, and the induction of AP-1 factors closely precedes that of Timp-1. The effects of the HDACi can be reiterated in transient transfection using Timp-1 promoter constructs. Mutation or deletion of the AP-1 motif (-59/-53) in the Timp-1 promoter diminishes PMA-induction of reporter constructs, however, the further addition of TSA still superinduces the reporter. In c-Jun-/- cells, PMA still stimulates Timp-1 expression, but TSA superinduction is lost. Transfection of a series of Timp-1 promoter constructs identified three regions through which TSA superinduces PMA-induced Timp-1 and we have demonstrated specific protein binding to two of these regions which contain either an avian erythroblastosis virus E26 (v-ets) oncogene homologue (Ets) or Sp1 binding motif.

  4. Biochemical characterization of hyperactive β2-chimaerin mutants revealed an enhanced exposure of C1 and Rac-GAP domains †

    PubMed Central

    Sosa, Maria Soledad; Lewin, Nancy E.; Choi, Sung-Hee; Blumberg, Peter M.; Kazanietz, Marcelo G.

    2009-01-01

    Recent studies established that the Rac-GAP β2-chimaerin plays important roles in development, neuritogenesis, and cancer progression. A unique feature of β2-chimaerin is that it can be activated by phorbol esters and the lipid second messenger diacylglycerol (DAG), which bind with high affinity to its C1 domain and promote β2-chimaerin translocation to membranes, leading to the inactivation of the small G-protein Rac. Crystallographic evidence and cellular studies suggest that β2-chimaerin remains in an inactive conformation in the cytosol with the C1 domain inaccessible to ligands. We developed a series of β2-chimaerin point mutants in which intramolecular contacts that occlude the C1 domain have been disrupted. These mutants showed enhanced translocation in response to phorbol 12-myristate 13-acetate (PMA) in cells. Binding assays using [3H]phorbol 12, 13-dibutyrate ([3H]PDBu) revealed that internal contact mutants have a reduced acidic phospholipid requirement for phorbol ester binding. Moreover, disruption of intramolecular contacts enhances binding of β2-chimaerin to acidic phospholipid vesicles and confers enhanced Rac-GAP activity in vitro. These studies suggest that β2-chimaerin must undergo a conformational rearrangement in order to expose its lipid binding sites and become activated. PMID:19618918

  5. Modulation of Purinergic Neuromuscular Transmission by Phorbol Dibutyrate is Independent of Protein Kinase C in Murine Urinary Bladder

    PubMed Central

    Silinsky, E. M.

    2012-01-01

    Parasympathetic control of murine urinary bladder consists of contractile components mediated by both muscarinic and purinergic receptors. Using intracellular recording techniques, the purinergic component of transmission was measured as both evoked excitatory junctional potentials (EJPs) in response to electrical field stimulation and spontaneous events [spontaneous EJPs (sEJPs)]. EJPs, but not sEJPs, were abolished by the application of the Na+ channel blocker tetrodotoxin and the Ca2+ channel blocker Cd2+. Both EJPs and sEJPs were abolished by the application of the P2X1 antagonist 8,8′-[carbonylbis(imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino)]bis-1,3,5-naphthalenetrisulfonic acid hexasodium salt (NF279). Application of phorbol dibutyrate (PDBu) increased electrically evoked EJP amplitudes with no effect on mean sEJP amplitudes. Similar increases in EJP amplitudes were produced by PDBu in the presence of either the nonselective protein kinase inhibitor staurosporine or the specific protein kinase C (PKC) inhibitor 2-[1-(3-dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl) maleimide (GF109203X). These results suggest that PDBu increases the purinergic component of detrusor transmission through increasing neurogenic ATP release via a PKC-independent mechanism. PMID:22547572

  6. Application of time-of-flight mass spectrometry for screening of crude glycerins for toxic phorbol ester contaminants.

    PubMed

    Herath, Kithsiri; Girard, Lauren; Reimschuessel, Renate; Jayasuriya, Hiranthi

    2017-03-01

    Since 2007, the U.S. Food and Drug Administration (FDA) has received numerous complaints of pet illnesses that may be related to the consumption of jerky pet treats. Many of those treats include glycerin as an ingredient. Glycerin can be made directly from oils such as palm seed oil, but can also be derived from the seed oil of toxic Jatropha plant during biodiesel production. If crude glycerin from biodiesel production from Jatropha curcas is used in the manufacture of animal feed, toxic tigliane diterpene phorbol esters (PEs), namely Jatropha factors (JFs), may be present and could lead to animal illnesses. Considering the numerous uses of glycerin in consumer products there is a need for a rapid method to screen crude glycerin for JF toxins and other PE contaminants. We describe the development of an ultra-high pressure liquid chromatography/quadrupole time of flight (UHPLC/Q-TOF) method for screening crude glycerin for PEs. An exact mass database, developed in-house, of previously identified PEs from Jatropha curcas as well as putative compounds was used to identify possible contaminants.

  7. Phorbol esters induce intracellular accumulation of the anti-apoptotic protein PED/PEA-15 by preventing ubiquitinylation and proteasomal degradation.

    PubMed

    Perfetti, Anna; Oriente, Francesco; Iovino, Salvatore; Alberobello, A Teresa; Barbagallo, Alessia P M; Esposito, Iolanda; Fiory, Francesca; Teperino, Raffaele; Ungaro, Paola; Miele, Claudia; Formisano, Pietro; Beguinot, Francesco

    2007-03-23

    Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA)-15 is an anti-apoptotic protein whose expression is increased in several cancer cells and following experimental skin carcinogenesis. Exposure of untransfected C5N keratinocytes and transfected HEK293 cells to phorbol esters (12-O-tetradecanoylphorbol-13-acetate (TPA)) increased PED/PEA-15 cellular content and enhanced its phosphorylation at serine 116 in a time-dependent fashion. Ser-116 --> Gly (PED(S116G)) but not Ser-104 --> Gly (PED(S104G)) substitution almost completely abolished TPA regulation of PED/PEA-15 expression. TPA effect was also prevented by antisense inhibition of protein kinase C (PKC)-zeta and by the expression of a dominant-negative PKC-zeta mutant cDNA in HEK293 cells. Similar to long term TPA treatment, overexpression of wild-type PKC-zeta increased cellular content and phosphorylation of WT-PED/PEA-15 and PED(S104G) but not of PED(S116G). These events were accompanied by the activation of Ca2+-calmodulin kinase (CaMK) II and prevented by the CaMK blocker, KN-93. At variance, the proteasome inhibitor lactacystin mimicked TPA action on PED/PEA-15 intracellular accumulation and reverted the effects of PKC-zeta and CaMK inhibition. Moreover, we show that PED/PEA-15 bound ubiquitin in intact cells. PED/PEA-15 ubiquitinylation was reduced by TPA and PKC-zeta overexpression and increased by KN-93 and PKC-zeta block. Furthermore, in HEK293 cells expressing PED(S116G), TPA failed to prevent ubiquitin-dependent degradation of the protein. Accordingly, in the same cells, TPA-mediated protection from apoptosis was blunted. Taken together, our results indicate that TPA increases PED/PEA-15 expression at the post-translational level by inducing phosphorylation at serine 116 and preventing ubiquitinylation and proteosomal degradation.

  8. The opposing effects of calmodulin, adenosine 5 prime -triphosphate, and pertussis toxin on phorbol ester induced inhibition of atrial natriuretic factor stimulated guanylate cyclase in SK-NEP-1 cells

    SciTech Connect

    Sekiya, M.; Frohlich, E.D.; Cole, F.E. )

    1991-01-01

    In the present study, we investigated the effects of calmodulin, adenosine 5{prime}-triphosphate (ATP) and pertussis toxin (PT) on phorbol ester (PMA) induced inhibition of ANF-stimulated cyclic GMP formation in cells from the human renal cell line, SK-NEP-1. PMA inhibited ANF-stimulated guanylate cyclase activity in particulate membranes by about 65%. Calmodulin reversed this inhibition in a dose dependent manner. ATP potentiated Mg++ but not Mn++ supported guanylate cyclase activity. In PMA treated membranes, ATP potentiating effects were abolished. PMA also inhibited ANF-stimulated cGMP accumulation, but pretreatment with PT prevented this PMA inhibition. PT did not affect basal or ANF-stimulated cGMP accumulation. In conclusion, these results demonstrated that PMA inhibited ANF stimulation of particulate guanylate cyclase in opposition to the activating effects of calmodulin or ATP in SK-NEP-1 cells. The protein kinase C inhibitory effects appeared to be mediated via a PT-sensitive G protein.

  9. Modulation of human c-mpl gene expression by thrombopoietin through protein kinase C.

    PubMed

    Sunohara, M; Morikawa, S; Sato, T; Sato, I; Sato, T; Fuse, A

    2003-01-01

    The c-Mpl, thrombopoietin (TPO) receptor specificially controls megakaryocytic growth and differentiation. TPO increased the c-mpl promoter activity determined by a transient expression system using a vector containing the luciferase gene as a reporter in the human megakaryoblastic cell line CMK. The maximal promoter activity of c-mpl was obtained 24 hr after pretreatment with TPO for 3 hr and then declined with time. This increase was completely abolished by protein kinase C (PKC) inhibitors (GF109203, calphostin C and H7). Phorbol 12-myristate 13-acetate (PMA) treatment led to an increase in c-mpl promoter activity. These results demonstrate that the promoter activity of c-mpl is modulated by transcription through a PKC-dependent pathway.

  10. Immune phenotype and some enzyme patterns in phorbol ester-induced chronic lymphocytic leukemia cells.

    PubMed

    Babusíková, O; Mesárosová, A; Kusenda, J; Koníková, E; Klobusická, M; Hrivnáková, A

    1995-01-01

    Leukemic cells from 10 patients with B-chronic lymphocytic leukemia (B-CLL) were isolated and cultured in the presence of 12-0-tetradecanoylphorbol 13-acetate (TPA) at a concentration of 8 x 10(-7) mol for 72 hours. Cells were analyzed before cultivation and after 72 h of cultivation with and without TPA for changes in surface membrane (Sm) and cytoplasmic (cyt) markers expression, presence of receptor for mouse rosette forming cells (MRFC) and some enzyme profiles. All B-CLL cases studied showed typical B-cell phenotype. TPA treatment induced hairy cell leukemia (HCL) characteristics, given by the membrane CD22 and CD25 expression and TRAP positivity in the majority of the cases tested. Cells had hairy cell-like morphology with more intensive cytoplasmic immunoglobulin (CIg) fluorescence staining, absent receptor for MRFC and increased activity of purine nucleosidephosphorylase. In common these changes indicate that TPA can induce hairy cell characteristics on B-CLL cells in vitro suggesting the more mature differentiation stage of HCL compared with CLL. Furthermore, we originally demonstrated that the CD22, present in the cell membrane after TPA, could be detected in the majority of unaffected B-CLL cells in their cytoplasm. From the technical point of view some intracellular CD markers and Igs of B-CLL cells in viable cells in suspension assayed by flow cytometry are described in this study.

  11. Prostate Cell-Specific Regulation of Androgen Receptor Phosphorylation In Vivo

    DTIC Science & Technology

    2007-11-01

    phosphorylation of S650 is enhanced by treatment with forskolin (FSK), Epidermal Growth Factor (EGF) and phorbol-12-myristate-13-acetate (PMA)[Gioeli, D., J. Biol...phosphorylation. - 7 - Figure 2: A PMA but not R1881 or Forskolin induces S650 phosporylation. LNCaP cells were steroid starved and

  12. Morphofunctional study of 12-O-tetradecanoyl-13-phorbol acetate (TPA)-induced differentiation of U937 cells under exposure to a 6 mT static magnetic field.

    PubMed

    Dini, Luciana; Dwikat, Majdi; Panzarini, Elisa; Vergallo, Cristian; Tenuzzo, Bernadetta

    2009-07-01

    This study deals with the morphofunctional influence of 72 h exposure to a 6 mT static magnetic field (SMF) during differentiation induced by 50 ng/ml 12-O-tetradecanoyl-13-phorbol acetate (TPA) in human leukaemia U937 cells. The cell morphology of U937 cells was investigated by optic and electron microscopy. Specific antibodies and/or molecules were used to label CD11c, CD14, phosphatidylserine, F-actin and to investigate the distribution and activity of lysosomes, mitochondria and SER. [Ca(2+)](i) was evaluated with a spectrophotometer. The degree of differentiation in SMF-exposed cells was lower than that of non-exposed cells, the difference being exposure time-dependent. SMF-exposed cells showed cell shape and F-actin modification, inhibition of cell attachment, appearance of membrane roughness and large blebs and impaired expression of specific macrophagic markers on the cell surface. The intracellular localization of SER and lysosomes was only partially affected by exposure. A significant localization of mitochondria with an intact membrane potential at the cell periphery in non-exposed, TPA-stimulated cells was observed; conversely, in the presence of SMF, mitochondria were mainly localised near the nucleus. In no case did SMF exposure affect cell viability. The sharp intracellular increase of [Ca(2+)](i) could be one of the causes of the above-described changes.

  13. [Chemiluminescence of the polymorphonuclear leukocytes-luminol system in the presence of biogenic chloramines].

    PubMed

    Murina, M A; Belakina, N S; Roshchupkin, D I

    2004-01-01

    It was demonstrated that N-chlorphenylalanine and other chloramines strengthen sharply chemiluminescence in the polymorphonuclear leukocytes (PML)-luminol system without special activation of cells. The intensity of chemiluminescence is higher than the intensity of luminol solution emission induced by N-chlorphenylalanine. But it was nearly equal to chemiluminescence intensity of a mixture of luminol, N-chlorphenylalanine and 20-30 nM H2O2. The increase in chemiluminescence in the PML-luminol system in the presence of N-chlorphenylalanine is not related to PML activation but is the result of direct oxidation of luminol by N-chlorphenylalanine. Chloramine derivatives of amino acids and taurine at final concentrations of 0.01-0.1 mM do not suppress luminol chemiluminescence in suspension of PML stimulated by phorbol-12-myristate-13-acetate. At the same time, hypochlorite inhibits sharply luminol emission induced by stimulated cells.

  14. Effects of protein kinase C activators on germinal vesicle breakdown and polar body emission of mouse oocytes

    SciTech Connect

    Bornslaeger, E.A.; Poueymirou, W.T.; Mattei, P.; Schultz, R.M.

    1986-01-01

    Protein phosphorylation mediated by cAMP-dependent protein kinase is instrumental in maintaining meiotic arrest of mouse oocytes. To assess whether protein phosphorylation mediated by calcium/phospholipid-dependent protein kinase (protein kinase C) might also inhibit the resumption of meiosis, oocytes were treated with activators of this enzyme. The active phorbol esters 12-O-tetra-decanoyl phorbol-13-acetate (TPA) and 4..beta..-phorbol, 12,13-didecanoate (4..beta..-PDD) inhibited germinal vesicle breakdown (GVBD), as did a more natural activator of protein kinase, C, sn-1,2-dioctanoylglycerol (diC/sub 8/). An inactive phorbol ester, 4a-phorbol 12,13-didecanoate (4..cap alpha..-PDD), did not inhibit GVBD. TPA did not inhibit the maturation-associated decrease in oocyte cAMP. Microinjected heat-stable protein inhibitor of a cAMP-dependent protein kinase failed to induce GVBD in the presence of TPA. Both TPA and diC/sub 8/ partially inhibited specific changes in oocyte phosphoprotein metabolism that are tightly correlated with resumption of meiosis; these agents also induced the apparent phosphorylation of specific oocyte proteins. These results suggest that protein kinase C activators may inhibit resumption of meiosis by acting distal to a decrease in cAMP-dependent protein kinase activity, but prior to changes in oocyte phosphoprotein metabolism that are presumably required for resumption of meiosis.

  15. Glucocorticoid block of protein kinase C signalling in mouse pituitary corticotroph AtT20 D16:16 cells

    PubMed Central

    Tian, Lijun; Philp, Janet A C; Shipston, Michael J

    1999-01-01

    The regulation of large conductance calcium- and voltage-activated potassium (BK) currents by activation of the protein kinase C (PKC) and glucocorticoid signalling pathways was investigated in AtT20 D16:16 clonal mouse anterior pituitary corticotroph cells. Maximal activation of PKC using the phorbol esters, 4β-phorbol 12-myristate, 13-acetate (PMA), phorbol 12, 13 dibutyrate (PDBu) and 12-deoxyphorbol 13-phenylacetate (dPPA) elicited a rapid, and sustained, inhibition of the outward steady-state voltage- and calcium- dependent potassium current predominantly carried through BK channels. The effect of PMA was blocked by the PKC inhibitors bisindolylmaleimide I (BIS; 100 nM) and chelerythrine chloride (CHE; 25 μM) and was not mimicked by the inactive phorbol ester analogue 4α-PMA. PMA had no significant effect on the 1 mM tetraethylammonium (TEA)-insensitive outward current or pharmacologically isolated, high voltage-activated calcium current. PMA had no significant effect on steady-state outward current in cells pre-treated for 2 h with 1 μM of the glucocorticoid agonist dexamethasone. Dexamethasone had no significant effect on steady-state outward current amplitude or sensitivity to 1 mM TEA and did not block PMA-induced translocation of the phorbol ester-sensitive PKC isoforms, PKCα and PKCε, to membrane fractions. Taken together these data suggest that in AtT20 D16:16 corticotroph cells BK channels are important targets for PKC action and that glucocorticoids inhibit PKC signalling downstream of PKC activation. PMID:10200423

  16. Glucocorticoid block of protein kinase C signalling in mouse pituitary corticotroph AtT20 D16:16 cells.

    PubMed

    Tian, L; Philp, J A; Shipston, M J

    1999-05-01

    1. The regulation of large conductance calcium- and voltage-activated potassium (BK) currents by activation of the protein kinase C (PKC) and glucocorticoid signalling pathways was investigated in AtT20 D16:16 clonal mouse anterior pituitary corticotroph cells. 2. Maximal activation of PKC using the phorbol esters, 4beta-phorbol 12-myristate, 13-acetate (PMA), phorbol 12, 13 dibutyrate (PDBu) and 12-deoxyphorbol 13-phenylacetate (dPPA) elicited a rapid, and sustained, inhibition of the outward steady-state voltage- and calcium- dependent potassium current predominantly carried through BK channels. 3. The effect of PMA was blocked by the PKC inhibitors bisindolylmaleimide I (BIS; 100 nM) and chelerythrine chloride (CHE; 25 microM) and was not mimicked by the inactive phorbol ester analogue 4alpha-PMA. 4. PMA had no significant effect on the 1 mM tetraethylammonium (TEA)-insensitive outward current or pharmacologically isolated, high voltage-activated calcium current. 5. PMA had no significant effect on steady-state outward current in cells pre-treated for 2 h with 1 microM of the glucocorticoid agonist dexamethasone. Dexamethasone had no significant effect on steady-state outward current amplitude or sensitivity to 1 mM TEA and did not block PMA-induced translocation of the phorbol ester-sensitive PKC isoforms, PKCalpha and PKCepsilon, to membrane fractions. 6. Taken together these data suggest that in AtT20 D16:16 corticotroph cells BK channels are important targets for PKC action and that glucocorticoids inhibit PKC signalling downstream of PKC activation.

  17. Changes in the migratory properties of neural crest and early crest-derived cells in vivo following treatment with a phorbol ester drug.

    PubMed

    Sears, R; Ciment, G

    1988-11-01

    In previous work, we found that the phorbol ester drug 12-O-tetradecanoyl phorbol acetate (TPA) reversed the developmental restriction of melanogenesis that normally occurs in neural crest-derived Schwann cell precursors around embryonic Day 5 of quail development. That is, TPA treatment of dorsal root ganglia (DRG) from 7-day quail embryos caused Schwann cell precursors to regain the ability to give rise to melanocytes. In this paper, we examine other long-term effects of TPA on the differentiative and migratory properties of neural crest and crest-derived DRG cells, using heterospecific grafting methods. We report that TPA treatment in culture increased the extent of cell migration following grafting into host embryos, including some ectopic migration into the central nervous system and other locations. TPA did not, however, seem to change the fate of these crest-derived cells, except that some DRG cells underwent pigmentation, as had been observed previously. Interestingly, graft cells associated with peripheral nerves were found to be exclusively unpigmented, whereas graft cells found in all other locations, including the central nervous system, were both pigmented and unpigmented. This suggests that peripheral nerves may act in a fashion antagonistic to the effects of TPA. These findings are consistent with the notion that TPA treatment causes early crest-derived cells to regain developmental properties lost with developmental age.

  18. Modulation of survival and proliferation of BSC-1 cells through changes in spreading behavior caused by the tumor-promoting phorbol ester TPA.

    PubMed

    Shiba, Y; Kanno, Y

    1989-12-01

    The effect of a tumor-promoting phorbol ester on spreading behavior was investigated to clarify the involvement of the interactions between cells and substratum in the maintenance of cell viability and the control of cell proliferation. BSC-1 cells did not spread and lost cell viability after a 24-h incubation in the absence of calf serum. Addition of calf serum initially induced radial spreading and then polarized spreading, with the formation on stress fibers and focal contact-like structure, and enhanced survival. Vitronectin also induced both radial spreading and polarized spreading, and enhanced cell survival. 12-O-Tetradecanoylphorbol-13-acetate (TPA) induced radial spreading with actin ribbons in the absence of serum. It improved the survival of cells attached to the substratum, but not in suspension. TPA suppressed polarized spreading, formation of stress fibers and of focal contact-like structure, and cell proliferation, in the presence of serum. Phorbol did not have any effect. These results suggest that enhancement of radial spreading and inhibition of polarized spreading of BSC-1 cells by TPA are closely related to the enhancement of cell survival and inhibition of cell growth.

  19. Effects of selective inhibition of protein kinase C, cyclic AMP-dependent protein kinase, and Ca(2+)-calmodulin-dependent protein kinase on neurite development in cultured rat hippocampal neurons.

    PubMed

    Cabell, L; Audesirk, G

    1993-06-01

    A variety of experimental evidence suggests that calmodulin and protein kinases, especially protein kinase C, may participate in regulating neurite development in cultured neurons, particularly neurite initiation. However, the results are somewhat contradictory. Further, the roles of calmodulin and protein kinases on many aspects of neurite development, such as branching or elongation of axons vs dendrites, have not been extensively studied. Cultured embryonic rat hippocampal pyramidal neurons develop readily identifiable axons and dendrites. We used this culture system and the new generation of highly specific protein kinase inhibitors to investigate the roles of protein kinases and calmodulin in neurite development. Neurons were cultured for 2 days in the continuous presence of calphostin C (a specific inhibitor of protein kinase C), KT5720 (inhibitor of cyclic AMP-dependent protein kinase), KN62 (inhibitor of Ca(2+)-calmodulin-dependent protein kinase II), or calmidazolium (inhibitor of calmodulin), each at concentrations from approximately 1 to 10 times the concentration reported in the literature to inhibit each kinase by 50%. The effects of phorbol 12-myristate 13-acetate (an activator of protein kinase C) and 4 alpha-phorbol 12,13-didecanoate (an inactive phorbol ester) were also tested. At concentrations that had no effect on neuronal viability, calphostin C reduced neurite initiation and axon branching without significantly affecting the number of dendrites per neuron, dendrite branching, dendrite length, or axon length. Phorbol 12-myristate 13-acetate increased axon branching and the number of dendrites per cell, compared to the inactive 4 alpha-phorbol 12,13-didecanoate. KT5720 inhibited only axon branching. KN62 reduced axon length, the number of dendrites per neuron, and both axon and dendrite branching. At low concentrations, calmidazolium had no effect on any aspect of neurite development, but at high concentrations, calmidazolium inhibited every

  20. Lymphocytes possess an electrogenic H(+)-transporting pathway in their plasma membrane.

    PubMed Central

    Káldi, K; Szászi, K; Suszták, K; Kapus, A; Ligeti, E

    1994-01-01

    The existence of an electrogenic H(+)-transporting pathway similar to that described in the plasma membrane of granulocytes and macrophages is reported in pig peripheral lymphocytes. The function of the H(+)-transport pathway can only be detected when free movement of charge-compensating cations is allowed. H+ transport is stimulated by arachidonic acid and various unsaturated fatty acids, and inhibited by bivalent cations, with the following sequence of efficiency: Zn2+ > Cd2+ = Co2+ = Ni2+ > Mn2+ > Ba2+ = Ca2+ = Mg2+. The transport pathway is activated by intracellular acidification and by NN'-dicyclohexylcarbodiimide, but it is not influenced by phorbol 12-myristate 13-acetate. As pig peripheral lymphocytes are not able to produce O2-., it is suggested that the operation of the electrogenic H+ conductance does not require the assembly of a functional NADPH oxidase. Images Figure 1 PMID:7519007

  1. A Simple Fluorescence Assay for Quantification of Canine Neutrophil Extracellular Trap Release.

    PubMed

    Jeffery, Unity; Gray, Robert D; LeVine, Dana N

    2016-11-21

    Neutrophil extracellular traps are networks of DNA, histones and neutrophil proteins released in response to infectious and inflammatory stimuli. Although a component of the innate immune response, NETs are implicated in a range of disease processes including autoimmunity and thrombosis. This protocol describes a simple method for canine neutrophil isolation and quantification of NETs using a microplate fluorescence assay. Blood is collected using conventional venipuncture techniques. Neutrophils are isolated using dextran sedimentation and a density gradient using conditions optimized for dog blood. After allowing time for attachment to the wells of a 96 well plate, neutrophils are treated with NET-inducing agonists such as phorbol-12-myristate-13-acetate or platelet activating factor. DNA release is measured by the fluorescence of a cell-impermeable nucleic acid dye. This assay is a simple, inexpensive method for quantifying NET release, but NET formation rather than other causes of cell death must be confirmed with alternative methods.

  2. Proteolysis of synaptobrevin, syntaxin, and SNAP-25 in alveolar epithelial type II cells.

    PubMed

    Zimmerman, U J; Malek, S K; Liu, L; Li, H L

    1999-10-01

    Synaptobrevin-2, syntaxin-1, and SNAP-25 were identified in rat alveolar epithelial type II cells by Western blot analysis. Synaptobrevin-2 was localized in the lamellar bodies, and syntaxin-1 and SNAP-25 were found in 0.4% Nonidet P40-soluble and -insoluble fractions, respectively, of the type II cells. When the isolated type II cells were stimulated for secretion with calcium ionophore A23187 or with phorbol 12-myristate 13-acetate, these proteins were found to have been proteolyzed. Preincubation of cells with calpain inhibitor II (N-acetylleucylleucylmethionine), however, prevented the proteolysis. Treatment of the cell lysate with exogenous calpain resulted in a time-dependent decrease of these proteins. The data suggest that synaptobrevin, syntaxin, and SNAP-25 are subject to proteolytic modification by activated calpain in intact type II cells stimulated for secretion.

  3. Imperatorin inhibits HIV-1 replication through an Sp1-dependent pathway.

    PubMed

    Sancho, Rocío; Márquez, Nieves; Gómez-Gonzalo, Marta; Calzado, Marco A; Bettoni, Giorgio; Coiras, Maria Teresa; Alcamí, José; López-Cabrera, Manuel; Appendino, Giovanni; Muñoz, Eduardo

    2004-09-03

    Coumarins and structurally related compounds have been recently shown to present anti-human immunodeficiency virus, type 1 (HIV-1) activity. Among them, the dietary furanocoumarin imperatorin is present in citrus fruits, in culinary herbs, and in some medicinal plants. In this study we report that imperatorin inhibits either vesicular stomatitis virus-pseudotyped or gp160-enveloped recombinant HIV-1 infection in several T cell lines and in HeLa cells. These recombinant viruses express luciferase as a marker of viral replication. Imperatorin did not inhibit the reverse transcription nor the integration steps in the viral cell cycle. Using several 5' long terminal repeat-HIV-1 constructs where critical response elements were either deleted or mutated, we found that the transcription factor Sp1 is critical for the inhibitory activity of imperatorin induced by both phorbol 12-myristate 13-acetate and HIV-1 Tat. Moreover in transient transfections imperatorin specifically inhibited phorbol 12-myristate 13-acetate-induced transcriptional activity of the Gal4-Sp1 fusion protein. Since Sp1 is also implicated in cell cycle progression we further studied the effect of imperatorin on cyclin D1 gene transcription and protein expression and in HeLa cell cycle progression. We found that imperatorin strongly inhibited cyclin D1 expression and arrested the cells at the G(1) phase of the cell cycle. These results highlight the potential of Sp1 transcription factor as a target for natural anti-HIV-1 compounds such as furanocoumarins that might have a potential therapeutic role in the management of AIDS.

  4. Depletion of the cellular levels of Bag-1 proteins attenuates phorbol ester-induced downregulation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B

    SciTech Connect

    Maier, Jana V.; Volz, Yvonne; Berger, Caroline; Schneider, Sandra; Cato, Andrew C.B.

    2010-10-22

    Research highlights: {yields}Bag-1 depletion only marginally affects the action of the glucocorticoid receptor but strongly regulates the activity of NF-{kappa}B. {yields}Bag-1 depletion attenuates phosphorylation and degradation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B p65 and p50. {yields}Bag-1 interacts with I{kappa}B{alpha} and partially restores I{kappa}B{alpha} and NF-{kappa}B activation in Bag-1 depleted cells. -- Abstract: Bag-1 consists in humans of four isoforms generated from the same RNA by alternative translation. Overexpression of single Bag-1 isoforms has identified Bag-1 as a negative regulator of action of many proteins including the glucocorticoid receptor (GR). Here we have analysed the ability of Bag-1 to regulate the transrepression function of the GR. Silencing Bag-1 expression only marginally affects the transrepression action of the GR but decreased the action of the transcription factor NF-{kappa}B. Furthermore phosphorylation and degradation of the inhibitor protein I{kappa}B{alpha} and nuclear accumulation of p65 and p50 NF-{kappa}B proteins in response to phorbol ester was attenuated following Bag-1 depletion in HeLa cells. Reconstitution of Bag-1 in depleted cells partially restored I{kappa}B{alpha} and NF-{kappa}B activation. Knock-down of Bag-1 expression also did not significantly alter GR-mediated transactivation but affected the basal transcription of some of the target genes. Thus Bag-1 proteins function as regulators of the action of selective transcription factors.

  5. Molecular cloning, sequence analysis, and functional expression of a novel growth regulator, oncostatin M.

    PubMed Central

    Malik, N; Kallestad, J C; Gunderson, N L; Austin, S D; Neubauer, M G; Ochs, V; Marquardt, H; Zarling, J M; Shoyab, M; Wei, C M

    1989-01-01

    Oncostatin M is a polypeptide of Mr approximately 28,000 that acts as a growth regulator for many cultured mammalian cells. We report the cDNA and genomic cloning, sequence analysis, and functional expression in heterologous cells of oncostatin M. cDNA clones were isolated from mRNA of U937 cells that had been induced to differentiate into macrophagelike cells by treatment with phorbol 12-myristate 13-acetate, and a genomic clone was also isolated from human brain DNA. Sequence analysis of these clones established the 1,814-base-pair cDNA sequence as well as exon boundaries. This sequence predicted that oncostatin M is synthesized as a 252-amino-acid polypeptide, with a 25-residue hydrophobic sequence resembling a signal peptide at the N terminus. The predicted oncostatin M amino acid sequence shared no homology with other known proteins, but the sequence of the 3' noncoding region of the cDNA contained an A + T-rich stretch with sequence motifs found in the 3' untranslated regions of many cytokine and lymphokine cDNAs. Oncostatin M mRNA of approximately 2 kilobase pairs was detected in phorbol 12-myristate 13-acetate-treated U937 cells and in activated human T cells. Transfection of cDNA encoding the oncostatin M precursor into COS cells resulted in the secretion of proteins with the structural and functional properties of oncostatin M. The unique amino acid sequence, expression by lymphoid cells, and growth-regulatory activities of oncostatin M suggest that it is a novel cytokine. Images PMID:2779549

  6. Serotonin-induced muscle contraction in rat stomach fundus is mediated by a G alpha z-like guanine nucleotide binding protein.

    PubMed

    Wang, H Y; Eberle-Wang, K; Simansky, K J; Friedman, E

    1993-11-01

    Serotonin (5-HT) potently contracts the fundus of the rat stomach; however, the associated transduction pathway has not been described fully. Experiments were performed in an attempt to gain insight into the coupling mechanism associated with this fundal 5-HT receptor. 5-HT-stimulated [35S]GTP gamma S binding to a protein which was recognized by anti-G alpha Z antiserum in a Mg(++)-dependent fashion. 5-HT increased [35S]GTP gamma S binding in the fundus, but not in the corpus of the rat stomach. 5-HT also enhanced the binding of [alpha-32P]GTP to the fundal protein and increased the hydrolysis of GTP to GDP in fundal membranes. The fundal protein which binds GTP is 25 to 29 kDa in size whereas the brain G alpha Z protein which is recognized by the anti-G alpha Z antibody is a 41 kDa protein. Mixing experiments revealed that the fundal guanine nucleotide binding protein does not appear to be a proteolytic product of the 41 kDa G alpha Z protein. Activating protein kinase C with phorbol-12-myristate, 13-acetate induced a concentration-dependent, noncompetitive inhibition of [35S]GTP gamma S binding to the fundal protein, and of 5-HT-induced contraction of fundal strips. Phorbol-12-myristate, 13-acetate did not alter carbachol- or KCl-mediated fundus contraction. Furthermore, the activation of [35S]GTP gamma S binding by serotonergic agonists and its inhibition by pharmacological antagonists corresponded to the known actions of these agents on contraction of fundal muscle. The results provide evidence that the 5-HT receptor in the rat stomach fundus is coupled directly or indirectly to a G alpha z-like protein which may mediate 5-HT-induced contraction in this tissue.

  7. Human fibroblast growth factor 1 gene expression in vascular smooth muscle cells is modulated via an alternate promoter in response to serum and phorbol ester.

    PubMed Central

    Chotani, M A; Payson, R A; Winkles, J A; Chiu, I M

    1995-01-01

    We have previously isolated the human FGF-1 gene in order to elucidate the molecular basis of its gene expression. The gene spans over 100 kbp and encodes multiple transcripts expressed in a tissue- and cell-specific manner. Two variants of FGF-1 mRNA (designated FGF-1.A and 1.B), which differ in their 5' untranslated region, were identified in our laboratory. Recently, two novel variants of FGF-1 mRNA (designated FGF-1.C and 1.D) have been isolated. In this study we used RNase protection assays to demonstrate expression of FGF-1.D mRNA in human fibroblasts and vascular smooth muscle cells and to show that promoter 1D has multiple transcription start sites. A single-strand nuclease-sensitive region has also been identified in the promoter 1D region that may have implications in chromatin conformation and transcriptional regulation of this promoter. Using Northern blot hybridization analyses, a previous study demonstrated a significant increase of FGF-1 mRNA levels in cultured saphenous vein smooth muscle cells in response to serum and phorbol ester. Here we confirm these results by RNase protection analysis and show that FGF-1.C mRNA is significantly increased in response to these stimuli. RNase protection assays indicate that promoter 1C has one major start site. The phorbol ester effect suggests that a protein kinase C-dependent signalling pathway may be involved in this phenomenon. Our results point to a dual promoter usage of the FGF-1 gene in vascular smooth muscle cells. Thus, normal growing cells primarily utilize promoter 1D. In contrast, quiescent cells, when exposed to serum or phorbol ester, utilize a different FGF-1 promoter, namely promoter 1C. Overall, these phenomena suggest mechanisms for increased production of FGF-1 that may play a role in inflammatory settings, wound healing, tissue repair, and neovascularization events and processes via autocrine and paracrine mechanisms. Our findings suggest that different FGF-1 promoters may respond to

  8. ADAM10 Is the Major Sheddase Responsible for the Release of Membrane-associated Meprin A*

    PubMed Central

    Herzog, Christian; Haun, Randy S.; Ludwig, Andreas; Shah, Sudhir V.; Kaushal, Gur P.

    2014-01-01

    Meprin A, composed of α and β subunits, is a membrane-bound metalloproteinase in renal proximal tubules. Meprin A plays an important role in tubular epithelial cell injury during acute kidney injury (AKI). The present study demonstrated that during ischemia-reperfusion-induced AKI, meprin A was shed from proximal tubule membranes, as evident from its redistribution toward the basolateral side, proteolytic processing in the membranes, and excretion in the urine. To identify the proteolytic enzyme responsible for shedding of meprin A, we generated stable HEK cell lines expressing meprin β alone and both meprin α and meprin β for the expression of meprin A. Phorbol 12-myristate 13-acetate and ionomycin stimulated ectodomain shedding of meprin β and meprin A. Among the inhibitors of various proteases, the broad spectrum inhibitor of the ADAM family of proteases, tumor necrosis factor-α protease inhibitor (TAPI-1), was most effective in preventing constitutive, phorbol 12-myristate 13-acetate-, and ionomycin-stimulated shedding of meprin β and meprin A in the medium of both transfectants. The use of differential inhibitors for ADAM10 and ADAM17 indicated that ADAM10 inhibition is sufficient to block shedding. In agreement with these results, small interfering RNA to ADAM10 but not to ADAM9 or ADAM17 inhibited meprin β and meprin A shedding. Furthermore, overexpression of ADAM10 resulted in enhanced shedding of meprin β from both transfectants. Our studies demonstrate that ADAM10 is the major ADAM metalloproteinase responsible for the constitutive and stimulated shedding of meprin β and meprin A. These studies further suggest that inhibiting ADAM 10 activity could be of therapeutic benefit in AKI. PMID:24662289

  9. Selective incorporation of ( sup 15 S)-hydroxyeicosatetraenoic acid in phosphatidylinositol of human neutrophils: Agonist-induced deacylation and transformation of stored hydroxyeicosanoids

    SciTech Connect

    Brezinski, M.E.; Serhan, C.N. )

    1990-08-01

    The uptake and mobilization of (15S)-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid (15-HETE), a major product of arachidonic acid metabolism, was examined with human neutrophils. Upon exposure to labeled 15-HETE, PMNs rapidly (15 sec to 20 min) incorporated approximately 20% of the label into phosphatidylinositol, while less than 4% was associated with other phospholipid classes and neutral lipids. This pattern was distinct from that of either labeled arachidonate or labeled(5S)-hydroxy-8,11,14-cis-6-trans-eicosatetraenoic acid (5-HETE), which within 20 min were predominantly associated with triglycerides and phosphatidylcholine. After reversed-phase HPLC, greater than 98% of the label in phosphatidylinositol, isolated from PMNs, was released with phospholipase A2. Upon exposure to either chemotactic peptide (FMLP), phorbol 12-myristate 13-acetate, or an ionophore (A23187), 15-HETE-labeled PMNs released 15-HETE from phosphatidylinositol and displayed an impaired ability to generate leukotriene B4 (LTB4), 20-OH-LTB4, and 20-COOH-LTB4. Deacylated (3H)15-HETE was converted to (5S,15S)-dihydroxy-6,13-trans-8,11-cis-eicosatetraenoic acid (5,15-DHETE), lipoxin A4, and lipoxin B4, each carrying 3H label. PMNs labeled with 5-HETE also released and transformed this HETE when stimulated. However, the profile of labeled products differed between PMNs with either esterified 15-HETE or 5-HETE. When activated, 5-HETE-labeled PMNs generated both 5,20-DHETE and 5,15-DHETE but not labeled lipoxins. Threshold aggregation induced by FMLP with 15-HETE-labeled PMNs was inhibited, while the threshold response was relatively unimpaired with either A23187 or phorbol 12-myristate 13-acetate-induced aggregation. Results indicate that 15-HETE is esterified into phosphatidylinositol of PMNs, which can be mobilized and transformed upon exposure of the cells to a second signal.

  10. System-wide analysis of the transcriptional network of human myelomonocytic leukemia cells predicts attractor structure and phorbol-ester-induced differentiation and dedifferentiation transitions.

    PubMed

    Sakata, Katsumi; Ohyanagi, Hajime; Sato, Shinji; Nobori, Hiroya; Hayashi, Akiko; Ishii, Hideshi; Daub, Carsten O; Kawai, Jun; Suzuki, Harukazu; Saito, Toshiyuki

    2015-02-06

    We present a system-wide transcriptional network structure that controls cell types in the context of expression pattern transitions that correspond to cell type transitions. Co-expression based analyses uncovered a system-wide, ladder-like transcription factor cluster structure composed of nearly 1,600 transcription factors in a human transcriptional network. Computer simulations based on a transcriptional regulatory model deduced from the system-wide, ladder-like transcription factor cluster structure reproduced expression pattern transitions when human THP-1 myelomonocytic leukaemia cells cease proliferation and differentiate under phorbol myristate acetate stimulation. The behaviour of MYC, a reprogramming Yamanaka factor that was suggested to be essential for induced pluripotent stem cells during dedifferentiation, could be interpreted based on the transcriptional regulation predicted by the system-wide, ladder-like transcription factor cluster structure. This study introduces a novel system-wide structure to transcriptional networks that provides new insights into network topology.

  11. System-wide analysis of the transcriptional network of human myelomonocytic leukemia cells predicts attractor structure and phorbol-ester-induced differentiation and dedifferentiation transitions

    NASA Astrophysics Data System (ADS)

    Sakata, Katsumi; Ohyanagi, Hajime; Sato, Shinji; Nobori, Hiroya; Hayashi, Akiko; Ishii, Hideshi; Daub, Carsten O.; Kawai, Jun; Suzuki, Harukazu; Saito, Toshiyuki

    2015-02-01

    We present a system-wide transcriptional network structure that controls cell types in the context of expression pattern transitions that correspond to cell type transitions. Co-expression based analyses uncovered a system-wide, ladder-like transcription factor cluster structure composed of nearly 1,600 transcription factors in a human transcriptional network. Computer simulations based on a transcriptional regulatory model deduced from the system-wide, ladder-like transcription factor cluster structure reproduced expression pattern transitions when human THP-1 myelomonocytic leukaemia cells cease proliferation and differentiate under phorbol myristate acetate stimulation. The behaviour of MYC, a reprogramming Yamanaka factor that was suggested to be essential for induced pluripotent stem cells during dedifferentiation, could be interpreted based on the transcriptional regulation predicted by the system-wide, ladder-like transcription factor cluster structure. This study introduces a novel system-wide structure to transcriptional networks that provides new insights into network topology.

  12. Differential effect of 1{alpha},25-dihydroxyvitamin D{sub 3} on Hsp28 and PKC{beta} gene expression in the phorbol ester-resistant human myeloid HL-525 leukemic cells

    SciTech Connect

    Lee, Yong J.; Galoforo, S.S.; Berns, C.M.

    1997-08-01

    We investigated the effect of 1{alpha},25-dihydroxyvitamin D{sub 3} [1,25-(OH){sub 2}D{sub 3}] on the expression of the 28-kDa heat shock protein gene (hsp28) and the protein kinase C beta gene (PKC{beta}) in the human myeloid HL-60 leukemic cell variant HL-525, which is resistance to phorbol ester-induced macrophage differentiation. Northern and Western blot analysis showed little or no hsp28 gene expression in the HL-60 cell variant, HL-205, which is susceptible to such differentiation, while a relatively high basal level of hps28 gene expression was observed in the HL-525 cells. However, both cell lines demonstrated heat shock-induced expression of this gene. During treatment with 50-300 nM 1,25-(OH){sub 2}D{sub 3}, a marked reduction of hsp28 gene expression was not associated with heat shock transcription factor-heat shock element (HSF-HSE) binding activity. Our results suggest that the differential effect of 1,25-(OH){sub 2}D{sub 3} on hsp28 and PKC{beta} gene expression is due to the different sequence composition of the vitamin D response element in the in the promoter region as well as an accessory factor for each gene or that 1,25-(OH){sub 2}D{sub 3} increases PKC{beta} gene expression, which in turn negatively regulates the expression of the hsp28 gene, or vice versa.

  13. Phospholamban and troponin I are substrates for protein kinase C in vitro but not in intact beating guinea pig hearts

    SciTech Connect

    Edes, I.; Kranias, E.G. )

    1990-08-01

    The incorporation of (32P)inorganic phosphate into membranous, myofibrillar, and cytosolic proteins was studied in Langendorff-perfused guinea pig hearts treated with phorbol 12-myristate 13-acetate (PMA) or 1,2-dioctanoylglycerol (D8G), which are potent activators of protein kinase C. Control hearts were perfused with an inactive phorbol ester (4 alpha-phorbol 12,13-didecanoate), which does not cause activation of protein kinase C. To ensure the blockade of different receptor systems, the perfusions were carried out in the presence of prazosin, propranolol, and atropine. Perfusion of hearts with either PMA (4 microM) or D8G (200 microM) was associated with a negative effect on left ventricular inotropy and relaxation. Examination of the 32P incorporation into various fractions revealed that there were no increases in the degree of phosphorylation of phospholamban in sarcoplasmic reticulum, and troponin I and C protein in the myofibrils, although these proteins were found to be substrates for protein kinase C in vitro. However, in the same hearts, there were significant changes in the 32P incorporation into a 28-kDa cytosolic-protein. Examination of the activity levels of protein kinase C in hearts perfused with PMA indicated a redistribution of this activity from the cytosolic to the membrane fraction, suggesting the activation of the enzyme in vivo. These findings indicate that cardiac regulatory phosphoproteins, which may be phosphorylated by protein kinase C in vitro, are not substrates for protein kinase C in beating hearts perfused with phorbol esters or diacylglycerol analogues.

  14. Protein kinase C activators suppress stimulation of capillary endothelial cell growth by angiogenic endothelial mitogens

    PubMed Central

    1987-01-01

    The intracellular events regulating endothelial cell proliferation and organization into formalized capillaries are not known. We report that the protein kinase C activator beta-phorbol 12,13-dibutyrate (PDBu) suppresses bovine capillary endothelial (BCE) cell proliferation (K50 = 6 +/- 4 nM) and DNA synthesis in response to human hepatoma-derived growth factor, an angiogenic endothelial mitogen. In contrast, PDBu has no effect on the proliferation of bovine aortic endothelial cells and is mitogenic for bovine aortic smooth muscle and BALB/c 3T3 cells. Several observations indicate that the inhibition of human hepatoma- derived growth factor-stimulated BCE cell growth by PDBu is mediated through protein kinase C. Different phorbol compounds inhibit BCE cell growth according to their potencies as protein kinase C activators (12- O-tetradecanoylphorbol 13-acetate greater than PDBu much greater than beta-phorbol 12,13-diacetate much much greater than beta-phorbol; alpha- phorbol 12,13-dibutyrate; alpha-phorbol 12,13-didecanoate). PDBu binds to a single class of specific, saturable sites on the BCE cell with an apparent Kd of 8 nM, in agreement with reported affinities of PDBu for protein kinase C in other systems. Specific binding of PDBu to BCE cells is displaced by sn-1,2-dioctanoylglycerol, a protein kinase C activator and an analog of the putative second messenger activating this kinase in vivo. The weak protein kinase C activator, sn-1,2- dibutyrylglycerol, does not affect PDBu binding. A cytosolic extract from BCE cells contains a calcium/phosphatidylserine-dependent protein kinase that is activated by sn-1,2-dioctanoylglycerol and PDBu, but not by beta-phorbol. These findings indicate that protein kinase C activation can cause capillary endothelial cells to become desensitized to angiogenic endothelial mitogens. This intracellular regulatory mechanism might be invoked during certain phases of angiogenesis, for example when proliferating endothelial cells become

  15. Control of EGF receptor function by protein kinase C

    SciTech Connect

    Whiteley, B.J.

    1986-01-01

    Treatment of human epidermoid carcinoma A431 cells with nanomolar concentrations of the potent tumor promotor, phorbol 12-myristate 13-acetate (PMA), is shown to attentuate the ability of epidermal growth factor (EGF) or serum to activate Na/sup +//H/sup +/ exchange, which is measured as an amiloride-inhibitable pH/sub i/ increase or /sup 22/Na/sup +/ uptake. The ability of PMA to directly activate Na/sup +//H/sup +/ exchange is also reported, but PMA-induced pH/sub i/ increases are modest with respect to those of EGF or serum and require relatively high concentrations of PMA. The effects of PMA on mitogen receptor-stimulated Na/sup +//H/sup +/ exchange were examined in the mouse fibroblast NR6 cell line using platelet-derived growth factor (PDGF). The results were similar to those in A431 cells, except that PMA in NR6 cells causes pH/sub i/ increases at lower concentrations. Phorbol diester action is mediated by the activity of the enzyme protein kinase C. The results summarized above support the hypothesis that PMA-induced protein kinase C activity opposes mitogenic stimulation. The presumed endogenous PMA analog is diacylglycerol, which is generated by phosphoinositide hydrolysis and has been reported to be produced in response to the mitogens, EGF and PDGF.

  16. Insights on profiling of phorbol, deoxyphorbol, ingenol and jatrophane diterpene esters by high performance liquid chromatography coupled to multiple stage mass spectrometry.

    PubMed

    Nothias-Scaglia, Louis-Félix; Schmitz-Afonso, Isabelle; Renucci, Franck; Roussi, Fanny; Touboul, David; Costa, Jean; Litaudon, Marc; Paolini, Julien

    2015-11-27

    This paper reports our effort to develop a comprehensive HPLC-MS(n)-based dereplication strategy for phorbol ester (PE), deoxyphorbol ester (dPE) and ingenol ester (IE) profiling in plant extracts. This strategy is composed of two sequential analysis exploiting specific hybrid triple quadrupole/linear ion trap instrument modes. A first run was performed using a multiple reaction monitoring (MRM) mode targeting fragmentation of PE and dPE/IE coupled with the acquisition of MS(2) spectrum for the ions at m/z 311 and m/z 313, respectively. A second run was then completed based on precursor ion scan mode (PIS) and automatic MS(2) acquisition for each quasimolecular ion. The developed approach was used to investigate ten Euphorbia extracts showing bioactivity against chikungunya virus replication. Experiments allowed partial annotation of three dPE/IE but no PE was detected. Results suggested that other types of diterpene esters displayed PE- and dPE/IE-like fragmentations. The study of jatrophane ester (JE) standards by CID fragmentation using low and high resolution mass spectrometry confirmed this hypothesis, highlighting challenges and difficulties of diterpene esters profiling within plant extracts. Nonetheless, the present LC-MS(n) method can be easily adapted to profile other types of diterpene esters.

  17. Defective responses of transformed keratinocytes to terminal differentiation stimuli. Their role in epidermal tumour promotion by phorbol esters and by deep skin wounding.

    PubMed Central

    Parkinson, E. K.

    1985-01-01

    Epidermal tumourigenesis can be achieved in rodents by the application of a single subthreshold dose of a carcinogen (initiation) followed by repeated applications of a tumour promoter such as 12-0-tetradecanoyl phorbol, 13-acetate (TPA). TPA induces terminal differentiation in the majority of epidermal keratinocytes in vitro. However, transformed keratinocytes respond weakly to this terminal differentiation signal, and it is suggested that this property allows initiated cells and their progeny to obtain a selective advantage over their normal counterparts during promotion of papilloma formation by TPA. New data are reviewed which suggest that a putative wound hormone TGF-beta has similar differential effects on normal and transformed epithelial cells to those of TPA. It is proposed that the release of TGF-beta from platelets following deep skin wounding may be an explanation as to why wounding is a promoting stimulus but milder forms of epidermal injury are not. Weakly promoting hyperplasiogenic agents are also discussed within the context of a selection theory of tumour promotion. PMID:2415144

  18. Semi-preparative HPLC separation followed by HPLC/UV and tandem mass spectrometric analysis of phorbol esters in Jatropha seed.

    PubMed

    Kongmany, Santi; Hoa, Truong Thi; Hanh, Le Thi Ngoc; Imamura, Kiyoshi; Maeda, Yasuaki; Boi, Luu Van

    2016-12-01

    Phorbol esters (PEs) are well known as the main toxic compounds in Jatropha curcas Linnaeus (JCL), the seed oil of which has been considered as a major feedstock for the production of biodiesel. In the present study, we investigated a series of PEs extracted from JCL seed kernels with methanol (MeOH), and identified more than seven components contained in the PEs. The isolation of main five components of a series of PEs was revised using a semi-preparative reversed phase HPLC analysis of ODS-3 column. The five peaks of components were successfully isolated, and peaks of J2, J3, J5, and J7 were assigned to be Jatropha factors C1, C2, C3, and C4/5, but J6 was a mixture of Jatropha factor C6 and its isomer based on the data of UV and LC-MS/MS, and J2 was identified using (1)H NMR analysis. By characterization using LC-MS/MS analysis, all components of a series of PEs were elucidated to be the 12-deoxy-16-hydroxyphorbol esters composed of isomeric form of dicarboxylic groups with same m/z value of 380.

  19. Human anti-peptidoglycan-IgG-mediated opsonophagocytosis is controlled by calcium mobilization in phorbol myristate acetate-treated U937 cells

    PubMed Central

    Rah, So-Young; An, Jang-Hyun; Kurokawa, Kenji; Kim, Uh-Hyun; Lee, Bok Luel

    2015-01-01

    Recently, we demonstrated that human serum amyloid P component (SAP) specifically recognizes exposed bacterial peptidoglycan (PGN) of wall teichoic acid (WTA)-deficient Staphylococcus aureus ΔtagO mutant cells and then induces complement-independent phagocytosis. In our preliminary experiments, we found the existence of human serum immunoglobulins that recognize S. aureus PGN (anti-PGNIgGs), which may be involved in complement-dependent opsonophagocytosis against infected S. aureus cells. We assumed that purified serum anti-PGN-IgGs and S. aureus ΔtagO mutant cells are good tools to study the molecular mechanism of anti-PGN-IgG-mediated phagocytosis. Therefore, we tried to identify the intracellular molecule(s) that is involved in the anti-PGN-IgG-mediated phagocytosis using purified human serum anti-PGN-IgGs and different S. aureus mutant cells. Here, we show that anti-PGN-IgG-mediated phagocytosis in phorbol myristate acetate-treated U937 cells is mediated by Ca2+ release from intracellular Ca2+ stores and anti-PGN-IgGdependent Ca2+ mobilization is controlled via a phospholipase Cγ-2-mediated pathway. [BMB Reports 2015; 48(1): 36-41] PMID:24856825

  20. Modulation of muscarinic and micotinic cholinergic receptor mediated catecholamine secretion in guinea pig chromaffin cells by phorbol esters

    SciTech Connect

    Figueiredo, J.C.; Fisher, S.K.; Horowitz, M.I.

    1986-05-01

    Isolated guinea pig chromaffin cells possess both nicotinic (nAChR) and muscarinic (mAChR) cholinergic receptors that are positively coupled to catecholamine (CA) release. Sixty to 70% of CA release is mediated by nAChRs and 30-40% by mAChRs. In the absence of added calcium, nAChR mediated CA release was reduced by 65% whereas the muscarinic response was unaffected. The addition of 100nM 12-0-tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C (PKC), also resulted in an increased CA release. Temporally and quantitatively, this response resembled that of mAChR activation. Addition of optimal concentrations of nicotine (50..mu..M) and TPA (100nM) induced a synergistic increase in CA release. Addition of muscarine (1mM) and TPA resulted in an additive response despite a 40-60% inhibition of mAChR mediated inositol phosphate release by TPA. Thus, in guinea pig chromaffin cells, it appears that PKC activation alone is a sufficient stimulus for CA release and that activation of both nicotinic and muscarinic receptors may further increase this enzyme's activity.

  1. Effect of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) upon membrane ionic exchanges in sea urchin eggs

    SciTech Connect

    Ciapa, B.; Payan, P. ); Allemand, D. )

    1989-12-01

    The effect of TPA (12-O-tetradecanoylphorbol-13-acetate) upon ionic exchanges was investigated in eggs of the sea urchin Arbacia lixula. Ouabain-sensitive {sup 86}Rb uptake and amiloride-sensitive {sup 24}Na influx were dramatically stimulated after TPA addition, indicating an enhancement of total ionic permeabilities. Stimulation by TPA of both Na{sup +}/H{sup +} and Na{sup +}/K{sup +} exchanges was canceled by amiloride, suggesting that activation of protein kinase C elicits, via Na{sup +}/H{sup +} activity, stimulation of the sodium pump. However, TPA did not stimulate sodium pump activity and Na{sup +}/H{sup +} exchange at the same rate as fertilization, probably because of an absence of calcium-dependent events. Further fertilization of TPA pretreated eggs triggered an enhancement of sodium pump activity when the TPA treatment duration did not exceed 10 minutes. It is suggested that TPA activates preexisting transporting mechanisms in plasma membranes of unfertilized eggs (Na{sup +} stat, pH stat).

  2. Effect of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TTPA) upon membrane ionic exchanges in sea urchin eggs.

    PubMed

    Ciapa, B; Allemand, D; Payan, P

    1989-12-01

    The effect of TPA (12-O-tetradecanoylphorbol-13-acetate) upon ionic exchanges was investigated in eggs of the sea urchin Arbacia lixula. Ouabain-sensitive 86Rb uptake and amiloride-sensitive 24Na influx were dramatically stimulated after TPA addition, indicating an enhancement of total ionic permeabilities. Stimulation by TPA of both Na+/H+ and Na+/K+ exchanges was canceled by amiloride, suggesting that activation of protein kinase C elicits, via Na+/H+ activity, stimulation of the sodium pump. However, TPA did not stimulate sodium pump activity and Na+/H+ exchange at the same rate as fertilization, probably because of an absence of calcium-dependent events. Further fertilization of TPA-pretreated eggs triggered an enhancement of sodium pump activity when the TPA treatment duration did not exceed 10 min. It is suggested that TPA activates preexisting transporting mechanisms in plasma membranes of unfertilized eggs (Na+ pump, Na+/H+ exchange) without eliciting corresponding regulatory mechanisms (Na+ stat, pH stat).

  3. Flat reversion by okadaic acid of raf and ret-II transformants.

    PubMed

    Sakai, R; Ikeda, I; Kitani, H; Fujiki, H; Takaku, F; Rapp, U; Sugimura, T; Nagao, M

    1989-12-01

    Okadaic acid is a non-phorbol 12-myristate 13-acetate (PMA)-type tumor promoter on mouse skin and known to be a potent inhibitor of serine/threonine protein phosphatases. Contrary to expectation from its tumor-promoting activity, okadaic acid was shown to have a potential to revert the phenotypes of cells transformed by raf and ret-II to that of normal cells. Two to 3 days after addition of 8 ng of okadaic acid per ml to the culture medium, raf and ret-II transformants changed to flat cells and gained contact inhibition. The amount of fibronectin, which was decreased in malignant transformed cells, was increased in the flat revertants. Moreover, okadaic acid caused a dose-dependent loss of ability to grow in soft agar. The morphology of the cells reverted to malignant phenotype within 1 week after removal of okadaic acid. The levels of mRNA and protein of activated c-raf in flat revertants were similar to those in parental transformed cells. The level of mRNA of ret-II was also not changed by flat reversion. No induction of flat reversion was observed with okadaic acid tetramethyl ether, an inactive compound, or a phorbol ester, PMA. As okadaic acid is a potent inhibitor of protein phosphatases 1 and 2A, the possibility that these phosphatases are involved in signal transduction from the raf and ret-II oncogenes is suggested.

  4. A RAS oncogene imparts growth factor independence to myeloid cells that abnormally regulate protein kinase C: a nonautocrine transformation pathway.

    PubMed

    Boswell, H S; Nahreini, T S; Burgess, G S; Srivastava, A; Gabig, T G; Inhorn, L; Srour, E F; Harrington, M A

    1990-06-01

    The factor-dependent cell line FDC-P1 has been utilized as a model of interleukin 3 (IL-3)-dependent myeloid cell proliferation. However, it has been recently observed that active phorbol esters (e.g., phorbol 12-myristate 13-acetate) may entirely replace IL-3 to promote its proliferation. These observations reveal abnormal regulation of protein kinase C (pkC) (absence of downregulation or overexpression). This property allowed a test of the hypothesis that the T24 RAS (codon 12) oncogene acts by constitutive and persistent pkC activation, driving proliferation. FDC-P1 cells were transfected by electroporation with the T24 RAS-containing vector pAL 8, or with a control vector pSVX Zip Neo, and neomycin-resistant clones were selected. Multiple RAS-transfectant clones were categorized for their growth factor requirement and incorporation of the 6.6-kb human mutant H-RAS genome. IL-3-independent clones had incorporated multiple (more than two) copies of the entire 6.6-kb RAS genome. The incorporation of multiple 6.6-kb RAS genomes was correlated with high-level p21 RAS expression. No evidence for autostimulatory growth factor production by clones containing the RAS oncogene was observed. Thus, acquisition of growth factor independence in myeloid cells by abundant expression of a RAS oncogene is linked, in part, to abnormal regulation of pkC, which acts as a collaborating oncogene.

  5. Overexpression of gibbon ape leukemia virus (GALV) receptor (GLVR1) on human CD34(+) cells increases gene transfer mediated by GALV pseudotyped vectors.

    PubMed

    Relander, Thomas; Brun, Ann C M; Olsson, Karin; Pedersen, Lene; Richter, Johan

    2002-09-01

    Retroviral transduction of CD34(+) cells on Retronectin using gibbon ape leukemia virus (GALV) pseudotyped vectors is inhibited by high concentrations of vector containing medium (VCM). Furthermore, this inhibitory activity is stable for at least 48 hours at 37 degrees C and partially blocks a second hit with a GALV pseudotyped vector. We hypothesized that this inhibition was due to interference at the receptor level between infectious and noninfectious vector particles and that it might be possible to overcome it by increasing receptor expression on target cells. Activation of protein kinase C in CD34(+) cells with the phorbol ester PMA (phorbol 12-myristate 13-acetate) increased the mRNA level of the GALV receptor (GLVR1) and the transduction efficiency (TE), and fully reversed the inhibition of transduction seen with high-titer GALV VCM. A murine stem cell virus (MSCV) vector with the GLVR1 receptor and green fluorescent protein cDNAs (MGLIG) was used to transduce fibroblasts, and clones expressing different levels of GLVR1 were isolated. The TE of these cells using a GALV vector correlated with the level of GLVR1 expression. When CD34(+) cells or K562 cells were first transduced with MGLIG and then with high-titer GALV VCM, no inhibition of transduction was seen. The low level of GLVR1 expression limits gene transfer to K562 and CD34(+) cells using GALV pseudotyped vectors, especially in the presence of high-titer VCMs.

  6. Crosstalk between Wnt signaling and Phorbol ester-mediated PKC signaling in MCF-7 human breast cancer cells.

    PubMed

    Kim, Soyoung; Chun, So-Young; Kwon, Yun-Suk; Nam, Kyung-Soo

    2016-02-01

    Although many studies have implicated the crosstalk between the Wnt and PKC signaling pathways in tumor initiation and progression, the molecular roles of PKC isoforms in the Wnt signaling pathway remain poorly understood. In this study, we explored the contribution of PKC isoforms to canonical and noncanonical Wnt signaling pathway in mediating cell migration and an epithelial-mesenchymal transition (EMT). When MCF-7 cells were treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) for up to 3 weeks, the effect of TPA on Wnt signaling pathway was dramatically different depending on the exposure time. The short term exposure (3 days) of MCF-7 cells to TPA exhibited significant induction of Wnt5a expression, along with the enhanced expression of PKC-α, to promote cell migration, which suggested that activation of noncanonical Wnt signaling pathway is associated with PKC-α. However, the chronic exposure (3 weeks) of cells to TPA completely suppressed Wnt5a expression and the expression of PKC-η and PKC-δ, whereas the expression of Wnt3a and PKC-θ were up-regulated to activate the canonical Wnt signaling pathway. Moreover, the loss of epithelial markers, including E-cadherin and GATA-3, suggested that chronic exposure of TPA stimulates EMT. Taken together, our data suggest that PKC-θ positively regulates the canonical Wnt signaling pathway, and that PKC-η and PKC-δ negatively modulate this signaling pathway.

  7. Modification of fos proteins: phosphorylation of c-fos, but not v-fos, is stimulated by 12-tetradecanoyl-phorbol-13-acetate and serum.

    PubMed Central

    Barber, J R; Verma, I M

    1987-01-01

    We have investigated the covalent modification of the proteins encoded by the murine fos proto-oncogene (c-fos) and that of the corresponding gene product of FBJ murine osteosarcoma virus (v-fos). Both proteins are posttranslationally processed in the cell, resulting in forms with lower electrophoretic mobilities than that of the initial translation product on sodium dodecyl sulfate-polyacrylamide gels. Treatment with alkaline phosphatase indicates that most, if not all, of this electrophoretic shift is due to phosphoesterification of both proteins. These phosphoryl groups stoichiometrically modify the v-fos and c-fos proteins on serine residues and turn over rapidly in vivo in the presence of protein kinase inhibitors (half-life, less than 15 min). Direct quantitative comparison of steady-state labeling studies with L-[35S]methionine and [32P]phosphate reveals that the c-fos protein is four- to fivefold more highly phosphorylated than the v-fos protein is. Comparison of tryptic fragments from [32P]phosphate-labeled proteins indicates that although the two proteins have several tryptic phosphopeptides in common, the c-fos protein contains unique major tryptic phosphopeptides that the v-fos protein lacks. These unique sites of c-fos phosphorylation have been tentatively localized to the carboxy-terminal 20 amino acid residues of the protein. Phosphorylation of the c-fos protein, but not the v-fos protein, can be stimulated at least fivefold in vivo by the addition of either 12-tetradecanoyl-phorbol-13-acetate or serum. This increase in the steady-state degree of phosphorylation of c-fos appears to be independent of protein kinase C since phosphorylation is Ca2+ and diacylglycerol independent. The possible role of phosphorylation of these proteins in cellular transformation is discussed. Images PMID:3110603

  8. Phorbol ester attenuates the KCl-induced increase in (Ca/sup 2 +/) and inhibits spontaneous sarcoplasmic reticulum Ca/sup 2 +/ release, in rat cardiac myocytes

    SciTech Connect

    Hansford, R.G.; Capogrossi, M.C.; Kaku, T.; Pelto, D.J.; Filburn, C.H.; Lakatta, E.G.

    1986-03-01

    Partial membrane depolarization induced by increasing the KCl concentration of the medium bathing cardiac myocytes leads to an increase in cell (Ca/sup 2 +/), and accelerates the frequency of spontaneous contractile waves (W) caused by periodic sarcoplasmic reticulum (SR) Ca/sup 2 +/ release. In suspensions of myocytes bathed in 1.0mM Ca/sup 2 +/ at 37 (pH 7.4) and loaded with the fluorescent Ca/sup 2 +/ - indicator Fura-2, by incubation with 2 ..mu..M acetoxymethyl ester for 30 min, the addition of KCl to raise (K/sup +/) from 5 to 30 mM is associated with a rapid (< 10 sec) increase in fluorescence, corresponding to an increased cell (Ca/sup 2 +/). Prior exposure (3 min) to 10/sup -7/ M phorbol myristate acetate (PMA) diminishes this response to 44 +/- 10% of that in control suspensions (n = 9). Under the same conditions W frequency (min/sup -1/) in individual cells in 30 mM KCl averaged 8.3 +/- 0.6. Addition of PMA abolished W within 1 min. Diacylglycerol (10 ..mu..M L..cap alpha..-1,2-dioctanoylglycerol, di C8) had a similar effect on W frequency. The thesis is that PMA attenuates cell Ca/sup 2 +/ overload and its associated potentiation of spontaneous SR Ca/sup 2 +/ oscillations. In view of the efficacy of PMA and di C8, it is suggested that the effect is mediated by protein kinase c, and it may involve an alteration in the intracellular distribution of this enzyme.

  9. Priming by grepafloxacin on respiratory burst of human neutrophils: its possible mechanism.

    PubMed

    Niwa, Masayuki; Kanamori, Yutaka; Hotta, Koichi; Matsuno, Hiroyuki; Kozawa, Osamu; Fujimoto, Sadaki; Uematsu, Toshihiko

    2002-10-01

    Grepafloxacin is a broad-spectrum fluoroquinolone derivative that has good tissue penetration. We demonstrated that grepafloxacin showed a priming effect on neutrophil respiratory burst, triggered by either a chemotactic factor N-formyl-methionyl-leucyl-phenylalanine (fMLP) or leukotriene B4 (LTB4), but not by the phorbol ester phorbol 12-myristate 13-acetate (PMA). The priming effect of grepafloxacin on fMLP-stimulated superoxide generation by human neutrophils correlated with the penetration of grepafloxacin into cells. Removal of extracellular grepafloxacin did not inhibit the priming effect on fMLP-stimulated superoxide generation. Furthermore, grepafloxacin induced the translocation of p47-phox and p67-phox to the membrane fraction of neutrophils, whereas tyrosine phosphorylation was hardly observed in neutrophils exposed to grepafloxacin. The priming effect of grepafloxacin on superoxide generation from neutrophils was not inhibited by treatment with pertussis toxin, a protein-tyrosine kinase inhibitor (ST-638) or a protein kinase C inhibitor (calphostin C), or chelation of extracellular calcium. Grepafloxacin did not change the fMLP receptor-binding properties. Taken together, these findings suggest that grepafloxacin evokes a priming effect on neutrophil superoxide generation intracellularly through the translocation of p47-phox and even p67-phox protein to the membrane fractions. GTP binding protein, protein-tyrosine phosphorylation and protein kinase C activation are not involved in the priming effect.

  10. Interaction between phosphoinositide turnover system and cyclic AMP pathway for the secretion of pancreastatin and somatostatin from QGP-1N cells.

    PubMed

    Tateishi, K; Funakoshi, A; Kitayama, N; Matsuoka, Y

    1992-06-30

    It is found that secretion of pancreastatin and somatostatin from QGP-1N cells is regulated through muscarinic receptor-mediated activation of phosphatidylinositide hydrolysis system. In this report, whether the cAMP pathway interacts with the phosphoinositide turnover system for the secretion of pancreastatin and somatostatin from QGP-1N cells through muscarinic receptors was studied. Stimulation of QGP-1N cells with carbachol increased intracellular cAMP levels. The carbachol-induced increase in cAMP levels was inhibited by atropine. Calcium ionophore (A23187) and phorbol 12-myristate 13-acetate increased cAMP synthesis. Dibutyryl cAMP, forskolin and theophylline stimulated secretion of pancreastatin and somatostatin. When either dibutyryl cAMP, forskolin or theophylline was added in culture medium with A23187, phorbol ester or carbachol, a synergistic effect was found on pancreastatin and somatostatin secretion. These results suggest that interaction between the phosphoinositide turnover system and the cAMP pathway occurs in QGP-1N cells through muscarinic receptor stimulation for the secretion of pancreastatin and somatostatin.

  11. Effects of a phorbol ester on acetylcholine-induced Ca2+ mobilization and contraction in the porcine coronary artery.

    PubMed Central

    Itoh, T; Kubota, Y; Kuriyama, H

    1988-01-01

    1. The effects of 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C, have been investigated on intact and chemically skinned muscle strips of the porcine coronary artery. 2. In the presence or absence of extracellular Ca2+, TPA (0.1-1 nM) slightly enhanced the amplitude of ACh (10 microM)-induced contractions but at 100 nM, inhibited the contractions by approximately 50%. 3. ACh (10 microM) reduced the amount of [32P]phosphatidylinositol 4,5-bisphosphate (PIP2) and increased the amount of [32P]phosphatidic acid (PA) in the presence or absence of Ca2+. TPA (over 1 nM) dose-dependently inhibited the hydrolysis of PIP2 induced by ACh. 4. ACh (over 0.1 microM) dose-dependently increased the intensity of fura-2 fluorescence in dispersed single-cell suspensions. TPA (over 1 nM) dose-dependently inhibited the increase of the Ca2+ transient evoked by ACh, but it did not modify the ionomycin-induced Ca2+ transient or the resting fluorescence. These inhibitory effects of TPA occurred over a similar dose range to that which inhibited ACh-induced PIP2 break-down. 5. When the relationship between ACh-induced contraction amplitude and Ca2+ transient was observed in the presence or absence of 10 nM-TPA, TPA greatly reduced the Ca2+ transient but did not modify the amplitude of contraction. 6. In saponin-treated skinned muscle strips, TPA (10 nM) or 1,2-diolein (50 micrograms/ml) with phosphatidylserine (PS; 50 micrograms/ml) increased the amplitude of contraction evoked by various concentrations of Ca2+ (0.1-1.0 microM) without any change in the maximum amplitude of the Ca2+-induced contraction. 7. TPA (10 nM) with PS (50 micrograms/ml) increased the amplitude of contraction evoked by 10 microM-inositol 1,4,5-trisphosphate in chemically skinned muscle strips. 8. It is concluded that TPA inhibits the ACh-induced [Ca2+]i increase by inhibiting the hydrolysis of PIP2, but that it enhances the Ca2+ sensitivity of the contractile proteins. These results

  12. Actin stress fiber disruption and tropomysin isoform switching in normal thyroid epithelial cells stimulated by thyrotropin and phorbol esters

    SciTech Connect

    Roger, P.P.; Rickaert, F.; Lamy, F.; Authelet, M.; Dumont, J.E. )

    1989-05-01

    Thyrotropin (TSH), through cyclic AMP, promotes both proliferation and differentiation expression in dog thyroid epithelial cells in primary culture, whereas the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) also stimulates proliferation but antagonizes differentiating effects of TSH. In this study, within 20 min both factors triggered the disruption of actin-containing stress fibers. This process preceded distinct morphological changes: cytoplasmic retraction and arborization in response to TSH and cyclic AMP, cell shape distortion, and increased motility in response to TPA and diacylglycerol. TSH and TPA also induced a marked decrease in the synthesis of three high M{sub r} tropomyosin isoforms, which were not present in dog thyroid tissue but appeared in culture during cell spreading and stress fiber formation. The tropomyosin isoform switching observed here closely resembled similar processes in various cells transformed by oncogenic viruses. However, it did not correlate with differentiation or mitogenic activation. Contrasting with current hypothesis on this process in transformed cells, tropomyosin isoform switching in normal thyroid cells was preceded and thus might be caused by early disruption of stress fibers.

  13. Substitution on the A-Ring Confers to Bryopyran Analogues the Unique Biological Activity Characteristic of Bryostatins and Distinct From That of the Phorbol Esters

    PubMed Central

    Keck, Gary E.; Poudel, Yam B.; Welch, Dennie S.; Kraft, Matthew B.; Truong, Anh P.; Stephens, Jeffrey C.; Kedei, Noemi; Lewin, Nancy E.; Blumberg, Peter M.

    2009-01-01

    A close structural analogue of bryostatin 1, which differs from bryostatin 1 only by the absence of the C30 carbomethoxy group (on the C13 enoate of the B-ring), has been prepared by total synthesis. Biological assays reveal a crucial role for substitution in the bryostatin 1 A-ring in conferring those responses which are characteristic of bryostatin 1 and distinct from those observed with PMA. PMID:19113896

  14. PHORBOL ESTER ACTIVATION OF AN NHE-LIKE ELECTRONEUTRAL NA+/H+ ANTIPORTER IN ISOLATED E-CELLS OF LOBSTER (HOMARUS AMERICANUS) HEPATOPANCREAS. (R823068)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. Queuine, a tRNA anticodon wobble base, maintains the proliferative and pluripotent potential of HL-60 cells in the presence of the differentiating agent 6-thioguanine.

    PubMed

    French, B T; Patrick, D E; Grever, M R; Trewyn, R W

    1991-01-15

    6-Thioguanine (6-TG)-induced differentiation of hypoxanthine phosphoribosyltransferase (IMP: pyrophosphate phosphoribosyltransferase, EC 2.4.2.8)-deficient HL-60 cells is characterized by 2 days of growth, after which morphological differentiation proceeds. Addition of the tRNA wobble base queuine, in the presence of 6-TG, maintains the proliferative capability of the cells. The ability of 6-TG to induce differentiation correlates with c-myc mRNA down-regulation, but queuine has no effect on this parameter. Treatment with 6-TG for 2-3 days commits HL-60 cells to granulocytic differentiation, and, once committed, these cells do not respond to the monocytic inducer phorbol 12-myristate 13-acetate. Nonetheless, when cells are treated with queuine and 6-TG, they maintain the promyelocytic morphology and are capable of being induced down the monocytic pathway by phorbol 12-myristate 13-acetate as indicated by stabilization of c-fms mRNA and cell adherence. In the absence of queuine, phorbol 12-myristate 13-acetate is incapable of inducing monocytic markers in the 6-TG-treated cells. The data presented indicate that 6-TG-induced differentiation of HL-60 cells is a tRNA-facilitated event and that the tRNA wobble base queuine is capable of maintaining both the proliferative and pluripotent potential of the cells.

  16. Queuine, a tRNA anticodon wobble base, maintains the proliferative and pluripotent potential of HL-60 cells in the presence of the differentiating agent 6-thioguanine.

    PubMed Central

    French, B T; Patrick, D E; Grever, M R; Trewyn, R W

    1991-01-01

    6-Thioguanine (6-TG)-induced differentiation of hypoxanthine phosphoribosyltransferase (IMP: pyrophosphate phosphoribosyltransferase, EC 2.4.2.8)-deficient HL-60 cells is characterized by 2 days of growth, after which morphological differentiation proceeds. Addition of the tRNA wobble base queuine, in the presence of 6-TG, maintains the proliferative capability of the cells. The ability of 6-TG to induce differentiation correlates with c-myc mRNA down-regulation, but queuine has no effect on this parameter. Treatment with 6-TG for 2-3 days commits HL-60 cells to granulocytic differentiation, and, once committed, these cells do not respond to the monocytic inducer phorbol 12-myristate 13-acetate. Nonetheless, when cells are treated with queuine and 6-TG, they maintain the promyelocytic morphology and are capable of being induced down the monocytic pathway by phorbol 12-myristate 13-acetate as indicated by stabilization of c-fms mRNA and cell adherence. In the absence of queuine, phorbol 12-myristate 13-acetate is incapable of inducing monocytic markers in the 6-TG-treated cells. The data presented indicate that 6-TG-induced differentiation of HL-60 cells is a tRNA-facilitated event and that the tRNA wobble base queuine is capable of maintaining both the proliferative and pluripotent potential of the cells. Images PMID:1988936

  17. Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules.

    PubMed

    Ludwig, Andreas; Hundhausen, Christian; Lambert, Millard H; Broadway, Neil; Andrews, Robert C; Bickett, D Mark; Leesnitzer, M Anthony; Becherer, J David

    2005-03-01

    The transmembrane metzinkin-proteases of the ADAM (a disintegrin and a metalloproteinase)-family ADAM10 and ADAM 17 are both implicated in the ectodomain shedding of various cell surface molecules including the IL6-receptor and the transmembrane chemokines CX3CL1 and CXCL16. These molecules are constitutively released from cultured cells, a process that can be rapidly enhanced by cell stimulation with phorbol esters such as PMA. Recent research supports the view that the constitutive cleavage predominantly involves ADAM10 while the inducible one is mediated to a large extent by ADAM17. We here describe the discovery of hydroxamate compounds with different potency against ADAM10 and ADAM17 and different ability to block constitutive and inducible cleavage of IL6R, CX3CL1 and CXCL16 by the two proteases. By screening a number of hydroxamate inhibitors for the inhibition of recombinant metalloproteinases, a compound was found inhibiting ADAM10 with more than 100-fold higher potency than ADAM17, which may be explained by an improved fit of the compound to the S1' specificity pocket of ADAM10 as compared to that of ADAM17. In cell-based cleavage experiments this compound (GI254023X) potently blocked the constitutive release of IL6R, CX3CL1 and CXCL16, which was in line with the reported involvement of ADAM10 but not ADAM17 in this process. By contrast, the compound did not affect the PMA-induced shedding, which was only blocked by GW280264X, a potent inhibitor of ADAM17. As expected, GI254023X did not further decrease the residual release of CX3CL1 and CXCL16 in ADAM10-deficient cells verifying that the compound's effect on the constitutive shedding of these molecules was exclusively due to the inhibition of ADAM10. Thus, GI254023X may by of use as a preferential inhibitor of constitutive shedding events without effecting the inducible shedding in response to agonists acting similar to PMA.

  18. Heparin suppresses the induction of c-fos and c-myc mRNA in murine fibroblasts by selective inhibition of a protein kinase C-dependent pathway.

    PubMed Central

    Wright, T C; Pukac, L A; Castellot, J J; Karnovsky, M J; Levine, R A; Kim-Park, H Y; Campisi, J

    1989-01-01

    Heparin is a complex glycosaminoglycan that inhibits the proliferation of several cell types in culture and in vivo. To begin to define the mechanism(s) by which heparin exerts its antiproliferative effects, we asked whether heparin interferes with the expression of the growth factor-inducible protooncogenes c-fos and c-myc. We show that heparin suppressed the induction of c-fos and c-myc mRNA by serum in murine (BALB/c) 3T3 fibroblasts. Using purified mitogens, we further show that suppression was most marked when protooncogene expression was induced by phorbol 12-myristate 13-acetate, an activator of protein kinase C. By contrast, there was little or no suppression when the cells were stimulated by epidermal growth factor, which, in these cells, utilizes a protein kinase C-independent pathway for the induction of gene expression. Heparin also inhibited the change in cell morphology induced by the phorbol ester but had no effect on the morphological change induced by epidermal growth factor and agents that raise intracellular cAMP. Heparin did not inhibit intracellular protein kinase C activity, phorbol ester-induced down-regulation of protein kinase C, or phosphorylation of the 80-kDa intracellular protein kinase C substrate. These results suggest that heparin inhibits a protein kinase C-dependent pathway for cell proliferation and suppresses the induction of c-fos and c-myc mRNA at a site distal to activation of the kinase. Images PMID:2541434

  19. Differential usage of signal transduction pathways defines two types of serum response factor target gene.

    PubMed

    Gineitis, D; Treisman, R

    2001-07-06

    Activation of the transcription factor serum response factor (SRF) is dependent on Rho-controlled changes in actin dynamics. We used pathway-specific inhibitors to compare the roles of actin dynamics, extracellular signal-regulated kinase (ERK) signaling, and phosphatidylinositol 3-kinase in signaling either to SRF itself or to four cellular SRF target genes. Serum, lysophosphatidic acid, platelet-derived growth factor, and phorbol 12-myristate 13-acetate (PMA) each activated transcription of a stably integrated SRF reporter gene dependent on functional RhoA GTPase. Inhibition of mitogen-activated protein kinase-ERK kinase (MEK) signalling reduced activation of the SRF reporter by all stimuli by about 50%, except for PMA, which was effectively blocked. Inhibition of phosphatidylinositol 3-kinase slightly reduced reporter activation by serum and lysophosphatidic acid but substantially inhibited activation by platelet-derived growth factor and PMA. Reporter induction by all stimuli was absolutely dependent on actin dynamics. Regulation of the SRF (srf) and vinculin (vcl) genes was similar to that of the SRF reporter gene; activation by all stimuli was Rho-dependent and required actin dynamics but was largely independent of MEK activity. In contrast, activation of fos and egr1 occurred independently of RhoA and actin polymerization but was almost completely dependent on MEK activation. These results show that at least two classes of SRF target genes can be distinguished on the basis of their relative sensitivity to RhoA-actin and MEK-ERK signaling pathways.

  20. Tetradecanol reduces EL-4 T cell growth by the down regulation of NF-κB mediated IL-2 secretion.

    PubMed

    Park, Jung Up; Kang, Bok Yun; Lee, Hwa-Jeong; Kim, Sunoh; Bae, Donghyuck; Park, Jong-Hwan; Kim, Young Ran

    2017-03-15

    Tetradecanol is a straight-chain saturated fatty alcohol purified from Dendropanax morbifera leaves. We found that tetradecanol (30μM) reduced specifically the growth of T cells such as EL-4 T cell and isolated murine CD4(+) T cells. In this study, we investigated the effects of tetradecanol on the regulation of interlukin-2 (IL-2), a potent T cell growth factor. Tetradecanol significantly inhibited IL-2 secretion in EL-4 T cells activated with phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Io) and also in isolated murine CD4(+) T cells activated with anti-CD3 and anti-CD28 antibodies. Next, we examined the effect of tetradecanol on the transcriptional activity related to IL-2 production in T cells. Tetradecanol decreased PMA/Io-induced promoter activity of NF-κB in EL-4 T cells, but did not show any significant effects on the promoters of activator protein 1 (AP-1) and nuclear factor of activated T cells (NF-AT). Tetradecanol inhibited IκBα degradation and nuclear translocation of NF-κB subunit, p65 in PMA/Io-activated EL-4 T cells. These results suggest that tetradecanol might have immunosuppressive effects on T cell mediated disorders. Using a chronic allergic contact dermatitis model induced by repeated application of oxazolone, we showed that tetradecanol reduced ear thickness induced by oxazolone.

  1. Discrete control of TRPV4 channel function in the distal nephron by protein kinases A and C.

    PubMed

    Mamenko, Mykola; Zaika, Oleg L; Boukelmoune, Nabila; Berrout, Jonathan; O'Neil, Roger G; Pochynyuk, Oleh

    2013-07-12

    We have recently documented that the Ca(2+)-permeable TRPV4 channel, which is abundantly expressed in distal nephron cells, mediates cellular Ca(2+) responses to elevated luminal flow. In this study, we combined Fura-2-based [Ca(2+)]i imaging with immunofluorescence microscopy in isolated split-opened distal nephrons of C57BL/6 mice to probe the molecular determinants of TRPV4 activity and subcellular distribution. We found that activation of the PKC pathway with phorbol 12-myristate 13-acetate significantly increased [Ca(2+)]i responses to flow without affecting the subcellular distribution of TRPV4. Inhibition of PKC with bisindolylmaleimide I diminished cellular responses to elevated flow. In contrast, activation of the PKA pathway with forskolin did not affect TRPV4-mediated [Ca(2+)]i responses to flow but markedly shifted the subcellular distribution of the channel toward the apical membrane. These actions were blocked with the specific PKA inhibitor H-89. Concomitant activation of the PKA and PKC cascades additively enhanced the amplitude of flow-induced [Ca(2+)]i responses and greatly increased basal [Ca(2+)]i levels, indicating constitutive TRPV4 activation. This effect was precluded by the selective TRPV4 antagonist HC-067047. Therefore, the functional status of the TRPV4 channel in the distal nephron is regulated by two distinct signaling pathways. Although the PKA-dependent cascade promotes TRPV4 trafficking and translocation to the apical membrane, the PKC-dependent pathway increases the activity of the channel on the plasma membrane.

  2. Emodin Isolated from Polygoni cuspidati Radix Inhibits TNF-α and IL-6 Release by Blockading NF-κB and MAP Kinase Pathways in Mast Cells Stimulated with PMA Plus A23187

    PubMed Central

    Lu, Yue; Jeong, Yong-Tae; Li, Xian; Kim, Mi Jin; Park, Pil-Hoon; Hwang, Seung-Lark; Son, Jong Keun; Chang, Hyeun Wook

    2013-01-01

    Emodin, a naturally occurring anthraquinone derivative isolated from Polygoni cuspidati radix, has several beneficial pharmacologic effects, which include anti-cancer, anti-diabetic, and anti-inflammatory activities. In this study, the authors examined the effect of emodin on the production of proinflammatory cytokines, such as, tumor necrosis factor (TNF)-α and interleukin (IL)-6, in mouse bone marrow-derived mast cells (BMMCs) stimulated with phorbol 12-myristate 13-acetate (PMA) plus the calcium ionophore A23187. To investigate the mechanism responsible for the regulation of pro-inflammatory cytokine production by emodin, the authors assessed its effects on the activations of transcriptional factor nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). Emodin attenuated the nuclear translocation of (NF)-κB p65 and its DNA-binding activity by reducing the phosphorylation and degradation of IκBα and the phosphorylation of IκB kinase B (IKK). Furthermore, emodin dose-dependently attenuated the phosphorylations of MAPKs, such as, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAP kinase, and the stress-activated protein kinases (SAPK)/c-Jun-N-terminal kinase (JNK). Taken together, the findings of this study suggest that the anti-inflammatory effects of emodin on PMA plus A23187-stimulated BMMCs are mediated via the inhibition of NF-κB activation and of the MAPK pathway. PMID:24404333

  3. Effect of acute and chronic excesses of dietary nitrogen on blood neutrophil functions in cattle.

    PubMed

    Raboisson, D; Caubet, C; Tasca, C; De Marchi, L; Ferraton, J M; Gannac, S; Millet, A; Enjalbert, F; Schelcher, F; Foucras, G

    2014-12-01

    phorbol 12-myristate 13-acetate was not modified, in contrast to OZ stimulation. Decreased ROS production during chronic EDN probably involves the early events leading to ROS production, as OZ acts through membrane receptors and phorbol 12-myristate 13-acetate directly activates protein kinase C. This is the first study to provide evidence that the modifications of neutrophil functions produced by excess nitrogen depend on the intensity and duration of the excess. Further studies, including epidemiological studies during risk periods, are needed to resolve the issues linked to EDN.

  4. C-Fos Regulation by the MAPK and PKC Pathways in Intervertebral Disc Cells

    PubMed Central

    Yokoyama, Katsuya; Hiyama, Akihiko; Arai, Fumiyuki; Nukaga, Tadashi; Sakai, Daisuke; Mochida, Joji

    2013-01-01

    Background The gene encoding c-fos is an important factor in the pathogenesis of joint disease in patients with osteoarthritis. However, it is unknown whether the signal mechanism of c-fos acts in intervertebral disc (IVD) cells. We investigated whether c-fos is activated in relation to mitogen-activated protein kinases (MAPKs) and the protein kinase C (PKC) pathway in nucleus pulposus (NP) cells. Methodology/Results Reverse transcription-polymerase chain reaction and western blotting analyses were used to measure the expression of c-fos in rat IVD cells. Transfections were performed to determine the effects of c-fos on target gene activity. The effect of c-fos protein expression was examined in transfection experiments and in a 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide cell viability assay. Phorbol 12-myristate 13-acetate (PMA), the most commonly used phorbol ester, binds to and activates protein kinase C (PKC), causing a wide range of effects in cells and tissues. PMA induced the expression of c-fos gene transcription and protein expression, and led to activation of the MAPK pathways in NP cells. The c-fos promoter was suppressed completely in the presence of the MAPK inhibitor PD98059, an inhibitor of the MEK/ERK kinase cascade, but not in the presence of SKF86002, SB202190, or SP600125. The effects of the PKC pathway on the transcriptional activity of the c-fos were evaluated. PKCγ and PKCδ suppressed the promoter activity of c-fos. Treatment with c-fos inhibited aggrecan and Col2 promoter activities and the expression of these genes in NP cells. Conclusions This study demonstrated, for the first time, that the MAPK and PKC pathways had opposing effects on the regulation of c-fos in NP cells. Thus, the expression of c-fos can be suppressed in the extracellular matrix of NP cells. PMID:24023832

  5. Aspalathin and nothofagin from rooibos (Aspalathus linearis) inhibit endothelial protein C receptor shedding in vitro and in vivo.

    PubMed

    Kwak, Soyoung; Han, Min-Su; Bae, Jong-Sup

    2015-01-01

    Aspalathin (Asp) and nothofagin (Not) are two major active dihydrochalcones found in green rooibos, which have been reported for their anti-oxidant activity. Increasing evidence has demonstrated that beyond its role in the activation of protein C, endothelial cell protein C receptor (EPCR) is also involved in vascular inflammation. EPCR activity is markedly changed by ectodomain cleavage and its release as the soluble EPCR. EPCR can be shed from the cell surface, which is mediated by tumor necrosis factor-α converting enzyme (TACE). However, little is known about the effects of Asp and Not on EPCR shedding. Our results demonstrated that Asp and Not induced potent inhibition of phorbol-12-myristate 13-acetate (PMA)-, tumor necrosis factor (TNF)-α-, interleukin (IL)-1β, and cecal ligation and puncture (CLP)-induced EPCR shedding. Asp and Not also inhibited the expression and activity of PMA-induced TACE in endothelial cells. Asp and Not also suppressed CLP-induced protein C decrease in mice and thrombin generation in HUVECs. In addition, treatment with Asp and Not resulted in reduced PMA-stimulated phosphorylation of p38, extracellular regulated kinase (ERK) 1/2, and c-Jun N-terminal kinase (JNK). These results demonstrate the potential of Asp and Not as an anti-sEPCR shedding reagent against PMA and CLP-mediated EPCR shedding.

  6. Purification and characterization of a lipid thiobis ester from human neutrophil cytosol that reversibly deactivates the O2- -generating NADPH oxidase.

    PubMed

    Eklund, E A; Gabig, T G

    1990-05-25

    Intact neutrophils possess a cellular mechanism that efficiently deactivates the microbicidal O2-generating NADPH oxidase during the respiratory burst (Akard, L. P., English, D., and Gabig, T. G. (1988) Blood 72, 322-327). The present studies directed at identifying the molecular mechanism(s) involved in NADPH oxidase deactivation showed that a heat- and trypsin-insensitive species in the cytosolic fraction from normal unstimulated neutrophils was capable of deactivating the membrane-associated NADPH oxidase isolated from opsonized zymosan- or phorbol 12-myristate 13-acetate-stimulated neutrophils. This cytosolic species also deactivated the cell-free-activated oxidase. Deactivation by this cytosolic species occurred in the absence of NADPH-dependent catalytic turnover and was reversible, since NADPH oxidase activity could be subsequently reactivated in the cell-free system. The sedimentable particulate fraction from unstimulated neutrophils did not demonstrate deactivator activity. Deactivator activity was demonstrated in the neutral lipid fraction of neutrophil cytosol extracted with chloroform:methanol. Following complete purification of cytosolic deactivator activity by thin layer chromatography and reversed phase high performance liquid chromatography, the deactivator species was shown to be a lipid thiobis ester compound by mass spectroscopy. Cellular metabolism of this compound in human neutrophils may reveal a unique mechanism for enzymatic control of the NADPH oxidase system and thereby play an important role in regulation of the inflammatory response.

  7. Regulation of c-jun expression during hypoxic and low-glucose stress.

    PubMed Central

    Ausserer, W A; Bourrat-Floeck, B; Green, C J; Laderoute, K R; Sutherland, R M

    1994-01-01

    Hypoxic stress in tumor cells has been implicated in malignant progression and in the development of therapeutic resistance. We have investigated the effects of acute hypoxic exposure on regulation of the proto-oncogene c-jun in SiHa cells, a human squamous carcinoma cell line. Hypoxic exposure produced increased levels of c-jun mRNA resulting from both message stabilization and transcriptional activation. A superinduction of c-jun message resulted during simultaneous oxygen and glucose deprivation, with several characteristics of an induction mediated by oxidative-stress pathways. This superinduction was blocked by preincubation of cells with the glutathione precursor N-acetyl cysteine or with phorbol 12-myristate 13-acetate, which indicates redox control of c-jun expression and probable involvement of protein kinase C. By gel retardation assay, no increase in AP-1 DNA binding activity was found to be concomitant with the transcriptional activation of c-jun. A lack of increased DNA binding was observed for the consensus AP-1 sequence and for the two AP-1 sequence variants found within the c-Jun promoter. Additionally, hypoxic and low-glucose stress produced no activation of stably transfected AP-1 reporter sequences. Taken together, these results indicate that the transcriptional activation of c-jun during hypoxic and low-glucose stress involves redox control and is unlikely to be mediated by AP-1 recognition elements within the c-jun promoter. Images PMID:8035787

  8. Possible Involvement of the Inhibition of NF-κB Factor in Anti-Inflammatory Actions That Melatonin Exerts on Mast Cells.

    PubMed

    Maldonado, M D; García-Moreno, H; González-Yanes, C; Calvo, J R

    2016-08-01

    Melatonin is a molecule endogenously produced in a wide variety of immune cells, including mast cells (RBL-2H3). It exhibits immunomodulatory, anti-inflammatory and anti-apoptotic properties. The physiologic mechanisms underlying these activities of melatonin have not been clarified in mast cells. This work is designed to determine the anti-inflammatory effect and mechanism of action of melatonin on activated mast cells. RBL-2H3 were pre-treated with exogenous melatonin (MELx) at physiological (100nM) and pharmacological (1 mM) doses for 30 min, washed and activated with PMACI (phorbol 12-myristate 13-acetate plus calcium ionophore A23187) for 2 h and 12 h. The data shows that pre-treatment of MELx in stimulated mast cells, significantly reduced the levels of endogenous melatonin production (MELn), TNF-α and IL-6. These effects are directly related with the MELx concentration used. MELx also inhibited IKK/NF-κB signal transduction pathway in stimulated mast cells. These results indicate a molecular basis for the ability of melatonin to prevent inflammation and for the treatment of allergic inflammatory diseases through the down-regulation of mast cell activation. J. Cell. Biochem. 117: 1926-1933, 2016. © 2016 Wiley Periodicals, Inc.

  9. Arjunolic acid ameliorates reactive oxygen species via inhibition of p47phox-serine phosphorylation and mitochondrial dysfunction

    PubMed Central

    Miriyala, Sumitra; Chandra, Mini; Maxey, Benjamin; Day, Alicia; St. Clair, Daret K.; Panchatcharam, Manikandan

    2015-01-01

    Impaired cardiovascular function during acute myocardial infarction (MI) is partly associated with recruitment of activated polymorphonuclear neutrophils. The protective role of arjunolic acid (AA; 2:3:23-Trihydroxy olean-12-en-28-oic acid) is studied in the modulation of neutrophil functions in vitro by measuring the reactive oxygen species (ROS) generation. Neutrophils were isolated from normal and acute MI mice to find out the efficacy of AA in reducing oxidative stress. Stimulation of neutrophils with phorbol-12-myristate-13-acetate (PMA) resulted in an oxidative burst of superoxide anion (O2•−) and enhanced release of lysosomal enzymes. The treatment of neutrophils with PMA induced phosphorylation of Ser345 on p47phox, a cytosolic component of NADPH oxidase. Furthermore, we observed activated ERK induced phosphorylation of Ser345 in MI neutrophils. Treatment with AA significantly inhibited the phosphorylation of P47phox and ERK in the stimulated controls and MI neutrophils. Oxidative phosphorylation activities in MI cells were lower than in control, while the glycolysis rates were elevated in MI cells compared to the control. In addition, we observed AA decreased intracellular oxidative stress and reduced the levels of O2•− in neutrophils. This study therefore identifies targets for AA in activated neutrophils mediated by the MAPK pathway on p47phox involved in ROS generation. PMID:26319153

  10. Regulation of hepatic EAAT-2 glutamate transporter expression in human liver cholestasis

    PubMed Central

    Najimi, Mustapha; Stéphenne, Xavier; Sempoux, Christine; Sokal, Etienne

    2014-01-01

    AIM: To investigate the activity and expression of EAAT2 glutamate transporter in both in vitro and in vivo models of cholestasis. METHODS: This study was conducted on human hepatoblastoma HepG2 cell cultures, the liver of bile duct ligated rats and human specimens from cholestatic patients. EAAT2 glutamate transporter activity and expression were analyzed using a substrate uptake assay, immunofluorescence, reverse transcription-polymerase chain reaction, and immunohistochemistry, respectively. RESULTS: In HepG2 cells, cholestasis was mimicked by treating cells with the protein kinase C activator, phorbol 12-myristate 13-acetate. Under such conditions, EAAT2 transporter activity was decreased both at the level of substrate affinity and maximal transport velocity. The decreased uptake was correlated with intracellular translocation of EAAT2 molecules as demonstrated using immunofluorescence. In the liver of bile duct ligated rats, an increase in EAAT2 transporter protein expression in hepatocytes was demonstrated using immunohistochemistry. The same findings were observed in human liver specimens of cholestasis in which high levels of γ-glutamyl transpeptidase were documented in patients with biliary atresia and progressive familial intrahepatic cholestasis type 3. CONCLUSION: This study demonstrates the alteration in glutamate handling by hepatocytes in liver cholestasis and suggests a potential cross-talk between glutamatergic and bile systems. PMID:24587631

  11. Factors influencing in vitro respiratory burst assays with head kidney leucocytes from rainbow trout, Oncorhynchus mykiss (Walbaum).

    PubMed

    Chettri, J K; Holten-Andersen, L; Buchmann, K

    2010-07-01

    Abstract Head kidney leucocytes are central elements in a number of in vivo and in vitro assays elucidating innate and adaptive immune mechanisms in teleosts following stimulation with various antigens. These systems are sensitive to several factors affecting the outcome of the assays. The present work describes the importance of temperature, cell concentration, exposure time and immune-modulatory molecules on the respiratory burst activity (RBA) of rainbow trout head kidney leucocytes in vitro. Some variation in RBA was observed among individual fish. However, use of cells pooled from four individuals produced satisfactory results following exposure to phorbol 12-myristate 13-acetate, zymosan and beta-glucan. Temperature was shown to have a significant effect on production of reactive radicals as illustrated by a high activity in cells maintained at 15-20 degrees C and a reduced activity at temperature extremes (1, 4 and 30 degrees C). Highest activity was found at a cell concentration of 1 x 10(7) cells mL(-1). Reactivity showed a clear decline when cells were exposed for more than 4 h. Moreover, incubation of cells with inhibitory substances viz., DiMePE2, cortisol and superoxide dismutase decreased the RBA. It is concluded that several biotic and abiotic factors should be taken into account when conducting RBA assays with head kidney leucocytes for elucidation of rainbow trout immune responses.

  12. Anti-inflammatory drugs and tumor necrosis factor-alpha production from monocytes: role of transcription factor NF-kappa B and implication for rheumatoid arthritis therapy.

    PubMed

    Lavagno, Luisa; Gunella, Gabriele; Bardelli, Claudio; Spina, Simona; Fresu, Luigia Grazia; Viano, Ilario; Brunelleschi, Sandra

    2004-10-06

    Inhibition of tumor necrosis factor-alpha (TNF-alpha) represents a relevant target in rheumatoid arthritis therapy. Besides inhibiting cyclooxygenase, anti-inflammatory drugs can affect the activation of transcription factors. We investigated the ability of dexamethasone, indomethacin, and rofecoxib to modulate nuclear factor-kappaB (NF-kappaB) activation and TNF-alpha release from human monocytes challenged with lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA). Both stimuli induced NF-kappaB nuclear translocation and TNF-alpha secretion. Dexamethasone potently inhibited TNF-alpha release, indomethacin inhibited only PMA-evoked release, while rofecoxib had no effect. In the electrophoretic mobility shift assay, dexamethasone and rofecoxib dose-dependently inhibited the DNA binding activity of NF-kappaB in stimulated monocytes, whereas indomethacin failed to inhibit the LPS-evoked one. These results were further confirmed by evaluating the drugs' ability to reduce nuclear NF-kappaB subunits, as well as the amount of phosphorylated IkappaBalpha in cytosolic fractions. In conclusion, these results indicate that anti-inflammatory drugs differ largely in their ability to inhibit NF-kappaB activity and/or TNF-alpha release from human monocytes. These effects can be relevant to rheumatoid arthritis therapy.

  13. The role of phosphatidylinositol signaling pathway in regulating serotonin-induced oocyte maturation in Mercenaria mercenaria

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Zhang, Tao

    2011-05-01

    Serotonin (5-HT) has been found to stimulate meiotic maturation of oocytes in many molluscs. During maturation, several signaling pathways are involved, especially the phosphatidylinositol and cAMP pathways. In order to examine the possible role of the phosphatidylinositol signaling pathway in regulating oocyte maturation in Mercenaria mercenaria, the effects of the activator/inhibitor of phospholipase (PLC) and protein kinase C (PKC) on serotonin-induced maturation were studied. Results show that high-concentrations of neomycin (inhibitor of PLC) blocked oocyte maturation, while 9, 10-dimethyl-1, 2-benzanthracene (DMBA, activator of PLC) promoted oocyte maturation in the presence of serotonin. It was also found that in the presence of serotonin, phorbol 12-myristate 13-acetate (PMA, activator of PKC) inhibited oocyte maturation, while sphingosine (inhibitor of PKC) stimulated oocyte maturation. These results indicate that serotonin-induced oocyte maturation requires the activation of the phosphatidylinositol pathway. Decrease of PLC inhibited serotonin-induced oocyte maturation, whereas a decrease of PKC stimulated the maturation. Thus, our study indicates that serotonin promotes maturation of M. mercenaria oocytes through PLC stimulated increase in calcium ion concentration via inositol-1, 4, 5-trisphosphate (IP3) but not PKC.

  14. Small molecule glutaminase inhibitors block glutamate release from stimulated microglia.

    PubMed

    Thomas, Ajit G; O'Driscoll, Cliona M; Bressler, Joseph; Kaufmann, Walter; Rojas, Camilo J; Slusher, Barbara S

    2014-01-03

    Glutaminase plays a critical role in the generation of glutamate, a key excitatory neurotransmitter in the CNS. Excess glutamate release from activated macrophages and microglia correlates with upregulated glutaminase suggesting a pathogenic role for glutaminase. Both glutaminase siRNA and small molecule inhibitors have been shown to decrease excess glutamate and provide neuroprotection in multiple models of disease, including HIV-associated dementia (HAD), multiple sclerosis and ischemia. Consequently, inhibition of glutaminase could be of interest for treatment of these diseases. Bis-2-(5-phenylacetimido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and 6-diazo-5-oxo-l-norleucine (DON), two most commonly used glutaminase inhibitors, are either poorly soluble or non-specific. Recently, several new BPTES analogs with improved physicochemical properties were reported. To evaluate these new inhibitors, we established a cell-based microglial activation assay measuring glutamate release. Microglia-mediated glutamate levels were significantly augmented by tumor necrosis factor (TNF)-α, phorbol 12-myristate 13-acetate (PMA) and Toll-like receptor (TLR) ligands coincident with increased glutaminase activity. While several potent glutaminase inhibitors abrogated the increase in glutamate, a structurally related analog devoid of glutaminase activity was unable to block the increase. In the absence of glutamine, glutamate levels were significantly attenuated. These data suggest that the in vitro microglia assay may be a useful tool in developing glutaminase inhibitors of therapeutic interest.

  15. Wnt1 Participates in Inflammation Induced by Lipopolysaccharide Through Upregulating Scavenger Receptor A and NF-kB.

    PubMed

    Zhao, Wenting; Sun, Zewei; Wang, Shuai; Li, Zhenwei; Zheng, Liangrong

    2015-08-01

    The study investigated the role of wnt1 in the inflammatory response initiated by lipolysaccharide (LPS), and analyzed the association between wnt1, NF-KB, and inflammatory factors. THP-1 cells were activated with phorbol-12-myristate-13-acetate (PMA) and treated with LPS to induce inflammation. THP-1 cells were transfected with wnt1siRNA and overexpression plasmid to explore the relationship among wnt1, SRA, and NF-KB. Inhibitor of β-catenin and siRNA of FZD1were used to investigate the signaling events involved in SRA activation induced by wnt1. Levels of NF-kB protein and inflammatory cytokines were assessed followingwnt1 siRNA and LPS treatment. PMA activation and LPS treatment of THP-1 cells increased wnt1 protein levels. Wnt1 promoted SRA expression through activation of canonical wnt pathway. Wnt1 increased NF-kB protein levels and enhanced the secretion of IL-6, TNF-α, and iNOS through binding to SRA. These findings suggest that wnt1 increased SRA and NF-kB protein levels and participated in the inflammatory response.

  16. The 18-kDa Translocator Protein Inhibits Vascular Cell Adhesion Molecule-1 Expression via Inhibition of Mitochondrial Reactive Oxygen Species

    PubMed Central

    Joo, Hee Kyoung; Lee, Yu Ran; Kang, Gun; Choi, Sunga; Kim, Cuk-Seong; Ryoo, Sungwoo; Park, Jin Bong; Jeon, Byeong Hwa

    2015-01-01

    Translocator protein 18 kDa (TSPO) is a mitochondrial outer membrane protein and is abundantly expressed in a variety of organ and tissues. To date, the functional role of TSPO on vascular endothelial cell activation has yet to be fully elucidated. In the present study, the phorbol 12-myristate 13-acetate (PMA, 250 nM), an activator of protein kinase C (PKC), was used to induce vascular endothelial activation. Adenoviral TSPO overexpression (10–100 MOI) inhibited PMA-induced vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) expression in a dose dependent manner. PMA-induced VCAM-1 expressions were inhibited by Mito-TEMPO (0.1–0.5 μM), a specific mitochondrial antioxidants, and cyclosporin A (1–5 μM), a mitochondrial permeability transition pore inhibitor, implying on an important role of mitochondrial reactive oxygen species (ROS) on the endothelial activation. Moreover, adenoviral TSPO overexpression inhibited mitochondrial ROS production and manganese superoxide dismutase expression. On contrasts, gene silencing of TSPO with siRNA increased PMA-induced VCAM-1 expression and mitochondrial ROS production. Midazolam (1–50 μM), TSPO ligands, inhibited PMA-induced VCAM-1 and mitochondrial ROS production in endothelial cells. These results suggest that mitochondrial TSPO can inhibit PMA-induced endothelial inflammation via suppression of VCAM-1 and mitochondrial ROS production in endothelial cells. PMID:26608360

  17. Ethacrynic acid and 1 alpha,25-dihydroxyvitamin D3 cooperatively inhibit proliferation and induce differentiation of human myeloid leukemia cells.

    PubMed

    Makishima, M; Honma, Y

    1996-09-01

    The active form of vitamin D, 1 alpha,25-dihydroxyvitamin D3 (VD3), inhibits proliferation and induces differentiation of leukemia cells, but its clinical use is limited by the adverse effect of hypercalcemia. In this study we found that the loop diuretic ethacrynic acid, which is used to treat hypercalcemia, enhanced the differentiation of human leukemia cells induced by VD3. Ethacrynic acid alone inhibited the proliferation of human promyelocytic HL-60 cells while only slightly increasing differentiation markers such as nitroblue tetrazolium (NBT)-reducing and lysozyme activities. Ethacrynic acid effectively enhanced the growth-inhibiting action of VD3. In the presence of ethacrynic acid, VD3 increased the NBT-reducing and lysozyme activities and the CD11b expression of HL-60 cells more effectively than VD3 alone. Other loop diuretics, furosemide and bumetanide, also enhanced the differentiation of HL-60 cells induced by VD3, but to a lesser extent than ethacrynic acid. The differentiation of HL-60 cells induced by all-trans retinoic acid, dimethyl sulfoxide or phorbol-12-myristate 13-acetate was also enhanced by ethacrynic acid with increasing NBT-reducing and lysozyme activities and the expression of CD11b or CD14 surface antigen. Morphologically, ethacrynic acid enhanced the monocytic differentiation of HL-60 cells induced by VD3 and phorbol ester and the granulocytic differentiation by retinoic acid and dimethyl sulfoxide. Other human myelomonocytic leukemia ML-1, U937, P39/TSU and P31/FUJ cells were induced to differentiate by VD3 and this was also enhanced by ethacrynic acid. The long-term culture of HL-60 cells showed that ethacrynic acid plus VD3 induced the complete growth arrest of HL-60 cells. Therefore ethacrynic acid, which is used to treat hypercalcemia, enhanced the proliferation-inhibiting and differentiation-inducing activities of VD3 and the combination of ethacrynic acid and VD3 may be useful in therapy for myeloid leukemia.

  18. Characterization of the role of CaMKI-like kinase (CKLiK) in human granulocyte function.

    PubMed

    Verploegen, Sandra; Ulfman, Laurien; van Deutekom, Hanneke W M; van Aalst, Corneli; Honing, Henk; Lammers, Jan-Willem J; Koenderman, Leo; Coffer, Paul J

    2005-08-01

    Activation of granulocyte effector functions, such as induction of the respiratory burst and migration, are regulated by a variety of relatively ill-defined signaling pathways. Recently, we identified a novel Ca2+/calmodulin-dependent kinase I-like kinase, CKLiK, which exhibits restricted mRNA expression to human granulocytes. Using a novel antibody generated against the C-terminus of CKLiK, CKLiK was detected in CD34+-derived neutrophils and eosinophils, as well as in mature peripheral blood granulocytes. Activation of human granulocytes by N-formyl-methionyl-leucyl-phenylalanine (fMLP) and platelet-activating factor (PAF), but not the phorbol ester PMA (phorbol 12-myristate-13-acetate), resulted in induction of CKLiK activity, in parallel with a rise of intracellular Ca2+ [Ca2+]i. To study the functionality of CKLiK in human granulocytes, a cell-permeable CKLiK peptide inhibitor (CKLiK297-321) was generated which was able to inhibit kinase activity in a dose-dependent manner. The effect of this peptide was studied on specific granulocyte effector functions such as phagocytosis, respiratory burst, migration, and adhesion. Phagocytosis of Aspergillus fumigatus particles was reduced in the presence of CKLiK297-321 and fMLP-induced reactive oxygen species (ROS) production was potently inhibited by CKLiK297-321 in a dose-dependent manner. Furthermore, fMLP-induced neutrophil migration on albumin-coated surfaces was perturbed, as well as beta2-integrin-mediated adhesion. These findings suggest a critical role for CKLiK in modulating chemoattractant-induced functional responses in human granulocytes.

  19. Fc gamma receptor type III (CD16) is included in the zeta NK receptor complex expressed by human natural killer cells.

    PubMed Central

    Anderson, P; Caligiuri, M; O'Brien, C; Manley, T; Ritz, J; Schlossman, S F

    1990-01-01

    We recently reported that CD3- natural killer (NK) cells express the zeta chain of the T-cell receptor complex (zeta NK) in association with higher molecular weight structures whose expression differs between individual NK cell clones. Because NK cell cytolytic activity is known to be triggered by perturbation of the type III Fc gamma receptor (CD16), we sought to determine whether this activating molecule is included in the zeta NK molecular complex. Biochemical evidence for a physical association between CD16 and zeta NK was obtained by comparing immunoprecipitates formed using monoclonal antibodies reactive with each of these molecules by SDS/polyacrylamide gel electrophoresis, immunoblotting, and peptide mapping. In both clonal and polyclonal populations of CD3- NK cells, CD16 and zeta NK specifically associated with one another. Functional evidence for a specific association between CD16 and zeta NK in intact cells was obtained by demonstrating a coordinate down-modulation of both of these molecules induced by either phorbol 12-myristate 13-acetate or monoclonal antibodies reactive with CD16. Our results suggest that Fc gamma receptor type III (CD16) is included in the zeta NK complex and that this complex is likely to play an important role in NK cell activation. Images PMID:2138330

  20. Adhesion of human leukocytes to biomaterials: an in vitro study using alkanethiolate monolayers with different chemically functionalized surfaces.

    PubMed

    Barbosa, Judite N; Barbosa, Mário A; Aguas, Artur P

    2003-06-15

    The adhesion of human leukocytes to self-assembled monolayers of well-defined surface chemistry was investigated in vitro. Polymorphonuclear (PMN) and mononuclear leukocytes were isolated from human blood by centrifugation techniques. The effect on adhesion of cell activation produced by pre-incubation of leukocytes with phytohemagglutinin (PHA) and phorbol 12-myristate 13-acetate (PMA) was also studied. Gold substrates were modified by treatment with alkanethiols with three different terminal chemical groups: COOH, OH, and CH(3). After incubation with the two subpopulations of leukocytes, the monolayers were washed, treated with fixative, stained with a Giemsa method, and observed by light microscopy to quantify the number of attached leukocytes. Comparative quantification of the density of leukocyte adhesion to the three types of self-assembled monolayers was determined. The hydrophobic surface expressing CH(3) was found to be the one that induced the highest adhesion density of leukocytes, both of PMN and mononuclear cells. In vitro activation of both mononuclear and PMN leukocytes further increased cell adhesion to the chemically defined monolayers that were used. This enhancement was higher for PHA-activated than for PMA-stimulated mononuclear cells, whereas PMA treatment of neutrophils resulted in a higher rate of adhesion of these cells than PHA stimulation.

  1. Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes.

    PubMed

    Baj-Krzyworzeka, Monika; Szatanek, Rafał; Weglarczyk, Kazimierz; Baran, Jarosław; Urbanowicz, Barbara; Brański, Piotr; Ratajczak, Mariusz Z; Zembala, Marek

    2006-07-01

    This study was designed to determine the characteristics of tumour cell-derived microvesicles (TMV) and their interactions with human monocytes. TMV were shed spontaneously by three different human cancer cell lines but their release was significantly increased upon activation of the cells with phorbol 12-myristate 13-acetate (PMA). TMV showed the presence of several surface determinants of tumour cells, e.g. HLA class I, CD29, CD44v7/8, CD51, chemokine receptors (CCR6, CX3CR1), extracellular matrix metalloproteinase inducer (EMMPRIN), epithelial cell adhesion molecule (EpCAM), but their level of expression differed from that on cells they originated from. TMV also carried mRNA for growth factors: vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), interleukin-8 (IL-8) and surface determinants (CD44H). TMV were localized at the monocytes surface following their short exposure to TMV, while at later times intracellularly. TMV transferred CCR6 and CD44v7/8 to monocytes, exerted antiapoptotic effect on monocytes and activated AKT kinase (Protein Kinase B). Thus, TMV interact with monocytes, alter their immunophenotype and biological activity. This implicates the novel mechanism by which tumour infiltrating macrophages may be affected by tumour cells not only by a direct cell to cell contact, soluble factors but also by TMV.

  2. [Role of protein kinases of human red cell membrane in deformability and aggregation changes].

    PubMed

    Murav'ev, A V; Maĭmistova, A A; Tikhomirova, I A; Bulaeva, S V; Mikhaĭlov, P V; Murav'ev, A A

    2012-01-01

    The proteomic analysis has showed that red cell membrane contains several kinases and phosphatases. Therefore the aim of this study was to investigate the role of protein kinases of human red cell membrane in deformability and aggregation changes. Exposure of red blood cells (RBCs) to some chemical compounds led to change in the RBC microrheological properties. When forskolin (10 microM), an adenylyl cyclase (AC) and a protein kinase A (PKA) stimulator was added to RBC suspension, the RBC deformability (RBCD) was increased by 20% (p < 0.05). Somewhat more significant deformability rise appeared after RBC incubation with dB-AMP (by 26%; p < 0.01). Red cell aggregation (RBCA) was significantly decreased under these conditions (p < 0.01). Markedly less changes of deformability was found after RBC incubation with protein kinase stimulator C (PKC)--phorbol 12-myristate 13-acetate (PMA). This drug reduced red cell aggregation only slightly. It was inhibited red cell tyrosine phosphotase activity by N-vanadat and was obtained a significant RBCD rise and RBCA lowering. The similar effect was found when cells were incubated with cisplatin as a tyrosine protein kinase (TPK) activator. It is important to note that a selective TPK inhibitor--lavendustin eliminated the above mention effects. On the whole the total data clearly show that the red cell aggregation and deformation changes were connected with an activation of the different intracellular signaling pathways.

  3. Inhibitory effects of norlignans isolated from Anemarrhena asphodeloides on degranulation of rat basophilic leukemia- 2H3Cells.

    PubMed

    Bak, Jong Phil; Cho, Young Mi; Kim, Inhye; Park, Dae Won; Kwon, Jung Eun; Jeong, Yong Joon; Kwak, Jong Hwan; Kang, Se Chan

    2016-12-01

    Anemarrhena asphodeloides is known to suppress inflammation and lower various fevers. To determine the active component of A. asphodeloides, ethanol (EtOH) extract of A. asphodeloides rhizomes was fractionized. The compounds isolated from the dichloromethane (CH2Cl2) soluble fraction were identified as 4'-O-methylnyasol (1), nyasol (2), 3″-methoxynyasol (3), 3″-hydroxy-4″-methoxy-4″-dehydroxynyasol (4), 4-hydroxybenzaldehyde (5), and 4-hydroxyacetophenone (6). The four norlignans (1-4) potently inhibited the release of β-hexosaminidase from immunoglobulin E (IgE)/dinitrophenol-conjugated bovine serum albumin (DNP-BSA)-treated rat basophilic leukemia (RBL)-2H3 and A23187 plus phorbol 12-myristate 13-acetate co-treated isolated rat primary mast cells, as markers of degranulation and histamine release. The intraperitoneal treatment with the EtOH extract significantly suppressed the fetal reaction, and serum histamine release induced by compound 48/80 in mice. These results suggest that the four active norlignan compounds and the EtOH extract of A. asphodeloides may have potential to be developed as medicines for the treatment of allergies by inhibiting the activation of mast cells.

  4. The TRAF-interacting protein (TRIP) is a regulator of keratinocyte proliferation.

    PubMed

    Almeida, Stéphanie; Ryser, Stephan; Obarzanek-Fojt, Magdalena; Hohl, Daniel; Huber, Marcel

    2011-02-01

    The TRAF-interacting protein (TRIP/TRAIP) is a RING-type E3 ubiquitin ligase inhibiting tumor necrosis factor-α (TNF-α)-mediated NF-κB activation. TRIP ablation results in early embryonic lethality in mice. To investigate TRIP function in epidermis, we examined its expression and the effect of TRIP knockdown (KD) in keratinocytes. TRIP mRNA expression was strongly downregulated in primary human keratinocytes undergoing differentiation triggered by high cell density or high calcium. Short-term phorbol-12-myristate-13-acetate (TPA) treatment or inhibition of phosphatidylinositol-3 kinase signaling in proliferative keratinocytes suppressed TRIP transcription. Inhibition by TPA was protein kinase C dependent. Keratinocytes undergoing KD of TRIP expression by lentiviral short-hairpin RNA (shRNA; T4 and T5) had strongly reduced proliferation rates compared with control shRNA. Cell cycle analysis demonstrated that TRIP-KD caused growth arrest in the G1/S phase. Keratinocytes with TRIP-KD resembled differentiated cells consistent with the augmented expression of differentiation markers keratin 1 and filaggrin. Luciferase-based reporter assays showed no increase in NF-κB activity in TRIP-KD keratinocytes, indicating that NF-κB activity in keratinocytes is not regulated by TRIP. TRIP expression was increased by ∼2-fold in basal cell carcinomas compared with normal skin. These results underline the important role of TRIP in the regulation of cell cycle progression and the tight linkage of its expression to keratinocyte proliferation.

  5. Identification and characterization of an enhancer in the coding region of the genome of human immunodeficiency virus type 1.

    PubMed Central

    Verdin, E; Becker, N; Bex, F; Droogmans, L; Burny, A

    1990-01-01

    Transcription of human immunodeficiency virus type 1 (HIV-1) is regulated by cis-acting DNA elements located in the viral long terminal repeats, by viral transregulatory proteins, and by cellular transcription factors acting in concert to modulate the degree of viral expression. We demonstrate that a DNA fragment corresponding to the central portion of the HIV-1 genome exhibits enhancer activity when cloned upstream of the thymidine kinase promoter of herpes simplex virus. This enhancer is inducible by phorbol 12-myristate 13-acetate in HeLa cells and is independent of its position and orientation with respect to the promoter. We have mapped the activity of the enhancer to two independent domains encompassing nucleotides 4079-4342 (end of the pol gene) and nucleotides 4781-6026 (vif gene and first coding exon of tat). This intragenic enhancer and its subdomains demonstrate cellular specificity because they are only active in specific cell lines. The presence of similar intragenic enhancer elements in other retroviruses suggests that they might be a conserved feature of this family of viruses. Images PMID:2352955

  6. A human T-cell line with inducible production of interleukins 5 and 4. A model for studies of gene expression.

    PubMed

    Mordvinov, V A; Peroni, S E; De Boer, M L; Kees, U R; Sanderson, C J

    1999-08-31

    The production of interleukin-5 (IL5) and interleukin-4 (IL4) by activated T-cells is important in the pathogenesis of helminth infections and allergy. Human Jurkat cells express IL4 but one of the main factors restricting studies of human IL5 expression has been the lack of human T-cell lines which express significant levels of IL5 in an inducible fashion. We report that the human T-cell leukemia cell line (PER-117), previously shown to produce IL2, also produces IL5 and IL4, and is a useful model for the study of the regulation of IL5 and IL4 gene expression. We show that expression of IL5 and IL4 mRNAs in PER-117 cells is stimulation dependent. IL5 and IL4 reporter constructs are also transiently expressed in these cells in an inducible fashion. IL5 production in the PER-117 cell line can be activated by phorbol 12-myristate 13-acetate alone and further enhanced by calcium ionophore A23187, cyclic adenosine 3', 5'-monophosphate or anti-CD28 antibodies. The conditions used to stimulate the PER-117 cells determined whether IL5 production was inhibited by cyclosporin A or dexamethasone. These data indicate that the PER-117 cell line is a model to study signal transduction and transcriptional activation of the human IL5 gene in human T-cells.

  7. Regulation of 90-kilodalton ribosomal S6 kinase phosphorylation in the rat pineal gland.

    PubMed

    Ho, A K; Mackova, M; Cho, C; Chik, C L

    2003-08-01

    In this study we investigated diurnal changes in the activation state of the 90-kDa ribosomal S6 kinase (p90RSK) in the rat pineal gland. In animals housed under a lighting regimen with 12 h of light, we found an increase in phosphorylated p90RSK during the dark phase, and this increase was abolished by treatment with propranolol or continuous exposure to light. To determine the intracellular mechanism involved, rat pinealocytes were treated with norepinephrine. Norepinephrine caused a parallel increase in phosphorylated p42/44 MAPK (p42/44(MAPK)) and p90RSK that was reduced by prazosin or propranolol, indicating involvement of both alpha(1)- and beta-adrenergic receptors. Treatment with dibutyryl cGMP, 4beta-phorbol 12-myristate 13-acetate, or ionomycin mimicked norepinephrine-stimulated p90RSK phosphorylation, whereas dibutyryl cAMP caused a decrease in p90RSK phosphorylation. Inhibition of p42/44(MAPK) activation by UO126 was effective in reducing norepinephrine-stimulated p90RSK phosphorylation. Moreover, UO126 had an inhibitory effect on norepinephrine-stimulated arylalkyl-N-acetyltransferase activity. These results indicate that the adrenergically regulated nocturnal increase in p90RSK phosphorylation is mainly mediated through a cGMP-->p42/44(MAPK)-dependent mechanism.

  8. Extracellular superoxide dismutase is present in secretory vesicles of human neutrophils and released upon stimulation.

    PubMed

    Iversen, Marie B; Gottfredsen, Randi H; Larsen, Ulrike G; Enghild, Jan J; Praetorius, Jeppe; Borregaard, Niels; Petersen, Steen V

    2016-08-01

    Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme present in the extracellular matrix (ECM), where it provides protection against oxidative degradation of matrix constituents including type I collagen and hyaluronan. The enzyme is known to associate with macrophages and polymorphonuclear leukocytes (neutrophils) and increasing evidence supports a role for EC-SOD in the development of an inflammatory response. Here we show that human EC-SOD is present at the cell surface of isolated neutrophils as well as stored within secretory vesicles. Interestingly, we find that EC-SOD mRNA is absent throughout neutrophil maturation indicating that the protein is synthesized by other cells and subsequently endocytosed by the neutrophil. When secretory vesicles were mobilized by neutrophil stimulation using formyl-methionyl-leucyl-phenylalanine (fMLF) or phorbol 12-myristate 13-acetate (PMA), the protein was released into the extracellular space and found to associate with DNA released from stimulated cells. The functional consequences were evaluated by the use of neutrophils isolated from wild-type and EC-SOD KO mice, and showed that EC-SOD release significantly reduce the level of superoxide in the extracellular space, but does not affect the capacity to generate neutrophil extracellular traps (NETs). Consequently, our data signifies that EC-SOD released from activated neutrophils affects the redox conditions of the extracellular space and may offer protection against highly reactive oxygen species such as hydroxyl radicals otherwise generated as a result of respiratory burst activity of activated neutrophils.

  9. Ec sub. gamma. receptor type III (CD16) is included in the. zeta. NK receptor complex expressed by human natural killer cells

    SciTech Connect

    Anderson, P.; Caligiuri, M.; O'Brien, C.; Manley, T.; Ritz, J.; Schlossman, S.F. )

    1990-03-01

    The authors recently reported that CD3{sup {minus}} natural killer (NK) cells express the {zeta} chain of the T-cell receptor complex ({zeta} NK) in association with higher molecular weight structures whose expression differs between individual NK cell clones. Because NK cell cytolytic activity is known to be triggered by perturbation of the type III Fc{sub {gamma}} receptor (CD16), they sought to determine whether this activating molecule is included in the {zeta}NK molecular complex. Biochemical evidence for a physical association between CD16 and {zeta}NK was obtained by comparing immunoprecipitates formed using monoclonal antibodies reactive with each of these molecules by SDS/polyacrylamide gel electrophoresis, immunoblotting, and peptide mapping. In both clonal and polyclonal populations of CD3{sup {minus}}NK cells, CD16 and {zeta}NK specifically associated with one another. Functional evidence for a specific association between CD16 and {zeta}NK in intact cells was obtained by demonstrating a coordinate down-modulation of both of these molecules induced by either phorbol 12-myristate 13-acetate or monoclonal antibodies reactive with CD16. The results suggest that Fc{sub {gamma}} receptor type III (CD16) is included in the {zeta}NK complex and that this complex is likely to play an important role in NK cell activation.

  10. Anti-inflammatory and anti-melanogenic steroidal saponin glycosides from Fenugreek (Trigonella foenum-graecum L.) seeds.

    PubMed

    Kawabata, Tetsuro; Cui, Ming-Yue; Hasegawa, Tatsuya; Takano, Fumihide; Ohta, Tomihisa

    2011-05-01

    Fenugreek seed ( Trigonella foenum-graecum L.) is used as an herbal medicine for treating metabolic and nutritive dysfunctions. To determine if this plant has other beneficial effects, we tested the inhibitory activities of a methanol (MeOH) extract of fenugreek seed on the production of inflammatory cytokines and melanin synthesis in cultured cell lines in vitro. The MeOH extract inhibited the production of phorbol-12-myristate-13-acetate-induced inflammatory cytokines such as tumor necrosis factor (TNF)-α in cultured THP-1 cells, and also restrained the intracellular synthesis of melanin in murine melanoma B16F1 cells. We isolated three active constituents from fenugreek seed extracts. These were identified as the steroidal saponins 26- O-β-D-glucopyranosyl-(25 R)-furost-5(6)-en-3 β,22 β,26-triol-3- O-α-L-rhamno-pyranosyl-(1'' → 2')-O-[β-D-glucopyranosyl-(1''' → 6')- O]-β-D-glucopyranoside 1, minutoside B 2, and pseudoprotodioscin 3. Compounds 1 and 2 strongly suppressed the production of inflammatory cytokines, whereas 3 showed a weaker suppressing effect. Melanogenesis in B16F1 cells was significantly suppressed by 1 and 3, and weakly suppressed by 2. All three compounds showed moderate cytotoxicities. These results indicate that fenugreek extract and its active constituents could protect against skin damage.

  11. Betulinic acid protects against ischemia/reperfusion-induced renal damage and inhibits leukocyte apoptosis.

    PubMed

    Ekşioğlu-Demiralp, Emel; Kardaş, E Riza; Ozgül, Seçkin; Yağci, Tayfur; Bilgin, Hüseyin; Sehirli, Ozer; Ercan, Feriha; Sener, Göksel

    2010-03-01

    The possible protective effect of betulinic acid on renal ischemia/reperfusion (I/R) injury was studied. Wistar Albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 6 h of reperfusion. Betulinic acid (250 mg/kg, i.p.) or saline was administered at 30 min prior to ischemia and immediately before the reperfusion. Creatinine, blood urea nitrogen (BUN), lactate dehydrogenase (LDH) and TNF-alpha as well as the oxidative burst of neutrophil and leukocyte apoptosis were assayed in blood samples. Malondialdehyde (MDA), glutathione (GSH) levels, Na(+), K(+)-ATPase and myeloperoxidase (MPO) activities were determined in kidney tissue which was also analysed microscopically. I/R caused significant increases in blood creatinine, BUN, LDH and TNF-alpha. In the kidney samples of the I/R group, MDA levels and MPO activity were increased significantly, however, GSH levels and Na(+), K(+)-ATPase activity were decreased. Betulinic acid ameliorated the oxidative burst response to both formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol 12-myristate 13-acetate (PMA) stimuli, normalized the apoptotic response and most of the biochemical indices as well as histopathological alterations induced by I/R. In conclusion, these data suggest that betulinic acid attenuates I/R-induced oxidant responses, improved microscopic damage and renal function by regulating the apoptotic function of leukocytes and inhibiting neutrophil infiltration.

  12. Effects of raspberry fruit extracts and ellagic acid on respiratory burst in murine macrophages.

    PubMed

    Raudone, Lina; Bobinaite, Ramune; Janulis, Valdimaras; Viskelis, Pranas; Trumbeckaite, Sonata

    2014-06-01

    The mechanism of action of polyphenolic compounds is attributed to their antioxidant, anti-inflammatory, and anti-proliferative properties and their effects on subcellular signal transduction, cell cycle impairment and apoptosis. A raspberry (Rubus idaeus L.) fruit extract contains various antioxidant active compounds, particularly ellagic acid (EA); however the exact intracellular mechanism of their action is not fully understood. The aim of the study was to evaluate the antioxidant effect of raspberry extracts, and that of ellagic acid by assessment of the production of the reactive oxygen species (ROS) by murine macrophage J774 cells. Raspberry extracts and their active compound EA did not affect or had very minor effects on cell viability. No significant difference in the ROS generation in arachidonic acid stimulated macrophages was determined for raspberry extracts and EA whereas in the phorbol-12 myristate-13 acetate model ROS generation was significantly (p < 0.05) reduced. Our observation that raspberry pomace extracts in vitro reduce ROS production in a J774 macrophage culture suggests that raspberry extract and ellagic acid mediated antioxidant effects may be due to the regulation of NADPH oxidase activity.

  13. Antioxidant and hepatoprotective actions of medicinal herb, Terminalia catappa L. from Okinawa Island and its tannin corilagin.

    PubMed

    Kinoshita, S; Inoue, Y; Nakama, S; Ichiba, T; Aniya, Y

    2007-11-01

    The antioxidant and hepatoprotective actions of Terminalia catappa L. collected from Okinawa Island were evaluated in vitro and in vivo using leaves extract and isolated antioxidants. A water extract of the leaves of T. catappa showed a strong radical scavenging action for 1,1-diphenyl-2-picrylhydrazyl and superoxide (O(2)(.-)) anion. Chebulagic acid and corilagin were isolated as the active components from T. catappa. Both antioxidants showed a strong scavenging action for O(2)(.-) and peroxyl radicals and also inhibited reactive oxygen species production from leukocytes stimulated by phorbol-12-myristate acetate. Galactosamine (GalN, 600 mg/kg, s.c.,) and lipopolysaccharide (LPS, 0.5 microg/kg, i.p.)-induced hepatotoxicity of rats as seen by an elevation of serum alanine aminotransferase, aspartate aminotransferase and glutathione S-transferase (GST) activities was significantly reduced when the herb extract or corilagin was given intraperitoneally to rats prior to GalN/LPS treatment. Increase of free radical formation and lipid peroxidation in mitochondria caused by GalN/LPS treatment were also decreased by pretreatment with the herb/corilagin. In addition, apoptotic events such as DNA fragmentation and the increase in caspase-3 activity in the liver observed with GalN/LPS treatment were prevented by the pretreatment with the herb/corilagin. These results show that the extract of T. catappa and its antioxidant, corilagin are protective against GalN/LPS-induced liver injury through suppression of oxidative stress and apoptosis.

  14. Inhibition of epithelial Na sup + transport by atriopeptin, protein kinase c, and pertussis toxin

    SciTech Connect

    Mohrmann, M.; Cantiello, H.F.; Ausiello, D.A. )

    1987-08-01

    The authors have recently shown the selective inhibition of an amiloride-sensitive, conductive pathway for Na{sup +} by atrial natriuretic peptide and 8-bromoguanosine 3{prime},5{prime}-cyclic monophosphate (8-BrcGMP) in the renal epithelial cell line, LLC-PK{sub i}. Using {sup 22}Na{sup +} fluxes, they further investigated the modulation of Na{sup +} transport by atrial natriuretic peptide and by agents that increase cGMP production, activate protein kinase c, or modulate guanine nucleotide regulatory protein function. Sodium nitroprusside increases intracellular cGMP concentrations without affecting cAMP concentrations and completely inhibits amiloride-sensitive Na{sup +} uptake in a time- and concentration-dependent manner. Oleoyl 2-acetylglycerol and phorbol 12-myristate 13-acetate, activators of protein kinase c, inhibit Na{sup +} uptake by 93 {plus minus} 13 and 51 {plus minus} 10%, respectively. Prolonged incubation with phorbol ester results in the downregulation of protein kinase c activity and reduces the inhibitory effect of atrial natriuretic peptide, suggesting that the action of this peptide involves stimulation of protein kinase c. Pertussis toxin, which induces the ADP-ribosylation of a 41-kDa guanine nucleotide regulatory protein in LLC-PK{sub i} cells, inhibits {sup 22}Na{sup +} influx to the same extent as amiloride. Thus, increasing cGMP, activating protein kinase c, and ADP-ribosylating a guanine nucleotide regulatory protein all inhibit Na{sup +} uptake. These events may be sequentially involved in the action of atrial natriuretic peptide.

  15. RACK1, a new ADAM12 interacting protein. Contribution to liver fibrogenesis.

    PubMed

    Bourd-Boittin, Katia; Le Pabic, Hélène; Bonnier, Dominique; L'Helgoualc'h, Annie; Théret, Nathalie

    2008-09-19

    ADAM12 belongs to a disintegrin-like and metalloproteinase-containing protein family that possesses multidomain structures composed of a pro-domain, a metalloprotease, disintegrin-like, cysteine-rich, epidermal growth factor-like, and transmembrane domains, and a cytoplasmic tail. Overexpression of several ADAMs has been reported in human cancer, and we recently described the involvement of ADAM12 in liver injury (Le Pabic, H., Bonnier, D., Wewer, U. M., Coutand, A., Musso, O., Baffet, G., Clement, B., and Theret, N. (2003) Hepatology 37, 1056-1066). In this study, we used a yeast two-hybrid screening of a cDNA library from human hepatocellular carcinoma to analyze binding partners of ADAM12. We identify RACK1, a receptor for activated protein kinase C (PKC), as a new ADAM12 interacting protein. RACK1 is up-regulated in patients with hepatocellular carcinoma and is highly expressed by activated hepatic stellate cells. We demonstrate the involvement of RACK1 in mediating the PKC-dependent translocation of ADAM12 to membranes of activated hepatic stellate cells. In particular, treatment of cells with phorbol esters enhances ADAM12 immunostaining in the membrane fractions and the co-immunoprecipitation of ternary complexes containing RACK1, ADAM12, and PKC. By using RNA interference, we demonstrate that inhibition of RACK1 expression diminishes the phorbol 12-myristate 13-acetate-dependent translocation of ADAM12 to membranes of hepatic stellate cells. Finally, hepatic stellate cells cultured on coated type I collagen induces relocalization of ADAM12 in the membrane, suggesting that this major matrix component in liver cancer and fibrogenesis might stimulate ADAM12 translocation to the cell membrane where its shedding activity takes place.

  16. Ectodomain cleavage of the EGF ligands HB-EGF, neuregulin1-beta, and TGF-alpha is specifically triggered by different stimuli and involves different PKC isoenzymes.

    PubMed

    Herrlich, Andreas; Klinman, Eva; Fu, Jonathan; Sadegh, Cameron; Lodish, Harvey

    2008-12-01

    Metalloproteinase cleavage of transmembrane proteins (ectodomain cleavage), including the epidermal growth factor (EGF) ligands heparin-binding EGF-like growth factor (HB-EGF), neuregulin (NRG), and transforming growth factor-alpha (TGF-alpha), is important in many cellular signaling pathways and is disregulated in many diseases. It is largely unknown how physiological stimuli of ectodomain cleavage--hypertonic stress, phorbol ester, or activation of G-protein-coupled receptors [e.g., by lysophosphatidic acid (LPA)]--are molecularly connected to metalloproteinase activation. To study this question, we developed a fluorescence-activated cell sorting (FACS)- based assay that measures cleavage of EGF ligands in single living cells. EGF ligands expressed in mouse lung epithelial cells are differentially and specifically cleaved depending on the stimulus. Inhibition of protein kinase C (PKC) isoenzymes or metalloproteinase inhibition by batimastat (BB94) showed that different regulatory signals are used by different stimuli and EGF substrates, suggesting differential effects that act on the substrate, the metalloproteinase, or both. For example, hypertonic stress led to strong cleavage of HB-EGF and NRG but only moderate cleavage of TGF-alpha. HB-EGF, NRG, and TGF-alpha cleavage was not dependent on PKC, and only HB-EGF and NRG cleavage were inhibited by BB94. In contrast, phorbol 12-myristate-13-acetate (TPA) -induced cleavage of HB-EGF, NRG, and TGF-alpha was dependent on PKC and sensitive to BB94 inhibition. LPA led to significant cleavage of only NRG and TGF-alpha and was inhibited by BB94; only LPA-induced NRG cleavage required PKC. Surprisingly, specific inhibition of atypical PKCs zeta and iota [not activated by diacylglycerol (DAG) and calcium] significantly enhanced TPA-induced NRG cleavage. Employed in a high-throughput cloning strategy, our cleavage assay should allow the identification of candidate proteins involved in signal transduction of different

  17. In vitro effects of beetroot juice and chips on oxidative metabolism and apoptosis in neutrophils from obese individuals.

    PubMed

    Zielińska-Przyjemska, Małgorzata; Olejnik, Anna; Dobrowolska-Zachwieja, Agnieszka; Grajek, Włodzimierz

    2009-01-01

    Oxidative stress and inflammation are involved in the development of obesity. Beetroot (Beta vulgaris var. rubra) is a food ingredient containing betalain pigments that show antioxidant activity. The in vitro effect of beetroot juice and chips on oxidative metabolism and apoptosis in neutrophils from obese individuals has been investigated. Fifteen obese women (aged 45 +/- 9 years, BMI >30 kg/m2) and nine healthy controls (women, aged 29 +/- 11 years, BMI = 22.2 +/- 1.6 kg/m2) were examined. The investigated products were used as concentrates and after transport and digestion in an artificial gastrointestinal tract. Neutrophil oxidant production, in response to phorbol 12-myristate 13-acetate, was characterized by luminol-dependent chemiluminescence and a flow cytometric dichlorofluorescin oxidation assay. Caspase-3 activity, a marker of apoptosis, was measured by cleavage of the fluorogenic substrate Ac-DEVD-AMC. Neutrophils from obese individuals had a significantly higher ROS production compared with the controls (p < 0.05). Beetroot products inhibited neutrophil oxidative metabolism in a concentration-dependent manner. Also observed were the pro-apoptotic effects of beetroot at a concentration range of 0.1-10% in 24 h culture of stimulated neutrophils. These natural products (in both the liquid and solid state) have antioxidant and antiinflammatory capacity, and could be an important adjunct in the treatment of obesity.

  18. The beetroot component betanin modulates ROS production, DNA damage and apoptosis in human polymorphonuclear neutrophils.

    PubMed

    Zielińska-Przyjemska, Małgorzata; Olejnik, Anna; Kostrzewa, Artur; Łuczak, Michał; Jagodziński, Paweł P; Baer-Dubowska, Wanda

    2012-06-01

    The aim of this study was to evaluate the effect of betanin, one of the beetroot major components, on ROS production, DNA damage and apoptosis in human resting and stimulated with phorbol 12-myristate13-acetate polymorphonuclear neutrophils, one of the key elements of the inflammatory response. Incubation of neutrophils with betanin in the concentration range 2-500 µM resulted in significant inhibition of ROS production (by 15-46%, depending on the ROS detection assay). The antioxidant capacity of betanin was most prominently expressed in the chemiluminescence measurements. This compound decreased also the percentage of DNA in comet tails in stimulated neutrophils, but only at the 24 h time point. In resting neutrophils an increased level of DNA in comet tails was observed. Betanin did not affect the activity of caspase-3, in resting neutrophils, but significantly enhanced the enzyme activity in stimulated neutrophils. The western blot analysis showed, however, an increased level of caspase-3 cleavage products as a result of betanin treatment both in resting and stimulated neutrophils. The results indicate that betanin may be responsible for the effect of beetroot products on neutrophil oxidative metabolism and its consequences, DNA damage and apoptosis. The dose and time dependent effects on these processes require further studies.

  19. HTLV-1 Tax impairs K63-linked ubiquitination of STING to evade host innate immunity.

    PubMed

    Wang, Jie; Yang, Shuai; Liu, Lu; Wang, Hui; Yang, Bo

    2017-03-15

    The cellular antiviral innate immune system is essential for host defense and viruses have evolved a variety of strategies to evade the innate immunity. Human T lymphotropic virus type 1 (HTLV-1) belongs to the deltaretrovirus family and it can establish persistent infection in human beings for many years. However, how this virus evades the host innate immune responses remains unclear. Here we report a new strategy used by HTLV-1 to block innate immune responses. We observed that stimulator of interferon genes (STING) limited HTLV-1 protein expression and was critical to HTLV-1 reverse transcription intermediate (RTI) ssDNA90 triggered interferon (IFN)-β production in phorbol12-myristate13-acetate (PMA)-differentiated THP1 (PMA-THP1) cells. The HTLV-1 protein Tax inhibited STING overexpression induced transcriptional activation of IFN-β. Tax also impaired poly(dA:dT), interferon stimulatory DNA (ISD) or cyclic GMP-AMP (cGAMP) -stimulated IFN-β production, which was dependent on STING activation. Coimmunoprecipitation assays and confocal microscopy indicated that Tax was associated with STING in the same complex. Mechanistic studies suggested that Tax decreased the K63-linked ubiquitination of STING and disrupted the interactions between STING and TANK-binding kinase 1 (TBK1). These findings may shed more light on the molecular mechanisms underlying HTLV-1 infection.

  20. Functionality and opposite roles of two interleukin 4 haplotypes in immune cells

    PubMed Central

    Anovazzi, G; Medeiros, M C; Pigossi, S C; Finoti, L S; Souza Moreira, T M; Mayer, M P A; Zanelli, C F; Valentini, S R; Rossa-Junior, C; Scarel-Caminaga, R M

    2017-01-01

    Cytokines expression can be influenced by polymorphisms in their respective coding genes. We associated the CTI/TTD haplotype (Hap-1) and TCI/CCI haplotype (Hap-2) in the IL4 gene formed by the −590, +33 and variable number of tandem repeat polymorphisms with the severity of chronic periodontitis in humans. The functionality of these IL4 haplotypes in the response of immune cells to phorbol 12-myristate 13-acetate (PMA) with Ionomycin and IL-1β (as inflammatory stimuli) was evaluated. Gene expression (quantitative real-time PCR), profile of secreted cytokines (multiplex) and phenotypic polarization of T cells (flow cytometry) were the outcomes assessed. Green fluorescent protein reporter plasmid constructs containing specific IL4 haplotype were transiently transfected into JM cells to assess the influence of the individual haplotypes on promoter activity. In response to inflammatory stimuli the immune cells from Hap-1 haplotype had increased expression of anti-inflammatory IL4; conversely, the Hap-2 haplotype showed higher levels of pro-inflammatory cytokines. The haplotype CTI proved to be the most important for the regulation of IL4 promoter, regardless of the nature of the inflammatory stimulation; whereas the polymorphism in the promoter region had the least functional effect. In conclusion, IL4 haplotypes studied are functional and trigger opposite immune responses: anti-inflammatory (Hap-1) and pro-inflammatory (Hap-2). In addition, we identified the CTI haplotype as the main responsible for the regulation of IL4 transcriptional activity. PMID:28053321

  1. Photon Counts Statistics in Leukocyte Cell Dynamics

    NASA Astrophysics Data System (ADS)

    van Wijk, Eduard; van der Greef, Jan; van Wijk, Roeland

    2011-12-01

    In the present experiment ultra-weak photon emission/ chemiluminescence from isolated neutrophils was recorded. It is associated with the production of reactive oxygen species (ROS) in the "respiratory burst" process which can be activated by PMA (Phorbol 12-Myristate 13-Acetate). Commonly, the reaction is demonstrated utilizing the enhancer luminol. However, with the use of highly sensitive photomultiplier equipment it is also recorded without enhancer. In that case, it can be hypothesized that photon count statistics may assist in understanding the underlying metabolic activity and cooperation of these cells. To study this hypothesis leukocytes were stimulated with PMA and increased photon signals were recorded in the quasi stable period utilizing Fano factor analysis at different window sizes. The Fano factor is defined by the variance over the mean of the number of photon within the observation time. The analysis demonstrated that the Fano factor of true signal and not of the surrogate signals obtained by random shuffling increases when the window size increased. It is concluded that photon count statistics, in particular Fano factor analysis, provides information regarding leukocyte interactions. It opens the perspective to utilize this analytical procedure in (in vivo) inflammation research. However, this needs further validation.

  2. Regulation of muscarinic acetylcholine receptors in the 1321N1 human astrocytoma cell line

    SciTech Connect

    Hoover, R.K.

    1989-01-01

    The binding of muscarinic agonists, partial agonists and antagonists to muscarinic receptors of 1321N1 human astrocytoma cells was studied. Binding was studied in both intact cells and cell lysates. Partial agonists and antagonists exhibited similar apparent affinities in intact cell competition binding assays with either the lipophilic radioligand ({sup 3}H)QNB or the hydrophilic radioligand ({sup 3}H)NMS. In contrast, full agonists exhibited markedly lower apparent affinities in intact cells with ({sup 3}H)QNB than with ({sup 3}H)NMS. Treatment of cells with antimycin A to deplete intracellular ATP prevented agonist-induced internalization of muscarinic receptors as assessed by sucrose density gradient assays of receptor subcellular distribution. In ATP-depleted cells, the apparent affinities of full agonists vs ({sup 3}H)QNB were markedly higher. The apparent affinities of partial agonists and of antagonists were unaffected by ATP depletion. In other studies, the effects of the protein kinase C activator phorbol 12-myristate, 13-acetate (PMA) on muscarinic receptor downregulation and internalization in 1321N1 cells were determined. PMA alone did not induce muscarinic receptor downregulation but instead decreased both the rate and final extent of downregulation induced by the agonist carbachol. The specificity of other protein kinase C activators for inhibiting carbachol-induced downregulation indicated involvement of protein kinase C. Furthermore, the protein kinase C inhibitor staurosporine prevented the inhibitory effect of PMA on downregulation. However, staurosporine did not inhibit agonist-induced downregulation.

  3. Exosome release of ADAM15 and the functional implications of human macrophage-derived ADAM15 exosomes.

    PubMed

    Lee, Hee Doo; Koo, Bon-Hun; Kim, Yeon Hyang; Jeon, Ok-Hee; Kim, Doo-Sik

    2012-07-01

    A disintegrin and metalloproteinase 15 (ADAM15), the only ADAM protein containing an Arg-Gly-Asp (RGD) motif in its disintegrin-like domain, is a widely expressed membrane protein that is involved in tumor progression and suppression. However, the underlying mechanism of ADAM15-mediated tumor suppression is not clearly understood. This study demonstrates that ADAM15 is released as an exosomal component, and ADAM15 exosomes exert tumor suppressive activities. We found that exosomal ADAM15 release is stimulated by phorbol 12-myristate 13-acetate, a typical protein kinase C activator, in various tumor cell types, and this results in a corresponding decrease in plasma membrane-associated ADAM15. Exosomes rich in ADAM15 display enhanced binding affinity for integrin αvβ3 in an RGD-dependent manner and suppress vitronectin- and fibronectin-induced cell adhesion, growth, and migration, as well as in vivo tumor growth. Exosomal ADAM15 is released from human macrophages, and macrophage-derived ADAM15 exosomes have tumor inhibitory effects. This work suggests a primary role of ADAM15 for exosome-mediated tumor suppression, as well as functional significance of exosomal ADAM protein in antitumor immunity.

  4. Thrombomodulin regulates monocye differentiation via PKCδ and ERK1/2 pathway in vitro and in atherosclerotic artery

    PubMed Central

    Tsai, Chien-Sung; Lin, Yi-Wen; Huang, Chun-Yao; Shih, Chun-Min; Tsai, Yi-Ting; Tsao, Nai-Wen; Lin, Chin-Sheng; Shih, Chun-Che; Jeng, Hellen; Lin, Feng-Yen

    2016-01-01

    Thrombomodulin (TM) modulates the activation of protein C and coagulation. Additionally, TM regulates monocyte migration and inflammation. However, its role on monocyte differentiation is still unknown. We investigated the effects of TM on monocyte differentiation. First, we found that TM was increased when THP-1 cells were treated with phorbol-12-myristate-13-acetate (PMA). Overexpression of TM enhanced the macrophage markers, CD14 and CD68 expression in PMA-induced THP-1. TM siRNA depressed the PMA-induced increase of p21Cip1/WAF1 via ERK1/2-NF-kB p65 signaling. TM regulated cytoskeletal reorganization via its interaction with paxillin, cofilin, LIMK1, and PYK2. In addition, PMA-induced p21Cip1/WAF1 expression, CD14-positive cell labeling intensity and ERK1/2 phosphorylation were markedly inhibited when protein kinase C-δ (PKCδ) was knocked down. We identified that TM directly interacts with PKCδ. PKCδ was highly expressed in human atherosclerotic arteries and colocalized with TM in CD68-positive infiltrated macrophages of plaques, indicating that the coordination between TM and PKCδ in macrophages participated in atherogenesis. TM may act as a scaffold for PKCδ docking, which keeps PKCδ in the region close to the monocyte membrane to promote the activation of ERK1/2. Taken together, our findings suggest that TM-PKCδ interaction may contribute to cardiovascular disorders by affecting monocye differentiation, which may develop future therapeutic applications. PMID:27910925

  5. Theanine is a candidate amino acid for pharmacological stabilization of mast cells.

    PubMed

    Kim, N H; Jeong, H J; Kim, H M

    2012-05-01

    The increasing occu