Ligand-independent activation of the oestrogen receptor by mutation of a conserved tyrosine.
White, R; Sjöberg, M; Kalkhoven, E; Parker, M G
1997-01-01
The oestrogen receptor is a member of the nuclear receptor family of transcription factors which, on binding the steroid hormone 17beta-oestradiol, interacts with co-activator proteins and stimulates gene expression. Replacement of a single tyrosine in the hormone-binding domain generated activated forms of the receptor which stimulated transcription in the absence of hormone. This increased activation is related to a decrease in hydrophobicity and a reduction in size of the side chain of the amino acid with which the tyrosine is replaced. Ligand-independent, in common with ligand-dependent transcriptional activation, requires an amphipathic alpha-helix at the C-terminus of the ligand-binding domain which is essential for the interaction of the receptor with a number of potential co-activator proteins. In contrast to the wild-type protein, constitutively active receptors were able to bind both the receptor-interacting protein RIP-140 and the steroid receptor co-activator SRC-1 in a ligand-independent manner, although in the case of SRC-1 this was only evident when the receptors were prebound to DNA. We propose, therefore, that this tyrosine is required to maintain the receptor in a transcriptionally inactive state in the absence of hormone. Modification of this residue may generate a conformational change in the ligand-binding domain of the receptor to form an interacting surface which allows the recruitment of co-activators independent of hormone binding. This suggests that this tyrosine may be a target for a different signalling pathway which forms an alternative mechanism of activating oestrogen receptor-mediated transcription. PMID:9135157
Kargl, Julia; Balenga, Nariman; Parzmair, Gerald P; Brown, Andrew J; Heinemann, Akos; Waldhoer, Maria
2012-12-28
The G protein-coupled receptor (GPCR) 55 (GPR55) and the cannabinoid receptor 1 (CB1R) are co-expressed in many tissues, predominantly in the central nervous system. Seven transmembrane spanning (7TM) receptors/GPCRs can form homo- and heteromers and initiate distinct signaling pathways. Recently, several synthetic CB1 receptor inverse agonists/antagonists, such as SR141716A, AM251, and AM281, were reported to activate GPR55. Of these, SR141716A was marketed as a promising anti-obesity drug, but was withdrawn from the market because of severe side effects. Here, we tested whether GPR55 and CB1 receptors are capable of (i) forming heteromers and (ii) whether such heteromers could exhibit novel signaling patterns. We show that GPR55 and CB1 receptors alter each others signaling properties in human embryonic kidney (HEK293) cells. We demonstrate that the co-expression of FLAG-CB1 receptors in cells stably expressing HA-GPR55 specifically inhibits GPR55-mediated transcription factor activation, such as nuclear factor of activated T-cells and serum response element, as well as extracellular signal-regulated kinases (ERK1/2) activation. GPR55 and CB1 receptors can form heteromers, but the internalization of both receptors is not affected. In addition, we observe that the presence of GPR55 enhances CB1R-mediated ERK1/2 and nuclear factor of activated T-cell activation. Our data provide the first evidence that GPR55 can form heteromers with another 7TM/GPCR and that this interaction with the CB1 receptor has functional consequences in vitro. The GPR55-CB1R heteromer may play an important physiological and/or pathophysiological role in tissues endogenously co-expressing both receptors.
Kargl, Julia; Balenga, Nariman; Parzmair, Gerald P.; Brown, Andrew J.; Heinemann, Akos; Waldhoer, Maria
2012-01-01
The G protein-coupled receptor (GPCR) 55 (GPR55) and the cannabinoid receptor 1 (CB1R) are co-expressed in many tissues, predominantly in the central nervous system. Seven transmembrane spanning (7TM) receptors/GPCRs can form homo- and heteromers and initiate distinct signaling pathways. Recently, several synthetic CB1 receptor inverse agonists/antagonists, such as SR141716A, AM251, and AM281, were reported to activate GPR55. Of these, SR141716A was marketed as a promising anti-obesity drug, but was withdrawn from the market because of severe side effects. Here, we tested whether GPR55 and CB1 receptors are capable of (i) forming heteromers and (ii) whether such heteromers could exhibit novel signaling patterns. We show that GPR55 and CB1 receptors alter each others signaling properties in human embryonic kidney (HEK293) cells. We demonstrate that the co-expression of FLAG-CB1 receptors in cells stably expressing HA-GPR55 specifically inhibits GPR55-mediated transcription factor activation, such as nuclear factor of activated T-cells and serum response element, as well as extracellular signal-regulated kinases (ERK1/2) activation. GPR55 and CB1 receptors can form heteromers, but the internalization of both receptors is not affected. In addition, we observe that the presence of GPR55 enhances CB1R-mediated ERK1/2 and nuclear factor of activated T-cell activation. Our data provide the first evidence that GPR55 can form heteromers with another 7TM/GPCR and that this interaction with the CB1 receptor has functional consequences in vitro. The GPR55-CB1R heteromer may play an important physiological and/or pathophysiological role in tissues endogenously co-expressing both receptors. PMID:23161546
Yu, Xiaochun; Sharma, Kailash D.; Takahashi, Tsuyoshi; Iwamoto, Ryo; Mekada, Eisuke
2002-01-01
Dimerization and phosphorylation of the epidermal growth factor (EGF) receptor (EGFR) are the initial and essential events of EGF-induced signal transduction. However, the mechanism by which EGFR ligands induce dimerization and phosphorylation is not fully understood. Here, we demonstrate that EGFRs can form dimers on the cell surface independent of ligand binding. However, a chimeric receptor, comprising the extracellular and transmembrane domains of EGFR and the cytoplasmic domain of the erythropoietin receptor (EpoR), did not form a dimer in the absence of ligands, suggesting that the cytoplasmic domain of EGFR is important for predimer formation. Analysis of deletion mutants of EGFR showed that the region between 835Ala and 918Asp of the EGFR cytoplasmic domain is required for EGFR predimer formation. In contrast to wild-type EGFR ligands, a mutant form of heparin-binding EGF-like growth factor (HB2) did not induce dimerization of the EGFR-EpoR chimeric receptor and therefore failed to activate the chimeric receptor. However, when the dimerization was induced by a monoclonal antibody to EGFR, HB2 could activate the chimeric receptor. These results indicate that EGFR can form a ligand-independent inactive dimer and that receptor dimerization and activation are mechanistically distinct and separable events. PMID:12134089
Critical Hydrogen Bond Formation for Activation of the Angiotensin II Type 1 Receptor*
Cabana, Jérôme; Holleran, Brian; Beaulieu, Marie-Ève; Leduc, Richard; Escher, Emanuel; Guillemette, Gaétan; Lavigne, Pierre
2013-01-01
G protein-coupled receptors contain selectively important residues that play central roles in the conformational changes that occur during receptor activation. Asparagine 111 (N1113.35) is such a residue within the angiotensin II type 1 (AT1) receptor. Substitution of N1113.35 for glycine leads to a constitutively active receptor, whereas substitution for tryptophan leads to an inactivable receptor. Here, we analyzed the AT1 receptor and two mutants (N111G and N111W) by molecular dynamics simulations, which revealed a novel molecular switch involving the strictly conserved residue D742.50. Indeed, D742.50 forms a stable hydrogen bond (H-bond) with the residue in position 1113.35 in the wild-type and the inactivable receptor. However, in the constitutively active mutant N111G-AT1 receptor, residue D74 is reoriented to form a new H-bond with another strictly conserved residue, N461.50. When expressed in HEK293 cells, the mutant N46G-AT1 receptor was poorly activable, although it retained a high binding affinity. Interestingly, the mutant N46G/N111G-AT1 receptor was also inactivable. Molecular dynamics simulations also revealed the presence of a cluster of hydrophobic residues from transmembrane domains 2, 3, and 7 that appears to stabilize the inactive form of the receptor. Whereas this hydrophobic cluster and the H-bond between D742.50 and W1113.35 are more stable in the inactivable N111W-AT1 receptor, the mutant N111W/F77A-AT1 receptor, designed to weaken the hydrophobic core, showed significant agonist-induced signaling. These results support the potential for the formation of an H-bond between residues D742.50 and N461.50 in the activation of the AT1 receptor. PMID:23223579
Durzyńska, Julia; Philippou, Anastassios; Brisson, Becky K.; Nguyen-McCarty, Michelle
2013-01-01
IGF-I is a key regulator of muscle development and growth. The pre-pro-peptide produced by the Igf1gene undergoes several posttranslational processing steps to result in a secreted mature protein, which is thought to be the obligate ligand for the IGF-I receptor (IGF-IR). The goals of this study were to determine what forms of IGF-I exist in skeletal muscle, and whether the mature IGF-I protein was the only form able to activate the IGF-IR. We measured the proportion of IGF-I species in murine skeletal muscle and found that the predominant forms were nonglycosylated pro-IGF-I and glycosylated pro-IGF-I, which retained the C-terminal E peptide extension, instead of mature IGF-I. These forms were validated using samples subjected to viral expression of IGF-I combined with furin and glycosidase digestion. To determine whether the larger molecular weight IGF-I forms were also ligands for the IGF-IR, we generated each specific form through transient transfection of 3T3 cells and used the enriched media to perform kinase receptor activation assays. Compared with mature IGF-I, nonglycosylated pro-IGF-I had similar ability to activate the IGF-IR, whereas glycosylation of pro-IGF-I significantly reduced receptor activation. Thus, it is important to understand not only the quantity, but also the proportion of IGF-I forms produced, to evaluate the true biological activity of this growth factor. PMID:23407451
Vezzi, Vanessa; Onaran, H Ongun; Molinari, Paola; Guerrini, Remo; Balboni, Gianfranco; Calò, Girolamo; Costa, Tommaso
2013-08-16
Using a cell-free bioluminescence resonance energy transfer strategy we compared the levels of spontaneous and ligand-induced receptor-G protein coupling in δ (DOP) and μ (MOP) opioid receptors. In this assay GDP can suppress spontaneous coupling, thus allowing its quantification. The level of constitutive activity was 4-5 times greater at the DOP than at the MOP receptor. A series of opioid analogues with a common peptidomimetic scaffold displayed remarkable inversions of efficacy in the two receptors. Agonists that enhanced coupling above the low intrinsic level of the MOP receptor were inverse agonists in reducing the greater level of constitutive coupling of the DOP receptor. Yet the intrinsic activities of such ligands are identical when scaled over the GDP base line of both receptors. This pattern is in conflict with the predictions of the ternary complex model and the "two state" extensions. According to this theory, the order of spontaneous and ligand-induced coupling cannot be reversed if a shift of the equilibrium between active and inactive forms raises constitutive activation in one receptor type. We propose that constitutive activation results from a lessened intrinsic barrier that restrains spontaneous coupling. Any ligand, regardless of its efficacy, must enhance this constraint to stabilize the ligand-bound complexed form.
Reim, Tina; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang; Thamm, Markus; Scheiner, Ricarda
2017-01-01
The biogenic monoamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. Insects such as honeybees do not synthesize these neuroactive substances. Instead, they employ octopamine and tyramine for comparable physiological functions. These biogenic amines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Based on pharmacological data obtained on heterologously expressed receptors, α- and β-adrenergic-like octopamine receptors are better activated by octopamine than by tyramine. Conversely, GPCRs forming the type 1 tyramine receptor clade (synonymous to octopamine/tyramine receptors) are better activated by tyramine than by octopamine. More recently, receptors were characterized which are almost exclusively activated by tyramine, thus forming an independent type 2 tyramine receptor clade. Functionally, type 1 tyramine receptors inhibit adenylyl cyclase activity, leading to a decrease in intracellular cAMP concentration ([cAMP] i ). Type 2 tyramine receptors can mediate Ca 2+ signals or both Ca 2+ signals and effects on [cAMP] i . We here provide evidence that the honeybee tyramine receptor 2 (AmTAR2), when heterologously expressed in flpTM cells, exclusively causes an increase in [cAMP] i . The receptor displays a pronounced preference for tyramine over octopamine. Its activity can be blocked by a series of established antagonists, of which mianserin and yohimbine are most efficient. The functional characterization of two tyramine receptors from the honeybee, AmTAR1 (previously named AmTYR1) and AmTAR2, which respond to tyramine by changing cAMP levels in opposite direction, is an important step towards understanding the actions of tyramine in honeybee behavior and physiology, particularly in comparison to the effects of octopamine. Copyright © 2016 Elsevier Ltd. All rights reserved.
Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+.
Li, Mufeng; Silberberg, Shai D; Swartz, Kenton J
2013-09-03
The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg(2+). Here we investigated the active forms of ATP and found that the action of MgATP(2-) and ATP(4-) differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP(2-) promotes opening with very low efficacy. In contrast, both free ATP and MgATP(2-) robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg(2+) to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP(2-) and weak regulation by Mg(2+). These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP(2-) and regulation by Mg(2+), and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons.
Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+
Li, Mufeng; Silberberg, Shai D.; Swartz, Kenton J.
2013-01-01
The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg2+. Here we investigated the active forms of ATP and found that the action of MgATP2− and ATP4− differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP2− promotes opening with very low efficacy. In contrast, both free ATP and MgATP2− robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg2+ to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP2− and weak regulation by Mg2+. These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP2− and regulation by Mg2+, and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons. PMID:23959888
Modulation of neuronal and recombinant GABAA receptors by redox reagents
Amato, Alessandra; Connolly, Christopher N; Moss, Stephen J; Smart, Trevor G
1999-01-01
The functional role played by the postulated disulphide bridge in γ-aminobutyric acid type A (GABAA) receptors and its susceptibility to oxidation and reduction were studied using recombinant (murine receptor subunits expressed in human embryonic kidney cells) and rat neuronal GABAA receptors in conjunction with whole-cell and single channel patch-clamp techniques. The reducing agent dithiothreitol (DTT) reversibly potentiated GABA-activated responses (IGABA) of α1β1 or α1β2 receptors while the oxidizing reagent 5,5′-dithio-bis-(2-nitrobenzoic acid) (DTNB) caused inhibition. Redox modulation of IGABA was independent of GABA concentration, membrane potential and the receptor agonist and did not affect the GABA EC50 or Hill coefficient. The endogenous antioxidant reduced glutathione (GSH) also potentiated IGABA in α1β2 receptors, while both the oxidized form of DTT and glutathione (GSSG) caused small inhibitory effects. Recombinant receptors composed of α1β1γ2S or α1β2γ2S were considerably less sensitive to DTT and DTNB. For neuronal GABAA receptors, IGABA was enhanced by flurazepam and relatively unaffected by redox reagents. However, in cultured sympathetic neurones, nicotinic acetylcholine-activated responses were inhibited by DTT whilst in cerebellar granule neurones, NMDA-activated currents were potentiated by DTT and inhibited by DTNB. Single GABA-activated ion channel currents exhibited a conductance of 16 pS for α1β1 constructs. DTT did not affect the conductance or individual open time constants determined from dwell time histograms, but increased the mean open time by affecting the channel open probability without increasing the number of cell surface receptors. A kinetic model of the effects of DTT and DTNB suggested that the receptor existed in equilibrium between oxidized and reduced forms. DTT increased the rate of entry into reduced receptor forms and also into desensitized states. DTNB reversed these kinetic effects. Our results indicate that GABAA receptors formed by α and β subunits are susceptible to regulation by redox agents. Inclusion of the γ2 subunit in the receptor, or recording from some neuronal GABAA receptors, resulted in reduced sensitivity to DTT and DTNB. Given the suggested existence of αβ subunit complexes in some areas of the central nervous system together with the generation and release of endogenous redox compounds, native GABAA receptors may be subject to regulation by redox mechanisms. PMID:10226147
Ohno, Shinji; Sakai, Kouji; Ito, Yuri; Fukuhara, Hideo; Komase, Katsuhiro; Brindley, Melinda A.; Rota, Paul A.; Plemper, Richard K.; Maenaka, Katsumi; Takeda, Makoto
2013-01-01
Here, we provide direct evidence that the receptor-binding site of measles virus (MV) hemagglutinin protein itself forms an effective conserved neutralizing epitope (CNE). Several receptor-interacting residues constitute the CNE. Thus, viral escape from neutralization has to be associated with loss of receptor-binding activity. Since interactions with both the signaling lymphocyte activation molecule (SLAM) and nectin4 are critical for MV pathogenesis, its escape, which results from loss of receptor-binding activity, should not occur in nature. PMID:23283964
Wiskerke, Joost; Stoop, Nicky; Schetters, Dustin; Schoffelmeer, Anton N. M.; Pattij, Tommy
2011-01-01
It is well known that acute challenges with psychostimulants such as amphetamine affect impulsive behavior. We here studied the pharmacology underlying the effects of amphetamine in two rat models of impulsivity, the 5-choice serial reaction time task (5-CSRTT) and the delayed reward task (DRT), providing measures of inhibitory control, an aspect of impulsive action, and impulsive choice, respectively. We focused on the role of cannabinoid CB1 receptor activation in amphetamine-induced impulsivity as there is evidence that acute challenges with psychostimulants activate the endogenous cannabinoid system, and CB1 receptor activity modulates impulsivity in both rodents and humans. Results showed that pretreatment with either the CB1 receptor antagonist/inverse agonist SR141716A or the neutral CB1 receptor antagonist O-2050 dose-dependently improved baseline inhibitory control in the 5-CSRTT. Moreover, both compounds similarly attenuated amphetamine-induced inhibitory control deficits, suggesting that CB1 receptor activation by endogenously released cannabinoids mediates this aspect of impulsive action. Direct CB1 receptor activation by Δ9-Tetrahydrocannabinol (Δ9-THC) did, however, not affect inhibitory control. Although neither SR141716A nor O-2050 affected baseline impulsive choice in the DRT, both ligands completely prevented amphetamine-induced reductions in impulsive decision making, indicating that CB1 receptor activity may decrease this form of impulsivity. Indeed, acute Δ9-THC was found to reduce impulsive choice in a CB1 receptor-dependent way. Together, these results indicate an important, though complex role for cannabinoid CB1 receptor activity in the regulation of impulsive action and impulsive choice as well as the opposite effects amphetamine has on both forms of impulsive behavior. PMID:22016780
Varghese, Leila N; Defour, Jean-Philippe; Pecquet, Christian; Constantinescu, Stefan N
2017-01-01
A well-functioning hematopoietic system requires a certain robustness and flexibility to maintain appropriate quantities of functional mature blood cells, such as red blood cells and platelets. This review focuses on the cytokine receptor that plays a significant role in thrombopoiesis: the receptor for thrombopoietin (TPO-R; also known as MPL). Here, we survey the work to date to understand how this receptor functions at a molecular level throughout its lifecycle, from traffic to the cell surface, dimerization and binding cognate cytokine via its extracellular domain, through to its subsequent activation of associated Janus kinases and initiation of downstream signaling pathways, as well as the regulation of these processes. Atomic level resolution structures of TPO-R have remained elusive. The identification of disease-causing mutations in the receptor has, however, offered some insight into structure and function relationships, as has artificial means of receptor activation, through TPO mimetics, transmembrane-targeting receptor agonists, and engineering in dimerization domains. More recently, a novel activation mechanism was identified whereby mutated forms of calreticulin form complexes with TPO-R via its extracellular N-glycosylated domain. Such complexes traffic pathologically in the cell and persistently activate JAK2, downstream signal transducers and activators of transcription (STATs), and other pathways. This pathologic TPO-R activation is associated with a large fraction of human myeloproliferative neoplasms.
Allosteric modulation of ATP-gated P2X receptor channels
Coddou, Claudio; Stojilkovic, Stanko S.; Huidobro-Toro, J. Pablo
2013-01-01
Seven mammalian purinergic receptor subunits, denoted P2X1 to P2X7, and several spliced forms of these subunits have been cloned. When heterologously expressed, these cDNAs encode ATP-gated non-selective cation channels organized as trimers. All activated receptors produce cell depolarization and promote Ca2+ influx through their pores and indirectly by activating voltage-gated calcium channels. However, the biophysical and pharmacological properties of these receptors differ considerably, and the majority of these subunits are also capable of forming heterotrimers with other members of the P2X receptor family, which confers further different properties. These channels have three ATP binding domains, presumably located between neighboring subunits, and occupancy of at least two binding sites is needed for their activation. In addition to the orthosteric binding sites for ATP, these receptors have additional allosteric sites that modulate the agonist action at receptors, including sites for trace metals, protons, neurosteroids, reactive oxygen species and phosphoinositides. The allosteric regulation of P2X receptors is frequently receptor-specific and could be a useful tool to identify P2X members in native tissues and their roles in signaling. The focus of this review is on common and receptor-specific allosteric modulation of P2X receptors and the molecular base accounting for allosteric binding sites. PMID:21639805
Petti, L M; Reddy, V; Smith, S O; DiMaio, D
1997-10-01
The bovine papillomavirus E5 protein forms a stable complex with the cellular platelet-derived growth factor (PDGF) beta receptor, resulting in receptor activation and cell transformation. Amino acids in both the putative transmembrane domain and extracytoplasmic carboxyl-terminal domain of the E5 protein appear important for PDGF receptor binding and activation. Previous analysis indicated that the transmembrane domain of the receptor was also required for complex formation and receptor activation. Here we analyzed receptor chimeras and point mutants to identify specific amino acids in the PDGF beta receptor required for productive interaction with the E5 protein. These receptor mutants were analyzed in murine Ba/F3 cells, which do not express endogenous receptor. Our results confirmed the importance of the transmembrane domain of the receptor for complex formation, receptor tyrosine phosphorylation, and mitogenic signaling in response to the E5 protein and established that the threonine residue in this domain is required for these activities. In addition, a positive charge in the extracellular juxtamembrane domain of the receptor was required for E5 interaction and signaling, whereas replacement of the wild-type lysine with either a neutral or acidic amino acid inhibited E5-induced receptor activation and transformation. All of the receptor mutants defective for activation by the E5 protein responded to acute treatment with PDGF and to stable expression of v-Sis, a form of PDGF. The required juxtamembrane lysine and transmembrane threonine are predicted to align precisely on the same face of an alpha helix packed in a left-handed coiled-coil geometry. These results establish that the E5 protein and v-Sis recognize distinct binding sites on the PDGF beta receptor and further clarify the nature of the interaction between the viral transforming protein and its cellular target.
Gleason, Evanna
2012-01-01
Amacrine cells receive glutamatergic input from bipolar cells and GABAergic, glycinergic, cholinergic, and dopaminergic input from other amacrine cells. Glutamate, GABA, glycine, and acetylcholine (ACh) interact with ionotropic receptors and it is these interactions that form much of the functional circuitry in the inner retina. However, glutamate, GABA, ACh, and dopamine also activate metabotropic receptors linked to second messenger pathways that have the potential to modify the function of individual cells as well as retinal circuitry. Here, the physiological effects of activating dopamine receptors, metabotropic glutamate receptors, GABAB receptors, and muscarinic ACh receptors on amacrine cells will be discussed. The retina also expresses metabotropic receptors and the biochemical machinery associated with the synthesis and degradation of endocannabinoids and sphingosine-1-phosphate (S1P). The effects of activating cannabinoid receptors and S1P receptors on amacrine cell function will also be addressed. Copyright © Cambridge University Press, 2012
Nishigaki, Kazuo; Thompson, Delores; Hanson, Charlotte; Yugawa, Takashi; Ruscetti, Sandra
2001-01-01
The Friend spleen focus-forming virus (SFFV) encodes a unique envelope glycoprotein, gp55, which allows erythroid cells to proliferate and differentiate in the absence of erythropoietin (Epo). SFFV gp55 has been shown to interact with the Epo receptor complex, causing constitutive activation of various signal-transducing molecules. When injected into adult mice, SFFV induces a rapid erythroleukemia, with susceptibility being determined by the host gene Fv-2, which was recently shown to be identical to the gene encoding the receptor tyrosine kinase Stk/Ron. Susceptible, but not resistant, mice encode not only full-length Stk but also a truncated form of the kinase, sf-Stk, which may mediate the biological effects of SFFV infection. To determine whether expression of SFFV gp55 leads to the activation of sf-Stk, we expressed sf-Stk, with or without SFFV gp55, in hematopoietic cells expressing the Epo receptor. Our data indicate that sf-Stk interacts with SFFV gp55 as well as gp55P, the biologically active form of the viral glycoprotein, forming disulfide-linked complexes. This covalent interaction, as well as noncovalent interactions with SFFV gp55, results in constitutive tyrosine phosphorylation of sf-Stk and its association with multiple tyrosine-phosphorylated signal-transducing molecules. In contrast, neither Epo stimulation in the absence of SFFV gp55 expression nor expression of a mutant of SFFV that cannot interact with sf-Stk was able to induce tyrosine phosphorylation of sf-Stk or its association with any signal-transducing molecules. Covalent interaction of sf-Stk with SFFV gp55 and constitutive tyrosine phosphorylation of sf-Stk can also be detected in an erythroleukemia cell line derived from an SFFV-infected mouse. Our results suggest that SFFV gp55 may mediate its biological effects in vivo by interacting with and activating a truncated form of the receptor tyrosine kinase Stk. PMID:11483734
Structural basis of death domain signaling in the p75 neurotrophin receptor
Lin, Zhi; Tann, Jason Y; Goh, Eddy TH; Kelly, Claire; Lim, Kim Buay; Gao, Jian Fang; Ibanez, Carlos F
2015-01-01
Death domains (DDs) mediate assembly of oligomeric complexes for activation of downstream signaling pathways through incompletely understood mechanisms. Here we report structures of complexes formed by the DD of p75 neurotrophin receptor (p75NTR) with RhoGDI, for activation of the RhoA pathway, with caspase recruitment domain (CARD) of RIP2 kinase, for activation of the NF-kB pathway, and with itself, revealing how DD dimerization controls access of intracellular effectors to the receptor. RIP2 CARD and RhoGDI bind to p75NTR DD at partially overlapping epitopes with over 100-fold difference in affinity, revealing the mechanism by which RIP2 recruitment displaces RhoGDI upon ligand binding. The p75NTR DD forms non-covalent, low-affinity symmetric dimers in solution. The dimer interface overlaps with RIP2 CARD but not RhoGDI binding sites, supporting a model of receptor activation triggered by separation of DDs. These structures reveal how competitive protein-protein interactions orchestrate the hierarchical activation of downstream pathways in non-catalytic receptors. DOI: http://dx.doi.org/10.7554/eLife.11692.001 PMID:26646181
Atrial natriuretic peptide induces acrosomal exocytosis in bovine spermatozoa.
Zamir, N; Barkan, D; Keynan, N; Naor, Z; Breitbart, H
1995-08-01
The induction of acrosomal exocytosis in capacitated bull spermatozoa by atrial natriuretic peptide (ANP) was studied in vitro. ANP markedly stimulated acrosomal exocytosis in a calcium-dependent manner. Typically, ANP exerts its action via activation of the ANP receptor (ANPR-A), a particulate guanylyl cyclase-linked receptor, and subsequent formation of guanosine 3',5'-cyclic monophosphate (cGMP). We found that the ANP-induced acrosome reaction was inhibited by the competitive ANPR-A receptor antagonist-anantin, indicating a receptor-mediated effect. We could mimic the effect of ANP on the acrosome reaction by using 8-bromo-cGMP, suggesting that cGMP may serve as a signal transducer mediating the acrosome reaction. Indeed, the ANP-induced acrosome reaction was associated with elevation of cGMP levels. cGMP can also be formed by activation of the soluble form of guanylyl cyclase. Sodium nitroprusside (SNP) stimulated cGMP accumulation and acrosome reaction of capacitated spermatozoa. Thus ANP and the nitric oxide-releasing compound SNP, via activation of guanylyl cyclase (the former activating the particulate and the latter activating the soluble form of the enzyme), may play a significant role in the induction of the acrosome reaction.
Fuxe, Kjell; Marcellino, Daniel; Borroto-Escuela, Dasiel Oscar; Frankowska, Malgorzata; Ferraro, Luca; Guidolin, Diego; Ciruela, Francisco; Agnati, Luigi F
2010-10-01
Based on indications of direct physical interactions between neuropeptide and monoamine receptors in the early 1980s, the term receptor-receptor interactions was introduced and later on the term receptor heteromerization in the early 1990s. Allosteric mechanisms allow an integrative activity to emerge either intramolecularly in G protein-coupled receptor (GPCR) monomers or intermolecularly via receptor-receptor interactions in GPCR homodimers, heterodimers, and receptor mosaics. Stable heteromers of Class A receptors may be formed that involve strong high energy arginine-phosphate electrostatic interactions. These receptor-receptor interactions markedly increase the repertoire of GPCR recognition, signaling and trafficking in which the minimal signaling unit in the GPCR homomers appears to be one receptor and one G protein. GPCR homomers and GPCR assemblies are not isolated but also directly interact with other proteins to form horizontal molecular networks at the plasma membrane.
Functional map of arrestin binding to phosphorylated opsin, with and without agonist.
Peterhans, Christian; Lally, Ciara C M; Ostermaier, Martin K; Sommer, Martha E; Standfuss, Jörg
2016-06-28
Arrestins desensitize G protein-coupled receptors (GPCRs) and act as mediators of signalling. Here we investigated the interactions of arrestin-1 with two functionally distinct forms of the dim-light photoreceptor rhodopsin. Using unbiased scanning mutagenesis we probed the individual contribution of each arrestin residue to the interaction with the phosphorylated apo-receptor (Ops-P) and the agonist-bound form (Meta II-P). Disruption of the polar core or displacement of the C-tail strengthened binding to both receptor forms. In contrast, mutations of phosphate-binding residues (phosphosensors) suggest the phosphorylated receptor C-terminus binds arrestin differently for Meta II-P and Ops-P. Likewise, mutations within the inter-domain interface, variations in the receptor-binding loops and the C-edge of arrestin reveal different binding modes. In summary, our results indicate that arrestin-1 binding to Meta II-P and Ops-P is similarly dependent on arrestin activation, although the complexes formed with these two receptor forms are structurally distinct.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tully, D.B.; Cidlowski, J.A.
1989-03-07
Sucrose density gradient shift assays were used to study the interactions of human glucocorticoid receptors (GR) with small DNA fragments either containing or lacking glucocorticoid response element (GRE) DNA consensus sequences. When crude cytoplasmic extracts containing ({sup 3}H)triamcinolone acetonide (({sup 3}H)TA) labeled GR were incubated with unlabeled DNA under conditions of DNA excess, a GRE-containing DNA fragment obtained from the 5' long terminal repeat of mouse mammary tumor virus (MMTV LTR) formed a stable 12-16S complex with activated, but not nonactivated, ({sup 3}H)TA receptor. By contrast, if the cytosols were treated with calf thymus DNA-cellulose to deplete non-GR-DNA-binding proteins priormore » to heat activation, a smaller 7-10S complex was formed with the MMTV LTR DNA fragment. Activated ({sup 3}H)TA receptor from DNA-cellulose pretreated cytosols also interacted with two similarly sized fragments from pBR322 DNA. Stability of the complexes formed between GR and these three DNA fragments was strongly affected by even moderate alterations in either the salt concentration or the pH of the gradient buffer. Under all conditions tested, the complex formed with the MMTV LTR DNA fragment was more stable than the complexes formed with either of the pBR322 DNA fragments. Together these observations indicate that the formation of stable complexes between activated GR and isolated DNA fragments requires the presence of GRE consensus sequences in the DNA.« less
Coke, Christopher J.; Scarlett, Kisha A.; Chetram, Mahandranauth A.; Jones, Kia J.; Sandifer, Brittney J.; Davis, Ahriea S.; Marcus, Adam I.
2016-01-01
The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. PMID:26841863
Lievens, Patricia M-J; Mutinelli, Chiara; Baynes, Darcie; Liboi, Elio
2004-10-08
Amino acid substitutions at the Lys-650 codon within the activation loop kinase domain of fibroblast growth factor receptor 3 (FGFR3) result in graded constitutive phosphorylation of the receptor. Accordingly, the Lys-650 mutants are associated with dwarfisms with graded clinical severity. To assess the importance of the phosphorylation level on FGFR3 maturation along the secretory pathway, hemagglutinin A-tagged derivatives were studied. The highly activated SADDAN (severe achondroplasia with developmental delay and acanthosis nigricans) mutant accumulates in its immature and phosphorylated form in the endoplasmic reticulum (ER), which fails to be degraded. Furthermore, the Janus kinase (Jak)/STAT pathway is activated from the ER by direct recruitment of Jak1. Abolishing the autocatalytic property of the mutated FGFR3 by replacing the critical Tyr-718 reestablishes the receptor full maturation and inhibits signaling. Differently, the low activated hypochondroplasia mutant is present as a mature phosphorylated form on the plasma membrane, although with a delayed transition in the ER, and is completely processed. Signaling does not occur in the presence of brefeldin A; instead, STAT1 is activated when protein secretion is blocked with monensin, suggesting that the hypochondroplasia receptor signals at the exit from the ER. Our results suggest that kinase activity affects FGFR3 trafficking and determines the spatial segregation of signaling pathways. Consequently, the defect in down-regulation of the highly activated receptors results in the increased signaling capacity from the intracellular compartments, and this may determine the severity of the diseases.
Giner, Xavier C; Cotnoir-White, David; Mader, Sylvie; Lévesque, Daniel
2017-01-01
Retinoid X receptors (RXR) play a role as master regulators due to their capacity to form heterodimers with other nuclear receptors. Accordingly, retinoid signaling is involved in multiple biological processes, including development, cell differentiation, metabolism and cell death. However, the role and functions of RXR in different heterodimer complexes remain unsolved, mainly because most RXR drugs (called rexinoids) are not selective to specific heterodimer complexes. This also strongly limits the use of rexinoids for specific therapeutic approaches. In order to better characterize rexinoids at specific nuclear receptor complexes, we have developed and optimized luciferase protein complementation-based Bioluminescence Resonance Energy Transfer (BRET) assays, which can directly measure recruitment of a co-activator motif fused to yellow fluorescent protein (YFP) by specific nuclear receptor dimers. To validate the assays, we compared rexinoid modulation of co-activator recruitment by RXR homodimer, and heterodimers Nur77/RXR and Nurr1/RXR. Results reveal that some rexinoids display selective co-activator recruitment activities with homo- or hetero-dimer complexes. In particular, SR11237 (BMS649) has increased potency for recruitment of co-activator motif and transcriptional activity with the Nur77/RXR heterodimer compared to other complexes. This technology should prove useful to identify new compounds with specificity for individual dimeric species formed by nuclear receptors. PMID:26148973
Zhan, Xuanzhi; Gimenez, Luis E.; Gurevich, Vsevolod V.; Spiller, Benjamin W.
2011-01-01
Arrestins are multi-functional proteins that regulate signaling and trafficking of the majority of G protein-coupled receptors (GPCRs), as well as sub-cellular localization and activity of many other signaling proteins. Here we report the first crystal structure of arrestin-3, solved at 3.0Å. Arrestin-3 is an elongated two-domain molecule with the overall fold and key inter-domain interactions that hold free protein in the basal conformation similar to the other subtypes. Arrestin-3 is the least selective member of the family, binding wide variety of GPCRs with high affinity and demonstrating lower preference for active phosphorylated forms of the receptors. In contrast to the other three arrestins, part of the receptor-binding surface in the arrestin-3 C-domain does not form a contiguous β-sheet, consistent with increased flexibility. By swapping the corresponding elements between arrestin-2 and -3 we show that the presence of this loose structure correlates with reduced arrestin selectivity for activated receptor, consistent with a conformational change in this β-sheet upon receptor binding. PMID:21215759
Interactions of Pannexin1 channels with purinergic and NMDA receptor channels.
Li, Shuo; Bjelobaba, Ivana; Stojilkovic, Stanko S
2018-01-01
Pannexins are a three-member family of vertebrate plasma membrane spanning molecules that have homology to the invertebrate gap junction forming proteins, the innexins. However, pannexins do not form gap junctions but operate as plasma membrane channels. The best-characterized member of these proteins, Pannexin1 (Panx1) was suggested to be functionally associated with purinergic P2X and N-methyl-D-aspartate (NMDA) receptor channels. Activation of these receptor channels by their endogenous ligands leads to cross-activation of Panx1 channels. This in turn potentiates P2X and NMDA receptor channel signaling. Two potentiation concepts have been suggested: enhancement of the current responses and/or sustained receptor channel activation by ATP released through Panx1 pore and adenosine generated by ectonucleotidase-dependent dephosphorylation of ATP. Here we summarize the current knowledge and hypotheses about interactions of Panx1 channels with P2X and NMDA receptor channels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. Published by Elsevier B.V.
Kovacic, Peter; Somanathan, Ratnasamy
2009-01-01
Zolpidem (trade name Ambien) has attracted much interest as a sleep-inducing agent and also in research. Attention has been centered mainly on receptor binding and electrochemistry in the central nervous system which are briefly addressed herein. A novel integrated approach to mode of action is presented. The pathways to be discussed involve basicity, reduction potential, electrostatics, cell signaling, GABA receptor binding, electron transfer (ET), pharmacodynamics, structure activity relationships (SAR) and side effects. The highly conjugated pyridinium salt formed by protonation of the amidine moiety is proposed to be the active form acting as an ET agent. Extrapolation of reduction potentials for related compounds supports the premise that zolpidem may act as an ET species in vivo. From recent literature reports, electrostatics is believed to play a significant role in drug action. The pyridinium cation displays molecular electrostatic potential which may well play a role energetically or as a bridging mechanism. An SAR analysis points to analogy with other physiologically active xenobiotics, namely benzodiazepines and paraquat in the conjugated iminium category. Inactivity of metabolites indicates that the parent is the active form of zolpidem. Absence of reactive oxygen species and oxidative stress is in line with minor side effects. In contrast, generally, the prior literature contains essentially no discussion of these fundamental biochemical relationships. Pharmacodynamics may play an important role. Concerning behavior at the blood-brain barrier, useful insight can be gained from investigations of the related cationic anesthetics that are structurally related to acetyl choline. Evidently, the neutral form of the drug penetrates the neuronal membrane, with the salt form operating at the receptor. The pathways of zolpidem have several clinical implications since the agent affects sedation, electroencephalographic activity, oxidative metabolites and receptors in the central nervous system. The drug acts at the GABA(A) receptor benzodiazepine site, displaying high and intermediate affinities to various receptor regions. Structural features for tight binding were determined. The sedative and anticonvulsant activities are due to its action on the alpha-1-GABA(A) receptors. One of the common adverse responses to zolpidem is hallucinations. Proposed mechanisms comprise changes in the GABA(A) receptor, pharmacodynamic interactions involving serotonin and neuronal-weak photon emission processes entailing redox phenomena. Reports cite cases of abuse with cravings based on anxiolytic and stimulating actions. It is important to recognize that insight concerning processes at the fundamental, molecular level can translate into beneficial results involving both positive and adverse side effects. In order for this to occur, interdisciplinary interaction is necessary. Suggestions are made for future research aimed at testing the various hypotheses.
Scheer, A; Fanelli, F; Costa, T; De Benedetti, P G; Cotecchia, S
1996-01-01
Site-directed mutagenesis and molecular dynamics simulations of the alpha 1B-adrenergic receptor (AR) were combined to explore the potential molecular changes correlated with the transition from R (inactive state) to R (active state). Using molecular dynamics analysis we compared the structural/dynamic features of constitutively active mutants with those of the wild type and of an inactive alpha 1B-AR to build a theoretical model which defines the essential features of R and R. The results of site-directed mutagenesis were in striking agreement with the predictions of the model supporting the following hypothesis. (i) The equilibrium between R and R depends on the equilibrium between the deprotonated and protonated forms, respectively, of D142 of the DRY motif. In fact, replacement of D142 with alanine confers high constitutive activity to the alpha 1B-AR. (ii) The shift of R143 of the DRY sequence out of a conserved 'polar pocket' formed by N63, D91, N344 and Y348 is a feature common to all the active structures, suggesting that the role of R143 is fundamental for mediating receptor activation. Disruption of these intramolecular interactions by replacing N63 with alanine constitutively activates the alpha 1B-AR. Our findings might provide interesting generalities about the activation process of G protein-coupled receptors. Images PMID:8670860
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendelsohn, M.E.; Yan Zhu; O'Neill, S.
Thrombin plays a critical role in platelet activation, hemostasis, and thrombosis. Cellular activation by thrombin leads to the phosphorylation of multiple proteins, most of which are unidentified. The authors have characterized several 29-kDa proteins that are rapidly phosphorylated following exposure of intact human platelets to thrombin. A murine monoclonal antibody raised to an unidentified estrogen receptor-related 29-kDa protein selectively recognized these proteins as well as a more basic, unphosphorylated 27-kDa protein. Cellular activation by thrombin led to a marked shift in the proportion of protein from the 27-kDa unphosphorylated form to the 29-kDa phosphoprotein species. Using this antibody, they isolatedmore » and sequenced a human cDNA clone encoding a protein that was identical to the mammalian 27-kDa heat shock protein (HSP27), a protein of uncertain function that is known to be phosphorylated to several forms and to be transcriptionally induced by estrogen. The 29-kDa proteins were confirmed to be phosphorylated forms of HSP27 by immunoprecipitation studies. Thus, the estrogen receptor-related protein is HSP27, and the three major 20-kDa proteins phosphorylated in thrombin-activated platelets are forms of HSP27. These data suggest a role for HSP27 in the signal transduction events of platelet activation.« less
Smad3 allostery links TGF-β receptor kinase activation to transcriptional control
Qin, Bin Y.; Lam, Suvana S.; Correia, John J.; Lin, Kai
2002-01-01
Smad3 transduces the signals of TGF-βs, coupling transmembrane receptor kinase activation to transcriptional control. The membrane-associated molecule SARA (Smad Anchor for Receptor Activation) recruits Smad3 for phosphorylation by the receptor kinase. Upon phosphorylation, Smad3 dissociates from SARA and enters the nucleus, in which its transcriptional activity can be repressed by Ski. Here, we show that SARA and Ski recognize specifically the monomeric and trimeric forms of Smad3, respectively. Thus, trimerization of Smad3, induced by phosphorylation, simultaneously activates the TGF-β signal by driving Smad3 dissociation from SARA and sets up the negative feedback mechanism by Ski. Structural models of the Smad3/SARA/receptor kinase complex and Smad3/Ski complex provide insights into the molecular basis of regulation. PMID:12154125
Blocking Blood Supply to Breast Carcinoma With a DNA Vaccine Encoding VEGF Receptor-2
2006-03-01
recognize antigens in the form of 8 to 10 amino acid long peptides, presented to T- cell receptors (TCRs) on the cell surface as complexes with major... receptor , and providing tumor- associated antigens , our DNA vaccine can efficiently activate DCs, NK cells , and CTLs, presumably in Peyer’s patches. The... immunoreceptor in immune cell activation and natural killing. Immunity. 2002;17:19-29. (5) Snyder MR, Weyand CM, Goronzy JJ. The double life of NK receptors
Bailey, R J; Hay, D L
2007-01-01
Background and purpose: Transmembrane proline (P) residues in family A G protein-coupled receptors (GPCRs) form functionally important kinks in their helices. These residues are little studied in family B GPCRs but experiments with the VPAC1 receptor and calcitonin receptor-like receptor (CL) show parallels with family A receptors. We sought to determine the function of these residues in the insert negative form of the human calcitonin receptor, a close relative of CL. Experimental approach: Proline residues within the transmembrane domains of the calcitonin receptor (P246, P249, P280, P326, P336) were individually mutated to alanine (A) using site-directed mutagenesis. Receptors were transiently transfected into Cos-7 cells using polyethylenimine and salmon and human calcitonin-induced cAMP responses measured. Salmon and human calcitonin competition binding experiments were also performed and receptor cell-surface expression assessed by whole cell ELISA. Key results: P246A, P249A and P280A were wild-type in terms of human calcitonin-induced cAMP activation. P326A and P336A had reduced function (165 and 12-fold, respectively). In membranes, human calcitonin binding was not detectable for any mutant receptor but in whole cells, binding was detected for all mutants apart from P326A. Salmon calcitonin activated mutant and wild-type receptors equally, although Bmax values were reduced for all mutants apart from P326A. Conclusions and Implications: P326 and P336 are important for the function of human calcitonin receptors and are likely to be involved in generating receptor conformations appropriate for agonist binding and receptor activation. However, agonist-specific effects were observed , implying distinct conformations of the human calcitonin receptor. PMID:17486143
Coke, Christopher J; Scarlett, Kisha A; Chetram, Mahandranauth A; Jones, Kia J; Sandifer, Brittney J; Davis, Ahriea S; Marcus, Adam I; Hinton, Cimona V
2016-05-06
The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Shizu, Ryota; Osabe, Makoto; Perera, Lalith; Moore, Rick; Sueyoshi, Tatsuya
2017-01-01
ABSTRACT The nuclear receptor CAR (NR1I3) regulates hepatic drug and energy metabolism as well as cell fate. Its activation can be a critical factor in drug-induced toxicity and the development of diseases, including diabetes and tumors. CAR inactivates its constitutive activity by phosphorylation at threonine 38. Utilizing receptor for protein kinase 1 (RACK1) as the regulatory subunit, protein phosphatase 2A (PP2A) dephosphorylates threonine 38 to activate CAR. Here we demonstrate that CAR undergoes homodimer-monomer conversion to regulate this dephosphorylation. By coexpression of two differently tagged CAR proteins in Huh-7 cells, mouse primary hepatocytes, and mouse livers, coimmunoprecipitation and two-dimensional gel electrophoresis revealed that CAR can form a homodimer in a configuration in which the PP2A/RACK1 binding site is buried within its dimer interface. Epidermal growth factor (EGF) was found to stimulate CAR homodimerization, thus constraining CAR in its inactive form. The agonistic ligand CITCO binds directly to the CAR homodimer and dissociates phosphorylated CAR into its monomers, exposing the PP2A/RACK1 binding site for dephosphorylation. Phenobarbital, which is not a CAR ligand, binds the EGF receptor, reversing the EGF signal to monomerize CAR for its indirect activation. Thus, the homodimer-monomer conversion is the underlying molecular mechanism that regulates CAR activation, by placing phosphorylated threonine 38 as the common target for both direct and indirect activation of CAR. PMID:28265001
Nicotine Activation of α4* Receptors: Sufficient for Reward, Tolerance, and Sensitization
NASA Astrophysics Data System (ADS)
Tapper, Andrew R.; McKinney, Sheri L.; Nashmi, Raad; Schwarz, Johannes; Deshpande, Purnima; Labarca, Cesar; Whiteaker, Paul; Marks, Michael J.; Collins, Allan C.; Lester, Henry A.
2004-11-01
The identity of nicotinic receptor subtypes sufficient to elicit both the acute and chronic effects of nicotine dependence is unknown. We engineered mutant mice with α4 nicotinic subunits containing a single point mutation, Leu9' --> Ala9' in the pore-forming M2 domain, rendering α4* receptors hypersensitive to nicotine. Selective activation of α4* nicotinic acetylcholine receptors with low doses of agonist recapitulates nicotine effects thought to be important in dependence, including reinforcement in response to acute nicotine administration, as well as tolerance and sensitization elicited by chronic nicotine administration. These data indicate that activation of α4* receptors is sufficient for nicotine-induced reward, tolerance, and sensitization.
Klein, Ophir; Polack, Glenda W.; Surti, Toral; Kegler-Ebo, Deena; Smith, Steven O.; DiMaio, Daniel
1998-01-01
The bovine papillomavirus E5 protein is a small, homodimeric transmembrane protein that forms a stable complex with the cellular platelet-derived growth factor (PDGF) β receptor through transmembrane and juxtamembrane interactions, resulting in receptor activation and cell transformation. Glutamine 17 in the transmembrane domain of the 44-amino-acid E5 protein is critical for complex formation and receptor activation, and we previously proposed that glutamine 17 forms a hydrogen bond with threonine 513 of the PDGF β receptor. We have constructed and analyzed mutant E5 proteins containing all possible amino acids at position 17 and examined the ability of these proteins to transform C127 fibroblasts, which express endogenous PDGF β receptor. Although several position 17 mutants were able to transform cells, mutants containing amino acids with side groups that were unable to participate in hydrogen bonding interactions did not form a stable complex with the PDGF β receptor or transform cells, in agreement with the proposed interaction between position 17 of the E5 protein and threonine 513 of the receptor. The nature of the residue at position 17 also affected the ability of the E5 proteins to dimerize. Overall, there was an excellent correlation between the ability of the various E5 mutant proteins to bind the PDGF β receptor, lead to receptor tyrosine phosphorylation, and transform cells. Similar results were obtained in Ba/F3 hematopoietic cells expressing exogenous PDGF β receptor. In addition, treatment of E5-transformed cells with a specific inhibitor of the PDGF receptor tyrosine kinase reversed the transformed phenotype. These results confirm the central importance of the PDGF β receptor in mediating E5 transformation and highlight the critical role of the residue at position 17 of the E5 protein in the productive interaction with the PDGF β receptor. On the basis of molecular modeling analysis and the known chemical properties of the amino acids, we suggest a structural basis for the role of the residue at position 17 in E5 dimerization and in complex formation between the E5 protein and the PDGF β receptor. PMID:9765437
Klein, O; Polack, G W; Surti, T; Kegler-Ebo, D; Smith, S O; DiMaio, D
1998-11-01
The bovine papillomavirus E5 protein is a small, homodimeric transmembrane protein that forms a stable complex with the cellular platelet-derived growth factor (PDGF) beta receptor through transmembrane and juxtamembrane interactions, resulting in receptor activation and cell transformation. Glutamine 17 in the transmembrane domain of the 44-amino-acid E5 protein is critical for complex formation and receptor activation, and we previously proposed that glutamine 17 forms a hydrogen bond with threonine 513 of the PDGF beta receptor. We have constructed and analyzed mutant E5 proteins containing all possible amino acids at position 17 and examined the ability of these proteins to transform C127 fibroblasts, which express endogenous PDGF beta receptor. Although several position 17 mutants were able to transform cells, mutants containing amino acids with side groups that were unable to participate in hydrogen bonding interactions did not form a stable complex with the PDGF beta receptor or transform cells, in agreement with the proposed interaction between position 17 of the E5 protein and threonine 513 of the receptor. The nature of the residue at position 17 also affected the ability of the E5 proteins to dimerize. Overall, there was an excellent correlation between the ability of the various E5 mutant proteins to bind the PDGF beta receptor, lead to receptor tyrosine phosphorylation, and transform cells. Similar results were obtained in Ba/F3 hematopoietic cells expressing exogenous PDGF beta receptor. In addition, treatment of E5-transformed cells with a specific inhibitor of the PDGF receptor tyrosine kinase reversed the transformed phenotype. These results confirm the central importance of the PDGF beta receptor in mediating E5 transformation and highlight the critical role of the residue at position 17 of the E5 protein in the productive interaction with the PDGF beta receptor. On the basis of molecular modeling analysis and the known chemical properties of the amino acids, we suggest a structural basis for the role of the residue at position 17 in E5 dimerization and in complex formation between the E5 protein and the PDGF beta receptor.
Protease-Activated Receptors and other G-Protein-Coupled Receptors: the Melanoma Connection
Rosero, Rebecca A.; Villares, Gabriel J.; Bar-Eli, Menashe
2016-01-01
The vast array of G-protein-coupled receptors (GPCRs) play crucial roles in both physiological and pathological processes, including vision, coagulation, inflammation, autophagy, and cell proliferation. GPCRs also affect processes that augment cell proliferation and metastases in many cancers including melanoma. Melanoma is the deadliest form of skin cancer, yet limited therapeutic modalities are available to patients with metastatic melanoma. Studies have found that both chemokine receptors and protease-activated receptors, both of which are GPCRs, are central to the metastatic melanoma phenotype and may serve as potential targets in novel therapies against melanoma and other cancers. PMID:27379162
Protease-Activated Receptors and other G-Protein-Coupled Receptors: the Melanoma Connection.
Rosero, Rebecca A; Villares, Gabriel J; Bar-Eli, Menashe
2016-01-01
The vast array of G-protein-coupled receptors (GPCRs) play crucial roles in both physiological and pathological processes, including vision, coagulation, inflammation, autophagy, and cell proliferation. GPCRs also affect processes that augment cell proliferation and metastases in many cancers including melanoma. Melanoma is the deadliest form of skin cancer, yet limited therapeutic modalities are available to patients with metastatic melanoma. Studies have found that both chemokine receptors and protease-activated receptors, both of which are GPCRs, are central to the metastatic melanoma phenotype and may serve as potential targets in novel therapies against melanoma and other cancers.
The Evolving Field of Biodefence: Therapeutic Developments and Diagnostics
2005-04-01
several ways. One method would be to interfere with the furin -medi- ated cleavage of PA to its active form (PA 63 ) following host-cell receptor binding4...b | The inactive form of protective antigen (PA83) binds to a host-cell receptor, where it is cleaved by a furin -related protease, to give active PA63...explore whether a putative target, such as furin cleavage site of Ebola virus, is essential for viral infection88. Compared with filoviruses, poxvirus
Allosteric receptor activation by the plant peptide hormone phytosulfokine.
Wang, Jizong; Li, Hongju; Han, Zhifu; Zhang, Heqiao; Wang, Tong; Lin, Guangzhong; Chang, Junbiao; Yang, Weicai; Chai, Jijie
2015-09-10
Phytosulfokine (PSK) is a disulfated pentapeptide that has a ubiquitous role in plant growth and development. PSK is perceived by its receptor PSKR, a leucine-rich repeat receptor kinase (LRR-RK). The mechanisms underlying the recognition of PSK, the activation of PSKR and the identity of the components downstream of the initial binding remain elusive. Here we report the crystal structures of the extracellular LRR domain of PSKR in free, PSK- and co-receptor-bound forms. The structures reveal that PSK interacts mainly with a β-strand from the island domain of PSKR, forming an anti-β-sheet. The two sulfate moieties of PSK interact directly with PSKR, sensitizing PSKR recognition of PSK. Supported by biochemical, structural and genetic evidence, PSK binding enhances PSKR heterodimerization with the somatic embryogenesis receptor-like kinases (SERKs). However, PSK is not directly involved in PSKR-SERK interaction but stabilizes PSKR island domain for recruitment of a SERK. Our data reveal the structural basis for PSKR recognition of PSK and allosteric activation of PSKR by PSK, opening up new avenues for the design of PSKR-specific small molecules.
Signal Transduction by a Fungal NOD-Like Receptor Based on Propagation of a Prion Amyloid Fold
Daskalov, Asen; Habenstein, Birgit; Martinez, Denis; Debets, Alfons J. M.; Sabaté, Raimon; Loquet, Antoine; Saupe, Sven J.
2015-01-01
In the fungus Podospora anserina, the [Het-s] prion induces programmed cell death by activating the HET-S pore-forming protein. The HET-s β-solenoid prion fold serves as a template for converting the HET-S prion-forming domain into the same fold. This conversion, in turn, activates the HET-S pore-forming domain. The gene immediately adjacent to het-S encodes NWD2, a Nod-like receptor (NLR) with an N-terminal motif similar to the elementary repeat unit of the β-solenoid fold. NLRs are immune receptors controlling cell death and host defense processes in animals, plants and fungi. We have proposed that, analogously to [Het-s], NWD2 can activate the HET-S pore-forming protein by converting its prion-forming region into the β-solenoid fold. Here, we analyze the ability of NWD2 to induce formation of the β-solenoid prion fold. We show that artificial NWD2 variants induce formation of the [Het-s] prion, specifically in presence of their cognate ligands. The N-terminal motif is responsible for this prion induction, and mutations predicted to affect the β-solenoid fold abolish templating activity. In vitro, the N-terminal motif assembles into infectious prion amyloids that display a structure resembling the β-solenoid fold. In vivo, the assembled form of the NWD2 N-terminal region activates the HET-S pore-forming protein. This study documenting the role of the β-solenoid fold in fungal NLR function further highlights the general importance of amyloid and prion-like signaling in immunity-related cell fate pathways. PMID:25671553
Almabouada, Farid; Diaz-Ruiz, Alberto; Rabanal-Ruiz, Yoana; Peinado, Juan R.; Vazquez-Martinez, Rafael; Malagon, Maria M.
2013-01-01
Adiponectin binds to two widely expressed receptors (AdipoR1 and AdipoR2) that contain seven transmembrane domains but, unlike G-protein coupled receptors, present an extracellular C terminus and a cytosolic N terminus. Recently, AdipoR1 was found to associate in high order complexes. However, it is still unknown whether AdipoR2 may also form homomers or heteromers with AdipoR1 or if such interactions may be functionally relevant. Herein, we have analyzed the oligomerization pattern of AdipoRs by FRET and immunoprecipitation and evaluated both the internalization of AdipoRs in response to various adiponectin isoforms and the effect of adiponectin binding to different AdipoR combinations on AMP-activated protein kinase phosphorylation and peroxisome proliferator-activated receptor α activation. Transfection of HEK293AD cells with AdipoR1 and AdipoR2 showed that both receptors colocalize at both the plasma membrane and the endoplasmic reticulum. Co-transfection with the different AdipoR pairs yielded high FRET efficiencies in non-stimulated cells, which indicates that AdipoR1 and AdipoR2 form homo- and heteromeric complexes under resting conditions. Live FRET imaging suggested that both homo- and heteromeric AdipoR complexes dissociate in response to adiponectin, but heteromers separate faster than homomers. Finally, phosphorylation of AMP-activated protein kinase in response to adiponectin was delayed in cells wherein heteromer formation was favored. In sum, our findings indicate that AdipoR1 and AdipoR2 form homo- and heteromers that present unique interaction behaviors and signaling properties. This raises the possibility that the pleiotropic, tissue-dependent functions of adiponectin depend on the expression levels of AdipoR1 and AdipoR2 and, therefore, on the steady-state proportion of homo- and heteromeric complexes. PMID:23255609
Almabouada, Farid; Diaz-Ruiz, Alberto; Rabanal-Ruiz, Yoana; Peinado, Juan R; Vazquez-Martinez, Rafael; Malagon, Maria M
2013-02-01
Adiponectin binds to two widely expressed receptors (AdipoR1 and AdipoR2) that contain seven transmembrane domains but, unlike G-protein coupled receptors, present an extracellular C terminus and a cytosolic N terminus. Recently, AdipoR1 was found to associate in high order complexes. However, it is still unknown whether AdipoR2 may also form homomers or heteromers with AdipoR1 or if such interactions may be functionally relevant. Herein, we have analyzed the oligomerization pattern of AdipoRs by FRET and immunoprecipitation and evaluated both the internalization of AdipoRs in response to various adiponectin isoforms and the effect of adiponectin binding to different AdipoR combinations on AMP-activated protein kinase phosphorylation and peroxisome proliferator-activated receptor α activation. Transfection of HEK293AD cells with AdipoR1 and AdipoR2 showed that both receptors colocalize at both the plasma membrane and the endoplasmic reticulum. Co-transfection with the different AdipoR pairs yielded high FRET efficiencies in non-stimulated cells, which indicates that AdipoR1 and AdipoR2 form homo- and heteromeric complexes under resting conditions. Live FRET imaging suggested that both homo- and heteromeric AdipoR complexes dissociate in response to adiponectin, but heteromers separate faster than homomers. Finally, phosphorylation of AMP-activated protein kinase in response to adiponectin was delayed in cells wherein heteromer formation was favored. In sum, our findings indicate that AdipoR1 and AdipoR2 form homo- and heteromers that present unique interaction behaviors and signaling properties. This raises the possibility that the pleiotropic, tissue-dependent functions of adiponectin depend on the expression levels of AdipoR1 and AdipoR2 and, therefore, on the steady-state proportion of homo- and heteromeric complexes.
Assembly and activation of neurotrophic factor receptor complexes.
Simi, Anastasia; Ibáñez, Carlos F
2010-04-01
Neurotrophic factors play important roles in the development and function of both neuronal and glial elements of the central and peripheral nervous systems. Their functional diversity is in part based on their ability to interact with alternative complexes of receptor molecules. This review focuses on our current understanding of the mechanisms that govern the assembly and activation of neurotrophic factor receptor complexes. The realization that many, if not the majority, of these complexes exist in a preassembled form at the plasma membrane has forced the revision of classical ligand-mediated oligomerization models, and led to the discovery of novel mechanisms of receptor activation and generation of signaling diversity which are likely to be shared by many different classes of receptors.
NASA Technical Reports Server (NTRS)
Sorenson, E. M.; Gallagher, J. P.
1993-01-01
Previous intracellular recordings have demonstrated that dorsolateral septal nucleus (DLSN) neurons express a novel nicotinic receptor which produces a direct membrane hyperpolarization when activated by nicotinic agonists. Activation of the classical excitatory nicotinic receptors has been shown to require a disulfide bond involving the cysteines at positions 192 and 193 of the alpha subunits of the receptor. Reduction of this cystine bond with dithiothreitol (DTT) abolishes agonist activation of excitatory nicotinic receptors. We have now examined whether DTT treatment of the inhibitory nicotinic receptor on DLSN neurons also abolishes the inhibitory nicotinic response. We find that the inhibitory response persists after treatment of the neurons with 1 mM DTT, even if the reduction is followed by alkylation of the receptor with bromoacetylcholine to prevent possible reformation of disulfide bonds. This result suggests that the agonist binding site on the inhibitory nicotinic receptor does not require an intact disulfide bond, similar to the bond on the alpha subunit of the excitatory nicotinic receptor, for agonist activation of the receptor. Some of these results have been previously reported in abstract form.
Molecular modeling of ligand-receptor interactions in the OR5 olfactory receptor.
Singer, M S; Shepherd, G M
1994-06-02
Olfactory receptors belong to the superfamily of seven transmembrane domain, G protein-coupled receptors. In order to begin analysis of mechanisms of receptor activation, a computer model of the OR5 olfactory receptor has been constructed and compared with other members of this superfamily. We have tested docking of the odor molecule lyral, which is known to activate the OR5 receptor. The results point to specific ligand-binding residues on helices III through VII that form a binding pocket in the receptor. Some of these residues occupy sequence positions identical to ligand-binding residues conserved among other superfamily members. The results provide new insights into possible molecular mechanisms of odor recognition and suggest hypotheses to guide future experimental studies using site-directed mutagenesis.
Mathivet, Thomas; Mazot, Pierre; Vigny, Marc
2007-12-01
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase essentially and transiently expressed during development in specific regions of the central and peripheral nervous system. ALK expression persists at a lower level in the adult brain. Thus, it might play an important role in both the normal development and function of the nervous system. The nature of the cognate ligand of this receptor in vertebrates is still a matter of debate. Pleiotrophin and midkine have been proposed as ligands of ALK but several independent studies do not confirm this hypothesis. Interestingly, a recent study proposed that a C-terminal truncated form of Pleiotrophin (Pleiotrophin.15) and not the full length form (Pleiotrophin.18) promotes glioblastoma proliferation in an ALK-dependent fashion. These data were obviously a strong basis to conciliate the conflicting results so far reported in the literature. In the present study, we first purified to homogeneity the two forms of Pleiotrophin secreted by HEK 293 cells. In contrast to agonist monoclonal antibodies, both Pleiotrophin.15 and Pleiotrophin.18 failed to activate ALK in neuroblastoma and glioblastoma cells expressing this receptor. Thus, for our point of view, ALK is still an orphan receptor in vertebrates.
Millard, Christopher J; Ludeman, Justin P; Canals, Meritxell; Bridgford, Jessica L; Hinds, Mark G; Clayton, Daniel J; Christopoulos, Arthur; Payne, Richard J; Stone, Martin J
2014-11-04
Trafficking of leukocytes in immune surveillance and inflammatory responses is activated by chemokines engaging their receptors. Sulfation of tyrosine residues in peptides derived from the eosinophil chemokine receptor CCR3 dramatically enhances binding to cognate chemokines. We report the structural basis of this recognition and affinity enhancement. We describe the structure of a CC chemokine (CCL11/eotaxin-1) bound to a fragment of a chemokine receptor: residues 8–23 of CCR3, including two sulfotyrosine residues. We also show that intact CCR3 is sulfated and sulfation enhances receptor activity. The CCR3 sulfotyrosine residues form hydrophobic, salt bridge and cation-p interactions with residues that are highly conserved in CC chemokines. However, the orientation of the chemokine relative to the receptor N terminus differs substantially from those observed for two CXC chemokines, suggesting that initial binding of the receptor sulfotyrosine residues guides subsequent steps in receptor activation, thereby influencing the receptor conformational changes and signaling.
The Structure of the GM-CSF Receptor Complex Reveals a Distinct Mode of Cytokine Receptor Activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Guido; Hercus, Timothy R.; McClure, Barbara J.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that controls the production and function of blood cells, is deregulated in clinical conditions such as rheumatoid arthritis and leukemia, yet offers therapeutic value for other diseases. Its receptors are heterodimers consisting of a ligand-specific {alpha} subunit and a {beta}c subunit that is shared with the interleukin (IL)-3 and IL-5 receptors. How signaling is initiated remains an enigma. We report here the crystal structure of the human GM-CSF/GM-CSF receptor ternary complex and its assembly into an unexpected dodecamer or higher-order complex. Importantly, mutagenesis of the GM-CSF receptor at the dodecamer interface andmore » functional studies reveal that dodecamer formation is required for receptor activation and signaling. This unusual form of receptor assembly likely applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their mechanism of activation and for the development of therapeutics.« less
Aguinaga, David; Medrano, Mireia; Vega-Quiroga, Ignacio; Gysling, Katia; Canela, Enric I; Navarro, Gemma; Franco, Rafael
2018-01-01
Sigma σ 1 and σ 2 receptors are targets of cocaine. Despite sharing a similar name, the two receptors are structurally unrelated and their physiological role is unknown. Cocaine increases the level of dopamine, a key neurotransmitter in CNS motor control and reward areas. While the drug also affects dopaminergic signaling by allosteric modulations exerted by σ 1 R interacting with dopamine D 1 and D 2 receptors, the potential regulation of dopaminergic transmission by σ 2 R is also unknown. We here demonstrate that σ 2 R may form heteroreceptor complexes with D 1 but not with D 2 receptors. Remarkably σ 1 , σ 2 , and D 1 receptors may form heterotrimers with particular signaling properties. Determination of cAMP levels, MAP kinase activation and label-free assays demonstrate allosteric interactions within the trimer. Importantly, the presence of σ 2 R induces bias in signal transduction as σ 2 R ligands increase cAMP signaling whereas reduce MAP kinase activation. These effects, which are opposite to those exerted via σ 1 R, suggest that the D 1 receptor-mediated signaling depends on the degree of trimer formation and the differential balance of sigma receptor and heteroreceptor expression in acute versus chronic cocaine consumption. Although the physiological role is unknown, the heteroreceptor complex formed by σ 1 , σ 2 , and D 1 receptors arise as relevant to convey the cocaine actions on motor control and reward circuits and as a key factor in acquisition of the addictive habit.
Aguinaga, David; Medrano, Mireia; Vega-Quiroga, Ignacio; Gysling, Katia; Canela, Enric I.; Navarro, Gemma; Franco, Rafael
2018-01-01
Sigma σ1 and σ2 receptors are targets of cocaine. Despite sharing a similar name, the two receptors are structurally unrelated and their physiological role is unknown. Cocaine increases the level of dopamine, a key neurotransmitter in CNS motor control and reward areas. While the drug also affects dopaminergic signaling by allosteric modulations exerted by σ1R interacting with dopamine D1 and D2 receptors, the potential regulation of dopaminergic transmission by σ2R is also unknown. We here demonstrate that σ2R may form heteroreceptor complexes with D1 but not with D2 receptors. Remarkably σ1, σ2, and D1 receptors may form heterotrimers with particular signaling properties. Determination of cAMP levels, MAP kinase activation and label-free assays demonstrate allosteric interactions within the trimer. Importantly, the presence of σ2R induces bias in signal transduction as σ2R ligands increase cAMP signaling whereas reduce MAP kinase activation. These effects, which are opposite to those exerted via σ1R, suggest that the D1 receptor-mediated signaling depends on the degree of trimer formation and the differential balance of sigma receptor and heteroreceptor expression in acute versus chronic cocaine consumption. Although the physiological role is unknown, the heteroreceptor complex formed by σ1, σ2, and D1 receptors arise as relevant to convey the cocaine actions on motor control and reward circuits and as a key factor in acquisition of the addictive habit. PMID:29483862
Crystal structure and association behaviour of the GluR2 amino-terminal domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Rongsheng; Singh, Satinder K.; Gu, Shenyan
2009-09-02
Fast excitatory neurotransmission is mediated largely by ionotropic glutamate receptors (iGluRs), tetrameric, ligand-gated ion channel proteins comprised of three subfamilies, AMPA, kainate and NMDA receptors, with each subfamily sharing a common, modular-domain architecture. For all receptor subfamilies, active channels are exclusively formed by assemblages of subunits within the same subfamily, a molecular process principally encoded by the amino-terminal domain (ATD). However, the molecular basis by which the ATD guides subfamily-specific receptor assembly is not known. Here we show that AMPA receptor GluR1- and GluR2-ATDs form tightly associated dimers and, by the analysis of crystal structures of the GluR2-ATD, propose mechanismsmore » by which the ATD guides subfamily-specific receptor assembly.« less
Reedijk, M; Liu, X; van der Geer, P; Letwin, K; Waterfield, M D; Hunter, T; Pawson, T
1992-01-01
Efficient binding of active phosphatidylinositol (PI) 3'-kinase to the autophosphorylated macrophage colony stimulating factor receptor (CSF-1R) requires the noncatalytic kinase insert (KI) region of the receptor. To test whether this region could function independently to bind PI 3'-kinase, the isolated CSF-1R KI was expressed in Escherichia coli, and was inducibly phosphorylated on tyrosine. The tyrosine phosphorylated form of the CSF-1R KI bound PI 3'-kinase in vitro, whereas the unphosphorylated form had no binding activity. The p85 alpha subunit of PI 3'-kinase contains two Src homology (SH)2 domains, which are implicated in the interactions of signalling proteins with activated receptors. Bacterially expressed p85 alpha SH2 domains complexed in vitro with the tyrosine phosphorylated CSF-1R KI. Binding of the CSF-1R KI to PI 3'-kinase activity, and to the p85 alpha SH2 domains, required phosphorylation of Tyr721 within the KI domain, but was independent of phosphorylation at Tyr697 and Tyr706. Tyr721 was also critical for the association of activated CSF-1R with PI 3'-kinase in mammalian cells. Complex formation between the CSF-1R and PI 3'-kinase can therefore be reconstructed in vitro in a specific interaction involving the phosphorylated receptor KI and the SH2 domains of p85 alpha. Images PMID:1314163
Odorant Receptor Modulation: Ternary Paradigm for Mode of Action of Insect Repellents
2012-01-01
Introduction Perception of chemicals in the environment by insects begins when compounds activate ionotropic receptors , gustatory recep- tors and odorant...Author’s personal copy Odorant receptor modulation: Ternary paradigm for mode of action of insect repellents Jonathan D. Bohbot, Joseph C. Dickens...Received in revised form 12 December 2011 Accepted 9 January 2012 Keywords: Odorant receptor Insect repellent Insurmountable antagonist Aedes aegypti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pioszak, Augen A.; Harikumar, Kaleeckal G.; Parker, Naomi R.
2010-06-25
The parathyroid hormone receptor (PTH1R) is a class B G protein-coupled receptor that is activated by parathyroid hormone (PTH) and PTH-related protein (PTHrP). Little is known about the oligomeric state of the receptor and its regulation by hormone. The crystal structure of the ligand-free PTH1R extracellular domain (ECD) reveals an unexpected dimer in which the C-terminal segment of both ECD protomers forms an {alpha}-helix that mimics PTH/PTHrP by occupying the peptide binding groove of the opposing protomer. ECD-mediated oligomerization of intact PTH1R was confirmed in living cells by bioluminescence and fluorescence resonance energy transfer experiments. As predicted by the structure,more » PTH binding disrupted receptor oligomerization. A receptor rendered monomeric by mutations in the ECD retained wild-type PTH binding and cAMP signaling ability. Our results are consistent with the hypothesis that PTH1R forms constitutive dimers that are dissociated by ligand binding and that monomeric PTH1R is capable of activating G protein.« less
Gorbunov, Evgeniy A; Ertuzun, Irina A; Kachaeva, Evgeniya V; Tarasov, Sergey A; Epstein, Oleg I
2015-01-01
Experimentally and clinically, it was shown that released-active form of antibodies to S100 protein (RAF of Abs to S100) exerts a wide range of pharmacological activities: anxiolytic, antiasthenic, antiaggressive, stress-protective, antihypoxic, antiischemic, neuroprotective, and nootropic. The purpose of this study was to determine the influence of RAF of Abs to S100 on major neurotransmitter systems (serotoninergic, GABAergic, dopaminergic, and on sigma receptors as well) which are possibly involved in its mechanism of pharmacological activity. Radioligand binding assays were used for assessment of the drug influence on ligand–receptor interaction. [35S]GTPγS binding assay, cyclic adenosine monophosphate HTRF™, cellular dielectric spectroscopy assays, and assays based on measurement of intracellular concentration of Ca2+ ions were used for assessment of agonist or antagonist properties of the drug toward receptors. RAF of Abs to S100 increased radioligand binding to 5-HT1F, 5-HT2B, 5-HT2Cedited, 5-HT3, and to D3 receptors by 142.0%, 131.9%, 149.3%, 120.7%, and 126.3%, respectively. Also, the drug significantly inhibited specific binding of radioligands to GABAB1A/B2 receptors by 25.8%, and to both native and recombinant human sigma1 receptors by 75.3% and 40.32%, respectively. In the functional assays, it was shown that the drug exerted antagonism at 5-HT1B, D3, and GABAB1A/B2 receptors inhibiting agonist-induced responses by 23.24%, 32.76%, and 30.2%, respectively. On the contrary, the drug exerted an agonist effect at 5-HT1A receptors enhancing receptor functional activity by 28.0%. The pharmacological profiling of RAF of Abs to S100 among 27 receptor provides evidence for drug-related modification of major neurotransmitter systems. PMID:26604768
Evidence against dopamine D1/D2 receptor heteromers
Frederick, Aliya L.; Yano, Hideaki; Trifilieff, Pierre; Vishwasrao, Harshad D.; Biezonski, Dominik; Mészáros, József; Sibley, David R.; Kellendonk, Christoph; Sonntag, Kai C.; Graham, Devon L.; Colbran, Roger J.; Stanwood, Gregg D.; Javitch, Jonathan A.
2014-01-01
Hetero-oligomers of G-protein-coupled receptors have become the subject of intense investigation because their purported potential to manifest signaling and pharmacological properties that differ from the component receptors makes them highly attractive for the development of more selective pharmacological treatments. In particular, dopamine D1 and D2 receptors have been proposed to form hetero-oligomers that couple to Gαq proteins, and SKF83959 has been proposed to act as a biased agonist that selectively engages these receptor complexes to activate Gαq and thus phospholipase C. D1/D2 heteromers have been proposed as relevant to the pathophysiology and treatment of depression and schizophrenia. We used in vitro bioluminescence resonance energy transfer (BRET), ex vivo analyses of receptor localization and proximity in brain slices, and behavioral assays in mice to characterize signaling from these putative dimers/oligomers. We were unable to detect Gαq or Gα11 protein coupling to homomers or heteromers of D1 or D2 receptors using a variety of biosensors. SKF83959-induced locomotor and grooming behaviors were eliminated in D1 receptor knockout mice, verifying a key role for D1-like receptor activation. In contrast, SKF83959-induced motor responses were intact in D2 receptor and Gαq knockout mice, as well as in knock-in mice expressing a mutant Ala286-CaMKIIα, that cannot autophosphorylate to become active. Moreover, we found that in the shell of the nucleus accumbens, even in neurons in which D1 and D2 receptor promoters are both active, the receptor proteins are segregated and do not form complexes. These data are not compatible with SKF83959 signaling through Gαq or through a D1–D2 heteromer and challenge the existence of such a signaling complex in the adult animals that we used for our studies. PMID:25560761
Paramo, Teresa; Piggot, Thomas J.; Bryant, Clare E.; Bond, Peter J.
2013-01-01
As part of the innate immune system, Toll-like receptor 4 (TLR4) recognizes bacterial cell surface lipopolysaccharide (LPS) by forming a complex with a lipid-binding co-receptor, MD-2. In the presence of agonist, TLR4·MD-2 dimerizes to form an active receptor complex, leading to initiation of intracellular inflammatory signals. TLR4 is of great biomedical interest, but its pharmacological manipulation is complicated because even subtle variations in the structure of LPS can profoundly impact the resultant immunological response. Here, we use atomically detailed molecular simulations to gain insights into the nature of the molecular signaling mechanism. We first demonstrate that MD-2 is extraordinarily flexible. The “clamshell-like” motions of its β-cup fold enable it to sensitively match the volume of its hydrophobic cavity to the size and shape of the bound lipid moiety. We show that MD-2 allosterically transmits this conformational plasticity, in a ligand-dependent manner, to a phenylalanine residue (Phe-126) at the cavity mouth previously implicated in TLR4 activation. Remarkably, within the receptor complex, we observe spontaneous transitions between active and inactive signaling states of Phe-126, and we confirm that Phe-126 is indeed the “molecular switch” in endotoxic signaling. PMID:24178299
Paramo, Teresa; Piggot, Thomas J; Bryant, Clare E; Bond, Peter J
2013-12-20
As part of the innate immune system, Toll-like receptor 4 (TLR4) recognizes bacterial cell surface lipopolysaccharide (LPS) by forming a complex with a lipid-binding co-receptor, MD-2. In the presence of agonist, TLR4·MD-2 dimerizes to form an active receptor complex, leading to initiation of intracellular inflammatory signals. TLR4 is of great biomedical interest, but its pharmacological manipulation is complicated because even subtle variations in the structure of LPS can profoundly impact the resultant immunological response. Here, we use atomically detailed molecular simulations to gain insights into the nature of the molecular signaling mechanism. We first demonstrate that MD-2 is extraordinarily flexible. The "clamshell-like" motions of its β-cup fold enable it to sensitively match the volume of its hydrophobic cavity to the size and shape of the bound lipid moiety. We show that MD-2 allosterically transmits this conformational plasticity, in a ligand-dependent manner, to a phenylalanine residue (Phe-126) at the cavity mouth previously implicated in TLR4 activation. Remarkably, within the receptor complex, we observe spontaneous transitions between active and inactive signaling states of Phe-126, and we confirm that Phe-126 is indeed the "molecular switch" in endotoxic signaling.
Purcell, Ryan H; Toro, Camilo; Gahl, William A; Hall, Randy A
2017-12-01
Mutations in G protein-coupled receptors (GPCRs) that increase constitutive signaling activity can cause human disease. A de novo C-terminal mutation (R1465W) in the adhesion GPCR BAI2 (also known as ADGRB2) was identified in a patient suffering from progressive spastic paraparesis and other neurological symptoms. In vitro studies revealed that this mutation strongly increases the constitutive signaling activity of an N-terminally cleaved form of BAI2, which represents the activated form of the receptor. Further studies dissecting the mechanism(s) underling this effect revealed that wild-type BAI2 primarily couples to Gα z , with the R1465W mutation conferring increased coupling to Gα i . The R1465W mutation also increases the total and surface expression of BAI2. The mutation has no effect on receptor binding to β-arrestins, but does perturb binding to the endocytic protein endophilin A1, identified here as a novel interacting partner for BAI2. These studies provide new insights into the signaling capabilities of the adhesion GPCR BAI2/ADGRB2 and shed light on how an apparent gain-of-function mutation to the receptor's C-terminus may lead to human disease. © 2017 Wiley Periodicals, Inc.
Vandenberg, R J; French, C R; Barry, P H; Shine, J; Schofield, P R
1992-01-01
The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. Glycine activation of the receptor is antagonized by the convulsant alkaloid strychnine. Using in vitro mutagenesis and functional analysis of the cDNA encoding the alpha 1 subunit of the human GlyR, we have identified several amino acid residues that form the strychnine-binding site. These residues were identified by transient expression of mutated cDNAs in mammalian (293) cells and examination of resultant [3H]strychnine binding, glycine displacement of [3H]strychnine, and electrophysiological responses to the application of glycine and strychnine. This mutational analysis revealed that residues from two separate domains within the alpha 1 subunit form the binding site for the antagonist strychnine. The first domain includes the amino acid residues Gly-160 and Tyr-161, and the second domain includes the residues Lys-200 and Tyr-202. These results, combined with analyses of other ligand-gated ion channel receptors, suggest a conserved tertiary structure and a common mechanism for antagonism in this receptor superfamily. PMID:1311851
Siegel, P M; Ryan, E D; Cardiff, R D; Muller, W J
1999-01-01
To assess the importance of Neu activation during mammary tumorigenesis, altered receptors harboring in-frame deletions within the extracellular domain were expressed in transgenic mice. Females from several independent lines develop multiple mammary tumors that frequently metastasize to the lung. Tumor progression in these strains was associated with elevated levels of tyrosine-phosphorylated Neu and ErbB-3. Consistent with these observations, a survey of primary human breast tumors revealed frequent co-expression of both erbB-2 and erbB-3 transcripts. The ability of altered Neu receptors to induce mammary tumorigenesis in transgenic mice prompted us to examine whether similar mutations occurred in ErbB-2 during human breast cancer progression. Interestingly, an alternatively spliced form of erbB-2, closely resembling spontaneous activated forms of neu, was detected in human breast tumors. The ErbB-2 receptor encoded by this novel transcript harbors an in-frame deletion of 16 amino acids in the extracellular domain and can transform Rat-1 fibroblasts. Together, these observations argue that co-expression of ErbB-2 and ErbB-3 may play a critical role in the induction of human breast tumors, and raise the possibility that activating mutations in the ErbB-2 receptor may also contribute to this process. PMID:10205169
Mechanism of partial agonism in AMPA-type glutamate receptors
Salazar, Hector; Eibl, Clarissa; Chebli, Miriam; Plested, Andrew
2017-01-01
Neurotransmitters trigger synaptic currents by activating ligand-gated ion channel receptors. Whereas most neurotransmitters are efficacious agonists, molecules that activate receptors more weakly—partial agonists—also exist. Whether these partial agonists have weak activity because they stabilize less active forms, sustain active states for a lesser fraction of the time or both, remains an open question. Here we describe the crystal structure of an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) ligand binding domain (LBD) tetramer in complex with the partial agonist 5-fluorowillardiine (FW). We validate this structure, and others of different geometry, using engineered intersubunit bridges. We establish an inverse relation between the efficacy of an agonist and its promiscuity to drive the LBD layer into different conformations. These results suggest that partial agonists of the AMPAR are weak activators of the receptor because they stabilize multiple non-conducting conformations, indicating that agonism is a function of both the space and time domains. PMID:28211453
Tracking G-protein-coupled receptor activation using genetically encoded infrared probes.
Ye, Shixin; Zaitseva, Ekaterina; Caltabiano, Gianluigi; Schertler, Gebhard F X; Sakmar, Thomas P; Deupi, Xavier; Vogel, Reiner
2010-04-29
Rhodopsin is a prototypical heptahelical family A G-protein-coupled receptor (GPCR) responsible for dim-light vision. Light isomerizes rhodopsin's retinal chromophore and triggers concerted movements of transmembrane helices, including an outward tilting of helix 6 (H6) and a smaller movement of H5, to create a site for G-protein binding and activation. However, the precise temporal sequence and mechanism underlying these helix rearrangements is unclear. We used site-directed non-natural amino acid mutagenesis to engineer rhodopsin with p-azido-l-phenylalanine residues incorporated at selected sites, and monitored the azido vibrational signatures using infrared spectroscopy as rhodopsin proceeded along its activation pathway. Here we report significant changes in electrostatic environments of the azido probes even in the inactive photoproduct Meta I, well before the active receptor state was formed. These early changes suggest a significant rotation of H6 and movement of the cytoplasmic part of H5 away from H3. Subsequently, a large outward tilt of H6 leads to opening of the cytoplasmic surface to form the active receptor photoproduct Meta II. Thus, our results reveal early conformational changes that precede larger rigid-body helix movements, and provide a basis to interpret recent GPCR crystal structures and to understand conformational sub-states observed during the activation of other GPCRs.
Expression of functional receptors by the human γ-aminobutyric acid A γ2 subunit
Martínez-Torres, Ataúlfo; Miledi, Ricardo
2004-01-01
γ-Aminobutyric acid A (GABAA) receptors are heteromeric membrane proteins formed mainly by various combinations of α, β, and γ subunits; and it is commonly thought that the γ2 subunit alone does not form functional receptors. In contrast, we found that cDNA encoding the γ2L subunit of the human GABAA receptor, injected alone into Xenopus oocytes, expressed functional GABA receptors whose properties were investigated by using the two-microelectrode voltage-clamp technique. GABA elicited desensitizing membrane currents that recovered after a few minutes' wash. Repetitive applications of GABA induced a “run-up” of GABA currents that nearly doubled the amplitude of the first response. The GABA currents inverted direction at about -30 mV, indicating that they are carried mainly by Cl- ions. The homomeric γ2L receptors were also activated by β-alanine > taurine > glycine, and, like some types of heteromeric GABAA receptors, the γ2L receptors were blocked by bicuculline and were potentiated by pentobarbital and flunitrazepam. These results indicate that the human γ2L subunit is capable of forming fully functional GABA receptors by itself in Xenopus oocytes and suggest that the roles proposed for the various subunits that make up the heteromeric GABAA receptors in situ require further clarification. PMID:14981251
Waldman, S A; Kuno, T; Kamisaki, Y; Chang, L Y; Gariepy, J; O'Hanley, P; Schoolnik, G; Murad, F
1986-01-01
A novel form of particulate guanylate cyclase tightly coupled by cytoskeletal components to receptors for heat-stable enterotoxin (ST) produced by Escherichia coli can be found in membranes from rat intestinal mucosa. Intestinal particulate guanylate cyclase was resistant to solubilization with detergent alone, with only 30% of the total enzyme activity being extracted with Lubrol-PX. Under similar conditions, 70% of this enzyme was solubilized from rat lung membranes. The addition of high concentrations of sodium chloride to the extraction buffer resulted in greater solubilization of particulate guanylate cyclase from intestinal membranes. Although extraction of intestinal membranes with detergent and salt resulted in greater solubilization of guanylate cyclase, a small fraction of the enzyme activity remained associated with the particulate fraction. This activity was completely resistant to solubilization with a variety of detergents and chaotropes. Particulate guanylate cyclase and the ST receptor solubilized by detergent retained their abilities to produce cyclic GMP and bind ST, respectively. However, ST failed to activate particulate guanylate cyclase in detergent extracts. In contrast, guanylate cyclase resistant to solubilization remained functional and coupled to the ST receptor since enzyme activation by ST was unaffected by various extraction procedures. The possibility that the ST receptor and particulate guanylate cyclase were the same molecule was explored. ST binding and cyclic GMP production were separated by affinity chromatography on GTP-agarose. Similarly, guanylate cyclase migrated as a 300,000-dalton protein, while the ST receptor migrated as a 240,000-dalton protein on gel filtration chromatography. Also, thiol-reactive agents such as cystamine and N-ethylmaleimide inhibited guanylate cyclase activation by ST, with no effect on receptor binding of ST. These data suggest that guanylate cyclase and the ST receptor are independent proteins coupled by cytoskeletal components in membranes of intestinal mucosa. PMID:2867046
Lai, Jian-Ping; Lai, Saien; Tuluc, Florin; Tansky, Morris F.; Kilpatrick, Laurie E.; Leeman, Susan E.; Douglas, Steven D.
2008-01-01
The neurokinin-1 receptor (NK1R) has two naturally occurring forms that differ in the length of the carboxyl terminus: a full-length receptor consisting of 407 aa and a truncated receptor consisting of 311 aa. We examined whether there are differential signaling properties attributable to the carboxyl terminus of this receptor by using stably transfected human embryonic kidney (HEK293) cell lines that express either full-length or truncated NK1R. Substance P (SP) specifically triggered intracellular calcium increase in HEK293 cells expressing full-length NK1R but had no effect in the cells expressing the truncated NK1R. In addition, in cells expressing full-length NK1R, SP activated NF-κB and IL-8 mRNA expression, but in cells expressing the truncated NK1R, SP did not activate NF-κB, and it decreased IL-8 mRNA expression. In cells expressing full-length NK1R, SP stimulated phosphorylation of PKCδ but inhibited phosphorylation of PKCδ in cells expressing truncated NK1R. There are also differences in the timing of SP-induced ERK activation in cells expressing the two different forms of the receptor. Full-length NK1R activation of ERK was rapid (peak within 1–2 min), whereas truncated NK1R-mediated activation was slower (peak at 20–30 min). Thus, the carboxyl terminus of NK1R is the structural basis for differences in the functional properties of the full-length and truncated NK1R. These differences may provide important information toward the design of new NK1R receptor antagonists. PMID:18713853
Subetta increases phosphorylation of insulin receptor β-subunit alone and in the presence of insulin
Gorbunov, E A; Nicoll, J; Kachaeva, E V; Tarasov, S A; Epstein, O I
2015-01-01
It has been previously shown that Subetta (a drug containing released-active forms of antibodies to the insulin receptor β-subunit and antibodies to endothelial nitric oxide synthase) stimulated insulin-induced adiponectin production by mature human adipocytes in the absence of insulin. Therefore, it was assumed that Subetta could activate the insulin receptor. To confirm this hypothesis, the capacity of Subetta to activate the insulin receptor in mature human adipocytes in the absence or presence of the insulin was investigated. Cells were incubated either with Subetta or with vehicle, or with basal medium for 3 days. Then, adipocytes were treated with water or insulin (100 nm) for 15 min. Following treatment, lysates were prepared and phosphorylation of insulin receptor β-subunits was analyzed by western blot analysis. It was shown that Subetta significantly increased (P<0.001) the ‘phosphorylated-insulin receptor β-subunit/total insulin receptor β-subunit' ratios in both the presence and the absence of insulin. These results support previously published data and indicate that Subetta could activate the insulin receptor through the effect on its β-subunits, whose conformational state is essential for insulin receptor activation. This action might serve as one of the primary mechanisms of the drug's antidiabetic effect. PMID:26148148
Regulation of Herpes Simplex Virus Glycoprotein-Induced Cascade of Events Governing Cell-Cell Fusion
Saw, Wan Ting; Eisenberg, Roselyn J.; Cohen, Gary H.
2016-01-01
ABSTRACT Receptor-dependent herpes simplex virus (HSV)-induced cell-cell fusion requires glycoproteins gD, gH/gL, and gB. Our current model posits that during fusion, receptor-activated conformational changes in gD activate gH/gL, which subsequently triggers the transformation of the prefusion form of gB into a fusogenic state. To examine the role of each glycoprotein in receptor-dependent cell-cell fusion, we took advantage of our discovery that fusion by wild-type herpes simplex virus 2 (HSV-2) glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we established that fusion speed was governed by gH/gL, with gH being the main contributor. While the mutant forms of gB fuse at distinct rates that are dictated by their molecular structure, these restrictions can be overcome by gH/gL of HSV-2 (gH2/gL2), thereby enhancing their activity. We also found that deregulated forms of gD of HSV-1 (gD1) and gH2/gL2 can alter the fusogenic potential of gB, promoting cell fusion in the absence of a cellular receptor, and that deregulated forms of gB can drive the fusion machinery to even higher levels. Low pH enhanced fusion by affecting the structure of both gB and gH/gL mutants. Together, our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process, and the critical role of gH/gL in regulating HSV-induced fusion. IMPORTANCE Cell-cell fusion mediated by HSV glycoproteins requires gD, gH/gL, gB, and a gD receptor. Here, we show that fusion by wild-type HSV-2 glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we found that the fusion process was controlled by gH/gL. Restrictions imposed on the gB structure by mutations could be overcome by gH2/gL2, enhancing the activity of the mutants. Under low-pH conditions or when using deregulated forms of gD1 and gH2/gL2, the fusogenic potential of gB could only be increased in the absence of receptor, underlining the exquisite regulation that occurs in the presence of receptor. Our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process, and the critical role of gH/gL in regulating HSV-induced fusion. PMID:27630245
Activation of Toll-like receptors nucleates assembly of the MyDDosome signaling hub.
Latty, Sarah Louise; Sakai, Jiro; Hopkins, Lee; Verstak, Brett; Paramo, Teresa; Berglund, Nils A; Cammorota, Eugenia; Cicuta, Pietro; Gay, Nicholas J; Bond, Peter J; Klenerman, David; Bryant, Clare E
2018-01-24
Infection and tissue damage induces assembly of supramolecular organizing centres (SMOCs)), such as the Toll-like receptor (TLR) MyDDosome, to co-ordinate inflammatory signaling. SMOC assembly is thought to drive digital all-or-none responses, yet TLR activation by diverse microbes induces anything from mild to severe inflammation. Using single-molecule imaging of TLR4-MyDDosome signaling in living macrophages, we find that MyDDosomes assemble within minutes of TLR4 stimulation. TLR4/MD2 activation leads only to formation of TLR4/MD2 heterotetramers, but not oligomers, suggesting a stoichiometric mismatch between activated receptors and MyDDosomes. The strength of TLR4 signalling depends not only on the number and size of MyDDosomes formed but also how quickly these structures assemble. Activated TLR4, therefore, acts transiently nucleating assembly of MyDDosomes, a process that is uncoupled from receptor activation. These data explain how the oncogenic mutation of MyD88 (L265P) assembles MyDDosomes in the absence of receptor activation to cause constitutive activation of pro-survival NF-κB signalling. © 2018, Latty et al.
Activation of Toll-like receptors nucleates assembly of the MyDDosome signaling hub
Latty, Sarah Louise; Sakai, Jiro; Hopkins, Lee; Verstak, Brett; Paramo, Teresa; Berglund, Nils A; Cammorota, Eugenia; Cicuta, Pietro; Gay, Nicholas J; Bond, Peter J; Klenerman, David
2018-01-01
Infection and tissue damage induces assembly of supramolecular organizing centres (SMOCs)), such as the Toll-like receptor (TLR) MyDDosome, to co-ordinate inflammatory signaling. SMOC assembly is thought to drive digital all-or-none responses, yet TLR activation by diverse microbes induces anything from mild to severe inflammation. Using single-molecule imaging of TLR4-MyDDosome signaling in living macrophages, we find that MyDDosomes assemble within minutes of TLR4 stimulation. TLR4/MD2 activation leads only to formation of TLR4/MD2 heterotetramers, but not oligomers, suggesting a stoichiometric mismatch between activated receptors and MyDDosomes. The strength of TLR4 signalling depends not only on the number and size of MyDDosomes formed but also how quickly these structures assemble. Activated TLR4, therefore, acts transiently nucleating assembly of MyDDosomes, a process that is uncoupled from receptor activation. These data explain how the oncogenic mutation of MyD88 (L265P) assembles MyDDosomes in the absence of receptor activation to cause constitutive activation of pro-survival NF-κB signalling. PMID:29368691
Mautner, Henry G.; Bartels, Eva
1970-01-01
p-Nitrobenzene diazonium fluoroborate (NDF) is a potent inhibitor of the carbamylcholine-induced depolarization of the electroplax and of acetylcholinesterase. It probably forms covalent bonds with the acetylcholine-receptor and -esterase at the active site of the proteins. Its inhibitory strength is at least the same as that of trimethylammonium diazonium fluoroborate (TDF). The p-acetoxy analog, with its weaker electron-withdrawing group, is about ten times weaker as an inhibitor than the trimethylammonium or p-nitro analogs, both of which have strong electron-withdrawing groups. After treatment of the electroplax preparation with dithiothreitol, NDF remains an irreversible receptor-inhibitor, while TDF becomes a potent reversible receptor-activator. TDF is self-inhibitory: applied before reduction, it no longer depolarizes. Although the first observations on TDF suggested that the compound labels both proteins by virtue of the steric complementary of its trimethylammonium group to a negative subsite in the proteins, the present study indicates that it is the positively charged diazonium group that reacts with the active sites of the proteins to form a covalent bond with an appropriate amino-acid residue. PMID:5272331
Bond, C; LaForge, K S; Tian, M; Melia, D; Zhang, S; Borg, L; Gong, J; Schluger, J; Strong, J A; Leal, S M; Tischfield, J A; Kreek, M J; Yu, L
1998-08-04
Opioid drugs play important roles in the clinical management of pain, as well as in the development and treatment of drug abuse. The mu opioid receptor is the primary site of action for the most commonly used opioids, including morphine, heroin, fentanyl, and methadone. By sequencing DNA from 113 former heroin addicts in methadone maintenance and 39 individuals with no history of drug or alcohol abuse or dependence, we have identified five different single-nucleotide polymorphisms (SNPs) in the coding region of the mu opioid receptor gene. The most prevalent SNP is a nucleotide substitution at position 118 (A118G), predicting an amino acid change at a putative N-glycosylation site. This SNP displays an allelic frequency of approximately 10% in our study population. Significant differences in allele distribution were observed among ethnic groups studied. The variant receptor resulting from the A118G SNP did not show altered binding affinities for most opioid peptides and alkaloids tested. However, the A118G variant receptor binds beta-endorphin, an endogenous opioid that activates the mu opioid receptor, approximately three times more tightly than the most common allelic form of the receptor. Furthermore, beta-endorphin is approximately three times more potent at the A118G variant receptor than at the most common allelic form in agonist-induced activation of G protein-coupled potassium channels. These results show that SNPs in the mu opioid receptor gene can alter binding and signal transduction in the resulting receptor and may have implications for normal physiology, therapeutics, and vulnerability to develop or protection from diverse diseases including the addictive diseases.
Savary, Etienne; Kullmann, Dimitri M.; Miles, Richard
2015-01-01
An anti-Hebbian form of LTP is observed at excitatory synapses made with some hippocampal interneurons. LTP induction is facilitated when postsynaptic interneurons are hyperpolarized, presumably because Ca2+ entry through Ca2+-permeable glutamate receptors is enhanced. The contribution of modulatory transmitters to anti-Hebbian LTP induction remains to be established. Activation of group I metabotropic receptors (mGluRs) is required for anti-Hebbian LTP induction in interneurons with cell bodies in the CA1 stratum oriens. This region receives a strong cholinergic innervation from the septum, and muscarinic acetylcholine receptors (mAChRs) share some signaling pathways and cooperate with mGluRs in the control of neuronal excitability. We therefore examined possible interactions between group I mGluRs and mAChRs in anti-Hebbian LTP at synapses which excite oriens interneurons in rat brain slices. We found that blockade of either group I mGluRs or M1 mAChRs prevented the induction of anti-Hebbian LTP by pairing presynaptic activity with postsynaptic hyperpolarization. Blocking either receptor also suppressed long-term effects of activation of the other G-protein coupled receptor on interneuron membrane potential. However, no crossed blockade was detected for mGluR or mAchR effects on interneuron after-burst potentials or on the frequency of miniature EPSPs. Paired recordings between pyramidal neurons and oriens interneurons were obtained to determine whether LTP could be induced without concurrent stimulation of cholinergic axons. Exogenous activation of mAChRs led to LTP, with changes in EPSP amplitude distributions consistent with a presynaptic locus of expression. LTP, however, required noninvasive presynaptic and postsynaptic recordings. SIGNIFICANCE STATEMENT In the hippocampus, a form of NMDA receptor-independent long-term potentiation (LTP) occurs at excitatory synapses made on some inhibitory neurons. This is preferentially induced when postsynaptic interneurons are hyperpolarized, depends on Ca2+ entry through Ca2+-permeable AMPA receptors, and has been labeled anti-Hebbian LTP. Here we show that this form of LTP also depends on activation of both group I mGluR and M1 mAChRs. We demonstrate that these G-protein coupled receptors (GPCRs) interact, because the blockade of one receptor suppresses long-term effects of activation of the other GPCR on both LTP and interneuron membrane potential. This LTP was also detected in paired recordings, although only when both presynaptic and postsynaptic recordings did not perturb the intracellular medium. Changes in EPSP amplitude distributions in dual recordings were consistent with a presynaptic locus of expression. PMID:26446209
Melanocortin systems on pigment dispersion in fish chromatophores.
Kobayashi, Yuki; Mizusawa, Kanta; Saito, Yumiko; Takahashi, Akiyoshi
2012-01-01
α-Melanocyte-stimulating hormone (α-MSH) is responsible for pigment dispersion in the chromatophores of fish and other tetrapods such as amphibians and reptiles. Recently, we discovered that α-MSH did not always stimulate pigment dispersion because this hormonal peptide exerted no effects on the melanophores of flounders. We assumed that the reduction of α-MSH activity was related to the co-expression of different α-MSH receptor subtypes - termed melanocortin receptors (MCR) - a member of G-protein-coupled receptors (GPCR) - based on several reports demonstrating that GPCR forms heterodimers with various properties that are distinct from those of the corresponding monomers. In this review, we summarize the relationships between the pigment-dispersing activity of α-MSH-related peptides, molecular forms of α-MSH-related peptides, and mcr subtypes expressed in fish chromatophores.
González, Sergio; Rangel-Barajas, Claudia; Peper, Marcela; Lorenzo, Ramiro; Moreno, Estefanía; Ciruela, Francisco; Borycz, Janusz; Ortiz, Jordi; Lluís, Carme; Franco, Rafael; McCormick, Peter J.; Volkow, Nora D.; Rubinstein, Marcelo; Floran, Benjamin; Ferré, Sergi
2011-01-01
Polymorphic variants of the dopamine D4 receptor have been consistently associated with attention-deficit hyperactivity disorder (ADHD). However the functional significance of the risk polymorphism (variable number of tandem repeats in exon 3) is still unclear. Here we show that whereas the most frequent 4-repeat (D4.4) and the 2-repeat (D4.2) variants form functional heteromers with the short isoform of the dopamine D2 receptor (D2S), the 7-repeat risk allele (D4.7) does not. D2 receptor activation in the D2S-D4 receptor heteromer potentiates D4 receptor-mediated MAPK signaling in transfected cells and in the striatum, which did not occur in cells expressing D4.7 or in the striatum of knock-in mutant mice carrying the 7 repeats of the human D4.7 in the third intracellular loop of the D4 receptor. In the striatum D4 receptors are localized in cortico-striatal glutamatergic terminals, where they selectively modulate glutamatergic neurotransmission by interacting with D2S receptors. This interaction shows the same qualitative characteristics than the D2S-D4 receptor heteromer-mediated MAPK signaling and D2S receptor activation potentiates D4 receptor-mediated inibition of striatal glutamate release. It is therefore postulated that dysfunctional D2S-D4.7 heteromers may impair presynaptic dopaminergic control of corticostriatal glutamatergic neurotransmission and explain functional deficits associated with ADHD. PMID:21844870
Modular Activating Receptors in Innate and Adaptive Immunity.
Berry, Richard; Call, Matthew E
2017-03-14
Triggering of cell-mediated immunity is largely dependent on the recognition of foreign or abnormal molecules by a myriad of cell surface-bound receptors. Many activating immune receptors do not possess any intrinsic signaling capacity but instead form noncovalent complexes with one or more dimeric signaling modules that communicate with a common set of kinases to initiate intracellular information-transfer pathways. This modular architecture, where the ligand binding and signaling functions are detached from one another, is a common theme that is widely employed throughout the innate and adaptive arms of immune systems. The evolutionary advantages of this highly adaptable platform for molecular recognition are visible in the variety of ligand-receptor interactions that can be linked to common signaling pathways, the diversification of receptor modules in response to pathogen challenges, and the amplification of cellular responses through incorporation of multiple signaling motifs. Here we provide an overview of the major classes of modular activating immune receptors and outline the current state of knowledge regarding how these receptors assemble, recognize their ligands, and ultimately trigger intracellular signal transduction pathways that activate immune cell effector functions.
Bonde, Marie Mi; Yao, Rong; Ma, Jian-Nong; Madabushi, Srinivasan; Haunsø, Stig; Burstein, Ethan S.; Whistler, Jennifer L.; Sheikh, Søren P.; Lichtarge, Olivier; Hansen, Jakob Lerche
2010-01-01
Seven transmembrane (7TM) or G protein-coupled receptors constitute a large superfamily of cell surface receptors sharing a structural motif of seven transmembrane spanning alpha helices. Their activation mechanism most likely involves concerted movements of the transmembrane helices, but remains to be completely resolved. Evolutionary Trace (ET) analysis is a computational method, which identifies clusters of functionally important residues by integrating information on evolutionary important residue variations with receptor structure. Combined with known mutational data, ET predicted a patch of residues in the cytoplasmic parts of TM2, TM3, and TM6 to form an activation switch that is common to all family A 7TM receptors. We tested this hypothesis in the rat Angiotensin II (Ang II) type 1 (AT1) receptor. The receptor has important roles in the cardiovascular system, but has also frequently been applied as a model for 7TM receptor activation and signaling. Six mutations: F66A, L67R, L70R, L119R, D125A, and I245F were targeted to the putative switch and assayed for changes in activation state by their ligand binding, signaling, and trafficking properties. All but one receptor mutant (that was not expressed well) displayed phenotypes associated with changed activation state, such as increased agonist affinity or basal activity, promiscuous activation, or constitutive internalization highlighting the importance of testing different signaling pathways. We conclude that this evolutionary important patch mediates interactions important for maintaining the inactive state. More broadly, these observations in the AT1 receptor are consistent with computational predictions of a generic role for this patch in 7TM receptor activation. PMID:20227396
Disparate Vitamin D Activity in the Prostate of Men with African Ancestry
2015-10-01
the vitamin D receptor (VDR) and determined by several cytochrome P450 metabolism enzymes that bioactivate/inactivate the active form of the hormone...activity of vitamin D3 is mediated by the vitamin D receptor (VDR) and determined by several cytochrome P450 metabolism enzymes that bioactivate...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT African American (AA) men are disproportionally affected by prostate cancer (PCa). AA men are not only at
Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann
2015-04-28
A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.
A mathematical model of chemoreception for odours and taste.
Maurin, Francis
2002-04-07
We propose a mathematical model based on the occupation theory and on the hypothesis that, for a given stimulus, there exist two kinds of receptors. The receptors of the first kind react by a two-step process, first forming an intermediate inactive compound which is then changed into an active depolarizing form (this scheme was already used by Del Castillo & Katz, 1957). In the same way, the receptors of the second kind react by a two-step process, first forming an intermediate inactive compound which is then changed into an active hyperpolarizing form. The response is assumed to be proportional to the difference between the fraction of the active depolarizing compound and that of the active hyperpolarizing compound. The present paper deals only with the time course of the intensity of the response: in the first part, when a continuous flow of stimulus is applied and in the second part, when this continuous flow is removed. It does not deal with the quality and the discrimination of odours. The proposed mathematical model accounts for the depolarizing responses (which are the most frequent ones), the hyperpolarizing responses, the mixed responses reported by Patte et al. (1989), the off-responses reported by Takagi & Shibuya (1959) and for their variability, and the latent period in the olfactory response (Ottoson, 1974). Copyright 2002 Elsevier Science Ltd. All rights reserved.
Mechanotransduction through Integrins
NASA Technical Reports Server (NTRS)
Ingber, Donald
2004-01-01
The goal of this project was to characterize the molecular mechanism by which cells recognize and respond to physical forces in their local environment. The project was based on the working hypothesis that cells sense mechanical stresses through cell surface integrin receptors and through their interconnections with the underlying cytoskeleton. Work completed and published in past funding period had provided direct support for this hypothesis. In particular, we demonstrated that application of mechanical stresses to activated integrin receptors (but not inactive integrins or other control transmembrane receptors) resulted in stress-dependent activation of the CAMP signaling pathway leading to gene transcription. We also showed that this form of mechanotransduction requires activation of heterotrimeric G proteins. In this grant, our specific aims included: 1) to characterize the signal processing capabilities of different integrins and other cell surface receptors, 2) to identify heterotrimeric G proteins that mediate CAMP signaling by stresses applied to integrins, 3) to identify molecules that mediate transmembrane mechanochemical coupling between integrins and G proteins, and 4) to use genome-wide gene expression profiling techniques to identify other genes and signaling pathways that are activated by mechanical forces transmitted over specific cell surface receptors. Elucidation of the mechanism by which cells sense mechanical stresses through integrins and translate them into a biochemical response should help us to understand the molecular basis of the cellular response to gravity as well as many other forms of mechanosensation and tissue regulation.
Massa, Fabienne; Devader, Christelle; Béraud-Dufour, Sophie; Brau, Frédéric; Coppola, Thierry; Mazella, Jean
2013-05-01
The neurotensin (NT) receptor-3 (NTSR3), also called sortilin, is thought to display several functions including a role as a receptor or a co-receptor, in the sorting to plasma membrane and to lysosomes, and in the regulated secretion. The aim of this study was to investigate the function of the soluble form of NTSR3 (sNTSR3) released from several cell lines including colonic cancer cells. The human adenocarcinoma epithelial cell line HT29 has been used to monitor the release, the binding and internalization of sNTSR3 by radioreceptor assays and confocal microscopy. The modulation of the intracellular signaling pathways by the protein has been investigated by using Fura-2 fluorescence calcium imaging microscopy and Western blots analysis. We demonstrated that sNTSR3 specifically binds and internalizes into HT29 cells. This binding, independent from the transactivation of the epidermal growth factor receptor, leads to the increase of intracellular calcium concentration and to the activation of a FAK/Src-dependent activation of the PI3 kinase pathway. In conclusion, sNTSR3 released from the membrane bound NTSR3 is a functional protein able to activate intracellular pathways involved in cell survival but probably not in cell growth. Copyright © 2013 Elsevier Ltd. All rights reserved.
Expression of Plant Receptor Kinases in Tobacco BY-2 Cells.
Shinohara, Hidefumi; Matsubayashi, Yoshikatsu
2017-01-01
Although more than 600 single-transmembrane receptor kinase genes have been found in the Arabidopsis genome, only a few of them have known physiological functions, and even fewer plant receptor kinases have known specific ligands. Ligand-binding analysis must be operated using the functionally expressed receptor form. However, the relative abundance of native receptor kinase molecules in the plasma membrane is often quite low. Here, we present a method for stable and functional expression of plant receptor kinases in tobacco BY-2 cells that allows preparation of microsomal fractions containing the receptor. This procedure provides a sufficient amount of receptor proteins while maintaining its ligand-binding activities.
Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu
2012-03-15
The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structuremore » of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.« less
González-Juarbe, Norberto; Bradley, Kelley Margaret; Shenoy, Anukul Taranath; Gilley, Ryan Paul; Reyes, Luis Felipe; Hinojosa, Cecilia Anahí; Restrepo, Marcos Ignacio; Dube, Peter Herman; Bergman, Molly Ann; Orihuela, Carlos Javier
2017-01-01
We report that pore-forming toxins (PFTs) induce respiratory epithelial cell necroptosis independently of death receptor signaling during bacterial pneumonia. Instead, necroptosis was activated as a result of ion dysregulation arising from membrane permeabilization. PFT-induced necroptosis required RIP1, RIP3 and MLKL, and could be induced in the absence or inhibition of TNFR1, TNFR2 and TLR4 signaling. We detected activated MLKL in the lungs from mice and nonhuman primates experiencing Serratia marcescens and Streptococcus pneumoniae pneumonia, respectively. We subsequently identified calcium influx and potassium efflux as the key initiating signals responsible for necroptosis; also that mitochondrial damage was not required for necroptosis activation but was exacerbated by MLKL activation. PFT-induced necroptosis in respiratory epithelial cells did not involve CamKII or reactive oxygen species. KO mice deficient in MLKL or RIP3 had increased survival and reduced pulmonary injury during S. marcescens pneumonia. Our results establish necroptosis as a major cell death pathway active during bacterial pneumonia and that necroptosis can occur without death receptor signaling. PMID:28387756
González-Juarbe, Norberto; Bradley, Kelley Margaret; Shenoy, Anukul Taranath; Gilley, Ryan Paul; Reyes, Luis Felipe; Hinojosa, Cecilia Anahí; Restrepo, Marcos Ignacio; Dube, Peter Herman; Bergman, Molly Ann; Orihuela, Carlos Javier
2017-05-01
We report that pore-forming toxins (PFTs) induce respiratory epithelial cell necroptosis independently of death receptor signaling during bacterial pneumonia. Instead, necroptosis was activated as a result of ion dysregulation arising from membrane permeabilization. PFT-induced necroptosis required RIP1, RIP3 and MLKL, and could be induced in the absence or inhibition of TNFR1, TNFR2 and TLR4 signaling. We detected activated MLKL in the lungs from mice and nonhuman primates experiencing Serratia marcescens and Streptococcus pneumoniae pneumonia, respectively. We subsequently identified calcium influx and potassium efflux as the key initiating signals responsible for necroptosis; also that mitochondrial damage was not required for necroptosis activation but was exacerbated by MLKL activation. PFT-induced necroptosis in respiratory epithelial cells did not involve CamKII or reactive oxygen species. KO mice deficient in MLKL or RIP3 had increased survival and reduced pulmonary injury during S. marcescens pneumonia. Our results establish necroptosis as a major cell death pathway active during bacterial pneumonia and that necroptosis can occur without death receptor signaling.
P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease.
Ralevic, Vera
2015-01-01
This review considers the expression and roles of P2X receptors in the cardiovascular system in health and disease and their potential as therapeutic targets. P2X receptors are ligand gated ion channels which are activated by the endogenous ligand ATP. They are formed from the assembly of three P2X subunit proteins from the complement of seven (P2X1-7), which can associate to form homomeric or heteromeric P2X receptors. The P2X1 receptor is widely expressed in the cardiovascular system, being located in the heart, in the smooth muscle of the majority of blood vessels and in platelets. P2X1 receptors expressed in blood vessels can be activated by ATP coreleased with noradrenaline as a sympathetic neurotransmitter, leading to smooth muscle depolarisation and contraction. There is evidence that the purinergic component of sympathetic neurotransmission is increased in hypertension, identifying P2X1 receptors as a possible therapeutic target in this disorder. P2X3 and P2X2/3 receptors are expressed on cardiac sympathetic neurones and may, through positive feedback of neuronal ATP at this prejunctional site, amplify sympathetic neurotransmission. Activation of P2X receptors expressed in the heart increases cardiac myocyte contractility, and an important role of the P2X4 receptor in this has been identified. Deletion of P2X4 receptors in the heart depresses contractile performance in models of heart failure, while overexpression of P2X4 receptors has been shown to be cardioprotective, thus P2X4 receptors may be therapeutic targets in the treatment of heart disease. P2X receptors have been identified on endothelial cells. Although immunoreactivity for all P2X1-7 receptor proteins has been shown on the endothelium, relatively little is known about their function, with the exception of the endothelial P2X4 receptor, which has been shown to mediate endothelium-dependent vasodilatation to ATP released during shear stress. The potential of P2X receptors as therapeutic targets in the treatment of cardiovascular disease is discussed.
Reversal of Acetylcholinesterase Inhibitor Toxicity In Vivo by Inhibitors of Choline Transport.
1983-10-31
the increased interaction of acetylcholine with the receptor resulting from the inhibition of the enzyme acetylcholinesterase. . Acetylcholinesterase...competitive inhibitors of acetylcholine at the enzyme receptor. The second category, "reversible" cholinesterase inhibitors, form covalent bonds with the...method of Ellman et al. (46) was used to determine the acetyicholinesterase activity in mouse brain homogenates. Briefly, the enzyme activity was
Atypical chemokine receptors in cancer: friends or foes?
Massara, Matteo; Bonavita, Ornella; Mantovani, Alberto; Locati, Massimo; Bonecchi, Raffaella
2016-06-01
The chemokine system is a fundamental component of cancer-related inflammation involved in all stages of cancer development. It controls not only leukocyte infiltration in primary tumors but also angiogenesis, cancer cell proliferation, and migration to metastatic sites. Atypical chemokine receptors are a new, emerging class of regulators of the chemokine system. They control chemokine bioavailability by scavenging, transporting, or storing chemokines. They can also regulate the activity of canonical chemokine receptors with which they share the ligands by forming heterodimers or by modulating their expression levels or signaling activity. Here, we summarize recent results about the role of these receptors (atypical chemokine receptor 1/Duffy antigen receptor for chemokine, atypical chemokine receptor 2/D6, atypical chemokine receptor 3/CXC-chemokine receptor 7, and atypical chemokine receptor 4/CC-chemokine receptor-like 1) on the tumorigenesis process, indicating that their effects are strictly dependent on the cell type on which they are expressed and on their coexpression with other chemokine receptors. Indeed, atypical chemokine receptors inhibit tumor growth and progression through their activity as negative regulators of chemokine bioavailability, whereas, on the contrary, they can promote tumorigenesis when they regulate the signaling of other chemokine receptors, such as CXC-chemokine receptor 4. Thus, atypical chemokine receptors are key components of the regulatory network of inflammation and immunity in cancer and may have a major effect on anti-inflammatory and immunotherapeutic strategies. © Society for Leukocyte Biology.
TAM Receptors in Leukemia: Expression, Signaling, and Therapeutic Implications
Brandão, Luis; Migdall-Wilson, Justine; Eisenman, Kristen; Graham, Douglas K.
2016-01-01
In the past 30 years there has been remarkable progress in the treatment of leukemia and lymphoma. However, current treatments are largely ineffective against relapsed leukemia and, in the case of pediatric patients, are often associated with severe long-term toxicities. Thus, there continues to be a critical need for the development of effective biologically targeted therapies. The TAM family of receptor tyrosine kinases—Tyro3, Axl, and Mer—plays an important role in normal hematopoiesis, including natural killer cell maturation, macrophage function, and platelet activation and signaling. Furthermore, TAM receptor activation leads to upregulation of pro-survival and proliferation signaling pathways, and aberrant TAM receptor expression contributes to cancer development, including myeloid and lymphoid leukemia. This review summarizes the role of TAM receptors in leukemia. We outline TAM receptor expression patterns in different forms of leukemia, describe potential mechanisms leading to their overexpression, and delineate the signaling pathways downstream of receptor activation that have been implicated in leukemogenesis. Finally, we discuss the current research focused on inhibitors against these receptors in an effort to develop new therapeutic strategies for leukemia. PMID:22150307
Rulli, Karen; Yugawa, Takashi; Hanson, Charlotte; Thompson, Delores; Ruscetti, Sandra; Nishigaki, Kazuo
2004-01-01
The erythroleukemia-inducing Friend spleen focus-forming virus (SFFV) encodes a unique envelope protein, gp55, which interacts with the erythropoietin (Epo) receptor complex, causing proliferation and differentiation of erythroid cells in the absence of Epo. Susceptibility to SFFV-induced erythroleukemia is conferred by the Fv-2 gene, which encodes a short form of the receptor tyrosine kinase Stk/Ron (sf-Stk) only in susceptible strains of mice. We recently demonstrated that sf-Stk becomes activated by forming a strong interaction with SFFV gp55. To examine the biological consequences of activated sf-Stk on erythroid cell growth, we prepared retroviral vectors which express sf-Stk, either in conjunction with gp55 or alone in a constitutively activated mutant form, and tested them for their ability to induce Epo-independent erythroid colonies ex vivo and disease in mice. Our data indicate that both gp55-activated sf-Stk and the constitutively activated mutant of sf-Stk induce erythroid cells from Fv-2-susceptible and Fv-2-resistant (sf-Stk null) mice to form Epo-independent colonies. Mutational analysis of sf-Stk indicated that a functional kinase domain and 8 of its 12 tyrosine residues are required for the induction of Epo-independent colonies. Further studies demonstrated that coexpression of SFFV gp55 with sf-Stk significantly extends the half-life of the kinase. When injected into Fv-2-resistant mice, neither the gp55-activated sf-Stk nor the constitutively activated mutant caused erythroleukemia. Surprisingly, both Fv-2-susceptible and -resistant mice injected with the gp55-sf-Stk vector developed clinical signs not previously associated with SFFV-induced disease. We conclude that sf-Stk, activated by either point mutation or interaction with SFFV gp55, is sufficient to induce Epo-independent erythroid colonies from both Fv-2-susceptible and -resistant mice but is unable to cause erythroleukemia in Fv-2-resistant mice. PMID:15078939
Lavillette, Dimitri; Ruggieri, Alessia; Boson, Bertrand; Maurice, Marielle; Cosset, François-Loïc
2002-01-01
Envelope glycoproteins (Env) of retroviruses are trimers of SU (surface) and TM (transmembrane) heterodimers and are expressed on virions in fusion-competent forms that are likely to be metastable. Activation of the viral receptor-binding domain (RBD) via its interaction with a cell surface receptor is thought to initiate a cascade of events that lead to refolding of the Env glycoprotein into its stable fusion-active conformation. While the fusion-active conformation of the TM subunit has been described in detail for several retroviruses, little is known about the fusion-competent structure of the retroviral glycoproteins or the molecular events that mediate the transition between the two conformations. By characterizing Env chimeras between the ecotropic and amphotropic murine leukemia virus (MLV) SUs as well as a set of point mutants, we show that alterations of the conformation of the SU glycoprotein strongly elevate Env fusogenicity by disrupting the stability of the Env complex. Compensatory mutations that restored both Env stability and fusion control were also identified, allowing definition of interactions within the Env complex that maintain the stability of the native Env complex. We show that, in the receptor-unbound form, structural interactions between the N terminus of the viral RBD (NTR domain), the proline-rich region (PRR), and the distal part of the C-terminal domain of the SU subunit maintain a conformation of the glycoprotein that is fusion inhibitory. Additionally, we identified mutations that disrupt this fusion-inhibitory conformation and allow fusion activation in the absence of viral receptors, provided that receptor-activated RBD fragments are added in trans during infection. Other mutations were identified that allow fusion activation in the absence of receptors for both the viral glycoprotein and the trans-acting RBD. Finally, we found mutations of the SU that bypass in cis the requirement for the NTR domain in fusion activation. All these different mutations call for a critical role of the PRR in mediating conformational changes of the Env glycoprotein during fusion activation. Our results suggest a model of MLV Env fusion activation in which unlocking of the fusion-inhibitory conformation is initiated by receptor binding of the viral RBD, which, upon disruption of the PRR, allows the NTR domain to promote further events in Env fusion activation. This involves a second type of interaction, in cis or in trans, between the receptor-activated RBD and a median segment of the freed C-terminal domain. PMID:12208946
Structural Analysis on the Pathologic Mutant Glucocorticoid Receptor Ligand-Binding Domains.
Hurt, Darrell E; Suzuki, Shigeru; Mayama, Takafumi; Charmandari, Evangelia; Kino, Tomoshige
2016-02-01
Glucocorticoid receptor (GR) gene mutations may cause familial or sporadic generalized glucocorticoid resistance syndrome. Most of the missense forms distribute in the ligand-binding domain and impair its ligand-binding activity and formation of the activation function (AF)-2 that binds LXXLL motif-containing coactivators. We performed molecular dynamics simulations to ligand-binding domain of pathologic GR mutants to reveal their structural defects. Several calculated parameters including interaction energy for dexamethasone or the LXXLL peptide indicate that destruction of ligand-binding pocket (LBP) is a primary character. Their LBP defects are driven primarily by loss/reduction of the electrostatic interaction formed by R611 and T739 of the receptor to dexamethasone and a subsequent conformational mismatch, which deacylcortivazol resolves with its large phenylpyrazole moiety and efficiently stimulates transcriptional activity of the mutant receptors with LBP defect. Reduced affinity of the LXXLL peptide to AF-2 is caused mainly by disruption of the electrostatic bonds to the noncore leucine residues of this peptide that determine the peptide's specificity to GR, as well as by reduced noncovalent interaction against core leucines and subsequent exposure of the AF-2 surface to solvent. The results reveal molecular defects of pathologic mutant receptors and provide important insights to the actions of wild-type GR.
Disparate Vitamin D Activity in the Prostate of Men with African Ancestry
2014-10-01
activity of vitamin D3 is mediated by the vitamin D receptor (VDR) and determined by several cytochrome P450 metabolism enzymes that bioactivate...vitamin D receptor (VDR) and determined by several cytochrome P450 metabolism enzymes that bioactivate/inactivate the active form of the hormone... cancer (PCa). AA men are not only at increased risk of PCa compared to American men of European descent (EA), but also are at the highest risk of
Pharmacological characterization of recombinant human and rat P2X receptor subtypes.
Bianchi, B R; Lynch, K J; Touma, E; Niforatos, W; Burgard, E C; Alexander, K M; Park, H S; Yu, H; Metzger, R; Kowaluk, E; Jarvis, M F; van Biesen, T
1999-07-02
ATP functions as a fast neurotransmitter through the specific activation of a family of ligand-gated ion channels termed P2X receptors. In this report, six distinct recombinant P2X receptor subtypes were pharmacologically characterized in a heterologous expression system devoid of endogenous P2 receptor activity. cDNAs encoding four human P2X receptor subtypes (hP2X1, hP2X3, hP2X4, and hP2X7), and two rat P2X receptor subtypes (rP2X2 and rP2X3), were stably expressed in 1321N1 human astrocytoma cells. Furthermore, the rP2X2 and rP2X3 receptor subtypes were co-expressed in these same cells to form heteromultimeric receptors. Pharmacological profiles were determined for each receptor subtype, based on the activity of putative P2 ligands to stimulate Ca2+ influx. The observed potency and kinetics of each response was receptor subtype-specific and correlated with their respective electrophysiological properties. Each receptor subtype exhibited a distinct pharmacological profile, based on its respective sensitivity to nucleotide analogs, diadenosine polyphosphates and putative P2 receptor antagonists. Alphabeta-methylene ATP (alphabeta-meATP), a putative P2X receptor-selective agonist, was found to exhibit potent agonist activity only at the hP2X1, hP2X3 and rP2X3 receptor subtypes. Benzoylbenzoic ATP (BzATP, 2' and 3' mixed isomers), which has been reported to act as a P2X7 receptor-selective agonist, was least active at the rat and human P2X7 receptors, but was a potent (nM) agonist at hP2X1, rP2X3 and hP2X3 receptors. These data comprise a systematic examination of the functional pharmacology of P2X receptor activation.
Proton transfer and protein quake in photoreceptor activation
NASA Astrophysics Data System (ADS)
Xie, Aihua
2002-03-01
Proteins are able to perform an enormous variety of functions, while using only a limited number of underlying processes. One of these is proton transfer, found in a range of receptors and enzymes. It is conceivable that proton transfer is essential in biological energy transduction, but it is less evident how proton transfer is employed in receptor activation during biological signal transduction. An important question regarding receptor activation is how a localized event of detecting a stimulus at the active site drives global conformational changes involving protein surface for signal relay. We will present structural, kinetic and energetic studies on the activation mechanism of a prototype PAS domain photoreceptor, photoactive yellow protein (PYP). Our data reveal that the putative signaling state of PYP upon absorption of a blue photon is formed during a large-amplitude protein quake triggered by the formation of a new buried charge in a hydrophobic pocket at the active site of PYP via intramolecular proton transfer. This mechanism for protein quakes driven by proton transfer and electrostatic interactions may play roles during the functioning of other receptor proteins and non-receptor proteins that require large conformational changes.
den Hartigh, Andreas B; Fink, Susan L
2018-05-21
Inflammasomes are innate immune signaling platforms that are required for the successful control of many pathogenic organisms, but also promote inflammatory and autoinflammatory diseases. Inflammasomes are activated by cytosolic pattern recognition receptors, including members of the NOD-like receptor (NLR) family. These receptors oligomerize upon the detection of microbial or damage-associated stimuli. Subsequent recruitment of the adaptor protein ASC forms a microscopically visible inflammasome complex, which activates caspase-1 through proximity-induced auto-activation. Following the activation, caspase-1 cleaves pro-IL-1β and pro-IL-18, leading to the activation and secretion of these pro-inflammatory cytokines. Caspase-1 also mediates the inflammatory form of cell death termed pyroptosis, which features the loss of membrane integrity and cell lysis. Caspase-1 cleaves gasdermin D, releasing the N-terminal fragment which forms plasma membrane pores, leading to osmotic lysis. In vitro, the activation of caspase-1 can be determined by labeling bone marrow-derived macrophages with the caspase-1 activity probe FAM-YVAD-FMK and by labeling the cells with antibodies against the adaptor protein ASC. This technique allows the identification of inflammasome formation and caspase-1 activation in individual cells using fluorescence microscopy. Pyroptotic cell death can be detected by measuring the release of cytosolic lactate dehydrogenase into the medium. This procedure is simple, cost effective and performed in a 96-well plate format, allowing adaptation for screening. In this manuscript, we show that activation of the NLRP3 inflammasome by nigericin leads to the co-localization of the adaptor protein ASC and active caspase-1, leading to pyroptosis.
Genetic deletion of CB1 receptors improves non-associative learning.
Degroot, Aldemar; Salhoff, Craig; Davis, Richard J; Nomikos, George G
2005-07-01
Habituation (a form of non-associative learning) was measured by assessing locomotion in novel activity monitors in CB1 receptor knockout mice and juxtaposed to habituation measured in muscarinic M2, M4, and double M2/M4 receptor knockout mice. M2 and M2/M4, but not M4, receptor knockout mice appeared to have an impaired ability to habituate, whereas CB1 receptor knockout mice showed enhanced habituation compared to wild-type animals. We conclude that CB1 receptor gene invalidation improves habituation tentatively through an increase in cholinergic neurotransmission.
The insulin and IGF1 receptor kinase domains are functional dimers in the activated state
NASA Astrophysics Data System (ADS)
Cabail, M. Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E.; Hubbard, Stevan R.; Miller, W. Todd
2015-03-01
The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.
Dynamics of Learning in Cultured Neuronal Networks with Antagonists of Glutamate Receptors
Li, Yanling; Zhou, Wei; Li, Xiangning; Zeng, Shaoqun; Luo, Qingming
2007-01-01
Cognitive dysfunction may result from abnormality of ionotropic glutamate receptors. Although various forms of synaptic plasticity in learning that rely on altering of glutamate receptors have been considered, the evidence is insufficient from an informatics view. Dynamics could reflect neuroinformatics encoding, including temporal pattern encoding, spatial pattern encoding, and energy distribution. Discovering informatics encoding is fundamental and crucial to understanding the working principle of the neural system. In this article, we analyzed the dynamic characteristics of response activities during learning training in cultured hippocampal networks under normal and abnormal conditions of ionotropic glutamate receptors, respectively. The rate, which is one of the temporal configurations, was decreased markedly by inhibition of α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) receptors. Moreover, the energy distribution in different characteristic frequencies was changed markedly by inhibition of AMPA receptors. Spatial configurations, including regularization, correlation, and synchrony, were changed significantly by inhibition of N-methyl-d-aspartate receptors. These results suggest that temporal pattern encoding and energy distribution of response activities in cultured hippocampal neuronal networks during learning training are modulated by AMPA receptors, whereas spatial pattern encoding of response activities is modulated by N-methyl-d-aspartate receptors. PMID:17766359
THE SHARK RECTAL GLAND MODEL: A CHAMPION OF RECEPTOR MEDIATED CHLORIDE SECRETION THROUGH CFTR
FORREST, JOHN N.
2016-01-01
The dogfish shark salt gland was predicted by Smith and discovered by Burger at the Mount Desert Island Biological Laboratory in Salisbury Cove, Maine. It is an epithelial organ in the intestine composed of tubules that serve a single function: the secretion of hypertonic NaCl. Many G protein receptors are present on the basolateral surface of these tubules, including stimulatory receptors for vasoactive intestinal peptide, adenosine A2, growth hormone releasing hormone, and inhibitory receptors for somatostatin and adenosine A1. An entirely different class of stimulatory receptors is present as C-type natriuretic peptide receptors. Each stimulatory receptor evokes powerful NaCl secretion. G protein receptors bind to Gαs to activate the catalytic unit of adenylate cyclase to form cyclic adenosine monophosphate (cAMP) and protein kinase A that phosphorylates the regulatory domain of cystic fibrosis transmembrane conductance regulator, opening the channel. The C-type natriuretic peptide receptor stimulates by activating guanylate cyclase and endogenous cyclic guanosine monophosphate which inhibits type 3 phosphodiesterase, the enzyme that breaks down cAMP, thereby elevating cAMP and activating the protein kinase A pathway. PMID:28066051
Fisher, C E; Sutherland, J A; Krause, J E; Murphy, J R; Leeman, S E; vanderSpek, J C
1996-01-01
We have genetically replaced the native receptor binding domain of diphtheria toxin with an extended form of substance P (SP): SP-glycine (SP-Gly). The resulting fusion protein, DAB389SP-Gly, is composed of the catalytic and transmembrane domains of diphtheria toxin genetically coupled to SP-Gly. Because native SP requires a C-terminal amide moiety to bind with high affinity to the SP receptor, the precursor form of the fusion toxin, DAB389SP-Gly, was converted to DAB389SP by treatment with peptidylglycine-alpha-amidating monooxygenase. We demonstrate that following conversion, DAB389SP is selectively cytotoxic for cell lines that express either the rat or the human SP receptor. We also demonstrate that the cytotoxic action of DAB389SP is mediated via the SP receptor and dependent upon passage through an acidic compartment. To our knowledge, this is the first reported use of a neuropeptide as the targeting ligand for a fusion toxin; and the first instance in which an inactive precursor form of a fusion toxin is converted to the active form by a posttranslational modification. Images Fig. 2 PMID:8692995
Design and synthesis of small molecule agonists of EphA2 receptor.
Petty, Aaron; Idippily, Nethrie; Bobba, Viharika; Geldenhuys, Werner J; Zhong, Bo; Su, Bin; Wang, Bingcheng
2018-01-01
Ligand-independent activation of EphA2 receptor kinase promotes cancer metastasis and invasion. Activating EphA2 receptor tyrosine kinase with small molecule agonist is a novel strategy to treat EphA2 overexpressing cancer. In this study, we performed a lead optimization of a small molecule Doxazosin that was identified as an EphA2 receptor agonist. 33 new analogs were developed and evaluated; a structure-activity relationship was summarized based on the EphA2 activation of these derivatives. Two new derivative compounds 24 and 27 showed much improved activity compared to Doxazosin. Compound 24 possesses a bulky amide moiety, and compound 27 has a dimeric structure that is very different to the parental compound. Compound 27 with a twelve-carbon linker of the dimer activated the kinase and induced receptor internalization and cell death with the best potency. Another dimer with a six-carbon linker has significantly reduced potency compared to the dimer with a longer linker, suggesting that the length of the linker is critical for the activity of the dimeric agonist. To explore the receptor binding characteristics of the new molecules, we applied a docking study to examine how the small molecule binds to the EphA2 receptor. The results reveal that compounds 24 and 27 form more hydrogen bonds to EphA2 than Doxazosin, suggesting that they may have higher binding affinity to the receptor. Published by Elsevier Masson SAS.
Nakamura, T; Lipton, S A
2007-07-01
Although activation of glutamate receptors is essential for normal brain function, excessive activity leads to a form of neurotoxicity known as excitotoxicity. Key mediators of excitotoxic damage include overactivation of N-methyl-D-aspartate (NMDA) receptors, resulting in excessive Ca(2+) influx with production of free radicals and other injurious pathways. Overproduction of free radical nitric oxide (NO) contributes to acute and chronic neurodegenerative disorders. NO can react with cysteine thiol groups to form S-nitrosothiols and thus change protein function. S-nitrosylation can result in neuroprotective or neurodestructive consequences depending on the protein involved. Many neurodegenerative diseases manifest conformational changes in proteins that result in misfolding and aggregation. Our recent studies have linked nitrosative stress to protein misfolding and neuronal cell death. Molecular chaperones - such as protein-disulfide isomerase, glucose-regulated protein 78, and heat-shock proteins - can provide neuroprotection by facilitating proper protein folding. Here, we review the effect of S-nitrosylation on protein function under excitotoxic conditions, and present evidence that NO contributes to degenerative conditions by S-nitrosylating-specific chaperones that would otherwise prevent accumulation of misfolded proteins and neuronal cell death. In contrast, we also review therapeutics that can abrogate excitotoxic damage by preventing excessive NMDA receptor activity, in part via S-nitrosylation of this receptor to curtail excessive activity.
Chernova, Irene; Lai, Jian-Ping; Li, Haiying; Schwartz, Lynnae; Tuluc, Florin; Korchak, Helen M.; Douglas, Steven D.; Kilpatrick, Laurie E.
2009-01-01
Substance P (SP) is a potent modulator of monocyte/macrophage function. The SP-preferring receptor neurokinin-1 receptor (NK1R) has two forms: a full-length NK1R (NK1R-F) isoform and a truncated NK1R (NK1R-T) isoform, which lacks the terminal cytoplasmic 96-aa residues. The distribution of these receptor isoforms in human monocytes is not known. We previously identified an interaction among SP, NK1R, and HIV viral strains that use the chemokine receptor CCR5 as a coreceptor, suggesting crosstalk between NK1R and CCR5. The purpose of this study was to determine which form(s) of NK1R are expressed in human peripheral blood monocytes and to determine whether SP affects proinflammatory cellular responses mediated through the CCR5 receptor. Human peripheral blood monocytes were found to express NK1R-T but not NK1R-F. SP interactions with NK1R-T did not mobilize calcium (Ca2+), but SP mobilized Ca2+ when the NK1R-F was transfected into monocytes. However, the NK1R-T was functional in monocytes, as SP enhanced the CCR5 ligand CCL5-elicited Ca2+ mobilization, a response inhibited by the NK1R antagonist aprepitant. SP interactions with the NK1R-T also enhanced CCL5-mediated chemotaxis, which was ERK1/2-dependent. NK1R-T selectively activated ERK2 but increased ERK1 and ERK2 activation by CCL5. Activation of NK1R-T elicited serine phosphorylation of CCR5, indicating that crosstalk between CCL5 and SP may occur at the level of the receptor. Thus, NK1R-T is functional in human monocytes and activates select signaling pathways, and the NK1R-T-mediated enhancement of CCL5 responses does not require the NK1R terminal cytoplasmic domain. PMID:18835883
Georgescu, Maria-Magdalena; Kirsch, Kathrin H.; Shishido, Tomoyuki; Zong, Chen; Hanafusa, Hidesaburo
1999-01-01
The c-Mer receptor tyrosine kinase (RTK) is most closely related to chicken c-Eyk and belongs to the Axl RTK subfamily. Although not detected in normal lymphocytes, c-Mer is expressed in B- and T-cell leukemia cell lines, suggesting an association with lymphoid malignancies. To gain an understanding of the role of this receptor in lymphoid cells, we expressed in murine interleukin-3 (IL-3)-dependent Ba/F3 pro-B-lymphocyte cells a constitutively active receptor, CDMer, formed from the CD8 extracellular domain and the c-Mer intracellular domain. Cells transfected with a plasmid encoding the CDMer receptor became IL-3 independent. When tyrosine (Y)-to-phenylalanine (F) mutations were introduced into c-Mer, only the Y867 change significantly reduced the IL-3-independent cell proliferation. The Y867 residue in the CDMer receptor mediated the binding of Grb2, which recruited the p85 phosphatidylinositol 3-kinase (PI 3-kinase). Despite the difference in promotion of proliferation, both the CDMer and mutant F867 receptors activated Erk in transfected cells. On the other hand, we found that both transcriptional activation of NF-κB and activation of PI 3-kinase were significantly suppressed with the F867 mutant receptor, suggesting that the activation of antiapoptotic pathways is the major mechanism for the observed phenotypic difference. Consistent with this notion, apoptosis induced by IL-3 withdrawal was strongly prevented by CDMer but not by the F867 mutant receptor. PMID:9891051
Na, K-ATPase activity regulates AMPA receptor turnover through proteasome-mediated proteolysis
Zhang, Dawei; Hou, Qingming; Wang, Min; Lin, Amy; Jarzylo, Larissa; Navis, Allison; Raissi, Aram; Liu, Fang; Man, Heng-Ye
2009-01-01
Neuronal activity largely depends on two key components on the membrane: the Na, K-ATPase (NKA) that maintains the ion gradients and sets the foundation of excitability, and the ionotropic glutamatergic AMPA receptors (AMPARs) through which sodium influx forms the driving force for excitation. Because the frequent sodium transients from glutamate receptor activity need to be efficiently extruded, a functional coupling between NKA and AMPARs should be a necessary cellular device for synapse physiology. We show that NKA is enriched at synapses and associates with AMPARs. NKA dysfunction induces a rapid reduction in AMPAR cell-surface expression as well as total protein abundance, leading to a long-lasting depression in synaptic transmission. AMPAR proteolysis requires sodium influx, proteasomal activity and receptor internalization. These data elucidate a novel mechanism by which NKA regulates AMPAR turnover and thereby synaptic strength and brain function. PMID:19357275
Dynamic DNA Methylation Controls Glutamate Receptor Trafficking and Synaptic Scaling
Sweatt, J. David
2016-01-01
Hebbian plasticity, including LTP and LTD, has long been regarded as important for local circuit refinement in the context of memory formation and stabilization. However, circuit development and stabilization additionally relies on non-Hebbian, homoeostatic, forms of plasticity such as synaptic scaling. Synaptic scaling is induced by chronic increases or decreases in neuronal activity. Synaptic scaling is associated with cell-wide adjustments in postsynaptic receptor density, and can occur in a multiplicative manner resulting in preservation of relative synaptic strengths across the entire neuron's population of synapses. Both active DNA methylation and de-methylation have been validated as crucial regulators of gene transcription during learning, and synaptic scaling is known to be transcriptionally dependent. However, it has been unclear whether homeostatic forms of plasticity such as synaptic scaling are regulated via epigenetic mechanisms. This review describes exciting recent work that has demonstrated a role for active changes in neuronal DNA methylation and demethylation as a controller of synaptic scaling and glutamate receptor trafficking. These findings bring together three major categories of memory-associated mechanisms that were previously largely considered separately: DNA methylation, homeostatic plasticity, and glutamate receptor trafficking. PMID:26849493
Structural basis for corepressor assembly by the orphan nuclear receptor TLX
Zhou, X. Edward; He, Yuanzheng; Searose-Xu, Kelvin; Zhang, Chun-Li; Tsai, Chih-Cheng; Melcher, Karsten
2015-01-01
The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conserved ALXXLXXY motif of the Atro box. Mutations that weaken the TLX–Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression. PMID:25691470
Structural basis for corepressor assembly by the orphan nuclear receptor TLX
Zhi, Xiaoyong; Zhou, X. Edward; He, Yuanzheng; ...
2015-02-15
The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conservedmore » ALXXLXXY motif of the Atro box. Mutations that weaken the TLX–Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression.« less
Ward, Richard A; Anderton, Mark J; Ashton, Susan; Bethel, Paul A; Box, Matthew; Butterworth, Sam; Colclough, Nicola; Chorley, Christopher G; Chuaqui, Claudio; Cross, Darren A E; Dakin, Les A; Debreczeni, Judit É; Eberlein, Cath; Finlay, M Raymond V; Hill, George B; Grist, Matthew; Klinowska, Teresa C M; Lane, Clare; Martin, Scott; Orme, Jonathon P; Smith, Peter; Wang, Fengjiang; Waring, Michael J
2013-09-12
A novel series of small-molecule inhibitors has been developed to target the double mutant form of the epidermal growth factor receptor (EGFR) tyrosine kinase, which is resistant to treatment with gefitinib and erlotinib. Our reported compounds also show selectivity over wild-type EGFR. Guided by molecular modeling, this series was evolved to target a cysteine residue in the ATP binding site via covalent bond formation and demonstrates high levels of activity in cellular models of the double mutant form of EGFR. In addition, these compounds show significant activity against the activating mutations, which gefitinib and erlotinib target and inhibition of which gives rise to their observed clinical efficacy. A glutathione (GSH)-based assay was used to measure thiol reactivity toward the electrophilic functionality of the inhibitor series, enabling both the identification of a suitable reactivity window for their potency and the development of a reactivity quantitative structure-property relationship (QSPR) to support design.
Ganugapati, Jayasree; Baldwa, Aashish; Lalani, Sarfaraz
2012-01-01
Diabetes mellitus is a metabolic disorder caused due to insulin deficiency. Banana flower is a rich source of flavonoids that exhibit anti diabetic activity. Insulin receptor is a tetramer that belongs to a family of receptor tyrosine kinases. It contains two alpha subunits that form the extracellular domain and two beta subunits that constitute the intracellular tyrosine kinase domain. Insulin binds to the extracellular region of the receptor and causes conformational changes that lead to the activation of the tyrosine kinase. This leads to autophosphorylation, a step that is crucial in insulin signaling pathway. Hence, compounds that augment insulin receptor tyrosine kinase activity would be useful in the treatment of diabetes mellitus. The 3D structure of IR tyrosine kinase was obtained from PDB database. The list of flavonoids found in banana flower was obtained from USDA database. The structures of the flavonoids were obtained from NCBI Pubchem. Docking analysis of the flavonoids was performed using Autodock 4.0 and Autodock Vina. The results indicate that few of the flavonoids may be potential activators of IR tyrosine kinase.
Neural, Cellular and Molecular Mechanisms of Active Forgetting
Medina, Jorge H.
2018-01-01
The neurobiology of memory formation attracts much attention in the last five decades. Conversely, the rules that govern and the mechanisms underlying forgetting are less understood. In addition to retroactive interference, retrieval-induced forgetting and passive decay of time, it has been recently demonstrated that the nervous system has a diversity of active and inherent processes involved in forgetting. In Drosophila, some operate mainly at an early stage of memory formation and involves dopamine (DA) neurons, specific postsynaptic DA receptor subtypes, Rac1 activation and induces rapid active forgetting. In mammals, others regulate forgetting and persistence of seemingly consolidated memories and implicate the activity of DA receptor subtypes and AMPA receptors in the hippocampus (HP) and related structures to activate parallel signaling pathways controlling active time-dependent forgetting. Most of them may involve plastic changes in synaptic and extrasynaptic receptors including specific removal of GluA2 AMPA receptors. Forgetting at longer timescales might also include changes in adult neurogenesis in the dentate gyrus (DG) of the HP. Therefore, based on relevance or value considerations neuronal circuits may regulate in a time-dependent manner what is formed, stored, and maintained and what is forgotten. PMID:29467630
Yin, T; Tsang, M L; Yang, Y C
1994-10-28
Interleukin (IL)-4 and IL-9 regulate the proliferation of T lymphocytes through interactions with their receptors. Previous studies have shown that unknown tyrosine kinases are involved in the proliferative signaling triggered by IL-4 and IL-9. Here we show that IL-4 and IL-9 induce overlapping (170, 130, and 125 kilodalton (kDa)) and distinct (45 and 88/90 kDa, respectively) protein tyrosine phosphorylation in T lymphocytes. We further identify the 170-kDa tyrosine-phosphorylated protein as 4PS/insulin receptor substrate-1-like (IRS-1L) protein and 130-kDa protein as JAK1 kinase. Furthermore, we demonstrate for the first time that JAK1 forms complexes with the IL-4 receptor and 4PS/IRS-1L protein following ligand-receptor interaction. In addition, we demonstrate that IL-9, but not IL-4, induced tyrosine phosphorylation of Stat 91 transcriptional factor. The overlapping and distinct protein tyrosine phosphorylation and activation of the same JAK1 kinase in T lymphocytes strongly suggests that IL-4 and IL-9 share the common signal transduction pathways and that the specificity for each cytokine could be achieved through the unique tyrosine-phosphorylated proteins triggered by individual cytokines.
Cohen, B D; Goldstein, D J; Rutledge, L; Vass, W C; Lowy, D R; Schlegel, R; Schiller, J T
1993-01-01
The bovine papillomavirus E5 transforming protein appears to activate both the epidermal growth factor receptor (EGF-R) and the platelet-derived growth factor receptor (PDGF-R) by a ligand-independent mechanism. To further investigate the ability of E5 to activate receptors of different classes and to determine whether this stimulation occurs through the extracellular domain required for ligand activation, we constructed chimeric genes encoding PDGF-R and EGF-R by interchanging the extracellular, membrane, and cytoplasmic coding domains. Chimeras were transfected into NIH 3T3 and CHO(LR73) cells. All chimeras expressed stable protein which, upon addition of the appropriate ligand, could be activated as assayed by tyrosine autophosphorylation and biological transformation. Cotransfection of E5 with the wild-type and chimeric receptors resulted in the ligand-independent activation of receptors, provided that a receptor contained either the transmembrane domain of the PDGF-R or the cytoplasmic domain of the EGF-R. Chimeric receptors that contained both of these domains exhibited the highest level of E5-induced biochemical and biological stimulation. These results imply that E5 activates the PDGF-R and EGR-R by two distinct mechanisms, neither of which specifically involves the extracellular domain of the receptor. Consistent with the biochemical and biological activation data, coimmunoprecipitation studies demonstrated that E5 formed a complex with any chimera that contained a PDGF-R transmembrane domain or an EGF-R cytoplasmic domain, with those chimeras containing both domains demonstrating the greatest efficiency of complex formation. These results suggest that although different domains of the PDGF-R and EGF-R are required for E5 activation, both receptors are activated directly by formation of an E5-containing complex. Images PMID:8394451
High-affinity kainate receptor subunits are necessary for ionotropic but not metabotropic signaling.
Fernandes, Herman B; Catches, Justin S; Petralia, Ronald S; Copits, Bryan A; Xu, Jian; Russell, Theron A; Swanson, Geoffrey T; Contractor, Anis
2009-09-24
Kainate receptors signal through both ionotropic and metabotropic pathways. The high-affinity subunits, GluK4 and GluK5, are unique among the five receptor subunits, as they do not form homomeric receptors but modify the properties of heteromeric assemblies. Disruption of the Grik4 gene locus resulted in a significant reduction in synaptic kainate receptor currents. Moreover, ablation of GluK4 and GluK5 caused complete loss of synaptic ionotropic kainate receptor function. The principal subunits were distributed away from postsynaptic densities and presynaptic active zones. There was also a profound alteration in the activation properties of the remaining kainate receptors. Despite this, kainate receptor-mediated inhibition of the slow afterhyperpolarization current (I(sAHP)), which is dependent on metabotropic pathways, was intact in GluK4/GluK5 knockout mice. These results uncover a previously unknown obligatory role for the high-affinity subunits for ionotropic kainate receptor function and further demonstrate that kainate receptor participation in metabotropic signaling pathways does not require their classic role as ion channels.
Havekes, Robbert; Canton, David A.; Park, Alan J.; Huang, Ted; Nie, Ting; Day, Jonathan P.; Guercio, Leonardo A.; Grimes, Quinn; Luczak, Vincent; Gelman, Irwin H.; Baillie, George S.; Scott, John D.; Abel, Ted
2012-01-01
A kinase-anchoring proteins (AKAPs) organize compartmentalized pools of Protein Kinase A (PKA) to enable localized signaling events within neurons. However, it is unclear which of the many expressed AKAPs in neurons target PKA to signaling complexes important for long-lasting forms of synaptic plasticity and memory storage. In the forebrain, the anchoring protein gravin recruits a signaling complex containing PKA, PKC, calmodulin, and PDE4D to the β2-adrenergic receptor. Here, we show that mice lacking the α-isoform of gravin have deficits in PKA-dependent long-lasting forms of hippocampal synaptic plasticity including β2-adrenergic receptor-mediated plasticity, and selective impairments of long-term memory storage. Further, both hippocampal β2-adrenergic receptor phosphorylation by PKA, and learning-induced activation of ERK, are attenuated in the CA1 region of the hippocampus in mice lacking gravin-α. We conclude that gravin compartmentalizes a significant pool of PKA that regulates learning-induced β2-adrenergic receptor signaling and ERK activation in the hippocampus in vivo, organizing molecular interactions between glutamatergic and noradrenergic signaling pathways for long-lasting synaptic plasticity, and memory storage. PMID:23238728
Balfanz, Sabine; Jordan, Nadine; Langenstück, Teresa; Breuer, Johanna; Bergmeier, Vera; Baumann, Arnd
2014-04-01
G protein-coupled receptors are important regulators of cellular signaling processes. Within the large family of rhodopsin-like receptors, those binding to biogenic amines form a discrete subgroup. Activation of biogenic amine receptors leads to transient changes of intracellular Ca²⁺-([Ca²⁺](i)) or 3',5'-cyclic adenosine monophosphate ([cAMP](i)) concentrations. Both second messengers modulate cellular signaling processes and thereby contribute to long-lasting behavioral effects in an organism. In vivo pharmacology has helped to reveal the functional effects of different biogenic amines in honeybees. The phenolamine octopamine is an important modulator of behavior. Binding of octopamine to its receptors causes elevation of [Ca²⁺](i) or [cAMP](i). To date, only one honeybee octopamine receptor that induces Ca²⁺ signals has been molecularly and pharmacologically characterized. Here, we examined the pharmacological properties of four additional honeybee octopamine receptors. When heterologously expressed, all receptors induced cAMP production after binding to octopamine with EC₅₀(s) in the nanomolar range. Receptor activity was most efficiently blocked by mianserin, a substance with antidepressant activity in vertebrates. The rank order of inhibitory potency for potential receptor antagonists was very similar on all four honeybee receptors with mianserin > cyproheptadine > metoclopramide > chlorpromazine > phentolamine. The subroot of octopamine receptors activating adenylyl cyclases is the largest that has so far been characterized in arthropods, and it should now be possible to unravel the contribution of individual receptors to the physiology and behavior of honeybees. © 2013 International Society for Neurochemistry.
Jouvin, M H; Adamczewski, M; Numerof, R; Letourneur, O; Vallé, A; Kinet, J P
1994-02-25
Nonreceptor tyrosine kinases such as the newly described 70-kDa (ZAP-70/Syk) and Src-related tyrosine kinases are coupled to a variety of receptors, including the antigen receptors on B- and T-cells and the Fc receptors for IgE (Fc epsilon RI) and IgG (Fc gamma RI, Fc gamma RIII/CD16). Various subunits of these receptors contain homologous activation motifs which appear capable of autonomously triggering cell activation. Two forms of this motif are present in the Fc epsilon RI multimeric complex: one in the beta chain and one in the gamma chain. Here we show that each of the two tyrosine kinases known to be involved in Fc epsilon RI signaling is controlled by a distinct motif-containing chain. Lyn associates with the nonactivated beta chain, whereas gamma promotes the activation of Syk. We also show that neither the beta nor the gamma motif alone can account for the full signaling capacity of the entire receptor. We propose that, upon triggering of the tetrameric receptor, Lyn already bound to beta becomes activated and phosphorylates beta and gamma; the phosphorylation of gamma induces the association of Syk with gamma and also the activation of Syk, resulting in the phosphorylation and activation of phospholipase C gamma 1. Cooperative recruitment of specific kinases by the various signaling chains found in this family of antigen receptors could represent a way to achieve the full signaling capacity of the multimeric complexes.
Azpiazu, Inaki; Akgoz, Muslum; Kalyanaraman, Vani; Gautam, N.
2008-01-01
G protein activation by Gi/Go coupling M2 muscarinic receptors, Gq coupling M3 receptors and Gs coupling β2 adrenergic receptors causes rapid reversible translocation of the G protein γ11 subunit from the plasma membrane to the Golgi complex. Co-translocation of the β1 subunit suggests that γ11 translocates as a βγ complex. Pertussis toxin ADP ribosylation of the αi subunit type or substitution of the C terminal domain of αo with the corresponding region of αs inhibits γ11 translocation demonstrating that α subunit interaction with a receptor and its activation are requirements for the translocation. The rate of γ11 translocation is sensitive to the rate of activation of the G protein α subunit. α subunit types that show high receptor activated rates of guanine nucleotide exchange in vitro support high rates of γ11 translocation compared to α subunit types that have a relatively lower rate of guanine nucleotide exchange. The results suggest that the receptor induced translocation of γ11 is controlled by the rate of cycling of the G protein through active and inactive forms. They also demonstrate that imaging of γ11 translocation can be used as a non-invasive tool to measure the relative activities of wild type or mutant receptor and α subunit types in a live cell. PMID:16242307
Li, Lingyong; Homan, Kristoff T; Vishnivetskiy, Sergey A; Manglik, Aashish; Tesmer, John J G; Gurevich, Vsevolod V; Gurevich, Eugenia V
2015-04-24
G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in homologous desensitization of GPCRs. It is widely assumed that most GRKs selectively phosphorylate only active GPCRs. Here, we show that although this seems to be the case for the GRK2/3 subfamily, GRK5/6 effectively phosphorylate inactive forms of several GPCRs, including β2-adrenergic and M2 muscarinic receptors, which are commonly used as representative models for GPCRs. Agonist-independent GPCR phosphorylation cannot be explained by constitutive activity of the receptor or membrane association of the GRK, suggesting that it is an inherent ability of GRK5/6. Importantly, phosphorylation of the inactive β2-adrenergic receptor enhanced its interactions with arrestins. Arrestin-3 was able to discriminate between phosphorylation of the same receptor by GRK2 and GRK5, demonstrating preference for the latter. Arrestin recruitment to inactive phosphorylated GPCRs suggests that not only agonist activation but also the complement of GRKs in the cell regulate formation of the arrestin-receptor complex and thereby G protein-independent signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Structure and signalling functions of C3 receptors on human B cells.
Frade, R
1990-03-01
CR1 (C3b receptor) and CR2 (C3d/EBV receptor) are two C3 receptors expressed on B lymphocytes. CR1 and CR2 have structural similarities and their cross-linking at the B cell surface by antibodies or specific ligands in multimeric forms induce B cell activation. However, activation of human B cells through cell surface interactions or by intracellular protein kinase C activators leads to phosphorylation of CR2 but not CR1. CR2 is phosphorylated on serine and tyrosine residues. Analysis of post-membrane events associated with CR2 revealed intracellular interactions of CR2 with p53, a plasma membrane anti-oncogene-encoded phosphoprotein, and with p120, a nuclear phosphoribonucleoprotein. These intracellular interactions probably represent important steps in the signalling functions of CR2.
Fay, Jonathan F; Farrens, David L
2012-09-28
Allosteric ligands that modulate how G protein-coupled receptors respond to traditional orthosteric drugs are an exciting and rapidly expanding field of pharmacology. An allosteric ligand for the cannabinoid receptor CB1, Org 27569, exhibits an intriguing effect; it increases agonist binding, yet blocks agonist-induced CB1 signaling. Here we explored the mechanism behind this behavior, using a site-directed fluorescence labeling approach. Our results show that Org 27569 blocks conformational changes in CB1 that accompany G protein binding and/or activation, and thus inhibit formation of a fully active CB1 structure. The underlying mechanism behind this behavior is that simultaneous binding of Org 27569 produces a unique agonist-bound conformation, one that may resemble an intermediate structure formed on the pathway to full receptor activation.
Chauvot de Beauchêne, Isaure; Allain, Ariane; Panel, Nicolas; Laine, Elodie; Trouvé, Alain; Dubreuil, Patrice; Tchertanov, Luba
2014-01-01
Receptor tyrosine kinase KIT controls many signal transduction pathways and represents a typical allosterically regulated protein. The mutation-induced deregulation of KIT activity impairs cellular physiological functions and causes serious human diseases. The impact of hotspots mutations (D816H/Y/N/V and V560G/D) localized in crucial regulatory segments, the juxtamembrane region (JMR) and the activation (A-) loop, on KIT internal dynamics was systematically studied by molecular dynamics simulations. The mutational outcomes predicted in silico were correlated with in vitro and in vivo activation rates and drug sensitivities of KIT mutants. The allosteric regulation of KIT in the native and mutated forms is described in terms of communication between the two remote segments, JMR and A-loop. A strong correlation between the communication profile and the structural and dynamical features of KIT in the native and mutated forms was established. Our results provide new insight on the determinants of receptor KIT constitutive activation by mutations and resistance of KIT mutants to inhibitors. Depiction of an intra-molecular component of the communication network constitutes a first step towards an integrated description of vast communication pathways established by KIT in physiopathological contexts. PMID:25079768
Vitamin C modulates glutamate transport and NMDA receptor function in the retina.
Domith, Ivan; Socodato, Renato; Portugal, Camila C; Munis, Andressa F; Duarte-Silva, Aline T; Paes-de-Carvalho, Roberto
2018-02-01
Vitamin C (in the reduced form ascorbate or in the oxidized form dehydroascorbate) is implicated in signaling events throughout the central nervous system (CNS). In the retina, a high-affinity transport system for ascorbate has been described and glutamatergic signaling has been reported to control ascorbate release. Here, we investigated the modulatory role played by vitamin C upon glutamate uptake and N-methyl-d-aspartate (NMDA) receptor activation in cultured retinal cells or in intact retinal tissue using biochemical and imaging techniques. We show that both forms of vitamin C, ascorbate or dehydroascorbate, promote an accumulation of extracellular glutamate by a mechanism involving the inhibition of glutamate uptake. This inhibition correlates with the finding that ascorbate promotes a decrease in cell surface levels of the neuronal glutamate transporter excitatory amino acid transporter 3 in retinal neuronal cultures. Interestingly, vitamin C is prone to increase the activity of NMDA receptors but also promotes a decrease in glutamate-stimulated [ 3 H] MK801 binding and decreases cell membrane content of NMDA receptor glutamate ionotropic receptor subunit 1 (GluN1) subunits. Both compounds were also able to increase cAMP response element-binding protein phosphorylation in neuronal nuclei in a glutamate receptor and calcium/calmodulin kinase-dependent manner. Moreover, the effect of ascorbate is not blocked by sulfinpyrazone and then does not depend on its uptake by retinal cells. Overall, these data indicate a novel molecular and functional target for vitamin C impacting on glutamate signaling in retinal neurons. © 2017 International Society for Neurochemistry.
A new Drosophila octopamine receptor responds to serotonin.
Qi, Yi-Xiang; Xu, Gang; Gu, Gui-Xiang; Mao, Fen; Ye, Gong-Yin; Liu, Weiwei; Huang, Jia
2017-11-01
As the counterparts of the vertebrate adrenergic transmitters, octopamine and tyramine are important physiological regulators in invertebrates. They control and modulate many physiological and behavioral functions in insects. In this study, we reported the pharmacological properties of a new α2-adrenergic-like octopamine receptor (CG18208) from Drosophila melanogaster, named DmOctα2R. This new receptor gene encodes two transcripts by alternative splicing. The long isoform DmOctα2R-L differs from the short isoform DmOctα2R-S by the presence of an additional 29 amino acids within the third intracellular loop. When heterologously expressed in mammalian cell lines, both receptors were activated by octopamine, tyramine, epinephrine and norepinephrine, resulting in the inhibition of cAMP production in a dose-dependent manner. The long form is more sensitive to the above ligands than the short form. The adrenergic agonists naphazoline, tolazoline and clonidine can stimulate DmOctα2R as full agonists. Surprisingly, serotonin and serotoninergic agonists can also activate DmOctα2R. Several tested adrenergic antagonists and serotonin antagonists blocked the action of octopamine or serotonin on DmOctα2R. The data presented here reported an adrenergic-like G protein-coupled receptor activated by serotonin, suggesting that the neurotransmission and neuromodulation in the nervous system could be more complex than previously thought. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor
Maillet, Emeline L.; Cui, Meng; Jiang, Peihua; Mezei, Mihaly; Hecht, Elizabeth; Quijada, Jeniffer; Osman, Roman; Max, Marianna
2015-01-01
The sweet taste receptor, a heterodimeric G protein-coupled receptor comprised of T1R2 and T1R3, binds sugars, small molecule sweeteners, and sweet proteins to multiple binding sites. The dipeptide sweetener, aspartame binds in the Venus Flytrap Module (VFTM) of T1R2. We developed homology models of the open and closed forms of human T1R2 and human T1R3 VFTMs and their dimers and then docked aspartame into the closed form of T1R2’s VFTM. To test and refine the predictions of our model, we mutated various T1R2 VFTM residues, assayed activity of the mutants and identified 11 critical residues (S40, Y103, D142, S144, S165, S168, Y215, D278, E302, D307, and R383) in and proximal to the binding pocket of the sweet taste receptor that are important for ligand recognition and activity of aspartame. Furthermore, we propose that binding is dependent on 2 water molecules situated in the ligand pocket that bridge 2 carbonyl groups of aspartame to residues D142 and L279. These results shed light on the activation mechanism and how signal transmission arising from the extracellular domain of the T1R2 monomer of the sweet receptor leads to the perception of sweet taste. PMID:26377607
Dopamine D2-receptor blockade enhances decoding of prefrontal signals in humans.
Kahnt, Thorsten; Weber, Susanna C; Haker, Helene; Robbins, Trevor W; Tobler, Philippe N
2015-03-04
The prefrontal cortex houses representations critical for ongoing and future behavior expressed in the form of patterns of neural activity. Dopamine has long been suggested to play a key role in the integrity of such representations, with D2-receptor activation rendering them flexible but weak. However, it is currently unknown whether and how D2-receptor activation affects prefrontal representations in humans. In the current study, we use dopamine receptor-specific pharmacology and multivoxel pattern-based functional magnetic resonance imaging to test the hypothesis that blocking D2-receptor activation enhances prefrontal representations. Human subjects performed a simple reward prediction task after double-blind and placebo controlled administration of the D2-receptor antagonist amisulpride. Using a whole-brain searchlight decoding approach we show that D2-receptor blockade enhances decoding of reward signals in the medial orbitofrontal cortex. Examination of activity patterns suggests that amisulpride increases the separation of activity patterns related to reward versus no reward. Moreover, consistent with the cortical distribution of D2 receptors, post hoc analyses showed enhanced decoding of motor signals in motor cortex, but not of visual signals in visual cortex. These results suggest that D2-receptor blockade enhances content-specific representations in frontal cortex, presumably by a dopamine-mediated increase in pattern separation. These findings are in line with a dual-state model of prefrontal dopamine, and provide new insights into the potential mechanism of action of dopaminergic drugs. Copyright © 2015 the authors 0270-6474/15/354104-08$15.00/0.
Learning and memory deficits in mice lacking protease activated receptor-1
Almonte, Antoine G.; Hamill, Cecily E.; Chhatwal, Jasmeer P.; Wingo, Thomas S.; Barber, Jeremy A.; Lyuboslavsky, Polina N.; Sweatt, J. David; Ressler, Kerry J.; White, David A.; Traynelis, Stephen F.
2007-01-01
The roles of serine proteases and protease activated receptors have been extensively studied in coagulation, wound healing, inflammation, and neurodegeneration. More recently, serine proteases have been suggested to influence synaptic plasticity. In this context, we examined the role of protease activated receptor 1 (PAR1), which is activated following proteolytic cleavage by thrombin and plasmin, in emotionally-motivated learning. We were particularly interested in PAR1 because its activation enhances the function of NMDA receptors, which are required for some forms of synaptic plasticity. We examined several baseline behavioral measures, including locomotor activity, expression of anxiety-like behavior, motor task acquisition, nociceptive responses, and startle responses in C57Bl/6 mice in which the PAR1 receptor has been genetically deleted. In addition, we evaluated learning and memory in these mice using two memory tasks, passive avoidance and cued fear-conditioning. Whereas locomotion, pain response, startle, and measures of baseline anxiety were largely unaffected by PAR1 removal, PAR1−/− animals showed significant deficits in a passive avoidance task and in cued fear conditioning. These data suggest that PAR1 may play an important role in emotionally-motivated learning. PMID:17544303
Yousefi, Bahman; Samadi, Nasser; Baradaran, Behzad; Shafiei-Irannejad, Vahid; Zarghami, Nosratollah
2016-07-01
Imatinib therapy remains the gold standard for treatment of chronic myeloid leukemia; however, the acquired resistance to this therapeutic agent in patients has urged the scientists to devise modalities for overcoming this chemoresistance. For this purpose, initially therapeutic agents with higher tyrosine kinase activity were introduced, which had the potential for inhibiting even mutant forms of Bcr-Abl. Furthermore, coupling imatinib with peroxisome proliferator-activated receptor ligands also showed beneficial effects in chronic myeloid leukemia cell proliferation. These combination protocols inhibited cell growth and induced apoptosis as well as differentiation in chronic myeloid leukemia cell lines. In addition, peroxisome proliferator-activated receptors ligands increased imatinib uptake by upregulating the expression of human organic cation transporter 1. Taken together, peroxisome proliferator-activated receptors ligands are currently being considered as novel promising therapeutic candidates for chronic myeloid leukemia treatment, because they can synergistically enhance the efficacy of imatinib. In this article, we reviewed the potential of peroxisome proliferator-activated receptors ligands for use in chronic myeloid leukemia treatment. The mechanism of action of these therapeutics modalities are also presented in detail. © 2016 John Wiley & Sons A/S.
Opiate and N-methyl-D-aspartate receptors in form-deprivation myopia.
Fischer, A J; Seltner, R L; Stell, W K
1998-01-01
Pharmacological studies have implicated retinal opiate pathways in the visual regulation of ocular growth. However, the effects of opiate receptor subtype-specific compounds on form-deprivation myopia (FDM) are inconsistent (Seltner et al., 1997), and may be mediated by non-opiate receptors. The purpose of this study was to test whether opiate receptor-inactive (D-) enantiomers elicit the same FDM-suppressing effect as their opiate receptor-active (L-) counterparts. Since some opiates are thought to act at NMDA receptors, we also tested whether NMDA receptor agonists and antagonists influence ocular growth or FDM. We found that both L- and D- enantiomers of morphine-like compounds (dextrorphanol and levorphanol, and D- and L-naloxone) were equally effective in blocking FDM. The NMDA receptor antagonists dextromethorphan, MK801, and AP5 also suppressed FDM. A single toxic dose of NMDA, that destroys many subtypes of amacrine cells (including those that synthesize the opioid peptide enkephalin), induced myopia and ocular enlargement in ungoggled eyes, and eliminated the ability of form-deprivation to enhance ocular growth. The NR-1 subunit of the NMDA receptor was localized to a narrowly stratified, intense stratum at approximately 50% depth in the inner plexiform layer, diffusely throughout the proximal inner plexiform layer, and to many somata in the amacrine and ganglion cell layers. These observations suggest that most effects of opiate receptor ligands on FDM in the chick are mediated by non-opiate receptors, which are likely to include NMDA receptors. NMDA as an excitotoxin transiently enhances ocular growth, but thereafter disables retinal mechanisms that promote emmetropization and FDM. These observations are consistent with a prominent role for pathways utilizing NMDA receptors in FDM and ocular growth-control.
NASA Astrophysics Data System (ADS)
Boulter, Jim; Connolly, John; Deneris, Evan; Goldman, Dan; Heinemann, Steven; Patrick, Jim
1987-11-01
A family of genes coding for proteins homologous to the α subunit of the muscle nicotinic acetylcholine receptor has been identified in the rat genome. These genes are transcribed in the central and peripheral nervous systems in areas known to contain functional nicotinic receptors. In this paper, we demonstrate that three of these genes, which we call alpha3, alpha4, and beta2, encode proteins that form functional nicotinic acetylcholine receptors when expressed in Xenopus oocytes. Oocytes expressing either alpha3 or alpha4 protein in combination with the beta2 protein produced a strong response to acetylcholine. Oocytes expressing only the alpha4 protein gave a weak response to acetylcholine. These receptors are activated by acetylcholine and nicotine and are blocked by Bungarus toxin 3.1. They are not blocked by α -bungarotoxin, which blocks the muscle nicotinic acetylcholine receptor. Thus, the receptors formed by the alpha3, alpha4, and beta2 subunits are pharmacologically similar to the ganglionic-type neuronal nicotinic acetylcholine receptor. These results indicate that the alpha3, alpha4, and beta2 genes encode functional nicotinic acetylcholine receptor subunits that are expressed in the brain and peripheral nervous system.
Cabana, Jérôme; Holleran, Brian; Leduc, Richard; Escher, Emanuel; Guillemette, Gaétan; Lavigne, Pierre
2015-06-19
Biased signaling represents the ability of G protein-coupled receptors to engage distinct pathways with various efficacies depending on the ligand used or on mutations in the receptor. The angiotensin-II type 1 (AT1) receptor, a prototypical class A G protein-coupled receptor, can activate various effectors upon stimulation with the endogenous ligand angiotensin-II (AngII), including the Gq/11 protein and β-arrestins. It is believed that the activation of those two pathways can be associated with distinct conformations of the AT1 receptor. To verify this hypothesis, microseconds of molecular dynamics simulations were computed to explore the conformational landscape sampled by the WT-AT1 receptor, the N111G-AT1 receptor (constitutively active and biased for the Gq/11 pathway), and the D74N-AT1 receptor (biased for the β-arrestin1 and -2 pathways) in their apo-forms and in complex with AngII. The molecular dynamics simulations of the AngII-WT-AT1, N111G-AT1, and AngII-N111G-AT1 receptors revealed specific structural rearrangements compared with the initial and ground state of the receptor. Simulations of the D74N-AT1 receptor revealed that the mutation stabilizes the receptor in the initial ground state. The presence of AngII further stabilized the ground state of the D74N-AT1 receptor. The biased agonist [Sar(1),Ile(8)]AngII also showed a preference for the ground state of the WT-AT1 receptor compared with AngII. These results suggest that activation of the Gq/11 pathway is associated with a specific conformational transition stabilized by the agonist, whereas the activation of the β-arrestin pathway is linked to the stabilization of the ground state of the receptor. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Cabana, Jérôme; Holleran, Brian; Leduc, Richard; Escher, Emanuel; Guillemette, Gaétan; Lavigne, Pierre
2015-01-01
Biased signaling represents the ability of G protein-coupled receptors to engage distinct pathways with various efficacies depending on the ligand used or on mutations in the receptor. The angiotensin-II type 1 (AT1) receptor, a prototypical class A G protein-coupled receptor, can activate various effectors upon stimulation with the endogenous ligand angiotensin-II (AngII), including the Gq/11 protein and β-arrestins. It is believed that the activation of those two pathways can be associated with distinct conformations of the AT1 receptor. To verify this hypothesis, microseconds of molecular dynamics simulations were computed to explore the conformational landscape sampled by the WT-AT1 receptor, the N111G-AT1 receptor (constitutively active and biased for the Gq/11 pathway), and the D74N-AT1 receptor (biased for the β-arrestin1 and -2 pathways) in their apo-forms and in complex with AngII. The molecular dynamics simulations of the AngII-WT-AT1, N111G-AT1, and AngII-N111G-AT1 receptors revealed specific structural rearrangements compared with the initial and ground state of the receptor. Simulations of the D74N-AT1 receptor revealed that the mutation stabilizes the receptor in the initial ground state. The presence of AngII further stabilized the ground state of the D74N-AT1 receptor. The biased agonist [Sar1,Ile8]AngII also showed a preference for the ground state of the WT-AT1 receptor compared with AngII. These results suggest that activation of the Gq/11 pathway is associated with a specific conformational transition stabilized by the agonist, whereas the activation of the β-arrestin pathway is linked to the stabilization of the ground state of the receptor. PMID:25934394
Nagaoka, Hikaru; Nishiwaki, Hisashi; Kubo, Takuya; Akamatsu, Miki; Yamauchi, Satoshi; Shuto, Yoshihiro
2015-02-15
In the present study, nitromethylene neonicotinoid derivatives possessing substituents that contain a sulfur atom, oxygen atom or aromatic ring at position 5 on the imidazolidine ring were synthesized to evaluate their affinity for the nicotinic acetylcholine receptor (nAChR) and their insecticidal activity against adult female houseflies. Comparing the receptor affinity of the alkylated derivative with the receptor affinity of compounds possessing either ether or thioether groups revealed that conversion of the carbon atom to a sulfur atom did not influence the receptor affinity, whereas conversion to an oxygen atom was disadvantageous for the receptor affinity. The receptor affinity of compounds possessing a benzyl or phenyl group was lower than that of the unsubstituted compound. Analysis of the three-dimensional quantitative structure-activity relationship using comparative molecular field analysis demonstrated that steric hindrance of the receptor should exist around the C3 of an n-butyl group attached at position 5 on the imidazolidine ring. A docking study of the nAChR-ligand model suggested that the ligand-binding region expands as the length of the substituent increases by brushing against the amino acids that form the binding region. The insecticidal activity of the compounds was positively correlated with the receptor affinity by considering logP and the number of heteroatoms, including sulfur and oxygen atoms, in the substituents, suggesting that the insecticidal activity is influenced by the receptor affinity, hydrophobicity, and metabolic stability of the compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.
Deng, Youping; Xu, Hu; Riedel, Heimo
2007-02-15
The Pro-rich, PH, and SH2 domain containing mitogenic signaling adapter PSM/SH2-B has been implicated as a cellular partner of various mitogenic receptor tyrosine kinases and related signaling mechanisms. Here, we report in a direct comparison of three peptide hormones, that PSM participates in the assembly of distinct mitogenic signaling complexes in response to insulin or IGF-I when compared to PDGF in cultured normal fibroblasts. The complex formed in response to insulin or IGF-I involves the respective peptide hormone receptor and presumably the established components leading to MAP kinase activation. However, our data suggest an alternative link from the PDGF receptor via PSM directly to MEK1/2 and consequently also to p44/42 activation, possibly through a scaffold protein. At least two PSM domains participate, the SH2 domain anticipated to link PSM to the respective receptor and the Pro-rich region in an association with an unidentified downstream component resulting in direct MEK1/2 and p44/42 regulation. The PDGF receptor signaling complex formed in response to PDGF involves PI 3-kinase in addition to the same components and interactions as described for insulin or IGF-I. PSM associates with PI 3-kinase via p85 and in addition the PSM PH domain participates in the regulation of PI 3-kinase activity, presumably through membrane interaction. In contrast, the PSM Pro-rich region appears to participate only in the MAP kinase signal. Both pathways contribute to the mitogenic response as shown by cell proliferation, survival, and focus formation. PSM regulates p38 MAP kinase activity in a pathway unrelated to the mitogenic response.
Ramsay, Douglas; Bevan, Nicola; Rees, Stephen; Milligan, Graeme
2001-01-01
The wild-type β2-adrenoceptor and a constitutively active mutant of this receptor were C-terminally tagged with luciferase from the sea pansy Renilla reniformis. C-terminal addition of Renilla luciferase did not substantially alter the levels of expression of either form of the receptor, the elevated constitutive activity of the mutant β2-adrenoceptor nor the capacity of isoprenaline to elevate cyclic AMP levels in intact cells expressing these constructs. Treatment of cells expressing constitutively active mutant β2-adrenoceptor-Renilla luciferase with antagonist/inverse agonist ligands resulted in upregulation of levels of this polypeptide which could be monitored by the elevated luciferase activity. The pEC50 for ligand-induced luciferase upregulation and ligand affinity to bind the receptor were highly correlated. Similar upregulation could be observed following sustained treatment with agonist ligands. These effects were only observed at a constitutively active mutant of the β2-adrenoceptor. Co-expression of the wild-type β2-adrenoceptor C-terminally tagged with the luciferase from Photinus pyralis did not result in ligand-induced upregulation of the levels of activity of this luciferase. Co-expression of the constitutively active mutant β2-adrenoceptor-Renilla luciferase and an equivalent mutant of the α1b-adrenoceptor C-terminally tagged with green fluorescent protein allowed pharmacological selectivity of adrenoceptor antagonists to be demonstrated. This approach offers a sensitive and convenient means, which is amenable to high throughput analysis, to monitor ligand binding to a constitutively active mutant receptor. As no prior knowledge of receptor ligands is required this approach may be suitable to identify ligands at orphan G protein-coupled receptors. PMID:11350868
Role of the glucose-sensing receptor in insulin secretion.
Kojima, Itaru; Medina, Johan; Nakagawa, Yuko
2017-09-01
Glucose is a primary stimulator of insulin secretion. It has been thought that glucose exerts its effect by a mechanism solely dependent on glucose metabolism. We show here that glucose induces rapid Ca 2+ and cyclic AMP signals in β-cells. These rapid signals are independent of glucose-metabolism and are reproduced by non-metabolizable glucose analogues. These results led us to postulate that glucose activates a cell-surface receptor, namely the glucose-sensing receptor. Rapid signals induced by glucose are blocked by inhibition of a sweet taste receptor subunit T1R3 and a calcium-sensing receptor subunit CaSR. In accordance with these observations, T1R3 and CaSR form a heterodimer. In addition, a heterodimer of T1R3 and CaSR is activated by glucose. These results suggest that a heterodimer of T1R3 and CaSR is a major component of the glucose-sensing receptor. When the glucose-sensing receptor is blocked, glucose-induced insulin secretion is inhibited. Also, ATP production is significantly attenuated by the inhibition of the receptor. Conversely, stimulation of the glucose-sensing receptor by either artificial sweeteners or non-metabolizable glucose analogue increases ATP. Hence, the glucose-sensing receptor signals promote glucose metabolism. Collectively, glucose activates the cell-surface glucose-sensing receptor and promotes its own metabolism. Glucose then enters the cells and is metabolized through already activated metabolic pathways. The glucose-sensing receptor is a key molecule regulating the action of glucose in β-cells. © 2017 John Wiley & Sons Ltd.
RAR/RXR and PPAR/RXR Signaling in Spinal Cord Injury
van Neerven, Sabien; Mey, Jörg
2007-01-01
The retinoid acid receptors (RAR) and peroxisome proliferator-activated receptors (PPAR) have been implicated in the regulation of inflammatory reactions. Both receptor families contain ligand-activated transcription factors which form heterodimers with retinoid X receptors (RXR). We review data that imply RAR/RXR and PPAR/RXR pathways in physiological reactions after spinal cord injury. Experiments show how RAR signaling may improve axonal regeneration and modulate reactions of glia cells. While anti-inflammatory properties of PPAR are well documented in the periphery, their possible roles in the central nervous system have only recently become evident. Due to its anti-inflammatory function this transcription factor family promises to be a useful target after spinal cord or brain lesions. PMID:18060014
Klein, O; Kegler-Ebo, D; Su, J; Smith, S; DiMaio, D
1999-04-01
The bovine papillomavirus E5 gene encodes a 44-amino-acid, homodimeric transmembrane protein that is the smallest known transforming protein. The E5 protein transforms cultured fibroblasts by forming a stable complex with the endogenous platelet-derived growth factor (PDGF) beta receptor through transmembrane and juxtamembrane interactions, leading to sustained receptor activation. Aspartic acid 33 in the extracellular juxtamembrane region of the E5 protein is important for cell transformation and interaction with the PDGF beta receptor. A. N. Meyer et al. (Proc. Natl. Acad. Sci USA 91:4634-4638, 1994) speculated that this residue interacted with lysine 499 on the receptor. We constructed E5 mutants containing all possible substitutions at position 33, as well as several double mutants containing substitutions at aspartic acid 33 and at glutamic acid 36, and we examined the ability of these mutants to transform C127 mouse fibroblasts and to bind to and induce activation of the PDGF beta receptor. There was an excellent correlation between the transformation activities of the various mutants and their ability to bind to and activate the PDGF beta receptor. Analysis of the mutants demonstrated that a juxtamembrane negative charge on the E5 protein was required for cell transformation and for productive interaction with the PDGF beta receptor and indicated that aspartic acid 33 was more important for these activities than was glutamic acid 36. These results are consistent with the existence of an essential juxtamembrane salt bridge between lysine 499 on the PDGF beta receptor and an acidic residue in the C terminus of the E5 protein and lend support to our proposed model for the complex between the E5 dimer and the PDGF beta receptor.
Soluble TL1A is sufficient for activation of death receptor 3.
Bittner, Sebastian; Knoll, Gertrud; Füllsack, Simone; Kurz, Maria; Wajant, Harald; Ehrenschwender, Martin
2016-01-01
Death receptor 3 (DR3) is a typical member of the tumor necrosis factor receptor family, and was initially identified as a T-cell co-stimulatory molecule. However, further studies revealed a more complex and partly dichotomous role for DR3 and its ligand TL1A under (patho)physiological conditions. TL1A and DR3 are not only a driving force in the development of autoimmune and inflammatory diseases, but also play an important role in counteracting these processes through an increase in the number of regulatory T cells. Ligands of the tumor necrosis factor family typically occur in two forms, membrane-bound and soluble, that can differ strikingly with respect to their efficacy in activating their corresponding receptor(s). Ligand-based approaches to activate the TL1A-DR3 pathway therefore require understanding of the molecular prerequisites of TL1A-based DR3 activation. To date, this has not been addressed. Here, we show that recombinant soluble trimeric TL1A is fully sufficient to strongly activate DR3-associated pro- and anti-apoptotic signaling pathways. In contrast to the TRAIL death receptors, which are much better activated by soluble TRAIL upon secondary ligand oligomerization, but similarly to the death receptor tumor necrosis factor receptor 1, DR3 is efficiently activated by soluble TL1A trimers. Additionally, we have measured the affinity of TL1A-DR3 interaction in a cell-based system, and demonstrated TL1A-induced DR3 internalization. Identification of DR3 as a tumor necrosis factor receptor that responds to soluble ligand trimers without further oligomerization provides a basis for therapeutic exploitation of the TL1A-DR3 pathway. © 2015 FEBS.
Necroptosis in health and diseases.
Zhou, Wen; Yuan, Junying
2014-11-01
Necroptosis is a form of regulated necrosis that can be activated by ligands of death receptors and stimuli that induce the expression of death receptor ligands under apoptotic deficient conditions. Activation of necroptosis by ligands of death receptors requires the kinase activity of RIP1, which mediates the activation of RIP3 and MLKL, two critical downstream mediators of necroptosis. Blocking the kinase activity of RIP1, a key druggable target in the necroptosis pathway, by necrostatins inhibits the activation of necroptosis and allows cell survival and proliferation in the presence of death receptor ligands. The activation of necroptosis is modulated by different forms of ubiquitination, including K63, linear and K48 ubiquitination, as well as phosphorylation of RIP1, RIP3 and MLKL. Necroptosis is suppressed by caspase-8/FADD-mediated apoptosis. Deficiency in caspase-8 and FADD leads to embryonic lethality, tissue degeneration and inflammation which can be suppressed by inhibition of RIP1 kinase and RIP3. On the other hand, the lack of RIP3 kinase activity leads to early embryonic lethality which can be suppressed by the loss of caspase-8, suggesting that although the kinase activity of RIP3 is involved in mediating necroptosis, the basal activity of RIP3 kinase may be required for suppressing caspase-8 mediated apoptosis. Necroptosis as well as RIP1- and RIP3-mediated inflammatory response have been implicated in mediating multiple human diseases including TNF-mediated hypothermia and systemic inflammation, ischemic reperfusion injury, neurodegeneration, Gaucher's disease, progressive atherosclerotic lesions, etc. Targeting RIP1 kinase may provide therapeutic benefits for the treatment of human diseases characterized by necrosis and inflammation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Pěnčíková, Kateřina; Brenerová, Petra; Svržková, Lucie; Hrubá, Eva; Pálková, Lenka; Vondráček, Jan; Lehmler, Hans-Joachim; Machala, Miroslav
2017-11-09
PCB 136 is an environmentally relevant chiral PCB congener, which has been found in vivo to be present in form of rotational isomers (atropisomers). Its atropselective biotransformation or neurotoxic effects linked with sensitization of ryanodine receptor suggest that it might interact also with other intracellular receptors in a stereospecific manner. However, possible atropselective effects of PCB 136 on nuclear receptor transactivation remain unknown. Therefore, in this study, atropselective effects of PCB 136 on nuclear receptors controlling endocrine signaling and/or expression of xenobiotic and steroid hormone catabolism were investigated. PCB136 atropisomers were found to exert differential effects on estrogen receptor (ER) activation; (+)-PCB 136 was estrogenic, while (-)-PCB 136 was antiestrogenic. In contrast, inhibition of androgen receptor (AR) activity was not stereospecific. Both PCB136 stereoisomers induced the constitutive androgen receptor (CAR)-dependent gene expression; however, no significant stereospecificity of PCB 136 atropisomers was observed. PCB136 was a partial inducer of the pregnane X receptor (PXR)-dependent gene expression. Here, (-)-PCB 136 was a significantly more potent inducer of PXR activity than (+)-PCB 136. Taken together, the present results indicate that at least two nuclear receptors participating in endocrine regulation or metabolism, ER and PXR, could be regulated in an atropselective manner by chiral PCB 136. The enantioselective enrichment of PCB atropisomers in animal and human tissues may thus have significant consequences for endocrine-disrupting effects of chiral ortho-substituted PCB congeners.
Haggerty, D C; Glykos, V; Adams, N E; Lebeau, F E N
2013-12-03
Noradrenaline (NA) in the hippocampus plays an important role in memory function and has been shown to modulate different forms of synaptic plasticity. Oscillations in the gamma frequency (20-80 Hz) band in the hippocampus have also been proposed to play an important role in memory functions and, evidence from both in vitro and in vivo studies, has suggested this activity can be modulated by NA. However, the role of different NA receptor subtypes in the modulation of gamma frequency activity has not been fully elucidated. We have found that NA (30 μM) exerts a bidirectional control on the magnitude of kainate-evoked (50-200 nM) gamma frequency oscillations in the cornu Ammonis (CA3) region of the rat hippocampus in vitro via activation of different receptor subtypes. Activation of alpha-adrenergic receptors (α-AR) reduced the power of the gamma frequency oscillation. In contrast, activation of beta-adrenergic receptors (β-AR) caused an increase in the power of the gamma frequency oscillations. Using specific agonists and antagonists of AR receptor subtypes we demonstrated that these effects are mediated specifically via α1A-AR and β1-AR subtypes. NA activated both receptor subtypes, but the α1A-AR-mediated effect predominated, resulting in a reversible suppression of gamma frequency activity. These results suggest that NA is able to differentially modulate on-going gamma frequency oscillatory activity that could result in either increased or decreased information flow through the hippocampus. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Li, Tuoyi; Yu, Bing; Liu, Zhixin; Li, Jingyuan; Ma, Mingliang; Wang, Yingbao; Zhu, Mingjiang; Yin, Huiyong; Wang, Xiaofeng; Fu, Yi; Yu, Fang; Wang, Xian; Fang, Xiaohong; Sun, Jinpeng; Kong, Wei
2018-01-02
Hyperhomocysteinemia (HHcy) is a risk factor for various cardiovascular diseases. However, the mechanism underlying HHcy-aggravated vascular injury remains unclear. Here we show that the aggravation of abdominal aortic aneurysm by HHcy is abolished in mice with genetic deletion of the angiotensin II type 1 (AT1) receptor and in mice treated with an AT1 blocker. We find that homocysteine directly activates AT1 receptor signalling. Homocysteine displaces angiotensin II and limits its binding to AT1 receptor. Bioluminescence resonance energy transfer analysis reveals distinct conformational changes of AT1 receptor upon binding to angiotensin II and homocysteine. Molecular dynamics and site-directed mutagenesis experiments suggest that homocysteine regulates the conformation of the AT1 receptor both orthosterically and allosterically by forming a salt bridge and a disulfide bond with its Arg 167 and Cys 289 residues, respectively. Together, these findings suggest that strategies aimed at blocking the AT1 receptor may mitigate HHcy-associated aneurysmal vascular injuries.
Chester, Jeremy; Rotenstein, Deborah; Ringkananont, Usanee; Steuer, Guy; Carlin, Beatrice; Stewart, Lindsay; Grasberger, Helmut; Refetoff, Samuel
2018-01-01
Neonatal hyperthyroidism, a rare and serious disorder occurs in two forms. An autoimmune form associated with maternal Graves’ disease, resulting from transplacental passage of maternal thyroid-stimulating antibodies, and a nonautoimmune form, resulting from mutations in the stimulatory G protein or the thyrotropin receptor (TSHR) causing constitutive activation of intracellular signaling cascades. To date, 29 separate cases of thyrotoxicosis caused by germline mutations of the TSHR have been documented. These cases have expressed themselves in a range of clinical consequences. This report describes a new case of a newborn with nonautoimmune hyperthyroidism secondary to a constitutively active TSHR mutation (S281N) whose clinical course was complicated by severe respiratory compromise. Typical clinical findings in this disorder are discussed by a review of all previously published cases. PMID:18655531
Hsiao, Edward C.; Millard, Susan M.; Louie, Alyssa; Huang, Yong; Conklin, Bruce R.; Nissenson, Robert A.
2010-01-01
Age-dependent changes in skeletal growth play important roles in regulating skeletal expansion and in the course of many diseases affecting bone. How G protein-coupled receptor (GPCR) signaling affects these changes is poorly understood. Previously, we described a mouse model expressing Rs1, an engineered receptor with constitutive Gs activity. Rs1 expression in osteoblasts from gestation induced a dramatic age-dependent increase in trabecular bone with features resembling fibrous dysplasia; however, these changes were greatly minimized if Rs1 expression was delayed until after puberty. To further investigate whether ligand-induced activation of the Gs-GPCR pathway affects bone formation in adult mice, we activated Rs1 in adult mice with the synthetic ligand RS67333 delivered continuously via an osmotic pump or intermittently by daily injections. We found that osteoblasts from adult animals can be stimulated to form large amounts of bone, indicating that adult mice are sensitive to the dramatic bone- forming actions of Gs signaling in osteoblasts. In addition, our results show that intermittent and continuous activation of Rs1 led to structurally similar but quantitatively different degrees of trabecular bone formation. These results indicate that activation of a Gs-coupled receptor in osteoblasts of adult animals by either intermittent or continuous ligand administration can increase trabecular bone formation. In addition, osteoblasts located at the bone epiphyses may be more responsive to Gs signaling than osteoblasts at the bone diaphysis. This model provides a powerful tool for investigating the effects of ligand-activated Gs-GPCR signaling on dynamic bone growth and remodeling. PMID:20150184
The Secret Lives of Neurotrophin Receptors | Center for Cancer Research
Neurotrophins are a family of growth factors that are critical to the proper development and functioning of the nervous system. Neurotrophins activate a family of tyrosine receptor kinases (Trk), which typically initiate signaling cascades through phosphorylation. This axis is important for central nervous system (CNS) drug development efforts, ranging from pain management to neurodegeneration. However, neurotrophin-activated pathways are important for a variety of cancers and their metastatic properties. Indeed, TrkA, the prototype of the neurotrophin receptor family, was first identified at NCI as part of a fusion oncogene. Moreover, Trks are widely expressed in many different organs where their misactivation has been associated with tumor formation. Trks are also present as truncated receptor isoforms, lacking kinase activity, and these forms are particularly prominent in adult tissues. Little is known about the role of neurotrophins and Trk receptors outside the nervous system. Lino Tessarollo, Ph.D., Director of CCR’s Mouse Cancer Genetics Program, uses his expertise in developing genetically modified mouse models to dissect the functions of these receptors, with the goal of developing insights that will guide the successful targeting of therapeutic interventions.
Disulfide high mobility group box-1 causes bladder pain through bladder Toll-like receptor 4.
Ma, Fei; Kouzoukas, Dimitrios E; Meyer-Siegler, Katherine L; Westlund, Karin N; Hunt, David E; Vera, Pedro L
2017-05-25
Bladder pain is a prominent symptom in several urological conditions (e.g. infection, painful bladder syndrome/interstitial cystitis, cancer). Understanding the mechanism of bladder pain is important, particularly when the pain is not accompanied by bladder pathology. Stimulation of protease activated receptor 4 (PAR4) in the urothelium results in bladder pain through release of urothelial high mobility group box-1 (HMGB1). HGMB1 has two functionally active redox states (disulfide and all-thiol) and it is not known which form elicits bladder pain. Therefore, we investigated whether intravesical administration of specific HMGB1 redox forms caused abdominal mechanical hypersensitivity, micturition changes, and bladder inflammation in female C57BL/6 mice 24 hours post-administration. Moreover, we determined which of the specific HMGB1 receptors, Toll-like receptor 4 (TLR4) or receptor for advanced glycation end products (RAGE), mediate HMGB1-induced changes. Disulfide HMGB1 elicited abdominal mechanical hypersensitivity 24 hours after intravesical (5, 10, 20 μg/150 μl) instillation. In contrast, all-thiol HMGB1 did not produce abdominal mechanical hypersensitivity in any of the doses tested (1, 2, 5, 10, 20 μg/150 μl). Both HMGB1 redox forms caused micturition changes only at the highest dose tested (20 μg/150 μl) while eliciting mild bladder edema and reactive changes at all doses. We subsequently tested whether the effects of intravesical disulfide HMGB1 (10 μg/150 μl; a dose that did not produce inflammation) were prevented by systemic (i.p.) or local (intravesical) administration of either a TLR4 antagonist (TAK-242) or a RAGE antagonist (FPS-ZM1). Systemic administration of either TAK-242 (3 mg/kg) or FPS-ZM1 (10 mg/kg) prevented HMGB1 induced abdominal mechanical hypersensitivity while only intravesical TLR4 antagonist pretreatment (1.5 mg/ml; not RAGE) had this effect. The disulfide form of HMGB1 mediates bladder pain directly (not secondary to inflammation or injury) through activation of TLR4 receptors in the bladder. Thus, TLR4 receptors are a specific local target for bladder pain.
A Plasma Protein Indistinguishable from Ribosomal Protein S19
Semba, Umeko; Chen, Jun; Ota, Yoshihiko; Jia, Nan; Arima, Hidetoshi; Nishiura, Hiroshi; Yamamoto, Tetsuro
2010-01-01
A monocyte-chemoattracting factor is generated during blood coagulation and during clotting of platelet-rich plasma. This chemotactic factor attracts monocytes as a ligand of the C5a receptor; however, it inhibits C5a-induced neutrophil chemotaxis as an apparent receptor antagonist. The curious dual function of the serum monocyte chemotactic factor resembles that of the cross-linked homodimer of ribosomal protein S19 (RP S19). Indeed, the inactive precursor of the monocyte chemotactic factor was present in plasma, and the precursor molecule and RP S19, as well as the active form and the RP S19 dimer, were indistinguishable in terms of immunological reactivity and molecular size. Coagulation factor XIIIa, plasma transglutaminase, and membrane phosphatidylserine on the activated platelets were required for conversion of the precursor to the active form. In addition, the precursor molecule in plasma could be replaced by wild-type recombinant RP S19 but not by mutant forms of it. These results indicate that a molecule indistinguishable from RP S19 was present in plasma, and that the RP S19-like molecule was converted to the active form by a transglutaminase-catalyzed reaction on a scaffold that included the phosphatidylserine-exposed platelet membrane. PMID:20093496
Stockton, Steven D.; Miller, Lydia K.; Devi, Lakshmi A.
2012-01-01
The diversity of receptor signaling is increased by receptor heteromerization leading to dynamic regulation of receptor function. While a number of studies have demonstrated that family A G-protein-coupled receptors are capable of forming heteromers in vitro, the role of these heteromers in normal physiology and disease has been poorly explored. In this study, direct interactions between CB1 cannabinoid and delta opioid receptors in the brain were examined. Additionally, regulation of heteromer levels and signaling in a rodent model of neuropathic pain was explored. First we examined changes in the expression, function and interaction of these receptors in the cerebral cortex of rats with a peripheral nerve lesion that resulted in neuropathic pain. We found that, following the peripheral nerve lesion, the expression of both cannabinoid type 1 receptor (CB1R) and the delta opioid receptor (DOR) are increased in select brain regions. Concomitantly, an increase in CB1R activity and decrease in DOR activity was observed. We hypothesize that this decrease in DOR activity could be due to heteromeric interactions between these two receptors. Using a CB1R-DOR heteromer-specific antibody, we found increased levels of CB1R-DOR heteromer protein in the cortex of neuropathic animals. We subsequently examined the functionality of these heteromers by testing whether low, non-signaling doses of CB1R ligands influenced DOR signaling in the cortex. We found that, in cortical membranes from animals that experienced neuropathic pain, non-signaling doses of CB1R ligands significantly enhanced DOR activity. Moreover, this activity is selectively blocked by a heteromer-specific antibody. Together, these results demonstrate an important role for CB1R-DOR heteromers in altered cortical function of DOR during neuropathic pain. Moreover, they suggest the possibility that a novel heteromer-directed therapeutic strategy for enhancing DOR activity, could potentially be employed to reduce anxiety associated with chronic pain. PMID:23272051
Tethered agonists: a new mechanism underlying adhesion G protein-coupled receptor activation.
Schöneberg, Torsten; Liebscher, Ines; Luo, Rong; Monk, Kelly R; Piao, Xianhua
2015-06-01
The family of adhesion G protein-coupled receptors (aGPCRs) comprises 33 members in the human genome, which are subdivided into nine subclasses. Many aGPCRs undergo an autoproteolytic process via their GPCR Autoproteolysis-INducing (GAIN) domain during protein maturation to generate an N- and a C-terminal fragments, NTF and CTF, respectively. The NTF and CTF are non-covalently reassociated on the plasma membrane to form a single receptor unit. How aGPCRs are activated upon ligand binding remains one of the leading questions in the field of aGPCR research. Recent work from our labs and others shows that ligand binding can remove the NTF from the plasma membrane-bound CTF, exposing a tethered agonist which potently activates downstream signaling.
The roles played by highly truncated splice variants of G protein-coupled receptors
2012-01-01
Alternative splicing of G protein-coupled receptor (GPCR) genes greatly increases the total number of receptor isoforms which may be expressed in a cell-dependent and time-dependent manner. This increased diversity of cell signaling options caused by the generation of splice variants is further enhanced by receptor dimerization. When alternative splicing generates highly truncated GPCRs with less than seven transmembrane (TM) domains, the predominant effect in vitro is that of a dominant-negative mutation associated with the retention of the wild-type receptor in the endoplasmic reticulum (ER). For constitutively active (agonist-independent) GPCRs, their attenuated expression on the cell surface, and consequent decreased basal activity due to the dominant-negative effect of truncated splice variants, has pathological consequences. Truncated splice variants may conversely offer protection from disease when expression of co-receptors for binding of infectious agents to cells is attenuated due to ER retention of the wild-type co-receptor. In this review, we will see that GPCRs retained in the ER can still be functionally active but also that highly truncated GPCRs may also be functionally active. Although rare, some truncated splice variants still bind ligand and activate cell signaling responses. More importantly, by forming heterodimers with full-length GPCRs, some truncated splice variants also provide opportunities to generate receptor complexes with unique pharmacological properties. So, instead of assuming that highly truncated GPCRs are associated with faulty transcription processes, it is time to reassess their potential benefit to the host organism. PMID:22938630
Coleman, Hope A.; Labrador, Juan-Pablo; Chance, Rebecca K.; Bashaw, Greg J.
2010-01-01
Slits and their Roundabout (Robo) receptors mediate repulsive axon guidance at the Drosophila ventral midline and in the vertebrate spinal cord. Slit is cleaved to produce fragments with distinct signaling properties. In a screen for genes involved in Slit-Robo repulsion, we have identified the Adam family metalloprotease Kuzbanian (Kuz). Kuz does not regulate midline repulsion through cleavage of Slit, nor is Slit cleavage essential for repulsion. Instead, Kuz acts in neurons to regulate repulsion and Kuz can cleave the Robo extracellular domain in Drosophila cells. Genetic rescue experiments using an uncleavable form of Robo show that this receptor does not maintain normal repellent activity. Finally, Kuz activity is required for Robo to recruit its downstream signaling partner, Son of sevenless (Sos). These observations support the model that Kuz-directed cleavage is important for Robo receptor activation. PMID:20570941
Receptor units responding to movement in the octopus mantle.
Boyle, P R
1976-08-01
1. A preparation of the mantle of Octopus which is inverted over a solid support and which exposes the stellate ganglion and associated nerves is described. 2. Afferent activity can be recorded from stellar nerves following electrical stimulation of the pallial nerve. The latency and frequency of the phasic sensory response is correlated with the contraction of the mantle musculature. 3. It is proposed that receptors cells located in the muscle, and their activity following mantle contraction, form part of a sensory feedback system in the mantle. Large, multipolar nerve cells that were found between the two main layers of circular muscle in the mantle could be such receptors.
Pathophysiological consequences of receptor mistraffic: Tales from the platelet P2Y12 receptor.
Cunningham, Margaret R; Aungraheeta, Riyaad; Mundell, Stuart J
2017-07-05
Genetic variations in G protein-coupled receptor (GPCR) genes can disrupt receptor function in a wide variety of human genetic diseases, including platelet bleeding disorders. Platelets are critical for haemostasis with inappropriate platelet activation leading to the development of arterial thrombosis, which can result in heart attack and stroke whilst decreased platelet activity is associated with an increased risk of bleeding. GPCRs expressed on the surface of platelets play key roles in regulating platelet activity and therefore function. Receptors include purinergic receptors (P2Y 1 and P2Y 12 ), proteinase-activated receptor (PAR1 and PAR4) and thromboxane receptors (TPα), among others. Pharmacological blockade of these receptors forms a powerful therapeutic tool in the treatment and prevention of arterial thrombosis. With the advance of genomic technologies, there has been a substantial increase in the identification of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms (SNPs) and insertion or deletions that have the potential to alter GPCR expression or function. A number of defects in platelet GPCRs that disrupt receptor function have now been characterized in patients with mild bleeding disorders. This review will focus on rare, function-disrupting variants of platelet GPCRs with particular emphasis upon mutations in the P2Y 12 receptor gene that affect receptor traffic to modulate platelet function. Further this review will outline how the identification and characterization of function-disrupting GPCR mutations provides an essential link in translating our detailed understanding of receptor traffic and function in cell line studies into relevant human biological systems. Copyright © 2017. Published by Elsevier B.V.
Reedijk, M; Liu, X Q; Pawson, T
1990-01-01
The interactions of the macrophage colony-stimulating factor 1 (CSF-1) receptor with potential targets were investigated after ligand stimulation either of mouse macrophages or of fibroblasts that ectopically express mouse CSF-1 receptors. In Rat-2 cells expressing the mouse CSF-1 receptor, full activation of the receptor and cellular transformation require exogenous CSF-1, whereas NIH 3T3 cells expressing mouse c-fms are transformed by autocrine stimulation. Activated CSF-1 receptors physically associate with a phosphatidylinositol (PI) 3'-kinase. A mutant CSF-1 receptor with a deletion of the kinase insert region was deficient in its ability to bind functional PI 3'-kinase and to induce PI 3'-kinase activity precipitable with antiphosphotyrosine antibodies. In fibroblasts, CSF-1 stimulation also induced the phosphorylation of the GTPase-activating protein (GAP)-associated protein p62 on tyrosine, although GAP itself was a relatively poor substrate. In contrast to PI 3'-kinase association, phosphorylation of p62 and GAP was not markedly affected by deletion of the kinase insert region. These results indicate that the kinase insert region selectively enhances the CSF-1-dependent association of the CSF-1 receptor with active PI 3'-kinase. The insert deletion mutant retains considerable transforming activity in NIH 3T3 cells (G. Taylor, M. Reedijk, V. Rothwell, L. Rohrschneider, and T. Pawson, EMBO J. 8:2029-2037, 1989). This mutant was more seriously impaired in Rat-2 cell transformation, although mutant-expressing Rat-2 cells still formed small colonies in soft agar in the presence of CSF-1. Therefore, phosphorylation of GAP and p62 through activation of the CSF-1 receptor does not result in full fibroblast transformation. The interaction between the CSF-1 receptor and PI 3'-kinase may contribute to c-fms fibroblast transformation and play a role in CSF-1-stimulated macrophages. Images PMID:2172781
Action of Molecular Switches in GPCRs - Theoretical and Experimental Studies
Trzaskowski, B; Latek, D; Yuan, S; Ghoshdastider, U; Debinski, A; Filipek, S
2012-01-01
G protein coupled receptors (GPCRs), also called 7TM receptors, form a huge superfamily of membrane proteins that, upon activation by extracellular agonists, pass the signal to the cell interior. Ligands can bind either to extracellular N-terminus and loops (e.g. glutamate receptors) or to the binding site within transmembrane helices (Rhodopsin-like family). They are all activated by agonists although a spontaneous auto-activation of an empty receptor can also be observed. Biochemical and crystallographic methods together with molecular dynamics simulations and other theoretical techniques provided models of the receptor activation based on the action of so-called “molecular switches” buried in the receptor structure. They are changed by agonists but also by inverse agonists evoking an ensemble of activation states leading toward different activation pathways. Switches discovered so far include the ionic lock switch, the 3-7 lock switch, the tyrosine toggle switch linked with the nPxxy motif in TM7, and the transmission switch. The latter one was proposed instead of the tryptophan rotamer toggle switch because no change of the rotamer was observed in structures of activated receptors. The global toggle switch suggested earlier consisting of a vertical rigid motion of TM6, seems also to be implausible based on the recent crystal structures of GPCRs with agonists. Theoretical and experimental methods (crystallography, NMR, specific spectroscopic methods like FRET/BRET but also single-molecule-force-spectroscopy) are currently used to study the effect of ligands on the receptor structure, location of stable structural segments/domains of GPCRs, and to answer the still open question on how ligands are binding: either via ensemble of conformational receptor states or rather via induced fit mechanisms. On the other hand the structural investigations of homo- and heterodimers and higher oligomers revealed the mechanism of allosteric signal transmission and receptor activation that could lead to design highly effective and selective allosteric or ago-allosteric drugs. PMID:22300046
Action of molecular switches in GPCRs--theoretical and experimental studies.
Trzaskowski, B; Latek, D; Yuan, S; Ghoshdastider, U; Debinski, A; Filipek, S
2012-01-01
G protein coupled receptors (GPCRs), also called 7TM receptors, form a huge superfamily of membrane proteins that, upon activation by extracellular agonists, pass the signal to the cell interior. Ligands can bind either to extracellular N-terminus and loops (e.g. glutamate receptors) or to the binding site within transmembrane helices (Rhodopsin-like family). They are all activated by agonists although a spontaneous auto-activation of an empty receptor can also be observed. Biochemical and crystallographic methods together with molecular dynamics simulations and other theoretical techniques provided models of the receptor activation based on the action of so-called "molecular switches" buried in the receptor structure. They are changed by agonists but also by inverse agonists evoking an ensemble of activation states leading toward different activation pathways. Switches discovered so far include the ionic lock switch, the 3-7 lock switch, the tyrosine toggle switch linked with the nPxxy motif in TM7, and the transmission switch. The latter one was proposed instead of the tryptophan rotamer toggle switch because no change of the rotamer was observed in structures of activated receptors. The global toggle switch suggested earlier consisting of a vertical rigid motion of TM6, seems also to be implausible based on the recent crystal structures of GPCRs with agonists. Theoretical and experimental methods (crystallography, NMR, specific spectroscopic methods like FRET/BRET but also single-molecule-force-spectroscopy) are currently used to study the effect of ligands on the receptor structure, location of stable structural segments/domains of GPCRs, and to answer the still open question on how ligands are binding: either via ensemble of conformational receptor states or rather via induced fit mechanisms. On the other hand the structural investigations of homoand heterodimers and higher oligomers revealed the mechanism of allosteric signal transmission and receptor activation that could lead to design highly effective and selective allosteric or ago-allosteric drugs.
Duquesnoy, P; Sobrier, M L; Amselem, S; Goossens, M
1991-01-01
Mutations in the growth hormone receptor (GHR) gene can cause growth hormone (GH) resistance. Given the sequence homology between the extracellular domain of the GHR and a soluble GH-binding protein (GH-BP), it is remarkable that GH-BP binding activity is absent from the serum of patients with Laron-type GH insensitivity, a hereditary form of severe dwarfism. We have previously identified a mutation within the extracellular domain of this receptor, replacing phenylalanine by serine at position 96 of the mature protein, in a patient with Laron syndrome. We have now investigated the effect of this Phe----Ser substitution on hormone binding activity by expressing the total human GHR cDNA and mutant form in eukaryotic cells. The wild-type protein expressed was able to bind GH but no plasma membrane binding was detectable on cells transfected with the mutant cDNA; this was also the case of cells transfected with a Phe96----Ala mutant cDNA, suggesting that the lack of binding activity is not due to a posttranslational modification of serine. Examination of the variant proteins in subcellular fractions revealed the presence of specific GH binding activity in the lysosomal fraction, whereas immunofluorescence studies located mutant proteins in the cytosol. Our findings suggest that these mutant GHRs fail to follow the correct intracellular transport pathway and underline the potential importance of this phenylalanine residue, which is conserved among the GH, prolactin, and erythropoietin receptors that belong to the same cytokine receptor superfamily. Images PMID:1719554
Structural basis for corepressor assembly by the orphan nuclear receptor TLX.
Zhi, Xiaoyong; Zhou, X Edward; He, Yuanzheng; Searose-Xu, Kelvin; Zhang, Chun-Li; Tsai, Chih-Cheng; Melcher, Karsten; Xu, H Eric
2015-02-15
The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conserved ALXXLXXY motif of the Atro box. Mutations that weaken the TLX-Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression. © 2015 Zhi et al.; Published by Cold Spring Harbor Laboratory Press.
Purinergic P2X receptors: structural models and analysis of ligand-target interaction.
Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Marucci, Gabriella; Thomas, Ajiroghene; Volpini, Rosaria
2015-01-07
The purinergic P2X receptors are ligand-gated cation channels activated by the endogenous ligand ATP. They assemble as homo- or heterotrimers from seven cloned subtypes (P2X1-7) and all trimer subunits present a common topology consisting in intracellular N- and C- termini, two transmembrane domains and a large extracellular domain. These membrane proteins are present in virtually all mammalian tissues and regulate a large variety of responses in physio- and pathological conditions. The development of ligands that selectively activate or block specific P2X receptor subtypes hence represents a promising strategy to obtain novel pharmacological tools for the treatment of pain, cancer, inflammation, and neurological, cardiovascular, and endocrine diseases. The publication of the crystal structures of zebrafish P2X4 receptor in inactive and ATP-bound active forms provided structural data for the analysis of the receptor structure, the interpretation of mutagenesis data, and the depiction of ligand binding and receptor activation mechanism. In addition, the availability of ATP-competitive ligands presenting selectivity for P2X receptor subtypes supports the design of new potent and selective ligands with possibly improved pharmacokinetic profiles, with the final aim to obtain new drugs. This study describes molecular modelling studies performed to develop structural models of the human and rat P2X receptors in inactive and active states. These models allowed to analyse the role of some non-conserved residues at ATP binding site and to study the receptor interaction with some non-specific or subtype selective agonists and antagonists. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
ERIC Educational Resources Information Center
Moody, Teena D.; Watabe, Ayako M.; Indersmitten, Tim; Komiyama, Noboru H.; Grant, Seth G. N.; O'Dell, Thomas J.
2011-01-01
Through protein interactions mediated by their cytoplasmic C termini the GluN2A and GluN2B subunits of NMDA receptors (NMDARs) have a key role in the formation of NMDAR signaling complexes at excitatory synapses. Although these signaling complexes are thought to have a crucial role in NMDAR-dependent forms of synaptic plasticity such as long-term…
Nishigaki, Kazuo; Hanson, Charlotte; Jelacic, Tanya; Thompson, Delores; Ruscetti, Sandra
2005-01-01
Friend spleen focus-forming virus (SFFV) causes rapid erythroleukemia in mice due to expression of its unique envelope glycoprotein, gp55. Erythroid cells expressing SFFV gp55 proliferate in the absence of their normal regulator erythropoietin (Epo) because of constitutive activation of Epo signal transduction pathways. Although SFFV infects many cell types, deregulation of cell growth occurs only when SFFV infects erythroid cells, suggesting that these cells express unique proteins that the virus requires to mediate its biological effects. Not only do erythroid cells express the Epo receptor (EpoR), but those from mice susceptible to SFFV-induced erythroleukemia also express a short form of the receptor tyrosine kinase Stk (sf-Stk). In erythroid cells, SFFV gp55 interacts with the EpoR complex and sf-Stk, leading to activation of the kinase and constitutive activation of signal transducing molecules. In this study, we demonstrate that SFFV gp55 can also deregulate the growth of nonerythroid cells when it is coexpressed with sf-Stk. Expression of SFFV gp55 in rodent fibroblasts engineered to express sf-Stk induced their transformation, as demonstrated by focus formation and anchorage-independent growth in vitro. This transformation by SFFV gp55 requires the kinase activity of sf-Stk and the presence of its extracellular domain but not expression of the EpoR or the tyrosine kinase Jak2, which is required for activation of signal transduction pathways through the EpoR. Thus, expression of SFFV gp55 in nonerythroid cells coexpressing sf-Stk results in their uncontrolled growth, demonstrating a previously unrecognized mechanism for retrovirus transformation of rodent fibroblasts and providing insight into SFFV-induced disease. PMID:16223879
Howlett, A. C.; Abood, M. E.; Alexander, S. P. H.; Di Marzo, V.; Elphick, M. R.; Greasley, P. J.; Hansen, H. S.; Kunos, G.; Mackie, K.; Mechoulam, R.; Ross, R. A.
2010-01-01
There are at least two types of cannabinoid receptors (CB1 and CB2). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ9-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB1, non-CB2 established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB1 and/or CB2 receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel “CB3” cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB1, non-CB2 pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB3 receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB1 receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB1/CB2 receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB1, non-CB2 cannabinoid receptors; and 4) current cannabinoid receptor nomenclature. PMID:21079038
Pertwee, R G; Howlett, A C; Abood, M E; Alexander, S P H; Di Marzo, V; Elphick, M R; Greasley, P J; Hansen, H S; Kunos, G; Mackie, K; Mechoulam, R; Ross, R A
2010-12-01
There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB(1), non-CB(2) established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB(1) and/or CB(2) receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel "CB(3)" cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB(1), non-CB(2) pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB(3) receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB(1) receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB(1)/CB(2) receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB(1), non-CB(2) cannabinoid receptors; and 4) current cannabinoid receptor nomenclature.
Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor.
Troppmann, B; Balfanz, S; Baumann, A; Blenau, W
2010-04-01
5-Hydroxytryptamine (5-HT) has been shown to control and modulate many physiological and behavioural functions in insects. In this study, we report the cloning and pharmacological properties of a 5-HT(1) receptor of an insect model for neurobiology, physiology and pharmacology. A cDNA encoding for the Periplaneta americana 5-HT(1) receptor was amplified from brain cDNA. The receptor was stably expressed in HEK 293 cells, and the functional and pharmacological properties were determined in cAMP assays. Receptor distribution was investigated by RT-PCR and by immunocytochemistry using an affinity-purified polyclonal antiserum. The P. americana 5-HT(1) receptor (Pea5-HT(1)) shares pronounced sequence and functional similarity with mammalian 5-HT(1) receptors. Activation with 5-HT reduced adenylyl cyclase activity in a dose-dependent manner. Pea5-HT(1) was expressed as a constitutively active receptor with methiothepin acting as a neutral antagonist, and WAY 100635 as an inverse agonist. Receptor mRNA was present in various tissues including brain, salivary glands and midgut. Receptor-specific antibodies showed that the native protein was expressed in a glycosylated form in membrane samples of brain and salivary glands. This study marks the first pharmacological identification of an inverse agonist and a neutral antagonist at an insect 5-HT(1) receptor. The results presented here should facilitate further analyses of 5-HT(1) receptors in mediating central and peripheral effects of 5-HT in insects.
Shen, S H; Bastien, L; Posner, B I; Chrétien, P
1991-08-22
The phosphorylation of proteins at tyrosine residues is critical in cellular signal transduction, neoplastic transformation and control of the mitotic cycle. These mechanisms are regulated by the activities of both protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPases). As in the PTKs, there are two classes of PTPases: membrane associated, receptor-like enzymes and soluble proteins. Here we report the isolation of a complementary DNA clone encoding a new form of soluble PTPase, PTP1C. The enzyme possesses a large noncatalytic region at the N terminus which unexpectedly contains two adjacent copies of the Src homology region 2 (the SH2 domain) found in various nonreceptor PTKs and other cytoplasmic signalling proteins. As with other SH2 sequences, the SH2 domains of PTP1C formed high-affinity complexes with the activated epidermal growth factor receptor and other phosphotyrosine-containing proteins. These results suggest that the SH2 regions in PTP1C may interact with other cellular components to modulate its own phosphatase activity against interacting substrates. PTPase activity may thus directly link growth factor receptors and other signalling proteins through protein-tyrosine phosphorylation.
Estrogen-related receptor α decreases RHOA stability to induce orientated cell migration
Sailland, Juliette; Tribollet, Violaine; Forcet, Christelle; Billon, Cyrielle; Barenton, Bruno; Carnesecchi, Julie; Bachmann, Alice; Gauthier, Karine Cécile; Yu, Shan; Giguère, Vincent; Chan, Franky L.; Vanacker, Jean-Marc
2014-01-01
Several physiopathological processes require orientated cellular migration. This phenomenon highly depends on members of the RHO family of GTPases. Both excessive and deficient RHO activity impair directional migration. A tight control is thus exerted on these proteins through the regulation of their activation and of their stability. Here we show that the estrogen-related receptor α (ERRα) directly activates the expression of TNFAIP1, the product of which [BTB/POZ domain-containing adapter for Cullin3-mediated RhoA degradation 2 (BACURD2)] regulates RHOA protein turnover. Inactivation of the receptor leads to enhanced RHOA stability and activation. This results in cell disorientation, increased actin network, and inability to form a lamellipodium at the migration edge. As a consequence, directional migration, but not cell motility per se, is impaired in the absence of the receptor, under pathological as well as physiological conditions. Altogether, our results show that the control exerted by ERRα on RHOA stability is required for directional migration. PMID:25288732
Estrogen-related receptor α decreases RHOA stability to induce orientated cell migration.
Sailland, Juliette; Tribollet, Violaine; Forcet, Christelle; Billon, Cyrielle; Barenton, Bruno; Carnesecchi, Julie; Bachmann, Alice; Gauthier, Karine Cécile; Yu, Shan; Giguère, Vincent; Chan, Franky L; Vanacker, Jean-Marc
2014-10-21
Several physiopathological processes require orientated cellular migration. This phenomenon highly depends on members of the RHO family of GTPases. Both excessive and deficient RHO activity impair directional migration. A tight control is thus exerted on these proteins through the regulation of their activation and of their stability. Here we show that the estrogen-related receptor α (ERRα) directly activates the expression of TNFAIP1, the product of which [BTB/POZ domain-containing adapter for Cullin3-mediated RhoA degradation 2 (BACURD2)] regulates RHOA protein turnover. Inactivation of the receptor leads to enhanced RHOA stability and activation. This results in cell disorientation, increased actin network, and inability to form a lamellipodium at the migration edge. As a consequence, directional migration, but not cell motility per se, is impaired in the absence of the receptor, under pathological as well as physiological conditions. Altogether, our results show that the control exerted by ERRα on RHOA stability is required for directional migration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Arunima; Pasquel, Danielle; Tyagi, Rakesh Kumar
2011-03-18
Research highlights: {yields} Pregnane X receptor (PXR), a major regulatory protein, is modified by acetylation. {yields} PXR undergoes dynamic deacetylation upon ligand-mediated activation. {yields} SIRT1 partially mediates PXR deacetylation. {yields} PXR deacetylation per se induces lipogenesis mimicking ligand-mediated activation. -- Abstract: Pregnane X receptor (PXR), like other members of its class of nuclear receptors, undergoes post-translational modification [PTM] (e.g., phosphorylation). However, it is unknown if acetylation (a major and common form of protein PTM) is observed on PXR and, if it is, whether it is of functional consequence. PXR has recently emerged as an important regulatory protein with multiple ligand-dependentmore » functions. In the present work we show that PXR is indeed acetylated in vivo. SIRT1 (Sirtuin 1), a NAD-dependent class III histone deacetylase and a member of the sirtuin family of proteins, partially mediates deacetylation of PXR. Most importantly, the acetylation status of PXR regulates its selective function independent of ligand activation.« less
Novel Functional Properties of Drosophila CNS Glutamate Receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan; Dharkar, Poorva; Han, Tae-Hee
Phylogenetic analysis reveals AMPA, kainate, and NMDA receptor families in insect genomes, suggesting conserved functional properties corresponding to their vertebrate counterparts. However, heterologous expression of the Drosophila kainate receptor DKaiR1D and the AMPA receptor DGluR1A revealed novel ligand selectivity at odds with the classification used for vertebrate glutamate receptor ion channels (iGluRs). DKaiR1D forms a rapidly activating and desensitizing receptor that is inhibited by both NMDA and the NMDA receptor antagonist AP5; crystallization of the KaiR1D ligand-binding domain reveals that these ligands stabilize open cleft conformations, explaining their action as antagonists. Surprisingly, the AMPA receptor DGluR1A shows weak activation bymore » its namesake agonist AMPA and also by quisqualate. Crystallization of the DGluR1A ligand-binding domain reveals amino acid exchanges that interfere with binding of these ligands. The unexpected ligand-binding profiles of insect iGluRs allows classical tools to be used in novel approaches for the study of synaptic regulation.« less
Novel Functional Properties of Drosophila CNS Glutamate Receptors.
Li, Yan; Dharkar, Poorva; Han, Tae-Hee; Serpe, Mihaela; Lee, Chi-Hon; Mayer, Mark L
2016-12-07
Phylogenetic analysis reveals AMPA, kainate, and NMDA receptor families in insect genomes, suggesting conserved functional properties corresponding to their vertebrate counterparts. However, heterologous expression of the Drosophila kainate receptor DKaiR1D and the AMPA receptor DGluR1A revealed novel ligand selectivity at odds with the classification used for vertebrate glutamate receptor ion channels (iGluRs). DKaiR1D forms a rapidly activating and desensitizing receptor that is inhibited by both NMDA and the NMDA receptor antagonist AP5; crystallization of the KaiR1D ligand-binding domain reveals that these ligands stabilize open cleft conformations, explaining their action as antagonists. Surprisingly, the AMPA receptor DGluR1A shows weak activation by its namesake agonist AMPA and also by quisqualate. Crystallization of the DGluR1A ligand-binding domain reveals amino acid exchanges that interfere with binding of these ligands. The unexpected ligand-binding profiles of insect iGluRs allows classical tools to be used in novel approaches for the study of synaptic regulation. VIDEO ABSTRACT. Published by Elsevier Inc.
Microsomal receptor for steroid hormones: functional implications for nuclear activity.
Muldoon, T G; Watson, G H; Evans, A C; Steinsapir, J
1988-01-01
Target tissues for steroid hormones are responsive by virtue of and to the extent of their content of functional intracellular receptors. Recent years have seen a shift in considerations of the cellular dynamics and distribution of these receptors, with current views favoring predominant intranuclear localization in the intact cell. This paper summarizes our analyses of the microsomal estrogen and androgen binding capability of rat uterine and ventral prostate tissue, respectively; these studies have revealed a set of high affinity sites that may act as a conduit for estrogen traversing the cell en route to the nucleus. These sites have many properties in common with cytosolic receptors, with the salient difference of a failure to activate to a more avid DNA-binding form under conditions which permit such activation of cytosolic receptors. The microsomal estrogen-binding proteins also have appreciable affinity for progesterone, another distinction from other known cellular estrogen receptor species. Various experimental approaches were employed to demonstrate that the microsomal receptors were not simply cytosol contaminants; the most convincing evidence is the recent successful separation of the cytosolic and microsomal forms by differential ammonium sulfate precipitation. Discrete subfractionation of subcellular components on successive sucrose gradients, with simultaneous assessments of binding capability and marker enzyme concentrations, indicates that the major portion of the binding is localized within the vesicles of the endoplasmic reticulum free of significant plasma membrane contamination. The microsomal receptors are readily solubilized by extraction with high- or low-salt-containing buffers or with steroid. The residual microsomes following such extraction have the characteristics of saturable acceptor sites for cytosolic estrogen-receptor complexes. The extent to which these sites will accept the cytosolic complexes is equal to the concentration of microsomal binding sites extracted. These observations suggest three possible roles for the microsomal receptor-like proteins: (a) modulation of estrogen access to nuclear binding sites; (b) formation of functional complexes which diffuse to other extranuclear sites to alter non-genomic cellular processes; (c) regulation of nuclear concentration of estrogen-receptor complexes by virtue of producing microsomal acceptor sites for uptake of free or loosely associated nuclear complexes, previously thought to exist in the cytoplasm.
GABA(C) receptors: a molecular view.
Enz, R
2001-08-01
In the central nervous system inhibitory neurotransmission is primarily achieved through activation of receptors for gamma-aminobutyric acid (GABA). Three types of GABA receptors have been identified on the basis of their pharmacological and electrophysiological properties. The predominant type, termed GABA(A), and a recently identified GABA(C) type, form ligand-gated chloride channels, whereas GABA(B) receptors activate separate cation channels via G proteins. Based on their homology to nicotinic acetylcholine receptors, GABA(C) receptors are believed to be oligomeric protein complexes composed of five subunits in a pentameric arrangement. To date up to five different GABA(C) receptors subunits have been identified in various species. Recent studies have shed new light on the biological characteristics of GABA(C) receptors, including the chromosomal localization of its subunit genes and resulting links to deseases, the cloning of new splice variants, the identification of GABA(C) receptor-associated proteins, the identification of domains involved in subunit assembly, and finally structure/function studies examining functional consequences of introduced mutations. This review summarizes recent data in view of the molecular structure of GABA(C) receptors and presents new insights into the biological function of this protein in the retina.
Vishnivetskiy, Sergey A; Gimenez, Luis E; Francis, Derek J; Hanson, Susan M; Hubbell, Wayne L; Klug, Candice S; Gurevich, Vsevolod V
2011-07-08
Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements.
Vishnivetskiy, Sergey A.; Gimenez, Luis E.; Francis, Derek J.; Hanson, Susan M.; Hubbell, Wayne L.; Klug, Candice S.; Gurevich, Vsevolod V.
2011-01-01
Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements. PMID:21471193
Kim, Dong-Gyu; Yoo, Jae Cheal; Kim, Eunju; Lee, Young-Sun; Yarishkin, Oleg V; Lee, Da Yong; Lee, Kun Ho; Hong, Seong-Geun; Hwang, Eun Mi; Park, Jae-Yong
2014-06-01
Mitochondrial trans-2-enoyl-CoA reductase (MECR) is involved in mitochondrial synthesis of fatty acids and is highly expressed in mitochondria. MECR is also known as nuclear receptor binding factor-1, which was originally reported with yeast two-hybrid screening as a binding protein of the nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα). However, MECR and PPARα are localized at different compartment, mitochondria, and the nucleus, respectively. Therefore, the presence of a cytosolic or nuclear isoform of MECR is necessary for functional interaction between MECR and PPARα. To identify the expression pattern of MECR and the cytosolic form of MECR (cMECR), we performed reverse transcription polymerase chain reaction (RT-PCR) with various tissue samples from Sprague-Dawley rats. To confirm the interaction between cMECR and PPARα, we performed several binding assays such as yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation. To observe subcellular localization of these proteins, immunocytochemistry was performed. A luciferase assay was used to measure PPARα activity. We provide evidence of an alternatively spliced variant of the rat MECR gene that yields cMECR. The cMECR lacks the N-terminal 76 amino acids of MECR and shows uniform distribution in the cytoplasm and nucleus of HeLa cells. cMECR directly bound PPARα in the nucleus and increased PPARα-dependent luciferase activity in HeLa cells. We found the cytosolic form of MECR (cMECR) was expressed in the cytosolic and/or nuclear region, directly binds with PPARα, and enhances PPARα activity.
Solution Structure of the Soluble Receptor for Advanced Glycation End Products (sRAGE)*
Sárkány, Zsuzsa; Ikonen, Teemu P.; Ferreira-da-Silva, Frederico; Saraiva, Maria João; Svergun, Dmitri; Damas, Ana Margarida
2011-01-01
The receptor for advanced glycation end products (RAGE) is a multiligand cell surface receptor involved in various human diseases, as it binds to numerous molecules and proteins that modulate the activity of other proteins. Elucidating the three-dimensional structure of this receptor is therefore most important for understanding its function during activation and cellular signaling. The major alternative splice product of RAGE comprises its extracellular region that occurs as a soluble protein (sRAGE). Although the structures of sRAGE domains were available, their assembly into the functional full-length protein remained unknown. We observed that the protein has concentration-dependent oligomerization behavior, and this is also mediated by the presence of Ca2+ ions. Moreover, using synchrotron small angle x-ray scattering, the solution structure of human sRAGE was determined in the monomeric and dimeric forms. The model for the monomer displays a J-like shape, whereas the dimer is formed through the association of the two N-terminal domains and has an elongated structure. These results provide insights into the assembly of the RAGE homodimer, which is essential for signal transduction, and the sRAGE:RAGE heterodimer that leads to blockage of the receptor signaling, paving the way for the design of therapeutic strategies for a large number of different pathologies. PMID:21865159
Foster, Daniel J; Wilson, Jermaine M; Remke, Daniel H; Mahmood, M Suhaib; Uddin, M Jashim; Wess, Jürgen; Patel, Sachin; Marnett, Lawrence J; Niswender, Colleen M; Jones, Carrie K; Xiang, Zixiu; Lindsley, Craig W; Rook, Jerri M; Conn, P Jeffrey
2016-09-21
Muscarinic receptors represent a promising therapeutic target for schizophrenia, but the mechanisms underlying the antipsychotic efficacy of muscarinic modulators are not well understood. Here, we report that activation of M4 receptors on striatal spiny projection neurons results in a novel form of dopaminergic regulation resulting in a sustained depression of striatal dopamine release that is observed more than 30 min after removal of the muscarinic receptor agonist. Furthermore, both the M4-mediated sustained inhibition of dopamine release and the antipsychotic-like efficacy of M4 activators were found to require intact signaling through CB2 cannabinoid receptors. These findings highlight a novel mechanism by which striatal cholinergic and cannabinoid signaling leads to sustained reductions in dopaminergic transmission and concurrent behavioral effects predictive of antipsychotic efficacy. Copyright © 2016 Elsevier Inc. All rights reserved.
FGFR3 Heterodimerization in Achondroplasia, the Most Common Form of Human Dwarfism*
He, Lijuan; Shobnam, Nadia; Wimley, William C.; Hristova, Kalina
2011-01-01
The G380R mutation in the transmembrane domain of fibroblast growth factor receptor 3 (FGFR3) causes achondroplasia, the most common form of human dwarfism. Achondroplasia is a heterozygous disorder, and thus the affected individuals express both wild-type and mutant FGFR3. Yet heterodimerization in achondroplasia has not been characterized thus far. To investigate the formation of FGFR3 heterodimers in cellular membranes, we designed an FGFR3 construct that lacks the kinase domain, and we monitored the formation of inactive heterodimers between this construct and wild-type and mutant FGFR3. The formation of the inactive heterodimers depleted the pool of full-length receptors capable of forming active homodimers and ultimately reduced their phosphorylation. By analyzing the effect of the truncated FGFR3 on full-length receptor phosphorylation, we demonstrated that FGFR3 WT/G380R heterodimers form with lower probability than wild-type FGFR3 homodimers at low ligand concentration. These results further our knowledge of FGFR3-associated bone disorders. PMID:21324899
Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor.
Maillet, Emeline L; Cui, Meng; Jiang, Peihua; Mezei, Mihaly; Hecht, Elizabeth; Quijada, Jeniffer; Margolskee, Robert F; Osman, Roman; Max, Marianna
2015-10-01
The sweet taste receptor, a heterodimeric G protein-coupled receptor comprised of T1R2 and T1R3, binds sugars, small molecule sweeteners, and sweet proteins to multiple binding sites. The dipeptide sweetener, aspartame binds in the Venus Flytrap Module (VFTM) of T1R2. We developed homology models of the open and closed forms of human T1R2 and human T1R3 VFTMs and their dimers and then docked aspartame into the closed form of T1R2's VFTM. To test and refine the predictions of our model, we mutated various T1R2 VFTM residues, assayed activity of the mutants and identified 11 critical residues (S40, Y103, D142, S144, S165, S168, Y215, D278, E302, D307, and R383) in and proximal to the binding pocket of the sweet taste receptor that are important for ligand recognition and activity of aspartame. Furthermore, we propose that binding is dependent on 2 water molecules situated in the ligand pocket that bridge 2 carbonyl groups of aspartame to residues D142 and L279. These results shed light on the activation mechanism and how signal transmission arising from the extracellular domain of the T1R2 monomer of the sweet receptor leads to the perception of sweet taste. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Werth, Kathrin; Förster, Reinhold
2016-01-01
Diffusion of chemokines away from their site of production results in the passive formation of chemokine gradients. We have recently shown that chemokine gradients can also be formed in an active manner, namely by atypical chemokine receptors (ACKRs) that scavenge chemokines locally. Here, we describe an advanced method that allows the visualization of leukocyte migration in a three-dimensional environment along a chemokine gradient that is actively established by cells expressing an ACKR. Initially developed to visualize the migration of dendritic cells along gradients of CCL19 or CCL21 that were actively shaped by an ACKR4-expressing cell line, we expect that this chamber system can be exploited to study many other combinations of atypical and conventional chemokine receptor-expressing cells. © 2016 Elsevier Inc. All rights reserved.
Tsukamoto, Hisao; Farrens, David L
2013-09-27
G protein-coupled receptors (GPCRs) undergo dynamic transitions between active and inactive conformations. Usually, these conversions are triggered when the receptor detects an external signal, but some so-called constitutively activating mutations, or CAMs, induce a GPCR to bind and activate G proteins in the absence of external stimulation, in ways still not fully understood. Here, we investigated how a CAM alters the structure of a GPCR and the dynamics involved as the receptor transitions between different conformations. Our approach used site-directed fluorescence labeling (SDFL) spectroscopy to compare opsin, the ligand-free form of the GPCR rhodopsin, with opsin containing the CAM M257Y, focusing specifically on key movements that occur in the sixth transmembrane helix (TM6) during GPCR activation. The site-directed fluorescence labeling data indicate opsin is constrained to an inactive conformation both in detergent micelles and lipid membranes, but when it contains the M257Y CAM, opsin is more dynamic and can interact with a G protein mimetic. Further study of these receptors using tryptophan-induced quenching (TrIQ) methods indicates that in detergent, the CAM significantly increases the population of receptors in the active state, but not in lipids. Subsequent Arrhenius analysis of the TrIQ data suggests that, both in detergent and lipids, the CAM lowers the energy barrier for TM6 movement, a key transition required for conversion between the inactive and active conformations. Together, these data suggest that the lowered energy barrier is a primary effect of the CAM on the receptor dynamics and energetics.
von Bauer, Rüdiger; Oikonomou, Dimitrios; Sulaj, Alba; Kopf, Stefan; Fleming, Thomas; Rudofsky, Gottfried; Nawroth, Peter
2018-06-11
Atherosclerosis is an inflammatory disorder in which several converging immune responses modulate and induce lipid accumulation in macrophages. Activated leukocyte cell adhesion molecule (ALCAM) has been described as a structural homologue of HDL-receptor and functions as a pattern recognition receptor (PRR), while its soluble form sALCAM is involved in ALCAM-dependent and -independent immune mechanisms. The aim of this study was to investigate the effect of aggressive removal of low density lipoprotein-cholesterol (LDL-C) and lipoprotein(a) (Lp [a]) by lipoprotein-apheresis (LA) on sALCAM and blood viscosity as well as to evaluate its association with lipoproteins and serum markers of inflammation. © Georg Thieme Verlag KG Stuttgart · New York.
Gilleron, Martine; Nigou, Jérôme; Nicolle, Delphine; Quesniaux, Valérie; Puzo, Germain
2006-01-01
Detection of Mycobacterium tuberculosis antigens by professional phagocytes via toll-like receptors (TLR) contributes to controlling chronic M. tuberculosis infection. Lipomannans (LM), which are major lipoglycans of the mycobacterial envelope, were recently described as agonists of TLR2 with potent activity on proinflammatory cytokine regulation. LM correspond to a heterogeneous population of acyl- and glyco-forms. We report here the purification and the complete structural characterization of four LM acyl-forms from Mycobacterium bovis BCG using MALDI MS and 2D (1)H-(31)P NMR analyses. All this biochemical work provided the tools to investigate the implication of LM acylation degree on its proinflammatory activity. The latter was ascribed to the triacylated LM form, essentially an agonist of TLR2, using TLR2/TLR1 heterodimers for signaling. Altogether, these findings shed more light on the molecular basis of LM recognition by TLR.
Miner, Jonathan J; Daniels, Brian P; Shrestha, Bimmi; Proenca-Modena, Jose L; Lew, Erin D; Lazear, Helen M; Gorman, Matthew J; Lemke, Greg; Klein, Robyn S; Diamond, Michael S
2015-12-01
The TAM receptors Tyro3, Axl and Mertk are receptor tyrosine kinases that dampen host innate immune responses following engagement with their ligands Gas6 and Protein S, which recognize phosphatidylserine on apoptotic cells. In a form of apoptotic mimicry, many enveloped viruses display phosphatidylserine on the outer leaflet of their membranes, enabling TAM receptor activation and downregulation of antiviral responses. Accordingly, we hypothesized that a deficiency of TAM receptors would enhance antiviral responses and protect against viral infection. Unexpectedly, mice lacking Mertk and/or Axl, but not Tyro3, exhibited greater vulnerability to infection with neuroinvasive West Nile and La Crosse encephalitis viruses. This phenotype was associated with increased blood-brain barrier permeability, which enhanced virus entry into and infection of the brain. Activation of Mertk synergized with interferon-β to tighten cell junctions and prevent virus transit across brain microvascular endothelial cells. Because TAM receptors restrict pathogenesis of neuroinvasive viruses, these findings have implications for TAM antagonists that are currently in clinical development.
Molecular Mechanisms of Opioid Receptor-Dependent Signaling and Behavior
Al-Hasani, Ream; Bruchas, Michael R.
2013-01-01
Opioid receptors have been targeted for the treatment of pain and related disorders for thousands of years, and remain the most widely used analgesics in the clinic. Mu (μ), kappa (κ), and delta (δ) opioid receptors represent the originally classified receptor subtypes, with opioid receptor like-1 (ORL1) being the least characterized. All four receptors are G-protein coupled, and activate inhibitory G-proteins. These receptors form homo- and hetereodimeric complexes, signal to kinase cascades, and scaffold a variety of proteins. In this review, we discuss classical mechanisms and developments in understanding opioid tolerance, opioid receptor signaling, and highlight advances in opioid molecular pharmacology, behavioral pharmacology, and human genetics. We put into context how opioid receptor signaling leads to the modulation of behavior with the potential for therapeutic intervention. Finally, we conclude that there is a continued need for more translational work on opioid receptors in vivo. PMID:22020140
Tumor Suppressor Activity of the EphB2 Receptor in Prostate Cancer
2006-11-01
should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of...information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM...identified in the EphB2 receptor gene in prostate cancer suggesting that EphB2, a member of the large Eph receptor tyrosine kinase family, is a tumor
Robinson, George A; Waddington, Kirsty E; Pineda-Torra, Ines; Jury, Elizabeth C
2017-01-01
It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM) and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β), and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed.
Robinson, George A.; Waddington, Kirsty E.; Pineda-Torra, Ines; Jury, Elizabeth C.
2017-01-01
It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM) and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β), and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed. PMID:29225604
Subbarayal, Prema; Karunakaran, Karthika; Winkler, Ann-Cathrin; Rother, Marion; Gonzalez, Erik; Meyer, Thomas F.; Rudel, Thomas
2015-01-01
The obligate intracellular bacterium Chlamydia trachomatis invades into host cells to replicate inside a membrane-bound vacuole called inclusion. Multiple different host proteins are recruited to the inclusion and are functionally modulated to support chlamydial development. Invaded and replicating Chlamydia induces a long-lasting activation of the PI3 kinase signaling pathway that is required for efficient replication. We identified the cell surface tyrosine kinase EphrinA2 receptor (EphA2) as a chlamydial adherence and invasion receptor that induces PI3 kinase (PI3K) activation, promoting chlamydial replication. Interfering with binding of C. trachomatis serovar L2 (Ctr) to EphA2, downregulation of EphA2 expression or inhibition of EphA2 activity significantly reduced Ctr infection. Ctr interacts with and activates EphA2 on the cell surface resulting in Ctr and receptor internalization. During chlamydial replication, EphA2 remains active accumulating around the inclusion and interacts with the p85 regulatory subunit of PI3K to support the activation of the PI3K/Akt signaling pathway that is required for normal chlamydial development. Overexpression of full length EphA2, but not the mutant form lacking the intracellular cytoplasmic domain, enhanced PI3K activation and Ctr infection. Despite the depletion of EphA2 from the cell surface, Ctr infection induces upregulation of EphA2 through the activation of the ERK pathway, which keeps the infected cell in an apoptosis-resistant state. The significance of EphA2 as an entry and intracellular signaling receptor was also observed with the urogenital C. trachomatis-serovar D. Our findings provide the first evidence for a host cell surface receptor that is exploited for invasion as well as for receptor-mediated intracellular signaling to facilitate chlamydial replication. In addition, the engagement of a cell surface receptor at the inclusion membrane is a new mechanism by which Chlamydia subverts the host cell and induces apoptosis resistance. PMID:25906164
Subbarayal, Prema; Karunakaran, Karthika; Winkler, Ann-Cathrin; Rother, Marion; Gonzalez, Erik; Meyer, Thomas F; Rudel, Thomas
2015-04-01
The obligate intracellular bacterium Chlamydia trachomatis invades into host cells to replicate inside a membrane-bound vacuole called inclusion. Multiple different host proteins are recruited to the inclusion and are functionally modulated to support chlamydial development. Invaded and replicating Chlamydia induces a long-lasting activation of the PI3 kinase signaling pathway that is required for efficient replication. We identified the cell surface tyrosine kinase EphrinA2 receptor (EphA2) as a chlamydial adherence and invasion receptor that induces PI3 kinase (PI3K) activation, promoting chlamydial replication. Interfering with binding of C. trachomatis serovar L2 (Ctr) to EphA2, downregulation of EphA2 expression or inhibition of EphA2 activity significantly reduced Ctr infection. Ctr interacts with and activates EphA2 on the cell surface resulting in Ctr and receptor internalization. During chlamydial replication, EphA2 remains active accumulating around the inclusion and interacts with the p85 regulatory subunit of PI3K to support the activation of the PI3K/Akt signaling pathway that is required for normal chlamydial development. Overexpression of full length EphA2, but not the mutant form lacking the intracellular cytoplasmic domain, enhanced PI3K activation and Ctr infection. Despite the depletion of EphA2 from the cell surface, Ctr infection induces upregulation of EphA2 through the activation of the ERK pathway, which keeps the infected cell in an apoptosis-resistant state. The significance of EphA2 as an entry and intracellular signaling receptor was also observed with the urogenital C. trachomatis-serovar D. Our findings provide the first evidence for a host cell surface receptor that is exploited for invasion as well as for receptor-mediated intracellular signaling to facilitate chlamydial replication. In addition, the engagement of a cell surface receptor at the inclusion membrane is a new mechanism by which Chlamydia subverts the host cell and induces apoptosis resistance.
Motaghinejad, Majid; Motevalian, Manijeh; Fatima, Sulail; Beiranvand, Tabassom; Mozaffari, Shiva
2017-11-01
Chronic abuse of methylphenidate (MPH) often causes neuronal cell death. Topiramate (TPM) carries neuroprotective effects, but its exact mechanism of action remains unclear. In the present study, the role of various doses of TPM and its possible mechanisms, receptors and signaling pathways involved against MPH-induced hippocampal neurodegeneration were evaluated in vivo. Thus, domoic acid (DOM) was used as AMPA/kainate receptor agonist, bicuculline (BIC) as GABA A receptor antagonist, ketamine (KET) as NMDA receptor antagonist, yohimbine (YOH) as α 2 adrenergic receptor antagonist and haloperidol (HAL) was used as dopamine D 2 receptor antagonist. Open field test (OFT) was used to investigate the disturbances in motor activity. Hippocampal neurodegenerative parameters were evaluated. Protein expressions of CREB/BDNF and Akt/GSK3 signaling pathways were also evaluated. Cresyl violet staining was performed to show and confirm the changes in the shape of the cells. TPM (70 and 100 mg/kg) reduced MPH-induced rise in lipid peroxidation, oxidized form of glutathione (GSSG), IL-1β and TNF-α levels, Bax expression and motor activity disturbances. In addition, TPM treatment increased Bcl-2 expression, the level of reduced form of glutathione (GSH) and the levels and activities of superoxide dismutase, glutathione peroxidase and glutathione reductase enzymes. TPM also inhibited MPH-induced hippocampal degeneration. Pretreatment of animals with DOM, BIC, KET and YOH inhibited TPM-induced neuroprotection and increased oxidative stress, neuroinflammation, neuroapoptosis and neurodegeneration while reducing CREB, BDNF and Akt protein expressions. Also pretreatment with DOM, BIC, KET and YOH inhibited TPM-induced decreases in GSK3. It can be concluded that the mentioned receptors by modulation of CREB/BDNF and Akt/GSK3 pathways, are involved in neuroprotection of TPM against MPH-induced neurodegeneration.
Role of Pannexin-1 hemichannels and purinergic receptors in the pathogenesis of human diseases
Velasquez, Stephani; Eugenin, Eliseo A.
2014-01-01
In the last decade several groups have determined the key role of hemichannels formed by pannexins or connexins, extracellular ATP and purinergic receptors in physiological and pathological conditions. Our work and the work of others, indicate that the opening of Pannexin-1 hemichannels and activation of purinergic receptors by extracellular ATP is essential for HIV infection, cellular migration, inflammation, atherosclerosis, stroke, and apoptosis. Thus, this review discusses the importance of purinergic receptors, Panx-1 hemichannels and extracellular ATP in the pathogenesis of several human diseases and their potential use to design novel therapeutic approaches. PMID:24672487
Learning induces the translin/trax RNase complex to express activin receptors for persistent memory.
Park, Alan Jung; Havekes, Robbert; Fu, Xiuping; Hansen, Rolf; Tudor, Jennifer C; Peixoto, Lucia; Li, Zhi; Wu, Yen-Ching; Poplawski, Shane G; Baraban, Jay M; Abel, Ted
2017-09-20
Long-lasting forms of synaptic plasticity and memory require de novo protein synthesis. Yet, how learning triggers this process to form memory is unclear. Translin/trax is a candidate to drive this learning-induced memory mechanism by suppressing microRNA-mediated translational silencing at activated synapses. We find that mice lacking translin/trax display defects in synaptic tagging, which requires protein synthesis at activated synapses, and long-term memory. Hippocampal samples harvested from these mice following learning show increases in several disease-related microRNAs targeting the activin A receptor type 1C (ACVR1C), a component of the transforming growth factor-β receptor superfamily. Furthermore, the absence of translin/trax abolishes synaptic upregulation of ACVR1C protein after learning. Finally, synaptic tagging and long-term memory deficits in mice lacking translin/trax are mimicked by ACVR1C inhibition. Thus, we define a new memory mechanism by which learning reverses microRNA-mediated silencing of the novel plasticity protein ACVR1C via translin/trax.
Grujic, Ognjen; Stevens, Jennitte; Chou, Robert Y-T; Weiszmann, Jennifer V; Sekirov, Laura; Thomson, Christy; Badh, Anita; Grauer, Stephanie; Chan, Brian; Graham, Kevin; Manchulenko, Kathy; Dillon, Thomas M; Li, Yang; Foltz, Ian N
2017-05-13
Agonism of cell surface receptors by monoclonal antibodies is dependent not only on its ability to bind the target, but also to deliver a biological signal through receptors to the cell. Immunoglobulin G2 antibodies (IgG2s) are made up of a mixture of distinct isoforms (IgG2-A, -B and A/B), which differ by the disulfide connectivity at the hinge region. When evaluating panels of agonistic antibodies against CD200 receptor (CD200R) or βklotho receptor (βklotho), we noticed striking activity differences of IgG1 or IgG2 antibodies with the same variable domains. For the CD200R antibody, the IgG2 antibody demonstrated higher activity than the IgG1 or IgG4 antibody. More significantly, for βklotho, agonist antibodies with higher biological activity as either IgG2 or IgG1 were identified. In both cases, ion exchange chromatography was able to isolate the bioactivity to the IgG2-B isoform from the IgG2 parental mixture. The subclass-related increase in agonist activity was not correlated with antibody aggregation or binding affinity, but was driven by enhanced avidity for the CD200R antibody. These results add to the growing body of evidence that show that conformational differences in the antibody hinge region can have a dramatic impact on the antibody activity and must be considered when screening and engineering therapeutic antibody candidates. The results also demonstrate that the IgG1 (IgG2-A like) or the IgG2-B form may provide the most active form of agonist antibodies for different antibodies and targets. Copyright © 2017 Elsevier Inc. All rights reserved.
Involvement of GABAA receptor in Bufo arenarum oocyte maturation.
Toranzo, G Sánchez; Zelarayán, L; Bonilla, F; Oterino, J; Bühler, M I
2008-05-01
Amphibian oocytes meiotic arrest is released under the stimulus of progesterone; this hormone interacts with the oocyte surface and starts a cascade of events leading to the activation of a cytoplasmic maturation promoting factor (MPF) that induces germinal vesicle breakdown (GVBD), chromosome condensation and extrusion of the first polar body. The aim of this work was to determine whether the activation of a GABAA receptor is able to induce GVBD in fully grown denuded oocytes of Bufo arenarum and to analyse its possible participation in progesterone-induced maturation. We also evaluated the role of purines and phospholipids in the maturation process induced by a GABAA receptor agonist such as muscimol. Our results indicated that the activation of the GABAA receptor by muscimol induces maturation in a dose- and time-dependent manner and that this activation is a genuine maturation that enables oocytes to form pronuclei. Assays with a receptor antagonist, picrotoxine, showed that the maturation induced by muscimol was inhibited. Treatment with picrotoxine, however, shows that the participation of GABAA receptor in progesterone-induced maturation is not significant. In addition, our results indicate that high intracellular levels of purines obtained by the use of db-AMPc and theophylline or the inhibition of the phosphatidylinositol 4,5-bisphosphate (PIP2 hydrolysis by neomycin and PIP2 turn over by LiCl, respectively, inhibited the maturation induced by muscimol. Treatment with H-7 indicated, however, that PKC activation is not necessary for GVBD induced by the GABAA receptor agonist. Results suggest that the transduction pathway used by the GABAA receptor to induce maturation is different from those used by progesterone.
Keller, H; Givel, F; Perroud, M; Wahli, W
1995-07-01
Peroxisome proliferator-activated receptors (PPARs) and retinoid X receptors (RXRs) are nuclear hormone receptors that are activated by fatty acids and 9-cis-retinoic acid, respectively. PPARs and RXRs form heterodimers that activate transcription by binding to PPAR response elements (PPREs) in the promoter of target genes. The PPREs described thus far consist of a direct tandem repeat of the AGGTCA core element with one intervening nucleotide. We show here that the vitellogenin A2 estrogen response element (ERE) can also function as a PPRE and is bound by a PPAR/RXR heterodimer. Although this heterodimer can bind to several other ERE-related palindromic response elements containing AGGTCA half-sites, only the ERE is able to confer transactivation of test reporter plasmids, when the ERE is placed either close to or at a distance from the transcription initiation site. Examination of natural ERE-containing promoters, including the pS2, very-low-density apolipoprotein II and vitellogenin A2 genes, revealed considerable differences in the binding of PPAR/RXR heterodimers to these EREs. In their natural promoter context, these EREs did not allow transcriptional activation by PPARs/RXRs. Analysis of this lack of stimulation of the vitellogenin A2 promoter demonstrated that PPARs/RXRs bind to the ERE but cannot transactivate due to a nonpermissive promoter structure. As a consequence, PPARs/RXRs inhibit transactivation by the estrogen receptor through competition for ERE binding. This is the first example of signaling cross-talk between PPAR/RXR and estrogen receptor.
LY404187: a novel positive allosteric modulator of AMPA receptors.
Quirk, Jennifer C; Nisenbaum, Eric S
2002-01-01
LY404187 is a selective, potent and centrally active positive allosteric modulator of AMPA receptors. LY404187 preferentially acts at recombinant human homomeric GluR2 and GluR4 versus GluR1 and GluR3 AMPA receptors. In addition, LY404187 potentiates the flip splice variant of these AMPA receptors to a greater degree than the flop splice variant. In both recombinant and native AMPA receptors, potentiation by LY404187 displays a unique time-dependent growth that appears to involve a suppression of the desensitization process of these ion channels. LY404187 has been shown to enhance glutamatergic synaptic transmission both in vitro and in vivo. This augmentation of synaptic activity is due to the direct potentiation of AMPA receptor function, as well as an indirect recruitment of voltage-dependent NMDA receptor activity. Enhanced calcium influx through NMDA receptors is known to be a critical step in initiating long-term modifications in synaptic function (e.g., long-term potentiation, LTP). These modifications in synaptic function may be substrates for certain forms of memory encoding. Consistent with a recruitment of NMDA receptor activity, LY404187 has been shown to enhance performance in animal models of cognitive function requiring different mnemonic processes. These data suggest that AMPA receptor potentiators may be therapeutically beneficial for treating cognitive deficits in a variety of disorders, particularly those that are associated with reduced glutamatergic signaling such as schizophrenia. In addition, LY404187 has been demonstrated to be efficacious in animal models of behavioral despair that possess considerable predictive validity for antidepressant activity. Although the therapeutic efficacy of AMPA receptor potentiators in these and other diseases will ultimately be determined in the clinic, evidence suggests that the benefit of these compounds will be mediated by multiple mechanisms of action. These mechanisms include direct enhancement of AMPA receptor function, secondary mobilization of intracellular signaling cascades, and prolonged modulation of gene expression.
Control of synaptic function by endocannabinoid-mediated retrograde signaling.
Kano, Masanobu
2014-01-01
Since the first reports in 2001, great advances have been made towards the understanding of endocannabinoid-mediated synaptic modulation. Electrophysiological studies have revealed that one of the two major endocannabinoids, 2-arachidonoylglycerol (2-AG), is produced from membrane lipids upon postsynaptic Ca(2+) elevation and/or activation of Gq/11-coupled receptors, and released from postsynaptic neurons. The released 2-AG then acts retrogradely onto presynaptic cannabinoid CB1 receptors and induces suppression of neurotransmitter release either transiently or persistently. These forms of 2-AG-mediated retrograde synaptic modulation are functional throughout the brain. The other major endocannabinoid, anandamide, mediates a certain form of endocannabinoid-mediated long-term depression (LTD). Anandamide also functions as an agonist for transient receptor potential vanilloid receptor type 1 (TRPV1) and mediates endocannabinoid-independent and TRPV1-dependent forms of LTD. It has also been demonstrated that the endocannabinoid system itself is plastic, which can be either up- or down-regulated by experimental or environmental conditions. In this review, I will make an overview of the mechanisms underlying endocannabinoid-mediated synaptic modulation.
Control of synaptic function by endocannabinoid-mediated retrograde signaling
KANO, Masanobu
2014-01-01
Since the first reports in 2001, great advances have been made towards the understanding of endocannabinoid-mediated synaptic modulation. Electrophysiological studies have revealed that one of the two major endocannabinoids, 2-arachidonoylglycerol (2-AG), is produced from membrane lipids upon postsynaptic Ca2+ elevation and/or activation of Gq/11-coupled receptors, and released from postsynaptic neurons. The released 2-AG then acts retrogradely onto presynaptic cannabinoid CB1 receptors and induces suppression of neurotransmitter release either transiently or persistently. These forms of 2-AG-mediated retrograde synaptic modulation are functional throughout the brain. The other major endocannabinoid, anandamide, mediates a certain form of endocannabinoid-mediated long-term depression (LTD). Anandamide also functions as an agonist for transient receptor potential vanilloid receptor type 1 (TRPV1) and mediates endocannabinoid-independent and TRPV1-dependent forms of LTD. It has also been demonstrated that the endocannabinoid system itself is plastic, which can be either up- or down-regulated by experimental or environmental conditions. In this review, I will make an overview of the mechanisms underlying endocannabinoid-mediated synaptic modulation. PMID:25169670
T cell costimulation by chemokine receptors.
Molon, Barbara; Gri, Giorgia; Bettella, Monica; Gómez-Moutón, Concepción; Lanzavecchia, Antonio; Martínez-A, Carlos; Mañes, Santos; Viola, Antonella
2005-05-01
Signals mediated by chemokine receptors may compete with T cell receptor stop signals and determine the duration of T cell-antigen-presenting cell interactions. Here we show that during T cell stimulation by antigen-presenting cells, T cell chemokine receptors coupled to G(q) and/or G(11) protein were recruited to the immunological synapse by a G(i)-independent mechanism. When chemokine receptors were sequestered at the immunological synapse, T cells became insensitive to chemotactic gradients, formed more stable conjugates and finally responded with enhanced proliferation and cytokine production. We suggest that chemokine receptor trapping at the immunological synapse enhances T cell activation by improving T cell-antigen-presenting cell attraction and impeding the 'distraction' of successfully engaged T cells by other chemokine sources.
Potapenko, Evgeniy S.; Biancardi, Vinicia C.; Zhou, Yiqiang
2013-01-01
A dynamic balance between the excitatory and inhibitory neurotransmitters glutamate and GABA is critical for maintaining proper neuronal activity in the brain. This balance is partly achieved via presynaptic interactions between glutamatergic and GABAAergic synapses converging into the same targets. Here, we show that in hypothalamic magnocellular neurosecretory neurons (MNCs), a direct crosstalk between postsynaptic NMDA receptors (NMDARs) and GABAA receptors (GABAARs) contributes to the excitatory/inhibitory balance in this system. We found that activation of NMDARs by endogenous glutamate levels controlled by astrocyte glutamate transporters, evokes a transient and reversible potentiation of postsynaptic GABAARs. This inter-receptor crosstalk is calcium-dependent and involves a kinase-dependent phosphorylation mechanism, but does not require nitric oxide as an intermediary signal. Finally, we found the NMDAR–GABAAR crosstalk to be blunted in rats with heart failure, a pathological condition in which the hypothalamic glutamate–GABA balance is tipped toward an excitatory predominance. Together, our findings support a novel form of glutamate–GABA interactions in MNCs, which involves crosstalk between NMDA and GABAA postsynaptic receptors, whose strength is controlled by the activity of local astrocytes. We propose this inter-receptor crosstalk to act as a compensatory, counterbalancing mechanism to dampen glutamate-mediated overexcitation. Finally, we propose that an uncoupling between NMDARs and GABAARs may contribute to exacerbated neuronal activity and, consequently, sympathohumoral activation in such disease conditions as heart failure. PMID:23303942
Targeting CB2-GPR55 Receptor Heteromers Modulates Cancer Cell Signaling*
Moreno, Estefanía; Andradas, Clara; Medrano, Mireia; Caffarel, María M.; Pérez-Gómez, Eduardo; Blasco-Benito, Sandra; Gómez-Cañas, María; Pazos, M. Ruth; Irving, Andrew J.; Lluís, Carme; Canela, Enric I.; Fernández-Ruiz, Javier; Guzmán, Manuel; McCormick, Peter J.; Sánchez, Cristina
2014-01-01
The G protein-coupled receptors CB2 (CB2R) and GPR55 are overexpressed in cancer cells and human tumors. Because a modulation of GPR55 activity by cannabinoids has been suggested, we analyzed whether this receptor participates in cannabinoid effects on cancer cells. Here we show that CB2R and GPR55 form heteromers in cancer cells, that these structures possess unique signaling properties, and that modulation of these heteromers can modify the antitumoral activity of cannabinoids in vivo. These findings unveil the existence of previously unknown signaling platforms that help explain the complex behavior of cannabinoids and may constitute new targets for therapeutic intervention in oncology. PMID:24942731
ERIC Educational Resources Information Center
Mannschreck, Albrecht; Kiesswetter, Roland; von Angerer, Erwin
2007-01-01
A molecule coming from outside an organism can form a ligand-receptor complex. Upon its formation, a message is transmitted, for example, to certain cells. In this way, two enantiomers can emit messages that differ, either quantitatively or qualitatively. In the present article, these facts are taken as a common basis for the actions of chiral…
Kubešová, Kateřina; Dořičáková, Aneta; Trávníček, Zdeněk; Dvořák, Zdeněk
2016-07-25
The effects of four copper(II) mixed-ligand complexes [Cu(qui1)(L)]NO3·H2O (1-3) and [Cu(qui2)(phen)]NO3 (4), where qui1=2-phenyl-3-hydroxy-4(1H)-quinolinone, Hqui2=2-(4-amino-3,5-dichlorophenyl)-N-propyl-3-hydroxy-4(1H)-quinolinone-7-carboxamide, L=1,10-phenanthroline (phen) (1), 5-methyl-1,10-phenanthroline (mphen) (2), bathophenanthroline (bphen) (3), on transcriptional activities of steroid receptors, nuclear receptors and xenoreceptors have been studied. The complexes (1-4) did not influence basal or ligand-inducible activities of glucocorticoid receptor, androgen receptor, thyroid receptor, pregnane X receptor and vitamin D receptor, as revealed by gene reporter assays. The complexes 1 and 2 dose-dependently induced luciferase activity in stable gene reporter AZ-AhR cell line, and this induction was reverted by resveratrol, indicating involvement of aryl hydrocarbon receptor (AhR) in the process. The complexes 1, 2 and 3 induced CYP1A1 mRNA in LS180 cells and CYP1A1/CYP1A2 in human hepatocytes through AhR. Electrophoretic mobility shift assay EMSA showed that the complexes 1 and 2 transformed AhR in its DNA-binding form. Collectively, we demonstrate that the complexes 1 and 2 activate AhR and induce AhR-dependent genes in human hepatocytes and cancer cell lines. In conclusion, the data presented here might be of toxicological importance, regarding the multiple roles of AhR in human physiology and pathophysiology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Buchwald, Peter
2017-06-01
A generalized model of receptor function is proposed that relies on the essential assumptions of the minimal two-state receptor theory (i.e., ligand binding followed by receptor activation), but uses a different parametrization and allows nonlinear response (transduction) for possible signal amplification. For the most general case, three parameters are used: K d , the classic equilibrium dissociation constant to characterize binding affinity; ε , an intrinsic efficacy to characterize the ability of the bound ligand to activate the receptor (ranging from 0 for an antagonist to 1 for a full agonist); and γ , a gain (amplification) parameter to characterize the nonlinearity of postactivation signal transduction (ranging from 1 for no amplification to infinity). The obtained equation, E/Emax=εγLεγ+1-εL+Kd, resembles that of the operational (Black and Leff) or minimal two-state (del Castillo-Katz) models, E/Emax=τLτ+1L+Kd, with εγ playing a role somewhat similar to that of the τ efficacy parameter of those models, but has several advantages. Its parameters are more intuitive as they are conceptually clearly related to the different steps of binding, activation, and signal transduction (amplification), and they are also better suited for optimization by nonlinear regression. It allows fitting of complex data where receptor binding and response are measured separately and the fractional occupancy and response are mismatched. Unlike the previous models, it is a true generalized model as simplified forms can be reproduced with special cases of its parameters. Such simplified forms can be used on their own to characterize partial agonism, competing partial and full agonists, or signal amplification.
A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin.
Arnis, S; Fahmy, K; Hofmann, K P; Sakmar, T P
1994-09-30
A carboxylic acid residue is conserved at the cytoplasmic border of the third transmembrane segment among nearly all G protein-coupled receptors. In the visual receptor rhodopsin, replacement of the conserved Glu134 by a neutral glutamine results in enhanced transducin activation. Here we show that a key event in forming the active state of rhodopsin is proton uptake by Glu134 in the metarhodopsin II (MII) photoproduct. Site-directed mutants E134D and E134Q were studied by flash photolysis, where formation rates of their photoproducts and rates of pH change could be monitored simultaneously. Both mutants showed normal MII formation rates. However, E134D displayed a slowed rate of proton uptake and E134Q displayed a loss of light-induced uptake of two protons from the aqueous phase. Thus, Glu134 mediates light-dependent proton uptake by MII. We propose that receptor activation requires a light-induced conformational change that allows protonation of Glu134 and subsequent protonation of a second group. The strong conservation of Glu134 in G protein-coupled receptors implies a general requirement for a proton acceptor group at this position to allow light- or ligand-dependent receptor activation.
Coleman, James L J; Ngo, Tony; Schmidt, Johannes; Mrad, Nadine; Liew, Chu Kong; Jones, Nicole M; Graham, Robert M; Smith, Nicola J
2016-04-12
Little is known about the pharmacology or physiology of GPR37L1, a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor that is abundant in the cerebellum. Mice deficient in this receptor exhibit precocious cerebellar development and hypertension. We showed that GPR37L1 coupled to the G protein Gα(s) when heterologously expressed in cultured cells in the absence of any added ligand, whereas a mutant receptor that lacked the amino terminus was inactive. Conversely, inhibition of ADAMs (a disintegrin and metalloproteases) enhanced receptor activity, indicating that the presence of the amino terminus is necessary for GPR37L1 signaling. Metalloprotease-dependent processing of GPR37L1 was evident in rodent cerebellum, where we detected predominantly the cleaved, inactive form. However, comparison of the accumulation of cAMP (adenosine 3',5'-monophosphate) in response to phosphodiesterase inhibition in cerebellar slice preparations from wild-type and GPR37L1-null mice showed that some constitutive signaling remained in the wild-type mice. In reporter assays of Gα(s) or Gα(i) signaling, the synthetic, prosaposin-derived peptide prosaptide (TX14A) did not increase GPR37L1 activity. Our data indicate that GPR37L1 may be a constitutively active receptor, or perhaps its ligand is present under the conditions that we used for analysis, and that the activity of this receptor is instead controlled by signals that regulate metalloprotease activity in the tissue. Copyright © 2016, American Association for the Advancement of Science.
Physical characteristics of the gonadotropin receptor-hormone complexes formed in vivo and in vitro.
Dufau, M L; Podesta, E J; Catt, K J
1975-01-01
The physical properties of detergent-solubilized gonadotropin receptor-hormone complexes, determined by density gradient centrifugation and gel filtration, were compared after in vivo and in vitro labeling of specific ovarian binding sites with radioiodinated human chorionic gonadotropin (hCG). Following intravenous administration of biologically active 125I-labeled hCG, up to 50% of the gonadotropin tracer was bound to the luteinized ovaries of immature female rats treated with pregnant mare serum/human chorionic gonadotropin. Comparable binding of 125I-labeled hCG was observed after equilibration of ovarian particles with the labeled hormone in vitro. The sedimentation properties of the solubilized receptor-hormone complexes formed in vivo were identical with those derived for the corresponding complexes formed in vitro and extracted with Triton X-100 and Lubrol PX, with sedimentation constants of 8.8 S for the Triton-solubilized complex and 7.0 S for the complex extracted with Lubrol PX. During analytical gel filtration of the Triton-solubilized receptor-hormone complex on Sepharose 6B in 0.1% Triton X-100, the partition coefficient (Kav) of the "in vivo" complex (0.32) was not significantly different from that of the complex formed in vitro (0.29). Gel filtration of the Lubrol-solubilized ovarian particles on Sepharose 6B in 0.5% Lubrol PX gave Kav values for the "in vivo" and "in vitro" labeled complexes of 0.36 and 0.32, respectively. These findings demonstrate that the physical properties of size and shape which determine the partition coefficient and sedimentation characteristics of detergent-solubilized gonadotropin receptor-hormone complexes formed in vitro are not distinguishable from those of the complexes extracted after specific interaction of the ovarian gonadotropin receptors with radioiodinated hCG in vivo. PMID:165502
Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor
Troppmann, B; Balfanz, S; Baumann, A; Blenau, W
2010-01-01
Background and purpose: 5-Hydroxytryptamine (5-HT) has been shown to control and modulate many physiological and behavioural functions in insects. In this study, we report the cloning and pharmacological properties of a 5-HT1 receptor of an insect model for neurobiology, physiology and pharmacology. Experimental approach: A cDNA encoding for the Periplaneta americana 5-HT1 receptor was amplified from brain cDNA. The receptor was stably expressed in HEK 293 cells, and the functional and pharmacological properties were determined in cAMP assays. Receptor distribution was investigated by RT-PCR and by immunocytochemistry using an affinity-purified polyclonal antiserum. Key results: The P. americana 5-HT1 receptor (Pea5-HT1) shares pronounced sequence and functional similarity with mammalian 5-HT1 receptors. Activation with 5-HT reduced adenylyl cyclase activity in a dose-dependent manner. Pea5-HT1 was expressed as a constitutively active receptor with methiothepin acting as a neutral antagonist, and WAY 100635 as an inverse agonist. Receptor mRNA was present in various tissues including brain, salivary glands and midgut. Receptor-specific antibodies showed that the native protein was expressed in a glycosylated form in membrane samples of brain and salivary glands. Conclusions and implications: This study marks the first pharmacological identification of an inverse agonist and a neutral antagonist at an insect 5-HT1 receptor. The results presented here should facilitate further analyses of 5-HT1 receptors in mediating central and peripheral effects of 5-HT in insects. PMID:20233210
Optical control of trimeric P2X receptors and acid-sensing ion channels.
Browne, Liam E; Nunes, João P M; Sim, Joan A; Chudasama, Vijay; Bragg, Laricia; Caddick, Stephen; North, R Alan
2014-01-07
P2X receptors are trimeric membrane proteins that function as ion channels gated by extracellular ATP. We have engineered a P2X2 receptor that opens within milliseconds by irradiation at 440 nm, and rapidly closes at 360 nm. This requires bridging receptor subunits via covalent attachment of 4,4'-bis(maleimido)azobenzene to a cysteine residue (P329C) introduced into each second transmembrane domain. The cis-trans isomerization of the azobenzene pushes apart the outer ends of the transmembrane helices and opens the channel in a light-dependent manner. Light-activated channels exhibited similar unitary currents, rectification, calcium permeability, and dye uptake as P2X2 receptors activated by ATP. P2X3 receptors with an equivalent mutation (P320C) were also light sensitive after chemical modification. They showed typical rapid desensitization, and they could coassemble with native P2X2 subunits in pheochromocytoma cells to form light-activated heteromeric P2X2/3 receptors. A similar approach was used to open and close human acid-sensing ion channels (ASICs), which are also trimers but are unrelated in sequence to P2X receptors. The experiments indicate that the opening of the permeation pathway requires similar and substantial movements of the transmembrane helices in both P2X receptors and ASICs, and the method will allow precise optical control of P2X receptors or ASICs in intact tissues.
Optical control of trimeric P2X receptors and acid-sensing ion channels
Browne, Liam E.; Nunes, João P. M.; Sim, Joan A.; Chudasama, Vijay; Bragg, Laricia; Caddick, Stephen; Alan North, R.
2014-01-01
P2X receptors are trimeric membrane proteins that function as ion channels gated by extracellular ATP. We have engineered a P2X2 receptor that opens within milliseconds by irradiation at 440 nm, and rapidly closes at 360 nm. This requires bridging receptor subunits via covalent attachment of 4,4'-bis(maleimido)azobenzene to a cysteine residue (P329C) introduced into each second transmembrane domain. The cis–trans isomerization of the azobenzene pushes apart the outer ends of the transmembrane helices and opens the channel in a light-dependent manner. Light-activated channels exhibited similar unitary currents, rectification, calcium permeability, and dye uptake as P2X2 receptors activated by ATP. P2X3 receptors with an equivalent mutation (P320C) were also light sensitive after chemical modification. They showed typical rapid desensitization, and they could coassemble with native P2X2 subunits in pheochromocytoma cells to form light-activated heteromeric P2X2/3 receptors. A similar approach was used to open and close human acid-sensing ion channels (ASICs), which are also trimers but are unrelated in sequence to P2X receptors. The experiments indicate that the opening of the permeation pathway requires similar and substantial movements of the transmembrane helices in both P2X receptors and ASICs, and the method will allow precise optical control of P2X receptors or ASICs in intact tissues. PMID:24367083
Thiele, S; Mungalpara, J; Steen, A; Rosenkilde, M M; Våbenø, J
2014-01-01
Background and Purpose The cyclopentapeptide FC131 (cyclo(-L-Arg1-L-Arg2-L-2-Nal3-Gly4-D-Tyr5-)) is an antagonist at the CXC chemokine receptor CXCR4, which plays a role in human immunodeficiency virus infection, cancer and stem cell recruitment. Binding modes for FC131 in CXCR4 have previously been suggested based on molecular docking guided by structure–activity relationship (SAR) data; however, none of these have been verified by in vitro experiments. Experimental Approach Heterologous 125I-12G5-competition binding and functional assays (inhibition of CXCL12-mediated activation) of FC131 and three analogues were performed on wild-type CXCR4 and 25 receptor mutants. Computational modelling was used to rationalize the experimental data. Key Results The Arg2 and 2-Nal3 side chains of FC131 interact with residues in TM-3 (His113, Asp171) and TM-5 (hydrophobic pocket) respectively. Arg1 forms charge-charge interactions with Asp187 in ECL-2, while D-Tyr5 points to the extracellular side of CXCR4. Furthermore, the backbone of FC131 interacts with the chemokine receptor-conserved Glu288 via two water molecules. Intriguingly, Tyr116 and Glu288 form a H-bond in CXCR4 crystal structures and mutation of either residue to Ala abolishes CXCR4 activity. Conclusions and Implications Ligand modification, receptor mutagenesis and computational modelling approaches were used to identify the binding mode of FC131 in CXCR4, which was in agreement with binding modes suggested from previous SAR studies. Furthermore, insights into the mechanism for CXCR4 activation by CXCL12 were gained. The combined findings will facilitate future design of novel CXCR4 antagonists. PMID:25039237
Analysis of G-Protein Coupled Receptor 30 (GPR30) on Endothelial Inflammation.
Chakrabarti, Subhadeep; Davidge, Sandra T
2016-01-01
The female sex hormone estrogen (the most common form 17-β-estradiol or E2) is known to have both anti-inflammatory and pro-inflammatory effects. Given the diversity of estrogen responses mediated through its three distinct receptors, namely, estrogen receptor α (ERα), ERβ, and the G-protein coupled receptor 30 (GPR30), it is plausible that different receptors have specific modulatory effects on inflammation in different tissues. We have shown that activation of GPR30 exerted anti-inflammatory effects as demonstrated by significant attenuation of tumor necrosis factor (TNF)-mediated upregulation of adhesion molecules in isolated human umbilical vein endothelial cells. Interestingly, estrogen alone had no such effect and blockade of classical ERs restored the anti-inflammatory effect, suggesting that this effect was dependent on GPR30 and opposed to classical ERs. These findings were further validated by the negation of anti-inflammatory GPR30 effects by classical ER agonists. This chapter focuses on multiple pharmacological options to activate GPR30 and the use of TNF activated endothelial cells as a model system for inflammatory response as assessed by adhesion molecule detection through western blotting.
Macejova, Dana; Toporova, L; Brtko, J
2016-07-01
Retinoic acid (RA), an active form of vitamin A, regulates the embryonic development, male and female reproduction and induces important effects on the cell development, proliferation, and differentiation. These effects are mediated by the retinoid (RAR) and rexinoid nuclear receptors (RXR), which are considered to be a ligand-activated, DNA-binding, trans-acting, and transcription-modulating proteins, involved in a general molecular mechanism responsible for the transcriptional responses in target genes. Organotin compounds are typical environmental contaminants and suspected endocrine disrupting substances. They may affect processes of reproductive system in mammals, predominantly via nuclear receptor signaling pathways. Triorganotins, such as tributyltin chloride (TBTCl) and triphenyltin chloride (TPTCl), are capable to bind to RXR molecules, and thus represent potent agonists of RXR subtypes of nuclear receptors not sharing any structural characteristics with endogenous ligands of nuclear receptors. Th is article summarizes selected effects of biologically active retinoids and rexinoids on both male and female reproduction and also deals with the effects of organotin compounds evoking endocrine disrupting actions in reproduction.
Crystal Structures of the β2-Adrenergic Receptor
NASA Astrophysics Data System (ADS)
Weis, William I.; Rosenbaum, Daniel M.; Rasmussen, Søren G. F.; Choi, Hee-Jung; Thian, Foon Sun; Kobilka, Tong Sun; Yao, Xiao-Jie; Day, Peter W.; Parnot, Charles; Fung, Juan J.; Ratnala, Venkata R. P.; Kobilka, Brian K.; Cherezov, Vadim; Hanson, Michael A.; Kuhn, Peter; Stevens, Raymond C.; Edwards, Patricia C.; Schertler, Gebhard F. X.; Burghammer, Manfred; Sanishvili, Ruslan; Fischetti, Robert F.; Masood, Asna; Rohrer, Daniel K.
G protein coupled receptors (GPCRs) constitute the largest family of membrane proteins in the human genome, and are responsible for the majority of signal transduction events involving hormones and neuro-transmitters across the cell membrane. GPCRs that bind to diffusible ligands have low natural abundance, are relatively unstable in detergents, and display basal G protein activation even in the absence of ligands. To overcome these problems two approaches were taken to obtain crystal structures of the β2-adrenergic receptor (β2AR), a well-characterized GPCR that binds cate-cholamine hormones. The receptor was bound to the partial inverse agonist carazolol and co-crystallized with a Fab made to a three-dimensional epitope formed by the third intracellular loop (ICL3), or by replacement of ICL3 with T4 lysozyme. Small crystals were obtained in lipid bicelles (β2AR-Fab) or lipidic cubic phase (β2AR-T4 lysozyme), and diffraction data were obtained using microfocus technology. The structures provide insights into the basal activity of the receptor, the structural features that enable binding of diffusible ligands, and the coupling between ligand binding and G-protein activation.
How theories evolved concerning the mechanism of action of barbiturates.
Löscher, Wolfgang; Rogawski, Michael A
2012-12-01
The barbiturate phenobarbital has been in use in the treatment of epilepsy for 100 years. It has long been recognized that barbiturates act by prolonging and potentiating the action of γ-aminobutyric acid (GABA) on GABA(A) receptors and at higher concentrations directly activating the receptors. A large body of data supports the concept that GABA(A) receptors are the primary central nervous system target for barbiturates, including the finding that transgenic mice with a point mutation in the β3 GABA(A) -receptor subunit exhibit diminished sensitivity to the sedative and immobilizing actions of the anesthetic barbiturate pentobarbital. Although phenobarbital is only modestly less potent as a GABA(A) -receptor modulator than pentobarbital, phenobarbital is minimally sedating at effective anticonvulsant doses. Possible explanations for the reduced sedative effect of phenobarbital include more regionally restricted action; partial agonist activity; reduced propensity to directly activate GABA(A) receptors (possibly including extrasynaptic receptors containing δ subunits); and reduced activity at other ion channel targets, including voltage-gated calcium channels. In recent years, substantial progress has been made in defining the structural features of GABA(A) receptors responsible for gating and allosteric modulation by drugs. Although the precise sites of action of barbiturates have not yet been defined, the second and third transmembrane domains of the β subunit appear to be critical; binding may involve a pocket formed by β-subunit methionine 286 as well as α-subunit methionine 236. In addition to effects on GABA(A) receptors, barbiturates block AMPA/kainate receptors, and they inhibit glutamate release through an effect on P/Q-type high-voltage activated calcium channels. The combination of these various actions likely accounts for their diverse clinical activities. Despite the remarkable progress of the last century, there is still much to learn about the actions of barbiturates that can be applied to the discovery of new, more therapeutically useful agents. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.
Klein, Ophir; Kegler-Ebo, Deena; Su, Jennifer; Smith, Steven; DiMaio, Daniel
1999-01-01
The bovine papillomavirus E5 gene encodes a 44-amino-acid, homodimeric transmembrane protein that is the smallest known transforming protein. The E5 protein transforms cultured fibroblasts by forming a stable complex with the endogenous platelet-derived growth factor (PDGF) β receptor through transmembrane and juxtamembrane interactions, leading to sustained receptor activation. Aspartic acid 33 in the extracellular juxtamembrane region of the E5 protein is important for cell transformation and interaction with the PDGF β receptor. A. N. Meyer et al. (Proc. Natl. Acad. Sci USA 91:4634–4638, 1994) speculated that this residue interacted with lysine 499 on the receptor. We constructed E5 mutants containing all possible substitutions at position 33, as well as several double mutants containing substitutions at aspartic acid 33 and at glutamic acid 36, and we examined the ability of these mutants to transform C127 mouse fibroblasts and to bind to and induce activation of the PDGF β receptor. There was an excellent correlation between the transformation activities of the various mutants and their ability to bind to and activate the PDGF β receptor. Analysis of the mutants demonstrated that a juxtamembrane negative charge on the E5 protein was required for cell transformation and for productive interaction with the PDGF β receptor and indicated that aspartic acid 33 was more important for these activities than was glutamic acid 36. These results are consistent with the existence of an essential juxtamembrane salt bridge between lysine 499 on the PDGF β receptor and an acidic residue in the C terminus of the E5 protein and lend support to our proposed model for the complex between the E5 dimer and the PDGF β receptor. PMID:10074180
Wei, Wei-Chun; Jacobs, Benjamin; Becker, Esther B. E.; Glitsch, Maike D.
2015-01-01
G protein-coupled receptors (GPCRs) are cell surface receptors that detect a wide range of extracellular messengers and convey this information to the inside of cells. Extracellular calcium-sensing receptor (CaSR) and ovarian cancer gene receptor 1 (OGR1) are two GPCRs that sense extracellular Ca2+ and H+, respectively. These two ions are key components of the interstitial fluid, and their concentrations change in an activity-dependent manner. Importantly, the interstitial fluid forms part of the microenvironment that influences cell function in health and disease; however, the exact mechanisms through which changes in the microenvironment influence cell function remain largely unknown. We show that CaSR and OGR1 reciprocally inhibit signaling through each other in central neurons, and that this is lost in their transformed counterparts. Furthermore, strong intracellular acidification impairs CaSR function, but potentiates OGR1 function. Thus, CaSR and OGR1 activities can be regulated in a seesaw manner, whereby conditions promoting signaling through one receptor simultaneously inhibit signaling through the other receptor, potentiating the difference in their relative signaling activity. Our results provide insight into how small but consistent changes in the ionic microenvironment of cells can significantly alter the balance between two signaling pathways, which may contribute to disease progression. PMID:26261299
Delle Donne, K T; Sonsalla, P K
1994-12-01
Methamphetamine (METH)-induced neurotoxicity to nigrostriatal dopaminergic neurons in experimental animals appears to have a glutamatergic component because blockade of N-methyl-D-aspartate receptors prevents the neuropathologic consequences. Because adenosine affords neuroprotection against various forms of glutamate-mediated neuronal damage, the present studies were performed to investigate whether adenosine plays a protective role in METH-induced toxicity. METH-induced decrements in neostriatal dopamine content and tyrosine hydroxylase activity in mice were potentiated by concurrent treatment with caffeine, a nonselective adenosine antagonist that blocks both A1 and A2 adenosine receptors. In contrast, chronic treatment of mice with caffeine through their drinking water for 4 weeks, which increased the number of adenosine A1 receptors in the neostriatum and frontal cortex, followed by drug washout, prevented the neurochemical changes produced by the treatment of mice with METH treatment. In contrast, this treatment did not prevent 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced dopaminergic neurotoxicity. Furthermore, concurrent administration of cyclopentyladenosine, an adenosine A1 receptor agonist, attenuated the METH-induced neurochemical changes. This protection by cyclopentyladenosine was blocked by cyclopentyltheophylline, an A1 receptor antagonist. These results indicate that activation of A1 receptors can protect against METH-induced neurotoxicity in mice.
Metabolism of endocannabinoids.
Biernacki, Michał; Skrzydlewska, Elżbieta
2016-08-11
Endocannabinoids belong to a group of ester, ether and amide derivatives of fatty acids, which are endogenous ligands of receptors CB1, CB2, TRPV1 and GPR55 that are included in the endocannabinoid system of the animal organism. The best known endocannabinoids are: N-arachidonylethanolamide called anandamide (AEA) and 2-arachidonoylglycerol (2-AG). They occur in all organisms, and their highest level is observed in the brain. In this review the mechanisms of synthesis and degradation of both AEA and 2-AG are shown. Endocannabinoids are synthesized from phospholipids (mainly phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol) located in the cell membrane. As a result of arachidonic acid transfer from phosphatidylcholine to phosphatidylethanolamine, N-arachidonoyl phosphatidylethanolamine is formed, which is hydrolyzed to AEA by phospholipase D, C and A2. However, 2-AG is formed during the hydrolysis of phosphatidylinositol catalyzed mainly by DAGL. The primary role of endocannabinoids is the activation of cannabinoid receptors. Both AEA and 2-AG are primarily agonists of the CB1 receptor and to a lower degree CB2 and TRPV1r eceptors, but 2-AG has stronger affinity for these receptors. Through activation of receptors, endocannabinoids affect cellular metabolism and participate in the metabolic processes by receptor-independent pathways. Endocannabinoids which are not bound to the receptors are degraded. The main enzymes responsible for the hydrolysis of AEA and 2-AG are FAAH and MAGL, respectively. Apart from hydrolytic degradation, endocannabinoids may also be oxidized by cyclooxygenase-2, lipoxygenases, and cytochrome P450. It has been shown that the metabolites of both endocannabinoids also have biological significance.
Ménard, Caroline; Quirion, Rémi
2012-01-01
Normal aging is generally characterized by a slow decline of cognitive abilities albeit with marked individual differences. Several animal models have been studied to explore the molecular and cellular mechanisms underlying this phenomenon. The excitatory neurotransmitter glutamate and its receptors have been closely linked to spatial learning and hippocampus-dependent memory processes. For decades, ionotropic glutamate receptors have been known to play a critical role in synaptic plasticity, a form of adaptation regulating memory formation. Over the past 10 years, several groups have shown the importance of group 1 metabotropic glutamate receptor (mGluR) in successful cognitive aging. These G-protein-coupled receptors are enriched in the hippocampal formation and interact physically with other proteins in the membrane including glutamate ionotropic receptors. Synaptic plasticity is crucial to maintain cognitive abilities and long-term depression (LTD) induced by group 1 mGluR activation, which has been linked to memory in the aging brain. The translation and synthesis of proteins by mGluR-LTD modulate ionotropic receptor trafficking and expression of immediate early genes related to cognition. Fragile X syndrome, a genetic form of autism characterized by memory deficits, has been associated to mGluR receptor malfunction and aberrant activation of its downstream signaling pathways. Dysfunction of mGluR could also be involved in neurodegenerative disorders like Alzheimer’s disease (AD). Indeed, beta-amyloid, the main component of insoluble senile plaques and one of the hallmarks of AD, occludes mGluR-dependent LTD leading to diminished functional synapses. This review highlights recent findings regarding mGluR signaling, related synaptic plasticity, and their potential involvement in normal aging and neurological disorders. PMID:23091460
Ménard, Caroline; Quirion, Rémi
2012-01-01
Normal aging is generally characterized by a slow decline of cognitive abilities albeit with marked individual differences. Several animal models have been studied to explore the molecular and cellular mechanisms underlying this phenomenon. The excitatory neurotransmitter glutamate and its receptors have been closely linked to spatial learning and hippocampus-dependent memory processes. For decades, ionotropic glutamate receptors have been known to play a critical role in synaptic plasticity, a form of adaptation regulating memory formation. Over the past 10 years, several groups have shown the importance of group 1 metabotropic glutamate receptor (mGluR) in successful cognitive aging. These G-protein-coupled receptors are enriched in the hippocampal formation and interact physically with other proteins in the membrane including glutamate ionotropic receptors. Synaptic plasticity is crucial to maintain cognitive abilities and long-term depression (LTD) induced by group 1 mGluR activation, which has been linked to memory in the aging brain. The translation and synthesis of proteins by mGluR-LTD modulate ionotropic receptor trafficking and expression of immediate early genes related to cognition. Fragile X syndrome, a genetic form of autism characterized by memory deficits, has been associated to mGluR receptor malfunction and aberrant activation of its downstream signaling pathways. Dysfunction of mGluR could also be involved in neurodegenerative disorders like Alzheimer's disease (AD). Indeed, beta-amyloid, the main component of insoluble senile plaques and one of the hallmarks of AD, occludes mGluR-dependent LTD leading to diminished functional synapses. This review highlights recent findings regarding mGluR signaling, related synaptic plasticity, and their potential involvement in normal aging and neurological disorders.
Chen, Chunhong; Newell, Kim; Lawrence, Gregory J.; Ellis, Jeffrey G.; Anderson, Peter A.; Dodds, Peter N.
2016-01-01
NOD-like receptors (NLRs) are central components of the plant immune system. L6 is a Toll/interleukin-1 receptor (TIR) domain-containing NLR from flax (Linum usitatissimum) conferring immunity to the flax rust fungus. Comparison of L6 to the weaker allele L7 identified two polymorphic regions in the TIR and the nucleotide binding (NB) domains that regulate both effector ligand-dependent and -independent cell death signaling as well as nucleotide binding to the receptor. This suggests that a negative functional interaction between the TIR and NB domains holds L7 in an inactive/ADP-bound state more tightly than L6, hence decreasing its capacity to adopt the active/ATP-bound state and explaining its weaker activity in planta. L6 and L7 variants with a more stable ADP-bound state failed to bind to AvrL567 in yeast two-hybrid assays, while binding was detected to the signaling active variants. This contrasts with current models predicting that effectors bind to inactive receptors to trigger activation. Based on the correlation between nucleotide binding, effector interaction, and immune signaling properties of L6/L7 variants, we propose that NLRs exist in an equilibrium between ON and OFF states and that effector binding to the ON state stabilizes this conformation, thereby shifting the equilibrium toward the active form of the receptor to trigger defense signaling. PMID:26744216
The role of STATs in lung carcinogenesis: an emerging target for novel therapeutics.
Karamouzis, Michalis V; Konstantinopoulos, Panagiotis A; Papavassiliou, Athanasios G
2007-05-01
The signal transducer and activator of transcription (STAT) proteins are a family of latent cytoplasmic transcription factors, which form dimers when activated by cytokine receptors, tyrosine kinase growth factor receptors as well as non-receptor tyrosine kinases. Dimeric STATs translocate to the nucleus, where they bind to specific DNA-response elements in the promoters of target genes, thereby inducing unique gene expression programs often in association with other transcription regulatory proteins. The functional consequence of different STAT proteins activation varies, as their target genes play diverse roles in normal cellular/tissue functions, including growth, apoptosis, differentiation and angiogenesis. Certain activated STATs have been implicated in human carcinogenesis, albeit only few studies have focused into their role in lung tumours. Converging evidence unravels their molecular interplays and complex multipartite regulation, rendering some of them appealing targets for lung cancer treatment with new developing strategies.
Identification of a Novel Splice Variant Isoform of TREM-1 in Human Neutrophil Granules.
Baruah, Sankar; Keck, Kathy; Vrenios, Michelle; Pope, Marshall R; Pearl, Merideth; Doerschug, Kevin; Klesney-Tait, Julia
2015-12-15
Triggering receptor expressed on myeloid cells-1 (TREM-1) is critical for inflammatory signal amplification. Humans have two forms of TREM-1: a membrane receptor, associated with the adaptor DAP12, and a soluble receptor detected at times of infection. The membrane receptor isoform acts synergistically with the TLR pathway to promote cytokine secretion and neutrophil migration, whereas the soluble receptor functions as a counterregulatory molecule. In multiple models of sepsis, exogenous administration of soluble forms of TREM-1 attenuates inflammation and markedly improves survival. Despite intense interest in soluble TREM-1, both as a clinical predictor of survival and as a therapeutic tool, the origin of native soluble TREM-1 remains controversial. Using human neutrophils, we identified a 15-kDa TREM-1 isoform in primary (azurophilic) and secondary (specific) granules. Mass spectrometric analysis, ELISA, and immunoblot confirm that the 15-kDa protein is a novel splice variant form of TREM-1 (TREM-1sv). Neutrophil stimulation with Pseudomonas aeruginosa, LPS, or PAM(3)Cys4 resulted in degranulation and release of TREM-1sv. The addition of exogenous TREM-1sv inhibited TREM-1 receptor-mediated proinflammatory cytokine production. Thus, these data reveal that TREM-1 isoforms simultaneously activate and inhibit inflammation via the canonical membrane TREM-1 molecule and this newly discovered granular isoform, TREM-1sv. Copyright © 2015 by The American Association of Immunologists, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurzburg, Beth A.; Kim, Beomkyu; Tarchevskaya, Svetlana S.
IgE antibodies interact with the high affinity IgE Fc receptor, FcϵRI, and activate inflammatory pathways associated with the allergic response. The IgE-Fc region, comprising the C-terminal domains of the IgE heavy chain, binds FcϵRI and can adopt different conformations ranging from a closed form incompatible with receptor binding to an open, receptor-bound state. A number of intermediate states are also observed in different IgE-Fc crystal forms. To further explore this apparent IgE-Fc conformational flexibility and to potentially trap a closed, inactive state, we generated a series of disulfide bond mutants. Here we describe the structure and biochemical properties of anmore » IgE-Fc mutant that is trapped in the closed, non-receptor binding state via an engineered disulfide at residue 335 (Cys-335). Reduction of the disulfide at Cys-335 restores the ability of IgE-Fc to bind to its high affinity receptor, FcϵRIα. The structure of the Cys-335 mutant shows that its conformation is within the range of previously observed, closed form IgE-Fc structures and that it retains the hydrophobic pocket found in the hinge region of the closed conformation. Locking the IgE-Fc into the closed state with the Cys-335 mutation does not affect binding of two other IgE-Fc ligands, omalizumab and DARPin E2_79, demonstrating selective blocking of the high affinity receptor binding.« less
Tsukamoto, Hisao; Farrens, David L.
2013-01-01
G protein-coupled receptors (GPCRs) undergo dynamic transitions between active and inactive conformations. Usually, these conversions are triggered when the receptor detects an external signal, but some so-called constitutively activating mutations, or CAMs, induce a GPCR to bind and activate G proteins in the absence of external stimulation, in ways still not fully understood. Here, we investigated how a CAM alters the structure of a GPCR and the dynamics involved as the receptor transitions between different conformations. Our approach used site-directed fluorescence labeling (SDFL) spectroscopy to compare opsin, the ligand-free form of the GPCR rhodopsin, with opsin containing the CAM M257Y, focusing specifically on key movements that occur in the sixth transmembrane helix (TM6) during GPCR activation. The site-directed fluorescence labeling data indicate opsin is constrained to an inactive conformation both in detergent micelles and lipid membranes, but when it contains the M257Y CAM, opsin is more dynamic and can interact with a G protein mimetic. Further study of these receptors using tryptophan-induced quenching (TrIQ) methods indicates that in detergent, the CAM significantly increases the population of receptors in the active state, but not in lipids. Subsequent Arrhenius analysis of the TrIQ data suggests that, both in detergent and lipids, the CAM lowers the energy barrier for TM6 movement, a key transition required for conversion between the inactive and active conformations. Together, these data suggest that the lowered energy barrier is a primary effect of the CAM on the receptor dynamics and energetics. PMID:23940032
Chen, Si; Zhi, Zhina; Ruan, Qingqing; Liu, Qingxia; Li, Fen; Wan, Fen; Reinach, Peter S; Chen, Jiangfan; Qu, Jia; Zhou, Xiangtian
2017-04-01
To determine whether dopamine receptor D1 (D1R) signaling pathway activation by bright light (BL) in specific retinal neuronal cell types contributes to inhibiting form-deprivation myopia (FDM) in mice. Mice (3-weeks old) were raised under either normal light (NL: 100-200 lux) or BL (2500-5000 lux) conditions with or without form deprivation. Refraction changes were evaluated with an eccentric infrared photorefractor, and ocular axial components with optical coherence tomography. The D1R antagonist, SCH39166, was intraperitoneally injected daily to evaluate if BL mediates declines in FDM development through D1R activation. Six different biomarkers of retinal neuronal types delineated differential distribution of D1R expression. c-Fos and phosphorylated tyrosine hydroxylase (p-TH) immunofluorescent staining evaluated D1R receptor activation and dopamine synthesis, respectively. Bright light exposure for 4 weeks (6 hours per day) inhibited FDM development by reducing ocular elongation and shifting refraction toward hyperopia compared with changes occurring in NL. SCH39166 injections completely reversed the inhibitory effects of BL on both refraction and ocular elongation. Bright light increased the number of cells expressing p-TH and c-fos. Increases in c-fos+ cells occurred mainly in D1R+ bipolar cells (BCs), especially D1R+ ON-BCs. Bright light increases D1R activity in the BCs of the ON pathway, which is associated with less myopic shift and ocular elongation than those occurring in NL. These declines suggest that increased D1R activity in the ON pathway contributes to the BL suppression of FDM development in mice.
Kishore, Ayush; Purcell, Ryan H; Nassiri-Toosi, Zahra; Hall, Randy A
2016-02-12
The adhesion G protein-coupled receptors (aGPCRs) are a large yet poorly understood family of seven-transmembrane proteins. A defining characteristic of the aGPCR family is the conserved GAIN domain, which has autoproteolytic activity and can cleave the receptors near the first transmembrane domain. Several aGPCRs, including ADGRB1 (BAI1 or B1) and ADGRG1 (GPR56 or G1), have been found to exhibit significantly increased constitutive activity when truncated to mimic GAIN domain cleavage (ΔNT). Recent reports have suggested that the new N-terminal stalk, which is revealed by GAIN domain cleavage, can directly activate aGPCRs as a tethered agonist. We tested this hypothesis in studies on two distinct aGPCRs, B1 and G1, by engineering mutant receptors lacking the entire NT including the stalk (B1- and G1-SL, with "SL" indicating "stalkless"). These receptors were evaluated in a battery of signaling assays and compared with full-length wild-type and cleavage-mimicking (ΔNT) forms of the two receptors. We found that B1-SL, in multiple assays, exhibited robust signaling activity, suggesting that the membrane-proximal stalk region is not necessary for its activation. For G1, however, the results were mixed, with the SL mutant exhibiting robust activity in several signaling assays (including TGFα shedding, activation of NFAT luciferase, and β-arrestin recruitment) but reduced activity relative to ΔNT in a distinct assay (activation of SRF luciferase). These data support a model in which the activation of certain pathways downstream of aGPCRs is stalk-dependent, whereas signaling to other pathways is stalk-independent. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Lowen, Steven B; Rohan, Michael L; Gillis, Timothy E; Thompson, Britta S; Wellons, Clara B W; Andersen, Susan L
2015-01-01
Adolescents are highly vulnerable to addiction and are four times more likely to become addicted at first exposure than at any other age. The dopamine D1 receptor, which is typically overexpressed in the normal adolescent prefrontal cortex, is involved in drug cue responses and is associated with relapse in animal models. In human drug addicts, imaging methods have detected increased activation in response to drug cues in reward- and habit-associated brain regions. These same methods can be applied more quantitatively to rodent models. Here, changes in neuronal activation in response to cocaine-conditioned cues were observed using functional magnetic resonance imaging in juvenile rats that were made to over-express either D1 receptors or green fluorescent protein by viral-mediated transduction. Reduced activation was observed in the amygdala and dopamine cell body regions in the low cue-preferring/control juvenile rats in response to cocaine cues. In contrast, increased activation was observed in the dorsal striatum, nucleus accumbens, prefrontal cortex, and dopamine cell bodies in high cue-preferring/D1 juveniles. The increase in cue salience that is mediated by increased D1 receptor density, rather than excessive cocaine experience, appears to underlie the transition from aversion to reward in cue-induced neural response and may form the basis for habit-forming vulnerability.
Role of pattern recognition receptors of the neurovascular unit in inflamm-aging.
Wilhelm, Imola; Nyúl-Tóth, Ádám; Kozma, Mihály; Farkas, Attila E; Krizbai, István A
2017-11-01
Aging is associated with chronic inflammation partly mediated by increased levels of damage-associated molecular patterns, which activate pattern recognition receptors (PRRs) of the innate immune system. Furthermore, many aging-related disorders are associated with inflammation. PRRs, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs), are expressed not only in cells of the innate immune system but also in other cells, including cells of the neurovascular unit and cerebral vasculature forming the blood-brain barrier. In this review, we summarize our present knowledge about the relationship between activation of PRRs expressed by cells of the neurovascular unit-blood-brain barrier, chronic inflammation, and aging-related pathologies of the brain. The most important damage-associated molecular pattern-sensing PRRs in the brain are TLR2, TLR4, and NLR family pyrin domain-containing protein-1 and pyrin domain-containing protein-3, which are activated during physiological and pathological aging in microglia, neurons, astrocytes, and possibly endothelial cells and pericytes. Copyright © 2017 the American Physiological Society.
Collier, Timothy S; Diraviyam, Karthikeyan; Monsey, John; Shen, Wei; Sept, David; Bose, Ron
2013-08-30
The HER2 receptor tyrosine kinase is a driver oncogene in many human cancers, including breast and gastric cancer. Under physiologic levels of expression, HER2 heterodimerizes with other members of the EGF receptor/HER/ErbB family, and the HER2-HER3 dimer forms one of the most potent oncogenic receptor pairs. Previous structural biology studies have individually crystallized the kinase domains of HER2 and HER3, but the HER2-HER3 kinase domain heterodimer structure has yet to be solved. Using a reconstituted membrane system to form HER2-HER3 kinase domain heterodimers and carboxyl group footprinting mass spectrometry, we observed that HER2 and HER3 kinase domains preferentially form asymmetric heterodimers with HER3 and HER2 monomers occupying the donor and acceptor kinase positions, respectively. Conformational changes in the HER2 activation loop, as measured by changes in carboxyl group labeling, required both dimerization and nucleotide binding but did not require activation loop phosphorylation at Tyr-877. Molecular dynamics simulations on HER2-HER3 kinase dimers identify specific inter- and intramolecular interactions and were in good agreement with MS measurements. Specifically, several intermolecular ionic interactions between HER2 Lys-716-HER3 Glu-909, HER2 Glu-717-HER3 Lys-907, and HER2 Asp-871-HER3 Arg-948 were identified by molecular dynamics. We also evaluated the effect of the cancer-associated mutations HER2 D769H/D769Y, HER3 E909G, and HER3 R948K (also numbered HER3 E928G and R967K) on kinase activity in the context of this new structural model. This study provides valuable insights into the EGF receptor/HER/ErbB kinase structure and interactions, which can guide the design of future therapies.
Identification of an S100A8 Receptor Neuroplastin-β and its Heterodimer Formation with EMMPRIN.
Sakaguchi, Masakiyo; Yamamoto, Mami; Miyai, Masashi; Maeda, Tatsuo; Hiruma, Junichiro; Murata, Hitoshi; Kinoshita, Rie; Winarsa Ruma, I Made; Putranto, Endy Widya; Inoue, Yusuke; Morizane, Shin; Huh, Nam-Ho; Tsuboi, Ryoji; Hibino, Toshihiko
2016-11-01
We previously reported a positive feedback loop between S100A8/A9 and proinflammatory cytokines mediated by extracellular matrix metalloproteinase inducer, an S100A9 receptor. Here, we identify neuroplastin-β as an unreported S100A8 receptor. Neuroplastin-β and extracellular matrix metalloproteinase inducer form homodimers and a heterodimer, and they are co-localized on the surface of cultured normal human keratinocytes. Knockdown of both receptors suppressed cell proliferation and proinflammatory cytokine induction. Upon stimulation with S100A8, neuroplastin-β recruited GRB2 and activated extracellular signal-regulated kinase, resulting in keratinocyte proliferation. Keratinocyte proliferation in response to inflammatory stimuli was accelerated in involucrin promoter-driven S100A8 transgenic mice. Further, S100A8 and S100A9 were strongly up-regulated and co-localized in lesional skin of atopic dermatitis patients. Our results indicate that neuroplastin-β and extracellular matrix metalloproteinase inducer form a functional heterodimeric receptor for S100A8/A9 heterodimer, followed by recruitment of specific adaptor molecules GRB2 and TRAF2, and this signaling pathway is involved in activation of both keratinocyte proliferation and skin inflammation in atopic skin. Suppression of this pathway might have potential for treatment of skin diseases associated with chronic inflammation such as atopic dermatitis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Graber, P; Gretener, D; Herren, S; Aubry, J P; Elson, G; Poudrier, J; Lecoanet-Henchoz, S; Alouani, S; Losberger, C; Bonnefoy, J Y; Kosco-Vilbois, M H; Gauchat, J F
1998-12-01
To study the expression of IL-13 receptor alpha1 (IL-13Ralpha1), specific monoclonal antibodies (mAb) were generated. Surface expression of the IL-13Ralpha1 on B cells, monocytes and T cells was assessed by flow cytometry using these specific mAb. Among tonsillar B cells, the expression was the highest on the IgD+ CD38- B cell subpopulation which is believed to represent naive B cells. Expression was also detectable on a large fraction of the IgD-CD38- B cells but not on CD38+ B cells. Activation under conditions which promote B cell Ig class switching up-regulated the expression of the receptor. However, the same stimuli had an opposite effect for IL-13Ralpha1 expression levels on monocytes. While IL-13Ralpha1 mRNA was clearly detectable in T cell preparations, no surface expression was detected. However, permeabilization of the T cells showed a clear intracellular expression of the receptor. A soluble form of the receptor was immunoprecipitated from the supernatant of activated peripheral T cells, suggesting that T cell IL-13Ralpha1 might have functions unrelated to the capacity to form a type II IL-4/IL-13R with IL-4Ralpha.
Wadosky, Kristine M.
2012-01-01
Many studies have implicated the peroxisome proliferator-activated receptor (PPAR) family of nuclear receptor transcription factors in regulating cardiac substrate metabolism and ATP generation. Recently, evidence from a variety of cell culture and organ systems has implicated ubiquitin and small ubiquitin-like modifier (SUMO) conjugation as post-translational modifications that regulate the activity of PPAR transcription factors and their coreceptors/coactivators. Here we introduce the ubiquitin and SUMO conjugation systems and extensively review how they have been shown to regulate all three PPAR isoforms (PPARα, PPARβ/δ, and PPARγ) in addition to the retinoid X receptor and PPARγ coactivator-1α subunits of the larger PPAR transcription factor complex. We then present how the specific ubiquitin (E3) ligases have been implicated and review emerging evidence that post-translational modifications of PPARs with ubiquitin and/or SUMO may play a role in cardiac disease. Because PPAR activity is perturbed in a variety of forms of heart disease and specific proteins regulate this process (E3 ligases), this may be a fruitful area of investigation with respect to finding new therapeutic targets. PMID:22037188
Webb, Thomas R; Slavish, Jake; George, Rani E; Look, A Thomas; Xue, Liquan; Jiang, Qin; Cui, Xiaoli; Rentrop, Walter B; Morris, Stephan W
2009-01-01
Anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase in the insulin receptor superfamily, was initially identified in constitutively activated oncogenic fusion forms – the most common being nucleophosmin-ALK – in anaplastic large-cell lymphomas, and subsequent studies have identified ALK fusions in diffuse large B-cell lymphomas, systemic histiocytosis, inflammatory myofibroblastic tumors, esophageal squamous cell carcinomas and non-small-cell lung carcinomas. More recently, genomic DNA amplification and protein overexpression, as well as activating point mutations, of ALK have been described in neuroblastomas. In addition to those cancers for which a causative role for aberrant ALK activity is well validated, more circumstantial links implicate the full-length, normal ALK receptor in the genesis of other malignancies – including glioblastoma and breast cancer – via a mechanism of receptor activation involving autocrine and/or paracrine growth loops with the reported ALK ligands, pleiotrophin and midkine. This review summarizes normal ALK biology, the confirmed and putative roles of ALK in the development of human cancers and efforts to target ALK using small-molecule kinase inhibitors. PMID:19275511
Glyceollin I, A Novel Antiestrogenic Phytoalexin Isolated from Activated Soy
USDA-ARS?s Scientific Manuscript database
Glyceollins, a group of novel phytoalexins isolated from activated soy, have recently been demonstrated to be a novel antiestrogen which bind to the estrogen receptor (ER) and inhibit estrogen-induced tumor progression. Our previous publications have focused specifically on inhibition of tumor form...
CLONING AND CHARACTERIZATION OF OSTEOCLAST PRECURSORS FROM THE RAW264.7 CELL LINE
Cuetara, Bethany L. V.; Crotti, Tania N.; O'Donoghue, Anthony J.
2006-01-01
SUMMARY Osteoclasts are bone-resorbing cells that differentiate from macrophage precursors in response to receptor activator of NF-κB (RANKL). In vitro models of osteoclast differentiation are principally based on primary cell culture, which are poorly suited to molecular and transgene studies due to the limitations associated with the use of primary macrophage. RAW264.7 is a transfectable macrophage cell line with the capacity to form osteoclast-like cells. In the present study we have identified osteoclast precursors among clones of RAW264.7 cells. RAW264.7 cell were cloned by limiting dilution and induced to osteoclast differentiation by treatment with recombinant RANKL. Individual RAW264.7 cell clones formed tartrate resistant acid phosphatase (TRAP) positive multinuclear cells to various degrees with RANKL treatment. All clones tested expressed the RANKL receptor RANK. Each of the clones expressed the osteoclast marker genes TRAP and cathepsin-K mRNA with RANKL treatment. However, we noted that only select clones were able to form large, well-spread, TRAP positive multinuclear cells. Clones capable of forming large TRAP positive multinuclear cells also expressed β3 integrin and calcitonin receptor mRNAs and were capable of resorbing a mineralized matrix. All clones tested activated NF-κB with RANKL treatment. cDNA expression profiling of osteoclast precursor RAW264.7 cell clones demonstrates appropriate expression of a large number of genes before and after osteoclastic differentiation. These osteoclast precursor RAW264.7 cell clones provide a valuable model for dissecting the cellular and molecular regulation of osteoclast differentiation and activation. PMID:16948499
Jones, Brian W; Hinkle, Patricia M
2008-07-01
Arrestin binding to agonist-occupied phosphorylated G protein-coupled receptors typically increases the affinity of agonist binding, increases resistance of receptor-bound agonist to removal with high acid/salt buffer, and leads to receptor desensitization and internalization. We tested whether thyrotropin-releasing hormone (TRH) receptors lacking phosphosites in the C-terminal tail could form stable and functional complexes with arrestin. Fibroblasts from mice lacking arrestins 2 and 3 were used to distinguish between arrestin-dependent and -independent effects. Arrestin did not promote internalization or desensitization of a receptor that had key Ser/Thr phosphosites mutated to Ala (4Ala receptor). Nevertheless, arrestin greatly increased acid/salt resistance and the affinity of 4Ala receptor for TRH. Truncation of 4Ala receptor just distal to the key phosphosites (4AlaStop receptor) abolished arrestin-dependent acid/salt resistance but not the effect of arrestin on agonist affinity. Arrestin formed stable complexes with activated wild-type and 4Ala receptors but not with 4AlaStop receptor, as measured by translocation of arrestin-green fluorescent protein to the plasma membrane or chemical cross-linking. An arrestin mutant that does not interact with clathrin and AP2 did not internalize receptor but still promoted high affinity TRH binding, acid/salt resistance, and desensitization. A sterically restricted arrestin mutant did not cause receptor internalization or desensitization but did promote acid/salt resistance and high agonist affinity. The results demonstrate that arrestin binds to proximal or distal phosphosites in the receptor tail. Arrestin binding at either site causes increased agonist affinity and acid/salt resistance, but only the proximal phosphosites evoke the necessary conformational changes in arrestin for receptor desensitization and internalization.
GPCRs as potential therapeutic targets in preeclampsia
McGuane, JT; Conrad, KP
2012-01-01
Preeclampsia is an important obstetric complication that arises in 5% of women after the 20th week of gestation, for which there is no specific therapy and no cure. Although much of the recent investigation in this field has focused on soluble forms of the angiogenic membrane receptor tyrosine kinase Flt1 and the transforming growth factor β co-receptor Endoglin, there is significant clinical potential for several GPCR targets and their agonists or antagonists in preeclampsia. In this review, we discuss several of the most promising candidates in this category, including calcitonin receptor-like receptor / receptor activity modifying protein 1 complexes, the angiotensin AT1, 2 and Mas receptors, and the relaxin receptor RXFP1. We also address some of the controversies surrounding the roles and therapeutic potential of these GPCRs and their (ant)agonists in preeclampsia. PMID:23144646
Navarro, Gemma; Borroto-Escuela, Dasiel; Angelats, Edgar; Etayo, Íñigo; Reyes-Resina, Irene; Pulido-Salgado, Marta; Rodríguez-Pérez, Ana I; Canela, Enric I; Saura, Josep; Lanciego, José Luis; Labandeira-García, José Luis; Saura, Carlos A; Fuxe, Kjell; Franco, Rafael
2018-01-01
Endocannabinoids are important regulators of neurotransmission and, acting on activated microglia, they are postulated as neuroprotective agents. Endocannabinoid action is mediated by CB 1 and CB 2 receptors, which may form heteromeric complexes (CB 1 -CB 2 Hets) with unknown function in microglia. We aimed at establishing the expression and signaling properties of cannabinoid receptors in resting and LPS/IFN-γ-activated microglia. In activated microglia mRNA transcripts increased (2 fold for CB 1 and circa 20 fold for CB 2 ), whereas receptor levels were similar for CB 1 and markedly upregulated for CB 2 ; CB 1 -CB 2 Hets were also upregulated. Unlike in resting cells, CB 2 receptors became robustly coupled to G i in activated cells, in which CB 1 -CB 2 Hets mediated a potentiation effect. Hence, resting cells were refractory while activated cells were highly responsive to cannabinoids. Interestingly, similar results were obtained in cultures treated with ß-amyloid (Aß 1-42 ). Microglial activation markers were detected in the striatum of a Parkinson's disease (PD) model and, remarkably, in primary microglia cultures from the hippocampus of mutant β-amyloid precursor protein (APP Sw,Ind ) mice, a transgenic Alzheimer's disease (AD) model. Also of note was the similar cannabinoid receptor signaling found in primary cultures of microglia from APP Sw,Ind and in cells from control animals activated using LPS plus IFN-γ. Expression of CB 1 -CB 2 Hets was increased in the striatum from rats rendered dyskinetic by chronic levodopa treatment. In summary, our results showed sensitivity of activated microglial cells to cannabinoids, increased CB 1 -CB 2 Het expression in activated microglia and in microglia from the hippocampus of an AD model, and a correlation between levodopa-induced dyskinesia and striatal microglial activation in a PD model. Cannabinoid receptors and the CB 1 -CB 2 heteroreceptor complex in activated microglia have potential as targets in the treatment of neurodegenerative diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands
Chilmonczyk, Zdzisław; Bojarski, Andrzej Jacek; Pilc, Andrzej; Sylte, Ingebrigt
2015-01-01
Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies. PMID:26262615
Cannabinoids for Symptom Management and Cancer Therapy: The Evidence.
Davis, Mellar P
2016-07-01
Cannabinoids bind not only to classical receptors (CB1 and CB2) but also to certain orphan receptors (GPR55 and GPR119), ion channels (transient receptor potential vanilloid), and peroxisome proliferator-activated receptors. Cannabinoids are known to modulate a multitude of monoamine receptors. Structurally, there are 3 groups of cannabinoids. Multiple studies, most of which are of moderate to low quality, demonstrate that tetrahydrocannabinol (THC) and oromucosal cannabinoid combinations of THC and cannabidiol (CBD) modestly reduce cancer pain. Dronabinol and nabilone are better antiemetics for chemotherapy-induced nausea and vomiting (CINV) than certain neuroleptics, but are not better than serotonin receptor antagonists in reducing delayed emesis, and cannabinoids have largely been superseded by neurokinin-1 receptor antagonists and olanzapine; both cannabinoids have been recommended for breakthrough nausea and vomiting among other antiemetics. Dronabinol is ineffective in ameliorating cancer anorexia but does improve associated cancer-related dysgeusia. Multiple cancers express cannabinoid receptors directly related to the degree of anaplasia and grade of tumor. Preclinical in vitro and in vivo studies suggest that cannabinoids may have anticancer activity. Paradoxically, cannabinoid receptor antagonists also have antitumor activity. There are few randomized smoked or vaporized cannabis trials in cancer on which to judge the benefits of these forms of cannabinoids on symptoms and the clinical course of cancer. Smoked cannabis has been found to contain Aspergillosis. Immunosuppressed patients should be advised of the risks of using "medical marijuana" in this regard. Copyright © 2016 by the National Comprehensive Cancer Network.
Dubrovsky, Edward B.; Dubrovskaya, Veronica A.; Bernardo, Travis; Otte, Valerie; DiFilippo, Robert; Bryan, Heather
2011-01-01
Juvenile hormone (JH) regulates a wide variety of biological activities in holometabolous insects, ranging from vitellogenesis and caste determination in adults to the timing of metamorphosis in larvae. The mechanism of JH signaling in such a diverse array of processes remains either unknown or contentious. We previously found that the nuclear receptor gene E75A is activated in S2 cells as a primary response to JH. Here, by expressing an intracellular form of JH esterase, we demonstrate that JH must enter the cell in order to activate E75A. To find intracellular receptors involved in the JH response, we performed an RNAi screen against nuclear receptor genes expressed in this cell line and identified the orphan receptor FTZ-F1. Removal of FTZ-F1 prevents JH activation of E75A, whereas overexpression enhances activation, implicating FTZ-F1 as a critical component of the JH response. FTZ-F1 is bound in vivo to multiple enhancers upstream of E75A, suggesting that it participates in direct JH-mediated gene activation. To better define the role of FTZ-F1 in JH signaling, we investigated interactions with candidate JH receptors and found that the bHLH-PAS proteins MET and GCE both interact with FTZ-F1 and can activate transcription through the FTZ-F1 response element. Removal of endogenous GCE, but not MET, prevents JH activation of E75A. We propose that FTZ-F1 functions as a competence factor by loading JH signaling components to the promoter, thus facilitating the direct regulation of E75A gene expression by JH. PMID:21832074
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cote, Marceline; Zheng, Yi-Min; Albritton, Lorraine M.
2011-12-20
Jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV) are two closely related oncogenic retroviruses that share the same cellular receptor yet exhibit distinct fusogenicity and infectivity. Here, we find that the low fusogenicity of ENTV envelope protein (Env) is not because of receptor binding, but lies in its intrinsic insensitivity to receptor-mediated triggering for fusion at low pH. Distinct from JSRV, shedding of ENTV surface (SU) subunit into culture medium was not enhanced by a soluble form of receptor, Hyal2 (sHyal2), and sHyal2 was unable to effectively inactivate the ENTV pseudovirions. Remarkably, replacing either of the two aminomore » acid residues, N191 or S195, located in the ENTV SU with the corresponding JSRV residues, H191 or G195, markedly increased the Env-mediated membrane fusion activity and infection. Reciprocal amino acid substitutions also partly switched the sensitivities of ENTV and JSRV pseudovirions to sHyal2-mediated SU shedding and inactivation. While N191 is responsible for an extra N-linked glycosylation of ENTV SU relative to that of JSRV, S195 possibly forms a hydrogen bond with a surrounding amino acid residue. Molecular modeling of the pre-fusion structure of JSRV Env predicts that the segment of SU that contains H191 to G195 contacts the fusion peptide and suggests that the H191N and G195S changes seen in ENTV may stabilize its pre-fusion structure against receptor priming and therefore modulate fusion activation by Hyal2. In summary, our study reveals critical determinants in the SU subunits of JSRV and ENTV Env proteins that likely regulate their local structures and thereby differential receptor-mediated fusion activation at low pH, and these findings explain, at least in part, their distinct viral infectivity.« less
Inhibitors for Androgen Receptor Activation Surfaces
2008-09-01
such as FKBP52 or HSP90 bind in vivo, and started a collaboration with Marc Cox at UT El Paso to test these possibilities. Our assays of mutated amino...will complete testing the compounds in full length AR constructs and publish the results. We have begun two collaborations, one with Marc Cox on...Prof. Marc Cox and Dr. Paul Rennie to identify proteins that bind to BF3 so that we may form crystals of the receptor with these proteins and learn more about function of the human androgen receptor.
Wang, Xing; Li, Yun; Liu, Shan; Yu, Xiaoliang; Li, Lin; Shi, Cuilin; He, Wenhui; Li, Jun; Xu, Lei; Hu, Zhilin; Yu, Lu; Yang, Zhongxu; Chen, Qin; Ge, Lin; Zhang, Zili; Zhou, Biqi; Jiang, Xuejun; Chen, She; He, Sudan
2014-01-01
The receptor-interacting kinase-3 (RIP3) and its downstream substrate mixed lineage kinase domain-like protein (MLKL) have emerged as the key cellular components in programmed necrotic cell death. Receptors for the cytokines of tumor necrosis factor (TNF) family and Toll-like receptors (TLR) 3 and 4 are able to activate RIP3 through receptor-interacting kinase-1 and Toll/IL-1 receptor domain-containing adapter inducing IFN-β, respectively. This form of cell death has been implicated in the host-defense system. However, the molecular mechanisms that drive the activation of RIP3 by a variety of pathogens, other than the above-mentioned receptors, are largely unknown. Here, we report that human herpes simplex virus 1 (HSV-1) infection triggers RIP3-dependent necrosis. This process requires MLKL but is independent of TNF receptor, TLR3, cylindromatosis, and host RIP homotypic interaction motif-containing protein DNA-dependent activator of IFN regulatory factor. After HSV-1 infection, the viral ribonucleotide reductase large subunit (ICP6) interacts with RIP3. The formation of the ICP6–RIP3 complex requires the RHIM domains of both proteins. An HSV-1 ICP6 deletion mutant failed to cause effective necrosis of HSV-1–infected cells. Furthermore, ectopic expression of ICP6, but not RHIM mutant ICP6, directly activated RIP3/MLKL-mediated necrosis. Mice lacking RIP3 exhibited severely impaired control of HSV-1 replication and pathogenesis. Therefore, this study reveals a previously uncharacterized host antipathogen mechanism. PMID:25316792
Yang, Yang
2015-01-01
Ambient glutamate plays an important role in pathological conditions, such as stroke, but its role during normal activity is not clear. In addition, it is not clear how ambient glutamate acts on glutamate receptors with varying affinities or subcellular localizations. To address this, we studied “endbulb of Held” synapses, which are formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus. When ambient glutamate was increased by applying the glutamate reuptake inhibitor TFB-TBOA, BCs depolarized as a result of activation of N-methyl-d-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs). Application of antagonists against NMDARs (in 0 Mg2+) or mGluRs caused hyperpolarization, indicating that these receptors were bound by a tonic source of glutamate. AMPA receptors did not show these effects, consistent with their lower glutamate affinity. We also evaluated the subcellular localization of the receptors activated by ambient glutamate. The mGluRs were not activated by synaptic stimulation and thus appear to be exclusively extrasynaptic. By contrast, NMDARs in both synaptic and extrasynaptic compartments were activated by ambient glutamate, as shown using the use-dependent antagonist MK-801. Levels of ambient glutamate appeared to be regulated in a spike-independent manner, and glia likely play a major role. These low levels of ambient glutamate likely have functional consequences, as even low concentrations of TBOA caused significant increases in BC spiking following synaptic stimulation. These results indicate that normal resting potential appears to be poised in the region of maximal sensitivity to small changes in ambient glutamate. PMID:25855696
Morin, Denis
2014-12-01
Congenital nephrogenic diabetes insipidus is a rare hereditary disease with mainly an X-linked inheritance (90% of the cases) but there are also autosomal recessive and dominant forms. Congenital nephrogenic diabetes insipidus is characterized by a resistance of the renal collecting duct to the action of the arginine vasopressin hormone responsible for the inability of the kidney to concentrate urine. The X-linked form is due to inactivating mutations of the vasopressin 2 receptor gene leading to a loss of function of the mutated receptors. Affected males are often symptomatic in the neonatal period with a lack of weight gain, dehydration and hypernatremia but mild phenotypes may also occur. Females carrying the mutation may be asymptomatic but, sometimes, severe polyuria is found due to the random X chromosome inactivation. The autosomal recessive and dominant forms, occurring in both genders, are linked to mutations in the aquaporin-2 gene. The treatment remains difficult, especially in infants, and is based on a low osmotic diet with increased water intake and the use of thiazides and indomethacin. The main goal is to avoid hypernatremic episodes and maintain a good hydration state. Potentially, specific treatment, in some cases of X-linked congenital nephrogenic diabetes insipidus, with pharmacological chaperones such as non-peptide vasopressin-2 receptor antagonists will be available in the future. Conversely, the nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is linked to a constitutive activation of the V(2)-receptor due to activating mutations with clinical and biological features of inappropriate antidiuresis but with low or undetectable plasma arginine vasopressin hormone levels. Copyright © 2014 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.
The P2X7 Receptor in Inflammatory Diseases: Angel or Demon?
Savio, Luiz E. B.; de Andrade Mello, Paola; da Silva, Cleide Gonçalves; Coutinho-Silva, Robson
2018-01-01
Under physiological conditions, adenosine triphosphate (ATP) is present at low levels in the extracellular milieu, being massively released by stressed or dying cells. Once outside the cells, ATP and related nucleotides/nucleoside generated by ectonucleotidases mediate a high evolutionary conserved signaling system: the purinergic signaling, which is involved in a variety of pathological conditions, including inflammatory diseases. Extracellular ATP has been considered an endogenous adjuvant that can initiate inflammation by acting as a danger signal through the activation of purinergic type 2 receptors—P2 receptors (P2Y G-protein coupled receptors and P2X ligand-gated ion channels). Among the P2 receptors, the P2X7 receptor is the most extensively studied from an immunological perspective, being involved in both innate and adaptive immune responses. P2X7 receptor activation induces large-scale ATP release via its intrinsic ability to form a membrane pore or in association with pannexin hemichannels, boosting purinergic signaling. ATP acting via P2X7 receptor is the second signal to the inflammasome activation, inducing both maturation and release of pro-inflammatory cytokines, such as IL-1β and IL-18, and the production of reactive nitrogen and oxygen species. Furthermore, the P2X7 receptor is involved in caspases activation, as well as in apoptosis induction. During adaptive immune response, P2X7 receptor modulates the balance between the generation of T helper type 17 (Th17) and T regulatory (Treg) lymphocytes. Therefore, this receptor is involved in several inflammatory pathological conditions. In infectious diseases and cancer, P2X7 receptor can have different and contrasting effects, being an angel or a demon depending on its level of activation, cell studied, type of pathogen, and severity of infection. In neuroinflammatory and neurodegenerative diseases, P2X7 upregulation and function appears to contribute to disease progression. In this review, we deeply discuss P2X7 receptor dual function and its pharmacological modulation in the context of different pathologies, and we also highlight the P2X7 receptor as a potential target to treat inflammatory related diseases. PMID:29467654
Navakkode, Sheeja; Korte, Martin
2014-04-01
Cognitive impairment is one of the most important side effects associated with cannabis drug abuse, as well as the serious issue concerning the therapeutic use of cannabinoids. Cognitive impairments and neuropsychiatric symptoms are caused by early synaptic dysfunctions, such as loss of synaptic connections in different brain structures including the hippocampus, a region that is believed to play an important role in certain forms of learning and memory. We report here that metaplastic priming of synapses with a cannabinoid type 1 receptor (CB1 receptor) agonist, WIN55,212-2 (WIN55), significantly impaired long-term potentiation in the apical dendrites of CA1 pyramidal neurons. Interestingly, the CB1 receptor exerts its effect by altering the balance of protein synthesis machinery towards higher protein production. Therefore the activation of CB1 receptor, prior to strong tetanization, increased the propensity to produce new proteins. In addition, WIN55 priming resulted in the expression of late-LTP in a synaptic input that would have normally expressed early-LTP, thus confirming that WIN55 priming of LTP induces new synthesis of plasticity-related proteins. Furthermore, in addition to the effects on protein translation, WIN55 also induced synaptic deficits due to the ability of CB1 receptors to inhibit the release of acetylcholine, mediated by both muscarinic and nicotinic acetylcholine receptors. Taken together this supports the notion that the modulation of cholinergic activity by CB1 receptor activation is one mechanism that regulates the synthesis of plasticity-related proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.
Graadt van Roggen, J F; van der Westhuyzen, D R; Coetzee, G A; Marais, A D; Steyn, K; Langenhoven, E; Kotze, M J
1995-06-01
Three founder-related gene mutations (FH Afrikaner-1, -2, and -3) that affect the LDL receptor are responsible for 90% of the familial hypercholesterolemia (FH) in South African Afrikaners. Patients heterozygous for the FH Afrikaner-1 (FH1) mutation, which results in receptors having approximately 20% of normal receptor activity, have significantly lower plasma cholesterol levels and milder clinical symptoms than heterozygotes with the FH Afrikaner-2 mutation, which completely abolishes LDL receptor activity. In this study we re-created the FH3 mutation (Asp154-->Asn) in exon 4 by site-directed mutagenesis and analyzed the expression of the mutant receptors in Chinese hamster ovary cells. The mutation resulted in the formation of LDL receptors that are markedly defective in their ability to bind LDL, whereas binding of apoE-containing beta-VLDL is less affected. The mutant receptors are poorly expressed on the cell surface as a result of significant degradation of receptor precursors. The plasma cholesterol levels of 31 FH3 heterozygotes were similar to FH1 heterozygotes but significantly lower than FH2 heterozygotes. The FH1 and FH3 heterozygotes also tended to be less severely affected clinically (by coronary heart disease and xanthomata) than FH2 patients. This study demonstrates that mutational heterogeneity in the LDL receptor gene influences the phenotypic expression of heterozygous FH and that severity of expression correlates with the activity of the LDL receptor measured in vitro. The results further indicate that knowledge of the specific mutation underlying FH in heterozygotes is valuable in determining the potential risk of premature atherosclerosis and should influence the clinical management of FH patients.
Structure of a nanobody-stabilized active state of the β(2) adrenoceptor.
Rasmussen, Søren G F; Choi, Hee-Jung; Fung, Juan Jose; Pardon, Els; Casarosa, Paola; Chae, Pil Seok; Devree, Brian T; Rosenbaum, Daniel M; Thian, Foon Sun; Kobilka, Tong Sun; Schnapp, Andreas; Konetzki, Ingo; Sunahara, Roger K; Gellman, Samuel H; Pautsch, Alexander; Steyaert, Jan; Weis, William I; Kobilka, Brian K
2011-01-13
G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviours in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein. We generated a camelid antibody fragment (nanobody) to the human β(2) adrenergic receptor (β(2)AR) that exhibits G protein-like behaviour, and obtained an agonist-bound, active-state crystal structure of the receptor-nanobody complex. Comparison with the inactive β(2)AR structure reveals subtle changes in the binding pocket; however, these small changes are associated with an 11 Å outward movement of the cytoplasmic end of transmembrane segment 6, and rearrangements of transmembrane segments 5 and 7 that are remarkably similar to those observed in opsin, an active form of rhodopsin. This structure provides insights into the process of agonist binding and activation.
Development and Function of CD94-Deficient Natural Killer Cells
Orr, Mark T.; Wu, Jun; Fang, Min; Sigal, Luis J.; Spee, Pieter; Egebjerg, Thomas; Dissen, Erik; Fossum, Sigbjørn; Phillips, Joseph H.; Lanier, Lewis L.
2010-01-01
The CD94 transmembrane-anchored glycoprotein forms disulfide-bonded heterodimers with the NKG2A subunit to form an inhibitory receptor or with the NKG2C or NKG2E subunits to assemble a receptor complex with activating DAP12 signaling proteins. CD94 receptors expressed on human and mouse NK cells and T cells have been proposed to be important in NK cell tolerance to self, play an important role in NK cell development, and contribute to NK cell-mediated immunity to certain infections including human cytomegalovirus. We generated a gene-targeted CD94-deficient mouse to understand the role of CD94 receptors in NK cell biology. CD94-deficient NK cells develop normally and efficiently kill NK cell-susceptible targets. Lack of these CD94 receptors does not alter control of mouse cytomegalovirus, lymphocytic choriomeningitis virus, vaccinia virus, or Listeria monocytogenes. Thus, the expression of CD94 and its associated NKG2A, NKG2C, and NKG2E subunits is dispensable for NK cell development, education, and many NK cell functions. PMID:21151939
Development and function of CD94-deficient natural killer cells.
Orr, Mark T; Wu, Jun; Fang, Min; Sigal, Luis J; Spee, Pieter; Egebjerg, Thomas; Dissen, Erik; Fossum, Sigbjørn; Phillips, Joseph H; Lanier, Lewis L
2010-12-03
The CD94 transmembrane-anchored glycoprotein forms disulfide-bonded heterodimers with the NKG2A subunit to form an inhibitory receptor or with the NKG2C or NKG2E subunits to assemble a receptor complex with activating DAP12 signaling proteins. CD94 receptors expressed on human and mouse NK cells and T cells have been proposed to be important in NK cell tolerance to self, play an important role in NK cell development, and contribute to NK cell-mediated immunity to certain infections including human cytomegalovirus. We generated a gene-targeted CD94-deficient mouse to understand the role of CD94 receptors in NK cell biology. CD94-deficient NK cells develop normally and efficiently kill NK cell-susceptible targets. Lack of these CD94 receptors does not alter control of mouse cytomegalovirus, lymphocytic choriomeningitis virus, vaccinia virus, or Listeria monocytogenes. Thus, the expression of CD94 and its associated NKG2A, NKG2C, and NKG2E subunits is dispensable for NK cell development, education, and many NK cell functions.
Witters, Lois; Scherle, Peggy; Friedman, Steven; Fridman, Jordan; Caulder, Eian; Newton, Robert; Lipton, Allan
2008-09-01
The ErbB family of receptors is overexpressed in numerous human tumors. Overexpression correlates with poor prognosis and resistance to therapy. Use of ErbB-specific antibodies to the receptors (Herceptin or Erbitux) or ErbB-specific small-molecule inhibitors of the receptor tyrosine kinase activity (Iressa or Tarceva) has shown clinical efficacy in several solid tumors. An alternative method of affecting ErbB-initiated tumor growth and survival is to block sheddase activity. Sheddase activity is responsible for cleavage of multiple ErbB ligands and receptors, a necessary step in availability of the soluble, active form of the ligand and a constitutively activated ligand-independent receptor. This sheddase activity is attributed to the ADAM (a disintegrin and metalloprotease) family of proteins. ADAM 10 is the main sheddase of epidermal growth factor (EGF) and HER-2/neu cleavage, whereas ADAM17 is required for cleavage of additional EGF receptor (EGFR) ligands (transforming growth factor-alpha, amphiregulin, heregulin, heparin binding EGF-like ligand). This study has shown that addition of INCB3619, a potent inhibitor of ADAM10 and ADAM17, reduces in vitro HER-2/neu and amphiregulin shedding, confirming that it interferes with both HER-2/neu and EGFR ligand cleavage. Combining INCB3619 with a lapatinib-like dual inhibitor of EGFR and HER-2/neu kinases resulted in synergistic growth inhibition in MCF-7 and HER-2/neu-transfected MCF-7 human breast cancer cells. Combining the INCB7839 second-generation sheddase inhibitor with lapatinib prevented the growth of HER-2/neu-positive BT474-SC1 human breast cancer xenografts in vivo. These results suggest that there may be an additional clinical benefit of combining agents that target the ErbB pathways at multiple points.
Gong, Chunhong; Zhang, Yi; Shankaran, Harish; ...
2014-10-02
Human epidermal growth factor receptors (HER, also known as ErbB) drive cellular proliferation, pro-survival and stress responses by activating several downstream kinases, in particular ERK, p38, JNK (SAPK), the PI3K/AKT, as well as various transcriptional regulators such as STAT3. When co-expressed, first three members of HER family (HER1-3) can form homo- and hetero-dimers. Based on the considerable evidence which suggest that every receptor dimer activates intracellular signaling pathways differentially, we hypothesized that the HER dimerization pattern is a better predictor of downstream signaling than the total receptor activation levels. We validated our hypothesis using a combination of model-based analysis tomore » quantify the HER dimerization patterns and multi-factorial experiments where HER dimerization patterns and signaling crosstalk were rationally perturbed. We have measured the activation of HER1-3 receptors and of the sentinel signaling proteins ERK, AKT, p38, JNK, STAT3 as a function of time in a panel of human mammary epithelial (HME) cells expressing different levels of HER1-3 stimulated with various ligand combinations. Our analysis using multiple ways of clustering the activation data has confirmed that the HER receptor dimer is a better predictor of the signaling through p38, ERK and AKT pathways than the total HER receptor expression and activation levels. Targeted inhibition studies to identify the causal effects allowed us to obtain a consensus regulatory interaction model, which revealed that STAT3 occupies a central role in the crosstalk between the studied pathways.« less
Strutt, David; Madder, Daisy; Artymiuk, Peter J.
2012-01-01
Members of the Frizzled family of sevenpass transmembrane receptors signal via the canonical Wnt pathway and also via noncanonical pathways of which the best characterized is the planar polarity pathway. Activation of both canonical and planar polarity signaling requires interaction between Frizzled receptors and cytoplasmic proteins of the Dishevelled family; however, there has been some dispute regarding whether the Frizzled–Dishevelled interactions are the same in both cases. Studies looking at mutated forms of Dishevelled suggested that stable recruitment of Dishevelled to membranes by Frizzled was required only for planar polarity activity, implying that qualitatively different Frizzled–Dishevelled interactions underlie canonical signaling. Conversely, studies looking at the sequence requirements of Frizzled receptors in the fruit fly Drosophila melanogaster for canonical and planar polarity signaling have concluded that there is most likely a common mechanism of action. To understand better Frizzled receptor function, we have carried out a large-scale mutagenesis in Drosophila to isolate novel mutations in frizzled that affect planar polarity activity and have identified a group of missense mutations in cytosolic-facing regions of the Frizzled receptor that block Dishevelled recruitment. Interestingly, although some of these affect both planar polarity and canonical activity, as previously reported for similar lesions, we find a subset that affect only planar polarity activity. These results support the view that qualitatively different Frizzled–Dishevelled interactions underlie planar polarity and canonical Wnt signaling. PMID:23023003
Vaidya, Aditya S; Peterson, Francis C; Yarmolinsky, Dmitry; Merilo, Ebe; Verstraeten, Inge; Park, Sang-Youl; Elzinga, Dezi; Kaundal, Amita; Helander, Jonathan; Lozano-Juste, Jorge; Otani, Masato; Wu, Kevin; Jensen, Davin R; Kollist, Hannes; Volkman, Brian F; Cutler, Sean R
2017-11-17
Increasing drought and diminishing freshwater supplies have stimulated interest in developing small molecules that can be used to control transpiration. Receptors for the plant hormone abscisic acid (ABA) have emerged as key targets for this application, because ABA controls the apertures of stomata, which in turn regulate transpiration. Here, we describe the rational design of cyanabactin, an ABA receptor agonist that preferentially activates Pyrabactin Resistance 1 (PYR1) with low nanomolar potency. A 1.63 Å X-ray crystallographic structure of cyanabactin in complex with PYR1 illustrates that cyanabactin's arylnitrile mimics ABA's cyclohexenone oxygen and engages the tryptophan lock, a key component required to stabilize activated receptors. Further, its sulfonamide and 4-methylbenzyl substructures mimic ABA's carboxylate and C6 methyl groups, respectively. Isothermal titration calorimetry measurements show that cyanabactin's compact structure provides ready access to high ligand efficiency on a relatively simple scaffold. Cyanabactin treatments reduce Arabidopsis whole-plant stomatal conductance and activate multiple ABA responses, demonstrating that its in vitro potency translates to ABA-like activity in vivo. Genetic analyses show that the effects of cyanabactin, and the previously identified agonist quinabactin, can be abolished by the genetic removal of PYR1 and PYL1, which form subclade A within the dimeric subfamily III receptors. Thus, cyanabactin is a potent and selective agonist with a wide spectrum of ABA-like activities that defines subfamily IIIA receptors as key target sites for manipulating transpiration.
Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors
Woods, Kristina N.; Pfeffer, Jürgen; Dutta, Arpana; Klein-Seetharaman, Judith
2016-01-01
G protein-coupled receptors are a large family of membrane proteins activated by a variety of structurally diverse ligands making them highly adaptable signaling molecules. Despite recent advances in the structural biology of this protein family, the mechanism by which ligands induce allosteric changes in protein structure and dynamics for its signaling function remains a mystery. Here, we propose the use of terahertz spectroscopy combined with molecular dynamics simulation and protein evolutionary network modeling to address the mechanism of activation by directly probing the concerted fluctuations of retinal ligand and transmembrane helices in rhodopsin. This approach allows us to examine the role of conformational heterogeneity in the selection and stabilization of specific signaling pathways in the photo-activation of the receptor. We demonstrate that ligand-induced shifts in the conformational equilibrium prompt vibrational resonances in the protein structure that link the dynamics of conserved interactions with fluctuations of the active-state ligand. The connection of vibrational modes creates an allosteric association of coupled fluctuations that forms a coherent signaling pathway from the receptor ligand-binding pocket to the G-protein activation region. Our evolutionary analysis of rhodopsin-like GPCRs suggest that specific allosteric sites play a pivotal role in activating structural fluctuations that allosterically modulate functional signals. PMID:27849063
Crystal structure of human IRAK1.
Wang, Li; Qiao, Qi; Ferrao, Ryan; Shen, Chen; Hatcher, John M; Buhrlage, Sara J; Gray, Nathanael S; Wu, Hao
2017-12-19
Interleukin 1 (IL-1) receptor-associated kinases (IRAKs) are serine/threonine kinases that play critical roles in initiating innate immune responses against foreign pathogens and other types of dangers through their role in Toll-like receptor (TLR) and interleukin 1 receptor (IL-1R) mediated signaling pathways. Upon ligand binding, TLRs and IL-1Rs recruit adaptor proteins, such as myeloid differentiation primary response gene 88 (MyD88), to the membrane, which in turn recruit IRAKs via the death domains in these proteins to form the Myddosome complex, leading to IRAK kinase activation. Despite their biological and clinical significance, only the IRAK4 kinase domain structure has been determined among the four IRAK family members. Here, we report the crystal structure of the human IRAK1 kinase domain in complex with a small molecule inhibitor. The structure reveals both similarities and differences between IRAK1 and IRAK4 and is suggestive of approaches to develop IRAK1- or IRAK4-specific inhibitors for potential therapeutic applications. While the IRAK4 kinase domain is capable of homodimerization in the unphosphorylated state, we found that the IRAK1 kinase domain is constitutively monomeric regardless of its phosphorylation state. Additionally, the IRAK1 kinase domain forms heterodimers with the phosphorylated, but not unphosphorylated, IRAK4 kinase domain. Collectively, these data indicate a two-step kinase activation process in which the IRAK4 kinase domain first homodimerizes in the Myddosome, leading to its trans -autophosphorylation and activation. The phosphorylated IRAK4 kinase domain then forms heterodimers with the IRAK1 kinase domain within the Myddosome, leading to its subsequent phosphorylation and activation.
Fiser, Radovan; Linhartova, Irena; Osicka, Radim; Bumba, Ladislav; Hewlett, Erik L.; Benz, Roland; Sebo, Peter
2013-01-01
A large subgroup of the repeat in toxin (RTX) family of leukotoxins of Gram-negative pathogens consists of pore-forming hemolysins. These can permeabilize mammalian erythrocytes (RBCs) and provoke their colloid osmotic lysis (hemolytic activity). Recently, ATP leakage through pannexin channels and P2X receptor-mediated opening of cellular calcium and potassium channels were implicated in cell permeabilization by pore-forming toxins. In the study described here, we examined the role played by purinergic signaling in the cytolytic action of two RTX toxins that form pores of different sizes. The cytolytic potency of ApxIA hemolysin of Actinobacillus pleuropneumoniae, which forms pores about 2.4 nm wide, was clearly reduced in the presence of P2X7 receptor antagonists or an ATP scavenger, such as pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS), Brilliant Blue G, ATP oxidized sodium salt, or hexokinase. In contrast, antagonists of purinergic signaling had no impact on the hemolytic potency of the adenylate cyclase toxin-hemolysin (CyaA) of Bordetella pertussis, which forms pores of 0.6 to 0.8 nm in diameter. Moreover, the conductance of pores formed by ApxIA increased with the toxin concentration, while the conductance of the CyaA single pore units was constant at various toxin concentrations. However, the P2X7 receptor antagonist PPADS inhibited in a concentration-dependent manner the exacerbated hemolytic activity of a CyaA-ΔN489 construct (lacking 489 N-terminal residues of CyaA), which exhibited a strongly enhanced pore-forming propensity (>20-fold) and also formed severalfold larger conductance units in planar lipid bilayers than intact CyaA. These results point to a pore size threshold of purinergic amplification involvement in cell permeabilization by pore-forming RTX toxins. PMID:24082076
NASA Astrophysics Data System (ADS)
Hudson, Christine C.; Oakley, Robert H.; Cruickshank, Rachael D.; Rhem, Shay M.; Loomis, Carson R.
2002-06-01
G protein-coupled receptors (GPCRs) are historically the richest targets for drug discovery, accounting for nearly 60 percent of prescription drugs. The ligands and functions of only 200 out of possibly 1000 GPCRs are known. Screening methods that directly and accurately measure GPCR activation and inhibition are required to identify ligands for orphan receptors and cultivate superior drugs for known GPCRs. Norak Biosciences utilizes the redistribution of a fluorescently-labeled protein, arrestin, as a novel screen for monitoring GPCR activation. In contrast to the present methods of analyzing GPCR function, the power of the Transfluor technology is in its simplicity, large signal to noise ratio, and applicability to all GPCRs. Here, we demonstrate that the Transfluor technology can be automated and quantitated on high throughput image analysis systems. Cells transfected with an arrestin-green fluorescent protein conjugate and the neurokinin-1 GPCR were seeded on 96-well plates. Activation of the NK-1 receptor with Substance P induced translocation of arrestin-GFP from the cytosol to the receptor. Image quantitation of the arrestin-GFP translocation was used to generate dose dependent curves. These results reveal that the Transfluor technology combined with an image analysis system forms a universal platform capable of measuring ligand-receptor interactions for all GPCRs.
Cutolo, Pasquale; Basdevant, Nathalie; Bernadat, Guillaume; Bachelerie, Françoise; Ha-Duong, Tâp
2017-02-01
Despite the recent resolutions of the crystal structure of the chemokine receptor CXCR4 in complex with small antagonists or viral chemokine, a description at the molecular level of the interactions between the full-length CXCR4 and its endogenous ligand, the chemokine CXCL12, in relationship with the receptor recognition and activation, is not yet completely elucidated. Moreover, since CXCR4 is able to form dimers, the question of whether the CXCR4-CXCL12 complex has a 1:1 or 2:1 preferential stoichiometry is still an open question. We present here results of coarse-grained protein-protein docking and molecular dynamics simulations of CXCL12 in association with CXCR4 in monomeric and dimeric states. Our proposed models for the 1:1 and 2:1 CXCR4-CXCL12 quaternary structures are consistent with recognition and activation motifs of both partners provided by the available site-directed mutagenesis data. Notably, we observed that in the 2:1 complex, the chemokine N-terminus makes more steady contacts with the receptor residues critical for binding and activation than in the 1:1 structure, suggesting that the 2:1 stoichiometry would favor the receptor signaling activity with respect to the 1:1 association.
Conformational equilibria of light-activated rhodopsin in nanodiscs
Van Eps, Ned; Caro, Lydia N.; Morizumi, Takefumi; Kusnetzow, Ana Karin; Szczepek, Michal; Hofmann, Klaus Peter; Bayburt, Timothy H.; Sligar, Stephen G.; Ernst, Oliver P.; Hubbell, Wayne L.
2017-01-01
Conformational equilibria of G-protein–coupled receptors (GPCRs) are intimately involved in intracellular signaling. Here conformational substates of the GPCR rhodopsin are investigated in micelles of dodecyl maltoside (DDM) and in phospholipid nanodiscs by monitoring the spatial positions of transmembrane helices 6 and 7 at the cytoplasmic surface using site-directed spin labeling and double electron–electron resonance spectroscopy. The photoactivated receptor in DDM is dominated by one conformation with weak pH dependence. In nanodiscs, however, an ensemble of pH-dependent conformational substates is observed, even at pH 6.0 where the MIIbH+ form defined by proton uptake and optical spectroscopic methods is reported to be the sole species present in native disk membranes. In nanodiscs, the ensemble of substates in the photoactivated receptor spontaneously decays to that characteristic of the inactive state with a lifetime of ∼16 min at 20 °C. Importantly, transducin binding to the activated receptor selects a subset of the ensemble in which multiple substates are apparently retained. The results indicate that in a native-like lipid environment rhodopsin activation is not analogous to a simple binary switch between two defined conformations, but the activated receptor is in equilibrium between multiple conformers that in principle could recognize different binding partners. PMID:28373559
His-Tag-Mediated Dimerization of Chemoreceptors Leads to Assembly of Functional Nanoarrays.
Haglin, Elizabeth R; Yang, Wen; Briegel, Ariane; Thompson, Lynmarie K
2017-11-07
Transmembrane chemotaxis receptors are found in bacteria in extended hexagonal arrays stabilized by the membrane and by cytosolic binding partners, the kinase CheA and coupling protein CheW. Models of array architecture and assembly propose receptors cluster into trimers of dimers that associate with one CheA dimer and two CheW monomers to form the minimal "core unit" necessary for signal transduction. Reconstructing in vitro chemoreceptor ternary complexes that are homogeneous and functional and exhibit native architecture remains a challenge. Here we report that His-tag-mediated receptor dimerization with divalent metals is sufficient to drive assembly of nativelike functional arrays of a receptor cytoplasmic fragment. Our results indicate receptor dimerization initiates assembly and precedes formation of ternary complexes with partial kinase activity. Restoration of maximal kinase activity coincides with a shift to larger complexes, suggesting that kinase activity depends on interactions beyond the core unit. We hypothesize that achieving maximal activity requires building core units into hexagons and/or coalescing hexagons into the extended lattice. Overall, the minimally perturbing His-tag-mediated dimerization leads to assembly of chemoreceptor arrays with native architecture and thus serves as a powerful tool for studying the assembly and mechanism of this complex and other multiprotein complexes.
Cohen, S A; Trikha, M; Mascelli, M A
2000-01-01
Abciximab (ReoPro) is a mouse-human chimeric monoclonal antibody Fab fragment of the parent murine monoclonal antibody 7E3, and was the first of these agents approved for use as adjunct therapy for the prevention of cardiac ischemic complications in patients undergoing percutaneous coronary intervention (PCI). Abciximab binds with high avidity to both the non-activated and activated form of the GPIIb/IIIa receptor of platelets, the major adhesion receptor involved in aggregation. Additional cardiovascular indications for abciximab are unstable angina, carotid stenting, ischemic stroke and peripheral vascular diseases. Abciximab also interacts with two other integrin receptors; the a av b b3 receptor, which is present in low numbers on platelets but in high density on activated endothelial and smooth muscle cells, and a aMb b2 integrin which is present on activated leukocytes. Cell types that express integrins GPIIb/IIIa and a av b b3 such as platelets, endothelial and tumor cells have been implicated in angiogenesis, tumor growth and metastasis. Since abciximab interacts with high avidity to integrins GPIIb/IIIa and a av b b3, it is reasonable to assume that it may possess anti-angiogenic properties in angiogenesis-related diseases, as well as anti-metastastatic properties in case of disseminating tumors expressing the target integrin receptors.
The emerging role of the endocannabinoid system in cardiovascular disease
2009-01-01
Endocannabinoids are endogenous bioactive lipid mediators present both in the brain and various peripheral tissues, which exert their biological effects via interaction with specific G-protein-coupled cannabinoid receptors, the CB1 and CB2. Pathological overactivation of the endocannabinoid system (ECS) in various forms of shock and heart failure may contribute to the underlying pathology and cardiodepressive state by the activation of the cardiovascular CB1 receptors. Furthermore, tonic activation of CB1 receptors by endocannabinoids has also been implicated in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes, such as plasma lipid alterations, abdominal obesity, hepatic steatosis, inflammation, and insulin and leptin resistance. In contrast, activation of CB2 receptors in immune cells exerts various immunomodulatory effects, and the CB2 receptors in endothelial and inflammatory cells appear to limit the endothelial inflammatory response, chemotaxis, and inflammatory cell adhesion and activation in atherosclerosis and reperfusion injury. Here, we will overview the cardiovascular actions of endocannabinoids and the growing body of evidence implicating the dysregulation of the ECS in a variety of cardiovascular diseases. We will also discuss the therapeutic potential of the modulation of the ECS by selective agonists/antagonists in various cardiovascular disorders associated with inflammation and tissue injury, ranging from myocardial infarction and heart failure to atherosclerosis and cardiometabolic disorders. PMID:19357846
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christie, R.H.; Chung, Haeyong; Rebeck, G.W.
1996-04-01
The very low density lipoprotein receptor (VLDL-r) is a cell-surface molecule specialized for the internalization of multiple diverse ligands, including apolipoprotein E (apoE)-containing lipoprotein particles, via clathrin-coated pits. Its structure is similar to the low-density lipoprotein receptor (LDL-r), although the two have substantially different systemic distributions and regulatory pathways. The present work examines the distribution of VLDL-r in the central nervous system (CNS) and in relation to senile plaques in Alzheimer disease (AD). VLDL-r is present on resting and activated microglia, particularly those associated with senile plaques (SPs). VLDL-r immunoreactivity is also found in cortical neurons. Two exons of VLDL-rmore » mRNA are differentially spliced in the mature receptor mRNA. One set of splice forms gives rise to receptors containing (or lacking) an extracellular O-linked glycosylation domain near the transmembrane portion of the molecule. The other set of splice forms appears to be brain-specific, and is responsible for the presence or absence of one of the cysteine-rich repeat regions in the binding region of the molecule. Ratios of the receptor variants generated from these splice forms do not differ substantially across different cortical areas or in AD. We hypothesize that VLDL-r might contribute to metabolism of apoE and apoE/A{beta} complexes in the brain. Further characterization of apoE receptors in Alzheimer brain may help lay the groundwork for understanding the role of apoE in the CNS and in the pathophysiology of AD. 43 refs., 5 figs.« less
Dynamic Cholesterol-Conditioned Dimerization of the G Protein Coupled Chemokine Receptor Type 4
Kranz, Franziska
2016-01-01
G protein coupled receptors (GPCRs) allow for the transmission of signals across biological membranes. For a number of GPCRs, this signaling was shown to be coupled to prior dimerization of the receptor. The chemokine receptor type 4 (CXCR4) was reported before to form dimers and their functionality was shown to depend on membrane cholesterol. Here, we address the dimerization pattern of CXCR4 in pure phospholipid bilayers and in cholesterol-rich membranes. Using ensembles of molecular dynamics simulations, we show that CXCR4 dimerizes promiscuously in phospholipid membranes. Addition of cholesterol dramatically affects the dimerization pattern: cholesterol binding largely abolishes the preferred dimer motif observed for pure phospholipid bilayers formed mainly by transmembrane helices 1 and 7 (TM1/TM5-7) at the dimer interface. In turn, the symmetric TM3,4/TM3,4 interface is enabled first by intercalating cholesterol molecules. These data provide a molecular basis for the modulation of GPCR activity by its lipid environment. PMID:27812115
Structure of the full-length glucagon class B G protein-coupled receptor
Zhang, Haonan; Qiao, Anna; Yang, Dehua; Yang, Linlin; Dai, Antao; de Graaf, Chris; Reedtz-Runge, Steffen; Dharmarajan, Venkatasubramanian; Zhang, Hui; Han, Gye Won; Grant, Thomas D.; Sierra, Raymond G.; Weierstall, Uwe; Nelson, Garrett; Liu, Wei; Wu, Yanhong; Ma, Limin; Cai, Xiaoqing; Lin, Guangyao; Wu, Xiaoai; Geng, Zhi; Dong, Yuhui; Song, Gaojie; Griffin, Patrick R.; Lau, Jesper; Cherezov, Vadim; Yang, Huaiyu; Hanson, Michael A.; Stevens, Raymond C.; Zhao, Qiang; Jiang, Hualiang; Wang, Ming-Wei; Wu, Beili
2017-01-01
The human glucagon receptor (GCGR) belongs to the class B G protein-coupled receptor (GPCR) family and plays a key role in glucose homeostasis and the pathophysiology of type 2 diabetes. Here we report the 3.0 Å crystal structure of full-length GCGR containing both extracellular domain (ECD) and transmembrane domain (TMD) in an inactive conformation. The two domains are connected by a 12-residue segment termed the ‘stalk’, which adopts a β-strand conformation, instead of forming an α-helix as observed in the previously solved structure of GCGR-TMD. The first extracellular loop (ECL1) exhibits a β-hairpin conformation and interacts with the stalk to form a compact β-sheet structure. Hydrogen/deuterium exchange, disulfide cross-linking and molecular dynamics studies suggest that the stalk and ECL1 play critical roles in modulating peptide ligand binding and receptor activation. These insights into the full-length GCGR structure deepen our understanding about the signaling mechanisms of class B GPCRs. PMID:28514451
Evolution of Abscisic Acid Synthesis and Signaling Mechanisms
Hauser, Felix; Waadt, Rainer; Schroeder, Julian I.
2011-01-01
The plant hormone abscisic acid (ABA) mediates seed dormancy, controls seedling development and triggers tolerance to abiotic stresses, including drought. Core ABA signaling components consist of a recently identified group of ABA receptor proteins of the PYRABACTIN RESISTANCE (PYR)/REGULATORY COMPONENT OF ABA RECEPTOR (RCAR) family that act as negative regulators of members of the PROTEIN PHOSPHATASE 2C (PP2C) family. Inhibition of PP2C activity enables activation of SNF1-RELATED KINASE 2 (SnRK2) protein kinases, which target downstream components, including transcription factors, ion channels and NADPH oxidases. These and other components form a complex ABA signaling network. Here, an in depth analysis of the evolution of components in this ABA signaling network shows that (i) PYR/RCAR ABA receptor and ABF-type transcription factor families arose during land colonization of plants and are not found in algae and other species, (ii) ABA biosynthesis enzymes have evolved to plant- and fungal-specific forms, leading to different ABA synthesis pathways, (iii) existing stress signaling components, including PP2C phosphatases and SnRK kinases, were adapted for novel roles in this plant-specific network to respond to water limitation. In addition, evolutionarily conserved secondary structures in the PYR/RCAR ABA receptor family are visualized. PMID:21549957
Oxysterols and Their Cellular Effectors
Olkkonen, Vesa M.; Béaslas, Olivier; Nissilä, Eija
2012-01-01
Oxysterols are oxidized 27-carbon cholesterol derivatives or by-products of cholesterol biosynthesis, with a spectrum of biologic activities. Several oxysterols have cytotoxic and pro-apoptotic activities, the ability to interfere with the lateral domain organization, and packing of membrane lipids. These properties may account for their suggested roles in the pathology of diseases such as atherosclerosis, age-onset macular degeneration and Alzheimer’s disease. Oxysterols also have the capacity to induce inflammatory responses and play roles in cell differentiation processes. The functions of oxysterols as intermediates in the synthesis of bile acids and steroid hormones, and as readily transportable forms of sterol, are well established. Furthermore, their actions as endogenous regulators of gene expression in lipid metabolism via liver X receptors and the Insig (insulin-induced gene) proteins have been investigated in detail. The cytoplasmic oxysterol-binding protein (OSBP) homologues form a group of oxysterol/cholesterol sensors that has recently attracted a lot of attention. However, their mode of action is, as yet, poorly understood. Retinoic acid receptor-related orphan receptors (ROR) α and γ, and Epstein-Barr virus induced gene 2 (EBI2) have been identified as novel oxysterol receptors, revealing new physiologic oxysterol effector mechanisms in development, metabolism, and immunity, and evoking enhanced interest in these compounds in the field of biomedicine. PMID:24970128
Weltrowska, Grazyna; Nguyen, Thi M.-D.; Chung, Nga N.; Wood, JodiAnne; Ma, Xiaoyu; Guo, Jason; Wilkes, Brian C.; Ge, Yang; Laferrière, André; Coderre, Terence J.; Schiller, Peter W.
2016-01-01
Head-to-tail cyclization of the μ opioid receptor (MOR) agonist [Dmt1]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2 (9; Dmt = 2′,6′-dimethyltyrosine) resulted in a highly active, selective MOR antagonist, c[-d-Arg-Phe-Lys-Dmt-] (1) (“cyclodal”), with subnanomolar binding affinity. A docking study of cyclodal using the crystal structure of MOR in the inactive form showed a unique binding mode with the two basic residues of the ligand forming salt bridges with the Asp127 and Glu229 receptor residues. Cyclodal showed high plasma stability and was able to cross the blood–brain barrier to reverse morphine-induced, centrally mediated analgesia when given intravenously. Surprisingly, the mirror-image isomer (optical antipode) of cyclodal, c[-Arg-d-Phe-d-Lys-d-Dmt-] (2), also turned out to be a selective MOR antagonist with 1 nM binding affinity, and thus, these two compounds represent the first example of mirror image opioid receptor ligands with both optical antipodes having high binding affinity. Reduction of the Lys-Dmt peptide bond in cyclodal resulted in an analogue, c[-d-Arg-Phe-LysΨ[CH2NH]Dmt-] (8), with MOR agonist activity. PMID:27676089
Identification of a Novel Non-retinoid Pan Inverse Agonist of the Retinoic Acid Receptors
Busby, Scott A.; Kumar, Naresh; Kuruvilla, Dana S.; Istrate, Monica A.; Conkright, Juliana J.; Wang, Yongjun; Kamenecka, Theodore M.; Cameron, Michael D.; Roush, William R.; Burris, Thomas P.; Griffin, Patrick R.
2011-01-01
Retinoids are potent forms of vitamin A and are involved in a broad range of physiological processes and the pharmacological effects of retinoids are primarily mediated by the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). Several natural and synthetic RAR modulators have proven to be clinically useful for a number of therapeutic indications including cancer, psoriasis, and diabetes. Unfortunately, these agents lead to a number of significant side effects. Most synthetic retinoid ligands are based on the retinoid scaffold and thus have similarities to the natural ligand with all previously disclosed RAR ligands having a carboxylic acid that makes a critical ionic bridge within the ligand binding domain of the receptors. The potential therapeutic value offered from RAR modulation provides the impetus to identify novel ligands based on unique scaffolds that may offer improved toxicity and pharmacokinetic profiles. Here we describe the identification of an atypical RAR inverse agonist that represents the first non-acid, non-retinoid direct modulator of RAR receptor subfamily. SR-0065 functions as a pan-RAR inverse agonist suppressing the basal activity of RARα, RARβ, and RARγ as well as inhibiting agonist induced RAR activity. SR-0065 treatment enhanced receptor interaction with a peptide representative of the corepressor SMRT and in cells SR-0065 enhances recruitment of SMRT to RARγ. The acid form of SR-0065, SR-1758, was inactive in all assays. Thus, SR-0065 represents a new class of non-acid, non-retinoid RAR modulator that may be used as a point to initiate development of improved RAR-targeted drugs. PMID:21381756
Structural basis for molecular recognition at serotonin receptors.
Wang, Chong; Jiang, Yi; Ma, Jinming; Wu, Huixian; Wacker, Daniel; Katritch, Vsevolod; Han, Gye Won; Liu, Wei; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D; Gao, Xiang; Zhou, X Edward; Melcher, Karsten; Zhang, Chenghai; Bai, Fang; Yang, Huaiyu; Yang, Linlin; Jiang, Hualiang; Roth, Bryan L; Cherezov, Vadim; Stevens, Raymond C; Xu, H Eric
2013-05-03
Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs.
Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells
NASA Astrophysics Data System (ADS)
He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.
2015-07-01
Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum.
Abdulkhalek, Samar; Guo, Merry; Amith, Schammim Ray; Jayanth, Preethi; Szewczuk, Myron R
2012-11-01
The mechanism(s) behind GPCR transactivation of TLR receptors independent of TLR ligands is unknown. Here, GPCR agonists bombesin, bradykinin, lysophosphatidic acid (LPA), cholesterol, angiotensin-1 and -2, but not thrombin induce Neu1 activity in live macrophage cell lines and primary bone marrow macrophage cells from wild-type (WT) mice but not from Neu1-deficient mice. Using immunocytochemistry and NFκB-dependent secretory alkaline phosphatase (SEAP) analyses, bombesin induced NFκB activation in BMC-2 and RAW-blue macrophage cells, which was inhibited by MyD88 homodimerization inhibitor, Tamiflu, galardin, piperazine and anti-MMP-9 antibody. Bombesin receptor, neuromedin B (NMBR), forms a complex with TLR4 and MMP9. Silencing MMP9 mRNA using siRNA transfection of RAW-blue macrophage cells markedly reduced Neu1 activity associated with bombesin-, bradykinin- and LPA-treated cells to the untreated controls. These findings uncover a molecular organizational GPCR signaling platform to potentiate Neu1 and MMP-9 cross-talk on the cell surface that is essential for the transactivation of TLR receptors and subsequent cellular signaling. Copyright © 2012 Elsevier Inc. All rights reserved.
Suzuki, Yasuhiro; Saito, Yuki; Okamura, Takuho; Tokuda, Yutaka
2011-06-01
There are four members of the ErbB family: the epidermal growth factor(EGF)receptor(also called HER1 or EGFR), HER2, HER3 and HER4. Dimerization is the process whereby two HER receptor molecules associate to form a noncovalent complex. HER dimers are the active receptor forms required for transmission of external stimuli to the interior of the cell. HER dimerization occurs upon ligand binding and both HER homodimers and heterodimers can be formed in the process. However, HER2 appears to be the preferred dimerization partner of the other HER family members. Fifteen∼20% of all breast cancers are HER2 positive and have a poor prognosis. Trastuzumab is an excellent, rationally-designed targeted cancer treatment. It is a recombinant, humanized, anti-HER2 monoclonal antibody that specifically binds to the extracellular area of HER2. However, the overall trastuzumab response rate is low, and the causes of trastuzumab resistance are poorly understood. Thus, there is a need for alternative anti-HER2 strategies for trastuzumab-resistant disease. Lapatinib is an orally administered small-molecule, reversible inhibitor of both EGFR and HER2 tyrosine kinase, and its activities include subsequent inhibition of its down- stream MAPK-ERK1/2, and the AKT signaling pathway. Lapatinib is more active when used in combination with capecitabine. For women with trastuzumab pre-treated HER2-positive breast cancer, Here, I will review the basics of EGFR and HER, and the treatment strategy for HER2-positive breast cancer with lapatinib.
Gui, Long; Jurgens, Eric M.; Ebner, Jamie L.
2015-01-01
ABSTRACT In order to deliver their genetic material to host cells during infection, enveloped viruses use specialized proteins on their surfaces that bind cellular receptors and induce fusion of the viral and host membranes. In paramyxoviruses, a diverse family of single-stranded RNA (ssRNA) viruses, including several important respiratory pathogens, such as parainfluenza viruses, the attachment and fusion machinery is composed of two separate proteins: a receptor binding protein (hemagglutinin-neuraminidase [HN]) and a fusion (F) protein that interact to effect membrane fusion. Here we used negative-stain and cryo-electron tomography to image the 3-dimensional ultrastructure of human parainfluenza virus 3 (HPIV3) virions in the absence of receptor engagement. We observed that HN exists in at least two organizations. The first were arrays of tetrameric HN that lacked closely associated F proteins: in these purely HN arrays, HN adopted a “heads-down” configuration. In addition, we observed regions of complex surface density that contained HN in an apparently extended “heads-up” form, colocalized with prefusion F trimers. This colocalization with prefusion F prior to receptor engagement supports a model for fusion in which HN in its heads-up state and F may interact prior to receptor engagement without activating F, and that interaction with HN in this configuration is not sufficient to activate F. Only upon receptor engagement by HN’s globular head does HN transmit its activating signal to F. PMID:25691596
Robinson, Lucy E.; Shridar, Mitesh; Smith, Philip; Murrell-Lagnado, Ruth D.
2014-01-01
P2X7 receptors are nonselective cation channels gated by high extracellular ATP, but with sustained activation, receptor sensitization occurs, whereby the intrinsic pore dilates, making the cell permeable to large organic cations, which eventually leads to cell death. P2X7 receptors associate with cholesterol-rich lipid rafts, but it is unclear how this affects the properties of the receptor channel. Here we show that pore-forming properties of human and rodent P2X7 receptors are sensitive to perturbations of cholesterol levels. Acute depletion of cholesterol with 5 mm methyl-β-cyclodextrin (MCD) caused a substantial increase in the rate of agonist-evoked pore formation, as measured by the uptake of ethidium dye, whereas cholesterol loading inhibited this process. Patch clamp analysis of P2X7 receptor currents carried by Na+ and N-methyl-d-glucamine (NMDG+) showed enhanced activation and current facilitation following cholesterol depletion. This contrasts with the inhibitory effect of methyl-β-cyclodextrin reported for other P2X subtypes. Mutational analysis suggests the involvement of an N-terminal region and a proximal C-terminal region that comprises multiple cholesterol recognition amino acid consensus (CRAC) motifs, in the cholesterol sensitivity of channel gating. These results reveal cholesterol as a negative regulator of P2X7 receptor pore formation, protecting cells from P2X7-mediated cell death. PMID:25281740
Weston, Cathryn; Winfield, Ian; Harris, Matthew; Hodgson, Rose; Shah, Archna; Dowell, Simon J; Mobarec, Juan Carlos; Woodlock, David A; Reynolds, Christopher A; Poyner, David R; Watkins, Harriet A; Ladds, Graham
2016-10-14
The calcitonin gene-related peptide (CGRP) family of G protein-coupled receptors (GPCRs) is formed through the association of the calcitonin receptor-like receptor (CLR) and one of three receptor activity-modifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM), and intermedin/adrenomedullin 2 (AM2), is well known to result in a Gα s -mediated increase in cAMP. Here we used modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gα s and Gα q but also identify a Gα i component to CLR signaling in both yeast and HEK-293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand- and RAMP-dependent signaling bias among the Gα s , Gα i , and Gα q/11 pathways. The results are discussed in the context of RAMP interactions probed through molecular modeling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Quantal concept of T-cell activation: adhesion domains as immunological synapses
NASA Astrophysics Data System (ADS)
Sackmann, Erich
2011-06-01
Adhesion micro-domains (ADs) formed during encounters of lymphocytes with antigen-presenting cells (APC) mediate the genetic expression of quanta of cytokines interleukin-2 (IL-2). The IL-2-induced activation of IL-2 receptors promotes the stepwise progression of the T-cells through the cell cycle, hence their name, immunological synapses. The ADs form short-lived reaction centres controlling the recruitment of activators of the biochemical pathway (the kinases Lck and ZAP) while preventing the access of inhibitors (phosphatase CD45) through steric repulsion forces. CD45 acts as the generator of adhesion domains and, through its role as a spacer protein, also as the promoter of the reaction. In a second phase of T-cell-APC encounters, long-lived global reaction spaces (called supramolecular activation complexes (SMAC)) form by talin-mediated binding of the T-cell integrin (LFA-1) to the counter-receptor ICAM-1, resulting in the formation of ring-like tight adhesion zones (peripheral SMAC). The ADs move to the centre of the intercellular adhesion zone forming the central SMAC, which serve in the recycling of the AD. We propose that cell stimulation is triggered by integrating the effect evoked by the short-lived adhesion domains. Similar global reaction platforms are formed by killer cells to destruct APC. We present a testable mechanical model showing that global reaction spaces (SMAC or dome-like contacts between cytotoxic cells and APC) form by self-organization through delayed activation of the integrin-binding affinity and stabilization of the adhesion zones by F-actin recruitment. The mechanical stability and the polarization of the adhering T-cells are mediated by microtubule-actin cross-talk.
Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases.
Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X Edward; West, Graham M; Kovach, Amanda; Tan, M H Eileen; Suino-Powell, Kelly M; He, Yuanzheng; Xu, Yong; Chalmers, Michael J; Brunzelle, Joseph S; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R; Melcher, Karsten; Xu, H Eric
2012-01-06
Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.
Helminthosporic acid functions as an agonist for gibberellin receptor.
Miyazaki, Sho; Jiang, Kai; Kobayashi, Masatomo; Asami, Tadao; Nakajima, Masatoshi
2017-11-01
Helminthosporol was isolated from a fungus, Helminthosporium sativum, as a natural plant growth regulator in 1963. It showed gibberellin-like bioactivity that stimulated the growth of the second leaf sheath of rice. After studying the structure-activity relationship between the compound and some synthesized analogs, it was found that helminthosporic acid (H-acid) has higher gibberellin-like activity and chemical stability than helminthosporol. In this study, we showed that (1) H-acid displays gibberellin-like activities not only in rice but also in Arabidopsis, (2) it regulates the expression of gibberellin-related genes, (3) it induces DELLA degradation through binding with a gibberellin receptor (GID1), and (4) it forms the GID1-(H-acid)-DELLA complex to transduce the gibberellin signal in the same manner as gibberellin. This work shows that the H-acid mode of action acts as an agonist for gibberellin receptor.
Hausrat, Torben J.; Muhia, Mary; Gerrow, Kimberly; Thomas, Philip; Hirdes, Wiebke; Tsukita, Sachiko; Heisler, Frank F.; Herich, Lena; Dubroqua, Sylvain; Breiden, Petra; Feldon, Joram; Schwarz, Jürgen R; Yee, Benjamin K.; Smart, Trevor G.; Triller, Antoine; Kneussel, Matthias
2015-01-01
Neurotransmitter receptor density is a major variable in regulating synaptic strength. Receptors rapidly exchange between synapses and intracellular storage pools through endocytic recycling. In addition, lateral diffusion and confinement exchanges surface membrane receptors between synaptic and extrasynaptic sites. However, the signals that regulate this transition are currently unknown. GABAA receptors containing α5-subunits (GABAAR-α5) concentrate extrasynaptically through radixin (Rdx)-mediated anchorage at the actin cytoskeleton. Here we report a novel mechanism that regulates adjustable plasma membrane receptor pools in the control of synaptic receptor density. RhoA/ROCK signalling regulates an activity-dependent Rdx phosphorylation switch that uncouples GABAAR-α5 from its extrasynaptic anchor, thereby enriching synaptic receptor numbers. Thus, the unphosphorylated form of Rdx alters mIPSCs. Rdx gene knockout impairs reversal learning and short-term memory, and Rdx phosphorylation in wild-type mice exhibits experience-dependent changes when exposed to novel environments. Our data suggest an additional mode of synaptic plasticity, in which extrasynaptic receptor reservoirs supply synaptic GABAARs. PMID:25891999
Nakajima, Tadashi; Matsugi, Takeshi; Goto, Wakana; Kageyama, Masaaki; Mori, Nobuaki; Matsumura, Yasushi; Hara, Hideaki
2003-12-01
To find new prostanoid FP-receptor agonists possessing potent ocular-hypotensive effects with minimal side effects, we evaluated the agonistic activities of newly synthesized prostaglandin F(2alpha) derivatives for the prostanoid FP-receptor both in vitro and in vivo. The iris constrictions induced by the derivatives and their effects on melanin content were examined using cat isolated iris sphincters and cultured B16 melanoma cells, respectively. The effects of derivative ester forms on miosis and intraocular pressure (IOP) were evaluated in cats and cynomolgus monkeys, respectively. Of these derivatives, 6 out of 12 compounds were more potent iris constrictors, with EC(50) values of 0.6 to 9.4 nM, than a carboxylic acid of latanoprost (EC(50)=13.6 nM). A carboxylic acid of latanoprost (100 microM) significantly increased the melanin content of cultured B16 melanoma cells, but some 15,15-difluoro derivatives, such as AFP-157 and AFP-172, did not. Topically applied AFP-168, AFP-169 and AFP-175 (isopropyl ester, methyl ester and ethyl ester forms, respectively, of AFP-172) induced miosis in cats more potently than latanoprost. AFP-168 (0.0005%) reduced IOP to the same extent as 0.005% latanoprost (for at least 8 h). These findings indicate that 15,15-difluoroprostaglandin F(2alpha) derivatives, especially AFP-168, have more potent prostanoid FP-receptor agonistic activities than latanoprost. Hence, AFP-168 may be worthy of further evaluation as an ocular-hypotensive agent.
Reyes-Resina, Irene; Navarro, Gemma; Aguinaga, David; Canela, Enric I; Schoeder, Clara T; Zaluski, Michal; Kiec-Kononowicz, Katarzyna; Saura, Carlos A; Müller, Christa E; Franco, Rafael
2018-06-02
GPR18, still considered an orphan receptor, may respond to endocannabinoids, whose canonical receptors are CB 1 and CB 2 . GPR18 and CB 2 receptors share a role in peripheral immune response regulation and are co-expressed in microglia, which are immunocompetent cells in the central nervous system (CNS). We aimed at identifying heteroreceptor complexes formed by GPR18 and CB 1 R or CB 2 R in resting and activated microglia. Receptor-receptor interaction was assessed using energy-transfer approaches, and receptor function by determining cAMP levels and ERK1/2 phosphorylation in heterologous cells and primary cultures of microglia. Heteroreceptor identification in primary cultures of microglia was achieved by in situ proximity ligation assays. Energy transfer results showed interaction of GPR18 with CB 2 R but not with CB 1 R. CB 2 -GPR18 heteroreceptor complexes displayed particular functional properties (heteromer prints) often consisting of negative cross-talk (activation of one receptor reduces signaling arising from the partner receptor) and cross-antagonism (the response of one of the receptors is blocked by a selective antagonist of the partner receptor). Activated microglia showed the heteromer print (negative cross-talk and bidirectional cross-antagonism) and increased expression of CB 2 R and GPR18. Due to the important role of CB 2 R in neuroprotection, we further investigated heteroreceptor occurrence in primary cultures of microglia from transgenic mice overexpressing human APP Sw,Ind , an Alzheimer's disease model. Microglial cells from transgenic mice showed the heteromer print and functional interactions that were similar to those found in cells from wild-type animals that were activated by treatment with lipopolysaccharide and interferon-ɤ. Our results show that GPR18 and its heteromers may play important roles in neurodegenerative processes. Copyright © 2018. Published by Elsevier Inc.
High affinity kainate receptor subunits are necessary for ionotropic but not metabotropic signaling
Fernandes, Herman B.; Catches, Justin S.; Petralia, Ronald S.; Copits, Bryan A.; Xu, Jian; Russell, Theron A.; Swanson, Geoffrey T.; Contractor, Anis
2009-01-01
Summary Kainate receptors are atypical members of the glutamate receptor family which are able to signal through both ionotropic and metabotropic pathways. Of the five individual kainate receptor subunits the high-affinity subunits, GluK4 (KA1) and GluK5 (KA2), are unique in that they do not form functional homomeric receptors in recombinant expression systems, but combine with the primary subunits GluK1-3 (GluR5-7) to form heteromeric assemblies. Here we generated a GluK4 mutant mouse by disrupting the Grik4 gene locus. We found that loss of the GluK4 subunit leads to a significant reduction in synaptic kainate receptor currents. Moreover, ablation of both high-affinity subunits in GluK4/GluK5 double knockout mice leads to a complete loss of pre- and postsynaptic ionotropic function of synaptic kainate receptors. The principal subunits remain at the synaptic plasma membrane, but are distributed away from postsynaptic densities and presynaptic active zones. There is also an alteration in the properties of the remaining kainate receptors, as kainic acid application fails to elicit responses in GluK4/GluK5 knockout neurons. Despite the lack of detectable ionotropic synaptic receptors, the kainate receptor-mediated inhibition of the slow afterhyperpolarization current (IsAHP), which is dependent on metabotropic pathways, was intact in GluK4/GluK5 knockout mice. These results uncover a previously unknown critical role for the high-affinity kainate receptor subunits as obligatory components of ionotropic kainate receptor function, and further, demonstrate that kainate receptor participation in metabotropic signaling pathways does not require their classic role as ion channels. PMID:19778510
Ward, Alexander H; Siegwart, John T; Frost, Michael R; Norton, Thomas T
2017-01-01
We examined the effect of intravitreal injections of D1-like and D2-like dopamine receptor agonists and antagonists and D4 receptor drugs on form-deprivation myopia (FDM) in tree shrews, mammals closely related to primates. In eleven groups (n = 7 per group), we measured the amount of FDM produced by monocular form deprivation (FD) over an 11-day treatment period. The untreated fellow eye served as a control. Animals also received daily 5 µL intravitreal injections in the FD eye. The reference group received 0.85% NaCl vehicle. Four groups received a higher, or lower, dose of a D1-like receptor agonist (SKF38393) or antagonist (SCH23390). Four groups received a higher, or lower, dose of a D2-like receptor agonist (quinpirole) or antagonist (spiperone). Two groups received the D4 receptor agonist (PD168077) or antagonist (PD168568). Refractions were measured daily; axial component dimensions were measured on day 1 (before treatment) and day 12. We found that in groups receiving the D1-like receptor agonist or antagonist, the development of FDM and altered ocular component dimensions did not differ from the NaCl group. Groups receiving the D2-like receptor agonist or antagonist at the higher dose developed significantly less FDM and had shorter vitreous chambers than the NaCl group. The D4 receptor agonist, but not the antagonist, was nearly as effective as the D2-like agonist in reducing FDM. Thus, using intravitreally-administered agents, we did not find evidence supporting a role for the D1-like receptor pathway in reducing FDM in tree shrews. The reduction of FDM by the dopamine D2-like agonist supported a role for the D2-like receptor pathway in the control of FDM. The reduction of FDM by the D4 receptor agonist, but not the D4 antagonist, suggests an important role for activation of the dopamine D4 receptor in the control of axial elongation and refractive development.
Ward, Alexander H.; Siegwart, John T.; Frost, Michael R.; Norton, Thomas T.
2017-01-01
We examined the effect of intravitreal injections of D1-like and D2-like dopamine receptor agonists and antagonists and D4 receptor drugs on form-deprivation myopia (FDM) in tree shrews, mammals closely related to primates. In eleven groups (n = 7 per group), we measured the amount of FDM produced by monocular form deprivation (FD) over an 11-day treatment period. The untreated fellow eye served as a control. Animals also received daily 5 μL intravitreal injections in the FD eye. The reference group received 0.85% NaCl vehicle. Four groups received a higher, or lower, dose of a D1-like receptor agonist (SKF38393) or antagonist (SCH23390). Four groups received a higher, or lower, dose of a D2-like receptor agonist (quinpirole) or antagonist (spiperone). Two groups received the D4 receptor agonist (PD168077) or antagonist (PD168568). Refractions were measured daily; axial component dimensions were measured on day 1 (before treatment) and day 12. We found that in groups receiving the D1-like receptor agonist or antagonist, the development of FDM and altered ocular component dimensions did not differ from the NaCl group. Groups receiving the D2-like receptor agonist or antagonist at the higher dose developed significantly less FDM and had shorter vitreous chambers than the NaCl group. The D4 receptor agonist, but not the antagonist, was nearly as effective as the D2-like agonist in reducing FDM. Thus, using intravitreally-administered agents, we did not find evidence supporting a role for the D1-like receptor pathway in reducing FDM in tree shrews. The reduction of FDM by the dopamine D2-like agonist supported a role for the D2-like receptor pathway in the control of FDM. The reduction of FDM by the D4 receptor agonist, but not the D4 antagonist, suggests an important role for activation of the dopamine D4 receptor in the control of axial elongation and refractive development. PMID:28304244
Doyle, Michael L; Tian, Shin-Shay; Miller, Stephen G; Kessler, Linda; Baker, Audrey E; Brigham-Burke, Michael R; Dillon, Susan B; Duffy, Kevin J; Keenan, Richard M; Lehr, Ruth; Rosen, Jon; Schneeweis, Lumelle A; Trill, John; Young, Peter R; Luengo, Juan I; Lamb, Peter
2003-03-14
Granulocyte colony-stimulating factor regulates neutrophil production by binding to a specific receptor, the granulocyte colony-stimulating factor receptor, expressed on cells of the granulocytic lineage. Recombinant forms of granulocyte colony-stimulating factor are used clinically to treat neutropenias. As part of an effort to develop granulocyte colony-stimulating factor mimics with the potential for oral bioavailability, we previously identified a nonpeptidyl small molecule (SB-247464) that selectively activates murine granulocyte colony-stimulating factor signal transduction pathways and promotes neutrophil formation in vivo. To elucidate the mechanism of action of SB-247464, a series of cell-based and biochemical assays were performed. The activity of SB-247464 is strictly dependent on the presence of zinc ions. Titration microcalorimetry experiments using a soluble murine granulocyte colony-stimulating factor receptor construct show that SB-247464 binds to the extracellular domain of the receptor in a zinc ion-dependent manner. Analytical ultracentrifugation studies demonstrate that SB-247464 induces self-association of the N-terminal three-domain fragment in a manner that is consistent with dimerization. SB-247464 induces internalization of granulocyte colony-stimulating factor receptor on intact cells, consistent with a mechanism involving receptor oligomerization. These data show that small nonpeptidyl compounds are capable of selectively binding and inducing productive oligomerization of cytokine receptors.
Ogden, Kevin K; Khatri, Alpa; Traynelis, Stephen F; Heldt, Scott A
2014-02-01
NMDA receptors are glutamate receptor ion channels that contribute to synaptic plasticity and are important for many forms of learning and memory. In the amygdala, NMDA receptors are critical for the acquisition, retention, and extinction of classically conditioned fear responses. Although the GluN2B subunit has been implicated in both the acquisition and extinction of conditioned fear, GluN2C-knockout mice show reduced conditioned fear responses. Moreover, D-cycloserine (DCS), which facilitates fear extinction, selectively enhances the activity of GluN2C-containing NMDA receptors. To further define the contribution of GluN2C receptors to fear learning, we infused the GluN2C/GluN2D-selective potentiator CIQ bilaterally into the basolateral amygdala (3, 10, or 30 μg/side) following either fear conditioning or fear extinction training. CIQ both increased the expression of conditioned fear 24 h later and enhanced the extinction of the previously conditioned fear response. These results support a critical role for GluN2C receptors in the amygdala in the consolidation of learned fear responses and suggest that increased activity of GluN2C receptors may underlie the therapeutic actions of DCS.
Parra, Maribel; Kasler, Herbert; McKinsey, Timothy A; Olson, Eric N; Verdin, Eric
2005-04-08
HDAC7, a class II histone deacetylase that is highly expressed in thymocytes, inhibits both transcription of the orphan steroid nuclear receptor Nur77 and induction of apoptosis in response to activation of the T-cell receptor (TCR). Here, we report that HDAC7 is exported to the cytoplasm by a calcium-independent signaling pathway after TCR activation. Protein kinase D1 (PKD1) was activated after TCR engagement, interacted with HDAC7, and phosphorylated three serines (Ser155, Ser318, and Ser448) at its N terminus, leading to its export from the nucleus. Mutation of Ser155, Ser318, and Ser448 blocked the nucleocytoplasmic shuttling of HDAC7 in response to TCR activation, as did overexpression of a kinase-inactive form of PKD1. Consistent with the regulatory role of HDAC7 in Nur77 expression, PKD1 activation led to the transcriptional activation of Nur77 via myocyte enhancer factor 2-binding sites in its promoter. In a mouse model of negative selection, PKD1 was activated during thymocyte activation. These observations indicate that PKD1 regulates the expression of Nur77 during thymocyte activation at least in part by phosphorylating HDAC7.
Eggers, Arnold E
2006-01-01
A new hypothesis is presented on the function of factor XII, which is postulated to be a "missing link" between acute stress and transient hypercoagulability. The implications of this idea are developed to show how chronic stress, which involves activation of hypertension and migraine as well as hypercoagulability, can cause of cerebrovascular disease. "Acute stress" is defined as "the normal short-term physiological response to the perception of major threats or demands". "Chronic stress" is "the abnormal ongoing physiological response to the continuing perception of unresolvable major threats or demands". The factor XII hypothesis is as follows: Acute stress includes release of epinephrine by the adrenal medulla. Epinephrine activates platelets by binding to alpha-2A adrenergic receptors. Activated platelets convert pre-bound factor XII to its active form, which then initiates the intrinsic coagulation cascade. This can be called the "activated platelet initiation pathway" for coagulation. Neither tissue factor nor pre-formed thrombin is required. Thrombosis proceeds to completion, but only a minute amount of thrombin is formed, and the process normally stops at this point. In people who lapse into a state of chronic stress, essential hypertension, which is also a manifestation of stress, synergizes with hypercoagulability: there is both a baseline rise in blood pressure and systemic platelet activation as well as superimposed labile rises of both. Upregulation of these two stress parameters is atherogenic: epinephrine-activated platelets stimulating thrombin formation interact with endothelial cells activated by angiotensin II to cause, first, smooth muscle cell proliferation, which is a histological hallmark of atherosclerosis, and, lastly, a symptomatic thrombotic occlusion-the stroke. The migraine symptoms which often accompany this process are a marker of chronic stress and ongoing pathophysiologic damage. Therapeutic predictions are made regarding novel ways of blocking stress-induced hypercoagulability and hypertension. Hypercoagulability could be targeted by monoclonal antibodies directed against the platelet-specific alpha-2 adrenergic receptor or the (putative) platelet receptor for Factor XII; hypertension could be treated with monoclonal antibodies directed against the beta-adrenergic receptor in the juxtaglomerular apparatus or by surgical denervation of the kidneys, either of which would decrease the renin release which helps drive the hypertension.
Receptor Heteromerization Expands the Repertoire of Cannabinoid Signaling in Rodent Neurons
Rozenfeld, Raphael; Bushlin, Ittai; Gomes, Ivone; Tzavaras, Nikos; Gupta, Achla; Neves, Susana; Battini, Lorenzo; Gusella, G. Luca; Lachmann, Alexander; Ma'ayan, Avi; Blitzer, Robert D.; Devi, Lakshmi A.
2012-01-01
A fundamental question in G protein coupled receptor biology is how a single ligand acting at a specific receptor is able to induce a range of signaling that results in a variety of physiological responses. We focused on Type 1 cannabinoid receptor (CB1R) as a model GPCR involved in a variety of processes spanning from analgesia and euphoria to neuronal development, survival and differentiation. We examined receptor dimerization as a possible mechanism underlying expanded signaling responses by a single ligand and focused on interactions between CB1R and delta opioid receptor (DOR). Using co-immunoprecipitation assays as well as analysis of changes in receptor subcellular localization upon co-expression, we show that CB1R and DOR form receptor heteromers. We find that heteromerization affects receptor signaling since the potency of the CB1R ligand to stimulate G-protein activity is increased in the absence of DOR, suggesting that the decrease in CB1R activity in the presence of DOR could, at least in part, be due to heteromerization. We also find that the decrease in activity is associated with enhanced PLC-dependent recruitment of arrestin3 to the CB1R-DOR complex, suggesting that interaction with DOR enhances arrestin-mediated CB1R desensitization. Additionally, presence of DOR facilitates signaling via a new CB1R-mediated anti-apoptotic pathway leading to enhanced neuronal survival. Taken together, these results support a role for CB1R-DOR heteromerization in diversification of endocannabinoid signaling and highlight the importance of heteromer-directed signal trafficking in enhancing the repertoire of GPCR signaling. PMID:22235275
Heterologous Quaternary Structure of CXCL12 and its Relationship to the CC Chemokine Family
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, J.; Yuan, H; Kong, Y
2010-01-01
X-ray crystallographic studies reveal that CXCL12 is able to form multiple dimer types, a traditional CXC dimer and a 'CC-like' form. Phylogenetic analysis of all known human chemokines demonstrates CXCL12 is more closely related to the CC chemokine class than other CXC chemokines. These observations indicate that CXCL12 contains genomic and structural elements characteristic of both CXC and CC chemokines.Chemokines are members of a superfamily of proteins involved in the migration of cells to the proper anatomical position during embryonic development or in response to infection or stress during an immune response. There are two major (CC and CXC) andmore » two minor (CX3C and XC) families based on the sequence around the first conserved cysteine. The topology of all structures is essentially identical with a flexible N-terminal region of 3-8 amino acids, a 10-20 residue N-terminal loop, a short 3{sub 10}-helix, three {beta}-strands, and a {alpha}-helix. The major consequence of the subtle difference between the families occurs at the oligomeric level. Monomers of the CC, CXC, and CX3C families form dimers in a family-specific manner. The XCL1 chemokine is a monomer that can interconvert between two folded states. All chemokines activate GPCRs according to family-specificity, however there are a few examples of chemokines crossing the family boundary to function as antagonists. A two-stage mechanism for chemokine activation of GPCRs has been proposed. The N-terminal region of the receptor interacts with the chemokine, followed by receptor activation by the chemokine N-terminal region. Monomeric chemokines have been demonstrated to be the active form for receptor function. There are numerous examples of both chemokines and their receptors forming dimers. While family-specific dimerization may be an attractive explanation for why specific chemokines only activate GPCRs within their own family, the role of dimers in the function of chemokines has not been resolved. Given that CXCL12 is in the CXC family, the CXC dimer is considered the physiologic dimer in all previous studies based on crystallographic evidence. NMR and mutational studies agree with the CXC dimer form in solution. The CXC form of the dimer is seen in recent structures of CXCL12 bound to a heparin disaccharide and several CXCR4 peptides. In one case, crystals of the CXC-type dimer were soaked in a heparin disaccharide solution to determine the interactions between this dimer and bound disaccharide. In another case, in order to overcome NMR chemical shift line broadening when CXCR4 peptides are added, a 'locked' dimer was constructed by introducing a cysteine mutant that linked subunits as a CXC dimer through an inter-subunit disulfide bond. The solution structures of the locked CXC dimer with CXCR4 peptides were determined. The locked CXC dimer retained Ca{sup 2+} mobilization yet lost chemotaxis activity, presumably because the monomer is the active form. In addition to existing as a monomer and CXC dimer, CXCL12 is now demonstrated to have the capacity to form CC type dimers in the presence of a CXCR4 peptide.« less
Yang, Yang; Xu-Friedman, Matthew A
2015-06-01
Ambient glutamate plays an important role in pathological conditions, such as stroke, but its role during normal activity is not clear. In addition, it is not clear how ambient glutamate acts on glutamate receptors with varying affinities or subcellular localizations. To address this, we studied "endbulb of Held" synapses, which are formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus. When ambient glutamate was increased by applying the glutamate reuptake inhibitor TFB-TBOA, BCs depolarized as a result of activation of N-methyl-D-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs). Application of antagonists against NMDARs (in 0 Mg(2+)) or mGluRs caused hyperpolarization, indicating that these receptors were bound by a tonic source of glutamate. AMPA receptors did not show these effects, consistent with their lower glutamate affinity. We also evaluated the subcellular localization of the receptors activated by ambient glutamate. The mGluRs were not activated by synaptic stimulation and thus appear to be exclusively extrasynaptic. By contrast, NMDARs in both synaptic and extrasynaptic compartments were activated by ambient glutamate, as shown using the use-dependent antagonist MK-801. Levels of ambient glutamate appeared to be regulated in a spike-independent manner, and glia likely play a major role. These low levels of ambient glutamate likely have functional consequences, as even low concentrations of TBOA caused significant increases in BC spiking following synaptic stimulation. These results indicate that normal resting potential appears to be poised in the region of maximal sensitivity to small changes in ambient glutamate. Copyright © 2015 the American Physiological Society.
Akazawa, Toshimasa; Kwatra, Shawn G.; Goldsmith, Laura E.; Richardson, Mark D.; Cox, Elizabeth A.; Sampson, John H.; Kwatra, Madan M.
2009-01-01
Previous studies have shown that neurokinin 1 receptor (NK1R) occurs naturally in human glioblastomas and its stimulation causes cell proliferation. In the present study we show that stimulation of NK1R in human U373 glioblastoma cells by substance P (SP) increases Akt phosphorylation by 2.5-fold, with an EC50 of 57 nM. Blockade of NK1R lowers basal phosphorylation of Akt, indicating the presence of a constitutively active form of NK1R; similar results are seen in U251 MG and DBTRG-05 glioblastoma cells. Linkage of NK1R to Akt implicates NK1R in apoptosis of glioblastoma cells. Indeed, treatment of serum-starved U373 cells with SP reduces apoptosis by 53 ± 1% (P < 0.05), and treatment with NK1R antagonist L-733,060 increases apoptosis by 64 ± 16 % (P < 0.01). Further, the blockade of NK1R in human glioblastoma cells with L-733,060 causes cleavage of Caspase-3 and proteolysis of poly (ADP-ribose) polymerase (PARP). Experiments designed to elucidate the mechanism of NK1R-mediated Akt phosphorylation revealed total involvement of non-receptor tyrosine kinase Src and PI-3-kinase, a partial involvement of epidermal growth factor receptor (EGFR), and no involvement of MEK. Taken together, the results of the present study indicate a key role for NK1R in glioblastoma apoptosis. PMID:19519779
Nairz, Manfred; Haschka, David; Dichtl, Stefanie; Sonnweber, Thomas; Schroll, Andrea; Aßhoff, Malte; Mindur, John E; Moser, Patrizia L; Wolf, Dominik; Swirski, Filip K; Theurl, Igor; Cerami, Anthony; Brines, Michael; Weiss, Günter
2017-10-12
Two distinct forms of the erythropoietin receptor (EPOR) mediate the cellular responses to erythropoietin (EPO) in different tissues. EPOR homodimers signal to promote the maturation of erythroid progenitor cells. In other cell types, including immune cells, EPOR and the ß-common receptor (CD131) form heteromers (the innate repair receptor; IRR), and exert tissue protective effects. We used dextran sulphate sodium (DSS) to induce colitis in C57BL/6 N mice. Once colitis was established, mice were treated with solvent, EPO or the selective IRR agonist cibinetide. We found that both cibinetide and EPO ameliorated the clinical course of experimental colitis in mice, resulting in improved weight gain and survival. Correspondingly, DSS-exposed mice treated with cibinetide or EPO displayed preserved tissue integrity due to reduced infiltration of myeloid cells and diminished production of pro-inflammatory disease mediators including cytokines, chemokines and nitric oxide synthase-2. Experiments using LPS-activated primary macrophages revealed that the anti-inflammatory effects of cibinetide were dependent on CD131 and JAK2 functionality and were mediated via inhibition of NF-κB subunit p65 activity. Cibinetide activation of the IRR exerts potent anti-inflammatory effects, especially within the myeloid population, reduces disease activity and mortality in mice. Cibinetide thus holds promise as novel disease-modifying therapeutic of inflammatory bowel disease.
Helix formation in arrestin accompanies recognition of photoactivated rhodopsin.
Feuerstein, Sophie E; Pulvermüller, Alexander; Hartmann, Rudolf; Granzin, Joachim; Stoldt, Matthias; Henklein, Peter; Ernst, Oliver P; Heck, Martin; Willbold, Dieter; Koenig, Bernd W
2009-11-17
Binding of arrestin to photoactivated phosphorylated rhodopsin terminates the amplification of visual signals in photoreceptor cells. Currently, there is no crystal structure of a rhodopsin-arrestin complex available, although structures of unbound rhodopsin and arrestin have been determined. High-affinity receptor binding is dependent on distinct arrestin sites responsible for recognition of rhodopsin activation and phosphorylation. The loop connecting beta-strands V and VI in rod arrestin has been implicated in the recognition of active rhodopsin. We report the structure of receptor-bound arrestin peptide Arr(67-77) mimicking this loop based on solution NMR data. The peptide binds photoactivated rhodopsin in the unphosphorylated and phosphorylated form with similar affinities and stabilizes the metarhodopsin II photointermediate. A largely alpha-helical conformation of the receptor-bound peptide is observed.
Wen, Jiexia; Pan, Sumin; Liang, Shuang; Zhong, Zhenyu; He, Ying; Lin, Hongyu; Li, Wenyan; Wang, Liyue; Li, Xiujin; Zhong, Fei
2013-01-01
Canine parvovirus (CPV) disease is an acute, highly infectious disease threatening the dog-raising industry. So far there are no effective therapeutic strategies to control this disease. Although the canine transferrin receptor (TfR) was identified as a receptor for CPV infection, whether extracellular domain of TfR (called soluble TfR (sTfR)) possesses anti-CPV activities remains elusive. Here, we used the recombinant sTfR prepared from HEK293T cells with codon-optimized gene structure to investigate its anti-CPV activity both in vitro and in vivo. Our results indicated that codon optimization could significantly improve sTfR expression in HEK293T cells. The prepared recombinant sTfR possessed a binding activity to both CPV and CPV VP2 capsid proteins and significantly inhibited CPV infection of cultured feline F81 cells and decreased the mortality of CPV-infected dogs, which indicates that the sTfR has the anti-CPV activity both in vitro and in vivo. PMID:24089666
Pharmacological characterization of P2X7 receptors in rat peritoneal cells.
Chen, Y-W; Donnelly-Roberts, D L; Namovic, M T; Gintant, G A; Cox, B F; Jarvis, M F; Harris, R R
2005-03-01
P2X(7) receptor activation by ATP results in the release of IL-1beta and IL-18. Prolonged stimulation can lead to pore formation and cell death. In this study we pharmacologically characterized P2X(7) receptors on rat peritoneal cells (RPC) and on 1321N1 cells transfected with rat P2X(7) receptor (1321rP2X(7)-11). RPC were isolated from rats by lavage. P2X(7) agonist induced pore formation in RPC was measured by EtBr uptake. P2X(7)-stimulated pore formation and Ca(++) influx in 1321rP2X(7)-11 cells were measured by a fluorometric imaging plate reader. The effects of pyridoxal phosphate-6-azo phenyl -2'-4'-disulfonic acid (PPADS) on pore formation and Ca(++) influx were examined in both RPC and 1321rP2X(7)-11. P2X(7)-mediated IL-1beta release in RPC and the effect of PPADS were determined. RPC express functional P2X(7) receptors that were activated by ATP analogs with a rank order of potency of 2'- 3'-O-(4-Benzoylbenzoyl) adenosine 5'-triphosphate (BzATP) > ATP > alpha,beta-methylene ATP. Activation of P2X(7) receptors by BzATP was inhibited by PPADS. Similar results were also obtained in 1321rP2X(7)-11 cells. Activation of P2X(7) receptors on RPC resulted in IL-1 beta secretion, which was inhibited by PPADS. RPC express functional P2X(7) receptors that form pores and mediate the release of IL-1beta.
Duquesnoy, P; Sobrier, M L; Duriez, B; Dastot, F; Buchanan, C R; Savage, M O; Preece, M A; Craescu, C T; Blouquit, Y; Goossens, M
1994-01-01
Growth hormone (GH) elicits a variety of biological activities mainly mediated by the GH receptor (GHR), a transmembrane protein that, based on in vitro studies, seemed to function as a homodimer. To test this hypothesis directly, we investigated patients displaying the classic features of Laron syndrome (familial GH resistance characterized by severe dwarfism and metabolic dysfunction), except for the presence of normal binding activity of the plasma GH-binding protein, a molecule that derives from the exoplasmic-coding domain of the GHR gene. In two unrelated families, the same GHR mutation was identified, resulting in the substitution of a highly conserved aspartate residue by histidine at position 152 (D152H) of the exoplasmic domain, within the postulated interface sequence involved in homodimerization. The recombinant mutated receptor protein was correctly expressed at the plasma membrane. It displayed subnormal GH-binding activity, a finding in agreement with the X-ray crystal structure data inferring this aspartate residue outside the GH-binding domain. However, mAb-based studies suggested the critical role of aspartate 152 in the proper folding of the interface area. We show that a recombinant soluble form of the mutant receptor is unable to dimerize, the D152H substitution also preventing the formation of heterodimers of wild-type and mutant molecules. These results provide in vivo evidence that monomeric receptors are inactive and that receptor dimerization is involved in the primary signalling of the GH-associated growth-promoting and metabolic actions. Images PMID:8137822
Duquesnoy, P; Sobrier, M L; Duriez, B; Dastot, F; Buchanan, C R; Savage, M O; Preece, M A; Craescu, C T; Blouquit, Y; Goossens, M
1994-03-15
Growth hormone (GH) elicits a variety of biological activities mainly mediated by the GH receptor (GHR), a transmembrane protein that, based on in vitro studies, seemed to function as a homodimer. To test this hypothesis directly, we investigated patients displaying the classic features of Laron syndrome (familial GH resistance characterized by severe dwarfism and metabolic dysfunction), except for the presence of normal binding activity of the plasma GH-binding protein, a molecule that derives from the exoplasmic-coding domain of the GHR gene. In two unrelated families, the same GHR mutation was identified, resulting in the substitution of a highly conserved aspartate residue by histidine at position 152 (D152H) of the exoplasmic domain, within the postulated interface sequence involved in homodimerization. The recombinant mutated receptor protein was correctly expressed at the plasma membrane. It displayed subnormal GH-binding activity, a finding in agreement with the X-ray crystal structure data inferring this aspartate residue outside the GH-binding domain. However, mAb-based studies suggested the critical role of aspartate 152 in the proper folding of the interface area. We show that a recombinant soluble form of the mutant receptor is unable to dimerize, the D152H substitution also preventing the formation of heterodimers of wild-type and mutant molecules. These results provide in vivo evidence that monomeric receptors are inactive and that receptor dimerization is involved in the primary signalling of the GH-associated growth-promoting and metabolic actions.
Ueda, Takashi; Ugawa, Shinya; Ishida, Yusuke; Hondoh, Aki; Shimada, Shoichi
2009-08-01
G-protein-coupled receptors (GPCRs) are important therapeutic targets for many areas of drug research and development. Although chimeric Galpha16 proteins are valuable tools for detecting the activation of Galpha(i/o)-coupled receptors, the details of the activation process remain unclear. The authors introduce a series of chimeras that combine both Galpha16 and Galpha(i/o) (Galpha(16/o), Galpha(16/i2), and Galpha(16/i3)) into a well-established transient expression system to examine the ability of these chimeras to interact with D2 long-form (D2L) dopamine and 5-HT1A serotonin receptors. The pEC50 data obtained for known agonists were similar to results from previous studies that used other cell-based assays, thus indicating sufficient sensitivity for the assay. Moreover, quinpirole exhibited similar intrinsic activity to dopamine at the D2L receptor, whereas S-(-)-3-PPP displayed partial activity of dopamine and quinpirole in the presence of the Galpha(16/o) chimera. The potency of dopamine for D2L receptors was similar among Galpha(16/o), Galpha(16/i2), and Galpha(16/i3). In contrast, the 5-HT1A receptor exhibited a significantly preferential coupling for Galpha(16/i3) compared with Galpha(16/i2) when serotonin was used as a ligand. This finding was in close agreement with the results of previous reports. The present system could therefore be used as a rapid functional assay for high-throughput screening and deorphanization.
Regulation of fibroblast growth factor receptor signalling and trafficking by Src and Eps8.
Auciello, Giulio; Cunningham, Debbie L; Tatar, Tulin; Heath, John K; Rappoport, Joshua Z
2013-01-15
Fibroblast growth factor receptors (FGFRs) mediate a wide spectrum of cellular responses that are crucial for development and wound healing. However, aberrant FGFR activity leads to cancer. Activated growth factor receptors undergo stimulated endocytosis, but can continue to signal along the endocytic pathway. Endocytic trafficking controls the duration and intensity of signalling, and growth factor receptor signalling can lead to modifications of trafficking pathways. We have developed live-cell imaging methods for studying FGFR dynamics to investigate mechanisms that coordinate the interplay between receptor trafficking and signal transduction. Activated FGFR enters the cell following recruitment to pre-formed clathrin-coated pits (CCPs). However, FGFR activation stimulates clathrin-mediated endocytosis; FGF treatment increases the number of CCPs, including those undergoing endocytosis, and this effect is mediated by Src and its phosphorylation target Eps8. Eps8 interacts with the clathrin-mediated endocytosis machinery and depletion of Eps8 inhibits FGFR trafficking and immediate Erk signalling. Once internalized, FGFR passes through peripheral early endosomes en route to recycling and degredative compartments, through an Src- and Eps8-dependent mechanism. Thus Eps8 functions as a key coordinator in the interplay between FGFR signalling and trafficking. This work provides the first detailed mechanistic analysis of growth factor receptor clustering at the cell surface through signal transduction and endocytic trafficking. As we have characterised the Src target Eps8 as a key regulator of FGFR signalling and trafficking, and identified the early endocytic system as the site of Eps8-mediated effects, this work provides novel mechanistic insight into the reciprocal regulation of growth factor receptor signalling and trafficking.
Physical basis behind achondroplasia, the most common form of human dwarfism.
He, Lijuan; Horton, William; Hristova, Kalina
2010-09-24
Fibroblast growth factor receptor 3 (FGFR3) is a receptor tyrosine kinase that plays an important role in long bone development. The G380R mutation in FGFR3 transmembrane domain is known as the genetic cause for achondroplasia, the most common form of human dwarfism. Despite many studies, there is no consensus about the exact mechanism underlying the pathology. To gain further understanding into the physical basis behind the disorder, here we measure the activation of wild-type and mutant FGFR3 in mammalian cells using Western blots, and we analyze the activation within the frame of a physical-chemical model describing dimerization, ligand binding, and phosphorylation probabilities within the dimers. The data analysis presented here suggests that the mutation does not increase FGFR3 dimerization, as proposed previously. Instead, FGFR3 activity in achondroplasia is increased due to increased probability for phosphorylation of the unliganded mutant dimers. This finding has implications for the design of targeted molecular treatments for achondroplasia.
Physical Basis behind Achondroplasia, the Most Common Form of Human Dwarfism*
He, Lijuan; Horton, William; Hristova, Kalina
2010-01-01
Fibroblast growth factor receptor 3 (FGFR3) is a receptor tyrosine kinase that plays an important role in long bone development. The G380R mutation in FGFR3 transmembrane domain is known as the genetic cause for achondroplasia, the most common form of human dwarfism. Despite many studies, there is no consensus about the exact mechanism underlying the pathology. To gain further understanding into the physical basis behind the disorder, here we measure the activation of wild-type and mutant FGFR3 in mammalian cells using Western blots, and we analyze the activation within the frame of a physical-chemical model describing dimerization, ligand binding, and phosphorylation probabilities within the dimers. The data analysis presented here suggests that the mutation does not increase FGFR3 dimerization, as proposed previously. Instead, FGFR3 activity in achondroplasia is increased due to increased probability for phosphorylation of the unliganded mutant dimers. This finding has implications for the design of targeted molecular treatments for achondroplasia. PMID:20624921
Eldaroti, Hala H; Gadir, Suad A; Refat, Moamen S; Adam, Abdel Majid A
2014-04-01
Investigation of charge-transfer (CT) complexes of drugs has been recognized as an important phenomenon in understanding of the drug-receptor binding mechanism. Structural, thermal, morphological and biological behavior of CT complexes formed between drug quinidine (Qui) as a donor and quinol (QL), picric acid (PA) or dichlorodicyanobenzoquinone (DDQ) as acceptors were reported. The newly synthesized CT complexes have been spectroscopically characterized via elemental analysis; infrared (IR), Raman, 1 H NMR and electronic absorption spectroscopy; powder X-ray diffraction (PXRD); thermogravimetric (TG) analysis and scanning electron microscopy (SEM). It was found that the obtained complexes are nanoscale, semi-crystalline particles, thermally stable and spontaneous. The molecular composition of the obtained complexes was determined using spectrophotometric titration method and was found to be 1:1 ratios (donor:acceptor). Finally, the biological activities of the obtained CT complexes were tested for their antibacterial activities. The results obtained herein are satisfactory for estimation of drug Qui in the pharmaceutical form.
Ohmichi, M; Decker, S J; Saltiel, A R
1992-10-01
Growth factor receptor tyrosine kinases can form stable associations with intracellular proteins that contain src homology (SH) 2 domains, including the p85 regulatory subunit of phosphatidylinositol (PI)-3 kinase. The activation of this enzyme by growth factors is evaluated in PC12 pheochromocytoma cells and NIH 3T3 fibroblasts expressing the pp140c-trk nerve growth factor (NGF) receptor (3T3-c-trk). NGF causes the rapid stimulation of PI-3 kinase activity detected in anti-phosphotyrosine, but not in anti-trk, immunoprecipitates. This effect coincides with the tyrosine phosphorylation of two proteins, with molecular masses of of 100 kd and 110 kd, that coimmunoprecipitate with p85. Similar phosphorylation patterns are induced when an immobilized fusion protein containing the amino-terminal SH2 domain of p85 is used to precipitate tyrosine-phosphorylated proteins. Thus, although NGF produces the rapid activation of PI-3 kinase through a mechanism that involves tyrosine phosphorylation, there is no evidence for tyrosine phosphorylation of p85, or for its ligand-dependent association with the NGF receptor. Perhaps another phosphoprotein may link the NGF receptor to this enzyme.
On the role of classical and novel forms of vitamin D in melanoma progression and management.
Slominski, Andrzej T; Brożyna, Anna A; Skobowiat, Cezary; Zmijewski, Michal A; Kim, Tae-Kang; Janjetovic, Zorica; Oak, Allen S; Jozwicki, Wojciech; Jetten, Anton M; Mason, Rebecca S; Elmets, Craig; Li, We; Hoffman, Robert M; Tuckey, Robert C
2018-03-01
Melanoma represents a significant clinical problem affecting a large segment of the population with a relatively high incidence and mortality rate. Ultraviolet radiation (UVR) is an important etiological factor in malignant transformation of melanocytes and melanoma development. UVB, while being a full carcinogen in melanomagenesis, is also necessary for the cutaneous production of vitamin D3 (D3). Calcitriol (1,25(OH) 2 D3) and novel CYP11A1-derived hydroxyderivatives of D3 show anti-melanoma activities and protective properties against damage induced by UVB. The former activities include inhibitory effects on proliferation, plating efficiency and anchorage-independent growth of cultured human and rodent melanomas in vitro, as well as the in vivo inhibition of tumor growth by 20(OH)D3 after injection of human melanoma cells into immunodeficient mice. The literature indicates that low levels of 25(OH)D3 are associated with more advanced melanomas and reduced patient survivals, while single nucleotide polymorphisms of the vitamin D receptor or the D3 binding protein gene affect development or progression of melanoma, or disease outcome. An inverse correlation of VDR and CYP27B1 expression with melanoma progression has been found, with low or undetectable levels of these proteins being associated with poor disease outcomes. Unexpectedly, increased expression of CYP24A1 was associated with better melanoma prognosis. In addition, decreased expression of retinoic acid orphan receptors α and γ, which can also bind vitamin D3 hydroxyderivatives, showed positive association with melanoma progression and shorter disease-free and overall survival. Thus, inadequate levels of biologically active forms of D3 and disturbances in expression of the target receptors, or D3 activating or inactivating enzymes, can affect melanomagenesis and disease progression. We therefore propose that inclusion of vitamin D into melanoma management should be beneficial for patients, at least as an adjuvant approach. The presence of multiple hydroxyderivatives of D3 in skin that show anti-melanoma activity in experimental models and which may act on alternative receptors, will be a future consideration when planning which forms of vitamin D to use for melanoma therapy. Published by Elsevier Ltd.
Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons
Chen, Xu-Qiao; Wang, Bin; Wu, Chengbiao; Pan, Jin; Yuan, Bo; Su, Yuan-Yuan; Jiang, Xing-Yu; Zhang, Xu; Bao, Lan
2012-01-01
Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X3 receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X3 receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X3 receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X3 receptors. The α, β-MeATP-induced Ca2+ influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X3 receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X3 receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X3 receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels. PMID:22157653
Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons.
Chen, Xu-Qiao; Wang, Bin; Wu, Chengbiao; Pan, Jin; Yuan, Bo; Su, Yuan-Yuan; Jiang, Xing-Yu; Zhang, Xu; Bao, Lan
2012-04-01
Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X(3) receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X(3) receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X(3) receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X(3) receptors. The α, β-MeATP-induced Ca(2+) influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X(3) receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X(3) receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X(3) receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.
USDA-ARS?s Scientific Manuscript database
In-vivo and in-vitro studies suggest a crucial role for Sphingosine 1-phosphate (S1P) and its receptors in the development of the nervous system. Dihydrosphingosine 1-phosphate (dhS1P), a reduced form of S1P, is an active ligand at S1P receptors, but the pharmacology and physiology of dhS1P has not...
Malik, Sundeep; Dolan, Terrance M; Maben, Zachary J; Hinkle, Patricia M
2015-11-13
The melanocortin-2 (MC2) receptor is a G protein-coupled receptor that mediates responses to ACTH. The MC2 receptor acts in concert with the MC2 receptor accessory protein (MRAP) that is absolutely required for ACTH binding and signaling. MRAP has a single transmembrane domain and forms a highly unusual antiparallel homodimer that is stably associated with MC2 receptors at the plasma membrane. Despite the physiological importance of the interaction between the MC2 receptor and MRAP, there is little understanding of how the accessory protein works. The dual topology of MRAP has made it impossible to determine whether highly conserved and necessary regions of MRAP are required on the intracellular or extracellular face of the plasma membrane. The strategy used here was to fix the orientation of two antiparallel MRAP molecules and then introduce inactivating mutations on one side of the membrane or the other. This was achieved by engineering proteins containing tandem copies of MRAP fused to the amino terminus of the MC2 receptor. The data firmly establish that only the extracellular amino terminus (Nout) copy of MRAP, oriented with critical segments on the extracellular side of the membrane, is essential. The transmembrane domain of MRAP is also required in only the Nout orientation. Finally, activity of MRAP-MRAP-MC2-receptor fusion proteins with inactivating mutations in either MRAP or the receptor was rescued by co-expression of free wild-type MRAP or free wild-type receptor. These results show that the basic MRAP-MRAP-receptor signaling unit forms higher order complexes and that these multimers signal. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Contribution of TMEM16F to pyroptotic cell death.
Ousingsawat, Jiraporn; Wanitchakool, Podchanart; Schreiber, Rainer; Kunzelmann, Karl
2018-02-20
Pyroptosis is a highly inflammatory form of programmed cell death that is caused by infection with intracellular pathogens and activation of canonical or noncanonical inflammasomes. The purinergic receptor P2X 7 is activated by the noncanonical inflammasome and contributes essentially to pyroptotic cell death. The Ca 2+ activated phospholipid scramblase and ion channel TMEM16F has been shown earlier to control cellular effects downstream of purinergic P2X 7 receptors that ultimately lead to cell death. As pyroptotic cell death is accompanied by an increases in intracellular Ca 2+ , we asked whether TMEM16F is activated during pyroptosis. The N-terminal cleavage product of gasdermin D (GD-N) is an executioner of pyroptosis by forming large plasma membrane pores. Expression of GD-N enhanced basal Ca 2+ levels and induced cell death. We observed that GD-N induced cell death in HEK293 and HAP1 cells, which was depending on expression of endogenous TMEM16F. GD-N activated large whole cell currents that were suppressed by knockdown or inhibition of TMEM16F. The results suggest that whole cell currents induced by the pore forming domain of gasdermin-D, are at least in part due to activation of TMEM16F. Knockdown of other TMEM16 paralogues expressed in HAP1 cells suggest TMEM16F as a crucial element during pyroptosis and excluded a role of other TMEM16 proteins. Thus TMEM16F supports pyroptosis and other forms of inflammatory cell death such as ferroptosis. Its potent inhibition by tannic acid may be part of the anti-inflammatory effects of flavonoids.
Berger, J; Patel, H V; Woods, J; Hayes, N S; Parent, S A; Clemas, J; Leibowitz, M D; Elbrecht, A; Rachubinski, R A; Capone, J P; Moller, D E
2000-04-25
The peroxisomal proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily that act as ligand-activated transcription factors. PPARgamma plays a critical role in regulating adipocyte differentiation and lipid metabolism. Recently, thiazolidinedione (TZD) and select non-TZD antidiabetic agents have been identified as PPARgamma agonists. To further characterize this receptor subclass, a mutant hPPARgamma lacking five carboxyl-terminal amino acids was produced (hPPARgamma2Delta500). In COS-1 cells transfected with PPAR-responsive reporter constructs, the mutant receptor could not be activated by a potent PPARgamma agonist. When cotransfected with hPPARgamma2 or hPPARalpha, hPPARgamma2Delta500 abrogated wild-type receptor activity in a dose-responsive manner. hPPARgamma2Delta500 was also impaired with respect to binding of a high-affinity radioligand. In addition, its conformation was unaffected by normally saturating concentrations of PPARgamma agonist as determined by protease protection experiments. Electrophoretic mobility shift assays demonstrated that hPPARgamma2Delta500 and hPPARgamma2 both formed heterodimeric complexes with human retinoidxreceptor alpha (hRXRalpha) and could bind a peroxisome proliferator-responsive element (PPRE) with similar affinity. Therefore, hPPARgamma2Delta500 appears to repress PPAR activity by competing with wild type receptor to dimerize with RXR and bind the PPRE. In addition, the mutant receptor may titrate out factors required for PPAR-regulated transcriptional activation. Both hPPARgamma2 and hPPARgamma2Delta500 localized to the nucleus of transiently transfected COS-1 cells as determined by immunofluorescence using a PPARgamma-specific antibody. Thus, nuclear localization of PPARgamma occurs independently of its activation state. The dominant negative mutant, hPPARgamma2Delta500, may prove useful in further studies to characterize PPAR functions both in vitro and in vivo
New insights into the organization of plasma membrane and its role in signal transduction.
Suzuki, Kenichi G N
2015-01-01
Plasma membranes have heterogeneous structures for efficient signal transduction, required to perform cell functions. Recent evidence indicates that the heterogeneous structures are produced by (1) compartmentalization by actin-based membrane skeleton, (2) raft domains, (3) receptor-receptor interactions, and (4) the binding of receptors to cytoskeletal proteins. This chapter provides an overview of recent studies on diffusion, clustering, raft association, actin binding, and signal transduction of membrane receptors, especially glycosylphosphatidylinositol (GPI)-anchored receptors. Studies on diffusion of GPI-anchored receptors suggest that rafts may be small and/or short-lived in plasma membranes. In steady state conditions, GPI-anchored receptors form transient homodimers, which may represent the "standby state" for the stable homodimers and oligomers upon ligation. Furthermore, It is proposed that upon ligation, the binding of GPI-anchored receptor clusters to cytoskeletal actin filaments produces a platform for downstream signaling, and that the pulse-like signaling easily maintains the stability of the overall signaling activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Songling; Premont, Richard T; Rockey, Don C
2014-06-27
Nitric oxide (NO) is a critical regulator of vascular tone and plays an especially prominent role in liver by controlling portal blood flow and pressure within liver sinusoids. Synthesis of NO in sinusoidal endothelial cells by endothelial nitric-oxide synthase (eNOS) is regulated in response to activation of endothelial cells by vasoactive signals such as endothelins. The endothelin B (ETB) receptor is a G-protein-coupled receptor, but the mechanisms by which it regulates eNOS activity in sinusoidal endothelial cells are not well understood. In this study, we built on two previous strands of work, the first showing that G-protein βγ subunits mediated activation of phosphatidylinositol 3-kinase and Akt to regulate eNOS and the second showing that eNOS directly bound to the G-protein-coupled receptor kinase-interacting protein 1 (GIT1) scaffold protein, and this association stimulated NO production. Here we investigated the mechanisms by which the GIT1-eNOS complex is formed and regulated. GIT1 was phosphorylated on tyrosine by Src, and Y293F and Y554F mutations reduced GIT1 phosphorylation as well as the ability of GIT1 to bind to and activate eNOS. Akt phosphorylation activated eNOS (at Ser(1177)), and Akt also regulated the ability of Src to phosphorylate GIT1 as well as GIT1-eNOS association. These pathways were activated by endothelin-1 through the ETB receptor; inhibiting receptor-activated G-protein βγ subunits blocked activation of Akt, GIT1 tyrosine phosphorylation, and ET-1-stimulated GIT1-eNOS association but did not affect Src activation. These data suggest a model in which Src and Akt cooperate to regulate association of eNOS with the GIT1 scaffold to facilitate NO production. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Parallel processing and learning in simple systems. Annual report, 10 January 1987-9 January 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mpitsos, G.J.
1988-03-11
To date it has been demonstrated that an experimental animal, the sea slug Pleurobranchaea, is capable of one-trial food-aversion learning, and that the muscarinic antagonist scopolamine in low doses causes an enhancement of learning. Pharmacologic binding studies using a new, /sup 125/I-form of quinuclidinyl benzilate, in addition to studies using the /sup 3/H form of this ligand, have uncovered not only the classical types of muscarinic receptors that are typical of vertebrate cortex, but also a new form that is not found in other invertebrates tested. Usually muscarinic receptors are found in low densities in invertebrate neural membranes, but themore » density of the new form in this animal's neural membranes is similar to the density of the classic receptors in mammalian cortex. Neurophysiological studies of individual neurons in small groups of identifiable neurons have shown that their activity is variable, as is the behavior that they take part in generating, and that the variability fits the definition of low-dimensional chaos. Findings show that such variability is an important feature of the emergence of adaptive responses arising from parallel, distributed neural networks in biological systems.« less
Nakanishi, Y; Oinuma, T; Sano, M; Fuchinoue, F; Komatsu, K; Seki, T; Obana, Y; Tabata, M; Kikuchi, K; Shimamura, M; Ohmori, K; Nemoto, N
2006-10-01
The beta chain of the interleukin 2/15 receptor (IL-2/15Rbeta) is induced by the expression of the EWS-WT1. A case of desmoplastic small round cell tumour (DSRCT) expressing only an unusual EWS-WT1 treated by us is reported here. To characterise an unusual form of EWS-WT1. Frozen tissue sections of the axillary tumour were examined using a laser-assisted microdissection technique and reverse transcriptase polymerase chain reaction. The novel fusion of exon 8 of EWS and the defective exon 10 of WT1 (-KTS) was detected. Although it was an unusual form, the coexpression of the present EWS-WT1, IL-2/15Rbeta and Janus kinase (JAK1) mRNA was detected in the tumour cells. IL-2 and signal transducers and activators of transcription (STAT5) mRNA were detected in both tumour and stromal cells. The induction of the IL-2/15 receptor signalling pathway may contribute to tumorigenesis in DSRCT through a paracrine or an autocrine system, even though the EWS-WT1 was an unusual form.
Cytoskeleton in Mast Cell Signaling
Dráber, Pavel; Sulimenko, Vadym; Dráberová, Eduarda
2012-01-01
Mast cell activation mediated by the high affinity receptor for IgE (FcεRI) is a key event in allergic response and inflammation. Other receptors on mast cells, as c-Kit for stem cell factor and G protein-coupled receptors (GPCRs) synergistically enhance the FcεRI-mediated release of inflammatory mediators. Activation of various signaling pathways in mast cells results in changes in cell morphology, adhesion to substrate, exocytosis, and migration. Reorganization of cytoskeleton is pivotal in all these processes. Cytoskeletal proteins also play an important role in initial stages of FcεRI and other surface receptors induced triggering. Highly dynamic microtubules formed by αβ-tubulin dimers as well as microfilaments build up from polymerized actin are affected in activated cells by kinases/phosphatases, Rho GTPases and changes in concentration of cytosolic Ca2+. Also important are nucleation proteins; the γ-tubulin complexes in case of microtubules or Arp 2/3 complex with its nucleation promoting factors and formins in case of microfilaments. The dynamic nature of microtubules and microfilaments in activated cells depends on many associated/regulatory proteins. Changes in rigidity of activated mast cells reflect changes in intermediate filaments build up from vimentin. This review offers a critical appraisal of current knowledge on the role of cytoskeleton in mast cells signaling. PMID:22654883
Endothelin A receptor activation on mesangial cells initiates Alport glomerular disease
Dufek, Brianna; Meehan, Daniel; Delimont, Duane; Cheung, Linda; Gratton, Michael Anne; Phillips, Grady; Song, Wenping; Liu, Shiguang; Cosgrove, Dominic
2016-01-01
Recent work demonstrates that Alport glomerular disease is mediated through a biomechanical strain-sensitive activation of mesangial actin dynamics. This occurs through a Rac1/CDC42 cross-talk mechanism that results in the invasion of the sub-capillary spaces by mesangial filopodia. The filopodia deposit mesangial matrix proteins in the glomerular basement membrane, including laminin 211, which activates focal adhesion kinase in podocytes culminating in the up-regulation of pro-inflammatory cytokines and metalloproteinases. These events drive the progression of glomerulonephritis. Here we test whether endothelial cell-derived endothelin-1 is upregulated in Alport glomeruli, and further elevated by hypertension. Treatment of cultured mesangial cells with endothelin-1 activates the formation of drebrin-positive actin microspikes. These microspikes do not form when cells are treated with the endothelin A receptor antagonist sitaxentan, or under conditions of siRNA knockdown of endothelin A receptor mRNA. Treatment of Alport mice with sitaxentan results in delayed onset of proteinuria, normalized glomerular basement membrane morphology, inhibition of mesangial filopodial invasion of the glomerular capillaries, normalization of glomerular expression of metalloproteinases and pro-inflammatory cytokines, increased lifespan, and prevention of glomerulosclerosis and interstitial fibrosis. Thus endothelin A receptor activation on mesangial cells is a key event in initiation of Alport glomerular disease in this model. PMID:27165837
Bhattarai, Janardhan Prasad; Cho, Dong Hyu; Han, Seong Kyu
2016-02-29
Shilajit, a mineral pitch, has been used in Ayurveda and Siddha system of medicine to treat many human ailments, and is reported to contain at least 85 minerals in ionic form. This study examined the possible mechanism of Shilajit action on preoptic hypothalamic neurons using juvenile mice. The hypothalamic neurons are the key regulator of many hormonal systems. In voltage clamp mode at a holding potential of -60 mV, and under a high chloride pipette solution, Shilajit induced dose-dependent inward current. Shilajit-induced inward currents were reproducible and persisted in the presence of 0.5 μM tetrodotoxin (TTX) suggesting a postsynaptic action of Shilajit on hypothalamic neurons. The currents induced by Shilajit were almost completely blocked by 2 μM strychnine (Stry), a glycine receptor antagonist. In addition, Shilajit-induced inward currents were partially blocked by bicuculline. Under a gramicidin-perforated patch clamp mode, Shilajit induced membrane depolarization on juvenile neurons. These results show that Shilajit affects hypothalamic neuronal activities by activating the Stry-sensitive glycine receptor with α₂/α₂β subunit. Taken together, these results suggest that Shilajit contains some ingredients with possible glycine mimetic activities and might influence hypothalamic neurophysiology through activation of Stry-sensitive glycine receptor-mediated responses on hypothalamic neurons postsynaptically.
Ibrutinib inhibition of Bruton protein-tyrosine kinase (BTK) in the treatment of B cell neoplasms.
Roskoski, Robert
2016-11-01
The Bruton non-receptor protein-tyrosine kinase (BTK), a deficiency of which leads to X-linked agammaglobulinemia, plays a central role in B cell antigen receptor signaling. Owing to the exclusivity of this enzyme in B cells, the acronym could represent B cell tyrosine kinase. BTK is activated by the Lyn and SYK protein kinases following activation of the B cell receptor. BTK in turn catalyzes the phosphorylation and activation of phospholipase Cγ2 leading to the downstream activation of the Ras/RAF/MEK/ERK pathway and the NF-κB pathways. Both pathways participate in the maturation of antibody-producing B cells. The BTK domains include a PH (pleckstrin homology) domain that interacts with membrane-associated phosphatidyl inositol trisphosphate, a TH (TEC homology) domain, which is followed by an SH3, SH2, and finally a protein kinase domain. Dysregulation of B cell receptor signaling occurs in several B cell neoplasms including mantle cell lymphoma, chronic lymphocytic leukemia, and Waldenström macroglobulinemia. Ibrutinib is FDA-approved as first-line or second line treatment for these diseases. The drug binds tightly in the ATP-binding pocket of BTK making salt bridges with residues within the hinge that connects the two lobes of the enzyme; then its unsaturated acrylamide group forms a covalent bond with BTK cysteine 481 to form an inactive adduct. In addition to the treatment of various B cell lymphomas, ibrutinib is under clinical trials for the treatment of numerous solid tumors owing to the role of tumor-promoting inflammation in the pathogenesis of neoplastic diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Garzón, Miguel; Pickel, Virginia M.
2008-01-01
Acetylcholine can affect cognitive functions and reward, in part, through activation of muscarinic receptors in the ventral tegmental area (VTA) to evoke changes in mesocorticolimbic dopaminergic transmission. Of the known muscarinic receptor subtypes present in the VTA, the M2 receptor (M2R) is most implicated in autoregulation, and also may play a heteroreceptor role in regulation of the output of the dopaminergic neurons. We sought to determine the functionally relevant sites for M2R activation in relation to VTA dopaminergic neurons by examining the electron microscopic immunolabeling of M2R and the dopamine transporter (DAT) in the VTA of rat brain. The M2R was localized to endomembranes in DAT-containing somatodendritic profiles, but showed a more prominent, size-dependent plasmalemmal location in non-dopaminergic dendrites. M2R also was located on the plasma membrane of morphologically heterogenous axon terminals contacting unlabeled as well as M2R or DAT-labeled dendrites. Some of these terminals formed asymmetric synapses resembling those of cholinergic terminals in the VTA. The majority, however, formed symmetric, inhibitory-type synapses, or were apposed without recognized junctions. Our results provide the first ultrastructural evidence that the M2R is expressed, but largely not available for local activation, on the plasma membrane of VTA dopaminergic neurons. Instead, the M2R in this region has a distribution suggesting more indirect regulation of mesocorticolimbic transmission through autoregulation of acetylcholine release and changes in the physiological activity or release of other, largely inhibitory transmitters. These findings could have implications for understanding the muscarinic control of cognitive and goal-directed behaviors within the VTA. PMID:16927256
Alexeev, Mikhail; Grosenbaugh, Denise K.; Mott, David D.; Fisher, Janet L.
2012-01-01
The National Center for Complementary and Alternative Medicine (NCCAM) estimates that nearly 40% of adults in the United States use alternative medicines, often in the form of an herbal supplement. Extracts from the tree bark of magnolia species have been used for centuries in traditional Chinese and Japanese medicines to treat a variety of neurological diseases, including anxiety, depression, and seizures. The active ingredients in the extracts have been identified as the bi-phenolic isomers magnolol and honokiol. These compounds were shown to enhance the activity of GABAA receptors, consistent with their biological effects. The GABAA receptors exhibit substantial subunit heterogeneity, which influences both their functional and pharmacological properties. We examined the activity of magnolol and honokiol at different populations of both neuronal and recombinant GABAA receptors to characterize their mechanism of action and to determine whether sensitivity to modulation was dependent upon the receptor’s subunit composition. We found that magnolol and honokiol enhanced both phasic and tonic GABAergic neurotransmission in hippocampal dentate granule neurons. In addition, all recombinant receptors examined were sensitive to modulation, regardless of the identity of the α, β, or γ subunit subtype, although the compounds showed particularly high efficacy at δ-containing receptors. This direct positive modulation of both synaptic and extra-synaptic populations of GABAA receptors suggests that supplements containing magnolol and/or honokiol would be effective anxiolytics, sedatives, and anti-convulsants. However, significant side-effects and risk of drug interactions would also be expected. PMID:22445602
Shochat, Chen; Tal, Noa; Bandapalli, Obul R.; Palmi, Chiara; Ganmore, Ithamar; te Kronnie, Geertruy; Cario, Gunnar; Cazzaniga, Giovanni; Kulozik, Andreas E.; Stanulla, Martin; Schrappe, Martin; Biondi, Andrea; Basso, Giuseppe; Bercovich, Dani; Muckenthaler, Martina U.
2011-01-01
Interleukin-7 receptor α (IL7R) is required for normal lymphoid development. Loss-of-function mutations in this gene cause autosomal recessive severe combined immune deficiency. Here, we describe somatic gain-of-function mutations in IL7R in pediatric B and T acute lymphoblastic leukemias. The mutations cause either a serine-to-cysteine substitution at amino acid 185 in the extracellular domain (4 patients) or in-frame insertions and deletions in the transmembrane domain (35 patients). In B cell precursor leukemias, the mutations were associated with the aberrant expression of cytokine receptor-like factor 2 (CRLF2), and the mutant IL-7R proteins formed a functional receptor with CRLF2 for thymic stromal lymphopoietin (TSLP). Biochemical and functional assays reveal that these IL7R mutations are activating mutations conferring cytokine-independent growth of progenitor lymphoid cells. A cysteine, included in all but three of the mutated IL-7R alleles, is essential for the constitutive activation of the receptor. This is the first demonstration of gain-of-function mutations of IL7R. Our current and recent observations of mutations in IL7R and CRLF2, respectively suggest that the addition of cysteine to the juxtamembranous domains is a general mechanism for mutational activation of type I cytokine receptors in leukemia. PMID:21536738
High affinity soluble ILT2 receptor: a potent inhibitor of CD8(+) T cell activation.
Moysey, Ruth K; Li, Yi; Paston, Samantha J; Baston, Emma E; Sami, Malkit S; Cameron, Brian J; Gavarret, Jessie; Todorov, Penio; Vuidepot, Annelise; Dunn, Steven M; Pumphrey, Nicholas J; Adams, Katherine J; Yuan, Fang; Dennis, Rebecca E; Sutton, Deborah H; Johnson, Andy D; Brewer, Joanna E; Ashfield, Rebecca; Lissin, Nikolai M; Jakobsen, Bent K
2010-12-01
Using directed mutagenesis and phage display on a soluble fragment of the human immunoglobulin super-family receptor ILT2 (synonyms: LIR1, MIR7, CD85j), we have selected a range of mutants with binding affinities enhanced by up to 168,000-fold towards the conserved region of major histocompatibility complex (MHC) class I molecules. Produced in a dimeric form, either by chemical cross-linking with bivalent polyethylene glycol (PEG) derivatives or as a genetic fusion with human IgG Fc-fragment, the mutants exhibited a further increase in ligand-binding strength due to the avidity effect, with resident half-times (t(1/2)) on the surface of MHC I-positive cells of many hours. The novel compounds antagonized the interaction of CD8 co-receptor with MHC I in vitro without affecting the peptide-specific binding of T-cell receptors (TCRs). In both cytokine-release assays and cell-killing experiments the engineered receptors inhibited the activation of CD8(+) cytotoxic T lymphocytes (CTLs) in the presence of their target cells, with subnanomolar potency and in a dose-dependent manner. As a selective inhibitor of CD8(+) CTL responses, the engineered high affinity ILT2 receptor presents a new tool for studying the activation mechanism of different subsets of CTLs and could have potential for the development of novel autoimmunity therapies.
NASA Astrophysics Data System (ADS)
Costanzi, Stefano; Tikhonova, Irina G.; Harden, T. Kendall; Jacobson, Kenneth A.
2009-11-01
Accurate in silico models for the quantitative prediction of the activity of G protein-coupled receptor (GPCR) ligands would greatly facilitate the process of drug discovery and development. Several methodologies have been developed based on the properties of the ligands, the direct study of the receptor-ligand interactions, or a combination of both approaches. Ligand-based three-dimensional quantitative structure-activity relationships (3D-QSAR) techniques, not requiring knowledge of the receptor structure, have been historically the first to be applied to the prediction of the activity of GPCR ligands. They are generally endowed with robustness and good ranking ability; however they are highly dependent on training sets. Structure-based techniques generally do not provide the level of accuracy necessary to yield meaningful rankings when applied to GPCR homology models. However, they are essentially independent from training sets and have a sufficient level of accuracy to allow an effective discrimination between binders and nonbinders, thus qualifying as viable lead discovery tools. The combination of ligand and structure-based methodologies in the form of receptor-based 3D-QSAR and ligand and structure-based consensus models results in robust and accurate quantitative predictions. The contribution of the structure-based component to these combined approaches is expected to become more substantial and effective in the future, as more sophisticated scoring functions are developed and more detailed structural information on GPCRs is gathered.
Navakkode, Sheeja; Chew, Katherine C M; Tay, Sabrina Jia Ning; Lin, Qingshu; Behnisch, Thomas; Soong, Tuck Wah
2017-11-14
Long-term potentiation (LTP) is the persistent increase in the strength of the synapses. However, the neural networks would become saturated if there is only synaptic strenghthening. Synaptic weakening could be facilitated by active processes like long-term depression (LTD). Molecular mechanisms that facilitate the weakening of synapses and thereby stabilize the synapses are also important in learning and memory. Here we show that blockade of dopaminergic D4 receptors (D4R) promoted the formation of late-LTP and transformed early-LTP into late-LTP. This effect was dependent on protein synthesis, activation of NMDA-receptors and CaMKII. We also show that GABA A -receptor mediated mechanisms are involved in the enhancement of late-LTP. We could show that short-term plasticity and baseline synaptic transmission were unaffected by D4R inhibition. On the other hand, antagonizing D4R prevented both early and late forms of LTD, showing that activation of D4Rs triggered a dual function. Synaptic tagging experiments on LTD showed that D4Rs act as plasticity related proteins rather than the setting of synaptic tags. D4R activation by PD 168077 induced a slow-onset depression that was protein synthesis, NMDAR and CaMKII dependent. The D4 receptors, thus exert a bidirectional modulation of CA1 pyramidal neurons by restricting synaptic strengthening and facilitating synaptic weakening.
Coultrap, Steven J.; Browning, Michael D.; Proctor, William R.
2011-01-01
The hippocampal N-methyl-d-aspartate receptor (NMDAR) activity plays important roles in cognition and is a major substrate for ethanol-induced memory dysfunction. This receptor is a glutamate-gated ion channel, which is composed of NR1 and NR2 subunits in various brain areas. Although homomeric NR1 subunits form an active ion channel that conducts Na+ and Ca2+ currents, the incorporation of NR2 subunits allows this channel to be modulated by the Src family of kinases, phosphatases, and by simple molecules such as ethanol. We have found that short-term ethanol application inhibits the NMDAR activity via striatal enriched protein tyrosine phosphatase (STEP)-regulated mechanisms. The genetic deletion of the active form of STEP, STEP61, leads to marked attenuation of ethanol inhibition of NMDAR currents. In addition, STEP61 negatively regulates Fyn and p38 mitogen-activated protein kinase (MAPK), and these proteins are members of the NMDAR super molecular complex. Here we demonstrate, using whole-cell electrophysiological recording, Western blot analysis, and pharmacological manipulations, that neurons exposed to a 3-h, 45 mM ethanol treatment develop an adaptive attenuation of short-term ethanol inhibition of NMDAR currents in brain slices. Our results suggest that this adaptation of NMDAR responses is associated with a partial inactivation of STEP61, an activation of p38 MAPK, and a requirement for NR2B activity. Together, these data indicate that altered STEP61 and p38 MAPK signaling contribute to the modulation of ethanol inhibition of NMDARs in brain neurons. PMID:21680777
NR4A nuclear receptors are orphans but not lonesome.
Kurakula, Kondababu; Koenis, Duco S; van Tiel, Claudia M; de Vries, Carlie J M
2014-11-01
The NR4A subfamily of nuclear receptors consists of three mammalian members: Nur77, Nurr1, and NOR-1. The NR4A receptors are involved in essential physiological processes such as adaptive and innate immune cell differentiation, metabolism and brain function. They act as transcription factors that directly modulate gene expression, but can also form trans-repressive complexes with other transcription factors. In contrast to steroid hormone nuclear receptors such as the estrogen receptor or the glucocorticoid receptor, no ligands have been described for the NR4A receptors. This lack of known ligands might be explained by the structure of the ligand-binding domain of NR4A receptors, which shows an active conformation and a ligand-binding pocket that is filled with bulky amino acid side-chains. Other mechanisms, such as transcriptional control, post-translational modifications and protein-protein interactions therefore seem to be more important in regulating the activity of the NR4A receptors. For Nur77, over 80 interacting proteins (the interactome) have been identified so far, and roughly half of these interactions has been studied in more detail. Although the NR4As show some overlap in interacting proteins, less information is available on the interactome of Nurr1 and NOR-1. Therefore, the present review will describe the current knowledge on the interactomes of all three NR4A nuclear receptors with emphasis on Nur77. Copyright © 2014 Elsevier B.V. All rights reserved.
PRIC320, a transcription coactivator, isolated from peroxisome proliferator-binding protein complex.
Surapureddi, Sailesh; Viswakarma, Navin; Yu, Songtao; Guo, Dongsheng; Rao, M Sambasiva; Reddy, Janardan K
2006-05-05
Ciprofibrate, a potent peroxisome proliferator, induces pleiotropic responses in liver by activating peroxisome proliferator-activated receptor alpha (PPARalpha), a nuclear receptor. Transcriptional regulation by liganded nuclear receptors involves the participation of coregulators that form multiprotein complexes possibly to achieve cell and gene specific transcription. SDS-PAGE and matrix-assisted laser desorption/ionization reflection time-of-flight mass spectrometric analyses of ciprofibrate-binding proteins from liver nuclear extracts obtained using ciprofibrate-Sepharose affinity matrix resulted in the identification of a new high molecular weight nuclear receptor coactivator, which we designated PRIC320. The full-length human cDNA encoding this protein has an open-reading frame that codes for a 320kDa protein containing 2882 amino acids. PRIC320 contains five LXXLL signature motifs that mediate interaction with nuclear receptors. PRIC320 binds avidly to nuclear receptors PPARalpha, CAR, ERalpha, and RXR, but only minimally with PPARgamma. PRIC320 also interacts with transcription cofactors CBP, PRIP, and PBP. Immunoprecipitation-immunoblotting as well as cellular localization studies confirmed the interaction between PPARalpha and PRIC320. PRIC320 acts as a transcription coactivator by stimulating PPARalpha-mediated transcription. We conclude that ciprofibrate, a PPARalpha ligand, binds a multiprotein complex and PRIC320 cloned from this complex functions as a nuclear receptor coactivator.
Smith, Thomas H; Li, Julia G; Dores, Michael R; Trejo, JoAnn
2017-08-18
Vascular inflammation and thrombosis require the concerted actions of several different agonists, many of which act on G protein-coupled receptors (GPCRs). GPCR dimerization is a well-established phenomenon that can alter protomer function. In platelets and other cell types, protease-activated receptor-4 (PAR4) has been shown to dimerize with the purinergic receptor P2Y12 to coordinate β-arrestin-mediated Akt signaling, an important mediator of integrin activation. However, the mechanism by which the PAR4-P2Y12 dimer controls β-arrestin-dependent Akt signaling is not known. We now report that PAR4 and P2Y12 heterodimer internalization is required for β-arrestin recruitment to endosomes and Akt signaling. Using bioluminescence resonance energy transfer, immunofluorescence microscopy, and co-immunoprecipitation in cells expressing receptors exogenously and endogenously, we demonstrate that PAR4 and P2Y12 specifically interact and form dimers expressed at the cell surface. We also found that activation of PAR4 but not of P2Y12 drives internalization of the PAR4-P2Y12 heterodimer. Remarkably, activated PAR4 internalization was required for recruitment of β-arrestin to endocytic vesicles, which was dependent on co-expression of P2Y12. Interestingly, stimulation of the PAR4-P2Y12 heterodimer promotes β-arrestin and Akt co-localization to intracellular vesicles. Moreover, activated PAR4-P2Y12 internalization is required for sustained Akt activation. Thus, internalization of the PAR4-P2Y12 heterodimer is necessary for β-arrestin recruitment to endosomes and Akt signaling and lays the foundation for examining whether blockade of PAR4 internalization reduces integrin and platelet activation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Ward, Richard J.; Pediani, John D.; Harikumar, Kaleeckal G.; Miller, Laurence J.
2017-01-01
Previous studies have indicated that the G-protein-coupled secretin receptor is present as a homodimer, organized through symmetrical contacts in transmembrane domain IV, and that receptor dimerization is critical for high-potency signalling by secretin. However, whether all of the receptor exists in the dimeric form or if this is regulated is unclear. We used measures of quantal brightness of the secretin receptor tagged with monomeric enhanced green fluorescent protein (mEGFP) and spatial intensity distribution analysis to assess this. Calibration using cells expressing plasma membrane-anchored forms of mEGFP initially allowed us to demonstrate that the epidermal growth factor receptor is predominantly monomeric in the absence of ligand and while wild-type receptor was rapidly converted into a dimeric form by ligand, a mutated form of this receptor remained monomeric. Equivalent studies showed that, at moderate expression levels, the secretin receptor exists as a mixture of monomeric and dimeric forms, with little evidence of higher-order complexity. However, sodium butyrate-induced up-regulation of the receptor resulted in a shift from monomeric towards oligomeric organization. In contrast, a form of the secretin receptor containing a pair of mutations on the lipid-facing side of transmembrane domain IV was almost entirely monomeric. Down-regulation of the secretin receptor-interacting G-protein Gαs did not alter receptor organization, indicating that dimerization is defined specifically by direct protein–protein interactions between copies of the receptor polypeptide, while short-term treatment with secretin had no effect on organization of the wild-type receptor but increased the dimeric proportion of the mutated receptor variant. PMID:28424368
[Proteolysis in digestive system regulation].
Korot'ko, G F
2013-01-01
Signal enzymes with direct and indirect hormone releasing action are formed by means of proteolysis from exogenic and endogenic proteins. The proteolysis is the basis of hormone processing. The limited proteolysis forms hormones from pro-hormones, ligand proteolysis excludes or reduces their stimulated or inhibited effects. The existence of polipotent proteinaso-activated receptors with regulative and modulated role in norm and pathology was proved.
Beneventano, Martina; Spampinato, Simona F; Merlo, Sara; Chisari, Mariangela; Platania, Paola; Ragusa, Marco; Purrello, Michele; Nicoletti, Ferdinando; Sortino, Maria Angela
2017-01-01
Metabotropic glutamate (mGlu) receptor 5 is involved in neuroinflammation and has been shown to mediate reduced inflammation and neurotoxicity and to modify microglia polarization. On the other hand, blockade of mGlu5 receptor results in inhibition of microglia activation. To dissect this controversy, we investigated whether microvesicles (MVs) released from microglia BV2 cells could contribute to the communication between microglia and neurons and whether this interaction was modulated by mGlu5 receptor. Activation of purinergic ionotropic P2X7 receptor with the stable ATP analog benzoyl-ATP (100 μM) caused rapid MVs shedding from BV2 cells. Ionic currents through P2X7 receptor increased in BV2 cells pretreated for 24 h with the mGlu5 receptor agonist CHPG (200 μM) as by patch-clamp recording. This increase was blunted when microglia cells were activated by exposure to lipopolysaccharide (LPS; 0.1 μg/ml for 6 h). Accordingly, a greater amount of MVs formed after CHPG treatment, an effect prevented by the mGlu5 receptor antagonist MTEP (100 μM), as measured by expression of flotillin, a membrane protein enriched in MVs. Transferred MVs were internalized by SH-SY5Y neurons where they did not modify neuronal death induced by a low concentration of rotenone (0.1 μM for 24 h), but significantly increased rotenone neurotoxicity when shed from CHPG-treated BV2 cells. miR146a was increased in CHPG-treated MVs, an effect concealed in MVs from LPS-activated BV2 cells that showed per se an increase in miRNA146a levels. The present data support a role for microglia-shed MVs in mGlu5-mediated modulation of neuronal death and identify miRNAs as potential critical mediators of this interaction.
Beneventano, Martina; Spampinato, Simona F.; Merlo, Sara; Chisari, Mariangela; Platania, Paola; Ragusa, Marco; Purrello, Michele; Nicoletti, Ferdinando; Sortino, Maria Angela
2017-01-01
Metabotropic glutamate (mGlu) receptor 5 is involved in neuroinflammation and has been shown to mediate reduced inflammation and neurotoxicity and to modify microglia polarization. On the other hand, blockade of mGlu5 receptor results in inhibition of microglia activation. To dissect this controversy, we investigated whether microvesicles (MVs) released from microglia BV2 cells could contribute to the communication between microglia and neurons and whether this interaction was modulated by mGlu5 receptor. Activation of purinergic ionotropic P2X7 receptor with the stable ATP analog benzoyl-ATP (100 μM) caused rapid MVs shedding from BV2 cells. Ionic currents through P2X7 receptor increased in BV2 cells pretreated for 24 h with the mGlu5 receptor agonist CHPG (200 μM) as by patch-clamp recording. This increase was blunted when microglia cells were activated by exposure to lipopolysaccharide (LPS; 0.1 μg/ml for 6 h). Accordingly, a greater amount of MVs formed after CHPG treatment, an effect prevented by the mGlu5 receptor antagonist MTEP (100 μM), as measured by expression of flotillin, a membrane protein enriched in MVs. Transferred MVs were internalized by SH-SY5Y neurons where they did not modify neuronal death induced by a low concentration of rotenone (0.1 μM for 24 h), but significantly increased rotenone neurotoxicity when shed from CHPG-treated BV2 cells. miR146a was increased in CHPG-treated MVs, an effect concealed in MVs from LPS-activated BV2 cells that showed per se an increase in miRNA146a levels. The present data support a role for microglia-shed MVs in mGlu5-mediated modulation of neuronal death and identify miRNAs as potential critical mediators of this interaction. PMID:29170640
Kim, Hun Sik; Long, Eric O.
2013-01-01
The cytotoxic effects of natural killer (NK) cells and their ability to secrete cytokines require the induction of synergistic signals from co-activation receptors, such as CD314 (NKG2D) and CD244 (2B4), which bind to ligands expressed on target cells. Synergy is required to overcome inhibition of the guanine nucleotide exchange factor (GEF) Vav1, a central regulator of NK cell activation, by the E3 ubiquitin ligase c-Cbl. However, the molecular basis for this synergy is unknown. Here, we showed that the adaptor protein Src homology 2 (SH2) domain–containing leukocyte phosphoprotein of 76 kD (SLP-76) was required for this synergy, and that distinct tyrosine residues in SLP-76 were phosphorylated by each receptor of a synergistic pair. Selective phosphorylation of tyrosine 113 or tyrosine 128 in SLP-76, each of which enables binding of SLP-76 to Vav1, was unique to receptors that stimulate ligand-dependent target cell killing, because antibody-dependent stimulation by Fc receptor CD16 promoted phosphorylation at both sites. Knockdown and reconstitution experiments with SLP-76 showed the distinct role of each tyrosine in the synergistic mobilization of Ca2+, revealing an unexpected degree of selectivity in the phosphorylation of SLP-76 by NK cell co-activation receptors. Together, these data suggest that complementation of separate phospho-tyrosine targets in SLP-76 forms the basis of synergistic NK cell activation. PMID:22786724
Kim, Hun Sik; Long, Eric O
2012-07-10
The cytotoxic effects of natural killer (NK) cells and their ability to secrete cytokines require synergistic signals from specific pairs of co-activation receptors, such as CD314 (also known as NKG2D) and CD244 (2B4), which bind to distinct ligands present on target cells. These signals are required to overcome inhibition mediated by the E3 ubiquitin ligase c-Cbl of the guanine nucleotide exchange factor Vav1, which promotes activation of NK cells. Here, we showed that the adaptor protein SLP-76 (Src homology 2 domain-containing leukocyte phosphoprotein of 76 kilodaltons) was required for this synergy and that distinct tyrosine residues in SLP-76 were phosphorylated by each member of a pair of synergistic receptors. Selective phosphorylation of tyrosine 113 or tyrosine 128 in SLP-76 enabled binding of SLP-76 to Vav1. Selective phosphorylation of SLP-76 at these residues was restricted to receptors that stimulated ligand-dependent target cell killing; antibody-dependent stimulation of the Fc receptor CD16 promoted phosphorylation at both sites. Knockdown and reconstitution experiments with SLP-76 mutant proteins showed the distinct role of each tyrosine in the synergistic mobilization of Ca2+, revealing an unexpected degree of selectivity in the phosphorylation of SLP-76 by NK cell co-activation receptors. Together, these data suggest that combined phosphorylation of separate tyrosine residues in SLP-76 forms the basis of synergistic NK cell activation.
Molecular determinants of the olfactory receptor Olfr544 activation by azelaic acid.
Thach, Trung Thanh; Hong, Yu-Jung; Lee, Sangho; Lee, Sung-Joon
2017-04-01
The mouse olfactory receptor Olfr544 is expressed in several non-olfactory tissues and has been suggested as a functional receptor regulating different signaling pathways. However, the molecular interaction between Olfr544 and its natural ligand, azelaic acid (AzA), remains poorly characterized, primarily due to difficulties in the heterologous expression of the receptor protein on the cell membrane and lack of entire protein structure. In this report, we describe the molecular determinants of Olfr544 activation by AzA. N-terminal lucy-flag-rho tag ensured the heterologous expression of Olfr544 on the Hana3A cell surface. Molecular modeling and docking combined with mutational analysis identified amino acid residues in the Olfr544 for the interaction with AzA. Our data demonstrated that the Y109 residue in transmembrane helix 3 forms a hydrogen bond with AzA, which is crucial for the receptor-ligand interaction and activation. Y109 is required for the Olfr544 activation by AzA which, in turn, stimulates the Olfr544-dependent CREB-PGC-1α signaling axis and is followed by the induction of mitochondrial biogenesis in Olfr544 wild-type transfected Hana3A cells, but not in mock or Y109A mutant transfected cells. Collectively, these data indicated that a hydrogen bond between Y109 residue and AzA is a major determinant of the Olfr544-AzA interaction and activation. Copyright © 2017 Elsevier Inc. All rights reserved.
BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals
Chen, Wenling; Walwyn, Wendy; Ennes, Helena S.; Kim, Hyeyoung; McRoberts, James A.; Marvizón, Juan Carlos G.
2014-01-01
NMDA receptors in primary afferent terminals can contribute to hyperalgesia by increasing neurotransmitter release. In rats and mice, we found that the ability of intrathecal NMDA to induce neurokinin 1 receptor (NK1R) internalization (a measure of substance P release) required a previous injection of BDNF. Selective knock-down of NMDA receptors in primary afferents decreased NMDA-induced NK1R internalization, confirming the presynaptic location of these receptors. The effect of BDNF was mediated by tropomyosin-related kinase B (trkB) receptors and not p75 neurotrophin receptors (p75NTR), because it was not produced by proBDNF and was inhibited by the trkB antagonist ANA-12 but not by the p75NTR inhibitor TAT-Pep5. These effects are probably mediated through the truncated form of the trkB receptor as there is little expression of full-length trkB in dorsal root ganglion (DRG) neurons. Src family kinase inhibitors blocked the effect of BDNF, suggesting that trkB receptors promote the activation of these NMDA receptors by Src family kinase phosphorylation. Western blots of cultured DRG neurons revealed that BDNF increased Tyr1472 phosphorylation of the NR2B subunit of the NMDA receptor, known to have a potentiating effect. Patch-clamp recordings showed that BDNF, but not proBDNF, increased NMDA receptor currents in cultured DRG neurons. NMDA-induced NK1R internalization was also enabled in a neuropathic pain model or by activating dorsal horn microglia with lipopolysaccharide. These effects were decreased by a BDNF scavenger, a trkB receptor antagonist and an Src family kinase inhibitor, indicating that BDNF released by microglia potentiates NMDA receptors in primary afferents during neuropathic pain. PMID:24611998
The TiPS/TINS lecture: the molecular biology of mammalian glutamate receptor channels.
Seeburg, P H
1993-08-01
In native brain membranes the principal excitatory neurotransmitter L-glutamate activates cation-conducting channels with distinct biophysical and pharmacological properties. Molecular cloning has revealed the existence of 16 channel subunits that can assemble in homomeric or heteromeric configurations in vitro to form receptor channels with disparate functional properties. This review describes the different channel types obtained by recombinant means and the genetic mechanisms controlling the expression of functionally important channel structures.
The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels.
Seeburg, P H
1993-09-01
In native brain membranes the principal excitatory neurotransmitter L-glutamate activates cation-conducting channels with distinct biophysical and pharmacological properties. Molecular cloning has revealed the existence of 16 channel subunits that can assemble in homomeric or heteromeric configurations in vitro to form receptor channels with disparate functional properties. This review describes the different channel types obtained by recombinant means and the genetic mechanisms controlling the expression of functionally important channel structures.
Galimi, F; Bagnara, G P; Bonsi, L; Cottone, E; Follenzi, A; Simeone, A; Comoglio, P M
1994-12-01
Hepatocyte growth factor (HGF) is a mesenchymal derived growth factor known to induce proliferation and "scattering" of epithelial and endothelial cells. Its receptor is the tyrosine kinase encoded by the c-MET protooncogene. Here we show that highly purified recombinant HGF stimulates hemopoietic progenitors to form colonies in vitro. In the presence of erythropoietin, picomolar concentrations of HGF induced the formation of erythroid burst-forming unit colonies from CD34-positive cells purified from human bone marrow, peripheral blood, or umbilical cord blood. The growth stimulatory activity was restricted to the erythroid lineage. HGF also stimulated the formation of multipotent CFU-GEMM colonies. This effect is synergized by stem cell factor, the ligand of the tyrosine kinase receptor encoded by the c-KIT protooncogene, which is active on early hemopoietic progenitors. By flow cytometry analysis, the receptor for HGF was found to be expressed on the cell surface in a fraction of CD34+ progenitors. Moreover, in situ hybridization experiments showed that HGF receptor mRNA is highly expressed in embryonic erythroid cells (megaloblasts). HGF mRNA was also found to be produced in the embryonal liver. These data show that HGF plays a direct role in the control of proliferation and differentiation of erythroid progenitors, and they suggest that it may be one of the long-sought mediators of paracrine interactions between stromal and hemopoietic cells within the hemopoietic microenvironment.
Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners
Muramatsu, Takashi
2016-01-01
Basigin, also called CD147 or EMMPRIN, is a transmembrane glycoprotein that belongs to the immunoglobulin superfamily. Basigin has isoforms; the common form (basigin or basigin-2) has two immunoglobulin domains, and the extended form (basigin-1) has three. Basigin is the receptor for cyclophilins, S100A9 and platelet glycoprotein VI, whereas basigin-1 serves as the receptor for the rod-derived cone viability factor. Basigin tightly associates with monocarboxylate transporters and is essential for their cell surface translocation and activities. In the same membrane plane, basigin also associates with other proteins including GLUT1, CD44 and CD98. The carbohydrate portion of basigin is recognized by lectins, such as galectin-3 and E-selectin. These molecular recognitions form the basis for the role of basigin in the transport of nutrients, migration of inflammatory leukocytes and induction of matrix metalloproteinases. Basigin is important in vision, spermatogenesis and other physiological phenomena, and plays significant roles in the pathogenesis of numerous diseases, including cancer. Basigin is also the receptor for an invasive protein RH5, which is present in malaria parasites. PMID:26684586
High abundance androgen receptor in goldfish brain: characteristics and seasonal changes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasmanik, M.; Callard, G.V.
1988-08-01
Testosterone (T) exerts its actions in brain directly via androgen receptors or, after aromatization to estradiol, via estrogen receptors. Brain aromatase activity in teleost fish is 100-1000 times greater than in mammals and would be expected to significantly reduce the quantity of androgen available for receptor binding. Experiments were carried out on the goldfish Carassius auratus to determine if androgen receptors are present in teleost brain and whether their physicochemical properties reflect elevated aromatase. Cytosolic and nuclear extracts were assayed with the use of (/sup 3/H)T and charcoal, Sephadex LH-20, or DNA-cellulose chromatography to separate bound and free steroids. Bindingmore » activity was saturable and had an equally high affinity for T and 5 alpha-dihydrotestosterone. Although mibolerone was a relatively weak competitor, the putative teleost androgen 11-ketotestosterone, methyltrienolone (R1881), estradiol, progesterone, and cortisol were poor ligands. Characteristics that distinguish this receptor from a steroid-binding protein in goldfish serum are the presence of binding activity in both nuclear and cytosolic extracts, a low rate of ligand-receptor dissociation, electrophoretic mobility, sedimentation properties in low vs. high salt, and tissue distribution. DNA cellulose-adhering and nonadhering forms were detected, but these did not differ in other variables measured. Although goldfish androgen receptors resembled those of mammals in all important physicochemical characteristics, they were unusually abundant compared to levels in rat brain, but comparable to levels in prostate and other male sex hormone target organs. Moreover, there were seasonal variations in total receptors, with a peak at spawning (April) 4- to 5-fold higher than values in reproductively inactive fish.« less
Mayrhofer, Severine; Pöggeler, Stefanie
2005-04-01
The homothallic filamentous ascomycete Sordaria macrospora possesses genes which are thought to encode two pheromone precursors and two seven-transmembrane pheromone receptors. The pheromone precursor genes are termed ppg1 and ppg2. The putative products derived from the gene sequence show structural similarity to the alpha-factor precursors and a-factor precursors of the yeast Saccharomyces cerevisiae. Likewise, sequence similarity has been found between the putative products of the pheromone receptor genes pre2 and pre1 and the S. cerevisiae Ste2p alpha-factor receptor and Ste3p a-factor receptor, respectively. To investigate whether the alpha-factor-like pheromone-receptor pair of S. macrospora is functional, a heterologous yeast assay was used. Our results show that the S. macrospora alpha-factor-like pheromone precursor PPG1 is processed into an active pheromone by yeast MATalpha cells. The S. macrospora PRE2 protein was demonstrated to be a peptide pheromone receptor. In yeast MATa cells lacking the endogenous Ste2p receptor, the S. macrospora PRE2 receptor facilitated all aspects of the pheromone response. Using a synthetic peptide, we can now predict the sequence of one active form of the S. macrospora peptide pheromone. We proved that S. macrospora wild-type strains secrete an active pheromone into the culture medium and that disruption of the ppg1 gene in S. macrospora prevents pheromone production. However, loss of the ppg1 gene does not affect vegetative growth or fertility. Finally, we established the yeast assay as an easy and useful system for analyzing pheromone production in developmental mutants of S. macrospora.
Multiple mechanisms of serotonin 5-HT2 receptor desensitization.
Rahman, S; Neuman, R S
1993-07-20
Desensitization of serotonin 5-HT2 receptor-mediated enhancement of the N-methyl-D-aspartate (NMDA) depolarization was studied in rat cortical neurons. Serotonin and (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) induced long term desensitization. Staurosporine, a nonspecific protein kinase C inhibitor, potentiated the serotonin and DOI facilitation, suggesting acute desensitization was operative. In the case of DOI, long term desensitization was prevented by staurosporine. Activators of protein kinase C abolished the serotonin facilitation, an action prevented by staurosporine. Concanavalin A potentiated the facilitation at 100 microM, but not 30 microM serotonin, suggesting these receptors undergo dose dependent internalization. Calmodulin antagonists prevent long term desensitization induced by serotonin. The depolarization induced by NMDA alone was not altered by staurosporine, protein kinase C activators, concanavalin A or calmodulin antagonists. Serotonin at 100 microM, but not 30 microM, induced heterologous desensitization of phenylephrine and carbachol induced facilitation of the NMDA depolarization. We conclude that serotonin 5-HT2 receptors both induce and undergo several forms of desensitization.
Inouye, Kuniyo; Tomoishi, Marie; Yasumoto, Makoto; Miyake, Yuka; Kojima, Kenji; Tsuzuki, Satoshi; Fushiki, Tohru
2013-01-01
Matriptase is a type II transmembrane serine protease containing two complement proteases C1r/C1s–urchin embryonic growth factor–bone morphogenetic protein domains (CUB repeat) and four low-density lipoprotein receptor class A domains (LDLRA repeat). The single-chain zymogen of matriptase has been found to exhibit substantial protease activity, possibly causing its own activation (i.e. conversion to a disulfide-linked two-chain fully active form), although the activation seems to be mediated predominantly by two-chain molecules. Our aim was to assess the roles of CUB and LDLRA repeats in zymogen activation. Transient expression studies of soluble truncated constructs of recombinant matriptase in COS-1 cells showed that the CUB repeat had an inhibitory effect on zymogen activation, possibly because it facilitated the interaction of two-chain molecules with a matriptase inhibitor, hepatocyte growth factor activator inhibitor type-1. By contrast, the LDLRA repeat had a promoting effect on zymogen activation. The effect of the LDLRA repeat seems to reflect its ability to increase zymogen activity. The proteolytic activities were higher in pseudozymogen forms of recombinant matriptase containing the LDLRA repeat than in a pseudozymogen without the repeat. Our findings provide new insights into the roles of these non-catalytic domains in the generation of active matriptase. PMID:23038671
The insulin receptor substrate (IRS)-1 pleckstrin homology domain functions in downstream signaling.
Vainshtein, I; Kovacina, K S; Roth, R A
2001-03-16
The pleckstrin homology (PH) domain of the insulin receptor substrate-1 (IRS-1) plays a role in directing this molecule to the insulin receptor, thereby regulating its tyrosine phosphorylation. In this work, the role of the PH domain in subsequent signaling was studied by constructing constitutively active forms of IRS-1 in which the inter-SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase was fused to portions of the IRS-1 molecule. Chimeric molecules containing the PH domain were found to activate the downstream response of stimulating the Ser/Thr kinase Akt. A chimera containing point mutations in the PH domain that abolished the ability of this domain to bind phosphatidylinositol 4,5-bisphosphate prevented these molecules from activating Akt. These mutations also decreased by about 70% the amount of the constructs present in a particulate fraction of the cells. These results indicate that the PH domain of IRS-1, in addition to directing this protein to the receptor for tyrosine phosphorylation, functions in the ability of this molecule to stimulate subsequent responses. Thus, compromising the function of the PH domain, e.g. in insulin-resistant states, could decrease both the ability of IRS-1 to be tyrosine phosphorylated by the insulin receptor and to link to subsequent downstream targets.
Choi, Ucheor B.; Kazi, Rashek; Stenzoski, Natalie; Wollmuth, Lonnie P.; Uversky, Vladimir N.; Bowen, Mark E.
2013-01-01
The NMDA-sensitive glutamate receptor is a ligand-gated ion channel that mediates excitatory synaptic transmission in the nervous system. Extracellular zinc allosterically regulates the NMDA receptor by binding to the extracellular N-terminal domain, which inhibits channel gating. Phosphorylation of the intrinsically disordered intracellular C-terminal domain alleviates inhibition by extracellular zinc. The mechanism for this functional effect is largely unknown. Proline is a hallmark of intrinsic disorder, so we used proline mutagenesis to modulate disorder in the cytoplasmic domain. Proline depletion selectively uncoupled zinc inhibition with little effect on receptor biogenesis, surface trafficking, or ligand-activated gating. Proline depletion also reduced the affinity for a PDZ domain involved in synaptic trafficking and affected small molecule binding. To understand the origin of these phenomena, we used single molecule fluorescence and ensemble biophysical methods to characterize the structural effects of proline mutagenesis. Proline depletion did not eliminate intrinsic disorder, but the underlying conformational dynamics were changed. Thus, we altered the form of intrinsic disorder, which appears sufficient to affect the biological activity. These findings suggest that conformational dynamics within the intrinsically disordered cytoplasmic domain are important for the allosteric regulation of NMDA receptor gating. PMID:23782697
Varley, Claire Lucy; Stahlschmidt, Jens; Smith, Barbara; Stower, Michael; Southgate, Jennifer
2004-05-01
We observed that in urothelium, both cornifying and noncornifying forms of squamous metaplasia are accompanied by changes in the localization of the nuclear hormone receptors, peroxisome proliferator activated receptor gamma (PPAR-gamma) and retinoid X receptor (RXR-alpha). To obtain objective evidence for a role for PPAR-gamma-mediated signaling in urothelial differentiation, we examined expression of the cytokeratin isotypes CK13, CK20, and CK14 as indicators of transitional, terminal transitional, and squamous differentiation, respectively, in cultures of normal human urothelial cells. In control culture conditions, normal human urothelial cells showed evidence of squamous differentiation (CK14+, CK13-, CK20-). Treatment with the high-affinity PPAR-gamma agonist, troglitazone (TZ), resulted in gain of CK13 and loss of CK14 protein expression. The effect of TZ was significantly augmented when the autocrine-stimulated epidermal growth factor receptor pathway was inhibited and this resulted in induction of CK20 expression. The RXR-specific inhibitors PA452, HX531, and HX603 inhibited the TZ-induced CK13 expression, supporting a role for RXR in the induction of CK13 expression. Thus, signaling through PPAR-gamma can mediate transitional differentiation of urothelial cells and this is modulated by growth regulatory programs.
CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier
Haskó, János; Fazakas, Csilla; Molnár, Judit; Nyúl-Tóth, Ádám; Herman, Hildegard; Hermenean, Anca; Wilhelm, Imola; Persidsky, Yuri; Krizbai, István A.
2014-01-01
During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB). The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2); therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A), GPR18 (transcriptional variant 1) and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A), GPR18 (transcriptional variants 1 and 2), GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma. PMID:24815068
Chiu, Weihsueh A; Guyton, Kathryn Z; Martin, Matthew T; Reif, David M; Rusyn, Ivan
2018-01-01
Evidence regarding carcinogenic mechanisms serves a critical role in International Agency for Research on Cancer (IARC) Monograph evaluations. Three recent IARC Working Groups pioneered inclusion of the US Environmental Protection Agency (EPA) ToxCast program high-throughput screening (HTS) data to supplement other mechanistic evidence. In Monograph V110, HTS profiles were compared between perfluorooctanoic acid (PFOA) and prototypical activators across multiple nuclear receptors. For Monograph V112-113, HTS assays were mapped to 10 key characteristics of carcinogens identified by an IARC expert group, and systematically considered as an additional mechanistic data stream. Both individual assay results and ToxPi-based rankings informed mechanistic evaluations. Activation of multiple nuclear receptors in HTS assays showed that PFOA targets not only peroxisome proliferator activated receptors, but also other receptors. ToxCast assays substantially covered 5 of 10 key characteristics, corroborating literature evidence of "induces oxidative stress" and "alters cell proliferation, cell death or nutrient supply" and filling gaps for "modulates receptor-mediated effects." Thus, ToxCast HTS data were useful both in evaluating specific mechanistic hypotheses and in contributing to the overall evaluation of mechanistic evidence. However, additional HTS assays are needed to provide more comprehensive coverage of the 10 key characteristics of carcinogens that form the basis of current IARC mechanistic evaluations.
Protein partners in the life history of activated fibroblast growth factor receptors.
Vecchione, Anna; Cooper, Helen J; Trim, Kimberley J; Akbarzadeh, Shiva; Heath, John K; Wheldon, Lee M
2007-12-01
Fibroblast growth factor receptors (FGFRs) are a family of four transmembrane (TM) receptor tyrosine kinases (RTKs) which bind to a large family of fibroblast growth factor (FGF) ligands with varying affinity and specificity. FGFR signaling regulates many physiological and pathological processes in development and tissue homeostasis. Understanding FGFR signaling processes requires the identification of partner proteins which regulate receptor function and biological outputs. In this study, we employ an epitope-tagged, covalently dimerized, and constitutively activated form of FGFR1 to identify potential protein partners by MS. By this approach, we sample candidate FGFR effectors throughout the life history of the receptor. Functional classification of the partners identified revealed specific subclasses involved in protein biosynthesis and folding; structural and regulatory components of the cytoskeleton; known signaling effectors and small GTPases implicated in endocytosis and vesicular trafficking. The kinase dependency of the interaction was determined for a subset of previously unrecognized partners by coimmunoprecipitation, Western blotting, and immunocytochemistry. From this group, the small GTPase Rab5 was selected for functional interrogation. We show that short hairpin (sh) RNA-mediated depletion of Rab5 attenuates the activation of the extracellular-regulated kinase (ERK) 1/2 pathway by FGFR signaling. The strategic approach adopted in this study has revealed bona fide novel effectors of the FGFR signaling pathway.
Potent haloperidol derivatives covalently binding to the dopamine D2 receptor.
Schwalbe, Tobias; Kaindl, Jonas; Hübner, Harald; Gmeiner, Peter
2017-10-01
The dopamine D 2 receptor (D 2 R) is a common drug target for the treatment of a variety of neurological disorders including schizophrenia. Structure based design of subtype selective D 2 R antagonists requires high resolution crystal structures of the receptor and pharmacological tools promoting a better understanding of the protein-ligand interactions. Recently, we reported the development of a chemically activated dopamine derivative (FAUC150) designed to covalently bind the L94C mutant of the dopamine D 2 receptor. Using FAUC150 as a template, we elaborated the design and synthesis of irreversible analogs of the potent antipsychotic drug haloperidol forming covalent D 2 R-ligand complexes. The disulfide- and Michael acceptor-functionalized compounds showed significant receptor affinity and an irreversible binding profile in radioligand depletion experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structure of nerve growth factor complexed with the shared neurotrophin receptor p75.
He, Xiao-Lin; Garcia, K Christopher
2004-05-07
Neurotrophins are secreted growth factors critical for the development and maintenance of the vertebrate nervous system. Neurotrophins activate two types of cell surface receptors, the Trk receptor tyrosine kinases and the shared p75 neurotrophin receptor. We have determined the 2.4 A crystal structure of the prototypic neurotrophin, nerve growth factor (NGF), complexed with the extracellular domain of p75. Surprisingly, the complex is composed of an NGF homodimer asymmetrically bound to a single p75. p75 binds along the homodimeric interface of NGF, which disables NGF's symmetry-related second p75 binding site through an allosteric conformational change. Thus, neurotrophin signaling through p75 may occur by disassembly of p75 dimers and assembly of asymmetric 2:1 neurotrophin/p75 complexes, which could potentially engage a Trk receptor to form a trimolecular signaling complex.
Park, Chang-Jin; Caddell, Daniel F.; Ronald, Pamela C.
2012-01-01
Plants are continuously challenged by pathogens including viruses, bacteria, and fungi. The plant immune system recognizes invading pathogens and responds by activating an immune response. These responses occur rapidly and often involve post-translational modifications (PTMs) within the proteome. Protein phosphorylation is a common and intensively studied form of these PTMs and regulates many plant processes including plant growth, development, and immunity. Most well-characterized pattern recognition receptors (PRRs), including Xanthomonas resistance 21, flagellin sensitive 2, and elongation factor-Tu receptor, possess intrinsic protein kinase activity and regulate downstream signaling through phosphorylation events. Here, we focus on the phosphorylation events of plant PRRs that play important roles in the immune response. We also discuss the role of phosphorylation in regulating mitogen-associated protein kinase cascades and transcription factors in plant immune signaling. PMID:22876255
Segars, J H; Marks, M S; Hirschfeld, S; Driggers, P H; Martinez, E; Grippo, J F; Brown, M; Wahli, W; Ozato, K
1993-04-01
The retinoid X receptor beta (RXR beta; H-2RIIBP) forms heterodimers with various nuclear hormone receptors and binds multiple hormone response elements, including the estrogen response element (ERE). In this report, we show that endogenous RXR beta contributes to ERE binding activity in nuclear extracts of the human breast cancer cell line MCF-7. To define a possible regulatory role of RXR beta regarding estrogen-responsive transcription in breast cancer cells, RXR beta and a reporter gene driven by the vitellogenin A2 ERE were transfected into estrogen-treated MCF-7 cells. RXR beta inhibited ERE-driven reporter activity in a dose-dependent and element-specific fashion. This inhibition occurred in the absence of the RXR ligand 9-cis retinoic acid. The RXR beta-induced inhibition was specific for estrogen receptor (ER)-mediated ERE activation because inhibition was observed in ER-negative MDA-MB-231 cells only following transfection of the estrogen-activated ER. No inhibition of the basal reporter activity was observed. The inhibition was not caused by simple competition of RXR beta with the ER for ERE binding, since deletion mutants retaining DNA binding activity but lacking the N-terminal or C-terminal domain failed to inhibit reporter activity. In addition, cross-linking studies indicated the presence of an auxiliary nuclear factor present in MCF-7 cells that contributed to RXR beta binding of the ERE. Studies using known heterodimerization partners of RXR beta confirmed that RXR beta/triiodothyronine receptor alpha heterodimers avidly bind the ERE but revealed the existence of another triiodothyronine-independent pathway of ERE inhibition. These results indicate that estrogen-responsive genes may be negatively regulated by RXR beta through two distinct pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belanger, Adam J.; Luo Zhengyu; Vincent, Karen A.
2007-12-21
In response to cellular hypoxia, cardiomyocytes adapt to consume less oxygen by shifting ATP production from mitochondrial fatty acid {beta}-oxidation to glycolysis. The transcriptional activation of glucose transporters and glycolytic enzymes by hypoxia is mediated by hypoxia-inducible factor 1 (HIF-1). In this study, we examined whether HIF-1 was involved in the suppression of mitochondrial fatty acid {beta}-oxidation in hypoxic cardiomyocytes. We showed that either hypoxia or adenovirus-mediated expression of a constitutively stable hybrid form (HIF-1{alpha}/VP16) suppressed mitochondrial fatty acid metabolism, as indicated by an accumulation of intracellular neutral lipid. Both treatments also reduced the mRNA levels of muscle carnitine palmitoyltransferasemore » I which catalyzes the rate-limiting step in the mitochondrial import of fatty acids for {beta}-oxidation. Furthermore, adenovirus-mediated expression of HIF-1{alpha}/VP16 in cardiomyocytes under normoxic conditions also mimicked the reduction in the DNA binding activity of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha})/retinoid X receptor (RXR), in the presence or absence of a PPAR{alpha} ligand. These results suggest that HIF-1 may be involved in hypoxia-induced suppression of fatty acid metabolism in cardiomyocytes by reducing the DNA binding activity of PPAR{alpha}/RXR.« less
Abdulkhalek, Samar; Szewczuk, Myron R
2013-11-01
The precise mechanism(s) by which intracellular TOLL-like receptors (TLRs) become activated by their ligands remains unclear. Here, we report a molecular organizational G-protein coupled receptor (GPCR) signaling platform to potentiate a novel mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B GPCR, all of which form a tripartite complex with TLR-7 and -9. siRNA silencing Neu1, MMP-9 and neuromedin-B GPCR in RAW-blue macrophage cells significantly reduced TLR7 imiquimod- and TLR9 ODN1826-induced NF-κB (NF-κB-pSer(536)) activity. Tamiflu, specific MMP-9 inhibitor, neuromedin B receptor specific antagonist BIM23127, and the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 significantly block nucleic acid-induced TLR-7 and -9 MyD88 recruitment, NF-κB activation and proinflammatory TNFα and MCP-1 cytokine responses. For the first time, Neu1 clearly plays a central role in mediating nucleic acid-induced intracellular TLR activation, and the interactions involving NMBR-MMP9-Neu1 cross-talk constitute a novel intracellular TLR signaling platform that is essential for NF-κB activation and pro-inflammatory responses. © 2013. Published by Elsevier Inc. All rights reserved.
Tsukahara, Tamotsu; Haniu, Hisao; Matsuda, Yoshikazu
2013-04-12
Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA-PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance. Copyright © 2013 Elsevier Inc. All rights reserved.
Liu, Yingting; Purvis, Jeremy; Shih, Andrew; Weinstein, Joshua; Agrawal, Neeraj; Radhakrishnan, Ravi
2007-06-01
We describe a hierarchical multiscale computational approach based on molecular dynamics simulations, free energy-based molecular docking simulations, deterministic network-based kinetic modeling, and hybrid discrete/continuum stochastic dynamics protocols to study the dimer-mediated receptor activation characteristics of the Erb family receptors, specifically the epidermal growth factor receptor (EGFR). Through these modeling approaches, we are able to extend the prior modeling of EGF-mediated signal transduction by considering specific EGFR tyrosine kinase (EGFRTK) docking interactions mediated by differential binding and phosphorylation of different C-terminal peptide tyrosines on the RTK tail. By modeling signal flows through branching pathways of the EGFRTK resolved on a molecular basis, we are able to transcribe the effects of molecular alterations in the receptor (e.g., mutant forms of the receptor) to differing kinetic behavior and downstream signaling response. Our molecular dynamics simulations show that the drug sensitizing mutation (L834R) of EGFR stabilizes the active conformation to make the system constitutively active. Docking simulations show preferential characteristics (for wildtype vs. mutant receptors) in inhibitor binding as well as preferential enhancement of phosphorylation of particular substrate tyrosines over others. We find that in comparison to the wildtype system, the L834R mutant RTK preferentially binds the inhibitor erlotinib, as well as preferentially phosphorylates the substrate tyrosine Y1068 but not Y1173. We predict that these molecular level changes result in preferential activation of the Akt signaling pathway in comparison to the Erk signaling pathway for cells with normal EGFR expression. For cells with EGFR over expression, the mutant over activates both Erk and Akt pathways, in comparison to wildtype. These results are consistent with qualitative experimental measurements reported in the literature. We discuss these consequences in light of how the network topology and signaling characteristics of altered (mutant) cell lines are shaped differently in relationship to native cell lines.
Li, Anna; Cong, Qian; Xia, Xuechun; Leong, Wai Fook; Yeh, James; Miao, Dengshun; Mishina, Yuji; Liu, Huijuan; Li, Baojie
2017-07-01
Vitamin D is involved in a range of physiological processes and its active form and analogs have been used to treat diseases such as osteoporosis. Yet how vitamin D executes its function remains unsolved. Here we show that the active form of vitamin D calcitriol increases the peak bone mass in mice by inhibiting osteoclastogenesis and bone resorption. Although calcitriol modestly promoted osteoclast maturation, it strongly inhibited osteoclast lineage commitment from its progenitor monocyte by increasing Smad1 transcription via the vitamin D receptor and enhancing BMP-Smad1 activation, which in turn led to increased IκBα expression and decreased NF-κB activation and NFATc1 expression, with IκBα being a Smad1 target gene. Inhibition of BMP type I receptor or ablation of Bmpr1a in monocytes alleviated the inhibitory effects of calcitriol on osteoclast commitment, bone resorption, and bone mass augmentation. These findings uncover crosstalk between the BMP-Smad1 and RANKL-NF-κB pathways during osteoclastogenesis that underlies the action of active vitamin D on bone health. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Tauroursodeoxycholic acid binds to the G-protein site on light activated rhodopsin.
Lobysheva, E; Taylor, C M; Marshall, G R; Kisselev, O G
2018-05-01
The heterotrimeric G-protein binding site on G-protein coupled receptors remains relatively unexplored regarding its potential as a new target of therapeutic intervention or as a secondary site of action by the existing drugs. Tauroursodeoxycholic acid bears structural resemblance to several compounds that were previously identified to specifically bind to the light-activated form of the visual receptor rhodopsin and to inhibit its activation of transducin. We show that TUDCA stabilizes the active form of rhodopsin, metarhodopsin II, and does not display the detergent-like effects of common amphiphilic compounds that share the cholesterol scaffold structure, such as deoxycholic acid. Computer docking of TUDCA to the model of light-activated rhodopsin revealed that it interacts using similar mode of binding to the C-terminal domain of transducin alpha subunit. The ring regions of TUDCA made hydrophobic contacts with loop 3 region of rhodopsin, while the tail of TUDCA is exposed to solvent. The results show that TUDCA interacts specifically with rhodopsin, which may contribute to its wide-ranging effects on retina physiology and as a potential therapeutic compound for retina degenerative diseases. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Resink, T J; Scott-Burden, T; Hahn, A W; Rouge, M; Hosang, M; Powell, J S; Bühler, F R
1990-01-01
Cultured vascular smooth muscle cells (VSMC)1 from spontaneously hypertensive rats (SHR) possess specific cell surface receptors for both homodimeric forms of platelet-derived growth factor (PDGF-AA and PDGF-BB), in contrast to cells from normotensive Wistar Kyoto (WKY) animals, which express receptors only for the B-chain form of PDGF. Stimulation of quiescent VSMC from SHR with PDGF-AA resulted in activation of S6-kinase and induction of phosphoinositide catabolism, as well as cellular proliferation when cultures were maintained for prolonged periods with daily supplementation of the growth factor. WKY-derived VSMC showed no response to PDGF-AA, which was consistent with their lack of specific receptors for this homodimer. The responsiveness of quiescent cells from SHR and WKY to the B-chain homodimer was similar. The enhanced growth responsiveness of SHR-derived cells to fetal calf serum, as compared with cells from their normotensive counterparts, may be accounted for in part by their expression of receptors for the AA homodimer of PDGF. PMID:1965150
Molecular Perspectives for mu/delta Opioid Receptor Heteromers as Distinct, Functional Receptors
Ong, Edmund W.; Cahill, Catherine M.
2014-01-01
Opioid receptors are the sites of action for morphine and the other opioid drugs. Abundant evidence now demonstrates that different opioid receptor types can physically associate to form heteromers. Understandings of the nature, behavior, and role of these opioid receptor heteromers are developing. Owing to their constituent monomers’ involvement in analgesia, mu/delta opioid receptor (M/DOR) heteromers have been a particular focus of attention. There is now considerable evidence demonstrating M/DOR to be an extant and physiologically relevant receptor species. Participating in the cellular environment as a distinct receptor type, M/DOR availability is complexly regulated and M/DOR exhibits unique pharmacology from that of other opioid receptors (ORs), including its constituents. M/DOR appears to have a range of actions that vary in a ligand- (or ligands-) dependent manner. These actions can meaningfully affect the clinical effects of opioid drugs: strategies targeting M/DOR may be therapeutically useful. This review presents and discusses developments in these understandings with a focus on the molecular nature and activity of M/DOR in the context of therapeutic potentials. PMID:24709907
Kang, Hee Jung; Hwang, Soo Jin; Yoon, Jung Ah; Jun, Jin Hyun; Lim, Hyunjung Jade; Yoon, Tae Ki; Song, Haengseok
2011-10-01
Prostaglandins participate in a variety of female reproductive processes, including ovulation, fertilization, embryo implantation and parturition. In particular, maternal prostacyclin (PGI(2)) is critical for embryo implantation and the action of PGI(2) is not mediated via its G-protein-coupled membrane receptor, IP, but its nuclear receptor, peroxisome-proliferator-activated receptor δ (PPARδ). Recently, several studies have shown that PGI(2) enhances blastocyst development and/or hatching rate in vitro, and subsequently implantation and live birth rates in mice. However, the mechanism by which PGI(2) improves preimplantation embryo development in vitro remains unclear. Using molecular, pharmacologic and genetic approaches, we show that PGI(2)-induced PPARδ activation accelerates blastocyst hatching in mice. mRNAs for PPARδ, retinoid X receptor (heterodimeric partners of PPARδ) and PGI(2) synthase (PGIS) are temporally induced after zygotic gene activation, and their expression reaches maximum levels at the blastocyst stage, suggesting that functional complex of PPARδ can be formed in the blastocyst. Carbaprostacyclin (a stable analogue of PGI(2)) and GW501516 (a PPARδ selective agonist) significantly accelerated blastocyst hatching but did not increase total cell number of cultured blastocysts. Whereas U51605 (a PGIS inhibitor) interfered with blastocyst hatching, GW501516 restored U51605-induced retarded hatching. In contrast to the improvement of blastocyst hatching by PPARδ agonists, PPAR antagonists significantly inhibited blastocyst hatching. Furthermore, deletion of PPARδ at early stages of preimplantation mouse embryos caused delay of blastocyst hatching, but did not impair blastocyst development. Taken together, PGI(2)-induced PPARδ activation accelerates blastocyst hatching in mice.
Studies on actively allergized cells
Wilson, Anne B.; Kent, S. P.; Millar, Rose-Mary; McConnell, I.; Coombs, R. R. A.
1973-01-01
A proportion of the plasma cells in lymph nodes of allergized guinea-pigs and mice were found to possess membrane-bound receptors for antigen when tested for rosette-formation at 4° by the suspension-centrifugation technique. This was shown by staining rosetted cells with pyronin-methyl green. Rosette-forming cells of the guinea-pig were further examined by staining with fluorescein-conjugated antigen (rabbit Fab′) and by electron microscopy. By these techniques it was found that many plasma cells which contain antigen-specific intracellular antibodies do not form rosettes, and that cells of the plasmacytic series represented in the rosetted population are limited to plasmablasts and immature plasma cells. The lack of rosette-forming mature plasma cells suggests that a loss of receptors from the cell-membrane occurs as an accompaniment to maturation. ImagesFIG. 1FIG. 2FIG. 4 PMID:4717940
Selective mode of action of guanidine-containing non-peptides at human NPFF receptors.
Findeisen, Maria; Würker, Cäcilia; Rathmann, Daniel; Meier, René; Meiler, Jens; Olsson, Roger; Beck-Sickinger, Annette G
2012-07-12
The binding pocket of both NPFF receptors was investigated, focusing on subtype-selective behavior. By use of four nonpeptidic compounds and the peptide mimetics RF9 and BIBP3226, agonistic and antagonistic properties were characterized. A set of Ala receptor mutants was generated. The binding pocket was narrowed down to the upper part of transmembrane helices V, VI, VII and the extracellular loop 2. Positions 5.27 and 6.59 have been shown to have a strong impact on receptor activation and were suggested to form an acidic, negatively charged binding pocket in both NPFF receptor subtypes. Additionally, position 7.35 was identified to play an important role in functional selectivity. According to docking experiments, the aryl group of AC-216 interacts with position 7.35 in the NPFF(1) but not in the NPFF(2) receptor. These results provide distinct insights into the receptor specific binding pockets, which is necessary for the development of drugs to address the NPFF system.
Selective mode of action of guanidine-containing non-peptides at human NPFF receptors
Findeisen, Maria; Würker, Cäcilia; Rathmann, Daniel; Meier, René; Meiler, Jens; Olsson, Roger; Beck-Sickinger, Annette G.
2012-01-01
The binding pocket of both NPFF receptors was investigated, focusing on subtype-selective behavior. By using four non-peptidic compounds and the peptide mimetics RF9 and BIBP3226 agonistic and antagonistic properties were characterized. A set of Ala receptor mutants was generated, the binding pocket was narrowed down to the upper part of transmembrane helices V, VI, VII, and the extracellular loop 2. Positions 5.27 and 6.59 have been shown to have a strong impact on receptor activation and were suggested to form an acidic, negatively charged binding pocket in both NPFF receptor subtypes. Additionally, position 7.35 was identified to play an important role in functional selectivity. According to docking experiments, the aryl group of AC-216 interacts with position 7.35 in the NPFF1 but not in the NPFF2 receptor. These results provide distinct insights into the receptor specific binding pockets, which is necessary for the development of drugs to address the NPFF system. PMID:22708927
Poudel, Seeta; Kim, Yunjung; Gwak, Jun-Seok; Jeong, Sangyun; Lee, Youngseok
2017-09-01
Chloroquine, an amino quinolone derivative commonly used as an anti-malarial drug, is known to impart an unpleasant taste. Little research has been done to study chloroquine taste in insects, therefore, we examined both the deterrant properties and mechanisms underlying chloroquine perception in fruit flies. We identified the antifeedant effect of chloroquine by screening 21 gustatory receptor (Grs) mutants through behavioral feeding assays and electrophysiology experiments. We discovered that two molecular sensors, GR22e and GR33a, act as chloroquine receptors, and found that chloroquine-mediated activation of GRNs occurs through S-type sensilla. At the same time, we successfully recapitulated the chloroquine receptor by expressing GR22e in ectopic gustatory receptor neurons. We also found that GR22e forms a part of the strychnine receptor. We suggest that the Drosophila strychnine receptor might have a very complex structure since five different GRs are required for strychnine-induced action potentials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ruoho, Arnold E.; Chu, Uyen B.; Ramachandran, Subramaniam; Fontanilla, Dominique; Mavlyutov, Timur; Hajipour, Abdol R.
2015-01-01
The sigma-1 receptor is a 26 kDa endoplasmic reticulum resident membrane protein that has been shown to have chaperone activity in addition to its promiscuous binding to pharmacological agents. Ligand binding domain(s) of the sigma-1 receptor have been identified using the E. coli expressed and purified receptor protein and novel radioiodinated azido photoaffinity probes followed by pro-teolytic and chemical cleavage strategies. The outcome of these experiments indicates that the sigma-1 receptor ligand binding regions are formed primarily by juxtaposition of its second and third hydrophobic domains, regions where the protein shares considerable homology with the fungal enzyme, sterol isomerase that is essential for the biosynthesis of ergosterol. Data indicate that these hydrophobic steroid binding domain like (SBDL) regions on the sigma-1 receptor are likely to interact selectively with N-alkyl amines such as the endogenous sphingolipids and with synthetic N-alkylamines and N-aralkylamines derivatives. A proposed model for the sigma-1 receptor is presented. PMID:22288412
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuwasako, Kenji, E-mail: kuwasako@fc.miyazaki-u.ac.jp; Kitamura, Kazuo; Nagata, Sayaka
2010-02-12
Receptor activity-modifying protein 2 (RAMP2) enables calcitonin receptor-like receptor (CRLR) to form an adrenomedullin (AM)-specific receptor. Here we investigated the function of the cytoplasmic C-terminal tail (C-tail) of human (h)CRLR by co-transfecting its C-terminal mutants into HEK-293 cells stably expressing hRAMP2. Deleting the C-tail from CRLR disrupted AM-evoked cAMP production or receptor internalization, but did not affect [{sup 125}I]AM binding. We found that CRLR residues 428-439 are required for AM-evoked cAMP production, though deleting this region had little effect on receptor internalization. Moreover, pretreatment with pertussis toxin (100 ng/mL) led to significant increases in AM-induced cAMP production via wild-type CRLR/RAMP2more » complexes. This effect was canceled by deleting CRLR residues 454-457, suggesting Gi couples to this region. Flow cytometric analysis revealed that CRLR truncation mutants lacking residues in the Ser/Thr-rich region extending from Ser{sup 449} to Ser{sup 467} were unable to undergo AM-induced receptor internalization and, in contrast to the effect on wild-type CRLR, overexpression of GPCR kinases-2, -3 and -4 failed to promote internalization of CRLR mutants lacking residues 449-467. Thus, the hCRLR C-tail is crucial for AM-evoked cAMP production and internalization of the CRLR/RAMP2, while the receptor internalization is dependent on the aforementioned GPCR kinases, but not Gs coupling.« less
Phosphorylation of the rat hepatic polymeric IgA receptor.
Larkin, J M; Sztul, E S; Palade, G E
1986-01-01
In vivo labeling with [35S]cysteine has identified three transmembrane forms of the rat hepatic polymeric IgA receptor: (i) a 105-kDa core glycosylated precursor; (ii) a terminally glycosylated 116-kDa intermediate; and (iii) a mature 120-kDa form. In the current study we show that the 120-kDa form is phosphorylated. After in vivo labeling with [32P]orthophosphate, all receptor forms were immunoprecipitated from hepatic total microsomes (TM) (with an antireceptor antiserum), separated by NaDodSO4/PAGE, and detected by autoradiography. The 120-kDa form was selectively phosphorylated, whereas the 116- and 105-kDa forms incorporated no detectable 32P. To determine the topology of the phosphorylation sites, hepatic TM isolated from rats labeled in vivo with either [35S]cysteine or [32P]orthophosphate were treated with trypsin. TM were solubilized and receptors were immunoprecipitated from lysates. With increasing trypsin concentrations, the [35S]cysteine-labeled receptor triplet was degraded to a trypsin-resistant doublet of approximately 95 and 85 kDa, indicating that approximately 20 kDa was removed from the receptor endodomain by trypsin. The same treatment removed all detectable 32P from labeled receptors. Furthermore, no 32P was detected in the 80-kDa biliary form of the receptor. Serine was identified as the only phosphorylated residue in acid hydrolysates of 32P-labeled immunoprecipitated receptor. These findings indicate that (i) the 120-kDa form is the only phosphorylated species of the receptor; and (ii) the phosphorylated residues are serine(s) located in the endodomain of the protein. Images PMID:3460069
Targeted Therapy for Breast Cancer Prevention
den Hollander, Petra; Savage, Michelle I.; Brown, Powel H.
2013-01-01
With a better understanding of the etiology of breast cancer, molecularly targeted drugs have been developed and are being testing for the treatment and prevention of breast cancer. Targeted drugs that inhibit the estrogen receptor (ER) or estrogen-activated pathways include the selective ER modulators (tamoxifen, raloxifene, and lasofoxifene) and aromatase inhibitors (AIs) (anastrozole, letrozole, and exemestane) have been tested in preclinical and clinical studies. Tamoxifen and raloxifene have been shown to reduce the risk of breast cancer and promising results of AIs in breast cancer trials, suggest that AIs might be even more effective in the prevention of ER-positive breast cancer. However, these agents only prevent ER-positive breast cancer. Therefore, current research is focused on identifying preventive therapies for other forms of breast cancer such as human epidermal growth factor receptor 2 (HER2)-positive and triple-negative breast cancer (TNBC, breast cancer that does express ER, progesterone receptor, or HER2). HER2-positive breast cancers are currently treated with anti-HER2 therapies including trastuzumab and lapatinib, and preclinical and clinical studies are now being conducted to test these drugs for the prevention of HER2-positive breast cancers. Several promising agents currently being tested in cancer prevention trials for the prevention of TNBC include poly(ADP-ribose) polymerase inhibitors, vitamin D, and rexinoids, both of which activate nuclear hormone receptors (the vitamin D and retinoid X receptors). This review discusses currently used breast cancer preventive drugs, and describes the progress of research striving to identify and develop more effective preventive agents for all forms of breast cancer. PMID:24069582
Naranjo, Andrea N.; McNeely, Patrick M.; Katsaras, John; ...
2016-05-27
The adenosine A 2A receptor (A 2AR) is a much-studied class A G protein-coupled receptor (GPCR). For biophysical studies, A 2AR is commonly purified in a detergent mixture of dodecylmaltoside (DDM), 3-(3-cholamidopropyl) dimethylammoniopropane sulfonate (CHAPS), and cholesteryl hemisuccinate (CHS). Here we studied the effects of CHAPS on the ligand binding activity and stability of wild type, full-length human A 2AR. We also tested the cholesterol requirement for maintaining the active conformation of the receptor when solubilized in detergent micelles. To this end, the receptor was purified using DDM, DDM/CHAPS, or the short hydrocarbon chain lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC, di-6:0PC). After solubilizationmore » in DDM, DDM/CHAPS, or DHPC micelles, although A 2AR was found to retain its native-like fold, its binding ability was significantly compromised compared to DDM or DDM/CHAPS with CHS. It therefore appears that although cholesterol is not needed for A 2AR to retain a native-like, α-helical conformation, it may be a critical component for high affinity ligand binding. Further, this result suggests that the conformational differences between the active and inactive protein may be so subtle that commonly used spectroscopic methods are unable to differentiate between the two forms, highlighting the need for activity measurements. Furthermore, the studies presented in this paper also underline the importance of the protein’s purification history; i.e., detergents that interact with the protein during purification affect the ligand binding properties of the receptor in an irreversible manner.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naranjo, Andrea N.; McNeely, Patrick M.; Katsaras, John
The adenosine A 2A receptor (A 2AR) is a much-studied class A G protein-coupled receptor (GPCR). For biophysical studies, A 2AR is commonly purified in a detergent mixture of dodecylmaltoside (DDM), 3-(3-cholamidopropyl) dimethylammoniopropane sulfonate (CHAPS), and cholesteryl hemisuccinate (CHS). Here we studied the effects of CHAPS on the ligand binding activity and stability of wild type, full-length human A 2AR. We also tested the cholesterol requirement for maintaining the active conformation of the receptor when solubilized in detergent micelles. To this end, the receptor was purified using DDM, DDM/CHAPS, or the short hydrocarbon chain lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC, di-6:0PC). After solubilizationmore » in DDM, DDM/CHAPS, or DHPC micelles, although A 2AR was found to retain its native-like fold, its binding ability was significantly compromised compared to DDM or DDM/CHAPS with CHS. It therefore appears that although cholesterol is not needed for A 2AR to retain a native-like, α-helical conformation, it may be a critical component for high affinity ligand binding. Further, this result suggests that the conformational differences between the active and inactive protein may be so subtle that commonly used spectroscopic methods are unable to differentiate between the two forms, highlighting the need for activity measurements. Furthermore, the studies presented in this paper also underline the importance of the protein’s purification history; i.e., detergents that interact with the protein during purification affect the ligand binding properties of the receptor in an irreversible manner.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica
Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition,more » EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα{sup +}) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.« less
Identification of endogenous surrogate ligands for human P2Y receptors through an in silico search.
Hiramoto, Takeshi; Nonaka, Yosuke; Inoue, Kazuko; Yamamoto, Takefumi; Omatsu-Kanbe, Mariko; Matsuura, Hiroshi; Gohda, Keigo; Fujita, Norihisa
2004-05-01
G protein-coupled receptors (GPCRs) are distributed widely throughout the human body, and nearly 50% of current medicines act on a GPCR. GPCRs are considered to consist of seven transmembrane alpha-helices that form an alpha-helical bundle in which agonists and antagonists bind. A 3D structure of the target GPCR is indispensable for designing novel medicines acting on a GPCR. We have previously constructed the 3D structure of human P2Y(1) (hP2Y(1)) receptor, a GPCR, by homology modeling with the 3D structure of bovine rhodopsin as a template. In the present study, we have employed an in silico screening for compounds that could bind to the hP2Y(1)-receptor model using AutoDock 3.0. We selected 21 of the 30 top-ranked compounds, and by measuring intracellular Ca(2+) concentration, we identified 12 compounds that activated or blocked the hP2Y(1) receptor stably expressed in recombinant CHO cells. 5-Phosphoribosyl-1-pyrophosphate (PRPP) was found to activate the hP2Y(1) receptor with a low ED(50) value of 15 nM. The Ca(2+) assays showed it had no significant effect on P2Y(2), P2Y(6), or P2X(2) receptors, but acted as a weak agonist on the P2Y(12) receptor. This is the first study to rationally identify surrogate ligands for the P2Y-receptor family.
Receptor for the F4 fimbriae of enterotoxigenic Escherichia coli (ETEC).
Xia, Pengpeng; Zou, Yajie; Wang, Yiting; Song, Yujie; Liu, Wei; Francis, David H; Zhu, Guoqiang
2015-06-01
Infection with F4(+) enterotoxigenic Escherichia coli (ETEC) responsible for diarrhea in neonatal and post-weaned piglets leads to great economic losses in the swine industry. These pathogenic bacteria express either of three fimbrial variants F4ab, F4ac, and F4ad, which have long been known for their importance in host infection and initiating protective immune responses. The initial step in infection for the bacterium is to adhere to host enterocytes through fimbriae-mediated recognition of receptors on the host cell surface. A number of receptors for ETEC F4 have now been described and characterized, but their functions are still poorly understood. The current review summarizes the latest research addressing the characteristics of F4 fimbriae receptors and the interactions of F4 fimbriae and their receptors on host cells. These include observations that as follows: (1) FaeG mediates the binding activities of F4 and is an essential component of the F4 fimbriae, (2) the F4 fimbrial receptor gene is located in a region of chromosome 13, (3) the biochemical properties of F4 fimbrial receptors that form the binding site of the bacterium are now recognized, and (4) specific receptors confer susceptibility/resistance to ETEC F4 infection in pigs. Characterizing the host-pathogen interaction will be crucial to understand the pathogenicity of the bacteria, provide insights into receptor activation of the innate immune system, and develop therapeutic strategies to prevent this illness.
Guanine nucleotide regulatory protein co-purifies with the D/sub 2/-dopamine receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senogles, S.E.; Caron, M.G.
1986-05-01
The D/sub 2/-dopamine receptor from bovine anterior pituitary was purified approx.1000 fold by affinity chromatography on CMOS-Sepharose. Reconstitution of the affinity-purified receptor into phospholipid vesicles revealed the presence of high and low affinity agonist sites as detected by N-n-propylnorapomorphine (NPA) competition experiments with /sup 3/H-spiperone. High affinity agonist binding could be converted to the low affinity form by guanine nucleotides, indicating the presence of an endogenous guanine nucleotide binding protein (N protein) in the affinity-purified D/sub 2/ receptor preparations. Furthermore, this preparation contained an agonist-sensitive GTPase activity which was stimulated 2-3 fold over basal by 10 ..mu..M NPA. /sup 35/S-GTP..gamma..Smore » binding to these preparations revealed a stoichiometry of 0.4-0.7 mole N protein/mole receptor, suggesting the N protein may be specifically coupled with the purified D/sub 2/-dopamine receptor and not present as a contaminant. Pertussis toxin treatment of the affinity purified receptor preparations prevented high affinity agonist binding, as well as agonist stimulation of the GTPase activity, presumably by inactivating the associated N protein. Pertussis toxin lead to the ADP-ribosylation of a protein of 39-40K on SDS-PAGE. These findings indicate that an endogenous N protein, N/sub i/ or N/sub o/, co-purifies with the D/sub 2/-dopamine receptor which may reflect a precoupling of this receptor with an N protein within the membranes.« less
Fujimoto, Yoshikazu; Tomioka, Yukiko; Ozaki, Kinuyo; Takeda, Keiko; Suyama, Haruka; Yamamoto, Sayo; Takakuwa, Hiroki; Morimatsu, Masami; Uede, Toshimitsu; Ono, Etsuro
2017-07-01
Herpesvirus entry mediator A (HVEM), nectin-1 and nectin-2 are cellular receptors of glycoprotein D (gD) of herpes simplex virus type-2 (HSV-2). It has been shown that soluble forms of HSV gD receptors have the antiviral potential in cultured cells and transgenic mice. Here, to compare antiviral potential of soluble forms of HVEM, nectin-1 and nectin-2 against HSV-2 infections in vivo, transgenic mice expressing fusion proteins consisting of the entire ectodomain of HVEM, nectin-1 or nectin-2 and the Fc portion of human IgG (HVEMIg, nectin-1Ig and nectin-2Ig, respectively) were intraperitoneally infected with HSV-2. In the infection with 3 MLD50 (50 % mouse lethal dose), effective resistance was not observed in transgenic mice expressing nectin-2Ig. In a transgenic mouse line with high expression of nectin-1Ig, significant protection from the infection with 30 and 300 MLD50 was observed (survival rate of 100 and 71 %, respectively). On the other hand, transgenic mice expressing HVEMIg showed a complete resistance to the lethal infection even with 300 MLD50 (survival rate of 100 %). These results demonstrated that HVEMIg could exert effective antiviral activities against HSV-2 infections in vivo as compared with other soluble forms of HSV gD receptors.
Su, W C; Kitagawa, M; Xue, N; Xie, B; Garofalo, S; Cho, J; Deng, C; Horton, W A; Fu, X Y
1997-03-20
The achondroplasia class of chondrodysplasias comprises the most common genetic forms of dwarfism in humans and includes achondroplasia, hypochondroplasia and thanatophoric dysplasia types I and II (TDI and TDII), which are caused by different mutations in a fibroblast growth-factor receptor FGFR3 (ref. 1). The molecular mechanism and the mediators of these FGFR3-related growth abnormalities are not known. Here we show that mutant TDII FGFR3 has a constitutive tyrosine kinase activity which can specifically activate the transcription factor Stat1 (for signal transducer and activator of transcription). Furthermore, expression of TDII FGFR3 induced nuclear translocation of Stat1, expression of the cell-cycle inhibitor p21(WAF1/CIP1), and growth arrest of the cell. Thus, TDII FGFR3 may use Stat1 as a mediator of growth retardation in bone development. Consistent with this, Stat1 activation and increased p21(WAF1/CIP1) expression was found in the cartilage cells from the TDII fetus, but not in those from the normal fetus. Thus, abnormal STAT activation and p21(WAF1/CIP1) expression by the TDII mutant receptor may be responsible for this FGFR3-related bone disease.
Lin, Yu-Ping; Nelson, Charmaine; Kramer, Holger; Parekh, Anant B
2018-04-19
The house dust mite is the principal source of perennial aeroallergens in man. How these allergens activate innate and adaptive immunity is unclear, and therefore, there are no therapies targeting mite allergens. Here, we show that house dust mite extract activates store-operated Ca 2+ channels, a common signaling module in numerous cell types in the lung. Activation of channel pore-forming Orai1 subunits by mite extract requires gating by STIM1 proteins. Although mite extract stimulates both protease-activated receptor type 2 (PAR2) and PAR4 receptors, Ca 2+ influx is more tightly coupled to the PAR4 pathway. We identify a major role for the serine protease allergen Der p3 in stimulating Orai1 channels and show that a therapy involving sub-maximal inhibition of both Der p3 and Orai1 channels suppresses mast cell activation to house dust mite. Our results reveal Der p3 as an important aeroallergen that activates Ca 2+ channels and suggest a therapeutic strategy for treating mite-induced asthma. Copyright © 2018 Elsevier Inc. All rights reserved.
Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases
Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M. H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric
2013-01-01
Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites. PMID:22116026
Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward
Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanismmore » that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.« less
Zhu, Xinmei; Ng, Hang Pong; Lai, Yen-Chun; Craigo, Jodi K; Nagilla, Pruthvi S; Raghani, Pooja; Nagarajan, Shanmugam
2014-09-01
Recent studies showed loss of CD36 or scavenger receptor-AI/II (SR-A) does not ameliorate atherosclerosis in a hyperlipidemic mouse model, suggesting receptors other than CD36 and SR-A may also contribute to atherosclerosis. In this report, we show that apolipoprotein E (apoE)-CD16 double knockout (DKO; apoE-CD16 DKO) mice have reduced atherosclerotic lesions compared with apoE knockout mice. In vivo and in vitro foam cell analyses showed apoE-CD16 DKO macrophages accumulated less neutral lipids. Reduced foam cell formation in apoE-CD16 DKO mice is not due to change in expression of CD36, SR-A, and LOX-1. This led to a hypothesis that CD16 may have scavenger receptor activity. We presented evidence that a soluble form of recombinant mouse CD16 (sCD16) bound to malondialdehyde-modified low-density lipoprotein (MDALDL), and this binding is blocked by molar excess of MDA- modified BSA and anti-MDA mAbs, suggesting CD16 specifically recognizes MDA epitopes. Interestingly, sCD16 inhibited MDALDL binding to macrophage cell line, as well as soluble forms of recombinant mouse CD36, SR-A, and LOX-1, indicating CD16 can cross-block MDALDL binding to other scavenger receptors. Anti-CD16 mAb inhibited immune complex binding to sCD16, whereas it partially inhibited MDALDL binding to sCD16, suggesting MDALDL binding site may be in close proximity to the immune complex binding site in CD16. Loss of CD16 expression resulted in reduced levels of MDALDL-induced proinflammatory cytokine expression. Finally, CD16-deficient macrophages showed reduced MDALDL-induced Syk phosphorylation. Collectively, our findings suggest scavenger receptor activity of CD16 may, in part, contribute to the progression of atherosclerosis. Copyright © 2014 by The American Association of Immunologists, Inc.
Pore-formation by adenylate cyclase toxoid activates dendritic cells to prime CD8+ and CD4+ T cells.
Svedova, Martina; Masin, Jiri; Fiser, Radovan; Cerny, Ondrej; Tomala, Jakub; Freudenberg, Marina; Tuckova, Ludmila; Kovar, Marek; Dadaglio, Gilles; Adkins, Irena; Sebo, Peter
2016-04-01
The adenylate cyclase toxin-hemolysin (CyaA) of Bordetella pertussis is a bi-functional leukotoxin. It penetrates myeloid phagocytes expressing the complement receptor 3 and delivers into their cytosol its N-terminal adenylate cyclase enzyme domain (~400 residues). In parallel, ~1300 residue-long RTX hemolysin moiety of CyaA forms cation-selective pores and permeabilizes target cell membrane for efflux of cytosolic potassium ions. The non-enzymatic CyaA-AC(-) toxoid, has repeatedly been successfully exploited as an antigen delivery tool for stimulation of adaptive T-cell immune responses. We show that the pore-forming activity confers on the CyaA-AC(-) toxoid a capacity to trigger Toll-like receptor and inflammasome signaling-independent maturation of CD11b-expressing dendritic cells (DC). The DC maturation-inducing potency of mutant toxoid variants in vitro reflected their specifically enhanced or reduced pore-forming activity and K(+) efflux. The toxoid-induced in vitro phenotypic maturation of DC involved the activity of mitogen activated protein kinases p38 and JNK and comprised increased expression of maturation markers, interleukin 6, chemokines KC and LIX and granulocyte-colony-stimulating factor secretion, prostaglandin E2 production and enhancement of chemotactic migration of DC. Moreover, i.v. injected toxoids induced maturation of splenic DC in function of their cell-permeabilizing capacity. Similarly, the capacity of DC to stimulate CD8(+) and CD4(+) T-cell responses in vitro and in vivo was dependent on the pore-forming activity of CyaA-AC(-). This reveals a novel self-adjuvanting capacity of the CyaA-AC(-) toxoid that is currently under clinical evaluation as a tool for delivery of immunotherapeutic anti-cancer CD8(+) T-cell vaccines into DC.
TRIM-directed selective autophagy regulates immune activation.
Kimura, Tomonori; Jain, Ashish; Choi, Seong Won; Mandell, Michael A; Johansen, Terje; Deretic, Vojo
2017-05-04
Selectivity of autophagy is achieved by target recognition; however, the number of autophagy receptors identified so far is limited. In this study we demonstrate that a subset of tripartite motif (TRIM) proteins mediate selective autophagy of key regulators of inflammatory signaling. MEFV/TRIM20, and TRIM21 act as autophagic receptors recognizing their cognate targets and delivering them for autophagic degradation. MEFV recognizes the inflammasome components NLRP3, CASP1 and NLRP1, whereas TRIM21 specifically recognizes the activated, dimeric from of IRF3 inducing type I interferon gene expression. MEFV and TRIM21 have a second activity, whereby they act not only as receptors but also recruit and organize key components of autophagic machinery consisting of ULK1, BECN1, ATG16L1, and mammalian homologs of Atg8, with a preference for GABARAP. MEFV capacity to organize the autophagy apparatus is affected by common mutations causing familial Mediterranean fever. These findings reveal a general mode of action of TRIMs as autophagic receptor-regulators performing a highly-selective type of autophagy (precision autophagy), with MEFV specializing in the suppression of inflammasome and CASP1 activation engendering IL1B/interleukin-1β production and implicated in the form of cell death termed pyroptosis, whereas TRIM21 dampens type I interferon responses.
Mithöfer, A; Fliegmann, J; Neuhaus-Url, G; Schwarz, H; Ebel, J
2000-08-01
The ability of legumes to recognize and respond to beta-glucan elicitors by synthesizing phytoalexins is consistent with the existence of a membrane-bound beta-glucan-binding site. Related proteins of approximately 75 kDa and the corresponding mRNAs were detected in various species of legumes which respond to beta-glucans. The cDNAs for the beta-glucan-binding proteins of bean and soybean were cloned. The deduced 75-kDa proteins are predominantly hydrophilic and constitute a unique class of glucan-binding proteins with no currently recognizable functional domains. Heterologous expression of the soybean beta-glucan-binding protein in tomato cells resulted in the generation of a high-affinity binding site for the elicitor-active hepta-beta-glucoside conjugate (Kd = 4.5 nM). Ligand competition experiments with the recombinant binding sites demonstrated similar ligand specificities when compared with soybean. In both soybean and transgenic tomato, membrane-bound, active forms of the glucan-binding proteins coexist with immunologically detectable, soluble but inactive forms of the proteins. Reconstitution of a soluble protein fraction into lipid vesicles regained beta-glucoside-binding activity but with lower affinity (Kd = 130 nM). We conclude that the beta-glucan elicitor receptors of legumes are composed of the 75 kDa glucan-binding proteins as the critical components for ligand-recognition, and of an as yet unknown membrane anchor constituting the plasma membrane-associated receptor complex.
Colman, R W; Pixley, R A; Najamunnisa, S; Yan, W; Wang, J; Mazar, A; McCrae, K R
1997-01-01
The urokinase receptor (uPAR) binds urokinase-type plasminogen activator (u-PA) through specific interactions with uPAR domain 1, and vitronectin through interactions with a site within uPAR domains 2 and 3. These interactions promote the expression of cell surface plasminogen activator activity and cellular adhesion to vitronectin, respectively. High molecular weight kininogen (HK) also stimulates the expression of cell surface plasminogen activator activity through its ability to serve as an acquired receptor for prekallikrein, which, after its activation, may directly activate prourokinase. Here, we report that binding of the cleaved form of HK (HKa) to human umbilical vein endothelial cells (HUVEC) is mediated through zinc-dependent interactions with uPAR. These occur through a site within uPAR domains 2 and 3, since the binding of 125I-HKa to HUVEC is inhibited by vitronectin, anti-uPAR domain 2 and 3 antibodies and soluble, recombinant uPAR (suPAR), but not by antibody 7E3, which recognizes the beta chain of the endothelial cell vitronectin receptor (integrin alphavbeta3), or fibrinogen, another alphavbeta3 ligand. We also demonstrate the formation of a zinc-dependent complex between suPAR and HKa. Interactions of HKa with endothelial cell uPAR may underlie its ability to promote kallikrein-dependent cell surface plasmin generation, and also explain, in part, its antiadhesive properties. PMID:9294114
The Changeable Nervous System: Studies On Neuroplasticity In Cerebellar Cultures
Seil, Fredrick J.
2014-01-01
Circuit reorganization after injury was studied in a cerebellar culture model. When cerebellar cultures derived from newborn mice were exposed at explantation to a preparation of cytosine arabinoside that destroyed granule cells and oligodendrocytes and compromised astrocytes, Purkinje cells surviving in greater than usual numbers were unensheathed by astrocytic processes and received twice the control number of inhibitory axosomatic synapses. Purkinje cell axon collaterals sprouted and many of their terminals formed heterotypical synapses with other Purkinje cell dendritic spines. The resulting circuit reorganization preserved inhibition in the cerebellar cortex. Following this reorganization, replacement of the missing granule cells and glia was followed by a restitution of the normal circuitry. Most of these developmental and reconstructive changes were not dependent on neuronal activity, the major exception being inhibitory synaptogenesis. The full complement of inhibitory synapses did not develop in the absence of neuronal activity, which could be mitigated by application of exogenous TrkB receptor ligands. Inhibitory synaptogenesis could also be promoted by activity-induced release of endogenous TrkB receptor ligands or by antibody activation of the TrkB receptor. PMID:24933693
Fleming, Michael S; Vysochan, Anna; Paixão, Sόnia; Niu, Jingwen; Klein, Rüdiger; Savitt, Joseph M; Luo, Wenqin
2015-01-01
RET can be activated in cis or trans by its co-receptors and ligands in vitro, but the physiological roles of trans signaling are unclear. Rapidly adapting (RA) mechanoreceptors in dorsal root ganglia (DRGs) express Ret and the co-receptor Gfrα2 and depend on Ret for survival and central projection growth. Here, we show that Ret and Gfrα2 null mice display comparable early central projection deficits, but Gfrα2 null RA mechanoreceptors recover later. Loss of Gfrα1, the co-receptor implicated in activating RET in trans, causes no significant central projection or cell survival deficit, but Gfrα1;Gfrα2 double nulls phenocopy Ret nulls. Finally, we demonstrate that GFRα1 produced by neighboring DRG neurons activates RET in RA mechanoreceptors. Taken together, our results suggest that trans and cis RET signaling could function in the same developmental process and that the availability of both forms of activation likely enhances but not diversifies outcomes of RET signaling. DOI: http://dx.doi.org/10.7554/eLife.06828.001 PMID:25838128
Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration
Finger, Thomas E.; Böttger, Bärbel; Hansen, Anne; Anderson, Karl T.; Alimohammadi, Hessamedin; Silver, Wayne L.
2003-01-01
Inhalation of irritating substances leads to activation of the trigeminal nerve, triggering protective reflexes that include apnea or sneezing. Receptors for trigeminal irritants are generally assumed to be located exclusively on free nerve endings within the nasal epithelium, requiring that trigeminal irritants diffuse through the junctional barrier at the epithelial surface to activate receptors. We find, in both rats and mice, an extensive population of chemosensory cells that reach the surface of the nasal epithelium and form synaptic contacts with trigeminal afferent nerve fibers. These chemosensory cells express T2R “bitter-taste” receptors and α-gustducin, a G protein involved in chemosensory transduction. Functional studies indicate that bitter substances applied to the nasal epithelium activate the trigeminal nerve and evoke changes in respiratory rate. By extending to the surface of the nasal epithelium, these chemosensory cells serve to expand the repertoire of compounds that can activate trigeminal protective reflexes. The trigeminal chemoreceptor cells are likely to be remnants of the phylogenetically ancient population of solitary chemoreceptor cells found in the epithelium of all anamniote aquatic vertebrates. PMID:12857948
Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration.
Finger, Thomas E; Böttger, Bärbel; Hansen, Anne; Anderson, Karl T; Alimohammadi, Hessamedin; Silver, Wayne L
2003-07-22
Inhalation of irritating substances leads to activation of the trigeminal nerve, triggering protective reflexes that include apnea or sneezing. Receptors for trigeminal irritants are generally assumed to be located exclusively on free nerve endings within the nasal epithelium, requiring that trigeminal irritants diffuse through the junctional barrier at the epithelial surface to activate receptors. We find, in both rats and mice, an extensive population of chemosensory cells that reach the surface of the nasal epithelium and form synaptic contacts with trigeminal afferent nerve fibers. These chemosensory cells express T2R "bitter-taste" receptors and alpha-gustducin, a G protein involved in chemosensory transduction. Functional studies indicate that bitter substances applied to the nasal epithelium activate the trigeminal nerve and evoke changes in respiratory rate. By extending to the surface of the nasal epithelium, these chemosensory cells serve to expand the repertoire of compounds that can activate trigeminal protective reflexes. The trigeminal chemoreceptor cells are likely to be remnants of the phylogenetically ancient population of solitary chemoreceptor cells found in the epithelium of all anamniote aquatic vertebrates.
Ski represses BMP signaling in Xenopus and mammalian cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
kluo@lbl.gov
2001-05-16
The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells bymore » directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-{beta} family members.« less
Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells
Wang, Wei; Mariani, Francesca V.; Harland, Richard M.; Luo, Kunxin
2000-01-01
The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells by directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-β family members. PMID:11121043
Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells.
Wang, W; Mariani, F V; Harland, R M; Luo, K
2000-12-19
The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells by directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-beta family members.
Liu, Suhuan; Le May, Cedric; Wong, Winifred P S; Ward, Robert D; Clegg, Deborah J; Marcelli, Marco; Korach, Kenneth S; Mauvais-Jarvis, Franck
2009-10-01
We showed that 17beta-estradiol (E(2)) favors pancreatic beta-cell survival via the estrogen receptor-alpha (ERalpha) in mice. E(2) activates nuclear estrogen receptors via an estrogen response element (ERE). E(2) also activates nongenomic signals via an extranuclear form of ERalpha and the G protein-coupled estrogen receptor (GPER). We studied the contribution of estrogen receptors to islet survival. We used mice and islets deficient in estrogen receptor-alpha (alphaERKO(-/-)), estrogen receptor-beta (betaERKO(-/-)), estrogen receptor-alpha and estrogen receptor-beta (alphabetaERKO(-/-)), and GPER (GPERKO(-/-)); a mouse lacking ERalpha binding to the ERE; and human islets. These mice and islets were studied in combination with receptor-specific pharmacological probes. We show that ERalpha protection of islet survival is ERE independent and that E(2) favors islet survival through extranuclear and membrane estrogen receptor signaling. We show that ERbeta plays a minor cytoprotective role compared to ERalpha. Accordingly, betaERKO(-/-) mice are mildly predisposed to streptozotocin-induced islet apoptosis. However, combined elimination of ERalpha and ERbeta in mice does not synergize to provoke islet apoptosis. In alphabetaERKO(-/-) mice and their islets, E(2) partially prevents apoptosis suggesting that an alternative pathway compensates for ERalpha/ERbeta deficiency. We find that E(2) protection of islet survival is reproduced by a membrane-impermeant E(2) formulation and a selective GPER agonist. Accordingly, GPERKO(-/-) mice are susceptible to streptozotocin-induced insulin deficiency. E(2) protects beta-cell survival through ERalpha and ERbeta via ERE-independent, extra-nuclear mechanisms, as well as GPER-dependent mechanisms. The present study adds a novel dimension to estrogen biology in beta-cells and identifies GPER as a target to protect islet survival.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin
[AsnB26]- and [GlyB26]-insulin mutants attain a B26-turn like fold without assistance of chemical modifications. Their structures match the insulin receptor interface and expand the spectrum of insulin conformations. The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that inmore » all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.« less
Identification of a novel splice variant isoform of TREM-1 in human neutrophil granules1
Baruah, Sankar; Keck, Kathy; Vrenios, Michelle; Pope, Marshall; Pearl, Merideth; Doerschug, Kevin; Klesney-Tait, Julia
2015-01-01
Triggering receptor expressed on myeloid cells-1 (TREM-1) is critical for inflammatory signal amplification. Humans have two forms of TREM-1: a membrane receptor (mbTREM-1), associated with the adaptor DAP12, and a soluble receptor detected at times of infection. The membrane receptor isoform acts synergistically with the TLR pathway to promote cytokine secretion and neutrophil migration while the soluble receptor functions as a counter regulatory molecule. In multiple models of sepsis, exogenous administration of soluble forms of TREM-1 attenuates inflammation and markedly improves survival. Despite intense interest in soluble TREM-1 both as a clinical predictor of survival and as a therapeutic tool, the origin of native soluble TREM-1 remains controversial. Utilizing human neutrophils, we identified a 15 kDa TREM-1 isoform in primary (azurophilic) and secondary (specific) granules. Mass spectrometric analysis, ELISA, and immunoblot confirm that the 15 kD protein is a novel splice variant of TREM-1 (TREM-1sv). Neutrophil stimulation with P. aeruginosa, LPS, or PAM(3)Cys4 resulted in degranulation and release of TREM-1sv. The addition of exogenous TREM-1sv inhibited TREM-1 receptor mediated proinflammatory cytokine production. Thus these data reveal that TREM-1 isoforms simultaneously activate and inhibit inflammation via the canonical membrane TREM-1 molecule and this newly discovered granular isoform, TREM-1sv. PMID:26561551
The source of high signal cooperativity in bacterial chemosensory arrays
Piñas, Germán E.; Frank, Vered; Vaknin, Ady; Parkinson, John S.
2016-01-01
The Escherichia coli chemosensory system consists of large arrays of transmembrane chemoreceptors associated with a dedicated histidine kinase, CheA, and a linker protein, CheW, that couples CheA activity to receptor control. The kinase activity responses to receptor ligand occupancy changes can be highly cooperative, reflecting allosteric coupling of multiple CheA and receptor molecules. Recent structural and functional studies have led to a working model in which receptor core complexes, the minimal units of signaling, are linked into hexagonal arrays through a unique interface 2 interaction between CheW and the P5 domain of CheA. To test this array model, we constructed and characterized CheA and CheW mutants with amino acid replacements at key interface 2 residues. The mutant proteins proved defective in interface 2-specific in vivo cross-linking assays, and formed signaling complexes that were dispersed around the cell membrane rather than clustered at the cell poles as in wild type chemosensory arrays. Interface 2 mutants down-regulated CheA activity in response to attractant stimuli in vivo, but with much less cooperativity than the wild type. Moreover, mutant cells containing fluorophore-tagged receptors exhibited greater basal anisotropy that changed rapidly in response to attractant stimuli, consistent with facile changes in loosely packed receptors. We conclude that interface 2 lesions disrupt important network connections between core complexes, preventing receptors from operating in large, allosteric teams. This work confirms the critical role of interface 2 in organizing the chemosensory array, in directing the clustered array to the cell poles, and in producing its highly cooperative signaling properties. PMID:26951681
Immediate and Delayed Drug Therapy Effects on Low Dose Sarin Exposed Mice Myocardial Performance
2011-03-01
to phosphorylate the serine hydroxyl residue in the active pocket of AChE, forming either a phosphoric or phosphonic acid ester which is extremely...London 2006). Brain natriuretic peptide exerts its 15 natriuretic, diuretic, and vasorelaxant effects through activation of its common receptor...exposed to asymptomatic levels would show no issues during normal activities , such garrison or non-field operations. However, this would quickly change
Reissmann, E; Jörnvall, H; Blokzijl, A; Andersson, O; Chang, C; Minchiotti, G; Persico, M G; Ibáñez, C F; Brivanlou, A H
2001-08-01
Nodal proteins have crucial roles in mesendoderm formation and left-right patterning during vertebrate development. The molecular mechanisms of signal transduction by Nodal and related ligands, however, are not fully understood. In this paper, we present biochemical and functional evidence that the orphan type I serine/threonine kinase receptor ALK7 acts as a receptor for mouse Nodal and Xenopus Nodal-related 1 (Xnr1). Receptor reconstitution experiments indicate that ALK7 collaborates with ActRIIB to confer responsiveness to Xnr1 and Nodal. Both receptors can independently bind Xnr1. In addition, Cripto, an extracellular protein genetically implicated in Nodal signaling, can independently interact with both Xnr1 and ALK7, and its expression greatly enhances the ability of ALK7 and ActRIIB to respond to Nodal ligands. The Activin receptor ALK4 is also able to mediate Nodal signaling but only in the presence of Cripto, with which it can also interact directly. A constitutively activated form of ALK7 mimics the mesendoderm-inducing activity of Xnr1 in Xenopus embryos, whereas a dominant-negative ALK7 specifically blocks the activities of Nodal and Xnr1 but has little effect on other related ligands. In contrast, a dominant-negative ALK4 blocks all mesoderm-inducing ligands tested, including Nodal, Xnr1, Xnr2, Xnr4, and Activin. In agreement with a role in Nodal signaling, ALK7 mRNA is localized to the ectodermal and organizer regions of Xenopus gastrula embryos and is expressed during early stages of mouse embryonic development. Therefore, our results indicate that both ALK4 and ALK7 can mediate signal transduction by Nodal proteins, although ALK7 appears to be a receptor more specifically dedicated to Nodal signaling.
Reissmann, Eva; Jörnvall, Henrik; Blokzijl, Andries; Andersson, Olov; Chang, Chenbei; Minchiotti, Gabriella; Persico, M. Graziella; Ibáñez, Carlos F.; Brivanlou, Ali H.
2001-01-01
Nodal proteins have crucial roles in mesendoderm formation and left–right patterning during vertebrate development. The molecular mechanisms of signal transduction by Nodal and related ligands, however, are not fully understood. In this paper, we present biochemical and functional evidence that the orphan type I serine/threonine kinase receptor ALK7 acts as a receptor for mouse Nodal and Xenopus Nodal-related 1 (Xnr1). Receptor reconstitution experiments indicate that ALK7 collaborates with ActRIIB to confer responsiveness to Xnr1 and Nodal. Both receptors can independently bind Xnr1. In addition, Cripto, an extracellular protein genetically implicated in Nodal signaling, can independently interact with both Xnr1 and ALK7, and its expression greatly enhances the ability of ALK7 and ActRIIB to respond to Nodal ligands. The Activin receptor ALK4 is also able to mediate Nodal signaling but only in the presence of Cripto, with which it can also interact directly. A constitutively activated form of ALK7 mimics the mesendoderm-inducing activity of Xnr1 in Xenopus embryos, whereas a dominant-negative ALK7 specifically blocks the activities of Nodal and Xnr1 but has little effect on other related ligands. In contrast, a dominant-negative ALK4 blocks all mesoderm-inducing ligands tested, including Nodal, Xnr1, Xnr2, Xnr4, and Activin. In agreement with a role in Nodal signaling, ALK7 mRNA is localized to the ectodermal and organizer regions of Xenopus gastrula embryos and is expressed during early stages of mouse embryonic development. Therefore, our results indicate that both ALK4 and ALK7 can mediate signal transduction by Nodal proteins, although ALK7 appears to be a receptor more specifically dedicated to Nodal signaling. PMID:11485994
Receptor-specific modulation of risk-based decision making by nucleus accumbens dopamine.
Stopper, Colin M; Khayambashi, Shahin; Floresco, Stan B
2013-04-01
The nucleus accumbens (NAc) serves as an integral node within cortico-limbic circuitry that regulates various forms of cost-benefit decision making. The dopamine (DA) system has also been implicated in enabling organisms to overcome a variety of costs to obtain more valuable rewards. However, it remains unclear how DA activity within the NAc may regulate decision making involving reward uncertainty. This study investigated the contribution of different DA receptor subtypes in the NAc to risk-based decision making, assessed with a probabilistic discounting task. In well-trained rats, D1 receptor blockade with SCH 23,390 decreased preference for larger, uncertain rewards, which was associated with enhanced negative-feedback sensitivity (ie, an increased tendency to select a smaller/certain option after an unrewarded risky choice). Treatment with a D1 agonist (SKF 81,297) optimized decision making, increasing choice of the risky option when reward probability was high, and decreasing preference under low probability conditions. In stark contrast, neither blockade of NAc D2 receptors with eticlopride, nor stimulation of these receptors with quinpirole or bromocriptine influenced risky choice. In comparison, infusion of the D3-preferring agonist PD 128,907 decreased reward sensitivity and risky choice. Collectively, these results show that mesoaccumbens DA refines risk-reward decision biases via dissociable mechanisms recruiting D1 and D3, but not D2 receptors. D1 receptor activity mitigates the effect of reward omissions on subsequent choices to promote selection of reward options that may have greater long-term utility, whereas excessive D3 receptor activity blunts the impact that larger/uncertain rewards have in promoting riskier choices.
Zhou, Hao; Chen, Shun; Wang, Mingshu; Cheng, Anchun
2014-01-01
Interferon may be thought of as a key, with the interferon receptor as the signal lock: Crosstalk between them maintains their balance during viral infection. In this review, the protein structure of avian interferon and the interferon receptor are discussed, indicating remarkable similarity between different species. However, the structures of the interferon receptors are more sophisticated than those of the interferons, suggesting that the interferon receptor is a more complicated signal lock system and has considerable diversity in subtypes or structures. Preliminary evolutionary analysis showed that the subunits of the interferon receptor formed a distinct clade, and the orthologs may be derived from the same ancestor. Furthermore, the development of interferons and interferon receptors in birds may be related to an animal’s age and the maintenance of a balanced state. In addition, the equilibrium between interferon and its receptor during pathological and physiological states revealed that the virus and the host influence this equilibrium. Birds could represent an important model for studies on interferon’s antiviral activities and may provide the basis for new antiviral strategies. PMID:25405736
Marino, Kristen A.; Prada-Gracia, Diego; Provasi, Davide; Filizola, Marta
2016-01-01
The lipid composition of cell membranes has increasingly been recognized as playing an important role in the function of various membrane proteins, including G Protein-Coupled Receptors (GPCRs). For instance, experimental and computational evidence has pointed to lipids influencing receptor oligomerization directly, by physically interacting with the receptor, and/or indirectly, by altering the bulk properties of the membrane. While the exact role of oligomerization in the function of class A GPCRs such as the μ-opioid receptor (MOR) is still unclear, insight as to how these receptors oligomerize and the relevance of the lipid environment to this phenomenon is crucial to our understanding of receptor function. To examine the effect of lipids and different MOR conformations on receptor oligomerization we carried out extensive coarse-grained molecular dynamics simulations of crystal structures of inactive and/or activated MOR embedded in an idealized mammalian plasma membrane composed of 63 lipid types asymmetrically distributed across the two leaflets. The results of these simulations point, for the first time, to specific direct and indirect effects of the lipids, as well as the receptor conformation, on the spatio-temporal organization of MOR in the plasma membrane. While sphingomyelin-rich, high-order lipid regions near certain transmembrane (TM) helices of MOR induce an effective long-range attractive force on individual protomers, both long-range lipid order and interface formation are found to be conformation dependent, with a larger number of different interfaces formed by inactive MOR compared to active MOR. PMID:27959924
Thurison, Tine; Christensen, Ib J; Lund, Ida K; Nielsen, Hans J; Høyer-Hansen, Gunilla
2015-01-15
High levels of circulating forms of the urokinase-type plasminogen activator receptor (uPAR) are significantly associated to poor prognosis in cancer patients. Our aim was to determine biological variations and reference intervals of the uPAR forms in blood, and in addition, to test the clinical relevance of using these as cut-points in colorectal cancer (CRC) prognosis. uPAR forms were measured in citrated and EDTA plasma samples using time-resolved fluorescence immunoassays. Diurnal, intra- and inter-individual variations were assessed in plasma samples from cohorts of healthy individuals. Reference intervals were determined in plasma from healthy individuals randomly selected from a Danish multi-center cross-sectional study. A cohort of CRC patients was selected from the same cross-sectional study. The reference intervals showed a slight increase with age and women had ~20% higher levels. The intra- and inter-individual variations were ~10% and ~20-30%, respectively and the measured levels of the uPAR forms were within the determined 95% reference intervals. No diurnal variation was found. Applying the normal upper limit of the reference intervals as cut-point for dichotomizing CRC patients revealed significantly decreased overall survival of patients with levels above this cut-point of any uPAR form. The reference intervals for the different uPAR forms are valid and the upper normal limits are clinically relevant cut-points for CRC prognosis. Copyright © 2014 Elsevier B.V. All rights reserved.
NMDA receptor activation regulates sociability by its effect on mTOR signaling activity.
Burket, Jessica A; Benson, Andrew D; Tang, Amy H; Deutsch, Stephen I
2015-07-03
Tuberous Sclerosis Complex is one example of a syndromic form of autism spectrum disorder associated with disinhibited activity of mTORC1 in neurons (e.g., cerebellar Purkinje cells). mTORC1 is a complex protein possessing serine/threonine kinase activity and a key downstream molecule in a signaling cascade beginning at the cell surface with the transduction of neurotransmitters (e.g., glutamate and acetylcholine) and nerve growth factors (e.g., Brain-Derived Neurotrophic Factor). Interestingly, the severity of the intellectual disability in Tuberous Sclerosis Complex may relate more to this metabolic disturbance (i.e., overactivity of mTOR signaling) than the density of cortical tubers. Several recent reports showed that rapamycin, an inhibitor of mTORC1, improved sociability and other symptoms in mouse models of Tuberous Sclerosis Complex and autism spectrum disorder, consistent with mTORC1 overactivity playing an important pathogenic role. NMDA receptor activation may also dampen mTORC1 activity by at least two possible mechanisms: regulating intraneuronal accumulation of arginine and the phosphorylation status of a specific extracellular signal regulating kinase (i.e., ERK1/2), both of which are "drivers" of mTORC1 activity. Conceivably, the prosocial effects of targeting the NMDA receptor with agonists in mouse models of autism spectrum disorders result from their ability to dampen mTORC1 activity in neurons. Strategies for dampening mTORC1 overactivity by NMDA receptor activation may be preferred to its direct inhibition in chronic neurodevelopmental disorders, such as autism spectrum disorders. Copyright © 2015 Elsevier Inc. All rights reserved.
Structural reorganization of the interleukin-7 signaling complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
McElroy, Craig A.; Holland, Paul J.; Zhao, Peng
2012-06-29
We report here an unliganded receptor structure in the common gamma-chain ({gamma}{sub c}) family of receptors and cytokines. The crystal structure of the unliganded form of the interleukin-7 alpha receptor (IL-7R{alpha}) extracellular domain (ECD) at 2.15 {angstrom} resolution reveals a homodimer forming an 'X' geometry looking down onto the cell surface with the C termini of the two chains separated by 110 {angstrom} and the dimer interface comprising residues critical for IL-7 binding. Further biophysical studies indicate a weak association of the IL-7R{alpha} ECDs but a stronger association between the {gamma}{sub c}/IL-7R{alpha} ECDs, similar to previous studies of the full-lengthmore » receptors on CD4{sup +} T cells. Based on these and previous results, we propose a molecular mechanism detailing the progression from the inactive IL-7R{alpha} homodimer and IL-7R{alpha}-{gamma}{sub c} heterodimer to the active IL-7-IL-7R{alpha}-{gamma}{sub c} ternary complex whereby the two receptors undergo at least a 90{sup o} rotation away from the cell surface, moving the C termini of IL-7R{alpha} and {gamma}{sub c} from a distance of 110 {angstrom} to less than 30 {angstrom} at the cell surface. This molecular mechanism can be used to explain recently discovered IL-7- and {gamma}{sub c}-independent gain-of-function mutations in IL-7R{alpha} from B- and T-cell acute lymphoblastic leukemia patients. The mechanism may also be applicable to other {gamma}{sub c} receptors that form inactive homodimers and heterodimers independent of their cytokines.« less
Douglas, Steven D.; Leeman, Susan E.
2010-01-01
The G-protein coupled receptor (GPCR), Neurokinin-1 Receptor (NK1R), and its preferred ligand, substance P (SP), are reviewed in relationship to the immune system and selected infections. NK1R and substance P are ubiquitous throughout the animal kingdom. This important pathway has unique functions in numerous cells and tissues. The interaction of SP with its preferred receptor, NK1R, leads to the activation of nuclear factor-kappa-b (NF-κb) and proinflammatory cytokines. NK1R has two isoforms, both a full-length and a truncated form. These isoforms have different functional significances and differ in cell signaling capability. The proinflammatory signals modulated by substance P are important in bacterial, viral, fungal, and parasitic diseases, as well as in immune system function. The SP-NK1R system is a major Class 1, rhodopsin-like GPCR ligand-receptor interaction. PMID:21091716
Han, Kyuyong; Song, Haengseok; Moon, Irene; Augustin, Robert; Moley, Kelle; Rogers, Melissa; Lim, Hyunjung
2007-03-01
Various nuclear receptors form dimers to activate target genes via specific response elements located within promoters or enhancers. Retinoid X receptor (RXR) serves as a dimerization partner for many nuclear receptors including retinoic acid receptor (RAR) and peroxisome proliferator-activated receptor (PPAR). Dimers show differential preference towards directly repeated response elements with 1-5 nucleotide spacing, and direct repeat 1 (DR1) is a promiscuous element which recruits RAR/RXR, RXR/RXR, and PPAR/RXR in vitro. In the present investigation, we report identification of a novel RAR/RXR target gene which is regulated by DR1s in the promoter region. This gene, namely spermatocyte-specific marker (Ssm), recruits all the three combinations of nuclear receptors in vitro, but in vivo regulation is observed by trans-retinoic acid-activated RAR/RXR dimer. Indeed, chromatin immunoprecipitation experiment demonstrates binding of RARbeta and RXRalpha in the promoter region of the Ssm. Interestingly, expression of Ssm is almost exclusively observed in spermatocytes in the adult mouse testis, where RA signaling is known to regulate developmental program of male germ cells. The results show that Ssm is a RAR/RXR target gene uniquely using DR1 and exhibits stage-specific expression in the mouse testis with potential function in later stages of spermatogenesis. This finding exemplifies usage of DR1s as retinoic acid response element (RARE) under a specific in vivo context.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuratomi, Y.; Ono, M.; Yasutake, C.
1987-01-01
A mutant clone (MO-5) was originally isolated as a clone resistant to Na/sup +//K/sup +/ ionophoric antibiotic monensin from mouse Balb/c3T3 cells. MO-5 was found to show low receptor-endocytosis activity for epidermal growth factor (EGF):binding activity for EGF in MO-5 was less than one tenth of that in Balb/c3T3. Anchorage-independent growth of MO-5 was compared to that of Balb/c3T3 when assayed by colony formation capacity in soft agar. Coadministration of EGF and TGF-..beta.. efficiently enhanced anchorage-independent growth of normal rat kidney (NRK) cells, but neither factor alone was competent to promote the anchorage-independent growth. The frequency of colonies appearing inmore » soft agar of MO-5 or Balb/c3T3 was significantly enhanced by TGF-..beta.. while EGF did not further enhance that of MO-5 or Balb/c3T3. Colonies of Balb/c3T3 formed in soft agar in the presence of TGF-..beta.. showed low colony formation capacity in soft agar in the absence of TGF-..beta... Colonies of MO-5 formed by TGF-..beta.. in soft agar, however, showed high colony formation capacity in soft agar in the absence of TGF-..beta... Pretreatment of MO-5 with TGF-..beta.. induced secretion of TGF-..beta..-like activity from the cells, while the treatment of Balb/c3T3 did not induce the secretion of a significant amount of TGF-..beta..-like activity. The loss of EGF-receptor activity in the stable expression and maintenance of the transformed phenotype in MO-5 is discussed.« less
Junrui, Pei; Bingyun, Li; Yanhui, Gao; Xu, Jiaxun; Darko, Gottfried M; Dianjun, Sun
2016-09-01
Skeletal fluorosis is a metabolic bone disease caused by excessive accumulation of fluoride. Although the cause of this disease is known, the mechanism by which fluoride accumulates on the bone has not been clearly defined, thus there are no markers that can be used for screening skeletal fluorosis in epidemiology. In this study, osteoclasts were formed from bone marrow cells of C57BL/6 mice-treated with macrophage colony stimulating factor and receptor activator of nuclear factor kappa-B ligand. The mRNA expression of tartrate-resistant acid phosphatase 5b (TRAP5b), osteoclast-associated receptor (OSCAR), calcitonin receptor (CTR), matrix metalloproteinase 9 (MMP9) and cathepsin K (CK) were detected using real-time PCR (RT-PCR). Results showed that fluoride between 0.5 and 8mg/l had no effect on osteoclast formation. However fluoride at 0.5mg/l level significantly decreased the activity of osteoclast bone resorption. Fluoride concentration was negatively correlated with the activity of osteoclast bone resorption. On day 5 of osteoclast differentiation maturity, MMP9 and CK mRNA expression were not only negatively correlated with fluoride concentration, but directly correlated with the activity of osteoclast bone resorption. TRAP5b, CTR and OSCAR mRNA expression were positively correlated with the number of osteoclast and they had no correlation with the activity of osteoclast bone resorption. Thus, it can be seen that MMP9 and CK may reflect the change of activity of bone resorption as well the degree of fluoride exposure. TRAP5b, CTR and OSCAR can represent the change of number of osteoclast formed. Copyright © 2016 Elsevier B.V. All rights reserved.
Gannon, Robert L; Millan, Mark J
2011-01-01
Glutamate released from retinal ganglion cells conveys information about the daily light:dark cycle to master circadian pacemaker neurons within the suprachiasmatic nucleus that then synchronize internal circadian rhythms with the external day-length. Glutamate activation of ionotropic glutamate receptors in the suprachiasmatic nucleus is well established, but the function of the metabotropic glutamate receptors that are also located in this nucleus is not known. Therefore, in this study we evaluated agonists and antagonists acting at orthosteric or allosteric sites for mGluR5 and mGluR2/3 metabotropic glutamate receptors for their ability to modulate light-induced phase advances and delays of hamster circadian activity rhythms. mGluR5 allosteric antagonists fenobam, MPEP and MTEP, each 10 mg/kg, potentiated light-induced phase advances of hamster circadian activity rhythms, while the mGluR5 agonists CHPG, (S)-3,5-DHPG or positive allosteric modulator CDPPB had no effect. Neither mGluR5 agonists nor antagonists had any effect on light-induced phase delays of activity rhythms. The competitive mGluR2/3 antagonist LY341495, 10 mg/kg, also potentiated light-induced phase advances, but inhibited light-induced phase delays. The mGluR2/3 agonists LY354740 and LY404039 were without effect on phase advances while a third agonist LY379268, 10 mg/kg, inhibited both light-induced advances and delays. Finally, mGluR2/3 agonists LY379268 and LY404039 also inhibited light-induced phase delays of activity rhythms. These results suggest that during light-induced phase advances, mGluR2/3 and mGluR5 receptors act to negatively modulate the effects of light on the circadian pacemaker or its output(s). mGluR5 receptors do not appear to be involved during light-induced phase delays. In contrast, the role for mGluR2/3 receptors during phase delays is more complicated as both agonists and antagonists inhibit light-induced phase delays. Dysfunctions in human circadian rhythms have been implicated in some forms of depression, and metabotropic glutamate receptor ligands, which are also being evaluated for antidepressant activity, are shown here to be capable of modifying light-induced phase shifts of circadian activity rhythms. Copyright © 2010 Elsevier Ltd. All rights reserved.
The Calcium-Sensing Receptor and Integrins in Cellular Differentiation and Migration
Tharmalingam, Sujeenthar; Hampson, David R.
2016-01-01
The calcium-sensing receptor (CaSR) is a widely expressed homodimeric G-protein coupled receptor structurally related to the metabotropic glutamate receptors and GPRC6A. In addition to its well characterized role in maintaining calcium homeostasis and regulating parathyroid hormone release, evidence has accumulated linking the CaSR with cellular differentiation and migration, brain development, stem cell engraftment, wound healing, and tumor growth and metastasis. Elevated expression of the CaSR in aggressive metastatic tumors has been suggested as a potential novel prognostic marker for predicting metastasis, especially to bone tissue where extracellular calcium concentrations may be sufficiently high to activate the receptor. Recent evidence supports a model whereby CaSR-mediated activation of integrins promotes cellular migration. Integrins are single transmembrane spanning heterodimeric adhesion receptors that mediate cell migration by binding to extracellular matrix proteins. The CaSR has been shown to form signaling complexes with the integrins to facilitate both the movement and differentiation of cells, such as neurons during normal brain development and tumor cells under pathological circumstances. Thus, CaSR/integrin complexes may function as a universal cell migration or homing complex. Manipulation of this complex may be of potential interest for treating metastatic cancers, and for developmental disorders pertaining to aberrant neuronal migration. PMID:27303307
Selfors, Laura M.; Schutzman, Jennifer L.; Borland, Christina Z.; Stern, Michael J.
1998-01-01
Activation of fibroblast growth factor (FGF) receptors elicits diverse cellular responses including growth, mitogenesis, migration, and differentiation. The intracellular signaling pathways that mediate these important processes are not well understood. In Caenorhabditis elegans, suppressors of clr-1 identify genes, termed soc genes, that potentially mediate or activate signaling through the EGL-15 FGF receptor. We demonstrate that three soc genes, soc-1, soc-2, and sem-5, suppress the activity of an activated form of the EGL-15 FGF receptor, consistent with the soc genes functioning downstream of EGL-15. We show that soc-2 encodes a protein composed almost entirely of leucine-rich repeats, a domain implicated in protein–protein interactions. We identified a putative human homolog, SHOC-2, which is 54% identical to SOC-2. We find that shoc-2 maps to 10q25, shoc-2 mRNA is expressed in all tissues assayed, and SHOC-2 protein is cytoplasmically localized. Within the leucine-rich repeats of both SOC-2 and SHOC-2 are two YXNX motifs that are potential tyrosine-phosphorylated docking sites for the SEM-5/GRB2 Src homology 2 domain. However, phosphorylation of these residues is not required for SOC-2 function in vivo, and SHOC-2 is not observed to be tyrosine phosphorylated in response to FGF stimulation. We conclude that this genetic system has allowed for the identification of a conserved gene implicated in mediating FGF receptor signaling in C. elegans. PMID:9618511
Lam, Carol K L; Chari, Madhu; Rutter, Guy A; Lam, Tony K T
2011-01-01
Hypothalamic nutrient sensing regulates glucose production, but the neuronal circuits involved remain largely unknown. Recent studies underscore the importance of N-methyl-d-aspartate (NMDA) receptors in the dorsal vagal complex in glucose regulation. These studies raise the possibility that hypothalamic nutrient sensing activates a forebrain-hindbrain NMDA-dependent circuit to regulate glucose production. We implanted bilateral catheters targeting the mediobasal hypothalamus (MBH) (forebrain) and dorsal vagal complex (DVC) (hindbrain) and performed intravenous catheterizations to the same rat for infusion and sampling purposes. This model enabled concurrent selective activation of MBH nutrient sensing by either MBH delivery of lactate or an adenovirus expressing the dominant negative form of AMPK (Ad-DN AMPK α2 [D¹⁵⁷A]) and inhibition of DVC NMDA receptors by either DVC delivery of NMDA receptor blocker MK-801 or an adenovirus expressing the shRNA of NR1 subunit of NMDA receptors (Ad-shRNA NR1). Tracer-dilution methodology and the pancreatic euglycemic clamp technique were performed to assess changes in glucose kinetics in the same conscious, unrestrained rat in vivo. MBH lactate or Ad-DN AMPK with DVC saline increased glucose infusion required to maintain euglycemia due to an inhibition of glucose production during the clamps. However, DVC MK-801 negated the ability of MBH lactate or Ad-DN AMPK to increase glucose infusion or lower glucose production. Molecular knockdown of DVC NR1 of NMDA receptor via Ad-shRNA NR1 injection also negated MBH Ad-DN AMPK to lower glucose production. Molecular and pharmacological inhibition of DVC NMDA receptors negated hypothalamic nutrient sensing mechanisms activated by lactate metabolism or AMPK inhibition to lower glucose production. Thus, DVC NMDA receptor is required for hypothalamic nutrient sensing to lower glucose production and that hypothalamic nutrient sensing activates a forebrain-hindbrain circuit to lower glucose production.
Choudhury, Sabanum; Borah, Anupom
2015-07-01
Liver diseases lead to a complex syndrome characterized by neurological, neuro-psychiatric and motor complications, called hepatic encephalopathy, which is prevalent in patients and animal models of acute, sub-chronic and chronic liver failure. Although alterations in GABAergic, glutamatergic, cholinergic and serotonergic neuronal functions have been implicated in HE, the molecular mechanisms that lead to HE in chronic liver disease (CLD) is least illustrated. Due to hepatocellular failure, levels of ammonia and homocysteine (Hcy), in addition to others, are found to increase in the brain as well as plasma. Hcy, a non-protein forming amino acid and an excitotoxin, activates ionotropic glutamate (n-methyl-d-aspartate; NMDA) receptors, and thereby leads to influx of Ca(2+) into neurons, which in turn activates several pathways that trigger oxidative stress, inflammation and apoptosis, collectively called excitotoxicity. Elevated levels of Hcy in the plasma and brain, a condition called Hyperhomocysteinemia (HHcy), and the resultant NMDA receptor-mediated excitotoxicity has been implicated in several diseases, including Parkinson's disease and Alzheimer's disease. Although, hyperammonemia has been shown to cause excitotoxicity, the role of HHcy in the development of behavioral and neurochemical alterations that occur in HE has not been illustrated yet. It is hypothesized that CLD-induced HHcy plays a major role in the development of HE through activation of NMDA receptors. It is further hypothesized that HHcy synergizes with hyperammonemia to activate NMDA receptor in the brain, and thereby cause oxidative stress, inflammation and apoptosis, and neuronal loss that leads to HE. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vesicular glutamate release from central axons contributes to myelin damage.
Doyle, Sean; Hansen, Daniel Bloch; Vella, Jasmine; Bond, Peter; Harper, Glenn; Zammit, Christian; Valentino, Mario; Fern, Robert
2018-03-12
The axon myelin sheath is prone to injury associated with N-methyl-D-aspartate (NMDA)-type glutamate receptor activation but the source of glutamate in this context is unknown. Myelin damage results in permanent action potential loss and severe functional deficit in the white matter of the CNS, for example in ischemic stroke. Here, we show that in rats and mice, ischemic conditions trigger activation of myelinic NMDA receptors incorporating GluN2C/D subunits following release of axonal vesicular glutamate into the peri-axonal space under the myelin sheath. Glial sources of glutamate such as reverse transport did not contribute significantly to this phenomenon. We demonstrate selective myelin uptake and retention of a GluN2C/D NMDA receptor negative allosteric modulator that shields myelin from ischemic injury. The findings potentially support a rational approach toward a low-impact prophylactic therapy to protect patients at risk of stroke and other forms of excitotoxic injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Shoko, E-mail: satosho@rs.tus.ac.jp; Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp; Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp
2013-11-15
Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHRmore » or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.« less
Spätzle-Processing Enzyme-independent Activation of the Toll Pathway in Drosophila Innate Immunity.
Yamamoto-Hino, Miki; Goto, Satoshi
2016-05-07
The Toll pathway regulates innate immunity in insects and vertebrates. The Drosophila Toll receptor is activated by a processed form of a ligand, Spätzle. Spätzle-processing enzyme (SPE) is the only enzyme identified to date that functions in converting Spätzle to an active form during the immune response. In the present study, Toll activation induced by immune challenge was almost suppressed in spätzle mutant larvae and adults, whereas it was present in SPE mutant larvae challenged with Micrococcus luteus and adults challenged with Bacillus subtilis. Our data suggest that an unidentified protease besides SPE processes Spätzle under conditions of microbial challenge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jäntti, Maria H., E-mail: maria.jantti@helsinki.fi; Mandrika, Ilona, E-mail: ilona@biomed.lu.lv; Kukkonen, Jyrki P., E-mail: jyrki.kukkonen@helsinki.fi
Highlights: • OX{sub 1} and OX{sub 2} orexin and CB{sub 1} cannabinoid receptor dimerization was investigated. • Bioluminescence resonance energy transfer method was used. • All receptors readily formed constitutive homo- and heteromeric complexes. - Abstract: Human OX{sub 1} orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB{sub 1} cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX{sub 1},more » OX{sub 2} and CB{sub 1} receptors, C-terminally fused with either Renilla luciferase or GFP{sup 2} green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB{sub 1} receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP{sup 2} to CB{sub 1} produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX{sub 1}–OX{sub 2} interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB{sub 1} receptors, dimerization could be an effective way of forming signal complexes with optimal cannabinoid concentrations available for cannabinoid receptors.« less
Shimozaki, Koji; Zhang, Chun-Li; Suh, Hoonkyo; Denli, Ahmet M.; Evans, Ronald M.; Gage, Fred H.
2012-01-01
Adult neurogenesis is maintained by self-renewable neural stem cells (NSCs). Their activity is regulated by multiple signaling pathways and key transcription factors. However, it has been unclear whether these factors interplay with each other at the molecular level. Here we show that SRY-box-containing gene 2 (Sox2) and nuclear receptor tailless (TLX) form a molecular network in adult NSCs. We observed that both Sox2 and TLX proteins bind to the upstream region of Tlx gene. Sox2 positively regulates Tlx expression, whereas the binding of TLX to its own promoter suppresses its transcriptional activity in luciferase reporter assays. Such TLX-mediated suppression can be antagonized by overexpressing wild-type Sox2 but not a mutant lacking the transcriptional activation domain. Furthermore, through regions involved in DNA-binding activity, Sox2 and TLX physically interact to form a complex on DNAs that contain a consensus binding site for TLX. Finally, depletion of Sox2 revealed the potential negative feedback loop of TLX expression that is antagonized by Sox2 in adult NSCs. These data suggest that Sox2 plays an important role in Tlx transcription in cultured adult NSCs. PMID:22194602
Shimozaki, Koji; Zhang, Chun-Li; Suh, Hoonkyo; Denli, Ahmet M; Evans, Ronald M; Gage, Fred H
2012-02-17
Adult neurogenesis is maintained by self-renewable neural stem cells (NSCs). Their activity is regulated by multiple signaling pathways and key transcription factors. However, it has been unclear whether these factors interplay with each other at the molecular level. Here we show that SRY-box-containing gene 2 (Sox2) and nuclear receptor tailless (TLX) form a molecular network in adult NSCs. We observed that both Sox2 and TLX proteins bind to the upstream region of Tlx gene. Sox2 positively regulates Tlx expression, whereas the binding of TLX to its own promoter suppresses its transcriptional activity in luciferase reporter assays. Such TLX-mediated suppression can be antagonized by overexpressing wild-type Sox2 but not a mutant lacking the transcriptional activation domain. Furthermore, through regions involved in DNA-binding activity, Sox2 and TLX physically interact to form a complex on DNAs that contain a consensus binding site for TLX. Finally, depletion of Sox2 revealed the potential negative feedback loop of TLX expression that is antagonized by Sox2 in adult NSCs. These data suggest that Sox2 plays an important role in Tlx transcription in cultured adult NSCs.
Single molecule analysis of B cell receptor motion during signaling activation
NASA Astrophysics Data System (ADS)
Rey Suarez, Ivan; Koo, Peter; Zhou, Shu; Wheatley, Brittany; Song, Wenxia; Mochrie, Simon; Upadhyaya, Arpita
B cells are an essential part of the adaptive immune system. They patrol the body for signs of infection in the form of antigen on the surface of antigen presenting cells. B cell receptor (BCR) binding to antigen induces a signaling cascade that leads to B cell activation and spreading. During activation, BCR form signaling microclusters that later coalesce as the cell contracts. We have studied the dynamics of BCRs on activated murine primary B cells using single particle tracking. The tracks are analyzed using perturbation expectation-maximization (pEM), a systems-level analysis, which allows identification of different short-time diffusive states from single molecule tracks. We identified four dominant diffusive states, two of which correspond to BCRs interacting with signaling molecules. For wild-type cells, the number of BCR in signaling states increases as the cell spreads and then decreases during cell contraction. In contrast, cells lacking the actin regulatory protein, N-WASP, are unable to contract and BCRs remain in the signaling states for longer times. These observations indicate that actin cytoskeleton dynamics modulate BCR diffusion and clustering. Our results provide novel information regarding the timescale of interaction between BCR and signaling molecules.
Bordukalo-Niksic, Tatjana; Mokrovic, Gordana; Stefulj, Jasminka; Zivin, Marko; Jernej, Branimir; Cicin-Sain, Lipa
2010-12-01
Altered activity of brain serotonergic (5HT) system has been implicated in a wide range of behaviours and behavioural disorders, including anxiety. Functioning of 5HT-1A receptor has been suggested as a modulator of emotional balance in both, normal and pathological forms of anxiety. Here, we studied serotonergic modulation of anxiety-like behaviour using a genetic rat model with constitutional differences in 5HT homeostasis, named Wistar-Zagreb 5HT (WZ-5HT) rats. The model, consisting of high-5HT and low-5HT sublines, was developed by selective breeding of animals for extreme activities of peripheral (platelet) 5HT transporter, but selection process had affected also central 5HT homeostasis, as evidenced from neurochemical and behavioural studies. Anxiety-like behaviour in WZ-5HT rats was evaluated by two commonly used paradigms: open field and elevated-plus maze. The involvement of 5HT-1A receptors in behavioural response was assessed by measuring mRNA expression in cell bodies (raphe nuclei) and projection regions (frontal cortex, hippocampus) by use of RT-PCR and in situ hybridization, and by measuring functionality of cortical 5HT-1A receptors by use of [(3)H]8-OH-DPAT radioligand binding. Animals from the high-5HT subline exhibit increased anxiety-like behaviour and decreased exploratory activity when exposed to novel environment. No measurable differences in constitutional (baseline) functionality or expression of 5HT-1A receptors between sublines were found. The results support contribution of increased serotonergic functioning to the anxiety-like behaviour. They also validate the high-5HT subline of WZ-5HT rats as a potential model to study mechanisms of anxiety, especially of its nonpathological form, while the low-5HT subline may be useful to model sensation seeking phenotype. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Ha, Sangdeuk; Baver, Scott; Huo, Lihong; Gata, Adriana; Hairston, Joyce; Huntoon, Nicholas; Li, Wenjing; Zhang, Thompson; Benecchi, Elizabeth J.; Ericsson, Maria; Hentges, Shane T.; Bjørbæk, Christian
2013-01-01
Leptin acts via neuronal leptin receptors to control energy balance. Hypothalamic pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP)/Neuropeptide Y (NPY)/GABA neurons produce anorexigenic and orexigenic neuropeptides and neurotransmitters, and express the long signaling form of the leptin receptor (LepRb). Despite progress in the understanding of LepRb signaling and function, the sub-cellular localization of LepRb in target neurons has not been determined, primarily due to lack of sensitive anti-LepRb antibodies. Here we applied light microscopy (LM), confocal-laser scanning microscopy (CLSM), and electron microscopy (EM) to investigate LepRb localization and signaling in mice expressing a HA-tagged LepRb selectively in POMC or AgRP/NPY/GABA neurons. We report that LepRb receptors exhibit a somato-dendritic expression pattern. We further show that LepRb activates STAT3 phosphorylation in neuronal fibers within several hypothalamic and hindbrain nuclei of wild-type mice and rats, and specifically in dendrites of arcuate POMC and AgRP/NPY/GABA neurons of Leprb +/+ mice and in Leprb db/db mice expressing HA-LepRb in a neuron specific manner. We did not find evidence of LepRb localization or STAT3-signaling in axon-fibers or nerve-terminals of POMC and AgRP/NPY/GABA neurons. Three-dimensional serial EM-reconstruction of dendritic segments from POMC and AgRP/NPY/GABA neurons indicates a high density of shaft synapses. In addition, we found that the leptin activates STAT3 signaling in proximity to synapses on POMC and AgRP/NPY/GABA dendritic shafts. Taken together, these data suggest that the signaling-form of the leptin receptor exhibits a somato-dendritic expression pattern in POMC and AgRP/NPY/GABA neurons. Dendritic LepRb signaling may therefore play an important role in leptin’s central effects on energy balance, possibly through modulation of synaptic activity via post-synaptic mechanisms. PMID:24204898
Potent and Selective Peptide-based Inhibition of the G Protein Gαq*
Charpentier, Thomas H.; Waldo, Gary L.; Lowery-Gionta, Emily G.; Krajewski, Krzysztof; Strahl, Brian D.; Kash, Thomas L.; Harden, T. Kendall; Sondek, John
2016-01-01
In contrast to G protein-coupled receptors, for which chemical and peptidic inhibitors have been extensively explored, few compounds are available that directly modulate heterotrimeric G proteins. Active Gαq binds its two major classes of effectors, the phospholipase C (PLC)-β isozymes and Rho guanine nucleotide exchange factors (RhoGEFs) related to Trio, in a strikingly similar fashion: a continuous helix-turn-helix of the effectors engages Gαq within its canonical binding site consisting of a groove formed between switch II and helix α3. This information was exploited to synthesize peptides that bound active Gαq in vitro with affinities similar to full-length effectors and directly competed with effectors for engagement of Gαq. A representative peptide was specific for active Gαq because it did not bind inactive Gαq or other classes of active Gα subunits and did not inhibit the activation of PLC-β3 by Gβ1γ2. In contrast, the peptide robustly prevented activation of PLC-β3 or p63RhoGEF by Gαq; it also prevented G protein-coupled receptor-promoted neuronal depolarization downstream of Gαq in the mouse prefrontal cortex. Moreover, a genetically encoded form of this peptide flanked by fluorescent proteins inhibited Gαq-dependent activation of PLC-β3 at least as effectively as a dominant-negative form of full-length PLC-β3. These attributes suggest that related, cell-penetrating peptides should effectively inhibit active Gαq in cells and that these and genetically encoded sequences may find application as molecular probes, drug leads, and biosensors to monitor the spatiotemporal activation of Gαq in cells. PMID:27742837
Potent and Selective Peptide-based Inhibition of the G Protein Gαq.
Charpentier, Thomas H; Waldo, Gary L; Lowery-Gionta, Emily G; Krajewski, Krzysztof; Strahl, Brian D; Kash, Thomas L; Harden, T Kendall; Sondek, John
2016-12-02
In contrast to G protein-coupled receptors, for which chemical and peptidic inhibitors have been extensively explored, few compounds are available that directly modulate heterotrimeric G proteins. Active Gα q binds its two major classes of effectors, the phospholipase C (PLC)-β isozymes and Rho guanine nucleotide exchange factors (RhoGEFs) related to Trio, in a strikingly similar fashion: a continuous helix-turn-helix of the effectors engages Gα q within its canonical binding site consisting of a groove formed between switch II and helix α3. This information was exploited to synthesize peptides that bound active Gα q in vitro with affinities similar to full-length effectors and directly competed with effectors for engagement of Gα q A representative peptide was specific for active Gα q because it did not bind inactive Gα q or other classes of active Gα subunits and did not inhibit the activation of PLC-β3 by Gβ 1 γ 2 In contrast, the peptide robustly prevented activation of PLC-β3 or p63RhoGEF by Gα q ; it also prevented G protein-coupled receptor-promoted neuronal depolarization downstream of Gα q in the mouse prefrontal cortex. Moreover, a genetically encoded form of this peptide flanked by fluorescent proteins inhibited Gα q -dependent activation of PLC-β3 at least as effectively as a dominant-negative form of full-length PLC-β3. These attributes suggest that related, cell-penetrating peptides should effectively inhibit active Gα q in cells and that these and genetically encoded sequences may find application as molecular probes, drug leads, and biosensors to monitor the spatiotemporal activation of Gα q in cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
δ-Tocopherol inhibits receptor tyrosine kinase-induced AKT activation in prostate cancer cells.
Wang, Hong; Hong, Jungil; Yang, Chung S
2016-11-01
The cancer preventive activity of vitamin E is suggested by epidemiological studies and supported by animal studies with vitamin E forms, γ-tocopherol and δ-tocopherol (δ-T). Several recent large-scale cancer prevention trials with high dose of α-tocopherol, however, yielded disappointing results. Whether vitamin E prevents or promotes cancer is a serious concern. A better understanding of the molecular mechanisms of action of the different forms of tocopherols would enhance our understanding of this topic. In this study, we demonstrated that δ-T was the most effective tocopherol form in inhibiting prostate cancer cell growth, by inducing cell cycle arrest and apoptosis. By profiling the effects of δ-T on the cell signaling using the phospho-kinase array, we found that the most inhibited target was the phosphorylation of AKT on T308. Further study on the activation of AKT by EGFR and IGFR revealed that δ-T attenuated the EGF/IGF-induced activation of AKT (via the phosphorylation of AKT on T308 induced by the activation of PIK3). Expression of dominant active PIK3 and AKT in prostate cancer cell line DU145 in which PIK3, AKT, and PTEN are wild type caused the cells to be reflectory to the inhibition of δ-T, supporting that δ-T inhibits the PIK3-mediated activation of AKT. Our data also suggest that δ-T interferes with the EGF-induced EGFR internalization, which leads to the inhibition of the receptor tyrosine kinase-dependent activation of AKT. In summary, our results revealed a novel mechanism of δ-T in inhibiting prostate cancer cell growth, supporting the cancer preventive activity δ-T. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Ben-Ari, Yehezkel; Crepel, Valérie; Represa, Alfonso
2008-01-01
Do temporal lobe epilepsy (TLE) seizures in adults promote further seizures? Clinical and experimental data suggest that new synapses are formed after an initial episode of status epilepticus, however their contribution to the transformation of a naive network to an epileptogenic one has been debated. Recent experimental data show that newly formed aberrant excitatory synapses on the granule cells of the fascia dentate operate by means of kainate receptor-operated signals that are not present on naive granule cells. Therefore, genuine epileptic networks rely on signaling cascades that differentiate them from naive networks. Recurrent limbic seizures generated by the activation of kainate receptors and synapses in naive animals lead to the formation of novel synapses that facilitate the emergence of further seizures. This negative, vicious cycle illustrates the central role of reactive plasticity in neurological disorders.
Queiroz, Glória; Quintas, Clara; Talaia, Carlos; Gonçalves, Jorge
2004-08-01
In the prostatic portion of rat vas deferens, the non-selective adenosine receptor agonist NECA (0.1-30 microM), but not the A(2A) agonist CGS 21680 (0.001-10 microM), caused a facilitation of electrically evoked noradrenaline release (up to 43 +/- 4%), when inhibitory adenosine A(1) receptors were blocked. NECA-elicited facilitation of noradrenaline release was prevented by the A(2B) receptor-antagonist MRS 1754, enhanced by preventing cyclic-AMP degradation with rolipram, abolished by the protein kinase A inhibitors H-89, KT 5720 and cyclic-AMPS-Rp and attenuated by the protein kinase C inhibitors Ro 32-0432 and calphostin C. The adenosine uptake inhibitor NBTI also elicited a facilitation of noradrenaline release; an effect that was abolished by adenosine deaminase and attenuated by MRS 1754, by inhibitors of the extracellular nucleotide metabolism and by blockade of alpha(1)-adrenoceptors and P2X receptors with prazosin and NF023, respectively. It was concluded that adenosine A(2B) receptors are involved in a facilitation of noradrenaline release in the prostatic portion of rat vas deferens that can be activated by adenosine formed by extracellular catabolism of nucleotides. The receptors seem to be coupled to the adenylyl cyclase-protein kinase A pathway but activation of the protein kinase C by protein kinase A, may also contribute to the adenosine A(2B) receptor-mediated facilitation of noradrenaline release.
Ionotropic glutamate receptors: regulation by G-protein-coupled receptors.
Rojas, Asheebo; Dingledine, Raymond
2013-04-01
The function of many ion channels is under dynamic control by coincident activation of G-protein-coupled receptors (GPCRs), particularly those coupled to the Gαs and Gαq family members. Such regulation is typically dependent on the subunit composition of the ionotropic receptor or channel as well as the GPCR subtype and the cell-specific panoply of signaling pathways available. Because GPCRs and ion channels are so highly represented among targets of U.S. Food and Drug Administration-approved drugs, functional cross-talk between these drug target classes is likely to underlie many therapeutic and adverse effects of marketed drugs. GPCRs engage a myriad of signaling pathways that involve protein kinases A and C (PKC) and, through PKC and interaction with β-arrestin, Src kinase, and hence the mitogen-activated-protein-kinase cascades. We focus here on the control of ionotropic glutamate receptor function by GPCR signaling because this form of regulation can influence the strength of synaptic plasticity. The amino acid residues phosphorylated by specific kinases have been securely identified in many ionotropic glutamate (iGlu) receptor subunits, but which of these sites are GPCR targets is less well known even when the kinase has been identified. N-methyl-d-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and heteromeric kainate receptors are all downstream targets of GPCR signaling pathways. The details of GPCR-iGlu receptor cross-talk should inform a better understanding of how synaptic transmission is regulated and lead to new therapeutic strategies for neuropsychiatric disorders.
Bruchas, Michael R.; Macey, Tara A.; Lowe, Janet D.; Chavkin, Charles
2007-01-01
AtT-20 cells expressing the wild-type kappa opioid receptor (KOR) increased phospho-p38 MAPK following treatment with the kappa agonist U50,488. The increase was blocked by the kappa antagonist norbinaltorphimine and not evident in untransfected cells. In contrast, U50,488 treatment of AtT-20 cells expressing KOR having alanine substituted for serine-369 (KSA) did not increase phospho-p38. Phosphorylation of serine 369 in the KOR carboxyl terminus by G-protein receptor kinase 3 (GRK3) was previously shown to be required for receptor desensitization, and the results suggest that p38 MAPK activation by KOR may require arrestin recruitment. This hypothesis was tested by transfecting arrestin3-(R170E), a dominant positive form of arrestin that does not require receptor phosphorylation for activation. AtT-20 cells expressing both KSA and arrestin3-(R170E) responded to U50,488 treatment with an increase in phospho-p38 consistent with the hypothesis. Primary cultured astrocytes (glial fibrillary acidic protein-positive) and neurons (γ-aminobutyric acid-positive) isolated from mouse striata also responded to U50,488 by increasing phospho-p38 immunolabeling. p38 activation was not evident in either striatal astrocytes or neurons isolated from KOR knock-out mice or GRK3 knock-out mice. Astrocytes pretreated with small interfering RNA for arrestin3 were also unable to activate p38 in response to U50,488 treatment. Furthermore, in striatal neurons, the kappa-mediated phospho-p38 labeling was colocalized with arrestin3. These findings suggest that KOR may activate p38 MAPK in brain by a GRK3 and arrestin-dependent mechanism. PMID:16648139
Piccini, Alessandra; Carta, Sonia; Tassi, Sara; Lasiglié, Denise; Fossati, Gianluca; Rubartelli, Anna
2008-06-10
IL-1beta and IL-18 are crucial mediators of inflammation, and a defective control of their release may cause serious diseases. Yet, the mechanisms regulating IL-1beta and IL-18 secretion are partially undefined. Both cytokines are produced as inactive cytoplasmic precursors. Processing to the active form is mediated by caspase-1, which is in turn activated by the multiprotein complex inflammasome. Here, we show that in primary human monocytes microbial components acting on different pathogen-sensing receptors and the danger-associated molecule uric acid are all competent to induce maturation and secretion of IL-1beta and IL-18 through a process that involves as a first event the extracellular release of endogenous ATP. ATP release is followed by autocrine stimulation of the purinergic receptors P2X(7). Indeed, antagonists of the P2X(7) receptor (P2X(7)R), or treatment with apyrase, prevent IL-1beta and IL-18 maturation and secretion triggered by the different stimuli. At variance, blocking P2X(7)R activity has no effects on IL-1beta secretion by monocytes carrying a mutated inflammasome that does not require exogenous ATP for activation. P2X(7)R engagement is followed by K+ efflux and activation of phospholipase A(2). Both events are required for processing and secretion induced by all of the stimuli. Thus, stimuli acting on different pathogen-sensing receptors converge on a common pathway where ATP externalization is the first step in the cascade of events leading to inflammasome activation and IL-1beta and IL-18 secretion.
Cottrell, Graeme S.; Alemi, Farzad; Kirkland, Jacob G.; Grady, Eileen F.; Corvera, Carlos U.; Bhargava, Aditi
2012-01-01
Calcitonin gene-related peptide (CGRP) exerts its diverse effects on vasodilation, nociception, secretion, and motor function through a heterodimeric receptor comprising of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). Despite the importance of CLR•RAMP1 in human disease, little is known about its distribution in the human gastrointestinal (GI) tract, where it participates in inflammation and pain. In this study, we determined that CLR and RAMP1 mRNAs are expressed in normal human stomach, ileum and colon by RT-PCR. We next characterized antibodies that we generated to rat CLR and RAMP1 in transfected HEK cells. Having characterized these antibodies in vitro, we then localized CLR-, RAMP1-, CGRP- and intermedin-immunoreactivity (IMD-IR) in various human GI segments. In the stomach, nerve bundles in the myenteric plexus and nerve fibers throughout the circular and longitudinal muscle had prominent CLR-IR. In the proximal colon and ileum, CLR was found in nerve varicosities of the myenteric plexus and surrounding submucosal neurons. Interestingly, CGRP expressing fibers did not co-localize, but were in close proximity to CLR. However, CLR and RAMP1, the two subunits of a functional CGRP receptor were clearly localized in myenteric plexus, where they may form functional cell-surface receptors. IMD, another member of calcitonin peptide family was also found in close proximity to CLR, and like CGRP, did not co-localize with either CLR or RAMP1 receptors. Thus, CGRP and IMD appear to be released locally, where they can mediate their effect on their receptors regulating diverse functions such as inflammation, pain and motility. PMID:22484227
The calcium-sensing receptor and its interacting proteins
Huang, Chunfa; Miller, R Tyler
2007-01-01
Abstract Seven membrane-spanning, or G protein-coupled receptors were originally thought to act through het-erotrimeric G proteins that in turn activate intracellular enzymes or ion channels, creating relatively simple, linear signalling pathways. Although this basic model remains true in that this family does act via a relatively small number of G proteins, these signalling systems are considerably more complex because the receptors interact with or are located near additional proteins that are often unique to a receptor or subset of receptors. These additional proteins give receptors their unique signalling ‘personalities’. The extracellular Ca-sensing receptor (CaR) signals via Gαi, Gαq and Gα12/13, but its effects in vivo demonstrate that the signalling pathways controlled by these subunits are not sufficient to explain all its biologic effects. Additional structural or signalling proteins that interact with the CaR may explain its behaviour more fully. Although the CaR is less well studied in this respect than other receptors, several CaR-interacting proteins such as filamin, a potential scaffolding protein, receptor activity modifying proteins (RAMPs) and potassium channels may contribute to the unique characteristics of the CaR. The CaR also appears to interact with additional proteins common to other G protein-coupled receptors such as arrestins, G protein receptor kinases, protein kinase C, caveolin and proteins in the ubiquitination pathway. These proteins probably represent a few initial members of CaR-based signalling complex. These and other proteins may not all be associated with the CaR in all tissues, but they form the basis for understanding the complete nature of CaR signalling. PMID:17979874
Nasi, Milena; Alboni, Silvia; Pinti, Marcello; Tascedda, Fabio; Benatti, Cristina; Benatti, Stefania; Gibellini, Lara; De Biasi, Sara; Borghi, Vanni; Brunello, Nicoletta; Mussini, Cristina; Cossarizza, Andrea
2014-11-01
: The importance of interleukin (IL)-18 in mediating immune activation during HIV infection has recently emerged. IL-18 activity is regulated by its receptor (IL-18R), formed by an α and a β chain, the IL-18-binding protein, and the newly identified shorter isoforms of both IL-18R chains. We evaluated gene expression of the IL-18/IL-18R system in peripheral blood mononuclear cells from HIV+ patients. Compared with healthy donors, IL-18 expression decreased in patients with primary infection. The IL-18Rα short transcript expression was strongly upregulated by successful highly active antiretroviral therapy. HIV progression and its treatment can influence the expression of different components of the complex IL-18/IL-18R system.
Increased phencyclidine-induced hyperactivity following cortical cholinergic denervation.
Mattsson, Anna; Lindqvist, Eva; Ogren, Sven Ove; Olson, Lars
2005-11-07
Altered cholinergic function is considered as a potential contributing factor in the pathogenesis of schizophrenia. We hypothesize that cortical cholinergic denervation may result in changes in glutamatergic activity. Therefore, we lesioned the cholinergic corticopetal projections by local infusion of 192 IgG-saporin into the nucleus basalis magnocellularis of rats. Possible effects of this lesion on glutamatergic systems were examined by phencyclidine-induced locomotor activity, and also by N-methyl-D-aspartate receptor binding. We find that cholinergic lesioning of neocortex leads to enhanced sensitivity to phencyclidine in the form of a dramatic increase in horizontal activity. Further, N-methyl-D-aspartate receptor binding is unaffected in denervated rats. These results suggest that aberrations in cholinergic function might lead to glutamatergic dysfunctions, which might be of relevance for the pathophysiology for schizophrenia.
Andhirka, Sai Krishna; Vignesh, Ravichandran; Aradhyam, Gopala Krishna
2017-08-01
Deciphering the mechanism of activation of heterotrimeric G proteins by their cognate receptors continues to be an intriguing area of research. The recently solved crystal structure of the ternary complex captured the receptor-bound α-subunit in an open conformation, without bound nucleotide has improved our understanding of the activation process. Despite these advancements, the mechanism by which the receptor causes GDP release from the α-subunit remains elusive. To elucidate the mechanism of activation, we studied guanine nucleotide-induced structural stability of the α-subunit (in response to thermal/chaotrope-mediated stress). Inherent stabilities of the inactive (GDP-bound) and active (GTP-bound) forms contribute antagonistically to the difference in conformational stability whereas the GDP-bound protein is able to switch to a stable intermediate state, GTP-bound protein loses this ability. Partial perturbation of the protein fold reveals the underlying influence of the bound nucleotide providing an insight into the mechanism of activation. An extra stable, pretransition intermediate, 'empty pocket' state (conformationally active-state like) in the unfolding pathway of GDP-bound protein mimics a gating system - the activation process having to overcome this stable intermediate state. We demonstrate that a relatively more complex conformational fold of the GDP-bound protein is at the core of the gating system. We report capturing this threshold, 'metastable empty pocket' conformation (the gate) of α-subunit of G protein and hypothesize that the receptor activates the G protein by enabling it to achieve this structure through mild structural perturbation. © 2017 Federation of European Biochemical Societies.
Tokarski, John S.; Zupa-Fernandez, Adriana; Tredup, Jeffrey A.; Pike, Kristen; Chang, ChiehYing; Xie, Dianlin; Cheng, Lihong; Pedicord, Donna; Muckelbauer, Jodi; Johnson, Stephen R.; Wu, Sophie; Edavettal, Suzanne C.; Hong, Yang; Witmer, Mark R.; Elkin, Lisa L.; Blat, Yuval; Pitts, William J.; Weinstein, David S.; Burke, James R.
2015-01-01
Inhibition of signal transduction downstream of the IL-23 receptor represents an intriguing approach to the treatment of autoimmunity. Using a chemogenomics approach marrying kinome-wide inhibitory profiles of a compound library with the cellular activity against an IL-23-stimulated transcriptional response in T lymphocytes, a class of inhibitors was identified that bind to and stabilize the pseudokinase domain of the Janus kinase tyrosine kinase 2 (Tyk2), resulting in blockade of receptor-mediated activation of the adjacent catalytic domain. These Tyk2 pseudokinase domain stabilizers were also shown to inhibit Tyk2-dependent signaling through the Type I interferon receptor but not Tyk2-independent signaling and transcriptional cellular assays, including stimulation through the receptors for IL-2 (JAK1- and JAK3-dependent) and thrombopoietin (JAK2-dependent), demonstrating the high functional selectivity of this approach. A crystal structure of the pseudokinase domain liganded with a representative example showed the compound bound to a site analogous to the ATP-binding site in catalytic kinases with features consistent with high ligand selectivity. The results support a model where the pseudokinase domain regulates activation of the catalytic domain by forming receptor-regulated inhibitory interactions. Tyk2 pseudokinase stabilizers, therefore, represent a novel approach to the design of potent and selective agents for the treatment of autoimmunity. PMID:25762719
Thompson, L M; Raffioni, S; Wasmuth, J J; Bradshaw, R A
1997-01-01
Mutations in the gene for human fibroblast growth factor receptor 3 (hFGFR3) cause a variety of skeletal dysplasias, including the most common genetic form of dwarfism, achondroplasia (ACH). Evidence indicates that these phenotypes are not due to simple haploinsufficiency of FGFR3 but are more likely related to a role in negatively regulating skeletal growth. The effects of one of these mutations on FGFR3 signaling were examined by constructing chimeric receptors composed of the extracellular domain of human platelet-derived growth factor receptor beta (hPDGFR beta) and the transmembrane and intracellular domains of hFGFR3 or of an ACH (G375C) mutant. Following stable transfection in PC12 cells, which lack platelet-derived growth factor (PDGF) receptors, all clonal cell lines, with either type of chimera, showed strong neurite outgrowth in the presence of PDGF but not in its absence. Antiphosphotyrosine immunoblots showed ligand-dependent autophosphorylation, and both receptor types stimulated strong phosphorylation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase, an event associated with the differentiative response of these cells. In addition, ligand-dependent phosphorylation of phospholipase Cgamma and Shc was also observed. All of these responses were comparable to those observed from ligand activation, such as by nerve growth factor, of the native PC12 cells used to prepare the stable transfectants. The cells with the chimera bearing the ACH mutation were more rapidly responsive to ligand with less sustained MAPK activation, indicative of a preactivated or primed condition and consistent with the view that these mutations weaken ligand control of FGFR3 function. However, the full effect of the mutation likely depends in part on structural features of the extracellular domain. Although FGFR3 has been suggested to act as a negative regulator of long-bone growth in chrondrocytes, it produces differentiative signals similar to those of FGFR1, to which only positive effects have been ascribed, in PC12 cells. Therefore, its regulatory effects on bone growth likely result from cellular contexts and not the induction of a unique FGFR3 signaling pathway. PMID:9199352
Specialised sympathetic neuroeffector associations in immature rat iris arterioles
SANDOW, SHAUN L.; HILL, CARYL E.
1999-01-01
Sympathetic nerve-mediated vasoconstriction in iris arterioles of mature rats occurs via the activation of α1B-adrenoceptors alone, while in immature rat iris arterioles, vasoconstriction occurs via activation of both α1- and α2-adrenoceptors. In mature rats the vast majority of sympathetic varicosities form close neuroeffector junctions. Serial section electron microscopy of 14 d iris arterioles has been used to determine whether restriction in physiological receptor types with age may result from the establishment of these close neuroeffector junctions. Ninety varicosities which lay within 4 μm of arteriolar smooth muscle were followed for their entire length. Varicosities rarely contained dense cored vesicles even after treatment with 5-hydroxydopamine. 47% of varicosities formed close associations with muscle cells and 88% formed close associations with muscle cells or melanocytes. Varicosities in bundles were as likely as single varicosities to form close associations with vascular smooth muscle cells, although the distribution of synaptic vesicles in single varicosities did not show the asymmetric accumulation towards the smooth muscle cells seen in the varicosities in bundles which were frequently clustered together. We conclude that restriction of physiological receptor types during development does not appear to correlate with the establishment of close neuroeffector junctions, although changes in presynaptic structures may contribute to the refinement of postsynaptic responses. PMID:10529061
Anandamide and Δ9-Tetrahydrocannabinol Directly Inhibit Cells of the Immune System via CB2 Receptors
Eisenstein, Toby K.; Meissler, Joseph J.; Wilson, Qiana; Gaughan, John P.; Adler, Martin W.
2007-01-01
This study shows that two cannabinoids, Δ9-tetrahydrocannabinol (THC) and anandamide, induce dose related immunosuppression in both the primary and secondary in vitro plaque-forming cell assays of antibody formation. The immunosuppression induced by both compounds could be blocked by SR144528, an antagonist specific for the CB2 receptor, but not by SR141716, a CB1 antagonist. These studies are novel in that they show that both anadamide and THC are active in the nanomolar to picomolar (for anandamide) range in these assays of immune function, and that both mediate their effects directly on cells of the immune system through the CB2 receptor. PMID:17640739
Chemical bridges for enhancing hydrogen storage by spillover and methods for forming the same
Yang, Ralph T.; Li, Yingwei; Qi, Gongshin; Lachawiec, Jr., Anthony J.
2012-12-25
A composition for hydrogen storage includes a source of hydrogen atoms, a receptor, and a chemical bridge formed between the source and the receptor. The chemical bridge is formed from a precursor material. The receptor is adapted to receive hydrogen spillover from the source.
Storz, J; Zhang, X M; Rott, R
1992-01-01
Hemagglutinating and acetylesterase functions as well as the 124 kDa glycoprotein were present in the highly cell-culture adapted, avirulent bovine coronavirus strain BCV-L9, in the Norden vaccine strain derived from it, and in 5 wild-type, virulent strains that multiplied in HRT-18 cells but were restricted in several types of cultured bovine cells. The BCV-L9 and the wild-type strain BCV-LY-138 agglutinated chicken and mouse erythrocytes. The acetylesterase facilitated break-down of the BCV-erythrocyte complex with chicken but only to a minimal extent with mouse erythrocytes in the receptor-destroying enzyme test. Purified preparations of the vaccine and the wild-type strains agglutinated chicken erythrocytes at low titers and mouse erythrocytes at 128 to 256 times higher titers whereas receptor destroying enzyme activity was detectable only with chicken erythrocytes. When wild-type strains were propagated in HRT cells at low passage levels, they produced 5 x 10(5) to 4.5 x 10(6) plaque forming units per 50 microliters which agglutinated erythrocytes from mice but not from chickens. Diisopropylfluoro-phosphate moderately increased the hemagglutination titers, but completely inhibited the receptor destroying enzyme of purified virus of all strains. It had virtually no influence on the plaque-forming infectivity of the different BCV strains. The acetylesterase of strain BCV-L9 reacting in the receptor-destroying enzyme test was stable for 3 h at 37 and 42 degrees C. It was inactivated within 30 min at 56 degrees C while the hemagglutinin function of this strain was stable for 3 h at 37, 42, and 56 degrees C, but it was inactivated at 65 degrees C within 1 h.
Probing the Allosteric Modulator Binding Site of GluR2 with Thiazide Derivatives
Ptak, Christopher P.; Ahmed, Ahmed H.; Oswald, Robert E.
2009-01-01
Ionotropic glutamate receptors mediate the majority of vertebrate excitatory synaptic transmission and are therapeutic targets for cognitive enhancement and treatment of schizophrenia. The binding domains of these tetrameric receptors consist of two dimers, and the dissociation of the dimer interface of the ligand-binding domain leads to desensitization in the continued presence of agonist. Positive allosteric modulators act by strengthening the dimer interface and reducing desensitization, thereby increasing steady-state activation. Removing the desensitized state for simplified analysis of receptor activation is commonly achieved using cyclothiazide (CTZ), the most potent modulator of the benzothiadiazide class, with the flip form of the AMPA receptor subtype. IDRA-21, the first benzothiadiazide to have an effect in behavioral tests, is an important lead compound in clinical trials for cognitive enhancement as it can cross the blood-brain barrier. Intermediate structures between CTZ and IDRA-21 show reduced potency suggesting that these two compounds have different contact points associated with binding. To understand how benzothiadiazides bind to the pocket bridging the dimer interface, we generated a series of crystal structures of the GluR2 ligand-binding domain complexed with benzothiadiazide derivatives (IDRA-21, hydroflumethiazide, hydrochlorothiazide, chlorothiazide, trichlormethiazide, and althiazide) for comparison with an existing structure for cyclothiazide. The structures detail how changes in the substituents in the 3- and 7-positions of the hydrobenzothiadiazide ring shift the orientation of the drug in the binding site and, in some cases, change the stoichiometry of binding. All derivatives maintain a hydrogen bond with the Ser754 hydroxyl, affirming the partial selectivity of the benzothiadiazides for the flip form of AMPA receptors. PMID:19673491
Structural Basis for Hormone Recognition by the Human CRFR2[alpha] G Protein-coupled Receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Kuntal; Swaminathan, Kunchithapadam; Xu, H. Eric
2012-05-09
The mammalian corticotropin releasing factor (CRF)/urocortin (Ucn) peptide hormones include four structurally similar peptides, CRF, Ucn1, Ucn2, and Ucn3, that regulate stress responses, metabolism, and cardiovascular function by activating either of two related class B G protein-coupled receptors, CRFR1 and CRFR2. CRF and Ucn1 activate both receptors, whereas Ucn2 and Ucn3 are CRFR2-selective. The molecular basis for selectivity is unclear. Here, we show that the purified N-terminal extracellular domains (ECDs) of human CRFR1 and the CRFR2{alpha} isoform are sufficient to discriminate the peptides, and we present three crystal structures of the CRFR2{alpha} ECD bound to each of the Ucn peptides.more » The CRFR2{alpha} ECD forms the same fold observed for the CRFR1 and mouse CRFR2{beta} ECDs but contains a unique N-terminal {alpha}-helix formed by its pseudo signal peptide. The CRFR2{alpha} ECD peptide-binding site architecture is similar to that of CRFR1, and binding of the {alpha}-helical Ucn peptides closely resembles CRF binding to CRFR1. Comparing the electrostatic surface potentials of the ECDs suggests a charge compatibility mechanism for ligand discrimination involving a single amino acid difference in the receptors (CRFR1 Glu104/CRFR2{alpha} Pro-100) at a site proximate to peptide residue 35 (Arg in CRF/Ucn1, Ala in Ucn2/3). CRFR1 Glu-104 acts as a selectivity filter preventing Ucn2/3 binding because the nonpolar Ala-35 is incompatible with the negatively charged Glu-104. The structures explain the mechanisms of ligand recognition and discrimination and provide a molecular template for the rational design of therapeutic agents selectively targeting these receptors.« less
Pawlak, G; Grasset, M F; Arnaud, S; Blanchet, J P; Mouchiroud, G
2000-10-01
To test the hypothesis that hematopoietic growth factors may influence lineage choice in pluripotent progenitor cells, we investigated the effects of macrophage colony-stimulating factor (M-CSF) on erythroid and myeloid potentials of multipotent EML cells ectopically expressing M-CSF receptor (M-CSFR). EML cells are stem cell factor (SCF)-dependent murine cells that give rise spontaneously to pre-B cells, burst-forming unit erythroid (BFU-E), and colony-forming unit granulocyte macrophage (CFU-GM). We determined BFU-E and CFU-GM frequencies among EML cells transduced with murine M-CSFR, human M-CSFR, or chimeric receptors, and cultivated in the presence of SCF, M-CSF, or both growth factors. Effects of specific inhibitors of signaling molecules were investigated. EML cells transduced with murine M-CSFR proliferated in response to M-CSF but also exhibited a sharp and rapid decrease in BFU-E frequency associated with an increase in CFU-GM frequency. In contrast, EML cells expressing human M-CSFR proliferated in response to M-CSF without any changes in erythroid or myeloid potential. Using chimeric receptors between human and murine M-CSFR, we showed that the effects of M-CSF on EML cell differentiation potential are mediated by a large region in the intracellular domain of murine M-CSFR. Furthermore, phospholipase C (PLC) inhibitor U73122 interfered with the negative effects of ligand-activated murine M-CSFR on EML cell erythroid potential. We propose that signaling pathways activated by tyrosine kinase receptors may regulate erythroid potential and commitment decisions in multipotent progenitor cells and that PLC may play a key role in this process.
Induction and expression of GluA1 (GluR-A)-independent LTP in the hippocampus
Romberg, Carola; Raffel, Joel; Martin, Lucy; Sprengel, Rolf; Seeburg, Peter H; Rawlins, J Nicholas P; Bannerman, David M; Paulsen, Ole
2009-01-01
Long-term potentiation (LTP) at hippocampal CA3–CA1 synapses is thought to be mediated, at least in part, by an increase in the postsynaptic surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptors induced by N-methyl-d-aspartate (NMDA) receptor activation. While this process was originally attributed to the regulated synaptic insertion of GluA1 (GluR-A) subunit-containing AMPA receptors, recent evidence suggests that regulated synaptic trafficking of GluA2 subunits might also contribute to one or several phases of potentiation. However, it has so far been difficult to separate these two mechanisms experimentally. Here we used genetically modified mice lacking the GluA1 subunit (Gria1−/− mice) to investigate GluA1-independent mechanisms of LTP at CA3–CA1 synapses in transverse hippocampal slices. An extracellular, paired theta-burst stimulation paradigm induced a robust GluA1-independent form of LTP lacking the early, rapidly decaying component characteristic of LTP in wild-type mice. This GluA1-independent form of LTP was attenuated by inhibitors of neuronal nitric oxide synthase and protein kinase C (PKC), two enzymes known to regulate GluA2 surface expression. Furthermore, the induction of GluA1-independent potentiation required the activation of GluN2B (NR2B) subunit-containing NMDA receptors. Our findings support and extend the evidence that LTP at hippocampal CA3–CA1 synapses comprises a rapidly decaying, GluA1-dependent component and a more sustained, GluA1-independent component, induced and expressed via a separate mechanism involving GluN2B-containing NMDA receptors, neuronal nitric oxide synthase and PKC. PMID:19302150
Chimeric antigen receptor T-cell therapy in AML: How close are we?
Gill, Saar
2016-01-01
The majority of patients presenting with acute myeloid leukemia (AML) initially respond to chemotherapy but post-remission therapy is required to consolidate this response and achieve long-term disease-free survival. The most effective form of post-remission therapy relies on T-cell immunotherapy in the form of allogeneic hematopoietic cell transplantation (HCT). However, patients with active disease cannot usually expect to be cured with HCT. This inherent dichotomy implies that traditional T cell-based immunotherapy in the form of allogeneic HCT stops being efficacious somewhere between the measurable residual disease (MRD) and the morphologically obvious range. This is in part because the full power of T cells must be restrained in order to avoid lethal graft-versus-host disease (GVHD) and partly because only a sub-population of donor T cells are expected to be able to recognize AML cells via their T cell receptor. Chimeric antigen receptor (CAR) T cell therapy, most advanced in the treatment of patients with B-cell malignancies, may circumvent some of these limitations. However, major challenges remain to be overcome before CAR T cell therapy can be safely applied to AML. PMID:27890255
Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners.
Muramatsu, Takashi
2016-05-01
Basigin, also called CD147 or EMMPRIN, is a transmembrane glycoprotein that belongs to the immunoglobulin superfamily. Basigin has isoforms; the common form (basigin or basigin-2) has two immunoglobulin domains, and the extended form (basigin-1) has three. Basigin is the receptor for cyclophilins, S100A9 and platelet glycoprotein VI, whereas basigin-1 serves as the receptor for the rod-derived cone viability factor. Basigin tightly associates with monocarboxylate transporters and is essential for their cell surface translocation and activities. In the same membrane plane, basigin also associates with other proteins including GLUT1, CD44 and CD98. The carbohydrate portion of basigin is recognized by lectins, such as galectin-3 and E-selectin. These molecular recognitions form the basis for the role of basigin in the transport of nutrients, migration of inflammatory leukocytes and induction of matrix metalloproteinases. Basigin is important in vision, spermatogenesis and other physiological phenomena, and plays significant roles in the pathogenesis of numerous diseases, including cancer. Basigin is also the receptor for an invasive protein RH5, which is present in malaria parasites. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society.
Signal transduction in light–oxygen–voltage receptors lacking the adduct-forming cysteine residue
Yee, Estella F.; Diensthuber, Ralph P.; Vaidya, Anand T.; Borbat, Peter P.; Engelhard, Christopher; Freed, Jack H.; Bittl, Robert; Möglich, Andreas; Crane, Brian R.
2015-01-01
Light–oxygen–voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression. Signal transduction in both proteins hence hinges on flavin protonation, which is common to both the cysteinyl adduct and the NSQ. This general mechanism is also conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photoreduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may have important implications for LOV mechanism and optogenetic applications. PMID:26648256
Pereira, Mariana; Farrar, Andrew M; Hockemeyer, Jörg; Müller, Christa E; Salamone, John D; Morrell, Joan I
2011-01-01
Mesolimbic dopamine (DA), particularly in the nucleus accumbens, importantly regulates activational aspects of maternal responsiveness. DA antagonism and accumbens DA depletions interfere with early postpartum maternal motivation by selectively affecting most forms of active maternal behaviors, while leaving nursing behavior relatively intact. Considerable evidence indicates that there is a functional interaction between DA D2 and adenosine A(2A) receptors in striatal areas, including the nucleus accumbens. This study was conducted to determine if adenosine A(2A) receptor antagonism could reverse the effects of DA receptor antagonism on early postpartum maternal behavior. The adenosine A(2A) receptor antagonist MSX-3 (0.25-2.0 mg/kg, IP) was investigated for its ability to reverse the effects of the DA D2 receptor antagonist haloperidol (0.1 mg/kg, IP) on the maternal behavior of early postpartum female rats. Haloperidol severely impaired the expression of active maternal components, including retrieval and grouping the pups at the nest site, pup licking, and nest building. Co-administration of MSX-3 (0.25-2.0 mg/kg, IP) with haloperidol produced a dose-related attenuation of the haloperidol-induced behavioral deficits in early postpartum females. Doses of MSX-3 that effectively reversed the effects of haloperidol (0.5, 1.0 mg/kg), when administered in the absence of haloperidol, did not affect maternal responding or locomotor activity. Adenosine and DA systems interact to regulate early postpartum maternal responsiveness. This research may potentially contribute to the development of strategies for treatments of psychiatric disorders during the postpartum period, with particular emphasis in maintaining or restoring the mother-infant relationship.
Farrar, Andrew M.; Hockemeyer, Jörg; Müller, Christa E.; Salamone, John D.; Morrell, Joan I.
2011-01-01
Rationale Mesolimbic dopamine (DA), particularly in the nucleus accumbens, importantly regulates activational aspects of maternal responsiveness. DA antagonism and accumbens DA depletions interfere with early postpartum maternal motivation by selectively affecting most forms of active maternal behaviors, while leaving nursing behavior relatively intact. Considerable evidence indicates that there is a functional interaction between DA D2 and adenosine A2A receptors in striatal areas, including the nucleus accumbens. Objective This study was conducted to determine if adenosine A2A receptor antagonism could reverse the effects of DA receptor antagonism on early postpartum maternal behavior. Methods The adenosine A2A receptor antagonist MSX-3 (0.25–2.0 mg/kg, IP) was investigated for its ability to reverse the effects of the DA D2 receptor antagonist haloperidol (0.1 mg/kg, IP) on the maternal behavior of early postpartum female rats. Results Haloperidol severely impaired the expression of active maternal components, including retrieval and grouping the pups at the nest site, pup licking, and nest building. Co-administration of MSX-3 (0.25–2.0 mg/kg, IP) with haloperidol produced a dose-related attenuation of the haloperidol-induced behavioral deficits in early postpartum females. Doses of MSX-3 that effectively reversed the effects of haloperidol (0.5, 1.0 mg/kg), when administered in the absence of haloperidol, did not affect maternal responding or locomotor activity. Conclusions Adenosine and DA systems interact to regulate early postpartum maternal responsiveness. This research may potentially contribute to the development of strategies for treatments of psychiatric disorders during the postpartum period, with particular emphasis in maintaining or restoring the mother–infant relationship. PMID:20848086
Enhancement of dynamin polymerization and GTPase activity by Arc/Arg3.1
Byers, Christopher E.; Barylko, Barbara; Ross, Justin A.; Southworth, Daniel R.; James, Nicholas G.; Taylor, Clinton A.; Wang, Lei; Collins, Katie A.; Estrada, Armando; Waung, Maggie; Tassin, Tara C.; Huber, Kimberly M.; Jameson, David.M.; Albanesi, Joseph P.
2015-01-01
BACKGROUND The Activity-regulated cytoskeleton-associated protein, Arc, is an immediate-early gene product implicated in various forms of synaptic plasticity. Arc promotes endocytosis of AMPA type glutamate receptors and regulates cytoskeletal assembly in neuronal dendrites. Its role in endocytosis may be mediated by its reported interaction with dynamin 2 (Dyn2), a 100 kDa GTPase that polymerizes around the necks of budding vesicles and catalyzes membrane scission. METHODS Enzymatic and turbidity assays are used in this study to monitor effects of Arc on dynamin activity and polymerization. Arc oligomerization is measured using a combination of approaches, including size exclusion chromatography, sedimentation analysis, dynamic light scattering, fluorescence correlation spectroscopy, and electron microscopy. RESULTS We present evidence that bacterially-expressed His6-Arc facilitates the polymerization of Dyn2 and stimulates its GTPase activity under physiologic conditions (37°C and 100 mM NaCl). At lower ionic strength Arc also stabilizes pre-formed Dyn2 polymers against GTP-dependent disassembly, thereby prolonging assembly-dependent GTP hydrolysis catalyzed by Dyn2. Arc also increases the GTPase activity of Dyn3, an isoform of implicated in dendrite remodeling, but does not affect the activity of Dyn1, a neuron-specific isoform involved in synaptic vesicle recycling. We further show in this study that Arc (either His6-tagged or untagged) has a tendency to form large soluble oligomers, which may function as a scaffold for dynamin assembly and activation. CONCLUSIONS and GENERAL SIGNIFICANCE The ability of Arc to enhance dynamin polymerization and GTPase activation may provide a mechanism to explain Arc-mediated endocytosis of AMPA receptors and the accompanying effects on synaptic plasticity. This study represents the first detailed characterization of the physical properties of Arc. PMID:25783003
Enhancement of dynamin polymerization and GTPase activity by Arc/Arg3.1.
Byers, Christopher E; Barylko, Barbara; Ross, Justin A; Southworth, Daniel R; James, Nicholas G; Taylor, Clinton A; Wang, Lei; Collins, Katie A; Estrada, Armando; Waung, Maggie; Tassin, Tara C; Huber, Kimberly M; Jameson, David M; Albanesi, Joseph P
2015-06-01
The Activity-regulated cytoskeleton-associated protein, Arc, is an immediate-early gene product implicated in various forms of synaptic plasticity. Arc promotes endocytosis of AMPA type glutamate receptors and regulates cytoskeletal assembly in neuronal dendrites. Its role in endocytosis may be mediated by its reported interaction with dynamin 2, a 100 kDa GTPase that polymerizes around the necks of budding vesicles and catalyzes membrane scission. Enzymatic and turbidity assays are used in this study to monitor effects of Arc on dynamin activity and polymerization. Arc oligomerization is measured using a combination of approaches, including size exclusion chromatography, sedimentation analysis, dynamic light scattering, fluorescence correlation spectroscopy, and electron microscopy. We present evidence that bacterially-expressed His6-Arc facilitates the polymerization of dynamin 2 and stimulates its GTPase activity under physiologic conditions (37°C and 100mM NaCl). At lower ionic strength Arc also stabilizes pre-formed dynamin 2 polymers against GTP-dependent disassembly, thereby prolonging assembly-dependent GTP hydrolysis catalyzed by dynamin 2. Arc also increases the GTPase activity of dynamin 3, an isoform of implicated in dendrite remodeling, but does not affect the activity of dynamin 1, a neuron-specific isoform involved in synaptic vesicle recycling. We further show in this study that Arc (either His6-tagged or untagged) has a tendency to form large soluble oligomers, which may function as a scaffold for dynamin assembly and activation. The ability of Arc to enhance dynamin polymerization and GTPase activation may provide a mechanism to explain Arc-mediated endocytosis of AMPA receptors and the accompanying effects on synaptic plasticity. Copyright © 2015 Elsevier B.V. All rights reserved.
Opioid receptors: from binding sites to visible molecules in vivo
Kieffer, Brigitte L.; Evans, Christopher J.
2010-01-01
Opioid drugs such as heroin interact directly with opioid receptors whilst other addictive drugs, including marijuana, alcohol and nicotine indirectly activate endogenous opioid systems to contribute to their rewarding properties. The opioid system therefore plays a key role in addiction neurobiology and continues to be a primary focus for NIDA-supported research. Opioid receptors and their peptide ligands, the endorphins and enkephalins, form an extensive heterogeneous network throughout the central and peripheral nervous system. In addition to reward, opioid drugs regulate many functions such that opioid receptors are targets of choice in several physiological, neurological and psychiatric disorders. Because of the multiplicity and diversity of ligands and receptors, opioid receptors have served as an optimal model for G protein coupled receptor (GPCR) research. The isolation of opioid receptor genes opened the way to molecular manipulations of the receptors, both in artificial systems and in vivo, contributing to our current understanding of the diversity of opioid receptor biology at the behavioral, cellular and molecular levels. This review will briefly summarize some aspects of current knowledge that has accumulated since the very early characterization of opioid receptor genes. Importantly, we will identify a number of research directions that are likely to develop during the next decade. PMID:18718480
Guo, Yongfeng; Ni, Jun; Denver, Robert; Wang, Xiaohong; Clark, Steven E.
2011-01-01
Nematodes that parasitize plant roots cause huge economic losses and have few mechanisms for control. Many parasitic nematodes infect plants by reprogramming root development to drive the formation of feeding structures. How nematodes take control of plant development is largely unknown. Here, we identify two host factors involved in the function of a receptor ligand mimic, GrCLE1, secreted by the potato cyst nematode Globodera rostochiensis. GrCLE1 is correctly processed to an active form by host plant proteases. Processed GrCLE1 peptides bind directly to the plant CLE receptors CLV2, BAM1, and BAM2. Involvement of these receptors in the ligand-mimicking process is also supported by the fact that the ability of GrCLE1 peptides to alter plant root development in Arabidopsis (Arabidopsis thaliana) is dependent on these receptors. Critically, we also demonstrate that GrCLE1 maturation can be entirely carried out by plant factors and that the availability of CLE processing activity may be essential for successful ligand mimicry. PMID:21750229
Dopamine and opioid systems interact within the nucleus accumbens to maintain monogamous pair bonds
Resendez, Shanna L; Keyes, Piper C; Day, Jeremy J; Hambro, Caely; Austin, Curtis J; Maina, Francis K; Eidson, Lori N; Porter-Stransky, Kirsten A; Nevárez, Natalie; McLean, J William; Kuhnmuench, Morgan A; Murphy, Anne Z; Mathews, Tiffany A; Aragona, Brandon J
2016-01-01
Prairie vole breeder pairs form monogamous pair bonds, which are maintained through the expression of selective aggression toward novel conspecifics. Here, we utilize behavioral and anatomical techniques to extend the current understanding of neural mechanisms that mediate pair bond maintenance. For both sexes, we show that pair bonding up-regulates mRNA expression for genes encoding D1-like dopamine (DA) receptors and dynorphin as well as enhances stimulated DA release within the nucleus accumbens (NAc). We next show that D1-like receptor regulation of selective aggression is mediated through downstream activation of kappa-opioid receptors (KORs) and that activation of these receptors mediates social avoidance. Finally, we also identified sex-specific alterations in KOR binding density within the NAc shell of paired males and demonstrate that this alteration contributes to the neuroprotective effect of pair bonding against drug reward. Together, these findings suggest motivational and valence processing systems interact to mediate the maintenance of social bonds. DOI: http://dx.doi.org/10.7554/eLife.15325.001 PMID:27371827
Guo, Yongfeng; Ni, Jun; Denver, Robert; Wang, Xiaohong; Clark, Steven E
2011-09-01
Nematodes that parasitize plant roots cause huge economic losses and have few mechanisms for control. Many parasitic nematodes infect plants by reprogramming root development to drive the formation of feeding structures. How nematodes take control of plant development is largely unknown. Here, we identify two host factors involved in the function of a receptor ligand mimic, GrCLE1, secreted by the potato cyst nematode Globodera rostochiensis. GrCLE1 is correctly processed to an active form by host plant proteases. Processed GrCLE1 peptides bind directly to the plant CLE receptors CLV2, BAM1, and BAM2. Involvement of these receptors in the ligand-mimicking process is also supported by the fact that the ability of GrCLE1 peptides to alter plant root development in Arabidopsis (Arabidopsis thaliana) is dependent on these receptors. Critically, we also demonstrate that GrCLE1 maturation can be entirely carried out by plant factors and that the availability of CLE processing activity may be essential for successful ligand mimicry.
Jeon, Jae-Pyo; Thakur, Dhananjay P; Tian, Jin-Bin; So, Insuk; Zhu, Michael X
2016-05-15
Transient receptor potential canonical 4 (TRPC4) forms non-selective cation channels implicated in the regulation of diverse physiological functions. Previously, TRPC4 was shown to be activated by the Gi/o subgroup of heterotrimeric G-proteins involving Gαi/o, rather than Gβγ, subunits. Because the lifetime and availability of Gα-GTP are regulated by regulators of G-protein signalling (RGS) and Gαi/o-Loco (GoLoco) domain-containing proteins via their GTPase-activating protein (GAP) and guanine-nucleotide-dissociation inhibitor (GDI) functions respectively, we tested how RGS and GoLoco domain proteins affect TRPC4 currents activated via Gi/o-coupled receptors. Using whole-cell patch-clamp recordings, we show that both RGS and GoLoco proteins [RGS4, RGS6, RGS12, RGS14, LGN or activator of G-protein signalling 3 (AGS3)] suppress receptor-mediated TRPC4 activation without causing detectable basal current or altering surface expression of the channel protein. The inhibitory effects are dependent on the GAP and GoLoco domains and facilitated by enhancing membrane targeting of the GoLoco protein AGS3. In addition, RGS, but not GoLoco, proteins accelerate desensitization of receptor-activation evoked TRPC4 currents. The inhibitory effects of RGS and GoLoco domains are additive and are most prominent with RGS12 and RGS14, which contain both RGS and GoLoco domains. Our data support the notion that the Gα, but not Gβγ, arm of the Gi/o signalling is involved in TRPC4 activation and unveil new roles for RGS and GoLoco domain proteins in fine-tuning TRPC4 activities. The versatile and diverse functions of RGS and GoLoco proteins in regulating G-protein signalling may underlie the complexity of receptor-operated TRPC4 activation in various cell types under different conditions. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Briscoe, C; Moniakis, J; Kim, J Y; Brown, J M; Hereld, D; Devreotes, P N; Firtel, R A
2001-05-01
cAMP receptors mediate some signaling pathways via coupled heterotrimeric G proteins, while others are G-protein-independent. This latter class includes the activation of the transcription factors GBF and STATa. Within the cellular mounds formed by aggregation of Dictyostelium, micromolar levels of cAMP activate GBF function, thereby inducing the transcription of postaggregative genes and initiating multicellular differentiation. Activation of STATa, a regulator of culmination and ecmB expression, results from cAMP receptor-dependent tyrosine phosphorylation and nuclear localization, also in mound-stage cells. During mound development, the cAMP receptor cAR1 is in a low-affinity state and is phosphorylated on multiple serine residues in its C-terminus. This paper addresses possible roles of cAMP receptor phosphorylation in the cAMP-mediated stimulation of GBF activity, STATa tyrosine phosphorylation, and cell-type-specific gene expression. To accomplish this, we have expressed cAR1 mutants in a strain in which the endogenous cAMP receptors that mediate postaggregative gene expression in vivo are deleted. We then examined the ability of these cells to undergo morphogenesis and induce postaggregative and cell-type-specific gene expression and STATa tyrosine phosphorylation. Analysis of cAR1 mutants in which the C-terminal tail is deleted or the ligand-mediated phosphorylation sites are mutated suggests that the cAR1 C-terminus is not essential for GBF-mediated postaggregative gene expression or STATa tyrosine phosphorylation, but may play a role in regulating cell-type-specific gene expression and morphogenesis. A mutant receptor, in which the C-terminal tail is constitutively phosphorylated, exhibits constitutive activation of STATa tyrosine phosphorylation in pulsed cells in suspension and a significantly impaired ability to induce cell-type-specific gene expression. The constitutively phosphorylated receptor also exerts a partial dominant negative effect on multicellular development when expressed in wild-type cells. These findings suggest that the phosphorylated C-terminus of cAR1 may be involved in regulating aspects of receptor-mediated processes, is not essential for GBF function, and may play a role in mediating subsequent development. Copyright 2001 Academic Press.
Inside story of Group I Metabotropic Glutamate Receptors (mGluRs).
Bhattacharyya, Samarjit
2016-08-01
Metabotropic glutamate receptors (mGluRs) are G-protein coupled receptors (GPCRs) that are activated by the neurotransmitter glutamate in the central nervous system. Among the eight subtypes, mGluR1 and mGluR5 belong to the group I family. These receptors play important roles in the brain and are believed to be involved in multiple forms of experience dependent synaptic plasticity including learning and memory. In addition, group I mGluRs also have been implicated in various neuropsychiatric disorders like Fragile X syndrome, autism etc. The normal signaling depends on the precise location of these receptors in specific region of the neuron and the process of receptor trafficking plays a crucial role in controlling this localization. Intracellular trafficking could also regulate the desensitization, resensitization, down-regulation and intracellular signaling of these receptors. In this review I focus on the current understanding of group I mGluR regulation in the central nervous system and also their role in neuropsychiatric disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neurochemical development of brain stem nuclei involved in the control of respiration.
Wong-Riley, Margaret T T; Liu, Qiuli
2005-11-15
The first two postnatal weeks are the most dynamic in the development of brain stem respiratory nuclei in the rat, the primary model for this review. Several neurochemicals (glutamate, glycine receptors, choline acetyltransferase, serotonin, norepinephrine, and thyrotropin-releasing hormone) increase expression with age, while others (GABA, serotonin receptor 1A, substance P, neurokinin 1 receptor, and somatostatin) decrease their expression. Surprisingly, a dramatic shift occurs at postnatal day (P) 12 in the rat. Excitatory neurotransmitter glutamate and its NMDA receptors fall precipitously, whereas inhibitory neurotransmitter GABA, GABA(B), and glycine receptors rise sharply. A concomitant drop in cytochrome oxidase activity occurs in respiratory neurons. Several receptor types undergo subunit switches during development. Notably, GABA(A) receptors switch prevalence from alpha3- to an alpha1-dominant form at P12 in the pre-Bötzinger complex of the rat. The transient dominance of inhibitory over excitatory neurotransmission around P12 may render the respiratory system sensitive to failure when stressed. Relating these neurochemical changes to physiological responses in animals and to sudden infant death syndrome in humans will be a challenge for future research.
Urokinase and its Receptors in Chronic Kidney Disease
Zhang, Guoqiang; Eddy, Allison A.
2011-01-01
Since the recognition that plasminogen activator inhibitor-1 (PAI-1) is a powerful profibrotic molecule, there has been considerable interest in deciphering the extent to which this effect is mediated by its ability to inhibit serine proteases with downstream effects on fibrogenesis. This review will summarize current knowledge about the serine protease urokinase-type plasminogen activator and its high affinity receptor uPAR/CD87 as it pertains to chronic kidney disease (CKD) progression. An emerging theme is that the effects of PAI-1 and uPAR appear to be organ- and site-specific. Normal kidney tubules produce a large quantity of uPA that is secreted into the urinary space. Activity levels increase during CKD presumably due to new sources of production by macrophages and fibroblasts. By activating hepatocyte growth factor and degrading fibrinogen uPA may have anti-fibrotic effects. However CKD severity after experimental ureteral obstruction is not altered by endogenous uPA deficiency. Beneficial effects of exogenous uPA have been reported in experimental models of fibrosis in the lung and liver but CKD awaits exploration. Absent in normal kidneys uPAR is expressed by both renal parenchymal cells and inflammatory cells in a variety of pathological states. Such expression appears beneficial based on studies performed in uPAR-deficient mice. The uPAR promotes bacterial clearance in infectious diseases. In CKD uPAR expression is associated with high uPA activity but its most important effect appears to be due to scavenging activities and effects on cell recruitment and migration. Although uPAR itself is a non-signaling receptor, it interacts with a variety of co-receptors to modify cellular behavior. Best known are interactions with the low-density lipoprotein receptor-related protein (LRP-1) that lead to PAI-1 endocytosis and degradation, and interactions with several integrins to regulate matrix-dependent cell migration. Contacts with the receptor for the complement C5a component and the interleukin −6 receptor gp130 are examples of other recently recognized interactions. In addition to uPA, vitronectin and high molecular weight kininogen are alternate uPAR ligands that could be implicated in CKD progression. uPAR may also be shed from cell membranes. This soluble form (suPAR) has been detected in plasma and urine and is known to be a chemoattractant for leukocytes that express the formyl-peptide-receptor-like receptor 1/lipoxin A4 receptor. In addition to uPAR several other receptors, including some of the uPAR co-receptors, may also bind directly to uPA and activate cell signaling pathways. The roles of these newer uPAR ligands and uPA receptors are just beginning to be investigated. Since many of them are expressed in the kidney, their potential participation in CKD pathogenesis will be of interest. PMID:18508599
Türkcan, Silvan; Masson, Jean-Baptiste; Casanova, Didier; Mialon, Geneviève; Gacoin, Thierry; Boilot, Jean-Pierre; Popoff, Michel R.; Alexandrou, Antigoni
2012-01-01
We track single toxin receptors on the apical cell membrane of MDCK cells with Eu-doped oxide nanoparticles coupled to two toxins of the pore-forming toxin family: α-toxin of Clostridium septicum and ε-toxin of Clostridium perfringens. These nonblinking and photostable labels do not perturb the motion of the toxin receptors and yield long uninterrupted trajectories with mean localization precision of 30 nm for acquisition times of 51.3 ms. We were thus able to study the toxin-cell interaction at the single-molecule level. Toxins bind to receptors that are confined within zones of mean area 0.40 ± 0.05 μm2. Assuming that the receptors move according to the Langevin equation of motion and using Bayesian inference, we determined mean diffusion coefficients of 0.16 ± 0.01 μm2/s for both toxin receptors. Moreover, application of this approach revealed a force field within the domain generated by a springlike confining potential. Both toxin receptors were found to experience forces characterized by a mean spring constant of 0.30 ± 0.03 pN/μm at 37°C. Furthermore, both toxin receptors showed similar distributions of diffusion coefficient, domain area, and spring constant. Control experiments before and after incubation with cholesterol oxidase and sphingomyelinase show that these two enzymes disrupt the confinement domains and lead to quasi-free motion of the toxin receptors. Our control data showing cholesterol and sphingomyelin dependence as well as independence of actin depolymerization and microtubule disruption lead us to attribute the confinement of both receptors to lipid rafts. These toxins require oligomerization to develop their toxic activity. The confined nature of the toxin receptors leads to a local enhancement of the toxin monomer concentration and may thus explain the virulence of this toxin family. PMID:22677383
Keuling, Angela M; Felton, Kathleen E A; Parker, Arabesque A M; Akbari, Majid; Andrew, Susan E; Tron, Victor A
2009-08-17
Malignant melanoma is resistant to almost all conventional forms of chemotherapy. Recent evidence suggests that anti-apoptotic proteins of the Bcl-2 family are overexpressed in melanoma and may contribute to melanoma's striking resistance to apoptosis. ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-xl and Bcl-w, has demonstrated efficacy in several forms of leukemia, lymphoma as well as solid tumors. However, overexpression of Mcl-1, a frequent observance in melanoma, is known to confer ABT-737 resistance. Here we report that knockdown of Mcl-1 greatly reduces cell viability in combination with ABT-737 in six different melanoma cell lines. We demonstrate that the cytotoxic effect of this combination treatment is due to apoptotic cell death involving not only caspase-9 activation but also activation of caspase-8, caspase-10 and Bid, which are normally associated with the extrinsic pathway of apoptosis. Caspase-8 (and caspase-10) activation is abrogated by inhibition of caspase-9 but not by inhibitors of the death receptor pathways. Furthermore, while caspase-8/-10 activity is required for the full induction of cell death with treatment, the death receptor pathways are not. Finally, we demonstrate that basal levels of caspase-8 and Bid correlate with treatment sensitivity. Our findings suggest that the combination of ABT-737 and Mcl-1 knockdown represents a promising, new treatment strategy for malignant melanoma. We also report a death receptor-independent role for extrinsic pathway proteins in treatment response and suggest that caspase-8 and Bid may represent potential markers of treatment sensitivity.
Knop, J; Wesche, H; Lang, D; Martin, M U
1998-10-01
The association and activation of the IL-1 receptor-associated protein kinase (IRAK) to the IL-1 receptor complex is one of the earliest events detectable in IL-1 signal transduction. We generated permanent clones of the murine T cell line EL4 6.1 overexpressing human (h)IRAK to evaluate the role of this kinase in IL-1 signaling. Overexpression of hIRAK enhanced IL-1-stimulated activation of the transcription factor NFkappaB, whereas a truncated form (N-IRAK) specifically inhibited IL-1-dependent NFkappaB activity. In clones stably overexpressing hIRAK a weak constitutive activation of NFkappaB correlated with a low basal IL-2 production which was enhanced in an IL-1-dependent manner. Compared to the parental cell line the dose-response curve of IL-1-induced IL-2 production was shifted in both potency and efficacy. These results demonstrate that IRAK directly triggers NFkappaB-mediated gene expression in EL4 cells. Qualitatively different effects were observed for the IL-1-induced activation of stress-activated protein (SAP) kinases: permanent overexpression of IRAK did not affect the dose dependence but prolonged the kinetics of IL-1-induced activation of SAP kinases, suggesting that this signaling branch may be regulated by distinct mechanisms.
Ward, Richard J.; Pediani, John D.; Godin, Antoine G.; Milligan, Graeme
2015-01-01
The questions of whether G protein-coupled receptors exist as monomers, dimers, and/or oligomers and if these species interconvert in a ligand-dependent manner are among the most contentious current issues in biology. When employing spatial intensity distribution analysis to laser scanning confocal microscope images of cells stably expressing either a plasma membrane-associated form of monomeric enhanced green fluorescent protein (eGFP) or a tandem version of this fluorophore, the eGFP tandem was identified as a dimer. Similar studies on cells stably expressing an eGFP-tagged form of the epidermal growth factor receptor demonstrated that, although largely a monomer in the basal state, this receptor rapidly became predominantly dimeric upon the addition of its ligand epidermal growth factor. In cells induced to express an eGFP-tagged form of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor, global analysis of construct quantal brightness was consistent with the predominant form of the receptor being dimeric. However, detailed spatial intensity distribution analysis demonstrated the presence of multiple forms ranging from monomers to higher-order oligomers. Furthermore, treatment with chemically distinct 5-HT2C receptor antagonists resulted in a time-dependent change in the quaternary organization to one in which there was a preponderance of receptor monomers. This antagonist-mediated effect was reversible, because washout of the ligand resulted in the regeneration of many of the oligomeric forms of the receptor. PMID:25825490
Kobrinsky, E; Ondrias, K; Marks, A R
1995-12-01
Two structurally related forms of intracellular calcium release channels that can mediate the release of intracellular calcium have been identified: the ryanodine receptors (RyR) and the inositol 1,4,5-trisphosphate receptors (IP3R). Each channel responds to distinct pathways for activation. The IP3R is activated by IP3 and the RyR is thought to be activated by calcium or by another second messenger cADP ribose. It has been proposed that each type of channel subserves a specialized pool of intracellular calcium, and it is not understood why some cell types require more than one form of intracellular calcium release channel. The present study was designed to examine whether the RyR can substitute for the IP3R during oocyte maturation. IP3R expression was inhibited in Xenopus laevis oocytes using antisense oligonucleotides. These oocytes, with reduced levels of IP3R, demonstrated a marked delay in the time course of progesterone-induced maturation. The cloned skeletal muscle RyR1 was then expressed in X. laevis oocytes that were deficient in IP3R. Functional studies showed that the properties of the cloned RyR1, expressed in oocytes, were comparable to those of the native RyR1. X. laevis oocytes deficient in IP3R, but expressing RyR1, were able to undergo progesterone-induced maturation with a time course comparable to that seen in wild-type oocytes when caffeine was used to activate RyR and induce intracellular calcium release. These studies show that RyR1 can substitute for the IP3R as the intracellular calcium release channel required for Xenopus oocyte maturation and that intracellular calcium release is important for controlling the rate of progesterone-induced maturation.
Unliganded estrogen receptor α stimulates bone sialoprotein gene expression.
Takai, Hideki; Matsumura, Hiroyoshi; Matsui, Sari; Kim, Kyung Mi; Mezawa, Masaru; Nakayama, Yohei; Ogata, Yorimasa
2014-04-10
Estrogen is one of the steroid hormones essential for skeletal development. The estrogen receptor (ER) is a transcription factor and a member of the steroid receptor superfamily. There are two different forms of the ER, usually referred to as α and β, each encoded by a separate gene. Hormone-activated ERs form dimers, since the two forms are coexpressed in many cell types. Bone sialoprotein (BSP) is a tissue-specific acidic glycoprotein that is expressed by differentiated osteoblasts, odontoblasts and cementoblasts during the initial formation of mineralized tissue. To determine the molecular basis of the tissue-specific expression of BSP and its regulation by estrogen and the ER, we have analyzed the effects of β-estradiol and ERα on BSP gene transcription. ERα protein levels were increased after ERα overexpression in ROS17/2.8 cells. While BSP mRNA levels were increased by ERα overexpression, the endogenous and overexpressed BSP mRNA levels were not changed by β-estradiol (10(-8)M, 24 h). Luciferase activities of different sized BSP promoter constructs (pLUC3~6) were increased by ERα overexpression, whereas basal and induced luciferase activities by ERα overexpression were not influenced by β-estradiol. Effects of ERα overexpression were abrogated by 2 bp mutations in either the cAMP response element (CRE) or activator protein 1 (AP1)/glucocorticoid response element (GRE). Gel shift analyses showed that ERα overexpression increased binding to the CRE and AP1/GRE elements. Notably, the CRE-protein complexes were disrupted by ERα, CREB and phospho-CREB antibodies. The AP1/GRE-protein complexes were supershifted by the c-Fos antibody. These studies demonstrate that ERα stimulates BSP gene transcription in a ligand-independent manner by targeting the CRE and AP1/GRE elements in the rat BSP gene promoter. Copyright © 2014 Elsevier B.V. All rights reserved.
Yi, Bong Gu; Park, Ok Kyu; Jeong, Myeong Seon; Kwon, Seung Hae; Jung, Jae In; Lee, Seongsoo; Ryoo, Sungwoo; Kim, Sung Eun; Kim, Jin Won; Moon, Won-Jin; Park, Kyeongsoon
2017-04-01
Scavenger receptors (SRs) expressed on the activated macrophages in inflammation sites have been considered as the most interesting and important target biomarker for targeted drug delivery, imaging and therapy. In the present study, we fabricated the scavenger receptor-A (SR-A) targeted-photoactivatable nanoagents (termed as Ce6/DS-DOCA) by entrapping chlorin e6 (Ce6) into the amphiphilic dextran sulfate-deoxycholic acid (DS-DOCA) conjugates via physically hydrophobic interactions. Insoluble Ce6 was easily encapsulated into DS-DOCA nanoparticles by a dialysis method and the loading efficiency was approximately 51.7%. The Ce6/DS-DOCA formed nano-sized self-assembled aggregates (28.8±5.6nm in diameter), confirmed by transmission electron microscope, UV/Vis and fluorescence spectrophotometer. The Ce6/DS-DOCA nanoagents could generate highly reactive singlet oxygen under laser irradiation. Also, in vitro studies showed that they were more specifically taken up by lipopolysaccharide (LPS)-induced activated macrophages (RAW 264.7) via a SR-A-mediated endocytosis, relative to by non-activated macrophages, and notably induced cell death of activated macrophages under laser irradiation. Therefore, SR-A targetable and photoactivatable Ce6/DS-DOCA nanoagents with more selective targeting to the activated macrophages will have great potential for treatment of inflammatory diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Velkov, Tony
2013-01-01
Fatty acid binding proteins (FABPs) act as intracellular shuttles for fatty acids as well as lipophilic xenobiotics to the nucleus, where these ligands are released to a group of nuclear receptors called the peroxisome proliferator activated receptors (PPARs). PPAR mediated gene activation is ultimately involved in maintenance of cellular homeostasis through the transcriptional regulation of metabolic enzymes and transporters that target the activating ligand. Here we show that liver- (L-) FABP displays a high binding affinity for PPAR subtype selective drugs. NMR chemical shift perturbation mapping and proteolytic protection experiments show that the binding of the PPAR subtype selective drugs produces conformational changes that stabilize the portal region of L-FABP. NMR chemical shift perturbation studies also revealed that L-FABP can form a complex with the PPAR ligand binding domain (LBD) of PPARα. This protein-protein interaction may represent a mechanism for facilitating the activation of PPAR transcriptional activity via the direct channeling of ligands between the binding pocket of L-FABP and the PPARαLBD. The role of L-FABP in the delivery of ligands directly to PPARα via this channeling mechanism has important implications for regulatory pathways that mediate xenobiotic responses and host protection in tissues such as the small intestine and the liver where L-FABP is highly expressed. PMID:23476633
A pore-forming protein implements VLR-activated complement cytotoxicity in lamprey.
Wu, Fenfang; Feng, Bo; Ren, Yong; Wu, Di; Chen, Yue; Huang, Shengfeng; Chen, Shangwu; Xu, Anlong
2017-01-01
Lamprey is a basal vertebrate with a unique adaptive immune system, which uses variable lymphocyte receptors (VLRs) for antigen recognition. Our previous study has shown that lamprey possessed a distinctive complement pathway activated by VLR. In this study, we identified a natterin family member-lamprey pore-forming protein (LPFP) with a jacalin-like lectin domain and an aerolysin-like pore-forming domain. LPFP had a high affinity with mannan and could form oligomer in the presence of mannan. LPFP could deposit on the surface of target cells, form pore-like complex resembling a wheel with hub and spokes, and mediate powerful cytotoxicity on target cells. These pore-forming proteins along with VLRs and complement molecules were essential for the specific cytotoxicity against exogenous pathogens and tumor cells. This unique cytotoxicity implemented by LPFP might emerge before or in parallel with the IgG-based classical complement lytic pathway completed by polyC9.
Ramírez, Mónica
2009-01-01
Purpose Postnatal retinal Müller glia are considered to be retinal progenitors as they retain the ability to dedifferentiate, proliferate, and differentiate to new retinal glia and neurons after injury. The proliferation and differentiation processes are coordinated by several extrinsic factors and neurotransmitters, including glutamate. Thus, the appropriate numbers and proportions of the different cell types are generated to form a functional retina during development and during injury repair. Here we analyze the changes in the proliferation of postnatal Müller glia-derived progenitors after activation of the N-methyl-D-aspartate (NMDA) glutamate receptors. Methods Müller glia-derived progenitor cell cultures were characterized by immunocytochemistry with antibodies against the NR1 subunit of the NMDA receptor and the progenitor cell marker nestin. The effect of glutamate receptor agonists and antagonists on cell proliferation was analyzed by BrdU incorporation or Ki67 immunostaining, cell counting, and by immunolabeling of phosphorylated cAMP response element binding protein (P-CREB) transcription factor. The effect of NMDA receptor activation was analyzed in vivo by P-CREB immunohistochemistry in retinal sections of Long-Evans NMDA injected rats. Results We show that NMDA receptor activation significantly increases the proliferation rate of Müller-glia derived progenitor cells and that this increase can be blocked by NMDA receptor antagonists. Furthermore, we show that CREB phosphorylation is induced in NMDA-treated Müller-glia derived progenitor cells in culture and that specific pharmacological inhibition of CREB phosphorylation results in a decreased number of proliferating cells. We confirmed the relevance of these observations by the analysis of retinal sections after NMDA injection in vivo where immunoreactivity to phosphorylated CREB is also increased after treatment. Conclusions In the present study we show that NMDA receptor activation induces postnatal Müller glia-derived retinal cell progenitor proliferation and transcription factor CREB phosphorylation both in culture and in vivo. The identification of the molecular determinants of mature retinal progenitors such as transcription factor CREB and NMDA receptor-induced players should facilitate the control of growth and manipulation of progenitor cell cultures and the possible identification of the molecular mechanisms involved in progenitor self-renewal. PMID:19365572
Abraham, Antony D; Neve, Kim A; Lattal, K Matthew
2016-07-01
Dopamine is critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in appetitive tasks. A parallel and growing literature indicates that dopamine signaling is involved in consolidation of memories into stable representations in aversive tasks such as fear conditioning. Relatively little is known about how dopamine may modulate memories that form during extinction, when organisms learn that the relation between previously associated events is severed. We investigated whether fear and reward extinction share common mechanisms that could be enhanced with dopamine D1/5 receptor activation. Pharmacological activation of dopamine D1/5 receptors (with SKF 81297) enhanced extinction of both cued and contextual fear. These effects also occurred in the extinction of cocaine-induced conditioned place preference, suggesting that the observed effects on extinction were not specific to a particular type of procedure (aversive or appetitive). A cAMP/PKA biased D1 agonist (SKF 83959) did not affect fear extinction, whereas a broadly efficacious D1 agonist (SKF 83822) promoted fear extinction. Together, these findings show that dopamine D1/5 receptor activation is a target for the enhancement of fear or reward extinction.
Kocyigit, Umit M; Taşkıran, Ahmet Şevki; Taslimi, Parham; Yokuş, Ahmet; Temel, Yusuf; Gulçin, İlhami
2017-11-01
The aim of this study was to investigate the effects of oxytocin (OT), atosiban, which is an OT receptor antagonist, and OT-atosiban chemicals injected to rats on the activities of carbonic anhydrase (CA) and acetylcholinesterase (AChE) enzymes in liver and kidney tissues of rats. For this purpose, four different groups, each consisting of six rats (n = 6), were formed (control group, OT administered group, atosiban administered group, and both OT and atosiban administered group). The rats were necropsied 60 min after intraperitoneal injection of chemicals into the rats. Liver tissues of rats were extracted. CA and AChE enzyme activities were measured for each tissue by using hydratase, esterase, and acetylcholiniodide methods. Activity values for each enzyme obtained were statistically calculated. © 2017 Wiley Periodicals, Inc.
Wilkinson, Ashley S; Taing, Meng-Wong; Pierson, Jean Thomas; Lin, Chun-Nam; Dietzgen, Ralf G; Shaw, P Nicholas; Gidley, Michael J; Monteith, Gregory R; Roberts-Thomson, Sarah J
2015-06-01
Mango fruit contain many bioactive compounds, some of which are transcription factor regulators. Estrogen receptor alpha (ERα) and beta (ERβ) are two regulators of gene transcription that are important in a variety of physiological processes and also in diseases including breast cancer. We examined the ability of the mango constituents quercetin, mangiferin, and the aglycone form of mangiferin, norathyriol, to activate both isoforms of the estrogen receptor. Quercetin and norathyriol decreased the viability of MCF-7 breast cancer cells whereas mangiferin had no effect on MCF-7 cells. We also determined that quercetin and mangiferin selectively activated ERα whereas norathyriol activated both ERα and ERβ. Despite quercetin, mangiferin and norathyriol having similar polyphenolic structural motifs, only norathyriol activated ERβ, showing that bioactive agents in mangoes have very specific biological effects. Such specificity may be important given the often-opposing roles of ERα and ERβ in breast cancer proliferation and other cellular processes.
2017-09-01
Dec, 2016 "Integrating innate , adaptive, & survival signals to control B cell selection, homeostasis and tolerance" Pasteur Institute of Shanghai...secondary lymphoid tissues. Aging Dis. 2: 361–373. 8. Goenka, R., J. L. Scholz, M. S. Naradikian, and M. P. Cancro. 2014. Memory B cells form in aged...Scholz, and M. P. Cancro. 2011. A B- cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood 118: 1294–1304. 10. Rubtsov, A
Involvement of lipid rafts in adhesion-induced activation of Met and EGFR.
Lu, Ying-Che; Chen, Hong-Chen
2011-10-27
Cell adhesion has been shown to induce activation of certain growth factor receptors in a ligand-independent manner. However, the mechanism for such activation remains obscure. Human epidermal carcinoma A431 cells were used as a model to examine the mechanism for adhesion-induced activation of hepatocyte growth factor receptor Met and epidermal growth factor receptor (EGFR). The cells were suspended and replated on culture dishes under various conditions. The phosphorylation of Met at Y1234/1235 and EGFR at Y1173 were used as indicators for their activation. The distribution of the receptors and lipid rafts on the plasma membrane were visualized by confocal fluorescent microscopy and total internal reflection microscopy. We demonstrate that Met and EGFR are constitutively activated in A431 cells, which confers proliferative and invasive potentials to the cells. The ligand-independent activation of Met and EGFR in A431 cells relies on cell adhesion to a substratum, but is independent of cell spreading, extracellular matrix proteins, and substratum stiffness. This adhesion-induced activation of Met and EGFR cannot be attributed to Src activation, production of reactive oxygen species, and the integrity of the cytoskeleton. In addition, we demonstrate that Met and EGFR are independently activated upon cell adhesion. However, partial depletion of Met and EGFR prevents their activation upon cell adhesion, suggesting that overexpression of the receptors is a prerequisite for their self-activation upon cell adhesion. Although Met and EGFR are largely distributed in 0.04% Triton-insoluble fractions (i.e. raft fraction), their activated forms are detected mainly in 0.04% Triton-soluble fractions (i.e. non-raft fraction). Upon cell adhesion, lipid rafts are accumulated at the cell surface close to the cell-substratum interface, while Met and EGFR are mostly excluded from the membrane enriched by lipid rafts. Our results suggest for the first time that cell adhesion to a substratum may induce a polarized distribution of lipid rafts to the cell-substratum interface, which may allow Met and EGFR to be released from lipid rafts, thus leading to their activation in a ligand-independent manner.
Hofmann, Sebastian; Braun, Attila; Pozgaj, Rastislav; Morowski, Martina; Vögtle, Timo; Nieswandt, Bernhard
2014-01-01
Background Platelets are anuclear cell fragments derived from bone marrow megakaryocytes that safeguard vascular integrity by forming thrombi at sites of vascular injury. Although the early events of thrombus formation—platelet adhesion and aggregation—have been intensively studied, less is known about the mechanisms and receptors that stabilize platelet-platelet interactions once a thrombus has formed. One receptor that has been implicated in this process is the signaling lymphocyte activation molecule (SLAM) family member CD84, which can undergo homophilic interactions and becomes phosphorylated upon platelet aggregation. Objective The role of CD84 in platelet physiology and thrombus formation was investigated in CD84-deficient mice. Methods and Results We generated CD84-deficient mice and analyzed their platelets in vitro and in vivo. Cd84−/− platelets exhibited normal activation and aggregation responses to classical platelet agonists. Furthermore, CD84 deficiency did not affect integrin-mediated clot retraction and spreading of activated platelets on fibrinogen. Notably, also the formation of stable three-dimensional thrombi on collagen-coated surfaces under flow ex vivo was unaltered in the blood of Cd84−/− mice. In vivo, Cd84−/− mice exhibited unaltered hemostatic function and arterial thrombus formation. Conclusion These results show that CD84 is dispensable for thrombus formation and stabilization, indicating that its deficiency may be functionally compensated by other receptors or that it may be important for platelet functions different from platelet-platelet interactions. PMID:25551754
Miyamae, Yurie; Komuro, Mami; Murata, Aya; Aono, Kanako; Nishikata, Kaori; Kanazawa, Akira; Fujito, Yutaka; Komatsu, Takumi; Ito, Daisuke; Abe, Takashi; Nagayama, Masafumi; Uchida, Tsutomu; Gohara, Kazutoshi; Murakami, Jun; Kawai, Ryo; Hatakeyama, Dai; Lukowiak, Ken; Ito, Etsuro
2010-02-01
The pond snail Lymnaea stagnalis moves along the sides and bottom of an aquarium, but it can also glide upside down on its back below the water's surface. We have termed these two forms of locomotion "standard locomotion" and "upside-down gliding," respectively. Previous studies showed that standard locomotion is produced by both cilia activity on the foot and peristaltic contraction of the foot muscles, whereas upside-down gliding is mainly caused by cilia activity. The pedal A neurons are thought to receive excitatory octopaminergic input, which ultimately results in increased cilia beating. However, the relationship between locomotory speed and the responses of these neurons to octopamine is not known. We thus examined the effects of both an agonist and an antagonist of octopamine receptors on locomotory speed and the firing rate of the pedal A neurons. We also examined, at the electron and light-microscopic levels, whether structural changes occur in cilia following the application of either an agonist or an antagonist of octopamine receptors to the central nervous system (CNS). We found that the application of an octopamine antagonist to the CNS increased the speed of both forms of locomotion, whereas application of octopamine increased only the firing rate of the pedal A neurons. Microscopic examination of the cilia proved that there were no changes in their morphology after application of octopamine ligands. These data suggest that there is an unidentified octopaminergic neuronal network in the CNS whose activation reduces cilia movement and thus locomotory speed.
Role of AGEs-RAGE system in cardiovascular disease.
Fukami, Kei; Yamagishi, Sho-Ichi; Okuda, Seiya
2014-01-01
Advanced glycation end products (AGEs) are a heterogenous group of molecules formed during a non-enzymatic reaction between proteins and sugar residues. Recently, AGEs and their receptor (receptor for AGEs; RAGE) play a central role in the pathogenesis of cardiovascular disease (CVD), which accounts for disability and high mortality rate in patients with diabetes. AGEs initiate diabetic micro- and macrovascular complications through the structural modification and functional alteration of the extracellular matrix proteins as well as intracellular signaling molecules. Engagement of RAGEs with AGEs elicits intracellular reactive oxygen species (ROS) generation and subsequently activates mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signaling, followed by production of several inflammatory and/or profibrotic factors such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), plasminogen activator inhibitor-1 (PAI-1) and monocyte chemoattractant protein-1 (MCP-1), thereby being involved in the progression of atherosclerosis. Administration of soluble form of RAGE (sRAGE) could work as a decoy receptor for AGEs and might inhibit the binding of AGEs to RAGE, preventing the development and progression of atherosclerosis in animal models. Furthermore, AGEs/high mobility group box-1 (HMGB-1)-RAGE interaction is involved in heart failure, abdominal aortic aneurysm (AAA) and vascular calcification as well. Thus, blockade of the AGEs/HMGB-1-RAGE system may be a promising therapeutic target for preventing diabetes- and/or age-related CVD. We review here the pathological role of the AGEs/HMGB-1-RAGE system in various types of CVD.
Gentle, Ian E; McHenry, Kevin T; Weber, Arnim; Metz, Arlena; Kretz, Oliver; Porter, Dale; Häcker, Georg
2017-07-01
The formation of amyloid-like protein structures has recently emerged as a feature in signal transduction, particularly in innate immunity. These structures appear to depend on defined domains for their formation but likely also require dedicated ways to terminate signalling. We, here, define the innate immunity protein/Toll-like receptor adaptor TIR-domain-containing adapter-inducing interferon-β (TRIF) as a novel platform of fibril formation and probe signal initiation through TRIF as well as its termination in Toll-like receptor 3 (TLR3)-stimulated melanoma cells. A main signalling pathway triggered by TLR3 caused apoptosis, which was controlled by inhibitor of apoptosis proteins and was dependent on RIPK1 and independent of TNF. Using correlative electron/fluorescence microscopy, we visualised fibrillar structures formed through both Toll/interleukin-1 receptor and RIP homotypic interacting motif regions of TRIF. We provide evidence that these fibrillary structures are active signalling platforms whose activity is terminated by autophagy. TRIF-signalling enhanced autophagy, and fibrillary structures were partly contained within autophagosomes. Inhibition of autophagy increased levels of pro-apoptotic TRIF complexes, leading to the accumulation of active caspase-8 and enhanced apoptosis while stimulation of autophagy reduced TRIF-dependent death. We conclude that pro-death signals through TRIF are regulated by autophagy and propose that pro-apoptotic signalling through TRIF/RIPK1/caspase-8 occurs in fibrillary platforms. © 2017 Federation of European Biochemical Societies.
Kazi, Julhash U; Chougule, Rohit A; Li, Tianfeng; Su, Xianwei; Moharram, Sausan A; Rupar, Kaja; Marhäll, Alissa; Gazi, Mohiuddin; Sun, Jianmin; Zhao, Hui; Rönnstrand, Lars
2017-07-01
The type III receptor tyrosine kinase FLT3 is frequently mutated in acute myeloid leukemia. Oncogenic FLT3 mutants display constitutive activity leading to aberrant cell proliferation and survival. Phosphorylation on several critical tyrosine residues is known to be essential for FLT3 signaling. Among these tyrosine residues, Y842 is located in the so-called activation loop. The position of this tyrosine residue is well conserved in all receptor tyrosine kinases. It has been reported that phosphorylation of the activation loop tyrosine is critical for catalytic activity for some but not all receptor tyrosine kinases. The role of Y842 residue in FLT3 signaling has not yet been studied. In this report, we show that Y842 is not important for FLT3 activation or ubiquitination but plays a critical role in regulating signaling downstream of the receptor as well as controlling receptor stability. We found that mutation of Y842 in the FLT3-ITD oncogenic mutant background reduced cell viability and increased apoptosis. Furthermore, the introduction of the Y842 mutation in the FLT3-ITD background led to a dramatic reduction in in vitro colony forming capacity. Additionally, mice injected with cells expressing FLT3-ITD/Y842F displayed a significant delay in tumor formation, compared to FLT3-ITD expressing cells. Microarray analysis comparing gene expression regulated by FLT3-ITD versus FLT3-ITD/Y842F demonstrated that mutation of Y842 causes suppression of anti-apoptotic genes. Furthermore, we showed that cells expressing FLT3-ITD/Y842F display impaired activity of the RAS/ERK pathway due to reduced interaction between FLT3 and SHP2 leading to reduced SHP2 activation. Thus, we suggest that Y842 is critical for FLT3-mediated RAS/ERK signaling and cellular transformation.
Absence of mutations in PAX8, NKX2.5, and TSH receptor genes in patients with thyroid dysgenesis.
Brust, Ester S; Beltrao, Cristine B; Chammas, Maria C; Watanabe, Tomoco; Sapienza, Marcelo T; Marui, Suemi
2012-04-01
To precisely classify the various forms of TD, and then to screen for mutations in transcription factor genes active in thyroid development. Patients underwent ultrasound, thyroid scan, and serum thyroglobulin measurement to accurately diagnose the form of TD. DNA was extracted from peripheral leukocytes. The PAX8, and NKX2.5 genes were evaluated in all patients, and TSH receptor (TSHR) gene in those with hypoplasia. In 27 nonconsanguineous patients with TD, 13 were diagnosed with ectopia, 11 with hypoplasia, and 3 with athyreosis. No mutations were detected in any of the genes studied. Sporadic cases of TD are likely to be caused by epigenetic factors, rather than mutations in thyroid transcription factors or genes involved in thyroid development.