Science.gov

Sample records for activator-like effectors tales

  1. Direct observation of transcription activator-like effector (TALE) protein dynamics

    NASA Astrophysics Data System (ADS)

    Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M.

    2014-03-01

    In this work, we describe a single molecule assay to probe the site-search dynamics of transcription activator-like effector (TALE) proteins along DNA. In modern genetics, the ability to selectively edit the human genome is an unprecedented development, driven by recent advances in targeted nuclease proteins. Specific gene editing can be accomplished using TALE proteins, which are programmable DNA-binding proteins that can be fused to a nuclease domain. In this way, TALENs are a leading technology that has shown great success in the genomic editing of pluripotent stem cells. A major hurdle facing clinical implementation, however, is the potential for deleterious off-target binding events. For these reasons, a molecular-level understanding of TALE binding and target sequence search on DNA is essential. To this end, we developed a single-molecule fluorescence imaging assay that provides a first-of-its-kind view of the 1-D diffusion of TALE proteins along stretched DNA. Taken together with co-crystal structures of DNA-bound TALEs, our results suggest a rotationally-coupled, major groove tracking model for diffusion. We further report diffusion constants for TALE proteins as a function of salt concentration, consistent with previously described models of 1-D protein diffusion.

  2. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors

    PubMed Central

    Morbitzer, Robert; Römer, Patrick; Boch, Jens; Lahaye, Thomas

    2010-01-01

    Proteins that can be tailored to bind desired DNA sequences are key tools for molecular biology. Previous studies suggested that DNA-binding specificity of transcription activator-like effectors (TALEs) from the bacterial genus Xanthomonas is defined by repeat-variable diresidues (RVDs) of tandem-arranged 34/35-amino acid repeat units. We have studied chimeras of two TALEs differing in RVDs and non-RVDs and found that, in contrast to the critical contributions by RVDs, non-RVDs had no major effect on the DNA-binding specificity of the chimeras. This finding suggests that one needs only to modify the RVDs to generate designer TALEs (dTALEs) to activate transcription of user-defined target genes. We used the scaffold of the TALE AvrBs3 and changed its RVDs to match either the tomato Bs4, the Arabidopsis EGL3, or the Arabidopsis KNAT1 promoter. All three dTALEs transcriptionally activated the desired promoters in a sequence-specific manner as mutations within the targeted DNA sequences abolished promoter activation. This study is unique in showing that chromosomal loci can be targeted specifically by dTALEs. We also engineered two AvrBs3 derivatives with four additional repeat units activating specifically either the pepper Bs3 or UPA20 promoter. Because AvrBs3 activates both promoters, our data show that addition of repeat units facilitates TALE-specificity fine-tuning. Finally, we demonstrate that the RVD NK mediates specific interaction with G nucleotides that thus far could not be targeted specifically by any known RVD type. In summary, our data demonstrate that the TALE scaffold can be tailored to target user-defined DNA sequences in whole genomes. PMID:21106758

  3. Site-specific gene targeting using transcription activator-like effector (TALE)-based nuclease in Brassica oleracea.

    PubMed

    Sun, Zijian; Li, Nianzu; Huang, Guodong; Xu, Junqiang; Pan, Yu; Wang, Zhimin; Tang, Qinglin; Song, Ming; Wang, Xiaojia

    2013-11-01

    Site-specific recognition modules with DNA nuclease have tremendous potential as molecular tools for genome targeting. The type III transcription activator-like effectors (TALEs) contain a DNA binding domain consisting of tandem repeats that can be engineered to bind user-defined specific DNA sequences. We demonstrated that customized TALE-based nucleases (TALENs), constructed using a method called "unit assembly", specifically target the endogenous FRIGIDA gene in Brassica oleracea L. var. capitata L. The results indicate that the TALENs bound to the target site and cleaved double-strand DNA in vitro and in vivo, whereas the effector binding elements have a 23 bp spacer. The T7 endonuclease I assay and sequencing data show that TALENs made double-strand breaks, which were repaired by a non-homologous end-joining pathway within the target sequence. These data show the feasibility of applying customized TALENs to target and modify the genome with deletions in those organisms that are still in lacking gene target methods to provide germplasms in breeding improvement. PMID:23870552

  4. A do-it-yourself protocol for simple transcription activator-like effector assembly

    PubMed Central

    2013-01-01

    Background TALEs (transcription activator-like effectors) are powerful molecules that have broad applications in genetic and epigenetic manipulations. The simple design of TALEs, coupled with high binding predictability and specificity, is bringing genome engineering power to the standard molecular laboratory. Currently, however, custom TALE assembly is either costly or limited to few research centers, due to complicated assembly protocols, long set-up time and specific training requirements. Results We streamlined a Golden Gate-based method for custom TALE assembly. First, by providing ready-made, quality-controlled monomers, we eliminated the procedures for error-prone and time-consuming set-up. Second, we optimized the protocol toward a fast, two-day assembly of custom TALEs, based on four thermocycling reactions. Third, we increased the versatility for diverse downstream applications by providing series of vector sets to generate both TALENs (TALE nucleases) and TALE-TFs (TALE-transcription factors) under the control of different promoters. Finally, we validated our system by assembling a number of TALENs and TALE-TFs with DNA sequencing confirmation. We further demonstrated that an assembled TALE-TF was able to transactivate a luciferase reporter gene and a TALEN pair was able to cut its target. Conclusions We established and validated a do-it-yourself system that enables individual researchers to assemble TALENs and TALE-TFs within 2 days. The simplified TALE assembly combined with multiple choices of vectors will facilitate the broad use of TALE technology. PMID:23316790

  5. A transcription activator-like effector induction system mediated by proteolysis

    PubMed Central

    Copeland, Matthew F.; Politz, Mark C.; Johnson, Charles B.; Markley, Andrew L.; Pfleger, Brian F.

    2016-01-01

    Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications due to their customizable DNA binding specificity. In this work we expand the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded following the induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator agnostic. PMID:26854666

  6. FusX: A Rapid One-Step Transcription Activator-Like Effector Assembly System for Genome Science.

    PubMed

    Ma, Alvin C; McNulty, Melissa S; Poshusta, Tanya L; Campbell, Jarryd M; Martínez-Gálvez, Gabriel; Argue, David P; Lee, Han B; Urban, Mark D; Bullard, Cassandra E; Blackburn, Patrick R; Man, Toni K; Clark, Karl J; Ekker, Stephen C

    2016-06-01

    Transcription activator-like effectors (TALEs) are extremely effective, single-molecule DNA-targeting molecular cursors used for locus-specific genome science applications, including high-precision molecular medicine and other genome engineering applications. TALEs are used in genome engineering for locus-specific DNA editing and imaging, as artificial transcriptional activators and repressors, and for targeted epigenetic modification. TALEs as nucleases (TALENs) are effective editing tools and offer high binding specificity and fewer sequence constraints toward the targeted genome than other custom nuclease systems. One bottleneck of broader TALE use is reagent accessibility. For example, one commonly deployed method uses a multitube, 5-day assembly protocol. Here we describe FusX, a streamlined Golden Gate TALE assembly system that (1) is backward compatible with popular TALE backbones, (2) is functionalized as a single-tube 3-day TALE assembly process, (3) requires only commonly used basic molecular biology reagents, and (4) is cost-effective. More than 100 TALEN pairs have been successfully assembled using FusX, and 27 pairs were quantitatively tested in zebrafish, with each showing high somatic and germline activity. Furthermore, this assembly system is flexible and is compatible with standard molecular biology laboratory tools, but can be scaled with automated laboratory support. To demonstrate, we use a highly accessible and commercially available liquid-handling robot to rapidly and accurately assemble TALEs using the FusX TALE toolkit. Together, the FusX system accelerates TALE-based genomic science applications from basic science screening work for functional genomics testing and molecular medicine applications. PMID:26854857

  7. FusX: A Rapid One-Step Transcription Activator-Like Effector Assembly System for Genome Science

    PubMed Central

    Ma, Alvin C.; McNulty, Melissa S.; Poshusta, Tanya L.; Campbell, Jarryd M.; Martínez-Gálvez, Gabriel; Argue, David P.; Lee, Han B.; Urban, Mark D.; Bullard, Cassandra E.; Blackburn, Patrick R.; Man, Toni K.; Clark, Karl J.; Ekker, Stephen C.

    2016-01-01

    Transcription activator-like effectors (TALEs) are extremely effective, single-molecule DNA-targeting molecular cursors used for locus-specific genome science applications, including high-precision molecular medicine and other genome engineering applications. TALEs are used in genome engineering for locus-specific DNA editing and imaging, as artificial transcriptional activators and repressors, and for targeted epigenetic modification. TALEs as nucleases (TALENs) are effective editing tools and offer high binding specificity and fewer sequence constraints toward the targeted genome than other custom nuclease systems. One bottleneck of broader TALE use is reagent accessibility. For example, one commonly deployed method uses a multitube, 5-day assembly protocol. Here we describe FusX, a streamlined Golden Gate TALE assembly system that (1) is backward compatible with popular TALE backbones, (2) is functionalized as a single-tube 3-day TALE assembly process, (3) requires only commonly used basic molecular biology reagents, and (4) is cost-effective. More than 100 TALEN pairs have been successfully assembled using FusX, and 27 pairs were quantitatively tested in zebrafish, with each showing high somatic and germline activity. Furthermore, this assembly system is flexible and is compatible with standard molecular biology laboratory tools, but can be scaled with automated laboratory support. To demonstrate, we use a highly accessible and commercially available liquid-handling robot to rapidly and accurately assemble TALEs using the FusX TALE toolkit. Together, the FusX system accelerates TALE-based genomic science applications from basic science screening work for functional genomics testing and molecular medicine applications. PMID:26854857

  8. TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction

    PubMed Central

    Doyle, Erin L.; Booher, Nicholas J.; Standage, Daniel S.; Voytas, Daniel F.; Brendel, Volker P.; VanDyk, John K.; Bogdanove, Adam J.

    2012-01-01

    Transcription activator-like (TAL) effectors are repeat-containing proteins used by plant pathogenic bacteria to manipulate host gene expression. Repeats are polymorphic and individually specify single nucleotides in the DNA target, with some degeneracy. A TAL effector-nucleotide binding code that links repeat type to specified nucleotide enables prediction of genomic binding sites for TAL effectors and customization of TAL effectors for use in DNA targeting, in particular as custom transcription factors for engineered gene regulation and as site-specific nucleases for genome editing. We have developed a suite of web-based tools called TAL Effector-Nucleotide Targeter 2.0 (TALE-NT 2.0; https://boglab.plp.iastate.edu/) that enables design of custom TAL effector repeat arrays for desired targets and prediction of TAL effector binding sites, ranked by likelihood, in a genome, promoterome or other sequence of interest. Search parameters can be set by the user to work with any TAL effector or TAL effector nuclease architecture. Applications range from designing highly specific DNA targeting tools and identifying potential off-target sites to predicting effector targets important in plant disease. PMID:22693217

  9. A library of synthetic transcription activator-like effector-activated promoters for coordinated orthogonal gene expression in plants

    PubMed Central

    Brückner, Kathleen; Schäfer, Petra; Weber, Ernst; Grützner, Ramona; Marillonnet, Sylvestre; Tissier, Alain

    2015-01-01

    A library of synthetic promoters containing the binding site of a single designer transcription activator-like effector (dTALE) was constructed. The promoters contain a constant sequence, consisting of an 18-base long dTALE-binding site and a TATA box, flanked by degenerate sequences of 49 bases downstream and 19 bases upstream. Forty-three of these promoters were sequenced and tested in transient assays in Nicotiana benthamiana using a GUS reporter gene. The strength of expression of the promoters ranged from around 5% to almost 100% of the viral 35S promoter activity. We then demonstrated the utility of these promoters for metabolic engineering by transiently expressing three genes for the production of a plant diterpenoid in N. benthamiana. The simplicity of the promoter structure shows great promise for the development of genetic circuits, with wide potential applications in plant synthetic biology and metabolic engineering. PMID:25846505

  10. Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases.

    PubMed

    Zhao, Xinxia; Ni, Wei; Chen, Chuangfu; Sai, Wujiafu; Qiao, Jun; Sheng, Jingliang; Zhang, Hui; Li, Guozhong; Wang, Dawei; Hu, Shengwei

    2016-03-01

    Myostatin (MSTN) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs) in tandem with single-stranded DNA oligonucleotides (ssODNs). We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals. PMID:26950874

  11. Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases

    PubMed Central

    Zhao, Xinxia; Ni, Wei; Chen, Chuangfu; Sai, Wujiafu; Qiao, Jun; Sheng, Jingliang; Zhang, Hui; Li, Guozhong; Wang, Dawei; Hu, Shengwei

    2016-01-01

    Myostatin (MSTN) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs) in tandem with single-stranded DNA oligonucleotides (ssODNs). We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals. PMID:26950874

  12. Genome Editing in Astyanax mexicanus Using Transcription Activator-like Effector Nucleases (TALENs).

    PubMed

    Kowalko, Johanna E; Ma, Li; Jeffery, William R

    2016-01-01

    Identifying alleles of genes underlying evolutionary change is essential to understanding how and why evolution occurs. Towards this end, much recent work has focused on identifying candidate genes for the evolution of traits in a variety of species. However, until recently it has been challenging to functionally validate interesting candidate genes. Recently developed tools for genetic engineering make it possible to manipulate specific genes in a wide range of organisms. Application of this technology in evolutionarily relevant organisms will allow for unprecedented insight into the role of candidate genes in evolution. Astyanax mexicanus (A. mexicanus) is a species of fish with both surface-dwelling and cave-dwelling forms. Multiple independent lines of cave-dwelling forms have evolved from ancestral surface fish, which are interfertile with one another and with surface fish, allowing elucidation of the genetic basis of cave traits. A. mexicanus has been used for a number of evolutionary studies, including linkage analysis to identify candidate genes responsible for a number of traits. Thus, A. mexicanus is an ideal system for the application of genome editing to test the role of candidate genes. Here we report a method for using transcription activator-like effector nucleases (TALENs) to mutate genes in surface A. mexicanus. Genome editing using TALENs in A. mexicanus has been utilized to generate mutations in pigmentation genes. This technique can also be utilized to evaluate the role of candidate genes for a number of other traits that have evolved in cave forms of A. mexicanus. PMID:27404092

  13. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases

    PubMed Central

    Qiu, Zhongwei; Liu, Meizhen; Chen, Zhaohua; Shao, Yanjiao; Pan, Hongjie; Wei, Gaigai; Yu, Chao; Zhang, Long; Li, Xia; Wang, Ping; Fan, Heng-Yu; Du, Bing; Liu, Bin; Liu, Mingyao; Li, Dali

    2013-01-01

    Transcription activator-like effector nucleases (TALENs) are a powerful new approach for targeted gene disruption in various animal models, but little is known about their activities in Mus musculus, the widely used mammalian model organism. Here, we report that direct injection of in vitro transcribed messenger RNA of TALEN pairs into mouse zygotes induced somatic mutations, which were stably passed to the next generation through germ-line transmission. With one TALEN pair constructed for each of 10 target genes, mutant F0 mice for each gene were obtained with the mutation rate ranged from 13 to 67% and an average of ∼40% of total healthy newborns with no significant differences between C57BL/6 and FVB/N genetic background. One TALEN pair with single mismatch to their intended target sequence in each side failed to yield any mutation. Furthermore, highly efficient germ-line transmission was obtained, as all the F0 founders tested transmitted the mutations to F1 mice. In addition, we also observed that one bi-allele mutant founder of Lepr gene, encoding Leptin receptor, had similar diabetic phenotype as db/db mouse. Together, our results suggest that TALENs are an effective genetic tool for rapid gene disruption with high efficiency and heritability in mouse with distinct genetic background. PMID:23630316

  14. Rh D blood group conversion using transcription activator-like effector nucleases.

    PubMed

    Kim, Young-Hoon; Kim, Hyun O; Baek, Eun J; Kurita, Ryo; Cha, Hyuk-Jin; Nakamura, Yukio; Kim, Hyongbum

    2015-01-01

    Group O D-negative blood cells are universal donors in transfusion medicine and methods for converting other blood groups into this universal donor group have been researched. However, conversion of D-positive cells into D-negative is yet to be achieved, although conversion of group A or B cells into O cells has been reported. The Rh D blood group is determined by the RHD gene, which encodes a 12-transmembrane domain protein. Here we convert Rh D-positive erythroid progenitor cells into D-negative cells using RHD-targeting transcription activator-like effector nucleases (TALENs). After transfection of TALEN-encoding plasmids, RHD-knockout clones are obtained. Erythroid-lineage cells differentiated from these knockout erythroid progenitor cells do not agglutinate in the presence of anti-D reagents and do not express D antigen, as assessed using flow cytometry. Our programmable nuclease-induced blood group conversion opens new avenues for compatible donor cell generation in transfusion medicine. PMID:26078220

  15. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava.

    PubMed

    Cohn, Megan; Bart, Rebecca S; Shybut, Mikel; Dahlbeck, Douglas; Gomez, Michael; Morbitzer, Robert; Hou, Bi-Huei; Frommer, Wolf B; Lahaye, Thomas; Staskawicz, Brian J

    2014-11-01

    The gene-for-gene concept has historically been applied to describe a specific resistance interaction wherein single genes from the host and the pathogen dictate the outcome. These interactions have been observed across the plant kingdom and all known plant microbial pathogens. In recent years, this concept has been extended to susceptibility phenotypes in the context of transcription activator-like (TAL) effectors that target SWEET sugar transporters. However, because this interaction has only been observed in rice, it was not clear whether the gene-for-gene susceptibility was unique to that system. Here, we show, through a combined systematic analysis of the TAL effector complement of Xanthomonas axonopodis pv. manihotis and RNA sequencing to identify targets in cassava, that TAL20Xam668 specifically induces the sugar transporter MeSWEET10a to promote virulence. Designer TAL effectors (dTALE) complement TAL20Xam668 mutant phenotypes, demonstrating that MeSWEET10a is a susceptibility gene in cassava. Sucrose uptake-deficient X. axonopodis pv. manihotis bacteria do not lose virulence, indicating that sucrose may be cleaved extracellularly and taken up as hexoses into X. axonopodis pv. manihotis. Together, our data suggest that pathogen hijacking of plant nutrients is not unique to rice blight but also plays a role in bacterial blight of the dicot cassava. PMID:25083909

  16. Improved Somatic Mutagenesis in Zebrafish Using Transcription Activator-Like Effector Nucleases (TALENs)

    PubMed Central

    Moore, Finola E.; Reyon, Deepak; Sander, Jeffry D.; Martinez, Sarah A.; Blackburn, Jessica S.; Khayter, Cyd; Ramirez, Cherie L.; Joung, J. Keith; Langenau, David M.

    2012-01-01

    Zinc Finger Nucleases (ZFNs) made by Context-Dependent Assembly (CoDA) and Transcription Activator-Like Effector Nucleases (TALENs) provide robust and user-friendly technologies for efficiently inactivating genes in zebrafish. These designer nucleases bind to and cleave DNA at particular target sites, inducing error-prone repair that can result in insertion or deletion mutations. Here, we assess the relative efficiencies of these technologies for inducing somatic DNA mutations in mosaic zebrafish. We find that TALENs exhibited a higher success rate for obtaining active nucleases capable of inducing mutations than compared with CoDA ZFNs. For example, all six TALENs tested induced DNA mutations at genomic target sites while only a subset of CoDA ZFNs exhibited detectable rates of mutagenesis. TALENs also exhibited higher mutation rates than CoDA ZFNs that had not been pre-screened using a bacterial two-hybrid assay, with DNA mutation rates ranging from 20%–76.8% compared to 1.1%–3.3%. Furthermore, the broader targeting range of TALENs enabled us to induce mutations at the methionine translation start site, sequences that were not targetable using the CoDA ZFN platform. TALENs exhibited similar toxicity to CoDA ZFNs, with >50% of injected animals surviving to 3 days of life. Taken together, our results suggest that TALEN technology provides a robust alternative to CoDA ZFNs for inducing targeted gene-inactivation in zebrafish, making it a preferred technology for creating targeted knockout mutants in zebrafish. PMID:22655075

  17. Draft genome sequence of Xanthomonas axonopodis pv. glycines 8ra possessing transcription activator-like effectors used for genetic engineering.

    PubMed

    Lee, Ju-Hoon; Shin, Hakdong; Park, Hye-Jee; Ryu, Sangryeol; Han, Sang-Wook

    2014-06-10

    Xanthomonas axonopodis pv. glycines 8ra is a causal agent of bacterial pustule disease in soybean. This bacterium possesses transcription activator-like (TAL) effectors which are useful for genetic/protein engineering applications in higher organisms including plants and humans. Here, we report that the draft genome sequence consists of 5,337,885-bp double-stranded DNA encoding 4674 open reading frames (ORFs) in 13 different contigs. This genome sequence would be useful in applications of TAL effectors in genetic engineering and in elucidating virulence factors against plants. PMID:24657734

  18. Control of Gene Expression in Leptospira spp. by Transcription Activator-Like Effectors Demonstrates a Potential Role for LigA and LigB in Leptospira interrogans Virulence.

    PubMed

    Pappas, Christopher J; Picardeau, Mathieu

    2015-11-01

    Leptospirosis is a zoonotic disease that affects ∼1 million people annually, with a mortality rate of >10%. Currently, there is an absence of effective genetic manipulation tools for targeted mutagenesis in pathogenic leptospires. Transcription activator-like effectors (TALEs) are a recently described group of repressors that modify transcriptional activity in prokaryotic and eukaryotic cells by directly binding to a targeted sequence within the host genome. To determine the applicability of TALEs within Leptospira spp., two TALE constructs were designed. First, a constitutively expressed TALE gene specific for the lacO-like region upstream of bgaL was trans inserted in the saprophyte Leptospira biflexa (the TALEβgal strain). Reverse transcriptase PCR (RT-PCR) analysis and enzymatic assays demonstrated that BgaL was not expressed in the TALEβgal strain. Second, to study the role of LigA and LigB in pathogenesis, a constitutively expressed TALE gene with specificity for the homologous promoter regions of ligA and ligB was cis inserted into the pathogen Leptospira interrogans (TALElig). LigA and LigB expression was studied by using three independent clones: TALElig1, TALElig2, and TALElig3. Immunoblot analysis of osmotically induced TALElig clones demonstrated 2- to 9-fold reductions in the expression levels of LigA and LigB, with the highest reductions being noted for TALElig1 and TALElig2, which were avirulent in vivo and nonrecoverable from animal tissues. This study reconfirms galactosidase activity in the saprophyte and suggests a role for LigA and LigB in pathogenesis. Collectively, this study demonstrates that TALEs are effective at reducing the expression of targeted genes within saprophytic and pathogenic strains of Leptospira spp., providing an additional genetic manipulation tool for this genus. PMID:26341206

  19. Control of Gene Expression in Leptospira spp. by Transcription Activator-Like Effectors Demonstrates a Potential Role for LigA and LigB in Leptospira interrogans Virulence

    PubMed Central

    Pappas, Christopher J.

    2015-01-01

    Leptospirosis is a zoonotic disease that affects ∼1 million people annually, with a mortality rate of >10%. Currently, there is an absence of effective genetic manipulation tools for targeted mutagenesis in pathogenic leptospires. Transcription activator-like effectors (TALEs) are a recently described group of repressors that modify transcriptional activity in prokaryotic and eukaryotic cells by directly binding to a targeted sequence within the host genome. To determine the applicability of TALEs within Leptospira spp., two TALE constructs were designed. First, a constitutively expressed TALE gene specific for the lacO-like region upstream of bgaL was trans inserted in the saprophyte Leptospira biflexa (the TALEβgal strain). Reverse transcriptase PCR (RT-PCR) analysis and enzymatic assays demonstrated that BgaL was not expressed in the TALEβgal strain. Second, to study the role of LigA and LigB in pathogenesis, a constitutively expressed TALE gene with specificity for the homologous promoter regions of ligA and ligB was cis inserted into the pathogen Leptospira interrogans (TALElig). LigA and LigB expression was studied by using three independent clones: TALElig1, TALElig2, and TALElig3. Immunoblot analysis of osmotically induced TALElig clones demonstrated 2- to 9-fold reductions in the expression levels of LigA and LigB, with the highest reductions being noted for TALElig1 and TALElig2, which were avirulent in vivo and nonrecoverable from animal tissues. This study reconfirms galactosidase activity in the saprophyte and suggests a role for LigA and LigB in pathogenesis. Collectively, this study demonstrates that TALEs are effective at reducing the expression of targeted genes within saprophytic and pathogenic strains of Leptospira spp., providing an additional genetic manipulation tool for this genus. PMID:26341206

  20. Revisiting the TALE repeat.

    PubMed

    Deng, Dong; Yan, Chuangye; Wu, Jianping; Pan, Xiaojing; Yan, Nieng

    2014-04-01

    Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33-35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity. PMID:24622844

  1. Efficient Gene Editing in Pluripotent Stem Cells by Bacterial Injection of Transcription Activator-Like Effector Nuclease Proteins

    PubMed Central

    Jia, Jingyue; Bai, Fang; Jin, Yongxin; Santostefano, Katherine E.; Ha, Un-Hwan; Wu, Donghai

    2015-01-01

    The type III secretion system (T3SS) of Pseudomonas aeruginosa is a powerful tool for direct protein delivery into mammalian cells and has successfully been used to deliver various exogenous proteins into mammalian cells. In the present study, transcription activator-like effector nuclease (TALEN) proteins have been efficiently delivered using the P. aeruginosa T3SS into mouse embryonic stem cells (mESCs), human ESCs (hESCs), and human induced pluripotent stem cells (hiPSCs) for genome editing. This bacterial delivery system offers an alternative method of TALEN delivery that is highly efficient in cleavage of the chromosomal target and presumably safer by avoiding plasmid DNA introduction. We combined the method of bacterial T3SS-mediated TALEN protein injection and transfection of an oligonucleotide template to effectively generate precise genetic modifications in the stem cells. Initially, we efficiently edited a single-base in the gfp gene of a mESC line to silence green fluorescent protein (GFP) production. The resulting GFP-negative mESC was cloned from a single cell and subsequently mutated back to a GFP-positive mESC line. Using the same approach, the gfp gene was also effectively knocked out in hESCs. In addition, a defined single-base edition was effectively introduced into the X-chromosome-linked HPRT1 gene in hiPSCs, generating an in vitro model of Lesch-Nyhan syndrome. T3SS-mediated TALEN protein delivery provides a highly efficient alternative for introducing precise gene editing within pluripotent stem cells for the purpose of disease genotype-phenotype relationship studies and cellular replacement therapies. Significance The present study describes a novel and powerful tool for the delivery of the genome editing enzyme transcription activator-like effector nuclease (TALEN) directly into pluripotent stem cells (PSCs), achieving desired base changes on the genomes of PSCs with high efficiency. This novel approach uses bacteria as a protein delivery

  2. AnnoTALE: bioinformatics tools for identification, annotation, and nomenclature of TALEs from Xanthomonas genomic sequences

    PubMed Central

    Grau, Jan; Reschke, Maik; Erkes, Annett; Streubel, Jana; Morgan, Richard D.; Wilson, Geoffrey G.; Koebnik, Ralf; Boch, Jens

    2016-01-01

    Transcription activator-like effectors (TALEs) are virulence factors, produced by the bacterial plant-pathogen Xanthomonas, that function as gene activators inside plant cells. Although the contribution of individual TALEs to infectivity has been shown, the specific roles of most TALEs, and the overall TALE diversity in Xanthomonas spp. is not known. TALEs possess a highly repetitive DNA-binding domain, which is notoriously difficult to sequence. Here, we describe an improved method for characterizing TALE genes by the use of PacBio sequencing. We present ‘AnnoTALE’, a suite of applications for the analysis and annotation of TALE genes from Xanthomonas genomes, and for grouping similar TALEs into classes. Based on these classes, we propose a unified nomenclature for Xanthomonas TALEs that reveals similarities pointing to related functionalities. This new classification enables us to compare related TALEs and to identify base substitutions responsible for the evolution of TALE specificities. PMID:26876161

  3. TALE-Like Effectors Are an Ancestral Feature of the Ralstonia solanacearum Species Complex and Converge in DNA Targeting Specificity.

    PubMed

    Schandry, Niklas; de Lange, Orlando; Prior, Philippe; Lahaye, Thomas

    2016-01-01

    Ralstonia solanacearum, a species complex of bacterial plant pathogens divided into four monophyletic phylotypes, causes plant diseases in tropical climates around the world. Some strains exhibit a broad host range on solanaceous hosts, while others are highly host-specific as for example some banana-pathogenic strains. Previous studies showed that transcription activator-like (TAL) effectors from Ralstonia, termed RipTALs, are capable of activating reporter genes in planta, if these are preceded by a matching effector binding element (EBE). RipTALs target DNA via their central repeat domain (CRD), where one repeat pairs with one DNA-base of the given EBE. The repeat variable diresidue dictates base repeat specificity in a predictable fashion, known as the TALE code. In this work, we analyze RipTALs across all phylotypes of the Ralstonia solanacearum species complex. We find that RipTALs are prevalent in phylotypes I and IV but absent from most phylotype III and II strains (10/12, 8/14, 1/24, and 1/5 strains contained a RipTAL, respectively). RipTALs originating from strains of the same phylotype show high levels of sequence similarity (>98%) in the N-terminal and C-terminal regions, while RipTALs isolated from different phylotypes show 47-91% sequence similarity in those regions, giving rise to four RipTAL classes. We show that, despite sequence divergence, the base preference for guanine, mediated by the N-terminal region, is conserved across RipTALs of all classes. Using the number and order of repeats found in the CRD, we functionally sub-classify RipTALs, introduce a new simple nomenclature, and predict matching EBEs for all seven distinct RipTALs identified. We experimentally study RipTAL EBEs and uncover that some RipTALs are able to target the EBEs of other RipTALs, referred to as cross-reactivity. In particular, RipTALs from strains with a broad host range on solanaceous hosts cross-react on each other's EBEs. Investigation of sequence divergence between

  4. TALE-Like Effectors Are an Ancestral Feature of the Ralstonia solanacearum Species Complex and Converge in DNA Targeting Specificity

    PubMed Central

    Schandry, Niklas; de Lange, Orlando; Prior, Philippe; Lahaye, Thomas

    2016-01-01

    Ralstonia solanacearum, a species complex of bacterial plant pathogens divided into four monophyletic phylotypes, causes plant diseases in tropical climates around the world. Some strains exhibit a broad host range on solanaceous hosts, while others are highly host-specific as for example some banana-pathogenic strains. Previous studies showed that transcription activator-like (TAL) effectors from Ralstonia, termed RipTALs, are capable of activating reporter genes in planta, if these are preceded by a matching effector binding element (EBE). RipTALs target DNA via their central repeat domain (CRD), where one repeat pairs with one DNA-base of the given EBE. The repeat variable diresidue dictates base repeat specificity in a predictable fashion, known as the TALE code. In this work, we analyze RipTALs across all phylotypes of the Ralstonia solanacearum species complex. We find that RipTALs are prevalent in phylotypes I and IV but absent from most phylotype III and II strains (10/12, 8/14, 1/24, and 1/5 strains contained a RipTAL, respectively). RipTALs originating from strains of the same phylotype show high levels of sequence similarity (>98%) in the N-terminal and C-terminal regions, while RipTALs isolated from different phylotypes show 47–91% sequence similarity in those regions, giving rise to four RipTAL classes. We show that, despite sequence divergence, the base preference for guanine, mediated by the N-terminal region, is conserved across RipTALs of all classes. Using the number and order of repeats found in the CRD, we functionally sub-classify RipTALs, introduce a new simple nomenclature, and predict matching EBEs for all seven distinct RipTALs identified. We experimentally study RipTAL EBEs and uncover that some RipTALs are able to target the EBEs of other RipTALs, referred to as cross-reactivity. In particular, RipTALs from strains with a broad host range on solanaceous hosts cross-react on each other’s EBEs. Investigation of sequence divergence

  5. Transcription activator-like effector nuclease (TALEN)-mediated female-specific sterility in the silkworm, Bombyx mori.

    PubMed

    Xu, J; Wang, Y; Li, Z; Ling, L; Zeng, B; James, A A; Tan, A; Huang, Y

    2014-12-01

    Engineering sex-specific sterility is critical for developing transgene-based sterile insect technology. Targeted genome engineering achieved by customized zinc-finger nuclease, transcription activator-like effector nuclease (TALEN) or clustered, regularly interspaced, short palindromic repeats/Cas9 systems has been exploited extensively in a variety of model organisms; however, screening mutated individuals without a detectable phenotype is still challenging. In addition, genetically recessive mutations only detectable in homozygotes make the experiments time-consuming. In the present study, we model a novel genetic system in the silkworm, Bombyx mori, that results in female-specific sterility by combining transgenesis with TALEN technologies. This system induces sex-specific sterility at a high efficiency by targeting the female-specific exon of the B. mori doublesex (Bmdsx) gene, which has sex-specific splicing isoforms regulating somatic sexual development. Transgenic animals co-expressing TALEN left and right arms targeting the female-specific Bmdsx exon resulted in somatic mutations and female mutants lost fecundity because of lack of egg storage and abnormal external genitalia. The wild-type sexual dimorphism of abdominal segment was not evident in mutant females. In contrast, there were no deleterious effects in mutant male moths. The current somatic TALEN technologies provide a promising approach for future insect functional genetics, thus providing the basis for the development of attractive genetic alternatives for insect population management. PMID:25125145

  6. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae.

    PubMed

    Aouida, Mustapha; Li, Lixin; Mahjoub, Ali; Alshareef, Sahar; Ali, Zahir; Piatek, Agnieszka; Mahfouz, Magdy M

    2015-10-01

    Targeted engineering of microbial genomes holds much promise for diverse biotechnological applications. Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/Cas9 systems are capable of efficiently editing microbial genomes, including that of Saccharomyces cerevisiae. Here, we demonstrate the use of TALENs to edit the genome of S. cerevisiae with the aim of inducing the overproduction of fatty acids. Heterodimeric TALENs were designed to simultaneously edit the FAA1 and FAA4 genes encoding acyl-CoA synthetases in S. cerevisiae. Functional yeast double knockouts generated using these TALENs over-produce large amounts of free fatty acids into the cell. This study demonstrates the use of TALENs for targeted engineering of yeast and demonstrates that this technology can be used to stimulate the enhanced production of free fatty acids, which are potential substrates for biofuel production. This proof-of-principle study extends the utility of TALENs as excellent genome editing tools and highlights their potential use for metabolic engineering of yeast and other organisms, such as microalgae and plants, for biofuel production. PMID:25907574

  7. Versatile strategy for isolating transcription activator-like effector nuclease-mediated knockout mutants in Caenorhabditis elegans.

    PubMed

    Sugi, Takuma; Sakuma, Tetsushi; Ohtani, Yasuko; Yamamoto, Takashi

    2014-01-01

    Targeted genome editing using transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 systems has recently emerged as a potentially powerful method for creating locus-specific mutations in Caenorhabditis elegans. Due to the low mutation frequencies, one of the crucial steps in using these technologies is screening animals that harbor a targeted mutation. In previous studies, identifying targeted mutations in C. elegans usually depended on observations of fluorescent markers such as a green fluorescent protein or visible phenotypes such as dumpy and uncoordinated phenotypes. However, this strategy is limited in practice because the phenotypes caused by targeted mutations such as defects in sensory behaviors are often apparently invisible. Here, we describe a versatile strategy for isolating C. elegans knockout mutants by TALEN-mediated genome editing and a heteroduplex mobility assay. We applied TALENs to engineer the locus of the neural gene glr-1, which is a C. elegans AMPA-type receptor orthologue that is known to have crucial roles in various sensory behaviors. Knockout mutations in the glr-1 locus, which caused defective mechanosensory behaviors, were efficiently identified by the heteroduplex mobility assay. Thus, we demonstrated the utility of a TALEN-based knockout strategy for creating C. elegans with mutations that cause invisible phenotypes. PMID:24409999

  8. Efficient Gene Editing in Pluripotent Stem Cells by Bacterial Injection of Transcription Activator-Like Effector Nuclease Proteins.

    PubMed

    Jia, Jingyue; Bai, Fang; Jin, Yongxin; Santostefano, Katherine E; Ha, Un-Hwan; Wu, Donghai; Wu, Weihui; Terada, Naohiro; Jin, Shouguang

    2015-08-01

    The type III secretion system (T3SS) of Pseudomonas aeruginosa is a powerful tool for direct protein delivery into mammalian cells and has successfully been used to deliver various exogenous proteins into mammalian cells. In the present study, transcription activator-like effector nuclease (TALEN) proteins have been efficiently delivered using the P. aeruginosa T3SS into mouse embryonic stem cells (mESCs), human ESCs (hESCs), and human induced pluripotent stem cells (hiPSCs) for genome editing. This bacterial delivery system offers an alternative method of TALEN delivery that is highly efficient in cleavage of the chromosomal target and presumably safer by avoiding plasmid DNA introduction. We combined the method of bacterial T3SS-mediated TALEN protein injection and transfection of an oligonucleotide template to effectively generate precise genetic modifications in the stem cells. Initially, we efficiently edited a single-base in the gfp gene of a mESC line to silence green fluorescent protein (GFP) production. The resulting GFP-negative mESC was cloned from a single cell and subsequently mutated back to a GFP-positive mESC line. Using the same approach, the gfp gene was also effectively knocked out in hESCs. In addition, a defined single-base edition was effectively introduced into the X-chromosome-linked HPRT1 gene in hiPSCs, generating an in vitro model of Lesch-Nyhan syndrome. T3SS-mediated TALEN protein delivery provides a highly efficient alternative for introducing precise gene editing within pluripotent stem cells for the purpose of disease genotype-phenotype relationship studies and cellular replacement therapies. PMID:26062981

  9. TALE: a tale of genome editing.

    PubMed

    Zhang, Mingjie; Wang, Feng; Li, Shifei; Wang, Yan; Bai, Yun; Xu, Xueqing

    2014-01-01

    Transcription activator-like effectors (TALEs), first identified in Xanthomonas bacteria, are naturally occurring or artificially designed proteins that modulate gene transcription. These proteins recognize and bind DNA sequences based on a variable numbers of tandem repeats. Each repeat is comprised of a set of ∼ 34 conserved amino acids; within this conserved domain, there are usually two amino acids that distinguish one TALE from another. Interestingly, TALEs have revealed a simple cipher for the one-to-one recognition of proteins for DNA bases. Synthetic TALEs have been used to successfully target genes in a variety of species, including humans. Depending on the type of functional domain that is fused to the TALE of interest, these proteins can have diverse biological effects. For example, after binding DNA, TALEs fused to transcriptional activation domains can function as robust transcription factors (TALE-TFs), while fused to restriction endonucleases (TALENs) can cut DNA. Targeted genome editing, in theory, is capable of modifying any endogenous gene sequence of interest; this can be performed in cells or organisms, and may be applied to clinical gene-based therapies in the future. With current technologies, highly accurate, specific, and reliable gene editing cannot be achieved. Thus, recognition and binding mechanisms governing TALE biology are currently hot research areas. In this review, we summarize the major advances in TALE technology over the past several years with a focus on the interaction between TALEs and DNA, TALE design and construction, potential applications for this technology, and unique characteristics that make TALEs superior to zinc finger endonucleases. PMID:24291598

  10. Single molecule real-time sequencing of Xanthomonas oryzae genomes reveals a dynamic structure and complex TAL (transcription activator-like) effector gene relationships

    PubMed Central

    Booher, Nicholas J.; Carpenter, Sara C. D.; Sebra, Robert P.; Wang, Li; Salzberg, Steven L.; Leach, Jan E.; Bogdanove, Adam J.

    2016-01-01

    Pathogen-injected, direct transcriptional activators of host genes, TAL (transcription activator-like) effectors play determinative roles in plant diseases caused by Xanthomonas spp. A large domain of nearly identical, 33–35 aa repeats in each protein mediates DNA recognition. This modularity makes TAL effectors customizable and thus important also in biotechnology. However, the repeats render TAL effector (tal) genes nearly impossible to assemble using next-generation, short reads. Here, we demonstrate that long-read, single molecule real-time (SMRT) sequencing solves this problem. Taking an ensemble approach to first generate local, tal gene contigs, we correctly assembled de novo the genomes of two strains of the rice pathogen X. oryzae completed previously using the Sanger method and even identified errors in those references. Sequencing two more strains revealed a dynamic genome structure and a striking plasticity in tal gene content. Our results pave the way for population-level studies to inform resistance breeding, improve biotechnology and probe TAL effector evolution. PMID:27148456

  11. Transcription activator-like effector nuclease (TALEN)-mediated female-specific sterility in the silkworm, Bombyx mori

    PubMed Central

    Xu, Jun; Wang, Yueqiang; Li, Zhiqian; Ling, Lin; Zeng, Baosheng; James, Anthony A.; Tan, Anjiang; Huang, Yongping

    2015-01-01

    Engineering sex-specific sterility is critical for developing transgene-based Sterile Insect Technology. Targeted genome engineering achieved by customized ZFN, TALENs or CRIPSPR/Cas9 systems has been exploited extensively in a variety of model organisms. However, screening mutated individuals without a detectable phenotype is still challenging. In addition, genetically recessive mutations only detectable in homozygotes make the experiments time-consuming. Here we model a novel genetic system in the silkworm, Bombyx mori, that results in female-specific sterility by combining transgenesis with transcription activator–like effector nucleases (TALENs) technologies. This system induces sex-specific sterility at a high efficiency by targeting the female-specific exon of the B. mori doublesex (Bmdsx) gene, which has sex-specific splicing isoforms regulating somatic sexual development. Transgenic animals co-expressing TALEN left and right arms targeting the female-specific Bmdsx exon resulted in somatic mutations and female mutants lost fecundity due to lack of egg storage and abnormal external genitalia. The wild-type sexual dimorphism of abdominal segment was not evident in mutant females. In contrast, there were no deleterious effects in mutant male moths. The current somatic TALEN technologies provide a promising approach in future insect functional genetics, thus providing the basis for the development of attractive genetic alternatives for insect population management. PMID:25125145

  12. Knockout of a transgene by transcription activator-like effector nucleases (TALENs) in the sawfly, Athalia rosae (Hymenoptera) and the ladybird beetle, Harmonia axyridis (Coleoptera).

    PubMed

    Hatakeyama, M; Yatomi, J; Sumitani, M; Takasu, Y; Sekiné, K; Niimi, T; Sezutsu, H

    2016-02-01

    Transcription activator-like effector nucleases (TALENs) are efficient tools for targeted genome editing and have been utilized in a number of insects. Here, we demonstrate the gene disruption (knockout) caused by TALENs targeting a transgene, 3xP3-driven enhanced green fluorescence protein (EGFP), that is integrated in the genome of two species, the sawfly Athalia rosae (Hymenoptera) and the ladybird beetle Harmonia axyridis (Coleoptera). Messenger RNAs of TALENs targeting the sequences adjacent to the chromophore region were microinjected into the eggs/embryos of each species. In At. rosae, when microinjection was performed at the posterior end of eggs, 15% of G(0) individuals showed a somatic mosaic phenotype for eye EGFP fluorescence. Three-quarters of the somatic mosaics produced EGFP-negative G(1) progeny. When eggs were injected at the anterior end, 63% of the G(0) individuals showed somatic mosaicism, and 17% of them produced EGFP-negative G(1) progeny. In H. axyridis, 25% of posterior-injected and 8% of anterior-injected G(0) individuals produced EGFP-negative G(1) progeny. In both species, the EGFP-negative progeny retained the EGFP gene, and various deletions were detected in the target sequences, indicating that gene disruption was successfully induced. Finally, for both species, 18-21% of G(0) founders produced gene knockout progeny sufficient for establishing knockout strains. PMID:26496859

  13. Production of α1,3-galactosyltransferase targeted pigs using transcription activator-like effector nuclease-mediated genome editing technology.

    PubMed

    Kang, Jung-Taek; Kwon, Dae-Kee; Park, A-Rum; Lee, Eun-Jin; Yun, Yun-Jin; Ji, Dal-Young; Lee, Kiho; Park, Kwang-Wook

    2016-03-01

    Recent developments in genome editing technology using meganucleases demonstrate an efficient method of producing gene edited pigs. In this study, we examined the effectiveness of the transcription activator-like effector nuclease (TALEN) system in generating specific mutations on the pig genome. Specific TALEN was designed to induce a double-strand break on exon 9 of the porcine α1,3-galactosyltransferase (GGTA1) gene as it is the main cause of hyperacute rejection after xenotransplantation. Human decay-accelerating factor (hDAF) gene, which can produce a complement inhibitor to protect cells from complement attack after xenotransplantation, was also integrated into the genome simultaneously. Plasmids coding for the TALEN pair and hDAF gene were transfected into porcine cells by electroporation to disrupt the porcine GGTA1 gene and express hDAF. The transfected cells were then sorted using a biotin-labeled IB4 lectin attached to magnetic beads to obtain GGTA1 deficient cells. As a result, we established GGTA1 knockout (KO) cell lines with biallelic modification (35.0%) and GGTA1 KO cell lines expressing hDAF (13.0%). When these cells were used for somatic cell nuclear transfer, we successfully obtained live GGTA1 KO pigs expressing hDAF. Our results demonstrate that TALEN-mediated genome editing is efficient and can be successfully used to generate gene edited pigs. PMID:27051344

  14. Generation of Fibroblasts Lacking the Sal-like 1 Gene by Using Transcription Activator-like Effector Nuclease-mediated Homologous Recombination

    PubMed Central

    Kim, Se Eun; Kim, Ji Woo; Kim, Yeong Ji; Kwon, Deug-Nam; Kim, Jin-Hoi; Kang, Man-Jong

    2016-01-01

    The Sal-like 1 gene (Sall1) is essential for kidney development, and mutations in this gene result in abnormalities in the kidneys. Mice lacking Sall1 show agenesis or severe dysgenesis of the kidneys. In a recent study, blastocyst complementation was used to develop mice and pigs with exogenic organs. In the present study, transcription activator-like effector nuclease (TALEN)-mediated homologous recombination was used to produce Sall1-knockout porcine fibroblasts for developing knockout pigs. The vector targeting the Sall1 locus included a 5.5-kb 5′ arm, 1.8-kb 3′ arm, and a neomycin resistance gene as a positive selection marker. The knockout vector and TALEN were introduced into porcine fibroblasts by electroporation. Antibiotic selection was performed over 11 days by using 300 μg/mL G418. DNA of cells from G418-resistant colonies was amplified using polymerase chain reaction (PCR) to confirm the presence of fragments corresponding to the 3′ and 5′ arms of Sall1. Further, mono- and bi-allelic knockout cells were isolated and analyzed using PCR–restriction fragment length polymorphism. The results of our study indicated that TALEN-mediated homologous recombination induced bi-allelic knockout of the endogenous gene. PMID:26949958

  15. Knockout of the adp gene related with colonization in Bacillus nematocida B16 using customized transcription activator-like effectors nucleases.

    PubMed

    Niu, Qiuhong; Zheng, Haoying; Zhang, Lin; Qin, Fujun; Facemire, Loryn; Zhang, Guo; Cao, Feng; Zhang, Ke-Qin; Huang, Xiaowei; Yang, Jianwei; He, Lei; Liu, Chanjuan

    2015-07-01

    Bacillus nematocida B16 is able to dominate in the intestines of the worm Caenorhabditis elegans in 'Trojan horse' pathogenic mechanism. The adp is one candidate gene which potentially play a vital role in the colonization from our previous random mutagenesis screening results. To analyse the functional role of this gene, we constructed the adp knockout mutant through customized transcription activator-like effectors nucleases (TALEN), which has been successfully used in yeasts, nematodes, zebrafish and human pluripotent cells. Here, we first time report this knockout method in bacteria on this paper. Bioassay experiments demonstrated that the adp knockout mutant of B16 showed considerably lower colonization activity, reduced numbers of intestines and less than 80% nematocidal activity compared with the wild-type strain when infected for 48 h. However, no obvious change on proteolytic activity was observed in the mutant. Conversely, the complementation of adp gene restored most of the above deficient phenotypes. These results indicated that the adp gene was involved in surface adhesion and played a comparatively important role in colonizing host nematodes. Moreover, TALENs successfully disrupt target genes in bacteria. PMID:25912819

  16. Knockout of the adp gene related with colonization in Bacillus nematocida B16 using customized transcription activator-like effectors nucleases

    PubMed Central

    Niu, Qiuhong; Zheng, Haoying; Zhang, Lin; Qin, Fujun; Facemire, Loryn; Zhang, Guo; Cao, Feng; Zhang, Ke-qin; Huang, Xiaowei; Yang, Jianwei; He, Lei; Liu, Chanjuan

    2015-01-01

    Bacillus nematocida B16 is able to dominate in the intestines of the worm Caenorhabditis elegans in ‘Trojan horse’ pathogenic mechanism. The adp is one candidate gene which potentially play a vital role in the colonization from our previous random mutagenesis screening results. To analyse the functional role of this gene, we constructed the adp knockout mutant through customized transcription activator-like effectors nucleases (TALEN), which has been successfully used in yeasts, nematodes, zebrafish and human pluripotent cells. Here, we first time report this knockout method in bacteria on this paper. Bioassay experiments demonstrated that the adp knockout mutant of B16 showed considerably lower colonization activity, reduced numbers of intestines and less than 80% nematocidal activity compared with the wild-type strain when infected for 48 h. However, no obvious change on proteolytic activity was observed in the mutant. Conversely, the complementation of adp gene restored most of the above deficient phenotypes. These results indicated that the adp gene was involved in surface adhesion and played a comparatively important role in colonizing host nematodes. Moreover, TALENs successfully disrupt target genes in bacteria. PMID:25912819

  17. Production of α1,3-galactosyltransferase targeted pigs using transcription activator-like effector nuclease-mediated genome editing technology

    PubMed Central

    Kang, Jung-Taek; Kwon, Dae-Kee; Park, A-Rum; Lee, Eun-Jin; Yun, Yun-Jin; Ji, Dal-Young; Lee, Kiho

    2016-01-01

    Recent developments in genome editing technology using meganucleases demonstrate an efficient method of producing gene edited pigs. In this study, we examined the effectiveness of the transcription activator-like effector nuclease (TALEN) system in generating specific mutations on the pig genome. Specific TALEN was designed to induce a double-strand break on exon 9 of the porcine α1,3-galactosyltransferase (GGTA1) gene as it is the main cause of hyperacute rejection after xenotransplantation. Human decay-accelerating factor (hDAF) gene, which can produce a complement inhibitor to protect cells from complement attack after xenotransplantation, was also integrated into the genome simultaneously. Plasmids coding for the TALEN pair and hDAF gene were transfected into porcine cells by electroporation to disrupt the porcine GGTA1 gene and express hDAF. The transfected cells were then sorted using a biotin-labeled IB4 lectin attached to magnetic beads to obtain GGTA1 deficient cells. As a result, we established GGTA1 knockout (KO) cell lines with biallelic modification (35.0%) and GGTA1 KO cell lines expressing hDAF (13.0%). When these cells were used for somatic cell nuclear transfer, we successfully obtained live GGTA1 KO pigs expressing hDAF. Our results demonstrate that TALEN-mediated genome editing is efficient and can be successfully used to generate gene edited pigs. PMID:27051344

  18. Targeting DNA Double-Strand Breaks with TAL Effector Nucleases

    PubMed Central

    Christian, Michelle; Cermak, Tomas; Doyle, Erin L.; Schmidt, Clarice; Zhang, Feng; Hummel, Aaron; Bogdanove, Adam J.; Voytas, Daniel F.

    2010-01-01

    Engineered nucleases that cleave specific DNA sequences in vivo are valuable reagents for targeted mutagenesis. Here we report a new class of sequence-specific nucleases created by fusing transcription activator-like effectors (TALEs) to the catalytic domain of the FokI endonuclease. Both native and custom TALE-nuclease fusions direct DNA double-strand breaks to specific, targeted sites. PMID:20660643

  19. STAR: a simple TAL effector assembly reaction using isothermal assembly.

    PubMed

    Gogolok, Sabine; Garcia-Diaz, Claudia; Pollard, Steven M

    2016-01-01

    Transcription activator-like effectors (TALEs) contain modular programmable DNA binding domains. Fusing TALEs with effector domains creates synthetic transcription factors (TALE-TFs) or nucleases (TALENs), enabling precise gene manipulations. The construction of TALEs remains challenging due to their repetitive sequences. Here we report a simple TALE assembly reaction (STAR) that enables individual laboratories to generate multiple TALEs in a facile manner. STAR uses an isothermal assembly ('Gibson assembly') that is labour- and cost-effective, accessible, rapid and scalable. A small 68-part fragment library is employed, and the specific TALE repeat sequence is generated within ~8 hours. Sequence-verified TALENs or TALE-TF plasmids targeting 17 bp target sequences can be produced within three days, without the need for stepwise intermediate plasmid production. We demonstrate the utility of STAR through production of functional TALE-TFs capable of activating human SOX2 expression. STAR addresses some of the shortcomings of existing Golden Gate or solid-phase assembly protocols and enables routine production of TALE-TFs that will complement emerging CRISPR/Cas9-based reagents across diverse applications in mammalian stem cell and synthetic biology. PMID:27615025

  20. Direct observation of TALE protein dynamics reveals a two-state search mechanism

    PubMed Central

    Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M.

    2015-01-01

    Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins for which the fundamental mechanisms governing the search process are not fully understood. Here we use single-molecule techniques to directly observe TALE search dynamics along DNA templates. We find that TALE proteins are capable of rapid diffusion along DNA using a combination of sliding and hopping behaviour, which suggests that the TALE search process is governed in part by facilitated diffusion. We also observe that TALE proteins exhibit two distinct modes of action during the search process—a search state and a recognition state—facilitated by different subdomains in monomeric TALE proteins. Using TALE truncation mutants, we further demonstrate that the N-terminal region of TALEs is required for the initial non-specific binding and subsequent rapid search along DNA, whereas the central repeat domain is required for transitioning into the site-specific recognition state. PMID:26027871

  1. Direct observation of TALE protein dynamics reveals a two-state search mechanism

    NASA Astrophysics Data System (ADS)

    Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M.

    2015-06-01

    Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins for which the fundamental mechanisms governing the search process are not fully understood. Here we use single-molecule techniques to directly observe TALE search dynamics along DNA templates. We find that TALE proteins are capable of rapid diffusion along DNA using a combination of sliding and hopping behaviour, which suggests that the TALE search process is governed in part by facilitated diffusion. We also observe that TALE proteins exhibit two distinct modes of action during the search process--a search state and a recognition state--facilitated by different subdomains in monomeric TALE proteins. Using TALE truncation mutants, we further demonstrate that the N-terminal region of TALEs is required for the initial non-specific binding and subsequent rapid search along DNA, whereas the central repeat domain is required for transitioning into the site-specific recognition state.

  2. Toll-like receptor 4 (Tlr4) knockout rats produced by transcriptional activator-like effector nuclease- (TALEN)-mediated gene inactivation

    PubMed Central

    Ferguson, Carolyn; McKay, Matthew; Harris, R. Adron; Homanics, Gregg E.

    2013-01-01

    Genetically engineered mice are a valuable resource for studies of the behavioral effects of ethanol. However, for some behavioral tests of ethanol action, the rat is a superior model organism. Production of genetically engineered rats has been severely hampered due to technical limitations. Here we utilized a promising new technique for efficient site-specific gene modification to create a novel gene knockout rat line. This approach is based on Transcriptional Activator-Like Effector Nucleases (TALENs). TALENs function in pairs and bind DNA in a sequence-specific manner. Upon binding to the target sequence, a functional nuclease is reconstituted that creates double-stranded breaks in the DNA that are efficiently repaired by non-homologous end joining. This error-prone process often results in deletions of varying lengths at the targeted locus. The toll-like receptor 4 (Tlr4) gene was selected for TALEN-mediated gene inactivation. Tlr4 has been implicated in ethanol-induced neuroinflammation and neurodegeneration, as well as multiple ethanol-induced behavioral effects. To generate Tlr4 knockout rats, a pair of TALEN constructs was created that specifically target Exon 1 immediately downstream of the start of translation. TALEN mRNAs were microinjected into the cytoplasm of one-cell Wistar rat embryos. Of 13 live-born pups that resulted, one harbored a mutation in Exon 1 of Tlr4. The mutated allele consisted of a 13 base-pair deletion that was predicted to create a frameshift mutation after amino acid 25. This founder rat successfully transmitted the mutation to F1 offspring. Heterozygous F1 offspring were interbred to produce homozygous F2 animals. Homozygous mutants expressed the 13-bp deletion in Tlr4 mRNA. In contrast to control rats that produced a robust increase in plasma tumor necrosis factor alpha in response to a lipopolysaccharide challenge, homozygous rats had a markedly attenuated response. Thus, the mutant Tlr4 allele generated by TALEN-mediated gene

  3. Modes of TAL effector-mediated repression

    PubMed Central

    Werner, Jeannette; Gossen, Manfred

    2014-01-01

    Engineered transcription activator-like effectors, or TALEs, have emerged as a new class of designer DNA-binding proteins. Their DNA recognition sites can be specified with great flexibility. When fused to appropriate transcriptional regulatory domains, they can serve as designer transcription factors, modulating the activity of targeted promoters. We created tet operator (tetO)-specific TALEs (tetTALEs), with an identical DNA-binding site as the Tet repressor (TetR) and the TetR-based transcription factors that are extensively used in eukaryotic transcriptional control systems. Different constellations of tetTALEs and tetO modified chromosomal transcription units were analyzed for their efficacy in mammalian cells. We find that tetTALE-silencers can entirely abrogate expression from the strong human EF1α promoter when binding upstream of the transcriptional control sequence. Remarkably, the DNA-binding domain of tetTALE alone can effectively counteract trans-activation mediated by the potent tettrans-activator and also directly interfere with RNA polymerase II transcription initiation from the strong CMV promoter. Our results demonstrate that TALEs can act as highly versatile tools in genetic engineering, serving as trans-activators, trans-silencers and also competitive repressors. PMID:25389273

  4. Use of the heteroduplex mobility assay and cell sorting to select genome sequences of the CCR5 gene in HEK 293T cells edited by transcription activator-like effector nucleases

    PubMed Central

    Nerys-Junior, Arildo; Costa, Lendel C.; Braga-Dias, Luciene P.; Oliveira, Márcia; Rossi, Átila D.; da Cunha, Rodrigo Delvecchio; Gonçalves, Gabriel S.; Tanuri, Amilcar

    2014-01-01

    Engineered nucleases such as zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) are one of the most promising tools for modifying genomes. These site-specific enzymes cause double-strand breaks that allow gene disruption or gene insertion, thereby facilitating genetic manipulation. The major problem associated with this approach is the labor-intensive procedures required to screen and confirm the cellular modification by nucleases. In this work, we produced a TALEN that targets the human CCR5 gene and developed a heteroduplex mobility assay for HEK 293T cells to select positive colonies for sequencing. This approach provides a useful tool for the quick detection and easy assessment of nuclease activity. PMID:24688299

  5. Use of the heteroduplex mobility assay and cell sorting to select genome sequences of the CCR5 gene in HEK 293T cells edited by transcription activator-like effector nucleases.

    PubMed

    Nerys-Junior, Arildo; Costa, Lendel C; Braga-Dias, Luciene P; Oliveira, Márcia; Rossi, Atila D; da Cunha, Rodrigo Delvecchio; Gonçalves, Gabriel S; Tanuri, Amilcar

    2014-03-01

    Engineered nucleases such as zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) are one of the most promising tools for modifying genomes. These site-specific enzymes cause double-strand breaks that allow gene disruption or gene insertion, thereby facilitating genetic manipulation. The major problem associated with this approach is the labor-intensive procedures required to screen and confirm the cellular modification by nucleases. In this work, we produced a TALEN that targets the human CCR5 gene and developed a heteroduplex mobility assay for HEK 293T cells to select positive colonies for sequencing. This approach provides a useful tool for the quick detection and easy assessment of nuclease activity. PMID:24688299

  6. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats

    PubMed Central

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-01-01

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats. PMID:26481363

  7. Transcription Activator-Like Effector Nuclease (TALEN)-Mediated CLYBL Targeting Enables Enhanced Transgene Expression and One-Step Generation of Dual Reporter Human Induced Pluripotent Stem Cell (iPSC) and Neural Stem Cell (NSC) Lines

    PubMed Central

    Cerbini, Trevor; Funahashi, Ray; Luo, Yongquan; Liu, Chengyu; Park, Kyeyoon; Rao, Mahendra; Malik, Nasir; Zou, Jizhong

    2015-01-01

    Targeted genome engineering to robustly express transgenes is an essential methodology for stem cell-based research and therapy. Although designer nucleases have been used to drastically enhance gene editing efficiency, targeted addition and stable expression of transgenes to date is limited at single gene/locus and mostly PPP1R12C/AAVS1 in human stem cells. Here we constructed transcription activator-like effector nucleases (TALENs) targeting the safe-harbor like gene CLYBL to mediate reporter gene integration at 38%–58% efficiency, and used both AAVS1-TALENs and CLYBL-TALENs to simultaneously knock-in multiple reporter genes at dual safe-harbor loci in human induced pluripotent stem cells (iPSCs) and neural stem cells (NSCs). The CLYBL-TALEN engineered cell lines maintained robust reporter expression during self-renewal and differentiation, and revealed that CLYBL targeting resulted in stronger transgene expression and less perturbation on local gene expression than PPP1R12C/AAVS1. TALEN-mediated CLYBL engineering provides improved transgene expression and options for multiple genetic modification in human stem cells. PMID:25587899

  8. TAL effector-mediated genome visualization (TGV).

    PubMed

    Miyanari, Yusuke

    2014-09-01

    The three-dimensional remodeling of chromatin within nucleus is being recognized as determinant for genome regulation. Recent technological advances in live imaging of chromosome loci begun to explore the biological roles of the movement of the chromatin within the nucleus. To facilitate better understanding of the functional relevance and mechanisms regulating genome architecture, we applied transcription activator-like effector (TALE) technology to visualize endogenous repetitive genomic sequences in mouse cells. The application, called TAL effector-mediated genome visualization (TGV), allows us to label specific repetitive sequences and trace nuclear remodeling in living cells. Using this system, parental origin of chromosomes was specifically traced by distinction of single-nucleotide polymorphisms (SNPs). This review will present our approaches to monitor nuclear dynamics of target sequences and highlights key properties and potential uses of TGV. PMID:24704356

  9. TALE1 from Xanthomonas axonopodis pv. manihotis acts as a transcriptional activator in plant cells and is important for pathogenicity in cassava plants.

    PubMed

    Castiblanco, Luisa F; Gil, Juliana; Rojas, Alejandro; Osorio, Daniela; Gutiérrez, Sonia; Muñoz-Bodnar, Alejandra; Perez-Quintero, Alvaro L; Koebnik, Ralf; Szurek, Boris; López, Camilo; Restrepo, Silvia; Verdier, Valérie; Bernal, Adriana J

    2013-01-01

    Many plant-pathogenic bacteria suppress pathogen-associated molecular pattern (PAMP)-triggered immunity by injecting effector proteins into the host cytoplasm during infection through the type III secretion system (TTSS). This type III secretome plays an important role in bacterial pathogenicity in susceptible hosts. Xanthomonas axonopodis pv. manihotis (Xam), the causal agent of cassava bacterial blight, injects several effector proteins into the host cell, including TALE1(Xam) . This protein is a member of the Transcriptional Activator-Like effector (TALE) protein family, formerly known as the AvrBs3/PthA family. TALE1(Xam) has 13.5 tandem repeats of 34 amino acids each, as well as two nuclear localization signals and an acidic activation domain at the C-terminus. In this work, we demonstrate the importance of TALE1(Xam) in the pathogenicity of Xam. We use versions of the gene that lack different domains in the protein in structure-function studies to show that the eukaryotic domains at the 3' end are critical for pathogenicity. In addition, we demonstrate that, similar to the characterized TALE proteins from other Xanthomonas species, TALE1(Xam) acts as a transcriptional activator in plant cells. This is the first report of the identification of a TALE in Xam, and contributes to our understanding of the pathogenicity mechanisms employed by this bacterium to colonize and cause disease in cassava. PMID:22947214

  10. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain

    PubMed Central

    de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas

    2014-01-01

    The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution. PMID:24792163

  11. A simple and efficient method for assembling TALE protein based on plasmid library.

    PubMed

    Zhang, Zhiqiang; Li, Duo; Xu, Huarong; Xin, Ying; Zhang, Tingting; Ma, Lixia; Wang, Xin; Chen, Zhilong; Zhang, Zhiying

    2013-01-01

    DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas sp. consists of tandem repeats that can be rearranged according to a simple cipher to target new DNA sequences with high DNA-binding specificity. This technology has been successfully applied in varieties of species for genome engineering. However, assembling long TALE tandem repeats remains a big challenge precluding wide use of this technology. Although several new methodologies for efficiently assembling TALE repeats have been recently reported, all of them require either sophisticated facilities or skilled technicians to carry them out. Here, we described a simple and efficient method for generating customized TALE nucleases (TALENs) and TALE transcription factors (TALE-TFs) based on TALE repeat tetramer library. A tetramer library consisting of 256 tetramers covers all possible combinations of 4 base pairs. A set of unique primers was designed for amplification of these tetramers. PCR products were assembled by one step of digestion/ligation reaction. 12 TALE constructs including 4 TALEN pairs targeted to mouse Gt(ROSA)26Sor gene and mouse Mstn gene sequences as well as 4 TALE-TF constructs targeted to mouse Oct4, c-Myc, Klf4 and Sox2 gene promoter sequences were generated by using our method. The construction routines took 3 days and parallel constructions were available. The rate of positive clones during colony PCR verification was 64% on average. Sequencing results suggested that all TALE constructs were performed with high successful rate. This is a rapid and cost-efficient method using the most common enzymes and facilities with a high success rate. PMID:23840477

  12. Live visualization of chromatin dynamics with fluorescent TALEs.

    PubMed

    Miyanari, Yusuke; Ziegler-Birling, Céline; Torres-Padilla, Maria-Elena

    2013-11-01

    The spatiotemporal organization of genomes in the nucleus is an emerging key player to regulate genome function. Live imaging of nuclear organization dynamics would be a breakthrough toward uncovering the functional relevance and mechanisms regulating genome architecture. Here, we used transcription activator-like effector (TALE) technology to visualize endogenous repetitive genomic sequences. We established TALE-mediated genome visualization (TGV) to label genomic sequences and follow nuclear positioning and chromatin dynamics in cultured mouse cells and in the living organism. TGV is highly specific, thus allowing differential labeling of parental chromosomes by distinguishing between single-nucleotide polymorphisms (SNPs). Our findings provide a framework to address the function of genome architecture through visualization of nuclear dynamics in vivo. PMID:24096363

  13. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    PubMed

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks. PMID:24251925

  14. Genome Engineering with TALE and CRISPR Systems in Neuroscience

    PubMed Central

    Lee, Han B.; Sundberg, Brynn N.; Sigafoos, Ashley N.; Clark, Karl J.

    2016-01-01

    Recent advancement in genome engineering technology is changing the landscape of biological research and providing neuroscientists with an opportunity to develop new methodologies to ask critical research questions. This advancement is highlighted by the increased use of programmable DNA-binding agents (PDBAs) such as transcription activator-like effector (TALE) and RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. These PDBAs fused or co-expressed with various effector domains allow precise modification of genomic sequences and gene expression levels. These technologies mirror and extend beyond classic gene targeting methods contributing to the development of novel tools for basic and clinical neuroscience. In this Review, we discuss the recent development in genome engineering and potential applications of this technology in the field of neuroscience. PMID:27092173

  15. Libraries of Synthetic TALE-Activated Promoters: Methods and Applications.

    PubMed

    Schreiber, T; Tissier, A

    2016-01-01

    The discovery of proteins with programmable DNA-binding specificities triggered a whole array of applications in synthetic biology, including genome editing, regulation of transcription, and epigenetic modifications. Among those, transcription activator-like effectors (TALEs) due to their natural function as transcription regulators, are especially well-suited for the development of orthogonal systems for the control of gene expression. We describe here the construction and testing of libraries of synthetic TALE-activated promoters which are under the control of a single TALE with a given DNA-binding specificity. These libraries consist of a fixed DNA-binding element for the TALE, a TATA box, and variable sequences of 19 bases upstream and 43 bases downstream of the DNA-binding element. These libraries were cloned using a Golden Gate cloning strategy making them usable as standard parts in a modular cloning system. The broad range of promoter activities detected and the versatility of these promoter libraries make them valuable tools for applications in the fine-tuning of expression in metabolic engineering projects or in the design and implementation of regulatory circuits. PMID:27480693

  16. Repeat 1 of TAL effectors affects target specificity for the base at position zero

    PubMed Central

    Schreiber, Tom; Bonas, Ulla

    2014-01-01

    AvrBs3, the founding member of the Xanthomonas transcription-activator-like effectors (TALEs), is translocated into the plant cell where it localizes to the nucleus and acts as transcription factor. The DNA-binding domain of AvrBs3 consists of 17.5 nearly-identical 34 amino acid-repeats. Each repeat specifies binding to one base in the target DNA via amino acid residues 12 and 13 termed repeat variable diresidue (RVD). Natural target sequences of TALEs are generally preceded by a thymine (T0), which is coordinated by a tryptophan residue (W232) in a degenerated repeat upstream of the canonical repeats. To investigate the necessity of T0 and the conserved tryptophan for AvrBs3-mediated gene activation we tested TALE mutant derivatives on target sequences preceded by all possible four bases. In addition, we performed domain swaps with TalC from a rice pathogenic Xanthomonas because TalC lacks the tryptophan residue, and the TalC target sequence is preceded by cytosine. We show that T0 works best and that T0 specificity depends on the repeat number and overall RVD-composition. T0 and W232 appear to be particularly important if the RVD of the first repeat is HD (‘rep1 effect’). Our findings provide novel insights into the mechanism of T0 recognition by TALE proteins and are important for TALE-based biotechnological applications. PMID:24792160

  17. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria

    PubMed Central

    Yuan, Meng; Ke, Yinggen; Huang, Renyan; Ma, Ling; Yang, Zeyu; Chu, Zhaohui; Xiao, Jinghua; Li, Xianghua; Wang, Shiping

    2016-01-01

    Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens. DOI: http://dx.doi.org/10.7554/eLife.19605.001 PMID:27472897

  18. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria.

    PubMed

    Yuan, Meng; Ke, Yinggen; Huang, Renyan; Ma, Ling; Yang, Zeyu; Chu, Zhaohui; Xiao, Jinghua; Li, Xianghua; Wang, Shiping

    2016-01-01

    Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens. PMID:27472897

  19. TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts.

    PubMed

    Bernstein, Diana L; Le Lay, John E; Ruano, Elena G; Kaestner, Klaus H

    2015-05-01

    Current strategies to alter disease-associated epigenetic modifications target ubiquitously expressed epigenetic regulators. This approach does not allow specific genes to be controlled in specific cell types; therefore, tools to selectively target epigenetic modifications in the desired cell type and strategies to more efficiently correct aberrant gene expression in disease are needed. Here, we have developed a method for directing DNA methylation to specific gene loci by conjugating catalytic domains of DNA methyltransferases (DNMTs) to engineered transcription activator-like effectors (TALEs). We demonstrated that these TALE-DNMTs direct DNA methylation specifically to the targeted gene locus in human cells. Further, we determined that minimizing direct nucleotide sequence repeats within the TALE moiety permits efficient lentivirus transduction, allowing easy targeting of primary cell types. Finally, we demonstrated that directed DNA methylation with a TALE-DNMT targeting the CDKN2A locus, which encodes the cyclin-dependent kinase inhibitor p16, decreased CDKN2A expression and increased replication of primary human fibroblasts, as intended. Moreover, overexpression of p16 in these cells reversed the proliferative phenotype, demonstrating the specificity of our epigenetic targeting. Together, our results demonstrate that TALE-DNMTs can selectively target specific genes and suggest that this strategy has potential application for the development of locus-specific epigenetic therapeutics. PMID:25866970

  20. RNA-seq pinpoints a Xanthomonas TAL-effector activated resistance gene in a large-crop genome

    PubMed Central

    Strauß, Tina; van Poecke, Remco M. P.; Strauß, Annett; Römer, Patrick; Minsavage, Gerald V.; Singh, Sylvia; Wolf, Christina; Strauß, Axel; Kim, Seungill; Lee, Hyun-Ah; Yeom, Seon-In; Parniske, Martin; Stall, Robert E.; Jones, Jeffrey B.; Choi, Doil; Prins, Marcel; Lahaye, Thomas

    2012-01-01

    Transcription activator-like effector (TALE) proteins of the plant pathogenic bacterial genus Xanthomonas bind to and transcriptionally activate host susceptibility genes, promoting disease. Plant immune systems have taken advantage of this mechanism by evolving TALE binding sites upstream of resistance (R) genes. For example, the pepper Bs3 and rice Xa27 genes are hypersensitive reaction plant R genes that are transcriptionally activated by corresponding TALEs. Both R genes have a hallmark expression pattern in which their transcripts are detectable only in the presence and not the absence of the corresponding TALE. By transcriptome profiling using next-generation sequencing (RNA-seq), we tested whether we could avoid laborious positional cloning for the isolation of TALE-induced R genes. In a proof-of-principle experiment, RNA-seq was used to identify a candidate for Bs4C, an R gene from pepper that mediates recognition of the Xanthomonas TALE protein AvrBs4. We identified one major Bs4C candidate transcript by RNA-seq that was expressed exclusively in the presence of AvrBs4. Complementation studies confirmed that the candidate corresponds to the Bs4C gene and that an AvrBs4 binding site in the Bs4C promoter directs its transcriptional activation. Comparison of Bs4C with a nonfunctional allele that is unable to recognize AvrBs4 revealed a 2-bp polymorphism within the TALE binding site of the Bs4C promoter. Bs4C encodes a structurally unique R protein and Bs4C-like genes that are present in many solanaceous genomes seem to be as tightly regulated as pepper Bs4C. These findings demonstrate that TALE-specific R genes can be cloned from large-genome crops with a highly efficient RNA-seq approach. PMID:23132937

  1. Characterization and DNA-Binding Specificities of Ralstonia TAL-Like Effectors

    PubMed Central

    Mahfouz, Magdy M.

    2013-01-01

    Transcription activator-like effectors (TALEs) from Xanthomonas sp. have been used as customizable DNA-binding modules for genome-engineering applications. Ralstonia solanacearum TALE-like proteins (RTLs) exhibit similar structural features to TALEs, including a central DNA-binding domain composed of 35 amino acid-long repeats. Here, we characterize the RTLs and show that they localize in the plant cell nucleus, mediate DNA binding, and might function as transcriptional activators. RTLs have a unique DNA-binding architecture and are enriched in repeat variable di-residues (RVDs), which determine repeat DNA-binding specificities. We determined the DNA-binding specificities for the RVD sequences ND, HN, NP, and NT. The RVD ND mediates highly specific interactions with C nucleotide, HN interacts specifically with A and G nucleotides, and NP binds to C, A, and G nucleotides. Moreover, we developed a highly efficient repeat assembly approach for engineering RTL effectors. Taken together, our data demonstrate that RTLs are unique DNA-targeting modules that are excellent alternatives to be tailored to bind to user-selected DNA sequences for targeted genomic and epigenomic modifications. These findings will facilitate research concerning RTL molecular biology and RTL roles in the pathogenicity of Ralstonia spp. PMID:23300258

  2. Characterization and DNA-binding specificities of Ralstonia TAL-like effectors.

    PubMed

    Li, Lixin; Atef, Ahmed; Piatek, Agnieszka; Ali, Zahir; Piatek, Marek; Aouida, Mustapha; Sharakuu, Altanbadralt; Mahjoub, Ali; Wang, Guangchao; Khan, Suhail; Fedoroff, Nina V; Zhu, Jian-Kang; Mahfouz, Magdy M

    2013-07-01

    Transcription activator-like effectors (TALEs) from Xanthomonas sp. have been used as customizable DNA-binding modules for genome-engineering applications. Ralstonia solanacearum TALE-like proteins (RTLs) exhibit similar structural features to TALEs, including a central DNA-binding domain composed of 35 amino acid-long repeats. Here, we characterize the RTLs and show that they localize in the plant cell nucleus, mediate DNA binding, and might function as transcriptional activators. RTLs have a unique DNA-binding architecture and are enriched in repeat variable di-residues (RVDs), which determine repeat DNA-binding specificities. We determined the DNA-binding specificities for the RVD sequences ND, HN, NP, and NT. The RVD ND mediates highly specific interactions with C nucleotide, HN interacts specifically with A and G nucleotides, and NP binds to C, A, and G nucleotides. Moreover, we developed a highly efficient repeat assembly approach for engineering RTL effectors. Taken together, our data demonstrate that RTLs are unique DNA-targeting modules that are excellent alternatives to be tailored to bind to user-selected DNA sequences for targeted genomic and epigenomic modifications. These findings will facilitate research concerning RTL molecular biology and RTL roles in the pathogenicity of Ralstonia spp. PMID:23300258

  3. From dead leaf, to new life: TAL effectors as tools for synthetic biology.

    PubMed

    de Lange, Orlando; Binder, Andreas; Lahaye, Thomas

    2014-06-01

    Whether rice, yeast or fly there is barely a model organism not yet reached by transcription activator-like effectors (TALEs) and their derivative fusion proteins. Insights into fundamental biology are now arriving on the back of work in recent years to develop these proteins as tools for molecular biology. This began with the publication of the simple cipher determining base-specific DNA recognition by TALEs in 2009, and now encompasses a huge variety of established fusion proteins mediating targeted modifications to transcriptome, genome and, recently, epigenome. Straightforward design and exquisite specificity, allowing unique sites to be targeted even within complex eukaryote genomes, are key to the popularity of this system. Synthetic biology is one field that is just beginning to make use of these properties, with a number of recent publications demonstrating TALE-mediated regulation of synthetic genetic circuits. Intense interest has surrounded the CRISPR/Cas9 system within the last 12 months, and it is already proving its mettle as a tool for targeted gene modifications and transcriptional regulation. However, questions over off-target activity and means for independent regulation of multiple Cas9-guide RNA pairs must be resolved before this method can be included in the synthetic biology toolbox. TALEs are already showing promise as regulators of synthetic biological systems, a role that is likely to be developed further in the coming years. PMID:24602153

  4. Spatial organization of heterologous metabolic system in vivo based on TALE

    PubMed Central

    Zhu, Ling-yun; Qiu, Xin-yuan; Zhu, Ling-yun; Wu, Xiao-min; Zhang, Yuan; Zhu, Qian-hui; Fan, Dong-yu; Zhu, Chu-shu; Zhang, Dong-yi

    2016-01-01

    For years, prokaryotic hosts have been widely applied in bio-engineering. However, the confined in vivo enzyme clustering of heterologous metabolic pathways in these organisms often results in low local concentrations of enzymes and substrates, leading to a low productive efficacy. We developed a new method to accelerate a heterologous metabolic system by integrating a transcription activator-like effector (TALE)-based scaffold system into an Escherichia coli chassis. The binding abilities of the TALEs to the artificial DNA scaffold were measured through ChIP-PCR. The effect of the system was determined through a split GFP study and validated through the heterologous production of indole-3-acetic acid (IAA) by incorporating TALE-fused IAA biosynthetic enzymes in E. coli. To the best of our knowledge, we are the first to use the TALE system as a scaffold for the spatial organization of bacterial metabolism. This technique might be used to establish multi-enzymatic reaction programs in a prokaryotic chassis for various applications. PMID:27184291

  5. Spatial organization of heterologous metabolic system in vivo based on TALE.

    PubMed

    Zhu, Ling-Yun; Qiu, Xin-Yuan; Zhu, Ling-Yun; Wu, Xiao-Min; Zhang, Yuan; Zhu, Qian-Hui; Fan, Dong-Yu; Zhu, Chu-Shu; Zhang, Dong-Yi

    2016-01-01

    For years, prokaryotic hosts have been widely applied in bio-engineering. However, the confined in vivo enzyme clustering of heterologous metabolic pathways in these organisms often results in low local concentrations of enzymes and substrates, leading to a low productive efficacy. We developed a new method to accelerate a heterologous metabolic system by integrating a transcription activator-like effector (TALE)-based scaffold system into an Escherichia coli chassis. The binding abilities of the TALEs to the artificial DNA scaffold were measured through ChIP-PCR. The effect of the system was determined through a split GFP study and validated through the heterologous production of indole-3-acetic acid (IAA) by incorporating TALE-fused IAA biosynthetic enzymes in E. coli. To the best of our knowledge, we are the first to use the TALE system as a scaffold for the spatial organization of bacterial metabolism. This technique might be used to establish multi-enzymatic reaction programs in a prokaryotic chassis for various applications. PMID:27184291

  6. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors

    PubMed Central

    Perdigão, Pedro; Gaj, Thomas; Santa-Marta, Mariana; Goncalves, Joao

    2016-01-01

    The presence of replication-competent HIV-1 –which resides mainly in resting CD4+ T cells–is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE) proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection. PMID:26933881

  7. Repeated TALEs

    PubMed Central

    Pederson, Thoru

    2014-01-01

    Three recent papers, published just weeks apart, describe the use of fluorescent TALEs to tag specific DNA sequences in live cells and, in one case, also in fixed cells, the latter with potential clinical applications. PMID:24637394

  8. Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands

    PubMed Central

    Luo, Yan; Wang, Yongsheng; Liu, Jun; Cui, Chenchen; Wu, Yongyan; Lan, Hui; Chen, Qi; Liu, Xu; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2016-01-01

    Targeting exogenous genes at milk protein loci via gene-targeting technology is an ideal strategy for producing large quantities of pharmaceutical proteins. Transcription- activator-like effector (TALE) nucleases (TALENs) are an efficient genome-editing tool. However, the off-target effects may lead to unintended gene mutations. In this study, we constructed TALENs and TALE nickases directed against exon 2 of the bovine β-lactoglobulin (BLG) locus. The nickases can induce a site-specific DNA single-strand break, without inducing double-strand break and nonhomologous end joining mediated gene mutation, and lower cell apoptosis rate than TALENs. After co-transfecting the bovine fetal fibroblasts with human serum albumin (HSA) gene-targeting vector and TALE nickase expression vectors, approximately 4.8% (40/835) of the cell clones contained HSA at BLG locus. Unexpectedly, one homozygous gene-targeted cell clone (1/835, 0.1%) was obtained by targeting both alleles of BLG in a single round of transfection. The recombinant protein mimicking the endogenous BLG was highly expressed and correctly folded in the mammary glands of the targeted cows, and the expression level of HSA was significantly increased in the homozygous targeted cows. Results suggested that the combination of TALE nickase-mediated gene targeting and somatic cell nuclear transfer is a feasible and safe approach in producing gene-targeted livestock. PMID:26853907

  9. Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands.

    PubMed

    Luo, Yan; Wang, Yongsheng; Liu, Jun; Cui, Chenchen; Wu, Yongyan; Lan, Hui; Chen, Qi; Liu, Xu; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2016-01-01

    Targeting exogenous genes at milk protein loci via gene-targeting technology is an ideal strategy for producing large quantities of pharmaceutical proteins. Transcription-activator-like effector (TALE) nucleases (TALENs) are an efficient genome-editing tool. However, the off-target effects may lead to unintended gene mutations. In this study, we constructed TALENs and TALE nickases directed against exon 2 of the bovine β-lactoglobulin (BLG) locus. The nickases can induce a site-specific DNA single-strand break, without inducing double-strand break and nonhomologous end joining mediated gene mutation, and lower cell apoptosis rate than TALENs. After co-transfecting the bovine fetal fibroblasts with human serum albumin (HSA) gene-targeting vector and TALE nickase expression vectors, approximately 4.8% (40/835) of the cell clones contained HSA at BLG locus. Unexpectedly, one homozygous gene-targeted cell clone (1/835, 0.1%) was obtained by targeting both alleles of BLG in a single round of transfection. The recombinant protein mimicking the endogenous BLG was highly expressed and correctly folded in the mammary glands of the targeted cows, and the expression level of HSA was significantly increased in the homozygous targeted cows. Results suggested that the combination of TALE nickase-mediated gene targeting and somatic cell nuclear transfer is a feasible and safe approach in producing gene-targeted livestock. PMID:26853907

  10. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors.

    PubMed

    Hu, Jiabiao; Lei, Yong; Wong, Wing-Ki; Liu, Senquan; Lee, Kai-Chuen; He, Xiangjun; You, Wenxing; Zhou, Rui; Guo, Jun-Tao; Chen, Xiongfong; Peng, Xianlu; Sun, Hao; Huang, He; Zhao, Hui; Feng, Bo

    2014-04-01

    The newly developed transcription activator-like effector protein (TALE) and clustered regularly interspaced short palindromic repeats/Cas9 transcription factors (TF) offered a powerful and precise approach for modulating gene expression. In this article, we systematically investigated the potential of these new tools in activating the stringently silenced pluripotency gene Oct4 (Pou5f1) in mouse and human somatic cells. First, with a number of TALEs and sgRNAs targeting various regions in the mouse and human Oct4 promoters, we found that the most efficient TALE-VP64s bound around -120 to -80 bp, while highly effective sgRNAs targeted from -147 to -89-bp upstream of the transcription start sites to induce high activity of luciferase reporters. In addition, we observed significant transcriptional synergy when multiple TFs were applied simultaneously. Although individual TFs exhibited marginal activity to up-regulate endogenous gene expression, optimized combinations of TALE-VP64s could enhance endogenous Oct4 transcription up to 30-fold in mouse NIH3T3 cells and 20-fold in human HEK293T cells. More importantly, the enhancement of OCT4 transcription ultimately generated OCT4 proteins. Furthermore, examination of different epigenetic modifiers showed that histone acetyltransferase p300 could enhance both TALE-VP64 and sgRNA/dCas9-VP64 induced transcription of endogenous OCT4. Taken together, our study suggested that engineered TALE-TF and dCas9-TF are useful tools for modulating gene expression in mammalian cells. PMID:24500196

  11. A TALE of Transposition: Tn3-Like Transposons Play a Major Role in the Spread of Pathogenicity Determinants of Xanthomonas citri and Other Xanthomonads

    PubMed Central

    Ferreira, Rafael Marini; de Oliveira, Amanda Carolina P.; Moreira, Leandro M.; Belasque, José; Gourbeyre, Edith; Siguier, Patricia; Ferro, Maria Inês T.; Ferro, Jesus A.

    2015-01-01

    ABSTRACT Members of the genus Xanthomonas are among the most important phytopathogens. A key feature of Xanthomonas pathogenesis is the translocation of type III secretion system (T3SS) effector proteins (T3SEs) into the plant target cells via a T3SS. Several T3SEs and a murein lytic transglycosylase gene (mlt, required for citrus canker symptoms) are found associated with three transposition-related genes in Xanthomonas citri plasmid pXAC64. These are flanked by short inverted repeats (IRs). The region was identified as a transposon, TnXax1, with typical Tn3 family features, including a transposase and two recombination genes. Two 14-bp palindromic sequences within a 193-bp potential resolution site occur between the recombination genes. Additional derivatives carrying different T3SEs and other passenger genes occur in different Xanthomonas species. The T3SEs include transcription activator-like effectors (TALEs). Certain TALEs are flanked by the same IRs as found in TnXax1 to form mobile insertion cassettes (MICs), suggesting that they may be transmitted horizontally. A significant number of MICs carrying other passenger genes (including a number of TALE genes) were also identified, flanked by the same TnXax1 IRs and delimited by 5-bp target site duplications. We conclude that a large fraction of T3SEs, including individual TALEs and potential pathogenicity determinants, have spread by transposition and that TnXax1, which exhibits all of the essential characteristics of a functional transposon, may be involved in driving MIC transposition. We also propose that TALE genes may diversify by fork slippage during the replicative Tn3 family transposition. These mechanisms may play a crucial role in the emergence of Xanthomonas pathogenicity. PMID:25691597

  12. TALE-directed local modulation of H3K9 methylation shapes exon recognition

    PubMed Central

    Bieberstein, Nicole I.; Kozáková, Eva; Huranová, Martina; Thakur, Prasoon K.; Krchňáková, Zuzana; Krausová, Michaela; Oesterreich, Fernando Carrillo; Staněk, David

    2016-01-01

    In search for the function of local chromatin environment on pre-mRNA processing we established a new tool, which allows for the modification of chromatin using a targeted approach. Using Transcription Activator-Like Effector domains fused to histone modifying enzymes (TALE-HME), we show locally restricted alteration of histone methylation modulates the splicing of target exons. We provide evidence that a local increase in H3K9 di- and trimethylation promotes inclusion of the target alternative exon, while demethylation by JMJD2D leads to exon skipping. We further demonstrate that H3K9me3 is localized on internal exons genome-wide suggesting a general role in splicing. Consistently, targeting of the H3K9 demethylase to a weak constitutive exon reduced co-transcriptional splicing. Together our data show H3K9 methylation within the gene body is a factor influencing recognition of both constitutive and alternative exons. PMID:27439481

  13. TALE-directed local modulation of H3K9 methylation shapes exon recognition.

    PubMed

    Bieberstein, Nicole I; Kozáková, Eva; Huranová, Martina; Thakur, Prasoon K; Krchňáková, Zuzana; Krausová, Michaela; Carrillo Oesterreich, Fernando; Staněk, David

    2016-01-01

    In search for the function of local chromatin environment on pre-mRNA processing we established a new tool, which allows for the modification of chromatin using a targeted approach. Using Transcription Activator-Like Effector domains fused to histone modifying enzymes (TALE-HME), we show locally restricted alteration of histone methylation modulates the splicing of target exons. We provide evidence that a local increase in H3K9 di- and trimethylation promotes inclusion of the target alternative exon, while demethylation by JMJD2D leads to exon skipping. We further demonstrate that H3K9me3 is localized on internal exons genome-wide suggesting a general role in splicing. Consistently, targeting of the H3K9 demethylase to a weak constitutive exon reduced co-transcriptional splicing. Together our data show H3K9 methylation within the gene body is a factor influencing recognition of both constitutive and alternative exons. PMID:27439481

  14. An engineered tale-transcription factor rescues transcription of factor VII impaired by promoter mutations and enhances its endogenous expression in hepatocytes

    PubMed Central

    Barbon, Elena; Pignani, Silvia; Branchini, Alessio; Bernardi, Francesco; Pinotti, Mirko; Bovolenta, Matteo

    2016-01-01

    Tailored approaches to restore defective transcription responsible for severe diseases have been poorly explored. We tested transcription activator-like effectors fused to an activation domain (TALE-TFs) in a coagulation factor VII (FVII) deficiency model. In this model, the deficiency is caused by the −94C > G or −61T > G mutation, which abrogate the binding of Sp1 or HNF-4 transcription factors. Reporter assays in hepatoma HepG2 cells naturally expressing FVII identified a single TALE-TF (TF4) that, by targeting the region between mutations, specifically trans-activated both the variant (>100-fold) and wild-type (20–40-fold) F7 promoters. Importantly, in the genomic context of transfected HepG2 and transduced primary hepatocytes, TF4 increased F7 mRNA and protein levels (2- to 3-fold) without detectable off-target effects, even for the homologous F10 gene. The ectopic F7 expression in renal HEK293 cells was modestly affected by TF4 or by TALE-TF combinations. These results provide experimental evidence for TALE-TFs as gene-specific tools useful to counteract disease-causing promoter mutations. PMID:27341548

  15. Single-cell analyses of regulatory network perturbations using enhancer-targeting TALEs suggest novel roles for PU.1 during haematopoietic specification.

    PubMed

    Wilkinson, Adam C; Kawata, Viviane K S; Schütte, Judith; Gao, Xuefei; Antoniou, Stella; Baumann, Claudia; Woodhouse, Steven; Hannah, Rebecca; Tanaka, Yosuke; Swiers, Gemma; Moignard, Victoria; Fisher, Jasmin; Hidetoshi, Shimauchi; Tijssen, Marloes R; de Bruijn, Marella F T R; Liu, Pentao; Göttgens, Berthold

    2014-10-01

    Transcription factors (TFs) act within wider regulatory networks to control cell identity and fate. Numerous TFs, including Scl (Tal1) and PU.1 (Spi1), are known regulators of developmental and adult haematopoiesis, but how they act within wider TF networks is still poorly understood. Transcription activator-like effectors (TALEs) are a novel class of genetic tool based on the modular DNA-binding domains of Xanthomonas TAL proteins, which enable DNA sequence-specific targeting and the manipulation of endogenous gene expression. Here, we report TALEs engineered to target the PU.1-14kb and Scl+40kb transcriptional enhancers as efficient new tools to perturb the expression of these key haematopoietic TFs. We confirmed the efficiency of these TALEs at the single-cell level using high-throughput RT-qPCR, which also allowed us to assess the consequences of both PU.1 activation and repression on wider TF networks during developmental haematopoiesis. Combined with comprehensive cellular assays, these experiments uncovered novel roles for PU.1 during early haematopoietic specification. Finally, transgenic mouse studies confirmed that the PU.1-14kb element is active at sites of definitive haematopoiesis in vivo and PU.1 is detectable in haemogenic endothelium and early committing blood cells. We therefore establish TALEs as powerful new tools to study the functionality of transcriptional networks that control developmental processes such as early haematopoiesis. PMID:25252941

  16. TAL effectors mediate high-efficiency transposition of the piggyBac transposon in silkworm Bombyx mori L

    PubMed Central

    Ye, Lupeng; You, Zhengying; Qian, Qiujie; Zhang, Yuyu; Che, Jiaqian; Song, Jia; Zhong, Boxiong

    2015-01-01

    The piggyBac (PB) transposon is one of the most useful transposable elements, and has been successfully used for genetic manipulation in more than a dozen species. However, the efficiency of PB-mediated transposition is still insufficient for many purposes. Here, we present a strategy to enhance transposition efficiency using a fusion of transcription activator-like effector (TALE) and the PB transposase (PBase). The results demonstrate that the TALE-PBase fusion protein which is engineered in this study can produce a significantly improved stable transposition efficiency of up to 63.9%, which is at least 7 times higher than the current transposition efficiency in silkworm. Moreover, the average number of transgene-positive individuals increased up to 5.7-fold, with each positive brood containing an average of 18.1 transgenic silkworms. Finally, we demonstrate that TALE-PBase fusion-mediated PB transposition presents a new insertional preference compared with original insertional preference. This method shows a great potential and value for insertional therapy of many genetic diseases. In conclusion, this new and powerful transposition technology will efficiently promote genetic manipulation studies in both invertebrates and vertebrates. PMID:26608076

  17. Engineering Synthetic TALE and CRISPR/Cas9 Transcription Factors for Regulating Gene Expression

    PubMed Central

    Kabadi, Ami M.; Gersbach, Charles A.

    2014-01-01

    Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription Activator-Like Effectors (TALEs) and the RNA-guided Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications. PMID:25010559

  18. Richard Halliburton's Bearded Tales

    ERIC Educational Resources Information Center

    Morris, Charles E., III

    2009-01-01

    Fusing the concept of "the beard" with the genre of the tall tale to theorize bearded tales deepens our understanding of closet eloquence, or rhetorical repertories of sexual passing in U.S. history. An examination of adventurer-writer-lecturer Richard Halliburton's sexual provenance and bestselling travel tale, "The Royal Road to Romance" (1925),…

  19. The Tall Tale Ladies.

    ERIC Educational Resources Information Center

    Zingher, Gary

    2001-01-01

    Discusses the value of tall tales for children and focuses on tall tale heroines that have become more prevalent and offer models of strong, resourceful, undaunted women. Includes examples of popular tall tale heroines and offers suggestions for class activities. (LRW)

  20. Tales From Silver Lands.

    ERIC Educational Resources Information Center

    Finger, Charles J.

    In 1925, "Tales From Silver Lands" was awarded the Newbery medal as the most distinguished contribution to American children's literature for the year. The book contains a collection of 19 short stories learned from the Indians of South America as the author traveled to different lands. As described on the dust jacket, the tales are about "strange…

  1. Bulgarians: Four Folk Tales.

    ERIC Educational Resources Information Center

    Parpulova, Lubomira

    The four Bulgarian folk tales presented in this booklet are part of an ethnic heritage studies teaching unit on Bulgarian culture. The objective of the cultural awareness project is to help American students in elementary, junior high, and high school understand and appreciate Bulgarians and their culture. Titles of the folk tales are "Poor Little…

  2. Lost Opportunities: Rediscovering Fairy Tales

    ERIC Educational Resources Information Center

    Wipf, Joan Brogan; Da Ros-Voseles, Denise

    2012-01-01

    The power of fairy tales resonates with children around the world. Fairy tales connect children on an emotional level that can help guide them through the complexities of everyday life. The tales provide stories rich in cultural heritage and the human condition, stories that not only delight children but also instruct. Because fairy tales state…

  3. Tales of Accreditation Woe.

    ERIC Educational Resources Information Center

    Dickmeyer, Nathan

    2002-01-01

    Offers cautionary tales depicting how an "Enron mentality" infiltrated three universities and jeopardized their accreditation status. The schools were guilty, respectively, of bad bookkeeping, lack of strategy and stable leadership, and loss of academic integrity by selling degrees. (EV)

  4. TAL effectors and the executor R genes

    PubMed Central

    Zhang, Junli; Yin, Zhongchao; White, Frank

    2015-01-01

    Transcription activator-like (TAL) effectors are bacterial type III secretion proteins that function as transcription factors in plants during Xanthomonas/plant interactions, conditioning either host susceptibility and/or host resistance. Three types of TAL effector associated resistance (R) genes have been characterized—recessive, dominant non-transcriptional, and dominant TAL effector-dependent transcriptional based resistance. Here, we discuss the last type of R genes, whose functions are dependent on direct TAL effector binding to discrete effector binding elements in the promoters. Only five of the so-called executor R genes have been cloned, and commonalities are not clear. We have placed the protein products in two groups for conceptual purposes. Group 1 consists solely of the protein from pepper, BS3, which is predicted to have catalytic function on the basis of homology to a large conserved protein family. Group 2 consists of BS4C-R, XA27, XA10, and XA23, all of which are relatively short proteins from pepper or rice with multiple potential transmembrane domains. Group 2 members have low sequence similarity to proteins of unknown function in closely related species. Firm predictions await further experimentation on these interesting new members to the R gene repertoire, which have potential broad application in new strategies for disease resistance. PMID:26347759

  5. Effector triggered immunity

    PubMed Central

    Rajamuthiah, Rajmohan; Mylonakis, Eleftherios

    2014-01-01

    Pathogenic bacteria produce virulence factors called effectors, which are important components of the infection process. Effectors aid in pathogenesis by facilitating bacterial attachment, pathogen entry into or exit from the host cell, immunoevasion, and immunosuppression. Effectors also have the ability to subvert host cellular processes, such as hijacking cytoskeletal machinery or blocking protein translation. However, host cells possess an evolutionarily conserved innate immune response that can sense the pathogen through the activity of its effectors and mount a robust immune response. This “effector triggered immunity” (ETI) was first discovered in plants but recent evidence suggest that the process is also well conserved in metazoans. We will discuss salient points of the mechanism of ETI in metazoans from recent studies done in mammalian cells and invertebrate model hosts. PMID:25513770

  6. Twisters, Tall Tales, & Science Teaching

    ERIC Educational Resources Information Center

    Wilcox, Dawn Renee; Sterling, Donna R.

    2006-01-01

    Legends and tall tales have been part of the American culture for ages. Students are probably already familiar with the tales of how Pecos Bill fearlessly tamed a ferocious tornado, or Paul Bunyan effortlessly restrained a great river. Such tales have been passed down from generation to generation to explain humanity, the natural world, and…

  7. American Hyperbole: The Tall Tale.

    ERIC Educational Resources Information Center

    Pavonetti, Linda M.; Combs, Christine M.

    1999-01-01

    Discusses the historic derivation and the format and characteristics of traditional tall tales, and modern adaptations of these stories. Describes a selection of tall tales for modern young adult readers; notes titles and authors of original tall tales and those with female heroes. Discusses the enduring appeal of traditional and modern tall…

  8. TAL effector-mediated susceptibility to bacterial blight of cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial blight of cotton (BBC) caused by Xanthomonas campestris pv. malvacearum (Xcm) is a destructive disease that has recently re-emerged in the U.S. Xcm injects transcription activator-like (TAL) effectors that directly induce the expression of host susceptibility (S) or resistance (R) genes. ...

  9. Advanced Aerodynamic Control Effectors

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.

  10. A Wichita Migration Tale

    ERIC Educational Resources Information Center

    John, Elizabeth

    1983-01-01

    Captured in extraordinary detail in the early 19th century, when Wichita elders then living on the Red River could remember their birthplace on the Arkansas River, the tale reflects the anguish of a people fleeing for their lives, on foot, down the treeless grasslands of the Great Plains. (Author).

  11. Antibodies as effectors.

    PubMed

    Corbeil, L B

    2002-09-10

    Antibodies are critical in protection against extracellular microbial pathogens. Although antibodies also play a role in transplant/tumor rejection and in autoimmune disease, this paper focuses on defense against bovine infections. Effector mechanisms of different bovine isotypes, subisotypes and allotypes are discussed. The importance of antigen specificity is also stressed. PMID:12072231

  12. What Is a Folk Tale?

    ERIC Educational Resources Information Center

    Barnet, Judith M.

    1978-01-01

    Suggests how social studies classroom teachers can help students understand culture and folk art through study of folk tales. Activities involve students in class and group discussions of other cultures, story telling, illustrating folk tales, playing traditional games, and studying traditional foods and medicines. (Author/DB)

  13. A cautionary holiday tale.

    PubMed

    Wickham, Sara

    2015-12-01

    In this column, Sara Wickham takes a sideways look at issues relevant to midwives, students, women and families, inviting us to sit down with a cup of tea and ponder what we think we know. This month's seasonal story tells the tale of Rudolph the red-nosed quantity surveyor, who gets more than he has bargained for when he visits the labour ward in order to weigh the birth balls for a trust health and safety exercise and decides to make tea for the tired midwives.... PMID:26753265

  14. Folk Tales and Fairy Tales: Literature Curriculum C-D [Grades Three and Four]; Teacher's Guide.

    ERIC Educational Resources Information Center

    Oregon Univ., Eugene. Oregon Elementary English Project.

    This curriculum guide is intended to introduce elementary school students to folktales and fairy tales. Three categories of tales, each containing four examples, are included: "Encounters with Wee Folk,""Foolish Use of Wishes," and "Unlikely Success." The folktales and fairy tales in this unit are described as "wonder tales," tales that occur in…

  15. Deconstructing Gender in Revised Feminist Fairy Tales

    ERIC Educational Resources Information Center

    Mcandrew, Linda

    2013-01-01

    Power relationships are a central premise in children's literature, especially traditional fairy tales and modern feminist fairy tales. This is seen in many fairy tales where the main female character is in some distress, her Prince Charming rescues her, and they live happily ever after. Modern feminist fairy tales are understood to be a forum…

  16. Yee-e-e-Haw!: Tall Tales.

    ERIC Educational Resources Information Center

    Jordan, Anne Devereaux

    1997-01-01

    Outlines the characteristics of "tall tales." Fills in the historical background of tall tales, from the ancient myth of Gilgamesh to Baron Munchausen, the closest European progenitor of American tall tales. Opines that tall tales appear to have been created as a response to challenges posed by building a new nation. Lists 11 characteristics of…

  17. Robotic end effector

    SciTech Connect

    Minichan, R.L.

    1991-12-31

    This invention is comprised of an end effector for use in probing a surface with a robotic arm. The end effector has a first portion that carries a gamble with a probe, the gamble holding the probe normal to the surface, and a second portion with a set of three shafts within a housing for urging the gamble and probe against the surface. The second portion contains a potentiometer connected by another shaft to the first portion to measure the position of the first portion with respect to the second so that the second portion can be moved to place and maintain the shafts at the midpoint of their travel. Then, as irregularities in the surface are encountered, the first portion can respond by moving closer to or farther from the second portion.

  18. Robotic end effector

    DOEpatents

    Minichan, Richard L.

    1993-01-01

    An end effector for use in probing a surface with a robotic arm. The end effector has a first portion that carries a gimbal with a probe, the gimbal holding the probe normal to the surface, and a second portion with a set of three shafts within a housing for urging the gimbal and probe against the surface. The second portion contains a potentiometer connected by another shaft to the first portion to measure the position of the first portion with respect to the second so that the second portion can be moved to place and maintain the shafts at the midpoint of their travel. Then, as irregularities in the surface are encountered, the first portion can respond by moving closer to or farther from the second portion.

  19. Robotic end effector

    DOEpatents

    Minichan, R.L.

    1993-10-05

    An end effector is described for use in probing a surface with a robotic arm. The end effector has a first portion that carries a gimbal with a probe, the gimbal holding the probe normal to the surface, and a second portion with a set of three shafts within a housing for urging the gimbal and probe against the surface. The second portion contains a potentiometer connected by another shaft to the first portion to measure the position of the first portion with respect to the second so that the second portion can be moved to place and maintain the shafts at the midpoint of their travel. Then, as irregularities in the surface are encountered, the first portion can respond by moving closer to or farther from the second portion. 7 figures.

  20. Occupational health in fairy tales.

    PubMed

    Rivolta, Alice; Arienti, Federica; Smith, Derek R; Cesana, Giancarlo; Riva, Michele A

    2016-05-01

    Myths and folklore, as expressions of popular beliefs, provide valuable information on medical knowledge in earlier times. Fairy tales have often recounted occupational maladies throughout the ages and also provide some insight into the toxic effects of certain metals, such as mercury. Much historical information can be gleaned from unexpected sources, and as such, fairy tales should be more carefully scrutinized by contemporary researchers with an interest in the historical origins of workplace injury and disease. PMID:26756526

  1. Effector Glycosyltransferases in Legionella

    PubMed Central

    Belyi, Yury; Jank, Thomas; Aktories, Klaus

    2011-01-01

    Legionella causes severe pneumonia in humans. The pathogen produces an array of effectors, which interfere with host cell functions. Among them are the glucosyltransferases Lgt1, Lgt2 and Lgt3 from L. pneumophila. Lgt1 and Lgt2 are produced predominately in the post-exponential phase of bacterial growth, while synthesis of Lgt3 is induced mainly in the lag-phase before intracellular replication of bacteria starts. Lgt glucosyltransferases are structurally similar to clostridial glucosylating toxins. The enzymes use UDP–glucose as a donor substrate and modify eukaryotic elongation factor eEF1A at serine-53. This modification results in inhibition of protein synthesis and death of target cells.In addition to Lgts, Legionella genomes disclose several genes, coding for effector proteins likely to possess glycosyltransferase activities, including SetA (subversion of eukaryotic vesicle trafficking A), which influences vesicular trafficking in the yeast model system and displays tropism for late endosomal/lysosomal compartments of mammalian cells. This review mainly discusses recent results on the structure–function relationship of Lgt glucosyltransferases. PMID:21833323

  2. Two-axis angular effector

    DOEpatents

    Vaughn, Mark R.; Robinett, III, Rush D.; Phelan, John R.; Van Zuiden, Don M.

    1997-01-21

    A new class of coplanar two-axis angular effectors. These effectors combine a two-axis rotational joint analogous to a Cardan joint with linear actuators in a manner to produce a wider range of rotational motion about both axes defined by the joint. This new class of effectors also allows design of robotic manipulators having very high strength and efficiency. These effectors are particularly suited for remote operation in unknown surroundings, because of their extraordinary versatility. An immediate application is to the problems which arise in nuclear waste remediation.

  3. TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA targeting proteins

    PubMed Central

    Doyle, Erin L.; Stoddard, Barry L.; Voytas, Daniel F.; Bogdanove, Adam J.

    2013-01-01

    Transcription activator-like (TAL) effectors are transcription factors injected into plant cells by pathogenic bacteria in the genus Xanthomonas. They function as virulence factors by activating host genes important for disease, or as avirulence factors by turning on genes that provide resistance. DNA binding specificity is encoded by polymorphic repeats in each protein that correspond one-to-one with different nucleotides. This code has facilitated target identification and opened new avenues for engineering disease resistance. It has also enabled TAL effector customization for targeted gene control, genome editing, and other applications. This article reviews the structural basis for TAL effector-DNA specificity, the impact of the TAL effector-DNA code on plant pathology and engineered resistance, and recent accomplishments and future challenges in TAL effector-based DNA targeting. PMID:23707478

  4. MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility

    PubMed Central

    Hutin, Mathilde; Pérez-Quintero, Alvaro L.; Lopez, Camilo; Szurek, Boris

    2015-01-01

    Many plant-pathogenic xanthomonads rely on Transcription Activator-Like (TAL) effectors to colonize their host. This particular family of type III effectors functions as specific plant transcription factors via a programmable DNA-binding domain. Upon binding to the promoters of plant disease susceptibility genes in a sequence-specific manner, the expression of these host genes is induced. However, plants have evolved specific strategies to counter the action of TAL effectors and confer resistance. One mechanism is to avoid the binding of TAL effectors by mutations of their DNA binding sites, resulting in resistance by loss-of-susceptibility. This article reviews our current knowledge of the susceptibility hubs targeted by Xanthomonas TAL effectors, possible evolutionary scenarios for plants to combat the pathogen with loss-of-function alleles, and how this knowledge can be used overall to develop new pathogen-informed breeding strategies and improve crop resistance. PMID:26236326

  5. Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription activator-like (TAL) effectors found in Xanthomonas spp. promote bacterial growth and plant susceptibility by binding specific DNA sequences or, effector-binding elements (EBEs), and inducing host gene expression. In this study, we have found substantially different transcriptional pro...

  6. Fairy Tales around the World. [Lesson Plan].

    ERIC Educational Resources Information Center

    2002

    Fairy tales are stories either created or strongly influenced by oral traditions. Their plots feature stark conflicts between good and evil, with magic and luck determining the usually happy endings. While each culture and geographic region of the world has its own body of folk tales and fairy tales, certain themes and motifs tend to be repeated…

  7. Orbital maneuvering end effectors

    NASA Technical Reports Server (NTRS)

    Myers, W. Neill (Inventor); Forbes, John C. (Inventor); Barnes, Wayne L. (Inventor)

    1986-01-01

    This invention relates to an end effector device for grasping and maneuvering objects such as berthing handles of a space telescope. The device includes a V-shaped capture window defined as inclined surfaces in parallel face plates which converge toward a retainer recess in which the handle is retained. A pivotal finger (30) meshes with a pair of pivoted fingers which rotate in counterrotation. The fingers rotate to pull a handle within the capture window into recess where latches lock handle in the recess. To align the capture window, plates may be cocked plus or minus five degrees on base. Drive means is included in the form of a motor coupled with a harmonic drive speed reducer, which provides for slow movement of the fingers at a high torque so that large articles may be handled. Novelty of the invention is believed to reside in the combined intermeshing finger structure, drive means and the harmonic drive speed reducer, which features provide the required maneuverability and strength.

  8. Ladrillo and Tales of Juan Bobo: Puerto Rican Folk Tales.

    ERIC Educational Resources Information Center

    Matos, Reinaldo; Matos, Ana

    These two illustrated elementary readers contain the Spanish and English versions of the Puerto Rican folk tales, "Ladrillo" and "Cuentos de Juan Bobo." They are part of a series of reading materials for elementary-level migrant children. These materials are intended to help the child relate to his culture, develop interest in knowing about it and…

  9. HANSEL AND GRETEL: A TALE OF TERROR.

    PubMed

    White, Robert S

    2015-10-01

    In the analysis of a woman with multiple childhood traumas, the fairy tale "Hansel and Gretel" figured prominently. The author discusses the use of the fairy tale in this case at various levels. He suggests an interplay between a national myth, the fairy tale, and a personal myth-the patient's psychodynamics. The fairy tale can be used to illuminate personal meanings derived from it. In the experience of childhood trauma, the repeated reading of a fairy tale can help organize and defend against terrifying anxiety. PMID:26443949

  10. A Tale of Four Electrons

    ERIC Educational Resources Information Center

    Burgmayer, Paul

    2011-01-01

    "A Tale of Four Electrons" is a creative writing assignment used with 10th-grade Honors Chemistry students. The project helps students consolidate their learning about bonding--an important unifying theme in chemistry--and answers questions such as (1) How are ionic, metallic, and covalent bonds related? (2) How do variations in electron…

  11. Number Crunching: A Sheep's Tale

    ERIC Educational Resources Information Center

    Sam, Chris Lam

    2005-01-01

    In this article, the author talks about an allegorical tale which he has written as a message for teachers of mathematics. The story is about Gordon, who led a flock of small sheep. Gordon was a mathematics genius; however, his flock criticized his teaching of numbers and his boring lectures. His furry-god-farmer advised him to share his…

  12. Tale of survival tails off.

    PubMed

    Pallarito, K

    1991-02-25

    When Reader's Digest wove the tale of a scrappy rural hospital in Montana that raised enough in donations to keep from going under, it looked like a happy ending. But the last chapter on Sweet Grass Community Hospital's fight to survive is still being written, and it's a cliffhanger. PMID:10109267

  13. Childhood Tales: Selected Children's Stories.

    ERIC Educational Resources Information Center

    Cacciatore, Sharen Robertson

    This collection of three "Childhood Stories," includes some of the stories used as part of the "Story Train" program, an elementary literacy program that offers students the opportunity to be published either on the Internet or on a cable television show also called "Story Train." The tales in the collection, written by the program's creator, are…

  14. Fairy Tales for Two Readers.

    ERIC Educational Resources Information Center

    Criscoe, Betty L., Ed.; Lanasa, Philip J., III, Ed.

    The 15 adapted fairy tales presented in this book were prepared for use in practicing oral reading by a parent and a child, a teacher and a child, or two children, one of whom reads slightly better than the other. The stories in the book are arranged in dialogue format for two readers. The high interest/low readability stories in the book are…

  15. QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically

    PubMed Central

    Pérez-Quintero, Alvaro L.; Lamy, Léo; Gordon, Jonathan L.; Escalon, Aline; Cunnac, Sébastien; Szurek, Boris; Gagnevin, Lionel

    2015-01-01

    Transcription Activator-Like (TAL) effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.a. Repeat Variable Di-residue, or RVD). Knowing how TAL effectors differ from each other within and between strains would be useful to infer functional and evolutionary relationships, but their repetitive nature precludes reliable use of traditional alignment methods. The suite QueTAL was therefore developed to offer tailored tools for comparison of TAL effector genes. The program DisTAL considers each repeat as a unit, transforms a TAL effector sequence into a sequence of coded repeats and makes pair-wise alignments between these coded sequences to construct trees. The program FuncTAL is aimed at finding TAL effectors with similar DNA-binding capabilities. It calculates correlations between position weight matrices of potential target DNA sequence predicted from the RVD sequence, and builds trees based on these correlations. The programs accurately represented phylogenetic and functional relationships between TAL effectors using either simulated or literature-curated data. When using the programs on a large set of TAL effector sequences, the DisTAL tree largely reflected the expected species phylogeny. In contrast, FuncTAL showed that TAL effectors with similar binding capabilities can be found between phylogenetically distant taxa. This suite will help users to rapidly analyse any TAL effector genes of interest and compare them to other available TAL genes and should improve our understanding of TAL effectors evolution. It is available at http://bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi. PMID:26284082

  16. Improving a Gripper End Effector

    SciTech Connect

    Mullen, O Dennis; Smith, Christopher M.; Gervais, Kevin L.

    2001-01-31

    This paper discusses the improvement made to an existing four-bar linkage gripping end effector to adapt it for use in a current project. The actuating linkage was modified to yield higher jaw force overall and particularly in the critical range of jaw displacement

  17. Pourquoi Tales on the Literacy Stage

    ERIC Educational Resources Information Center

    Foster, Karen K.; Theiss, Deb; Buchanan-Butterfield, Dawna Lisa

    2008-01-01

    Since ancient times, humans have sought explanations for the mysteries of nature's beauty and variety. Like other kinds of folk stories, pourquoi tales can be considered parables about how humans and animals originated or why they look or behave the way they do. Pourquoi tales have high appeal, are generally simple and straightforward in…

  18. The Epistemic Value of Cautionary Tales

    ERIC Educational Resources Information Center

    Shields, William M.

    2006-01-01

    A cautionary tale has become something of a cottage industry in the past decade. To be sure, there has been plenty of material for these publications: Bhopal, Chernobyl, "Exxon Valdez," Three Mile Island, and "Challenger" have entered the lexicon as virtual synonyms for "disaster." Cautionary tale scenarios involve a different kind of causality.…

  19. A Tall Tale: Laura Amy Schlitz

    ERIC Educational Resources Information Center

    Gallagher, Mary Grace

    2008-01-01

    In this article, American author, children's librarian, and storyteller Laura Amy Schlitz is profiled. Schlitz is the winner of this year's Newbery Medal for her tall tale about the Mongols called "Gulnara the Tartar Warrior." Like her award-winning book, "Good Masters! Sweet Ladies!" (Candlewick, 2007), the tale takes place in the Middle Ages.…

  20. EffectorP: predicting fungal effector proteins from secretomes using machine learning.

    PubMed

    Sperschneider, Jana; Gardiner, Donald M; Dodds, Peter N; Tini, Francesco; Covarelli, Lorenzo; Singh, Karam B; Manners, John M; Taylor, Jennifer M

    2016-04-01

    Eukaryotic filamentous plant pathogens secrete effector proteins that modulate the host cell to facilitate infection. Computational effector candidate identification and subsequent functional characterization delivers valuable insights into plant-pathogen interactions. However, effector prediction in fungi has been challenging due to a lack of unifying sequence features such as conserved N-terminal sequence motifs. Fungal effectors are commonly predicted from secretomes based on criteria such as small size and cysteine-rich, which suffers from poor accuracy. We present EffectorP which pioneers the application of machine learning to fungal effector prediction. EffectorP improves fungal effector prediction from secretomes based on a robust signal of sequence-derived properties, achieving sensitivity and specificity of over 80%. Features that discriminate fungal effectors from secreted noneffectors are predominantly sequence length, molecular weight and protein net charge, as well as cysteine, serine and tryptophan content. We demonstrate that EffectorP is powerful when combined with in planta expression data for predicting high-priority effector candidates. EffectorP is the first prediction program for fungal effectors based on machine learning. Our findings will facilitate functional fungal effector studies and improve our understanding of effectors in plant-pathogen interactions. EffectorP is available at http://effectorp.csiro.au. PMID:26680733

  1. Familiar Fairy Tale Picture Books Transformed into Teen Novels.

    ERIC Educational Resources Information Center

    Chance, Rosemary

    2003-01-01

    Describes characteristics of fairy tales. Discusses use of fairy tales and novels for teens in the classroom. Presents annotations of 31 titles including both picture books and young adult novels grouped by nine popular tales. Concludes that through comparing picture books and teen novels, there is one last chance to introduce fairy tales to older…

  2. TAL effectors and activation of predicted host targets distinguish Asian from African strains of the rice pathogen Xanthomonas oryzae pv. oryzicola while strict conservation suggests universal importance of five TAL effectors

    PubMed Central

    Wilkins, Katherine E.; Booher, Nicholas J.; Wang, Li; Bogdanove, Adam J.

    2015-01-01

    Xanthomonas oryzae pv. oryzicola (Xoc) causes the increasingly important disease bacterial leaf streak of rice (BLS) in part by type III delivery of repeat-rich transcription activator-like (TAL) effectors to upregulate host susceptibility genes. By pathogen whole genome, single molecule, real-time sequencing and host RNA sequencing, we compared TAL effector content and rice transcriptional responses across 10 geographically diverse Xoc strains. TAL effector content is surprisingly conserved overall, yet distinguishes Asian from African isolates. Five TAL effectors are conserved across all strains. In a prior laboratory assay in rice cv. Nipponbare, only two contributed to virulence in strain BLS256 but the strict conservation indicates all five may be important, in different rice genotypes or in the field. Concatenated and aligned, TAL effector content across strains largely reflects relationships based on housekeeping genes, suggesting predominantly vertical transmission. Rice transcriptional responses did not reflect these relationships, and on average, only 28% of genes upregulated and 22% of genes downregulated by a strain are up- and down- regulated (respectively) by all strains. However, when only known TAL effector targets were considered, the relationships resembled those of the TAL effectors. Toward identifying new targets, we used the TAL effector-DNA recognition code to predict effector binding elements in promoters of genes upregulated by each strain, but found that for every strain, all upregulated genes had at least one. Filtering with a classifier we developed previously decreases the number of predicted binding elements across the genome, suggesting that it may reduce false positives among upregulated genes. Applying this filter and eliminating genes for which upregulation did not strictly correlate with presence of the corresponding TAL effector, we generated testable numbers of candidate targets for four of the five strictly conserved TAL

  3. Dexterous end effector flight demonstration

    NASA Technical Reports Server (NTRS)

    Carter, Edward L.; Monford, Leo G.

    1994-01-01

    The Dexterous End Effector Flight Experiment is a flight demonstration of newly developed equipment and methods which make for more dexterous manipulation of robotic arms. The following concepts are to be demonstrated: The Force Torque Sensor is a six axis load cell located at the end of the RMS which displays load data to the operator on the orbiter CCTV monitor. TRAC is a target system which provides six axis positional information to the operator. It has the characteristic of having high sensitivity to attitude misalignment while being flat. AUTO-TRAC is a variation of TRAC in which a computer analyzes a target, displays translational and attitude misalignment information, and provides cues to the operator for corrective inputs. The Magnetic End Effector is a fault tolerant end effector which grapples payloads using magnetic attraction. The Carrier Latch Assembly is a fault tolerant payload carrier, which uses mechanical latches and/or magnetic attraction to hold small payloads during launch/landing and to release payloads as desired. The flight experiment goals and objectives are explained. The experiment equipment is described, and the tasks to be performed during the demonstration are discussed.

  4. Space Station end effector strategy study

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J.; Jensen, Robert L.; Willshire, Kelli F.; Satterthwaite, Robert E.

    1987-01-01

    The results of a study are presented for terminology definition, identification of functional requirements, technolgy assessment, and proposed end effector development strategies for the Space Station Program. The study is composed of a survey of available or under-developed end effector technology, identification of requirements from baselined Space Station documents, a comparative assessment of the match between technology and requirements, and recommended strategies for end effector development for the Space Station Program.

  5. Orbital maneuvering vehicle end effectors

    NASA Technical Reports Server (NTRS)

    Myers, W. Neill (Inventor); Forbes, John C. (Inventor); Barnes, Wayne L. (Inventor)

    1988-01-01

    An end effector device (A) for grasping and holding an article such as a handle (18) of a space telescope is disclosed. The device includes a V-shaped capture window (74) defined as inclined surfaces (76, 78) in parallel face plates (22, 24) which converge toward a retainer recess (54) in which the handle is retained. A pivotal finger (30) meshes with a pair of pivoted fingers (26, 28) which rotate in counterrotation. The fingers rotate to pull a handle within the capture window into recess (54) where latches (50) lock handle (18) in the recess. To align the capture window, plates (22, 24) may be cocked plus or minus five degrees on base (64).

  6. A Fairy-Tale Landscape

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    Fun, fairy-tale nicknames have been assigned to features in this animated view of the workspace reachable by the robotic arm of NASA's Phoenix Mars Lander. For example, 'Sleepy Hollow' denotes a trench and 'Headless' designates a rock.

    A 'National Park,' marked by purple text and a purple arrow, has been set aside for protection until scientists and engineers have tested the operation of the robotic scoop. First touches with the scoop will be to the left of the 'National Park' line.

    Scientists use such informal names for easy identification of features of interest during the mission.

    In this view, rocks are circled in yellow, other areas of interest in green. The images were taken by the lander's 7-foot mast camera, called the Surface Stereo Imager.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Introducing Children to Folk Tales. Bill Harp Professional Teachers Library.

    ERIC Educational Resources Information Center

    Weir, Beth

    This book provides K-8 teachers with an introductory resource on folk tales. The book acknowledges that teachers are often very interested in folk tales but lack the time to research them. Each chapter contains some background information on a story type or a character. The book's six chapters are as follows: (1) "The Folk Tale Tradition"; (2)…

  8. ROBOTIC TANK INSPECTION END EFFECTOR

    SciTech Connect

    Rachel Landry

    1999-10-01

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related subtasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these subtasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these subtasks were derived from the original intent of

  9. Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases

    PubMed Central

    Watanabe, Takahito; Ochiai, Hiroshi; Sakuma, Tetsushi; Horch, Hadley W.; Hamaguchi, Naoya; Nakamura, Taro; Bando, Tetsuya; Ohuchi, Hideyo; Yamamoto, Takashi; Noji, Sumihare; Mito, Taro

    2012-01-01

    Hemimetabolous, or incompletely metamorphosing, insects are phylogenetically relatively basal and comprise many pests. However, the absence of a sophisticated genetic model system, or targeted gene-manipulation system, has limited research on hemimetabolous species. Here we use zinc-finger nuclease and transcription activator-like effector nuclease technologies to produce genetic knockouts in the hemimetabolous insect Gryllus bimaculatus. Following the microinjection of mRNAs encoding zinc-finger nucleases or transcription activator-like effector nucleases into cricket embryos, targeting of a transgene or endogenous gene results in sequence-specific mutations. Up to 48% of founder animals transmit disrupted gene alleles after zinc-finger nucleases microinjection compared with 17% after microinjection of transcription activator-like effector nucleases. Heterozygous offspring is selected using mutation detection assays that use a Surveyor (Cel-I) nuclease, and subsequent sibling crosses create homozygous knockout crickets. This approach is independent from a mutant phenotype or the genetic tractability of the organism of interest and can potentially be applied to manage insect pests using a non-transgenic strategy. PMID:22910363

  10. "Clockwork": Philip Pullman's Posthuman Fairy Tale

    ERIC Educational Resources Information Center

    Gooding, Richard

    2011-01-01

    This article examines the connections between posthumanism and narrative form in Philip Pullman's "Clockwork." Beginning with an account of Pullman's materialism, it argues that the novel represents consciousness and agency as emergent properties of matter, a position that manifests itself first in the tale's figurative language and later in the…

  11. Fairy Tale Retellings between Art and Pedagogy

    ERIC Educational Resources Information Center

    Joosen, Vanessa

    2005-01-01

    In this article, it is shown how authors of fairy tale retellings have incorporated ideas of feminist literary criticism into a fictional form. As such, these retellings display the tension between the pedagogic and aesthetic aspects of all children's literature. Jane Yolen's "Sleeping Ugly" is chosen as a case study: although it can be argued…

  12. Jet Engine Exhaust Nozzle Flow Effector

    NASA Technical Reports Server (NTRS)

    Turner, Travis L. (Inventor); Cano, Roberto J. (Inventor); Silcox, Richard J. (Inventor); Buehrle, Ralph D. (Inventor); Cagle, Christopher M. (Inventor); Cabell, Randolph H. (Inventor); Hilton, George C. (Inventor)

    2011-01-01

    A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.

  13. Jet Engine Exhaust Nozzle Flow Effector

    NASA Technical Reports Server (NTRS)

    Turner, Travis L. (Inventor); Cano, Roberto J. (Inventor); Silox, Richard J. (Inventor); Buehrle, Ralph D. (Inventor); Cagle, Christopher M. (Inventor); Cabell, Randolph H. (Inventor); Hilton, George C. (Inventor)

    2014-01-01

    A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.

  14. Spiral lead platen robotic end effector

    NASA Technical Reports Server (NTRS)

    Beals, David C. (Inventor)

    1990-01-01

    A robotic end effector is disclosed which makes use of a rotating platen with spiral leads used to impact lateral motion to gripping fingers. Actuation is provided by the contact of rolling pins with the walls of the leads. The use of the disclosed method of actuation avoids jamming and provides excellent mechanical advantage while remaining light in weight and durable. The entire end effector is compact and easily adapted for attachment to robotic arms currently in use.

  15. Functional Analysis of Hyaloperonospora arabidopsidis RXLR Effectors

    PubMed Central

    Pel, Michiel J. C.; Wintermans, Paul C. A.; Cabral, Adriana; Robroek, Bjorn J. M.; Seidl, Michael F.; Bautor, Jaqueline; Parker, Jane E.; Van den Ackerveken, Guido; Pieterse, Corné M. J.

    2014-01-01

    The biotrophic plant pathogen Hyaloperonospora arabidopsidis produces a set of putative effector proteins that contain the conserved RXLR motif. For most of these RXLR proteins the role during infection is unknown. Thirteen RXLR proteins from H. arabidopsidis strain Waco9 were analyzed for sequence similarities and tested for a role in virulence. The thirteen RXLR proteins displayed conserved N-termini and this N-terminal conservation was also found in the 134 predicted RXLR genes from the genome of H. arabidopsidis strain Emoy2. To investigate the effects of single RXLR effector proteins on plant defense responses, thirteen H. arabidopsidis Waco9 RXLR genes were expressed in Arabidopsis thaliana. Subsequently, these plants were screened for altered susceptibility to the oomycetes H. arabidopsidis and Phytophthora capsici, and the bacterial pathogen Pseudomonas syringae. Additionally, the effect of the RXLR proteins on flg22-triggered basal immune responses was assessed. Multifactorial analysis of results collated from all experiments revealed that, except for RXLR20, all RXLR effector proteins tested affected plant immunity. For RXLR9 this was confirmed using a P. syringae ΔCEL-mediated effector delivery system. Together, the results show that many H. arabidopsidis RXLR effectors have small effects on the plant immune response, suggesting that suppression of host immunity by this biotrophic pathogen is likely to be caused by the combined actions of effectors. PMID:25375163

  16. End effector with astronaut foot restraint

    NASA Technical Reports Server (NTRS)

    Monford, Leo G., Jr. (Inventor)

    1991-01-01

    The combination of a foot restraint platform designed primarily for use by an astronaut being rigidly and permanently attached to an end effector which is suitable for attachment to the manipulator arm of a remote manipulating system is described. The foot restraint platform is attached by a brace to the end effector at a location away from the grappling interface of the end effector. The platform comprises a support plate provided with a pair of stirrups for receiving the toe portion of an astronaut's boots when standing on the platform and a pair of heel retainers in the form of raised members which are fixed to the surface of the platform and located to provide abutment surfaces for abutting engagement with the heels of the astronaut's boots when his toes are in the stirrups. The heel retainers preclude a backward sliding movement of the feet on the platform and instead require a lifting of the heels in order to extract the feet. The brace for attaching the foot restraint platform to the end effector may include a pivot or swivel joint to permit various orientations of the platform with respect to the end effector.

  17. Rho GTPases and their effector proteins.

    PubMed Central

    Bishop, A L; Hall, A

    2000-01-01

    Rho GTPases are molecular switches that regulate many essential cellular processes, including actin dynamics, gene transcription, cell-cycle progression and cell adhesion. About 30 potential effector proteins have been identified that interact with members of the Rho family, but it is still unclear which of these are responsible for the diverse biological effects of Rho GTPases. This review will discuss how Rho GTPases physically interact with, and regulate the activity of, multiple effector proteins and how specific effector proteins contribute to cellular responses. To date most progress has been made in the cytoskeleton field, and several biochemical links have now been established between GTPases and the assembly of filamentous actin. The main focus of this review will be Rho, Rac and Cdc42, the three best characterized mammalian Rho GTPases, though the genetic analysis of Rho GTPases in lower eukaryotes is making increasingly important contributions to this field. PMID:10816416

  18. Comparison of gene activation by two TAL effectors from Xanthomonas axonopodis pv. manihotis reveals candidate host susceptibility genes in cassava.

    PubMed

    Cohn, Megan; Morbitzer, Robert; Lahaye, Thomas; Staskawicz, Brian J

    2016-08-01

    Xanthomonas axonopodis pv. manihotis (Xam) employs transcription activator-like (TAL) effectors to promote bacterial growth and symptom formation during infection of cassava. TAL effectors are secreted via the bacterial type III secretion system into plant cells, where they are directed to the nucleus, bind DNA in plant promoters and activate the expression of downstream genes. The DNA-binding activity of TAL effectors is carried out by a central domain which contains a series of repeat variable diresidues (RVDs) that dictate the sequence of bound nucleotides. TAL14Xam668 promotes virulence in Xam strain Xam668 and has been shown to activate multiple cassava genes. In this study, we used RNA sequencing to identify the full target repertoire of TAL14Xam668 in cassava, which includes over 50 genes. A subset of highly up-regulated genes was tested for activation by TAL14CIO151 from Xam strain CIO151. Although TAL14CIO151 and TAL14Xam668 differ by only a single RVD, they display differential activation of gene targets. TAL14CIO151 complements the TAL14Xam668 mutant defect, implying that shared target genes are important for TAL14Xam668 -mediated disease susceptibility. Complementation with closely related TAL effectors is a novel approach to the narrowing down of biologically relevant susceptibility genes of TAL effectors with multiple targets. This study provides an example of how TAL effector target activation by two strains within a single species of Xanthomonas can be dramatically affected by a small change in RVD-nucleotide affinity at a single site, and reflects the parameters of RVD-nucleotide interaction determined using designer TAL effectors in transient systems. PMID:26575863

  19. Modular construction of mammalian gene circuits using TALE transcriptional repressors.

    PubMed

    Li, Yinqing; Jiang, Yun; Chen, He; Liao, Weixi; Li, Zhihua; Weiss, Ron; Xie, Zhen

    2015-03-01

    An important goal of synthetic biology is the rational design and predictable implementation of synthetic gene circuits using standardized and interchangeable parts. However, engineering of complex circuits in mammalian cells is currently limited by the availability of well-characterized and orthogonal transcriptional repressors. Here, we introduce a library of 26 reversible transcription activator-like effector repressors (TALERs) that bind newly designed hybrid promoters and exert transcriptional repression through steric hindrance of key transcriptional initiation elements. We demonstrate that using the input-output transfer curves of our TALERs enables accurate prediction of the behavior of modularly assembled TALER cascade and switch circuits. We also show that TALER switches using feedback regulation exhibit improved accuracy for microRNA-based HeLa cancer cell classification versus HEK293 cells. Our TALER library is a valuable toolkit for modular engineering of synthetic circuits, enabling programmable manipulation of mammalian cells and helping elucidate design principles of coupled transcriptional and microRNA-mediated post-transcriptional regulation. PMID:25643171

  20. Myostatin gene mutated mice induced with tale nucleases.

    PubMed

    Zhou, Fangfang; Sun, Ruilin; Chen, Hongyan; Fei, Jian; Lu, Daru

    2015-01-01

    Myostain gene (MSTN) is expressed primarily in skeletal muscle, and negatively regulates skeletal muscle mass; it has been suggested that mice with MSTN inhibition have reduced adiposity and improved insulin sensitivity. Therefore, it is important to establish a fast and effective gene editing method. In this report, we established the myostatin mutated-mouse model by microinjection of Transcription Activator-Like Effector Nucleases (TALENs) mRNA within the mouse fertilized oocytes and achieved high rates of mutagenesis of the mouse MSTN in C57BL/6J. Six of 45 born mice carried target mutations and we appointed one as the parental mating with wild mouse to produce the F1 and backcross to produce the F2 generation. All the mutations of the mice were examined quickly and efficiently by high-resolution melting curve analysis (HRMA) and then verified by direct sequencing. We obtained the homozygous of the F2 generation which transmitted the mutant alleles to the progeny with 100% efficiency. Mutant mice exhibited increases in muscle mass comparable to those observed in wild-type mice. Therefore, combining TALEN-mediated gene targeting with HRMA technology is a superior method of constructing genetically modified mice through microinjection in the mouse fertilized oocytes with high efficiency and short time of selection. PMID:25695746

  1. Minimal Mimicry: Mere Effector Matching Induces Preference

    ERIC Educational Resources Information Center

    Sparenberg, Peggy; Topolinski, Sascha; Springer, Anne; Prinz, Wolfgang

    2012-01-01

    Both mimicking and being mimicked induces preference for a target. The present experiments investigate the minimal sufficient conditions for this mimicry-preference link to occur. We argue that mere effector matching between one's own and the other person's movement is sufficient to induce preference, independent of which movement is actually…

  2. Kinematic evaluation of end effector design

    NASA Astrophysics Data System (ADS)

    Edwards, Gary W.

    1992-09-01

    The complex, many degree-of-freedom end effectors at the leading edge of technology would be unusable in the sea bottom research environment. Simpler designs are required to provide adequate reliability for subsea use. This work examines selection of end effector designs to achieve optimum grasping ability with minimal mechanical complexity. A new method of calculating grasp stability is developed, incorporating elements of previous works in the field. Programs are developed which evaluate the ability of different end effector configurations to grasp representative objects (a cube, sphere, and infinite cylinder). End effector designs considered had circular palms with fingers located at the periphery, oriented so that each pointed to the center of the palm. The program tested configurations of from 1 to 4 fingers and from 1 to 3 links per finger. Three sets of finger proportions were considered: equal length links, half length links, and anthropomorphic proportions. The 2 finger, 2 link per finger configuration was determined to be the optimum design, and the half length proportions were selected as the best set of proportions.

  3. Bacterial Effector Nanoparticles as Breast Cancer Therapeutics.

    PubMed

    Herrera Estrada, Lina; Padmore, Trudy J; Champion, Julie A

    2016-03-01

    Bacterial pathogens trigger cell death by a variety of mechanisms, including injection of effector proteins. Effector proteins have great potential as anticancer agents because they efficiently subvert a variety of eukaryotic signaling pathways involved in cancer development, drug resistance, and metastasis. In breast cancer, MAPK and NFκB pathways are known to be dysregulated. YopJ, an effector from Yersinia pestis, downregulates MAPK and NFκB pathways to induce cell death in specific cell types. We expressed YopJ in Escherichia coli as a fusion protein with glutathione S-transferase (GST), forming self-assembled protein nanoparticles with diameters of 100 nm. YopJ-GST nanoparticles efficiently delivered protein to cells, replacing the need for the pathogen secretion mechanism for effector delivery to cells. These nanoparticles induced dose and time dependent death in SKBR-3 breast cancer cells. After 72 h, 97% of cells died, significantly more than with the same molar dose of doxorubicin. Treatment with sublethal doses of nanoparticles decreased cell migration in vitro and downregulated the MAPK ERK 1/2 pathway, which has been correlated to metastasis. Exposure to a panel of breast cancer cell lines showed that YopJ-GST nanoparticles are cytotoxic to different subtypes, including doxorubicin resistant cells. However, they were not cytotoxic to NIH/3T3 fibroblasts or HeLa cells. Thus, YopJ-GST nanoparticles demonstrate the potential of effector proteins as breast cancer therapeutics with selective cytotoxicity and the capacity to decrease metastatic predictive behaviors. PMID:26800341

  4. Fairy Tales as a Cultural Context in the French Classroom.

    ERIC Educational Resources Information Center

    Obergfell, Sandra C.

    1983-01-01

    Discusses the use of fairy tales in intermediate and advanced French courses as source material for discussion of French cultural values and traditional behavior patterns. Methods of analyzing values in a fairy tale and implementation in the classroom are discussed using "Le Petit Chaperon Rouge" as an example. (AMH)

  5. Using Fairy Tales to Change Perceptions of Self and Others.

    ERIC Educational Resources Information Center

    Gornicki, Sylvia B.

    Fairy tales can be used in the classroom to promote normal growth and development as well as carry a message of hope and faith in the strength and goodness of humans. Because fairy tales are imaginative literature, readers can safely experience and work through scary situations which are analogous to situations in real life. Bibliotherapy refers…

  6. Small Town Tales: Endemic Performance in Rural America.

    ERIC Educational Resources Information Center

    Klinger-Vartabedian, Laurel; Cregan, Lori

    Storytelling is a performance medium which is enhanced by the qualities indigenous to small towns: collective memory and common history. A type of narrative peculiar to small towns, the community-wide anecdote, is one example of storytelling. The transmittal of such tales is termed "endemic performance" because the retelling of the tales could…

  7. E-Classical Fairy Tales: Multimedia Builder as a Tool

    ERIC Educational Resources Information Center

    Eteokleous, Nikleia; Ktoridou, Despo; Tsolakidis, Symeon

    2011-01-01

    The study examines pre-service teachers' experiences in delivering a traditional-classical fairy tale using the Multimedia Builder software, in other words an e-fairy tale. A case study approach was employed, collecting qualitative data through classroom observations and focus groups. The results focus on pre-service teachers' reactions, opinions,…

  8. Larger than Life: Reading and Writing Tall Tales

    ERIC Educational Resources Information Center

    Tunks, Karyn

    2008-01-01

    The genre of tall tales is characterized by fictional, often intentionally ridiculous, stories that provide a reason for or origin of a natural phenomenon. Tall tales are often based on characters who are unusually adept or powerful; they are particularly appealing to children who are cognitively capable of understanding the tongue-in-cheek humor…

  9. CRIS Tales: Moral Dilemmas for Young School Children.

    ERIC Educational Resources Information Center

    Harriss, Susan C.

    This document contains a series of short case studies, called "tales" throughout the text, that describe moral dilemmas that arise in the lives of school-aged children. The tales are intended to help children develop their moral judgment and are meant to be read by teachers to their class. Suggestions for classroom use are provided. A tale…

  10. Normativity in Fairy Tales: Scope, Range and Modes of Communication

    ERIC Educational Resources Information Center

    Hohr, Hansjörg

    2013-01-01

    The article studies in three steps how the fairy tale articulates its normative content and what the educational consequence of this kind of communication is. First, the articulation of normativity in fictional literature in general is discussed. Second, the specific mode in which the fairy tale articulates its normativity is studied according to…

  11. Recovering Native Traditions and Tales for Younger Readers.

    ERIC Educational Resources Information Center

    Stott, Jon C.

    1995-01-01

    Reviews 14 children's books concerned with traditional Native American tales and experiences, written mostly by Native authors and published 1989-93. Includes books on Hiawatha, buffalo, the battle of the Little Bighorn, the Fetterman Fight, and traditional beliefs and values; Cree, Navajo, Chickasaw, and Seneca tales and stories; fictional…

  12. Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response

    PubMed Central

    2014-01-01

    Background Transcriptional activator-like (TAL) effectors, formerly known as the AvrBs3/PthA protein family, are DNA-binding effectors broadly found in Xanthomonas spp. that transactivate host genes upon injection via the bacterial type three-secretion system. Biologically relevant targets of TAL effectors, i.e. host genes whose induction is vital to establish a compatible interaction, have been reported for xanthomonads that colonize rice and pepper; however, citrus genes modulated by the TAL effectors PthA“s” and PthC“s” of the citrus canker bacteria Xanthomonas citri (Xc) and Xanthomonas aurantifolii pathotype C (XaC), respectively, are poorly characterized. Of particular interest, XaC causes canker disease in its host lemon (Citrus aurantifolia), but triggers a defense response in sweet orange. Results Based on, 1) the TAL effector-DNA binding code, 2) gene expression data of Xc and XaC-infiltrated sweet orange leaves, and 3) citrus hypocotyls transformed with PthA2, PthA4 or PthC1, we have identified a collection of Citrus sinensis genes potentially targeted by Xc and XaC TAL effectors. Our results suggest that similar with other strains of Xanthomonas TAL effectors, PthA2 and PthA4, and PthC1 to some extent, functionally converge. In particular, towards induction of genes involved in the auxin and gibberellin synthesis and response, cell division, and defense response. We also present evidence indicating that the TAL effectors act as transcriptional repressors and that the best scoring predicted DNA targets of PthA“s” and PthC“s” in citrus promoters predominantly overlap with or localize near to TATA boxes of core promoters, supporting the idea that TAL effectors interact with the host basal transcriptional machinery to recruit the RNA pol II and start transcription. Conclusions The identification of PthA“s” and PthC“s” targets, such as the LOB (LATERAL ORGAN BOUNDARY) and CCNBS genes that we report here, is key for the understanding

  13. Novel Control Effectors for Truss Braced Wing

    NASA Technical Reports Server (NTRS)

    White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv

    2015-01-01

    At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.

  14. Impact of end effector technology on telemanipulation performance

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Szakaly, Z.; Ohm, T.

    1990-01-01

    Generic requirements for end effector design are briefly summarized as derived from generic functional and operational requirements. Included is a brief summary of terms and definitions related to end effector technology. The second part contains a brief overview of end effector technology work as JPL during the past ten years, with emphasis on the evolution of new mechanical, sensing and control capabilities of end effectors. The third and major part is devoted to the description of current end effector technology. The ongoing work addresses mechanical, sensing and control details with emphasis on mechanical ruggedness, increased resolution in sensing, and close electronic and control integration with overall telemanipulator control system.

  15. Repeat-containing protein effectors of plant-associated organisms

    PubMed Central

    Mesarich, Carl H.; Bowen, Joanna K.; Hamiaux, Cyril; Templeton, Matthew D.

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms. PMID:26557126

  16. Effector discovery in the fungal wheat pathogen Zymoseptoria tritici.

    PubMed

    Mirzadi Gohari, Amir; Ware, Sarah B; Wittenberg, Alexander H J; Mehrabi, Rahim; Ben M'Barek, Sarrah; Verstappen, Els C P; van der Lee, Theo A J; Robert, Olivier; Schouten, Henk J; de Wit, Pierre P J G M; Kema, Gert H J

    2015-12-01

    Fungal plant pathogens, such as Zymoseptoria tritici (formerly known as Mycosphaerella graminicola), secrete repertoires of effectors to facilitate infection or trigger host defence mechanisms. The discovery and functional characterization of effectors provides valuable knowledge that can contribute to the design of new and effective disease management strategies. Here, we combined bioinformatics approaches with expression profiling during pathogenesis to identify candidate effectors of Z. tritici. In addition, a genetic approach was conducted to map quantitative trait loci (QTLs) carrying putative effectors, enabling the validation of both complementary strategies for effector discovery. In planta expression profiling revealed that candidate effectors were up-regulated in successive waves corresponding to consecutive stages of pathogenesis, contrary to candidates identified by QTL mapping that were, overall, expressed at low levels. Functional analyses of two top candidate effectors (SSP15 and SSP18) showed their dispensability for Z. tritici pathogenesis. These analyses reveal that generally adopted criteria, such as protein size, cysteine residues and expression during pathogenesis, may preclude an unbiased effector discovery. Indeed, genetic mapping of genomic regions involved in specificity render alternative effector candidates that do not match the aforementioned criteria, but should nevertheless be considered as promising new leads for effectors that are crucial for the Z. tritici-wheat pathosystem. PMID:25727413

  17. Specific Conformational States of Ras GTPase upon Effector Binding

    PubMed Central

    2012-01-01

    To uncover the structural and dynamical determinants involved in the highly specific binding of Ras GTPase to its effectors, the conformational states of Ras in uncomplexed form and complexed to the downstream effectors Byr2, PI3Kγ, PLCε, and RalGDS were investigated using molecular dynamics and cross-comparison of the trajectories. The subtle changes in the dynamics and conformations of Ras upon effector binding require an analysis that targets local changes independent of global motions. Using a structural alphabet, a computational procedure is proposed to quantify local conformational changes. Positions detected by this approach were characterized as either specific for a particular effector, specific for an effector domain type, or as effector unspecific. A set of nine structurally connected residues (Ras residues 5–8, 32–35, 39–42, 55–59, 73–78, and 161–165), which link the effector binding site to the distant C-terminus, changed dynamics upon effector binding, indicating a potential effector-unspecific signaling route within the Ras structure. Additional conformational changes were detected along the N-terminus of the central β-sheet. Besides the Ras residues at the effector interface (e.g., D33, E37, D38, and Y40), which adopt effector-specific local conformations, the binding signal propagates from the interface to distant hot-spot residues, in particular to Y5 and D57. The results of this study reveal possible conformational mechanisms for the stabilization of the active state of Ras upon downstream effector binding and for the structural determinants responsible for effector specificity. PMID:23316125

  18. Resurrecting the buried self: fairy tales and the analytic encounter.

    PubMed

    Jacobs, Linda

    2011-12-01

    The author uses the lens of myth and fairy tales to examine the narratives generated by the analytic experience. Fairy tales are understood as representing fundamental developmental conflicts, accounting for their enduring power over time. The analytic encounter is seen as an analogue of the fairy tale in which the hidden self, damaged by loss and abandonment, reemerges only through the redemptive power of [an] other's love. Clinical material is presented in which hidden parts of the patient's self are projected into the analyst for safekeeping; these hidden parts resonate with the analyst's own lost, unrealized potential and form an intersubjective experience which the author believes is transformative. The patient's dormant powers emerge in a newly experienced atmosphere of recognition, and in this way, the analytic encounter resembles the fairy tale in providing an identificatory bond and a protective space for the patient's hidden vitality. PMID:22221045

  19. Traveling Tales: Connecting Parents and Children through Writing.

    ERIC Educational Resources Information Center

    Reutzel, D. Ray; Fawson, Parker C.

    1990-01-01

    Describes the development and use of the Traveling Tales backpack for engaging children and parents in home writing activities. Shares the experiences of one child and how his family became involved in helping him write a book. (MG)

  20. Design and fabrication of an end effector

    NASA Technical Reports Server (NTRS)

    Crossley, F. R. E.; Umholtz, F. G.

    1975-01-01

    The construction is described of a prototype mechanical hand or 'end effector' for use on a remotely controlled robot, but with possible application as a prosthetic device. An analysis of hand motions is reported, from which it is concluded that the two most important manipulations (apart from grasps) are to be able to pick up a tool and draw it into a nested grip against the palm, and to be able to hold a pistol-grip tool such as an electric drill and pull the trigger. A model was tested and found capable of both these operations.

  1. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells

    PubMed Central

    Popa, Crina M.; Tabuchi, Mitsuaki; Valls, Marc

    2016-01-01

    Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding. PMID:27489796

  2. Formins as effector proteins of Rho GTPases

    PubMed Central

    Kühn, Sonja; Geyer, Matthias

    2014-01-01

    Formin proteins were recognized as effectors of Rho GTPases some 15 years ago. They contribute to different cellular actin cytoskeleton structures by their ability to polymerize straight actin filaments at the barbed end. While not all formins necessarily interact with Rho GTPases, a subgroup of mammalian formins, termed Diaphanous-related formins or DRFs, were shown to be activated by small GTPases of the Rho superfamily. DRFs are autoinhibited in the resting state by an N- to C-terminal interaction that renders the central actin polymerization domain inactive. Upon the interaction with a GTP-bound Rho, Rac, or Cdc42 GTPase, the C-terminal autoregulation domain is displaced from its N-terminal recognition site and the formin becomes active to polymerize actin filaments. In this review we discuss the current knowledge on the structure, activation, and function of formin-GTPase interactions for the mammalian formin families Dia, Daam, FMNL, and FHOD. We describe both direct and indirect interactions of formins with GTPases, which lead to formin activation and cytoskeletal rearrangements. The multifaceted function of formins as effector proteins of Rho GTPases thus reflects the diversity of the actin cytoskeleton in cells. PMID:24914801

  3. Analysis of Yersinia enterocolitica Effector Translocation into Host Cells Using Beta-lactamase Effector Fusions.

    PubMed

    Wolters, Manuel; Zobiak, Bernd; Nauth, Theresa; Aepfelbacher, Martin

    2015-01-01

    Many gram-negative bacteria including pathogenic Yersinia spp. employ type III secretion systems to translocate effector proteins into eukaryotic target cells. Inside the host cell the effector proteins manipulate cellular functions to the benefit of the bacteria. To better understand the control of type III secretion during host cell interaction, sensitive and accurate assays to measure translocation are required. We here describe the application of an assay based on the fusion of a Yersinia enterocolitica effector protein fragment (Yersinia outer protein; YopE) with TEM-1 beta-lactamase for quantitative analysis of translocation. The assay relies on cleavage of a cell permeant FRET dye (CCF4/AM) by translocated beta-lactamase fusion. After cleavage of the cephalosporin core of CCF4 by the beta-lactamase, FRET from coumarin to fluorescein is disrupted and excitation of the coumarin moiety leads to blue fluorescence emission. Different applications of this method have been described in the literature highlighting its versatility. The method allows for analysis of translocation in vitro and also in in vivo, e.g., in a mouse model. Detection of the fluorescence signals can be performed using plate readers, FACS analysis or fluorescence microscopy. In the setup described here, in vitro translocation of effector fusions into HeLa cells by different Yersinia mutants is monitored by laser scanning microscopy. Recording intracellular conversion of the FRET reporter by the beta-lactamase effector fusion in real-time provides robust quantitative results. We here show exemplary data, demonstrating increased translocation by a Y. enterocolitica YopE mutant compared to the wild type strain. PMID:26484613

  4. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes

    SciTech Connect

    Li, T; Huang, S; Zhao, XF; Wright, DA; Carpenter, S; Spalding, MH; Weeks, DP; Yang, B

    2011-08-08

    Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs to target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.

  5. Bioinformatic analysis of expression data to identify effector candidates.

    PubMed

    Reid, Adam J; Jones, John T

    2014-01-01

    Pathogens produce effectors that manipulate the host to the benefit of the pathogen. These effectors are often secreted proteins that are upregulated during the early phases of infection. These properties can be used to identify candidate effectors from genomes and transcriptomes of pathogens. Here we describe commonly used bioinformatic approaches that (1) allow identification of genes encoding predicted secreted proteins within a genome and (2) allow the identification of genes encoding predicted secreted proteins that are upregulated at important stages of the life cycle. Other approaches for bioinformatic identification of effector candidates, including OrthoMCL analysis to identify expanded gene families, are also described. PMID:24643549

  6. Miniature Trailing Edge Effector for Aerodynamic Control

    NASA Technical Reports Server (NTRS)

    Lee, Hak-Tae (Inventor); Bieniawski, Stefan R. (Inventor); Kroo, Ilan M. (Inventor)

    2008-01-01

    Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states.

  7. Active membrane cholesterol as a physiological effector.

    PubMed

    Lange, Yvonne; Steck, Theodore L

    2016-09-01

    Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily. PMID:26874289

  8. Rack Insertion End Effector (RIEE) automation

    NASA Technical Reports Server (NTRS)

    Malladi, Narasimha

    1993-01-01

    NASA is developing a mechanism to manipulate and insert Racks into the Space Station Logistic modules. The mechanism consists of the following: a base with three motorized degrees of freedom, a 3 section motorized boom that goes from 15 to 44 feet in length, and a Rack Insertion End Effector (RIEE) with 5 hand wheels for precise alignment. The robotics section was tasked with the automation of the RIEE unit. In this report, for the automation of the RIEE unit, application of the Perceptics Vision System was conceptually developed to determine the position and orientation of the RIEE relative to the logistic module, and a MathCad program is written to display the needed displacements for precise alignment and final insertion of the Rack. The uniqueness of this report is that the whole report is in fact a MathCad program including text, derivations, and executable equations with example inputs and outputs.

  9. Opioid Use in Fibromyalgia: A Cautionary Tale.

    PubMed

    Goldenberg, Don L; Clauw, Daniel J; Palmer, Roy E; Clair, Andrew G

    2016-05-01

    Multiple pharmacotherapies are available for the treatment of fibromyalgia (FM), including opioid analgesics. We postulate that the mechanism of action of traditional opioids predicts their lack of efficacy in FM. Literature searches of the MEDLINE and Cochrane Library databases were conducted using the search term opioid AND fibromyalgia to identify relevant articles, with no date limitations set. Citation lists in returned articles and personal archives of references were also examined for additional relevant items, and articles were selected based on the expert opinions of the authors. We found no evidence from clinical trials that opioids are effective for the treatment of FM. Observational studies have found that patients with FM receiving opioids have poorer outcomes than patients receiving nonopioids, and FM guidelines recommend against the use of opioid analgesics. Despite this, and despite the availability of alternative Food and Drug Administration-approved pharmacotherapies and the efficacy of nonpharmacologic therapies, opioids are commonly used in the treatment of FM. Factors associated with opioid use include female sex; geographic variation; psychological factors; a history of opioid use, misuse, or abuse; and patient or physician preference. The long-term use of opioid analgesics is of particular concern in the United States given the ongoing public health emergency relating to excess prescription opioid consumption. The continued use of opioids to treat FM despite a proven lack of efficacy, lack of support from treatment guidelines, and the availability of approved pharmacotherapy options provides a cautionary tale for their use in other chronic pain conditions. PMID:26975749

  10. Was Rumpelstiltskin Robbed? Using Fairy Tales to Promote Higher Level Thinking Skills.

    ERIC Educational Resources Information Center

    Rycik, Mary Taylor; Rycik, James A.

    1990-01-01

    Recommends using fairy tales to help students use higher-order thinking skills. Offers reading activities designed to promote analysis, synthesis, and evaluation while preserving the magic and fun of fairy tales. (MG)

  11. Acquisition of effector-specific and effector-independent components of sequencing skill.

    PubMed

    Berner, Michael P; Hoffman, Joachim

    2009-01-01

    In a serial reaction time task, participants practiced a repeating sequence with 1 hand. In interleaved blocks, they responded to random sequences with the other hand. Experiment 1 was composed of 5 sessions, each consisting of 30 blocks. Intermanual transfer, reflecting a hand-independent component of sequence knowledge, increased across session. A smaller but significant, nontransferable, and hand-specific component was evident in each session and did not increase with practice. Experiment 2 comprised only 1 session. Uninterrupted practice (no interleaved random blocks) improved hand-independent sequence learning in comparison with interrupted practice (as implemented in Experiment 1), whereas hand-specific sequence learning was unaffected by this between-subjects manipulation. These findings suggest separate mechanisms for effector-independent sequence learning and effector-specific acquisition of optimized response coarticulation. PMID:19073469

  12. Computational Prediction of Effector Proteins in Fungi: Opportunities and Challenges.

    PubMed

    Sonah, Humira; Deshmukh, Rupesh K; Bélanger, Richard R

    2016-01-01

    Effector proteins are mostly secretory proteins that stimulate plant infection by manipulating the host response. Identifying fungal effector proteins and understanding their function is of great importance in efforts to curb losses to plant diseases. Recent advances in high-throughput sequencing technologies have facilitated the availability of several fungal genomes and 1000s of transcriptomes. As a result, the growing amount of genomic information has provided great opportunities to identify putative effector proteins in different fungal species. There is little consensus over the annotation and functionality of effector proteins, and mostly small secretory proteins are considered as effector proteins, a concept that tends to overestimate the number of proteins involved in a plant-pathogen interaction. With the characterization of Avr genes, criteria for computational prediction of effector proteins are becoming more efficient. There are 100s of tools available for the identification of conserved motifs, signature sequences and structural features in the proteins. Many pipelines and online servers, which combine several tools, are made available to perform genome-wide identification of effector proteins. In this review, available tools and pipelines, their strength and limitations for effective identification of fungal effector proteins are discussed. We also present an exhaustive list of classically secreted proteins along with their key conserved motifs found in 12 common plant pathogens (11 fungi and one oomycete) through an analytical pipeline. PMID:26904083

  13. Nematode effector proteins: an emerging paradigm of parasitism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytonematodes use a stylet and secreted effectors to invade host tissues and extract nutrients to support their growth and development. The molecular function of nematode effectors is currently the subject of intense investigation. In this review, we summarize our current understanding of nematode ...

  14. Computational Prediction of Effector Proteins in Fungi: Opportunities and Challenges

    PubMed Central

    Sonah, Humira; Deshmukh, Rupesh K.; Bélanger, Richard R.

    2016-01-01

    Effector proteins are mostly secretory proteins that stimulate plant infection by manipulating the host response. Identifying fungal effector proteins and understanding their function is of great importance in efforts to curb losses to plant diseases. Recent advances in high-throughput sequencing technologies have facilitated the availability of several fungal genomes and 1000s of transcriptomes. As a result, the growing amount of genomic information has provided great opportunities to identify putative effector proteins in different fungal species. There is little consensus over the annotation and functionality of effector proteins, and mostly small secretory proteins are considered as effector proteins, a concept that tends to overestimate the number of proteins involved in a plant–pathogen interaction. With the characterization of Avr genes, criteria for computational prediction of effector proteins are becoming more efficient. There are 100s of tools available for the identification of conserved motifs, signature sequences and structural features in the proteins. Many pipelines and online servers, which combine several tools, are made available to perform genome-wide identification of effector proteins. In this review, available tools and pipelines, their strength and limitations for effective identification of fungal effector proteins are discussed. We also present an exhaustive list of classically secreted proteins along with their key conserved motifs found in 12 common plant pathogens (11 fungi and one oomycete) through an analytical pipeline. PMID:26904083

  15. Advanced Aerodynamic Design of Passive Porosity Control Effectors

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Viken, Sally A.; Wood, Richard M.; Bauer, Steven X. S.

    2001-01-01

    This paper describes aerodynamic design work aimed at developing a passive porosity control effector system for a generic tailless fighter aircraft. As part of this work, a computational design tool was developed and used to layout passive porosity effector systems for longitudinal and lateral-directional control at a low-speed, high angle of attack condition. Aerodynamic analysis was conducted using the NASA Langley computational fluid dynamics code USM3D, in conjunction with a newly formulated surface boundary condition for passive porosity. Results indicate that passive porosity effectors can provide maneuver control increments that equal and exceed those of conventional aerodynamic effectors for low-speed, high-alpha flight, with control levels that are a linear function of porous area. This work demonstrates the tremendous potential of passive porosity to yield simple control effector systems that have no external moving parts and will preserve an aircraft's fixed outer mold line.

  16. Tissue Specific Heterogeneity in Effector Immune Cell Response

    PubMed Central

    Tufail, Saba; Badrealam, Khan Farheen; Sherwani, Asif; Gupta, Umesh D.; Owais, Mohammad

    2013-01-01

    Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct “homing codes” (adhesion molecules and chemokine receptors) during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A) and sunlight (vitamin D3) prime dendritic cells, imprinting them to play centre stage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue-tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues along with giving an overview of tissue tropism in B cells. PMID:23986763

  17. Tell Me a Fairy Tale: A Parent's Guide to Telling Magical and Mythical Stories.

    ERIC Educational Resources Information Center

    Adler, Bill, Jr.

    Designed to help parents tell and retell their children's favorite fairy tales and stories, this collection condenses dozens of plots and lists characters, so that the parent can make a tale as long or as short as a sleepy child needs, personalize the story, and convey the true wonder of the originals through the spoken voice. The 64 tales in the…

  18. Ugiuvangmiut Quliapyuit = King Island Tales. Eskimo History and Legends from Bering Strait.

    ERIC Educational Resources Information Center

    Kaplan, Lawrence D., Ed.

    The collection of native tales from King Island, Alaska, contains tales told originally in Inupiaq Eskimo by seven native elders. Introductory sections provide background information on the storytellers, King Island Village and its people, traditional life there, and the language of the King Islanders. The 25 tales are divided into groups: "The…

  19. Action selection in multi-effector decision making

    PubMed Central

    Madlon-Kay, Seth; Pesaran, Bijan; Daw, Nathaniel D.

    2012-01-01

    Decision making and reinforcement learning over movements suffer from the curse of dimensionality: the space of possible movements is too vast to search or even represent in its entirety. When actions involve only a single effector, this problem can be ameliorated by considering that effector separately; accordingly, the brain’s sensorimotor systems can subdivide choice by representing values and actions separately for each effector. However, for many actions, such as playing the piano, the value of an action by an effector (e.g., a hand) depends inseparably on the actions of other effectors. By definition, the values of such coordinated multi-effector actions cannot be represented by effector-specific action values, such as those that have been most extensively investigated in parietal and premotor regions. For such actions, one possible solution is to choose according to more abstract valuations over different goods or options, which can then be mapped onto the necessary motor actions. Such an approach separates the learning and decision problem, which will often be lower-dimensional than the space of possible movements, from the multi-effector movement planning problem. The ventromedial prefrontal cortex (vmPFC) is thought to contain goods-based value signals, so we hypothesized that this region might preferentially drive multi-effector action selection. To examine how the brain solves this problem, we used fMRI to compare patterns of BOLD activity in humans during reward learning tasks in which options were selected through either unimanual or bimanual actions, and in which the response requirements in the latter condition inseparably coupled valuation across both hands. We found value signals in the bilateral medial motor cortex and vmPFC, and consistent with previous studies, the medial motor value signals contained contra-lateral biases indicating effector-specificity, while the vmPFC value signals did not exhibit detectable effector specificity. Although

  20. A tale of two acute extradural hematomas

    PubMed Central

    Adeleye, Amos Olufemi; Jite, Ikechi E.; Smith, Omolara A.

    2016-01-01

    Background: In much of the Western hemisphere, mortality from traumatic acute extradural hematomas (AEDH) has been drastically brought down toward 0%. This is still not the case however in most developing countries. Case Description: This report represents a tragi-comic tale of two cases of traumatic AEDH managed by an academic neurosurgeon in a neurosurgically ill-resourced private health facility during a nationwide industrial strike action preventing clinical-surgical care in the principal author's University Teaching Hospital. A young man presented with altered consciousness, Glasgow Coma Score (GCS) 14/15, following a road accident. The cranial computed tomography (CT) scan was obtained only 9 h after its request, long after the man had actually deteriorated to GCS 7/15 with pupillary changes. The neurosurgeon, summoned from the nearby University Teaching Hospital for the operative care of this man, arrived on-site and was about moving the patient into the operative room when he took the final breaths and died, all within 2 h of the belated neuroimaging. This scenario repeated itself in the same health facility just 24 h later with another young man who presented GCS 7/15 and another identical CT evidence of traumatic AEDH. With more financially able relations, the diagnostic/surgical care of this second patient was much more prompt. He made a very brisk recovery from neurosurgical operative intervention. He is alive and well, 5-month postoperative. Conclusions: In most low-resourced health systems of the developing countries, a significant proportion of potentially salvageable cases of AEDH still perish from this disease condition. PMID:27213108

  1. Rack Insertion End Effector (RIEE) guidance

    NASA Technical Reports Server (NTRS)

    Malladi, Narasimha S.

    1994-01-01

    NASA-KSC has developed a mechanism to handle and insert Racks into the Space Station Logistic Modules. This mechanism consists of a Base with 3 motorized degrees of freedom, a 3 section motorized Boom that goes from 15 to 44 feet in length, and a Rack Insertion End Effector (RIEE) with 5 hand wheels for precise alignment. During the 1993 NASA-ASEE Summer Faculty Fellowship Program at KSC, I designed an Active Vision (Camera) Arrangement and developed an algorithm to determine (1) the displacements required by the Room for its initial positioning and (2) the rotations required at the five hand-wheels of the RIEE, for the insertion of the Rack, using the centroids fo the Camera Images of the Location Targets in the Logistic Module. Presently, during the summer of '94, I completed the preliminary design of an easily portable measuring instrument using encoders to obtain the 3-Dimensional Coordinates of Location Targets in the Logistics Module relative to the RIEE mechanism frame. The algorithm developed in '93 can use the output of this instrument also. Simplification of the '93 work and suggestions for the future work are discussed.

  2. Human Urinary Exosomes as Innate Immune Effectors

    PubMed Central

    Hiemstra, Thomas F.; Charles, Philip D.; Gracia, Tannia; Hester, Svenja S.; Gatto, Laurent; Al-Lamki, Rafia; Floto, R. Andres; Su, Ya; Skepper, Jeremy N.

    2014-01-01

    Exosomes are small extracellular vesicles, approximately 50 nm in diameter, derived from the endocytic pathway and released by a variety of cell types. Recent data indicate a spectrum of exosomal functions, including RNA transfer, antigen presentation, modulation of apoptosis, and shedding of obsolete protein. Exosomes derived from all nephron segments are also present in human urine, where their function is unknown. Although one report suggested in vitro uptake of exosomes by renal cortical collecting duct cells, most studies of human urinary exosomes have focused on biomarker discovery rather than exosome function. Here, we report results from in-depth proteomic analyses and EM showing that normal human urinary exosomes are significantly enriched for innate immune proteins that include antimicrobial proteins and peptides and bacterial and viral receptors. Urinary exosomes, but not the prevalent soluble urinary protein uromodulin (Tamm–Horsfall protein), potently inhibited growth of pathogenic and commensal Escherichia coli and induced bacterial lysis. Bacterial killing depended on exosome structural integrity and occurred optimally at the acidic pH typical of urine from omnivorous humans. Thus, exosomes are innate immune effectors that contribute to host defense within the urinary tract. PMID:24700864

  3. Bacterial secreted effectors and caspase-3 interactions

    PubMed Central

    Wall, Daniel M; McCormick, Beth A

    2014-01-01

    Apoptosis is a critical process that intrinsically links organism survival to its ability to induce controlled death. Thus, functional apoptosis allows organisms to remove perceived threats to their survival by targeting those cells that it determines pose a direct risk. Central to this process are apoptotic caspases, enzymes that form a signalling cascade, converting danger signals via initiator caspases into activation of the executioner caspase, caspase-3. This enzyme begins disassembly of the cell by activating DNA degrading enzymes and degrading the cellular architecture. Interaction of pathogenic bacteria with caspases, and in particular, caspase-3, can therefore impact both host cell and bacterial survival. With roles outside cell death such as cell differentiation, control of signalling pathways and immunomodulation also being described for caspase-3, bacterial interactions with caspase-3 may be of far more significance in infection than previously recognized. In this review, we highlight the ways in which bacterial pathogens have evolved to subvert caspase-3 both through effector proteins that directly interact with the enzyme or by modulating pathways that influence its activation and activity. PMID:25262664

  4. System for exchanging tools and end effectors on a robot

    DOEpatents

    Burry, D.B.; Williams, P.M.

    1991-02-19

    A system and method for exchanging tools and end effectors on a robot permits exchange during a programmed task. The exchange mechanism is located off the robot, thus reducing the mass of the robot arm and permitting smaller robots to perform designated tasks. A simple spring/collet mechanism mounted on the robot is used which permits the engagement and disengagement of the tool or end effector without the need for a rotational orientation of the tool to the end effector/collet interface. As the tool changing system is not located on the robot arm no umbilical cords are located on robot. 12 figures.

  5. System for exchanging tools and end effectors on a robot

    DOEpatents

    Burry, David B.; Williams, Paul M.

    1991-02-19

    A system and method for exchanging tools and end effectors on a robot permits exchange during a programmed task. The exchange mechanism is located off the robot, thus reducing the mass of the robot arm and permitting smaller robots to perform designated tasks. A simple spring/collet mechanism mounted on the robot is used which permits the engagement and disengagement of the tool or end effector without the need for a rotational orientation of the tool to the end effector/collet interface. As the tool changing system is not located on the robot arm no umbilical cords are located on robot.

  6. Experimental approaches to investigate effector translocation into host cells in the Ustilago maydis/maize pathosystem.

    PubMed

    Tanaka, Shigeyuki; Djamei, Armin; Presti, Libera Lo; Schipper, Kerstin; Winterberg, Sarah; Amati, Simone; Becker, Dirk; Büchner, Heike; Kumlehn, Jochen; Reissmann, Stefanie; Kahmann, Regine

    2015-01-01

    The fungus Ustilago maydis is a pathogen that establishes a biotrophic interaction with Zea mays. The interaction with the plant host is largely governed by more than 300 novel, secreted protein effectors, of which only four have been functionally characterized. Prerequisite to examine effector function is to know where effectors reside after secretion. Effectors can remain in the extracellular space, i.e. the plant apoplast (apoplastic effectors), or can cross the plant plasma membrane and exert their function inside the host cell (cytoplasmic effectors). The U. maydis effectors lack conserved motifs in their primary sequences that could allow a classification of the effectome into apoplastic/cytoplasmic effectors. This represents a significant obstacle in functional effector characterization. Here we describe our attempts to establish a system for effector classification into apoplastic and cytoplasmic members, using U. maydis for effector delivery. PMID:26118724

  7. The TALE face of Hox proteins in animal evolution

    PubMed Central

    Merabet, Samir; Galliot, Brigitte

    2015-01-01

    Hox genes are major regulators of embryonic development. One of their most conserved functions is to coordinate the formation of specific body structures along the anterior-posterior (AP) axis in Bilateria. This architectural role was at the basis of several morphological innovations across bilaterian evolution. In this review, we traced the origin of the Hox patterning system by considering the partnership with PBC and Meis proteins. PBC and Meis belong to the TALE-class of homeodomain-containing transcription factors and act as generic cofactors of Hox proteins for AP axis patterning in Bilateria. Recent data indicate that Hox proteins acquired the ability to interact with their TALE partners in the last common ancestor of Bilateria and Cnidaria. These interactions relied initially on a short peptide motif called hexapeptide (HX), which is present in Hox and non-Hox protein families. Remarkably, Hox proteins can also recruit the TALE cofactors by using specific PBC Interaction Motifs (SPIMs). We describe how a functional Hox/TALE patterning system emerged in eumetazoans through the acquisition of SPIMs. We anticipate that interaction flexibility could be found in other patterning systems, being at the heart of the astonishing morphological diversity observed in the animal kingdom. PMID:26347770

  8. Aesop and Company: Using Traditional Tales in EFL Classes.

    ERIC Educational Resources Information Center

    Allen, Virginia French

    Making repeated use of a traditional tale can offer various kinds of language practice. Many new teachers use a reading passage just once, investing considerable time in the explanation of the vocabulary needed to understand it, and then rush on to something new. Actually, the best potentialities of the material are still to be tapped, through…

  9. Telling Different Tales: Possible Childhoods in Children's Literature

    ERIC Educational Resources Information Center

    Sreenivas, Deepa

    2011-01-01

    This article draws on the insights/questions that emerged while putting together a set of stories for children published in a series named "Different Tales." These stories, set in Dalit and other minority communities, problematize the normative grids through which we view "childhood" as they depict the complex ways in which children negotiate and…

  10. Folktale Themes and Activities for Children. Volume 1: Pourquoi Tales.

    ERIC Educational Resources Information Center

    Kraus, Anne Marie

    This book helps educators design story times that extend and explore a variety of how-and-why stories with students. Chapters include: (1) "Pourquoi Tales"; (2) "Activities"; (3) "Story Themes and Topics"; and (4) "Annotated Bibliography." Further readings categorized by geographic location, and other materials can be used to prepare story hours,…

  11. The Lobster Tale: An Exercise in Critical Thinking

    ERIC Educational Resources Information Center

    Stepanovich, Paul L.

    2009-01-01

    Professors in management and business are encouraged to incorporate critical thinking as an objective in their courses. "The Lobster Tale" provides an opportunity to engage students in various levels of critical thinking, ranging from a relatively superficial reading to an examination of the deeper, often hidden issues. Using the foundations of…

  12. The Tale of Red Emmy: An Irish Witch in Appalachia.

    ERIC Educational Resources Information Center

    Wagaman, Gena D.

    The Appalachian "Tale of Red Emmy" presented in the novel "Oral History" by Lee Smith (1983), reveals both an Irish origin and an American transformation. Granny Younger, one of Smith's narrators, tells of a curse visited on four generations of the Cantrell family after Almarine Cantrell chanced upon the witch Red Emmy in the wilds of the…

  13. Teaching Trickster Tales: A Comparison of Instructional Approaches in Composition.

    ERIC Educational Resources Information Center

    Jarvey, Marya; McKeough, Anne

    A study compared two approaches to teaching 38 grade 4 students in Canada to write trickster tales. By integrating understandings from cognitive and neo-Piagetian theory into instructional method, a novel approach to writing instruction was created. The compositions of children taught via this method were compared to those of students who…

  14. "Can Drama, through Icelandic Tales, Increase Children's Vocabulary"?

    ERIC Educational Resources Information Center

    Thorkelsdóttir, Rannveig Björk; Ragnarsdóttir, Ása Helga

    2013-01-01

    The article is based on a study, done by Ása Helga Ragnarsdóttir and Rannveig Björk Þorkelsdóttir in 2010-2011 were the authors explored the research question: Can drama, through Icelandic tales, increase children's vocabulary? Methodology of the study was quantitative approach (comparative research). Data was gathered through questionnaires and a…

  15. Shamans and Kushtakas: North Coast Tales of the Supernatural.

    ERIC Educational Resources Information Center

    Beck, Mary Giraudo

    The Tlingit and Haida are Native Americans who inhabit southeast Alaska and share many traditions and stories. Written by a non-native scholar, this book contains nine Tlingit and Haida tales concerned with shamans and kushtakas. Land otters were fearful hybrid beings of the spirit world. Able to live on land and in water, they had the special…

  16. Indian Tales of the Northern Rockies. Indian Culture Series.

    ERIC Educational Resources Information Center

    Old Coyote, Sally; Toineeta, Joy Yellowtail

    Part of the Montana Council for Indian Education's Indian Culture Series, the book contains six folk stories recorded on reservations and by headstart teachers. The stories are: "The Owl", a Gros Ventre tale; "How the Robin Got a Red Breast", from the Flathead Tribe; "Old Man Coyote and the Wild Geese", a Crow Indian folk story; "How the Animals…

  17. Actin dynamics shape microglia effector functions.

    PubMed

    Uhlemann, Ria; Gertz, Karen; Boehmerle, Wolfgang; Schwarz, Tobias; Nolte, Christiane; Freyer, Dorette; Kettenmann, Helmut; Endres, Matthias; Kronenberg, Golo

    2016-06-01

    Impaired actin filament dynamics have been associated with cellular senescence. Microglia, the resident immune cells of the brain, are emerging as a central pathophysiological player in neurodegeneration. Microglia activation, which ranges on a continuum between classical and alternative, may be of critical importance to brain disease. Using genetic and pharmacological manipulations, we studied the effects of alterations in actin dynamics on microglia effector functions. Disruption of actin dynamics did not affect transcription of genes involved in the LPS-triggered classical inflammatory response. By contrast, in consequence of impaired nuclear translocation of phospho-STAT6, genes involved in IL-4 induced alternative activation were strongly downregulated. Functionally, impaired actin dynamics resulted in reduced NO secretion and reduced release of TNFalpha and IL-6 from LPS-stimulated microglia and of IGF-1 from IL-4 stimulated microglia. However, pathological stabilization of the actin cytoskeleton increased LPS-induced release of IL-1beta and IL-18, which belong to an unconventional secretory pathway. Reduced NO release was associated with decreased cytoplasmic iNOS protein expression and decreased intracellular arginine uptake. Furthermore, disruption of actin dynamics resulted in reduced microglia migration, proliferation and phagocytosis. Finally, baseline and ATP-induced [Ca(2+)]int levels were significantly increased in microglia lacking gelsolin, a key actin-severing protein. Together, the dynamic state of the actin cytoskeleton profoundly and distinctly affects microglia behaviours. Disruption of actin dynamics attenuates M2 polarization by inhibiting transcription of alternative activation genes. In classical activation, the role of actin remodelling is complex, does not relate to gene transcription and shows a major divergence between cytokines following conventional and unconventional secretion. PMID:25989853

  18. An intelligent end-effector for a rehabilitation robot.

    PubMed

    Gosine, R G; Harwin, W S; Furby, L J; Jackson, R D

    1989-01-01

    A UMI RTX robot, modified with limited end-effector sensors and a restricted but effective vision system, is currently used in a developmental education setting for severely physically disabled children. The low physical and cognitive abilities of the children involved in the project require a semi-autonomous robot with environmental sensing capability to operate in a task oriented mode. A variety of low-cost sensors including proximity, distance, force and slip sensors, have been investigated for integration in end-effectors for the RTX robot. The sensors employed on a modified end-effector are detailed and experimental results are presented. A design for an end-effector with integrated sensors is discussed. The integration of the sensor information into a high-level, task-oriented programming language is detailed and examples of high-level control sequences using sensor inputs are presented. Finally, the development of intelligent gripping strategies based on sensor information is discussed. PMID:2733012

  19. Robotic end-effector for rewaterproofing shuttle tiles

    NASA Technical Reports Server (NTRS)

    Manouchehri, Davoud; Hansen, Joseph M.; Wu, Cheng M.; Yamamoto, Brian S.; Graham, Todd

    1992-01-01

    This paper summarizes work by Rockwell International's Space Systems Division's Robotics Group at Downey, California. The work is part of a NASA-led team effort to automate Space Shuttle rewaterproofing in the Orbiter Processing Facility at the Kennedy Space Center and the ferry facility at the Ames-Dryden Flight Research Facility. Rockwell's effort focuses on the rewaterproofing end-effector, whose function is to inject hazardous dimethylethyloxysilane into thousands of ceramic tiles on the underside of the orbiter after each flight. The paper has five sections. First, it presents background on the present manual process. Second, end-effector requirements are presented, including safety and interface control. Third, a design is presented for the five end-effector systems: positioning, delivery, containment, data management, and command and control. Fourth, end-effector testing and integrating to the total system are described. Lastly, future applications for this technology are discussed.

  20. Gunite Scarifying End Effector. Innovative Technology Summary Report

    SciTech Connect

    2001-09-01

    The Gunite Scarifying End Effector (GSEE) is designed to remove a layer of the gunite tank walls, which are contaminated with radioactivity. Removing this radioactivity is necessary to close the tank.

  1. Design, testing and evaluation of latching end effector

    NASA Technical Reports Server (NTRS)

    Walker, B.; Vandersluis, R.

    1995-01-01

    The Latching End Effector (LEE) forms part of the Space Station Remote Manipulator System (SSRMS) for which Spar Aerospace Ltd, Space Systems Division is the prime contractor. The design, testing and performance evaluation of the Latching End Effector mechanisms is the subject of this paper focusing on: (1) ambient, thermal and vibration testing; (2) snare/rigidize performance testing and interaction during payload acquisition; and (3) latch/umbilical test results and performance.

  2. Views of the manipulator development facility end effector simulation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Closeup view of the manipulator development facility (MDF) during an end effector simulation showing the two specially made extensions deployed on April 16 by the STS 51-D crewmembers (30953); Medium closeup view of MDF. The white cylindar at right represents the Syncon IV (LEASAT) satellite. The robot device in the foreground is the forearm and end effector of a training version of the remote manipulator system (RMS). Attached to the arm's end are two flyswatter-like tools (30954-5).

  3. The RalGEF-Ral Effector Signaling Network

    PubMed Central

    Neel, Nicole F.; Martin, Timothy D.; Stratford, Jeran K.; Zand, Tanya P.; Reiner, David J.; Der, Channing J.

    2011-01-01

    The high frequency of RAS mutations in human cancers (33%) has stimulated intense interest in the development of anti-Ras inhibitors for cancer therapy. Currently, the major focus of these efforts is centered on inhibitors of components involved in Ras downstream effector signaling. In particular, more than 40 inhibitors of the Raf-MEK-ERK mitogen-activated protein kinase cascade and phosphoinositide 3-kinase-AKT-mTOR effector signaling networks are currently under clinical evaluation. However, these efforts are complicated by the fact that Ras can utilize at least 9 additional functionally distinct effectors, with at least 3 additional effectors with validated roles in Ras-mediated oncogenesis. Of these, the guanine nucleotide exchange factors of the Ras-like (Ral) small GTPases (RalGEFs) have emerged as important effectors of mutant Ras in pancreatic, colon, and other cancers. In this review, we summarize the evidence for the importance of this effector pathway in cancer and discuss possible directions for therapeutic inhibition of aberrant Ral activation and signaling. PMID:21779498

  4. pH sensing by intracellular Salmonella induces effector translocation.

    PubMed

    Yu, Xiu-Jun; McGourty, Kieran; Liu, Mei; Unsworth, Kate E; Holden, David W

    2010-05-21

    Salmonella enterica is an important intracellular bacterial pathogen of humans and animals. It replicates within host-cell vacuoles by delivering virulence (effector) proteins through a vacuolar membrane pore made by the Salmonella pathogenicity island 2 (SPI-2) type III secretion system (T3SS). T3SS assembly follows vacuole acidification, but when bacteria are grown at low pH, effector secretion is negligible. We found that effector secretion was activated at low pH from mutant strains lacking a complex of SPI-2-encoded proteins SsaM, SpiC, and SsaL. Exposure of wild-type bacteria to pH 7.2 after growth at pH 5.0 caused dissociation and degradation of SsaM/SpiC/SsaL complexes and effector secretion. In infected cells, loss of the pH 7.2 signal through acidification of host-cell cytosol prevented complex degradation and effector translocation. Thus, intravacuolar Salmonella senses host cytosolic pH, resulting in the degradation of regulatory complex proteins and effector translocation. PMID:20395475

  5. Characterization of the largest effector gene cluster of Ustilago maydis.

    PubMed

    Brefort, Thomas; Tanaka, Shigeyuki; Neidig, Nina; Doehlemann, Gunther; Vincon, Volker; Kahmann, Regine

    2014-07-01

    In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function. PMID:24992561

  6. Fairy Tales and Fantasy: Bridges to Literature--Using Fairy Tales and Fantasy to Motivate the Reluctant Reader.

    ERIC Educational Resources Information Center

    Dungey, Joan M.

    Designed to give children a sense of the cultural heritage that fairy tales represent, this instructional unit was originally developed to motivate eighth-grade low-level readers and was later adapted for English as a second language classes and for a variety of elementary and secondary school learning levels. Objectives of the unit are to help…

  7. Prothrombin activator-like toxin appears to mediate cardiovascular collapse following envenoming by Pseudonaja textilis.

    PubMed

    Chaisakul, Janeyuth; Isbister, Geoffrey K; O'Leary, Margaret A; Parkington, Helena C; Smith, A Ian; Hodgson, Wayne C; Kuruppu, Sanjaya

    2015-08-01

    Brown snake (Pseudonaja spp.)-induced early cardiovascular collapse is a life-threatening medical emergency in Australia. We have previously shown that this effect can be mimicked in animals and is mediated via the release of endogenous mediators. In the present study, we aimed to purify and characterize the component in Pseudonaja textilis venom which induces cardiovascular collapse following envenoming. The component (fraction 3) was isolated using a combination of techniques including hydroxyapatite and reverse phase chromatography. Fraction 3 (10 or 20 μg/kg, i.v.) produced a rapid decrease in mean arterial pressure (MAP) followed by cardiovascular collapse. Fraction 3-induced early collapse was abolished by prior administration of smaller priming doses of fraction 3 (i.e. 2 and 5 μg/kg, i.v.) or heparin (300 units/kg, i.v.). P. textilis whole venom (1 and 3 μg/ml), but not fraction 3 (1 or 3 μg/ml), induced endothelium-dependent relaxation in isolated rat mesenteric arteries. SDS-PAGE gel indicated the presence of 9-10 protein bands of fraction 3. Using proteomic based analysis some protein bands of fraction 3 were identified as subunits of venom prothrombin activator, pseutarin C of P. textilis venom. Our results conclude that prothrombin activator-like toxin is likely to be a contributor to the rapid collapse induced by P. textilis venom. PMID:25959508

  8. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding

    PubMed Central

    Ting, Pamela Y.; Johnson, Christian W.; Fang, Cong; Cao, Xiaoqing; Graeber, Thomas G.; Mattos, Carla; Colicelli, John

    2015-01-01

    RAS proteins are signal transduction gatekeepers that mediate cell growth, survival, and differentiation through interactions with multiple effector proteins. The RAS effector RAS- and RAB-interacting protein 1 (RIN1) activates its own downstream effectors, the small GTPase RAB5 and the tyrosine kinase Abelson tyrosine-protein kinase (ABL), to modulate endocytosis and cytoskeleton remodeling. To identify ABL substrates downstream of RAS-to-RIN1 signaling, we examined human HEK293T cells overexpressing components of this pathway. Proteomic analysis revealed several novel phosphotyrosine peptides, including Harvey rat sarcoma oncogene (HRAS)-pTyr137. Here we report that ABL phosphorylates tyrosine 137 of H-, K-, and NRAS. Increased RIN1 levels enhanced HRAS-Tyr137 phosphorylation by nearly 5-fold, suggesting that RAS-stimulated RIN1 can drive ABL-mediated RAS modification in a feedback circuit. Tyr137 is well conserved among RAS orthologs and is part of a transprotein H-bond network. Crystal structures of HRASY137F and HRASY137E revealed conformation changes radiating from the mutated residue. Although consistent with Tyr137 participation in allosteric control of HRAS function, the mutations did not alter intrinsic GTP hydrolysis rates in vitro. HRAS-Tyr137 phosphorylation enhanced HRAS signaling capacity in cells, however, as reflected by a 4-fold increase in the association of phosphorylated HRASG12V with its effector protein RAF proto-oncogene serine/threonine protein kinase 1 (RAF1). These data suggest that RAS phosphorylation at Tyr137 allosterically alters protein conformation and effector binding, providing a mechanism for effector-initiated modulation of RAS signaling.—Ting, P. Y., Johnson, C. W., Fang, C., Cao, X., Graeber, T. G., Mattos, C., Colicelli, J. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding. PMID:25999467

  9. BOOK REVIEW: Seven Tales of the Pendulum Seven Tales of the Pendulum

    NASA Astrophysics Data System (ADS)

    Botet, Robert

    2011-09-01

    Seven Tales of the Pendulum is a kind of 'biography' of a unique physical system. We all think we know everything about the pendulum. It is indeed the elementary example in countless textbooks; it is so simple and familiar; it is such an old topic. If this is your opinion, or if you think that the movement of the pendulum is dull and boring, then you should read the book of Gregory Baker; it will come as a surprise. Inside, you will read about the various avatars of the pendulum in science, comprehending how, down the years, the complexity of the notion of pendulum behaviour developed and deepened, from regularity in classical physics to chaotic motion, and eventually to the probabilistic attitude in quantum physics. You will learn why the pendulum has often been a key element in the history of human intelligence development, and how the concept of the pendulum in science uncovered routes for novel breakthroughs. Using everything but dry mathematics, Baker uses narrative and figures well to give a vivid review of the physics of the pendulum in the general context of human culture. This is a captivating book, and you will surprise yourself when you ask, 'what will be written on the next page?'.

  10. Target selection biases from recent experience transfer across effectors.

    PubMed

    Moher, Jeff; Song, Joo-Hyun

    2016-02-01

    Target selection is often biased by an observer's recent experiences. However, not much is known about whether these selection biases influence behavior across different effectors. For example, does looking at a red object make it easier to subsequently reach towards another red object? In the current study, we asked observers to find the uniquely colored target object on each trial. Randomly intermixed pre-trial cues indicated the mode of action: either an eye movement or a visually guided reach movement to the target. In Experiment 1, we found that priming of popout, reflected in faster responses following repetition of the target color on consecutive trials, occurred regardless of whether the effector was repeated from the previous trial or not. In Experiment 2, we examined whether an inhibitory selection bias away from a feature could transfer across effectors. While priming of popout reflects both enhancement of the repeated target features and suppression of the repeated distractor features, the distractor previewing effect isolates a purely inhibitory component of target selection in which a previewed color is presented in a homogenous display and subsequently inhibited. Much like priming of popout, intertrial suppression biases in the distractor previewing effect transferred across effectors. Together, these results suggest that biases for target selection driven by recent trial history transfer across effectors. This indicates that representations in memory that bias attention towards or away from specific features are largely independent from their associated actions. PMID:26563393

  11. Characterization of a chemoattractant for endothelium induced by angiogenesis effectors.

    PubMed

    Raju, K S; Alessandri, G; Gullino, P M

    1984-04-01

    The mechanism of neovascularization was further explored by the use of chemically defined angiogenesis effectors. The vascularization of the rabbit cornea was selected as an experimental approach that permits comparison of one cornea treated by the angiogenesis effector with the contralateral cornea of the same subject treated by the same molecule deprived of angiogenic capacity. Under these conditions, we observed that neovascularization was initiated by the appearance of a chemoattractant for the bovine capillary endothelium only in the cornea treated by the angiogenesis effector. The chemoattractant was purified about 150-fold by a single-step procedure, using gelatin:Sepharose affinity chromatography. Chemoattraction resulted from the combined effect of a chemotactic factor(s) and an activating factor(s). The association of the two enhanced 5- to 8-fold the motility of the capillary endothelium in a concentration-dependent manner with optimum at 0.2 mg/ml. The activating factor(s) does not have chemotactic capacity, but without it, chemotaxis is reduced to about one half. The chemotactic complex was present in the cornea regardless of the nature of the angiogenesis effector used as the triggering device. Heat and proteases eliminated chemotaxis and destroyed the chemotactic complex. Thus, neovascularization may be triggered by effectors able to induce in the cornea proteins, normally not present, that influence angiogenesis via mobilization of capillary endothelium. PMID:6200213

  12. Potency of Transgenic Effectors for Neurogenetic Manipulation in Drosophila Larvae

    PubMed Central

    Pauls, Dennis; von Essen, Alina; Lyutova, Radostina; van Giesen, Lena; Rosner, Ronny; Wegener, Christian; Sprecher, Simon G.

    2015-01-01

    Genetic manipulations of neuronal activity are a cornerstone of studies aimed to identify the functional impact of defined neurons for animal behavior. With its small nervous system, rapid life cycle, and genetic amenability, the fruit fly Drosophila melanogaster provides an attractive model system to study neuronal circuit function. In the past two decades, a large repertoire of elegant genetic tools has been developed to manipulate and study neural circuits in the fruit fly. Current techniques allow genetic ablation, constitutive silencing, or hyperactivation of neuronal activity and also include conditional thermogenetic or optogenetic activation or inhibition. As for all genetic techniques, the choice of the proper transgenic tool is essential for behavioral studies. Potency and impact of effectors may vary in distinct neuron types or distinct types of behavior. We here systematically test genetic effectors for their potency to alter the behavior of Drosophila larvae, using two distinct behavioral paradigms: general locomotor activity and directed, visually guided navigation. Our results show largely similar but not equal effects with different effector lines in both assays. Interestingly, differences in the magnitude of induced behavioral alterations between different effector lines remain largely consistent between the two behavioral assays. The observed potencies of the effector lines in aminergic and cholinergic neurons assessed here may help researchers to choose the best-suited genetic tools to dissect neuronal networks underlying the behavior of larval fruit flies. PMID:25359929

  13. Structural Analysis of Iac Repressor Bound to Allosteric Effectors

    SciTech Connect

    Daber,R.; Stayrook, S.; Rosenberg, A.; Lewis, M.

    2007-01-01

    The lac operon is a model system for understanding how effector molecules regulate transcription and are necessary for allosteric transitions. The crystal structures of the lac repressor bound to inducer and anti-inducer molecules provide a model for how these small molecules can modulate repressor function. The structures of the apo repressor and the repressor bound to effector molecules are compared in atomic detail. All effectors examined here bind to the repressor in the same location and are anchored to the repressor through hydrogen bonds to several hydroxyl groups of the sugar ring. Inducer molecules form a more extensive hydrogen-bonding network compared to anti-inducers and neutral effector molecules. The structures of these effector molecules suggest that the O6 hydroxyl on the galactoside is essential for establishing a water-mediated hydrogen bonding network that bridges the N-terminal and C-terminal sub-domains. The altered hydrogen bonding can account in part for the different structural conformations of the repressor, and is vital for the allosteric transition.

  14. [Medical and pharmaceutical tales recorded in "Genroku- Sekenbanashi-Fubunshu"].

    PubMed

    Hamada, T

    1996-12-01

    "Genroku-Sekenbanashi-Fubunshu" consists of eleven volumes and was written from 1694 to 1703, in the Edo Period. The original book was kept at the Faculty of Literature, Tokyo University. In 1994, this book was first published as one of the Iwanami-Bunko Series. I studied the tales recorded in this book and found that twenty-seven of them were concerned with medical and pharmaceutial sciences. In these medical and pharmaceutical tales, there were several kinds, relating to such matters as spells to cure or prevent illness, curious sicknesses, episodes regarding the origin of remedies, medicinal plants and crude drugs, medical books, doctors and surgeons, persons who lived long, and so forth. It was difficult to explain about the spells which were thought effective to cure illness, but I could gain an understanding that Japanese people lived such lives in the old days. PMID:11619293

  15. Effector-triggered defence against apoplastic fungal pathogens.

    PubMed

    Stotz, Henrik U; Mitrousia, Georgia K; de Wit, Pierre J G M; Fitt, Bruce D L

    2014-08-01

    R gene-mediated host resistance against apoplastic fungal pathogens is not adequately explained by the terms pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) or effector-triggered immunity (ETI). Therefore, it is proposed that this type of resistance is termed 'effector-triggered defence' (ETD). Unlike PTI and ETI, ETD is mediated by R genes encoding cell surface-localised receptor-like proteins (RLPs) that engage the receptor-like kinase SOBIR1. In contrast to this extracellular recognition, ETI is initiated by intracellular detection of pathogen effectors. ETI is usually associated with fast, hypersensitive host cell death, whereas ETD often triggers host cell death only after an elapsed period of endophytic pathogen growth. In this opinion, we focus on ETD responses against foliar fungal pathogens of crops. PMID:24856287

  16. Hepatic effector CD8+ T-cell dynamics

    PubMed Central

    Iannacone, Matteo

    2015-01-01

    CD8+ T cells play a critical role in hepatitis B virus (HBV) pathogenesis. During acute, self-limited infections, these cells are instrumental to viral clearance; in chronic settings, they sustain repetitive cycles of hepatocellular necrosis that promote hepatocellular carcinoma development. Both CD8+ T-cell defensive and destructive functions are mediated by antigen-experienced effector cells and depend on the ability of these cells to migrate to the liver, recognize hepatocellular antigens and perform effector functions. Understanding the signals that modulate the spatiotemporal dynamics of CD8+ T cells in the liver, particularly in the context of antigen recognition, is therefore critical to gaining insight into the pathogenesis of acute and chronic HBV infection. Here, we highlight recent data on how effector CD8+ T cells traffic within the liver, and we discuss the potential for novel imaging techniques to shed light on this important aspect of HBV pathogenesis. PMID:25242274

  17. Signaling in Effector Lymphocytes: Insights toward Safer Immunotherapy

    PubMed Central

    Rajasekaran, Kamalakannan; Riese, Matthew J.; Rao, Sridhar; Wang, Li; Thakar, Monica S.; Sentman, Charles L.; Malarkannan, Subramaniam

    2016-01-01

    Receptors on T and NK cells systematically propagate highly complex signaling cascades that direct immune effector functions, leading to protective immunity. While extensive studies have delineated hundreds of signaling events that take place upon receptor engagement, the precise molecular mechanism that differentially regulates the induction or repression of a unique effector function is yet to be fully defined. Such knowledge can potentiate the tailoring of signal transductions and transform cancer immunotherapies. Targeted manipulations of signaling cascades can augment one effector function such as antitumor cytotoxicity while contain the overt generation of pro-inflammatory cytokines that contribute to treatment-related toxicity such as “cytokine storm” and “cytokine-release syndrome” or lead to autoimmune diseases. Here, we summarize how individual signaling molecules or nodes may be optimally targeted to permit selective ablation of toxic immune side effects. PMID:27242783

  18. The genome editing revolution: A CRISPR-Cas TALE off-target story.

    PubMed

    Stella, Stefano; Montoya, Guillermo

    2016-07-01

    In the last 10 years, we have witnessed a blooming of targeted genome editing systems and applications. The area was revolutionized by the discovery and characterization of the transcription activator-like effector proteins, which are easier to engineer to target new DNA sequences than the previously available DNA binding templates, zinc fingers and meganucleases. Recently, the area experimented a quantum leap because of the introduction of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) system (clustered regularly interspaced short palindromic sequence). This ribonucleoprotein complex protects bacteria from invading DNAs, and it was adapted to be used in genome editing. The CRISPR ribonucleic acid (RNA) molecule guides to the specific DNA site the Cas9 nuclease to cleave the DNA target. Two years and more than 1000 publications later, the CRISPR-Cas system has become the main tool for genome editing in many laboratories. Currently the targeted genome editing technology has been used in many fields and may be a possible approach for human gene therapy. Furthermore, it can also be used to modifying the genomes of model organisms for studying human pathways or to improve key organisms for biotechnological applications, such as plants, livestock genome as well as yeasts and bacterial strains. PMID:27417121

  19. Development and testing of the cooling coil cleaning end effector

    SciTech Connect

    Johnson, K.I.; Mullen, O.D.; Powell, M.R.; Daly, D.S.; Engel, D.W.

    1997-09-30

    The Retrieval Process Development and Enhancement (KPD{ampersand}E) program has developed and tested an end effector to support the waste retrieval mission at the Idaho National Engineering and Environmental Laboratory (INEEL). The end effector was developed specifically to remove a sticky waste material from the cooling coils in the High Level Liquid Waste (HLLW) tank, and to vacuum up a sediment layer that has settled beneath the cooling coils. An extensive testing program was conducted in the hydraulic test bed (HTB) at the Pacific Northwest National Laboratory (PNNL) to evaluate the performance of the end effector under simulated in-tank conditions. A mock up of the cooling coils was installed in the test bed tank, and simulated waste materials were included to represent the sticky waste on the tubes and the particulate waste settled beneath them. The testing program focused on assessing long-duration mining strategies for cleaning the cooling coils and removing the particulate waste forms. The report describes the results of the end effector testing program at PNNL. Section 2 describes the physical characteristics of the HLLW tanks, including the layout of the cooling coils, and it also describes what is known of the waste forms in the tanks. Section 3 describes the cleaning and retrieval strategy that was used in developing the end effector design. Section 4 describes the cooling coil mockup in the hydraulic test bed. Section 5 discusses the rationale used in selecting the simulants for the tarry waste and particulate waste forms. Section 6 describes the tests that were performed to evaluate cleaning of the cooling coils and retrieval of the particulate simulant. Section 7 summarizes the cleaning and retrieval tests, assesses the relative importance of cleaning the cooling coils and retrieving the particulate waste, and suggests modifications that would simplify the end effector design.

  20. T Cell Signaling Targets for Enhancing Regulatory or Effector Function

    PubMed Central

    Pan, Fan; Fan, Huimin; Liu, Zhongmin; Jiang, Shuiping

    2015-01-01

    To respond to infection, resting or naïve T cells must undergo activation, clonal expansion, and differentiation into specialized functional subsets of effector T cells. However, to prevent excessive or self-destructive immune responses, regulatory T cells (Tregs) are instrumental in suppressing the activation and function of effector cells, including effector T cells. The transcription factor Forkhead box P3 (Foxp3) regulates the expression of genes involved in the development and function of Tregs. Foxp3 interacts with other transcription factors and with epigenetic elements such as histone deacetylases (HDACs) and histone acetyltransferases. Treg suppressive function can be increased by exposure to HDAC inhibitors. The individual contributions of different HDAC family members to Treg function and their respective mechanisms of action, however, remain unclear. A study showed that HDAC6, HDAC9, and Sirtuin-1 had distinct effects on Foxp3 expression and function, suggesting that selectively targeting HDACs individually or in combination may enhance Treg stability and suppressive function. Another study showed that the receptor programmed death 1 (PD-1), a well-known inhibitor of T cell activation, halted cell cycle progression in effector T cells by inhibiting the transcription of the gene encoding the substrate-recognition component (Skp2) of the ubiquitin ligase SCFSkp2. Together, these findings reveal new signaling targets for enhancing Treg or effector T cell function that may be helpful in designing future therapies, either to increase Treg suppressive function in transplantation and autoimmune diseases or to block PD-1 function, thus increasing the magnitude of antiviral or antitumor immune responses of effector T cells. PMID:22855503

  1. Identification of Anaplasma marginale Type IV Secretion System Effector Proteins

    PubMed Central

    Brayton, Kelly A.; Beare, Paul A.; Brown, Wendy C.; Heinzen, Robert A.; Broschat, Shira L.

    2011-01-01

    Background Anaplasma marginale, an obligate intracellular alphaproteobacterium in the order Rickettsiales, is a tick-borne pathogen and the leading cause of anaplasmosis in cattle worldwide. Complete genome sequencing of A. marginale revealed that it has a type IV secretion system (T4SS). The T4SS is one of seven known types of secretion systems utilized by bacteria, with the type III and IV secretion systems particularly prevalent among pathogenic Gram-negative bacteria. The T4SS is predicted to play an important role in the invasion and pathogenesis of A. marginale by translocating effector proteins across its membrane into eukaryotic target cells. However, T4SS effector proteins have not been identified and tested in the laboratory until now. Results By combining computational methods with phylogenetic analysis and sequence identity searches, we identified a subset of potential T4SS effectors in A. marginale strain St. Maries and chose six for laboratory testing. Four (AM185, AM470, AM705 [AnkA], and AM1141) of these six proteins were translocated in a T4SS-dependent manner using Legionella pneumophila as a reporter system. Conclusions The algorithm employed to find T4SS effector proteins in A. marginale identified four such proteins that were verified by laboratory testing. L. pneumophila was shown to work as a model system for A. marginale and thus can be used as a screening tool for A. marginale effector proteins. The first T4SS effector proteins for A. marginale have been identified in this work. PMID:22140462

  2. Yersinia type III effectors perturb host innate immune responses

    PubMed Central

    Pha, Khavong; Navarro, Lorena

    2016-01-01

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia

  3. Yersinia type III effectors perturb host innate immune responses.

    PubMed

    Pha, Khavong; Navarro, Lorena

    2016-02-26

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia

  4. Nanorobotic end-effectors: Design, fabrication, and in situ characterization

    NASA Astrophysics Data System (ADS)

    Fan, Zheng

    Nano-robotic end-effectors have promising applications for nano-fabrication, nano-manufacturing, nano-optics, nano-medical, and nano-sensing; however, low performances of the conventional end-effectors have prevented the widespread utilization of them in various fields. There are two major difficulties in developing the end-effectors: their nano-fabrication and their advanced characterization in the nanoscale. Here we introduce six types of end-effectors: the nanotube fountain pen (NFP), the super-fine nanoprobe, the metal-filled carbon nanotube (m CNT)-based sphere-on-pillar (SOP) nanoantennas, the tunneling nanosensor, and the nanowire-based memristor. The investigations on the NFP are focused on nano-fluidics and nano-fabrications. The NFP could direct write metallic "inks" and fabricating complex metal nanostructures from 0D to 3D with a position servo control, which is critically important to future large-scale, high-throughput nanodevice production. With the help of NFP, we could fabricate the end-effectors such as super-fine nanoprobe and m CNT-based SOP nanoantennas. Those end-effectors are able to detect local flaws or characterize the electrical/mechanical properties of the nanostructure. Moreover, using electron-energy-loss-spectroscopy (EELS) technique during the operation of the SOP optical antenna opens a new basis for the application of nano-robotic end-effectors. The technique allows advanced characterization of the physical changes, such as carrier diffusion, that are directly responsible for the device's properties. As the device was coupled with characterization techniques of scanning-trasmission-electron-microscopy (STEM), the development of tunneling nanosensor advances this field of science into quantum world. Furthermore, the combined STEM-EELS technique plays an important role in our understanding of the memristive switching performance in the nanowire-based memristor. The developments of those nano-robotic end-effectors expend the study

  5. Hemipteran and dipteran pests: Effectors and plant host immune regulators.

    PubMed

    Kaloshian, Isgouhi; Walling, Linda L

    2016-04-01

    Hemipteran and dipteran insects have behavioral, cellular and chemical strategies for evading or coping with the host plant defenses making these insects particularly destructive pests worldwide. A critical component of a host plant's defense to herbivory is innate immunity. Here we review the status of our understanding of the receptors that contribute to perception of hemipteran and dipteran pests and highlight the gaps in our knowledge in these early events in immune signaling. We also highlight recent advances in identification of the effectors that activate pattern-triggered immunity and those involved in effector-triggered immunity. PMID:26467026

  6. Visual End-Effector Position Error Compensation for Planetary Robotics

    NASA Technical Reports Server (NTRS)

    Bajracharya, Max; DiCicco, Matthew; Backes, Paul; Nickels, Kevin

    2007-01-01

    This paper describes a vision-guided manipulation algorithm that improves arm end-effector positioning to subpixel accuracy and meets the highly restrictive imaging and computational constraints of a planetary robotic flight system. Analytical, simulation-based, and experimental analyses of the algorithm's effectiveness and sensitivity to camera and arm model error is presented along with results on several prototype research systems and 'ground-in-the-loop' technology experiments on the Mars Exploration Rover (MER) vehicles. A computationally efficient and robust subpixel end-effector fiducial detector that is instrumental to the algorithm's ability to achieve high accuracy is also described along with its validation results on MER data.

  7. Robotic End Effectors for Hard-Rock Climbing

    NASA Technical Reports Server (NTRS)

    Kennedy, Brett; Leger, Patrick

    2004-01-01

    Special-purpose robot hands (end effectors) now under development are intended to enable robots to traverse cliffs much as human climbers do. Potential applications for robots having this capability include scientific exploration (both on Earth and other rocky bodies in space), military reconnaissance, and outdoor search and rescue operations. Until now, enabling robots to traverse cliffs has been considered too difficult a task because of the perceived need of prohibitively sophisticated planning algorithms as well as end effectors as dexterous as human hands. The present end effectors are being designed to enable robots to attach themselves to typical rock-face features with less planning and simpler end effectors. This advance is based on the emulation of the equipment used by human climbers rather than the emulation of the human hand. Climbing-aid equipment, specifically cams, aid hooks, and cam hooks, are used by sport climbers when a quick ascent of a cliff is desired (see Figure 1). Currently two different end-effector designs have been created. The first, denoted the simple hook emulator, consists of three "fingers" arranged around a central "palm." Each finger emulates the function of a particular type of climbing hook (aid hook, wide cam hook, and a narrow cam hook). These fingers are connected to the palm via a mechanical linkage actuated with a leadscrew/nut. This mechanism allows the fingers to be extended or retracted. The second design, denoted the advanced hook emulator (see Figure 2), shares these features, but it incorporates an aid hook and a cam hook into each finger. The spring-loading of the aid hook allows the passive selection of the type of hook used. The end effectors can be used in several different modes. In the aid-hook mode, the aid hook on one of the fingers locks onto a horizontal ledge while the other two fingers act to stabilize the end effector against the cliff face. In the cam-hook mode, the broad, flat tip of the cam hook is

  8. Electroporation of Functional Bacterial Effectors into Mammalian Cells

    DOE PAGESBeta

    Sontag, Ryan L.; Mihai, Cosmin; Orr, Galya; Savchenko, Alexei; Skarina, Tatiana; Cui, Hong; Cort, John R.; Adkins, Joshua N.; Brown, Roslyn N.

    2015-01-19

    Electroporation was used to insert purified bacterial virulence effector proteins directly into living eukaryotic cells. Protein localization was monitored by confocal immunofluorescence microscopy. This method allows for studies on trafficking, function, and protein-protein interactions using active exogenous proteins, avoiding the need for heterologous expression in eukaryotic cells.

  9. Effector proteins support the asymmetric apportioning of Salmonella during cytokinesis.

    PubMed

    Zhao, Yaya; Gorvel, Jean-Pierre; Méresse, Stéphane

    2016-08-17

    Salmonella-infected cells are characterized by the presence of intra-cellular membranous tubules that emerge from bacterial vacuoles and extend along microtubules. The formation of Salmonella-induced tubules depends on the Salmonella pathogenicity island 2-encoded type III secretion system (T3SS-2) that translocates bacterial effector proteins inside host cells. Effector proteins have enzymatic activities or allow for hijacking of cellular functions. The role of Salmonella-induced tubules in virulence remains unclear but their absence is correlated with virulence defects. This study describes the presence of inter-cellular tubules that arise between daughter cells during cytokinesis. Inter-cellular tubules connect bacterial vacuoles originally present in the parent cell and that have been apportioned between daughters. Their formation requires a functional T3SS-2 and effector proteins. Our data establish a correlation between the formation of inter-cellular tubules and the asymmetric distribution of bacterial vacuoles in daughters. Thus, by manipulating the distribution of bacteria in cytokinetic cells, Salmonella T3SS-2 effector proteins may increase bacterial spreading and the systemic character of the infection. PMID:27046257

  10. Hand to Mouth: Automatic Imitation across Effector Systems

    ERIC Educational Resources Information Center

    Leighton, Jane; Heyes, Cecilia

    2010-01-01

    The effector dependence of automatic imitation was investigated using a stimulus-response compatibility (SRC) procedure during which participants were required to make an open or closed response with their hand or their mouth. The correct response for each trial was indicated by a pair of letters in Experiments 1 and 2 and by a colored square in…

  11. Electroporation of Functional Bacterial Effectors into Mammalian Cells

    SciTech Connect

    Sontag, Ryan L.; Mihai, Cosmin; Orr, Galya; Savchenko, Alexei; Skarina, Tatiana; Cui, Hong; Cort, John R.; Adkins, Joshua N.; Brown, Roslyn N.

    2015-01-01

    Electroporation was used to insert purified bacterial virulence effector proteins directly into living eukaryotic cells. Protein localization was monitored by confocal immunofluorescence microscopy. This method allows for studies on trafficking, function, and protein-protein interactions using active exogenous proteins, avoiding the need for heterologous expression in eukaryotic cells.

  12. Developmental control of integrin expression regulates Th2 effector homing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integrin CD18, a component of the LFA-1 complex that also includes CD11a, is essential for Th2, but not Th1, cell homing, but the explanation for this phenomenon remains obscure. In this study, we investigate the mechanism by which Th2 effector responses require the LFA-1 complex. CD11a-deficient T ...

  13. Effector-triggered immunity: from pathogen perception to robust defense.

    PubMed

    Cui, Haitao; Tsuda, Kenichi; Parker, Jane E

    2015-01-01

    In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance. PMID:25494461

  14. Robot End Effector To Place and Solder Solar Cells

    NASA Technical Reports Server (NTRS)

    Hagerty, J. J.

    1982-01-01

    Encapsulated in robot end effector is RF induction-heating coil for heating solar cell while in transit. Holes in encapsulant permit end of unit to act as vacuum pickup to grip solar cell. Use of RF induction heating allows cell to be heated without requiring direct mechanical and thermal contact of bonding tool such as soldering iron.

  15. Effector proteins support the asymmetric apportioning of Salmonella during cytokinesis

    PubMed Central

    Zhao, Yaya; Gorvel, Jean-Pierre; Méresse, Stéphane

    2016-01-01

    ABSTRACT Salmonella-infected cells are characterized by the presence of intra-cellular membranous tubules that emerge from bacterial vacuoles and extend along microtubules. The formation of Salmonella-induced tubules depends on the Salmonella pathogenicity island 2-encoded type III secretion system (T3SS-2) that translocates bacterial effector proteins inside host cells. Effector proteins have enzymatic activities or allow for hijacking of cellular functions. The role of Salmonella-induced tubules in virulence remains unclear but their absence is correlated with virulence defects. This study describes the presence of inter-cellular tubules that arise between daughter cells during cytokinesis. Inter-cellular tubules connect bacterial vacuoles originally present in the parent cell and that have been apportioned between daughters. Their formation requires a functional T3SS-2 and effector proteins. Our data establish a correlation between the formation of inter-cellular tubules and the asymmetric distribution of bacterial vacuoles in daughters. Thus, by manipulating the distribution of bacteria in cytokinetic cells, Salmonella T3SS-2 effector proteins may increase bacterial spreading and the systemic character of the infection. PMID:27046257

  16. Type IV secretion system of Brucella spp. and its effectors

    PubMed Central

    Ke, Yuehua; Wang, Yufei; Li, Wengfeng; Chen, Zeliang

    2015-01-01

    Brucella spp. are intracellular bacterial pathogens that cause infection in domestic and wild animals. They are often used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we discuss the roles of Brucella VirB T4SS and 15 effectors that are proposed to be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells. VirB T4SS also plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. Here, we list the key molecular events in the intracellular life cycle of Brucella that are potentially targeted by the VirB T4SS effectors. Elucidating the functions of these effectors will help clarify the molecular role of T4SS during infection. Furthermore, studying the effectors secreted by Brucella spp. might provide insights into the mechanisms used by the bacteria to hijack the host signaling pathways and aid in the development of better vaccines and therapies against brucellosis. PMID:26528442

  17. Plasmodium cellular effector mechanisms and the hepatic microenvironment

    PubMed Central

    Frevert, Ute; Krzych, Urszula

    2015-01-01

    Plasmodium falciparum malaria remains one of the most serious health problems globally. Immunization with attenuated parasites elicits multiple cellular effector mechanisms capable of eliminating Plasmodium liver stages. However, malaria liver stage (LS) immunity is complex and the mechanisms effector T cells use to locate the few infected hepatocytes in the large liver in order to kill the intracellular LS parasites remain a mystery to date. Here, we review our current knowledge on the behavior of CD8 effector T cells in the hepatic microvasculature, in malaria and other hepatic infections. Taking into account the unique immunological and lymphogenic properties of the liver, we discuss whether classical granule-mediated cytotoxicity might eliminate infected hepatocytes via direct cell contact or whether cytokines might operate without cell–cell contact and kill Plasmodium LSs at a distance. A thorough understanding of the cellular effector mechanisms that lead to parasite death hence sterile protection is a prerequisite for the development of a successful malaria vaccine to protect the 40% of the world’s population currently at risk of Plasmodium infection. PMID:26074888

  18. The Coding and Effector Transfer of Movement Sequences

    ERIC Educational Resources Information Center

    Kovacs, Attila J.; Muhlbauer, Thomas; Shea, Charles H.

    2009-01-01

    Three experiments utilizing a 14-element arm movement sequence were designed to determine if reinstating the visual-spatial coordinates, which require movements to the same spatial locations utilized during acquisition, results in better effector transfer than reinstating the motor coordinates, which require the same pattern of homologous muscle…

  19. [PROBLEM OF END EFFECTOR OF ISCHEMIC POSTCONDITIONING OF THE HEART].

    PubMed

    Maslov, L N; Naryzhnaya, N V; Pei, J-M; Zhang, Y; Wang, H; Khaliulin, I J; Lishmanov, Yu B

    2015-06-01

    It is well known that cardiovascular disease and in particular acute myocardial infarction are a major cause of death among working-age population in Russia. Some of the patients die after successful recanalization of the infarct-related coronary artery as a result of ischemic and reperfusion injury of the heart. It is obvious that there is an urgent need to develop new approaches to prevention reoxygenation heart damages. In this regard the study of adaptive phenomenon postconditioning is of particular interest. This analysis of literature source preformed by authors of the article indicates that main pretenders to the role of end-effectors of ischemic postconditioning of the heart are: (1) Ca(2+)-dependent K+ channel of BK-type (big conductance K+ channel), (2) mitoKATp channel (mitochondrial ATP-sensitive K+ channel), (3) MPT pore (mitochondrial permeability transition pore). At the same time, some investigators consider that mitoK(ATP) channel is only an intermediate link in the series of signaling events ensured an increase in cardiac tolerance to impact of ischemia-reperfusion. The most likely end effector of these three structures is MPT pore. Alternatively, it is possible, that unique molecular complex appearing a single end effector of postconditioning does not exist. Perhaps, that there are several effectors ensured cardioprotective effect of an adaptive phenomenon of postconditioning. PMID:26470485

  20. RMS end effector waiting for command and SPAS-01 nearby

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The end effector of the remote manipulator system (RMS) appears to be waiting for its next command at the top of this frame and the Shuttle pallet satellite (SPAS-01), in its free flying mode, appears nearby. The three letters legible on the SPAS stand for Messerschmitt-Boelkow-Blohm Gmbit, a West German firm.

  1. Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi

    PubMed Central

    Gracy, Jérome; Fournier, Elisabeth; Kroj, Thomas; Padilla, André

    2015-01-01

    Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 β-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (Magnaporthe Avrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5–10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families. PMID:26506000

  2. The Shigella flexneri OspB effector: an early immunomodulator.

    PubMed

    Ambrosi, Cecilia; Pompili, Monica; Scribano, Daniela; Limongi, Dolores; Petrucca, Andrea; Cannavacciuolo, Sonia; Schippa, Serena; Zagaglia, Carlo; Grossi, Milena; Nicoletti, Mauro

    2015-01-01

    Through the action of the type three secretion system (T3SS) Shigella flexneri delivers several effectors into host cells to promote cellular invasion, multiplication and to exploit host-cell signaling pathways to modulate the host innate immune response. Although much progress has been made in the understanding of many type III effectors, the molecular and cellular mechanism of the OspB effector is still poorly characterized. In this study we present new evidence that better elucidates the role of OspB as pro-inflammatory factor at very early stages of infection. Indeed, we demonstrate that, during the first hour of infection, OspB is required for full activation of ERK1/2 and p38 MAPKs and the cytosolic phospholipase A(2) (cPLA(2)). Activation of cPLA(2) ultimately leads to the production and secretion of PMN chemoattractant metabolite(s) uncoupled with release of IL-8. Moreover, we also present evidence that OspB is required for the development of the full and promptly inflammatory reaction characteristic of S. flexneri wild-type infection in vivo. Based on OspB and OspF similarity (both effectors share similar transcription regulation, temporal secretion into host cells and nuclear localization) we hypothesized that OspB and OspF effectors may form a pair aimed at modulating the host cell response throughout the infection process, with opposite effects. A model is presented to illustrate how OspB activity would promote S. flexneri invasion and bacterial dissemination at early critical phases of infection. PMID:25434600

  3. Active Flow Effectors for Noise and Separation Control

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2011-01-01

    New flow effector technology for separation control and enhanced mixing is based upon shape memory alloy hybrid composite (SMAHC) technology. The technology allows for variable shape control of aircraft structures through actively deformable surfaces. The flow effectors are made by embedding shape memory alloy actuator material in a composite structure. When thermally actuated, the flow effector def1ects into or out of the flow in a prescribed manner to enhance mixing or induce separation for a variety of applications, including aeroacoustic noise reduction, drag reduction, and f1ight control. The active flow effectors were developed for noise reduction as an alternative to fixed-configuration effectors, such as static chevrons, that cannot be optimized for airframe installation effects or variable operating conditions and cannot be retracted for off-design or fail-safe conditions. Benefits include: Increased vehicle control, overall efficiency, and reduced noise throughout all f1ight regimes, Reduced flow noise, Reduced drag, Simplicity of design and fabrication, Simplicity of control through direct current stimulation, autonomous re sponse to environmental heating, fast re sponse, and a high degree of geometric stability. The concept involves embedding prestrained SMA actuators on one side of the chevron neutral axis in order to generate a thermal moment and def1ect the structure out of plane when heated. The force developed in the host structure during def1ection and the aerodynamic load is used for returning the structure to the retracted position. The chevron design is highly scalable and versatile, and easily affords active and/or autonomous (environmental) control. The technology offers wide-ranging market applications, including aerospace, automotive, and any application that requires flow separation or noise control.

  4. The Therapeutic Use of Fairy Tales with Adults in Group Therapy

    ERIC Educational Resources Information Center

    Brown, Nina W.

    2007-01-01

    Fairy tales are not just for children. They can hold important messages for people of all ages, as well as for those with special needs. For example, people who present for therapy reporting such issues as fear of abandonment, sibling rivalry, self-esteem, and lack of meaning in life, among others, can benefit from using fairy tales as a…

  5. New Tales for Old: Folktales as Literary Fictions for Young Adults.

    ERIC Educational Resources Information Center

    de Vos, Gail; Altmann, Anna E.

    Focusing on reworkings of tales from the European oral folk tradition, this book shows educators how to use these tales effectively in the high school and middle school curriculum. The first chapter of the book, "Folktales and Literary Fictions" looks at the nature of folktales, their place in contemporary North American culture, and the…

  6. The Celebration of Death: Two Folk Tales about DEath. Mini-Module.

    ERIC Educational Resources Information Center

    African-American Inst., New York, NY. School Services Div.

    This module contains two African folk tales about death, two descriptions of African funerals, a lesson plan with 11 questions exploring the finality of and customs surrounding death, and a bibliography of five books which deal with African religious beliefs. The folk tales present concepts of death and immortality of the soul. The descriptions of…

  7. Engaging with Mathematics in the Kindergarten. Orchestrating a Fairy Tale through Questioning and Use of Tools

    ERIC Educational Resources Information Center

    Carlsen, Martin

    2013-01-01

    The aim of this study is to analyse how a kindergarten teacher orchestrated a mathematical activity involving a fairy tale. Taking a sociocultural perspective on learning and development, naturally occurring talk-in-interaction has been analysed in order to scrutinise the subtleties of the orchestration. The fairy tale "Goldilocks and the…

  8. Understanding "A Tale of Two Cities": A Student Casebook to Issues, Sources, and Historical Documents.

    ERIC Educational Resources Information Center

    Newlin, George

    Charles Dickens' novel, "A Tale of Two Cities," does not waste a word in telling a touching, suspenseful tale set against the background of one of the bloodiest events in history, the French Revolution. This casebook's collection of historical documents, collateral readings, and commentary will promote interdisciplinary study of the novel and…

  9. The Ordinary and the Fabulous: An Introduction to Myths, Legends and Fairy Tales. Second Edition.

    ERIC Educational Resources Information Center

    Cook, Elizabeth

    Written for teachers, for students who intend to be teachers or librarians, and for storytellers in general, this book interprets the familiar legends and tales (Greek, Scandinavian, German, and Celtic myths and legends; Arthurian romances; the Old Testament; and fairy tales) and describes how they can best be told to children. Parallel accounts…

  10. Oral Interpretation of C.S. Lewis'"Narnia Tales": A Refracting of "Pictures."

    ERIC Educational Resources Information Center

    Keefe, Carolyn

    "The Chronicles of Narnia" are a series of seven fairy tales written by C.S. Lewis that have become popular with both children and adults. Lewis points to five aspects of the fairy tale form that made the form suitable for expressing the images he saw. The aspects are: (1) no love interest; (2) no close psychology; (3) severe restraints on…

  11. Survey on Effects of Fairy Tales on Turkish Language Training from Secondary School Students' Perspective

    ERIC Educational Resources Information Center

    Kiliç, Yasin

    2015-01-01

    Fairy tale is one of the most important genres in literature which reflects childish sensitivity, feeds child's soul, enriches his/her imagination and prepares him/her for the future. Emerging as product of oral literature, fairy tales were used as an instrument of training in the past and they still have the same function today. Educators think…

  12. Die another day: molecular mechanisms of effector-triggered immunity elicited by type III secreted effector proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial pathogens inject type III secreted effector (T3SE) proteins into their hosts where they display dual roles depending on the host genotype. T3SEs promote bacterial virulence in susceptible hosts, and elicit immunity in resistant hosts. T3SEs are typically recognized when they modify a host ...

  13. Operation and maintenance manual for the common video end effector system (CVEE) system 6260

    SciTech Connect

    Pardini, A.F., Westinghouse Hanford

    1996-07-24

    This document defines the requirements for the operation,maintenance, and storage of the Common Video End Effector System (CVEE) used with the video end effectors as part of the Light Duty Utility Arm (LDUA) system.

  14. Early effector cells survive the contraction phase in malaria infection and generate both central and effector memory T cells.

    PubMed

    Opata, Michael M; Carpio, Victor H; Ibitokou, Samad A; Dillon, Brian E; Obiero, Joshua M; Stephens, Robin

    2015-06-01

    CD4 T cells orchestrate immunity against blood-stage malaria. However, a major challenge in designing vaccines to the disease is poor understanding of the requirements for the generation of protective memory T cells (Tmem) from responding effector T cells (Teff) in chronic parasite infection. In this study, we use a transgenic mouse model with T cells specific for the merozoite surface protein (MSP)-1 of Plasmodium chabaudi to show that activated T cells generate three distinct Teff subsets with progressive activation phenotypes. The earliest observed Teff subsets (CD127(-)CD62L(hi)CD27(+)) are less divided than CD62L(lo) Teff and express memory genes. Intermediate (CD62L(lo)CD27(+)) effector subsets include the most multicytokine-producing T cells, whereas fully activated (CD62L(lo)CD27(-)) late effector cells have a terminal Teff phenotype (PD-1(+), Fas(hi), AnnexinV(+)). We show that although IL-2 promotes expansion, it actually slows terminal effector differentiation. Using adoptive transfer, we show that only early Teff survive the contraction phase and generate the terminal late Teff subsets, whereas in uninfected recipients, they become both central and effector Tmem. Furthermore, we show that progression toward full Teff activation is promoted by increased duration of infection, which in the long-term promotes Tem differentiation. Therefore, we have defined markers of progressive activation of CD4 Teff at the peak of malaria infection, including a subset that survives the contraction phase to make Tmem, and show that Ag and cytokine levels during CD4 T cell expansion influence the proportion of activated cells that can survive contraction and generate memory in malaria infection. PMID:25911759

  15. Review: Tales from Both Sides of the Brain.

    PubMed

    Landis, Theodor

    2015-01-01

    Our brain has two hemispheres that specialize in different jobs-the right side processes spatial and temporal information, and the left side controls speech and language. How these two sides come together to create one mind is explained by pioneering neuroscientist Michael Gazzaniga in his new book, Tales from Both Sides of the Brain : A Life in Neuroscience (Ecco/Harper Collins, 2015). Gazzaniga is director of the SAGE Center for the Study of the Mind at the University of California, Santa Barbara, and a Dana Alliance member. PMID:27408671

  16. Review: Tales from Both Sides of the Brain

    PubMed Central

    Landis, Theodor

    2015-01-01

    Our brain has two hemispheres that specialize in different jobs—the right side processes spatial and temporal information, and the left side controls speech and language. How these two sides come together to create one mind is explained by pioneering neuroscientist Michael Gazzaniga in his new book, Tales from Both Sides of the Brain : A Life in Neuroscience (Ecco/Harper Collins, 2015). Gazzaniga is director of the SAGE Center for the Study of the Mind at the University of California, Santa Barbara, and a Dana Alliance member. PMID:27408671

  17. Erwinia amylovora effector protein Eop1 suppresses PAMP-triggered immunity in Malus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erwinia amylovora (Ea) utilizes a type three secretion system (T3SS) to deliver effector proteins into plant host cells. Several Ea effectors have been identified based on their sequence similarity to plant and animal bacterial pathogen effectors; however, the function of the majority of Ea effecto...

  18. End-Effector Development for the PIP Puck Handling Robot

    SciTech Connect

    Fowley, M.D.

    2001-01-03

    It has been decided that excess, weapons-grade plutonium shall be immobilized to prevent nuclear proliferation. The method of immobilization is to encapsulate the plutonium in a ceramic puck, roughly the size of a hockey puck, using a sintering process. This method has been officially identified as the Plutonium Immobilization Process (PIP). A Can-in-Canister storage method will be used to further immobilize the plutonium. The Can-in-Canister method uses the existing design of a Defense Waste Processing Facility (DWPF) canister to house the plutonium pucks. the process begins with several pucks being stacked in a stainless steel can. Several of the stainless steel cans are stacked in a cage-like magazine. Several of the magazines are then placed in a DWPF canister. The DWPF canister is then filled with molten glass containing high-level, radioactive waste from the DWPF vitrification process. The Can-in-Canister method makes reclamation of plutonium from the pucks technically difficult and highly undesirable. The mechanical requirements of the Can-in-Canister process, in conjunction with the amount of time required to immobilize the vast quantities of weapons-grade plutonium, will expose personnel to unnecessarily high levels of radiation if the processes were completed manually, in glove boxes. Therefore, automated equipment is designed into the process to reduce or eliminate personnel exposure. Robots are used whenever the automated handling operations become complicated. There are two such operations in the initial stages of the Can-in-Canister process, which required a six-axis robot. The first operation is a press unloading process. The second operation is a tray transfer process. To successfully accomplish the operational tasks described in the two operations, the end-effector of the robot must be versatile, lightweight, and rugged. As a result of these demands, an extensive development process was undertaken to design the optimum end-effector for these puck

  19. End-Effector Development for the PIP Puck Handling Robot

    SciTech Connect

    Fowley, M.D.

    2001-01-31

    It has been decided that excess, weapons-grade plutonium shall be immobilized to prevent nuclear proliferation. The method of immobilization is to encapsulate the plutonium in a ceramic puck, roughly the size of a hockey puck, using a sintering process. This method has been officially identified as the Plutonium Immobilization Process (PIP). A Can-in-Canister storage method will be used to further immobilize the plutonium. The Can-in-Canister method uses the existing design of a Defense Waste Processing Facility (DWPF) canister to house the plutonium pucks. the process begins with several pucks being stacked in a stainless steel can. Several of the stainless steel cans are stacked in a cage-like magazine. Several of the magazines are then placed in a DWPF canister. The DWPF canister is then filled with molten glass containing high-level, radioactive waste from the DWPF vitrification process. The Can-in-Canister method makes reclamation of plutonium from the pucks technically difficult and highly undesirable. The mechanical requirements of the Can-in-Canister process, in conjunction with the amount of time required to immobilize the vast quantities of weapons-grade plutonium, will expose personnel to unnecessarily high levels of radiation if the processes were completed manually, in glove boxes. Therefore, automated equipment is designed into the process to reduce or eliminate personnel exposure. Robots are used whenever the automated handling operations become complicated. There are two such operations in the initial stages of the Can-in-Canister process, which required a six-axis robot. The first operation is a press unloading process. The second operation is a tray transfer process. To successfully accomplish the operational tasks described in the two operations, the end-effector of the robot must be versatile, lightweight, and rugged. As a result of these demands, an extensive development process was undertaken to design the optimum end-effector for these puck

  20. Interchangeable end effector tools utilized on the protoflight manipulator arm

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A subset of teleoperator and effector tools was designed, fabricated, delivered and successfully demonstrated on the Marshall Space Flight Center (MSFC) protoflight manipulator arm (PFMA). The tools delivered included a rotary power tool with interchangeable collets and two fluid coupling mate/demate tools; one for a Fairchild coupling and the other for a Purolator coupling. An electrical interface connector was also provided for the rotary power tool. A tool set, from which the subset was selected, for performing on-orbit satellite maintenance was identified and conceptionally designed. Maintenance requirements were synthesized, evaluated and prioritized to develop design requirements for a set of end effector tools representative of those needed to provide on-orbit maintenance of satellites to be flown in the 1986 to 2000 timeframe.

  1. Proteomics of effector-triggered immunity (ETI) in plants

    PubMed Central

    Hurley, Brenden; Subramaniam, Rajagopal; Guttman, David S; Desveaux, Darrell

    2014-01-01

    Effector-triggered immunity (ETI) was originally termed gene-for-gene resistance and dates back to fundamental observations of flax resistance to rust fungi by Harold Henry Flor in the 1940s. Since then, genetic and biochemical approaches have defined our current understanding of how plant “resistance” proteins recognize microbial effectors. More recently, proteomic approaches have expanded our view of the protein landscape during ETI and contributed significant advances to our mechanistic understanding of ETI signaling. Here we provide an overview of proteomic techniques that have been used to study plant ETI including both global and targeted approaches. We discuss the challenges associated with ETI proteomics and highlight specific examples from the literature, which demonstrate how proteomics is advancing the ETI research field. PMID:25513776

  2. Subversion of Retrograde Trafficking by Translocated Pathogen Effectors.

    PubMed

    Personnic, Nicolas; Bärlocher, Kevin; Finsel, Ivo; Hilbi, Hubert

    2016-06-01

    Intracellular bacterial pathogens subvert the endocytic bactericidal pathway to form specific replication-permissive compartments termed pathogen vacuoles or inclusions. To this end, the pathogens employ type III or type IV secretion systems, which translocate dozens, if not hundreds, of different effector proteins into their host cells, where they manipulate vesicle trafficking and signaling pathways in favor of the intruders. While the distinct cocktail of effectors defines the specific processes by which a pathogen vacuole is formed, the different pathogens commonly target certain vesicle trafficking routes, including the endocytic or secretory pathway. Recently, the retrograde transport pathway from endosomal compartments to the trans-Golgi network emerged as an important route affecting pathogen vacuole formation. Here, we review current insight into the host cell's retrograde trafficking pathway and how vacuolar pathogens of the genera Legionella, Coxiella, Salmonella, Chlamydia, and Simkania employ mechanistically distinct strategies to subvert this pathway, thus promoting intracellular survival and replication. PMID:26924068

  3. A robot end effector exchange mechanism for space applications

    NASA Technical Reports Server (NTRS)

    Gorin, Barney F.

    1990-01-01

    Efficient robot operation requires the use of specialized end effectors or tools for tasks. In spacecraft applications, the microgravity environment precludes the use of gravitational forces to retain the tools in holding fixture. As a result of this, a retention mechanism which forms a part of the tool storage container is required. A unique approach to this problem has resulted in the development of an end effector exchange mechanism that meets the requirements for spaceflight applications while avoiding the complexity usually involved. This mechanism uses multiple latching cams both on the manipulator and in the tool storage container, combined with a system of catch rings to provide retention in both locations and the required failure tolerance. Because of the cam configuration the mechanism operates passively, requiring no electrical commands except those needed to move the manipulator into position. Similarly, it inherently provides interlocks to prevent the release of one cam before its opposite number is engaged.

  4. Xanthomonas and the TAL Effectors: Nature's Molecular Biologist.

    PubMed

    White, Frank

    2016-01-01

    Agrobacterium, due to the transfer of T-DNA to the host genome, is known as nature's genetic engineer. Once again, bacteria have led the way to newfound riches in biotechnology. Xanthomonas has emerged as nature's molecular biologist as the functional domains of the sequence-specific DNA transcription factors known as TAL effectors were characterized and associated with the cognate disease susceptibility and resistance genes of plants. PMID:26443209

  5. RMS end effector waiting for command and SPAS-01 nearby

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The end effector of the remote manipulator system (RMS) appears to be waiting for its next command at the top of this frame and the Shuttle pallet satellite (SPAS-01), in its free flying mode, appears nearby. The three letters legible on the SPAS stand for Messerschmitt-Boelkow-Blohm Gmbit, a West German firm. The earth's horizon is visible at the bottom of the frame.

  6. Autonomous dexterous end-effectors for space robotics

    NASA Technical Reports Server (NTRS)

    Bekey, George A.; Iberall, Thea; Liu, Huan

    1989-01-01

    The development of a knowledge-based controller is summarized for the Belgrade/USC robot hand, a five-fingered end effector, designed for maximum autonomy. The biological principles of the hand and its architecture are presented. The conceptual and software aspects of the grasp selection system are discussed, including both the effects of the geometry of the target object and the task to be performed. Some current research issues are presented.

  7. The Functions of Effector Proteins in Yersinia Virulence.

    PubMed

    Zhang, Linglin; Mei, Meng; Yu, Chan; Shen, Wenwen; Ma, Lixin; He, Jiewang; Yi, Li

    2016-01-01

    Yersinia species are bacterial pathogens that can cause plague and intestinal diseases after invading into human cells through the Three Secretion System (TTSS). The effect of pathogenesis is mediated by Yersinia outer proteins (Yop) and manifested as down-regulation of the cytokine genes expression by inhibiting nuclear factor-κ-gene binding (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. In addition, its pathogenesis can also manipulate the disorder of host innate immune system and cell death such as apoptosis, pyroptosis, and autophagy. Among the Yersinia effector proteins, YopB and YopD assist the injection of other virulence effectors into the host cytoplasm, while YopE, YopH, YopJ, YopO, and YopT target on disrupting host cell signaling pathways in the host cytosols. Many efforts have been applied to reveal that intracellular proteins such as Rho-GTPase, and transmembrane receptors such as Toll-like receptors (TLRs) both play critical roles in Yersinia pathogenesis, establishing a connection between the pathogenic process and the signaling response. This review will mainly focus on how the effector proteins of Yersinia modulate the intrinsic signals in host cells and disturb the innate immunity of hosts through TTSS. PMID:27281989

  8. Mouse and human FcR effector functions.

    PubMed

    Bruhns, Pierre; Jönsson, Friederike

    2015-11-01

    Mouse and human FcRs have been a major focus of attention not only of the scientific community, through the cloning and characterization of novel receptors, and of the medical community, through the identification of polymorphisms and linkage to disease but also of the pharmaceutical community, through the identification of FcRs as targets for therapy or engineering of Fc domains for the generation of enhanced therapeutic antibodies. The availability of knockout mouse lines for every single mouse FcR, of multiple or cell-specific--'à la carte'--FcR knockouts and the increasing generation of hFcR transgenics enable powerful in vivo approaches for the study of mouse and human FcR biology. This review will present the landscape of the current FcR family, their effector functions and the in vivo models at hand to study them. These in vivo models were recently instrumental in re-defining the properties and effector functions of FcRs that had been overlooked or discarded from previous analyses. A particular focus will be made on the (mis)concepts on the role of high-affinity IgG receptors in vivo and on results from antibody engineering to enhance or abrogate antibody effector functions mediated by FcRs. PMID:26497511

  9. Multiple Regulatory and Effector Roles of Autophagy in Immunity

    PubMed Central

    Deretic, Vojo

    2009-01-01

    Summary Autophagy is a cytoplasmic homeostasis pathway, enabling cells to digest their own cytosol, remove toxic protein aggregates, and eliminate deffective or surplus organelles. A plenitude of studies have now expanded roles of autophagy to both effector and regulatory functions in innate and adaptive immunity. In its role of an immunological effector, autophagy plays many parts: (i) In its most primeval manifestation, autophagy captures and digests intracellular microbes; (ii) it is an anti-microbial output of Toll-like receptor (TLR) response to pathogen associated molecular patterns (PAMP); and (iii) autophagy is an effector of Th1-Th2 polarization in resistance or susceptibility to intracellular pathogens. As a regulator of immunity, autophagy plays a multitude of functions: (i) It acts as a topological inversion device servicing both innate and adaptive immunity by delivering cytosolic antigens to the lumen of MHC II compartments and cytosolic PAMPs to endosomal TLRs; (ii) autophagy is critical in T cell repertoire selection in the thymus and control of central tolerance; (iii) it plays a role in T and B cell homeostasis; and (iv) autophagy is of significance for inflammatory pathology. A properly functioning autophagy helps prevent autoimmunity and assists in clearing pathogens. When aberrant, it contributes to human inflammatory disorders such as Crohn’s disease. PMID:19269148

  10. Current activities of the Yersinia effector protein YopM.

    PubMed

    Höfling, Sabrina; Grabowski, Benjamin; Norkowski, Stefanie; Schmidt, M Alexander; Rüter, Christian

    2015-05-01

    Yersinia outer protein M (YopM) belongs to the group of Yop effector proteins, which are highly conserved among pathogenic Yersinia species. During infection, the effectors are delivered into the host cell cytoplasm via the type 3 secretion system to subvert the host immune response and support the survival of Yersinia. In contrast to the other Yop effectors, YopM does not possess a known enzymatic activity and its molecular mechanism(s) of action remain(s) poorly understood. However, YopM was shown to promote colonization and dissemination of Yersinia, thus being crucial for the pathogen's virulence in vivo. Moreover, YopM interacts with several host cell proteins and might utilize them to execute its anti-inflammatory activities. The results obtained so far indicate that YopM is a multifunctional protein that counteracts the host immune defense by multiple activities, which are at least partially independent of each other. Finally, its functions seem to be also influenced by differences between the specific YopM isoforms expressed by Yersinia subspecies. In this review, we focus on the global as well as more specific contribution of YopM to virulence of Yersinia during infection and point out the various extra- and intracellular molecular functions of YopM. In addition, the novel cell-penetrating ability of recombinant YopM and its potential applications as a self-delivering immunomodulatory therapeutic will be discussed. PMID:25865799

  11. A smart end-effector for assembly of space truss structures

    NASA Technical Reports Server (NTRS)

    Doggett, William R.; Rhodes, Marvin D.; Wise, Marion A.; Armistead, Maurice F.

    1992-01-01

    A unique facility, the Automated Structures Research Laboratory, is being used to investigate robotic assembly of truss structures. A special-purpose end-effector is used to assemble structural elements into an eight meter diameter structure. To expand the capabilities of the facility to include construction of structures with curved surfaces from straight structural elements of different lengths, a new end-effector has been designed and fabricated. This end-effector contains an integrated microprocessor to monitor actuator operations through sensor feedback. This paper provides an overview of the automated assembly tasks required by this end-effector and a description of the new end-effector's hardware and control software.

  12. Multiple recognition of RXLR effectors is associated with nonhost resistance of pepper against Phytophthora infestans

    PubMed Central

    Lee, Hyun-Ah; Kim, Shin-Young; Oh, Sang-Keun; Yeom, Seon-In; Kim, Saet-Byul; Kim, Myung-Shin; Kamoun, Sophien; Choi, Doil

    2014-01-01

    Nonhost resistance (NHR) is a plant immune response to resist most pathogens. The molecular basis of NHR is poorly understood, but recognition of pathogen effectors by immune receptors, a response known as effector-triggered immunity, has been proposed as a component of NHR. We performed transient expression of 54 Phytophthora infestansRXLR effectors in pepper (Capsicum annuum) accessions. We used optimized heterologous expression methods and analyzed the inheritance of effector-induced cell death in an F2 population derived from a cross between two pepper accessions. Pepper showed a localized cell death response upon inoculation with P. infestans, suggesting that recognition of effectors may contribute to NHR in this system. Pepper accessions recognized as many as 36 effectors. Among the effectors, PexRD8 and Avrblb2 induced cell death in a broad range of pepper accessions. Segregation of effector-induced cell death in an F2 population derived from a cross between two pepper accessions fit 15 : 1, 9 : 7 or 3 : 1 ratios, depending on the effector. Our genetic data suggest that a single or two independent/complementary dominant genes are involved in the recognition of RXLR effectors. Multiple loci recognizing a series of effectors may underpin NHR of pepper to P. infestans and confer resistance durability. PMID:24889686

  13. Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners.

    PubMed

    Toruño, Tania Y; Stergiopoulos, Ioannis; Coaker, Gitta

    2016-08-01

    Plants possess large arsenals of immune receptors capable of recognizing all pathogen classes. To cause disease, pathogenic organisms must be able to overcome physical barriers, suppress or evade immune perception, and derive nutrients from host tissues. Consequently, to facilitate some of these processes, pathogens secrete effector proteins that promote colonization. This review covers recent advances in the field of effector biology, focusing on conserved cellular processes targeted by effectors from diverse pathogens. The ability of effectors to facilitate pathogen entry into the host interior, suppress plant immune perception, and alter host physiology for pathogen benefit is discussed. Pathogens also deploy effectors in a spatial and temporal manner, depending on infection stage. Recent advances have also enhanced our understanding of effectors acting in specific plant organs and tissues. Effectors are excellent cellular probes that facilitate insight into biological processes as well as key points of vulnerability in plant immune signaling networks. PMID:27359369

  14. Prediction of bacterial type IV secreted effectors by C-terminal features

    PubMed Central

    2014-01-01

    Background Many bacteria can deliver pathogenic proteins (effectors) through type IV secretion systems (T4SSs) to eukaryotic cytoplasm, causing host diseases. The inherent property, such as sequence diversity and global scattering throughout the whole genome, makes it a big challenge to effectively identify the full set of T4SS effectors. Therefore, an effective inter-species T4SS effector prediction tool is urgently needed to help discover new effectors in a variety of bacterial species, especially those with few known effectors, e.g., Helicobacter pylori. Results In this research, we first manually annotated a full list of validated T4SS effectors from different bacteria and then carefully compared their C-terminal sequential and position-specific amino acid compositions, possible motifs and structural features. Based on the observed features, we set up several models to automatically recognize T4SS effectors. Three of the models performed strikingly better than the others and T4SEpre_Joint had the best performance, which could distinguish the T4SS effectors from non-effectors with a 5-fold cross-validation sensitivity of 89% at a specificity of 97%, based on the training datasets. An inter-species cross prediction showed that T4SEpre_Joint could recall most known effectors from a variety of species. The inter-species prediction tool package, T4SEpre, was further used to predict new T4SS effectors from H. pylori, an important human pathogen associated with gastritis, ulcer and cancer. In total, 24 new highly possible H. pylori T4S effector genes were computationally identified. Conclusions We conclude that T4SEpre, as an effective inter-species T4SS effector prediction software package, will help find new pathogenic T4SS effectors efficiently in a variety of pathogenic bacteria. PMID:24447430

  15. A survey of the Pseudomonas syringae pv. tomato DC3000 type III secretion system effector repertoire reveals several effectors that are deleterious when expressed in Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The injection of nearly 30 effector proteins by the type III secretion system underlies the ability of Pseudomonas syringae pv. tomato strain DC3000 to cause disease in tomato and other host plants. The search for effector functions is complicated by redundancy within the repertoire and by plant R-g...

  16. Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many bacterial pathogens of plants and animals disarm and remodel host cells by injecting large repertoires of effectors via the type III secretion system (T3SS). The repertoires of individual strains appear to function as robust systems that can tolerate loss of individual effectors with little or ...

  17. Ring the BELL and tie the KNOX: roles for TALEs in gynoecium development

    PubMed Central

    Arnaud, Nicolas; Pautot, Véronique

    2014-01-01

    Carpels are leaf-like structures that bear ovules, and thus play a crucial role in the plant life cycle. In angiosperms, carpels are the last organs produced by the floral meristem and they differentiate a specialized meristematic tissue from which ovules develop. Members of the three-amino-acid-loop-extension (TALE) class of homeoproteins constitute major regulators of meristematic activity. This family contains KNOTTED-like (KNOX) and BEL1-like (BLH or BELL) homeodomain proteins, which function as heterodimers. KNOX proteins can have different BELL partners, leading to multiple combinations with distinct activities, and thus regulate many aspects of plant morphogenesis, including gynoecium development. TALE proteins act primarily through direct regulation of hormonal pathways and key transcriptional regulators. This review focuses on the contribution of TALE proteins to gynoecium development and connects TALE transcription factors to carpel gene regulatory networks. PMID:24688486

  18. The Fairy-Folk Tale in Media Art: Reflections of Disney and Duvall.

    ERIC Educational Resources Information Center

    Molloy, Toni

    1988-01-01

    Focuses on Walt Disney and Shelley Duvall, mass media producers who furnish children with fairy-folklore. Compares and contrasts what Disney and Duvall do and do not convey through their fairy-folk tales. (MS)

  19. Telepresence Master Glove Controller For Dexterous Robotic End-Effectors

    NASA Astrophysics Data System (ADS)

    Fowler, A. M.; Joyce, R. R.; Britt, J. P.

    1987-03-01

    This paper describes recent research in the Aerospace Human Factors Research Division at NASA's Ames Research Center to develop a glove-like, control and data-recording device (DataGlove) that records and transmits to a host computerin real time, and at appropriate resolution, a numeric data-record of a user's hand/finger shape and dynamics. System configuration and performance specifications are detailed, and current research is discussed investigating its applications in operator control of dexterous robotic end-effectors and for use as a human factors research tool in evaluation of operator hand function requirements and performance in other specialized task environments.

  20. Hacker within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy

    PubMed Central

    Lina, Taslima T.; Farris, Tierra; Luo, Tian; Mitra, Shubhajit; Zhu, Bing; McBride, Jere W.

    2016-01-01

    Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival. PMID:27303657

  1. Hacker within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy.

    PubMed

    Lina, Taslima T; Farris, Tierra; Luo, Tian; Mitra, Shubhajit; Zhu, Bing; McBride, Jere W

    2016-01-01

    Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival. PMID:27303657

  2. Exact positioning of the robotic arm end effector

    NASA Astrophysics Data System (ADS)

    Korepanov, Valery; Dudkin, Fedir

    2016-07-01

    Orbital service becomes a new challenge of space exploration. The necessity to introduce it is connected first of all with an attractive opportunity to prolong the exploitation terms of expensive commercial satellites by, e.g., refilling of fuel or changing batteries. Other application area is a fight with permanently increasing amount of space litter - defunct satellites, burnt-out rocket stages, discarded trash and other debris. Now more than few tens of thousands orbiting objects larger than 5-10 cm (or about 1 million junks larger than 1 cm) are a huge problem for crucial and costly satellites and manned vehicles. For example, in 2014 the International Space Station had to change three times its orbit to avoid collision with space debris. So the development of the concepts and actions related to removal of space debris or non-operational satellites with use of robotic arm of a servicing satellite is very actual. Such a technology is also applicable for unmanned exploratory missions in solar system, for example for collecting a variety of samples from a celestial body surface. Naturally, the robotic arm movements should be controlled with great accuracy at influence of its non-rigidity, thermal and other factors. In these circumstances often the position of the arm end effector has to be controlled with high accuracy. The possibility of coordinate determination for the robotic arm end effector with use of a low frequency active electromagnetic system has been considered in the presented report. The proposed design of such a system consists of a small magnetic dipole source, which is mounted inside of the arm end effector and two or three 3-component magnetic field sensors mounted on a servicing satellite body. The data from this set of 3-component magnetic field sensors, which are fixed relatively to the satellite body, allows use of the mathematical approach for determination of position and orientation of the magnetic dipole source. The theoretical

  3. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.

    PubMed

    Johnston, Joe; Gopalarathnam, Ashok

    2012-09-01

    A flap mounted on the upper surface of an airfoil, called a 'lift-enhancing effector', has been shown in wind tunnel tests to have a similar function to a bird's covert feathers, which rise off the wing's surface in response to separated flows. The effector, fabricated from a thin Mylar sheet, is allowed to rotate freely about its leading edge. The tests were performed in the NCSU subsonic wind tunnel at a chord Reynolds number of 4 × 10(5). The maximum lift coefficient with the effector was the same as that for the clean airfoil, but was maintained over an angle-of-attack range from 12° to almost 20°, resulting in a very gentle stall behavior. To better understand the aerodynamics and to estimate the deployment angle of the free-moving effector, fixed-angle effectors fabricated out of stiff wood were also tested. A progressive increase in the stall angle of attack with increasing effector angle was observed, with diminishing returns beyond the effector angle of 60°. Drag tests on both the free-moving and fixed effectors showed a marked improvement in drag at high angles of attack. Oil flow visualization on the airfoil with and without the fixed-angle effectors proved that the effector causes the separation point to move aft on the airfoil, as compared to the clean airfoil. This is thought to be the main mechanism by which an effector improves both lift and drag. A comparison of the fixed-effector results with those from the free-effector tests shows that the free effector's deployment angle is between 30° and 45°. When operating at and beyond the clean airfoil's stall angle, the free effector automatically deploys to progressively higher angles with increasing angles of attack. This slows down the rapid upstream movement of the separation point and avoids the severe reduction in the lift coefficient and an increase in the drag coefficient that are seen on the clean airfoil at the onset of stall. Thus, the effector postpones the stall by 4-8° and makes the

  4. Pseudomonas syringae type III secretion system effectors: repertoires in search of functions.

    PubMed

    Cunnac, Sébastien; Lindeberg, Magdalen; Collmer, Alan

    2009-02-01

    The ability of Pseudomonas syringae to grow and cause diseases in plants is dependent on the injection of multiple effector proteins into plant cells via the type III secretion system (T3SS). Genome-enabled bioinformatic/experimental methods have comprehensively identified the repertoires of effectors and related T3SS substrates for P. syringae pv. tomato DC3000 and three other sequenced strains. The effector repertoires are diverse and internally redundant. Insights into effector functions are being gained through the construction of mutants lacking one or more effector genes, which may be reduced in growth in planta, and through gain-of-function assays for the ability of single effectors to suppress plant innate immune defenses, manipulate hormone signaling, elicit cell death, and/or display biochemical activities on plant protein targets. PMID:19168384

  5. Effector triggered manipulation of host immune response elicited by different pathotypes of Escherichia coli

    PubMed Central

    Jayamani, Elamparithi; Mylonakis, Eleftherios

    2014-01-01

    Effectors are virulence factors that are secreted by bacteria during an infection in order to subvert cellular processes or induce the surveillance system of the host. Pathogenic microorganisms encode effectors, toxins and components of secretion systems that inject the effectors to the host. Escherichia coli is part of the innocuous commensal microbial flora of the gastrointestinal tract. However, pathogenic E. coli can cause diarrheal and extraintestinal diseases. Pathogenic E. coli uses secretion systems to inject an array of effector proteins directly into the host cells. Herein, we discuss the effectors secreted by different pathotypes of E. coli and provide an overview of strategies employed by effectors to target the host cellular and subcellular processes as well as their role in triggering host immune response. PMID:25513774

  6. Effectors of animal and plant pathogens use a common domain to bind host phosphoinositides

    PubMed Central

    Salomon, Dor; Guo, Yirui; Kinch, Lisa N.; Grishin, Nick V.; Gardner, Kevin H.; Orth, Kim

    2016-01-01

    Bacterial Type III Secretion Systems deliver effectors into host cells to manipulate cellular processes to the advantage of the pathogen. Many host targets of these effectors are found on membranes. Therefore, to identify their targets, effectors often use specialized membrane-localization domains to localize to appropriate host membranes. However, the molecular mechanisms used by many domains are unknown. Here we identify a conserved bacterial phosphoinositide-binding domain (BPD) that is found in functionally diverse Type III effectors of both plant and animal pathogens. We show that members of the BPD family functionally bind phosphoinositides and mediate localization to host membranes. Moreover, NMR studies reveal that the BPD of the newly identified Vibrio parahaemolyticus Type III effector VopR is unfolded in solution, but folds into a specific structure upon binding its ligand phosphatidylinositol-(4,5)-bisphosphate. Thus, our findings suggest a possible mechanism for promoting refolding of Type III effectors after delivery into host cells. PMID:24346350

  7. Armet is an effector protein mediating aphid-plant interactions.

    PubMed

    Wang, Wei; Dai, Huaien; Zhang, Yi; Chandrasekar, Raman; Luo, Lan; Hiromasa, Yasuaki; Sheng, Changzhong; Peng, Gongxin; Chen, Shaoliang; Tomich, John M; Reese, John; Edwards, Owain; Kang, Le; Reeck, Gerald; Cui, Feng

    2015-05-01

    Aphid saliva is predicted to contain proteins that modulate plant defenses and facilitate feeding. Armet is a well-characterized bifunctional protein in mammalian systems. Here we report a new role of Armet, namely as an effector protein in the pea aphid, Acyrthosiphon pisum. Pea aphid Armet's physical and chemical properties and its intracellular role are comparable to those reported for mammalian Armets. Uniquely, we detected Armet in aphid watery saliva and in the phloem sap of fava beans fed on by aphids. Armet's transcript level is several times higher in the salivary gland when aphids feed on bean plants than when they feed on an artificial diet. Knockdown of the Armet transcript by RNA interference disturbs aphid feeding behavior on fava beans measured by the electrical penetration graph technique and leads to a shortened life span. Inoculation of pea aphid Armet protein into tobacco leaves induced a transcriptional response that included pathogen-responsive genes. The data suggest that Armet is an effector protein mediating aphid-plant interactions. PMID:25678626

  8. Heat shock proteins, end effectors of myocardium ischemic preconditioning?

    PubMed Central

    Guisasola, María Concepcion; Desco, Maria del Mar; Gonzalez, Fernanda Silvana; Asensio, Fernando; Dulin, Elena; Suarez, Antonio; Garcia Barreno, Pedro

    2006-01-01

    The purpose of this study was to investigate (1) whether ischemia-reperfusion increased the content of heat shock protein 72 (Hsp72) transcripts and (2) whether myocardial content of Hsp72 is increased by ischemic preconditioning so that they can be considered as end effectors of preconditioning. Twelve male minipigs (8 protocol, 4 sham) were used, with the following ischemic preconditioning protocol: 3 ischemia and reperfusion 5-minute alternative cycles and last reperfusion cycle of 3 hours. Initial and final transmural biopsies (both in healthy and ischemic areas) were taken in all animals. Heat shock protein 72 messenger ribonucleic acid (mRNA) expression was measured by a semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) method using complementary DNA normalized against the housekeeping gene cyclophilin. The identification of heat shock protein 72 was performed by immunoblot. In our “classic” preconditioning model, we found no changes in mRNA hsp72 levels or heat shock protein 72 content in the myocardium after 3 hours of reperfusion. Our experimental model is valid and the experimental techniques are appropriate, but the induction of heat shock proteins 72 as end effectors of cardioprotection in ischemic preconditioning does not occur in the first hours after ischemia, but probably at least 24 hours after it, in the so-called “second protection window.” PMID:17009598

  9. Macrophages are critical effectors of antibody therapies for cancer.

    PubMed

    Weiskopf, Kipp; Weissman, Irving L

    2015-01-01

    Macrophages are innate immune cells that derive from circulating monocytes, reside in all tissues, and participate in many states of pathology. Macrophages play a dichotomous role in cancer, where they promote tumor growth but also serve as critical immune effectors of therapeutic antibodies. Macrophages express all classes of Fcγ receptors, and they have immense potential to destroy tumors via the process of antibody-dependent phagocytosis. A number of studies have demonstrated that macrophage phagocytosis is a major mechanism of action of many antibodies approved to treat cancer. Consequently, a number of approaches to augment macrophage responses to therapeutic antibodies are under investigation, including the exploration of new targets and development of antibodies with enhanced functions. For example, the interaction of CD47 with signal-regulatory protein α (SIRPα) serves as a myeloid-specific immune checkpoint that limits the response of macrophages to antibody therapies, and CD47-blocking agents overcome this barrier to augment phagocytosis. The response of macrophages to antibody therapies can also be enhanced with engineered Fc variants, bispecific antibodies, or antibody-drug conjugates. Macrophages have demonstrated success as effectors of cancer immunotherapy, and further investigation will unlock their full potential for the benefit of patients. PMID:25667985

  10. Local sensory control of a dexterous end effector

    NASA Technical Reports Server (NTRS)

    Pinto, Victor H.; Everett, Louis J.; Driels, Morris

    1990-01-01

    A numerical scheme was developed to solve the inverse kinematics for a user-defined manipulator. The scheme was based on a nonlinear least-squares technique which determines the joint variables by minimizing the difference between the target end effector pose and the actual end effector pose. The scheme was adapted to a dexterous hand in which the joints are either prismatic or revolute and the fingers are considered open kinematic chains. Feasible solutions were obtained using a three-fingered dexterous hand. An algorithm to estimate the position and orientation of a pre-grasped object was also developed. The algorithm was based on triangulation using an ideal sensor and a spherical object model. By choosing the object to be a sphere, only the position of the object frame was important. Based on these simplifications, a minimum of three sensors are needed to find the position of a sphere. A two dimensional example to determine the position of a circle coordinate frame using a two-fingered dexterous hand was presented.

  11. Flight Control Using Distributed Shape-Change Effector Arrays

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Montgomery, Raymond C.; Green, Lawrence I.; Park, Michael A.

    2000-01-01

    Recent discoveries in material science and fluidics have been used to create a variety of novel effector devices that offer great potential to enable new approaches to aerospace vehicle flight control. Examples include small inflatable blisters, shape-memory alloy diaphragms, and piezoelectric patches that may be used to produce distortions or bumps on the surface of an airfoil to generate control moments. Small jets have also been used to produce a virtual shape-change through fluidic means by creating a recirculation bubble on the surface of an airfoil. An advanced aerospace vehicle might use distributed arrays of hundreds of such devices to generate moments for stabilization and maneuver control, either augmenting or replacing conventional ailerons, flaps or rudders. This research demonstrates the design and use of shape-change device arrays for a tailless aircraft in a low-rate maneuvering application. A methodology for assessing the control authority of the device arrays is described, and a suite of arrays is used in a dynamic simulation to illustrate allocation and deployment methodologies. Although the authority of the preliminary shape-change array designs studied in this paper appeared quite low, the simulation results indicate that the effector suite possessed sufficient authority to stabilize and maneuver the vehicle in mild turbulence.

  12. Macrophages are critical effectors of antibody therapies for cancer

    PubMed Central

    Weiskopf, Kipp; Weissman, Irving L

    2015-01-01

    Macrophages are innate immune cells that derive from circulating monocytes, reside in all tissues, and participate in many states of pathology. Macrophages play a dichotomous role in cancer, where they promote tumor growth but also serve as critical immune effectors of therapeutic antibodies. Macrophages express all classes of Fcγ receptors, and they have immense potential to destroy tumors via the process of antibody-dependent phagocytosis. A number of studies have demonstrated that macrophage phagocytosis is a major mechanism of action of many antibodies approved to treat cancer. Consequently, a number of approaches to augment macrophage responses to therapeutic antibodies are under investigation, including the exploration of new targets and development of antibodies with enhanced functions. For example, the interaction of CD47 with signal-regulatory protein α (SIRPα) serves as a myeloid-specific immune checkpoint that limits the response of macrophages to antibody therapies, and CD47-blocking agents overcome this barrier to augment phagocytosis. The response of macrophages to antibody therapies can also be enhanced with engineered Fc variants, bispecific antibodies, or antibody-drug conjugates. Macrophages have demonstrated success as effectors of cancer immunotherapy, and further investigation will unlock their full potential for the benefit of patients. PMID:25667985

  13. Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis

    PubMed Central

    Chang, Chih-Hao; Curtis, Jonathan D.; Maggi, Leonard B.; Faubert, Brandon; Villarino, Alejandro V.; O’Sullivan, David; Huang, Stanley Ching-Cheng; van der Windt, Gerritje J.W.; Blagih, Julianna; Qiu, Jing; Weber, Jason D.; Pearce, Edward J.; Jones, Russell G.; Pearce, Erika L.

    2013-01-01

    SUMMARY A “switch” from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete environment, remains incompletely understood. We show here that aerobic glycolysis is specifically required for effector function in T cells but that this pathway is not necessary for proliferation or survival. When activated T cells are provided with costimulation and growth factors but are blocked from engaging glycolysis, their ability to produce IFN-γ is markedly compromised. This defect is translational and is regulated by the binding of the glycolysis enzyme GAPDH to AU-rich elements within the 3′ UTR of IFN-γ mRNA. GAPDH, by engaging/disengaging glycolysis and through fluctuations in its expression, controls effector cytokine production. Thus, aerobic glycolysis is a metabolically regulated signaling mechanism needed to control cellular function. PMID:23746840

  14. Method and apparatus for positioning a robotic end effector

    NASA Technical Reports Server (NTRS)

    Hess, Clifford W. (Inventor); Li, Larry C. H. (Inventor)

    1990-01-01

    A robotic end effector and operation protocol for a reliable grasp of a target object irrespective of the target's contours is disclosed. A robotic hand includes a plurality of jointed fingers, one of which, like a thumb, is in opposed relation to the other. Each finger is comprised of at least two jointed sections, and provided with reflective proximity sensors, one on the inner surface of each finger section. Each proximity sensor comprises a transmitter of a beam of radiant energy and means for receiving reflections of the transmitted energy when reflected by a target object and for generating electrical signals responsive thereto. On the fingers opposed to the thumb, the proximity sensors on the outermost finger sections are aligned in an outer sensor array and the sensors on the intermediate finger sections and sensors on the innermost finger sections are similarly arranged to form an intermediate sensor array and an inner sensor array, respectively. The invention includes a computer system with software and/or circuitry for a protocol comprising the steps in sequence of: (1) approach axis alignment to maximize the number of outer layer sensors which detect the target; (2) non-contact contour following the target by the robot fingers to minimize target escape potential; and (3) closing to rigidize the target including dynamically re-adjusting the end effector finger alignment to compensate for target motion. A signal conditioning circuit and gain adjustment means are included to maintain the dynamic range of low power reflection signals.

  15. Physiological roles of Rab27 effectors in regulated exocytosis.

    PubMed

    Izumi, Tetsuro

    2007-12-01

    Recent discoveries that Rab27a/b and their multiple effectors are involved in the regulated exocytosis of lysosome-related organelles and secretory granules have generated numerous related studies. However, not all of these studies have yielded physiologically relevant data because they were not all performed under physiological conditions. For example, "in vivo interactions" have been claimed without examination of the endogenous complex. In some studies, the only proof of interaction was between exogenously expressed proteins in cultured cells where these proteins are not normally expressed. Because regulated exocytic pathways contain highly differentiated secretory organelles, it is important to analyze the molecular interaction in cells harboring these organelles and the associated molecules. Furthermore, previous overexpression experiments to examine the effect on secretion often failed to compare the level of the exogenous protein with that of the endogenous one. Similarly, some knockdown experiments using small-interfering RNAs have only shown downregulation of the exogenously expressed protein, and not of the endogenous one. Many of the conflicting findings in previous studies may be attributable to these shortcomings. The present study summarizes our knowledge about the roles of Rab27 effectors in regulated exocytic pathways based on physiologically relevant data. PMID:17664848

  16. Innovative technology summary report: Confined sluicing end effector

    SciTech Connect

    1998-09-01

    A Confined Sluicing End-Effector (CSEE) was field tested during the summer of 1997 in Tank W-3, one of the Gunite and Associated Tanks (GAAT) at the Oak Ridge Reservation (ORR). It should be noted that the specific device used at the Oak Ridge Reservation demonstration was the Sludge Retrieval End-Effector (SREE), although in common usage it is referred to as the CSEE. Deployed by the Modified Light-Duty Utility Arm (MLDUA) and the Houdini remotely operated vehicle (ROV), the CSEE was used to mobilize and retrieve waste from the tank. After removing the waste, the CSEE was used to scarify the gunite walls of Tank W-3, removing approximately 0.1 in of material. The CSEE uses three rotating water-jets to direct a short-range pressurized jet of water to effectively mobilize the waste. Simultaneously, the water and dislodged tank waste, or scarified materials, are aspirated using a water-jet pump-driven conveyance system. The material is then pumped outside of the tank, where it can be stored for treatment. The technology, its performance, uses, cost, and regulatory issues are discussed.

  17. Evaluation of Secretion Prediction Highlights Differing Approaches Needed for Oomycete and Fungal Effectors

    PubMed Central

    Sperschneider, Jana; Williams, Angela H.; Hane, James K.; Singh, Karam B.; Taylor, Jennifer M.

    2015-01-01

    The steadily increasing number of sequenced fungal and oomycete genomes has enabled detailed studies of how these eukaryotic microbes infect plants and cause devastating losses in food crops. During infection, fungal and oomycete pathogens secrete effector molecules which manipulate host plant cell processes to the pathogen's advantage. Proteinaceous effectors are synthesized intracellularly and must be externalized to interact with host cells. Computational prediction of secreted proteins from genomic sequences is an important technique to narrow down the candidate effector repertoire for subsequent experimental validation. In this study, we benchmark secretion prediction tools on experimentally validated fungal and oomycete effectors. We observe that for a set of fungal SwissProt protein sequences, SignalP 4 and the neural network predictors of SignalP 3 (D-score) and SignalP 2 perform best. For effector prediction in particular, the use of a sensitive method can be desirable to obtain the most complete candidate effector set. We show that the neural network predictors of SignalP 2 and 3, as well as TargetP were the most sensitive tools for fungal effector secretion prediction, whereas the hidden Markov model predictors of SignalP 2 and 3 were the most sensitive tools for oomycete effectors. Thus, previous versions of SignalP retain value for oomycete effector prediction, as the current version, SignalP 4, was unable to reliably predict the signal peptide of the oomycete Crinkler effectors in the test set. Our assessment of subcellular localization predictors shows that cytoplasmic effectors are often predicted as not extracellular. This limits the reliability of secretion predictions that depend on these tools. We present our assessment with a view to informing future pathogenomics studies and suggest revised pipelines for secretion prediction to obtain optimal effector predictions in fungi and oomycetes. PMID:26779196

  18. The Monets, Van Goghs, and Renoirs of Science Education: Writing Impressionist Tales as a Strategy for Facilitating Prospective Teachers' Reflections on Science Experiences

    NASA Astrophysics Data System (ADS)

    Bryan, Lynn A.; Tippins, Deborah J.

    2005-08-01

    A particularly useful pedagogical strategy for beginning a dialogue with prospective teachers about the ways in which their experiences and beliefs shape their development of professional knowledge is writing impressionist tales. Impressionist tales are a form of autobiography that portrays one highly personal perspective on a significant moment in time. In this pedagogical practice article, we describe our use of impressionist tales, summarize the assumptions underpinning our use of impressionist tales in science methods courses, provide several examples of our students’ tales, and discuss the pedagogical advantages and the teacher educator’s role in using impressionist tales to promote reflective thinking among prospective elementary science teachers.

  19. A Plethora of Virulence Strategies Hidden Behind Nuclear Targeting of Microbial Effectors

    PubMed Central

    Rivas, Susana; Genin, Stéphane

    2011-01-01

    Plant immune responses depend on the ability to couple rapid recognition of the invading microbe to an efficient response. During evolution, plant pathogens have acquired the ability to deliver effector molecules inside host cells in order to manipulate cellular and molecular processes and establish pathogenicity. Following translocation into plant cells, microbial effectors may be addressed to different subcellular compartments. Intriguingly, a significant number of effector proteins from different pathogenic microorganisms, including viruses, oomycetes, fungi, nematodes, and bacteria, is targeted to the nucleus of host cells. In agreement with this observation, increasing evidence highlights the crucial role played by nuclear dynamics, and nucleocytoplasmic protein trafficking during a great variety of analyzed plant–pathogen interactions. Once in the nucleus, effector proteins are able to manipulate host transcription or directly subvert essential host components to promote virulence. Along these lines, it has been suggested that some effectors may affect histone packing and, thereby, chromatin configuration. In addition, microbial effectors may either directly activate transcription or target host transcription factors to alter their regular molecular functions. Alternatively, nuclear translocation of effectors may affect subcellular localization of their cognate resistance proteins in a process that is essential for resistance protein-mediated plant immunity. Here, we review recent progress in our field on the identification of microbial effectors that are targeted to the nucleus of host plant cells. In addition, we discuss different virulence strategies deployed by microbes, which have been uncovered through examination of the mechanisms that guide nuclear localization of effector proteins. PMID:22639625

  20. Elucidating the Role of Effectors in Plant-Fungal Interactions: Progress and Challenges.

    PubMed

    Selin, Carrie; de Kievit, Teresa R; Belmonte, Mark F; Fernando, W G Dilantha

    2016-01-01

    Pathogenic fungi have diverse growth lifestyles that support fungal colonization on plants. Successful colonization and infection for all lifestyles depends upon the ability to modify living host plants to sequester the necessary nutrients required for growth and reproduction. Secretion of virulence determinants referred to as "effectors" is assumed to be the key governing factor that determines host infection and colonization. Effector proteins are capable of suppressing plant defense responses and alter plant physiology to accommodate fungal invaders. This review focuses on effector molecules of biotrophic and hemibiotrophic plant pathogenic fungi, and the mechanism required for the release and uptake of effector molecules by the fungi and plant cells, respectively. We also place emphasis on the discovery of effectors, difficulties associated with predicting the effector repertoire, and fungal genomic features that have helped promote effector diversity leading to fungal evolution. We discuss the role of specific effectors found in biotrophic and hemibiotrophic fungi and examine how CRISPR/Cas9 technology may provide a new avenue for accelerating our ability in the discovery of fungal effector function. PMID:27199930

  1. Isolation and Characterization of Effector-Loop Mutants of CDC42 in Yeast

    PubMed Central

    Gladfelter, Amy S.; Moskow, John J.; Zyla, Trevin R.; Lew, Daniel J.

    2001-01-01

    The highly conserved small GTPase Cdc42p is a key regulator of cell polarity and cytoskeletal organization in eukaryotic cells. Multiple effectors of Cdc42p have been identified, although it is unclear how their activities are coordinated to produce particular cell behaviors. One strategy used to address the contributions made by different effector pathways downstream of small GTPases has been the use of “effector-loop” mutants of the GTPase that selectively impair only a subset of effector pathways. We now report the generation and preliminary characterization of a set of effector-loop mutants of Saccharomyces cerevisiae CDC42. These mutants define genetically separable pathways influencing actin or septin organization. We have characterized the phenotypic defects of these mutants and the binding defects of the encoded proteins to known yeast Cdc42p effectors in vitro. The results suggest that these effectors cannot account for the observed phenotypes, and therefore that unknown effectors exist that affect both actin and septin organization. The availability of partial function alleles of CDC42 in a genetically tractable system serves as a useful starting point for genetic approaches to identify such novel effectors. PMID:11359919

  2. Isolation and characterization of effector-loop mutants of CDC42 in yeast.

    PubMed

    Gladfelter, A S; Moskow, J J; Zyla, T R; Lew, D J

    2001-05-01

    The highly conserved small GTPase Cdc42p is a key regulator of cell polarity and cytoskeletal organization in eukaryotic cells. Multiple effectors of Cdc42p have been identified, although it is unclear how their activities are coordinated to produce particular cell behaviors. One strategy used to address the contributions made by different effector pathways downstream of small GTPases has been the use of "effector-loop" mutants of the GTPase that selectively impair only a subset of effector pathways. We now report the generation and preliminary characterization of a set of effector-loop mutants of Saccharomyces cerevisiae CDC42. These mutants define genetically separable pathways influencing actin or septin organization. We have characterized the phenotypic defects of these mutants and the binding defects of the encoded proteins to known yeast Cdc42p effectors in vitro. The results suggest that these effectors cannot account for the observed phenotypes, and therefore that unknown effectors exist that affect both actin and septin organization. The availability of partial function alleles of CDC42 in a genetically tractable system serves as a useful starting point for genetic approaches to identify such novel effectors. PMID:11359919

  3. True-Breeding Targeted Gene Knock-Out in Barley Using Designer TALE-Nuclease in Haploid Cells

    PubMed Central

    Gurushidze, Maia; Hensel, Goetz; Hiekel, Stefan; Schedel, Sindy; Valkov, Vladimir; Kumlehn, Jochen

    2014-01-01

    Transcription activator-like effector nucleases (TALENs) are customizable fusion proteins able to cleave virtually any genomic DNA sequence of choice, and thereby to generate site-directed genetic modifications in a wide range of cells and organisms. In the present study, we expressed TALENs in pollen-derived, regenerable cells to establish the generation of instantly true-breeding mutant plants. A gfp-specific TALEN pair was expressed via Agrobacterium-mediated transformation in embryogenic pollen of transgenic barley harboring a functional copy of gfp. Thanks to the haploid nature of the target cells, knock-out mutations were readily detected, and homozygous primary mutant plants obtained following genome duplication. In all, 22% of the TALEN transgenics proved knocked out with respect to gfp, and the loss of function could be ascribed to the deletions of between four and 36 nucleotides in length. The altered gfp alleles were transmitted normally through meiosis, and the knock-out phenotype was consistently shown by the offspring of two independent mutants. Thus, here we describe the efficient production of TALEN-mediated gene knock-outs in barley that are instantaneously homozygous and non-chimeric in regard to the site-directed mutations induced. This TALEN approach has broad applicability for both elucidating gene function and tailoring the phenotype of barley and other crop species. PMID:24643227

  4. From Tales of the Tongue to Tales of the Pen: An Organic Approach to Children's Literature. Resource Guide. NEH 1989 Summer Institute.

    ERIC Educational Resources Information Center

    Southwest Texas State Univ., San Marcos. Dept. of English.

    Developed from the activities of a summer institute in Texas that focused on "The Odyssey," folk and fairy tale, and folk rhyme, this resource guide presents 50 lesson plans offering a variety of approaches to teaching mythology and folklore to elementary school students. The lesson plans presented in the resource guide share a common foundation…

  5. Coyote & Little Turtle = Iisaw Niqw Yongosonhoya: A Traditional Hopi Tale and Coyote & the Winnowing Birds = Iisaw Niqw Tsaayantotaqam Tsiroot: A Traditional Hopi Tale. Original Language Series.

    ERIC Educational Resources Information Center

    Sekaquaptewa, Emory, Ed.; Pepper, Barbara, Ed.

    Intended to promote the preservation of the Hopi language, two illustrated children's books present traditional Hopi tales in bilingual format. Based on a story told by Herschel Talashoema, "Coyote & Little Turtle" tells how Little Turtle tricked Coyote into carrying him from the hot sand that burned his feet to Little Turtle's home in a spring.…

  6. The Salmonella type III secretion system virulence effector forms a new hexameric chaperone assembly for export of effector/chaperone complexes

    DOE PAGESBeta

    Tsai, Chi -Lin; Burkinshaw, Brianne J.; Strynadka, Natalie C. J.; Tainer, John A.

    2014-12-08

    Bacteria hijack eukaryotic cells by injecting virulence effectors into host cytosol with a type III secretion system (T3SS). Effectors are targeted with their cognate chaperones to hexameric T3SS ATPase at the bacterial membrane's cytosolic face. In this issue of the Journal of Bacteriology, Roblin et al. (P. Roblin, F. Dewitte, V. Villeret, E. G. Biondi, and C. Bompard, J Bacteriol 197:688–698, 2015, http://dx.doi.org/10.1128/JB.02294-14) show that the T3SS chaperone SigE of Salmonella can form hexameric rings rather than dimers when bound to its cognate effector, SopB, implying a novel multimeric association for chaperone/effector complexes with their ATPase.

  7. The Salmonella type III secretion system virulence effector forms a new hexameric chaperone assembly for export of effector/chaperone complexes

    SciTech Connect

    Tsai, Chi -Lin; Burkinshaw, Brianne J.; Strynadka, Natalie C. J.; Tainer, John A.

    2014-12-08

    Bacteria hijack eukaryotic cells by injecting virulence effectors into host cytosol with a type III secretion system (T3SS). Effectors are targeted with their cognate chaperones to hexameric T3SS ATPase at the bacterial membrane's cytosolic face. In this issue of the Journal of Bacteriology, Roblin et al. (P. Roblin, F. Dewitte, V. Villeret, E. G. Biondi, and C. Bompard, J Bacteriol 197:688–698, 2015, http://dx.doi.org/10.1128/JB.02294-14) show that the T3SS chaperone SigE of Salmonella can form hexameric rings rather than dimers when bound to its cognate effector, SopB, implying a novel multimeric association for chaperone/effector complexes with their ATPase.

  8. Molecular regulation of effector and memory T cell differentiation

    PubMed Central

    Chang, John T; Wherry, E John; Goldrath, Ananda W

    2015-01-01

    Immunological memory is a cardinal feature of adaptive immunity and an important goal of vaccination strategies. Here we highlight advances in the understanding of the diverse T lymphocyte subsets that provide acute and long-term protection from infection. These include new insights into the transcription factors, and the upstream ‘pioneering’ factors that regulate their accessibility to key sites of gene regulation, as well as metabolic regulators that contribute to the differentiation of effector and memory subsets; ontogeny and defining characteristics of tissue-resident memory lymphocytes; and origins of the remarkable heterogeneity exhibited by activated T cells. Collectively, these findings underscore progress in delineating the underlying pathways that control diversification in T cell responses but also reveal gaps in the knowledge, as well as the challenges that arise in the application of this knowledge to rationally elicit desired T cell responses through vaccination and immunotherapy. PMID:25396352

  9. Immune-surveillance through exhausted effector T-cells.

    PubMed

    Zehn, Dietmar; Utzschneider, Daniel T; Thimme, Robert

    2016-02-01

    Pathogens such as the human immunodeficiency virus (HIV), the hepatitis B and C virus (HBV, HCV) and certain strains of the rodent lymphocytic choriomeningitis virus (LCMV) establish a state of persisting viral replication. This occurs besides strong adoptive immune responses and the induction of large numbers of activated pathogen-specific T-cells. The failure of the immune system to clear these viruses is typically attributed to a loss of effector T-cell function-a phenomenon referred to as T-cell exhaustion. Though largely accepted, this loss of function concept is being more and more challenged by comprehensive clinical and experimental observations which highlight that T-cells in chronic infections are more functional than previously considered. Here, we highlight examples that demonstrate that such T-cells mediate a profound form of immune-surveillance. We also briefly discuss the opportunities and limitations of employing 'exhausted' T-cells for therapeutic purposes. PMID:26826950

  10. Cell-autonomous effector mechanisms against mycobacterium tuberculosis.

    PubMed

    MacMicking, John D

    2014-10-01

    Few pathogens run the gauntlet of sterilizing immunity like Mycobacterium tuberculosis (Mtb). This organism infects mononuclear phagocytes and is also ingested by neutrophils, both of which possess an arsenal of cell-intrinsic effector mechanisms capable of eliminating it. Here Mtb encounters acid, oxidants, nitrosylating agents, and redox congeners, often exuberantly delivered under low oxygen tension. Further pressure is applied by withholding divalent Fe²⁺, Mn²⁺, Cu²⁺, and Zn²⁺, as well as by metabolic privation in the form of carbon needed for anaplerosis and aromatic amino acids for growth. Finally, host E3 ligases ubiquinate, cationic peptides disrupt, and lysosomal enzymes digest Mtb as part of the autophagic response to this particular pathogen. It is a testament to the evolutionary fitness of Mtb that sterilization is rarely complete, although sufficient to ensure most people infected with this airborne bacterium remain disease-free. PMID:25081628

  11. Intervention of Phytohormone Pathways by Pathogen Effectors[OPEN

    PubMed Central

    Kazan, Kemal; Lyons, Rebecca

    2014-01-01

    The constant struggle between plants and microbes has driven the evolution of multiple defense strategies in the host as well as offense strategies in the pathogen. To defend themselves from pathogen attack, plants often rely on elaborate signaling networks regulated by phytohormones. In turn, pathogens have adopted innovative strategies to manipulate phytohormone-regulated defenses. Tactics frequently employed by plant pathogens involve hijacking, evading, or disrupting hormone signaling pathways and/or crosstalk. As reviewed here, this is achieved mechanistically via pathogen-derived molecules known as effectors, which target phytohormone receptors, transcriptional activators and repressors, and other components of phytohormone signaling in the host plant. Herbivores and sap-sucking insects employ obligate pathogens such as viruses, phytoplasma, or symbiotic bacteria to intervene with phytohormone-regulated defenses. Overall, an improved understanding of phytohormone intervention strategies employed by pests and pathogens during their interactions with plants will ultimately lead to the development of new crop protection strategies. PMID:24920334

  12. The Commonalities in Bacterial Effector Inhibition of Apoptosis.

    PubMed

    Robinson, Keith S; Aw, Rochelle

    2016-08-01

    Antiapoptotic pathways of the host cell play integral roles in bacterial pathogenesis, with inhibition of those pathways resulting in halted disease pathology. Certain pathogens have developed elegant mechanisms to modulate the fate of the host cell, many of which target novel pathways that are poorly understood in the context of the cell biology. Bacterial pathogenesis research not only promotes the understanding of the role of antiapoptotic pathways in bacterial infection, but has a broader context in understanding the epitome of human disease, that is, developing the understanding of tumorigenic or inflammatory pathways. Here we review host antiapoptotic signalling pathways manipulated by translocated bacterial effectors that propagate the disease state, drawing common parallels and showing the novel differences. PMID:27117049

  13. Wheat protein antigens and effector cells of aspecific immunity.

    PubMed

    Roccatello, D; Coppo, R; Cavalli, G; Piccoli, G; Amprimo, M C; Guerra, M G; Amore, A; Di Mauro, C; Quattrocchio, G; Cacace, G

    1990-04-01

    The effects of gliadin and glyc-gli on leukocyte chemiluminescence response, cytotoxic activity and locomotion were assessed in vitro. A dose-dependent increase in chemiluminescence response of neutrophils stimulated by Zymosan was observed by using gliadin at concentrations ranging between 1 and 20 micrograms. By increasing glyc-gli concentrations, a bimodal response was observed with an enhancement up to 50 micrograms/ml, followed by dose-dependent suppressive effects. The cytotoxic activity of a suspension of peripheral blood mononuclear cells on the human myeloid line K562 was assessed in a Chromium release assay. By pretreating effector cells with optimal doses of gliadin (5 micrograms/ml) or glyc-gli (50 micrograms/ml), an enhancement of cytotoxic activity, similar to that of the gamma-Interferon, could be achieved. Finally glyc-gli was found to elicit neutrophil chemokinesis. The possible implications of these findings in diseases characterized by gluten intolerance are discussed. PMID:1967061

  14. Thrombin A-Chain: Activation Remnant or Allosteric Effector?

    PubMed Central

    Carter, Isis S. R.; Vanden Hoek, Amanda L.; Pryzdial, Edward L. G.; MacGillivray, Ross T. A.

    2010-01-01

    Although prothrombin is one of the most widely studied enzymes in biology, the role of the thrombin A-chain has been neglected in comparison to the other domains. This paper summarizes the current data on the prothrombin catalytic domain A-chain region and the subsequent thrombin A-chain. Attention is given to biochemical characterization of naturally occurring prothrombin A-chain mutations and alanine scanning mutants in this region. While originally considered to be simply an activation remnant with little physiologic function, the thrombin A-chain is now thought to play a role as an allosteric effector in enzymatic reactions and may also be a structural scaffold to stabilize the protease domain. PMID:22084659

  15. The interplay of effector and regulatory T cells in cancer.

    PubMed

    Roychoudhuri, Rahul; Eil, Robert L; Restifo, Nicholas P

    2015-04-01

    Regulatory T (Treg) cells suppress effector T (Teff) cells and prevent immune-mediated rejection of cancer. Much less appreciated are mechanisms by which Teff cells antagonize Treg cells. Herein, we consider how complex reciprocal interactions between Teff and Treg cells shape their population dynamics within tumors. Under states of tolerance, including during tumor escape, suppressed Teff cells support Treg cell populations through antigen-dependent provision of interleukin (IL)-2. During immune activation, Teff cells can lose this supportive capacity and directly antagonize Treg cell populations to neutralize their immunosuppressive function. While this latter state is rarely achieved spontaneously within tumors, we propose that therapeutic induction of immune activation has the potential to stably disrupt immunosuppressive population states resulting in durable cancer regression. PMID:25728990

  16. Manufacture of an optical effector using silicon micro-machining

    NASA Astrophysics Data System (ADS)

    Berrill, M. G.; McKenzie, J. S.; Clark, C.

    2000-03-01

    Using a complex micro-machined structure a novel optical-to-fluid pressure converter has been developed. The device offers immunity from electromagnetic interference and the potential for intrinsic safety. The effector, an improved version of a previous device, has been further miniaturized and fully micro-machined from silicon and glass. The device operates when light enters a sealed air-filled cell, formed within a silicon wafer, and is converted to heat by an absorber. The associated rise in temperature increases the pressure inside the cell and forces a diaphragm to move. The diaphragm movement is detected by a change in the back pressure of an impinging jet of fluid; which can be either pneumatic or hydraulic. The response time of the device, of the order of tens of milliseconds, has been further reduced as a result of miniaturization. This paper outlines the manufacturing technique and presents selected experimental test results.

  17. Immune Effector Mechanisms Implicated in Atherosclerosis: From Mice to Humans

    PubMed Central

    Libby, Peter; Lichtman, Andrew H.; Hansson, Göran K.

    2013-01-01

    According to the traditional view, atherosclerosis results from a passive buildup of cholesterol in the artery wall. Yet, burgeoning evidence implicates inflammation and immune effector mechanisms in the pathogenesis of this disease. Both innate and adaptive immunity operate during atherogenesis and link many traditional risk factors to altered arterial functions. Inflammatory pathways have become targets in the quest for novel preventive and therapeutic strategies against cardiovascular disease, a growing contributor to morbidity and mortality worldwide. Here we review current experimental and clinical knowledge of the pathogenesis of atherosclerosis through an immunological lens and how host defense mechanisms essential for survival of the species actually contribute to this chronic disease but also present new opportunities for its mitigation. PMID:23809160

  18. End effectors and attachments for buried waste excavation equipment

    SciTech Connect

    King, R.H.

    1993-09-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. Their efforts are identified and coordinated in support of the U.S. Department of Energy (DOE), Environmental Restoration and Waste Management (ER&WM) Department`s needs and objectives. The present focus of BWID is to support retrieval and ex-situ treatment configuration options. Future activities will explore and support containment, and stabilization efforts in addition to the retrieval/ex situ treatment options. This report presents a literature search on the state-of-the-art in end effectors and attachments in support of excavator of buried transuranic waste. Included in the report are excavator platforms and a discussion of the various attachments. Also included is it list of vendors and specifications.

  19. Gibberellin Perception by the Gibberellin Receptor and its Effector Recognition

    NASA Astrophysics Data System (ADS)

    Hakoshima, Toshio; Murase, Kohji; Hirano, Yoshinori; Sun, Tai-Ping

    Gibberellins control a diverse range of growth and developmental processes in higher plants and have been widely utilized in the agricultural industry. By binding to a nuclear receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1), gibberellins regulate gene expression by promoting degradation of the transcriptional regulator DELLA proteins. The precise manner in which GID1 discriminates and becomes activated by bioactive gibberellins for specific binding to DELLA proteins remains unclear. We present the crystal structure of a ternary complex of Arabidopsis thaliana GID1A, a bioactive gibberellin and the N-terminal DELLA domain of GAI. In this complex, GID1a occludes gibberellin in a deep binding pocket covered by its N-terminal helical switch region, which in turn interacts with the DELLA domain containing DELLA, VHYNP and LExLE motifs. Our results establish a structural model of a plant hormone receptor which is distinct from the hormone-perception mechanism and effector recognition of the known auxin receptors.

  20. Type VI secretion effectors: poisons with a purpose

    PubMed Central

    Russell, Alistair B.; Peterson, S. Brook; Mougous, Joseph D.

    2014-01-01

    The type VI secretion system (T6SS) mediates interactions between a diverse range of Gram-negative bacterial species. Recent studies have led to a drastic increase in the number of characterized T6SS effector proteins and produced a more complete and nuanced view of the adaptive significance of the system. While the system is most often implicated in antagonism, in this review we consider the case for its involvement in both antagonistic and non-antagonistic behaviors. Clarifying the roles that T6S plays in microbial communities will contribute to broader efforts to understand the importance of microbial interactions in maintaining human and environmental health, and will inform efforts to manipulate these interactions for therapeutic or environmental benefit. PMID:24384601

  1. Cell-Autonomous Effector Mechanisms against Mycobacterium tuberculosis

    PubMed Central

    MacMicking, John D.

    2014-01-01

    Few pathogens run the gauntlet of sterilizing immunity like Mycobacterium tuberculosis (Mtb). This organism infects mononuclear phagocytes and is also ingested by neutrophils, both of which possess an arsenal of cell-intrinsic effector mechanisms capable of eliminating it. Here Mtb encounters acid, oxidants, nitrosylating agents, and redox congeners, often exuberantly delivered under low oxygen tension. Further pressure is applied by withholding divalent Fe2+, Mn2+, Cu2+, and Zn2+, as well as by metabolic privation in the form of carbon needed for anaplerosis and aromatic amino acids for growth. Finally, host E3 ligases ubiquinate, cationic peptides disrupt, and lysosomal enzymes digest Mtb as part of the autophagic response to this particular pathogen. It is a testament to the evolutionary fitness of Mtb that sterilization is rarely complete, although sufficient to ensure most people infected with this airborne bacterium remain disease-free. PMID:25081628

  2. Pointing Hand Stimuli Induce Spatial Compatibility Effects and Effector Priming

    PubMed Central

    Nishimura, Akio; Michimata, Chikashi

    2013-01-01

    The present study investigated the automatic influence of perceiving a picture that indicates other’s action on one’s own task performance in terms of spatial compatibility and effector priming. Participants pressed left and right buttons with their left and right hands respectively, depending on the color of a central dot target. Preceding the target, a left or right hand stimulus (pointing either to the left or right with the index or little finger) was presented. In Experiment 1, with brief presentation of the pointing hand, a spatial compatibility effect was observed: responses were faster when the direction of the pointed finger and the response position were spatially congruent than when incongruent. The spatial compatibility effect was larger for the pointing index finger stimulus compared to the pointing little finger stimulus. Experiment 2 employed longer duration of the pointing hand stimuli. In addition to the spatial compatibility effect for the pointing index finger, the effector priming effect was observed: responses were faster when the anatomical left/right identity of the pointing and response hands matched than when the pointing and response hands differed in left/right identity. The results indicate that with sufficient processing time, both spatial/symbolic and anatomical features of a static body part implying another’s action simultaneously influence different aspects of the perceiver’s own action. Hierarchical coding, according to which an anatomical code is used only when a spatial code is unavailable, may not be applicable if stimuli as well as responses contain anatomical features. PMID:23637688

  3. Protection after stroke: cellular effectors of neurovascular unit integrity

    PubMed Central

    Posada-Duque, Rafael Andres; Barreto, George E.; Cardona-Gomez, Gloria Patricia

    2014-01-01

    Neurological disorders are prevalent worldwide. Cerebrovascular diseases (CVDs), which account for 55% of all neurological diseases, are the leading cause of permanent disability, cognitive and motor disorders and dementia. Stroke affects the function and structure of blood-brain barrier, the loss of cerebral blood flow regulation, oxidative stress, inflammation and the loss of neural connections. Currently, no gold standard treatments are available outside the acute therapeutic window to improve outcome in stroke patients. Some promising candidate targets have been identified for the improvement of long-term recovery after stroke, such as Rho GTPases, cell adhesion proteins, kinases, and phosphatases. Previous studies by our lab indicated that Rho GTPases (Rac and RhoA) are involved in both tissue damage and survival, as these proteins are essential for the morphology and movement of neurons, astrocytes and endothelial cells, thus playing a critical role in the balance between cell survival and death. Treatment with a pharmacological inhibitor of RhoA/ROCK blocks the activation of the neurodegeneration cascade. In addition, Rac and synaptic adhesion proteins (p120 catenin and N-catenin) play critical roles in protection against cerebral infarction and in recovery by supporting the neurovascular unit and cytoskeletal remodeling activity to maintain the integrity of the brain parenchyma. Interestingly, neuroprotective agents, such as atorvastatin, and CDK5 silencing after cerebral ischemia and in a glutamate-induced excitotoxicity model may act on the same cellular effectors to recover neurovascular unit integrity. Therefore, future efforts must focus on individually targeting the structural and functional roles of each effector of neurovascular unit and the interactions in neural and non-neural cells in the post-ischemic brain and address how to promote the recovery or prevent the loss of homeostasis in the short, medium and long term. PMID:25177270

  4. Electroporation of Functional Bacterial Effectors into Mammalian Cells

    PubMed Central

    Sontag, Ryan L.; Mihai, Cosmin; Orr, Galya; Savchenko, Alexei; Skarina, Tatiana; Cui, Hong; Cort, John R.; Adkins, Joshua N.; Brown, Roslyn N.

    2015-01-01

    The study of protein interactions in the context of living cells can generate critical information about localization, dynamics, and interacting partners. This information is particularly valuable in the context of host-pathogen interactions. Many pathogen proteins function within host cells in a variety of way such as, enabling evasion of the host immune system and survival within the intracellular environment. To study these pathogen-protein host-cell interactions, several approaches are commonly used, including: in vivo infection with a strain expressing a tagged or mutant protein, or introduction of pathogen genes via transfection or transduction. Each of these approaches has advantages and disadvantages. We sought a means to directly introduce exogenous proteins into cells. Electroporation is commonly used to introduce nucleic acids into cells, but has been more rarely applied to proteins although the biophysical basis is exactly the same. A standard electroporator was used to introduce affinity-tagged bacterial effectors into mammalian cells. Human epithelial and mouse macrophage cells were cultured by traditional methods, detached, and placed in 0.4 cm gap electroporation cuvettes with an exogenous bacterial pathogen protein of interest (e.g. Salmonella Typhimurium GtgE). After electroporation (0.3 kV) and a short (4 hr) recovery period, intracellular protein was verified by fluorescently labeling the protein via its affinity tag and examining spatial and temporal distribution by confocal microscopy. The electroporated protein was also shown to be functional inside the cell and capable of correct subcellular trafficking and protein-protein interaction. While the exogenous proteins tended to accumulate on the surface of the cells, the electroporated samples had large increases in intracellular effector concentration relative to incubation alone. The protocol is simple and fast enough to be done in a parallel fashion, allowing for high

  5. Ancient DNA and the tropics: a rodent's tale

    PubMed Central

    Gutiérrez-García, Tania A.; Vázquez-Domínguez, Ella; Arroyo-Cabrales, Joaquín; Kuch, Melanie; Enk, Jacob; King, Christine; Poinar, Hendrik N.

    2014-01-01

    Most genetic studies of Holocene fauna have been performed with ancient samples from dry and cold regions, in which preservation of fossils is facilitated and molecular damage is reduced. Ancient DNA work from tropical regions has been precluded owing to factors that limit DNA preservation (e.g. temperature, hydrolytic damage). We analysed ancient DNA from rodent jawbones identified as Ototylomys phyllotis, found in Holocene and Late Pleistocene stratigraphic layers from Loltún, a humid tropical cave located in the Yucatan peninsula. We extracted DNA and amplified six short overlapping fragments of the cytochrome b gene, totalling 666 bp, which represents an unprecedented success considering tropical ancient DNA samples. We performed genetic, phylogenetic and divergence time analyses, combining sequences from ancient and modern O. phyllotis, in order to assess the ancestry of the Loltún samples. Results show that all ancient samples fall into a unique clade that diverged prior to the divergence of the modern O. phyllotis, supporting it as a distinct Pleistocene form of the Ototylomys genus. Hence, this rodent's tale suggests that the sister group to modern O. phyllotis arose during the Miocene–Pliocene, diversified during the Pleistocene and went extinct in the Holocene. PMID:24899682

  6. Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diverse pathogens secrete effector proteins into plant cells to manipulate host cellular processes. Oomycete pathogens contain very large complements of predicted effector genes defined by an RXLR host cell entry motif. The genome of Hyaloperonospora arabidopsidis (Hpa, downy mildew of Arabidopsis) ...

  7. How filamentous pathogens co-opt plants; the ins and outs of eukaryotic effectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research on effectors secreted by pathogens during host attack has dominated the field of molecular plant-microbe interactions over recent years. Functional analysis of type III secreted effectors that are injected by pathogenic bacteria into host cells has significantly advanced the field and demon...

  8. Transgenic expression of Erwinia amylovora effectors eopB1 and hopCEa in apple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erwinia amylovora (Ea), the causal agent of fire blight, uses a type three secretion system (TTSS) to deliver effector proteins into plant host cells. Once inside the host cell, these effector proteins are thought to be involved with suppressing host defense responses, redirecting normal host metab...

  9. Differential expression of candidate salivary effector proteins in field collections of Hessian fly, Mayetiola destructor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evidence is emerging that proteins secreted by gall forming plant-parasites are the effectors responsible for systemic changes in the host plant, such as galling and nutrient tissue formation. A large number of secreted salivary gland proteins (SSGPs) that are hypothesized to be the effectors respon...

  10. Elucidating the Role of Effectors in Plant-Fungal Interactions: Progress and Challenges

    PubMed Central

    Selin, Carrie; de Kievit, Teresa R.; Belmonte, Mark F.; Fernando, W. G. Dilantha

    2016-01-01

    Pathogenic fungi have diverse growth lifestyles that support fungal colonization on plants. Successful colonization and infection for all lifestyles depends upon the ability to modify living host plants to sequester the necessary nutrients required for growth and reproduction. Secretion of virulence determinants referred to as “effectors” is assumed to be the key governing factor that determines host infection and colonization. Effector proteins are capable of suppressing plant defense responses and alter plant physiology to accommodate fungal invaders. This review focuses on effector molecules of biotrophic and hemibiotrophic plant pathogenic fungi, and the mechanism required for the release and uptake of effector molecules by the fungi and plant cells, respectively. We also place emphasis on the discovery of effectors, difficulties associated with predicting the effector repertoire, and fungal genomic features that have helped promote effector diversity leading to fungal evolution. We discuss the role of specific effectors found in biotrophic and hemibiotrophic fungi and examine how CRISPR/Cas9 technology may provide a new avenue for accelerating our ability in the discovery of fungal effector function. PMID:27199930

  11. Putative rust fungal effector proteins in infected bean and soybean leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant pathogenic fungi Uromyces appendiculatus and Phakopsora pachyrhizi cause debilitating rust diseases on common bean and soybean. These rust fungi secrete effector proteins that allow them to infect plants, but the effector repertoire for U. appendiculatus and P. pachyrhizi is not fully def...

  12. Molecular determinants of resistance activation and suppression by Phytophthora infestans effector IPI-O

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potato late blight pathogen, Phytophthora infestans, is able to rapidly evolve to overcome resistance genes. The pathogen accomplishes this by secreting an arsenal of proteins, termed effectors, that function to modify host cells. Although hundreds of candidate effectors have been identified in ...

  13. The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition

    PubMed Central

    Unterweger, Daniel; Miyata, Sarah T.; Bachmann, Verena; Brooks, Teresa M.; Mullins, Travis; Kostiuk, Benjamin; Provenzano, Daniele; Pukatzki, Stefan

    2014-01-01

    Vibrio cholerae is a Gram-negative bacterial pathogen that consists of over 200 serogroups with differing pathogenic potential. Only strains that express the virulence factors cholera toxin (CT) and toxin-coregulated pilus (TCP) are capable of pandemic spread of cholera diarrhoea. Regardless, all V. cholerae strains sequenced to date harbour genes for the type VI secretion system (T6SS) that translocates effectors into neighbouring eukaryotic and prokaryotic cells. Here we report that the effectors encoded within these conserved gene clusters differ widely among V. cholerae strains, and that immunity proteins encoded immediately downstream from the effector genes protect their host from neighbouring bacteria producing corresponding effectors. As a consequence, strains with matching effector-immunity gene sets can coexist, while strains with different sets compete against each other. Thus, the V. cholerae T6SS contributes to the competitive behaviour of this species. PMID:24686479

  14. Structure of NS1A effector domain from the influenza A/Udorn/72 virus

    SciTech Connect

    Xia, Shuangluo; Monzingo, Arthur F.; Robertus, Jon D.

    2009-01-01

    The structure of the effector domain of the influenza protein NS1, a validated antiviral drug target, has been solved in two space groups. The nonstructural protein NS1A from influenza virus is a multifunctional virulence factor and a potent inhibitor of host immunity. It has two functional domains: an N-terminal 73-amino-acid RNA-binding domain and a C-terminal effector domain. Here, the crystallographic structure of the NS1A effector domain of influenza A/Udorn/72 virus is presented. Structure comparison with the NS1 effector domain from mouse-adapted influenza A/Puerto Rico/8/34 (PR8) virus strain reveals a similar monomer conformation but a different dimer interface. Further analysis and evaluation shows that the dimer interface observed in the structure of the PR8 NS1 effector domain is likely to be a crystallographic packing effect. A hypothetical model of the intact NS1 dimer is presented.

  15. Molecular weaponry: diverse effectors delivered by the Type VI secretion system

    PubMed Central

    Alcoforado Diniz, Juliana; Liu, Yi‐Chia

    2015-01-01

    Summary The Type VI secretion system is a widespread bacterial nanomachine, used to deliver toxins directly into eukaryotic or prokaryotic target cells. These secreted toxins, or effectors, act on diverse cellular targets, and their action provides the attacking bacterial cell with a significant fitness advantage, either against rival bacteria or eukaryotic host organisms. In this review, we discuss the delivery of diverse effectors by the Type VI secretion system, the modes of action of the so‐called ‘anti‐bacterial’ and ‘anti‐eukaryotic’ effectors, the mechanism of self‐resistance against anti‐bacterial effectors and the evolutionary implications of horizontal transfer of Type VI secretion system‐associated toxins. Whilst it is likely that many more effectors remain to be identified, it is already clear that toxins delivered by this secretion system represent efficient weapons against both bacteria and eukaryotes. PMID:26432982

  16. Legionella pneumophila, armed to the hilt: justifying the largest arsenal of effectors in the bacterial world.

    PubMed

    Ensminger, Alexander W

    2016-02-01

    Many bacterial pathogens use dedicated translocation systems to deliver arsenals of effector proteins to their hosts. Once inside the host cytosol, these effectors modulate eukaryotic cell biology to acquire nutrients, block microbial degradation, subvert host defenses, and enable pathogen transmission to other hosts. Among all bacterial pathogens studied to date, the gram-negative pathogen, Legionella pneumophila, maintains the largest arsenal of effectors, with over 330 effector proteins translocated by the Dot/Icm type IVB translocation system. In this review, I will discuss some of the recent work on understanding the consequences of this large arsenal. I will also present several models that seek to explain how L. pneumophila has acquired and subsequently maintained so many more effectors than its peers. PMID:26709975

  17. Multiple Xanthomonas euvesicatoria Type III Effectors Inhibit flg22-Triggered Immunity.

    PubMed

    Popov, Georgy; Fraiture, Malou; Brunner, Frederic; Sessa, Guido

    2016-08-01

    Xanthomonas euvesicatoria is the causal agent of bacterial spot disease in pepper and tomato. X. euvesicatoria bacteria interfere with plant cellular processes by injecting effector proteins into host cells through the type III secretion (T3S) system. About 35 T3S effectors have been identified in X. euvesicatoria 85-10, and a few of them were implicated in suppression of pattern-triggered immunity (PTI). We used an Arabidopsis thaliana pathogen-free protoplast-based assay to identify X. euvesicatoria 85-10 effectors that interfere with PTI signaling induced by the bacterial peptide flg22. Of 33 tested effectors, 17 inhibited activation of a PTI-inducible promoter. Among them, nine effectors also interfered with activation of an abscisic acid-inducible promoter. However, effectors that inhibited flg22-induced signaling did not affect phosphorylation of mitogen-activated protein (MAP) kinases acting downstream of flg22 perception. Further investigation of selected effectors revealed that XopAJ, XopE2, and XopF2 inhibited activation of a PTI-inducible promoter by the bacterial peptide elf18 in Arabidopsis protoplasts and by flg22 in tomato protoplasts. The effectors XopF2, XopE2, XopAP, XopAE, XopH, and XopAJ inhibited flg22-induced callose deposition in planta and enhanced disease symptoms caused by attenuated Pseudomonas syringae bacteria. Finally, selected effectors were found to localize to various plant subcellular compartments. These results indicate that X. euvesicatoria bacteria utilize multiple T3S effectors to suppress flg22-induced signaling acting downstream or in parallel to MAP kinase cascades and suggest they act through different molecular mechanisms. PMID:27529660

  18. The genome sequence and effector complement of the flax rust pathogen Melampsora lini

    PubMed Central

    Nemri, Adnane; Saunders, Diane G. O.; Anderson, Claire; Upadhyaya, Narayana M.; Win, Joe; Lawrence, Gregory J.; Jones, David A.; Kamoun, Sophien; Ellis, Jeffrey G.; Dodds, Peter N.

    2014-01-01

    Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed most extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp). Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimize parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analyzed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote infection on their

  19. Diverse Secreted Effectors Are Required for Salmonella Persistence in a Mouse Infection Model

    SciTech Connect

    Kidwai, Afshan S.; Mushamiri, Ivy T.; Niemann, George; Brown, Roslyn N.; Adkins, Joshua N.; Heffron, Fred

    2013-08-12

    Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.

  20. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi.

    PubMed

    Saunders, Diane G O; Win, Joe; Cano, Liliana M; Szabo, Les J; Kamoun, Sophien; Raffaele, Sylvain

    2012-01-01

    Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that act as modulators of host cell physiology and can suppress or trigger host immunity. Current knowledge on effectors from other filamentous plant pathogens can be exploited for the characterisation of effectors in the genome of recently sequenced rust fungi. We designed a comprehensive in silico analysis pipeline to identify the putative effector repertoire from the genome of two plant pathogenic rust fungi. The pipeline is based on the observation that known effector proteins from filamentous pathogens have at least one of the following properties: (i) contain a secretion signal, (ii) are encoded by in planta induced genes, (iii) have similarity to haustorial proteins, (iv) are small and cysteine rich, (v) contain a known effector motif or a nuclear localization signal, (vi) are encoded by genes with long intergenic regions, (vii) contain internal repeats, and (viii) do not contain PFAM domains, except those associated with pathogenicity. We used Markov clustering and hierarchical clustering to classify protein families of rust pathogens and rank them according to their likelihood of being effectors. Using this approach, we identified eight families of candidate effectors that we consider of high value for functional characterization. This study revealed a diverse set of candidate effectors, including families of haustorial expressed secreted proteins and small cysteine-rich proteins. This comprehensive classification of candidate effectors from these devastating rust pathogens is an initial step towards probing plant germplasm for novel resistance components. PMID:22238666

  1. A fan tale, modern and ancient fans - A comparison

    SciTech Connect

    Fischer, P.J. ); Thor, D.R. ); Cherven, V.B.

    1991-02-01

    The Quaternary Conception fan of the Santa Barbara basin and the Upper Cretaceous Lathrop fan of the northern San Joaquin basin tell an interesting tale. Both fans show a well defined sequence stratigraphy of alternating low-stand, sand-rich units that alternate with thin high-stand silt units that drape and in-fill the surface topography of the previous sand-cycle. Isopachs made from detailed well log correlations (Lathrop) and seismic reflection data tied to borings (Conception) show that the fans are composed of a series of offset-stacked, elongate fan lobes. These lobes are similar in size. A major difference in the development of the two fans is the timing of tectonism. Concomitant tectonism uplifted the Conception fan lobes and resulted in localized erosion of high-stand silts beds and sand-on-sand lobe contacts. Tectonism and Lathrop occurred after fan deposition and provided the trapping structure-the Lathrop anticlinal fold. Following are some lessons to be learned from these and other fans the authors have studied: (1) Quaternary or modern' fans and ancient fans are similar. (2) Elongate sand-rich fan lobes separated by highstand silt units are typical of fans. (3) In addition to well-known techniques (seismic stratigraphy and detailed well log correlations), original reservoir pressures may be used to differentiate sequences and lobes (e.g., Lathrop). (4) Tectonism and erosion along the margin may limit traps to the uppermost lobe sequence (e.g., Conception). (5) An offset-stacked elongate fan lobe model is a valuable exploration and production tool.

  2. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    SciTech Connect

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S.

    2014-04-18

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin{sup S45F}-dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer.

  3. Deregulation of Rab and Rab Effector Genes in Bladder Cancer

    PubMed Central

    Ho, Joel R.; Chapeaublanc, Elodie; Kirkwood, Lisa; Nicolle, Remy; Benhamou, Simone; Lebret, Thierry; Allory, Yves; Southgate, Jennifer; Radvanyi, François; Goud, Bruno

    2012-01-01

    Growing evidence indicates that Rab GTPases, key regulators of intracellular transport in eukaryotic cells, play an important role in cancer. We analysed the deregulation at the transcriptional level of the genes encoding Rab proteins and Rab-interacting proteins in bladder cancer pathogenesis, distinguishing between the two main progression pathways so far identified in bladder cancer: the Ta pathway characterized by a high frequency of FGFR3 mutation and the carcinoma in situ pathway where no or infrequent FGFR3 mutations have been identified. A systematic literature search identified 61 genes encoding Rab proteins and 223 genes encoding Rab-interacting proteins. Transcriptomic data were obtained for normal urothelium samples and for two independent bladder cancer data sets corresponding to 152 and 75 tumors. Gene deregulation was analysed with the SAM (significant analysis of microarray) test or the binomial test. Overall, 30 genes were down-regulated, and 13 were up-regulated in the tumor samples. Five of these deregulated genes (LEPRE1, MICAL2, RAB23, STXBP1, SYTL1) were specifically deregulated in FGFR3-non-mutated muscle-invasive tumors. No gene encoding a Rab or Rab-interacting protein was found to be specifically deregulated in FGFR3-mutated tumors. Cluster analysis showed that the RAB27 gene cluster (comprising the genes encoding RAB27 and its interacting partners) was deregulated and that this deregulation was associated with both pathways of bladder cancer pathogenesis. Finally, we found that the expression of KIF20A and ZWINT was associated with that of proliferation markers and that the expression of MLPH, MYO5B, RAB11A, RAB11FIP1, RAB20 and SYTL2 was associated with that of urothelial cell differentiation markers. This systematic analysis of Rab and Rab effector gene deregulation in bladder cancer, taking relevant tumor subgroups into account, provides insight into the possible roles of Rab proteins and their effectors in bladder cancer pathogenesis

  4. Psychoanalysis and detective fiction: a tale of Freud and criminal storytelling.

    PubMed

    Yang, Amy

    2010-01-01

    Much has been written about Freud's influence on popular culture. This article addresses the influence of literature on Freud's psychoanalytical theory, specifically the role that modern detective fiction played in shaping Freudian theory. Edgar Allan Poe gave Freud the literary precedent; Sir Arthur Conan Doyle's creation Sherlock Holmes gave him the analytical model. In turn, the world of crime story-telling embedded Freudian theories in subsequent forms, spinning the tales of crime into a journey into the human mind. As these tales were popularized on the silver screen in the early 20th century, psychoanalytical ideas moved from the lecture halls into the cultural mainstream. PMID:21037412

  5. Bacterial effector HopF2 interacts with AvrPto and suppresses Arabidopsis innate immunity at the plasma membrane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant pathogenic bacteria inject a cocktail of effector proteins into host plant cells to modulate the host immune response, thereby promoting pathogenicity. How or whether these effectors work cooperatively is largely unknown. The Pseudomonas syringae DC3000 effector HopF2 suppresses the host plan...

  6. Memory CD4 T cells emerge from effector T-cell progenitors.

    PubMed

    Harrington, Laurie E; Janowski, Karen M; Oliver, James R; Zajac, Allan J; Weaver, Casey T

    2008-03-20

    A hallmark of adaptive immunity is the generation of memory T cells that confer long-lived, antigen-specific protection against repeat challenges by pathogens. Understanding the mechanisms by which memory T cells arise is important for rational vaccination strategies and improved therapeutic interventions for chronic infections and autoimmune disorders. The large clonal expansion of CD8 T cells in response to some infections has made the development of CD8 T-cell memory more amenable to study, giving rise to a model of memory cell differentiation in which a fraction of fully competent effector T cells transition into long-lived memory T cells. Delineation of CD4 T-cell memory development has proved more difficult as a result of limitations on tracking the smaller populations of CD4 effector T cells generated during a pathogenic challenge, complicating efforts to determine whether CD4 memory T cells are direct descendants of effector T cells or whether they develop by alternative pathways. Here, using two complementary cytokine reporter mouse models to identify interferon (IFN)-gamma-positive effector T cells and track their fate, we show that the lineage relationship between effector and memory CD4 T cells resembles that for CD8 T cells responding to the same pathogen. We find that, in parallel with effector CD8 T cells, IFN-gamma-positive effector CD4 T cells give rise to long-lived memory T cells capable of anamnestic responses to antigenic rechallenge. PMID:18322463

  7. Bacteriophage-encoded type III effectors in Salmonella enterica subspecies 1 serovar Typhimurium.

    PubMed

    Ehrbar, Kristin; Hardt, Wolf-Dietrich

    2005-01-01

    Salmonella spp. are Gram-negative bacteria which cause infections ranging from mild, self-limiting enterocolitis to systemic (typhoid) disease. Recent work has established that the genetic makeup varies considerably between different Salmonella strains. Phages play an important role in this diversity. In fact, Salmonella has emerged as a prime example for the involvement of virulence factor encoding phages in the emergence of new epidemic strains. Among other virulence factors, Salmonella enterica utilizes two specialized protein secretion systems termed type III secretion systems (TTSS) to deliver effector proteins into host cells which manipulate host cell signaling cascades. These two TTSS and several effectors are encoded within Salmonella pathogenicity islands 1 and 2. Some effectors including SopE, SspH1, SseI and SopE2 are encoded by phages or phage remnants. These phage-encoded effectors seem to be transferred between different Salmonella strains. They have attracted much interest because they might contribute to the evolution of Salmonella spp. Here we will focus on SopEPhi which encodes the SPI-1 effector SopE. It provides an excellent example to illustrate how horizontally transferred effector proteins are integrated into the complex regulatory network of a TTSS in a recipient bacterium. Additional data supporting the hypothesis are presented. This is a prerequisite to allow optimization of the bacterium host cell interaction by reassortment of the phage-encoded effector protein repertoire. PMID:15567133

  8. Blockade of TNF-α signaling benefits cancer therapy by suppressing effector regulatory T cell expansion

    PubMed Central

    Chang, Li-Yuan; Lin, Yung-Chang; Chiang, Jy-Ming; Mahalingam, Jayashri; Su, Shih-Huan; Huang, Ching-Tai; Chen, Wei-Ting; Huang, Chien-Hao; Jeng, Wen-Juei; Chen, Yi-Cheng; Lin, Shi-Ming; Sheen, I-Shyan; Lin, Chun-Yen

    2015-01-01

    Effector but not naive regulatory T cells (Treg cells) can accumulate in the peripheral blood as well as the tumor microenvironment, expand during tumor progression and be one of the main suppressors for antitumor immunity. However, the underlying mechanisms for effector Treg cell expansion in tumor are still unknown. We demonstrate that effector Treg cell-mediated suppression of antitumor CD8+ T cells is tumor-nonspecific. Furthermore, TNFR2 expression is increased in these Treg cells by Affymetrix chip analysis which was confirmed by monoclonal antibody staining in both hepatocellular carcinoma (HCC) and colorectal cancer (CRC) patients and murine models. Correspondingly, increased levels of TNF-α in both tissue and serum were also demonstrated. Interestingly, TNF-α could not only expand effector Treg cells through TNFR2 signaling, but also enhanced their suppressive activity against antitumor immunity of CD8+ T cells. Furthermore, targeting TNFR2 signaling with a TNF-α inhibitor could selectively reduce rapid resurgence of effector Treg cells after cyclophosphamide-induced lymphodepletion and markedly inhibit the growth of established tumors. Herein, we propose a novel mechanism in which TNF-α could promote tumor-associated effector Treg cell expansion and suggest a new cancer immunotherapy strategy using TNF-α inhibitors to reduce effector Treg cells expansion after cyclophosphamide-induced lymphodepletion. PMID:26451304

  9. Studying the Mechanism of Plasmopara viticola RxLR Effectors on Suppressing Plant Immunity

    PubMed Central

    Xiang, Jiang; Li, Xinlong; Wu, Jiao; Yin, Ling; Zhang, Yali; Lu, Jiang

    2016-01-01

    The RxLR effector family, produced by oomycete pathogens, may manipulate host physiological and biochemical events inside host cells. A group of putative RxLR effectors from Plasmopara viticola have been recently identified by RNA-Seq analysis in our lab. However, their roles in pathogenesis are poorly understood. In this study, we attempted to characterize 23 PvRxLR effector candidates identified from a P. viticola isolate “ZJ-1-1.” During host infection stages, expression patterns of the effector genes were varied and could be categorized into four different groups. By using transient expression assays in Nicotiana benthamiana, we found that 17 of these effector candidates fully suppressed programmed cell death elicited by a range of cell death-inducing proteins, including BAX, INF1, PsCRN63, PsojNIP, PvRxLR16 and R3a/Avr3a. We also discovered that all these PvRxLRs could target the plant cell nucleus, except for PvRxLR55 that localized to the membrane. Furthermore, we identified a single effector, PvRxLR28, that showed the highest expression level at 6 hpi. Functional analysis revealed that PvRxLR28 could significantly enhance susceptibilities of grapevine and tobacco to pathogens. These results suggest that most P. viticola effectors tested in this study may act as broad suppressors of cell death to manipulate immunity in plant. PMID:27242731

  10. Pathogen-induced inflammatory environment controls effector and memory CD8+ T cell differentiation.

    PubMed

    Obar, Joshua J; Jellison, Evan R; Sheridan, Brian S; Blair, David A; Pham, Quynh-Mai; Zickovich, Julianne M; Lefrançois, Leo

    2011-11-15

    In response to infection, CD8(+) T cells integrate multiple signals and undergo an exponential increase in cell numbers. Simultaneously, a dynamic differentiation process occurs, resulting in the formation of short-lived effector cells (SLECs; CD127(low)KLRG1(high)) and memory precursor effector cells (CD127(high)KLRG1(low)) from an early effector cell that is CD127(low)KLRG1(low) in phenotype. CD8(+) T cell differentiation during vesicular stomatitis virus infection differed significantly than during Listeria monocytogenes infection with a substantial reduction in early effector cell differentiation into SLECs. SLEC generation was dependent on Ebi3 expression. Furthermore, SLEC differentiation during vesicular stomatitis virus infection was enhanced by administration of CpG-DNA, through an IL-12-dependent mechanism. Moreover, CpG-DNA treatment enhanced effector CD8(+) T cell functionality and memory subset distribution, but in an IL-12-independent manner. Population dynamics were dramatically different during secondary CD8(+) T cell responses, with a much greater accumulation of SLECs and the appearance of a significant number of CD127(high)KLRG1(high) memory cells, both of which were intrinsic to the memory CD8(+) T cell. These subsets persisted for several months but were less effective in recall than memory precursor effector cells. Thus, our data shed light on how varying the context of T cell priming alters downstream effector and memory CD8(+) T cell differentiation. PMID:21987662

  11. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor.

    PubMed

    Zhao, Chaoyang; Escalante, Lucio Navarro; Chen, Hang; Benatti, Thiago R; Qu, Jiaxin; Chellapilla, Sanjay; Waterhouse, Robert M; Wheeler, David; Andersson, Martin N; Bao, Riyue; Batterton, Matthew; Behura, Susanta K; Blankenburg, Kerstin P; Caragea, Doina; Carolan, James C; Coyle, Marcus; El-Bouhssini, Mustapha; Francisco, Liezl; Friedrich, Markus; Gill, Navdeep; Grace, Tony; Grimmelikhuijzen, Cornelis J P; Han, Yi; Hauser, Frank; Herndon, Nicolae; Holder, Michael; Ioannidis, Panagiotis; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N; Johnson, Alisha J; Kalra, Divya; Korchina, Viktoriya; Kovar, Christie L; Lara, Fremiet; Lee, Sandra L; Liu, Xuming; Löfstedt, Christer; Mata, Robert; Mathew, Tittu; Muzny, Donna M; Nagar, Swapnil; Nazareth, Lynne V; Okwuonu, Geoffrey; Ongeri, Fiona; Perales, Lora; Peterson, Brittany F; Pu, Ling-Ling; Robertson, Hugh M; Schemerhorn, Brandon J; Scherer, Steven E; Shreve, Jacob T; Simmons, DeNard; Subramanyam, Subhashree; Thornton, Rebecca L; Xue, Kun; Weissenberger, George M; Williams, Christie E; Worley, Kim C; Zhu, Dianhui; Zhu, Yiming; Harris, Marion O; Shukle, Richard H; Werren, John H; Zdobnov, Evgeny M; Chen, Ming-Shun; Brown, Susan J; Stuart, Jeffery J; Richards, Stephen

    2015-03-01

    Gall-forming arthropods are highly specialized herbivores that, in combination with their hosts, produce extended phenotypes with unique morphologies [1]. Many are economically important, and others have improved our understanding of ecology and adaptive radiation [2]. However, the mechanisms that these arthropods use to induce plant galls are poorly understood. We sequenced the genome of the Hessian fly (Mayetiola destructor; Diptera: Cecidomyiidae), a plant parasitic gall midge and a pest of wheat (Triticum spp.), with the aim of identifying genic modifications that contribute to its plant-parasitic lifestyle. Among several adaptive modifications, we discovered an expansive reservoir of potential effector proteins. Nearly 5% of the 20,163 predicted gene models matched putative effector gene transcripts present in the M. destructor larval salivary gland. Another 466 putative effectors were discovered among the genes that have no sequence similarities in other organisms. The largest known arthropod gene family (family SSGP-71) was also discovered within the effector reservoir. SSGP-71 proteins lack sequence homologies to other proteins, but their structures resemble both ubiquitin E3 ligases in plants and E3-ligase-mimicking effectors in plant pathogenic bacteria. SSGP-71 proteins and wheat Skp proteins interact in vivo. Mutations in different SSGP-71 genes avoid the effector-triggered immunity that is directed by the wheat resistance genes H6 and H9. Results point to effectors as the agents responsible for arthropod-induced plant gall formation. PMID:25660540

  12. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae.

    PubMed

    Shrestha, Sirjana Devi; Chapman, Patrick; Zhang, Yun; Gijzen, Mark

    2016-01-01

    The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076) with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains. PMID:26930612

  13. Cytolytic effector function is present in resting peripheral T lymphocytes.

    PubMed

    Geisberg, M; Dupont, B

    1992-11-01

    Antigen-specific cytotoxic killer lymphocytes (CTLs) represent one of the major effector functions of the immune system. It is well established that, as a consequence of TCR recognition of the antigen-bearing target cell, resting T lymphocytes develop into fully active antigen-specific CTLs. In contrast, natural killer (NK) cells are immediately lytic upon contact with an appropriate target cell. The lytic machinery of CTLs and NK cells is thought to include the contents of their cytoplasmic granules, in particular the pore-forming protein perforin. Here we report direct cytolytic activity by resting peripheral CD3+CD8+ T cells as a result of TCR-CD3 binding to the target cell; the murine OKT3 hybridoma (anti-human CD3) was used as a target. The cytotoxicity was more pronounced in the CD8+CD45RO+ population, which contains 'memory' T cells, than in the reciprocal CD8+CD45RA+ subset; CD8+CD4- mature thymocytes were non-cytotoxic. The cytolytic potential of these populations correlated with the presence or absence of perforin. The results demonstrate that the cytolytic machinery of T cells develops post-thymically and can be immediately triggered by TCR-CD3 stimulation. PMID:1472478

  14. Exosomes: novel effectors of human platelet lysate activity.

    PubMed

    Torreggiani, E; Perut, F; Roncuzzi, L; Zini, N; Baglìo, S R; Baldini, N

    2014-01-01

    Despite the popularity of platelet-rich plasma (PRP) and platelet lysate (PL) in orthopaedic practice, the mechanism of action and the effectiveness of these therapeutic tools are still controversial. So far, the activity of PRP and PL has been associated with different growth factors (GF) released during platelet degranulation. This study, for the first time, identifies exosomes, nanosized vesicles released in the extracellular compartment by a number of elements, including platelets, as one of the effectors of PL activity. Exosomes were isolated from human PL by differential ultracentrifugation, and analysed by electron microscopy and Western blotting. Bone marrow stromal cells (MSC) treated with three different exosome concentrations (0.6 μg, 5 μg and 50 μg) showed a significant, dose-dependent increase in cell proliferation and migration compared to the control. In addition, osteogenic differentiation assays demonstrated that exosome concentration differently affected the ability of MSC to deposit mineralised matrix. Finally, the analysis of exosome protein content revealed a higher amount of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF-BB) and transforming growth factor beta 1 (TGF-β1) as compared to PL. In regards to RNA content, an enrichment of small RNAs in exosomes as compared to donor platelets has been found. These results suggest that exosomes consistently contribute to PL activity and could represent an advantageous nanodelivery system for cell-free regeneration therapies. PMID:25241964

  15. Effector selection precedes reach planning in the dorsal parietofrontal cortex

    PubMed Central

    Cieslak, Matthew; Grafton, Scott T.

    2012-01-01

    Experimental evidence and computational modeling suggest that target selection for reaching is associated with the parallel encoding of multiple movement plans in the dorsomedial posterior parietal cortex (dmPPC) and the caudal part of the dorsal premotor cortex (PMdc). We tested the hypothesis that a similar mechanism also accounts for arm selection for unimanual reaching, with simultaneous and separate motor goal representations for the left and right arms existing in the right and left parietofrontal cortex, respectively. We recorded simultaneous electroencephalograms and functional MRI and studied a condition in which subjects had to select the appropriate arm for reaching based on the color of an appearing visuospatial target, contrasting it to a condition in which they had full knowledge of the arm to be used before target onset. We showed that irrespective of whether subjects had to select the arm or not, activity in dmPPC and PMdc was only observed contralateral to the reaching arm after target onset. Furthermore, the latency of activation in these regions was significantly delayed when arm selection had to be achieved during movement planning. Together, these results demonstrate that effector selection is not achieved through the simultaneous specification of motor goals tied to the two arms in bilateral parietofrontal cortex, but suggest that a motor goal is formed in these regions only after an arm is selected for action. PMID:22457458

  16. Lytic effector cell function in schizophrenia and depression.

    PubMed

    Urch, A; Müller, C; Aschauer, H; Resch, F; Zielinski, C C

    1988-07-01

    Natural killer (NK) cell activity and antibody-dependent cellular cytotoxicity (ADCC) were tested in patients with schizophrenia or depression. It was found that NK activity as well as ADCC were significantly lower in both groups, as compared to healthy control individuals (P less than 0.001). Psychopharmacologic treatment with neuroleptics and antidepressives resulted in a significant increase in NK activity and ADCC (P less than 0.005) in patients with schizophrenia but not in treated patients with depression. In patients with schizophrenia, no correlation could be established between the dose of neuroleptic given and the increase in NK activity. Lithium also did not produce an increase in NK activity and ADCC. The addition of serum, derived from untreated patients with schizophrenia, to cell cultures in concentrations of 10 and 20% had an inhibitory effect upon the ADCC and, to a lesser degree, upon NK activity (20% serum concentration only); sera from treatment schizophrenics produced no inhibition of NK activity, but did affect ADCC. No serum-derived inhibitory effect upon either NK activity or ADCC was found to be present in sera from patients with depression. We conclude that lytic effector mechanisms are impaired in patients with schizophrenia or depression and that this defect is reversed in schizophrenic patients on treatment, but not in depressives on therapy. Patients with schizophrenia also tend to have a reversible serum-mediated inhibition of NK activity which is absent in patients with depression. PMID:2898486

  17. Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance

    SciTech Connect

    Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke

    2008-08-01

    Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.

  18. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae

    PubMed Central

    Shrestha, Sirjana Devi; Chapman, Patrick; Zhang, Yun; Gijzen, Mark

    2016-01-01

    The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076) with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains. PMID:26930612

  19. Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases.

    PubMed

    Christian, Michelle; Qi, Yiping; Zhang, Yong; Voytas, Daniel F

    2013-10-01

    Custom TAL effector nucleases (TALENs) are increasingly used as reagents to manipulate genomes in vivo. Here, we used TALENs to modify the genome of the model plant, Arabidopsis thaliana. We engineered seven TALENs targeting five Arabidopsis genes, namely ADH1, TT4, MAPKKK1, DSK2B, and NATA2. In pooled seedlings expressing the TALENs, we observed somatic mutagenesis frequencies ranging from 2-15% at the intended targets for all seven TALENs. Somatic mutagenesis frequencies as high as 41-73% were observed in individual transgenic plant lines expressing the TALENs. Additionally, a TALEN pair targeting a tandemly duplicated gene induced a 4.4-kb deletion in somatic cells. For the most active TALEN pairs, namely those targeting ADH1 and NATA2, we found that TALEN-induced mutations were transmitted to the next generation at frequencies of 1.5-12%. Our work demonstrates that TALENs are useful reagents for achieving targeted mutagenesis in this important plant model. PMID:23979944

  20. The relationship of stress and blood pressure effectors

    PubMed Central

    Ayada, C; Toru, Ü; Korkut, Y

    2015-01-01

    Exaggerated cardiovascular response to acute and chronic stresses increases the risk for hypertension and cardiovascular disease. Stress also can be broadly defined as a disruption of homeostasis. The re-establishment and maintenance of homeostasis entail the coordinated activation and control of neuroendocrine and autonomic stress systems. Stressor-related information from all major sensory systems is conveyed to the brain.  Brain activates neural and neuroendocrine systems to minimize the harmful effects of stress. Stress is generally thought to contribute to the development of hypertension. On the other hand, the evidence is still inconclusive. It is generally accepted that stress-induced hypertension occurs because of increases in sympathoadrenal activity, which enhances vascular tone, but complete α-adrenoreceptor blockade cannot prevent the long-lasting vasoconstriction induced by sympathetic nerve stimulation. That is why it is suggested that sympathetic nerve-mediated vasoconstriction may also be mediated by factors other than catecholamines. In this review, we aim to present the relationship between blood pressure effectors and stress altogether, along with evaluating the relationship between stress and blood pressure. In this respect, we have identified topics to explain the relationship between stress and the renin angiotensin aldosterone system, glucocorticoids, endothelial nitric oxide, endothelin-1 and L-type Ca2+ channels. Hippokratia 2015; 19 (2): 99-108.

  1. Receptor-coupled effector systems and their interactions

    SciTech Connect

    Wiener, E.C.

    1988-01-01

    We investigated the modulation of intracellular signal generation by receptor-coupled effector systems in B lymphocytes, and whether these alterations are consistent with the effects of prostaglandins. TPA (12-O-tetradecanoyl phorbol-13-acetate) and sn-1,2,-dioctanoylglycerol (diC{sub 8}) substitute for lipid derived signals which activate protein kinase C. Pretreating splenocytes from athymic nude mice with 100nM TPA or 5 {mu}M diC{sub 8} potentiated the forskolin-induced increased in cAMP (measured by radioimmunoassay) 2.5 and 3.0 times (respectively), but they decreased the PGE{sub 1}-induced cAMP rise 48% and 35% (respectively). Goat anti-mouse IgM, which activates diacylglycerol production, potentiated the forskolin-induced cAMP increase by 76%, but reduced that of PGE{sub 1} by 30%. Rabbit anti-mouse IgG, its F(ab{prime}){sub 2} fragment, or goat anti-mouse IGM induced increases in the cytosolic free (Ca{sup 2+}), (Ca{sup 2+}){sub i}, which TPA inhibited. In contrast, TPA potential antibody-induced {sup 3}H-thymidine (85x) and {sup 3}H-uridine (30x) uptake in B lymphocytes.

  2. Membrane flickering of the human erythrocyte: physical and chemical effectors.

    PubMed

    Puckeridge, Max; Chapman, Bogdan E; Conigrave, Arthur D; Kuchel, Philip W

    2014-05-01

    Recent studies suggest a link between adenosine triphosphate (ATP) concentration and the amplitude of cell membrane flickering (CMF) in the human erythrocyte (red blood cell; RBC). Potentially, the origin of this phenomenon and the unique discocyte shape could be active processes that account for some of the ATP turnover in the RBC. Active flickering could depend on several factors, including pH, osmolality, enzymatic rates and metabolic fluxes. In the present work, we applied the data analysis described in the previous article to study time courses of flickering RBCs acquired using differential interference contrast light microscopy in the presence of selected effectors. We also recorded images of air bubbles in aqueous detergent solutions and oil droplets in water, both of which showed rapid fluctuations in image intensity, the former showing the same type of spectral envelope (relative frequency composition) to RBCs. We conclude that CMF is not directly an active process, but that ATP affects the elastic properties of the membrane that flickers in response to molecular bombardment in a manner that is described mathematically by a constrained random walk. PMID:24668224

  3. Space-based multifunctional end effector systems functional requirements and proposed designs

    NASA Technical Reports Server (NTRS)

    Mishkin, A. H.; Jau, B. M.

    1988-01-01

    The end effector is an essential element of teleoperator and telerobot systems to be employed in space in the next decade. The report defines functional requirements for end effector systems to perform operations that are currently only feasible through Extra-Vehicular Activity (EVA). Specific tasks and functions that the end effectors must be capable of performing are delineated. Required capabilities for forces and torques, clearances, compliance, and sensing are described, using current EVA requirements as guidelines where feasible. The implications of these functional requirements on the elements of potential end effector systems are discussed. The systems issues that must be considered in the design of space-based manipulator systems are identified; including impacts on subsystems tightly coupled to the end effector, i.e., control station, information processing, manipulator arm, tool and equipment stowage. Possible end effector designs are divided into three categories: single degree-of-freedom end effectors, multiple degree of freedom end effectors, and anthropomorphic hands. Specific design alternatives are suggested and analyzed within the individual categories. Two evaluations are performed: the first considers how well the individual end effectors could substitute for EVA; the second compares how manipulator systems composed of the top performers from the first evaluation would improve the space shuttle Remote Manipulator System (RMS) capabilities. The analysis concludes that the anthropomorphic hand is best-suited for EVA tasks. A left- and right-handed anthropomorphic manipulator arm configuration is suggested as appropriate to be affixed to the RMS, but could also be used as part of the Smart Front End for the Orbital Maneuvering Vehicle (OMV). The technical feasibility of the anthropomorphic hand and its control are demonstrated. An evolutionary development approach is proposed and approximate scheduling provided for implementing the suggested

  4. Using the Kinect to limit abnormal kinematics and compensation strategies during therapy with end effector robots.

    PubMed

    Brokaw, Elizabeth B; Lum, Peter S; Cooper, Rory A; Brewer, Bambi R

    2013-06-01

    Abnormal kinematics and the use of compensation strategies during training limit functional improvement from therapy. The Kinect is a low cost ($100) sensor that does not require any markers to be placed on the user. Integration of this sensor into currently used therapy systems can provide feedback about the user's movement quality, and the use of compensatory strategies to complete tasks. This paper presents a novel technique of adding the Kinect to an end effector robot to limit compensation strategies and to train normal joint coordination during movements with an end effector robot. This methodology has wider implications for other robotic and passively actuated end effector rehabilitation devices. PMID:24187203

  5. System and method for exchanging tools and end effectors on a robot

    SciTech Connect

    Burry, D.B.; Williams, P.M.

    1990-12-31

    This invention is comprised of a system and method for exchanging tools and effectors on a robot permits exchange during a programmed task. The exchange mechanism is located off the robot, thus reducing the mass of the robot arm and permitting smaller robots to perform designated tasks. A simple spring/collet mechanism mounted on the robot is used which permits the engagement and disengagement of the tool or end effector without the need for a rotational orientation of the tool to the end effector/collet interface. As the tool changing system is not located on the robot arm no umbilical cords are located on robot.

  6. System and method for exchanging tools and end effectors on a robot

    SciTech Connect

    Burry, D.B.; Williams, P.M.

    1990-01-01

    This invention is comprised of a system and method for exchanging tools and effectors on a robot permits exchange during a programmed task. The exchange mechanism is located off the robot, thus reducing the mass of the robot arm and permitting smaller robots to perform designated tasks. A simple spring/collet mechanism mounted on the robot is used which permits the engagement and disengagement of the tool or end effector without the need for a rotational orientation of the tool to the end effector/collet interface. As the tool changing system is not located on the robot arm no umbilical cords are located on robot.

  7. Diverse Natural Products from Dichlorocyclobutanones: An Evolutionary Tale.

    PubMed

    Deprés, Jean-Pierre; Delair, Philippe; Poisson, Jean-François; Kanazawa, Alice; Greene, Andrew E

    2016-02-16

    , considerable useful chemistry has been developed in the context of this synthesis program. This includes new methods for olefin vicinal dicarboxylation, β-methylene-γ-butyrolactonization, γ-butyrolactone and δ-valerolactone α-methylenations, transesterification, angelic ester synthesis, chiral enol and ynol ether preparations, dichloroacetylene synthesis, and trans, trans hydroxy triad introduction. This versatile dichlorocyclobutanone-centered approach to natural product synthesis, together with the attendant new methods that have been developed, forms the basis of this Account, which is presented as an evolutionary tale. It is hoped that the Account will stimulate other research groups to seek to exploit the rich chemistry of dichlorocyclobutanones for possible solutions to problems in organic synthesis. PMID:26807483

  8. Folk Tales: Getting to Know Southeast Asia. Southeast Asia Curriculum Series, No. 1.

    ERIC Educational Resources Information Center

    Ridgley, Marlene

    A teaching/learning plan designed to provide the elementary classroom teacher with an overview of the geography, environment, culture, and people of Southeast Asia includes five sections on the following subjects: geography, animals, plants, social roles and occupations, and religion. Through the use of folk tales from each of six Southeast Asian…

  9. The Integration of Gender into the Teaching of Classical Social Theory: Help from "The Handmaid's Tale."

    ERIC Educational Resources Information Center

    Gotsch-Thomson, Susan

    1990-01-01

    Describes how gender is integrated into a classical social theory course by including a female theorist in the reading assignments and using "The Handmaid's Tale" by Margaret Atwood as the basis for class discussion. Reviews the course objectives and readings; describes the process of the class discussions; and provides student evaluations. (SLM)

  10. "[This] Book of Odd Tales/Which Transform the Brothers Grimm": Teaching Anne Sexton's "Transformations"

    ERIC Educational Resources Information Center

    Keely, Karen A.

    2008-01-01

    Folklorist Andrew Lang, in his Preface to his 1910 edited collection "The Lilac Fairy Book", celebrates the ongoing repetition and retelling of fairy tales, including both the cozy retelling by the family fireplace. In the century since Lang wrote these words, many authors have joined the ranks of Shakespeare and Homer in putting fairy tale…

  11. Dede Korkut Tales Can Inspire the Turkish ESL Students to Speak Better English

    ERIC Educational Resources Information Center

    Yurtbasi, Metin

    2016-01-01

    Bayburt University's English Language Teaching (ELT) department, is starting its courses as of 2016 fall season, using the Turkish sage Dede Korkut's tales as part of its speech training curriculum. The story "Wild Dumrul" presented in this article is famous in world literature for its theme of "marital love and sacrifice."…

  12. A Trickster Tale about Integrating Indigenous Knowledge in University-Based Programs

    ERIC Educational Resources Information Center

    Moore, Sylvia

    2012-01-01

    Written as a trickster tale and co-narrated by the researcher and a trickster figure (Crow), this writing considers the challenges of bringing traditional ecological knowledge to environmental studies and science programs. The researcher describes a project to raise and release salmon, which was collaboratively developed and carried out by members…

  13. Teaching "The Portrait of a Lady" as a Tale of Two Travelers

    ERIC Educational Resources Information Center

    Muse, Amy

    2015-01-01

    "The Portrait of a Lady," by Henry James, is a novel of being educated abroad. The novel's interior style forces readers to closely consider why they travel, what and whom they might encounter, and how they want to live their lives. Reading "The Portrait of a Lady" as a tale of two travelers allows it to remain the…

  14. Power Relationships in Rumpelstiltskin: A Textual Comparison of a Traditional and a Reconstructed Fairy Tale

    ERIC Educational Resources Information Center

    Kelley, Jane E.

    2008-01-01

    Reconstructed fairy tales provide a different point of view and challenge the assumptions of a common set of values; for that reason, these stories provide a medium in which to examine power relationships in texts by applying a critical multicultural analysis (Botelho & Rudman, forthcoming, 2008, "A critical multicultural analysis of children's…

  15. Fate and Fortune in a Modern Fairy Tale: Louis Sachar's "Holes."

    ERIC Educational Resources Information Center

    Pinsent, Pat

    2002-01-01

    Shows how Sachar adapts some of the characteristics of fairy tale, such as magic objects and formulae, stereotypical roles and repeated motifs, within a story set in a desert penal establishment for young offenders. Notes that because of the blend between fantasy and realism, a number of otherwise unbelievable coincidences does not overtax the…

  16. Molecular insights into the origin of the Hox-TALE patterning system

    PubMed Central

    Hudry, Bruno; Thomas-Chollier, Morgane; Volovik, Yael; Duffraisse, Marilyne; Dard, Amélie; Frank, Dale; Technau, Ulrich; Merabet, Samir

    2014-01-01

    Despite tremendous body form diversity in nature, bilaterian animals share common sets of developmental genes that display conserved expression patterns in the embryo. Among them are the Hox genes, which define different identities along the anterior–posterior axis. Hox proteins exert their function by interaction with TALE transcription factors. Hox and TALE members are also present in some but not all non-bilaterian phyla, raising the question of how Hox–TALE interactions evolved to provide positional information. By using proteins from unicellular and multicellular lineages, we showed that these networks emerged from an ancestral generic motif present in Hox and other related protein families. Interestingly, Hox-TALE networks experienced additional and extensive molecular innovations that were likely crucial for differentiating Hox functions along body plans. Together our results highlight how homeobox gene families evolved during eukaryote evolution to eventually constitute a major patterning system in Eumetazoans. DOI: http://dx.doi.org/10.7554/eLife.01939.001 PMID:24642410

  17. Hero Tales and Legends: Literature Curriculum, Levels C-D [Grades Three and Four]; Teacher's Guide.

    ERIC Educational Resources Information Center

    Oregon Univ., Eugene. Oregon Elementary English Project.

    This curriculum guide is intended to introduce elementary school students to hero tales and legends. The stories are longer and the vocabulary is more difficult than other literature curriculum guides in this series by the Oregon Elementary English Project. The stories discussed are: "Sinbad the Sailor,""William Tell,""Robin Hood,""Paul Bunyan,"…

  18. Manipulation of the Family Photo Album: Esther Parada's Transplant--A Tale of Three Continents

    ERIC Educational Resources Information Center

    Eggemeyer, Valerie

    2004-01-01

    In this article, the author focuses on Esther Parada's non-traditional use of the Web to communicate her art, and offers a critique of Parada's work, "Transplant: A Tale of Three Continents," and suggestions for critiquing Web art in the school classroom. Parada creates an intersection between this new medium and the more traditional medium of…

  19. Folktale Themes and Activities for Children. Volume 2: Trickster and Transformation Tales. Learning through Folklore Series.

    ERIC Educational Resources Information Center

    Kraus, Anne Marie

    This companion volume to "Folktale Themes Volume 1: Pourquoi Tales," shows educators how to use folktales to provide meaningful, educational experiences for children. This book provides a complete package using folktales in the classroom--activity pages, teaching ideas, story themes, and an annotated bibliography of further reading for a number of…

  20. A Pedagogical Tale from the Piano Studio: Autoethnography in Early Childhood Music Education Research

    ERIC Educational Resources Information Center

    Gouzouasis, Peter; Ryu, Jee Yeon

    2015-01-01

    Our inquiry centres on a hopeful tale about creative teaching and learning, trusting one's teaching intuition and processes, caring for children, and believing that children will respond to opportunities to learn music when they are invited with thoughtful care. Though the process of writing, both our young student and ourselves, we evoke the…

  1. Stories for the Campfire: A Collection of Memorable Tales for Camp.

    ERIC Educational Resources Information Center

    Hanson, Bob, Ed.; Roemmich, Bill, Ed.

    This book offers 46 children's camp stories, including stories about ghosts, adventure, other lands, humor, Indian fables, and stories with a moral. An introduction offers some background of the publication and a few tips on successful story-telling. The stories include: A Full Meal; A Fuzzy Tale; An Ameri-Indian's Ecological Lament and Prophecy;…

  2. Researcher Tales and Research Ethics: The Spaces in Which We Find Ourselves

    ERIC Educational Resources Information Center

    White, Julie; Fitzgerald, Tanya

    2010-01-01

    The tales we tell here focus on the ethical issues arising from our research practice with vulnerable young participants and those for whom research has been inextricably linked with European imperialism and colonialism. The importance of relational obligations, temporality and potential for a continuing narrative approach to ethical research…

  3. When Little Girls Become Junior Connoisseurs: A Cautionary Tale of Art Museum Education in the Hyperreal

    ERIC Educational Resources Information Center

    Mayer, Melinda M.

    2006-01-01

    Introducing the tale--A young girl about eleven years old appeared on the TV screen. She stood in an art museum expounding upon the painting hanging behind her. She talked about the artist and what the image portrayed. With an air of elitist prissiness that suited the museum environment, the girl delivered her presentation to a group of…

  4. "Tales from the Brazilian Jungle": Antonio Rocha, Storyteller. Cue Sheet for Teachers.

    ERIC Educational Resources Information Center

    Rees, Elizabeth

    This performance guide is designed for teachers to use with students before and after a performance of "Tales from the Brazilian Jungle" with storyteller Antonio Rocha. The guide, called a "Cuesheet," contains four sheets for use in class. The first, "About the Performance," prepares students for understanding references to the Amazon rainforest,…

  5. Fungi, Folkways and Fairy Tales: Mushrooms & Mildews in Stories, Remedies & Rituals, from Oberon to the Internet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi (true fungi and fungus-like organisms such as slime molds) are documented in miscellaneous folkways (such as remedies, crafts and foodstuffs) and in oral and written folk literature (such as proverbs, folktales, fairy tales, drama and fiction). The impact of fungal phytopathogens and clinical...

  6. Exploring U.S. Westward Expansion in the Elementary and Middle School Curriculum through Tall Tales

    ERIC Educational Resources Information Center

    Almerico, Gina M.; Martin, Nicole; Masuck, William; Strickland, Cynthia; Thomas, Jessica

    2012-01-01

    Teaching social studies in the elementary and middle school curriculum is enhanced by incorporating quality children's and adolescent literature and strategies that bring the human element into play. American tall tales are a genre unique to the history of our nation and provide a glimpse into the way early settlers of the west envisioned heroism…

  7. Shrews, rats, and a polecat in "the pardoner’s tale": Chapter 3

    USGS Publications Warehouse

    Feinstein, Sandy; Woodman, Neal

    2012-01-01

    While historically existing animals and literary animal characters inform allegorical and metaphorical characterization in The Canterbury Tales, figurative usage does not erase recognition of the material animal. "The Pardoner's Tale," for one, challenges the terms of conventional animal metaphors by refocusing attention on common animals as common animals and common human creatures as something worse than vermin. Most attention has been paid to the larger animals-goat, hare, and horse-that constitute the physical portrait of Chaucer's Pardoner in the "General Prologue" and in the prologue to his tale.! Like these animals, rats and a polecat, together with rhetorical shrews, appear in this tale as well as in other literature, including bestiaries and natural histories. Equally to the purpose, these animals could be physically observed as constituents of both urban and rural landscapes in fourteenth-century England.2 In the Middle Ages, animals were part of the environment as well as part of the culture: they lived inside as well as outside the city gates, priory walls, and even domestic spaces; a rat in the street or the garden might not be any less welcome or uncommon than encountering someone's horses and goats nibbling vegetation or blocking a passage. Not being out of the ordinary, though, such animals could (and can) be overlooked or dismissed as com­mon, too familiar to register. This chapter reveals why readers and listeners should pay close attention to the things they think they know and what they hear about what they think they know.

  8. Escape from Management Hell: 12 Tales of Horror, Humor, and Heroism.

    ERIC Educational Resources Information Center

    Gilbreath, Robert D.

    This book offers a set of stories in which corporate executives demonstrate the folly and futility of their own business practices. In the stories, 12 executives are trying to escape from a hell of their own making. The tales provide insights into the management woes with which people at all levels deal on a daily basis. Topics include: the…

  9. Readings on "The Canterbury Tales" (Geoffrey Chaucer). The Greenhaven Press Literary Companion to British Literature.

    ERIC Educational Resources Information Center

    Nardo, Don, Ed.

    Intended as an accessible resource for students researching "The Canterbury Tales," this collection of essays about Geoffrey Chaucer's (d. 1400) classic work contains an in-depth biography of the author and writings from a wide variety of sources. The essays are edited to accommodate the reading and comprehension levels of young adults; each essay…

  10. Prostaglandin D2-loaded microspheres effectively activate macrophage effector functions.

    PubMed

    Pereira, Priscilla Aparecida Tartari; Bitencourt, Claudia da Silva; dos Santos, Daiane Fernanda; Nicolete, Roberto; Gelfuso, Guilherme Martins; Faccioli, Lúcia Helena

    2015-10-12

    Biodegradable lactic-co-glycolic acid (PLGA) microspheres (MS) improve the stability of biomolecules stability and allow enable their sustained release. Lipid mediators represent a strategy for improving host defense; however, most of these mediators, such as prostaglandin D2 (PGD2), have low water solubility and are unstable. The present study aimed to develop and characterize MS loaded with PGD2 (PGD2-MS) to obtain an innovative tool to activate macrophages. PGD2-MS were prepared using an oil-in-water emulsion solvent extraction-evaporation process, and the size, zeta potential, surface morphology and encapsulation efficiency were determined. It was also evaluated in vitro the phagocytic index, NF-κB activation, as well as nitric oxide and cytokine production by alveolar macrophages (AMs) in response to PGD2-MS. PGD2-MS were spherical with a diameter of 5.0±3.3 μm and regular surface, zeta potential of -13.4±5.6 mV, and 36% of encapsulation efficiency, with 16-26% release of entrapped PGD2 at 4 and 48 h, respectively. PGD2-MS were more efficiently internalized by AMs than unloaded-MS, and activated NF-κB more than free PGD2. Moreover, PGD2-MS stimulated the production of nitric oxide, TNF-α, IL-1β, and TGF-β, more than free PGD2, indicating that microencapsulation increased the activating effect of PGD2 on cells. In LPS-pre-treated AMs, PGD2-MS decreased the release of IL-6 but increased the production of nitric oxide and IL-1β. These results show that the morphological characteristics of PGD2-MS facilitated interaction with, and activation of phagocytic cells; moreover, PGD2-MS retained the biological activities of PGD2 to trigger effector mechanisms in AMs. It is suggested that PGD2-MS represent a strategy for therapeutic intervention in the lungs of immunocompromised subjects. PMID:26143263

  11. Human Effector / Initiator Gene Sets That Regulate Myometrial Contractility During Term and Preterm Labor

    PubMed Central

    WEINER, Carl P.; MASON, Clifford W.; DONG, Yafeng; BUHIMSCHI, Irina A.; SWAAN, Peter W.; BUHIMSCHI, Catalin S.

    2010-01-01

    Objective Distinct processes govern transition from quiescence to activation during term (TL) and preterm labor (PTL). We sought gene sets responsible for TL and PTL, along with the effector genes necessary for labor independent of gestation and underlying trigger. Methods Expression was analyzed in term and preterm +/− labor (n =6 subjects/group). Gene sets were generated using logic operations. Results 34 genes were similarly expressed in PTL/TL but absent from nonlabor samples (Effector Set). 49 genes were specific to PTL (Preterm Initiator Set) and 174 to TL (Term Initiator Set). The gene ontogeny processes comprising Term Initiator and Effector Sets were diverse, though inflammation was represented in 4 of the top 10; inflammation dominated the Preterm Initiator Set. Comments TL and PTL differ dramatically in initiator profiles. Though inflammation is part of the Term Initiator and the Effector Sets, it is an overwhelming part of PTL associated with intraamniotic inflammation. PMID:20452493

  12. Structural consequences of effector protein complex formation in a diiron hydroxylase

    SciTech Connect

    Bailey, Lucas J.; McCoy, Jason G.; Phillips, Jr., George N.; Fox, Brian G.

    2009-06-12

    Carboxylate-bridged diiron hydroxylases are multicomponent enzyme complexes responsible for the catabolism of a wide range of hydrocarbons and as such have drawn attention for their mechanism of action and potential uses in bioremediation and enzymatic synthesis. These enzyme complexes use a small molecular weight effector protein to modulate the function of the hydroxylase. However, the origin of these functional changes is poorly understood. Here, we report the structures of the biologically relevant effector protein-hydroxylase complex of toluene 4-monooxygenase in 2 redox states. The structures reveal a number of coordinated changes that occur up to 25 {angstrom} from the active site and poise the diiron center for catalysis. The results provide a structural basis for the changes observed in a number of the measurable properties associated with effector protein binding. This description provides insight into the functional role of effector protein binding in all carboxylate-bridged diiron hydroxylases.

  13. End-effector: Joint conjugates for robotic assembly of large truss structures in space: Extended concepts

    NASA Astrophysics Data System (ADS)

    Brewer, W. V.; Rasis, E. P.; Shih, H. R.

    1993-06-01

    Results from NASA/HBCU Grant No. NAG-1-1125 are summarized. Designs developed for model fabrication, exploratory concepts drafted, interface of computer with robot and end-effector, and capability enhancement are discussed.

  14. Controlling transcription in human pluripotent stem cells using CRISPR-effectors.

    PubMed

    Genga, Ryan M; Kearns, Nicola A; Maehr, René

    2016-05-15

    The ability to manipulate transcription in human pluripotent stem cells (hPSCs) is fundamental for the discovery of key genes and mechanisms governing cellular state and differentiation. Recently developed CRISPR-effector systems provide a systematic approach to rapidly test gene function in mammalian cells, including hPSCs. In this review, we discuss recent advances in CRISPR-effector technologies that have been employed to control transcription through gene activation, gene repression, and epigenome engineering. We describe an application of CRISPR-effector mediated transcriptional regulation in hPSCs by targeting a synthetic promoter driving a GFP transgene, demonstrating the ease and effectiveness of CRISPR-effector mediated transcriptional regulation in hPSCs. PMID:26525193

  15. Methods and Systems for Authorizing an Effector Command in an Integrated Modular Environment

    NASA Technical Reports Server (NTRS)

    Sunderland, Dean E. (Inventor); Ahrendt, Terry J. (Inventor); Moore, Tim (Inventor)

    2013-01-01

    Methods and systems are provided for authorizing a command of an integrated modular environment in which a plurality of partitions control actions of a plurality of effectors is provided. A first identifier, a second identifier, and a third identifier are determined. The first identifier identifies a first partition of the plurality of partitions from which the command originated. The second identifier identifies a first effector of the plurality of effectors for which the command is intended. The third identifier identifies a second partition of the plurality of partitions that is responsible for controlling the first effector. The first identifier and the third identifier are compared to determine whether the first partition is the same as the second partition for authorization of the command.

  16. Ubiquitin Ligases and Deubiquitinating Enzymes in CD4+ T Cell Effector Fate Choice and Function.

    PubMed

    Layman, Awo A K; Oliver, Paula M

    2016-05-15

    The human body is exposed to potentially pathogenic microorganisms at barrier sites such as the skin, lungs, and gastrointestinal tract. To mount an effective response against these pathogens, the immune system must recruit the right cells with effector responses that are appropriate for the task at hand. Several types of CD4(+) T cells can be recruited, including Th cells (Th1, Th2, and Th17), T follicular helper cells, and regulatory T cells. These cells help to maintain normal immune homeostasis in the face of constantly changing microbes in the environment. Because these cells differentiate from a common progenitor, the composition of their intracellular milieu of proteins changes to appropriately guide their effector function. One underappreciated process that impacts the levels and functions of effector fate-determining factors is ubiquitylation. This review details our current understanding of how ubiquitylation regulates CD4(+) T cell effector identity and function. PMID:27183634

  17. Regulation of vesicular trafficking and leukocyte function by Rab27 GTPases and their effectors

    PubMed Central

    Catz, Sergio Daniel

    2013-01-01

    The Rab27 family of GTPases regulates the efficiency and specificity of exocytosis in hematopoietic cells, including neutrophils, CTLs, NK cells, and mast cells. However, the mechanisms regulated by Rab27 GTPases are cell-specific, as they depend on the differential expression and function of particular effector molecules that are recruited by the GTPases. In addition, Rab27 GTPases participate in multiple steps of the regulation of the secretory process, including priming, tethering, docking, and fusion through sequential interaction with multiple effector molecules. Finally, recent reports suggest that Rab27 GTPases and their effectors regulate vesicular trafficking mechanisms other than exocytosis, including endocytosis and phagocytosis. This review focuses on the latest discoveries on the function of Rab27 GTPases and their effectors Munc13-4 and Slp1 in neutrophil function comparatively to their functions in other leukocytes. PMID:23378593

  18. The type three secreted effector SipC regulates the trafficking of PERP during Salmonella infection

    PubMed Central

    Hallstrom, Kelly N.; McCormick, Beth A.

    2016-01-01

    abstract Salmonella enterica Typhimurium employs type III secreted effectors to induce cellular invasion and pathogenesis. We previously reported the secreted effector SipA is in part responsible for inducing the apical accumulation of the host membrane protein PERP, a host factor we have shown is key to the inflammatory response induced by Salmonella. We now report that the S. Typhimurium type III secreted effector SipC significantly contributes to PERP redistribution to the apical membrane surface. To our knowledge, this is the first report demonstrating a role for SipC in directing the trafficking of a host membrane protein to the cell surface. In sum, facilitation of PERP trafficking appears to be a result of type III secreted effector-mediated recruitment of vesicles to the apical surface. Our study therefore reveals a new role for SipC, and builds upon previous reports suggesting recruitment of vesicles to the cell surface is important for Salmonella invasion. PMID:27078059

  19. [Problem of end-effector of ischemic postconditioning of the heart].

    PubMed

    Maslov, L N; Naryzhnaia, N V; Hanuš, L; Pei, J-M; Baĭkov, A N; Zhang, I; Wang, H; Khaliulin, I G

    2013-05-01

    Analysis of literature source indicates that main pretenders to the role of end-effectors of ischemic postconditioning of the heart are: 1) Ca(2+)-dependent K+ channel of BK-type (big conductance K+ channel), 2) mitoK(ATP) channel (mitochondrial ATP-sensitive K(+)-channel), 3) MPT pore (mitochondrial permeability transition pore). At the same time, some investigators consider that mitoK(ATP) channel is only an intermediate link in the series of signaling events ensured an increase in cardiac tolerance to impact of ischemia-reperfusion. The most likely end-effector of the three structures is MPT pore. Alternatively, it is possible, that unique molecular complex appearing a single end-effector of postconditioning does not exist. Perhaps, that there are several effectors ensured cardioprotective effect of adaptive phenomenon of postconditioning. PMID:24459867

  20. End-effector: Joint conjugates for robotic assembly of large truss structures in space: Extended concepts

    NASA Technical Reports Server (NTRS)

    Brewer, W. V.; Rasis, E. P.; Shih, H. R.

    1993-01-01

    Results from NASA/HBCU Grant No. NAG-1-1125 are summarized. Designs developed for model fabrication, exploratory concepts drafted, interface of computer with robot and end-effector, and capability enhancement are discussed.

  1. Lifestyles of the effector-rich: genome-enabled characterization of bacterial plant pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome sequencing of bacterial plant pathogens is providing transformative insights into the complex network of molecular plant-microbe interactions mediated by extracellular effectors during pathogenesis. Bacterial pathogens sequenced to completion are phylogenetically diverse and vary significant...

  2. A Chlamydia effector recruits CEP170 to reprogram host microtubule organization

    PubMed Central

    Dumoux, Maud; Menny, Anais; Delacour, Delphine; Hayward, Richard D.

    2015-01-01

    ABSTRACT The obligate intracellular bacterial pathogen Chlamydia trachomatis deploys virulence effectors to subvert host cell functions enabling its replication within a specialized membrane-bound compartment termed an inclusion. The control of the host cytoskeleton is crucial for Chlamydia uptake, inclusion biogenesis and cell exit. Here, we demonstrate how a Chlamydia effector rearranges the microtubule (MT) network by initiating organization of the MTs at the inclusion surface. We identified an inclusion-localized effector that is sufficient to interfere with MT assembly, which we named inclusion protein acting on MTs (IPAM). We established that IPAM recruits and stimulates the centrosomal protein 170 kDa (CEP170) to hijack the MT organizing functions of the host cell. We show that CEP170 is essential for chlamydial control of host MT assembly, and is required for inclusion morphogenesis and bacterial infectivity. Together, we demonstrate how a pathogen effector reprograms the host MT network to support its intracellular development. PMID:26220855

  3. Visual processing at goal and effector locations is dynamically enhanced during motor preparation.

    PubMed

    Mason, Luke; Linnell, Karina J; Davis, Rob; Van Velzen, José

    2015-08-15

    Previous theoretical and experimental works has shown that preparing to act causes enhanced perceptual processing at movement-relevant locations. Up until now, this has focused almost exclusively on the goal of an action, neglecting the role of the effector. We addressed this by measuring changes in visual processing across time during motor preparation at both goal and effector locations. We compared event related potentials (ERPs) elicited by task-irrelevant visual probe stimuli at both goal and effector locations during motor preparation. Participants were instructed to place their hands on two starting positions (effector locations) and an auditory tone instructed them to immediately move to one of two target buttons (goal locations). Probe stimuli were presented in the interval between the offset of the cue and the execution of the movement at either a goal or an effector location. Probes were presented randomly at either 100ms, 200ms or 300ms after the auditory cue. Analysis of the visual N1 ERP showed enhanced visual processing at moving vs. not-moving goal locations across all three SOAs. At effector locations, enhanced processing for the moving vs. not-moving effector was only observed during the middle (200ms) SOA. These results demonstrate, for the first time, simultaneous perceptual enhancement of goal and effector locations during motor preparation. We interpret these results as reflecting a temporally and spatially specific dynamic attentional map of the environment that adapts to maximise efficiency of movement by selectively weighting processing of multiple functional components of action in parallel. PMID:26032889

  4. Enhancement of Immune Effector Functions by Modulating IgG’s Intrinsic Affinity for Target Antigen

    PubMed Central

    Mazor, Yariv; Yang, Chunning; Borrok, M. Jack; Ayriss, Joanne; Aherne, Karen; Wu, Herren; Dall’Acqua, William F.

    2016-01-01

    Antibody-mediated immune effector functions play an essential role in the anti-tumor efficacy of many therapeutic mAbs. While much of the effort to improve effector potency has focused on augmenting the interaction between the antibody-Fc and activating Fc-receptors expressed on immune cells, the role of antibody binding interactions with the target antigen remains poorly understood. We show that antibody intrinsic affinity to the target antigen clearly influences the extent and efficiency of Fc-mediated effector mechanisms, and report the pivotal role of antibody binding valence on the ability to regulate effector functions. More particularly, we used an array of affinity modulated variants of three different mAbs, anti-CD4, anti-EGFR and anti-HER2 against a panel of target cell lines expressing disparate levels of the target antigen. We found that at saturating antibody concentrations, IgG variants with moderate intrinsic affinities, similar to those generated by the natural humoral immune response, promoted superior effector functions compared to higher affinity antibodies. We hypothesize that at saturating concentrations, effector function correlates most directly with the amount of Fc bound to the cell surface. Thus, high affinity antibodies exhibiting slow off-rates are more likely to interact bivalently with the target cell, occupying two antigen sites with a single Fc. In contrast, antibodies with faster off-rates are likely to dissociate each binding arm more rapidly, resulting in a higher likelihood of monovalent binding. Monovalent binding may in turn increase target cell opsonization and lead to improved recruitment of effector cells. This unpredicted relationship between target affinity and effector function potency suggests a careful examination of antibody design and engineering for the development of next-generation immunotherapeutics. PMID:27322177

  5. Do CD8 effector cells need IL-7R expression to become resting memory cells?

    PubMed

    Buentke, Eva; Mathiot, Anne; Tolaini, Mauro; Di Santo, James; Zamoyska, Rose; Seddon, Benedict

    2006-09-15

    The role for IL-7R expression in the differentiation of effector T cells into resting memory remains controversial. Here, using a conditional IL-7R transgenic model, we were able to test directly whether CD8 effector T cells require IL-7R expression for their differentiation into resting memory cells. In the absence of IL-7R expression, effector cells transferred into "full" hosts underwent a protracted and unremitting contraction compared with IL-7R-expressing control cells and were unable to develop into long-term resting memory cells. Surprisingly, when the same effector cells were transferred into empty T-cell-deficient hosts, they could generate long-lived fully functional resting memory cells independently of IL-7R expression. Formation of these latter cells was found to be dependent on IL-15, because the same IL-7R-deficient effector cells were rapidly lost from IL-15-deficient hosts, having a half-life of less than 40 hours. Therefore, our data suggest that, under physiological conditions, both IL-7 and IL-15 synergize to promote the formation of memory cells directly by limiting the contraction of effectors that occurs following an immune response and that reexpression of IL-7R is a key checkpoint in the regulation of this process. PMID:16705084

  6. A Salmonella Type Three Secretion Effector/Chaperone Complex Adopts a Hexameric Ring-Like Structure

    PubMed Central

    Roblin, Pierre; Dewitte, Frédérique; Villeret, Vincent; Biondi, Emanuele G.

    2014-01-01

    Many bacterial pathogens use type three secretion systems (T3SS) to inject virulence factors, named effectors, directly into the cytoplasm of target eukaryotic cells. Most of the T3SS components are conserved among plant and animal pathogens, suggesting a common mechanism of recognition and secretion of effectors. However, no common motif has yet been identified for effectors allowing T3SS recognition. In this work, we performed a biochemical and structural characterization of the Salmonella SopB/SigE chaperone/effector complex by small-angle X-ray scattering (SAXS). Our results showed that the SopB/SigE complex is assembled in dynamic homohexameric-ring-shaped structures with an internal tunnel. In this ring, the chaperone maintains a disordered N-terminal end of SopB molecules, in a good position to be reached and processed by the T3SS. This ring dimensionally fits the ring-organized molecules of the injectisome, including ATPase hexameric rings; this organization suggests that this structural feature is important for ATPase recognition by T3SS. Our work constitutes the first evidence of the oligomerization of an effector, analogous to the organization of the secretion machinery, obtained in solution. As effectors share neither sequence nor structural identity, the quaternary oligomeric structure could constitute a strategy evolved to promote the specificity and efficiency of T3SS recognition. PMID:25404693

  7. Rust fungal effectors mimic host transit peptides to translocate into chloroplasts.

    PubMed

    Petre, Benjamin; Lorrain, Cécile; Saunders, Diane G O; Win, Joe; Sklenar, Jan; Duplessis, Sébastien; Kamoun, Sophien

    2016-04-01

    Parasite effector proteins target various host cell compartments to alter host processes and promote infection. How effectors cross membrane-rich interfaces to reach these compartments is a major question in effector biology. Growing evidence suggests that effectors use molecular mimicry to subvert host cell machinery for protein sorting. We recently identified chloroplast-targeted protein 1 (CTP1), a candidate effector from the poplar leaf rust fungus Melampsora larici-populina that carries a predicted transit peptide and accumulates in chloroplasts and mitochondria. Here, we show that the CTP1 transit peptide is necessary and sufficient for accumulation in the stroma of chloroplasts. CTP1 is part of a Melampsora-specific family of polymorphic secreted proteins. Two members of that family, CTP2 and CTP3, also translocate in chloroplasts in an N-terminal signal-dependent manner. CTP1, CTP2 and CTP3 are cleaved when they accumulate in chloroplasts, while they remain intact when they do not translocate into chloroplasts. Our findings reveal that fungi have evolved effector proteins that mimic plant-specific sorting signals to traffic within plant cells. PMID:26426202

  8. Proteogenomic analysis of the Venturia pirina (Pear Scab Fungus) secretome reveals potential effectors.

    PubMed

    Cooke, Ira R; Jones, Dan; Bowen, Joanna K; Deng, Cecilia; Faou, Pierre; Hall, Nathan E; Jayachandran, Vignesh; Liem, Michael; Taranto, Adam P; Plummer, Kim M; Mathivanan, Suresh

    2014-08-01

    A proteogenomic analysis is presented for Venturia pirina, a fungus that causes scab disease on European pear (Pyrus communis). V. pirina is host-specific, and the infection is thought to be mediated by secreted effector proteins. Currently, only 36 V. pirina proteins are catalogued in GenBank, and the genome sequence is not publicly available. To identify putative effectors, V. pirina was grown in vitro on and in cellophane sheets mimicking its growth in infected leaves. Secreted extracts were analyzed by tandem mass spectrometry, and the data (ProteomeXchange identifier PXD000710) was queried against a protein database generated by combining in silico predicted transcripts with six frame translations of a whole genome sequence of V. pirina (GenBank Accession JEMP00000000 ). We identified 1088 distinct V. pirina protein groups (FDR 1%) including 1085 detected for the first time. Thirty novel (not in silico predicted) proteins were found, of which 14 were identified as potential effectors based on characteristic features of fungal effector protein sequences. We also used evidence from semitryptic peptides at the protein N-terminus to corroborate in silico signal peptide predictions for 22 proteins, including several potential effectors. The analysis highlights the utility of proteogenomics in the study of secreted effectors. PMID:24965097

  9. Computational prediction of type III and IV secreted effectors in Gram-negative bacteria

    SciTech Connect

    McDermott, Jason E.; Corrigan, Abigail L.; Peterson, Elena S.; Oehmen, Christopher S.; Niemann, George; Cambronne, Eric; Sharp, Danna; Adkins, Joshua N.; Samudrala, Ram; Heffron, Fred

    2011-01-01

    In this review, we provide an overview of the methods employed by four recent papers that described novel methods for computational prediction of secreted effectors from type III and IV secretion systems in Gram-negative bacteria. The results of the studies in terms of performance at accurately predicting secreted effectors and similarities found between secretion signals that may reflect biologically relevant features for recognition. We discuss the web-based tools for secreted effector prediction described in these studies and announce the availability of our tool, the SIEVEserver (http://www.biopilot.org). Finally, we assess the accuracy of the three type III effector prediction methods on a small set of proteins not known prior to the development of these tools that we have recently discovered and validated using both experimental and computational approaches. Our comparison shows that all methods use similar approaches and, in general arrive at similar conclusions. We discuss the possibility of an order-dependent motif in the secretion signal, which was a point of disagreement in the studies. Our results show that there may be classes of effectors in which the signal has a loosely defined motif, and others in which secretion is dependent only on compositional biases. Computational prediction of secreted effectors from protein sequences represents an important step toward better understanding the interaction between pathogens and hosts.

  10. In-flight adaptive performance optimization (APO) control using redundant control effectors of an aircraft

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B. (Inventor)

    1999-01-01

    Practical application of real-time (or near real-time) Adaptive Performance Optimization (APO) is provided for a transport aircraft in steady climb, cruise, turn descent or other flight conditions based on measurements and calculations of incremental drag from a forced response maneuver of one or more redundant control effectors defined as those in excess of the minimum set of control effectors required to maintain the steady flight condition in progress. The method comprises the steps of applying excitation in a raised-cosine form over an interval of from 100 to 500 sec. at the rate of 1 to 10 sets/sec of excitation, and data for analysis is gathered in sets of measurements made during the excitation to calculate lift and drag coefficients C.sub.L and C.sub.D from two equations, one for each coefficient. A third equation is an expansion of C.sub.D as a function of parasitic drag, induced drag, Mach and altitude drag effects, and control effector drag, and assumes a quadratic variation of drag with positions .delta..sub.i of redundant control effectors i=1 to n. The third equation is then solved for .delta..sub.iopt the optimal position of redundant control effector i, which is then used to set the control effector i for optimum performance during the remainder of said steady flight or until monitored flight conditions change by some predetermined amount as determined automatically or a predetermined minimum flight time has elapsed.

  11. Effector-Mining in the Poplar Rust Fungus Melampsora larici-populina Secretome

    PubMed Central

    Lorrain, Cécile; Hecker, Arnaud; Duplessis, Sébastien

    2015-01-01

    The poplar leaf rust fungus, Melampsora larici-populina has been established as a tree-microbe interaction model. Understanding the molecular mechanisms controlling infection by pathogens appears essential for durable management of tree plantations. In biotrophic plant-parasites, effectors are known to condition host cell colonization. Thus, investigation of candidate secreted effector proteins (CSEPs) is a major goal in the poplar–poplar rust interaction. Unlike oomycetes, fungal effectors do not share conserved motifs and candidate prediction relies on a set of a priori criteria established from reported bona fide effectors. Secretome prediction, genome-wide analysis of gene families and transcriptomics of M. larici-populina have led to catalogs of more than a thousand secreted proteins. Automatized effector-mining pipelines hold great promise for rapid and systematic identification and prioritization of CSEPs for functional characterization. In this review, we report on and discuss the current status of the poplar rust fungus secretome and prediction of candidate effectors from this species. PMID:26697026

  12. Tales of sociology and the nursing curriculum: revisiting the debates.

    PubMed

    Aranda, Kay; Law, Kate

    2007-08-01

    . Sociology and the nursing curriculum; editorial. Nurse Education in Practice 4, 81-82; Mowforth, G., Harrison, J., Morris, M., 2005. An investigation into adult nursing students' experience of the relevance and application of behavioural sciences (biology, psychology and sociology) across two different curricula. Nurse Education Today 25, 41-48]. Much attention has been given to the role, utility and value of sociology mostly within pre-registration but also post-registration nursing curricula. Through an initial analysis of a series of letters appearing in The Nursing Times over a 12 week period in 2004, and using an analytical framework of four tales (realist, critical, deconstructive and reflexive) we revisit this relationship. Unlike previous debates our argument is that this relationship is more usefully viewed as emblematic of the legitimation crisis inherent in all modern projects. We argue that in order to move beyond the 'utility' discussion, an interrogation of the knowledge claims of both nursing and sociology is required. PMID:17064822

  13. DEEP--a tool for differential expression effector prediction.

    PubMed

    Degenhardt, Jost; Haubrock, Martin; Dönitz, Jürgen; Wingender, Edgar; Crass, Torsten

    2007-07-01

    --differentially expressed or not--may play pivotal roles in the tissues or conditions under examination. The described method has been implemented in Java as a client/server application and a web interface called DEEP (Differential Expression Effector Prediction). The client, which features an easy-to-use graphical interface, can freely be downloaded from the following URL: http://deep.bioinf.med.uni-goettingen.de. PMID:17584786

  14. Design of endoscopic micro-robotic end effectors: safety and performance evaluation based on physical intestinal tissue damage characteristics.

    PubMed

    Kim, Young-Tae; Kim, Dae-Eun; Yang, Sungwook; Yoon, Eui-Sung

    2014-06-01

    During the last several years, legged locomotive mechanism has been considered as one of the main self-propelling mechanisms for future endoscopic microrobots due to its superior propulsion efficiency of an endoscopic microrobot inside the intestinal track. Nevertheless, its clinical application has been largely limited since the legged locomotive mechanism utilizes an end effector which has a sharp tip to generate sufficient traction by physically penetrating and interlocking with the intestinal tissue. This can cause excessive physical tissue damage or even complete perforation of the intestinal wall that can lead to abdominal inflammation. Hence, in this work two types of new end effectors, penetration-limited end effector (PLEE) and bi-material structured end effector (BMEE) were specially designed to acquire high medical safety as well as effective traction generation performance. The microscopic end effector specimens were fabricated with micro-wire electric discharge machining process. Traction generation performance of the end effectors was evaluated by direct measurement of resistance forces during contact-sliding tests using a custom-built contact-sliding tester. The safety of the end effector design was evaluated by examination of microscopic intestinal tissue damage using a scanning electron microscope (SEM). Physical damage characteristics of the intestinal tissue and related contact physics of the end effectors were discussed. From the results, the end effectors were evaluated with respect to their prospects in future medical applications as safe end effectors as well as micro-surgical tools. PMID:24634056

  15. When bad things happen to bad people: using disposition theory to explore the effects of cautionary tales.

    PubMed

    Marett, Emily Garrigues

    2015-01-01

    Cautionary tales are a prevalent form of entertainment narrative in media-saturated environments, yet they have received little empirical examination. Using disposition theory, this study manipulated affective disposition toward the protagonist in order to explore the effects of exposure to a cautionary tale on adoption of prosocial attitudes and behavioral intentions. A between-subjects experimental design was used with 2 conditions (positive/negative) and a control group (n = 305). Results provide evidence that exposure to cautionary tales positively influences adoption of attitudes and intentions to purchase a carbon monoxide detector and talk about accidental carbon monoxide poisoning. Affective disposition influenced identification with the protagonist, and perceptions that the protagonist deserved the negative consequences experienced in the cautionary tale narrative. Findings also suggest that identification mediates the relationship between affective disposition and perceived risk. PMID:25495266

  16. Quantitative Proteomic Analysis of Burkholderia pseudomallei Bsa Type III Secretion System Effectors Using Hypersecreting Mutants

    PubMed Central

    Vander Broek, Charles W.; Chalmers, Kevin J.; Stevens, Mark P.; Stevens, Joanne M.

    2015-01-01

    Burkholderia pseudomallei is an intracellular pathogen and the causative agent of melioidosis, a severe disease of humans and animals. One of the virulence factors critical for early stages of infection is the Burkholderia secretion apparatus (Bsa) Type 3 Secretion System (T3SS), a molecular syringe that injects bacterial proteins, called effectors, into eukaryotic cells where they subvert cellular functions to the benefit of the bacteria. Although the Bsa T3SS itself is known to be important for invasion, intracellular replication, and virulence, only a few genuine effector proteins have been identified and the complete repertoire of proteins secreted by the system has not yet been fully characterized. We constructed a mutant lacking bsaP, a homolog of the T3SS “gatekeeper” family of proteins that exert control over the timing and magnitude of effector protein secretion. Mutants lacking BsaP, or the T3SS translocon protein BipD, were observed to hypersecrete the known Bsa effector protein BopE, providing evidence of their role in post-translational control of the Bsa T3SS and representing key reagents for the identification of its secreted substrates. Isobaric Tags for Relative and Absolute Quantification (iTRAQ), a gel-free quantitative proteomics technique, was used to compare the secreted protein profiles of the Bsa T3SS hypersecreting mutants of B. pseudomallei with the isogenic parent strain and a bsaZ mutant incapable of effector protein secretion. Our study provides one of the most comprehensive core secretomes of B. pseudomallei described to date and identified 26 putative Bsa-dependent secreted proteins that may be considered candidate effectors. Two of these proteins, BprD and BapA, were validated as novel effector proteins secreted by the Bsa T3SS of B. pseudomallei. PMID:25635268

  17. A bacterial type III secretion assay for delivery of fungal effector proteins into wheat.

    PubMed

    Upadhyaya, Narayana M; Mago, Rohit; Staskawicz, Brian J; Ayliffe, Michael A; Ellis, Jeffrey G; Dodds, Peter N

    2014-03-01

    Large numbers of candidate effectors from fungal pathogens are being identified through whole-genome sequencing and in planta expression studies. Although Agrobacterium-mediated transient expression has enabled high-throughput functional analysis of effectors in dicot plants, this assay is not effective in cereal leaves. Here, we show that a nonpathogenic Pseudomonas fluorescens engineered to express the type III secretion system (T3SS) of P. syringae and the wheat pathogen Xanthomonas translucens can deliver fusion proteins containing T3SS signals from P. syringae (AvrRpm1) and X. campestris (AvrBs2) avirulence (Avr) proteins, respectively, into wheat leaf cells. A calmodulin-dependent adenylate cyclase reporter protein was delivered effectively into wheat and barley by both bacteria. Absence of any disease symptoms with P. fluorescens makes it more suitable than X. translucens for detecting a hypersensitive response (HR) induced by an effector protein with avirulence activity. We further modified the delivery system by removal of the myristoylation site from the AvrRpm1 fusion to prevent its localization to the plasma membrane which could inhibit recognition of an Avr protein. Delivery of the flax rust AvrM protein by the modified delivery system into transgenic tobacco leaves expressing the corresponding M resistance protein induced a strong HR, indicating that the system is capable of delivering a functional rust Avr protein. In a preliminary screen of effectors from the stem rust fungus Puccinia graminis f. sp. tritici, we identified one effector that induced a host genotype-specific HR in wheat. Thus, the modified AvrRpm1:effector-Pseudomonas fluorescens system is an effective tool for large-scale screening of pathogen effectors for recognition in wheat. PMID:24156769

  18. A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection

    SciTech Connect

    Julie Anne Roden, Branids Belt, Jason Barzel Ross, Thomas Tachibana, Joe Vargas, Mary Beth Mudgett

    2004-11-23

    The bacterial pathogen Xanthomonas campestris pv. vesicatoria (Xcv) uses a type III secretion system (TTSS) to translocate effector proteins into host plant cells. The TTSS is required for Xcv colonization, yet the identity of many proteins translocated through this apparatus is not known. We used a genetic screen to functionally identify Xcv TTSS effectors. A transposon 5 (Tn5)-based transposon construct including the coding sequence for the Xcv AvrBs2 effector devoid of its TTSS signal was randomly inserted into the Xcv genome. Insertion of the avrBs2 reporter gene into Xcv genes coding for proteins containing a functional TTSS signal peptide resulted in the creation of chimeric TTSS effector::AvrBs2 fusion proteins. Xcv strains containing these fusions translocated the AvrBs2 reporter in a TTSS-dependent manner into resistant BS2 pepper cells during infection, activating the avrBs2-dependent hypersensitive response (HR). We isolated seven chimeric fusion proteins and designated the identified TTSS effectors as Xanthomonas outer proteins (Xops). Translocation of each Xop was confirmed by using the calmodulin-dependent adenylate cydase reporter assay. Three xop genes are Xanthomonas spp.-specific, whereas homologs for the rest are found in other phytopathogenic bacteria. XopF1 and XopF2 define an effector gene family in Xcv. XopN contains a eukaryotic protein fold repeat and is required for full Xcv pathogenicity in pepper and tomato. The translocated effectors identified in this work expand our knowledge of the diversity of proteins that Xcv uses to manipulate its hosts.

  19. The Barley Powdery Mildew Effector Candidates CSEP0081 and CSEP0254 Promote Fungal Infection Success.

    PubMed

    Ahmed, Ali Abdurehim; Pedersen, Carsten; Thordal-Christensen, Hans

    2016-01-01

    Effectors play significant roles in the success of pathogens. Recent advances in genome sequencing have revealed arrays of effectors and effector candidates from a wide range of plant pathogens. Yet, the vast majority of them remain uncharacterized. Among the ~500 Candidate Secreted Effector Proteins (CSEPs) predicted from the barley powdery mildew fungal genome, only a few have been studied and shown to have a function in virulence. Here, we provide evidence that CSEP0081 and CSEP0254 contribute to infection by the fungus. This was studied using Host-Induced Gene Silencing (HIGS), where independent silencing of the transcripts for these CSEPs significantly reduced the fungal penetration and haustoria formation rate. Both CSEPs are likely required during and after the formation of haustoria, in which their transcripts were found to be differentially expressed, rather than in epiphytic tissue. When expressed in barley leaf epidermal cells, both CSEPs appears to move freely between the cytosol and the nucleus, suggesting that their host targets locate in these cellular compartments. Collectively, our data suggest that, in addition to the previously reported effectors, the barley powdery mildew fungus utilizes these two CSEPs as virulence factors to enhance infection. PMID:27322386

  20. Intermediate filaments enable pathogen docking to trigger type 3 effector translocation.

    PubMed

    Russo, Brian C; Stamm, Luisa M; Raaben, Matthijs; Kim, Caleb M; Kahoud, Emily; Robinson, Lindsey R; Bose, Sayantan; Queiroz, Ana L; Herrera, Bobby Brooke; Baxt, Leigh A; Mor-Vaknin, Nirit; Fu, Yang; Molina, Gabriel; Markovitz, David M; Whelan, Sean P; Goldberg, Marcia B

    2016-01-01

    Type 3 secretion systems (T3SSs) of bacterial pathogens translocate bacterial effector proteins that mediate disease into the eukaryotic cytosol. Effectors traverse the plasma membrane through a translocon pore formed by T3SS proteins. In a genome-wide selection, we identified the intermediate filament vimentin as required for infection by the T3SS-dependent pathogen S. flexneri. We found that vimentin is required for efficient T3SS translocation of effectors by S. flexneri and other pathogens that use T3SS, Salmonella enterica serovar Typhimurium and Yersinia pseudotuberculosis. Vimentin and the intestinal epithelial intermediate filament keratin 18 interact with the C-terminus of the Shigella translocon pore protein IpaC. Vimentin and its interaction with IpaC are dispensable for pore formation, but are required for stable docking of S. flexneri to cells; moreover, stable docking triggers effector secretion. These findings establish that stable docking of the bacterium specifically requires intermediate filaments, is a process distinct from pore formation, and is a prerequisite for effector secretion. PMID:27572444

  1. Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria.

    PubMed

    Ashida, Hiroshi; Sasakawa, Chihiro

    2015-01-01

    Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis). Via the type III secretion system (T3SS), Shigella deliver a subset of virulence proteins (effectors) that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC). Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections. PMID:26779450

  2. A Phytophthora sojae cytoplasmic effector mediates disease resistance and abiotic stress tolerance in Nicotiana benthamiana

    PubMed Central

    Zhang, Meixiang; Ahmed Rajput, Nasir; Shen, Danyu; Sun, Peng; Zeng, Wentao; Liu, Tingli; Juma Mafurah, Joseph; Dou, Daolong

    2015-01-01

    Each oomycete pathogen encodes a large number of effectors. Some effectors can be used in crop disease resistance breeding, such as to accelerate R gene cloning and utilisation. Since cytoplasmic effectors may cause acute physiological changes in host cells at very low concentrations, we assume that some of these effectors can serve as functional genes for transgenic plants. Here, we generated transgenic Nicotiana benthamiana plants that express a Phytophthora sojae CRN (crinkling and necrosis) effector, PsCRN115. We showed that its expression did not significantly affect the growth and development of N. benthamiana, but significantly improved disease resistance and tolerance to salt and drought stresses. Furthermore, we found that expression of heat-shock-protein and cytochrome-P450 encoding genes were unregulated in PsCRN115-transgenic N. benthamiana based on digital gene expression profiling analyses, suggesting the increased plant defence may be achieved by upregulation of these stress-related genes in transgenic plants. Thus, PsCRN115 may be used to improve plant tolerance to biotic and abiotic stresses. PMID:26039925

  3. Antimicrobial effectors in the nematode Caenorhabditis elegans: an outgroup to the Arthropoda.

    PubMed

    Dierking, Katja; Yang, Wentao; Schulenburg, Hinrich

    2016-05-26

    Nematodes and arthropods likely form the taxon Ecdysozoa. Information on antimicrobial effectors from the model nematode Caenorhabditis elegans may thus shed light on the evolutionary origin of these defences in arthropods. This nematode species possesses an extensive armory of putative antimicrobial effector proteins, such as lysozymes, caenopores (or saposin-like proteins), defensin-like peptides, caenacins and neuropeptide-like proteins, in addition to the production of reactive oxygen species and autophagy. As C. elegans is a bacterivore that lives in microbe-rich environments, some of its effector peptides and proteins likely function in both digestion of bacterial food and pathogen elimination. In this review, we provide an overview of C. elegans immune effector proteins and mechanisms. We summarize the experimental evidence of their antimicrobial function and involvement in the response to pathogen infection. We further evaluate the microbe-induced expression of effector genes using WormExp, a recently established database for C. elegans gene expression analysis. We emphasize the need for further analysis at the protein level to demonstrate an antimicrobial activity of these molecules both in vitro and in vivoThis article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160601

  4. The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection

    PubMed Central

    Gawehns, Fleur; Ma, Lisong; Bruning, Oskar; Houterman, Petra M.; Boeren, Sjef; Cornelissen, Ben J. C.; Rep, Martijn; Takken, Frank L. W.

    2015-01-01

    Plant pathogens secrete small proteins, of which some are effectors that promote infection. During colonization of the tomato xylem vessels the fungus Fusarium oxysporum f.sp. lycopersici (Fol) secretes small proteins that are referred to as SIX (Secreted In Xylem) proteins. Of these, Six1 (Avr3), Six3 (Avr2), Six5, and Six6 are required for full virulence, denoting them as effectors. To investigate their activities in the plant, the xylem sap proteome of plants inoculated with Fol wild-type or either AVR2, AVR3, SIX2, SIX5, or SIX6 knockout strains was analyzed with nano-Liquid Chromatography-Mass Spectrometry (nLC-MSMS). Compared to mock-inoculated sap 12 additional plant proteins appeared while 45 proteins were no longer detectable in the xylem sap of Fol-infected plants. Of the 285 proteins found in both uninfected and infected plants the abundance of 258 proteins changed significantly following infection. The xylem sap proteome of plants infected with four Fol effector knockout strains differed significantly from plants infected with wild-type Fol, while that of the SIX2-knockout inoculated plants remained unchanged. Besides an altered abundance of a core set of 24 differentially accumulated proteins (DAPs), each of the four effector knockout strains affected specifically the abundance of a subset of DAPs. Hence, Fol effectors have both unique and shared effects on the composition of the tomato xylem sap proteome. PMID:26583031

  5. Ras Effector Switching Promotes Divergent Cell Fates in C. elegans Vulval Patterning

    PubMed Central

    Zand, Tanya P.; Reiner, David J.; Der, Channing J.

    2010-01-01

    SUMMARY The C. elegans vulva is patterned by epidermal growth factor (EGF) activation of Ras to control 1° fate, and 1° fate induces antagonistic Notch-dependent 2° fate. Furthermore, a spatial EGF gradient, in addition to inducing 1° fate, directly contributes to 2° fate via an unknown pathway. We find that in addition to its canonical effector, Raf, vulval Ras utilizes an exchange factor for the Ral small GTPase (RalGEF), such that Ras-RalGEF-Ral antagonizes Ras-Raf pro-1° fate activity. Consistent with its restricted expression pattern, Ral participates in EGF pro-2° activity. Thus, we have delineated a Ras effector-switching mechanism whereby position within the morphogen gradient dictates that Ras effector usage is switched to RalGEF from Raf to promote 2° instead of 1° fate. Our observations define the utility of Ras effector switching during normal development, and may provide a possible mechanistic basis for cell and cancer type differences in effector dependency and activation. PMID:21238927

  6. Transient Expression of Candidatus Liberibacter Asiaticus Effector Induces Cell Death in Nicotiana benthamiana.

    PubMed

    Pitino, Marco; Armstrong, Cheryl M; Cano, Liliana M; Duan, Yongping

    2016-01-01

    Candidatus Liberibacter asiaticus "Las" is a phloem-limited bacterial plant pathogen, and the most prevalent species of Liberibacter associated with citrus huanglongbing (HLB), a devastating disease of citrus worldwide. Although, the complete sequence of the Las genome provides the basis for studying functional genomics of Las and molecular mechanisms of Las-plant interactions, the functional characterization of Las effectors remains a slow process since remains to be cultured. Like other plant pathogens, Las may deliver effector proteins into host cells and modulate a variety of host cellular functions for their infection progression. In this study, we identified 16 putative Las effectors via bioinformatics, and transiently expressed them in Nicotiana benthamiana. Diverse subcellular localization with different shapes and aggregation patterns of the effector candidates were revealed by UV- microscopy after transient expression in leaf tissue. Intriguingly, one of the 16 candidates, Las5315mp (mature protein), was localized in the chloroplast and induced cell death at 3 days post inoculation (dpi) in N. benthamiana. Moreover, Las5315mp induced strong callose deposition in plant cells. This study provides new insights into the localizations and potential roles of these Las effectors in planta. PMID:27458468

  7. Wind Tunnel Test of an RPV with Shape-Change Control Effector and Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Cabell, Randolph H.; Sloan, Adam R.; Barnwell, William G.; Lion, S. Todd; Hautamaki, Bret A.

    2004-01-01

    A variety of novel control effector concepts have recently emerged that may enable new approaches to flight control. In particular, the potential exists to shift the composition of the typical aircraft control effector suite from a small number of high authority, specialized devices (rudder, aileron, elevator, flaps), toward larger numbers of smaller, less specialized, distributed device arrays. The concept envisions effector and sensor networks composed of relatively small high-bandwidth devices able to simultaneously perform a variety of control functions using feedback from disparate data sources. To investigate this concept, a remotely piloted flight vehicle has been equipped with an array of 24 trailing edge shape-change effectors and associated pressure measurements. The vehicle, called the Multifunctional Effector and Sensor Array (MESA) testbed, was recently tested in NASA Langley's 12-ft Low Speed wind tunnel to characterize its stability properties, control authorities, and distributed pressure sensitivities for use in a dynamic simulation prior to flight testing. Another objective was to implement and evaluate a scheme for actively controlling the spanwise pressure distribution using the shape-change array. This report describes the MESA testbed, design of the pressure distribution controller, and results of the wind tunnel test.

  8. Transient Expression of Candidatus Liberibacter Asiaticus Effector Induces Cell Death in Nicotiana benthamiana

    PubMed Central

    Pitino, Marco; Armstrong, Cheryl M.; Cano, Liliana M.; Duan, Yongping

    2016-01-01

    Candidatus Liberibacter asiaticus “Las” is a phloem-limited bacterial plant pathogen, and the most prevalent species of Liberibacter associated with citrus huanglongbing (HLB), a devastating disease of citrus worldwide. Although, the complete sequence of the Las genome provides the basis for studying functional genomics of Las and molecular mechanisms of Las-plant interactions, the functional characterization of Las effectors remains a slow process since remains to be cultured. Like other plant pathogens, Las may deliver effector proteins into host cells and modulate a variety of host cellular functions for their infection progression. In this study, we identified 16 putative Las effectors via bioinformatics, and transiently expressed them in Nicotiana benthamiana. Diverse subcellular localization with different shapes and aggregation patterns of the effector candidates were revealed by UV- microscopy after transient expression in leaf tissue. Intriguingly, one of the 16 candidates, Las5315mp (mature protein), was localized in the chloroplast and induced cell death at 3 days post inoculation (dpi) in N. benthamiana. Moreover, Las5315mp induced strong callose deposition in plant cells. This study provides new insights into the localizations and potential roles of these Las effectors in planta. PMID:27458468

  9. A Secreted Effector Protein of Ustilago maydis Guides Maize Leaf Cells to Form Tumors

    PubMed Central

    Redkar, Amey; Hoser, Rafal; Schilling, Lena; Zechmann, Bernd; Krzymowska, Magdalena; Walbot, Virginia; Doehlemann, Gunther

    2015-01-01

    The biotrophic smut fungus Ustilago maydis infects all aerial organs of maize (Zea mays) and induces tumors in the plant tissues. U. maydis deploys many effector proteins to manipulate its host. Previously, deletion analysis demonstrated that several effectors have important functions in inducing tumor expansion specifically in maize leaves. Here, we present the functional characterization of the effector See1 (Seedling efficient effector1). See1 is required for the reactivation of plant DNA synthesis, which is crucial for tumor progression in leaf cells. By contrast, See1 does not affect tumor formation in immature tassel floral tissues, where maize cell proliferation occurs independent of fungal infection. See1 interacts with a maize homolog of SGT1 (Suppressor of G2 allele of skp1), a factor acting in cell cycle progression in yeast (Saccharomyces cerevisiae) and an important component of plant and human innate immunity. See1 interferes with the MAPK-triggered phosphorylation of maize SGT1 at a monocot-specific phosphorylation site. We propose that See1 interferes with SGT1 activity, resulting in both modulation of immune responses and reactivation of DNA synthesis in leaf cells. This identifies See1 as a fungal effector that directly and specifically contributes to the formation of leaf tumors in maize. PMID:25888589

  10. HydroCalc Proteome: a tool to identify distinct characteristics of effector proteins.

    PubMed

    da Silva, G J; da Silva, R G T M; Silva, V A; C Caritá, E; Fachin, A L; Marins, M

    2016-01-01

    Bacterial pathogenicity is associated with secretion of effector proteins into intra- and extracellular spaces. These proteins interfere with cellular processes such as inhibition of phagosome-lysosome fusion, induction of apoptosis and autophagy, activation and suppression of kinases, regulation of receptor activity, and modulation of transcription factors. Knowledge regarding the characteristics of these proteins would assist in pathogenicity studies, and help to identify possible and novel targets for antibacterial drugs. Amino acid hydropathy is a property that can affect behavior patterns in effector proteins. The HydroCalc Proteome tool analyzes total hydropathy, average hydropathy, C-terminal hydropathy, C-terminal load, and basic polar amino acids at the C-terminus. These five properties could contribute to the identification of proteins with an effector potential. HydroCalc Proteome is a web tool that provides a simple interface for the analysis of hydropathy properties in proteins. This tool permits the analysis of a single protein or even the complete proteome, which cannot be achieved by using other hydropathy tools. The tool displays the result of five properties related to effector proteins in a single table. The HydroCalc Proteome (www.gmb.bio.br/hydrocalc) is a powerful tool for protein analysis, and can contribute to the study of effector proteins. PMID:27525880

  11. The role of effectors in nonhost resistance to filamentous plant pathogens

    PubMed Central

    Stam, Remco; Mantelin, Sophie; McLellan, Hazel; Thilliez, Gaëtan

    2014-01-01

    In nature, most plants are resistant to a wide range of phytopathogens. However, mechanisms contributing to this so-called nonhost resistance (NHR) are poorly understood. Besides constitutive defenses, plants have developed two layers of inducible defense systems. Plant innate immunity relies on recognition of conserved pathogen-associated molecular patterns (PAMPs). In compatible interactions, pathogenicity effector molecules secreted by the invader can suppress host defense responses and facilitate the infection process. Additionally, plants have evolved pathogen-specific resistance mechanisms based on recognition of these effectors, which causes secondary defense responses. The current effector-driven hypothesis is that NHR in plants that are distantly related to the host plant is triggered by PAMP recognition that cannot be efficiently suppressed by the pathogen, whereas in more closely related species, nonhost recognition of effectors would play a crucial role. In this review we give an overview of current knowledge of the role of effector molecules in host and NHR and place these findings in the context of the model. We focus on examples from filamentous pathogens (fungi and oomycetes), discuss their implications for the field of plant-pathogen interactions and relevance in plant breeding strategies for development of durable resistance in crops. PMID:25426123

  12. Integrated decoys and effector traps: how to catch a plant pathogen.

    PubMed

    Ellis, Jeffrey G

    2016-01-01

    Plant immune receptors involved in disease resistance and crop protection are related to the animal Nod-like receptor (NLR) class, and recognise the virulence effectors of plant pathogens, whereby they arm the plant's defensive response. Although plant NLRs mainly contain three protein domains, about 10% of these receptors identified by extensive cross-plant species data base searches have now been shown to include novel and highly variable integrated domains, some of which have been shown to detect pathogen effectors by direct interaction. Sarris et al. have identified a large number of integrated domains that can be used to detect effector targets in host plant proteomes and identify unknown pathogen effectors.Please see related Research article: Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens, http://dx.doi.org/10.1186/s12915-016-0228-7 Since the time of writing, a closely related paper has been released: Kroj T, Chanclud E, Michel-Romiti C, Grand X, Morel J-B. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. New Phytol. 2016 (ahead of print). PMID:26896088

  13. Pluripotent Allospecific CD8+ Effector T Cells Traffic to Lung in Murine Obliterative Airway Disease

    PubMed Central

    West, Erin E.; Lavoie, Tera L.; Orens, Jonathan B.; Chen, Edward S.; Ye, Shui Q.; Finkelman, Fred D.; Garcia, Joe G. N.; McDyer, John F.

    2006-01-01

    Long-term success in lung transplantation is limited by obliterative bronchiolitis, whereas T cell effector mechanisms in this process remain incompletely understood. Using the mouse heterotopic allogeneic airway transplant model, we studied T cell effector responses during obliterative airways disease (OAD). Allospecific CD8+IFN-γ+ T cells were detected in airway allografts, with significant coexpression of TNF-α and granzyme B. Therefore, using IFN-γ as a surrogate marker, we assessed the distribution and kinetics of extragraft allo-specific T cells during OAD. Robust allospecific IFN-γ was produced by draining the lymph nodes, spleen, and lung mononuclear cells from allograft, but not isograft recipients by Day 14, and significantly decreased by Day 28. Although the majority of allospecific T cells were CD8+, allospecific CD4+ T cells were also detected in these compartments, with each employing distinct allorecognition pathways. An influx of pluripotent CD8+ effector cells with a memory phenotype were detected in the lung during OAD similar to those seen in the allografts and secondary lymphoid tissue. Antibody depletion of CD8+ T cells markedly reduced airway lumen obliteration and fibrosis at Day 28. Together, these data demonstrate that allospecific CD8+ effector T cells play an important role in OAD and traffic to the lung after heterotopic airway transplant, suggesting that the lung is an important immunologic site, and perhaps a reservoir, for effector cells during the rejection process. PMID:16195540

  14. Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria

    PubMed Central

    Ashida, Hiroshi; Sasakawa, Chihiro

    2016-01-01

    Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis). Via the type III secretion system (T3SS), Shigella deliver a subset of virulence proteins (effectors) that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC). Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections. PMID:26779450

  15. The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells

    PubMed Central

    Neumann, Christina; Fraiture, Malou; Hernàndez-Reyes, Casandra; Akum, Fidele N.; Virlogeux-Payant, Isabelle; Chen, Ying; Pateyron, Stephanie; Colcombet, Jean; Kogel, Karl-Heinz; Hirt, Heribert; Brunner, Frédéric; Schikora, Adam

    2014-01-01

    Salmonella is one of the most prominent causes of food poisoning and growing evidence indicates that contaminated fruits and vegetables are an increasing concern for human health. Successful infection demands the suppression of the host immune system, which is often achieved via injection of bacterial effector proteins into host cells. In this report we present the function of Salmonella effector protein in plant cell, supporting the new concept of trans-kingdom competence of this bacterium. We screened a range of Salmonella Typhimurium effector proteins for interference with plant immunity. Among these, the phosphothreonine lyase SpvC attenuated the induction of immunity-related genes when present in plant cells. Using in vitro and in vivo systems we show that this effector protein interacts with and dephosphorylates activated Arabidopsis Mitogen-activated Protein Kinase 6 (MPK6), thereby inhibiting defense signaling. Moreover, the requirement of Salmonella SpvC was shown by the decreased proliferation of the ΔspvC mutant in Arabidopsis plants. These results suggest that some Salmonella effector proteins could have a conserved function during proliferation in different hosts. The fact that Salmonella and other Enterobacteriaceae use plants as hosts strongly suggests that plants represent a much larger reservoir for animal pathogens than so far estimated. PMID:25368608

  16. The Barley Powdery Mildew Effector Candidates CSEP0081 and CSEP0254 Promote Fungal Infection Success

    PubMed Central

    Ahmed, Ali Abdurehim; Pedersen, Carsten

    2016-01-01

    Effectors play significant roles in the success of pathogens. Recent advances in genome sequencing have revealed arrays of effectors and effector candidates from a wide range of plant pathogens. Yet, the vast majority of them remain uncharacterized. Among the ~500 Candidate Secreted Effector Proteins (CSEPs) predicted from the barley powdery mildew fungal genome, only a few have been studied and shown to have a function in virulence. Here, we provide evidence that CSEP0081 and CSEP0254 contribute to infection by the fungus. This was studied using Host-Induced Gene Silencing (HIGS), where independent silencing of the transcripts for these CSEPs significantly reduced the fungal penetration and haustoria formation rate. Both CSEPs are likely required during and after the formation of haustoria, in which their transcripts were found to be differentially expressed, rather than in epiphytic tissue. When expressed in barley leaf epidermal cells, both CSEPs appears to move freely between the cytosol and the nucleus, suggesting that their host targets locate in these cellular compartments. Collectively, our data suggest that, in addition to the previously reported effectors, the barley powdery mildew fungus utilizes these two CSEPs as virulence factors to enhance infection. PMID:27322386

  17. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement.

    PubMed

    Khang, Chang Hyun; Berruyer, Romain; Giraldo, Martha C; Kankanala, Prasanna; Park, Sook-Young; Czymmek, Kirk; Kang, Seogchan; Valent, Barbara

    2010-04-01

    Knowledge remains limited about how fungal pathogens that colonize living plant cells translocate effector proteins inside host cells to regulate cellular processes and neutralize defense responses. To cause the globally important rice blast disease, specialized invasive hyphae (IH) invade successive living rice (Oryza sativa) cells while enclosed in host-derived extrainvasive hyphal membrane. Using live-cell imaging, we identified a highly localized structure, the biotrophic interfacial complex (BIC), which accumulates fluorescently labeled effectors secreted by IH. In each newly entered rice cell, effectors were first secreted into BICs at the tips of the initially filamentous hyphae in the cell. These tip BICs were left behind beside the first-differentiated bulbous IH cells as the fungus continued to colonize the host cell. Fluorescence recovery after photobleaching experiments showed that the effector protein PWL2 (for prevents pathogenicity toward weeping lovegrass [Eragrostis curvula]) continued to accumulate in BICs after IH were growing elsewhere. PWL2 and BAS1 (for biotrophy-associated secreted protein 1), BIC-localized secreted proteins, were translocated into the rice cytoplasm. By contrast, BAS4, which uniformly outlines the IH, was not translocated into the host cytoplasm. Fluorescent PWL2 and BAS1 proteins that reached the rice cytoplasm moved into uninvaded neighbors, presumably preparing host cells before invasion. We report robust assays for elucidating the molecular mechanisms that underpin effector secretion into BICs, translocation to the rice cytoplasm, and cell-to-cell movement in rice. PMID:20435900

  18. A Phytophthora sojae cytoplasmic effector mediates disease resistance and abiotic stress tolerance in Nicotiana benthamiana.

    PubMed

    Zhang, Meixiang; Ahmed Rajput, Nasir; Shen, Danyu; Sun, Peng; Zeng, Wentao; Liu, Tingli; Juma Mafurah, Joseph; Dou, Daolong

    2015-01-01

    Each oomycete pathogen encodes a large number of effectors. Some effectors can be used in crop disease resistance breeding, such as to accelerate R gene cloning and utilisation. Since cytoplasmic effectors may cause acute physiological changes in host cells at very low concentrations, we assume that some of these effectors can serve as functional genes for transgenic plants. Here, we generated transgenic Nicotiana benthamiana plants that express a Phytophthora sojae CRN (crinkling and necrosis) effector, PsCRN115. We showed that its expression did not significantly affect the growth and development of N. benthamiana, but significantly improved disease resistance and tolerance to salt and drought stresses. Furthermore, we found that expression of heat-shock-protein and cytochrome-P450 encoding genes were unregulated in PsCRN115-transgenic N. benthamiana based on digital gene expression profiling analyses, suggesting the increased plant defence may be achieved by upregulation of these stress-related genes in transgenic plants. Thus, PsCRN115 may be used to improve plant tolerance to biotic and abiotic stresses. PMID:26039925

  19. Allergic pulmonary inflammation in mice is dependent on eosinophil-induced recruitment of effector T cells

    PubMed Central

    Jacobsen, Elizabeth A.; Ochkur, Sergei I.; Pero, Ralph S.; Taranova, Anna G.; Protheroe, Cheryl A.; Colbert, Dana C.; Lee, Nancy A.; Lee, James J.

    2008-01-01

    The current paradigm surrounding allergen-mediated T helper type 2 (Th2) immune responses in the lung suggests an almost hegemonic role for T cells. Our studies propose an alternative hypothesis implicating eosinophils in the regulation of pulmonary T cell responses. In particular, ovalbumin (OVA)-sensitized/challenged mice devoid of eosinophils (the transgenic line PHIL) have reduced airway levels of Th2 cytokines relative to the OVA-treated wild type that correlated with a reduced ability to recruit effector T cells to the lung. Adoptive transfer of Th2-polarized OVA-specific transgenic T cells (OT-II) alone into OVA-challenged PHIL recipient mice failed to restore Th2 cytokines, airway histopathologies, and, most importantly, the recruitment of pulmonary effector T cells. In contrast, the combined transfer of OT-II cells and eosinophils into PHIL mice resulted in the accumulation of effector T cells and a concomitant increase in both airway Th2 immune responses and histopathologies. Moreover, we show that eosinophils elicit the expression of the Th2 chemokines thymus- and activation-regulated chemokine/CCL17 and macrophage-derived chemokine/CCL22 in the lung after allergen challenge, and blockade of these chemokines inhibited the recruitment of effector T cells. In summary, the data suggest that pulmonary eosinophils are required for the localized recruitment of effector T cells. PMID:18316417

  20. The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells.

    PubMed

    Domingues, Lia; Ismail, Ahmad; Charro, Nuno; Rodríguez-Escudero, Isabel; Holden, David W; Molina, María; Cid, Víctor J; Mota, Luís Jaime

    2016-07-01

    Many bacterial pathogens use specialized secretion systems to deliver virulence effector proteins into eukaryotic host cells. The function of these effectors depends on their localization within infected cells, but the mechanisms determining subcellular targeting of each effector are mostly elusive. Here, we show that the Salmonella type III secretion effector SteA binds specifically to phosphatidylinositol 4-phosphate [PI(4)P]. Ectopically expressed SteA localized at the plasma membrane (PM) of eukaryotic cells. However, SteA was displaced from the PM of Saccharomyces cerevisiae in mutants unable to synthesize the local pool of PI(4)P and from the PM of HeLa cells after localized depletion of PI(4)P. Moreover, in infected cells, bacterially translocated or ectopically expressed SteA localized at the membrane of the Salmonella-containing vacuole (SCV) and to Salmonella-induced tubules; using the PI(4)P-binding domain of the Legionella type IV secretion effector SidC as probe, we found PI(4)P at the SCV membrane and associated tubules throughout Salmonella infection of HeLa cells. Both binding of SteA to PI(4)P and the subcellular localization of ectopically expressed or bacterially translocated SteA were dependent on a lysine residue near the N-terminus of the protein. Overall, this indicates that binding of SteA to PI(4)P is necessary for its localization within host cells. PMID:26676327

  1. Crafting the TALE: construction of a measure to assess the functions of autobiographical remembering.

    PubMed

    Bluck, Susan; Alea, Nicole

    2011-07-01

    Theory suggests that autobiographical remembering serves several functions. This research builds on previous empirical efforts (Bluck, Alea, Habermas, & Rubin, 2005) with the aim of constructing a brief, valid measure of three functions of autobiographical memory. Participants (N=306) completed 28 theoretically derived items concerning the frequency with which they use autobiographical memory to serve a variety of functions. To examine convergent and discriminant validity, participants rated their tendency to think about and talk about the past, and measures of future time orientation, self-concept clarity, and trait personality. Confirmatory factor analysis of the function items resulted in a respecified model with 15 items in three factors. The newly developed Thinking about Life Experiences scale (TALE) shows good internal consistency as well as convergent validity for three subscales: Self-Continuity, Social-Bonding, and Directing-Behaviour. Analyses demonstrate factorial equivalence across age and gender groups. Potential use and limitations of the TALE are discussed. PMID:21864212

  2. Transgressive sexualities: politics of pleasure and desire in Kamasutra: a tale of love and fire.

    PubMed

    Lohani-Chase, Rama

    2012-01-01

    Utilizing feminist film theory, critical reviews, and viewer responses, this article examines visual representations of transgressive sexuality in two diasporic Indian women's films: Kamasutra: A Tale of Love by Mira Nair, and Fire by Deepa Mehta. The article draws from research on ancient discourses on sexuality in India to argue that contemporary constructions of women's sexuality in South Asia are not devoid of patriarchal and fundamentalist cultural politics of representation. PMID:22455339

  3. The Turtle Went To War. Northern Cheyenne Folk Tales. Indian Culture Series.

    ERIC Educational Resources Information Center

    Tall Bull, Henry; Weist, Tom

    The book takes its title from the first of nine Northern Cheyenne folk tales, illustrated by Indian children in grades 2-8. The stories are: "The Turtle Went to War" about a turtle who makes war on the Indians and takes two scalps; "The Cat", explaining why cats eat first and wash later; "The Frog and the Watersnake", telling how a sly old frog…

  4. Feigning terminal illness to get narcotics: a cautionary tale for hospices.

    PubMed

    Gonzalez, Faustino; Galante, Mirta

    2012-08-01

    We present the case of a woman who enrolled in the hospice benefit in order to obtain narcotics. We believe this is a cautionary tale for hospices because of our propensity to enroll patients with minimal corroborating information, in order not to delay symptom management. Also we are philosophically predisposed to believe a patient's self-report of pain and other distressing symptoms. PMID:21868431

  5. The curious case of Sudyumna: A tale of sex reversal from the Bhagavata Purana

    PubMed Central

    Seshadri, Krishna G.

    2013-01-01

    Tracking endocrine disease in mythology especially one as old and diverse as Indian mythology is a challenge. A curious case of sex reversal in the bhagavata purana is described and hunches about the disorder of sexual differentiation that manifested itself in the hapless Sudyumna the son of Manu is attempted. 5 alpha reductase deficiency appears to be the closest candidate but some twists in the tale are required to fill in the gaps. PMID:23869301

  6. “Boy eternal”: aging, games, and masculinity in "The Winter's Tale".

    PubMed

    Bloom, Gina

    2010-01-01

    This essay draws on a range of early modern writings on games and male development to examine aging men's nostalgia for boyhood play in Shakespeare's The Winter's Tale. In contrast to the psychoanalytic critical tradition, which presumes masculinity to be produced in conflict with women and/or femininity, I demonstrate masculinity to be a function not only of gender, but of age. The Winter's Tale explores the consequences of the early modern conception of boyhood as lying on a continuum with manhood, a conception reinforced by early modern views of the role of games in male development. I suggest that Leontes and Polixenes turn to games to affirm their connection to boyhood but that the drama problematizes this strategy by depicting these characters as collapsing boyhood and manhood, with pathological results. Whereas Leontes ultimately progresses toward normative early modern manhood—using recreation to recommit to his marriage and accept old age—Polixenes regresses, remaining fixated on youth and boyhood games. In this way The Winter's Tale questions as it produces a linear narrative of male development, folding back on itself to portray the cyclical nature of the aging process. PMID:21114066

  7. Bacterial effectors target the plant cell nucleus to subvert host transcription

    PubMed Central

    Canonne, Joanne; Rivas, Susana

    2012-01-01

    In order to promote virulence, Gram-negative bacteria have evolved the ability to inject so-called type III effector proteins into host cells. The plant cell nucleus appears to be a subcellular compartment repeatedly targeted by bacterial effectors. In agreement with this observation, mounting evidence suggests that manipulation of host transcription is a major strategy developed by bacteria to counteract plant defense responses. It has been suggested that bacterial effectors may adopt at least three alternative, although not mutually exclusive, strategies to subvert host transcription. T3Es may (1) act as transcription factors that directly activate transcription in host cells, (2) affect histone packing and chromatin configuration, and/or (3) directly target host transcription factor activity. Here, we provide an overview on how all these strategies may lead to host transcriptional re-programming and, as a result, to improved bacterial multiplication inside plant cells. PMID:22353865

  8. Uncoupling T-cell expansion from effector differentiation in cell-based immunotherapy

    PubMed Central

    2013-01-01

    Summary Adoptive cellular immunotherapy (ACT) is a potentially curative therapy for patients with advanced cancer. Eradication of tumor in mouse models and humans correlates with both a high dose of adoptively transferred cells and cells with a minimally differentiated phenotype that maintain replicative capacity and multipotency. We speculate that response to ACT not only requires transfer of cells with immediate cytolytic effector function to kill the bulk of fast-growing tumor, but also transfer of tumor-specific cells that maintain an ability for self-renewal and the capacity to produce a continual supply of cytolytic effector progeny until all malignant cells are eliminated. Current in vitro methods to expand cells to sufficient numbers and still maintain a minimally differentiated phenotype are hindered by the biological coupling of clonal expansion and effector differentiation. Therefore, a better understanding of the physiologic mechanism that couples cell expansion and differentiation in CD8+ T cells may improve the efficacy of ACT. PMID:24329803

  9. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis.

    PubMed

    Liu, Tingli; Song, Tianqiao; Zhang, Xiong; Yuan, Hongbo; Su, Liming; Li, Wanlin; Xu, Jing; Liu, Shiheng; Chen, Linlin; Chen, Tianzi; Zhang, Meixiang; Gu, Lichuan; Zhang, Baolong; Dou, Daolong

    2014-01-01

    Plant diseases caused by fungi and oomycetes pose an increasing threat to food security and ecosystem health worldwide. These filamentous pathogens, while taxonomically distinct, modulate host defense responses by secreting effectors, which are typically identified based on the presence of signal peptides. Here we show that Phytophthora sojae and Verticillium dahliae secrete isochorismatases (PsIsc1 and VdIsc1, respectively) that are required for full pathogenesis. PsIsc1 and VdIsc1 can suppress salicylate-mediated innate immunity in planta and hydrolyse isochorismate in vitro. A conserved triad of catalytic residues is essential for both functions. Thus, the two proteins are isochorismatase effectors that disrupt the plant salicylate metabolism pathway by suppressing its precursor. Furthermore, these proteins lack signal peptides, but exhibit characteristics that lead to unconventional secretion. Therefore, this secretion pathway is a novel mechanism for delivering effectors and might play an important role in host-pathogen interactions. PMID:25156390

  10. Human-like characteristics for high degree of freedom robotic door-opening end-effector

    NASA Astrophysics Data System (ADS)

    Gray, Jeremy P.; Campagna, Frank

    2011-05-01

    In the field of military Unmanned Ground Vehicles (UGV's), military units are forced to sweep largely populated cities and towns in search of hostile enemies. These urban types of operations are referred to as MOUT (Military Operations on Urban Terrain). During urban operations, these UGV's encounter difficulties when opening doors. Current manipulator end effectors have these difficulties, because they are not designed to mimic human hand operations. This paper explains the mechanical nature of the Modular Universal Door Opening End-effector (MUDOE). MUDOE is a result of our development research to improve robotic manipulators ability to negotiate closed doors. The presented solution has the ability to mimic human hand characteristics when opening doors. The end-effector possesses an ability to maintain a high Degree of Freedom (DoF), and grasp the doorknob by applying equally distributed forces to all points of contact.

  11. Transcription Factor Networks Directing the Development, Function, and Evolution of Innate Lymphoid Effectors

    PubMed Central

    Kang, Joonsoo; Malhotra, Nidhi

    2015-01-01

    Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity. PMID:25650177

  12. Autophagy is essential for effector CD8 T cell survival and memory formation

    PubMed Central

    Xu, Xiaojin; Araki, Koichi; Li, Shuzhao; Han, Jin-Hwan; Ye, Lilin; Tan, Wendy G.; Konieczny, Bogumila T.; Bruinsma, Monique W.; Martinez, Jennifer; Pearce, Erika L; Green, Douglas R.; Jones, Dean P.; Virgin, Herbert W.; Ahmed, Rafi

    2014-01-01

    The importance of autophagy in memory CD8 T cell differentiation in vivo is not well defined. We show here that autophagy is dynamically regulated in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection. Autophagy decreased in activated proliferating T cells, and was then upregulated at the peak of the effector T cell response. Consistent with this model, deletion of the key autophagy genes Atg7 or Atg5 in virus-specific CD8 T cells had minimal effect on generating effector cells but greatly enhanced their death during the contraction phase resulting in compromised memory formation. These findings provide insight into when autophagy is needed during effector and memory T cell differentiation in vivo and also warrant a re-examination of our current concepts about the relationship between T cell activation and autophagy. PMID:25362489

  13. Polarized Dendritic Cells as Cancer Vaccines: Directing Effector-type T Cells to Tumors

    PubMed Central

    Kalinski, Pawel; Okada, Hideho

    2010-01-01

    Ex-vivo-generation and antigen loading of dendritic cells (DCs) from cancer patients helps to bypass the dysfunction of endogenous DCs. It also allows to control the process of DC maturation and to imprint in maturing DCs several functions essential for induction of effective forms of cancer immunity. Recent reports from several groups including ours demonstrate that distinct conditions of DC generation and maturation can prime DCs for preferential interaction with different (effector versus regulatory) subsets of immune cells. Moreover, differentially-generated DCs have been shown to imprint different effector mechanisms in CD4+ and CD8+ T cells (delivery of “signal three”) and to induce their different homing properties (delivery of “signal four”). These developments allow for selective induction of tumor-specific T cells with desirable effector functions and tumor-relevant homing properties and to direct the desirable types of immune cells to tumors. PMID:20409732

  14. Transcriptional Regulation with CRISPR/Cas9 Effectors in Mammalian Cells.

    PubMed

    Pham, Hannah; Kearns, Nicola A; Maehr, René

    2016-01-01

    CRISPR/Cas9-based regulation of gene expression provides the scientific community with a new high-throughput tool to dissect the role of genes in molecular processes and cellular functions. Single-guide RNAs allow for recruitment of a nuclease-dead Cas9 protein and transcriptional Cas9-effector fusion proteins to specific genomic loci, thereby modulating gene expression. We describe the application of a CRISPR-Cas9 effector system from Streptococcus pyogenes for transcriptional regulation in mammalian cells resulting in activation or repression of transcription. We present methods for appropriate target site selection, sgRNA design, and delivery of dCas9 and dCas9-effector system components into cells through lentiviral transgenesis to modulate transcription. PMID:26463376

  15. Learning-based position control of a closed-kinematic chain robot end-effector

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Zhou, Zhen-Lei

    1990-01-01

    A trajectory control scheme whose design is based on learning theory, for a six-degree-of-freedom (DOF) robot end-effector built to study robotic assembly of NASA hardwares in space is presented. The control scheme consists of two control systems: the feedback control system and the learning control system. The feedback control system is designed using the concept of linearization about a selected operating point, and the method of pole placement so that the closed-loop linearized system is stabilized. The learning control scheme consisting of PD-type learning controllers, provides additional inputs to improve the end-effector performance after each trial. Experimental studies performed on a 2 DOF end-effector built at CUA, for three tracking cases show that actual trajectories approach desired trajectories as the number of trials increases. The tracking errors are substantially reduced after only five trials.

  16. Volumetric reach comparison of possible end-effectors for the articulated transporter and manipulator system

    SciTech Connect

    Kress, R.L.; Babcock, S.M.; Hamel, W.R. ); Bills, K.C. )

    1990-01-01

    The goal of this research was to investigate the performance of the Articulated Transporter and Manipulator System (ATMS) during various tasks relative to the choice of wrist/end-effector configuration. The approach taken was to generate computer graphics-aided three-dimensional interactive application (CATIA) system-based models of four wrist/end-effector combinations and consider the volumetric reach of each of these configurations based on the capacity of the ATMS. The results indicate that a simple, lightweight end-effector provides a greater volumetric reach. The greatest variation presented herein is {approximately}40% when comparing a 7-degree-of-freedom (DOF) dexterous arm with a simple 3-DOF arm; however, the benefit of increasing volumetric reach by only 40% by using a simple arm may be outweighed by the loss of dexterity. 10 refs., 5 figs., 3 tabs.

  17. Coxiella burnetii Effector Proteins That Localize to the Parasitophorous Vacuole Membrane Promote Intracellular Replication

    PubMed Central

    Larson, Charles L.; Beare, Paul A.; Voth, Daniel E.; Howe, Dale; Cockrell, Diane C.; Bastidas, Robert J.; Valdivia, Raphael H.

    2014-01-01

    The intracellular bacterial pathogen Coxiella burnetii directs biogenesis of a parasitophorous vacuole (PV) that acquires host endolysosomal components. Formation of a PV that supports C. burnetii replication requires a Dot/Icm type 4B secretion system (T4BSS) that delivers bacterial effector proteins into the host cell cytosol. Thus, a subset of T4BSS effectors are presumed to direct PV biogenesis. Recently, the PV-localized effector protein CvpA was found to promote C. burnetii intracellular growth and PV expansion. We predict additional C. burnetii effectors localize to the PV membrane and regulate eukaryotic vesicle trafficking events that promote pathogen growth. To identify these vacuolar effector proteins, a list of predicted C. burnetii T4BSS substrates was compiled using bioinformatic criteria, such as the presence of eukaryote-like coiled-coil domains. Adenylate cyclase translocation assays revealed 13 proteins were secreted in a Dot/Icm-dependent fashion by C. burnetii during infection of human THP-1 macrophages. Four of the Dot/Icm substrates, termed Coxiella vacuolar protein B (CvpB), CvpC, CvpD, and CvpE, labeled the PV membrane and LAMP1-positive vesicles when ectopically expressed as fluorescently tagged fusion proteins. C. burnetii ΔcvpB, ΔcvpC, ΔcvpD, and ΔcvpE mutants exhibited significant defects in intracellular replication and PV formation. Genetic complementation of the ΔcvpD and ΔcvpE mutants rescued intracellular growth and PV generation, whereas the growth of C. burnetii ΔcvpB and ΔcvpC was rescued upon cohabitation with wild-type bacteria in a common PV. Collectively, these data indicate C. burnetii encodes multiple effector proteins that target the PV membrane and benefit pathogen replication in human macrophages. PMID:25422265

  18. Genetically distinct pathways guide effector export through the type VI secretion system

    PubMed Central

    Whitney, John C.; Beck, Christina M.; Goo, Young Ah; Russell, Alistair B.; Harding, Brittany; De Leon, Justin A.; Cunningham, David A.; Tran, Bao Q.; Low, David A.; Goodlett, David R.; Hayes, Christopher S.; Mougous, Joseph D.

    2014-01-01

    Summary Bacterial secretion systems often employ molecular chaperones to recognize and facilitate export of their substrates. Recent work demonstrated that a secreted component of the type VI secretion system (T6SS), hemolysin co-regulated protein (Hcp), binds directly to effectors, enhancing their stability in the bacterial cytoplasm. Herein, we describe a quantitative cellular proteomics screen for T6S substrates that exploits this chaperone-like quality of Hcp. Application of this approach to the Hcp secretion island I-encoded T6SS (H1-T6SS) of Pseudomonas aeruginosa led to the identification of a novel effector protein, termed Tse4 (type VI secretion exported 4), subsequently shown to act as a potent intra-specific H1-T6SS-delivered antibacterial toxin. Interestingly, our screen failed to identify two predicted H1-T6SS effectors, Tse5 and Tse6, which differ from Hcp-stabilized substrates by the presence of toxin-associated PAAR-repeat motifs and genetic linkage to members of the valine-glycine repeat protein G (vgrG) genes. Genetic studies further distinguished these two groups of effectors: Hcp-stabilized effectors were found to display redundancy in interbacterial competition with respect to the requirement for the two H1-T6SS-exported VgrG proteins, whereas Tse5 and Tse6 delivery strictly required a cognate VgrG. Together, we propose that interaction with either VgrG or Hcp defines distinct pathways for T6S effector export. PMID:24589350

  19. Effector Contributions to Gβγ-mediated Signaling as Revealed by Muscarinic Potassium Channel Gating

    PubMed Central

    Ivanova-Nikolova, Tatyana T.; Breitwieser, Gerda E.

    1997-01-01

    Receptor-mediated activation of heterotrimeric G proteins leading to dissociation of the Gα subunit from Gβγ is a highly conserved signaling strategy used by numerous extracellular stimuli. Although Gβγ subunits regulate a variety of effectors, including kinases, cyclases, phospholipases, and ion channels (Clapham, D.E., and E.J. Neer. 1993. Nature (Lond.). 365:403–406), few tools exist for probing instantaneous Gβγ-effector interactions, and little is known about the kinetic contributions of effectors to the signaling process. In this study, we used the atrial muscarinic K+ channel, which is activated by direct interactions with Gβγ subunits (Logothetis, D.E., Y. Kurachi, J. Galper, E.J. Neer, and D.E. Clap. 1987. Nature (Lond.). 325:321–326; Wickman, K., J.A. Iniguez-Liuhi, P.A. Davenport, R. Taussig, G.B. Krapivinsky, M.E. Linder, A.G. Gilman, and D.E. Clapham. 1994. Nature (Lond.). 366: 654–663; Huang, C.-L., P.A. Slesinger, P.J. Casey, Y.N. Jan, and L.Y. Jan. 1995. Neuron. 15:1133–1143), as a sensitive reporter of the dynamics of Gβγ-effector interactions. Muscarinic K+ channels exhibit bursting behavior upon G protein activation, shifting between three distinct functional modes, characterized by the frequency of channel openings during individual bursts. Acetylcholine concentration (and by inference, the concentration of activated Gβγ) controls the fraction of time spent in each mode without changing either the burst duration or channel gating within individual modes. The picture which emerges is of a Gβγ effector with allosteric regulation and an intrinsic “off” switch which serves to limit its own activation. These two features combine to establish exquisite channel sensitivity to changes in Gβγ concentration, and may be indicative of the factors regulating other Gβγ-modulated effectors. PMID:9041452

  20. The GTPase-deficient Rnd Proteins Are Stabilized by Their Effectors

    PubMed Central

    Goh, Liuh Ling; Manser, Ed

    2012-01-01

    Rnd proteins are Rho family GTP-binding proteins with cellular functions that antagonize RhoA signaling. We recently described a new Rnd3 effector Syx, also named PLEKHG5, that interacts with Rnds via a Raf1-like “Ras-binding domain.” Syx is a multidomain RhoGEF that participates in early zebrafish development. Here we demonstrated that Rnd1, Rnd2, and Rnd3 stability is acutely dependent on interaction with their effectors such as Syx or p190 RhoGAP. Although Rnd3 turnover is blocked by treatment of cells with MG132, we provide evidence that such turnover is mediated indirectly by effects on the Rnd3 effectors, rather than on Rnd3 itself, which is not significantly ubiquitinated. The minimal regions of Syx and p190 RhoGAP that bind Rnd3 are not sequence-related but have similar effects. We have identified features that allow for Rnd3 turnover including a conserved Lys-45 close to the switch I region and the C-terminal membrane-binding domain of Rnd3, which cannot be substituted by the equivalent Cdc42 CAAX sequence. By contrast, an effector binding-defective mutant of Rnd3 when overexpressed undergoes turnover at normal rates. Interestingly the activity of the RhoA-regulated kinase ROCK stimulates Rnd3 turnover. This study suggests that Rnd proteins are regulated through feedback mechanisms in cells where the level of effectors and RhoA activity influence the stability of Rnd proteins. This effector feedback behavior is analogous to the ability of ACK1 and PAK1 to prolong the lifetime of the active GTP-bound state of Cdc42 and Rac1. PMID:22807448

  1. Signal Integration by Akt Regulates CD8 TCell Effector and Memory Differentiation

    PubMed Central

    Kim, Eui Ho; Sullivan, Jeremy A.; Plisch, Erin H.; Tejera, Melba Marie; Jatzek, Anna; Choi, Kwan Yong; Suresh, M.

    2012-01-01

    During a T cell response, the effector CTL pool contains two cellular subsets: short-lived effector cells (SLECs), a majority of which are destined for apoptosis, and the memory precursor effector cells (MPECs) that differentiate into memory cells. Understanding the mechanisms that govern the differentiation of memory CD8 T cells is of fundamental importance in the development of effective CD8 T cell-based vaccines. The strength and nature of TCR signaling along with signals delivered by cytokines like IL-2 and IL-12influence differentiation of SLECs and MPECs. A central question is, how are signals emanating from multiple receptors integrated and interpreted to define the fate of effector CTLs? Using genetic and pharmacological tools, we have identified Akt as a signal integrator that links distinct facets of CTL differentiation to the specific signaling pathways of FOXO, mTOR, and Wnt/β-catenin. Sustained Akt activation triggered by convergent extracellular signals evokes a transcription program that enhances effector functions, drives differentiation of terminal effectors, and diminishes the CTLs’ potential to survive and differentiate into memory cells. While sustained Akt activation severely impaired CD8 T cell memory and protective immunity, in vivo inhibition of Akt rescued SLECs from deletion and increased the number of memory CD8 T cells. Thus, the cumulative strength of convergent signals from signaling molecules such as TCR, costimulatory molecules, and cytokine receptors governs the magnitude of Akt activation, which in turn controls the generation of long-lived memory cells. These findings suggest that therapeutic modulation of Akt might be a strategy to augment vaccine-induced immunity. PMID:22467649

  2. Effector-Independent Motor Sequence Representations Exist in Extrinsic and Intrinsic Reference Frames

    PubMed Central

    Wiestler, Tobias; Waters-Metenier, Sheena

    2014-01-01

    Many daily activities rely on the ability to produce meaningful sequences of movements. Motor sequences can be learned in an effector-specific fashion (such that benefits of training are restricted to the trained hand) or an effector-independent manner (meaning that learning also facilitates performance with the untrained hand). Effector-independent knowledge can be represented in extrinsic/world-centered or in intrinsic/body-centered coordinates. Here, we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to determine the distribution of intrinsic and extrinsic finger sequence representations across the human neocortex. Participants practiced four sequences with one hand for 4 d, and then performed these sequences during fMRI with both left and right hand. Between hands, these sequences were equivalent in extrinsic or intrinsic space, or were unrelated. In dorsal premotor cortex (PMd), we found that sequence-specific activity patterns correlated higher for extrinsic than for unrelated pairs, providing evidence for an extrinsic sequence representation. In contrast, primary sensory and motor cortices showed effector-independent representations in intrinsic space, with considerable overlap of the two reference frames in caudal PMd. These results suggest that effector-independent representations exist not only in world-centered, but also in body-centered coordinates, and that PMd may be involved in transforming sequential knowledge between the two. Moreover, although effector-independent sequence representations were found bilaterally, they were stronger in the hemisphere contralateral to the trained hand. This indicates that intermanual transfer relies on motor memories that are laid down during training in both hemispheres, but preferentially draws upon sequential knowledge represented in the trained hemisphere. PMID:24695723

  3. Searching algorithm for type IV secretion system effectors 1.0: a tool for predicting type IV effectors and exploring their genomic context.

    PubMed

    Meyer, Damien F; Noroy, Christophe; Moumène, Amal; Raffaele, Sylvain; Albina, Emmanuel; Vachiéry, Nathalie

    2013-11-01

    Type IV effectors (T4Es) are proteins produced by pathogenic bacteria to manipulate host cell gene expression and processes, divert the cell machinery for their own profit and circumvent the immune responses. T4Es have been characterized for some bacteria but many remain to be discovered. To help biologists identify putative T4Es from the complete genome of α- and γ-proteobacteria, we developed a Perl-based command line bioinformatics tool called S4TE (searching algorithm for type-IV secretion system effectors). The tool predicts and ranks T4E candidates by using a combination of 13 sequence characteristics, including homology to known effectors, homology to eukaryotic domains, presence of subcellular localization signals or secretion signals, etc. S4TE software is modular, and specific motif searches are run independently before ultimate combination of the outputs to generate a score and sort the strongest T4Es candidates. The user keeps the possibility to adjust various searching parameters such as the weight of each module, the selection threshold or the input databases. The algorithm also provides a GC% and local gene density analysis, which strengthen the selection of T4E candidates. S4TE is a unique predicting tool for T4Es, finding its utility upstream from experimental biology. PMID:23945940

  4. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor

    PubMed Central

    Dagdas, Yasin F; Belhaj, Khaoula; Maqbool, Abbas; Chaparro-Garcia, Angela; Pandey, Pooja; Petre, Benjamin; Tabassum, Nadra; Cruz-Mireles, Neftaly; Hughes, Richard K; Sklenar, Jan; Win, Joe; Menke, Frank; Findlay, Kim; Banfield, Mark J; Kamoun, Sophien; Bozkurt, Tolga O

    2016-01-01

    Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses. DOI: http://dx.doi.org/10.7554/eLife.10856.001 PMID:26765567

  5. Design criteria for the light duty utility arm system end effectors

    SciTech Connect

    Pardini, A.F.

    1995-01-03

    This document provides the criteria for the design of end effectors that will be used as part of the Light Duty Utility Arm (LDUA) System. The LDUA System consists of a deployment vehicle, a vertical positioning mast, a light duty multi-axis robotic arm, a tank riser interface and confinement, a tool interface plate, a control system, and an operations control trailer. The criteria specified in this document will apply to all end effector systems being developed for use on or with the LDUA system at the Hanford site. The requirement stipulated in this document are mandatory.

  6. RAR1, a Central Player in Plant Immunity, is Targeted by Pseudomonas syringae Effector AvrB

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogenic bacterial effectors suppress Pathogen-Associated Molecular Pattern (PAMP)-triggered host immunity, thereby promoting parasitism. In the presence of cognate resistance genes, it is proposed that plants detect the virulence activity of bacterial effectors and trigger a defense response, ref...

  7. A bacterial type III secretion-based delivery system for functional assays of fungal effectors in cereals.

    PubMed

    Upadhyaya, Narayana M; Ellis, Jeffery G; Dodds, Peter N

    2014-01-01

    Large numbers of candidate effectors are being identified by genome sequencing of fungal pathogens and in planta expression studies. These effectors are both a boon and a curse for pathogens as they modulate the host cellular environment or suppress defense response to allow fungal growth as well as become targets of plant resistance (R) proteins. Recognition of a fungal effector by a plant R protein triggers a hypersensitive reaction (HR) leading to death of plant cells in and around the infection site, thus preventing further proliferation of the pathogen. Such HR induction has been used as an indicator of effector activity in functional assays of candidate effectors in dicots based on Agrobacterium-mediated transient expression. However, the Agrobacterium assay is not functional in cereal leaves. We therefore have adapted an alternative assay based on effector protein delivery using the type III secretion system (T3SS) of a non-pathogenic Pseudomonas spp. for use in wheat and other cereals. Here, we describe protocols for delivery of effector proteins into wheat and barley cells using the AvrRpm1 T3SS signal in the engineered non-pathogenic Pseudomonas fluorescens strain Effector-to-Host Analyzer (EtHAn). For ease of making expression clones we have generated the GATEWAY cloning compatible vectors. A calmodulin-dependent adenylate cyclase (Cya) reporter protein can be used as an effective marker for fusion protein delivery into wheat and barley by this system. PMID:24643568

  8. TRANSGENIC EXPRESSION OF THE ERWINIA AMYLOVORA (FIRE BLIGHT) EFFECTOR PROTEIN EOP1 SUPRESSES HOST BASAL DEFENSE MECHANISMS IN MALUS (APPLE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erwinia amylovora (Ea) is the causative agent of fire blight, a devastating disease of apple and pear. Like many other plant and animal bacterial pathogens Ea utilizes a type three secretion system (TTSS) to deliver effector proteins into plant host cells. Once inside the host cell, effector protei...

  9. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal plant pathogens secrete effector molecules to establish disease on their hosts, while plants in turn utilize immune receptors to intercept these effectors. The tomato immune receptor Ve1 governs resistance to race 1 strains of the soil-borne vascular wilt fungi Verticillium dahliae and V. alb...

  10. The chemically inducible expression of Erwinia amylovora bacterial effectors EopB1 and HopCEa in apple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erwinia amylovora, the causal agent of fire blight disease, utilizes a type three secretion system to deliver effector proteins into plant host cells. To investigate the role of individual bacterial effector proteins, we have engineered an apple host that transgenically expresses the bacterial effe...

  11. Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes.

    PubMed

    Eves-van den Akker, Sebastian; Lilley, Catherine J; Jones, John T; Urwin, Peter E

    2014-09-01

    Sedentary endoparasitic nematodes are obligate biotrophs that modify host root tissues, using a suite of effector proteins to create and maintain a feeding site that is their sole source of nutrition. Using assumptions about the characteristics of genes involved in plant-nematode biotrophic interactions to inform the identification strategy, we provide a description and characterisation of a novel group of hyper-variable extracellular effectors termed HYP, from the potato cyst nematode Globodera pallida. HYP effectors comprise a large gene family, with a modular structure, and have unparalleled diversity between individuals of the same population: no two nematodes tested had the same genetic complement of HYP effectors. Individuals vary in the number, size, and type of effector subfamilies. HYP effectors are expressed throughout the biotrophic stages in large secretory cells associated with the amphids of parasitic stage nematodes as confirmed by in situ hybridisation. The encoded proteins are secreted into the host roots where they are detectable by immunochemistry in the apoplasm, between the anterior end of the nematode and the feeding site. We have identified HYP effectors in three genera of plant parasitic nematodes capable of infecting a broad range of mono- and dicotyledon crop species. In planta RNAi targeted to all members of the effector family causes a reduction in successful parasitism. PMID:25255291

  12. Salmonella Phage ST64B Encodes a Member of the SseK/NleB Effector Family

    PubMed Central

    Brown, Nat F.; Coombes, Brian K.; Bishop, Jenna L.; Wickham, Mark E.; Lowden, Michael J.; Gal-Mor, Ohad; Goode, David L.; Boyle, Erin C.; Sanderson, Kristy L.; Finlay, B. Brett

    2011-01-01

    Salmonella enterica is a species of bacteria that is a major cause of enteritis across the globe, while certain serovars cause typhoid, a more serious disease associated with a significant mortality rate. Type III secreted effectors are major contributors to the pathogenesis of Salmonella infections. Genes encoding effectors are acquired via horizontal gene transfer, and a subset are encoded within active phage lysogens. Because the acquisition of effectors is in flux, the complement of effectors possessed by various Salmonella strains frequently differs. By comparing the genome sequences of S. enterica serovar Typhimurium strain SL1344 with LT2, we identified a gene with significant similarity to SseK/NleB type III secreted effector proteins within a phage ST64B lysogen that is absent from LT2. We have named this gene sseK3. SseK3 was co-regulated with the SPI-2 type III secretion system in vitro and inside host cells, and was also injected into infected host cells. While no role for SseK3 in virulence could be identified, a role for the other family members in murine typhoid was found. SseK3 and other phage-encoded effectors were found to have a significant but sparse distribution in the available Salmonella genome sequences, indicating the potential for more uncharacterised effectors to be present in less studied serovars. These phage-encoded effectors may be principle subjects of contemporary selective processes shaping Salmonella-host interactions. PMID:21445262

  13. Structural and Functional Investigations of the Effector Protein LpiR1 from Legionella pneumophila.

    PubMed

    Beyrakhova, Ksenia A; van Straaten, Karin; Li, Lei; Boniecki, Michal T; Anderson, Deborah H; Cygler, Miroslaw

    2016-07-22

    Legionella pneumophila is a causative agent of a severe pneumonia, known as Legionnaires' disease. Legionella pathogenicity is mediated by specific virulence factors, called bacterial effectors, which are injected into the invaded host cell by the bacterial type IV secretion system. Bacterial effectors are involved in complex interactions with the components of the host cell immune and signaling pathways, which eventually lead to bacterial survival and replication inside the mammalian cell. Structural and functional studies of bacterial effectors are, therefore, crucial for elucidating the mechanisms of Legionella virulence. Here we describe the crystal structure of the LpiR1 (Lpg0634) effector protein and investigate the effects of its overexpression in mammalian cells. LpiR1 is an α-helical protein that consists of two similar domains aligned in an antiparallel fashion. The hydrophilic cleft between the domains might serve as a binding site for a potential host cell interaction partner. LpiR1 binds the phosphate group at a conserved site and is stabilized by Mn(2+), Ca(2+), or Mg(2+) ions. When overexpressed in mammalian cells, a GFP-LpiR1 fusion protein is localized in the cytoplasm. Intracellular signaling antibody array analysis revealed small changes in the phosphorylation state of several components of the Akt signaling pathway in HEK293T cells overexpressing LpiR1. PMID:27226543

  14. Signals required for programming effector and memory development by CD8+ T cells.

    PubMed

    Mescher, Matthew F; Curtsinger, Julie M; Agarwal, Pujya; Casey, Kerry A; Gerner, Michael; Hammerbeck, Christopher D; Popescu, Flavia; Xiao, Zhengguo

    2006-06-01

    Stimulation of naïve CD8+ T cells with antigen and costimulation results in proliferation and weak clonal expansion, but the cells fail to develop effector functions and are tolerant long term. Initiation of the program leading to the strong expansion and development of effector functions and memory requires a third signal that can be provided by interleukin-12 (IL-12) or interferon-alpha (IFN-alpha). CD4+ T cells condition dendritic cells (DCs) to effectively present antigen to CD8+ T cells, and this conditioning involves, at least in part, CD40-dependent upregulation of the production of these signal 3 cytokines by the DCs. Upon being fully activated, the cytotoxic T lymphocytes develop activation-induced non-responsiveness (AINR), a form of split anergy characterized by an inability to produce IL-2 to support continued expansion. If antigen remains present, IL-2 provided by CD4+ T cells can reverse AINR to allow further expansion of the effector population and conversion to responsive memory cells following antigen clearance. If IL-2 or potentially other proliferative signals are not available, persistent antigen holds cells in the AINR state and prevents the development of a responsive memory population. Thus, in addition to antigen and costimulation, CD8+ T cells require cytokine signals at distinct stages of the response to be programmed for optimal generation of effector and memory populations. PMID:16824119

  15. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells1

    PubMed Central

    Matsumura, Satoko; Wang, Baomei; Kawashima, Noriko; Braunstein, Steve; Badura, Michelle; Cameron, Thomas O.; Babb, James S.; Schneider, Robert J.; Formenti, Silvia C.; Dustin, Michael L.; Demaria, Sandra

    2008-01-01

    Recruitment of effector T cells to inflamed peripheral tissues is regulated by chemokines and their receptors, but the factors regulating recruitment to tumors remain largely undefined. Ionizing radiation (IR) therapy is a common treatment modality for breast and other cancers. Used as a cytocidal agent for proliferating cancer cells, IR in combination with immunotherapy has been shown to promote immune-mediated tumor destruction in pre-clinical studies. Here we demonstrate that IR markedly enhanced the secretion by mouse and human breast cancer cells of CXCL16, a chemokine that binds to CXCR6 on Th1 and activated CD8 effector T cells, and plays an important role in their recruitment to sites of inflammation. Employing a poorly immunogenic mouse model of breast cancer, we found that irradiation increased the migration of CD8+CXCR6+ activated T cells to tumors in vitro and in vivo. CXCR6-deficient mice showed reduced infiltration of tumors by activated CD8 T cells and impaired tumor regression following treatment with local IR to the tumor and antibodies blocking the negative regulator of T cell activation CTLA-4. These results provide the first evidence that IR can induce the secretion by cancer cells of pro-inflammatory chemotactic factors that recruit anti-tumor effector T cells. The ability of IR to convert tumors into “inflamed” peripheral tissues could be exploited to overcome obstacles at the effector phase of the anti-tumor immune response and improve the therapeutic efficacy of immunotherapy. PMID:18713980

  16. A Phytophthora infestans RXLR effector targets plant PP1c isoforms that promote late blight disease.

    PubMed

    Boevink, Petra C; Wang, Xiaodan; McLellan, Hazel; He, Qin; Naqvi, Shaista; Armstrong, Miles R; Zhang, Wei; Hein, Ingo; Gilroy, Eleanor M; Tian, Zhendong; Birch, Paul R J

    2016-01-01

    Plant pathogens deliver effectors to alter host processes. Knowledge of how effectors target and manipulate host proteins is critical to understand crop disease. Here, we show that in planta expression of the RXLR effector Pi04314 enhances leaf colonization by Phytophthora infestans via activity in the host nucleus and attenuates induction of jasmonic and salicylic acid-responsive genes. Pi04314 interacts with three host protein phosphatase 1 catalytic (PP1c) isoforms, causing their re-localization from the nucleolus to the nucleoplasm. Re-localization of PP1c-1 also occurs during infection and is dependent on an R/KVxF motif in the effector. Silencing the PP1c isoforms or overexpression of a phosphatase-dead PP1c-1 mutant attenuates infection, demonstrating that host PP1c activity is required for disease. Moreover, expression of PP1c-1mut abolishes enhanced leaf colonization mediated by in planta Pi04314 expression. We argue that PP1c isoforms are susceptibility factors forming holoenzymes with Pi04314 to promote late blight disease. PMID:26822079

  17. Avirulence effector discovery in a plant galling and plant parasitic arthropod, the Hessian fly (Mayetiola destructor)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly specialized obligate plant-parasites exist within several groups of arthropods (insects and mites). Many of these are important pests, but the molecular basis of their parasitism and its evolution are poorly understood. One hypothesis is that plant parasitic arthropods use effector proteins...

  18. T Cell factor 1 represses CD8+ effector T cell formation and function.

    PubMed

    Tiemessen, Machteld M; Baert, Miranda R M; Kok, Lianne; van Eggermond, Marja C J A; van den Elsen, Peter J; Arens, Ramon; Staal, Frank J T

    2014-12-01

    The Wnt-responsive transcription factor T cell factor 1 (Tcf1) is well known for its role in thymic T cell development and the formation of memory CD8(+) T cells. However, its role in the initial phases of CD8(+) T effector cell formation has remained unexplored. We report that high levels of Wnt signaling and Tcf1 are operational in naive and memory CD8(+) T cells, whereas Wnt signaling and Tcf1 were low in effector CD8(+) T cells. CD8(+) T cells deficient in Tcf1 produce IFN-γ more rapidly, coinciding with increased demethylation of the IFN-γ enhancer and higher expression of the transcription factors Tbet and Blimp1. Moreover, virus-specific Tcf1(-/-) CD8(+) T cells show accelerated expansion in acute infection, which is associated with increased IFN-γ and TNF production and lower viral load. Genetic complementation experiments with various Tcf1 isoforms indicate that Tcf1 dosage and protein stability are critical in suppressing IFN-γ production. Isoforms lacking the β-catenin binding domain are equally effective in inhibiting CD8(+) effector T cell formation. Thus, Tcf1 functions as a repressor of CD8(+) effector T cell formation in a β-catenin/Wnt-independent manner. PMID:25355919

  19. Combover/CG10732, a Novel PCP Effector for Drosophila Wing Hair Formation

    PubMed Central

    Fagan, Jeremy K.; Dollar, Gretchen; Lu, Qiuheng; Barnett, Austen; Pechuan Jorge, Joaquin; Schlosser, Andreas; Pfleger, Cathie; Adler, Paul; Jenny, Andreas

    2014-01-01

    The polarization of cells is essential for the proper functioning of most organs. Planar Cell Polarity (PCP), the polarization within the plane of an epithelium, is perpendicular to apical-basal polarity and established by the non-canonical Wnt/Fz-PCP signaling pathway. Within each tissue, downstream PCP effectors link the signal to tissue specific readouts such as stereocilia orientation in the inner ear and hair follicle orientation in vertebrates or the polarization of ommatidia and wing hairs in Drosophila melanogaster. Specific PCP effectors in the wing such as Multiple wing hairs (Mwh) and Rho Kinase (Rok) are required to position the hair at the correct position and to prevent ectopic actin hairs. In a genome-wide screen in vitro, we identified Combover (Cmb)/CG10732 as a novel Rho kinase substrate. Overexpression of Cmb causes the formation of a multiple hair cell phenotype (MHC), similar to loss of rok and mwh. This MHC phenotype is dominantly enhanced by removal of rok or of other members of the PCP effector gene family. Furthermore, we show that Cmb physically interacts with Mwh, and cmb null mutants suppress the MHC phenotype of mwh alleles. Our data indicate that Cmb is a novel PCP effector that promotes to wing hair formation, a function that is antagonized by Mwh. PMID:25207969

  20. Role of chemokines and chemokine receptors in shaping the effector phase of the antitumor immune response.

    PubMed

    Franciszkiewicz, Katarzyna; Boissonnas, Alexandre; Boutet, Marie; Combadière, Christophe; Mami-Chouaib, Fathia

    2012-12-15

    Immune system-mediated eradication of neoplastic cells requires induction of a strong long-lasting antitumor T-cell response. However, generation of tumor-specific effector T cells does not necessarily result in tumor clearance. CTL must first be able to migrate to the tumor site, infiltrate the tumor tissue, and interact with the target to finally trigger effector functions indispensable for tumor destruction. Chemokines are involved in circulation, homing, retention, and activation of immunocompetent cells. Although some of them are known to contribute to tumor growth and metastasis, others are responsible for changes in the tumor microenvironment that lead to extensive infiltration of lymphocytes, resulting in tumor eradication. Given their chemoattractive and activating properties, a role for chemokines in the development of the effector phase of the antitumor immune response has been suggested. Here, we emphasize the role of the chemokine-chemokine receptor network at multiple levels of the T-cell-mediated antitumor immune response. The identification of chemokine-dependent molecular mechanisms implicated in tumor-specific CTL trafficking, retention, and regulation of their in situ effector functions may offer new perspectives for development of innovative immunotherapeutic approaches to cancer treatment. PMID:23222302

  1. Immunomodulation by the Pseudomonas syringae HopZ Type III Effector Family in Aribidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas syringae employs a type III secretion system to inject 20-30 different type III effector (T3SE) proteins into plant host cells. A major role of T3SEs is to suppress plant immune responses and promote bacterial infection. The YopJ/HopZ acetyltransferases are a superfamily of T3SEs found i...

  2. Representation of the Speech Effectors in the Human Motor Cortex: Somatotopy or Overlap?

    ERIC Educational Resources Information Center

    Takai, Osamu; Brown, Steven; Liotti, Mario

    2010-01-01

    Somatotopy within the orofacial region of the human motor cortex has been a central concept in interpreting the results of neuroimaging and transcranial magnetic stimulation studies of normal and disordered speech. Yet, somatotopy has been challenged by studies showing overlap among the effectors within the homunculus. In order to address this…

  3. Pathogen induced inflammatory environment controls effector and memory CD8+ T cell differentiation1

    PubMed Central

    Obar, Joshua J.; Jellison, Evan R.; Sheridan, Brian S.; Blair, David A.; Pham, Quynh-Mai; Zickovich, Julianne M.; Lefrançois, Leo

    2011-01-01

    In response to infection CD8+ T cells integrate multiple signals and undergo an exponential increase in cell numbers. Simultaneously, a dynamic differentiation process occurs, resulting in the formation of short-lived (SLEC; CD127lowKLRG1high) and memory-precursor (MPEC; CD127highKLRG1low) effector cells from an early-effector cell (EEC) that is CD127lowKLRG1low in phenotype. CD8+ T cell differentiation during vesicular stomatitis virus (VSV) infection differed significantly than during Listeria monocytogenes infection with a substantial reduction in EEC differentiation into SLECs. SLEC generationwas dependent on Ebi3 expression. Furthermore, SLEC differentiation during VSV infection wasenhanced by administration ofCpG-DNA, through an IL-12 dependent mechanism. Moreover, CpG-DNAtreatment enhanced effector CD8+ T cell functionality and memory subset distribution, but in an IL-12 independent manner. Population dynamics were dramatically different during secondary CD8+ T cell responses, with a much greater accumulation of SLECs and the appearance of a significant number of CD127highKLRG1highmemory cells, both of which were intrinsic to the memory CD8+ T cell. These subsets persisted for several months, but were less effective in recall than MPECs. Thus, our data shed light on how varying the context of T cell priming alters downstream effector and memory CD8+ T cell differentiation. PMID:21987662

  4. 4,5-Disubstituted oxazolidinones: High affinity molecular effectors of RNA function.

    PubMed

    Anupam, Rajaneesh; Nayek, Abhijit; Green, Nicholas J; Grundy, Frank J; Henkin, Tina M; Means, John A; Bergmeier, Stephen C; Hines, Jennifer V

    2008-06-15

    The T box transcription antitermination system is a riboswitch found primarily in Gram-positive bacteria which monitors the aminoacylation of the cognate tRNA and regulates a variety of amino acid-related genes. Novel 4,5-disubstituted oxazolidinones were identified as high affinity RNA molecular effectors that modulate the transcription antitermination function of the T box riboswitch. PMID:18502126

  5. 24-hour control of body temperature in rats. I. Integration of behavioral and autonomic effectors.

    PubMed

    Gordon, C J

    1994-07-01

    Some studies suggest that the nocturnal elevation in core temperature (Tc) of the rat is mediated by an elevation in the set point. The role of set point can be assessed if behavioral effectors are measured simultaneously with other thermoregulatory effectors and Tc over a 24-h period. Selected ambient temperature (STa) and motor activity (MA) were measured in rats housed in a temperature gradient system with a 12:12-h photoperiod (lights on 0600 h). Tc and heart rate (HR) were monitored by telemetry. During the light phase, STa, Tc, HR, and MA were relatively stable with values 29.0 degrees C, 37.1 degrees C, 310 beats/min, and 1-2 m/h, respectively. During the light-to-dark transition there were abrupt elevations in Tc, HR, and MA but no change in STa. STa decreased during the dark phase and reached a nadir of 23 degrees C at 0500 h. All variables recovered to basal levels within 3-4 h after the onset of the light phase. Overall, autonomic effectors control the elevation in Tc during the onset of the dark phase while behavioral effectors have little if any role. Behavioral thermoregulation is important in two ways: 1) the selection of cooler Ta values at night to prevent an excess elevation in Tc and 2) a preference for cooler Ta values before the light phase to facilitate the recovery of Tc. PMID:8048648

  6. Identification of candidate effector proteins potentially involved in Fusarium graminearum-wheat interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogen-derived small secreted cysteine-rich proteins (SSCPs) are known to be a common source of fungal effectors that trigger resistance or susceptibility in specific host plants. This group of proteins has not been well studied in Fusarium graminearum, the primary cause of Fusarium head blight (...

  7. Effector-Dependent Learning by Observation of a Finger Movement Sequence

    ERIC Educational Resources Information Center

    Bird, Geoffrey; Heyes, Cecilia

    2005-01-01

    Can observational learning be effector dependent? In 3 experiments, observers watched a model respond to a 6-item unique sequence in a serial reaction time task. Their sequence knowledge was then compared with that of controls who had performed an unrelated task or observed a model responding to random targets. Observational learning was indicated…

  8. Evaluation of Salmonella enterica Type III Secretion System Effector Proteins as Carriers for Heterologous Vaccine Antigens

    PubMed Central

    Hegazy, Wael Abdel Halim; Xu, Xin; Metelitsa, Leonid

    2012-01-01

    Live attenuated strains of Salmonella enterica have a high potential as carriers of recombinant vaccines. The type III secretion system (T3SS)-dependent translocation of S. enterica can be deployed for delivery of heterologous antigens to antigen-presenting cells. Here we investigated the efficacy of various effector proteins of the Salmonella pathogenicity island (SPI2)-encoded T3SS for the translocation of model antigens and elicitation of immune responses. The SPI2 T3SS effector proteins SifA, SteC, SseL, SseJ, and SseF share an endosomal membrane-associated subcellular localization after translocation. We observed that all effector proteins could be used to translocate fusion proteins with the model antigens ovalbumin and listeriolysin into the cytosol of host cells. Under in vitro conditions, fusion proteins with SseJ and SteC stimulated T-cell responses that were superior to those triggered by fusion proteins with SseF. However, in mice vaccinated with Salmonella carrier strains, only fusion proteins based on SseJ or SifA elicited potent T-cell responses. These data demonstrate that the selection of an optimal SPI2 effector protein for T3SS-mediated translocation is a critical parameter for the rational design of effective Salmonella-based recombinant vaccines. PMID:22252866

  9. Training a Constitutional Dynamic Network for Effector Recognition: Storage, Recall, and Erasing of Information.

    PubMed

    Holub, Jan; Vantomme, Ghislaine; Lehn, Jean-Marie

    2016-09-14

    Constitutional dynamic libraries (CDLs) of hydrazones, acylhydrazones, and imines undergo reorganization and adaptation in response to chemical effectors (herein metal cations) via component exchange and selection. Such CDLs can be subjected to training by exposition to given effectors and keep memory of the information stored by interaction with a specific metal ion. The long-term storage of the acquired information into the set of constituents of the system allows for fast recognition on subsequent contacts with the same effector(s). Dynamic networks of constituents were designed to adapt orthogonally to different metal cations by up- and down-regulation of specific constituents in the final distribution. The memory may be erased by component exchange between the constituents so as to regenerate the initial (statistical) distribution. The libraries described represent constitutional dynamic systems capable of acting as information storage molecular devices, in which the presence of components linked by reversible covalent bonds in slow exchange and bearing adequate coordination sites allows for the adaptation to different metal ions by constitutional variation. The system thus performs information storage, recall, and erase processes. PMID:27571554

  10. Mutualistic Co-evolution of Type III Effector Genes in Sinorhizobium fredii and Bradyrhizobium japonicum

    PubMed Central

    Jiang, Yuan; Creason, Allison L.; Thireault, Caitlin A.; Sachs, Joel L.; Chang, Jeff H.

    2013-01-01

    Two diametric paradigms have been proposed to model the molecular co-evolution of microbial mutualists and their eukaryotic hosts. In one, mutualist and host exhibit an antagonistic arms race and each partner evolves rapidly to maximize their own fitness from the interaction at potential expense of the other. In the opposing model, conflicts between mutualist and host are largely resolved and the interaction is characterized by evolutionary stasis. We tested these opposing frameworks in two lineages of mutualistic rhizobia, Sinorhizobium fredii and Bradyrhizobium japonicum. To examine genes demonstrably important for host-interactions we coupled the mining of genome sequences to a comprehensive functional screen for type III effector genes, which are necessary for many Gram-negative pathogens to infect their hosts. We demonstrate that the rhizobial type III effector genes exhibit a surprisingly high degree of conservation in content and sequence that is in contrast to those of a well characterized plant pathogenic species. This type III effector gene conservation is particularly striking in the context of the relatively high genome-wide diversity of rhizobia. The evolution of rhizobial type III effectors is inconsistent with the molecular arms race paradigm. Instead, our results reveal that these loci are relatively static in rhizobial lineages and suggest that fitness conflicts between rhizobia mutualists and their host plants have been largely resolved. PMID:23468637

  11. A Phytophthora infestans RXLR effector targets plant PP1c isoforms that promote late blight disease

    PubMed Central

    Boevink, Petra C.; Wang, Xiaodan; McLellan, Hazel; He, Qin; Naqvi, Shaista; Armstrong, Miles R.; Zhang, Wei; Hein, Ingo; Gilroy, Eleanor M.; Tian, Zhendong; Birch, Paul R. J.

    2016-01-01

    Plant pathogens deliver effectors to alter host processes. Knowledge of how effectors target and manipulate host proteins is critical to understand crop disease. Here, we show that in planta expression of the RXLR effector Pi04314 enhances leaf colonization by Phytophthora infestans via activity in the host nucleus and attenuates induction of jasmonic and salicylic acid-responsive genes. Pi04314 interacts with three host protein phosphatase 1 catalytic (PP1c) isoforms, causing their re-localization from the nucleolus to the nucleoplasm. Re-localization of PP1c-1 also occurs during infection and is dependent on an R/KVxF motif in the effector. Silencing the PP1c isoforms or overexpression of a phosphatase-dead PP1c-1 mutant attenuates infection, demonstrating that host PP1c activity is required for disease. Moreover, expression of PP1c–1mut abolishes enhanced leaf colonization mediated by in planta Pi04314 expression. We argue that PP1c isoforms are susceptibility factors forming holoenzymes with Pi04314 to promote late blight disease. PMID:26822079

  12. EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion

    PubMed Central

    Yang, Xiang-Ping; Jiang, Kan; Hirahara, Kiyoshi; Vahedi, Golnaz; Afzali, Behdad; Sciume, Giuseppe; Bonelli, Michael; Sun, Hong-Wei; Jankovic, Dragana; Kanno, Yuka; Sartorelli, Vittorio; O’Shea, John J.; Laurence, Arian

    2015-01-01

    The roles of EZH2 in various subsets of CD4+ T cells are controversial and its mechanisms of action are incompletely understood. FOXP3-positive Treg cells are a critical helper T cell subset, and dysregulation of Treg generation or function results in systemic autoimmunity. FOXP3 associates with EZH2 to mediate gene repression and suppressive function. Herein, we demonstrate that deletion of Ezh2 in CD4 T cells resulted in reduced numbers of Treg cells in vivo and differentiation in vitro and an increased proportion of memory CD4 T cells in part due to exaggerated production of effector cytokines. Furthermore, we found that both Ezh2-deficient Treg cells and T effector cells were functionally impaired in vivo: Tregs failed to constrain autoimmune colitis and T effector cells neither provided a protective response to T. gondii infection nor mediated autoimmune colitis. The dichotomous function of EZH2 in regulating differentiation and senescence in effector and regulatory T cells helps to explain the apparent existing contradictions in literature. PMID:26090605

  13. Global diversity and distribution of three necrotrophic effectors in Phaeosphaeria nodorum and related species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Population genetic and phylogenetic studies showed that P. nodorum is a member of a species-complex that likely shares its center of origin with wheat. We examined the evolutionary history of three known necrotrophic effectors (NEs) produced by Phaeosphaeria nodorum and compared it to neutral loci. ...

  14. View of payload bay of STS-62 Columbia and Dexterous End Effector (DEE)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This 70mm frame, photographed through the aft flight deck windows of the Earth-orbiting Space Shuttle Columbia, features activity with the Dexterous End Effector (DEE) on the Remote Manipulator System (RMS). This scene also provides an overview of many of the United States Microgravity Payload 2 (USMP) elements as well as OAST-2 experiments.

  15. Astronauts Thuot and Ivins work with the Dexterous End Effector (DEE)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This view, photographed on the aft flight deck of the Earth-orbiting Space Shuttle Columbia, captures crew activity with the Dexterous End Effector (DEE) on the Remote Manipulator System (RMS). Astronauts Pierre J. Thuot and Marsha S. Ivins communicate with ground controllers during operations and observations with DEE.

  16. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms arthropods use to induce plant gall formation are poorly understood. However, there is growing evidence that effector proteins are involved. To examine this hypothesis, we sequenced the genome of the Hessian fly (Mayetiola destructor, M. des), an obligate plant parasitic gall midge an...

  17. Using effectors of Phytophthora infestans to teach pathogenesis: Our attempt to provide a more comprehensive education

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The topic of pathogenesis mechanisms (R/avirulence genes, effectors, and hypersensitive response) has proved challenging for students in our introductory plant pathology course. An apparent gap exists in the curriculum between this introductory course and higher level plant-microbe interaction cours...

  18. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    PubMed Central

    Navarro-Garcia, Fernando; Serapio-Palacios, Antonio; Ugalde-Silva, Paul; Tapia-Pastrana, Gabriela; Chavez-Dueñas, Lucia

    2013-01-01

    The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology. PMID:23509714

  19. A Novel End-Effector Design for Robotics in Image Guided Needle Procedures

    PubMed Central

    Sun, David; Willingham, Chris; Durrani, Amir; King, Paul; Cleary, Kevin; Wood, Bradford

    2008-01-01

    Robotic end-effectors are being developed to facilitate image-guided minimally-invasive needle-based procedures such as tumor ablation, biopsy, thoracentesis, and blood sampling. A novel mechanical end-effector was designed to address the challenges associated with any major needle-based procedure, focusing on liver biopsy and ablation. In this end-effector embodiment, the distal end of a single articulating arm can grip needles and instruments and allow a fairly high number of degrees of freedom of movement during the complex motions associated with positioning and driving needles, as well as the periodic motions associated with breathing patterns. Tightening a cable that runs through the articulations fixes the arm in a rigid state, allowing insertion of the gripped needle. In its final form, we diagram a design that will require electro-mechanical stimulation and remote joystick control. Moreover, we discuss how cranial-caudal motion of soft tissue organs and the associated forces affect design constraints. A simulation protocol describes the use of tissue phantoms with mechanical properties in the range of hepatic tissue and the overlying abdominal wall. Finally, an in vivo protocol details the possible use of a robotic arm coupled with our end-effector in an image-guided interventional suite. Such a switchable and flexible mode for a robotic arm overcomes much of the current limitations for automated needle placements for mobile targets, subject to breathing or patient motion and the inherent risks thereof. PMID:17520618

  20. Identification and Characterization of Putative Translocated Effector Proteins of the Edwardsiella ictaluri Type III Secretion System.

    PubMed

    Dubytska, Lidiya P; Rogge, Matthew L; Thune, Ronald L

    2016-01-01

    Edwardsiella ictaluri, a major pathogen in channel catfish aquaculture, encodes a type III secretion system (T3SS) that is essential for intracellular replication and virulence. Previous work identified three putative T3SS effectors in E. ictaluri, and in silico analysis of the E. ictaluri genome identified six additional putative effectors, all located on the chromosome outside the T3SS pathogenicity island. To establish active translocation by the T3SS, we constructed translational fusions of each effector to the amino-terminal adenylate cyclase (AC) domain of the Bordetella pertussis adenylate cyclase toxin CyaA. When translocated through the membrane of the Edwardsiella-containing vacuole (ECV), the cyclic AMP produced by the AC domain in the presence of calmodulin in the host cell cytoplasm can be measured. Results showed that all nine effectors were translocated from E. ictaluri in the ECV to the cytoplasm of the host cells in the wild-type strain but not in a T3SS mutant, indicating that translocation is dependent on the T3SS machinery. This confirms that the E. ictaluri T3SS is similar to the Salmonella pathogenicity island 2 T3SS in that it translocates effectors through the membrane of the bacterial vacuole directly into the host cell cytoplasm. Additional work demonstrated that both initial acidification and subsequent neutralization of the ECV were necessary for effector translocation, except for two of them that did not require neutralization. Single-gene mutants constructed for seven of the individual effectors were all attenuated for replication in CCO cells, but only three were replication deficient in head kidney-derived macrophages (HKDM). IMPORTANCE The bacterial pathogen Edwardsiella ictaluri causes enteric septicemia of catfish (ESC), an economically significant disease of farm-raised channel catfish. Commercial catfish production accounts for the majority of the total fin fish aquaculture in the United States, with almost 300,000