Science.gov

Sample records for active aerobic methanotrophs

  1. Identification of active aerobic methanotrophs in plateau wetlands using DNA stable isotope probing.

    PubMed

    Deng, Yongcui; Cui, Xiaoyong; Dumont, Marc G

    2016-08-01

    Sedge-dominated wetlands on the Qinghai-Tibetan Plateau are methane emission centers. Methanotrophs at these sites play a role in reducing methane emissions, but relatively little is known about the composition of active methanotrophs in these wetlands. Here, we used DNA stable isotope probing to identify the key active aerobic methanotrophs in three sedge-dominated wetlands on the plateau. We found that Methylocystis species were active in two peatlands, Hongyuan and Dangxiong. Methylobacter species were found to be active only in Dangxiong peat. Hongyuan peat had the highest methane oxidation rate, and cross-feeding of carbon from methanotrophs to methylotrophic Hyphomicrobium species was observed. Owing to a low methane oxidation rate during the incubation, the labeling of methanotrophs in Maduo wetland samples was not detected. Our results indicate that there are large differences in the activity of methanotrophs in the wetlands of this region. PMID:27369086

  2. Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing

    USGS Publications Warehouse

    He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Catranis, Catharine; Quensen, John; Tiedje, James M.; Leigh, Mary Beth

    2012-01-01

    Arctic lakes are a significant source of the greenhouse gas methane (CH4), but the role that methane oxidizing bacteria (methanotrophs) play in limiting the overall CH4 flux is poorly understood. Here, we used stable isotope probing (SIP) techniques to identify the metabolically active aerobic methanotrophs in upper sediments (0–1 cm) from an arctic lake in northern Alaska sampled during ice-free summer conditions. The highest CH4 oxidation potential was observed in the upper sediment (0–1 cm depth) with 1.59 μmol g wet weight-1 day-1 compared with the deeper sediment samples (1–3 cm, 3–5 cm and 5–10 cm), which exhibited CH4 oxidation potentials below 0.4 μmol g wet weight-1 day-1. Both type I and type II methanotrophs were directly detected in the upper sediment total communities using targeted primer sets based on 16S rRNA genes. Sequencing of 16S rRNA genes and functional genes (pmoA and mxaF) in the 13C-DNA from the upper sediment indicated that type I methanotrophs, mainly Methylobacter, Methylosoma, Methylomonas and Methylovulum miyakonense, dominated the assimilation of CH4. Methylotrophs, including the genera Methylophilus and/or Methylotenera, were also abundant in the 13CDNA. Our results show that a diverse microbial consortium acquired carbon from CH4 in the sediments of this arctic lake.

  3. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments

    USGS Publications Warehouse

    He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Quensen, John; Tiedje, James M.; Leigh, Mary Beth

    2012-01-01

    Methane (CH4) emitted from high-latitude lakes accounts for 2–6% of the global atmospheric CH4 budget. Methanotrophs in lake sediments and water columns mitigate the amount of CH4 that enters the atmosphere, yet their identity and activity in arctic and subarctic lakes are poorly understood. We used stable isotope probing (SIP), quantitative PCR (Q-PCR), pyrosequencing and enrichment cultures to determine the identity and diversity of active aerobic methanotrophs in the water columns and sediments (0–25 cm) from an arctic tundra lake (Lake Qalluuraq) on the north slope of Alaska and a subarctic taiga lake (Lake Killarney) in Alaska's interior. The water column CH4 oxidation potential for these shallow (~2m deep) lakes was greatest in hypoxic bottom water from the subarctic lake. The type II methanotroph, Methylocystis, was prevalent in enrichment cultures of planktonic methanotrophs from the water columns. In the sediments, type I methanotrophs (Methylobacter, Methylosoma and Methylomonas) at the sediment-water interface (0–1 cm) were most active in assimilating CH4, whereas the type I methanotroph Methylobacter and/or type II methanotroph Methylocystis contributed substantially to carbon acquisition in the deeper (15–20 cm) sediments. In addition to methanotrophs, an unexpectedly high abundance of methylotrophs also actively utilized CH4-derived carbon. This study provides new insight into the identity and activity of methanotrophs in the sediments and water from high-latitude lakes.

  4. Complete Genome Sequence of the Aerobic Marine Methanotroph Methylomonas methanica MC09

    SciTech Connect

    Boden, Rich; Cunliffe, Michael; Scanlan, Julie; Moussard, Helene; Kits, K. Dimitri; Klotz, Martin G; Jetten, MSM; Vuilleumier, Stephane; Han, James; Peters, Lin; Mikhailova, Natalia; Teshima, Hazuki; Tapia, Roxanne; Kyrpides, Nikos C; Ivanova, N; Pagani, Ioanna; Cheng, Jan-Fang; Goodwin, Lynne A.; Han, Cliff; Hauser, Loren John; Land, Miriam L; Lapidus, Alla L.; Lucas, Susan; Pitluck, Sam; Woyke, Tanja; Stein, Lisa Y.; Murrell, Collin

    2011-01-01

    Methylomonas methanica MC09 is a mesophilic, halotolerant, aerobic, methanotrophic member of the Gammaproteobacteria, isolated from coastal seawater. Here we present the complete genome sequence of this strain, the first available from an aerobic marine methanotroph.

  5. Methane-Derived Hydrogen in Lipids Produced by Aerobic Methanotrophs

    NASA Astrophysics Data System (ADS)

    Sessions, A. L.; Jahnke, L. L.; Schimmelmann, A.; Hayes, J. M.

    2001-12-01

    Combined hydrogen- and carbon-isotopic analyses of methane often provide important clues about its origin. Unfortunately, methane is not preserved in the geologic record so these analyses can only examine trapped or actively produced methane. The lipids of microorganisms that consume methane potentially record its isotopic composition, and are accessible throughout most of the geologic record. Those lipids therefore represent a potential means for examining the characteristics of methane released into the oceans over geologic history. We have examined the hydrogen-isotopic relationships between methane and lipids in the aerobic methanotroph Methylococcus capsulatus using cultures in which the D/H ratio of supplied water and methane were controlled independently. Resulting δ D values were measured for a range of fatty acids, sterols, and hopanols using isotope-ratio-monitoring gas chromatography/mass spectrometry. We estimate that 31 +/- 2% of hydrogen in every lipid we examined is derived from methane, regardless of whether cultures were harvested in exponential or stationary phase. The biochemical pathways responsible for the transfer of hydrogen from methane to lipids are not fully understood. Isotope fractionation associated with the utilization of methane (i.e., α lipid/methane) averages 0.986 for fatty acids and 0.789 for isoprenoid lipids. For water, fractionation (α lipid/water) averages 0.938 for fatty acids and 0.831 for isoprenoid lipids. Given typical δ D values for seawater (0%) and thermogenic `dry' methane (-150‰ ), fatty acids from M. capsulatus should have δ D values near -95‰ , and isoprenoids should have δ D values near -215‰ . Using δ Dmethane = -300‰ , a value near the lower limit of those for biogenic methanes, we predict δ D values for methanotroph fatty acids and isoprenoid lipids of -140 and -260‰ , respectively. It appears possible that D/H measurements of lipids from methanotrophic bacteria will provide useful hydrogen

  6. Characterization of methanotrophic bacterial populations in natural and agricultural aerobic soils of the European Russia

    NASA Astrophysics Data System (ADS)

    Kravchenko, Irina; Sukhacheva, Marina; Kizilova, Anna

    2014-05-01

    Atmospheric methane contributes to about 20% of the total radiative forcing by long-lived greenhouse gases, and microbial methane oxidation in upland soils is the only biological sink of methane. Microbial methane oxidation in aerated upland soils is estimated as 15 - 45 Tg yr-1 or 3-9% of the annual sink. Therefore there is need of extensive research to characterize methanotrophic activity in various ecosystems for possible application to reduce atmospheric methane fluxes and to minimize global climate change. The vast majority of known aerobic methanotrophs belongs to the Proteobacteria and placed in the families Methylococcaceae in the Gammaproteobacteria, and Methylocystaceae and Beijerinckiaceae in the Alphaproteobacteria. Known exceptions include the phylum Verrucomicrobia and uncultured methanotrophs such as Candidatus 'Methylomirabilis oxyfera' affiliated with the 'NC10' phylum. Plenty of studies of aerobic methane oxidation and key players of the process have been performed on various types of soils, and it was found that Methylocystis spp and uncultivated methanotrophs are abundant in upland soils. Two of the uncultured groups are upland soil cluster alphaproteobacteria (USCa) and gammaproteobacteria (USCg), as revealed by cultivation-independent surveys of pmoA diversity. Russia is extremely rich in soil types due to its vast territories, and most of these soils have never been investigated from the aspect of methanotrophy. This study addresses methane oxidation activity and diversity of aerobic methanotrophic bacteria in eight types of natural aerobic soils, four of which also had been under agricultural use. Methane fluxes have been measured by in situ static chamber method and methane oxidation rates in soil samples - by radioisotope tracer (14CH4) technique. Changes in methanotroph diversity and abundance were assessed by cloning and Sanger sequencing, and quantitative real-time PCR of pmoA genes. Methanotrophic population of unmanaged soils turned

  7. Aerobic Vinyl Chloride Metabolism in Groundwater Microcosms by Methanotrophic and Etheneotrophic Bacteria.

    PubMed

    Findlay, Margaret; Smoler, Donna F; Fogel, Samuel; Mattes, Timothy E

    2016-04-01

    Vinyl chloride (VC) is a carcinogen generated in groundwater by reductive dechlorination of chloroethenes. Under aerobic conditions, etheneotrophs oxidize ethene and VC, while VC-assimilators can use VC as their sole source of carbon and energy. Methanotrophs utilize only methane but can oxidize ethene to epoxyethane and VC to chlorooxirane. Microcosms were constructed with groundwater from the Carver site in MA containing these three native microbial types. Methane, ethene, and VC were added to the microcosms singly or as mixtures. In the absence of VC, ethene degraded faster when methane was also present. We hypothesized that methanotroph oxidation of ethene to epoxyethane competed with their use of methane, and that epoxyethane stimulated the activity of starved etheneotrophs by inducing the enzyme alkene monooxygenase. We then developed separate enrichment cultures of Carver methanotrophs and etheneotrophs, and demonstrated that Carver methanotrophs can oxidize ethene to epoxyethane, and that starved Carver etheneotrophs exhibit significantly reduced lag time for ethene utilization when epoxyethane is added. In our groundwater microcosm tests, when all three substrates were present, the rate of VC removal was faster than with either methane or ethene alone, consistent with the idea that methanotrophs stimulate etheneotroph destruction of VC. PMID:26918370

  8. Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments

    SciTech Connect

    Valentine, David

    2012-09-30

    In October 2008 the University of California at Santa Barbara (UCSB) initiated investigations of water column methane oxidation in methane hydrate environments, through a project funded by the National Energy Technology Laboratory (NETL) entitled: assessing the efficacy of the aerobic methanotrophic biofilter in methane hydrate environments. This Final Report describes the scientific advances and discoveries made under this award as well as the importance of these discoveries in the broader context of the research area. Benthic microbial mats inhabit the sea floor in areas where reduced chemicals such as sulfide reach the more oxidizing water that overlies the sediment. We set out to investigate the role that methanotrophs play in such mats at locations where methane reaches the sea floor along with sulfide. Mats were sampled from several seep environments and multiple sets were grown in-situ at a hydrocarbon seep in the Santa Barbara Basin. Mats grown in-situ were returned to the laboratory and used to perform stable isotope probing experiments in which they were treated with 13C-enriched methane. The microbial community was analyzed, demonstrating that three or more microbial groups became enriched in methane?s carbon: methanotrophs that presumably utilize methane directly, methylotrophs that presumably consume methanol excreted by the methanotrophs, and sulfide oxidizers that presumably consume carbon dioxide released by the methanotrophs and methylotrophs. Methanotrophs reached high relative abundance in mats grown on methane, but other bacterial processes include sulfide oxidation appeared to dominate mats, indicating that methanotrophy is not a dominant process in sustaining these benthic mats, but rather a secondary function modulated by methane availability. Methane that escapes the sediment in the deep ocean typically dissolved into the overlying water where it is available to methanotrophic bacteria. We set out to better understand the efficacy of this

  9. Methanotrophs and methanotrophic activity in engineered landfill biocovers.

    PubMed

    Ait-Benichou, S; Jugnia, Louis-B; Greer, Charles W; Cabral, Alexandre R

    2009-09-01

    The dynamics and changes in the potential activity and community structure of methanotrophs in landfill covers, as a function of time and depth were investigated. A passive methane oxidation biocover (PMOB-1) was constructed in St-Nicéphore MSW Landfill (Quebec, Canada). The most probable number (MPN) method was used for methanotroph counts, methanotrophic diversity was assessed using denaturing gradient gel electrophoresis (DGGE) fingerprinting of the pmoA gene and the potential CH(4) oxidation rate was determined using soil microcosms. Results of the PMOB-1 were compared with those obtained for the existing landfill cover (silty clay) or a reference soil (RS). During the monitoring period, changes in the number of methanotrophic bacteria in the PMOB-1 exhibited different developmental phases and significant variations with depth. In comparison, no observable changes over time occurred in the number of methanotrophs in the RS. The maximum counts measured in the uppermost layer was 1.5x10(9) cells g dw(-1) for the PMOB-1 and 1.6x10(8) cells g dw(-1) for the RS. No distinct difference was observed in the methanotroph diversity in the PMOB-1 or RS. As expected, the potential methane oxidation rate was higher in the PMOB-1 than in the RS. The maximum potential rates were 441.1 and 76.0 microg CH(4) h(-1) g dw(-1) in the PMOB and RS, respectively. From these results, the PMOB was found to be a good technology to enhance methane oxidation, as its performance was clearly better than the starting soil that was present in the landfill site. PMID:19477627

  10. Recurrence and Frequency of Disturbance have Cumulative Effect on Methanotrophic Activity, Abundance, and Community Structure

    PubMed Central

    Ho, Adrian; van den Brink, Erik; Reim, Andreas; Krause, Sascha M. B.; Bodelier, Paul L. E.

    2016-01-01

    Alternate prolonged drought and heavy rainfall is predicted to intensify with global warming. Desiccation-rewetting events alter the soil quality and nutrient concentrations which drive microbial-mediated processes, including methane oxidation, a key biogeochemical process catalyzed by methanotrophic bacteria. Although aerobic methanotrophs showed remarkable resilience to a suite of physical disturbances induced as a single event, their resilience to recurring disturbances is less known. Here, using a rice field soil in a microcosm study, we determined whether recurrence and frequency of desiccation-rewetting impose an accumulating effect on the methanotrophic activity. The response of key aerobic methanotroph subgroups (type Ia, Ib, and II) were monitored using qPCR assays, and was supported by a t-RFLP analysis. The methanotrophic activity was resilient to recurring desiccation-rewetting, but increasing the frequency of the disturbance by twofold significantly decreased methane uptake rate. Both the qPCR and t-RFLP analyses were congruent, showing the dominance of type Ia/Ib methanotrophs prior to disturbance, and after disturbance, the recovering community was predominantly comprised of type Ia (Methylobacter) methanotrophs. Both type Ib and type II (Methylosinus/Methylocystis) methanotrophs were adversely affected by the disturbance, but type II methanotrophs showed recovery over time, indicating relatively higher resilience to the disturbance. This revealed distinct, yet unrecognized traits among the methanotroph community members. Our results show that recurring desiccation-rewetting before a recovery in community abundance had an accumulated effect, compromising methanotrophic activity. While methanotrophs may recover well following sporadic disturbances, their resilience may reach a ‘tipping point’ where activity no longer recovered if disturbance persists and increase in frequency. PMID:26779148

  11. Recurrence and Frequency of Disturbance have Cumulative Effect on Methanotrophic Activity, Abundance, and Community Structure.

    PubMed

    Ho, Adrian; van den Brink, Erik; Reim, Andreas; Krause, Sascha M B; Bodelier, Paul L E

    2015-01-01

    Alternate prolonged drought and heavy rainfall is predicted to intensify with global warming. Desiccation-rewetting events alter the soil quality and nutrient concentrations which drive microbial-mediated processes, including methane oxidation, a key biogeochemical process catalyzed by methanotrophic bacteria. Although aerobic methanotrophs showed remarkable resilience to a suite of physical disturbances induced as a single event, their resilience to recurring disturbances is less known. Here, using a rice field soil in a microcosm study, we determined whether recurrence and frequency of desiccation-rewetting impose an accumulating effect on the methanotrophic activity. The response of key aerobic methanotroph subgroups (type Ia, Ib, and II) were monitored using qPCR assays, and was supported by a t-RFLP analysis. The methanotrophic activity was resilient to recurring desiccation-rewetting, but increasing the frequency of the disturbance by twofold significantly decreased methane uptake rate. Both the qPCR and t-RFLP analyses were congruent, showing the dominance of type Ia/Ib methanotrophs prior to disturbance, and after disturbance, the recovering community was predominantly comprised of type Ia (Methylobacter) methanotrophs. Both type Ib and type II (Methylosinus/Methylocystis) methanotrophs were adversely affected by the disturbance, but type II methanotrophs showed recovery over time, indicating relatively higher resilience to the disturbance. This revealed distinct, yet unrecognized traits among the methanotroph community members. Our results show that recurring desiccation-rewetting before a recovery in community abundance had an accumulated effect, compromising methanotrophic activity. While methanotrophs may recover well following sporadic disturbances, their resilience may reach a 'tipping point' where activity no longer recovered if disturbance persists and increase in frequency. PMID:26779148

  12. Complete Genome Sequence of the Aerobic Facultative Methanotroph Methylocella silvestris BL2▿

    PubMed Central

    Chen, Yin; Crombie, Andrew; Rahman, M. Tanvir; Dedysh, Svetlana N.; Liesack, Werner; Stott, Matthew B.; Alam, Maqsudul; Theisen, Andreas R.; Murrell, J. Colin; Dunfield, Peter F.

    2010-01-01

    Methylocella silvestris BL2 is an aerobic methanotroph originally isolated from an acidic forest soil in Germany. It is the first fully authenticated facultative methanotroph. It grows not only on methane and other one-carbon (C1) substrates, but also on some compounds containing carbon-carbon bonds, such as acetate, pyruvate, propane, and succinate. Here we report the full genome sequence of this bacterium. PMID:20472789

  13. Diversity of methanotrophs in Zoige wetland soils under both anaerobic and aerobic conditions.

    PubMed

    Yun, Juanli; Ma, Anzhou; Li, Yaoming; Zhuang, Guoqiang; Wang, Yanfen; Zhang, Hongxun

    2010-01-01

    Zoige wetland is one of the most important methane emission centers in China. The oxidation of methane in the wetland affects global warming, soil ecology and atmospheric chemistry. Despite their global significance, microorganisms that consume methane in Zoige wetland remain poorly characterized. In this study, we investigated methanotrophs diversity in soil samples from both anaerobic site and aerobic site in Zoige wetland using pmoA gene as a molecular marker. The cloning library was constructed according to the pmoA sequences detected. Four clusters of methanotrophs were detected. The phylogenetic tree showed that all four clusters detected were affiliated to type I methanotrophs. Two novel clusters (cluster 1, cluster 2) were found to relate to none of the recognized genera of methanotrophs. These clusters have no cultured representatives and reveal an ecological adaptation of particular uncultured methanotrophs in Zoige wetland. Two clusters were belonging to Methylobacter and Methylococcus separately. Denaturing gradient gel electrophoresis gel bands pattern retrieved from these two samples revealed that the community compositions of anaerobic soil and aerobic soil were different from each other while anaerobic soil showed a higher metanotrophs diversity. Real-time PCR assays of the two samples demonstrated that aerobic soil sample in Zoige wetland was 1.5 times as much copy numbers as anaerobic soil. These data illustrated that methanotrophs are a group of microorganisms influence the methane consumption in Zoige wetland. PMID:21179963

  14. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker

    PubMed Central

    Knief, Claudia

    2015-01-01

    Methane-oxidizing bacteria are characterized by their capability to grow on methane as sole source of carbon and energy. Cultivation-dependent and -independent methods have revealed that this functional guild of bacteria comprises a substantial diversity of organisms. In particular the use of cultivation-independent methods targeting a subunit of the particulate methane monooxygenase (pmoA) as functional marker for the detection of aerobic methanotrophs has resulted in thousands of sequences representing “unknown methanotrophic bacteria.” This limits data interpretation due to restricted information about these uncultured methanotrophs. A few groups of uncultivated methanotrophs are assumed to play important roles in methane oxidation in specific habitats, while the biology behind other sequence clusters remains still largely unknown. The discovery of evolutionary related monooxygenases in non-methanotrophic bacteria and of pmoA paralogs in methanotrophs requires that sequence clusters of uncultivated organisms have to be interpreted with care. This review article describes the present diversity of cultivated and uncultivated aerobic methanotrophic bacteria based on pmoA gene sequence diversity. It summarizes current knowledge about cultivated and major clusters of uncultivated methanotrophic bacteria and evaluates habitat specificity of these bacteria at different levels of taxonomic resolution. Habitat specificity exists for diverse lineages and at different taxonomic levels. Methanotrophic genera such as Methylocystis and Methylocaldum are identified as generalists, but they harbor habitat specific methanotrophs at species level. This finding implies that future studies should consider these diverging preferences at different taxonomic levels when analyzing methanotrophic communities. PMID:26696968

  15. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker.

    PubMed

    Knief, Claudia

    2015-01-01

    Methane-oxidizing bacteria are characterized by their capability to grow on methane as sole source of carbon and energy. Cultivation-dependent and -independent methods have revealed that this functional guild of bacteria comprises a substantial diversity of organisms. In particular the use of cultivation-independent methods targeting a subunit of the particulate methane monooxygenase (pmoA) as functional marker for the detection of aerobic methanotrophs has resulted in thousands of sequences representing "unknown methanotrophic bacteria." This limits data interpretation due to restricted information about these uncultured methanotrophs. A few groups of uncultivated methanotrophs are assumed to play important roles in methane oxidation in specific habitats, while the biology behind other sequence clusters remains still largely unknown. The discovery of evolutionary related monooxygenases in non-methanotrophic bacteria and of pmoA paralogs in methanotrophs requires that sequence clusters of uncultivated organisms have to be interpreted with care. This review article describes the present diversity of cultivated and uncultivated aerobic methanotrophic bacteria based on pmoA gene sequence diversity. It summarizes current knowledge about cultivated and major clusters of uncultivated methanotrophic bacteria and evaluates habitat specificity of these bacteria at different levels of taxonomic resolution. Habitat specificity exists for diverse lineages and at different taxonomic levels. Methanotrophic genera such as Methylocystis and Methylocaldum are identified as generalists, but they harbor habitat specific methanotrophs at species level. This finding implies that future studies should consider these diverging preferences at different taxonomic levels when analyzing methanotrophic communities. PMID:26696968

  16. Planktonic and sediment-associated aerobic methanotrophs in two seep systems along the North American margin.

    PubMed

    Tavormina, Patricia L; Ussler, William; Orphan, Victoria J

    2008-07-01

    Methane vents are of significant geochemical and ecological importance. Notable progress has been made toward understanding anaerobic methane oxidation in marine sediments; however, the diversity and distribution of aerobic methanotrophs in the water column are poorly characterized. Both environments play an essential role in regulating methane release from the oceans to the atmosphere. In this study, the diversity of particulate methane monooxygenase (pmoA) and 16S rRNA genes from two methane vent environments along the California continental margin was characterized. The pmoA phylotypes recovered from methane-rich sediments and the overlying water column differed. Sediments harbored the greatest number of unique pmoA phylotypes broadly affiliated with the Methylococcaceae family, whereas planktonic pmoA phylotypes formed three clades that were distinct from the sediment-hosted methanotrophs and distantly related to established methanotrophic clades. Water column-associated phylotypes were highly similar between field sites, suggesting that planktonic methanotroph diversity is controlled primarily by environmental factors rather than geographical proximity. Analysis of 16S rRNA genes from methane-rich waters did not readily recover known methanotrophic lineages, with only a few phylotypes demonstrating distant relatedness to Methylococcus. The development of new pmo primers increased the recovery of monooxygenase genes from the water column and led to the discovery of a highly diverged monooxygenase sequence which is phylogenetically intermediate to Amo and pMMO. This sequence potentiates insight into the amo/pmo superfamily. Together, these findings lend perspective into the diversity and segregation of aerobic methanotrophs within different methane-rich habitats in the marine environment. PMID:18487407

  17. Aerobic methanotrophs drive the formation of a seasonal anoxic benthic nepheloid layer in monomictic Lake Lugano

    NASA Astrophysics Data System (ADS)

    Blees, Jan; Niemann, Helge; Wenk, Christine B.; Zopfi, Jacob; Schubert, Carsten J.; Jenzer, Joël S.; Veronesi, Mauro L.; Lehmann, Moritz F.

    2014-05-01

    In the southern basin of Lake Lugano, thermal stratification of the water column during summer and autumn leads to a lack of exchange between surface and deep water masses, and consequently to seasonal bottom water anoxia, associated with high methane concentrations. With the onset of bottom water anoxia, a dense layer of high particulate matter concentration - a so-called benthic nepheloid layer (BNL) - develops in the bottom waters. A sharp redox gradient marks the upper boundary of the BNL. At its maximum, the BNL extends 15 - 30 m from the sediment into the water column. We investigated the identity of the BNL and key environmental factors controlling its formation in the framework of a seasonal study. Compound specific C-isotope measurements and Fluorescence In Situ Hybridisation (FISH) of suspended particulate organic matter, radioactive tracer based measurements of methane oxidation, as well as investigation of geochemical water column parameters were performed in spring and autumn. Our analyses revealed that the microbial biomass within the BNL is dominated by methanotrophic bacteria. Aerobic methane oxidation (MOx) was restricted to a narrow zone at the top of the BNL, reaching maximum rates of up to 1.8 μM/day. The rates of MOx activity effectively consumed most (>99%) of the uprising methane, leading to the formation of a sharp CH4 concentration gradient and a strongly suppressed kinetic isotope effect (ɛ = -2.8o). CH4 oxidation was limited by the diffusive supply of O2 from the upper hypolimnion, implying that methanotrophy is the primary driver of the seasonal expansion of the anoxic bottom water volume, and explaining the vertical migration of the BNL in response to its own O2 consumption. The bulk organic matter extracted from the BNL was strongly depleted in 13C (δ13C < -60o), providing evidence for the incorporation of CH4-derived carbon into the biomass, suggesting that the BNL was composed of MOx-communities. This was further evidenced by four

  18. The more, the merrier: heterotroph richness stimulates methanotrophic activity

    PubMed Central

    Ho, Adrian; de Roy, Karen; Thas, Olivier; De Neve, Jan; Hoefman, Sven; Vandamme, Peter; Heylen, Kim; Boon, Nico

    2014-01-01

    Although microorganisms coexist in the same environment, it is still unclear how their interaction regulates ecosystem functioning. Using a methanotroph as a model microorganism, we determined how methane oxidation responds to heterotroph diversity. Artificial communities comprising of a methanotroph and increasing heterotroph richness, while holding equal starting cell numbers were assembled. We considered methane oxidation rate as a functional response variable. Our results showed a significant increase of methane oxidation with increasing heterotroph richness, suggesting a complex interaction in the cocultures leading to a stimulation of methanotrophic activity. Therefore, not only is the methanotroph diversity directly correlated to methanotrophic activity for some methanotroph groups as shown before, but also the richness of heterotroph interacting partners is relevant to enhance methane oxidation too. In this unprecedented study, we provide direct evidence showing how heterotroph richness exerts a response in methanotroph–heterotroph interaction, resulting in increased methanotrophic activity. Our study has broad implications in how methanotroph and heterotroph interact to regulate methane oxidation, and is particularly relevant in methane-driven ecosystems. PMID:24785289

  19. Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems.

    PubMed

    Su, Yao; Zhang, Xuan; Xia, Fang-Fang; Zhang, Qi-Qi; Kong, Jiao-Yan; Wang, Jing; He, Ruo

    2014-05-01

    Aerobic CH4 oxidation plays an important role in mitigating CH4 release from landfills to the atmosphere. Therefore, in this study, oxidation activity and community of methanotrophs were investigated in a subtropical landfill. Among the three sites investigated, the highest CH4 concentration was detected in the landfill cover soil of the site (A) without a landfill gas (LFG) recovery system, although the refuse in the site had been deposited for a longer time (∼14-15 years) compared to the other two sites (∼6-11 years) where a LFG recovery system was applied. In April and September, the higher CH4 flux was detected in site A with 72.4 and 51.7gm(-2)d(-1), respectively, compared to the other sites. The abundance of methanotrophs assessed by quantification of pmoA varied with location and season. A linear relationship was observed between the abundance of methanotrophs and CH4 concentrations in the landfill cover soils (R=0.827, P<0.001). The key factors influencing the methanotrophic diversity in the landfill cover soils were pH, the water content and the CH4 concentration in the soil, of which pH was the most important factor. Type I methanotrophs, including Methylococcus, Methylosarcina, Methylomicrobium and Methylobacter, and type II methanotrophs (Methylocystis) were all detected in the landfill cover soils, with Methylocystis and Methylosarcina being the dominant genera. Methylocystis was abundant in the slightly acidic landfill cover soil, especially in September, and represented more than 89% of the total terminal-restriction fragment abundance. These findings indicated that the LFG recovery system, as well as physical and chemical parameters, affected the diversity and activity of methanotrophs in landfill cover soils. PMID:24332193

  20. Aerobic methanotrophic communities at the Red Sea brine-seawater interface

    PubMed Central

    Abdallah, Rehab Z.; Adel, Mustafa; Ouf, Amged; Sayed, Ahmed; Ghazy, Mohamed A.; Alam, Intikhab; Essack, Magbubah; Lafi, Feras F.; Bajic, Vladimir B.; El-Dorry, Hamza; Siam, Rania

    2014-01-01

    The central rift of the Red Sea contains 25 brine pools with different physicochemical conditions, dictating the diversity and abundance of the microbial community. Three of these pools, the Atlantis II, Kebrit and Discovery Deeps, are uniquely characterized by a high concentration of hydrocarbons. The brine-seawater interface, described as an anoxic-oxic (brine-seawater) boundary, is characterized by a high methane concentration, thus favoring aerobic methane oxidation. The current study analyzed the aerobic free–living methane-oxidizing bacterial communities that potentially contribute to methane oxidation at the brine-seawater interfaces of the three aforementioned brine pools, using metagenomic pyrosequencing, 16S rRNA pyrotags and pmoA library constructs. The sequencing of 16S rRNA pyrotags revealed that these interfaces are characterized by high microbial community diversity. Signatures of aerobic methane-oxidizing bacteria were detected in the Atlantis II Interface (ATII-I) and the Kebrit Deep Upper (KB-U) and Lower (KB-L) brine-seawater interfaces. Through phylogenetic analysis of pmoA, we further demonstrated that the ATII-I aerobic methanotroph community is highly diverse. We propose four ATII-I pmoA clusters. Most importantly, cluster 2 groups with marine methane seep methanotrophs, and cluster 4 represent a unique lineage of an uncultured bacterium with divergent alkane monooxygenases. Moreover, non-metric multidimensional scaling (NMDS) based on the ordination of putative enzymes involved in methane metabolism showed that the Kebrit interface layers were distinct from the ATII-I and DD-I brine-seawater interfaces. PMID:25295031

  1. Alpha- and Gammaproteobacterial Methanotrophs Codominate the Active Methane-Oxidizing Communities in an Acidic Boreal Peat Bog.

    PubMed

    Esson, Kaitlin C; Lin, Xueju; Kumaresan, Deepak; Chanton, Jeffrey P; Murrell, J Colin; Kostka, Joel E

    2016-04-15

    The objective of this study was to characterize metabolically active, aerobic methanotrophs in an ombrotrophic peatland in the Marcell Experimental Forest, in Minnesota. Methanotrophs were investigated in the field and in laboratory incubations using DNA-stable isotope probing (SIP), expression studies on particulate methane monooxygenase (pmoA) genes, and amplicon sequencing of 16S rRNA genes. Potential rates of oxidation ranged from 14 to 17 μmol of CH4g dry weight soil(-1)day(-1) Within DNA-SIP incubations, the relative abundance of methanotrophs increased from 4%in situto 25 to 36% after 8 to 14 days. Phylogenetic analysis of the(13)C-enriched DNA fractions revealed that the active methanotrophs were dominated by the generaMethylocystis(type II;Alphaproteobacteria),Methylomonas, andMethylovulum(both, type I;Gammaproteobacteria). In field samples, a transcript-to-gene ratio of 1 to 2 was observed forpmoAin surface peat layers, which attenuated rapidly with depth, indicating that the highest methane consumption was associated with a depth of 0 to 10 cm. Metagenomes and sequencing of cDNApmoAamplicons from field samples confirmed that the dominant active methanotrophs wereMethylocystisandMethylomonas Although type II methanotrophs have long been shown to mediate methane consumption in peatlands, our results indicate that members of the generaMethylomonasandMethylovulum(type I) can significantly contribute to aerobic methane oxidation in these ecosystems. PMID:26873322

  2. Methanotrophic activity and diversity of methanotrophs in volcanic geothermal soils at Pantelleria (Italy)

    NASA Astrophysics Data System (ADS)

    Gagliano, A. L.; D'Alessandro, W.; Tagliavia, M.; Parello, F.; Quatrini, P.

    2014-10-01

    Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas twenty-five times as potent as CO2. Recently, it has been demonstrated that volcanic or geothermal soils are not only a source of methane, but are also sites of methanotrophic activity. Methanotrophs are able to consume 10-40 Tg of CH4 a-1 and to trap more than 50% of the methane degassing through the soils. We report on methane microbial oxidation in the geothermally most active site of Pantelleria (Italy), Favara Grande, whose total methane emission was previously estimated at about 2.5 Mg a-1 (t a-1). Laboratory incubation experiments with three top-soil samples from Favara Grande indicated methane consumption values of up to 59.2 nmol g-1 soil d.w. h-1. One of the three sites, FAV2, where the highest oxidation rate was detected, was further analysed on a vertical soil profile, the maximum methane consumption was measured in the top-soil layer, and values greater than 6.23 nmol g-1 h-1 were still detected up to a depth of 13 cm. The highest consumption rate was measured at 37 °C, but a still detectable consumption at 80 °C (> 1.25 nmol g-1 h-1) was recorded. The soil total DNA extracted from the three samples was probed by Polymerase Chain Reaction (PCR) using standard proteobacterial primers and newly designed verrucomicrobial primers, targeting the unique methane monooxygenase gene pmoA; the presence of methanotrophs was detected at sites FAV2 and FAV3, but not at FAV1, where harsher chemical-physical conditions and negligible methane oxidation were detected. The pmoA gene libraries from the most active site (FAV2) pointed to a high diversity of gammaproteobacterial methanotrophs, distantly related to Methylocaldum-Metylococcus genera, and the presence of the newly discovered acido-thermophilic Verrucomicrobia methanotrophs. Alphaproteobacteria of the genus Methylocystis were isolated from enrichment cultures under a methane

  3. Identification of hopanoid, sterol, and tetrahymanol production in the aerobic methanotroph Methylomicrobium alcaliphilum 20Z

    NASA Astrophysics Data System (ADS)

    Welander, P. V.; Summons, R. E.

    2013-12-01

    Correlating the occurrence of molecular biosignatures preserved in the rock record with specific microbial taxa is a compelling strategy for studying microbial life in the context of the Earth's distant past. Polycyclic triterpenoids, including the hopanes and steranes, comprise classes of biomarkers that are readily detected in a variety of ancient sediments and are clearly recognized as the diagenetic products of modern day bacterial hopanoids and eukaryotic sterols. Thus, based on the distribution of these lipids in extant microbes, the occurrence of their diagenetic products in the rock record is often utilized as evidence for the existence of specific bacterial and eukaryotic taxa in ancient ecosystems. However, questions have arisen about our understanding of the taxonomic distribution of many of these molecular biomarkers in extant microbes. This is prompting reassessments of the use of polycyclic triterpenoids as geological proxies for microbial taxa, especially in the light of the poorly defined issue of microbial diversity. Recently, significant effort has been put forth to better understand the biosynthesis, function, and regulation of these lipid molecules in a variety of modern organisms so that a more informed interpretation of their occurrence in the rock record can be reached. Here we report the unprecedented production of three different classes of polycyclic triterpenoid biomarker lipids in one bacterium. Methylomicrobium alcaliphilum 20Z, a member of the Gammaproteobacteria, is a halotolerant alkaliphilic aerobic methanotroph previously isolated from a moderately saline soda lake in Tuva (Central Asia). In this study, M. alcaliphilum is shown to produce C-3 methylated and unmethylated aminohopanoids commonly associated with other mesophilic aerobic methanotrophs. In addition, this organism is also able to produce 4,4-dimethyl sterols and surprisingly, the gammacerane triterpenoid tetrahymanol. Previously, tetrahymanol production has only been

  4. Activity and structure of methanotrophic communities in landfill cover soils.

    PubMed

    Gebert, Julia; Singh, Brajesh Kumar; Pan, Yao; Bodrossy, Levente

    2009-10-01

    The composition of the methanotrophic community in soil covers on five landfills in Northern and Eastern Germany was investigated by means of diagnostic microarray and terminal restriction fragment length polymorphism (T-RFLP), both targeting the pmoA gene of methanotrophs. Physical and chemical properties of the 15 sampled soil profiles varied greatly, thus providing for very different environmental conditions. The potential methane oxidation activity, assessed using undisturbed soil cores, varied between 0.2 and 28 µg CH4 gdw (-1)  h(-1) , the latter amounting to 426 g CH4 m(-2)  h(-1) . Total nitrogen was found to be the soil variable correlating most strongly with methanotrophic activity. Explaining close to 50% of the observed variability, this indicates that on the investigated sites activity and thus abundance of methanotrophs may have been nitrogen-limited. Variables that enhance organic matter and thus nitrogen accumulation, such as field capacity, also positively impacted methanotrophic activity. In spite of the great variability of soil properties and different geographic landfill location, both microarray and T-RFLP analysis suggested that the composition of the methanotrophic community on all five sites, in all profiles and across all depths was similar. Methylocystis, Methylobacter and Methylococcus species, including Methylococcus-related uncultivated methanotrophs, were predominantly detected among type II, Ia and Ib methanotrophs, respectively. This indicates that the high methane fluxes typical for landfill environments may be the most influential driver governing the community composition, or other variables not analysed in this study. Principal component analysis suggested that community diversity is most influenced by the site from which the samples were taken and second, from the location on the individual sites, i.e. the soil profile. Landfill and individual profiles reflect the combined impact of all effective variables, including

  5. The methane monooxygenase intrinsic activity of kinds of methanotrophs.

    PubMed

    Zhang, Yingxin; Xin, Jiaying; Chen, Linlin; Xia, Chungu

    2009-06-01

    Methanotrophs have promising applications in the epoxidation of some alkenes and some chlorinated hydrocarbons and in the production of a biopolymer, poly-beta-hydroxybutyrate (poly-3-hydroxybutyrate; PHB). In contrast with methane monooxygenase (MMO) activity and ability of PHB synthesis of four kinds of methanotrophic bacteria Methylosinus trichosporium OB3b, M. trichosporium IMV3011, Methylococcus capsulatus HD6T, Methylomonas sp. GYJ3, and the mixture of the four kinds of strains, M. trichosporium OB3b is the highest of the four in the activity of propene epoxidation (10.72 nmol/min mg dry weight of cell [dwc]), the activity of naphthalene oxidation (22.7 mmol/mg dwc), and ability in synthesis of PHB(11% PHB content in per gram dry weight of cell in 84 h). It could be feasible to improve the MMO activity by mixing four kinds of methanotrophs. The MMO activity dramatically decreased when the cellular PHB accumulated in the second stage. The reason for this may be the dilution of the MMO system in the cells with increasing PHB contents. It has been found that the PHB contents at the level of 1-5% are beneficial to the cells for maintenance of MMO epoxidation activity when enough PHB have been accumulated. Moreover, it was also found that high particulate methane monooxygenase activity may contribute to the synthesis of PHB in the cell, which could be used to improve the yield of PHB in methanotrophs. PMID:19052919

  6. Enrichment and activity of methanotrophic microorganisms from municipal wastewater sludge.

    PubMed

    Siniscalchi, Luciene Alves Batista; Vale, Isabel Campante; Dell'Isola, Jéssica; Chernicharo, Carlos Augusto; Calabria Araujo, Juliana

    2015-01-01

    In this study, methanotrophic microorganisms were enriched from a municipal wastewater sludge taken from an Upflow Anaerobic Sludge Blanket reactor. The enrichment was performed in a sequencing batch reactor (SBR) with an autotrophic medium containing nitrite and nitrate. The microbial community composition of the inoculum and of the enrichment culture after 100 days of SBR operation was investigated and compared with the help of data obtained from 454 pyrosequencing analyses. The nitrite and nitrate removal efficiencies were 68% and 53%, respectively, probably due to heterotrophic denitrification. Archaeal cells of the anaerobic methanotrophic Archaic (ANME)-I and ANME-II groups were detected by polymerase chain reaction throughout the whole cultivation period. Pyrosequencing analysis showed that community composition was different among the two samples analysed. The dominant phyla found in the inoculum were Synergistestes, Firmicutes and Euryarchaeota, while Planctomycetes, Verrucomicrobia, Chloroflexi and Proteobacteria prevailed in the enriched biomass. The cultivation conditions decreased Methanobacterium abundance from 8% to 1%, and enriched for methanotrophic bacteria such as Methylocaldum, Methylocistis and Methylosinus. Sequences of Methylocaldum sp. accounted for 2.5% of the total reads. The presence and high predominance of Verrucomicrobia in the enriched biomass suggested that other unknown methanotrophic species related to that phylum might also have occurred in the reactor. Anaerobic methane oxidation activity was measured for both samples, and showed that the activity of the enrichment culture was nearly three times higher than the activity of the inoculum. Taken together, these results showed that the inoculum type and cultivation conditions were properly suited for methanotrophic enrichment. PMID:25495866

  7. Microbial diversity in sediments associated with a shallow methane seep in the tropical Timor Sea of Australia reveals a novel aerobic methanotroph diversity.

    PubMed

    Wasmund, Kenneth; Kurtböke, D Ipek; Burns, Kathryn A; Bourne, David G

    2009-05-01

    This study examined the diversity of Bacteria, Archaea and in particular aerobic methanotrophs associated with a shallow (84 m) methane seep in the tropical Timor Sea, Australia. Seepage of thermogenic methane was associated with a large carbonate hardground covered in coarse carbonate-rich sediments and various benthic organisms such as solitary corals. The diversity of Bacteria and Archaea was studied by analysis of cloned 16S rRNA genes, while aerobic methanotrophic bacteria were quantified using real-time PCR targeting the alpha-subunit of particulate methane monooxygenase (pmoA) genes and diversity was studied by analysis of cloned pmoA genes. Phylogenetic analysis of bacterial and archaeal 16S rRNA genes revealed diverse and mostly novel phylotypes related to sequences previously recovered from marine sediments. A small number of bacterial 16S rRNA gene sequences were related to aerobic methanotrophs distantly related to the genera Methylococcus and Methylocaldum. Real-time PCR targeting pmoA genes showed that the highest numbers of methanotrophs were present in surface sediments associated with the seep area. Phylogenetic analysis of pmoA sequences revealed that all phylotypes were novel and fell into two large clusters comprised of only marine sequences distantly related to the genera Methylococcus and Methylocaldum that were clearly divergent from terrestrial phylotypes. This study provides evidence for the existence of a novel microbial diversity and diverse aerobic methanotrophs that appear to constitute marine specialized lineages. PMID:19573197

  8. Diversity and Activity of Methanotrophic Bacteria in Different Upland Soils

    PubMed Central

    Knief, Claudia; Lipski, André; Dunfield, Peter F.

    2003-01-01

    Samples from diverse upland soils that oxidize atmospheric methane were characterized with regard to methane oxidation activity and the community composition of methanotrophic bacteria (MB). MB were identified on the basis of the detection and comparative sequence analysis of the pmoA gene, which encodes a subunit of particulate methane monooxygenase. MB commonly detected in soils were closely related to Methylocaldum spp., Methylosinus spp., Methylocystis spp., or the “forest sequence cluster” (USC α), which has previously been detected in upland soils and is related to pmoA sequences of type II MB (Alphaproteobacteria). As well, a novel group of sequences distantly related (<75% derived amino acid identity) to those of known type I MB (Gammaproteobacteria) was often detected. This novel “upland soil cluster γ” (USC γ) was significantly more likely to be detected in soils with pH values of greater than 6.0 than in more acidic soils. To identify active MB, four selected soils were incubated with 13CH4 at low mixing ratios (<50 ppm of volume), and extracted methylated phospholipid fatty acids (PLFAs) were analyzed by gas chromatography-online combustion isotope ratio mass spectrometry. Incorporation of 13C into PLFAs characteristic for methanotrophic Gammaproteobacteria was observed in all soils in which USC γ sequences were detected, suggesting that the bacteria possessing these sequences were active methanotrophs. A pattern of labeled PLFAs typical for methanotrophic Alphaproteobacteria was obtained for a sample in which only USC α sequences were detected. The data indicate that different MB are present and active in different soils that oxidize atmospheric methane. PMID:14602631

  9. Effect of Afforestation and Reforestation of Pastures on the Activity and Population Dynamics of Methanotrophic Bacteria▿

    PubMed Central

    Singh, Brajesh K.; Tate, Kevin R.; Kolipaka, Gokul; Hedley, Carolyn B.; Macdonald, Catriona A.; Millard, Peter; Murrell, J. Colin

    2007-01-01

    We investigated the effect of afforestation and reforestation of pastures on methane oxidation and the methanotrophic communities in soils from three different New Zealand sites. Methane oxidation was measured in soils from two pine (Pinus radiata) forests and one shrubland (mainly Kunzea ericoides var. ericoides) and three adjacent permanent pastures. The methane oxidation rate was consistently higher in the pine forest or shrubland soils than in the adjacent pasture soils. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of these soils revealed that different methanotrophic communities were active in soils under the different vegetations. The C18 PLFAs (signature of type II methanotrophs) predominated under pine and shrublands, and C16 PLFAs (type I methanotrophs) predominated under pastures. Analysis of the methanotrophs by molecular methods revealed further differences in methanotrophic community structure under the different vegetation types. Cloning and sequencing and terminal-restriction fragment length polymorphism analysis of the particulate methane oxygenase gene (pmoA) from different samples confirmed the PLFA-SIP results that methanotrophic bacteria related to type II methanotrophs were dominant in pine forest and shrubland, and type I methanotrophs (related to Methylococcus capsulatus) were dominant in all pasture soils. We report that afforestation and reforestation of pastures caused changes in methane oxidation by altering the community structure of methanotrophic bacteria in these soils. PMID:17574997

  10. Effect of afforestation and reforestation of pastures on the activity and population dynamics of methanotrophic bacteria.

    PubMed

    Singh, Brajesh K; Tate, Kevin R; Kolipaka, Gokul; Hedley, Carolyn B; Macdonald, Catriona A; Millard, Peter; Murrell, J Colin

    2007-08-01

    We investigated the effect of afforestation and reforestation of pastures on methane oxidation and the methanotrophic communities in soils from three different New Zealand sites. Methane oxidation was measured in soils from two pine (Pinus radiata) forests and one shrubland (mainly Kunzea ericoides var. ericoides) and three adjacent permanent pastures. The methane oxidation rate was consistently higher in the pine forest or shrubland soils than in the adjacent pasture soils. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of these soils revealed that different methanotrophic communities were active in soils under the different vegetations. The C18 PLFAs (signature of type II methanotrophs) predominated under pine and shrublands, and C16 PLFAs (type I methanotrophs) predominated under pastures. Analysis of the methanotrophs by molecular methods revealed further differences in methanotrophic community structure under the different vegetation types. Cloning and sequencing and terminal-restriction fragment length polymorphism analysis of the particulate methane oxygenase gene (pmoA) from different samples confirmed the PLFA-SIP results that methanotrophic bacteria related to type II methanotrophs were dominant in pine forest and shrubland, and type I methanotrophs (related to Methylococcus capsulatus) were dominant in all pasture soils. We report that afforestation and reforestation of pastures caused changes in methane oxidation by altering the community structure of methanotrophic bacteria in these soils. PMID:17574997

  11. Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine.

    PubMed

    Han, Bing; Chen, Yin; Abell, Guy; Jiang, Hao; Bodrossy, Levente; Zhao, Jiangang; Murrell, J Colin; Xing, Xin-Hui

    2009-11-01

    Culture-independent molecular biological techniques, including 16S rRNA gene and functional gene clone libraries and microarray analyses using pmoA (encoding a key subunit of particulate methane monooxygenase), were applied to investigate the methanotroph community structure in alkaline soil from a Chinese coal mine. This environment contained a high diversity of methanotrophs, including the type II methanotrophs Methylosinus/Methylocystis, type I methanotrophs related to Methylobacter/Methylosoma and Methylococcus, and a number of as yet uncultivated methanotrophs. In order to identify the metabolically active methane-oxidizing bacteria from this alkaline environment, DNA stable isotope probing (DNA-SIP) experiments using (13)CH(4) were carried out. This showed that both type I and type II methanotrophs were active, together with methanotrophs related to Methylocella, which had previously been found only in acidic environments. Methylotrophs, including Methylopila and Hyphomicrobium, were also detected in soil DNA and after DNA-SIP experiments. DNA sequence information on the most abundant, active methanotrophs in this alkaline soil will facilitate the design of oligonucleotide probes to monitor enrichment cultures when isolating key alkaliphilic methanotrophs from such environments. PMID:19515201

  12. Methanotrophic bacteria.

    PubMed Central

    Hanson, R S; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

  13. Community structure, abundance, and activity of methanotrophs in the Zoige wetland of the Tibetan Plateau.

    PubMed

    Yun, Juanli; Zhuang, Guoqiang; Ma, Anzhou; Guo, Hongguang; Wang, Yanfen; Zhang, Hongxun

    2012-05-01

    The Zoige wetland of the Tibetan Plateau is a high-altitude tundra wetland and one of the biggest methane emission centers in China. In this study, methanotrophs with respect to community structure, abundance, and activity were investigated in peat soils collected in the vicinity of different marshland plants that dominate different regions of the wetland, including Polygonum amphibium, Carex muliensis, and Eleocharis valleculosa (EV). 16S rRNA gene and particulate methane monooxygenase gene (pmoA) clone library sequence data indicated the presence of methanotrophs with two genera, Methylobacter and Methylocystis. Methylococcus, like pmoA gene sequences, were also retrieved and showed low similarity to those from Methylococcus spp. and thus indicates the existence of novel methanotrophs in the Zoige wetland. Quantitative polymerase chain reaction (qPCR) assays were used to measure the abundance of methantrophs and detected 10(7) to 10(8) of total pmoA gene copies per gram dry weight of soil in the three marshes. Group-specific qPCR and reverse transcriptase qPCR results found that the Methylobacter genus dominates the wetland, and Methylocystis methanotrophs were less abundant, although this group of methanotrophs was estimated to be more active according to mRNA/DNA ratio. Furthermore, EV marsh demonstrated the highest methanotrophs abundance and activity among the three marshes investigated. Our study suggests that both type I and type II methanotrophs contribute to the methane oxidation in the Zoige wetland. PMID:22159497

  14. 13C-DEPLETED MICROBIAL LIPIDS INDICATE SEASONAL METHANOTROPHIC ACTIVITY IN SHALLOW ESTUARINE SEDIMENTS

    EPA Science Inventory

    Compound specific isotope analysis was combined with phospholipid fatty acid (PLFA) analysis to identify methanotrophic activity in members of the sedimentary microbial community in the Altamaha and Savannah River estuaries in Georgia. 13C-depleted PLFAs indicate methane utilizat...

  15. Single cell activity reveals direct electron transfer in methanotrophic consortia.

    PubMed

    McGlynn, Shawn E; Chadwick, Grayson L; Kempes, Christopher P; Orphan, Victoria J

    2015-10-22

    Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer. PMID:26375009

  16. Single cell activity reveals direct electron transfer in methanotrophic consortia

    NASA Astrophysics Data System (ADS)

    McGlynn, Shawn E.; Chadwick, Grayson L.; Kempes, Christopher P.; Orphan, Victoria J.

    2015-10-01

    Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer.

  17. Oxidase, superoxide dismutase, and hydrogen peroxide reductase activities of methanobactin from types I and II methanotrophs.

    PubMed

    Choi, Dong W; Semrau, Jeremy D; Antholine, William E; Hartsel, Scott C; Anderson, Ryan C; Carey, Jeffrey N; Dreis, Ashley M; Kenseth, Erik M; Renstrom, Joel M; Scardino, Lori L; Van Gorden, Garrett S; Volkert, Anna A; Wingad, Aaron D; Yanzer, Paul J; McEllistrem, Marcus T; de la Mora, Arlene M; DiSpirito, Alan A

    2008-08-01

    Methanobactin (mb) is a copper-binding chromopeptide that appears to be involved in oxidation of methane by the membrane-associated or particulate methane monooxygenase (pMMO). To examine this potential physiological role, the redox and catalytic properties of mb from three different methanotrophs were examined in the absence and presence of O(2). Metal free mb from the type II methanotroph Methylosinus trichosporium OB3b, but not from the type I methanotrophs Methylococcus capsulatus Bath or Methylomicrobium album BG8, were reduced by a variety of reductants, including NADH and duroquinol, and catalyzed the reduction of O(2) to O(2)(-). Copper-containing mb (Cu-mb) from all three methanotrophs showed several interesting properties, including reductase dependent oxidase activity, dismutation of O(2)(-) to H(2)O(2), and the reductant dependent reduction of H(2)O(2) to H(2)O. The superoxide dismutase-like and hydrogen peroxide reductase activities of Cu-mb were 4 and 1 order(s) of magnitude higher, respectively, than the observed oxidase activity. The results demonstrate that Cu-mb from all three methanotrophs are redox-active molecules and oxygen radical scavengers, with the capacity to detoxify both superoxide and hydrogen peroxide without the formation of the hydroxyl radicals associated with Fenton reactions. As previously observed with Cu-mb from Ms. trichosporium OB3b, Cu-mb from both type I methanotrophs stimulated pMMO activity. However, in contrast to previous studies using mb from Ms. trichosporium OB3b, pMMO activity was not inhibited by mb from the two type I methanotrophs at low copper to mb ratios. PMID:18372044

  18. Shifts in Identity and Activity of Methanotrophs in Arctic Lake Sediments in Response to Temperature Changes

    PubMed Central

    He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Quensen, John; Tiedje, James M.

    2012-01-01

    Methane (CH4) flux to the atmosphere is mitigated via microbial CH4 oxidation in sediments and water. As arctic temperatures increase, understanding the effects of temperature on the activity and identity of methanotrophs in arctic lake sediments is important to predicting future CH4 emissions. We used DNA-based stable-isotope probing (SIP), quantitative PCR (Q-PCR), and pyrosequencing analyses to identify and characterize methanotrophic communities active at a range of temperatures (4°C, 10°C, and 21°C) in sediments (to a depth of 25 cm) sampled from Lake Qalluuraq on the North Slope of Alaska. CH4 oxidation activity was measured in microcosm incubations containing sediments at all temperatures, with the highest CH4 oxidation potential of 37.5 μmol g−1 day−1 in the uppermost (depth, 0 to 1 cm) sediment at 21°C after 2 to 5 days of incubation. Q-PCR of pmoA and of the 16S rRNA genes of type I and type II methanotrophs, and pyrosequencing of 16S rRNA genes in 13C-labeled DNA obtained by SIP demonstrated that the type I methanotrophs Methylobacter, Methylomonas, and Methylosoma dominated carbon acquisition from CH4 in the sediments. The identity and relative abundance of active methanotrophs differed with the incubation temperature. Methylotrophs were also abundant in the microbial community that derived carbon from CH4, especially in the deeper sediments (depth, 15 to 20 cm) at low temperatures (4°C and 10°C), and showed a good linear relationship (R = 0.82) with the relative abundances of methanotrophs in pyrosequencing reads. This study describes for the first time how methanotrophic communities in arctic lake sediments respond to temperature variations. PMID:22522690

  19. Diversity and methane oxidation of active epibiotic methanotrophs on live Shinkaia crosnieri

    PubMed Central

    Watsuji, Tomo-o; Yamamoto, Asami; Takaki, Yoshihiro; Ueda, Kenji; Kawagucci, Shinsuke; Takai, Ken

    2014-01-01

    Shinkaia crosnieri is a galatheid crab that predominantly dwells in deep-sea hydrothermal systems in the Okinawa Trough, Japan. In this study, the phylogenetic diversity of active methanotrophs in the epibiotic microbial community on the setae of S. crosnieri was characterized by reverse transcription-polymerase chain reaction (RT-PCR) of a functional gene (pmoA) encoding a subunit of particulate methane monooxygenase. Phylogenetic analysis of pmoA transcript sequences revealed that the active epibiotic methanotrophs on S. crosnieri setae consisted of gammaproteobacterial type Ia and Ib methanotrophs. The effect of different RNA stabilization procedures on the abundance of pmoA and 16S rRNA transcripts in the epibiotic community was estimated by quantitative RT-PCR. Our novel RNA fixation method performed immediately after sampling effectively preserved cellular RNA assemblages, particularly labile mRNA populations, including pmoA mRNA. Methane consumption in live S. crosnieri was also estimated by continuous-flow incubation under atmospheric and in situ hydrostatic pressures, and provided a clear evidence of methane oxidation activity of the epibiotic microbial community, which was not significantly affected by hydrostatic pressure. Our study revealed the significant ecological function and nutritional contribution of epibiotic methanotrophs to the predominant S. crosnieri populations in the Okinawa Trough deep-sea hydrothermal systems. In conclusion, our study gave clear facts about diversity and methane oxidation of active methanotrophs in the epibiotic community associated with invertebrates. PMID:24401859

  20. Cultivation and detection of endophytic aerobic methanotrophs isolated from Sphagnum species as a perspective for environmental biotechnology

    PubMed Central

    2014-01-01

    Enriched cultures of microorganisms are an essential step in the production of inoculum of these organisms for biotechnology and bioengineering. The potential application of methanotrophic microorganisms for removal of methane produced from landfills and coal mines as well as biodegradation of toxic compounds has been widely studied. Therefore, searching for new sources of methanotrophs can contribute to increasing the possibilities of biotechnology and bioengineering. Enrichment cultures of endophytic methanotrophs from Sphagnum sp. were initiated in NMS medium, a most widely used medium for cultivation of methanotrophic bacteria from various environments proposed in 1970 by Whittenbury. Incubation was carried out at 10, 20, 30, and 37°C with vigorous shaking on a shaker (180 rpm). The source of carbon and energy for endophytes were methane at the concentration range between 1-20%. It appeared that the consortium of endophytic bacteria grew only at the temperature of 20 and 30°C. During the culture of endophytes, the measurements of gas concentration showed a steady loss of methane and oxygen, as well as accumulation of carbon dioxide as a CH4 oxidation product. The use of FISH has made characterization of endophytic consortia possible. It turned out that the population of endophytes consists of type I and II methanotrophs as well as associated non-methanotrophic bacteria. Furthermore, we determined the potential of the examined bacteria for methane oxidation, which ranged up to 4,7 μMCH4 per ml of the population of endophytes per day. PMID:25401064

  1. Shifts in identity and activity of methanotrophs in arctic lake sediments in response to temperature changes

    USGS Publications Warehouse

    He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Quensen, John; Tiedje, James M.; Leigh, Mary Beth

    2012-01-01

    Methane (CH4) flux to the atmosphere is mitigated via microbial CH4 oxidation in sediments and water. As arctic temperaturesincrease, understanding the effects of temperature on the activity and identity of methanotrophs in arctic lake sediments is importantto predicting future CH4 emissions. We used DNA-based stable-isotope probing (SIP), quantitative PCR (Q-PCR), andpyrosequencing analyses to identify and characterize methanotrophic communities active at a range of temperatures (4°C, 10°C,and 21°C) in sediments (to a depth of 25 cm) sampled from Lake Qalluuraq on the North Slope of Alaska. CH4 oxidation activitywas measured in microcosm incubations containing sediments at all temperatures, with the highest CH4 oxidation potential of37.5 mol g1 day1 in the uppermost (depth, 0 to 1 cm) sediment at 21°C after 2 to 5 days of incubation. Q-PCR of pmoA and ofthe 16S rRNA genes of type I and type II methanotrophs, and pyrosequencing of 16S rRNA genes in 13C-labeled DNA obtained bySIP demonstrated that the type I methanotrophs Methylobacter, Methylomonas, and Methylosoma dominated carbon acquisitionfrom CH4 in the sediments. The identity and relative abundance of active methanotrophs differed with the incubation temperature.Methylotrophs were also abundant in the microbial community that derived carbon from CH4, especially in the deeper sediments(depth, 15 to 20 cm) at low temperatures (4°C and 10°C), and showed a good linear relationship (R0.82) with the relativeabundances of methanotrophs in pyrosequencing reads. This study describes for the first time how methanotrophiccommunities in arctic lake sediments respond to temperature variations.

  2. Methanobactin: a copper binding compound having antibiotic and antioxidant activity isolated from methanotrophic bacteria

    DOEpatents

    DiSpirito, Alan A.; Zahn, James A.; Graham, David W.; Kim, Hyung J.; Alterman, Michail; Larive, Cynthia

    2007-04-03

    A means and method for treating bacterial infection, providing antioxidant activity, and chelating copper using a copper binding compound produced by methanotrophic bacteria is described. The compound, known as methanobactin, is the first of a new class of antibiotics having gram-positive activity. Methanobactin has been sequenced, and its structural formula determined.

  3. [Decline of Activity and Shifts in the Methanotrophic Community Structure of an Ombrotrophic Peat Bog after Wildfire].

    PubMed

    Danilova, O V; Belova, S E; Kulichevskaya, I S; Dedysh, S N

    2015-01-01

    This study examined potential disturbances of methanotrophic communities playing a key role in reducing methane emissions from the peat bog Tasin Borskoye, Vladimir oblast, Russia as a result of the 2007 wildfire. The potential activity of the methane-oxidizing filter in the burned peatland site and the abundance of indigenous methanotrophic bacteria were significantly reduced in comparison to the undisturbed site. Molecular analysis of methanotrophic community structure by means of PCR amplification and cloning of the pmoAgene encoding particulate methane monooxygenase revealed the replacement of typical peat-inhabiting, acidophilic type II methanotrophic bacteria with type I methanotrophs, which are less active in acidic environments. In summary, both the structure and the activity of the methane-oxidizing filter in burned peatland sites underwent significant changes, which were clearly pronounced even after 7 years of the natural ecosystem recovery. These results point to the long-term character of the disturbances caused by wildfire in peatlands. PMID:27169243

  4. Methanotrophic activity and bacterial diversity in volcanic-geothermal soils at Pantelleria island (Italy)

    NASA Astrophysics Data System (ADS)

    Gagliano, A. L.; D'Alessandro, W.; Tagliavia, M.; Parello, F.; Quatrini, P.

    2014-04-01

    Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas twenty-five times as potent as CO2. Recently, it has been demonstrated that volcanic/geothermal soils are source of methane, but also sites of methanotrophic activity. Methanotrophs are able to consume 10-40 Tg of CH4 a-1 and to trap more than 50% of the methane degassing through the soils. We report on methane microbial oxidation in the geothermally most active site of Pantelleria island (Italy), Favara Grande, whose total methane emission was previously estimated in about 2.5 t a-1. Laboratory incubation experiments with three top-soil samples from Favara Grande indicated methane consumption values up to 950 ng g-1 dry soil h-1. One of the three sites, FAV2, where the highest oxidation rate was detected, was further analysed on a vertical soil profile and the maximum methane consumption was measured in the top-soil layer but values > 100 ng g-1 h-1 were maintained up to a depth of 15 cm. The highest consumption rate was measured at 37 °C, but a still recognizable consumption at 80 °C (> 20 ng g-1 h-1) was recorded. In order to estimate the bacterial diversity, total soil DNA was extracted from Favara Grande and analysed using a Temporal Temperature Gradient gel Electrophoresis (TTGE) analysis of the amplified bacterial 16S rRNA gene. The three soil samples were probed by PCR using standard proteobacterial primers and newly designed verrucomicrobial primers targeting the unique methane monooxygenase gene pmoA; the presence of methanotrophs was detected in sites FAV2 and FAV3, but not in FAV1, where harsher chemical-physical conditions and negligible methane oxidation were detected. The pmoA gene libraries from the most active site FAV2 pointed out a high diversity of gammaproteobacterial methanotrophs distantly related to Methylococcus/Methylothermus genera and the presence of the newly discovered acido-thermophilic methanotrophs

  5. Impact of freshwater diversion projects on diversity and activity of methanotrophic communities in freshwater wetlands

    NASA Astrophysics Data System (ADS)

    Isaac, J.; Schulz, C. J.; Childers, G. W.

    2009-12-01

    Methanotrophic bacteria are key players in the carbon cycle capable of using methane as a sole carbon and energy source. Methanotrophs are ubiquitous in soil environments and play a key role in decreasing methane flux from anaerobic environments to the atmosphere, reducing the concentration of this greenhouse gas. Wetlands are a particularly important source of methane to the atmosphere, even though methanotrophs can consume the majority of the methane produced. Decreases in methanotrophic activity in wetland environments due to disturbance can have negative impacts with regard to greenhouse gas emissions, especially if the impact is widespread. Currently, several freshwater diversion projects are active and/or scheduled to come online in south Louisiana, delivering freshwater, sediments, and nutrients to coastal wetlands en masse to help combat subsidence and coastal erosion. Along with freshwater, these diversions also deliver other components of the Mississippi River including substantial bicarbonate alkalinity, reactive nitrogen, and sulfate. Analogous to the large scale diversion projects are smaller restoration projects that deliver treated wastewater effluent to wetlands. In particular, the Joyce Wildlife Management Area (JWMA) in southeast Louisiana has been the recipient of ~5 million gallons of treated domestic effluent per day since 2006. Both the composition of the marsh receiving the effluent and the effluent itself have similarities to Mississippi River diversions. We collected pre and post JWMA sediment microbial community DNA and created cloned libraries of genes encoding particulate methane monooxygenase (pmoA) as a proxy for methanotrophic community composition. Water chemistry data was also collected. Shifts in methanotrophic community composition were apparent as well as shifts in water chemistry. The most notable shift in water chemistry was pH, which changed from mildly acidic to slightly alkaline conditions, due to the increased alkalinity of

  6. Interactions among methanotrophs

    SciTech Connect

    Starostina, N.G.; Pashkova, N.I.; Gorkina, N.B.; Tsiomenko, A.B.

    1994-11-01

    The character of interactions among methanotrophs was investigated. All five known general of methanotrophs were screened. Pair interactions between 45 collection cultures (in 1825 pairs) were studied. Antagonism was found to be a predominant type of interactions between cultures (in more than 90% of pairs). Few interactions (less than 2%) were positive, and the others were neutral. Methanotrophs of type I exhibited a high antagonistic activity. They inhibited the growth of nearly all cultures of both types, the degree of inhibition being maximal in the majority of cases. Among type II methanotrophs, high antagonistic activity was exhibited by less than 30% of cultures. The methanotrophs of type I were inhibited by methanotrophs of type II much more weakly than type II bacteria by type I cultures. The growth of some strains of type I was even stimulated by the cultures of type II. A possible differentiation of the roles of methanotrophs of both types in natural associations is assumed to be normally predominant, and type II methanotrophs are supposed to take up the basic functions of the association under unfavorable environmental conditions. 14 refs., 2 figs., 3 tabs.

  7. Effect of temperature on denitrifying methanotrophic activity of 'Candidatus Methylomirabilis oxyfera'.

    PubMed

    Kampman, Christel; Piai, Laura; Hendrickx, Tim L G; Temmink, Hardy; Zeeman, Grietje; Buisman, Cees J N

    2014-01-01

    The activity of denitrifying methanotrophic bacteria at 11-30 °C was assessed in short-term experiments. The aim was to determine the feasibility of applying denitrifying methanotrophic bacteria in low-temperature anaerobic wastewater treatment. This study showed that biomass enriched at 21 °C had an optimum temperature of 20-25 °C and that activity dropped as temperature was increased to 30 °C. Biomass enriched at 30 °C had an optimum temperature of 25-30 °C. These results indicated that biomass from low-temperature inocula adjusted to the enrichment temperature and that low-temperature enrichment is suitable for applications in low-temperature wastewater treatment. Biomass growth at ≤20 °C still needs to be studied. PMID:25429458

  8. WWOX loss activates aerobic glycolysis

    PubMed Central

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis—a state known as “aerobic glycolysis.” Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state. PMID:27308416

  9. In-Situ Quantification of Methanotrophic Activity in a Landfill Cover Soil Using Gas Push-Pull Tests

    NASA Astrophysics Data System (ADS)

    Gomez, K. E.; Gonzalez-Gil, G.; Schroth, M. H.; Zeyer, J.

    2007-12-01

    Landfills are both a major anthropogenic source and a sink for the greenhouse gas CH4. Methanogenic bacteria produce CH4 during the anaerobic digestion of landfill waste, whereas, methanotrophic bacteria consume CH4 as it is transported through a landfill cover soil. Methanotrophs are thought to be ubiquitous in soils, but typically exist in large numbers at oxic/anoxic interfaces, close to anaerobic methane sources but exposed to oxygen required for metabolism. Accurate in-situ quantification of the sink strength of methanotrophs in landfill cover soils is needed for global carbon balances and for local emissions mitigation strategies. We measured in-situ CH4 concentrations at 30, 60, and 100 cm depth at 18 evenly spaced locations across a landfill cover soil. Furthermore, we performed Gas Push-Pull Tests (GPPTs) to estimate in-situ rates of methanotrophic activity in the cover soil. The GPPT is a gas-tracer test in which a gas mixture containing CH4, O2, and non-reactive tracer gases is injected (pushed) into the soil followed by extraction (pull) from the same location. Quantification of CH4 oxidation rates is based upon comparison of the breakthrough curves of CH4 and tracer gases. We present the results of a series of GPPTs conducted at two locations in the cover soil to assess the feasibility and reproducibility of this technique to quantify methanotrophic activity. Additional GPPTs were performed with a methanotrophic inhibitor in the injection gas mixture to confirm the appropriate choice of tracers to quantify CH4 oxidation. Estimated CH4 oxidation rate constants indicate that the cover soil contains a highly active methanotrophic community.

  10. Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil.

    PubMed

    Schroth, M H; Eugster, W; Gómez, K E; Gonzalez-Gil, G; Niklaus, P A; Oester, P

    2012-05-01

    Landfills are a major anthropogenic source of the greenhouse gas methane (CH(4)). However, much of the CH(4) produced during the anaerobic degradation of organic waste is consumed by methanotrophic microorganisms during passage through the landfill-cover soil. On a section of a closed landfill near Liestal, Switzerland, we performed experiments to compare CH(4) fluxes obtained by different methods at or above the cover-soil surface with below-ground fluxes, and to link methanotrophic activity to estimates of CH(4) ingress (loading) from the waste body at selected locations. Fluxes of CH(4) into or out of the cover soil were quantified by eddy-covariance and static flux-chamber measurements. In addition, CH(4) concentrations at the soil surface were monitored using a field-portable FID detector. Near-surface CH(4) fluxes and CH(4) loading were estimated from soil-gas concentration profiles in conjunction with radon measurements, and gas push-pull tests (GPPTs) were performed to quantify rates of microbial CH(4) oxidation. Eddy-covariance measurements yielded by far the largest and probably most representative estimates of overall CH(4) emissions from the test section (daily mean up to ∼91,500μmolm(-2)d(-1)), whereas flux-chamber measurements and CH(4) concentration profiles indicated that at the majority of locations the cover soil was a net sink for atmospheric CH(4) (uptake up to -380μmolm(-2)d(-1)) during the experimental period. Methane concentration profiles also indicated strong variability in CH(4) loading over short distances in the cover soil, while potential methanotrophic activity derived from GPPTs was high (v(max)∼13mmolL(-1)(soil air)h(-1)) at a location with substantial CH(4) loading. Our results provide a basis to assess spatial and temporal variability of CH(4) dynamics in the complex terrain of a landfill-cover soil. PMID:22143049

  11. Methane Uptake in a Semi-Arid Grassland Affected by Elevated CO2 and Warming: Role of Methanotroph Activity and Gas Diffusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Semiarid rangelands represent a significant global sink for methane (CH4) where methane uptake is controlled by methanotroph activity and the diffusivity of CH4 into the soil. Because increasing soil moisture causes diffusivity to fall but methanotroph activity to rise, methane uptake rates show a h...

  12. The importance of methanotrophic activity in geothermal soils of Pantelleria island (Italy)

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Walter; Gagliano, Antonina Lisa; Quatrini, Paola; Parello, Francesco

    2013-04-01

    Methane is a major contributor to the greenhouse effect, its atmospheric concentration being more than doubled since the XIX century. Every year 22 Tg of methane are released to the atmosphere from several natural and anthropogenic sources. Natural sources include geothermal/volcanic areas but the estimation of the total methane emission from these areas is currently not well defined since the balance between emission through degassing and microbial oxidation within the soils is not well known. Microbial oxidation in soils contributes globally for about 3-9% to the removal of methane from the atmosphere and recent studies evidenced methanotrophic activity also in soils of volcanic/geothermal areas despite their harsh environmental conditions (high temperatures, low pH and high concentrations of H2S and NH3). Methanotrophs are a diverse group of bacteria that are able to metabolize methane as their only source of carbon and energy and are found within the Alpha and Gamma classes of Proteobacteria and within the phylum Verrucomicrobia. Our purpose was to study the interaction between methanotrophic communities and the methane emitted from the geothermally most active site of Pantelleria island (Italy), Favara Grande, whose total methane emission has been previously estimated in about 2.5 t/a. Laboratory incubation experiments with soil samples from Favara Grande showed methane consumption values of up to 9500 ng g-1 dry soil per hour while soils collected outside the geothermal area consume less than 6 ng g-1 h-1. The maximum consumption was measured in the shallowest part of the soil profile (1-3 cm) and high values (>100 ng g-1 h-1) were maintained up to a depht of 15 cm. Furthermore, the highest consumption was measured at 37°C, and a still recognizable consumption (>20 ng g-1 h-1) at 80°C, with positive correlation with the methane concentration in the incubation atmosphere. These results can be considered a clear evidence of the presence of methanotrophs that

  13. Diverse electron sources support denitrification under hypoxia in the obligate methanotroph Methylomicrobium album strain BG8

    PubMed Central

    Kits, K. Dimitri; Campbell, Dustin J.; Rosana, Albert R.; Stein, Lisa Y.

    2015-01-01

    Aerobic methane-oxidizing bacteria (MOB) are a diverse group of microorganisms that are ubiquitous in natural environments. Along with anaerobic MOB and archaea, aerobic methanotrophs are critical for attenuating emission of methane to the atmosphere. Clearly, nitrogen availability in the form of ammonium and nitrite have strong effects on methanotrophic activity and their natural community structures. Previous findings show that nitrite amendment inhibits the activity of some cultivated methanotrophs; however, the physiological pathways that allow some strains to transform nitrite, expression of gene inventories, as well as the electron sources that support this activity remain largely uncharacterized. Here we show that Methylomicrobium album strain BG8 utilizes methane, methanol, formaldehyde, formate, ethane, ethanol, and ammonia to support denitrification activity under hypoxia only in the presence of nitrite. We also demonstrate that transcript abundance of putative denitrification genes, nirS and one of two norB genes, increased in response to nitrite. Furthermore, we found that transcript abundance of pxmA, encoding the alpha subunit of a putative copper-containing monooxygenase, increased in response to both nitrite and hypoxia. Our results suggest that expression of denitrification genes, found widely within genomes of aerobic methanotrophs, allow the coupling of substrate oxidation to the reduction of nitrogen oxide terminal electron acceptors under oxygen limitation. The present study expands current knowledge of the metabolic flexibility of methanotrophs by revealing that a diverse array of electron donors support nitrite reduction to nitrous oxide under hypoxia. PMID:26500622

  14. Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil

    SciTech Connect

    Schroth, M.H.; Eugster, W.; Gomez, K.E.; Gonzalez-Gil, G.; Niklaus, P.A.; Oester, P.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We quantify above- and below-ground CH{sub 4} fluxes in a landfill-cover soil. Black-Right-Pointing-Pointer We link methanotrophic activity to estimates of CH{sub 4} loading from the waste body. Black-Right-Pointing-Pointer Methane loading and emissions are highly variable in space and time. Black-Right-Pointing-Pointer Eddy covariance measurements yield largest estimates of CH{sub 4} emissions. Black-Right-Pointing-Pointer Potential methanotrophic activity is high at a location with substantial CH{sub 4} loading. - Abstract: Landfills are a major anthropogenic source of the greenhouse gas methane (CH{sub 4}). However, much of the CH{sub 4} produced during the anaerobic degradation of organic waste is consumed by methanotrophic microorganisms during passage through the landfill-cover soil. On a section of a closed landfill near Liestal, Switzerland, we performed experiments to compare CH{sub 4} fluxes obtained by different methods at or above the cover-soil surface with below-ground fluxes, and to link methanotrophic activity to estimates of CH{sub 4} ingress (loading) from the waste body at selected locations. Fluxes of CH{sub 4} into or out of the cover soil were quantified by eddy-covariance and static flux-chamber measurements. In addition, CH{sub 4} concentrations at the soil surface were monitored using a field-portable FID detector. Near-surface CH{sub 4} fluxes and CH{sub 4} loading were estimated from soil-gas concentration profiles in conjunction with radon measurements, and gas push-pull tests (GPPTs) were performed to quantify rates of microbial CH{sub 4} oxidation. Eddy-covariance measurements yielded by far the largest and probably most representative estimates of overall CH{sub 4} emissions from the test section (daily mean up to {approx}91,500 {mu}mol m{sup -2} d{sup -1}), whereas flux-chamber measurements and CH{sub 4} concentration profiles indicated that at the majority of locations the cover soil was a

  15. Short-term variations of methane concentrations and methanotrophic activity in a coastal inlet (Eckernförde Bay, Germany)

    NASA Astrophysics Data System (ADS)

    Richner, Dominik; Niemann, Helge; Steinle, Lea; Schneider von Deimling, Jens; Urban, Peter; Hoffmann, Jasper; Schmidt, Mark; Treude, Tina; Lehmann, Moritz

    2016-04-01

    Large quantities of methane are produced in anoxic sediments of continental margins and may be liberated into the overlying water column and, potentially, into the atmosphere. However, a sequence of microbially mediated methane oxidation pathways in sediments and the water column mitigate the contribution of oceans to the atmospheric methane budget. Of particular importance are methanotrophic bacteria in the water column that mediate the aerobic oxidation of methane (MOx), and represent the final sink for methane before its release to the atmosphere where it acts as a potent greenhouse gas. However methane cycling in (aerobic) marine waters is not well constrained. Particularly little is known about spatiotemporal aspects of MOx activity and the underlying key physical, chemical and biological factors. Here we show results from our investigations on methane dynamics on very short time scales of hours to days in the Eckernförde Bay (E-Bay), a costal inlet of the Baltic Sea in northern Germany featuring seasonal bottom water hypoxia/anoxia. In autumn 2014, we observed highly spatiotemporal variations in water column methane contents and MOx activity: Anoxic bottom waters in a trough in the northern part of the bay contained extremely high methane concentrations of up to 800 nM, which sharply declined at the midwater redox interface (methane remained supersaturated with respect to the atmospheric equilibrium throughout the water column at all times). The methane decrease at the redox interface was related to highly active MOx communities consuming methane under microoxic conditions at rates of up 40 nM/d. About 12 hours later, the methane content and the extend of bottom water anoxia was much lower and MOx activity was highly reduced in the northern part but strongly elevated in the southern part of the bay. A few days later, bottom water anoxia, methane loading and MOx activity was partially re-established. In this contribution, we will discuss potential forcing

  16. Responses of methanotrophic activity, community and EPS production to CH4 and O2 concentrations in waste biocover soils.

    PubMed

    Wei, Xiao-Meng; Su, Yao; Zhang, Hong-Tao; Chen, Min; He, Ruo

    2015-08-01

    Biocover soils are known to be a good alternative material to mitigate CH4 emissions from landfills to the atmosphere. In this study, 16 treatments with four O2 concentrations (∼0%, 5%, 10% and 21%) and four CH4 concentrations (i.e. 1%, 10%, 20% and 50%) were conducted to estimate extracellular polymeric substances (EPS) production, methanotrophic activity and community in response to CH4 and O2 concentrations in waste biocover soil (WBS). When the CH4 concentration was saturated for CH4 oxidation in the WBS, the continuous exposure of CH4 above the saturated concentrations could not obviously enhance CH4 oxidation activity. In the WBS, extracellular protein (ECP) production was negatively related with the tested CH4 concentrations, while both ECP and extracellular polysaccharides (ECPS) productions were positively related with the tested O2 concentrations. Cloning and terminal restriction fragment length polymorphism analyses showed that type I methanotrophs (Methylocaldum, Methylococcaceae, Methylomicrobium and Methylobacter) and type II methanotrophs (Methylosinus) dominated in the WBS. Among them, Methylocaldum and/or Methylococcaceae were sensitive to low O2 concentrations of ∼0%. Methylobacter had propensity to grow at low O2 concentrations of ∼0% and 5%, while Methylosinus preferred environments with high concentrations of CH4 (⩾10%) and O2 (21%). In the tested five environmental variables of ECPS, O2, EPS, CH4 and ECP, only ECPS and O2 concentrations had significant effect on the methanotrophic communities. These results suggested that O2 concentration in landfill covers should be paid more attention to optimize and sustain CH4 oxidation for mitigating CH4 emission from landfills. PMID:25921582

  17. Analysis of methanogenic and methanotrophic activity at the western margin of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Broemsen, E. L.; Webster, K. D.; Dieser, M.; Pratt, L. M.; Christner, B. C.

    2012-12-01

    Anoxic conditions in environments beneath the world's glaciers and ice sheets provide plausible habitats supporting the microbial production of methane. Recent reports of potential methane sources beneath the Greenland Ice Sheet (GrIS) suggest in situ production by an active community of methanogens. Beneath the GrIS, microbially derived methane can be dissolved in subglacial water, and during periods of melting, can exchange with the atmosphere at sites of subglacial discharge. Transfer of methane from subglacial fluids to the atmosphere could be a significant climate factor, but few data are available to make such assessments. The specific aim of this study was to characterize the composition and activity of methanogens and methanotrophs present in samples of subglacial outflow at the ice sheet margin near Kangerlussuaq, Greenland. Subglaical water was collected twice-weekly over a nine week period (mid July to mid September of 2012) and the dissolved methane concentration in the samples was determined via gas chromatography. Extracted RNA and DNA from the subglacial water was analyzed by analysis of 16s rRNA and rRNA genes present in the subglacial assemblages. From the molecular results we infer the presence of active methanogens related to the order Methanosarcinales. Further, locally elevated concentrations of atmospheric methane as high as 1.92 ± 0.03 ppmv, were detected in the ice tunnel of the subglacial outflow using open-path laser spectrometry. From these data we estimate rates of methane release at the ice sheet margin during the summer melt months at this geographical location. The results provide a context for addressing the impact that deglaciation will have on the release of greenhouse gases from ice sheets on a warming Earth.

  18. Draft Genomes of Gammaproteobacterial Methanotrophs Isolated from Terrestrial Ecosystems

    PubMed Central

    Hamilton, Richard; Kits, K. Dimitri; Ramonovskaya, Victoria A.; Rozova, Olga N.; Yurimoto, Hiroya; Iguchi, Hiroyuki; Khmelenina, Valentina N.; Sakai, Yasuyoshi; Dunfield, Peter F.; Klotz, Martin G.; Knief, Claudia; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Bringel, Françoise; Vuilleumier, Stéphane; Svenning, Mette M.; Shapiro, Nicole; Woyke, Tanja; Trotsenko, Yuri A.; Stein, Lisa Y.

    2015-01-01

    Genome sequences of Methylobacter luteus, Methylobacter whittenburyi, Methylosarcina fibrata, Methylomicrobium agile, and Methylovulum miyakonense were generated. The strains represent aerobic methanotrophs typically isolated from various terrestrial ecosystems. PMID:26044417

  19. Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Marine Ecosystems.

    PubMed

    Flynn, James D; Hirayama, Hisako; Sakai, Yasuyoshi; Dunfield, Peter F; Klotz, Martin G; Knief, Claudia; Op den Camp, Huub J M; Jetten, Mike S M; Khmelenina, Valentina N; Trotsenko, Yuri A; Murrell, J Colin; Semrau, Jeremy D; Svenning, Mette M; Stein, Lisa Y; Kyrpides, Nikos; Shapiro, Nicole; Woyke, Tanja; Bringel, Françoise; Vuilleumier, Stéphane; DiSpirito, Alan A; Kalyuzhnaya, Marina G

    2016-01-01

    The genome sequences of Methylobacter marinus A45, Methylobacter sp. strain BBA5.1, and Methylomarinum vadi IT-4 were obtained. These aerobic methanotrophs are typical members of coastal and hydrothermal vent marine ecosystems. PMID:26798114

  20. Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Marine Ecosystems

    PubMed Central

    Flynn, James D.; Hirayama, Hisako; Sakai, Yasuyoshi; Dunfield, Peter F.; Knief, Claudia; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Khmelenina, Valentina N.; Trotsenko, Yuri A.; Murrell, J. Colin; Semrau, Jeremy D.; Svenning, Mette M.; Stein, Lisa Y.; Kyrpides, Nikos; Shapiro, Nicole; Woyke, Tanja; Bringel, Françoise; Vuilleumier, Stéphane; DiSpirito, Alan A.

    2016-01-01

    The genome sequences of Methylobacter marinus A45, Methylobacter sp. strain BBA5.1, and Methylomarinum vadi IT-4 were obtained. These aerobic methanotrophs are typical members of coastal and hydrothermal vent marine ecosystems. PMID:26798114

  1. Aerobic Activity--Do Physical Education Programs Provide Enough?

    ERIC Educational Resources Information Center

    McGing, Eileen

    1989-01-01

    High school physical education curricula should concentrate less on sport skill development and competition, and more on health-related fitness and aerobic activity. Results are reported from a study of the type and amount of aerobic exercise provided in 29 high school physical education programs in a large metropolitan area. (IAH)

  2. Methanotrophic bacteria in oilsands tailings ponds of northern Alberta

    PubMed Central

    Saidi-Mehrabad, Alireza; He, Zhiguo; Tamas, Ivica; Sharp, Christine E; Brady, Allyson L; Rochman, Fauziah F; Bodrossy, Levente; Abell, Guy CJ; Penner, Tara; Dong, Xiaoli; Sensen, Christoph W; Dunfield, Peter F

    2013-01-01

    We investigated methanotrophic bacteria in slightly alkaline surface water (pH 7.4–8.7) of oilsands tailings ponds in Fort McMurray, Canada. These large lakes (up to 10 km2) contain water, silt, clay and residual hydrocarbons that are not recovered in oilsands mining. They are primarily anoxic and produce methane but have an aerobic surface layer. Aerobic methane oxidation was measured in the surface water at rates up to 152 nmol CH4 ml−1 water d−1. Microbial diversity was investigated via pyrotag sequencing of amplified 16S rRNA genes, as well as by analysis of methanotroph-specific pmoA genes using both pyrosequencing and microarray analysis. The predominantly detected methanotroph in surface waters at all sampling times was an uncultured species related to the gammaproteobacterial genus Methylocaldum, although a few other methanotrophs were also detected, including Methylomonas spp. Active species were identified via 13CH4 stable isotope probing (SIP) of DNA, combined with pyrotag sequencing and shotgun metagenomic sequencing of heavy 13C-DNA. The SIP-PCR results demonstrated that the Methylocaldum and Methylomonas spp. actively consumed methane in fresh tailings pond water. Metagenomic analysis of DNA from the heavy SIP fraction verified the PCR-based results and identified additional pmoA genes not detected via PCR. The metagenome indicated that the overall methylotrophic community possessed known pathways for formaldehyde oxidation, carbon fixation and detoxification of nitrogenous compounds but appeared to possess only particulate methane monooxygenase not soluble methane monooxygenase. PMID:23254511

  3. [Surface layers of methanotrophic bacteria].

    PubMed

    Khmelenina, V N; Suzina, N E; Trotsenko, Iu A

    2013-01-01

    Structural and functional characteristics of the regular glycoprotein layers in prokaryotes are analyzed with a special emphasis on aerobic methanotrophic bacteria. S-layers are present at the surfaces of Methylococcus, Methylothermus, and Methylomicrobium cells. Different Methylomicrobium species either synthesize S-layers with planar (p2, p4) symmetry or form cup-shaped or conicalstructures with hexagonal (p6) symmetry. A unique, copper-binding polypeptide 'CorA'/MopE (27/45 kDa), which is coexpressed with the diheme periplasmic cytochrome c peroxidase 'CorB'/Mca (80 kDa) was found in Methylomicrobium album BG8, Methylomicrobium alcaliphilum 20Z, and Methylococcus capsulatus Bath. This tandem of the surface proteins is functionally analogous to a new siderophore, methanobactin. Importantly, no 'CorA'/MopE homologue was found in methanotrophs not forming S-layers. The role of surface proteins in copper metabolism and initial methane oxidation is discussed. PMID:25509389

  4. Methanotrophic symbioses in marine invertebrates.

    PubMed

    Petersen, Jillian M; Dubilier, Nicole

    2009-10-01

    Symbioses between marine animals and aerobic methane-oxidizing bacteria are found at hydrothermal vents and cold seeps in the deep sea where reduced, methane-rich fluids mix with the surrounding oxidized seawater. These habitats are 'oases' in the otherwise nutrient-poor deep sea, where entire ecosystems are fueled by microbial chemosynthesis. By associating with bacteria that gain energy from the oxidation of CH4 with O2 , the animal host is indirectly able to gain nutrition from methane, an energy source that is otherwise only available to methanotrophic microorganisms. The host, in turn, provides its symbionts with continuous access to both electron acceptors and donors that are only available at a narrow oxic - anoxic interface for free-living methanotrophs. Symbiotic methane oxidizers have resisted all attempts at cultivation, so that all evidence for these symbiotic associations comes from ultrastructural, enzymatic, physiological, stable isotope and molecular biological studies of the symbiotic host tissues. In this review, we present an overview of the habitats and invertebrate hosts in which symbiotic methane oxidizers have been found, and the methods used to investigate these symbioses, focusing on the symbioses of bathymodiolin mussels that have received the most attention among methanotrophic associations. PMID:23765884

  5. Methane oxidation and molecular characterization of methanotrophs from a former mercury mine impoundment

    USGS Publications Warehouse

    Baesman, Shaun; Miller, Laurence G.; Wei, Jeremy H.; Cho, Yirang; Matys, Emily D.; Summons, Roger E.; Welander, Paula V.; Oremland, Ronald S.

    2015-01-01

    The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ13CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively 12C-enriched CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5) medium via methane oxidation.

  6. Genetic Tools for the Industrially Promising Methanotroph Methylomicrobium buryatense

    SciTech Connect

    Puri, AW; Owen, S; Chu, F; Chavkin, T; Beck, DAC; Kalyuzhnaya, MG; Lidstrom, ME

    2015-02-10

    Aerobic methanotrophs oxidize methane at ambient temperatures and pressures and are therefore attractive systems for methane-based bioconversions. In this work, we developed and validated genetic tools for Methylomicrobium buryatense, a haloalkaliphilic gammaproteobacterial (type I) methanotroph. M. buryatense was isolated directly on natural gas and grows robustly in pure culture with a 3-h doubling time, enabling rapid genetic manipulation compared to many other methanotrophic species. As a proof of concept, we used a sucrose counterselection system to eliminate glycogen production in M. buryatense by constructing unmarked deletions in two redundant glycogen synthase genes. We also selected for a more genetically tractable variant strain that can be conjugated with small incompatibility group P (IncP)-based broad-host-range vectors and determined that this capability is due to loss of the native plasmid. These tools make M. buryatense a promising model system for studying aerobic methanotroph physiology and enable metabolic engineering in this bacterium for industrial biocatalysis of methane.

  7. Survival and Recovery of Methanotrophic Bacteria Starved Under Oxic and Anoxic Conditions

    NASA Technical Reports Server (NTRS)

    Roslev, Peter; King, Gary M.

    1994-01-01

    The effects of carbon deprivation on survival of methanotrophic bacteria were compared in cultures incubated in the presence and absence of oxygen in the starvation medium. Survival and recovery of the examined methanotrophs were generally highest for cultures starved under anoxic conditions as indicated by poststarvation measurements of methane oxidation, tetrazolium salt reduction, plate counts, and protein synthesis. Methylosinus trichosporium OB3b survived up to 6 weeks of carbon deprivation under anoxic conditions while maintaining a physiological state that allowed relatively rapid (hours) methane oxidation after substrate addition. A small fraction of cells starved under oxic and anoxic conditions (4 and 10%, respectively) survived more than 10 weeks but required several days for recovery on plates and in liquid medium. A non-spore-forming methanotroph, strain WP 12, displayed 36 to 118% of its initial methane oxidation capacity after 5 days of carbon deprivation. Oxidation rates varied with growth history prior to the experiments as well as with starvation conditions. Strain WP 12 starved under anoxic conditions showed up to 90% higher methane oxidation activity and 46% higher protein production after starvation than did cultures starved under oxic conditions. Only minor changes in biomass and niorpholow were seen for methanotrophic bacteria starved tinder anoxic conditions. In contrast, starvation under oxic conditions resulted in morphology changes and an initial 28 to 35% loss of cell protein. These data suggest that methanotrophic bacteria can survin,e carbon deprivation under anoxic conditions by using maintenance energy derived Solelyr from an anaerobic endogenous metabolism. This capability could partly explain a significant potential for methane oxidation in environments not continuously, supporting aerobic methanotrophic growth.

  8. Production and Consumption of Nitric Oxide by Three Methanotrophic Bacteria

    PubMed Central

    Ren, Tie; Roy, Réal; Knowles, Roger

    2000-01-01

    We studied nitrogen oxide production and consumption by methanotrophs Methylobacter luteus (group I), Methylosinus trichosporium OB3b (group II), and an isolate from a hardwood swamp soil, here identified by 16S ribosomal DNA sequencing as Methylobacter sp. strain T20 (group I). All could consume nitric oxide (nitrogen monoxide, NO), and produce small amounts of nitrous oxide (N2O). Only Methylobacter strain T20 produced large amounts of NO (>250 parts per million by volume [ppmv] in the headspace) at specific activities of up to 2.0 × 10−17 mol of NO cell−1 day−1, mostly after a culture became O2 limited. Production of NO by strain T20 occurred mostly in nitrate-containing medium under anaerobic or nearly anaerobic conditions, was inhibited by chlorate, tungstate, and O2, and required CH4. Denitrification (methanol-supported N2O production from nitrate in the presence of acetylene) could not be detected and thus did not appear to be involved in the production of NO. Furthermore, cd1 and Cu nitrite reductases, NO reductase, and N2O reductase could not be detected by PCR amplification of the nirS, nirK, norB, and nosZ genes, respectively. M. luteus and M. trichosporium produced some NO in ammonium-containing medium under aerobic conditions, likely as a result of methanotrophic nitrification and chemical decomposition of nitrite. For Methylobacter strain T20, arginine did not stimulate NO production under aerobiosis, suggesting that NO synthase was not involved. We conclude that strain T20 causes assimilatory reduction of nitrate to nitrite, which then decomposes chemically to NO. The production of NO by methanotrophs such as Methylobacter strain T20 could be of ecological significance in habitats near aerobic-anaerobic interfaces where fluctuating O2 and nitrate availability occur. PMID:10966405

  9. Field-Scale Stable-Isotope Probing of Active Methanotrophs in a Landfill-Cover Soil

    NASA Astrophysics Data System (ADS)

    Schroth, M. H.; Henneberger, R.; Chiri, E.

    2012-12-01

    The greenhouse gas methane (CH4) is an important contributor to global climate change. While its atmospheric concentration is increasing, a large portion of produced CH4 never reaches the atmosphere, but is consumed by aerobic methane-oxidizing bacteria (MOB). The latter are ubiquitous in soils and utilize CH4 as sole source of energy and carbon. Among other methods, MOB may be differentiated based on characteristic phospholipid fatty acids (PLFA). Stable-isotope probing (SIP) on PLFA has been widely applied to identify active members of MOB communities in laboratory incubation studies, but results are often difficult to extrapolate to the field. Thus, novel field-scale approaches are needed to link activity and identity of MOB in their natural environment. We present results of field experiments in which we combined PLFA-SIP with gas push-pull tests (GPPTs) to label active MOB at the field-scale while simultaneously quantifying CH4 oxidation activity. During a SIP-GPPT, a mixture of reactive (here 13CH4, O2) and non-reactive tracer gases (e.g., Ar, Ne, He) is injected into the soil at a location of interest. Thereafter, gas flow is reversed and the gas mixture diluted with soil air is extracted from the same location and sampled periodically. Rate constants for CH4 oxidation can be calculated by analyzing breakthrough curves of 13CH4 and a suitable non-reactive tracer gas. SIP-GPPTs were performed in a landfill-cover soil, and feasibility of this novel approach was tested at several locations along a gradient of MOB activity and soil temperature. Soil samples were collected before and after SIP-GPPTs, total PLFA were extracted, and incorporation of 13C in the polar lipid fraction was analyzed. Potential CH4 oxidation rates derived from SIP-GPPTs were similar to those derived from regular GPPTs (using unlabeled CH4) performed at the same locations prior to SIP-GPPTs, indicating that application of 13CH4 did not adversely affect bacterial CH4 oxidation rates. Rates

  10. Draft Genome Sequence of the Moderately Halophilic Methanotroph Methylohalobius crimeensis Strain 10Ki

    PubMed Central

    Sharp, Christine E.; Smirnova, Angela V.; Kalyuzhnaya, Marina G.; Bringel, Françoise; Hirayama, Hisako; Jetten, Mike S. M.; Khmelenina, Valentina N.; Klotz, Martin G.; Knief, Claudia; Kyrpides, Nikos; Op den Camp, Huub J. M.; Reshetnikov, Alexander S.; Sakai, Yasuyoshi; Shapiro, Nicole; Trotsenko, Yuri A.; Vuilleumier, Stéphane; Woyke, Tanja

    2015-01-01

    Methylohalobius crimeensis strain 10Ki is a moderately halophilic aerobic methanotroph isolated from a hypersaline lake in the Crimean Peninsula, Ukraine. This organism has the highest salt tolerance of any cultured methanotroph. Here, we present a draft genome sequence of this bacterium. PMID:26067976

  11. Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera".

    PubMed

    Rasigraf, Olivia; Kool, Dorien M; Jetten, Mike S M; Sinninghe Damsté, Jaap S; Ettwig, Katharina F

    2014-04-01

    Methane is an important greenhouse gas and the most abundant hydrocarbon in the Earth's atmosphere. Methanotrophic microorganisms can use methane as their sole energy source and play a crucial role in the mitigation of methane emissions in the environment. "Candidatus Methylomirabilis oxyfera" is a recently described intra-aerobic methanotroph that is assumed to use nitric oxide to generate internal oxygen to oxidize methane via the conventional aerobic pathway, including the monooxygenase reaction. Previous genome analysis has suggested that, like the verrucomicrobial methanotrophs, "Ca. Methylomirabilis oxyfera" encodes and transcribes genes for the Calvin-Benson-Bassham (CBB) cycle for carbon assimilation. Here we provide multiple independent lines of evidence for autotrophic carbon dioxide fixation by "Ca. Methylomirabilis oxyfera" via the CBB cycle. The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), a key enzyme of the CBB cycle, in cell extracts from an "Ca. Methylomirabilis oxyfera" enrichment culture was shown to account for up to 10% of the total methane oxidation activity. Labeling studies with whole cells in batch incubations supplied with either (13)CH4 or [(13)C]bicarbonate revealed that "Ca. Methylomirabilis oxyfera" biomass and lipids became significantly more enriched in (13)C after incubation with (13)C-labeled bicarbonate (and unlabeled methane) than after incubation with (13)C-labeled methane (and unlabeled bicarbonate), providing evidence for autotrophic carbon dioxide fixation. Besides this experimental approach, detailed genomic and transcriptomic analysis demonstrated an operational CBB cycle in "Ca. Methylomirabilis oxyfera." Altogether, these results show that the CBB cycle is active and plays a major role in carbon assimilation by "Ca. Methylomirabilis oxyfera" bacteria. Our results suggest that autotrophy might be more widespread among methanotrophs than was previously assumed and implies that a methanotrophic

  12. Autotrophic Carbon Dioxide Fixation via the Calvin-Benson-Bassham Cycle by the Denitrifying Methanotroph “Candidatus Methylomirabilis oxyfera”

    PubMed Central

    Kool, Dorien M.; Jetten, Mike S. M.; Sinninghe Damsté, Jaap S.; Ettwig, Katharina F.

    2014-01-01

    Methane is an important greenhouse gas and the most abundant hydrocarbon in the Earth's atmosphere. Methanotrophic microorganisms can use methane as their sole energy source and play a crucial role in the mitigation of methane emissions in the environment. “Candidatus Methylomirabilis oxyfera” is a recently described intra-aerobic methanotroph that is assumed to use nitric oxide to generate internal oxygen to oxidize methane via the conventional aerobic pathway, including the monooxygenase reaction. Previous genome analysis has suggested that, like the verrucomicrobial methanotrophs, “Ca. Methylomirabilis oxyfera” encodes and transcribes genes for the Calvin-Benson-Bassham (CBB) cycle for carbon assimilation. Here we provide multiple independent lines of evidence for autotrophic carbon dioxide fixation by “Ca. Methylomirabilis oxyfera” via the CBB cycle. The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), a key enzyme of the CBB cycle, in cell extracts from an “Ca. Methylomirabilis oxyfera” enrichment culture was shown to account for up to 10% of the total methane oxidation activity. Labeling studies with whole cells in batch incubations supplied with either 13CH4 or [13C]bicarbonate revealed that “Ca. Methylomirabilis oxyfera” biomass and lipids became significantly more enriched in 13C after incubation with 13C-labeled bicarbonate (and unlabeled methane) than after incubation with 13C-labeled methane (and unlabeled bicarbonate), providing evidence for autotrophic carbon dioxide fixation. Besides this experimental approach, detailed genomic and transcriptomic analysis demonstrated an operational CBB cycle in “Ca. Methylomirabilis oxyfera.” Altogether, these results show that the CBB cycle is active and plays a major role in carbon assimilation by “Ca. Methylomirabilis oxyfera” bacteria. Our results suggest that autotrophy might be more widespread among methanotrophs than was previously assumed and implies that a

  13. Cardiovascular function following reduced aerobic activity

    NASA Technical Reports Server (NTRS)

    Raven, P. B.; Welch-O'Connor, R. M.; Shi, X.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    PURPOSE: The aim of this study was to test the hypothesis that a sustained reduction of physical activity (deconditioning) would alter the cardiovascular regulatory function. METHODS: Nineteen young, healthy volunteers participated in physical deconditioning for a period of 8 wk. Before (pre) and following (post) physical deconditioning, the responses of heart rate (HR), mean arterial pressure (MAP, measured by Finapres), central venous pressure (CVP), stroke volume (SV, Doppler), and forearm blood flow (FBF, plethysmography) were determined during lower body negative pressure (LBNP). The carotid baroreflex (CBR) function was assessed using a train of pulsatile neck pressure (NP) and suction, and the aortic baroreflex control of HR was assessed during steady-state phenylephrine (PE) infusion superimposed by LBNP and NP to counteract the PE increased CVP and carotid sinus pressure, respectively. RESULTS: Active physical deconditioning significantly decreased maximal oxygen uptake (-7%) and LBNP tolerance (-13%) without a change in baseline hemodynamics. Plasma volume (-3% at P = 0.135), determined by Evans Blue dilution, and blood volume (-4% at P = 0.107) were not significantly altered. During LBNP -20 to -50 torr, there was a significantly greater drop of SV per unit decrease in CVP in the post- (14.7 +/- 1.6%/mm Hg) than predeconditioning (11.2 +/- 0.7%/mm Hg) test accompanied by a greater tachycardia. Deconditioning increased the aortic baroreflex sensitivity (pre vs post: -0.61 +/- 0.12 vs -0.84 +/- 0.14 bpm.mm-1 Hg, P = 0.009) and the slope of forearm vascular resistance (calculated from [MAP-CVP]/FBF) to CVP (-2.75 +/- 0.26 vs -4.94 +/- 0.97 PRU/mm Hg, P = 0.086). However, neither the CBR-HR (-0.28 +/- 0.03 VS -0.39 +/- 0.10 bpm.mm-1 Hg) nor the CBR-MAP (-0.37 +/- 0.16 vs -0.25 +/- 0.07 mm Hg/mm Hg) gains were statistically different between pre- and postdeconditioning. CONCLUSIONS: We concluded that the functional modification of the cardiac pressure

  14. Microbial fuel cells with highly active aerobic biocathodes

    NASA Astrophysics Data System (ADS)

    Milner, Edward M.; Popescu, Dorin; Curtis, Tom; Head, Ian M.; Scott, Keith; Yu, Eileen H.

    2016-08-01

    Microbial fuel cells (MFCs), which convert organic waste to electricity, could be used to make the wastewater infrastructure more energy efficient and sustainable. However, platinum and other non-platinum chemical catalysts used for the oxygen reduction reaction (ORR) at the cathode of MFCs are unsustainable due to their high cost and long-term degradation. Aerobic biocathodes, which use microorganisms as the biocatalysts for cathode ORR, are a good alternative to chemical catalysts. In the current work, high-performing aerobic biocathodes with an onset potential for the ORR of +0.4 V vs. Ag/AgCl were enriched from activated sludge in electrochemical half-cells poised at -0.1 and + 0.2 V vs. Ag/AgCl. Gammaproteobacteria, distantly related to any known cultivated gammaproteobacterial lineage, were identified as dominant in these working electrode biofilms (23.3-44.3% of reads in 16S rRNA gene Ion Torrent libraries), and were in very low abundance in non-polarised control working electrode biofilms (0.5-0.7%). These Gammaproteobacteria were therefore most likely responsible for the high activity of biologically catalysed ORR. In MFC tests, a high-performing aerobic biocathode increased peak power 9-fold from 7 to 62 μW cm-2 in comparison to an unmodified carbon cathode, which was similar to peak power with a platinum-doped cathode at 70 μW cm-2.

  15. High resolution depth distribution of Bacteria, Archaea, methanotrophs, and methanogens in the bulk and rhizosphere soils of a flooded rice paddy

    PubMed Central

    Lee, Hyo Jung; Jeong, Sang Eun; Kim, Pil Joo; Madsen, Eugene L.; Jeon, Che Ok

    2015-01-01

    The communities and abundances of methanotrophs and methanogens, along with the oxygen, methane, and total organic carbon (TOC) concentrations, were investigated along a depth gradient in a flooded rice paddy. Broad patterns in vertical profiles of oxygen, methane, TOC, and microbial abundances were similar in the bulk and rhizosphere soils, though methane and TOC concentrations and 16S rRNA gene copies were clearly higher in the rhizosphere soil than in the bulk soil. Oxygen concentrations decreased sharply to below detection limits at 8 mm depth. Pyrosequencing of 16S rRNA genes showed that bacterial and archaeal communities varied according to the oxic, oxic-anoxic, and anoxic zones, indicating that oxygen is a determining factor for the distribution of bacterial and archaeal communities. Aerobic methanotrophs were maximally observed near the oxic-anoxic interface, while methane, TOC, and methanogens were highest in the rhizosphere soil at 30–200 mm depth, suggesting that methane is produced mainly from organic carbon derived from rice plants and is metabolized aerobically. The relative abundances of type I methanotrophs such as Methylococcus, Methylomonas, and Methylocaldum decreased more drastically than those of type II methanotrophs (such as Methylocystis and Methylosinus) with increasing depth. Methanosaeta and Methanoregula were predominant methanogens at all depths, and the relative abundances of Methanosaeta, Methanoregula, and Methanosphaerula, and GOM_Arc_I increased with increasing depth. Based on contrasts between absolute abundances of methanogens and methanotrophs at depths sampled across rhizosphere and bulk soils (especially millimeter-scale slices at the surface), we have identified populations of methanogens (Methanosaeta, Methanoregula, Methanocella, Methanobacterium, and Methanosphaerula), and methanotrophs (Methylosarcina, Methylococcus, Methylosinus, and unclassified Methylocystaceae) that are likely physiologically active in situ. PMID

  16. High resolution depth distribution of Bacteria, Archaea, methanotrophs, and methanogens in the bulk and rhizosphere soils of a flooded rice paddy.

    PubMed

    Lee, Hyo Jung; Jeong, Sang Eun; Kim, Pil Joo; Madsen, Eugene L; Jeon, Che Ok

    2015-01-01

    The communities and abundances of methanotrophs and methanogens, along with the oxygen, methane, and total organic carbon (TOC) concentrations, were investigated along a depth gradient in a flooded rice paddy. Broad patterns in vertical profiles of oxygen, methane, TOC, and microbial abundances were similar in the bulk and rhizosphere soils, though methane and TOC concentrations and 16S rRNA gene copies were clearly higher in the rhizosphere soil than in the bulk soil. Oxygen concentrations decreased sharply to below detection limits at 8 mm depth. Pyrosequencing of 16S rRNA genes showed that bacterial and archaeal communities varied according to the oxic, oxic-anoxic, and anoxic zones, indicating that oxygen is a determining factor for the distribution of bacterial and archaeal communities. Aerobic methanotrophs were maximally observed near the oxic-anoxic interface, while methane, TOC, and methanogens were highest in the rhizosphere soil at 30-200 mm depth, suggesting that methane is produced mainly from organic carbon derived from rice plants and is metabolized aerobically. The relative abundances of type I methanotrophs such as Methylococcus, Methylomonas, and Methylocaldum decreased more drastically than those of type II methanotrophs (such as Methylocystis and Methylosinus) with increasing depth. Methanosaeta and Methanoregula were predominant methanogens at all depths, and the relative abundances of Methanosaeta, Methanoregula, and Methanosphaerula, and GOM_Arc_I increased with increasing depth. Based on contrasts between absolute abundances of methanogens and methanotrophs at depths sampled across rhizosphere and bulk soils (especially millimeter-scale slices at the surface), we have identified populations of methanogens (Methanosaeta, Methanoregula, Methanocella, Methanobacterium, and Methanosphaerula), and methanotrophs (Methylosarcina, Methylococcus, Methylosinus, and unclassified Methylocystaceae) that are likely physiologically active in situ. PMID

  17. Diversity of Pristine Methanotrophic Communities in a Basalt Aquifer: Implications for Natural Attenuation of TCE

    NASA Astrophysics Data System (ADS)

    Reed, D. W.; Newby, D. T.; Delwiche, M. E.; Igoe, A.; McKinley, J. P.; Roberto, F. F.; Colwell, F. S.

    2001-12-01

    Natural attenuation of a large trichloroethylene (TCE) plume within the oxic Snake River Plain Aquifer (SRPA) appears to be occurring by aerobic co-metabolism. Methanotrophs are some of the key TCE degraders known to inhabit the aquifer. To better understand the role methanotrophs may have in TCE degradation and the relationship of methanotrophs to dissolved methane concentrations, groundwater collected from wells in the SRPA was analyzed for geochemical properties and methanotroph diversity. Microorganisms removed from groundwater by filtration were used as inocula for enrichments or were frozen and subsequently extracted for DNA. Primers that target Type I and Type II methanotroph 16S rDNA or genes that code for soluble (mmoX) and particulate (pmoA) methane monooxygenase subunits were used to characterize the indigenous methanotrophs via PCR, cloning, and sequencing. Groundwater had dissolved methane concentrations that ranged from 1 to >1000 nM. Analysis of sequencing results suggest that the group Methylocystaceae is a predominant Type II methanotroph in each sample. Methanotrophs can be detected and enriched from groundwater containing even low methane concentrations. Analysis of gene sequences provides assessments of methanotroph abundance and diversity with respect to the aquifer methane concentrations, imparting greater insight into the genetic potential of the microbial community capable of degrading TCE. This research will continue to focus on the evaluation of natural attenuation by methanotrophs.

  18. Termites Facilitate Methane Oxidation and Shape the Methanotrophic Community

    PubMed Central

    Erens, Hans; Mujinya, Basile Bazirake; Boeckx, Pascal; Baert, Geert; Schneider, Bellinda; Frenzel, Peter; Van Ranst, Eric

    2013-01-01

    Termite-derived methane contributes 3 to 4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of the methane produced can be consumed by methanotrophs that inhabit the mound material, yet the methanotroph ecology in these environments is virtually unknown. The potential for methane oxidation was determined using slurry incubations under conditions with high (12%) and in situ (∼0.004%) methane concentrations through a vertical profile of a termite (Macrotermes falciger) mound and a reference soil. Interestingly, the mound material showed higher methanotrophic activity. The methanotroph community structure was determined by means of a pmoA-based diagnostic microarray. Although the methanotrophs in the mound were derived from populations in the reference soil, it appears that termite activity selected for a distinct community. Applying an indicator species analysis revealed that putative atmospheric methane oxidizers (high-indicator-value probes specific for the JR3 cluster) were indicative of the active nest area, whereas methanotrophs belonging to both type I and type II were indicative of the reference soil. We conclude that termites modify their environment, resulting in higher methane oxidation and selecting and/or enriching for a distinct methanotroph population. PMID:24038691

  19. Progressive hypoxia decouples activity and aerobic performance of skate embryos

    PubMed Central

    Di Santo, Valentina; Tran, Anna H.; Svendsen, Jon C.

    2016-01-01

    Although fish population size is strongly affected by survival during embryonic stages, our understanding of physiological responses to environmental stressors is based primarily on studies of post-hatch fishes. Embryonic responses to acute exposure to changes in abiotic conditions, including increase in hypoxia, could be particularly important in species exhibiting long developmental time, as embryos are unable to select a different environment behaviourally. Given that oxygen is key to metabolic processes in fishes and aquatic hypoxia is becoming more severe and frequent worldwide, organisms are expected to reduce their aerobic performance. Here, we examined the metabolic and behavioural responses of embryos of a benthic elasmobranch fish, the little skate (Leucoraja erinacea), to acute progressive hypoxia, by measuring oxygen consumption and movement (tail-beat) rates inside the egg case. Oxygen consumption rates were not significantly affected by ambient oxygen levels until reaching 45% air saturation (critical oxygen saturation, Scrit). Below Scrit, oxygen consumption rates declined rapidly, revealing an oxygen conformity response. Surprisingly, we observed a decoupling of aerobic performance and activity, as tail-beat rates increased, rather than matching the declining metabolic rates, at air saturation levels of 55% and below. These results suggest a significantly divergent response at the physiological and behavioural levels. While skate embryos depressed their metabolic rates in response to progressive hypoxia, they increased water circulation inside the egg case, presumably to restore normoxic conditions, until activity ceased abruptly around 9.8% air saturation. PMID:27293746

  20. Aerobic glycolysis tunes YAP/TAZ transcriptional activity

    PubMed Central

    Enzo, Elena; Santinon, Giulia; Pocaterra, Arianna; Aragona, Mariaceleste; Bresolin, Silvia; Forcato, Mattia; Grifoni, Daniela; Pession, Annalisa; Zanconato, Francesca; Guzzo, Giulia; Bicciato, Silvio; Dupont, Sirio

    2015-01-01

    Increased glucose metabolism and reprogramming toward aerobic glycolysis are a hallmark of cancer cells, meeting their metabolic needs for sustained cell proliferation. Metabolic reprogramming is usually considered as a downstream consequence of tumor development and oncogene activation; growing evidence indicates, however, that metabolism on its turn can support oncogenic signaling to foster tumor malignancy. Here, we explored how glucose metabolism regulates gene transcription and found an unexpected link with YAP/TAZ, key transcription factors regulating organ growth, tumor cell proliferation and aggressiveness. When cells actively incorporate glucose and route it through glycolysis, YAP/TAZ are fully active; when glucose metabolism is blocked, or glycolysis is reduced, YAP/TAZ transcriptional activity is decreased. Accordingly, glycolysis is required to sustain YAP/TAZ pro-tumorigenic functions, and YAP/TAZ are required for the full deployment of glucose growth-promoting activity. Mechanistically we found that phosphofructokinase (PFK1), the enzyme regulating the first committed step of glycolysis, binds the YAP/TAZ transcriptional cofactors TEADs and promotes their functional and biochemical cooperation with YAP/TAZ. Strikingly, this regulation is conserved in Drosophila, where phosphofructokinase is required for tissue overgrowth promoted by Yki, the fly homologue of YAP. Moreover, gene expression regulated by glucose metabolism in breast cancer cells is strongly associated in a large dataset of primary human mammary tumors with YAP/TAZ activation and with the progression toward more advanced and malignant stages. These findings suggest that aerobic glycolysis endows cancer cells with particular metabolic properties and at the same time sustains transcription factors with potent pro-tumorigenic activities such as YAP/TAZ. PMID:25796446

  1. Short-term variations of methane concentrations and methanotrophic activity in a coastal inlet (Eckernförde Bay, Germany)

    NASA Astrophysics Data System (ADS)

    Niemann, Helge; Richner, Dominik; Steinle, Lea; Schneider von Deimling, Jens; Urban, Peter; Hoffmann, Jasper; Schmidt, Mark; Treude, Tina; Lehmann, Moritz F.

    2015-04-01

    Large quantities of the greenhouse gas methane are produced in anoxic sediments of continental margins and may be liberated into the overlying water column and, potentially, into the atmosphere where it further contributes to global warming. However, a sequence of microbially mediated methane oxidation pathways in sediments and the water column mitigate the contribution of oceans to the atmospheric methane budget. In anoxic sediments, specialised archaea oxidise methane with sulphate in a process that has been termed the anaerobic oxidation of methane (AOM). In addition, aerobic bacteria at the sediment surface and the water column have the potential to consume methane (aerobic oxidation of methane; MOx) that has by passed the benthic, microbial filter. However methane cycling in (aerobic) marine waters is not well constrained. Particularly little is known about spatiotemporal aspects of MOx activity and the underlying key physical, chemical and biological factors. Here we show results from our investigations on methane dynamics on very short time scales of hours to days in the Eckernförde Bay (E-Bay), a costal inlet of the Baltic Sea in northern Germany featuring seasonal bottom water hypoxia/anoxia. In autumn 2014, we observed high spatiotemporal variations in water column methane contents and MOx activity: Anoxic bottom waters in a trough in the northern part of the bay contained extremely high methane concentrations of up to 800 nM, which sharply declined at the midwater redox interface (though methane remained supersaturated with respect to the atmospheric equilibrium throughout the water column at all times). The methane decrease at the redox interface was related to highly active MOx communities consuming methane under microoxic conditions at rates of up 40 nM/d. About 12 hours later, the methane content and the extent of bottom water anoxia was much lower and MOx activity was highly reduced in the northern part but strongly elevated in the southern part of

  2. Retaining and recovering enzyme activity during degradation of TCE by methanotrophs

    SciTech Connect

    Palumbo, A.V.; Strong-Gunderson, J.M.; Carroll, S.

    1997-12-31

    To determine if compounds added during trichloroethylene (TCE) degradation could reduce the loss of enzyme activity or increase enzyme recovery, different compounds serving as energy and carbon sources, pH buffers, or free radical scavengers were tested. Formate and formic acid (reducing power and a carbon source), as well as ascorbic acid and citric acid (free radical scavengers) were added during TCE degradation at a concentration of 2 mM. A saturated solution of calcium carbonate was also tested to address pH concerns. In the presence of formate and methane, only calcium carbonate and formic acid had a beneficial effect on enzyme recovery. The calcium carbonate and formic acid both reduced the loss of enzyme activity and resulted in the highest levels of enzyme activity after recovery. 19 refs., 3 figs.

  3. Phosphatase activity of aerobic and facultative anaerobic bacteria.

    PubMed

    Pácová, Z; Kocur, M

    1978-10-01

    1115 strains of aerobic and facultatively anaerobic bacteria were tested for phosphatase activity by a conventional plate method and a microtest. The microtest was devised to allow results to be read after 4 h cultivation. Phosphatase activity was found in wide range of species and strains. Besides staphylococci, where the test for phosphatase is successfully used, it may be applied as one of the valuable tests for the differentiation of the following species: Bacillus cereus, B. licheniformis, Aeromonas spp., Vibrio parahaemolyticus, Actinobacillus spp., Pasteurella spp., Xanthomonas spp., Flavobacterium spp., Alteromonas putrefaciens, Pseudomonas maltophilia, Ps. cepacia, and some other species of Pseudomonas. The species which gave uniformly negative phosphatase reaction were as follows: Staph. saprophyticus, Acinetobacter calcoaceticus, Alcaligenes faecalis, and Bordetella bronchiseptica. PMID:216188

  4. Denitrification kinetics in anoxic/aerobic activated sludge systems

    SciTech Connect

    Horne, G.M.

    1998-12-11

    Nitrogen removal needs at municipal wastewater treatment plants (WWTPs) have increased due to greater concerns about eutrophication and increased interest in reuse of treated municipal effluents. Biological processes are the most cost-effective method for nitrogen removal. Biological nitrogen removal is accomplished in two distinctly different processes by the conversion of nitrogen in the wastewater from organic nitrogen and ammonia to nitrate, followed by reduction of the nitrate to nitrogen gas. Nitrate production occurs in an aerobic activated sludge treatment zone during a process called nitrification. The nitrate is then converted through a series of intermediate steps to nitrogen gas in an anoxic zone (an anaerobic condition with nitrate present) during a process called denitrification, effectively removing the nitrogen from the wastewater. Many different WWTP designs have been developed to incorporate these two conditions for nitrogen removal.

  5. Reliability and Validity of Self Report of Aerobic Activity: Family Health Project.

    ERIC Educational Resources Information Center

    Baranowski, Tom; And Others

    1984-01-01

    Two studies are presented which deal with reliability and validity of self-reports of aerobic activity. The goal of these studies was to develop and test a form that could be used in a behavior modification program designed to increase aerobic activity among healthy families. (Author/DF)

  6. Sorption and degradation of bisphenol A by aerobic activated sludge.

    PubMed

    Zhao, Junming; Li, Yongmei; Zhang, Chaojie; Zeng, Qingling; Zhou, Qi

    2008-06-30

    Laboratory-scale batch experiments were conducted to investigate the sorption and degradation of bisphenol A (BPA) at microg/L range in an aerobic activated sludge system. The sorption isotherms and thermodynamics indicated that the sorption of BPA on sludge was mainly a physical process in which partitioning played a dominating role. The values of sorption coefficient Koc were between 621 and 736 L/kg in the temperature range of 10-30 degrees C. Both mixed liquor suspended solid (MLSS) and temperature influenced BPA sorption on sludge. The degradation of BPA by acclimated activated sludge could be described by first-order reaction equation with the first-order degradation rate constant of 0.80 h(-1) at 20 degrees C. The decrease of initial COD concentration and the increase of MLSS concentration and temperature enhanced BPA degradation rate. The removal of BPA in the activated sludge system was characterized by a quick sorption on the activated sludge and subsequent biodegradation. PMID:18179868

  7. Spatial patterns of methane oxidation and methanotrophic diversity in landfill cover soils of southern China.

    PubMed

    Chi, Zi-Fang; Lu, Wen-Jing; Wang, Hong-Tao

    2015-04-01

    Aerobic CH4 oxidation is an important CH4 sink in landfills. To investigate the distribution and community diversity of methanotrophs and link with soil characteristics and operational parameters (e.g., concentrations of O2, CH4), cover soil samples were collected at different locations and depths from the Mengzi semi-aerobic landfill (SAL) in Yunnan Province of southern China. Specific PCR followed by denaturing gradient gel electrophoresis and realtime PCR were used to examine methanotrophs in the landfill cover soils. The results showed that different locations did harbor distinct methanotroph communities. Methanotrophs were more abundant in areas near the venting pipes because of the higher O2 concentrations. The depth of 20-25 cm, where the ratio of the CH4 to O2 was within the range from 1.3 to 8.6, was more conducive to the growth of CH4-oxidizing bacteria. Type II methanotrophs dominated in all samples compared with Type I methanotrophs, as evidenced by the high ratio of Type II to Type I methanotrophic copy numbers (from 1.76 to 11.60). The total copy numbers of methanotrophs detected were similar to other ecosystems, although the CH4 concentration was much higher in SAL cover soil. Methylobacter and Methylocystis were the most abundant Type I and Type II methanotrophs genera, respectively, in the Mengzi SAL. The results suggested that SALs could provide a special environment with both high concentrations of CH4 and O2 for methanotrophs, especially around the vertical venting pipes. PMID:25341468

  8. Electroporation-Based Genetic Manipulation in Type I Methanotrophs.

    PubMed

    Yan, Xin; Chu, Frances; Puri, Aaron W; Fu, Yanfen; Lidstrom, Mary E

    2016-04-01

    Methane is becoming a major candidate for a prominent carbon feedstock in the future, and the bioconversion of methane into valuable products has drawn increasing attention. To facilitate the use of methanotrophic organisms as industrial strains and accelerate our ability to metabolically engineer methanotrophs, simple and rapid genetic tools are needed. Electroporation is one such enabling tool, but to date it has not been successful in a group of methanotrophs of interest for the production of chemicals and fuels, the gammaproteobacterial (type I) methanotrophs. In this study, we developed electroporation techniques with a high transformation efficiency for three different type I methanotrophs: Methylomicrobium buryatense 5GB1C, Methylomonas sp. strain LW13, and Methylobacter tundripaludum 21/22. We further developed this technique in M. buryatense, a haloalkaliphilic aerobic methanotroph that demonstrates robust growth with a high carbon conversion efficiency and is well suited for industrial use for the bioconversion of methane. On the basis of the high transformation efficiency of M. buryatense, gene knockouts or integration of a foreign fragment into the chromosome can be easily achieved by direct electroporation of PCR-generated deletion or integration constructs. Moreover, site-specific recombination (FLP-FRT [FLP recombination target] recombination) and sacB counterselection systems were employed to perform marker-free manipulation, and two new antibiotics, zeocin and hygromycin, were validated to be antibiotic markers in this strain. Together, these tools facilitate the rapid genetic manipulation of M. buryatense and other type I methanotrophs, promoting the ability to perform fundamental research and industrial process development with these strains. PMID:26801578

  9. Genetic Tools for the Industrially Promising Methanotroph Methylomicrobium buryatense

    PubMed Central

    Owen, Sarah; Chu, Frances; Chavkin, Ted; Beck, David A. C.; Kalyuzhnaya, Marina G.; Lidstrom, Mary E.

    2014-01-01

    Aerobic methanotrophs oxidize methane at ambient temperatures and pressures and are therefore attractive systems for methane-based bioconversions. In this work, we developed and validated genetic tools for Methylomicrobium buryatense, a haloalkaliphilic gammaproteobacterial (type I) methanotroph. M. buryatense was isolated directly on natural gas and grows robustly in pure culture with a 3-h doubling time, enabling rapid genetic manipulation compared to many other methanotrophic species. As a proof of concept, we used a sucrose counterselection system to eliminate glycogen production in M. buryatense by constructing unmarked deletions in two redundant glycogen synthase genes. We also selected for a more genetically tractable variant strain that can be conjugated with small incompatibility group P (IncP)-based broad-host-range vectors and determined that this capability is due to loss of the native plasmid. These tools make M. buryatense a promising model system for studying aerobic methanotroph physiology and enable metabolic engineering in this bacterium for industrial biocatalysis of methane. PMID:25548049

  10. Methanotroph outer membrane preparation.

    PubMed

    Karlsen, Odd A; Berven, Frode S; Jensen, Harald B; Fjellbirkeland, Anne

    2011-01-01

    All presently known methanotrophs are gram-negative bacteria suggesting that they are surrounded by a two-layered membrane: an inner or cytoplasmic membrane and an outer membrane. In the methanotroph Methylococcus capsulatus (Bath), separation of the two membranes has allowed studies on protein and lipid composition of the outer membrane. Its outer membrane can be isolated from purified cell envelopes by selective solubilization of the inner membranes with the detergent Triton X-100. The proteins associated with the outer membrane can further be fractionated into integral and tightly associated proteins and peripheral loosely associated proteins. We present here protocols for this fractionation and show how the proteins associated with the outer leaflet of the outer membrane can be isolated and identified by whole-cell biotin surface labeling. PMID:21419921

  11. Biodegradation of trichloroethylene (TCE) by methanotrophic community.

    PubMed

    Shukla, Awadhesh K; Vishwakarma, Pranjali; Upadhyay, S N; Tripathi, Anil K; Prasana, H C; Dubey, Suresh K

    2009-05-01

    Laboratory incubation experiments were carried out to assess the potential of methanotrophic culture for degrading TCE. Measurements of the growth rate and TCE degradation showed that the methanotrophs not only grew in presence of TCE but also degraded TCE. The rate of TCE degradation was found to be 0.19 ppm h(-1). The reverse transcriptase-PCR test was conducted to quantify expression of pmoA and mmoX genes. RT-PCR revealed expression of pmoA gene only. This observation provides evidence that the pmoA gene was functionally active for pMMO enzyme during the study. The diversity of the methanotrophs involved in TCE degradation was assessed by PCR amplification, cloning, restriction fragment length polymorphism and phylogenetic analysis of pmoA genes. Results suggested the occurrence of nine different phylotypes belonging to Type II methanotrophs in the enriched cultures. Out of the nine, five clustered with, genera Methylocystis and rest got clustered in to a separate group. PMID:19157866

  12. In-vitro activity of newer quinolones against aerobic bacteria.

    PubMed

    Auckenthaler, R; Michéa-Hamzehpour, M; Pechère, J C

    1986-04-01

    Nalidixic and five newer 4-quinolones, ciprofloxacin, enoxacin, norfloxacin, ofloxacin and pefloxacin were tested against 576 recent clinical aerobic bacterial isolates. The 4-quinolones were regularly active (MIC90 less than 4 mg/l) against the following bacteria: Staphylococcus aureus, S. epidermidis, S. saprophyticus, different Enterobacteriaceae, Haemophilus influenzae, Campylobacter jejuni, Pseudomonas aeruginosa, Agrobacter spp., Aeromonas spp., Plesiomonas spp., Neisseria meningitidis. Other bacteria were usually intermediately susceptible or resistant: different streptococci, Listeria monocytogenes, Nocardia asteroides, P. maltophilia, Achromobacter xylosoxydans and Alcaligenes denitrificans. Ciprofloxacin was the most potent compound, followed by ofloxacin and pefloxacin, norfloxacin and enoxacin being less active. All the 4-quinolones were much more active than nalidixic acid. The MBC/MIC ratios of the 4-quinolones were between 1 and 2 with a majority of strains, and between 2 and 3 with Streptococcus agalactiae, Str. faecalis and L. monocytogenes. A two- to eight-fold increase of MIC was observed by increasing the inoculum 10,000-fold with most of the strains tested. Susceptible bacterial population of Klebsiella pneumoniae, Enterobacter cloacae, Serratia marcescens and P. aeruginosa contained more clones resistant to nalidixic acid (10(4) to 10(8) at four times the MIC) than to 4-quinolones (10(5) to 10(9) at four times the MIC). Supplementing the media with MgSO4 produced smaller inhibition zone diameters with a disc diffusion method than those obtained with non-supplemented agar, with all quinolone or strains. Less regular effect, or no effect was obtained after supplementation with ZnSO4 or Ca(NO3)2. PMID:2940214

  13. A temperate river estuary is a sink for methanotrophs adapted to extremes of pH, temperature and salinity

    PubMed Central

    Osborne, Kate A.; Sidgwick, Frances R.; Gray, Neil D.; Talbot, Helen M.

    2016-01-01

    Summary River Tyne (UK) estuarine sediments harbour a genetically and functionally diverse community of methane‐oxidizing bacteria (methanotrophs), the composition and activity of which were directly influenced by imposed environmental conditions (pH, salinity, temperature) that extended far beyond those found in situ. In aerobic sediment slurries methane oxidation rates were monitored together with the diversity of a functional gene marker for methanotrophs (pmoA). Under near in situ conditions (4–30°C, pH 6–8, 1–15 g l−1 NaCl), communities were enriched by sequences affiliated with M ethylobacter and M ethylomonas spp. and specifically a M ethylobacter psychrophilus‐related species at 4–21°C. More extreme conditions, namely high temperatures ≥ 40°C, high ≥ 9 and low ≤ 5 pH, and high salinities ≥ 35 g l−1 selected for putative thermophiles (M ethylocaldum), acidophiles (M ethylosoma) and haloalkaliphiles (M ethylomicrobium). The presence of these extreme methanotrophs (unlikely to be part of the active community in situ) indicates passive dispersal from surrounding environments into the estuary. PMID:26617278

  14. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes

    PubMed Central

    Oswald, Kirsten; Milucka, Jana; Brand, Andreas; Littmann, Sten; Wehrli, Bernhard; Kuypers, Marcel M. M.; Schubert, Carsten J.

    2015-01-01

    Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere. PMID:26193458

  15. Methanotrophic activity in the water column above shallow gas flares west of Prins Karls Forland, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Gründger, Friederike; Svenning, Mette M.; Niemann, Helge; Silyakova, Anna; Serov, Pavel; Pavlov, Alexey K.; Granskog, Mats A.; Ferre, Bénédicte; Carroll, JoLynn

    2016-04-01

    Numerous gas flares, interpreted to be streams of methane bubbles, were discovered in shallow waters (average water depth about 90 m) on the continental shelf west of Prins Karls Forland (Western Svalbard) in the Arctic Ocean. Gas is released from the seabed to the water column and potentially transferred into the atmosphere where it acts as a potent greenhouse gas. In order to resolve the fate of dissolved methane in the water column, we carried out grid-pattern biogeochemical measurements in the study area of 30 x 15 km. Specifically, we measured concentrations of dissolved methane and microbial methane oxidation (MOx) rates at 8 water depths at 31 sampling stations and performed 16S rRNA sequencing analysis on selected samples to characterize the microbial community composition. Availability of dissolved methane is essential for the process of microbial methane oxidation. However, our measurements reveal that high concentrations of dissolved methane in the water column do not necessarily lead to high MOx rates. Our results indicated that the presence of marine methanotrophic biomass as well as dissolved organic matter is of larger importance for the process of microbial methane oxidation. For example, we found MOx hot spots with values up to 13 nmol l‑1 d‑1 at bottom water depth with dissolved methane concentrations less than 160 nmol l‑1. In contrast, at stations where bottom methane concentration values reached 640 nmol l‑1, MOx rates were less than 0.7 nmol l‑1 d‑1. To interpret observed interconnection between methane concentrations and MOx rates, we use vertical distributions of seawater temperature, salinity and properties of colored dissolved organic matter (CDOM). This information helps us characterize the oceanographic setting and circulation patterns in the area, which we believe has a major impact on the origin and distribution of methanotrophic microbial biomass and methane oxidation in methanerich bottom water. This study is part of the

  16. Influence of the endogenous storage lipid poly-[beta]-hydroxybutyrate on the reducing power availability during cometabolism of trichloroethylene and naphthalene by resting methanotrophic mixed cultures

    SciTech Connect

    Henrysson, T.; McCarty, P.L. )

    1993-05-01

    Trichloroethylene (TCE) is one of the most frequently detected toxic contaminants in ground water. TCE degradation by methanotrophs is a cometabolic process in which methane, but not TCE, is used as the primary substrate for energy and cell carbon. Developing a bioreactor in which cells can degrade TCE without competition is of interest in in-situ treatments. This study determines what relationship might exist between the poly-[beta]-hydroxybutyrate (PHB) content in methanotrophic cells and their naphthalene oxidation rates. In addition, the relationship between TCE transformation rate and capacity and PHB content is examined. Finally, the possibilities for manipulation of the PHB content are examined, as is the effect of PHB on the observed decrease in methane monooxygenase activity with resting aerobic cells. 30 refs., 4 figs., 3 tabs.

  17. Methanotrophs Contribute to Peatland Nitrogen

    NASA Astrophysics Data System (ADS)

    Larmola, Tuula; Leppänen, Sanna M.; Tuittila, Eeva-Stiina; Aarva, Maija; Merilä, Päivi; Fritze, Hannu; Tiirola, Marja

    2016-04-01

    Atmospheric nitrogen (N2) fixation is potentially an important N input mechanism to peatland ecosystems, but the extent of this process may have been underestimated because of the methods traditionally used inhibit the activity of methanothrophs. We examined the linkage of methane (CH4) oxidation and N2 fixation using 15N2 technique. Dominant flark and hummock Sphagnum species were collected from twelve pristine peatlands in Siikajoki, Finland, which varied in age from 200 to 2,500 y due to the postglacial rebound. The mosses were incubated in a two-day field 15N2 and 13CH4 pulse labelling experiment and the incorporation of 15N2 and 13CH4 in biomass was measured with Isotope Ratio Mass Spectrometer. The rates of Sphagnum-associated N2 fixation (0.1-2.9 g N m-2 y-1) were up to 10 times the current N deposition rates. Methane-induced N2 fixation contributed to over 1/3 of moss-associated N2 fixation in younger stages, but was switched off in old successional stages, despite active CH4 oxidation in these stages. Both the N2 fixation rates and the methanotrophic contribution to N2 fixation during peatland succession were primarily constrained by phosphorus availability. Previously overlooked methanotrophic N contribution may explain rapid peat and N accumulation during fen stages of peatland development. Reference. Larmola T., Leppänen S.M., Tuittila E.-S, Aarva M., Merilä P., Fritze H., Tiirola M. (2014) Methanotrophy induces nitrogen fixation during peatland development. Proceedings of the National Academy of Sciences USA 111 (2): 734-739.

  18. Spatio-temporal Variation of Sediment Methanotrophic Microorganisms in a Large Eutrophic Lake.

    PubMed

    Yang, Yuyin; Zhao, Qun; Cui, Yahui; Wang, Yilin; Xie, Shuguang; Liu, Yong

    2016-01-01

    Aerobic methane-oxidizing bacteria (MOB) play a crucial role in mitigating the methane emission from lake ecosystems to the atmosphere. However, the distribution of methanotrophic community in shallow and eutrophic lake and its influential factors remain essentially unclear. The present study investigated sediment methanotrophic microorganisms at different sites in eutrophic freshwater Dianchi Lake (China) in two different seasons. The abundance, diversity, and structure of sediment methanotrophic community showed a profound spatial and seasonal variation. The pmoA gene copy number in lake sediments ranged from 8.71 ± 0.49 × 10(4) to 2.09 ± 0.03 × 10(7) copies per gram of dry sediment. Sediment methanotrophic communities were composed of Methylococcus and Methylobacter (type I methanotrophs) and Methylosinus (type II methanotrophs), while type I MOB usually outnumbered type II MOB. Moreover, ammonia nitrogen was found to be a potential determinant of methanotrophic community structure in Dianchi Lake. PMID:26318324

  19. Biochemical and molecular characterization of methanotrophs in soil from a pristine New Zealand beech forest.

    PubMed

    Singh, Brajesh K; Tate, Kevin

    2007-10-01

    Methane (CH4) oxidation and the methanotrophic community structure of a pristine New Zealand beech forest were investigated using biochemical and molecular methods. Phospholipid-fatty acid-stable-isotope probing (PLFA-SIP) was used to identify the active population of methanotrophs in soil beneath the forest floor, while terminal-restriction fragment length polymorphism (T-RFLP) and cloning and sequencing of the pmoA gene were used to characterize the methanotrophic community. PLFA-SIP suggested that type II methanotrophs were the predominant active group. T-RFLP and cloning and sequencing of the pmoA genes revealed that the methanotrophic community was diverse, and a slightly higher number of type II methanotrophs were detected in the clone library. Most of the clones from type II methanotrophs were related to uncultured pmoA genes obtained directly from environmental samples, while clones from type I were distantly related to Methylococcus capsulatus. A combined data analysis suggested that the type II methanotrophs may be mainly responsible for atmospheric CH4 consumption. Further sequence analysis suggested that most of the methanotrophs detected shared their phylogeny with methanotrophs reported from soils in the Northern Hemisphere. However, some of the pmoA sequences obtained from this forest had comparatively low similarity (<97%) to known sequences available in public databases, suggesting that they may belong to novel groups of methanotrophic bacteria. Different methods of methanotrophic community analysis were also compared, and it is suggested that a combination of molecular methods with PLFA-SIP can address several shortcomings of stable isotope probing. PMID:17696992

  20. Vertebrate blood cell volume increases with temperature: implications for aerobic activity

    PubMed Central

    Zenil-Ferguson, Rosana

    2014-01-01

    Aerobic activity levels increase with body temperature across vertebrates. Differences in these levels, from highly active to sedentary, are reflected in their ecology and behavior. Yet, the changes in the cardiovascular system that allow for greater oxygen supply at higher temperatures, and thus greater aerobic activity, remain unclear. Here we show that the total volume of red blood cells in the body increases exponentially with temperature across vertebrates, after controlling for effects of body size and taxonomy. These changes are accompanied by increases in relative heart mass, an indicator of aerobic activity. The results point to one way vertebrates may increase oxygen supply to meet the demands of greater activity at higher temperatures. PMID:24765580

  1. Trimetallic Au/Pt/Rh Nanoparticles as Highly Active Catalysts for Aerobic Glucose Oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Haijun; Cao, Yingnan; Lu, Lilin; Cheng, Zhong; Zhang, Shaowei

    2015-02-01

    This paper reports the findings of an investigation of the correlations between the catalytic activity for aerobic glucose oxidation and the composition of Au/Pt/Rh trimetallic nanoparticles (TNPs) with average diameters of less than 2.0 nm prepared by rapid injection of NaBH4. The prepared TNPs were characterized by UV-Vis, TEM, and HR-TEM. The catalytic activity of the alloy-structured TNPs for aerobic glucose oxidation is several times higher than that of Au monometallic nanoparticles with nearly the same particle size. The catalytic activities of the TNP catalysts were dependent not only on the composition, but also on the electronic structure. The high catalytic activities of the Au/Pt/Rh TNPs can be ascribed to the formed negative-charged Au atoms due to electron donation of Rh neighboring atoms acting as catalytically active sites for aerobic glucose oxidation.

  2. Degradation of methyl bromide by methanotrophic bacteria in cell suspensions and soils

    USGS Publications Warehouse

    Oremland, R.S.; Miller, L.G.; Culbertson, C.W.; Connell, T.L.; Jahnke, L.

    1994-01-01

    Cell suspensions of Methylococcus capsulatus mineralized methyl bromide (MeBr), as evidenced by its removal from the gas phase, the quantitative recovery of Br- in the spent medium, and the production of 14CO2 from [14C]MeBr. Methyl fluoride (MeF) inhibited oxidation of methane as well as that of [14C]MeBr. The rate of MeBr consumption by cells varied inversely with the supply of methane, which suggested a competitive relationship between these two substrates. However, MeBr did not support growth of the methanotroph. In soils exposed to high levels (10,000 ppm) of MeBr, methane oxidation was completely inhibited. At this concentration, MeBr removal rates were equivalent in killed and live controls, which indicated a chemical rather than biological removal reaction. At lower concentrations (1,000 ppm) of MeBr, methanotrophs were active and MeBr consumption rates were 10-fold higher in live controls than in killed controls. Soils exposed to trace levels (10 ppm) of MeBr demonstrated complete consumption within 5 h of incubation, while controls inhibited with MeF or incubated without O2 had 50% lower removal rates. Aerobic soils oxidized [14C]MeBr to 14CO2, and MeF inhibited oxidation by 72%. Field experiments demonstrated slightly lower MeBr removal rates in chambers containing MeF than in chambers lacking MeF. Collectively, these results show that soil methanotrophic bacteria, as well as other microbes, can degrade MeBr present in the environment.

  3. Characterization of recombinant pyrophosphate-dependent 6-phosphofructokinase from halotolerant methanotroph Methylomicrobium alcaliphilum 20Z.

    PubMed

    Rozova, Olga N; Khmelenina, Valentina N; Vuilleumier, Stéphane; Trotsenko, Yuri A

    2010-12-01

    Pyrophosphate-dependent 6-phosphofructokinase (PPi-PFK) was obtained as His₆-tagged protein by cloning of the pfp gene from the aerobic obligate methanotroph Methylomicrobium alcaliphilum 20Z and characterized. The recombinant PPi-PFK (4×45 kDa) was highly active, non-allosteric and stringently specific to pyrophosphate as the phosphoryl donor. The enzyme was more specific for the reverse reaction substrate fructose-1,6-bisphosphate (K(m) 0.095 mM, V(max) 805 U/mg of protein) than for the forward reaction substrate fructose-6-phosphate (K(m) 0.64 mM, V(max) 577 U/mg of protein). It also phosphorylated sedoheptulose-7-phosphate with much lower efficiency (K(m) 1.01 mM, V(max) 0.118 U/mg of protein). The kinetic properties of the M. alcaliphilum PP(i)-PFK were analyzed and compared with those of PP(i)-PFKs from other methanotrophs. The PP(i)-PFK from M. alcaliphilum shows highest sequence identity to PPi-PFK from obligate mesophilic methanotroph Methylomonas methanica (89%), and only low identity to the enzyme from thermotolerant Methylococcus capsulatus Bath (16%). This extensive sequence divergence of PPi-PFKs correlated with differential ability to phosphorylate sedoheptulose-7-phosphate and with the metabolic patterns of these bacteria assimilating C₁ substrate either via the ribulose monophoshate (RuMP) cycle or simultaneously via the RuMP and the Calvin cycles. Based on enzymic and genomic data, the involvement of PPi-PFK in pyrophosphate-dependent glycolysis in M. alcaliphilum 20Z was fist proposed. PMID:20868748

  4. Occurrence and activity of sulphate reducing bacteria in aerobic activated sludge systems.

    PubMed

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-03-01

    In the sewage or wastewater treatment plant, biological sulphate reduction can occur spontaneously or be applied beneficially for its treatment. The results of this study can be applied to control SRB in the sewage and WWTP. Therefore, population diversity analyses of SRB for nine activated sludge wastewater treatment plants (WWTP) in the Netherlands and the effect of long-term (months) oxygen exposures on the SRB activity were carried out. T-RFLP and clone sequencing analyses of winter and summer samples revealed that (1) all WWTP have a similar SRB population, (2) there is no seasonal impact (10-20 °C) on the SRB population present in the WWTP and (3) Desulfobacter postgatei, Desulfovibrio desulfuricans and Desulfovibrio intestinalis were the most common and dominant SRB species observed in these samples, and origin from the sewage. Short term activity tests demonstrated that SRB were not active in the aerobic WWTP, but while flushed with N2-gas SRB became slightly active after 3 h. In a laboratory reactor at a dissolved oxygen concentration of <2 %, sulphate reduction occurred and 89 % COD removal was achieved. SRB grew in granules, in order to protect themselves for oxygen exposures. SRB are naturally present in aerobic WWTP, which is due to the formation of granules. PMID:25649202

  5. Ammonium adsorption in aerobic granular sludge, activated sludge and anammox granules.

    PubMed

    Bassin, J P; Pronk, M; Kraan, R; Kleerebezem, R; van Loosdrecht, M C M

    2011-10-15

    The ammonium adsorption properties of aerobic granular sludge, activated sludge and anammox granules have been investigated. During operation of a pilot-scale aerobic granular sludge reactor, a positive relation between the influent ammonium concentration and the ammonium adsorbed was observed. Aerobic granular sludge exhibited much higher adsorption capacity compared to activated sludge and anammox granules. At an equilibrium ammonium concentration of 30 mg N/L, adsorption obtained with activated sludge and anammox granules was around 0.2 mg NH4-N/g VSS, while aerobic granular sludge from lab- and pilot-scale exhibited an adsorption of 1.7 and 0.9 mg NH4-N/g VSS, respectively. No difference in the ammonium adsorption was observed in lab-scale reactors operated at different temperatures (20 and 30 °C). In a lab-scale reactor fed with saline wastewater, we observed that the amount of ammonium adsorbed considerably decreased when the salt concentration increased. The results indicate that adsorption or better ion exchange of ammonium should be incorporated into models for nitrification/denitrification, certainly when aerobic granular sludge is used. PMID:21840028

  6. Adults Eligible for Cardiovascular Disease Prevention Counseling and Participation in Aerobic Physical Activity - United States, 2013.

    PubMed

    Omura, John D; Carlson, Susan A; Paul, Prabasaj; Watson, Kathleen B; Loustalot, Fleetwood; Foltz, Jennifer L; Fulton, Janet E

    2015-09-25

    Cardiovascular disease (CVD) is the leading cause of death in the United States, and physical inactivity is a major risk factor (1). Health care professionals have a role in counseling patients about physical activity for CVD prevention. In August 2014, the U.S. Preventive Services Task Force (USPSTF) recommended that adults who are overweight or obese and have additional CVD risk factors be offered or referred to intensive behavioral counseling interventions to promote a healthful diet and physical activity for CVD prevention. Although the USPSTF recommendation does not specify an amount of physical activity, the 2008 Physical Activity Guidelines for Americans state that for substantial health benefits adults should achieve ≥150 minutes per week of moderate-intensity aerobic physical activity or ≥75 minutes per week of vigorous-intensity aerobic activity, or an equivalent combination of moderate- and vigorous-intensity aerobic physical activity. To assess the proportion of adults eligible for intensive behavioral counseling and not meeting the aerobic physical activity guideline, CDC analyzed data from the 2013 Behavioral Risk Factor Surveillance System (BRFSS). This analysis indicated that 36.8% of adults were eligible for intensive behavioral counseling for CVD prevention. Among U.S. states and the District of Columbia (DC), the prevalence of eligible adults ranged from 29.0% to 44.6%. Nationwide, 19.9% of all adults were eligible and did not meet the aerobic physical activity guideline. These data can inform the planning and implementation of health care interventions for CVD prevention that are based on physical activity. PMID:26401758

  7. Change in energy expenditure and physical activity in response to aerobic and resistance exercise programs.

    PubMed

    Drenowatz, Clemens; Grieve, George L; DeMello, Madison M

    2015-01-01

    Exercise is considered an important component of a healthy lifestyle but there remains controversy on effects of exercise on non-exercise physical activity (PA). The present study examined the prospective association of aerobic and resistance exercise with total daily energy expenditure and PA in previously sedentary, young men. Nine men (27.0 ± 3.3 years) completed two 16-week exercise programs (3 exercise sessions per week) of aerobic and resistance exercise separated by a minimum of 6 weeks in random order. Energy expenditure and PA were measured with the SenseWear Mini Armband prior to each intervention as well as during week 1, week 8 and week 16 of the aerobic and resistance exercise program. Body composition was measured via dual x-ray absorptiometry. Body composition did not change in response to either exercise intervention. Total daily energy expenditure on exercise days increased by 443 ± 126 kcal/d and 239 ± 152 kcal/d for aerobic and resistance exercise, respectively (p < 0.01). Non-exercise moderate-to-vigorous PA, however, decreased on aerobic exercise days (-148 ± 161 kcal/d; p = 0.03). There was no change in total daily energy expenditure and PA on non-exercise days with aerobic exercise while resistance exercise was associated with an increase in moderate-to-vigorous PA during non-exercise days (216 ± 178 kcal/d, p = 0.01). Results of the present study suggest a compensatory reduction in PA in response to aerobic exercise. Resistance exercise, on the other hand, appears to facilitate non-exercise PA, particularly on non-exercise days, which may lead to more sustainable adaptations in response to an exercise program. PMID:26702387

  8. III. The importance of physical activity and aerobic fitness for cognitive control and memory in children.

    PubMed

    Chaddock-Heyman, Laura; Hillman, Charles H; Cohen, Neal J; Kramer, Arthur F

    2014-12-01

    In this chapter, we review literature that examines the association among physical activity, aerobic fitness, cognition, and the brain in elementary school children (ages 7-10 years). Specifically, physical activity and higher levels of aerobic fitness in children have been found to benefit brain structure, brain function, cognition, and school achievement. For example, higher fit children have larger brain volumes in the basal ganglia and hippocampus, which relate to superior performance on tasks of cognitive control and memory, respectively, when compared to their lower fit peers. Higher fit children also show superior brain function during tasks of cognitive control, better scores on tests of academic achievement, and higher performance on a real-world street crossing task, compared to lower fit and less active children. The cross-sectional findings are strengthened by a few randomized, controlled trials, which demonstrate that children randomly assigned to a physical activity intervention group show greater brain and cognitive benefits compared to a control group. Because these findings suggest that the developing brain is plastic and sensitive to lifestyle factors, we also discuss typical structural and functional brain maturation in children to provide context in which to interpret the effects of physical activity and aerobic fitness on the developing brain. This research is important because children are becoming increasingly sedentary, physically inactive, and unfit. An important goal of this review is to emphasize the importance of physical activity and aerobic fitness for the cognitive and brain health of today's youth. PMID:25387414

  9. Effect of short-time aerobic digestion on bioflocculation of extracellular polymeric substances from waste activated sludge.

    PubMed

    Zhang, Zhiqiang; Zhang, Jiao; Zhao, Jianfu; Xia, Siqing

    2015-02-01

    The effect of short-time aerobic digestion on bioflocculation of extracellular polymeric substances (EPSs) from waste activated sludge (WAS) was investigated. Bioflocculation of the EPS was found to be enhanced by 2∼6 h of WAS aerobic digestion under the conditions of natural sludge pH (about 7), high sludge concentration by gravity thickening, and dissolved oxygen of about 2 mg/L. With the same EPS extraction method, the total suspended solid content reduction of 0.20 and 0.36 g/L and the volatile suspended solid content reduction of 0.19 and 0.26 g/L were found for the WAS samples before and after aerobic digestion of 4 h. It indicates that more EPS is produced by short-time aerobic digestion of WAS. The scanning electron microscopy images of the WAS samples before and after aerobic digestion of 4 h showed that more EPS appeared on the surface of zoogloea by aerobic digestion, which reconfirmed that WAS aerobic digestion induced abundant formation of EPS. By WAS aerobic digestion, the flocculating rate of the EPS showed about 31 % growth, almost consistent with the growth of its yield (about 34 %). The EPSs obtained before and after the aerobic digestion presented nearly the same components, structures, and Fourier transform infrared spectra. These results revealed that short-time aerobic digestion of WAS enhanced the flocculation of the EPS by promoting its production. PMID:23771440

  10. Effects of an Aerobic Activity Program on the Cholesterol Levels of Adolescents.

    ERIC Educational Resources Information Center

    Looney, Marilyn A.; Rimmer, James H.

    1997-01-01

    Reports a study that examined the effects of a 15-week aerobic activity program on high school students' cholesterol levels. Analysis of control and participating students indicated that there were significant reductions in total cholesterol in the training group. There were no significant differences between groups in high density lipoprotein…

  11. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  12. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism.

    PubMed

    Dienel, Gerald A; Cruz, Nancy F

    2016-07-01

    Aerobic glycolysis occurs during brain activation and is characterized by preferential up-regulation of glucose utilization compared with oxygen consumption even though oxygen level and delivery are adequate. Aerobic glycolysis is a widespread phenomenon that underlies energetics of diverse brain activities, such as alerting, sensory processing, cognition, memory, and pathophysiological conditions, but specific cellular functions fulfilled by aerobic glycolysis are poorly understood. Evaluation of evidence derived from different disciplines reveals that aerobic glycolysis is a complex, regulated phenomenon that is prevented by propranolol, a non-specific β-adrenoceptor antagonist. The metabolic pathways that contribute to excess utilization of glucose compared with oxygen include glycolysis, the pentose phosphate shunt pathway, the malate-aspartate shuttle, and astrocytic glycogen turnover. Increased lactate production by unidentified cells, and lactate dispersal from activated cells and lactate release from the brain, both facilitated by astrocytes, are major factors underlying aerobic glycolysis in subjects with low blood lactate levels. Astrocyte-neuron lactate shuttling with local oxidation is minor. Blockade of aerobic glycolysis by propranolol implicates adrenergic regulatory processes including adrenal release of epinephrine, signaling to brain via the vagus nerve, and increased norepinephrine release from the locus coeruleus. Norepinephrine has a powerful influence on astrocytic metabolism and glycogen turnover that can stimulate carbohydrate utilization more than oxygen consumption, whereas β-receptor blockade 're-balances' the stoichiometry of oxygen-glucose or -carbohydrate metabolism by suppressing glucose and glycogen utilization more than oxygen consumption. This conceptual framework may be helpful for design of future studies to elucidate functional roles of preferential non-oxidative glucose utilization and glycogen turnover during brain

  13. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia

    PubMed Central

    Berney, Michael; Greening, Chris; Conrad, Ralf; Jacobs, William R.; Cook, Gregory M.

    2014-01-01

    Oxygen availability is a major factor and evolutionary force determining the metabolic strategy of bacteria colonizing an environmental niche. In the soil, conditions can switch rapidly between oxia and anoxia, forcing soil bacteria to remodel their energy metabolism accordingly. Mycobacterium is a dominant genus in the soil, and all its species are obligate aerobes. Here we show that an obligate aerobe, the soil actinomycete Mycobacterium smegmatis, adopts an anaerobe-type strategy by activating fermentative hydrogen production to adapt to hypoxia. This process is controlled by the two-component system DosR-DosS/DosT, an oxygen and redox sensor that is well conserved in mycobacteria. We show that DosR tightly regulates the two [NiFe]-hydrogenases: Hyd3 (MSMEG_3931-3928) and Hyd2 (MSMEG_2719-2718). Using genetic manipulation and high-sensitivity GC, we demonstrate that Hyd3 facilitates the evolution of H2 when oxygen is depleted. Combined activity of Hyd2 and Hyd3 was necessary to maintain an optimal NAD+/NADH ratio and enhanced adaptation to and survival of hypoxia. We demonstrate that fermentatively-produced hydrogen can be recycled when fumarate or oxygen become available, suggesting Mycobacterium smegmatis can switch between fermentation, anaerobic respiration, and aerobic respiration. Hydrogen metabolism enables this obligate aerobe to rapidly meet its energetic needs when switching between microoxic and anoxic conditions and provides a competitive advantage in low oxygen environments. PMID:25049411

  14. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia.

    PubMed

    Berney, Michael; Greening, Chris; Conrad, Ralf; Jacobs, William R; Cook, Gregory M

    2014-08-01

    Oxygen availability is a major factor and evolutionary force determining the metabolic strategy of bacteria colonizing an environmental niche. In the soil, conditions can switch rapidly between oxia and anoxia, forcing soil bacteria to remodel their energy metabolism accordingly. Mycobacterium is a dominant genus in the soil, and all its species are obligate aerobes. Here we show that an obligate aerobe, the soil actinomycete Mycobacterium smegmatis, adopts an anaerobe-type strategy by activating fermentative hydrogen production to adapt to hypoxia. This process is controlled by the two-component system DosR-DosS/DosT, an oxygen and redox sensor that is well conserved in mycobacteria. We show that DosR tightly regulates the two [NiFe]-hydrogenases: Hyd3 (MSMEG_3931-3928) and Hyd2 (MSMEG_2719-2718). Using genetic manipulation and high-sensitivity GC, we demonstrate that Hyd3 facilitates the evolution of H2 when oxygen is depleted. Combined activity of Hyd2 and Hyd3 was necessary to maintain an optimal NAD(+)/NADH ratio and enhanced adaptation to and survival of hypoxia. We demonstrate that fermentatively-produced hydrogen can be recycled when fumarate or oxygen become available, suggesting Mycobacterium smegmatis can switch between fermentation, anaerobic respiration, and aerobic respiration. Hydrogen metabolism enables this obligate aerobe to rapidly meet its energetic needs when switching between microoxic and anoxic conditions and provides a competitive advantage in low oxygen environments. PMID:25049411

  15. Detection of autotrophic verrucomicrobial methanotrophs in a geothermal environment using stable isotope probing.

    PubMed

    Sharp, Christine E; Stott, Matthew B; Dunfield, Peter F

    2012-01-01

    Genomic analysis of the methanotrophic verrucomicrobium "Methylacidiphilum infernorum" strain V4 has shown that most pathways conferring its methanotrophic lifestyle are similar to those found in proteobacterial methanotrophs. However, due to the large sequence divergence of its methane monooxygenase-encoding genes (pmo), "universal" pmoA polymerase chain reaction (PCR) primers do not target these bacteria. Unlike proteobacterial methanotrophs, "Methylacidiphilum" fixes carbon autotrophically, and uses methane only for energy generation. As a result, techniques used to detect methanotrophs in the environment such as (13)CH(4)-stable isotope probing (SIP) and pmoA-targeted PCR do not detect verrucomicrobial methanotrophs, and they may have been overlooked in previous environmental studies. We developed a modified SIP technique to identify active methanotrophic Verrucomicrobia in the environment by labeling with (13)CO(2) and (13)CH(4), individually and in combination. Testing the protocol in "M. infernorum" strain V4 resulted in assimilation of (13)CO(2) but not (13)CH(4), verifying its autotrophic lifestyle. To specifically detect methanotrophs (as opposed to other autotrophs) via (13)CO(2)-SIP, a quantitative PCR (qPCR) assay specific for verrucomicrobial-pmoA genes was developed and used in combination with SIP. Incubation of an acidic, high-temperature geothermal soil with (13)CH(4) + (12)CO(2) caused little shift in the density distribution of verrucomicrobial-pmoA genes relative to controls. However, labeling with (13)CO(2) in combination with (12)CH(4) or (13)CH(4) induced a strong shift in the distribution of verrucomicrobial-pmoA genes towards the heavy DNA fractions. The modified SIP technique demonstrated that the primary methanotrophs active in the soil were autotrophs and belonged to the Verrucomicrobia. This is the first demonstration of autotrophic, non-proteobacterial methanotrophy in situ, and provides a tool to detect verrucomicrobial methanotrophs

  16. Detection of autotrophic verrucomicrobial methanotrophs in a geothermal environment using stable isotope probing

    PubMed Central

    Sharp, Christine E.; Stott, Matthew B.; Dunfield, Peter F.

    2012-01-01

    Genomic analysis of the methanotrophic verrucomicrobium “Methylacidiphilum infernorum” strain V4 has shown that most pathways conferring its methanotrophic lifestyle are similar to those found in proteobacterial methanotrophs. However, due to the large sequence divergence of its methane monooxygenase-encoding genes (pmo), “universal” pmoA polymerase chain reaction (PCR) primers do not target these bacteria. Unlike proteobacterial methanotrophs, “Methylacidiphilum” fixes carbon autotrophically, and uses methane only for energy generation. As a result, techniques used to detect methanotrophs in the environment such as 13CH4-stable isotope probing (SIP) and pmoA-targeted PCR do not detect verrucomicrobial methanotrophs, and they may have been overlooked in previous environmental studies. We developed a modified SIP technique to identify active methanotrophic Verrucomicrobia in the environment by labeling with 13CO2 and 13CH4, individually and in combination. Testing the protocol in “M. infernorum” strain V4 resulted in assimilation of 13CO2 but not 13CH4, verifying its autotrophic lifestyle. To specifically detect methanotrophs (as opposed to other autotrophs) via 13CO2-SIP, a quantitative PCR (qPCR) assay specific for verrucomicrobial-pmoA genes was developed and used in combination with SIP. Incubation of an acidic, high-temperature geothermal soil with 13CH4 + 12CO2 caused little shift in the density distribution of verrucomicrobial-pmoA genes relative to controls. However, labeling with 13CO2 in combination with 12CH4 or 13CH4 induced a strong shift in the distribution of verrucomicrobial-pmoA genes towards the heavy DNA fractions. The modified SIP technique demonstrated that the primary methanotrophs active in the soil were autotrophs and belonged to the Verrucomicrobia. This is the first demonstration of autotrophic, non-proteobacterial methanotrophy in situ, and provides a tool to detect verrucomicrobial methanotrophs in other ecosystems. PMID

  17. Activated Sludge and other Aerobic Suspended Culture Processes.

    PubMed

    Li, Chunying; Wei, Li; Chang, Chein-Chi; Zhang, Yuhua; Wei, Dong

    2016-10-01

    This is a literature review for the year 2015 and contains information specifically associated with suspended growth processes including activated sludge, upflow anaerobic sludge blanket, and sequencing batch reactors. The review encompasses modeling and kinetics, nutrient removal, system design and operation. Compared to past reviews, many topics show increase in activity in 2015. These include, fate and effect of xenobiotics, industrial wastes treatment with sludge, and pretreatment for the activated sludge. These topics are referred to the degradation of constituents in activated sludge. Other sections include population dynamics, process microbiology give an insight into the activated sludge. The subsection in industrial wastes: converting sewage sludge into biogases was also mentioned. PMID:27620082

  18. Removal of micropollutants from aerobically treated grey water via ozone and activated carbon.

    PubMed

    Hernández-Leal, L; Temmink, H; Zeeman, G; Buisman, C J N

    2011-04-01

    Ozonation and adsorption onto activated carbon were tested for the removal micropollutants of personal care products from aerobically treated grey water. MilliQ water spiked with micropollutants (100-1600 μgL(-1)) was ozonated at a dosing rate of 1.22. In 45 min, this effectively removed (>99%): Four parabens, bisphenol-A, hexylcinnamic aldehyde, 4-methylbenzylidene-camphor (4MBC), benzophenone-3 (BP3), triclosan, galaxolide and ethylhexyl methoxycinnamate. After 60 min, the removal efficiency of benzalkonium chloride was 98%, tonalide and nonylphenol 95%, octocrylene 92% and 2-phenyl-5-benzimidazolesulfonic acid (PBSA) 84%. Ozonation of aerobically treated grey water at an applied ozone dose of 15 mgL(-1), reduced the concentrations of octocrylene, nonylphenol, triclosan, galaxolide, tonalide and 4-methylbenzylidene-camphor to below limits of quantification, with removal efficiencies of at least 79%. Complete adsorption of all studied micropollutants onto powdered activated carbon (PAC) was observed in batch tests with milliQ water spiked with 100-1600 μgL(-1) at a PAC dose of 1.25 gL(-1) and a contact time of 5 min. Three granular activated carbon (GAC) column experiments were operated to treat aerobically treated grey water. The operation of a GAC column with aerobically treated grey water spiked with micropollutants in the range of 0.1-10 μgL(-1) at a flow of 0.5 bed volumes (BV)h(-1) showed micropollutant removal efficiencies higher than 72%. During the operation time of 1728 BV, no breakthrough of TOC or micropollutants was observed. Removal of micropollutants from aerobically treated grey water was tested in a GAC column at a flow of 2 BVh(-1). Bisphenol-A, triclosan, tonalide, BP3, galaxolide, nonylphenol and PBSA were effectively removed even after a stable TOC breakthrough of 65% had been reached. After spiking the aerobically treated effluent with micropollutants to concentrations of 10-100 μgL(-1), efficient removal to below limits of quantification

  19. Activated Sludge and other Aerobic Suspended Culture Processes.

    PubMed

    Wei, Li; Wei, Chao; Chang, Chein-Chi; You, Shao-Hong

    2015-10-01

    This is a literature review for the year 2014 and contains information specifically associated with suspended growth processes including activated sludge and sequencing batch reactors. This review is a subsection of the treatment systems section of the annual literature review. The review encompasses modeling and kinetics, nutrient removal, system design and operation. Compared to past reviews, many topics show increase in activity in 2014. These include, nitrogen and phosphorus control, fate and effect of xenobiotics, industrial wastes treatment, and some new method for the determination of activated sludge. These topics are referred to the degradation of constituents in activated sludge. Other sections include population dynamics, process microbiology of activated sludge, modeling and kinetics. Many of the subsections in the industrial wastes: converting sewage sludge into fuel gases, thermos-alkali hydrolysis of Waste Activated Sludge (WAS), sludge used as H2 S adsorbents were also mentioned in this review. PMID:26420077

  20. Genome Characteristics of a Novel Type I Methanotroph (Sn10-6) Isolated from a Flooded Indian Rice Field.

    PubMed

    Rahalkar, Monali C; Pandit, Pranitha S; Dhakephalkar, Prashant K; Pore, Soham; Arora, Preeti; Kapse, Neelam

    2016-04-01

    Flooded rice fields are important sources of atmospheric methane. Aerobic methanotrophs living in the vicinity of rice roots oxidize methane and act as environmental filters. Here, we present genome characteristics of a gammaproteobacterial methanotroph, isolate Sn10-6, which was isolated from a rice rhizosphere of a flooded field in India. Sn10-6 has been identified as a member of a putative novel genus and species within the family Methylococcaceae (Type I methanotrophs). The draft genome of Sn10-6 showed pathways for the following: methane oxidation, formaldehyde assimilation (RuMP), nitrogen fixation, conversion of nitrite to nitrous oxide, and other interesting genes including the ones responsible for survival in the rhizosphere environment. The majority of genes found in this genome were most similar to Methylovulum miyakonese which is a forest isolate. This draft genome provided insight into the physiology, ecology, and phylogeny of this gammaproteobacterial methanotroph. PMID:26547566

  1. Effects of cognitive training with and without aerobic exercise on cognitively demanding everyday activities.

    PubMed

    McDaniel, Mark A; Binder, Ellen F; Bugg, Julie M; Waldum, Emily R; Dufault, Carolyn; Meyer, Amanda; Johanning, Jennifer; Zheng, Jie; Schechtman, Kenneth B; Kudelka, Chris

    2014-09-01

    We investigated the potential benefits of a novel cognitive-training protocol and an aerobic exercise intervention, both individually and in concert, on older adults' performances in laboratory simulations of select real-world tasks. The cognitive training focused on a range of cognitive processes, including attentional coordination, prospective memory, and retrospective-memory retrieval, processes that are likely involved in many everyday tasks, and that decline with age. Primary outcome measures were 3 laboratory tasks that simulated everyday activities: Cooking Breakfast, Virtual Week, and Memory for Health Information. Two months of cognitive training improved older adults' performance on prospective-memory tasks embedded in Virtual Week. Cognitive training, either alone or in combination with 6 months of aerobic exercise, did not significantly improve Cooking Breakfast or Memory for Health Information. Although gains in aerobic power were comparable with previous reports, aerobic exercise did not produce improvements for the primary outcome measures. Discussion focuses on the possibility that cognitive-training programs that include explicit strategy instruction and varied practice contexts may confer gains to older adults for performance on cognitively challenging everyday tasks. PMID:25244489

  2. Influence of elevated ozone concentration on methanotrophic bacterial communities in soil under field condition

    NASA Astrophysics Data System (ADS)

    Huang, Y. Z.; Zhong, M.

    2015-05-01

    The open top chamber (OTC) method was used in combination with real-time quantitative PCR and terminal restriction fragment length polymorphism (T-RFLP) techniques in the wheat field to study the influence of different levels of O3 concentrations (ambient air filtered by activated carbons, 40 ppb, 80 ppb and 120 ppb) on the quantity and community structure of methanotrophic bacteria. O3 stress can influence the potential methane oxidation rate (PMOR) and potential methane production rate (PMPR) in the farmland soil. O3 treatment of 40 ppb improved significantly the 16S rRNA gene copy number in the total methanotrophic bacteria pmoA, and type I and type II methanotrophic bacteria in the soil depth of 0-20 cm. When the O3 concentration reached 120 ppb, the 16S rRNA gene copy number in the total methanotrophic bacteria pmoA and type I methanotrophic bacteria decreased significantly as compared to the control treatment in 10-20 cm layer. The 16s rRNA gene copy number of total methanotrophic bacteria pmoA and type I and type II methanotrophic bacteria were influenced by different O3 concentration and soil depth. The T-RFLP analysis indicated that O3 stress influenced significantly the community structure of the methanotrophic bacteria in soil, causing potential threat to the diversity of methanotrophic bacteria. It seems to imply that the rise of O3 concentration could produce an impact on the carbon cycling and the methane emission of the wheat field soil by changing the community structure and diversity of methanotrophic bacteria, which then influences the global climate change.

  3. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    SciTech Connect

    Yamada, Y.; Kawase, Y. . E-mail: bckawase@mail.eng.toyo.ac.jp

    2006-07-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial composting mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.

  4. Real-time quantification of mcrA, pmoA for methanogen, methanotroph estimations during composting.

    PubMed

    Sharma, Ranjana; Ryan, Kelly; Hao, Xiying; Larney, Francis J; McAllister, Tim A; Topp, Edward

    2011-01-01

    Composting is the controlled biological decomposition of organic matter by microorganisms during predominantly aerobic conditions. It is being increasingly adopted due to its benefits in nutrient recycling, soil reclamation, and urban land use. However, it poses an environmental concern related to its contribution to greenhouse gas production. During composting, activities of methanogenic and methanotrophic communities influence the net methane (CH4) release into the atmosphere. Using quantitative polymerase chain reaction (qPCR), this study was aimed at assessing the changes in the methyl-coenzyme M reductase (mcrA) and particulate methane monooxygenase (pmoA) copy numbers for estimation of methanogenic and methanotrophic communities, respectively. Open-windrow composting of beef cattle (Bos Taurus L.) manure with temperatures reaching > 55 degrees C was effective indegrading commensal Escherichia coli within the first week. Quantification of community DNA revealed significant differences in mcrA and pmoA copy numbers between top and middle sections. Consistent mcrA copy numbers (7.07 to 8.69 log copy number g(-1)) were detected throughout the 15-wk composting period. However, pmoA copy number varied significantly over time, with higher values during Week 0 and 1 (6.31 and 5.41 log copy number g(-1), respectively) and the lowest at Week 11 (1.6 log copy number g(-1)). Net surface CH4 emissions over the 15-wk period were correlated with higher mcrA copy number. Higher net ratio of mrA: pmoA copy numbers was observed when surface CH4 flux was high. Our results indicate that mcrA and pmoA copy numbers vary during composting and that methanogen and methanotroph populations need to be examined in conjunction with net CH4 emissions from open-windrow composting of cattle feedlot manure. PMID:21488508

  5. Anaerobic methanotrophic community of a 5346-m-deep vesicomyid clam colony in the Japan Trench.

    PubMed

    Felden, J; Ruff, S E; Ertefai, T; Inagaki, F; Hinrichs, K-U; Wenzhöfer, F

    2014-05-01

    Vesicomyidae clams harbor sulfide-oxidizing endosymbionts and are typical members of cold seep communities where active venting of fluids and gases takes place. We investigated the central biogeochemical processes that supported a vesicomyid clam colony as part of a locally restricted seep community in the Japan Trench at 5346 m water depth, one of the deepest seep settings studied to date. An integrated approach of biogeochemical and molecular ecological techniques was used combining in situ and ex situ measurements. In sediment of the clam colony, low sulfate reduction rates (maximum 128 nmol mL(-1) day(-1)) were coupled to the anaerobic oxidation of methane. They were observed over a depth range of 15 cm, caused by active transport of sulfate due to bioturbation of the vesicomyid clams. A distinct separation between the seep and the surrounding seafloor was shown by steep horizontal geochemical gradients and pronounced microbial community shifts. The sediment below the clam colony was dominated by anaerobic methanotrophic archaea (ANME-2c) and sulfate-reducing Desulfobulbaceae (SEEP-SRB-3, SEEP-SRB-4). Aerobic methanotrophic bacteria were not detected in the sediment, and the oxidation of sulfide seemed to be carried out chemolithoautotrophically by Sulfurovum species. Thus, major redox processes were mediated by distinct subgroups of seep-related microorganisms that might have been selected by this specific abyssal seep environment. Fluid flow and microbial activity were low but sufficient to support the clam community over decades and to build up high biomasses. Hence, the clams and their microbial communities adapted successfully to a low-energy regime and may represent widespread chemosynthetic communities in the Japan Trench. In this regard, they contributed to the restricted deep-sea trench biodiversity as well as to the organic carbon availability, also for non-seep organisms, in such oligotrophic benthic environment of the dark deep ocean. PMID:24593671

  6. Anaerobic methanotrophic community of a 5346-m-deep vesicomyid clam colony in the Japan Trench

    PubMed Central

    Felden, J; Ruff, S E; Ertefai, T; Inagaki, F; Hinrichs, K-U; Wenzhöfer, F

    2014-01-01

    Vesicomyidae clams harbor sulfide-oxidizing endosymbionts and are typical members of cold seep communities where active venting of fluids and gases takes place. We investigated the central biogeochemical processes that supported a vesicomyid clam colony as part of a locally restricted seep community in the Japan Trench at 5346 m water depth, one of the deepest seep settings studied to date. An integrated approach of biogeochemical and molecular ecological techniques was used combining in situ and ex situ measurements. In sediment of the clam colony, low sulfate reduction rates (maximum 128 nmol mL−1 day−1) were coupled to the anaerobic oxidation of methane. They were observed over a depth range of 15 cm, caused by active transport of sulfate due to bioturbation of the vesicomyid clams. A distinct separation between the seep and the surrounding seafloor was shown by steep horizontal geochemical gradients and pronounced microbial community shifts. The sediment below the clam colony was dominated by anaerobic methanotrophic archaea (ANME-2c) and sulfate-reducing Desulfobulbaceae (SEEP-SRB-3, SEEP-SRB-4). Aerobic methanotrophic bacteria were not detected in the sediment, and the oxidation of sulfide seemed to be carried out chemolithoautotrophically by Sulfurovum species. Thus, major redox processes were mediated by distinct subgroups of seep-related microorganisms that might have been selected by this specific abyssal seep environment. Fluid flow and microbial activity were low but sufficient to support the clam community over decades and to build up high biomasses. Hence, the clams and their microbial communities adapted successfully to a low-energy regime and may represent widespread chemosynthetic communities in the Japan Trench. In this regard, they contributed to the restricted deep-sea trench biodiversity as well as to the organic carbon availability, also for non-seep organisms, in such oligotrophic benthic environment of the dark deep ocean. PMID

  7. Aquatic plant surface as a niche for methanotrophs

    PubMed Central

    Yoshida, Naoko; Iguchi, Hiroyuki; Yurimoto, Hiroya; Murakami, Akio; Sakai, Yasuyoshi

    2014-01-01

    This study investigated the potential local CH4 sink in various plant parts as a boundary environment of CH4 emission and consumption. By comparing CH4 consumption activities in cultures inoculated with parts from 39 plant species, we observed significantly higher consumption of CH4 associated with aquatic plants than other emergent plant parts such as woody plant leaves, macrophytic marine algae, and sea grass. In situ activity of CH4 consumption by methanotrophs associated with different species of aquatic plants was in the range of 3.7–37 μmol·h−1·g−1 dry weight, which was ca 5.7–370-fold higher than epiphytic CH4 consumption in submerged parts of emergent plants. The qPCR-estimated copy numbers of the particulate methane monooxygenase-encoding gene pmoA were variable among the aquatic plants and ranged in the order of 105–107 copies·g−1 dry weight, which correlated with the observed CH4 consumption activities. Phylogenetic identification of methanotrophs on aquatic plants based on the pmoA sequence analysis revealed a predominance of diverse gammaproteobacterial type-I methanotrophs, including a phylotype of a possible plant-associated methanotroph with the closest identity (86–89%) to Methylocaldum gracile. PMID:24550901

  8. Chromium Isotope Behaviour During Aerobic Microbial Reduction Activities

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Amor, K.; Porcelli, D.; Thompson, I.

    2014-12-01

    Microbial activity is a very important, and possibly even the dominant, reduction mechanism for many metals in natural water systems. Isotope fractionations during microbial metal reduction can reflect one major mechanism in metal cycling in the environment, and isotopic signatures can be used to identify and quantify reduction processes during biogeochemical cycling in the present environment as well as in the past. There are many Cr (VI)-reducing bacteria that have been discovered and isolated from the environment, and Cr isotopes were found to be fractionated during microbial reduction processes. In this study, Cr reduction experiments have been undertaken to determine the conditions under which Cr is reduced and the corresponding isotope signals that are generated. The experiments have been done with a facultative bacteria Pseudomonas fluorescens LB 300, and several parameters that have potential impact on reduction mechanisms have been investigated. Electron donors are important for bacteria growth and metabolism. One factor that can control the rate of Cr reduction is the nature of the electron donor. The results show that using citrate as an electron donor can stimulate bacteria reduction activity to a large extent; the reduction rate is much higher (15.10 mgˑL-1hour-1) compared with experiments using glucose (6.65 mgˑL-1ˑhour-1), acetate (4.88 mgˑL-1hour-1) or propionate (4.85 mgˑL-1hour-1) as electron donors. Groups with higher electron donor concentrations have higher reduction rates. Chromium is toxic, and when increasing Cr concentrations in the medium, the bacteria reduction rate is also higher, which reflects bacteria adapting to the toxic environment. In the natural environment, under different pH conditions, bacteria may metabolise in different ways. In our experiments with pH, bacteria performed better in reducing Cr (VI) when pH = 8, and there are no significant differences between groups with pH = 4 or pH = 6. To investigate this further, Cr

  9. Acute effects of dynamic stretching, static stretching, and light aerobic activity on muscular performance in women.

    PubMed

    Curry, Brad S; Chengkalath, Devendra; Crouch, Gordon J; Romance, Michelle; Manns, Patricia J

    2009-09-01

    The purpose of this study was to compare three warm-up protocols--static stretching, dynamic stretching, and light aerobic activity--on selected measures of range of motion and power in untrained females and to investigate the sustained effects at 5 and 30 minutes after warm-up. A total of 24 healthy females (ages 23-29 years) attended one familiarization session and three test sessions on nonconsecutive days within 2 weeks. A within-subject design protocol with the testing investigators blinded to the subjects' warm-up was followed. Each session started with 5 minutes of light aerobic cycling followed by pretest baseline measures. Another 5 minutes of light aerobic cycling was completed and followed by one of the three randomly selected warm-up interventions (static stretching, dynamic stretching, or light aerobic activity). The following posttest outcome measures were collected 5 and 30 minutes following the intervention: modified Thomas test, countermovement jump, and isometric time to peak force knee extension measured by dynamometer. Analysis of the data revealed significant time effects on range of motion and countermovement jump changes. No significant differences (p > 0.05) were found between the warm-up conditions on any of the variables. The variation in responses to warm-up conditions emphasizes the unique nature of individual reactions to different warm-ups; however, there was a tendency for warm-ups with an active component to have beneficial effects. The data suggests dynamic stretching has greater applicability to enhance performance on power outcomes compared to static stretching. PMID:19675479

  10. Aerobic activated sludge transformation of methotrexate: identification of biotransformation products.

    PubMed

    Kosjek, Tina; Negreira, Noelia; de Alda, Miren López; Barceló, Damià

    2015-01-01

    This study describes the biotransformation of cytostatic and immunosuppressive pharmaceutical methotrexate. Its susceptibility to microbiological breakdown was studied in a batch biotransformation system, in presence or absence of carbon source and at two activated sludge concentrations. The primary focus of the present study are methotrexate biotransformation products, which were tentatively identified by the ultra-high performance liquid chromatography-quadrupole--Orbitrap-MS. Data-dependent experiments, combining full-scan MS data with product ion spectra were acquired, in order to identify the molecular ions of methotrexate transformation products, to propose the molecular formulae and to elucidate their chemical structures. Among the identified transformation products 2,4-diamino-N10-methyl-pteroic acid is most abundant and persistent. Other biotransformation reactions involve demethylation, oxidative cleavage of amine, cleavage of C-N bond, aldehyde to carboxylate transformation and hydroxylation. Finally, a breakdown pathway is proposed, which shows that most of methotrexate breakdown products retain the diaminopteridine structural segment. In total we propose nine transformation products, among them eight are described as methotrexate transformation products for the first time. PMID:24835159

  11. Issues of Health, Appearance and Physical Activity in Aerobic Classes for Women

    ERIC Educational Resources Information Center

    D'Abundo, Michelle Lee

    2009-01-01

    The purpose of this research was to explore what appearance-focused messages were conveyed by aerobic instructors in aerobic classes for women. This qualitative research was influenced by the concept of wellness and how feminist pedagogy can be applied to promote individuals' well-being in aerobic classes. The practices of five aerobic instructors…

  12. Uncultivated Methylocystis Species in Paddy Soil Include Facultative Methanotrophs that Utilize Acetate.

    PubMed

    Leng, Lingqin; Chang, Jiali; Geng, Kan; Lu, Yahai; Ma, Ke

    2015-07-01

    Methanotrophs are crucial in regulating methane emission from rice field systems. Type II methanotrophs in particular are often observed in high abundance in paddy soil. Some cultivated species of Methylocystis are able to grow on acetate in the absence of methane. We hypothesize that the dominant type II methanotrophs in paddy soil might facultatively utilize acetate for growth, which we evaluate in the present study. The measurement of methane oxidation rates showed that the methanotrophic activity in paddy soil was inhibited by the addition of acetate compared to the continuous supplementation of methane, but the paddy soil maintained the methane oxidation capacity and recovered following methane supplementation. Terminal restriction fragment length polymorphism analysis (T-RFLP) combined with cloning and sequencing of pmoA genes showed that Methylocystis was enriched after incubation with added acetate, while the type I methanotrophs Methylocaldum/Methylococcus and Methylobacter were enriched by methane supplementation. A comparison of pmoA sequences obtained in this study with those in the public database indicated that they were globally widespread in paddy soils or in associated with rice roots. Furthermore, we performed stable isotope probing (SIP) of pmoA messenger RNA (mRNA) to investigate the assimilation of (13)C-acetate by paddy soil methanotrophs. RNA-SIP revealed that Methylocystis-related methanotrophs which shared the same genotype of the above enriched species were significantly labelled. It indicates that these methanotrophs actively assimilated the labelled acetate in paddy soil. Altogether, these results suggested that uncultivated Methylocystis species are facultative methanotrophs utilizing acetate as a secondary carbon source in paddy soil. PMID:25475784

  13. Activated carbon for aerobic oxidation: Benign approach toward 2-benzoylbenzimidazoles and 2-benzoylbenzoxazoles synthesis

    PubMed Central

    Bao, Kai; Li, Fuqing; Liu, Hanjing; Wang, Zhiwei; Shen, Qirong; Wang, Jian; Zhang, Weige

    2015-01-01

    A general strategy involving a novel and highly efficient aerobic benzylic oxidation promoted by cheap, reusable activated carbon in water is developed. Application of this method has been demonstrated in the benign synthesis of bioactive 2-benzoylbenzimidazoles and 2-benzoylbenzoxazoles derivatives. Furthermore, the activated carbon catalyst could be recovered and reused at least three times without significantly losing its activity. Preliminary research suggests that the oxidation mechanism may involve intermediate hydroperoxidation and that a portion of the final carbonyl product is obtained through a secondary benzylic alcohol intermediate. Finally, theoretical calculations reveal that the oxidation yield is closely associated with the electric density at the benzylic position of the substrate. PMID:26041483

  14. Teaching Aerobic Lifestyles: New Perspectives.

    ERIC Educational Resources Information Center

    Goodrick, G. Ken; Iammarino, Nicholas K.

    1982-01-01

    New approaches to teaching aerobic life-styles in secondary schools are suggested, focusing on three components: (1) the psychological benefits of aerobic activity; (2) alternative aerobic programs at nonschool locations; and (3) the development of an aerobics curriculum to help maintain an active life-style after graduation. (JN)

  15. Aerobic Reduction of Arsenate by a Bacterium Isolated From Activated Sludge

    NASA Astrophysics Data System (ADS)

    Kozai, N.; Ohnuki, T.; Hanada, S.; Nakamura, K.; Francis, A. J.

    2006-12-01

    Microlunatus phosphovorus strain NM-1 is a polyphosphate-accumulating bacterium isolated from activated sludge. This bacterium takes up a large amount of polyphosphate under aerobic conditions and release phosphate ions by hydrolysis of polyphosphate to orthophosphate under anaerobic conditions to derive energy for taking up substrates. To understand the nature of this strain, especially, influence of potential contaminants in sewage and wastewater on growth, we have been investigating behavior of this bacterium in media containing arsenic. The present paper mainly reports reduction of arsenate by this bacterium under aerobic conditions. The strain NM-1 (JCM 9379) was aerobically cultured at 30 °C in a nutrient medium containing 2.5 g/l peptone, 0.5 g/l glucose, 1.5 g/l yeast extract, and arsenic [Na2HAsO4 (As(V)) or Na3AsO3 (As(III))] at concentrations between 0 and 50 mM. The cells collected from arsenic-free media were dispersed in buffer solutions containing 2mM HEPES, 10mM NaCl, prescribed concentrations of As(V), and 0-0.2 percent glucose. Then, this cell suspension was kept at 20 °C under aerobic or anaerobic conditions. The speciation of arsenic was carried out by ion chromatography and ICP-MS. The growth of the strain under aerobic conditions was enhanced by the addition of As(V) at the concentration between 1 and 10 mM. The maximum optical density of the culture in the medium containing 5mM As(V) was 1.4 times greater than that of the control culture. Below the As(V) concentration of 10mM, most of the As(V) was reduced to As(III). The growth of the strain under anaerobic conditions has not been observed so far. The cells in the buffer solutions reduced As(V) under aerobic condition. The reduction was enhanced by the addition of glucose. However, the cell did not reduce As(V) under anaerobic conditions. The strain NM-1 showed high resistance to As(V) and As(III). The maximum optical density of the culture grown in a medium containing 50 mM As(V) was only

  16. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea.

    PubMed

    Lösekann, Tina; Knittel, Katrin; Nadalig, Thierry; Fuchs, Bernhard; Niemann, Helge; Boetius, Antje; Amann, Rudolf

    2007-05-01

    Submarine mud volcanoes are formed by expulsions of mud, fluids, and gases from deeply buried subsurface sources. They are highly reduced benthic habitats and often associated with intensive methane seepage. In this study, the microbial diversity and community structure in methane-rich sediments of the Haakon Mosby Mud Volcano (HMMV) were investigated by comparative sequence analysis of 16S rRNA genes and fluorescence in situ hybridization. In the active volcano center, which has a diameter of about 500 m, the main methane-consuming process was bacterial aerobic oxidation. In this zone, aerobic methanotrophs belonging to three bacterial clades closely affiliated with Methylobacter and Methylophaga species accounted for 56%+/-8% of total cells. In sediments below Beggiatoa mats encircling the center of the HMMV, methanotrophic archaea of the ANME-3 clade dominated the zone of anaerobic methane oxidation. ANME-3 archaea form cell aggregates mostly associated with sulfate-reducing bacteria of the Desulfobulbus (DBB) branch. These ANME-3/DBB aggregates were highly abundant and accounted for up to 94%+/-2% of total microbial biomass at 2 to 3 cm below the surface. ANME-3/DBB aggregates could be further enriched by flow cytometry to identify their phylogenetic relationships. At the outer rim of the mud volcano, the seafloor was colonized by tubeworms (Siboglinidae, formerly known as Pogonophora). Here, both aerobic and anaerobic methane oxidizers were found, however, in lower abundances. The level of microbial diversity at this site was higher than that at the central and Beggiatoa species-covered part of the HMMV. Analysis of methyl-coenzyme M-reductase alpha subunit (mcrA) genes showed a strong dominance of a novel lineage, mcrA group f, which could be assigned to ANME-3 archaea. Our results further support the hypothesis of Niemann et al. (54), that high methane availability and different fluid flow regimens at the HMMV provide distinct niches for aerobic and

  17. Effect of rice cultivars on root-associated methanotrophic communities

    NASA Astrophysics Data System (ADS)

    Lüke, C.; Frenzel, P.

    2009-04-01

    Rice agriculture represents a major source of the greenhouse gas methane. However, a large amount of methane is oxidized by methanotrophic bacteria before being released to the atmosphere. Methanotrophs are characterized by their unique ability to use methane as sole source for carbon and energy. They are located at oxic-anoxic interfaces where methane and oxygen are present, such as the rhizosphere. Although they have been studied extensively in the past, only little is known about natural or anthropogenic factors influencing their large diversity. In this study, we investigated the effect of 20 different rice cultivars on methanotrophic communities associated with the roots of rice plants. The pmoA gene encoding a subunit of the particulate methane monooxygenase (catalyzing the first step of methane oxidation) was used as a functional and phylogenetic marker and analyzed using two different fingerprinting methods. The well established terminal restriction fragment length polymorphism (T-RFLP) analysis was compared to results obtained using a diagnostic pmoA microarray. Both methods indicated that type Ib (Methylococcus/Methylocaldum) and type II (Methylosinus/Methylocystis) were the predominat methanotrophs located on rice roots. Interestingly, analysis of pmoA transcripts suggested Methylobacter/Methylomonas (type Ia) to present the actively methane oxidizing population in this environment.

  18. Systematic investigation and microbial community profile of indole degradation processes in two aerobic activated sludge systems

    PubMed Central

    Ma, Qiao; Qu, Yuanyuan; Zhang, Xuwang; Liu, Ziyan; Li, Huijie; Zhang, Zhaojing; Wang, Jingwei; Shen, Wenli; Zhou, Jiti

    2015-01-01

    Indole is widely spread in various environmental matrices. Indole degradation by bacteria has been reported previously, whereas its degradation processes driven by aerobic microbial community were as-yet unexplored. Herein, eight sequencing batch bioreactors fed with municipal and coking activated sludges were constructed for aerobic treatment of indole. The whole operation processes contained three stages, i.e. stage I, glucose and indole as carbon sources; stage II, indole as carbon source; and stage III, indole as carbon and nitrogen source. Indole could be completely removed in both systems. Illumina sequencing revealed that alpha diversity was reduced after indole treatment and microbial communities were significantly distinct among the three stages. At genus level, Azorcus and Thauera were dominant species in stage I in both systems, while Alcaligenes, Comamonas and Pseudomonas were the core genera in stage II and III in municipal sludge system, Alcaligenes and Burkholderia in coking sludge system. In addition, four strains belonged to genera Comamonas, Burkholderia and Xenophilus were isolated using indole as sole carbon source. Burkholderia sp. IDO3 could remove 100 mg/L indole completely within 14 h, the highest degradation rate to date. These findings provide novel information and enrich our understanding of indole aerobic degradation processes. PMID:26657581

  19. Comparison of aerobic denitrifying activity among three cultural species with various carbon sources.

    PubMed

    Otani, Y; Hasegawa, K; Hanaki, K

    2004-01-01

    Abilities of three aerobic denitrifiers such as Alcaligenes faecalis, Microvirgula aerodenitrificans and Paracoccus pantotrophus were compared from the viewpoints of nitrate removal efficiency and organic matter utilization. First, the effect of carbon source was investigated. Although nitrate reduction was observed in all strains under aerobic conditions, a change of carbon source considerably affected the denitrification ability. In the case of P. pantotrophus, nitrate and nitrite were completely removed in three days under sodium acetate or leucine as a carbon source. In the case of A. faecalis, sufficient nitrate removal was observed only when sodium acetate or ethanol was added. P. pantotrophus and A. faecalis showed a higher ability of nitrate removal than that of M. aerodenitrificans. Therefore, P. pantotrophus was selected in order to investigate the effects of concentration and repetitive addition of carbon. Sodium acetate was used as a sole carbon source. Nitrate was not reduced when the carbon concentration was below 500 mgC/L. However, when carbon source was added repeatedly, nitrate was reduced under 100 mgC/L after the optical density of the bacterium reached above 1.0. This result indicated that a high enough level of bacterial density was necessary to express aerobic denitrification activity. PMID:15566182

  20. Enhancement of aerobic biodegradability potential of municipal waste activated sludge by ultrasonic aided bacterial disintegration.

    PubMed

    Kavitha, S; Jessin Brindha, G M; Sally Gloriana, A; Rajashankar, K; Yeom, Ick Tae; Rajesh Banu, J

    2016-01-01

    An investigation was performed to study the influence of ultrasonic aided bacterial disintegration on the aerobic degradability of sludge. In first phase of the study, effective floc disruption was achieved at an ultrasonic specific energy input of 2.45kJ/kg TS with 44.5mg/L of Extracellular Polymeric Substance (EPS) release including 0.035U/mL and 0.025U/mL protease and amylase activity respectively. In second phase, experimental outcomes revealed bacterial disintegration of floc disrupted-sludge showing a maximum solubilization of about 23% and was observed to be superior to bacterially disintegrated (11%) and control (6%), respectively. The result of aerobic biodegradability of ultrasonic aided bacterially pretreated sludge showed volatile solids (VS) degradation of about 40.2%. The kinetic study of aerobic biodegradability through non linear regression modelling reveals that floc disrupted sludge showed better biodegradability with decay constant of about 0.19d(-1) relatively higher than the control (0.14d(-1)) and bacterially disintegrated (0.17d(-1)) sludges. PMID:26479431

  1. Genome sequence of the methanotrophic Alphaproteobacterium, Methylocystis sp. Rockwell (ATCC 49242)

    SciTech Connect

    Stein, Lisa Y.; Bringel, Francoise O.; DiSpiritto, Alan A.; Han, Sukkyun; Jetten, MSM; Kalyuzhnaya, Marina G.; Kits, K. Dimitri; Klotz, Martin G; Op den Camp, HJM; Semrau, Jeremy D.; Vuilleumier, Stephane; Bruce, David; Cheng, Jan-Fang; Copeland, A; Davenport, Karen W.; Goodwin, Lynne A.; Han, Cliff; Hauser, Loren John; Lajus, Aurelie; Lapidus, Alla L.; Lucas, Susan; Medigue, Claudine

    2011-01-01

    Methylocystis sp. strain Rockwell (ATCC 49242) is an aerobic methane-oxidizing Alphaproteobacterium isolated from an aquifer in southern California. Unlike most methanotrophs in the Methylocystaceae family, this strain has a single pmo operon encoding particulate methane monooxygenase and no evidence of the genes encoding soluble methane monooxygenase. This is the first reported genome sequence of a member of the Methylocystis species of the Methylocystaceae family in the order Rhizobiales.

  2. Aerobic N2O emission for activated sludge acclimated under different aeration rates in the multiple anoxic and aerobic process.

    PubMed

    Wang, Huoqing; Guan, Yuntao; Pan, Min; Wu, Guangxue

    2016-05-01

    Nitrous oxide (N2O) is a potent greenhouse gas that can be emitted during biological nitrogen removal. N2O emission was examined in a multiple anoxic and aerobic process at the aeration rates of 600mL/min sequencing batch reactor (SBRL) and 1200mL/min (SBRH). The nitrogen removal percentage was 89% in SBRL and 71% in SBRH, respectively. N2O emission mainly occurred during the aerobic phase, and the N2O emission factor was 10.1% in SBRL and 2.3% in SBRH, respectively. In all batch experiments, the N2O emission potential was high in SBRL compared with SBRH. In SBRL, with increasing aeration rates, the N2O emission factor decreased during nitrification, while it increased during denitrification and simultaneous nitrification and denitrification (SND). By contrast, in SBRH the N2O emission factor during nitrification, denitrification and SND was relatively low and changed little with increasing aeration rates. The microbial competition affected the N2O emission during biological nitrogen removal. PMID:27155411

  3. Deficient activation by a human cell strain leads to mitomycin resistance under aerobic but not hypoxic conditions.

    PubMed

    Marshall, R S; Paterson, M C; Rauth, A M

    1989-03-01

    Two non-transformed human skin fibroblast strains, GM38 and 3437T, were found to be more sensitive to the bioreductive alkylating agents mitomycin C (MMC) and porfiromycin (PM) under hypoxic compared to aerobic conditions. One of these strains, 3437T, was 6-7 times more resistant to these agents under aerobic exposure conditions, but was identical in sensitivity to the normal strain, GM38, under hypoxic conditions. Aerobic 3437T cells demonstrated no increased resistance to cisplatin compared to the normal strain, arguing against enhanced ability to repair DNA interstrand cross-links as the underlying explanation for the mitomycin resistance. The aerobic resistance of 3437T was not altered by dicumarol, an inhibitor of the enzyme DT-diaphorase which is believed to be involved in aerobic activation of MMC and PM. Dicumarol did increase the resistance of GM38, but not to the same level of resistance demonstrated by 3437T. These results suggest that the aerobic MMC and PM resistance of 3437T may arise, in part, from a deficiency in DT-diaphorase activity. The identical sensitivities under hypoxic conditions indicate that drug activation pathways operative in the absence of oxygen are similar in both the normal and 3437T cells. PMID:2467684

  4. Deficient activation by a human cell strain leads to mitomycin resistance under aerobic but not hypoxic conditions.

    PubMed Central

    Marshall, R. S.; Paterson, M. C.; Rauth, A. M.

    1989-01-01

    Two non-transformed human skin fibroblast strains, GM38 and 3437T, were found to be more sensitive to the bioreductive alkylating agents mitomycin C (MMC) and porfiromycin (PM) under hypoxic compared to aerobic conditions. One of these strains, 3437T, was 6-7 times more resistant to these agents under aerobic exposure conditions, but was identical in sensitivity to the normal strain, GM38, under hypoxic conditions. Aerobic 3437T cells demonstrated no increased resistance to cisplatin compared to the normal strain, arguing against enhanced ability to repair DNA interstrand cross-links as the underlying explanation for the mitomycin resistance. The aerobic resistance of 3437T was not altered by dicumarol, an inhibitor of the enzyme DT-diaphorase which is believed to be involved in aerobic activation of MMC and PM. Dicumarol did increase the resistance of GM38, but not to the same level of resistance demonstrated by 3437T. These results suggest that the aerobic MMC and PM resistance of 3437T may arise, in part, from a deficiency in DT-diaphorase activity. The identical sensitivities under hypoxic conditions indicate that drug activation pathways operative in the absence of oxygen are similar in both the normal and 3437T cells. PMID:2467684

  5. A metagenomic study of methanotrophic microorganisms in Coal Oil Point seep sediments

    PubMed Central

    2011-01-01

    Background Methane oxidizing prokaryotes in marine sediments are believed to function as a methane filter reducing the oceanic contribution to the global methane emission. In the anoxic parts of the sediments, oxidation of methane is accomplished by anaerobic methanotrophic archaea (ANME) living in syntrophy with sulphate reducing bacteria. This anaerobic oxidation of methane is assumed to be a coupling of reversed methanogenesis and dissimilatory sulphate reduction. Where oxygen is available aerobic methanotrophs take part in methane oxidation. In this study, we used metagenomics to characterize the taxonomic and metabolic potential for methane oxidation at the Tonya seep in the Coal Oil Point area, California. Two metagenomes from different sediment depth horizons (0-4 cm and 10-15 cm below sea floor) were sequenced by 454 technology. The metagenomes were analysed to characterize the distribution of aerobic and anaerobic methanotrophic taxa at the two sediment depths. To gain insight into the metabolic potential the metagenomes were searched for marker genes associated with methane oxidation. Results Blast searches followed by taxonomic binning in MEGAN revealed aerobic methanotrophs of the genus Methylococcus to be overrepresented in the 0-4 cm metagenome compared to the 10-15 cm metagenome. In the 10-15 cm metagenome, ANME of the ANME-1 clade, were identified as the most abundant methanotrophic taxon with 8.6% of the reads. Searches for particulate methane monooxygenase (pmoA) and methyl-coenzyme M reductase (mcrA), marker genes for aerobic and anaerobic oxidation of methane respectively, identified pmoA in the 0-4 cm metagenome as Methylococcaceae related. The mcrA reads from the 10-15 cm horizon were all classified as originating from the ANME-1 clade. Conclusions Most of the taxa detected were present in both metagenomes and differences in community structure and corresponding metabolic potential between the two samples were mainly due to abundance

  6. Relationships Among Two Repeated Activity Tests and Aerobic Fitness of Volleyball Players.

    PubMed

    Meckel, Yoav; May-Rom, Moran; Ekshtien, Aya; Eisenstein, Tamir; Nemet, Dan; Eliakim, Alon

    2015-08-01

    The purpose of the study was to determine performance indices of a repeated sprint test (RST) and to examine their relationships with performance indices of a repeated jump test (RJT) and with aerobic fitness among trained volleyball players. Sixteen male volleyball players performed RST (6 × 30 m sprints), RJT (6 sets of 6 consecutive jumps), and an aerobic power test (20-m Shuttle Run Test). Performance indices for the RST and the RJT were (a) the ideal 30-m run time (IS), the total run time (TS) of the 6 sprints, and the performance decrement (PD) during the test and (b) the ideal jump height (IJ), the total jump height (TJ) of all the jumps, and the PD during the test, respectively. No significant correlations were found between performance indices of the RST and RJT. Significant correlations were found between PD, IS, and TS in the RST protocol and predicted peak V[Combining Dot Above]O2 (r = -0.60, -0.75, -0.77, respectively). No significant correlations were found between performance indices of the RJT (IJ, TJ, and PD) and peak V[Combining Dot Above]O2. The findings suggest that a selection of repeated activity test protocols should acknowledge the specific technique used in the sport, and that a distinct RJT, rather than the classic RST, is more appropriate for assessing the anaerobic capabilities of volleyball players. The findings also suggest that aerobic fitness plays only a minor role in performance maintenance throughout characteristic repeated jumping activity of a volleyball game. PMID:25647643

  7. Methylovulum psychrotolerans sp. nov., a cold-adapted methanotroph from low-temperature terrestrial environments, and emended description of the genus Methylovulum.

    PubMed

    Oshkin, Igor Y; Belova, Svetlana E; Danilova, Olga V; Miroshnikov, Kirill K; Rijpstra, W Irene C; Sinninghe Damsté, Jaap S; Liesack, Werner; Dedysh, Svetlana N

    2016-06-01

    Two isolates of aerobic methanotrophic bacteria, strains Sph1T and Sph2, were obtained from cold methane seeps in a floodplain of the river Mukhrinskaya, Irtysh basin, West Siberia. Another morphologically and phenotypically similar methanotroph, strain OZ2, was isolated from a sediment of a subarctic freshwater lake, Archangelsk region, northern Russia. Cells of these three strains were Gram-stain-negative, light-pink-pigmented, non-motile, encapsulated, large cocci that contained an intracytoplasmic membrane system typical of type I methanotrophs. They possessed a particulate methane monooxygenase enzyme and utilized only methane and methanol. Strains Sph1T, Sph2 and OZ2 were able to grow at a pH range of 4.0-8.9 (optimum at pH 6.0-7.0) and at temperatures between 2 and 36 °C. Although their temperature optimum was at 20-25 °C, these methanotrophs grew well at lower temperatures, down to 4 °C. The major cellular fatty acids were C16 : 1ω5c, C16 : 1ω6c, C16 : 1ω7c, C16 : 1ω8c, C16 : 0 and C14 : 0; the DNA G+C content was 51.4-51.9 mol%. Strains Sph1T, Sph2 and OZ2 displayed nearly identical (99.1-99.7 % similarity) 16S rRNA gene sequences and belonged to the family Methylococcaceae of the class Gammaproteobacteria. The most closely related organism was Methylovulum miyakonense HT12T (96.0-96.5 % 16S rRNA gene sequence similarity and 90 % pmoA sequence similarity). The novel isolates, however, differed from Methylovulum miyakonense HT12T by cell morphology, pigmentation, absence of soluble methane monooxygenase, more active growth at low temperatures, growth over a broader pH range and higher DNA G+C content. On the basis of these differences, we propose a novel species, Methylovulum psychrotolerans sp. nov., to accommodate these methanotrophs. Strain Sph1T (=LMG 29227T=VKM B-3018T) is the type strain. PMID:27031985

  8. Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting.

    PubMed

    Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2015-01-15

    Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 μg/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 μg/kg dm (aerobically-digested sludge), 63 μg/kg dm (lagoon sludge), 12 μg/kg dm (composted sludge) and 8 μg/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 μg/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17α-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non

  9. Ammonium-oxidizing bacteria facilitate aerobic degradation of sulfanilic acid in activated sludge.

    PubMed

    Chen, Gang; Ginige, Maneesha P; Kaksonen, Anna H; Cheng, Ka Yu

    2014-01-01

    Sulfanilic acid (SA) is a toxic sulfonated aromatic amine commonly found in anaerobically treated azo dye contaminated effluents. Aerobic acclimatization of SA-degrading mixed microbial culture could lead to co-enrichment of ammonium-oxidizing bacteria (AOB) because of the concomitant release of ammonium from SA oxidation. To what extent the co-enriched AOB would affect SA oxidation at various ammonium concentrations was unclear. Here, a series of batch kinetic experiments were conducted to evaluate the effect of AOB on aerobic SA degradation in an acclimatized activated sludge culture capable of oxidizing SA and ammonium simultaneously. To account for the effect of AOB on SA degradation, allylthiourea was used to inhibit AOB activity in the culture. The results indicated that specific SA degradation rate of the mixed culture was negatively correlated with the initial ammonium concentration (0-93 mM, R²= 0.99). The presence of AOB accelerated SA degradation by reducing the inhibitory effect of ammonium (≥ 10 mM). The Haldane substrate inhibition model was used to correlate substrate concentration (SA and ammonium) and oxygen uptake rate. This study revealed, for the first time, that AOB could facilitate SA degradation at high concentration of ammonium (≥ 10 mM) in an enriched activated sludge culture. PMID:25259503

  10. Lipid Biomarkers Indicating Aerobic Methanotrophy at Ancient Marine Methane- Seeps

    NASA Astrophysics Data System (ADS)

    Birgel, D.; Peckmann, J.

    2007-12-01

    The inventory of lipid biomarkers of a number of ancient methane-seep limestones has been studied over the last decade. The molecular fingerprints of the chemosynthesis-based microbial communities tend to be extremely well-preserved in these limestones. The key process at seeps is the anaerobic oxidation of methane, performed by consortia of sulfate-reducing bacteria and methanotrophic archaea. Compounds preserved within modern and ancient seep settings comprise C-13-depleted lipid biomarkers. Besides the occurrence of C-13- depleted isoprenoids (archaea) and n-alkyl-chains (bacteria), C-13-depleted hopanoids have been reported in seep limestones. Here, lipid biomarker data are presented from three ancient methane-seep limestones embedded in Miocene and Campanian strata. These examples provide strong evidence that methane was not solely oxidized by an anaerobic process. In a Miocene limestone, 3-beta-methylated hopanoids were found (delta C-13: -100 per mil). Most likely, 3-beta-methylated hopanepolyols, prevailing in aerobic methanotrophs were the precursor lipids. In another Miocene limestone, a series of C-13-depleted 4-methylated steranes (lanostanes; -80 to -70 per mil) is derived from aerobic methanotrophs. Lanosterol is the most likely precursor of lanostanes, known to be produced by aerobic methanotrophs, some of which are outstanding among bacteria in having the capacity to produce steroids. In a Campanian seep limestone a suite of conspicuous secohexahydrobenzohopanes (-110 to -107 per mil) is found. These hopanoids probably represent early degradation products of seep-endemic aerobic methanotrophs. This interpretation is supported by the presence of "regular" hopanoids that can be discriminated from the unusual secohexahydrobenzohopanes by only moderately low delta C-13 values (-49 to -42 per mil). Structural and carbon isotope data reveal that aerobic methanotrophy is more common at ancient methane- seeps than previously noticed. Our data indicate that

  11. The association between aerobic fitness and physical activity in children and adolescents: the European youth heart study.

    PubMed

    Kristensen, Peter Lund; Moeller, Niels Christian; Korsholm, Lars; Kolle, Elin; Wedderkopp, Niels; Froberg, Karsten; Andersen, Lars Bo

    2010-09-01

    The link between aerobic fitness and physical activity in children has been studied in a number of earlier studies and the results have generally shown weak to moderate correlations. This overall finding has been widely questioned partly because of the difficulty in obtaining valid estimates of physical activity. This study investigated the cross-sectional and longitudinal relationship between aerobic fitness and physical activity in a representative sample of 9 and 15-year-old children (n = 1260 cross-sectional, n = 153 longitudinal). The specific goal was to improve past studies using an objective method of activity assessment and taking into account a number of major sources of error. Data came from the Danish part of the European youth heart study, 1997-2003. The cross-sectional results generally showed a weak to moderate association between aerobic fitness and physical activity with standardized regression coefficients ranging from 0.14 to 0.33. The longitudinal results revealed a tendency towards an interaction effect of baseline physical activity on the relationship between changes in physical activity and aerobic fitness. Moderate to moderately strong regression effect sizes were observed in the lower quadrant of baseline physical activity compared to weak effect sizes in the remaining quadrants. In conclusion, the present study confirms earlier findings of a weak to moderate association between aerobic fitness and physical activity in total population of children. However, the study also indicates that inactive children can achieve notable increase in aerobic fitness by increasing their habitual physical activity level. A potential physiological explanation for these results is highlighted. PMID:20458593

  12. Methanotrophic bacteria in warm geothermal spring sediments identified using stable-isotope probing.

    PubMed

    Sharp, Christine E; Martínez-Lorenzo, Azucena; Brady, Allyson L; Grasby, Stephen E; Dunfield, Peter F

    2014-10-01

    We investigated methanotrophic bacteria in sediments of several warm geothermal springs ranging in temperature from 22 to 45 °C. Methane oxidation was measured at potential rates up to 141 μmol CH4 d(-1) g(-1) sediment. Active methanotrophs were identified using (13) CH4 stable-isotope probing (SIP) incubations performed at close to in situ temperatures for each site. Quantitative (q) PCR of pmoA genes identified the position of the heavy ((13) C-labelled) DNA fractions in density gradients, and 16S rRNA gene pyrotag sequencing of the heavy fractions was performed to identify the active methanotrophs. Methanotroph communities identified in heavy fractions of all samples were predominated by species similar (≥ 95% 16S rRNA gene identities) to previously characterized Gammaproteobacteria and Alphaproteobacteria methanotrophs. Among the five hottest samples (45 °C), members of the Gammaproteobacteria genus Methylocaldum dominated in two cases, while three others were dominated by an OTU closely related (96.8% similarity) to the Alphaproteobacteria genus Methylocapsa. These results suggest that diverse methanotroph groups are adapted to warm environments, including the Methylocapsa-Methylocella-Methyloferula group, which has previously only been detected in cooler sites. PMID:24986354

  13. Effects of nonmethane volatile organic compounds on microbial community of methanotrophic biofilter.

    PubMed

    Kim, Tae Gwan; Lee, Eun-Hee; Cho, Kyung-Suk

    2013-07-01

    Effects of nonmethane volatile organic compounds (NMVOCs) on methanotrophic biofilter were investigated. Laboratory-scale biofilters packed with pumice and granular-activated carbon (10:1, w/w) were operated with CH4 and NMVOCs including dimethyl sulfide (DMS) and benzene/toluene (B/T). DMS alone exhibited a positive effect on the methanotrophic performance; however, the coexistence of B/T removed this effect. B/T alone exerted no effect on the performance. Pyrosequencing and quantitative PCR revealed that the NMVOCs strongly influenced the bacterial and methanotrophic communities but not the population density of methanotrophs. DMS alone diversified and changed both bacterial and methantrophic communities, but its effects were nullified by the presence of B/T. Canonical correspondence analysis revealed significant correlations between the NMVOCs and community composition and significant interaction between DMS and B/T. DMS did not affect the distribution of types I/II methanotrophs (60/40), while B/T increased the abundance of type I to 82 %. DMS and B/T favored the growth of the methanotrophic bacteria Methylosarcina and Methylomonas, respectively. These results suggest that NMVOCs can be a significant abiotic factor influencing methane biofiltration. PMID:23053093

  14. Effects of cigarette smoke on aerobic capacity and serum MDA content and SOD activity of animal

    PubMed Central

    Hu, Jian-Ping; Zhao, Xin-Ping; Ma, Xiao-Zhi; Wang, Yi; Zheng, Li-Jun

    2014-01-01

    Objective: Study the effects of cigarette smoke on aerobic capacity, serum MDA content and SOD activity of animal. Methods: 60 male mice are randomly divided into mild smoking group, heavy smoking group, and control group, and the exhausted swimming time, serum SOD activity and MDA content of the three groups of mice are respectively measured before and after the experiment. Results: After the experiment, the exhausted swimming time for the control group, mild smoking and heavy smoking groups is respectively 276.57 min, 215.57 min and 176.54 min, and the serum SOD activities for the three objects are 216.46 U/mL, 169.16 U/mL and 154.91 U/mL, and the MDA contents are respectively 16.41 mol/mL, 22.31 mol/mL and 23.55 mol/mL. According to the comparison, it is found that compared with the control group and pre-intervention, the exhausted swimming time and serum SOD activity of the smoking group decreases obviously, and its MDA content rises sharply, and the difference has significance (P < 0.05), moreover, the heavy smoking group has more obvious changes than the mild group. Conclusion: Cigarette smoke can significantly weaken the aerobic capacity and fatigue resistance of mice, and the more the smoking time is longer, the more the harmful effect is more serious, this is related to the SOD activity drops and MDA content rises due to smoking. PMID:25550969

  15. Microbial diversity differences within aerobic granular sludge and activated sludge flocs.

    PubMed

    Winkler, M-K H; Kleerebezem, R; de Bruin, L M M; Verheijen, P J T; Abbas, B; Habermacher, J; van Loosdrecht, M C M

    2013-08-01

    In this study, we investigated during 400 days the microbial community variations as observed from 16S DNA gene DGGE banding patterns from an aerobic granular sludge pilot plant as well as the from a full-scale activated sludge treatment plant in Epe, the Netherlands. Both plants obtained the same wastewater and had the same relative hydraulic variations and run stable over time. For the total bacterial population, a similarity analysis was conducted showing that the community composition of both sludge types was very dissimilar. Despite this difference, general bacterial population of both systems had on average comparable species richness, entropy, and evenness, suggesting that different bacteria were sharing the same functionality. Moreover, multi-dimensional scaling analysis revealed that the microbial populations of the flocculent sludge system moved closely around the initial population, whereas the bacterial population in the aerobic granular sludge moved away from its initial population representing a permanent change. In addition, the ammonium-oxidizing community of both sludge systems was studied in detail showing more unevenness than the general bacterial community. Nitrosomonas was the dominant AOB in flocculent sludge, whereas in granular sludge, Nitrosomonas and Nitrosospira were present in equal amounts. A correlation analysis of process data and microbial data from DGGE gels showed that the microbial diversity shift in ammonium-oxidizing bacteria clearly correlated with fluctuations in temperature. PMID:23064482

  16. 6:2 fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants.

    PubMed

    Wang, Ning; Liu, Jinxia; Buck, Robert C; Korzeniowski, Stephen H; Wolstenholme, Barry W; Folsom, Patrick W; Sulecki, Lisa M

    2011-02-01

    The aerobic biotransformation of 6:2 FTS salt [F(CF2)6CH2CH2SO3- K+] was determined in closed bottles for 90d in diluted activated sludge from three waste water treatment plants (WWTPs) to compare its biotransformation potential with that of 6:2 FTOH [F(CF2)6CH2CH2OH]. The 6:2 FTS biotransformation was relatively slow, with 63.7% remaining at day 90 and all observed transformation products together accounting for 6.3% of the initial 6:2 FTS applied. The overall mass balance (6:2 FTS plus observed transformation products) at day 90 in live and sterile treatments averaged 70% and 94%, respectively. At day 90, the stable transformation products observed were 5:3 acid [F(CF2)5CH2CH2COOH, 0.12%], PFBA [F(CF2)3COOH, 0.14%], PFPeA [F(CF2)4COOH, 1.5%], and PFHxA [F(CF2)5COOH 1.1%]. In addition, 5:2 ketone [F(CF2)5C(O)CH3] and 5:2 sFTOH [F(CF2)5CH(OH)CH3] together accounted for 3.4% at day 90. The yield of all the stable transformation products noted above (2.9%) was 19 times lower than that of 6:2 FTOH in aerobic soil. Thus 6:2 FTS is not likely to be a major source of PFCAs and polyfluorinated acids in WWTPs. 6:2 FTOH, 6:2 FTA [F(CF2)6CH2COOH], and PFHpA [F(CF2)6COOH] were not observed during the 90-d incubation. 6:2 FTS primary biotransformation bypassed 6:2 FTOH to form 6:2 FTUA [F(CF2)5CF=CHCOOH], which was subsequently degraded via pathways similar to 6:2 FTOH biotransformation. A substantial fraction of initially dosed 6:2 FTS (24%) may be irreversibly bound to diluted activated sludge catalyzed by microbial enzymes. The relatively slow 6:2 FTS degradation in activated sludge may be due to microbial aerobic de-sulfonation of 6:2 FTS, required for 6:2 FTS further biotransformation, being a rate-limiting step in microorganisms of activated sludge in WWTPs. PMID:21112609

  17. Single-cell activity of freshwater aerobic anoxygenic phototrophic bacteria and their contribution to biomass production.

    PubMed

    Garcia-Chaves, Maria C; Cottrell, Matthew T; Kirchman, David L; Ruiz-González, Clara; Del Giorgio, Paul A

    2016-07-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophs that despite their low abundances have been hypothesized to play an ecologically and biogeochemically important role in aquatic systems. Characterizing this role requires a better understanding of the in situ dynamics and activity of AAP bacteria. Here we provide the first assessment of the single-cell activity of freshwater AAP bacteria and their contribution to total bacterial production across lakes spanning a wide trophic gradient, and explore the role of light in regulating AAP activity. The proportion of cells that were active in leucine incorporation and the level of activity per cell were consistently higher for AAP than for bulk bacteria across lakes. As a result, AAP bacteria contributed disproportionately more to total bacterial production than to total bacterial abundance. Interestingly, although environmentally driven patterns in activity did not seem to differ largely between AAP and bulk bacteria, their response to light did, and exposure to light resulted in increases in the proportion of active AAP bacteria with no clear effect on their cell-specific activity. This suggests that light may play a role in the activation of AAP bacteria, enabling these photoheterotrophs to contribute more to the carbon cycle than suggested by their abundance. PMID:26771928

  18. Aerobic and resistance training do not influence plasma carnosinase content or activity in type 2 diabetes.

    PubMed

    Stegen, Sanne; Sigal, Ronald J; Kenny, Glen P; Khandwala, Farah; Yard, Benito; De Heer, Emile; Baelde, Hans; Peersman, Wim; Derave, Wim

    2015-10-01

    A particular allele of the carnosinase gene (CNDP1) is associated with reduced plasma carnosinase activity and reduced risk for nephropathy in diabetic patients. On the one hand, animal and human data suggest that hyperglycemia increases plasma carnosinase activity. On the other hand, we recently reported lower carnosinase activity levels in elite athletes involved in high-intensity exercise compared with untrained controls. Therefore, this study investigates whether exercise training and the consequent reduction in hyperglycemia can suppress carnosinase activity and content in adults with type 2 diabetes. Plasma samples were taken from 243 males and females with type 2 diabetes (mean age = 54.3 yr, SD = 7.1) without major microvascular complications before and after a 6-mo exercise training program [4 groups: sedentary control (n = 61), aerobic exercise (n = 59), resistance exercise (n = 63), and combined exercise training (n = 60)]. Plasma carnosinase content and activity, hemoglobin (Hb) A1c, lipid profile, and blood pressure were measured. A 6-mo exercise training intervention, irrespective of training modality, did not decrease plasma carnosinase content or activity in type 2 diabetic patients. Plasma carnosinase content and activity showed a high interindividual but very low intraindividual variability over the 6-mo period. Age and sex, but not Hb A1c, were significantly related to the activity or content of this enzyme. It can be concluded that the beneficial effects of exercise training on the incidence of diabetic complications are probably not related to a lowering effect on plasma carnosinase content or activity. PMID:26389600

  19. The intervention composed of aerobic training and non-exercise physical activity (I-CAN) study: Rationale, design and methods.

    PubMed

    Swift, Damon L; Dover, Sara E; Nevels, Tyara R; Solar, Chelsey A; Brophy, Patricia M; Hall, Tyler R; Houmard, Joseph A; Lutes, Lesley D

    2015-11-01

    Recent data has suggested that prolonged sedentary behavior is independent risk factor for cardiovascular and all-cause mortality independent of adequate amounts of moderate to vigorous physical activity. However, few studies have prospectively evaluated if exercise training and increasing non-exercise physical activity leads to greater reduction in cardiometabolic risk compared to aerobic training alone. The purpose of the Intervention Composed of Aerobic Training and Non-Exercise Physical Activity (I-CAN) study is to determine whether a physical activity program composed of both aerobic training (consistent with public health recommendations) and increasing non-exercise physical activity (3000 steps above baseline levels) leads to enhanced improvements in waist circumference, oral glucose tolerance, systemic inflammation, body composition, and fitness compared to aerobic training alone in obese adults (N=45). Commercially available accelerometers (Fitbits) will be used to monitor physical activity levels and behavioral coaching will be used to develop strategies of how to increase non-exercise physical activity levels. In this manuscript, we describe the design, rationale, and methodology associated with the I-CAN study. PMID:26542389

  20. Analyses of Spatial Distributions of Sulfate-Reducing Bacteria and Their Activity in Aerobic Wastewater Biofilms

    PubMed Central

    Okabe, Satoshi; Itoh, Tsukasa; Satoh, Hisashi; Watanabe, Yoshimasa

    1999-01-01

    The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O2, H2S, NO2−, NO3−, NH4+, and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells (approximately 109 to 1010 cells per cm3 of biofilm) were evenly distributed throughout the biofilm, even in the oxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations (approximately 108 to 109 cells per cm3). The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 μm below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S0) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms (approximately 1,500 μm), which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate. PMID:10543829

  1. Pectinolytic systems of two aerobic sporogenous bacterial strains with high activity on pectin.

    PubMed

    Soriano, Margarita; Diaz, Pilar; Pastor, F I Javier

    2005-02-01

    Strains Paenibacillus sp. BP-23 and Bacillus sp. BP-7, previously isolated from soil from a rice field, secreted high levels of pectinase activity in media supplemented with pectin. Production of pectinases in strain Paenibacillus sp. BP-23 showed catabolite repression, while in Bacillus sp. BP-7 production of pectin degrading enzymes was not negatively affected by glucose. The two strains showed lyase activities as the predominant pectinases, while hydrolase activity was very low. Analysis of Paenibacillus sp. BP-23 in SDS-polyacrylamide gels and zymograms showed five pectinase activity bands. The strict requirement of Ca(2+) for lyase activity of the strain indicates that correspond to pectate lyases. For Bacillus sp. BP-7, zymograms showed four bands of different size. The strain showed a Ca(2+) requirement for lyase activity on pectate but not on pectin, indicating that the pectinolytic system of Bacillus sp. BP-7 is comprised of pectate lyases and pectin lyases. The results show differences in pectin degrading systems between the two aerobic sporogenous bacterial strains studied. PMID:15717229

  2. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  3. XoxF-Type Methanol Dehydrogenase from the Anaerobic Methanotroph “Candidatus Methylomirabilis oxyfera”

    PubMed Central

    Wu, Ming L.; Wessels, Hans J. C. T.; Pol, Arjan; Op den Camp, Huub J. M.; Jetten, Mike S. M.; van Niftrik, Laura

    2014-01-01

    “Candidatus Methylomirabilis oxyfera” is a newly discovered anaerobic methanotroph that, surprisingly, oxidizes methane through an aerobic methane oxidation pathway. The second step in this aerobic pathway is the oxidation of methanol. In Gram-negative bacteria, the reaction is catalyzed by pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH). The genome of “Ca. Methylomirabilis oxyfera” putatively encodes three different MDHs that are localized in one large gene cluster: one so-called MxaFI-type MDH and two XoxF-type MDHs (XoxF1 and XoxF2). MxaFI MDHs represent the canonical enzymes, which are composed of two PQQ-containing large (α) subunits (MxaF) and two small (β) subunits (MxaI). XoxF MDHs are novel, ecologically widespread, but poorly investigated types of MDHs that can be phylogenetically divided into at least five different clades. The XoxF MDHs described thus far are homodimeric proteins containing a large subunit only. Here, we purified a heterotetrameric MDH from “Ca. Methylomirabilis oxyfera” that consisted of two XoxF and two MxaI subunits. The enzyme was localized in the periplasm of “Ca. Methylomirabilis oxyfera” cells and catalyzed methanol oxidation with appreciable specific activity and affinity (Vmax of 10 μmol min−1 mg−1 protein, Km of 17 μM). PQQ was present as the prosthetic group, which has to be taken up from the environment since the known gene inventory required for the synthesis of this cofactor is lacking. The MDH from “Ca. Methylomirabilis oxyfera” is the first representative of type 1 XoxF proteins to be described. PMID:25527536

  4. XoxF-type methanol dehydrogenase from the anaerobic methanotroph “Candidatus Methylomirabilis oxyfera”.

    PubMed

    Wu, Ming L; Wessels, J C T; Pol, Arjan; Op den Camp, Huub J M; Jetten, Mike S M; van Niftrik, Laura

    2015-02-01

    “Candidatus Methylomirabilis oxyfera” is a newly discovered anaerobic methanotroph that, surprisingly, oxidizes methane through an aerobic methane oxidation pathway. The second step in this aerobic pathway is the oxidation of methanol. In Gramnegative bacteria, the reaction is catalyzed by pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH). The genome of “Ca. Methylomirabilis oxyfera” putatively encodes three different MDHs that are localized in one large gene cluster: one so-called MxaFI-type MDH and two XoxF-type MDHs (XoxF1 and XoxF2). MxaFI MDHs represent the canonical enzymes, which are composed of two PQQ-containing large (α) subunits (MxaF) and two small (β) subunits (MxaI). XoxF MDHs are novel, ecologically widespread, but poorly investigated types of MDHs that can be phylogenetically divided into at least five different clades. The XoxF MDHs described thus far are homodimeric proteins containing a large subunit only. Here, we purified a heterotetrameric MDH from “Ca. Methylomirabilis oxyfera” that consisted of two XoxF and two MxaI subunits. The enzyme was localized in the periplasm of “Ca. Methylomirabilis oxyfera” cells and catalyzed methanol oxidation with appreciable specific activity and affinity (Vmax of 10 micromole min(-1) mg(-1) protein, Km of 17 microM). PQQ was present as the prosthetic group,which has to be taken up from the environment since the known gene inventory required for the synthesis of this cofactor is lacking. The MDH from “Ca. Methylomirabilis oxyfera” is the first representative of type 1 XoxF proteins to be described. PMID:25527536

  5. Effect of Cardiorespiratory Training on Aerobic Fitness and Carryover to Activity In Children with Cerebral Palsy: A Systematic Review

    ERIC Educational Resources Information Center

    Butler, Jane M.; Scianni, Aline; Ada, Louise

    2010-01-01

    The question under consideration was does cardiorespiratory training improve aerobic fitness in children with cerebral palsy and is there any carryover into activity? The study design consisted of a systematic review of randomized trials using the Cochrane Collaboration guidelines. Participants were children of school age with cerebral palsy.…

  6. Soluble porous coordination polymers by mechanochemistry: from metal-containing films/membranes to active catalysts for aerobic oxidation.

    PubMed

    Zhang, Pengfei; Li, Haiying; Veith, Gabriel M; Dai, Sheng

    2015-01-14

    Soluble porous coordination polymers from mechanochemical synthesis are presented through a coordination polymerization between highly contorted, rigid tetraphenol and a broad variety of transition metal ions. These polymers can be easily cast as metal-containing films or freestanding membranes. Importantly, as-made coordination polymers are highly active and stable in the aerobic oxidation of allylic C-H bonds. PMID:25389070

  7. Active Female Maximal and Anaerobic Threshold Cardiorespiratory Responses to Six Different Water Aerobics Exercises

    ERIC Educational Resources Information Center

    Antunes, Amanda H.; Alberton, Cristine L.; Finatto, Paula; Pinto, Stephanie S.; Cadore, Eduardo L.; Zaffari, Paula; Kruel, Luiz F. M.

    2015-01-01

    Purpose: Maximal tests conducted on land are not suitable for the prescription of aquatic exercises, which makes it difficult to optimize the intensity of water aerobics classes. The aim of the present study was to evaluate the maximal and anaerobic threshold cardiorespiratory responses to 6 water aerobics exercises. Volunteers performed 3 of the…

  8. Aerobic-anaerobic transition intensity measured via EMG signals in athletes with different physical activity patterns.

    PubMed

    Jürimäe, Jaak; von Duvillard, Serge P; Mäestu, Jarek; Cicchella, Antonio; Purge, Priit; Ruosi, Sergio; Jürimäe, Toivo; Hamra, Jena

    2007-10-01

    The purpose of the present study was to investigate the use of electromyographic signals (EMG), to determine the EMG threshold (EMGT) in four lower extremity muscles and to compare these thresholds with the second ventilatory threshold (VT2) in subjects participating in different sports and at different performance levels. Forty-nine subjects (23.8 +/- 5.7 years, 182.7 +/- 5.3 cm, 79.1 +/- 8.6 kg) including eleven cyclists, ten team-handball players, nine kayakers, eight power lifters and eleven controls were investigated utilizing a cycle ergometer. Respiratory gas exchange measures were collected and EMG activity was continuously recorded from four muscles (vastus lateralis, vastus medialis, biceps femoris and gastrocnemius lateralis). The VO(2)max averaged 56.1 +/- 11.1 ml kg(-1) min(-1), the average aerobic power was 348.5 +/- 61.0 W and the corresponding VT2 occurred at 271.4 +/- 64.0 W. The EMGT ranged from 80 to 98% of power output for the different muscles. The VT2 and EMG thresholds from four different muscles were not different. When thresholds were analyzed among different groups of subjects, no significant difference was observed between VT2 and EMGT despite threshold differences between the groups. All four EMGT were significantly related to maximal aerobic power (r = 0.73-0.83) and were highly correlated to each other (r = 0.57-0.88). In conclusion, EMGT can be used to determine the VT2 for individuals independent of sport specificity or performance level. PMID:17624542

  9. Stoichiometry and kinetics of poly-{beta}-hydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures

    SciTech Connect

    Beun, J.J.; Paletta, F.; Loosdrecht, M.C.M. Van; Heijnen, J.J.

    2000-02-20

    This paper discusses the poly-{beta}-hydroxybutyrate (PHB) metabolism in aerobic, slow growing, activated sludge cultures, based on experimental data and on a metabolic model. The dynamic conditions which occur in activated sludge processes were simulated in a 2-L sequencing batch reactor (SBR) by subjecting a mixed microbial population to successive periods of external substrate availability (feast period) and no external substrate availability (famine period). Under these conditions intracellular storage and consumption of PHB was observed. It appeared that in the feast period, 66% to almost 100% of the substrate consumed is used for storage of PHB, the remainder is used for growth and maintenance processes. Furthermore, it appeared that at high sludge retention time (SRT) the growth rate in the feast and famine periods was the same. With decreasing SRT the growth rate in the feast period increased relative to the growth rate in the famine period. Acetate consumption and PHB production in the feast period both proceeded with a zero-order rate in acetate and PHB concentration respectively. PHB consumption in the famine period could best be described kinetically with a nth order degradation equation in PHB concentration. The obtained results are discussed in the context of the general activated sludge models.

  10. Aerobic Methane Oxidation in Alaskan Lakes Along a Latitudinal Transect

    NASA Astrophysics Data System (ADS)

    Martinez-Cruz, K. C.; Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Anthony, P.; Thalasso, F.

    2013-12-01

    Karla Martinez-Cruz* **, Armando Sepulveda-Jauregui*, Katey M. Walter Anthony*, Peter Anthony*, and Frederic Thalasso**. * Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska. ** Biotechnology and Bioengineering Department, Cinvestav, Mexico city, D. F., Mexico. Methane (CH4) is the third most important greenhouse gas in the atmosphere, after carbon dioxide and water vapor. Boreal lakes play an important role in the current global warming by contributing as much as 6% of global atmospheric CH4 sources annually. On the other hand, aerobic methane oxidation (methanotrophy) in lake water is a fundamental process in global methane cycling that reduces the amount of CH4 emissions to the atmosphere. Several environmental factors affect aerobic methane oxidation in the water column both directly and indirectly, including concentration of CH4 and O2, temperature and carbon budgets of lakes. We analyzed the potential of aerobic methane oxidation (PMO) rates in incubations of water collected from 30 Alaskan lakes along a north-south transect during winter and summer 2011. Our findings showed an effect of CH4 and O2 concentrations, temperature and yedoma thawing permafrost on PMO activity in the lake water. The highest PMO rates were observed in summer by lakes situated on thawing yedoma permafrost, most of them located in the interior of Alaska. We also estimated that 60-80% of all CH4 produced in Alaskan lakes could be taken up by methanotrophs in the lake water column, showing the significant influence of aerobic methane oxidation of boreal lakes to the global CH4 budget.

  11. [Detection of anaerobic processes and microorganisms in immobilized activated sludge of a wastewater treatment plant with intense aeration].

    PubMed

    Litti, Iu V; Nekrasova, V K; Kulikov, N I; Siman'kova, M V; Nozhevnikova, A N

    2013-01-01

    Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation. PMID:25509405

  12. Methane release from sediment seeps to the atmosphere is counteracted by highly active Methylococcaceae in the water column of deep oligotrophic Lake Constance.

    PubMed

    Bornemann, Maren; Bussmann, Ingeborg; Tichy, Lucas; Deutzmann, Jörg; Schink, Bernhard; Pester, Michael

    2016-08-01

    Methane emissions from freshwater environments contribute substantially to global warming but are under strong control of aerobic methane-oxidizing bacteria. Recently discovered methane seeps (pockmarks) in freshwater lake sediments have the potential to bypass this control by their strong outgassing activity. Whether this is counteracted by pelagic methanotrophs is not well understood yet. We used a (3)H-CH4-radiotracer technique and pmoA-based molecular approaches to assess the activity, abundance and community structure of pelagic methanotrophs above active pockmarks in deep oligotrophic Lake Constance. Above profundal pockmarks, methane oxidation rates (up to 458 nmol CH4 l(-1) d(-1)) exceeded those of the surrounding water column by two orders of magnitude and coincided with maximum methanotroph abundances of 0.6% of the microbial community. Phylogenetic analysis indicated a dominance of members of the Methylococcaceae in the water column of both, pockmark and reference sites, with most of the retrieved sequences being associated with a water-column specific clade. Communities at pockmark and reference locations also differed in parts, which was likely caused by entrainment of sediment-hosted methanotrophs at pockmark sites. Our results show that the release of seep-derived methane to the atmosphere is counteracted by a distinct methanotrophic community with a pronounced activity throughout bottom waters. PMID:27267930

  13. Determination of reaction rates and activation energy in aerobic composting processes for yard waste.

    PubMed

    Uma, R N; Manjula, G; Meenambal, T

    2007-04-01

    The reaction rates and activation energy in aerobic composting processes for yard waste were determined using specifically designed reactors. Different mixture ratios were fixed before the commencement of the process. The C/N ratio was found to be optimum for a mixture ratio of 1:6 containing one part of coir pith to six parts of other waste which included yard waste, yeast sludge, poultry yard waste and decomposing culture (Pleurotosis). The path of stabilization of the wastes was continuously monitored by observing various parameters such as temperature, pH, Electrical Conductivity, C.O.D, VS at regular time intervals. Kinetic analysis was done to determine the reaction rates and activation energy for the optimum mixture ratio under forced aeration condition. The results of the analysis clearly indicated that the temperature dependence of the reaction rates followed the Arrhenius equation. The temperature coefficients were also determined. The degradation of the organic fraction of the yard waste could be predicted using first order reaction model. PMID:18476403

  14. Secretion of flavins by three species of methanotrophic bacteria.

    PubMed

    Balasubramanian, Ramakrishnan; Levinson, Benjamin T; Rosenzweig, Amy C

    2010-11-01

    We detected flavins in the growth medium of the methanotrophic bacterium Methylocystis species strain M. Flavin secretion correlates with growth stage and increases under iron starvation conditions. Two other methanotrophs, Methylosinus trichosporium OB3b and Methylococcus capsulatus (Bath), secrete flavins, suggesting that flavin secretion may be common to many methanotrophic bacteria. PMID:20833792

  15. Distribution and selection of poly-3-hydroxybutyrate production capacity in methanotrophic proteobacteria.

    PubMed

    Pieja, Allison J; Rostkowski, Katherine H; Criddle, Craig S

    2011-10-01

    Methanotrophs are known to produce poly-3-hydroxybutyrate (PHB), but there is conflicting evidence in the literature as to which genera produce the polymer. We screened type I and II proteobacterial methanotrophs that use the ribulose monophosphate and serine pathways for carbon assimilation, respectively, for both phaC, which encodes for PHB synthase, and the ability to produce PHB under nitrogen-limited conditions. Twelve strains from six different genera were evaluated. All type I strains tested negative for phaC and PHB production; all Type II strains tested positive for phaC and PHB production. In order to identify conditions that favor PHB production, we also evaluated a range of selection conditions using a diverse activated sludge inoculum. Use of medium typically recommended for methanotroph enrichment led to enrichments dominated by type I methanotrophs. Conditions that were selected for enrichments dominated by PHB-producing Type II methanotrophs were: (1) use of nitrogen gas as the sole nitrogen source in the absence of copper, (2) use of a dilute mineral salts media in the absence of copper, and (3) use of media prepared at pH values of 4-5. PMID:21594594

  16. Aerobic and anaerobic enzymatic activity of orange roughy (Hoplostethus atlanticus) and alfonsino (Beryx splendens) from the Juan Fernandez seamounts area.

    PubMed

    Saavedra, L M; Quiñones, R A; Gonzalez-Saldía, R R; Niklitschek, E J

    2016-06-01

    The aerobic and anaerobic enzymatic activity of two important commercial bathypelagic species living in the Juan Fernández seamounts was analyzed: alfonsino (Beryx splendens) and orange roughy (Hoplostethus atlanticus). These seamounts are influenced by the presence of an oxygen minimum zone (OMZ) located between 160 and 250 m depth. Both species have vertical segregation; alfonsino is able to stay in the OMZ, while orange roughy remains at greater depths. In this study, we compare the aerobic and anaerobic capacity of these species, measuring the activity of key metabolic enzymes in different body tissues (muscle, heart, brain and liver). Alfonsino has higher anaerobic potential in its white muscle due to greater lactate dehydrogenase (LDH) activity (190.2 μmol NADH min(-1) g ww(-1)), which is related to its smaller body size, but it is also a feature shared with species that migrate through OMZs. This potential and the higher muscle citrate synthase and electron transport system activities indicate that alfonsino has greater swimming activity level than orange roughy. This species has also a high MDH/LDH ratio in its heart, brain and liver, revealing a potential capacity to conduct aerobic metabolism in these organs under prolonged periods of environmental low oxygen conditions, preventing lactic acid accumulation. With these metabolic characteristics, alfonsino may have increased swimming activity to migrate and also could stay for a period of time in the OMZ. The observed differences between alfonsino and orange roughy with respect to their aerobic and anaerobic enzymatic activity are consistent with their characteristic vertical distributions and feeding behaviors. PMID:26687132

  17. Activity, distribution, and abundance of methane-oxidizing bacteria in the near surface soils of onshore oil and gas fields.

    PubMed

    Xu, Kewei; Tang, Yuping; Ren, Chun; Zhao, Kebin; Wang, Wanmeng; Sun, Yongge

    2013-09-01

    Methane-oxidizing bacteria (MOB) have long been used as an important biological indicator for oil and gas prospecting, but the ecological characteristics of MOB in hydrocarbon microseep systems are still poorly understood. In this study, the activity, distribution, and abundance of aerobic methanotrophic communities in the surface soils underlying an oil and gas field were investigated using biogeochemical and molecular ecological techniques. Measurements of potential methane oxidation rates and pmoA gene copy numbers showed that soils inside an oil and gas field are hot spots of methane oxidation and MOB abundance. Correspondingly, terminal restriction fragment length polymorphism analyses in combination with cloning and sequencing of pmoA genes also revealed considerable differences in the methanotrophic community composition between oil and gas fields and the surrounding soils. Principal component analysis ordination furthermore indicated a coincidence between elevated CH4 oxidation activity and the methanotrophic community structure with type I methanotrophic Methylococcus and Methylobacter, in particular, as indicator species of oil and gas fields. Collectively, our results show that trace methane migrated from oil and gas reservoirs can considerably influence not only the quantity but also the structure of the methanotrophic community. PMID:23090054

  18. Management of aerobic vaginitis.

    PubMed

    Tempera, Gianna; Furneri, Pio Maria

    2010-01-01

    Aerobic vaginitis is a new nonclassifiable pathology that is neither specific vaginitis nor bacterial vaginosis. The diversity of this microbiological peculiarity could also explain several therapeutic failures when patients were treated for infections identified as bacterial vaginosis. The diagnosis 'aerobic vaginitis' is essentially based on microscopic examinations using a phase-contrast microscope (at ×400 magnification). The therapeutic choice for 'aerobic vaginitis' should take into consideration an antibiotic characterized by an intrinsic activity against the majority of bacteria of fecal origin, bactericidal effect and poor/absent interference with the vaginal microbiota. Regarding the therapy for aerobic vaginitis when antimicrobial agents are prescribed, not only the antimicrobial spectrum but also the presumed ecological disturbance on the anaerobic and aerobic vaginal and rectal microbiota should be taken into a consideration. Because of their very low impact on the vaginal microbiota, kanamycin or quinolones are to be considered a good choice for therapy. PMID:21051843

  19. Insights into the obligate methanotroph Methylococcus capsulatus.

    PubMed

    Kelly, Donovan P; Anthony, Christopher; Murrell, J Colin

    2005-05-01

    Completion of the genome sequence of Methylococcus capsulatus Bath is an important event in molecular microbiology, and an achievement for which the authors deserve congratulation. M. capsulatus, along with other methanotrophs, has been the subject of intense biochemical and molecular study because of its role in the global carbon cycle: the conversion of biogenic methane to carbon dioxide. The methane monooxygenase enzymes that are central to this process also have high biotechnological potential. Analysis of the genome sequence will potentially accelerate elucidation of the regulation of methane-dependent metabolism in obligate methanotrophs, and help explain the cause of obligate methanotrophy, the phenomenon making most methanotrophs unable to grow on any substrates other than methane and a very small number of other one-carbon compounds. PMID:15866035

  20. Fly ash application in nutrient poor agriculture soils: impact on methanotrophs population dynamics and paddy yields.

    PubMed

    Singh, Jay Shankar; Pandey, Vimal Chandra

    2013-03-01

    There are reports that the application of fly ash, compost and press mud or a combination thereof, improves plant growth, soil microbial communities etc. Also, fly ash in combination with farmyard manure or other organic amendments improves soil physico-chemical characteristics, rice yield and microbial processes in paddy fields. However, the knowledge about the impact of fly ash inputs alone or in combination with other organic amendments on soil methanotrophs number in paddy soils is almost lacking. We hypothesized that fly ash application at lower doses in paddy agriculture soil could be a potential amendment to elevate the paddy yields and methanotrophs number. Here we demonstrate the impact of fly ash and press mud inputs on number of methanotrophs, antioxidants, antioxidative enzymatic activities and paddy yields at agriculture farm. The impact of amendments was significant for methanotrophs number, heavy metal concentration, antioxidant contents, antioxidant enzymatic activities and paddy yields. A negative correlation was existed between higher doses of fly ash-treatments and methanotrophs number (R(2)=0.833). The content of antioxidants and enzymatic activities in leaves of higher doses fly ash-treated rice plants increased in response to stresses due to heavy metal toxicity, which was negatively correlated with rice grain yield (R(2)=0.944) and paddy straw yield (R(2)=0.934). A positive correlation was noted between heavy metals concentrations and different antioxidant and enzymatic activities across different fly ash treated plots.The data of this study indicate that heavy metal toxicity of fly ash may cause oxidative stress in the paddy crop and the antioxidants and related enzymes could play a defensive role against phytotoxic damages. We concluded that fly ash at lower doses with press mud seems to offer the potential amendments to improving soil methanotrophs population and paddy crop yields for the nutrient poor agriculture soils. PMID:23260239

  1. Respiration and respiratory enzyme activity in aerobic and anaerobic cultures of the marine denitrifying bacterium, Pseudomonas perfectomarinus

    NASA Astrophysics Data System (ADS)

    Packard, T. T.; Garfield, P. C.; Martinez, R.

    1983-03-01

    Oxygen consumption, nitrate reduction, respiratory electron transport activity, and nitrate reductase activity were measured in aerobic and anaerobic cultures of the marine bacterium, Pseudomonas perfectomarinus. The respiratory electron transport activity was closely correlated with oxygen consumption ( r = 0.98) in aerobic cultures and nearly as well correlated with nitrate reductase activity ( r = 0.91) and nitrate reduction ( r = 0.85) in anaerobic cultures. It was also well correlated with biomass in both aerobic ( r = 0.99) and anaerobic ( r = 0.94) cultures supporting the use of tetrazolium reduction as an index of living biomass. Time courses of nitrate and nitrate in the anaerobic cultures demonstrated that at nitrate concentrations above 1 mM, denitrification proceeds stepwise. Time courses of pH in anaerobic cultures revealed a rise from 7 to 8.5 during nitrite reduction indicating net proton utilization. This proton utilization is predicted by the stoichiometry of denitrification. Although the experiments were not under 'simulated in situ' conditions, the results are relevant to studies of denitrification, to bacterial ATP production, and to the respiratory activity of marine plankton in the ocean.

  2. An Action Research Inquiry into the Relationship Among Aerobic Activities, Memory, and Stress with Students Identified as Gifted

    NASA Astrophysics Data System (ADS)

    Ford, Denise Marie

    Students identified as gifted come from varying socio-economic strata and nationalities with a range of talents and temperaments comprising a diverse community. They may experience stress for a variety of reasons. Although a certain amount of stress can enhance the learning process, too much stress can impede learning, especially memory. Strategies have been offered for relieving stress, yet the benefits of physical activities as stress reducers for the gifted have frequently been overlooked. The purpose of this study was to investigate the relationship among aerobic activity, stress, and memory ability in students in an elementary school gifted program. An exceptional aspect of this research was that the students were an integral part of their own study. As co-researchers they had a vested interest in what they were doing, enhancing the significance of the experience and heightening learning. This action research project conducted in a mid-western school district with fourth and fifth grade students examined the impact of aerobic movement on physical indicators of stress and memory. The study lasted twelve weeks with data collected on physical indicators of stress, memory test scores, parent observations, interviews with students, a parent focus group session, observational data, student comments, and investigator/teacher journal. By infusing regular exercise into curricula, stress levels in students identified as gifted were examined. Students' scores on declarative memory tasks conducted with and without an accompanying aerobic activity were documented. Students learned of the delicate relationship between stress and memory as they studied the physiology of the brain. Twenty-four hour retention rates of declarative memory items were higher when a 20-minute aerobic activity intervention preceded the memory activity. Perceived stress levels were lowered for 14 of the 16 co-researchers. Students indicated a positive attitude toward physical activity and its

  3. Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding.

    PubMed

    Dionisi, Davide; Majone, Mauro; Papa, Viviana; Beccari, Mario

    2004-03-20

    This article describes a new process for the production of biopolymers (polyhydroxyalkanoates, PHAs) based on the aerobic enrichment of activated sludge to obtain mixed cultures able to store PHAs at high rates and yields. Enrichment was obtained through the selective pressure established by feeding the carbon source in a periodic mode (feast and famine regime) in a sequencing batch reactor. A concentrated mixture of acetic, lactic, and propionic acids (overall concentration of 8.5 gCOD L(-1)) was fed every 2 h at 1 day(-1) overall dilution rate. Even at such high organic load (8.5 gCOD L(-1) day(-1)), the selective pressure due to periodic feeding was effective in obtaining a biomass with a storage ability much higher than activated sludges. The immediate biomass response to substrate excess (as determined thorough short-term batch tests) was characterized by a storage rate and yield of 649 mgPHA (as COD) g biomass (as COD)(-1) h(-1) and 0.45 mgPHA (as COD) mg removed substrates (as COD(-1)), respectively. When the substrate excess was present for more than 2 h (long-term batch tests), the storage rate and yield decreased, whereas growth rate and yield significantly increased due to biomass adaptation. A maximum polymer fraction in the biomass was therefore obtained at about 50% (on COD basis). As for the PHA composition, the copolymer poly(beta-hydroxybutyrate/beta-hydroxyvalerate) with 31% of hydroxyvalerate monomer was produced from the substrate mixture. Comparison of the tests with individual and mixed substrates seemed to indicate that, on removing the substrate mixture for copolymer production, propionic acid was fully utilized to produce propionylCoA, whereas the acetylCoA was fully provided by acetic and lactic acid. PMID:14966798

  4. Physiological activities associated with biofilm growth in attached and suspended growth bioreactors under aerobic and anaerobic conditions.

    PubMed

    Naz, Iffat; Seher, Shama; Perveen, Irum; Saroj, Devendra P; Ahmed, Safia

    2015-01-01

    This research work evaluated the biofilm succession on stone media and compared the biochemical changes of sludge in attached and suspended biological reactors operated under aerobic and anaerobic conditions. Stones incubated (30±2°C) with activated sludge showed a constant increase in biofilm weight up to the fifth and seventh week time under anaerobic and aerobic conditions, respectively, where after reduction (>80%) the most probable number index of pathogen indicators on ninth week was recorded. Reduction in parameters such as biological oxygen demand (BOD) (47.7%), chemical oxygen demand (COD, 41%), nitrites (60.2%), nitrates (105.5%) and phosphates (58.9%) and increase in dissolved oxygen (176.5%) of sludge were higher in aerobic attached growth reactors as compared with other settings. While, considerable reductions in these values were also observed (BOD, 53.8%; COD, 2.8%; nitrites, 28.6%; nitrates, 31.7%; phosphates, 41.4%) in the suspended growth system under anaerobic conditions. However, higher sulphate removal was observed in suspended (40.9% and 54.9%) as compared with biofilm reactors (28.2% and 29.3%). Six weeks biofilm on the stone media showed maximum physiological activities; thus, the operational conditions should be controlled to keep the biofilm structure similar to six-week-old biofilm, and can be used in fixed biofilm reactors for wastewater treatment. PMID:25609155

  5. Transformation yields of chlorinated ethenes by a methanotrophic mixed culture expressing particulate methane monooxygenase.

    PubMed Central

    Anderson, J E; McCarty, P L

    1997-01-01

    Transformation yields for the aerobic cometabolic degradation of five chlorinated ethenes were determined by using a methanotrophic mixed culture expressing particulate methane monooxygenase (pMMO). Transformation yields (expressed as moles of chlorinated ethene degraded per mole of methane consumed) were 0.57, 0.25, 0.058, 0.0019, and 0.00022 for trans-1,2-dichloroethylene (t-DCE), vinyl chloride (VC), cis-1,2-dichloroethylene (c-DCE), trichloroethylene (TCE), and 1,1-dichloroethylene (1,1-DCE), respectively. Degradation of t-DCE and VC was observed only in the presence of formate or methane, sources of reducing energy necessary for cometabolism. The t-DCE and VC transformation yields represented 35 and 15%, respectively, of the theoretical maximum yields, based on reducing-energy availability from methane dissimilation to carbon dioxide, exclusive of all other processes that require reducing energy. The yields for t-DCE and VC were 20 times greater than the yields reported by others for cells expressing soluble methane monooxygenase (sMMO). Transformation yields for c-DCE, TCE, and 1,1-DCE were similar to or less than those for cultures expressing sMMO. Although methanotrophic biotreatment systems have typically been designed to incorporate cultures expressing sMMO, these results suggest that pMMO expression may be highly advantageous for degradation of t-DCE or VC. It may also be much easier to maintain pMMO expression in treatment systems, because pMMO is expressed by all methanotrophs whereas sMMO is expressed only by type II methanotrophs under copper-limited conditions. PMID:9023946

  6. Effects of Physical Activity on Children's Executive Function: Contributions of Experimental Research on Aerobic Exercise

    ERIC Educational Resources Information Center

    Best, John R.

    2010-01-01

    Executive function refers to the cognitive processes necessary for goal-directed cognition and behavior, which develop across childhood and adolescence. Recent experimental research indicates that both acute and chronic aerobic exercise promote children's executive function. Furthermore, there is tentative evidence that not all forms of aerobic…

  7. Increased aerobic glycolysis is important for the motility of activated VSMC and inhibited by indirubin-3′-monoxime

    PubMed Central

    Heiss, Elke H.; Schachner, Daniel; Donati, Maddalena; Grojer, Christoph S.; Dirsch, Verena M.

    2016-01-01

    Increased aerobic glycolysis is a recognized feature of multiple cellular phenotypes and offers a potential point for drug interference, as pursued by anti-tumor agents targeting the Warburg effect. This study aimed at examining the role of aerobic glycolysis for migration of vascular smooth muscle cells (VSMC) and its susceptibility to the small molecule indirubin-3′-monoxime (I3MO). Activation of VSMC with platelet-derived growth factor (PDGF) resulted in migration and increased glycolytic activity which was accompanied by an increased glucose uptake and hexokinase (HK) 2 expression. Inhibition of glycolysis or hexokinase by pharmacological agents or siRNA-mediated knockdown significantly reduced the migratory behavior in VSMC without affecting cell viability or early actin cytoskeleton rearrangement. I3MO, previously recognized as inhibitor of VSMC migration, was able to counteract the PDGF-activated increase in glycolysis and HK2 abundance. Activation of signal transducer and activator of transcription (STAT) 3 could be identified as crucial event in upregulation of HK2 and glycolytic activity in PDGF-stimulated VSMC and as point of interference for I3MO. I3MO did not inhibit hypoxia-inducible factor (HIF)1α-dependent transcription nor influence miRNA 143 levels, other potential regulators of HK2 levels. Overall, we demonstrate that increased aerobic glycolysis is an important factor for the motility of activated VSMC and that the anti-migratory property of I3MO may partly depend on impairment of glycolysis via a compromised STAT3/HK2 signaling axis. PMID:27185663

  8. Effect of selected monoterpenes on methane oxidation, denitrification, and aerobic metabolism by bacteria in pure culture.

    PubMed

    Amaral, J A; Ekins, A; Richards, S R; Knowles, R

    1998-02-01

    Selected monoterpenes inhibited methane oxidation by methanotrophs (Methylosinus trichosporium OB3b, Methylobacter luteus), denitrification by environmental isolates, and aerobic metabolism by several heterotrophic pure cultures. Inhibition occurred to various extents and was transient. Complete inhibition of methane oxidation by Methylosinus trichosporium OB3b with 1.1 mM (-)-alpha-pinene lasted for more than 2 days with a culture of optical density of 0.05 before activity resumed. Inhibition was greater under conditions under which particulate methane monooxygenase was expressed. No apparent consumption or conversion of monoterpenes by methanotrophs was detected by gas chromatography, and the reason that transient inhibition occurs is not clear. Aerobic metabolism by several heterotrophs was much less sensitive than methanotrophy was; Escherichia coli (optical density, 0.01), for example, was not affected by up to 7.3 mM (-)-alpha-pinene. The degree of inhibition was monoterpene and species dependent. Denitrification by isolates from a polluted sediment was not inhibited by 3.7 mM (-)-alpha-pinene, gamma-terpinene, or beta-myrcene, whereas 50 to 100% inhibition was observed for isolates from a temperate swamp soil. The inhibitory effect of monoterpenes on methane oxidation was greatest with unsaturated, cyclic hydrocarbon forms [e.g., (-)-alpha-pinene, (S)-(-)-limonene, (R)-(+)-limonene, and gamma-terpinene]. Lower levels of inhibition occurred with oxide and alcohol derivatives [(R)-(+)-limonene oxide, alpha-pinene oxide, linalool, alpha-terpineol] and a noncyclic hydrocarbon (beta-myrcene). Isomers of pinene inhibited activity to different extents. Given their natural sources, monoterpenes may be significant factors affecting bacterial activities in nature. PMID:9464387

  9. Between-school variation in physical activity, aerobic fitness, and organized sports participation: a multi-level analysis.

    PubMed

    Kristensen, Peter L; Olesen, Line G; Ried-Larsen, Mathias; Grøntved, Anders; Wedderkopp, Niels; Froberg, Karsten; Andersen, Lars B

    2013-01-01

    A large proportion of a child's day is spent at school interacting with certain physical surroundings, teachers, and school friends. Thus, schools could have a marked impact on establishing physical activity habits. The aim of the present study was to assess between-school variation in physical activity, aerobic fitness, and organized sports participation. Altogether, we tested 1766 nine- and fifteen-year-old children attending 242 school classes at 35 different schools in Denmark in 1997-2003. The intra-class correlation coefficient (ICC) for objectively assessed physical activity ranged between 0.06 and 0.18 depending on the dimension of physical activity and the time considered (i.e. school time vs. leisure time). For aerobic fitness, an ICC of 0.10 was observed, whereas that for organized sports participation ranged between 0.01 and 0.10 depending on the age group. Studying between-school variation in physical activity provides information about the extent to which children adjust their physical activity habits according to the social and environmental circumstances that they share, and helps to plan future school-based physical activity studies, especially in terms of sample size and power calculation. PMID:22992067

  10. Mechanistic insight into aerobic alcohol oxidation using NOx-nitroxide catalysis based on catalyst structure-activity relationships.

    PubMed

    Shibuya, Masatoshi; Nagasawa, Shota; Osada, Yuji; Iwabuchi, Yoshiharu

    2014-11-01

    The mechanism of an NOx-assisted, nitroxide(nitroxyl radical)-catalyzed aerobic oxidation of alcohols was investigated using a set of sterically and electronically modified nitroxides (i.e., TEMPO, AZADO (1), 5-F-AZADO (2), 5,7-DiF-AZADO (3), 5-MeO-AZADO (4), 5,7-DiMeO-AZADO (5), oxa-AZADO (6), TsN-AZADO (7), and DiAZADO (8)). The motivation for the present study stemmed from our previous observation that the introduction of an F atom at a remote position from the nitroxyl radical moiety on the azaadamantane nucleus effectively enhanced the catalytic activity under typical NOx-mediated aerobic-oxidation conditions. The kinetic profiles of the azaadamantane-N-oxyl-[AZADO (1)-, 5-F-AZADO (2)-, and 5,7-DiF-AZADO (3)]-catalyzed aerobic oxidations were closely investigated, revealing that AZADO (1) showed a high initial reaction rate compared to 5-F-AZADO (2) and 5,7-DiF-AZADO (3); however, AZADO-catalyzed oxidation exhibited a marked slowdown, resulting in ∼90% conversion, whereas 5-F-AZADO-catalyzed oxidation smoothly reached completion without a marked slowdown. The reasons for the marked slowdown and the role of the fluoro group are discussed. Oxa-AZADO (6), TsN-AZADO (7), and DiAZADO (8) were designed and synthesized to confirm their comparable catalytic efficiency to that of 5-F-AZADO (2), providing supporting evidence for the electronic effect on the catalytic efficiency of the heteroatoms under NOx-assisted aerobic-oxidation conditions. PMID:25286356

  11. Activity and growth of anammox biomass on aerobically pre-treated municipal wastewater.

    PubMed

    Laureni, Michele; Weissbrodt, David G; Szivák, Ilona; Robin, Orlane; Nielsen, Jeppe Lund; Morgenroth, Eberhard; Joss, Adriano

    2015-09-01

    Direct treatment of municipal wastewater (MWW) based on anaerobic ammonium oxidizing (anammox) bacteria holds promise to turn the energy balance of wastewater treatment neutral or even positive. Currently, anammox processes are successfully implemented at full scale for the treatment of high-strength wastewaters, whereas the possibility of their mainstream application still needs to be confirmed. In this study, the growth of anammox organisms on aerobically pre-treated municipal wastewater (MWW(pre-treated)), amended with nitrite, was proven in three parallel reactors. The reactors were operated at total N concentrations in the range 5-20 mg(N)∙L(-1), as expected for MWW. Anammox activities up to 465 mg(N)∙L(-1)∙d(-1) were reached at 29 °C, with minimum doubling times of 18 d. Lowering the temperature to 12.5 °C resulted in a marked decrease in activity to 46 mg(N)∙L(-1)∙d(-1) (79 days doubling time), still in a reasonable range for autotrophic nitrogen removal from MWW. During the experiment, the biomass evolved from a suspended growth inoculum to a hybrid system with suspended flocs and wall-attached biofilm. At the same time, MWW(pre-treated) had a direct impact on process performance. Changing the influent from synthetic medium to MWW(pre-treated) resulted in a two-month delay in net anammox growth and a two to three-fold increase in the estimated doubling times of the anammox organisms. Interestingly, anammox remained the primary nitrogen consumption route, and high-throughput 16S rRNA gene-targeted amplicon sequencing analyses revealed that the shift in performance was not associated with a shift in dominant anammox bacteria ("Candidatus Brocadia fulgida"). Furthermore, only limited heterotrophic denitrification was observed in the presence of easily biodegradable organics (acetate, glucose). The observed delays in net anammox growth were thus ascribed to the acclimatization of the initial anammox population or/and the development of a side

  12. Curcumin inhibits aerobic glycolysis in hepatic stellate cells associated with activation of adenosine monophosphate-activated protein kinase.

    PubMed

    Lian, Naqi; Jin, Huanhuan; Zhang, Feng; Wu, Li; Shao, Jiangjuan; Lu, Yin; Zheng, Shizhong

    2016-07-01

    Activation of hepatic stellate cells (HSCs) is characterized by expression of extracellular matrix and loss of adipogenic phenotype during liver fibrogenesis. Emerging evidence suggests that HSCs adopt aerobic glycolysis during activation. The present work aimed at investigating whether the anti-fibrogenic effects of curcumin was associated with interfering with glycolysis in HSCs. Primary rat HSCs were cultured in vitro. We demonstrated that inhibition of glycolysis by 2-deoxyglucose or galloflavin reduced the expression of α-smooth muscle actin (α-SMA) and α1(I)procollagen at both mRNA and protein levels, and increased the intracellular lipid contents and upregulated the gene and protein expression of adipogenic transcription factors C/EBPα and PPAR-γ in HSCs. Curcumin at 20 μM produced similar effects. Moreover, curcumin decreased the expression of hexokinase (HK), phosphofructokinase-2 (PFK2), and glucose transporter 4 (glut4), three key glycolytic parameters, at both mRNA and protein levels. Curcumin also reduced lactate production concentration-dependently in HSCs. Furthermore, curcumin increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), but AMPK inhibitor BML-275 significantly abolished the curcumin downregulation of HK, PFK2, and glut4. In addition, curcumin inhibition of α-SMA and α1(I)procollagen was rescued by BML-275, and curcumin upregulation of C/EBPα and PPAR-γ was abrogated by BML-275. These results collectively indicated that curcumin inhibited glycolysis in an AMPK activation-dependent manner in HSCs. We revealed a novel mechanism for curcumin suppression of HSC activation implicated in antifibrotic therapy. © 2016 IUBMB Life, 68(7):589-596, 2016. PMID:27278959

  13. Acid-Tolerant Moderately Thermophilic Methanotrophs of the Class Gammaproteobacteria Isolated From Tropical Topsoil with Methane Seeps

    PubMed Central

    Islam, Tajul; Torsvik, Vigdis; Larsen, Øivind; Bodrossy, Levente; Øvreås, Lise; Birkeland, Nils-Kåre

    2016-01-01

    Terrestrial tropical methane seep habitats are important ecosystems in the methane cycle. Methane oxidizing bacteria play a key role in these ecosystems as they reduce methane emissions to the atmosphere. Here, we describe the isolation and initial characterization of two novel moderately thermophilic and acid-tolerant obligate methanotrophs, assigned BFH1 and BFH2 recovered from a tropical methane seep topsoil habitat. The new isolates were strictly aerobic, non-motile, coccus-shaped and utilized methane and methanol as sole carbon and energy source. Isolates grew at pH range 4.2–7.5 (optimal 5.5–6.0) and at a temperature range of 30–60°C (optimal 51–55°C). 16S rRNA gene phylogeny placed them in a well-separated branch forming a cluster together with the genus Methylocaldum as the closest relatives (93.1–94.1% sequence similarity). The genes pmoA, mxaF, and cbbL were detected, but mmoX was absent. Strains BFH1 and BFH2 are, to our knowledge, the first isolated acid-tolerant moderately thermophilic methane oxidizers of the class Gammaproteobacteria. Each strain probably denotes a novel species and they most likely represent a novel genus within the family Methylococcaceae of type I methanotrophs. Furthermore, the isolates increase our knowledge of acid-tolerant aerobic methanotrophs and signify a previously unrecognized biological methane sink in tropical ecosystems. PMID:27379029

  14. Acid-Tolerant Moderately Thermophilic Methanotrophs of the Class Gammaproteobacteria Isolated From Tropical Topsoil with Methane Seeps.

    PubMed

    Islam, Tajul; Torsvik, Vigdis; Larsen, Øivind; Bodrossy, Levente; Øvreås, Lise; Birkeland, Nils-Kåre

    2016-01-01

    Terrestrial tropical methane seep habitats are important ecosystems in the methane cycle. Methane oxidizing bacteria play a key role in these ecosystems as they reduce methane emissions to the atmosphere. Here, we describe the isolation and initial characterization of two novel moderately thermophilic and acid-tolerant obligate methanotrophs, assigned BFH1 and BFH2 recovered from a tropical methane seep topsoil habitat. The new isolates were strictly aerobic, non-motile, coccus-shaped and utilized methane and methanol as sole carbon and energy source. Isolates grew at pH range 4.2-7.5 (optimal 5.5-6.0) and at a temperature range of 30-60°C (optimal 51-55°C). 16S rRNA gene phylogeny placed them in a well-separated branch forming a cluster together with the genus Methylocaldum as the closest relatives (93.1-94.1% sequence similarity). The genes pmoA, mxaF, and cbbL were detected, but mmoX was absent. Strains BFH1 and BFH2 are, to our knowledge, the first isolated acid-tolerant moderately thermophilic methane oxidizers of the class Gammaproteobacteria. Each strain probably denotes a novel species and they most likely represent a novel genus within the family Methylococcaceae of type I methanotrophs. Furthermore, the isolates increase our knowledge of acid-tolerant aerobic methanotrophs and signify a previously unrecognized biological methane sink in tropical ecosystems. PMID:27379029

  15. Widespread methanotrophic primary production in lowland chalk rivers.

    PubMed

    Shelley, Felicity; Grey, Jonathan; Trimmer, Mark

    2014-05-22

    Methane is oversaturated relative to the atmosphere in many rivers, yet its cycling and fate is poorly understood. While photosynthesis is the dominant source of autotrophic carbon to rivers, chemosynthesis and particularly methane oxidation could provide alternative sources of primary production where the riverbed is heavily shaded or at depth beneath the sediment surface. Here, we highlight geographically widespread methanotrophic carbon fixation within the gravel riverbeds of over 30 chalk rivers. In 15 of these, the potential for methane oxidation (methanotrophy) was also compared with photosynthesis. In addition, we performed detailed concurrent measurements of photosynthesis and methanotrophy in one large chalk river over a complete annual cycle, where we found methanotrophy to be active to at least 15 cm into the riverbed and to be strongly substrate limited. The seasonal trend in methanotrophic activity reflected that of the riverine methane concentrations, and thus the highest rates were measured in mid-summer. At the sediment surface, photosynthesis was limited by light for most of the year with heavy shading induced by dense beds of aquatic macrophytes. Across 15 rivers, in late summer, we conservatively calculated that net methanotrophy was equivalent to between 1% and 46% of benthic net photosynthetic production within the gravel riverbed, with a median value of 4%. Hence, riverbed chemosynthesis, coupled to the oxidation of methane, is widespread and significant in English chalk rivers. PMID:24695425

  16. Widespread methanotrophic primary production in lowland chalk rivers

    PubMed Central

    Shelley, Felicity; Grey, Jonathan; Trimmer, Mark

    2014-01-01

    Methane is oversaturated relative to the atmosphere in many rivers, yet its cycling and fate is poorly understood. While photosynthesis is the dominant source of autotrophic carbon to rivers, chemosynthesis and particularly methane oxidation could provide alternative sources of primary production where the riverbed is heavily shaded or at depth beneath the sediment surface. Here, we highlight geographically widespread methanotrophic carbon fixation within the gravel riverbeds of over 30 chalk rivers. In 15 of these, the potential for methane oxidation (methanotrophy) was also compared with photosynthesis. In addition, we performed detailed concurrent measurements of photosynthesis and methanotrophy in one large chalk river over a complete annual cycle, where we found methanotrophy to be active to at least 15 cm into the riverbed and to be strongly substrate limited. The seasonal trend in methanotrophic activity reflected that of the riverine methane concentrations, and thus the highest rates were measured in mid-summer. At the sediment surface, photosynthesis was limited by light for most of the year with heavy shading induced by dense beds of aquatic macrophytes. Across 15 rivers, in late summer, we conservatively calculated that net methanotrophy was equivalent to between 1% and 46% of benthic net photosynthetic production within the gravel riverbed, with a median value of 4%. Hence, riverbed chemosynthesis, coupled to the oxidation of methane, is widespread and significant in English chalk rivers. PMID:24695425

  17. Contribution of Methanotrophic and Nitrifying Bacteria to CH4 and NH4+ Oxidation in the Rhizosphere of Rice Plants as Determined by New Methods of Discrimination

    PubMed Central

    Bodelier, Paul L. E.; Frenzel, Peter

    1999-01-01

    Methanotrophic and nitrifying bacteria are both able to oxidize CH4 as well as NH4+. To date it is not possible to estimate the relative contribution of methanotrophs to nitrification and that of nitrifiers to CH4 oxidation and thus to assess their roles in N and C cycling in soils and sediments. This study presents new options for discrimination between the activities of methanotrophs and nitrifiers, based on the competitive inhibitor CH3F and on recovery after inhibition with C2H2. By using rice plant soil as a model system, it was possible to selectively inactivate methanotrophs in soil slurries at a CH4/CH3F/NH4+ molar ratio of 0.1:1:18. This ratio of CH3F to NH4+ did not affect ammonia oxidation, but methane oxidation was inhibited completely. By using the same model system, it could be shown that after 24 h of exposure to C2H2 (1,000 parts per million volume), methanotrophs recovered within 24 h while nitrifiers stayed inactive for at least 3 days. This gave an “assay window” of 48 h when only methanotrophs were active. Applying both assays to model microcosms planted with rice plants demonstrated a major contribution of methanotrophs to nitrification in the rhizosphere, while the contribution of nitrifiers to CH4 oxidation was insignificant. PMID:10223965

  18. Sorption and Release of Organics by Primary, Anaerobic, and Aerobic Activated Sludge Mixed with Raw Municipal Wastewater

    PubMed Central

    Modin, Oskar; Saheb Alam, Soroush; Persson, Frank; Wilén, Britt-Marie

    2015-01-01

    New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC) per g volatile suspend solids (VSS) for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215–230 nm were also rapidly removed. PMID:25768429

  19. Sorption and release of organics by primary, anaerobic, and aerobic activated sludge mixed with raw municipal wastewater.

    PubMed

    Modin, Oskar; Saheb Alam, Soroush; Persson, Frank; Wilén, Britt-Marie

    2015-01-01

    New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC) per g volatile suspend solids (VSS) for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215-230 nm were also rapidly removed. PMID:25768429

  20. Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit

    PubMed Central

    2014-01-01

    Background The currently accepted thesis on nitrogenous fertilizer additions on methane oxidation activity assumes niche partitioning among methanotrophic species, with activity responses to changes in nitrogen content being dependent on the in situ methanotrophic community structure Unfortunately, widely applied tools for microbial community assessment only have a limited phylogenetic resolution mostly restricted to genus level diversity, and not to species level as often mistakenly assumed. As a consequence, intragenus or intraspecies metabolic versatility in nitrogen metabolism was never evaluated nor considered among methanotrophic bacteria as a source of differential responses of methane oxidation to nitrogen amendments. Results We demonstrated that fourteen genotypically different Methylomonas strains, thus distinct below the level at which most techniques assign operational taxonomic units (OTU), show a versatile physiology in their nitrogen metabolism. Differential responses, even among strains with identical 16S rRNA or pmoA gene sequences, were observed for production of nitrite and nitrous oxide from nitrate or ammonium, nitrogen fixation and tolerance to high levels of ammonium, nitrate, and hydroxylamine. Overall, reduction of nitrate to nitrite, nitrogen fixation, higher tolerance to ammonium than nitrate and tolerance and assimilation of nitrite were general features. Conclusions Differential responses among closely related methanotrophic strains to overcome inhibition and toxicity from high nitrogen loads and assimilation of various nitrogen sources yield competitive fitness advantages to individual methane-oxidizing bacteria. Our observations proved that community structure at the deepest phylogenetic resolution potentially influences in situ functioning. PMID:24708438

  1. MAP training: combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity

    PubMed Central

    Alderman, B L; Olson, R L; Brush, C J; Shors, T J

    2016-01-01

    Mental and physical (MAP) training is a novel clinical intervention that combines mental training through meditation and physical training through aerobic exercise. The intervention was translated from neuroscientific studies indicating that MAP training increases neurogenesis in the adult brain. Each session consisted of 30 min of focused-attention (FA) meditation and 30 min of moderate-intensity aerobic exercise. Fifty-two participants completed the 8-week intervention, which consisted of two sessions per week. Following the intervention, individuals with major depressive disorder (MDD; n=22) reported significantly less depressive symptoms and ruminative thoughts. Typical healthy individuals (n=30) also reported less depressive symptoms at follow-up. Behavioral and event-related potential indices of cognitive control were collected at baseline and follow-up during a modified flanker task. Following MAP training, N2 and P3 component amplitudes increased relative to baseline, especially among individuals with MDD. These data indicate enhanced neural responses during the detection and resolution of conflicting stimuli. Although previous research has supported the individual beneficial effects of aerobic exercise and meditation for depression, these findings indicate that a combination of the two may be particularly effective in increasing cognitive control processes and decreasing ruminative thought patterns. PMID:26836414

  2. MAP training: combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity.

    PubMed

    Alderman, B L; Olson, R L; Brush, C J; Shors, T J

    2016-01-01

    Mental and physical (MAP) training is a novel clinical intervention that combines mental training through meditation and physical training through aerobic exercise. The intervention was translated from neuroscientific studies indicating that MAP training increases neurogenesis in the adult brain. Each session consisted of 30 min of focused-attention (FA) meditation and 30 min of moderate-intensity aerobic exercise. Fifty-two participants completed the 8-week intervention, which consisted of two sessions per week. Following the intervention, individuals with major depressive disorder (MDD; n=22) reported significantly less depressive symptoms and ruminative thoughts. Typical healthy individuals (n=30) also reported less depressive symptoms at follow-up. Behavioral and event-related potential indices of cognitive control were collected at baseline and follow-up during a modified flanker task. Following MAP training, N2 and P3 component amplitudes increased relative to baseline, especially among individuals with MDD. These data indicate enhanced neural responses during the detection and resolution of conflicting stimuli. Although previous research has supported the individual beneficial effects of aerobic exercise and meditation for depression, these findings indicate that a combination of the two may be particularly effective in increasing cognitive control processes and decreasing ruminative thought patterns. PMID:26836414

  3. Metabolic engineering in methanotrophic bacteria

    SciTech Connect

    Kalyuzhnaya, MG; Puri, AW; Lidstrom, ME

    2015-05-01

    Methane, as natural gas or biogas, is the least expensive source of carbon for (bio)chemical synthesis. Scalable biological upgrading of this simple alkane to chemicals and fuels can bring new sustainable solutions to a number of industries with large environmental footprints, such as natural gas/petroleum production, landfills, wastewater treatment, and livestock. Microbial biocatalysis with methane as a feedstock has been pursued off and on for almost a half century, with little enduring success. Today, biological engineering and systems biology provide new opportunities for metabolic system modulation and give new optimism to the concept of a methane-based bio-industry. Here we present an overview of the most recent advances pertaining to metabolic engineering of microbial methane utilization. Some ideas concerning metabolic improvements for production of acetyl-CoA and pyruvate, two main precursors for bioconversion, are presented. We also discuss main gaps in the current knowledge of aerobic methane utilization, which must be solved in order to release the full potential of methane-based biosystems. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Identification of Methanotrophic Biomarker Lipids in the Symbiont-Containing Gills of Seep Mussels

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Zahiralis, K. D.; Klein, H. P.; Morrison, David (Technical Monitor)

    1994-01-01

    Mussels collected from hydrocarbon seeps in the Gulf of Mexico grow with methane as sole carbon and energy source due to a symbiotic association with methane-oxidizing bacteria. Transmission electron micrographs of mussel gills show cells with stacked intracytoplasmic membranes similar to type I methanotrophic bacteria. Methanotrophs are known to synthesize several types of cyclic triterpenes, hopanoids and methyl sterols, as well as unique monounsaturated fatty acid, double bond positional isomers that serve as biomarkers for this group. Lipid analysis of dissected mussels demonstrated the presence of these biomarkers predominantly in the gill tissue with much smaller amounts in mantle and remaining body tissues. Gill tissue contained 1150 micrograms/g dry wt. of hopanepolyol derivatives and diplopterol while the mantle tissue contained only 17 micrograms/g. The C16 monounsaturated fatty acids (16:1) characteristic of type I methanotrophic membranes dominated the gill tissue making up 53% of the total while only 5% 16:1 was present in the mantle tissue. The methyl sterol distribution was more dispersed. The predominant sterol in all tissues was cholesterol with lesser amounts of other desmethyl and 4-methyl sterols. The gill and mantle tissues contained 3461 micrograms (17% methyl) and 2750 micrograms (5% methyl) sterol per gm dry wt., respectively. Methyl sterol accounted for 44% of the sterol esters isolated from the gill, suggesting active demethylation of the methanotrophic sterols in this tissue. The use of lipid biomarkers could provide an effective means for identifying host-symbiont relationships.

  5. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    PubMed

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking

  6. Effectiveness of Active Packaging on Control of Escherichia Coli O157:H7 and Total Aerobic Bacteria on Iceberg Lettuce.

    PubMed

    Lu, Haixia; Zhu, Junli; Li, Jianrong; Chen, Jinru

    2015-06-01

    Contaminated leafy green vegetables have been linked to several outbreaks of human gastrointestinal infections. Antimicrobial interventions that are adoptable by the fresh produce industry for control of pathogen contamination are in great demand. This study was undertaken to evaluate the efficacy of sustained active packaging on control of Escherichia coli O157:H7 and total aerobic bacteria on lettuce. Commercial Iceberg lettuce was inoculated with a 3-strain mixture of E. coli O157:H7 at 10(2) or 10(4) CFU/g. The contaminated lettuce and un-inoculated controls were placed respectively in 5 different active packaging structures. Traditional, nonactive packaging structure was included as controls. Packaged lettuce was stored at 4, 10, or 22 °C for 3 wk and sampled weekly for the population of E. coli O157:H7 and total aerobic bacteria. Results showed that packaging structures with ClO2 generator, CO2 generator, or one of the O2 scavengers effectively controlled the growth of E. coli O157:H7 and total aerobic bacteria under all storage conditions. Packaging structure with the ClO2 generator was most effective and no E. coli O157:H7 was detected in samples packaged in this structure except for those that were inoculated with 4 log CFU/g of E. coli O157:H7 and stored at 22 °C. Packaging structures with an oxygen scavenger and the allyl isothiocyanate generator were mostly ineffective in control of the growth of the bacteria on Iceberg lettuce. The research suggests that some of the packaging structures evaluated in the study can be used to control the presence of foodborne pathogens on leafy green vegetables. PMID:25974213

  7. Comparative In Vitro Activities of GAR-936 against Aerobic and Anaerobic Animal and Human Bite Wound Pathogens

    PubMed Central

    Goldstein, Ellie J. C.; Citron, Diane M.; Merriam, C. Vreni; Warren, Yumi; Tyrrell, Kerin

    2000-01-01

    GAR-936 is a new semisynthetic glycylcycline with a broad antibacterial spectrum, including tetracycline-resistant strains. The in vitro activities of GAR-936, minocycline, doxycycline, tetracycline, moxifloxacin, penicillin G, and erythromycin were determined by agar dilution methods against 268 aerobic and 148 anaerobic strains of bacteria (including Pasteurella, Eikenella, Moraxella, Bergeyella, Neisseria, EF-4, Bacteroides, Prevotella, Porphyromonas, Fusobacterium, Staphylococcus, Streptococcus, Enterococcus, Corynebacterium, Propionibacterium, Peptostreptococcus, and Actinomyces) isolated from infected human and animal bite wounds in humans, including strains resistant to commonly used antimicrobials. GAR-936 was very active, with an MIC at which 90% of the strains are inhibited (MIC90) of ≤0.25 μg/ml, against all aerobic gram-positive and -negative strains, including tetracycline-resistant strains of Enterococcus, Streptococcus, and coagulase-negative staphylococci, except for Eikenella corrodens (MIC90, ≤4 μg/ml). GAR-936 was also very active against all anaerobic species, including tetracycline-, doxycycline-, and minocycline-resistant strains of Prevotella spp., Porphyromonas spp., Bacteroides tectum, and Peptostreptococcus spp., with an MIC90 of ≤0.25 μg/ml. Erythromycin- and moxifloxacin-resistant fusobacteria were susceptible to GAR-936, with an MIC90 of 0.06 μg/ml. PMID:10991855

  8. The effects of acute aerobic activity on cognition and cross-domain transfer to eating behavior

    PubMed Central

    Lowe, Cassandra J.; Hall, Peter A.; Vincent, Corita M.; Luu, Kimberley

    2014-01-01

    Prior studies have demonstrated that a single session of aerobic exercise can enhance cognitive functioning; specifically, the inhibition facet of executive function (EF). Additionally, previous research has demonstrated that inhibitory abilities are essential for effective dietary self-control. However, it is currently unknown whether exercise induced enhancements in EF also facilitate self-control in the dietary domain. The present study sought to determine whether a single session of aerobic exercise enhances EF, and whether there is a transfer effect to dietary self-control. Thirty four undergraduate students were randomly assigned to one of three exercise conditions: (1) minimal exercise; (2) moderate intensity exercise (30% heart rate reserve); (3) vigorous intensity exercise (50% heart rate reserve). After the exercise bout, participants completed three standardized EF tasks followed by a bogus taste test for three appetitive snack foods (milk chocolate and potato chips) and two control foods (dark chocolate and crackers). The amount of food consumed during the taste test was covertly measured. The results revealed a significant main effect of treatment condition on the Stroop task performance, but not Go-NoGo (GNG) and Stop Signal task performance. Findings with respect to food consumption revealed that EF moderated the treatment effect, such that those with larger exercise effects on Stroop performance in the moderate intensity exercise condition consumed more control foods (but not less appetitive foods). These findings support the contention that a single bout of aerobic exercise enhances EF, and may have transfer effects to the dietary domain, but that such effects may be indirect in nature. PMID:24808850

  9. The effects of acute aerobic activity on cognition and cross-domain transfer to eating behavior.

    PubMed

    Lowe, Cassandra J; Hall, Peter A; Vincent, Corita M; Luu, Kimberley

    2014-01-01

    Prior studies have demonstrated that a single session of aerobic exercise can enhance cognitive functioning; specifically, the inhibition facet of executive function (EF). Additionally, previous research has demonstrated that inhibitory abilities are essential for effective dietary self-control. However, it is currently unknown whether exercise induced enhancements in EF also facilitate self-control in the dietary domain. The present study sought to determine whether a single session of aerobic exercise enhances EF, and whether there is a transfer effect to dietary self-control. Thirty four undergraduate students were randomly assigned to one of three exercise conditions: (1) minimal exercise; (2) moderate intensity exercise (30% heart rate reserve); (3) vigorous intensity exercise (50% heart rate reserve). After the exercise bout, participants completed three standardized EF tasks followed by a bogus taste test for three appetitive snack foods (milk chocolate and potato chips) and two control foods (dark chocolate and crackers). The amount of food consumed during the taste test was covertly measured. The results revealed a significant main effect of treatment condition on the Stroop task performance, but not Go-NoGo (GNG) and Stop Signal task performance. Findings with respect to food consumption revealed that EF moderated the treatment effect, such that those with larger exercise effects on Stroop performance in the moderate intensity exercise condition consumed more control foods (but not less appetitive foods). These findings support the contention that a single bout of aerobic exercise enhances EF, and may have transfer effects to the dietary domain, but that such effects may be indirect in nature. PMID:24808850

  10. Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions

    PubMed Central

    Liu, Jingjing; Sun, Faqian; Wang, Liang; Ju, Xi; Wu, Weixiang; Chen, Yingxu

    2014-01-01

    Methane can be used as an alternative carbon source in biological denitrification because it is nontoxic, widely available and relatively inexpensive. A microbial consortium involved in methane oxidation coupled to denitrification (MOD) was enriched with nitrite and nitrate as electron acceptors under micro-aerobic conditions. The 16S rRNA gene combined with pmoA phylogeny of methanotrophs and nirK phylogeny of denitrifiers were analysed to reveal the dominant microbial populations and functional microorganisms. Real-time quantitative polymerase chain reaction results showed high numbers of methanotrophs and denitrifiers in the enriched consortium. The 16S rRNA gene clone library revealed that Methylococcaceae and Methylophilaceae were the dominant populations in the MOD ecosystem. Phylogenetic analyses of pmoA gene clone libraries indicated that all methanotrophs belonged to Methylococcaceae, a type I methanotroph employing the ribulose monophosphate pathway for methane oxidation. Methylotrophic denitrifiers of the Methylophilaceae that can utilize organic intermediates (i.e. formaldehyde, citrate and acetate) released from the methanotrophs played a vital role in aerobic denitrification. This study is the first report to confirm micro-aerobic denitrification and to make phylogenetic and functional assignments for some members of the microbial assemblages involved in MOD. PMID:24245852

  11. Methanotrophic Bacteria and Facilitated Transport of Pollutants in Aquifer Material

    PubMed Central

    Jenkins, Michael B.; Chen, Jyh-Herng; Kadner, Debra J.; Lion, Leonard W.

    1994-01-01

    In situ stimulation of methanotrophic bacteria has been considered as a methodology for aquifer remediation. Chlorinated aliphatic hydrocarbons such as trichloroethylene are fortuitously oxidized by the methane monooxygenase produced by methanotrophic bacteria. Experimental results are presented that indicate that both colloidal suspensions containing methanotrophic cells and the soluble extracellular polymers produced by methanotrophic cells have the potential to enhance the transport and removal of other environmental contaminants such as polynuclear aromatic hydrocarbons and transition metals in aquifer material. Three well-characterized methanotrophic bacteria were used in the experiments: Methylomonas albus BG8 (a type I methanotroph), Methylosinus trichosporium OB3b (a type II methanotroph), and Methylocystis parvus OBBP (a type II methanotroph). Isotherms were obtained for sorption of two radiolabeled pollutants, [14C] phenanthrene and 109Cd, onto an aquifer sand in the presence and absence of washed cells and their extracellular polymer. Column transport experiments were performed with the washed methanotrophic cells and phenanthrene. The distribution coefficients for Cd with extracellular polymers were of the same order as that obtained with the aquifer sand, indicating that polymers from the methanotrophic bacteria could act to increase the transport of Cd in a porous medium. Polymer from BG8 significantly reduced the apparent distribution coefficient for Cd with an aquifer sand. [14C] phenanthrene also sorbed to extracellular polymer and to washed, suspended methanotrophic cells. The exopolymer of BG8 and OBBP significantly reduced the apparent distribution coefficient (Kd) for phenanthrene with aquifer sand. The distribution coefficients for phenanthrene with the methanotrophic cells were an order of magnitude greater than those previously reported for other heterotrophic bacteria. Cells of the methanotrophs also significantly reduced the apparent Kd

  12. High diversity of methanotrophic bacteria in geothermal soils affected by high methane fluxes

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Walter; Gagliano, Antonina Lisa; Quatrini, Paola; Parello, Francesco

    2014-05-01

    Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas 25 times as potent as CO2. Recently, it has been demonstrated that volcanic/geothermal soils act as source, but also as biological filter for methane release to the atmosphere. For long time, volcanic/geothermal soils has been considered inhospitable for methanotrophic microorganisms, but new extremophile methanotrophs belonging to Verrucomicrobia were identified in three different areas (Pozzuoli, Italy; Hell's Gate, New Zealand; Kamchatka, Russia), explaining anomalous behaviours in methane leakages of several geothermal/volcanic sites. Our aim was to increase the knowledge of the relationship between methane emissions from volcanic/geothermal areas and biological methane oxidation, by investigating a geothermal site of Pantelleria island (Italy). Pantelleria Island hosts a high enthalpy geothermal system characterized by high temperature, high CH4 and very low H2S fluxes. Such characteristics are reflected in potentially great supply of methane for methanotrophs and scarce presence of inhibitors of their activity (H2S and NH3) in the Pantelleria soils. Potential methanotrophic activity within these soils was already evidenced by the CH4/CO2 ratio of the flux measurements which was lower than that of the respective fumarolic manifestations indicating a loss of CH4 during the gas travel towards the earth's surface. In this study laboratory incubation experiments using soils sampled at Favara Grande, the main hydrothermal area of Pantelleria, showed very high methane consumption rates (up to 9500 ng CH4 h-1 g-1). Furthermore, microbiological and culture-independent molecular analyses allowed to detect the presence of methanotrophs affiliated to Gamma- and Alpha-Proteobacteria and to the newly discovered acidothermophilic methanotrophs Verrucomicrobia. Culturable methanotrophic Alpha-proteobacteria of the genus Methylocystis were isolated by

  13. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  14. Radioassay for Hydrogenase Activity in Viable Cells and Documentation of Aerobic Hydrogen-Consuming Bacteria Living in Extreme Environments

    PubMed Central

    Schink, Bernhard; Lupton, F. S.; Zeikus, J. G.

    1983-01-01

    An isotopic tracer assay based on the hydrogenase-dependent formation of tritiated water from tritium gas was developed for in life analysis of microbial hydrogen transformation. This method allowed detection of bacterial hydrogen metabolism in pure cultures or in natural samples obtained from aquatic ecosystems. A differentiation between chemical-biological and aerobic-anaerobic hydrogen metabolism was established by variation of the experimental incubation temperature or by addition of selective inhibitors. Hydrogenase activity was shown to be proportional to the consumption or production of hydrogen by cultures of Desulfovibrio vulgaris, Clostridium pasteurianum, and Methanosarcina barkeri. This method was applied, in connection with measurements of free hydrogen and most-probable-number enumerations, in aerobic natural source waters to establish the activity and document the ecology of hydrogen-consuming bacteria in extreme acid, thermal, or saline environments. The utility of the assay is based in part on the ability to quantify bacterial hydrogen transformation at natural hydrogen partial pressures, without the use of artificial electron acceptors. PMID:16346288

  15. Aerobic physical activity and resistance training: an application of the theory of planned behavior among adults with type 2 diabetes in a random, national sample of Canadians

    PubMed Central

    Plotnikoff, Ronald C; Courneya, Kerry S; Trinh, Linda; Karunamuni, Nandini; Sigal, Ronald J

    2008-01-01

    Background Aerobic physical activity (PA) and resistance training are paramount in the treatment and management of type 2 diabetes (T2D), but few studies have examined the determinants of both types of exercise in the same sample. Objective The primary purpose was to investigate the utility of the Theory of Planned Behavior (TPB) in explaining aerobic PA and resistance training in a population sample of T2D adults. Methods A total of 244 individuals were recruited through a random national sample which was created by generating a random list of household phone numbers. The list was proportionate to the actual number of household telephone numbers for each Canadian province (with the exception of Quebec). These individuals completed self-report TPB constructs of attitude, subjective norm, perceived behavioral control and intention, and a 3-month follow-up that assessed aerobic PA and resistance training. Results TPB explained 10% and 8% of the variance respectively for aerobic PA and resistance training; and accounted for 39% and 45% of the variance respectively for aerobic PA and resistance training intentions. Conclusion These results may guide the development of appropriate PA interventions for aerobic PA and resistance training based on the TPB. PMID:19055725

  16. Enzyme activities support the use of liver lipid-derived ketone bodies as aerobic fuels in muscle tissues of active sharks.

    PubMed

    Watson, R R; Dickson, K A

    2001-01-01

    Few data exist to test the hypothesis that elasmobranchs utilize ketone bodies rather than fatty acids for aerobic metabolism in muscle, especially in continuously swimming, pelagic sharks, which are expected to be more reliant on lipid fuel stores during periods between feeding bouts and due to their high aerobic metabolic rates. Therefore, to provide support for this hypothesis, biochemical indices of lipid metabolism were measured in the slow-twitch, oxidative (red) myotomal muscle, heart, and liver of several active shark species, including the endothermic shortfin mako, Isurus oxyrinchus. Tissues were assayed spectrophotometrically for indicator enzymes of fatty acid oxidation (3-hydroxy-o-acyl-CoA dehydrogenase), ketone-body catabolism (3-oxoacid-CoA transferase), and ketogenesis (hydroxy-methylglutaryl-CoA synthase). Red muscle and heart had high capacities for ketone utilization, low capacities for fatty acid oxidation, and undetectable levels of ketogenic enzymes. Liver demonstrated undetectable activities of ketone catabolic enzymes but high capacities for fatty acid oxidation and ketogenesis. Serum concentrations of the ketone beta-hydroxybutyrate varied interspecifically (means of 0.128-0.978 micromol mL(-1)) but were higher than levels previously reported for teleosts. These results are consistent with the hypothesis that aerobic metabolism in muscle tissue of active sharks utilizes ketone bodies, and not fatty acids, derived from liver lipid stores. PMID:11247746

  17. Activation of accumulated nitrite reduction by immobilized Pseudomonas stutzeri T13 during aerobic denitrification.

    PubMed

    Ma, Fang; Sun, Yilu; Li, Ang; Zhang, Xuening; Yang, Jixian

    2015-01-01

    The excellent removal efficiency of nitrate by the aerobic denitrifier, Pseudomonas stutzeri T13, was achieved in free cells system. However, poor nitrite reduction prevents efficient aerobic denitrification because of the nitrite accumulation. This problem could be conquered by immobilizing the cells on supports. In this study, strain T13 was immobilized by mycelial pellets (MPs), polyurethane foam cubes (PFCs) and sodium alginate beads (SABs). Higher removal percentages of TN in MP (43.78%), PFC (42.31%) and SAB (57.25%) systems were achieved compared with the free cell system (29.7%). Furthermore, the optimal condition for immobilized cell systems was as follows: 30°C, 100rpm shaking speed and pH 7. The shock-resistance of SAB system was relatively poor, which could collapse under either alkaline (pH=9) or high rotating (200rpm) conditions. The recycling experiments demonstrated that the high steady TN removal rate could be maintained for seven cycles in both MP and PFC systems. PMID:25827250

  18. Skin microvascular reactivity in children and adolescents with type 1 diabetes in relation to levels of physical activity and aerobic fitness.

    PubMed

    Roche, Denise M; Edmunds, Sarah; Cable, Tim; Didi, Mo; Stratton, Gareth

    2008-11-01

    No studies to date have evaluated the relationship between exercise and microvascular function in youth with type 1 diabetes mellitus (T1DM). Twenty-nine complication free children and adolescents with T1DM were assessed for skin microvascular reactivity, aerobic fitness (VO2peak) and physical activity. VO2peak but not physical activity was significantly and independently associated with maximal hyperemia of the skin microcirculation (p < .01). No significant associations were found between venoarteriolar reflex (VAR) vasoconstriction and VO2peak or physical activity. Aerobic fitness may be an important indicator or mediator of effective microvascular endothelial function in youth with T1DM. PMID:19168919

  19. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  20. Acute aerobic exercise increases cortical activity during working memory: a functional MRI study in female college students.

    PubMed

    Li, Lin; Men, Wei-Wei; Chang, Yu-Kai; Fan, Ming-Xia; Ji, Liu; Wei, Gao-Xia

    2014-01-01

    There is increasing evidence that acute aerobic exercise is associated with improved cognitive function. However, neural correlates of its cognitive plasticity remain largely unknown. The present study examined the effect of a session of acute aerobic exercise on working memory task-evoked brain activity as well as task performance. A within-subjects design with a counterbalanced order was employed. Fifteen young female participants (M = 19.56, SD = 0.81) were scanned using functional magnetic resonance imaging while performing a working memory task, the N-back task, both following an acute exercise session with 20 minutes of moderate intensity and a control rest session. Although an acute session of exercise did not improve behavioral performance, we observed that it had a significant impact on brain activity during the 2-back condition of the N-back task. Specifically, acute exercise induced increased brain activation in the right middle prefrontal gyrus, the right lingual gyrus, and the left fusiform gyrus as well as deactivations in the anterior cingulate cortexes, the left inferior frontal gyrus, and the right paracentral lobule. Despite the lack of an effect on behavioral measures, significant changes after acute exercise with activation of the prefrontal and occipital cortexes and deactivation of the anterior cingulate cortexes and left frontal hemisphere reflect the improvement of executive control processes, indicating that acute exercise could benefit working memory at a macro-neural level. In addition to its effects on reversing recent obesity and disease trends, our results provide substantial evidence highlighting the importance of promoting physical activity across the lifespan to prevent or reverse cognitive and neural decline. PMID:24911975

  1. Aerobic heat shock activates trehalose synthesis in embryos of Artemia franciscana.

    PubMed

    Clegg, J S; Jackson, S A

    1992-05-25

    Encysted embryos (cysts) of the brine shrimp, Artemia franciscana, contain large amounts of trehalose which they use as a major substrate for energy metabolism and biosynthesis for development under aerobic conditions at 25 degrees C. When cysts are placed at 42 degrees C (heat shock) these pathways stop, and the cysts re-synthesize the trehalose that was utilized during the previous incubation at 25 degrees C. Glycogen and glycerol, produced from trehalose at 25 degrees C, appear to be substrates for trehalose synthesis during heat shock. Anoxia prevents trehalose synthesis in cysts undergoing heat shock. These results are consistent with the view that trehalose may play a protective role in cells exposed to heat shock, and other environmental insults, in addition to being a storage form of energy and organic carbon for development. PMID:1592115

  2. Methanotrophic gastropods from a bathyal hydrocarbon seep, Gulf of Mexico

    SciTech Connect

    Anderson, L.C.; Aharon, P.; Gupta, S. )

    1992-01-01

    Two gastropods, Neritina sp. and Truncatella sp., collected live from a Gulf of Mexico active gas seep with the submersible Johnson Sea Link in September 1991, apparently incorporate methane-derived carbon in their soft tissues. Flesh of an individual Neritina sp. had a delta C-13 of [minus]50.92 per mil PDB, and that of two coexisting individuals of Truncatella sp. had values of [minus]45.11 and [minus]49.27 per mil. These isotope values are comparable to those reported for the methanotrophic mytilid bivalve Bathymodiolus sp. from other hydrocarbon seeps on the Gulf of Mexico, and are lighter than published isotopic values of chemosynthetic organisms with sulfur-oxidizing symbionts. The anomalously light carbon-isotopic values of Neritina sp. and Truncatella sp. may steam from one of three causes: (1) these gastropods host symbiotic methanotrophic bacteria, (2) their chief food is methane-oxidizing bacteria present at the seep, or (3) they incorporate some carbon from the periostracum of mussels on which they may graze. The presence of abundant juveniles of Bathymodiolus, reported to settle preferentially in areas of active seepage and high methane release, indicates that methane was abundant and supported a community with multiple trophic levels. Generally, studies of hydrocarbon-seep communities have focused on larger community members, especially bivalves and tube worms. The presence of living Neritina and Truncatella at the authors sampling site, however, draws attention to the fact that these gastropods are integral and significant parts of hydrocarbon-seep communities. Both gastropod species are members of genera that characteristically inhabit shallow marine, intertidal, and semiterrestrial environments. The presence of these genera in bathyal hydrocarbon seeps indicates that they have very broad environmental ranges, thus limiting their utility in paleoecologic reconstructions.

  3. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria.

    PubMed

    Wegener, Gunter; Krukenberg, Viola; Riedel, Dietmar; Tegetmeyer, Halina E; Boetius, Antje

    2015-10-22

    The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. In marine sediments, AOM is performed by dual-species consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) inhabiting the methane-sulfate transition zone. The biochemical pathways and biological adaptations enabling this globally relevant process are not fully understood. Here we study the syntrophic interaction in thermophilic AOM (TAOM) between ANME-1 archaea and their consortium partner SRB HotSeep-1 (ref. 6) at 60 °C to test the hypothesis of a direct interspecies exchange of electrons. The activity of TAOM consortia was compared to the first ANME-free culture of an AOM partner bacterium that grows using hydrogen as the sole electron donor. The thermophilic ANME-1 do not produce sufficient hydrogen to sustain the observed growth of the HotSeep-1 partner. Enhancing the growth of the HotSeep-1 partner by hydrogen addition represses methane oxidation and the metabolic activity of ANME-1. Further supporting the hypothesis of direct electron transfer between the partners, we observe that under TAOM conditions, both ANME and the HotSeep-1 bacteria overexpress genes for extracellular cytochrome production and form cell-to-cell connections that resemble the nanowire structures responsible for interspecies electron transfer between syntrophic consortia of Geobacter. HotSeep-1 highly expresses genes for pili production only during consortial growth using methane, and the nanowire-like structures are absent in HotSeep-1 cells isolated with hydrogen. These observations suggest that direct electron transfer is a principal mechanism in TAOM, which may also explain the enigmatic functioning and specificity of other methanotrophic ANME-SRB consortia. PMID:26490622

  4. The influence of hydrolysis induced biopolymers from recycled aerobic sludge on specific methanogenic activity and sludge filterability in an anaerobic membrane bioreactor.

    PubMed

    Buntner, D; Spanjers, H; van Lier, J B

    2014-03-15

    The objective of the present study was to evaluate the impact of excess aerobic sludge on the specific methanogenic activity (SMA), in order to establish the maximum allowable aerobic sludge loading. In batch tests, different ratios of aerobic sludge to anaerobic inoculum were used, i.e. 0.03, 0.05, 0.10 and 0.15, showing that low ratios led to an increased SMA. However, the ratio 0.15 caused more than 20% SMA decrease. In addition to the SMA tests, the potential influence of biopolymers and extracellular substances, that are generated as a result of excess aerobic sludge hydrolysis, on membrane performance was determined by assessing the fouling potential of the liquid broth, taking into account parameters such as specific resistance to filtration (SRF) and supernatant filterability (SF). Addition of aerobic sludge to the anaerobic biomass resulted in a high membrane fouling potential. The increase in biopolymers could be ascribed to aerobic sludge hydrolysis. A clear positive correlation between the concentration of the colloidal fraction of biopolymer clusters (cBPC) and the SRF was observed and a negative correlation between the cBPC and the SF measured at the end of the above described SMA tests. The latter implies that sludge filtration resistance increases when more aerobic sludge is hydrolyzed, and thus more cBPC is released. During AnMBR operation, proteins significantly contributed to sludge filterability decrease expressed as SRF and SF, whereas the carbohydrate fraction of SMP was of less importance due to low concentrations. On the contrary, carbohydrates seemed to improve filterability and diminish SRF of the sludge. Albeit, cBPC increase caused an increase in mean TMP during the AnMBR operation, confirming that cBPC is positively correlated to membrane fouling. PMID:24284260

  5. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  6. The role of stress agents as operating factors in formation and functioning of granular aerobic activated sludge at model domestic wastewater treatment.

    PubMed

    Khokhlachev, Nikolay S; Kalenov, Sergei V; Zanina, Olga S; Tyupa, Dmitry V; Baurina, Marina M; Kuznetsov, Alexander Ye

    2014-09-01

    Maintenance of the wastewater treatment plants and increasing the efficiency of existing aerobic biological reactors depend on the stability of activated sludge characteristics under varying wastewater parameters within significant limits and/or influence of some environmental factors. The steady microbial communities observed in biofilms and anaerobic granules of activated sludge can serve as successful samples of formation of the similar aerobic systems. The granular aerobic sludge obtained in the course of our researches is an ideal "plant" on treatment of biogenic pollution at both low and high concentrations. It demonstrates high ability for treatment and stability to adverse factors. To improve aerobic wastewater treatment characteristics, a possibility of using impact of stress conditions upon activated sludge has been studied. Under conditions of fractional hydrogen peroxide addition at diffused lighting, the granular aerobic activated sludge adapted to hydrogen peroxide has been obtained. This sludge has got good sedimentary properties and it differs from the control sample in the species diversity, improved treatment characteristics and also resistance to the stressor. It also endures an impact of one-time hydrogen peroxide addition up to 1.2-1.5 g H2O2/l. The conditions under which the steady aerobic granules of the diameter from 2 to 5 mm were formed with high treatment ability have been chosen. The granules were being stabilized at passages with hydrogen peroxide treatment and they endured up to 2.4-3.0 g/l of one-time H2O2 addition. PMID:24556977

  7. Aerobic Capacity, Activity Levels and Daily Energy Expenditure in Male and Female Adolescents of the Kenyan Nandi Sub-Group

    PubMed Central

    Gibson, Alexander R.; Ojiambo, Robert; Konstabel, Kenn; Lieberman, Daniel E.; Reilly, John J.; Speakman, John R.; Pitsiladis, Yannis P.

    2013-01-01

    The relative importance of genetic and socio-cultural influences contributing to the success of east Africans in endurance athletics remains unknown in part because the pre-training phenotype of this population remains incompletely assessed. Here cardiopulmonary fitness, physical activity levels, distance travelled to school and daily energy expenditure in 15 habitually active male (13.9±1.6 years) and 15 habitually active female (13.9±1.2) adolescents from a rural Nandi primary school are assessed. Aerobic capacity () was evaluated during two maximal discontinuous incremental exercise tests; physical activity using accelerometry combined with a global positioning system; and energy expenditure using the doubly labelled water method. The of the male and female adolescents were 73.9±5.7 ml. kg−1. min−1 and 61.5±6.3 ml. kg−1. min−1, respectively. Total time spent in sedentary, light, moderate and vigorous physical activities per day was 406±63 min (50% of total monitored time), 244±56 min (30%), 75±18 min (9%) and 82±30 min (10%). Average total daily distance travelled to and from school was 7.5±3.0 km (0.8–13.4 km). Mean daily energy expenditure, activity-induced energy expenditure and physical activity level was 12.2±3.4 MJ. day−1, 5.4±3.0 MJ. day−1 and 2.2±0.6. 70.6% of the variation in was explained by sex (partial R2 = 54.7%) and body mass index (partial R2 = 15.9%). Energy expenditure and physical activity variables did not predict variation in once sex had been accounted for. The highly active and energy-demanding lifestyle of rural Kenyan adolescents may account for their exceptional aerobic fitness and collectively prime them for later training and athletic success. PMID:23805234

  8. Engineering aspects of a mixed methanotrophic culture in a membrane-aerated biofilm reactor.

    PubMed

    Casey, E; Rishell, S; Glennon, B; Hamer, G

    2004-01-01

    Methanotrophic biodegradation using the membrane-aerated biofilm reactor (MABR) is a technology offering several advantages over both conventional biofilm reactors and suspended-cell processes. In this study the oxidation efficiency of a methanotrophic biofilm in a 1.5 litre MABR was investigated. Measurements of oxygen and methane uptake rates together with biofilm thickness were taken for developing biofilms. It was found that the specific rate of metabolic activity of the biofilm was unusually high as determined by the methane and oxygen uptake rates. Microbial activity stratification was evident and the location of stratified layers of oxygen consuming components of the consortium could be manipulated via the intra-membrane oxygen pressure. PMID:15303749

  9. Characterization of odor emission from alternating aerobic and anoxic activated sludge systems using real-time total reduced sulfur analyzer.

    PubMed

    Kim, Hyunook; Lee, Hyunjoo; Choi, Eunsun; Choi, Il; Shin, Taesub; Im, Hyungjoon; Ahn, Soobin

    2014-12-01

    Anaerobic biodegradation of sulfur-containing compounds always generates volatile sulfur compounds (VSCs) including H2S, methyl mercaptan, and dimethyl sulfide (DMS). VSC emissions from wastewater treatment plants (WWTPs) result in odor complaints from people living nearby. To control odor-causing compounds in WWTPs, it is important to know the odor emission quantity particularly with continuous monitoring. Since modified activated sludge processes always include anaerobic, anoxic and aerobic conditions for nutrient removal, odor emission from these different environmental settings is expected. In this study, continuous monitoring of VSCs from the headspace of an alternating aerobic and anoxic (AAA) activated sludge process via total reduced sulfur (TRS) analyzer was performed. There is clear pattern of the initial TRS peak immediately after the initiation of the aeration in the AAA system and TRS concentration begins to drop through the remaining air-on cycle. On the other hand, during the air-off period, TRS concentrations increase with time. In particular, a clear inflection point in the TRS profile could be observed after complete removal of nitrate during air-off, meaning more VSCs formation. Since the highest odor emission occurs after the initiation of aeration, the future control of exhausted air should only deal with air collected during the initial aeration period (e.g., 30min), a similar concept for the treatment of first flush in combined sewer overflow. In addition, application of a control scheme to initiate aeration immediately after denitrification is completed during air-off should be beneficial in reducing odor emission. PMID:25180483

  10. Enzymatic transformation of hydrocarbons by methanotrophic organisms

    SciTech Connect

    Patel, R.N.; Hou, C.T.

    1983-01-01

    Soluble methane monooxygenase from a facultative methane-utilizing organism, Methylobacterium sp. CRL-26 or R6, catalyzed the NAD(P)H-dependent epoxidation/hydroxylation of a variety of hydrocarbons, including terminal alkenes, internal alkenes, substituted alkenes, branch-chain alkenes, alkanes (C1-C8), substituted alkanes, branch-chain alkanes, carbon monoxide, ether, cyclic and aromatic compounds. The NAD -linked dehydrogenases such as formate dehydrogenase or secondary alcohol dehydrogenase in the presence of formate or secondary alcohol, respectively, regenerated NAD/NADH required for the methane monooxygenase in a coupled enzymes reactions. Oxidation of secondary alcohols to the corresponding methylketones in methanotrophs is catalyzed by an NAD -dependent, zinc-containing, secondary alcohol hydrogenase. Primary alcohols were oxidized to the corresponding aldehydes by a phenazine methosulfate-dependent, pyrollo quinoline quinone (methoxatin or PQQ) containing, methanol dehydrogenase. Oxidation of aldehydes (C1 to C10) to the corresponding carboxylic acids is catalyzed by a heme-containing aldehyde dehydrogenase. Methanotrophs have been considered potentially useful for single cell protein (SCP), amino acids, and biopolymer production at the expense of growth on cheap and readily available C1 compounds. 80 references, 1 figure, 6 tables.

  11. Cognitively Engaging Chronic Physical Activity, But Not Aerobic Exercise, Affects Executive Functions in Primary School Children: A Group-Randomized Controlled Trial.

    PubMed

    Schmidt, Mirko; Jäger, Katja; Egger, Fabienne; Roebers, Claudia M; Conzelmann, Achim

    2015-12-01

    Although the positive effects of different kinds of physical activity (PA) on cognitive functioning have already been demonstrated in a variety of studies, the role of cognitive engagement in promoting children's executive functions is still unclear. The aim of the current study was therefore to investigate the effects of two qualitatively different chronic PA interventions on executive functions in primary school children. Children (N = 181) aged between 10 and 12 years were assigned to either a 6-week physical education program with a high level of physical exertion and high cognitive engagement (team games), a physical education program with high physical exertion but low cognitive engagement (aerobic exercise), or to a physical education program with both low physical exertion and low cognitive engagement (control condition). Executive functions (updating, inhibition, shifting) and aerobic fitness (multistage 20-m shuttle run test) were measured before and after the respective condition. Results revealed that both interventions (team games and aerobic exercise) have a positive impact on children's aerobic fitness (4-5% increase in estimated VO2max). Importantly, an improvement in shifting performance was found only in the team games and not in the aerobic exercise or control condition. Thus, the inclusion of cognitive engagement in PA seems to be the most promising type of chronic intervention to enhance executive functions in children, providing further evidence for the importance of the qualitative aspects of PA. PMID:26866766

  12. Aerobic Capacity, Physical Activity and Metabolic Risk Factors in Firefighters Compared with Police Officers and Sedentary Clerks

    PubMed Central

    Leischik, Roman; Foshag, Peter; Strauß, Markus; Littwitz, Henning; Garg, Pankaj; Dworrak, Birgit; Horlitz, Marc

    2015-01-01

    Background This study examined the association between the physical work environment and physiological performance measures, physical activity levels and metabolic parameters among German civil servants. A main focus in this study was to examine the group differences rather than measuring the absolute values in an occupational group. Methods We prospectively examined 198 male German civil servants (97 firefighters [FFs], 55 police officers [POs] and 46 sedentary clerks [SCs]). For each parameter, the groups were compared using a linear regression adjusted for age. Results The 97 FFs showed a similar maximal aerobic power (VO2max l/min) of 3.17±0.44 l/min compared with the POs, who had a maximal aerobic power of 3.13±0.62 l/min (estimated difference, POs vs. FFs: 0.05, CI: -0.12-0.23, p=0.553). The maximal aerobic power of the FFs was slightly higher than that of the SCs, who had a maximal aerobic power of 2.85±0.52 l/min (-0.21, CI: -0.39-0.04, p=0.018 vs. FFs). The average physical activity (in metabolic equivalents [METS]/week) of the FFs was 3818.8±2843.5, whereas those of the POs and SCs were 2838.2±2871.9 (-808.2, CI: 1757.6-141.2, p=0.095) and 2212.2±2292.8 (vs. FFs: -1417.1, CI: -2302-531.88, p=0.002; vs. POs: -2974.4, CI: -1611.2-393.5, p=0.232), respectively. For the FFs, the average body fat percentage was 17.7%±6.2, whereas it was 21.4%±5.6 for the POs (vs. FFs: 2.75, CI: 0.92-4.59, p=0.004) and 20.8%±6.5 for the SCs (vs. FFs: 1.98, CI: -0.28-4.25, p=0.086; vs. POs: -0.77, CI: 3.15-1.61, p=0.523). The average waist circumference was 89.8 cm±10.0 for the FFs, 97.8 cm±12.4 (5.63, CI: 2.10-9.15, p=0.002) for the POs, and 97.3±11.7 (vs. FFs: -4.89, CI: 1.24-8.55, p=0.009; vs. POs: -0.73, CI: -5.21-3.74, p=0.747) for the SCs. Conclusions The FFs showed significantly higher physical activity levels compared with the SCs. The PO group had the highest cardiovascular risk of all of the groups because it included more participants with metabolic

  13. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils

    PubMed Central

    Cai, Yuanfeng; Zheng, Yan; Bodelier, Paul L. E.; Conrad, Ralf; Jia, Zhongjun

    2016-01-01

    Soils serve as the biological sink of the potent greenhouse gas methane with exceptionally low concentrations of ∼1.84 p.p.m.v. in the atmosphere. The as-yet-uncultivated methane-consuming bacteria have long been proposed to be responsible for this ‘high-affinity' methane oxidation (HAMO). Here we show an emerging HAMO activity arising from conventional methanotrophs in paddy soil. HAMO activity was quickly induced during the low-affinity oxidation of high-concentration methane. Activity was lost gradually over 2 weeks, but could be repeatedly regained by flush-feeding the soil with elevated methane. The induction of HAMO activity occurred only after the rapid growth of methanotrophic populations, and a metatranscriptome-wide association study suggests that the concurrent high- and low-affinity methane oxidation was catalysed by known methanotrophs rather than by the proposed novel atmospheric methane oxidizers. These results provide evidence of atmospheric methane uptake in periodically drained ecosystems that are typically considered to be a source of atmospheric methane. PMID:27248847

  14. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils

    NASA Astrophysics Data System (ADS)

    Cai, Yuanfeng; Zheng, Yan; Bodelier, Paul L. E.; Conrad, Ralf; Jia, Zhongjun

    2016-06-01

    Soils serve as the biological sink of the potent greenhouse gas methane with exceptionally low concentrations of ~1.84 p.p.m.v. in the atmosphere. The as-yet-uncultivated methane-consuming bacteria have long been proposed to be responsible for this `high-affinity' methane oxidation (HAMO). Here we show an emerging HAMO activity arising from conventional methanotrophs in paddy soil. HAMO activity was quickly induced during the low-affinity oxidation of high-concentration methane. Activity was lost gradually over 2 weeks, but could be repeatedly regained by flush-feeding the soil with elevated methane. The induction of HAMO activity occurred only after the rapid growth of methanotrophic populations, and a metatranscriptome-wide association study suggests that the concurrent high- and low-affinity methane oxidation was catalysed by known methanotrophs rather than by the proposed novel atmospheric methane oxidizers. These results provide evidence of atmospheric methane uptake in periodically drained ecosystems that are typically considered to be a source of atmospheric methane.

  15. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils.

    PubMed

    Cai, Yuanfeng; Zheng, Yan; Bodelier, Paul L E; Conrad, Ralf; Jia, Zhongjun

    2016-01-01

    Soils serve as the biological sink of the potent greenhouse gas methane with exceptionally low concentrations of ∼1.84 p.p.m.v. in the atmosphere. The as-yet-uncultivated methane-consuming bacteria have long been proposed to be responsible for this 'high-affinity' methane oxidation (HAMO). Here we show an emerging HAMO activity arising from conventional methanotrophs in paddy soil. HAMO activity was quickly induced during the low-affinity oxidation of high-concentration methane. Activity was lost gradually over 2 weeks, but could be repeatedly regained by flush-feeding the soil with elevated methane. The induction of HAMO activity occurred only after the rapid growth of methanotrophic populations, and a metatranscriptome-wide association study suggests that the concurrent high- and low-affinity methane oxidation was catalysed by known methanotrophs rather than by the proposed novel atmospheric methane oxidizers. These results provide evidence of atmospheric methane uptake in periodically drained ecosystems that are typically considered to be a source of atmospheric methane. PMID:27248847

  16. Granular activated carbon as nucleating agent for aerobic sludge granulation: Effect of GAC size on velocity field differences (GAC versus flocs) and aggregation behavior.

    PubMed

    Zhou, Jia-Heng; Zhao, Hang; Hu, Miao; Yu, Hai-Tian; Xu, Xiang-Yang; Vidonish, Julia; Alvarez, Pedro J J; Zhu, Liang

    2015-12-01

    Initial cell aggregation plays an important role in the formation of aerobic granules. In this study, three parallel aerobic granular sludge reactors treating low-strength wastewater were established using granular activated carbon (GAC) of different sizes as the nucleating agent. A novel visual quantitative evaluation method was used to discern how GAC size affects velocity field differences (GAC versus flocs) and aggregation behavior during sludge granulation. Results showed that sludge granulation was significantly enhanced by addition of 0.2mm GAC. However, there was no obvious improvement in granulation in reactor amended with 0.6mm GAC. Hydraulic analysis revealed that increase of GAC size enhanced the velocity field difference between flocs and GAC, which decreased the lifecycle and fraction of flocs-GAC aggregates. Overall, based on analysis of aggregation behavior, GAC of suitable sizes (0.2mm) can serve as the nucleating agent to accelerate flocs-GAC coaggregation and formation of aerobic granules. PMID:26409105

  17. The effects of aerobic physical activity on adiposity in school-aged children and youth: a systematic review of randomized controlled trials

    PubMed Central

    Laframboise, Michelle A.; deGraauw, Chris

    2011-01-01

    Context The role of aerobic physical activity as a standalone treatment in decreasing adiposity in school-aged children and youth has not been well established. Objective To systematically search and assess the quality of the literature on the efficacy of aerobic physical activity to decrease adiposity in school-aged children and youth. Methods An electronic search strategy was conducted in EBSCO databases, including MEDLINE and CINAHL. Retrieved articles that met the eligibility criteria were rated for methodological quality by using the Downs and Black checklist. Results 10 articles met the inclusion criteria in the form of RCTs. Results indicate that five articles had positive results in decreasing adiposity compared to controls and five articles had no change in adiposity compared to controls. Conclusion There is a paucity of evidence to support aerobic physical activity as a successful standalone treatment for decreasing adiposity. Despite the heterogeneity of the methods there is some evidence to support that school-aged children and youth benefit from aerobic physical activity to decrease adiposity and to limit weight gain. PMID:22131562

  18. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Jeanthon, C.; Boeuf, D.; Dahan, O.; Le Gall, F.; Garczarek, L.; Bendif, E. M.; Lehours, A.-C.

    2011-07-01

    Aerobic anoxygenic phototrophic (AAP) bacteria play significant roles in the bacterioplankton productivity and biogeochemical cycles of the surface ocean. In this study, we applied both cultivation and mRNA-based molecular methods to explore the diversity of AAP bacteria along an oligotrophic gradient in the Mediterranean Sea in early summer 2008. Colony-forming units obtained on three different agar media were screened for the production of bacteriochlorophyll-a (BChl-a), the light-harvesting pigment of AAP bacteria. BChl-a-containing colonies represented a low part of the cultivable fraction. In total, 54 AAP strains were isolated and the phylogenetic analyses based on their 16S rRNA and pufM genes showed that they were all affiliated to the Alphaproteobacteria. The most frequently isolated strains belonged to Citromicrobium bathyomarinum, and Erythrobacter and Roseovarius species. Most other isolates were related to species not reported to produce BChl-a and/or may represent novel taxa. Direct extraction of RNA from seawater samples enabled the analysis of the expression of pufM, the gene coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis. Clone libraries of pufM gene transcripts revealed that most phylotypes were highly similar to sequences previously recovered from the Mediterranean Sea and a large majority (~94 %) was affiliated to the Gammaproteobacteria. The most abundantly detected phylotypes occurred in the western and eastern Mediterranean basins. However, some were exclusively detected in the eastern basin, reflecting the highest diversity of pufM transcripts observed in this ultra-oligotrophic region. To our knowledge, this is the first study to document extensively the diversity of AAP isolates and to unveil the active AAP community in an oligotrophic marine environment. By pointing out the discrepancies between culture-based and molecular methods, this study highlights the existing gaps in the understanding

  19. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Jeanthon, C.; Boeuf, D.; Dahan, O.; Le Gall, F.; Garczarek, L.; Bendif, E. M.; Lehours, A.-C.

    2011-05-01

    Aerobic anoxygenic phototrophic (AAP) bacteria play significant roles in the bacterioplankton productivity and biogeochemical cycles of the surface ocean. In this study, we applied both cultivation and mRNA-based molecular methods to explore the diversity of AAP bacteria along an oligotrophic gradient in the Mediterranean Sea in early summer 2008. Colony-forming units obtained on three different agar media were screened for the production of bacteriochlorophyll-a (BChl-a), the light-harvesting pigment of AAP bacteria. BChl-a-containing colonies represented a low part of the cultivable fraction. In total, 52 AAP strains were isolated and the phylogenetic analyses based on their 16S rRNA and pufM genes showed that they were all affiliated to the Alphaproteobacteria. The most frequently isolated strains belonged to Citromicrobium bathyomarinum, and Erythrobacter and Roseovarius species. Most other isolates were related to species not reported to produce BChl-a and/or may represent novel taxa. Direct extraction of RNA from seawater samples enabled the analysis of the expression of pufM, the gene coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis. Clone libraries of pufM gene transcripts revealed that most phylotypes were highly similar to sequences previously recovered from the Mediterranean Sea and a large majority (~94%) was affiliated with the Gammaproteobacteria. The most abundantly detected phylotypes occurred in the western and eastern Mediterranean basins. However, some were exclusively detected in the eastern basin, reflecting the highest diversity of pufM transcripts observed in this ultra-oligotrophic region. To our knowledge, this is the first study to document extensively the diversity of AAP isolates and to unveil the active AAP community in an oligotrophic marine environment. By pointing out the discrepancies between culture-based and molecular methods, this study highlights the existing gaps in the understanding

  20. Characterization of the methanotrophic bacterial community present in a trichloroethylene-contaminated subsurface groundwater site.

    PubMed Central

    Bowman, J P; Jiménez, L; Rosario, I; Hazen, T C; Sayler, G S

    1993-01-01

    Groundwater, contaminated with trichloroethylene (TCE) and tetrachloroethylene (PCE), was collected from 13 monitoring wells at Area M on the U.S. Department of Energy Savannah River Site near Aiken, S.C. Filtered groundwater samples were enriched with methane, leading to the isolation of 25 methanotrophic isolates. The phospholipid fatty acid profiles of all the isolates were dominated by 18:1 omega 8c (60 to 80%), a signature lipid for group II methanotrophs. Subsequent phenotypic testing showed that most of the strains were members of the genus Methylosinus and one isolate was a member of the genus Methylocystis. Most of the methanotroph isolates exhibited soluble methane monooxygenase (sMMO) activity. This was presumptively indicated by the naphthalene oxidation assay and confirmed by hybridization with a gene probe encoding the mmoB gene and by cell extract assays. TCE was degraded at various rates by most of the sMMO-producing isolates, whereas PCE was not degraded. Savannah River Area M and other groundwaters, pristine and polluted, were found to support sMMO activity when supplemented with nutrients and then inoculated with Methylosinus trichosporium OB3b. The maximal sMMO-specific activity obtained in the various groundwaters ranged from 41 to 67% compared with maximal rates obtained in copper-free nitrate mineral salts media. This study partially supports the hypothesis that stimulation of indigenous methanotrophic communities can be efficacious for removal of chlorinated aliphatic hydrocarbons from subsurface sites and that the removal can be mediated by sMMO. PMID:8368829

  1. Methanotrophic and Methanogenic Communities in Swiss Alpine Fens Dominated by Carex rostrata and Eriophorum angustifolium

    PubMed Central

    Cheema, Simrita; Henneberger, Ruth

    2015-01-01

    Vascular plants play a key role in controlling CH4 emissions from natural wetlands, because they influence CH4 production, oxidation, and transport to the atmosphere. Here we investigated differences in the abundance and composition of methanotrophic and methanogenic communities in three Swiss alpine fens dominated by different vascular plant species under natural conditions. The sampling locations either were situated at geographically distinct sites with different physicochemical properties but the same dominant plant species (Carex rostrata) or were located within the same site, showing comparable physicochemical pore water properties, but had different plant species (C. rostrata or Eriophorum angustifolium). All three locations were permanently submerged and showed high levels of CH4 emissions (80.3 to 184.4 mg CH4 m−2 day−1). Soil samples were collected from three different depths with different pore water CH4 and O2 concentrations and were analyzed for pmoA and mcrA gene and transcript abundance and community composition, as well as soil structure. The dominant plant species appeared to have a significant influence on the composition of the active methanotrophic communities (transcript level), while the methanogenic communities differed significantly only at the gene level. Yet no plant species-specific microbial taxa were discerned. Moreover, for all communities, differences in composition were more pronounced with the site (i.e., with different physicochemical properties) than with the plant species. Moreover, depth significantly influenced the composition of the active methanotrophic communities. Differences in abundance were generally low, and active methanotrophs and methanogens coexisted at all three locations and depths independently of CH4 and O2 concentrations or plant species. PMID:26092454

  2. Isolation, identification, and algicidal activity of aerobic denitrifying bacterium R11 and its effect on Microcystis aeruginosa.

    PubMed

    Su, Jun-Feng; Shao, Si-Cheng; Huang, Ting-Lin; Ma, Fang; Zhang, Kai; Wen, Gang; Zheng, Sheng-Chen

    2016-01-01

    Recently, algicidal bacteria have attracted attention as possible agents for the inhibition of algal water blooms. In this study, an aerobic denitrifying bacterium, R11, with high algicidal activity against the toxic Microcystis aeruginosa was isolated from lake sediments. Based on its physiological characteristics and 16S rRNA gene sequence, it was identified as Raoultella, indicating that the bacterium R11 has a good denitrifying ability at 30 °C and can reduce the concentration of nitrate-N completely within 36 h. Additionally, different algicidal characteristics against Microcystis aeruginosa were tested. The results showed that the initial bacterial cell density and algal cell densities strongly influence the removal rates of chlorophyll a. Algicidal activity increased with an increase in the bacterial cell density. With densities of bacterial culture at over 2.4 × 10(5) cell/mL, algicidal activity of up to 80% was obtained in 4 days. We have demonstrated that, with the low initial algal cell density (OD680 less than 0.220), the algicidal activity reached was higher than 90% after 6 days. PMID:27232395

  3. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters.

    PubMed

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-01-01

    Understanding of the "structure-activity" relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au(3+) ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size. PMID:27476577

  4. Kinetics of bio-filtration of trichloroethylene by methanotrophs in presence of methanol.

    PubMed

    Shukla, Awadhesh K; Singh, R S; Upadhyay, S N; Dubey, Suresh K

    2010-11-01

    The biodegradation of TCE was studied in a laboratory scale biofilter packed with wood charcoal and inoculated with mixed culture of methanotrophs isolated from local soil. The removal efficiency was found to be higher than 90% up to an inlet load of 5.1g/m(3)h. The maximum elimination capacity was 6.7g/m(3)h at an inlet loading rate of 11.3g/m(3)h. The reaction constants EC(max,)K(s) and K(i) calculated from the experimental results are also presented. The biodegradation process is found to be inhibited at higher TCE concentration. The carbon dioxide production rate has been found to be a linear function of elimination capacity. The DNA finger printing techniques has indicated the presence of functionally active methanotrophic community including Methylocystis sp. in the biofilter. PMID:20594824

  5. In Vitro Activities of Doripenem and Six Comparator Drugs against 423 Aerobic and Anaerobic Bacterial Isolates from Infected Diabetic Foot Wounds▿

    PubMed Central

    Goldstein, Ellie J. C.; Citron, Diane M.; Merriam, C. Vreni; Warren, Yumi A.; Tyrrell, Kerin L.; Fernandez, Helen T.

    2008-01-01

    Against 182 anaerobe and 241 aerobe strains obtained from diabetic foot infections, doripenem was the most active carbapenem against Pseudomonas aeruginosa (MIC90, 2 μg/ml), more active than imipenem against Proteus mirabilis, and ertapenem was more active against Escherichia coli and Klebsiella spp. The MIC50 and MIC90 values were ≤0.125 μg/ml for methicillin-sensitive Staphylococcus aureus and all streptococci and 0.25/1 for Bacteroides fragilis. PMID:18070958

  6. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-08-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size.

  7. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    PubMed Central

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-01-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size. PMID:27476577

  8. Inhibition of boric acid and sodium borate on the biological activity of microorganisms in an aerobic biofilter.

    PubMed

    Güneş, Y

    2013-01-01

    The aim of this work was to study the inhibition effect of boric acid and sodium borate on the treatment of boron containing synthetic wastewater by a down flow aerobic fixed bed biofilm reactor at various chemical oxygen demand (COD)/boron ratios (0.47-20.54). The inhibitory effect of boron on activated sludge was evaluated on the basis of COD removal during the experimental period. The biofilter (effective volume = 2.5 L) was filled with a ring of plastic material inoculated with acclimated activated sludge. The synthetic wastewater composed of glucose, urea, KH2PO4, MgSO4, Fe2 SO4, ZnSO4 x 7H20, KCl, CaCl2, and di-sodium tetraborate decahydrate or boric acid (B = 100-2000 mg L(-1)). The biological treatment of boron containing wastewater resulted in a low treatment removal rate due to the reduced microbial activity as a result of toxic effects of high boron concentrations. The decrease in the COD removal rate by the presence of either boric acid or sodium borate was practically indistinguishable. It was observed from the experiments that about 90-95% of COD removal was possible at high COD/boron ratios. PMID:24191443

  9. EMERGING TECHNOLOGY BULLETIN - METHANOTROPHIC BIOREACTOR SYSTEM - BIOTROL, INC.

    EPA Science Inventory

    BioTrol's Methanotrophic Bioreactor is an above-ground remedial system for water contaminated with halogenated volatile organic compounds, including trichloroethylene (ICE) and related chemicals. Its design features circumvent problems peculiar to treatment of this unique class o...

  10. Autophagic Signaling and Proteolytic Enzyme Activity in Cardiac and Skeletal Muscle of Spontaneously Hypertensive Rats following Chronic Aerobic Exercise

    PubMed Central

    McMillan, Elliott M.; Paré, Marie-France; Baechler, Brittany L.; Graham, Drew A.; Rush, James W. E.; Quadrilatero, Joe

    2015-01-01

    Hypertension is a cardiovascular disease associated with deleterious effects in skeletal and cardiac muscle. Autophagy is a degradative process essential to muscle health. Acute exercise can alter autophagic signaling. Therefore, we aimed to characterize the effects of chronic endurance exercise on autophagy in skeletal and cardiac muscle of normotensive and hypertensive rats. Male Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) were assigned to a sedentary condition or 6 weeks of treadmill running. White gastrocnemius (WG) of hypertensive rats had higher (p<0.05) caspase-3 and proteasome activity, as well as elevated calpain activity. In addition, skeletal muscle of hypertensive animals had elevated (p<0.05) ATG7 and LC3I protein, LAMP2 mRNA, and cathepsin activity, indicative of enhanced autophagic signaling. Interestingly, chronic exercise training increased (p<0.05) Beclin-1, LC3, and p62 mRNA as well as proteasome activity, but reduced (p<0.05) Beclin-1 and ATG7 protein, as well as decreased (p<0.05) caspase-3, calpain, and cathepsin activity. Left ventricle (LV) of hypertensive rats had reduced (p<0.05) AMPKα and LC3II protein, as well as elevated (p<0.05) p-AKT, p-p70S6K, LC3I and p62 protein, which collectively suggest reduced autophagic signaling. Exercise training had little effect on autophagy-related signaling factors in LV; however, exercise training increased (p<0.05) proteasome activity but reduced (p<0.05) caspase-3 and calpain activity. Our results suggest that autophagic signaling is altered in skeletal and cardiac muscle of hypertensive animals. Regular aerobic exercise can effectively alter the proteolytic environment in both cardiac and skeletal muscle, as well as influence several autophagy-related factors in skeletal muscle of normotensive and hypertensive rats. PMID:25799101

  11. The interrelationship between muscle oxygenation, muscle activation, and pulmonary oxygen uptake to incremental ramp exercise: influence of aerobic fitness.

    PubMed

    Boone, Jan; Barstow, Thomas J; Celie, Bert; Prieur, Fabrice; Bourgois, Jan

    2016-01-01

    We investigated whether muscle and ventilatory responses to incremental ramp exercise would be influenced by aerobic fitness status by means of a cross-sectional study with a large subject population. Sixty-four male students (age: 21.2 ± 3.2 years) with a heterogeneous peak oxygen uptake (51.9 ± 6.3 mL·min(-1)·kg(-1), range 39.7-66.2 mL·min(-1)·kg(-1)) performed an incremental ramp cycle test (20-35 W·min(-1)) to exhaustion. Breath-by-breath gas exchange was recorded, and muscle activation and oxygenation were measured with surface electromyography and near-infrared spectroscopy, respectively. The integrated electromyography (iEMG), mean power frequency (MPF), deoxygenated [hemoglobin and myoglobin] (deoxy[Hb+Mb]), and total[Hb+Mb] responses were set out as functions of work rate and fitted with a double linear function. The respiratory compensation point (RCP) was compared and correlated with the breakpoints (BPs) (as percentage of peak oxygen uptake) in muscle activation and oxygenation. The BP in total[Hb+Mb] (83.2% ± 3.0% peak oxygen uptake) preceded (P < 0.001) the BP in iEMG (86.7% ± 4.0% peak oxygen uptake) and MPF (86.3% ± 4.1% peak oxygen uptake), which in turn preceded (P < 0.01) the BP in deoxy[Hb+Mb] (88.2% ± 4.5% peak oxygen uptake) and RCP (87.4% ± 4.5% peak oxygen uptake). Furthermore, the peak oxygen uptake was significantly (P < 0.001) positively correlated to the BPs and RCP, indicating that the BPs in total[Hb+Mb] (r = 0.66; P < 0.001), deoxy[Hb+Mb] (r = 0.76; P < 0.001), iEMG (r = 0.61; P < 0.001), MPF (r = 0.63; P < 0.001), and RCP (r = 0.75; P < 0.001) occurred at a higher percentage of peak oxygen uptake in subjects with a higher peak oxygen uptake. In this study a close relationship between muscle oxygenation, activation, and pulmonary oxygen uptake was found, occurring in a cascade of events. In subjects with a higher aerobic fitness level this cascade occurred at a higher relative intensity. PMID:26701120

  12. A comparative adsorption study: 17β-estradiol onto aerobic granular sludge and activated sludge.

    PubMed

    Zheng, Xiao-ying; He, Yu-jie; Chen, Wei; Wang, Ming-yang; Cao, Su-lan; Ni, Ming; Chen, Yu

    2016-01-01

    Adsorption plays a significant role in removing hydrophobic 17β-estradiol (E2) from wastewater. Batch experiments were conducted to compare the adsorption of E2 onto activated aerobic granular sludge (AGS) and activated sludge (AS), and features evaluated included the adsorption kinetics, thermodynamics, and influence of other environmental factors. By using a non-chemical wet-heat technique, both AGS and AS were treated to inactivated status. Then, after loading E2, the adsorption equilibrium capacity of the AGS was found to be greater than that of the AS at the same initial concentration of E2. Moreover, both the adsorption processes corresponded to a pseudo-second-order kinetic model; the adsorption rate constant of AGS was found to be higher and the half-adsorption time was shorter than that of AS. Next, evaluations of adsorption isotherms and thermodynamics indicated that the adsorption process was mainly a physical process. Lower temperatures facilitated a higher equilibrium adsorption capacity. However, the adsorption binding sites of AGS were distributed more uniformly at higher temperature, in contrast to the distribution found for AS. Finally, acidic conditions and an appropriate ionic strength (0.4 mol/L) were found to be particularly conducive to the adsorption process. Overall, the results showed that AGS has the potential to adsorb E2 with significant efficiency, thereby offering a new and more efficient means of treating E2 and trace oestrogens in wastewater. PMID:26209151

  13. [Methanotrophic bacteria in cold seeps of the floodplains of northern rivers].

    PubMed

    Belova, S É; Oshkin, I Iu; Glagolev, M V; Lapshina, E D; Maksiutov, Sh Sh; Dedysh, S N

    2013-01-01

    Small mud volcanoes (cold seeps), which are common in the floodplains of northern rivers, are a potentially important, although poorly studied sources of atmospheric methane. Field research on the cold seeps of the Mukhrina River (Khanty-Mansiysk Autonomous okrug, Russia) revealed methane fluxes from these structures to be orders of magnitude higher than from equivalent areas of the mid-taiga bogs. Microbial communities developing around the seeps were formed under conditions of high methane concentrations, low temperatures (3-5 degrees C), and near-neutral pH. Molecular identification of methane-oxidizing bacteria from this community by analysis of the pmoA gene encoding particulate methane monooxygenase revealed both type I and type II methanotrophs (classes Gammaproteobacteria and Alphaproteobacteria, respectively), with predomination of type I methanotrophs. Among the latter, microorganisms related to Methylobacterpsychrophilus and Methylobacter tundripaludum, Crenothrix polyspora (a stagnant water dweller), and a number of methanotrophs belonging to unknown taxa were detected. Growth characteristics of two isolates were determined. Methylobactersp. CMS7 exhibited active growth at 4-10 degrees C, while Methylocystis sp. SB12 grew better at 20 degrees C. Experimental results confirmed the major role ofmethanotrophic gammaproteobacteria in controlling the methane emission from cold river seeps. PMID:25509412

  14. Response of methanotrophic communities to afforestation and reforestation in New Zealand.

    PubMed

    Nazaries, Loïc; Tate, Kevin R; Ross, Des J; Singh, Jagrati; Dando, John; Saggar, Surinder; Baggs, Elizabeth M; Millard, Peter; Murrell, J Colin; Singh, Brajesh K

    2011-11-01

    Methanotrophs use methane (CH(4)) as a carbon source. They are particularly active in temperate forest soils. However, the rate of change of CH(4) oxidation in soil with afforestation or reforestation is poorly understood. Here, soil CH(4) oxidation was examined in New Zealand volcanic soils under regenerating native forests following burning, and in a mature native forest. Results were compared with data for pasture to pine land-use change at nearby sites. We show that following soil disturbance, as little as 47 years may be needed for development of a stable methanotrophic community similar to that in the undisturbed native forest soil. Corresponding soil CH(4)-oxidation rates in the regenerating forest soil have the potential to reach those of the mature forest, but climo-edaphic fators appear limiting. The observed changes in CH(4)-oxidation rate were directly linked to a prior shift in methanotrophic communities, which suggests microbial control of the terrestrial CH(4) flux and identifies the need to account for this response to afforestation and reforestation in global prediction of CH(4) emission. PMID:21593799

  15. Effect of Trichloroethylene on Minimum Energy Requirement and Gene Expression in a Nutrient Limited Methanotroph

    NASA Astrophysics Data System (ADS)

    Colwell, F. S.; Delwiche, M.; Newby, D.; Wood, A.; Bingham, M.; Crawford, R. L.; Strap, J. L.

    2005-12-01

    Monitored natural attenuation (MNA) of contaminant plumes requires data for predictive modeling of plume destruction including the rates of microbial contaminant degradation. Methanotrophs are implicated in co-metabolism of trichloroethylene (TCE) in the Snake River Plain aquifer (SRPA) where MNA is the selected method of treatment. Our research aims to: 1) determine realistic activities of these cells when starved, a condition typical of subsurface microbes, and 2) detect the genes that are transcribed when methanotrophs experience stress or starvation related to TCE exposure and conditions in the subsurface. Methylosinus trichosporium OB3b (OB3b), a model methanotroph, was starved in a biomass recycle reactor and soluble methane monooxygenase (sMMO) activities determined, with and without TCE exposure (ca. 100 μg TCE/L). Starved methanotrophs, present at 3 x 109 cells/mL in the reactor, consumed methane at 0.001 fmoles of methane/cell/day and gradually increased sMMO activities when exposed to higher methane concentrations. sMMO activities of starved OB3b cells exposed to TCE were indistinguishable from cells that were not exposed over brief (one day) periods. The sequences of eight genes, known to code for starvation/stress proteins, were retrieved from phylogenetic relatives (α-proteobacteria) of OB3b. Primers (18-22 bp) were designed from conserved regions in the consensus sequences to obtain OB3b-specific sequences for the eight genes. Primers for the starvation/stress genes successfully amplified all eight genes in OB3b using PCR. Our plan is to clone and sequence these OB3b genes then synthesize oligonucleotides that can be added to a microarray that includes targets for OB3b structural and regulatory gene sequences as a prelude to evaluating gene expression under different nutrient availability conditions and in the presence and absence of TCE. Incorporation of starvation-based rate estimates into natural attenuation models of contaminant plumes will

  16. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions

    PubMed Central

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard

    2015-01-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. 13C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using 3H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  17. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions.

    PubMed

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard; Nielsen, Per Halkjær

    2015-07-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. (13)C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using (3)H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  18. Randomized controlled trial of the efficacy of aerobic exercise in reducing metabolic risk in healthy older people: The Hertfordshire Physical Activity Trial

    PubMed Central

    Finucane, Francis M; Horton, Jessica; Purslow, Lisa R; Savage, David B; Brage, Soren; Besson, Hervé; Horton, Kenneth; Rolfe, Ema De Lucia; Sleigh, Alison; Sharp, Stephen J; Martin, Helen J; Sayer, Avan Aihie; Cooper, Cyrus; Ekelund, Ulf; Griffin, Simon J; Wareham, Nicholas J

    2009-01-01

    Background While there are compelling observational data confirming that individuals who exercise are healthier, the efficacy of aerobic exercise interventions to reduce metabolic risk and improve insulin sensitivity in older people has not been fully elucidated. Furthermore, while low birth weight has been shown to predict adverse health outcomes later in life, its influence on the response to aerobic exercise is unknown. Our primary objective is to assess the efficacy of a fully supervised twelve week aerobic exercise intervention in reducing clustered metabolic risk in healthy older adults. A secondary objective is to determine the influence of low birth weight on the response to exercise in this group. Methods/Design We aim to recruit 100 participants born between 1931–1939, from the Hertfordshire Cohort Study and randomly assign them to no intervention or to 36 fully supervised one hour sessions on a cycle ergometer, over twelve weeks. Each participant will undergo detailed anthropometric and metabolic assessment pre- and post-intervention, including muscle biopsy, magnetic resonance imaging and spectroscopy, objective measurement of physical activity and sub-maximal fitness testing. Discussion Given the extensive phenotypic characterization, this study will provide valuable insights into the mechanisms underlying the beneficial effects of aerobic exercise as well as the efficacy, feasibility and safety of such interventions in this age group. Trial Registration Current Controlled Trials: ISRCTN60986572 PMID:19545359

  19. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration.

    PubMed

    Tang, Yan; Luo, Binping; Deng, Zhili; Wang, Ben; Liu, Fangfen; Li, Jinmao; Shi, Wei; Xie, Hongfu; Hu, Xingwang; Li, Ji

    2016-01-01

    Background. Emerging research revealed the essential role of mitochondria in regulating stem/progenitor cell differentiation of neural progenitor cells, mesenchymal stem cells and other stem cells through reactive oxygen species (ROS), Notch or other signaling pathway. Inhibition of mitochondrial protein synthesis results in hair loss upon injury. However, alteration of mitochondrial morphology and metabolic function during hair follicle stem cells (HFSCs) differentiation and how they affect hair regeneration has not been elaborated upon. Methods. We compared the difference in mitochondrial morphology and activity between telogen bulge cells and anagen matrix cells. Expression levels of mitochondrial ROS and superoxide dismutase 2 (SOD2) were measured to evaluate redox balance. In addition, the level of pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase (PDH) were estimated to present the change in energetic metabolism during differentiation. To explore the effect of the mitochondrial metabolism on regulating hair regeneration, hair growth was observed after application of a mitochondrial respiratory inhibitor upon hair plucking. Results. During HFSCs differentiation, mitochondria became elongated with more abundant organized cristae and showed higher activity in differentiated cells. SOD2 was enhanced for redox balance with relatively stable ROS levels in differentiated cells. PDK increased in HFSCs while differentiated cells showed enhanced PDH, indicating that respiration switched from glycolysis to oxidative phosphorylation during differentiation. Inhibiting mitochondrial respiration in differentiated hair follicle cells upon hair plucking repressed hair regeneration in vivo. Conclusions. Upon HFSCs differentiation, mitochondria are elongated with more abundant cristae and show higher activity, accompanying with activated aerobic respiration in differentiated cells for higher energy supply. Also, dysfunction of mitochondrial respiration delays hair

  20. Aerobic exercise training improves oxidative stress and ubiquitin proteasome system activity in heart of spontaneously hypertensive rats.

    PubMed

    de Andrade, Luiz Henrique Soares; de Moraes, Wilson Max Almeida Monteiro; Matsuo Junior, Eduardo Hiroshi; de Orleans Carvalho de Moura, Elizabeth; Antunes, Hanna Karen Moreira; Montemor, Jairo; Antonio, Ednei Luiz; Bocalini, Danilo Sales; Serra, Andrey Jorge; Tucci, Paulo José Ferreira; Brum, Patricia Chakur; Medeiros, Alessandra

    2015-04-01

    The activity of the ubiquitin proteasome system (UPS) and the level of oxidative stress contribute to the transition from compensated cardiac hypertrophy to heart failure in hypertension. Moreover, aerobic exercise training (AET) is an important therapy for the treatment of hypertension, but its effects on the UPS are not completely known. The aim of this study was to evaluate the effect of AET on UPS's activity and oxidative stress level in heart of spontaneously hypertensive rats (SHR). A total of 53 Wistar and SHR rats were randomly divided into sedentary and trained groups. The AET protocol was 5×/week in treadmill for 13 weeks. Exercise tolerance test, non-invasive blood pressure measurement, echocardiographic analyses, and left ventricle hemodynamics were performed during experimental period. The expression of ubiquitinated proteins, 4-hydroxynonenal (4-HNE), Akt, phospho-Akt(ser473), GSK3β, and phospho-GSK3β(ser9) were analyzed by western blotting. The evaluation of lipid hydroperoxide concentration was performed using the xylenol orange method, and the proteasomal chymotrypsin-like activity was measured by fluorimetric assay. Sedentary hypertensive group presented cardiac hypertrophy, unaltered expression of total Akt, phospho-Akt, total GSK3β and phospho-GSK3β, UPS hyperactivity, increased lipid hydroperoxidation as well as elevated expression of 4-HNE but normal cardiac function. In contrast, AET significantly increased exercise tolerance, decreased resting systolic blood pressure and heart rate in hypertensive animals. In addition, the AET increased phospho-Akt expression, decreased phospho-GSK3β, and did not alter the expression of total Akt, total GSK3β, and ubiquitinated proteins, however, significantly attenuated 4-HNE levels, lipid hydroperoxidation, and UPS's activity toward normotensive group levels. Our results provide evidence for the main effect of AET on attenuating cardiac ubiquitin proteasome hyperactivity and oxidative stress in SHR

  1. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration

    PubMed Central

    Tang, Yan; Luo, Binping; Deng, Zhili; Wang, Ben; Liu, Fangfen; Li, Jinmao; Shi, Wei; Xie, Hongfu; Hu, Xingwang

    2016-01-01

    Background. Emerging research revealed the essential role of mitochondria in regulating stem/progenitor cell differentiation of neural progenitor cells, mesenchymal stem cells and other stem cells through reactive oxygen species (ROS), Notch or other signaling pathway. Inhibition of mitochondrial protein synthesis results in hair loss upon injury. However, alteration of mitochondrial morphology and metabolic function during hair follicle stem cells (HFSCs) differentiation and how they affect hair regeneration has not been elaborated upon. Methods. We compared the difference in mitochondrial morphology and activity between telogen bulge cells and anagen matrix cells. Expression levels of mitochondrial ROS and superoxide dismutase 2 (SOD2) were measured to evaluate redox balance. In addition, the level of pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase (PDH) were estimated to present the change in energetic metabolism during differentiation. To explore the effect of the mitochondrial metabolism on regulating hair regeneration, hair growth was observed after application of a mitochondrial respiratory inhibitor upon hair plucking. Results. During HFSCs differentiation, mitochondria became elongated with more abundant organized cristae and showed higher activity in differentiated cells. SOD2 was enhanced for redox balance with relatively stable ROS levels in differentiated cells. PDK increased in HFSCs while differentiated cells showed enhanced PDH, indicating that respiration switched from glycolysis to oxidative phosphorylation during differentiation. Inhibiting mitochondrial respiration in differentiated hair follicle cells upon hair plucking repressed hair regeneration in vivo. Conclusions. Upon HFSCs differentiation, mitochondria are elongated with more abundant cristae and show higher activity, accompanying with activated aerobic respiration in differentiated cells for higher energy supply. Also, dysfunction of mitochondrial respiration delays hair

  2. Osmium(0) nanoclusters stabilized by zeolite framework; highly active catalyst in the aerobic oxidation of alcohols under mild conditions.

    PubMed

    Zahmakiran, Mehmet; Akbayrak, Serdar; Kodaira, Tetsuya; Ozkar, Saim

    2010-08-28

    Osmium(0) nanoclusters stabilized by zeolite-Y framework were reproducibly prepared by a simple two step procedure involving the incorporation of osmium(III) cations into the zeolite matrix by ion-exchange, followed by their reduction within the cavities of zeolite with sodium borohydride in aqueous solution all at room temperature. The composition and morphology of osmium(0) nanoclusters stabilized by zeolite framework, as well as the integrity and crystallinity of the host material were investigated by using ICP-OES, XRD, XPS, SEM, TEM, HRTEM, TEM/EDX, mid-IR, far-IR spectroscopies, and N(2)-adsorption/desorption technique. The results of the multiprong analysis reveal the formation of osmium(0) nanoclusters within the cavities of zeolite-Y without causing alteration in the framework lattice, formation of mesopores, or loss in the crystallinity of the host material. More importantly, far-IR studies showed that after the reduction of Os(3+) cations by sodium borohydride the Na(+) cations reoccupy their authentic cation sites restoring the integrity of zeolite-Y. The catalytic activity of osmium(0) nanoclusters stabilized by zeolite framework was tested in the aerobic oxidation of activated, unactivated and heteroatom containing alcohols to carbonyl compounds and was found to provide high activity and selectivity even under mild conditions (80 degrees C and 1 atm O(2) or air). Moreover, they were found to be stable enough to be isolated and bottled as solid material, which can be reused as active catalyst under the identical conditions of the first run. PMID:20614055

  3. Effect of salinity on extracellular polymeric substances of activated sludge from an anoxic-aerobic sequencing batch reactor.

    PubMed

    Wang, Zichao; Gao, Mengchun; Wang, Zhe; She, Zonglian; Chang, Qingbo; Sun, Changqing; Zhang, Jian; Ren, Yun; Yang, Ning

    2013-11-01

    The effect of salinity on extracellular polymeric substances (EPS) of activated sludge was investigated in an anoxic-aerobic sequencing batch reactor (SBR). The contents of loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) were positively correlated with the salinity. The polysaccharide (PS) and protein (PN) contents in both LB-EPS and TB-EPS increased with the increase of salinity. With the increase of salinity from 0.5% to 6%, the PN/PS ratios in LB-EPS and TB-EPS decreased from 4.8 to 0.9 and from 2.9 to 1.4, respectively. The four fluorescence peaks in both LB-EPS and TB-EPS identified by three-dimensional excitation-emission matrix fluorescence spectroscopy are attributed to PN-like substances and humic acid-like substances. The Fourier transform infrared spectra of the LB-EPS and TB-EPS appeared to be very similar, but the differences across the spectra were apparent in terms of the relative intensity of some bands with the increase of salinity. The sludge volume index showed a linear correlation with LB-EPS (R(2)=0.9479) and TB-EPS (R(2)=0.9355) at different salinities, respectively. PMID:24134890

  4. Life cycle assessment comparison of activated sludge, trickling filter, and high-rate anaerobic-aerobic digestion (HRAAD).

    PubMed

    Postacchini, Leonardo; Lamichhane, Krishna M; Furukawa, Dennis; Babcock, Roger W; Ciarapica, F E; Cooney, Michael J

    2016-01-01

    This paper conducts a comparative assessment of the environmental impacts of three methods of treating primary clarifier effluent in wastewater treatment plants (WWTPs) through life cycle assessment methodology. The three technologies, activated sludge (AS), high rate anaerobic-aerobic digestion (HRAAD), and trickling filter (TF), were assessed for treatment of wastewater possessing average values of biochemical oxygen demand and total suspended solids of 90 mg L(-1) and 70 mg L(-1), respectively. The operational requirements to process the municipal wastewater to effluent that meets USEPA regulations have been calculated. The data for the AS system were collected from the East Honolulu WWTP (Hawaii, USA) while data for the HRAAD system were collected from a demonstration-scale system at the same plant. The data for the TF system were estimated from published literature. Two different assessment methods have been used in this study: IMPACT 2002+ and TRACI 2. The results show that TF had the smallest environmental impacts and that AS had the largest, while HRAAD was in between the two but with much reduced impacts compared with AS. Additionally, the study shows that lower sludge production is the greatest advantage of HRAAD for reducing environmental impacts compared with AS. PMID:27191555

  5. Monitoring endocrine activity in kraft mill effluent treated by aerobic moving bed bioreactor system.

    PubMed

    Chamorro, S; Pozo, G; Jarpa, M; Hernandez, V; Becerra, J; Vidal, G

    2010-01-01

    A Moving Bed Bioreactor (MBBR) was operated at three different hydraulic retention times for a period of 414 days. The fate of the extractive compounds and the estrogenic activity of the Pinus radiata kraft mill effluents were evaluated using Yeast Estrogen Screen (YES) and gas chromatography - mass spectrometry (GC-MS) detection. Results show that the MBBR reactor is able to remove between 80-83% of estrogenic activity present in the kraft mill Pinus radiata influent, where the values of the effluent's estrogenic activity ranged between 0.123-0.411 ng L(-1), expressed as estrogenic equivalent (EEqs) of 17-a-ethynylestradiol (EE2 eq.). Additionally, the biomass of the MBBR reactor accumulated estrogenic activity ranging between 0.29-0.37 ng EEqs EE2 during the different Hydraulic Retention Time (HRT) operations. The main groups present in pulp mills effluents, corresponding to fatty acids, hydrocarbons, phenols, sterols and triterpenes, were detected by solid phase extraction (SPE) and gas chromatography - mass spectrometry (GC-MS). The results suggest that the sterols produce the estrogenic activity in the evaluated effluent. PMID:20595766

  6. Aerobic Damage to [FeFe]-Hydrogenases: Activation Barriers for the Chemical Attachment of O2**

    PubMed Central

    Kubas, Adam; De Sancho, David; Best, Robert B; Blumberger, Jochen

    2014-01-01

    [FeFe]-hydrogenases are the best natural hydrogen-producing enzymes but their biotechnological exploitation is hampered by their extreme oxygen sensitivity. The free energy profile for the chemical attachment of O2 to the enzyme active site was investigated by using a range-separated density functional re-parametrized to reproduce high-level ab initio data. An activation free-energy barrier of 13 kcal mol−1 was obtained for chemical bond formation between the di-iron active site and O2, a value in good agreement with experimental inactivation rates. The oxygen binding can be viewed as an inner-sphere electron-transfer process that is strongly influenced by Coulombic interactions with the proximal cubane cluster and the protein environment. The implications of these results for future mutation studies with the aim of increasing the oxygen tolerance of this enzyme are discussed. PMID:24615978

  7. Continuous Aerobic Training in Individualized Intensity Avoids Spontaneous Physical Activity Decline and Improves MCT1 Expression in Oxidative Muscle of Swimming Rats

    PubMed Central

    Scariot, Pedro P. M.; Manchado-Gobatto, Fúlvia de Barros; Torsoni, Adriana S.; dos Reis, Ivan G. M.; Beck, Wladimir R.; Gobatto, Claudio A.

    2016-01-01

    Although aerobic training has been shown to affect the lactate transport of skeletal muscle, there is no information concerning the effect of continuous aerobic training on spontaneous physical activity (SPA). Because every movement in daily life (i.e., SPA) is generated by skeletal muscle, we think that it is possible that an improvement of SPA could affect the physiological properties of muscle with regard to lactate transport. The aim of this study was to evaluate the effect of 12 weeks of continuous aerobic training in individualized intensity on SPA of rats and their gene expressions of monocarboxylate transporters (MCT) 1 and 4 in soleus (oxidative) and white gastrocnemius (glycolytic) muscles. We also analyzed the effect of continuous aerobic training on aerobic and anaerobic parameters using the lactate minimum test (LMT). Sixty-day-old rats were randomly divided into three groups: a baseline group in which rats were evaluated prior to initiation of the study; a control group (Co) in which rats were kept without any treatment during 12 weeks; and a chronic exercise group (Tr) in which rats swam for 40 min/day, 5 days/week at 80% of anaerobic threshold during 12 weeks. After the experimental period, SPA of rats was measured using a gravimetric method. Rats had their expression of MCTs determined by RT-PCR analysis. In essence, aerobic training is effective in maintaining SPA, but did not prevent the decline of aerobic capacity and anaerobic performance, leading us to propose that the decline of SPA is not fully attributed to a deterioration of physical properties. Changes in SPA were concomitant with changes in MCT1 expression in the soleus muscle of trained rats, suggestive of an additional adaptive response toward increased lactate clearance. This result is in line with our observation showing a better equilibrium on lactate production-remotion during the continuous exercise (LMT). We propose an approach to combat the decline of SPA of rats in their home

  8. Continuous Aerobic Training in Individualized Intensity Avoids Spontaneous Physical Activity Decline and Improves MCT1 Expression in Oxidative Muscle of Swimming Rats.

    PubMed

    Scariot, Pedro P M; Manchado-Gobatto, Fúlvia de Barros; Torsoni, Adriana S; Dos Reis, Ivan G M; Beck, Wladimir R; Gobatto, Claudio A

    2016-01-01

    Although aerobic training has been shown to affect the lactate transport of skeletal muscle, there is no information concerning the effect of continuous aerobic training on spontaneous physical activity (SPA). Because every movement in daily life (i.e., SPA) is generated by skeletal muscle, we think that it is possible that an improvement of SPA could affect the physiological properties of muscle with regard to lactate transport. The aim of this study was to evaluate the effect of 12 weeks of continuous aerobic training in individualized intensity on SPA of rats and their gene expressions of monocarboxylate transporters (MCT) 1 and 4 in soleus (oxidative) and white gastrocnemius (glycolytic) muscles. We also analyzed the effect of continuous aerobic training on aerobic and anaerobic parameters using the lactate minimum test (LMT). Sixty-day-old rats were randomly divided into three groups: a baseline group in which rats were evaluated prior to initiation of the study; a control group (Co) in which rats were kept without any treatment during 12 weeks; and a chronic exercise group (Tr) in which rats swam for 40 min/day, 5 days/week at 80% of anaerobic threshold during 12 weeks. After the experimental period, SPA of rats was measured using a gravimetric method. Rats had their expression of MCTs determined by RT-PCR analysis. In essence, aerobic training is effective in maintaining SPA, but did not prevent the decline of aerobic capacity and anaerobic performance, leading us to propose that the decline of SPA is not fully attributed to a deterioration of physical properties. Changes in SPA were concomitant with changes in MCT1 expression in the soleus muscle of trained rats, suggestive of an additional adaptive response toward increased lactate clearance. This result is in line with our observation showing a better equilibrium on lactate production-remotion during the continuous exercise (LMT). We propose an approach to combat the decline of SPA of rats in their home

  9. Effect of Elevated Salt Concentrations on the Aerobic Granular Sludge Process: Linking Microbial Activity with Microbial Community Structure▿

    PubMed Central

    Bassin, J. P.; Pronk, M.; Muyzer, G.; Kleerebezem, R.; Dezotti, M.; van Loosdrecht, M. C. M.

    2011-01-01

    The long- and short-term effects of salt on biological nitrogen and phosphorus removal processes were studied in an aerobic granular sludge reactor. The microbial community structure was investigated by PCR-denaturing gradient gel electrophoresis (DGGE) on 16S rRNA and amoA genes. PCR products obtained from genomic DNA and from rRNA after reverse transcription were compared to determine the presence of bacteria as well as the metabolically active fraction of bacteria. Fluorescence in situ hybridization (FISH) was used to validate the PCR-based results and to quantify the dominant bacterial populations. The results demonstrated that ammonium removal efficiency was not affected by salt concentrations up to 33 g/liter NaCl. Conversely, a high accumulation of nitrite was observed above 22 g/liter NaCl, which coincided with the disappearance of Nitrospira sp. Phosphorus removal was severely affected by gradual salt increase. No P release or uptake was observed at steady-state operation at 33 g/liter NaCl, exactly when the polyphosphate-accumulating organisms (PAOs), “Candidatus Accumulibacter phosphatis” bacteria, were no longer detected by PCR-DGGE or FISH. Batch experiments confirmed that P removal still could occur at 30 g/liter NaCl, but the long exposure of the biomass to this salinity level was detrimental for PAOs, which were outcompeted by glycogen-accumulating organisms (GAOs) in the bioreactor. GAOs became the dominant microorganisms at increasing salt concentrations, especially at 33 g/liter NaCl. In the comparative analysis of the diversity (DNA-derived pattern) and the activity (cDNA-derived pattern) of the microbial population, the highly metabolically active microorganisms were observed to be those related to ammonia (Nitrosomonas sp.) and phosphate removal (“Candidatus Accumulibacter”). PMID:21926194

  10. Comparison of Affect and Cardiorespiratory Training Responses Between Structured Gym Activities and Traditional Aerobic Exercise in Children

    PubMed Central

    WHITE, DAVID A.; ROTHENBERGER, SCOTT D.; HUNT, LAURA A.; GOSS, FREDRIC L.

    2016-01-01

    Physical activities (PA) that are pleasurable are likely to be repeated. Structured gym activities (SGA) are defined as dodging, chasing, and fleeing games. Traditional aerobic exercises (TAE) are defined as treadmill, cycle ergometer, and elliptical exercise. The purpose of this investigation was to compare affect and cardiorespiratory training responses between SGA and TAE in children. Thirty-two participants (9.3±0.2) were randomized to either the SGA or TAE group. Exercise training was seven weeks, with two sessions per week, for 35 minutes per session. Affect was measured by the (+5 (pleasurable) to −5 (displeasurable)) feelings scale. Affect was recorded at the mid-point and end of each exercise session. The 20-meter pacer test was used to assess cardiorespiratory fitness at baseline and post intervention. Affect responses and heart rates were averaged across all exercise sessions. The SGA group scored 2.77±0.2 affect units higher than the TAE group (p < 0.0001). The TAE group significantly increased cardiorespiratory fitness (baseline 47.8±3.8; post 49.1±3.1 ml·kg−1·min−1; p = 0.023) with no change in the SGA group (baseline 46.3±3.5; post 47.2±2.7 ml·kg−1·min−1; p = 0.127). SGA reported more positive affect, suggesting they experienced greater pleasure during the exercise sessions than the TAE participants. SGA activities promote more positive affect, and therefore may increase children’s PA participation. PMID:27182420

  11. Molecular insight into activated sludge producing polyhydroxyalkanoates under aerobic-anaerobic conditions.

    PubMed

    Ciesielski, Slawomir; Pokoj, Tomasz; Klimiuk, Ewa

    2008-08-01

    One of the options enabling more economic production of polyhydroxyalkanoates compared to pure cultures is the application of mixed cultures. The use of a microbial community in a sequencing batch reactor has a few advantages: a simple process control, no necessity for sterile processing, and possibilities of using cheap substrates as a source of carbon. Nevertheless, while cultivation methods to achieve high PHAs biomass concentration and high productivity in wild and recombinant strains are defined, knowledge about the cultivation strategy for PHAs production by mixed culture and species composition of bacterial communities is still very limited. The main object of this study was to characterize on the molecular level the composition and activity of PHAs producing microorganism in activated sludge cultivated under oxygen limitation conditions. PHAs producers were detected using a PCR technique and the created PHA synthase gene library was analyzed by DNA sequencing. The obtained results indicate that PHAs-producers belonged to Pseudomonas sp., and possessed genes coding for mcl-PHA synthase. The kinetics of mcl-PHA synthase expression was relatively estimated using real-time PCR technology at several timepoints. Performed quantitative and qualitative analysis of total bacterial activity showed that there were differences in total activity during the process but differential expression of various groups of microorganisms examined by using DGGE was not observed. PMID:18418634

  12. Confined iron nanowires enhance the catalytic activity of carbon nanotubes in the aerobic oxidation of cyclohexane.

    PubMed

    Yang, Xixian; Yu, Hao; Peng, Feng; Wang, Hongjuan

    2012-07-01

    Inside job: New applications of carbon materials pave the way towards greener chemical syntheses. The encapsulation of metallic Fe within CNTs improves electron transfer between the metal and the CNTs. The resulting material offers a high catalytic activity and easy magnetic separation of catalyst in the heterogeneous selective oxidation of cyclohexane. PMID:22488987

  13. Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils.

    PubMed

    Woo, Hannah L; Hazen, Terry C; Simmons, Blake A; DeAngelis, Kristen M

    2014-02-01

    Lignocellulolytic bacteria have promised to be a fruitful source of new enzymes for next-generation lignocellulosic biofuel production. Puerto Rican tropical forest soils were targeted because the resident microbes decompose biomass quickly and to near-completion. Isolates were initially screened based on growth on cellulose or lignin in minimal media. 75 Isolates were further tested for the following lignocellulolytic enzyme activities: phenol oxidase, peroxidase, β-d-glucosidase, cellobiohydrolase, β-xylopyranosidase, chitinase, CMCase, and xylanase. Cellulose-derived isolates possessed elevated β-d-glucosidase, CMCase, and cellobiohydrolase activity but depressed phenol oxidase and peroxidase activity, while the contrary was true of lignin isolates, suggesting that these bacteria are specialized to subsist on cellulose or lignin. Cellobiohydrolase and phenol oxidase activity rates could classify lignin and cellulose isolates with 61% accuracy, which demonstrates the utility of model degradation assays. Based on 16S rRNA gene sequencing, all isolates belonged to phyla dominant in the Puerto Rican soils, Proteobacteria, Firmicutes, and Actinobacteria, suggesting that many dominant taxa are capable of the rapid lignocellulose degradation characteristic of these soils. The isolated genera Aquitalea, Bacillus, Burkholderia, Cupriavidus, Gordonia, and Paenibacillus represent rarely or never before studied lignolytic or cellulolytic species and were undetected by metagenomic analysis of the soils. The study revealed a relationship between phylogeny and lignocellulose-degrading potential, supported by Kruskal-Wallis statistics which showed that enzyme activities of cultivated phyla and genera were different enough to be considered representatives of distinct populations. This can better inform future experiments and enzyme discovery efforts. PMID:24238986

  14. Influence of bulking agents and microbial activator on thermophilic aerobic transformation of sewage sludge.

    PubMed

    Pasda, N; Limtong, P; Oliver, R; Montange, D; Panichsakpatana, S

    2005-10-01

    Bangkok, while improving the wastewater treatment in order to alleviate the river pollution, faces important amounts of sewage sludge. The sewage sludge contains organic matter, nitrogen and phosphorus available for plant growth. However, it may contain pathogenic microorganisms. To be used for agricultural purposes, these pathogens should be destroyed, which can be achieved with the thermophilic phase of composting. As the sewage sludge is dense and unable to compost alone (low C/N ratio), it should be mixed with an organic by-product. Two by-products available in large quantities in Thailand (wood chips and rice husk) have been tested for mixture with sewage sludge. As these products are not easy to decompose (presence of silica in rice husk and lignin/tannins in wood chips), the addition of a microbial activator for composting has been tested in controlled conditions (small quantities of organic mixtures, 55 degrees C, moisture maintained at 60-70% of water holding capacity). The monitoring of the decomposition has been made by measuring the carbon dioxide respiration, pH, organic matter and nitrogen contents and the evolution of enzymatic activities. When mixed with sewage sludge, wood chips and rice husk do not show significant differences concerning decomposition after 63 days. The use of an activator within the experimental conditions does not improve the decomposition of organic matter contained in the mixture of sewage sludge and rice husk or wood chips. PMID:16342535

  15. Resistance Exercise in Already-Active Diabetic Individuals (READI): study rationale, design and methods for a randomized controlled trial of resistance and aerobic exercise in type 1 diabetes.

    PubMed

    Yardley, Jane E; Kenny, Glen P; Perkins, Bruce A; Riddell, Michael C; Goldfield, Gary S; Donovan, Lois; Hadjiyannakis, Stasia; Wells, George A; Phillips, Penny; Sigal, Ronald J

    2015-03-01

    The Resistance Exercise in Already Active Diabetic Individuals (READI) trial aimed to examine whether adding a 6-month resistance training program would improve glycemic control (as reflected in reduced HbA₁c) in individuals with type 1 diabetes who were already engaged in aerobic exercise compared to aerobic training alone. After a 5-week run-in period including optimization of diabetes care and low-intensity exercise, 131 physically active adults with type 1 diabetes were randomized to two groups for 22weeks: resistance training three times weekly, or waiting-list control. Both groups maintained the same volume, duration and intensity of aerobic exercise throughout the study as they did at baseline. HbA₁c, body composition, frequency of hypoglycemia, lipids, blood pressure, apolipoproteins B and A-1 (ApoB and ApoA1), the ApoB-ApoA1 ratio, urinary albumin excretion, serum C-reactive protein, free fatty acids, total daily insulin dose, health-related quality of life, cardiorespiratory fitness and musculoskeletal fitness were recorded at baseline, 3 (for some variables), and 6 months. To our knowledge, READI is the only trial to date assessing the incremental health-related impact of adding resistance training for individuals with type 1 diabetes who are already aerobically active. Few exercise trials have been completed in this population, and even fewer have assessed resistance exercise. With recent improvements in the quality of diabetes care, the READI study will provide conclusive evidence to support or refute a major clinically relevant effect of exercise type in the recommendations for physical activity in patients with type 1 diabetes. PMID:25559915

  16. Activation of aerobic metabolism by Amaranth oil improves heart rate variability both in athletes and patients with type 2 diabetes mellitus.

    PubMed

    Yelisyeyeva, Olha; Semen, Khrystyna; Zarkovic, Neven; Kaminskyy, Danylo; Lutsyk, Olexander; Rybalchenko, Volodymyr

    2012-05-01

    The aim of present research was to study the effects of Amaranth oil (AmO) supplementation on aerobic metabolism and heart rate variability (HRV) in type 2 diabetes mellitus patients and in athletes. Several parameters of aerobic metabolism and HRV were assessed. Supplementation with AmO caused mild pro-oxidant activity resulting in improved uptake of oxidative destruction products and modulation of catalase and SOD activity with subsequent development of an antioxidant effect. These findings were very distinct in athletes but less pronounced in diabetics. Redistribution of haemoglobin ligands in athletes indicates involvement of haemoproteins in free radical reactions during AmO supplementation. Improvement in HRV by daily consumption of AmO as observed in both study groups suggested increased production of endogenous oxygen and enhancement of the cardio-respiratory function. The advantage of activation of aerobic metabolism in OS-related disorders resulting in improved self-organization of the living system and hormetic reaction mechanisms are discussed. PMID:22393897

  17. Effects of oxygen concentration on the nitrifying activity of an aerobic hybrid granular sludge reactor.

    PubMed

    Filali, Ahlem; Bessiere, Yolaine; Sperandio, Mathieu

    2012-01-01

    The aim of the work was to quantify the influence of the simultaneous presence of flocs and granules in the nitrifying activity in a sequencing batch airlift reactor (SBAR). The nitrification rate and oxygen limitation of flocs, granules and hybrid sludge was investigated using respirometric assays at different dissolved oxygen concentrations. The spatial distribution of Ammonium Oxidizing Bacteria (AOB) and Nitrite Oxidizing Bacteria (NOB) was investigated using fluorescence in situ hybridization (FISH). Results showed that the nitrification rate was much less sensitive to oxygen limitation in systems containing a fraction of flocs than in pure granular sludge. Ammonium Oxidizing Bacteria (AOB) were found to be distributed in similar quantities in flocs and granules whereas the Nitrite Oxidizing Bacteria (NOB) were located preferentially in granules. This study showed that the presence of flocs with granules could increase the robustness of the process to transitory reductions of aeration. PMID:22233907

  18. Comparative in vitro activity of ceftaroline, ceftaroline-avibactam, and other antimicrobial agents against aerobic and anaerobic bacteria cultured from infected diabetic foot wounds.

    PubMed

    Goldstein, Ellie J C; Citron, Diane M; Merriam, C Vreni; Tyrrell, Kerin L

    2013-07-01

    Foot infections are the most common infectious complication of diabetes. Moderate to severe diabetic foot infections (DFI) are typically polymicrobial with both aerobic and anaerobic organisms. The role of MRSA in these wounds has become an increasing concern. To determine if the addition of avibactam, a novel non-beta-lactam beta-lactamase inhibitor, to ceftaroline would be more active than ceftaroline alone, we tested 316 aerobic pathogens and 154 anaerobic recovered from patients with moderate to severe DFI, and compared ceftaroline with and without avibactam to other agents. Testing on aerobes was done by broth microdilution and by agar dilution for anaerobes, according to CLSI M11-A8, and M7-A8 standards. Ceftaroline-avibactam MIC90 for all Staphylococcus spp. including MRSA was 0.5 μg/mL, and for enterococci was 1 μg/mL. The MIC90s for enteric Gram-negative rods was 0.125 μg/mL. The addition of avibactam to ceftaroline reduced the ceftaroline MICs for 2 strains of resistant Enterobacter spp. and for 1 strain of Morganella. Against anaerobic Gram-positive cocci ceftaroline-avibactam had an MIC90 0.125 μg/mL and for clostridia 1 μg/mL. Avibactam improved ceftaroline's MIC90s for Bacteroides fragilis from >32 to 2 μg/mL and for Prevotella spp. from >32 to 1 μg/mL. Ceftaroline alone demonstrates excellent in vitro activity against most of the aerobes found in moderate to severe DFI. The addition of avibactam provides an increased spectrum of activity including the beta-lactamase producing Prevotella, Bacteroides fragilis and ceftaroline resistant gram-negative enteric organisms. PMID:23623385

  19. Sucrose metabolism in halotolerant methanotroph Methylomicrobium alcaliphilum 20Z.

    PubMed

    But, Sergey Y; Khmelenina, Valentina N; Reshetnikov, Alexander S; Mustakhimov, Ildar I; Kalyuzhnaya, Marina G; Trotsenko, Yuri A

    2015-04-01

    Sucrose accumulation has been observed in some methylotrophic bacteria utilizing methane, methanol, or methylated amines as a carbon and energy source. In this work, we have investigated the biochemical pathways for sucrose metabolism in the model halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. The genes encoding sucrose-phosphate synthase (Sps), sucrose-phosphate phosphatase (Spp), fructokinase (FruK), and amylosucrase (Ams) were co-transcribed and displayed similar expression levels. Functional Spp and Ams were purified after heterologous expression in Escherichia coli. Recombinant Spp exhibited high affinity for sucrose-6-phosphate and stayed active at very high levels of sucrose (K i  = 1.0 ± 0.6 M). The recombinant amylosucrase obeyed the classical Michaelis-Menten kinetics in the reactions of sucrose hydrolysis and transglycosylation. As a result, the complete metabolic network for sucrose biosynthesis and re-utilization in the non-phototrophic organism was reconstructed for the first time. Comparative genomic studies revealed analogous gene clusters in various Proteobacteria, thus indicating that the ability to produce and metabolize sucrose is widespread among prokaryotes. PMID:25577257

  20. Storage and degradation of poly-beta-hydroxybutyrate in activated sludge under aerobic conditions.

    PubMed

    Dircks, K; Henze, M; van Loosdrecht, M C; Mosbaek, H; Aspegren, H

    2001-06-01

    This research analyses the accumulation and degradation of poly-beta-hydroxybutyrate (PHB) in experiments with pulse addition of acetate to samples of activated sludge from pilot-plant and full-scale wastewater treatment plants. The experiments are divided into two periods: a feast period defined as the time when acetate is consumed and a famine period when the added acetate has been exhausted. In the feast period the significant process occurring is the production of PHB from acetate. The produced PHB is utilised in the famine period for production of glycogen and biomass. According to modelling results approximately 90% of the total potential growth occurs in the famine period utilising the stored PHB. The degradation rate for PHB in the famine period is found to be dependent on the level of PHB obtained at the end of the feast period. It was found that multiple order kinetics gives a good description of the rate of PHB degradation. The examined sludge of low SRT origin is found to degrade PHB faster than long SRT sludge at high fractions of PHB. The observed yield of glycogen on PHB in the famine period is in the range of 0.22-0.33 g COD/g COD depending on the SRT. The storage pool of glycogen in the examined sludge is more slowly degraded than PHB (COD/COD/h). PMID:11358308

  1. Hydrogenophaga carboriunda sp. nov., a tertiary butyl alcohol-oxidizing, psychrotolerant aerobe derived from granular-activated carbon (GAC).

    PubMed

    Reinauer, Kimberly M; Popovic, Jovan; Weber, Christopher D; Millerick, Kayleigh A; Kwon, Man Jae; Wei, Na; Zhang, Yang; Finneran, Kevin T

    2014-04-01

    A Gram-negative, rod-shaped bacterium was isolated from a mixed culture that degraded tert-butyl alcohol (TBA) in a granular-activated carbon (GAC) sample from a Biological-GAC reactor. Strain YZ2(T) was assigned to the Betaproteobacteria within the family Comamonadaceae based on 16S rRNA gene similarities. The nearest phylogenetic relative (95.0 % similarity) with a valid name was Hydrogenophaga taeniospiralis. The DNA G+C content was 66.4 mol%. DNA:DNA hybridization indicated that the level of relatedness to members of the genus Hydrogenophaga ranged from 1.1 to 10.8 %. The dominant cellular fatty acids were: 18:1 w7c (75 %), 16:0 (4.9 %), 17:0 (3.85 %), 18:0 (2.93 %), 11 methyl 18:1 w7c (2.69 %), Summed Feature 2 (2.27 %), and 18:0 3OH (1.35 %). The primary substrate used was TBA, which is a fuel oxygenate and groundwater contaminant. YZ2(T) was non-motile, without apparent flagella. It is a psychrotolerant, facultative aerobe that grew between pH 6.5 and 9.5, and 4 and 30 °C. The culture grew on and mineralized TBA at 4 °C, which is the first report of psychrotolerant TBA degradation. Hydrogen was used as an alternative electron donor. The culture also grew well in defined freshwater medium with ethanol, butanol, hydroxy isobutyric acid, acetate, pyruvate, citrate, lactate, isopropanol, and benzoic acid as electron donors. Nitrate was reduced with hydrogen as the sole electron donor. On the basis of morphological, physiological, and chemotaxonomic data, a new species, Hydrogenophaga carboriunda is proposed, with YZ2(T) as the type strain. PMID:24343174

  2. Self-reported physical activity and objective aerobic fitness: differential associations with gray matter density in healthy aging

    PubMed Central

    Zlatar, Zvinka Z.; McGregor, Keith M.; Towler, Stephen; Nocera, Joe R.; Dzierzewski, Joseph M.; Crosson, Bruce

    2015-01-01

    Aerobic fitness (AF) and self-reported physical activity (srPA) do not represent the same construct. However, many exercise and brain aging studies interchangeably use AF and srPA measures, which may be problematic with regards to how these metrics are associated with brain outcomes, such as morphology. If AF and PA measures captured the same phenomena, regional brain volumes associated with these measures should directly overlap. This study employed the general linear model to examine the differential association between objectively-measured AF (treadmill assessment) and srPA (questionnaire) with gray matter density (GMd) in 29 cognitively unimpaired community-dwelling older adults using voxel based morphometry. The results show significant regional variance in terms of GMd when comparing AF and srPA as predictors. Higher AF was associated with greater GMd in the cerebellum only, while srPA displayed positive associations with GMd in occipito-temporal, left perisylvian, and frontal regions after correcting for age. Importantly, only AF level, and not srPA, modified the relationship between age and GMd, such that higher levels of AF were associated with increased GMd in older age, while decreased GMd was seen in those with lower AF as a function of age. These results support existing literature suggesting that both AF and PA exert beneficial effects on GMd, but only AF served as a buffer against age-related GMd loss. Furthermore, these results highlight the need for use of objective PA measurement and comparability of tools across studies, since results vary dependent upon the measures used and whether these are objective or subjective in nature. PMID:25691866

  3. Methylocapsa palsarum sp. nov., a methanotroph isolated from a subArctic discontinuous permafrost ecosystem.

    PubMed

    Dedysh, Svetlana N; Didriksen, Alena; Danilova, Olga V; Belova, Svetlana E; Liebner, Susanne; Svenning, Mette M

    2015-10-01

    An aerobic methanotrophic bacterium was isolated from a collapsed palsa soil in northern Norway and designated strain NE2T. Cells of this strain were Gram-stain-negative, non-motile, non-pigmented, slightly curved thick rods that multiplied by normal cell division. The cells possessed a particulate methane monooxygenase enzyme (pMMO) and utilized methane and methanol. Strain NE2T grew in a wide pH range of 4.1–8.0 (optimum pH 5.2–6.5) at temperatures between 6 and 32 °C (optimum 18–25 °C), and was capable of atmospheric nitrogen fixation under reduced oxygen tension. The major cellular fatty acids were C18 : 1ω7c, C16 : 0 and C16 : 1ω7c, and the DNA G+C content was 61.7 mol%. The isolate belonged to the family Beijerinckiaceae of the class Alphaproteobacteria and was most closely related to the facultative methanotroph Methylocapsa aurea KYGT (98.3 % 16S rRNA gene sequence similarity and 84 % PmoA sequence identity). However, strain NE2T differed from Methylocapsa aurea KYGT by cell morphology, the absence of pigmentation, inability to grow on acetate, broader pH growth range, and higher tolerance to NaCl. Therefore, strain NE2T represents a novel species of the genus Methylocapsa, for which we propose the name Methylocapsa palsarum sp. nov. The type strain is NE2T ( = LMG 28715T = VKM B-2945T). PMID:26297585

  4. QuickStats: Percentage* of Adults Who Met Federal Guidelines for Aerobic Physical Activity,(†) by Poverty Status(§) - National Health Interview Survey, United States, 2014(¶).

    PubMed

    2016-01-01

    In 2014, the percentage of adults aged ≥18 years who met federal guidelines for aerobic physical activity increased as family income increased. The percentage of adults aged ≥18 years who met federal guidelines for aerobic physical activity ranged from 34.8% for those with family incomes <100% of the poverty level to 66.8% for those with family incomes ≥600% of the poverty level. PMID:27149555

  5. Members of the methanotrophic genus Methylomarinum inhabit inland mud pots

    PubMed Central

    Fradet, Danielle T.; Orphan, Victoria J.

    2016-01-01

    Proteobacteria capable of converting the greenhouse gas methane to biomass, energy, and carbon dioxide represent a small but important sink in global methane inventories. Currently, 23 genera of methane oxidizing (methanotrophic) proteobacteria have been described, although many are represented by only a single validly described species. Here we describe a new methanotrophic isolate that shares phenotypic characteristics and phylogenetic relatedness with the marine methanotroph Methylomarinum vadi. However, the new isolate derives from a terrestrial saline mud pot at the northern terminus of the Eastern Pacific Rise (EPR). This new cultivar expands our knowledge of the ecology of Methylomarinum, ultimately towards a fuller understanding of the role of this genus in global methane cycling. PMID:27478692

  6. Members of the methanotrophic genus Methylomarinum inhabit inland mud pots.

    PubMed

    Fradet, Danielle T; Tavormina, Patricia L; Orphan, Victoria J

    2016-01-01

    Proteobacteria capable of converting the greenhouse gas methane to biomass, energy, and carbon dioxide represent a small but important sink in global methane inventories. Currently, 23 genera of methane oxidizing (methanotrophic) proteobacteria have been described, although many are represented by only a single validly described species. Here we describe a new methanotrophic isolate that shares phenotypic characteristics and phylogenetic relatedness with the marine methanotroph Methylomarinum vadi. However, the new isolate derives from a terrestrial saline mud pot at the northern terminus of the Eastern Pacific Rise (EPR). This new cultivar expands our knowledge of the ecology of Methylomarinum, ultimately towards a fuller understanding of the role of this genus in global methane cycling. PMID:27478692

  7. Evaluation of toxic effects of aeration and trichloroethylene oxidation on methanotrophic bacteria grown with different nitrogen sources

    SciTech Connect

    Chu, K.H.; Alvarez-Cohen, L.

    1999-02-01

    In this study the authors evaluated specific and nonspecific toxic effects of aeration and trichloroethylene (TCE) oxidation on methanotrophic bacteria grown with different nitrogen sources (nitrate, ammonia, and molecular nitrogen). The specific toxic effects, exerted directly on soluble methane monooxygenase (sMMO), were evaluated by comparing changes in methane uptake rates and naphthalene oxidation rates following aeration and/or TCE oxidation. Nonspecific toxic effects, defined as general cellular damage, were examined by using a combination of epifluorescent cellular stains to measure viable cell numbers based on respiratory activity and measuring formate oxidation activities following aeration and TCE transformation. Their results suggest that aeration damages predominantly sMMO rather than other general cellular components, whereas TCE oxidation exerts a broad range of toxic effects that damage both specific and nonspecific cellular functions. TCE oxidation caused sMMO-catalyzed activity and respiratory activity to decrease linearly with the amount of substrate degraded. Severe TCE oxidation toxicity resulted in total cessation of the methane, naphthalene, and formate oxidation activities and a 95% decrease in the respiratory activity of methanotrophs. The failure of cells to recover even after 7 days of incubation with methane suggests that generation of greater amounts of sMMO per cell due to nitrogen fixation may be responsible for enhanced TCE oxidation activities of nitrogen-fixing methanotrophs rather than enzymatic protection mechanisms associated with the nitrogenase enzymes.

  8. Seasonal and spatial aspects of the eco-distribution of methanotrophic bacteria in floodplain soils

    NASA Astrophysics Data System (ADS)

    Bodelier, P. L. E.; Meima-Franke, M.; Kamst, M.; Bodrossy, L.; Stralis-Pavese, N.; Hefting, M. M.; Laanbroek, R.

    2009-04-01

    METHECO is the acronym of a consortium of research groups funded by the European Science foundation (ESF) within the EuroDIVERSITY program. The consortium investigates the role of microbial diversity in the dynamics and stability of global methane consumption. The consortium covers various habitats (i.e. Landfills, rice paddies, alpine meadows, littoral wetlands, forests, arctic wetlands, peat soils and river floodplains) and assesses the effects of natural environmental perturbation on the function structure relationship of methane-consuming microbial communities. Consortium members follow the same experimental and methodological scheme using DNA and RNA based techniques (i.e. pmoA-based cloning, DGGE, micro arrays, Real Time PCR, stable isotope probing). This paper presents the results obtained in a river floodplain along the river Rhine in the Netherlands, a habitat anticipated to be subjected to major changes in flooding regime due to climate change. Experiments were carried out to assess methanotrophic diversity, methane oxidation kinetics and spatial variability of function and structure of methane-oxidizing communities. Flooding events affected methane consumption negatively on short term. However, the long -term consequences of the flooding regime where the establishment of a distinct maximum methane consumption activity exactly in the part of the floodplain intermediate between permanently and irregularly flooded, where moisture and organic matter content were optimal for methane cycling. The methanotrophic community composition as analysed by pmoA micro array mirrored the result of the activity measurements, demonstrating that the communities differed clearly according to the flooding gradient. Diversity as assessed by micro array and activity components (initial consumption, Vmax, Vmax/Km) were positively correlated. QPCR analyses showed that main types of methanotrophic bacteria were differentially distributed throughout the flooding gradient. Type I

  9. The Effects of a Physical Activity Program on Low-Fit Children's Activity Level and Aerobic Endurance.

    ERIC Educational Resources Information Center

    Ignico, Arlene A.; Ethridge, Kriss

    1997-01-01

    Examined the effects of a physical activity program on low-fit 8- to 11-year-old children's activity, mile-run time, and average heart rate. Found that following the program participants were in their target heart rate zone 64% of the time and that mile-run times improved significantly from pre- to posttest. (Author)

  10. Antidepressant Efficacy of Adjunctive Aerobic Activity and Associated Biomarkers in Major Depression: A 4-Week, Randomized, Single-Blind, Controlled Clinical Trial

    PubMed Central

    Siqueira, Cristiana Carvalho; Valiengo, Leandro L.; Carvalho, André F.; Santos-Silva, Paulo Roberto; Missio, Giovani; de Sousa, Rafael T.; Di Natale, Georgia; Gattaz, Wagner F.; Moreno, Ricardo Alberto; Machado-Vieira, Rodrigo

    2016-01-01

    Background Major depressive disorder (MDD) is a highly prevalent, heterogeneous and systemic medical condition. Treatment options are limited, and recent studies have suggested that physical exercise can play an important role in the therapeutics of MDD. The aim of this study was to evaluate the antidepressant efficacy of adjunctive aerobic activity in association with pharmacotherapy (selective serotonin reuptake inhibitor) in symptomatic MDD as well as its association with physiological biomarkers. Methods In this randomized, single-blind, add-on, controlled clinical trial, 57 patients (18–55 years of age) were followed-up for 28 days. All patients were drug-free, had been diagnosed with symptomatic MDD and received flexible dose of sertraline during the trial. Patients were randomized to either a 4-week program (4x/week) of add-on aerobic exercise (exercise group, N = 29) or no activity (control group, N = 28). Depression severity was assessed using the Hamilton Rating Scale for Depression (HAM-D) as the primary outcome. At baseline and endpoint, all patients underwent a comprehensive metabolic/cardiopulmonary exercise testing—including determination of maximal oxygen uptake (VO2max), VO2 at the second ventilatory threshold (VO2-VT2), and oxygen pulse (O2 pulse). Results Depression scores significantly decreased in both groups after intervention. Importantly, patients in the aerobic exercise group required lower sertraline dose compared to the control group (sertraline monotherapy). The VO2max and O2 pulse parameters increased over time only in the exercise group and remained unchanged in the control group. Conclusions The present findings suggest that a 4-week training of aerobic exercise significantly improves functional capacity in patients with MDD and may be associated with antidepressant efficacy. This approach may also decrease the need for higher doses of antidepressants to achieve response. Further studies in unmedicated and treatment-resistant MDD

  11. Environmental control on aerobic methane oxidation in coastal waters

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Maltby, Johanna; Engbersen, Nadine; Zopfi, Jakob; Bange, Hermann; Elvert, Marcus; Hinrichs, Kai-Uwe; Kock, Annette; Lehmann, Moritz; Treude, Tina; Niemann, Helge

    2016-04-01

    Large quantities of methane are produced in anoxic sediments of continental margins and may be liberated to the overlying water column, where some of it is consumed by aerobic methane oxidizing bacteria (MOB). Aerobic methane oxidation (MOx) in the water column is consequently the final sink for methane before its release to the atmosphere, where it acts as a potent greenhouse gas. In the context of the ocean's contribution to atmospheric methane, coastal seas are particularly important accounting >75% of global methane emission from marine systems. Coastal oceans are highly dynamic, in particular with regard to the variability of methane and oxygen concentrations as well as temperature and salinity, all of which are potential key environmental factors controlling MOx. To determine important environmental controls on the activity of MOBs in coastal seas, we conducted a two-year time-series study with measurements of physicochemical water column parameters, MOx activity and the composition of the MOB community in a coastal inlet in the Baltic Sea (Boknis Eck Time Series Station, Eckernförde Bay - E-Bay). In addition, we investigated the influence of temperature and oxygen on MOx during controlled laboratory experiments. In E-Bay, hypoxia developed in bottom waters towards the end of the stratification period. Constant methane liberation from sediments resulted in bottom water methane accumulations and supersaturation (with respect to the atmospheric equilibrium) in surface waters. Here, we will discuss the factors impacting MOx the most, which were (i) perturbations of the water column (ii) temperature and (iii) oxygen concentration. (i) Perturbations of the water column caused by storm events or seasonal mixing led to a decrease in MOx, probably caused by replacement of stagnant water with a high standing stock of MOB by 'new' waters with a lower abundance of methanotrophs. b) An increase in temperature generally led to higher MOx rates. c) Even though methane was

  12. DevS/DosS sensor is bifunctional and its phosphatase activity precludes aerobic DevR/DosR regulon expression in Mycobacterium tuberculosis.

    PubMed

    Kaur, Kohinoor; Kumari, Priyanka; Sharma, Saurabh; Sehgal, Snigdha; Tyagi, Jaya Sivaswami

    2016-08-01

    Two-component systems, comprising histidine kinases and response regulators, empower bacteria to sense and adapt to diverse environmental stresses. Some histidine kinases are bifunctional; their phosphorylation (kinase) and dephosphorylation (phosphatase) activities toward their cognate response regulators permit the rapid reversal of genetic responses to an environmental stimulus. DevR-DevS/DosR-DosS is one of the best-characterized two-component systems of Mycobacterium tuberculosis. The kinase function of DevS is activated by gaseous stress signals, including hypoxia, resulting in the induction of ~ 48-genes DevR dormancy regulon. Regulon expression is tightly controlled and lack of expression in aerobic Mtb cultures is ascribed to the absence of phosphorylated DevR. Here we show that DevS is a bifunctional sensor and possesses a robust phosphatase activity toward DevR. We used site-specific mutagenesis to generate substitutions in conserved residues in the dimerization and histidine phosphotransfer domain of DevS and determined their role in kinase/phosphatase functions. In vitro and in vivo experiments, including a novel in vivo phosphatase assay, collectively establish that these conserved residues are critical for regulating kinase/phosphatase functions. Our findings establish DevS phosphatase function as an effective control mechanism to block aerobic expression of the DevR dormancy regulon. Asp-396 is essential for both kinase and phosphatase functions, whereas Gln-400 is critical for phosphatase function. The positive and negative functions perform opposing roles in DevS: the kinase function triggers regulon induction under hypoxia, whereas its phosphatase function prevents expression under aerobic conditions. A finely tuned balance in these opposing activities calibrates the dormancy regulon response output. PMID:27327040

  13. Effects of Physical Activity on Children’s Executive Function: Contributions of Experimental Research on Aerobic Exercise

    PubMed Central

    Best, John R.

    2011-01-01

    Executive function refers to the cognitive processes necessary for goal-directed cognition and behavior, which develop across childhood and adolescence. Recent experimental research indicates that both acute and chronic aerobic exercise promote children’s executive function. Furthermore, there is tentative evidence that not all forms of aerobic exercise benefit executive function equally: Cognitively-engaging exercise appears to have a stronger effect than non-engaging exercise on children’s executive function. This review discusses this evidence as well as the mechanisms that may underlie the association between exercise and executive function. Research from a variety of disciplines is covered, including developmental psychology, kinesiology, cognitive neuroscience, and biopsychology. Finally, these experimental findings are placed within the larger context of known links between action and cognition in infancy and early childhood, and the clinical and practical implications of this research are discussed. PMID:21818169

  14. Effect of operational strategies on activated sludge's acclimation to phenol, subsequent aerobic granulation, and accumulation of polyhydoxyalkanoates.

    PubMed

    Wosman, Afrida; Lu, Yuhao; Sun, Supu; Liu, Xiang; Wan, Chunli; Zhang, Yi; Lee, Duu-Jong; Tay, JooHwa

    2016-11-01

    Aerobic granules, a relative novel form of microbial aggregate, are capable of degrading many toxic organic pollutants. Appropriate strategy is needed to acclimate seed sludge to the toxic compounds for successful granulation. In this study, two distinct strategies, i.e. mixed or single carbon sources, were experimented to obtain phenol-acclimated sludge. Their effects on reactor performance, biomass characteristics, microbial population and the granulation process were analyzed. Sludge fed with phenol alone exhibited faster acclimation and earlier appearance of granules, but possibly lower microbial diversity and reactor stability. Using a mixture of acetate and phenol in the acclimation stage, on the other hand, led to a reactor with slower phenol degradation and granulation, but eventual formation of strong and stable aerobic granules. In addition, the content of intracellular polyhydoxyakanoates (PHA) was also monitored, and significant accumulation was observed during the pre-granulation stage, where PHA >50% of dry weight was observed in both reactors. PMID:27281169

  15. In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity

    PubMed Central

    Li, Sainan; Wu, Liwei; Feng, Jiao; Li, Jingjing; Liu, Tong; Zhang, Rong; Xu, Shizan; Cheng, Keran; Zhou, Yuqing; Zhou, Shunfeng; Kong, Rui; Chen, Kan; Wang, Fan; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Dai, Weiqi; Guo, Chuanyong

    2016-01-01

    Glycolysis, as an altered cancer cell-intrinsic metabolism, is an essential hallmark of cancer. Phosphofructokinase (PFK) is a metabolic sensor in the glycolytic pathway, and restricting the substrate availability for this enzyme has been researched extensively as a target for chemotherapy. In the present study, we investigated that the effects of epigallocatechin-3-gallate (EGCG), an active component of green tea, on inhibiting cell growth and inducing apoptosis by promoting a metabolic shift away from glycolysis in aerobic glycolytic hepatocellular carcinoma (HCC) cells. EGCG modulated the oligomeric structure of PFK, potentially leading to metabolic stress associated apoptosis and suggesting that EGCG acts by directly suppressing PFK activity. A PFK activity inhibitor enhanced the effect, while the allosteric activator reversed EGCG-induced HCC cell death. PFK siRNA knockdown-induced apoptosis was not reversed by the activator. EGCG enhanced the effect of sorafenib on cell growth inhibition in both aerobic glycolytic HCC cells and in a xenograft mouse model. The present study suggests a potential role for EGCG as an adjuvant in cancer therapy, which merits further investigation at the clinical level. PMID:27349173

  16. In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity.

    PubMed

    Li, Sainan; Wu, Liwei; Feng, Jiao; Li, Jingjing; Liu, Tong; Zhang, Rong; Xu, Shizan; Cheng, Keran; Zhou, Yuqing; Zhou, Shunfeng; Kong, Rui; Chen, Kan; Wang, Fan; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Dai, Weiqi; Guo, Chuanyong

    2016-01-01

    Glycolysis, as an altered cancer cell-intrinsic metabolism, is an essential hallmark of cancer. Phosphofructokinase (PFK) is a metabolic sensor in the glycolytic pathway, and restricting the substrate availability for this enzyme has been researched extensively as a target for chemotherapy. In the present study, we investigated that the effects of epigallocatechin-3-gallate (EGCG), an active component of green tea, on inhibiting cell growth and inducing apoptosis by promoting a metabolic shift away from glycolysis in aerobic glycolytic hepatocellular carcinoma (HCC) cells. EGCG modulated the oligomeric structure of PFK, potentially leading to metabolic stress associated apoptosis and suggesting that EGCG acts by directly suppressing PFK activity. A PFK activity inhibitor enhanced the effect, while the allosteric activator reversed EGCG-induced HCC cell death. PFK siRNA knockdown-induced apoptosis was not reversed by the activator. EGCG enhanced the effect of sorafenib on cell growth inhibition in both aerobic glycolytic HCC cells and in a xenograft mouse model. The present study suggests a potential role for EGCG as an adjuvant in cancer therapy, which merits further investigation at the clinical level. PMID:27349173

  17. Algebra Aerobics

    ERIC Educational Resources Information Center

    Barnes, Julie; Jaqua, Kathy

    2011-01-01

    A kinesthetic approach to developing ideas of function transformations can get students physically and intellectually involved. This article presents low- or no-cost activities which use kinesthetics to support high school students' mathematical understanding of transformations of function graphs. The important point of these activities is to help…

  18. Issues involved with non-characterized control of methanotrophic bacteria

    SciTech Connect

    Stoner, D.L.; Tolle, C.R.; Noah, K.S.; Davis, D.A.; Miller, K.S.; Fife, D.J.

    1998-05-11

    Methane-utilizing bacteria, methanotrophs, have application as biocatalysts in the commodity chemical production, waste treatment and environmental remediation industries. Methanotrophs have the ability to oxidize many chemical compounds into more desired products, such as the production of propylene oxide. Methanotrophs can also degrade toxic compounds such as trichloroethylene. However, there are many physical, chemical and biological problems associated with the continuous oxidation of chemicals. These include, low mass transfer of methane, oxygen and propylene; toxicity of substrates and degradation products, and competition between the growth substrate, i.e., methane and chemical feed stock, e.g., propylene for the biocatalyst. To supervise methanotrophic bioprocesses, an intelligent control system must accommodate any biological limitations, e.g., toxicity, and mitigate the impact of the physical and chemical limitations, e.g., mass transfer of methane and the solubility of propylene. The intelligent control system must have the capability to assess the current conditions and metabolic state of the bacteria; recognize and diagnose instrument faults; and select and maintain sets of parameters that will result in high production and growth.

  19. Methane as a resource: can the methanotrophs add value?

    PubMed

    Strong, P J; Xie, S; Clarke, W P

    2015-04-01

    Methane is an abundant gas used in energy recovery systems, heating, and transport. Methanotrophs are bacteria capable of using methane as their sole carbon source. Although intensively researched, the myriad of potential biotechnological applications of methanotrophic bacteria has not been comprehensively discussed in a single review. Methanotrophs can generate single-cell protein, biopolymers, components for nanotechnology applications (surface layers), soluble metabolites (methanol, formaldehyde, organic acids, and ectoine), lipids (biodiesel and health supplements), growth media, and vitamin B12 using methane as their carbon source. They may be genetically engineered to produce new compounds such as carotenoids or farnesene. Some enzymes (dehydrogenases, oxidase, and catalase) are valuable products with high conversion efficiencies and can generate methanol or sequester CO2 as formic acid ex vivo. Live cultures can be used for bioremediation, chemical transformation (propene to propylene oxide), wastewater denitrification, as components of biosensors, or possibly for directly generating electricity. This review demonstrates the potential for methanotrophs and their consortia to generate value while using methane as a carbon source. While there are notable challenges using a low solubility gas as a carbon source, the massive methane resource, and the potential cost savings while sequestering a greenhouse gas, keeps interest piqued in these unique bacteria. PMID:25723373

  20. Ecophysiology of Defluviicoccus-related tetrad-forming organisms in an anaerobic-aerobic activated sludge process.

    PubMed

    Wong, Man-Tak; Liu, Wen-Tso

    2007-06-01

    A group of uncultured tetrad-forming organisms (TFOs) was enriched in an acetate-fed anaerobic-aerobic sequencing membrane bioreactor showing deteriorated enhanced biological phosphorus removal capacity. Based on 16S rRNA gene clone library and fluorescence in situ hybridization (FISH) analyses, these TFOs were identified as novel members of the Defluviicoccus cluster in the Alphaproteobacteria, accounting for 90 +/- 5% of the EUBmix FISH-detectable bacterial cell area in the reactor biomass. Microautoradiography in combination with FISH and polyhydroxyalkanoate (PHA) staining revealed that these Defluviicoccus-related TFOs could take up and transform acetate, lactate, propionate and pyruvate, but not aspartic acid and glucose, into PHA under anaerobic conditions. In contrast, under continuous anaerobic-aerobic cultivation, Defluviicoccus vanus, the only cultured strain from the cluster, was able to take up glucose with concurrent glycogen consumption and PHA production under anaerobic conditions. Under subsequent aerobic conditions, the accumulated PHA was utilized and the biomass glycogen levels were restored. These findings not only re-confirmed these Defluviicoccus-related TFOs as glycogen-accumulating organisms, but also revealed unexpected levels of physiological, phylogenetic and morphological diversity among members of the Defluviicoccus cluster. PMID:17504486

  1. Microbial decolorization of reactive black-5 in a two-stage anaerobic-aerobic reactor using acclimatized activated textile sludge.

    PubMed

    Mohanty, Sagarika; Dafale, Nishant; Rao, Nageswara Neti

    2006-10-01

    A two-stage anaerobic-aerobic treatment process based on mixed culture of bacteria isolated from textile dye effluent was used to degrade reactive black 5 dye (RB-5). The anaerobic step was studied in more detail by varying the dye concentration from 100 to 3000 mg l(-1). The results showed that major decolorization was achieved during the anaerobic process. The time required for decolorization by > 90% increased as the concentration of the dye increased. It was also found that maintaining dissolved oxygen (DO) concentration below 0.5 mg l(-1 )and addition of a co-substrate viz., glucose, facilitates anaerobic decolorization reaction remarkably. An attempt was made to identify the metabolites formed in anaerobic process by using high performance liquid chromatography (HPLC) and UV-VIS spectrophotometry. A plate assay was performed for the detection of dominant decolorizing bacteria. Only a few bacterial colonies with high clearing zones (decolorization zones) were found. The results showed that under anaerobic condition RB-5 molecules were reduced and aromatic amines were generated. The aromatic amine metabolite was partly removed in subsequent aerobic bio-treatment. It was possible to achieve more than 90% decolorization and approximately 46% reduction in amine metabolite concentration through two-stage anaerobic-aerobic treatment after a reaction period of 2 days. PMID:16477361

  2. Activity of Microorganisms in Acid Mine Water I. Influence of Acid Water on Aerobic Heterotrophs of a Normal Stream

    PubMed Central

    Tuttle, Jon H.; Randles, C. I.; Dugan, P. R.

    1968-01-01

    Comparison of microbial content of acid-contaminated and nonacid-contaminated streams from the same geographical area indicated that nonacid streams contained relatively low numbers of acid-tolerant heterotrophic microorganisms. The acid-tolerant aerobes survived when acid entered the stream and actually increased in number to about 2 × 103 per ml until the pH approached 3.0. The organisms then represented the heterotrophic aerobic microflora of the streams comprised of a mixture of mine drainage and nonacid water. A stream which was entirely acid drainage did not have a similar microflora. Most gram-positive aerobic and anaerobic bacteria died out very rapidly in acidic water, and they comprised a very small percentage of the microbial population of the streams examined. Iron- and sulfur-oxidizing autotrophic bacteria were present wherever mine water entered a stream system. The sulfur-oxidizing bacteria predominated over iron oxidizers. Ecological data from the field were verified by laboratory experiments designed to simulate stream conditions. PMID:5650063

  3. Effect of biomass concentration on methane oxidation activity using mature compost and graphite granules as substrata.

    PubMed

    Xie, S; O'Dwyer, T; Freguia, S; Pikaar, I; Clarke, W P

    2016-10-01

    Reported methane oxidation activity (MOA) varies widely for common landfill cover materials. Variation is expected due to differences in surface area, the composition of the substratum and culturing conditions. MOA per methanotrophic cell has been calculated in the study of natural systems such as lake sediments to examine the inherent conditions for methanotrophic activity. In this study, biomass normalised MOA (i.e., MOA per methanotophic cell) was measured on stabilised compost, a commonly used cover in landfills, and on graphite granules, an inert substratum widely used in microbial electrosynthesis studies. After initially enriching methanotrophs on both substrata, biomass normalised MOA was quantified under excess oxygen and limiting methane conditions in 160ml serum vials on both substrata and blends of the substrata. Biomass concentration was measured using the bicinchoninic acid assay for microbial protein. The biomass normalised MOA was consistent across all compost-to-graphite granules blends, but varied with time, reflecting the growth phase of the microorganisms. The biomass normalised MOA ranged from 0.069±0.006μmol CH4/mg dry biomass/h during active growth, to 0.024±0.001μmol CH4/mg dry biomass/h for established biofilms regardless of the substrata employed, indicating the substrata were equally effective in terms of inherent composition. The correlation of MOA with biomass is consistent with studies on methanotrophic activity in natural systems, but biomass normalised MOA varies by over 5 orders of magnitude between studies. This is partially due to different methods being used to quantify biomass, such as pmoA gene quantification and the culture dependent Most Probable Number method, but also indicates that long term exposure of materials to a supply of methane in an aerobic environment, as can occur in natural systems, leads to the enrichment and adaptation of types suitable for those conditions. PMID:27515185

  4. Conditioning and Aerobics for Older Americans.

    ERIC Educational Resources Information Center

    Hansen, Joyce

    1980-01-01

    A class designed for the maintenance and gradual improvement of senior citizens' physical fitness includes relaxation training, flexibility and stretching exercises, interval training activities (designed as a link between less strenuous exercise and more strenuous activities), and aerobic exercises. (CJ)

  5. Transcriptomic evidence for net methane oxidation and net methane production in putative ANaerobic MEthanotrophic (ANME) archaea

    NASA Astrophysics Data System (ADS)

    Lloyd, K. G.; Alperin, M. J.; Teske, A.

    2010-12-01

    Anaerobic methane oxidation regulates methane emissions in marine sediments and is thought to be mediated by uncultured methanogen-like archaea collectively labeled ANME (for ANaerobic MEthanotrophs). ANME archaea are often assumed to be obligate methanotrophs that are incapable of net methanogenesis, and are therefore used as proxies for anaerobic methane oxidation in many environments in spite of uncertainty regarding their metabolic capabilities. We tested this assumption by detecting and quantifying methanogenic gene transcription of ANME archaea across clearly differentiated zones of methane oxidation vs. methane production in sediments from the White Oak River estuary, NC. ANME-1 archaea (a group of putative obligate methanotrophs) consistently transcribe 16S rRNA and mRNA of methyl coenzyme M reductase (mcrA) the key gene for methanogenesis, up to 45 cm into methanogenic sediments. CARD-FISH shows that ANME-1 archaea exist as single rod-shaped cells or pairs of cells, and in very low numbers. Integrating normalized depth-distributions of 16S rDNA and rRNA (measured with qPCR and RT-qPCR, respectively) shows that 26-77 % of the rDNA proxy for ANME-1 cell numbers, and 18-74 % of the rRNA proxy for ANME-1 activity occurs within methane-producing sediments. mRNA transcripts of dissimilatory sulfite reductase (dsrAB) from sulfate reducing bacteria, the putative syntrophic partners of sulfate-dependent methane oxidation, were amplified consistently from methane-oxidizing sediments, and inconsistently from methane-producing sediments. These results change the perspective from ANME-1 archaea as obligate methane oxidizers to methanogens that are also capable of methane oxidation.

  6. Nitrite- and Nitrate-Dependent Methanotrophs - Environmental Detection and Relevance in Freshwater Ecosystems

    NASA Astrophysics Data System (ADS)

    Ettwig, K. F.

    2014-12-01

    Humans continue to have an enormous impact on global C and N cycles. While a clear stimulation of methane emissions through human activities is evident, the role of also increasingly released nitrogenous compounds as electron acceptors for microbial methane oxidation is not well constrained. We have developed diverse methods for environmental detection of nitrate(NO3-)- and - predominantly - nitrite(NO2-)-dependent methanotrophs, which have been applied to several freshwater environments. In contrast to most metabolically flexible heterotrophic denitrifiers, the microorganisms responsible for methane-dependent nitrate/nitrite reduction seem to be specialized to use methane only, grow slowly and employ pathways different from each other and from model organisms, which necessitate new approaches for the assessment of their environmental relevance. Nitrite-dependent methane oxidation is carried out by bacteria of the NC10 phylum, whereas nitrate-dependent methane oxidizers are close relatives of methanogenic archaea and sulfate-dependent anaerobic methanotrophs (ANME-2). Laboratory enrichment cultures of the nitrite-reducing methanotroph Methylomirabilis oxyfera (NC10 phylum) have formed the basis for its genetic and physiological characterization and the development of several independent methods for its sensitive detection. M. oxyfera differs from all known microorganisms by encoding an incomplete denitrification pathway, in which the last 2 steps, the reduction of NO via N2O to N2, apparently is replaced by the dismutation of NO to N2 and O2. The intracellularly produced O2 is used for methane oxidation via a methane monooxygenase, analogously to the phylogenetically unrelated proteobacterial methanotrophs. But unlike in proteobacteria, C is not assimilated from methane, but rather CO2, with important consequences for the interpretation of environmental isotope labelling studies. In addition, M. oxyfera is characterized by a distinct PLFA profile, including

  7. Non-directed, carbonate-mediated C-H activation and aerobic C-H oxygenation with Cp*Ir catalysts.

    PubMed

    Kerr, M E; Ahmed, I; Gunay, A; Venditto, N J; Zhu, F; Ison, E A; Emmert, M H

    2016-06-14

    The effect of oxidatively stable L- and X-type additives on the activity of Cp*Ir catalyst precursors in the C-H activation of arenes has been studied. Turnover numbers for C-H activation of up to 65 can thus be achieved, as determined by H/D exchange in MeOH-D4. In particular, carbonate additives are found to enhance the C-H activation reactivity of Cp*Ir(H2O)3(OTf)2 () more significantly than L-type ligands investigated in this study. Based on these studies, Cp*Ir/carbonate systems are developed that catalyze the aerobic Csp(3)-H oxygenation of alkyl arenes, employing air as oxidant. PMID:26979568

  8. Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria.

    PubMed

    Campbell, Mark A; Nyerges, Györgyi; Kozlowski, Jessica A; Poret-Peterson, Amisha T; Stein, Lisa Y; Klotz, Martin G

    2011-09-01

    Many methane-oxidizing bacteria (MOB) have been shown to aerobically oxidize ammonia and hydroxylamine (NH(2)OH) to produce nitrite and nitrous oxide (N(2)O). Genome sequences of alphaproteobacterial, gammaproteobacterial, and verrucomicrobial methanotrophs revealed the presence of haoAB, cytL, cytS, nirS or nirK, and norCB genes that may be responsible for N(2)O production, and additional haoAB genes were sequenced from two strains of Methylomicrobium album. The haoAB genes of M. album ATCC 33003 were inducible by ammonia and NH(2)OH, similar to haoAB induction by ammonia in Methylococcus capsulatus Bath. Increased expression of genes encoding nitric oxide reductase (cNOR; norCB) was measured upon exposure of M. capsulatus Bath to NaNO(2) and NO-releasing sodium nitroprusside. Only incubations of M. capsulatus Bath with methane, ammonia, and nitrite produced N(2)O. The data suggest a possible pathway of nitrite reduction to NO by reversely operating NH(2)OH oxidoreductase and NO reduction to N(2)O by cNOR independently or in conjunction with ammonia-induced enzymes (i.e. HAO or cytochrome c'-β). Results of this study show that MOB likely have diverse mechanisms for nitrogen oxide metabolism and detoxification of NH(2)OH that involve conventional and unconventional enzymes. PMID:21682764

  9. Genomic Reconstruction of an Uncultured Hydrothermal Vent Gammaproteobacterial Methanotroph (Family Methylothermaceae) Indicates Multiple Adaptations to Oxygen Limitation

    PubMed Central

    Skennerton, Connor T.; Ward, Lewis M.; Michel, Alice; Metcalfe, Kyle; Valiente, Chanel; Mullin, Sean; Chan, Ken Y.; Gradinaru, Viviana; Orphan, Victoria J.

    2015-01-01

    Hydrothermal vents are an important contributor to marine biogeochemistry, producing large volumes of reduced fluids, gasses, and metals and housing unique, productive microbial and animal communities fueled by chemosynthesis. Methane is a common constituent of hydrothermal vent fluid and is frequently consumed at vent sites by methanotrophic bacteria that serve to control escape of this greenhouse gas into the atmosphere. Despite their ecological and geochemical importance, little is known about the ecophysiology of uncultured hydrothermal vent-associated methanotrophic bacteria. Using metagenomic binning techniques, we recovered and analyzed a near-complete genome from a novel gammaproteobacterial methanotroph (B42) associated with a white smoker chimney in the Southern Lau basin. B42 was the dominant methanotroph in the community, at ∼80x coverage, with only four others detected in the metagenome, all on low coverage contigs (7x–12x). Phylogenetic placement of B42 showed it is a member of the Methylothermaceae, a family currently represented by only one sequenced genome. Metabolic inferences based on the presence of known pathways in the genome showed that B42 possesses a branched respiratory chain with A- and B-family heme copper oxidases, cytochrome bd oxidase and a partial denitrification pathway. These genes could allow B42 to respire over a wide range of oxygen concentrations within the highly dynamic vent environment. Phylogenies of the denitrification genes revealed they are the result of separate horizontal gene transfer from other Proteobacteria and suggest that denitrification is a selective advantage in conditions where extremely low oxygen concentrations require all oxygen to be used for methane activation. PMID:26779119

  10. Genomic Reconstruction of an Uncultured Hydrothermal Vent Gammaproteobacterial Methanotroph (Family Methylothermaceae) Indicates Multiple Adaptations to Oxygen Limitation.

    PubMed

    Skennerton, Connor T; Ward, Lewis M; Michel, Alice; Metcalfe, Kyle; Valiente, Chanel; Mullin, Sean; Chan, Ken Y; Gradinaru, Viviana; Orphan, Victoria J

    2015-01-01

    Hydrothermal vents are an important contributor to marine biogeochemistry, producing large volumes of reduced fluids, gasses, and metals and housing unique, productive microbial and animal communities fueled by chemosynthesis. Methane is a common constituent of hydrothermal vent fluid and is frequently consumed at vent sites by methanotrophic bacteria that serve to control escape of this greenhouse gas into the atmosphere. Despite their ecological and geochemical importance, little is known about the ecophysiology of uncultured hydrothermal vent-associated methanotrophic bacteria. Using metagenomic binning techniques, we recovered and analyzed a near-complete genome from a novel gammaproteobacterial methanotroph (B42) associated with a white smoker chimney in the Southern Lau basin. B42 was the dominant methanotroph in the community, at ∼80x coverage, with only four others detected in the metagenome, all on low coverage contigs (7x-12x). Phylogenetic placement of B42 showed it is a member of the Methylothermaceae, a family currently represented by only one sequenced genome. Metabolic inferences based on the presence of known pathways in the genome showed that B42 possesses a branched respiratory chain with A- and B-family heme copper oxidases, cytochrome bd oxidase and a partial denitrification pathway. These genes could allow B42 to respire over a wide range of oxygen concentrations within the highly dynamic vent environment. Phylogenies of the denitrification genes revealed they are the result of separate horizontal gene transfer from other Proteobacteria and suggest that denitrification is a selective advantage in conditions where extremely low oxygen concentrations require all oxygen to be used for methane activation. PMID:26779119

  11. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  12. Activated sludge mass reduction and biodegradability of the endogenous residues by digestion under different aerobic to anaerobic conditions: Comparison and modeling.

    PubMed

    Martínez-García, C G; Fall, C; Olguín, M T

    2016-03-01

    This study was performed to identify suitable conditions for the in-situ reduction of excess sludge production by intercalated digesters in recycle-activated sludge (RAS) flow. The objective was to compare and model biological sludge mass reduction and the biodegradation of endogenous residues (XP) by digestion under hypoxic, aerobic, anaerobic, and five intermittent-aeration conditions. A mathematical model based on the heterotrophic endogenous decay constant (bH) and including the biodegradation of XP was used to fit the long-term data from the digesters to identify and estimate the parameters. Both the bH constant (0.02-0.05 d(-1)) and the endogenous residue biodegradation constant (bP, 0.001-0.004 d(-1)) were determined across the different mediums. The digesters with intermittent aeration cycles of 12 h-12 h and 5 min-3 h (ON/OFF) were the fastest, compared to the aerobic reactor. The study provides a basis for rating RAS-digester volumes to avoid the accumulation of XP in aeration tanks. PMID:26720137

  13. Aerobic Production and Utilization of Lactate Satisfy Increased Energy Demands Upon Neuronal Activation in Hippocampal Slices and Provide Neuroprotection Against Oxidative Stress

    PubMed Central

    Schurr, Avital; Gozal, Evelyne

    2012-01-01

    Ever since it was shown for the first time that lactate can support neuronal function in vitro as a sole oxidative energy substrate, investigators in the field of neuroenergetics have been debating the role, if any, of this glycolytic product in cerebral energy metabolism. Our experiments employed the rat hippocampal slice preparation with electrophysiological and biochemical methodologies. The data generated by these experiments (a) support the hypothesis that lactate, not pyruvate, is the end-product of cerebral aerobic glycolysis; (b) indicate that lactate plays a major and crucial role in affording neural tissue to respond adequately to glutamate excitation and to recover unscathed post-excitation; (c) suggest that neural tissue activation is accompanied by aerobic lactate and NADH production, the latter being produced when the former is converted to pyruvate by mitochondrial lactate dehydrogenase (mLDH); (d) imply that NADH can be utilized as an endogenous scavenger of reactive oxygen species (ROS) to provide neuroprotection against ROS-induced neuronal damage. PMID:22275901

  14. Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.

    ERIC Educational Resources Information Center

    Idaho Univ., Moscow.

    The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

  15. WWC Review of the Report "A Randomized Trial Examining the Effects of Aerobic Physical Activity on Attention-Deficit/Hyperactivity Disorder Symptoms in Young Children." What Works Clearinghouse Single Study Review

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2015

    2015-01-01

    For the 2014 study, "A Randomized Trial Examining the Effects of Aerobic Physical Activity on Attention-Deficit/Hyperactivity Disorder Symptoms in Young Children", researchers examined the effect of a daily before-school physical activity program on behavioral outcomes of students in grades K-2. The study sample included 202 students who…

  16. Biological Methanol Production by a Type II Methanotroph Methylocystis bryophila.

    PubMed

    Patel, Sanjay K S; Mardina, Primata; Kim, Sang-Yong; Lee, Jung-Kul; Kim, In-Won

    2016-04-28

    Methane (CH₄) is the most abundant component in natural gas. To reduce its harmful environmental effect as a greenhouse gas, CH₄ can be utilized as a low-cost feed for the synthesis of methanol by methanotrophs. In this study, several methanotrophs were examined for their ability to produce methanol from CH₄; including Methylocella silvestris, Methylocystis bryophila, Methyloferula stellata, and Methylomonas methanica. Among these methanotrophs, M. bryophila exhibited the highest methanol production. The optimum process parameters aided in significant enhancement of methanol production up to 4.63 mM. Maximum methanol production was observed at pH 6.8, 30°C, 175 rpm, 100 mM phosphate buffer, 50 mM MgCl₂ as a methanol dehydrogenase inhibitor, 50% CH₄ concentration, 24 h of incubation, and 9 mg of dry cell mass ml(-1) inoculum load, respectively. Optimization of the process parameters, screening of methanol dehydrogenase inhibitors, and supplementation with formate resulted in significant improvements in methanol production using M. bryophila. This report suggests, for the first time, the potential of using M. bryophila for industrial methanol production from CH₄. PMID:26838340

  17. Physiological responses during aerobic dance of individuals grouped by aerobic capacity and dance experience.

    PubMed

    Thomsen, D; Ballor, D L

    1991-03-01

    This study examined the effects of aerobic capacity (peak oxygen uptake) and aerobic dance experience on the physiological responses to an aerobic dance routine. The heart rate (HR) and VO2 responses to three levels (intensities) of aerobic dance were measured in 27 women. Experienced aerobic dancers (AD) (mean peak VO2 = 42 ml.kg-1.min-1) were compared to subjects with limited aerobic dance experience of high (HI) (peak VO2 greater than 35 ml.kg-1.min-1) and low (LO) (peak VO2 less than 35 ml.kg-1.min-1) aerobic capacities. The results indicated the LO group exercised at a higher percentage of peak heart rate and peak VO2 at all three dance levels than did either the HI or AD groups (HI = AD). Design of aerobic dance routines must consider the exercise tolerance of the intended audience. In mixed groups, individuals with low aerobic capacities should be shown how and encouraged to modify the activity to reduce the level of exertion. PMID:2028095

  18. Functionalized poly(ethylene glycol)-stabilized water-soluble palladium nanoparticles: property/activity relationship for the aerobic alcohol oxidation in water.

    PubMed

    Feng, Bo; Hou, Zhenshan; Yang, Hanmin; Wang, Xiangrui; Hu, Yu; Li, Huan; Qiao, Yunxiang; Zhao, Xiuge; Huang, Qingfa

    2010-02-16

    The preparation, characterization, and catalytic properties of water-soluble palladium nanoparticles stabilized by the functionalized-poly(ethylene glycol) as a protective ligand were demonstrated for aerobic oxidation of alcohols in aqueous phase. UV/vis spectra and X-ray photoelectron spectroscopy (XPS) proved that there was an electronic interaction between the bidentate nitrogen ligand and palladium atoms. Transmission electron microscopy and XPS analysis showed that the particle size and surface properties of the generated palladium nanoparticles can be controlled by varying the amount of protective ligand and the kinds of reducing agents. It was found that both the size and surface properties of palladium nanoparticles played very important roles in affecting catalytic performance. The stabilized metallic palladium nanoparticles were proven to be the active centers for benzyl alcohol oxidation in the present system, and the water-soluble Pd nanocatalysts can also be extended to the selective oxidation of various alcohols. PMID:20039597

  19. In Vitro Activities of ABT-773, a New Ketolide, against Aerobic and Anaerobic Pathogens Isolated from Antral Sinus Puncture Specimens from Patients with Sinusitis

    PubMed Central

    Goldstein, Ellie J. C.; Conrads, Georg; Citron, Diane M.; Merriam, C. Vreni; Warren, Yumi; Tyrrell, Kerin

    2001-01-01

    The comparative in vitro activities of ABT-773 against 207 aerobic and 162 anaerobic antral sinus puncture isolates showed that erythromycin-resistant pneumococcal strains were susceptible to ABT-773 (≤0.125 μg/ml); the MIC at which 90% of the isolates tested were inhibited for Haemophilus influenzae and other Haemophilus spp. was 4 μg/ml; and all Moraxella spp. and beta-lactamase-producing Prevotella species strains were inhibited by ≤0.125 μg/ml. Among the anaerobes tested, only fusobacteria (45%) required ≥4 μg of ABT-773/ml for inhibition. ABT-773 may offer a therapeutic alternative for sinus infections. PMID:11451698

  20. Comparative in vitro activity of faropenem and 11 other antimicrobial agents against 405 aerobic and anaerobic pathogens isolated from skin and soft tissue infections from animal and human bites.

    PubMed

    Goldstein, Ellie J C; Citron, Diane M; Merriam, C Vreni; Warren, Yumi A; Tyrrell, Kerin L; Fernandez, Helen T

    2002-09-01

    Faropenem, a new oral beta-lactam agent with a penem structure, was very active against 405 aerobic and anaerobic bite isolates. It inhibited 232 of 236 (98%) aerobic isolates, including all Pasteurella spp. and Eikenella corrodens at < or = 0.25 mg/L, and 164/169 (97%) anaerobic isolates, at < or = 1 mg/L. The 10 isolates that required > or = 2 mg/L for inhibition were one strain each of Acinetobacter lwoffi, Corynebacterium minutissimum, Bacteroides ovatus, Lactobacillus delbrueckii and Peptostreptococcus tetradius, plus Corynebacterium 'aquaticum' (two strains) and Veillonella sp. (three strains). PMID:12205068

  1. Clay enhancement of methane, low molecular weight hydrocarbon and halocarbon conversion by methanotrophic bacteria

    DOEpatents

    Apel, William A.; Dugan, Patrick R.

    1995-01-01

    An apparatus and method for increasing the rate of oxidation of toxic vapors by methanotrophic bacteria. The toxic vapors of interest are methane and trichloroethylene. The apparatus includes a gas phase bioreactor within a closed loop pumping system or a single pass system. The methanotrophic bacteria include Methylomonas methanica, Methylosinus trichosporium, and uncharacterized environmental enrichments.

  2. Clay enhancement of methane, low molecular weight hydrocarbon and halocarbon conversion by methanotrophic bacteria

    DOEpatents

    Apel, William A.; Dugan, Patrick R.

    1995-04-04

    An apparatus and method for increasing the rate of oxidation of toxic vapors by methanotrophic bacteria. The toxic vapors of interest are methane and trichloroethylene. The apparatus includes a gas phase bioreactor within a closed loop pumping system or a single pass system. The methanotrophic bacteria include Methylomonas methanica, Methylosinus trichosporium, and uncharacterized environmental enrichments.

  3. Peer mentoring is associated with positive change in physical activity and aerobic fitness of grades 4, 5, and 6 students in the heart healthy kids program.

    PubMed

    Spencer, Rebecca A; Bower, Jenna; Kirk, Sara F L; Hancock Friesen, Camille

    2014-11-01

    Only 7% of Canadian children achieve activity recommendations, contributing to obesity and preventable disease. The Heart Healthy Kids (H2K) program was designed to test the relationship between peer mentoring, physical activity, and cardiovascular fitness. Participants from 10 schools (5 control, 5 intervention) were enrolled in the program. In control schools, H2K included a physical activity challenge and education sessions. Intervention schools included the addition of a peer-mentoring component. Physical activity was measured through daily pedometer recording. Cardiovascular fitness was evaluated using the PACER (Progressive Aerobic Cardiovascular Endurance Run) protocol to calculate maximal oxygen uptake (VO2 max). Participants included 808 children (average age 9.9 ± 1.0 years). Although control and intervention schools did not differ at baseline, participants with peer mentoring logged significantly more steps per school day, on average, than those in control schools (6,785 ± 3,011 vs. 5,630 ± 2,586; p < .001). Male participants logged significantly more steps per school day than female participants. A significant improvement in VO2 max was also noted in intervention schools, with an average increase of 1.72 ml/mg/min. H2K was associated with positive change in physical activity and cardiovascular fitness, suggesting that peer mentoring shows promise for application in health promotion interventions. PMID:24737774

  4. Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers

    NASA Technical Reports Server (NTRS)

    Summons, R. E.; Jahnke, L. L.; Roksandic, Z.

    1994-01-01

    Experiments with cultured aerobic methane oxidising bacteria confirm that their biomarker lipids will be significantly depleted in 13C compared to the substrate. The methanotrophic bacteria Methylococcus capsulatus and Methylomonas methanica, grown on methane and using the RuMP cycle for carbon assimilation, show maximum 13C fractionation of approximately 30% in the resultant biomass. In M. capsulatus, the maximum fractionation is observed in the earliest part of the exponential growth stage and decreases to approximately 16% as cells approach stationary phase. This change may be associated with a shift from the particulate form to the soluble form of the methane monooxygenase enzyme. Less than maximum fractionation is observed when cells are grown with reduced methane availability. Biomass of M. capsulatus grown on methanol was depleted by 9% compared to the substrate. Additional strong 13C fractionation takes place during polyisoprenoid biosynthesis in methanotrophs. The delta 13C values of individual hopanoid and steroid biomarkers produced by these organisms were as much as l0% more negative than total biomass. In individual cultures, squalene was 13C-enriched by as much as 14% compared to the triterpane skeleton of bacteriohopaneaminopentol. Much of the isotopic dispersion in lipid metabolites could be attributed to shifts in their relative abundances, combined with an overall reduction in fractionation during the growth cycle. In cells grown on methanol, where there was no apparent effect of growth stage on overall fractionation there were still significant isotopic differences between closely related lipids including a 5.3% difference between the hopane and 3 beta-methylhopane skeletons. Hopane and sterane polyisoprenoids were also 13C-depleted compared to fatty acids. These observations have significant implications for the interpretation of specific compound isotopic signatures now being measured for hydrocarbons and other lipids present in sediments and

  5. Carbon isotopic fractionation in lipids from methanotrophic bacteria: Relevance for interpretation of the geochemical record of biomarkers

    NASA Astrophysics Data System (ADS)

    Summons, Roger E.; Jahnke, Linda L.; Roksandic, Zarko

    1994-07-01

    Experiments with cultured aerobic methane oxidising bacteria confirm that their biomarker lipids will be significantly depleted in 13C compared to the substrate. The methanotrophic bacteria Methylococcus capsulatus and Methylomonas methanica, grown on methane and using the RuMP cycle for carbon assimilation, show maximum 13C fractionation of approximately 30%. in the resultant biomass. In M. capsulatus, the maximum fractionation is observed in the earliest part of the exponential growth stage and decreases to approximately 16%. as cells approach stationary phase. This change may be associated with a shift from the particulate form to the soluble form of the methane monooxygenase enzyme. Less than maximum fractionation is observed when cells are grown with reduced methane availability. Biomass of M. capsulatus grown on methanol was depleted by 9%. compared to the substrate. Additional strong 13C fractionation takes place during polyisoprenoid biosynthesis in methanotrophs. The δ13C values of individual hopanoid and steroid biomarkers produced by these organisms were as much as 10%. more negative than total biomass. In individual cultures, squalene was 13C-enriched by as much as 14%. compared to the triterpane skeleton of bacteriohopaneaminopentol. Much of the isotopic dispersion in lipid metabolites could be attributed to shifts in their relative abundances, combined with an overall reduction in fractionation during the growth cycle. In cells grown on methanol, where there was no apparent effect of growth stage on overall fractionation there were still significant isotopic differences between closely related lipids including a 5.3%. difference between the hopane and 3 β-methylhopane skeletons. Hopane and sterane polyisoprenoids were also 13C-depleted compared to fatty acids. These observations have significant implications for the interpretation of specific compound isotopic signatures now being measured for hydrocarbons and other lipids present in sediments and

  6. Molecular characterization of methanotrophic communities in forest soils that consume atmospheric methane.

    PubMed

    Lau, Evan; Ahmad, Azeem; Steudler, Paul A; Cavanaugh, Colleen M

    2007-06-01

    Methanotroph abundance was analyzed in control and long-term nitrogen-amended pine and hardwood soils using rRNA-targeted quantitative hybridization. Family-specific 16S rRNA and pmoA/amoA genes were analyzed via PCR-directed assays to elucidate methanotrophic bacteria inhabiting soils undergoing atmospheric methane consumption. Quantitative hybridizations suggested methanotrophs related to the family Methylocystaceae were one order of magnitude more abundant than Methyloccocaceae and more sensitive to nitrogen-addition in pine soils. 16S rRNA gene phylotypes related to known Methylocystaceae and acidophilic methanotrophs and pmoA/amoA gene sequences, including three related to the upland soil cluster Alphaproteobacteria (USCalpha) group, were detected across different treatments and soil depths. Our results suggest that methanotrophic members of the Methylocystaceae and Beijerinckiaceae may be the candidates for soil atmospheric methane consumption. PMID:17391332

  7. Tracing organic compounds in aerobically altered methane-derived carbonate pipes (Gulf of Cadiz, SW Iberia)

    NASA Astrophysics Data System (ADS)

    Merinero, Raúl; Ruiz-Bermejo, Marta; Menor-Salván, César; Lunar, Rosario; Martínez-Frías, Jesús

    2012-07-01

    The primary geochemical process at methane seeps is anaerobic oxidation of methane (AOM), performed by methanotrophic archaea and sulfate-reducing bacteria (SRB). The molecular fingerprints (biomarkers) of these chemosynthetic microorganisms can be preserved in carbonates formed through AOM. However, thermal maturity and aerobic degradation can change the original preserved compounds, making it difficult to establish the relation between AOM and carbonate precipitation. Here we report a study of amino acid and lipid abundances in carbonate matrices of aerobically altered pipes recovered from the seafloor of the Gulf of Cadiz (SW Iberian Peninsula). This area is characterized by a complex tectonic regime that supports numerous cold seeps. Studies so far have not determined whether the precipitation of carbonate pipes in the Gulf of Cadiz is a purely chemical process or whether microbial communities are involved. Samples from this site show signs of exposure to oxygenated waters and of aerobic alteration, such as oxidation of authigenic iron sulfides. In addition, the degradation index, calculated from the relative abundance of preserved amino acids, indicates aerobic degradation of organic matter. Although crocetane was the only lipid identified from methanotrophic archaea, the organic compounds detected (n-alkanes, regular isoprenoids and alcohols) are compatible with an origin from AOM coupled with bacterial sulfate reduction (BSR) and subsequent aerobic degradation. We establish a relation among AOM, BSR and pipe formation in the Gulf of Cadiz through three types of analysis: (1) stable carbon and oxygen isotopic composition of carbonate minerals; (2) carbonate microfabrics; and (3) mineralogical composition. Our results suggest that carbonate pipes may form through a process similar to the precipitation of vast amounts of carbonate pavements often found at cold seeps. Our approach suggests that some organic compound patterns, in combination with additional

  8. Activity profile and physiological requirements of junior elite basketball players in relation to aerobic-anaerobic fitness.

    PubMed

    Ben Abdelkrim, Nidhal; Castagna, Carlo; Jabri, Imed; Battikh, Tahar; El Fazaa, Saloua; El Ati, Jalila

    2010-09-01

    The aim of this research was to examine the demands of competitive basketball games and to study the relationship between athletes' physical capability and game performance. Physical and physiological game demands and the association of relevant field test with game performance were examined in 18 male junior basketball players. Computerized time-motion analysis, heart rate (HR), and blood-lactate concentration [BL] measurements were performed during 6 basketball games. Players were also measured for explosive power, speed, agility, and maximal-strength and endurance performance. During the games, players covered 7,558 +/- 575 m, of which 1,743 +/- 317; 1,619 +/- 280; and 2,477 +/- 339 m were performed at high, moderate, and low intensities, respectively. The 19.3 +/- 3.5 and 56.0 +/- 6.3% of the playing time was spent above 95% and at 85-95% of maximal HR, respectively. Average and mean peak [BL] were 5.75 +/- 1.25 and 6.22 +/- 1.34 mmolxL, respectively. Distances covered at maximal- and high-speed running significantly (p < 0.01) decreased during the second half. Game maximal- and high-speed running were significantly correlated with endurance performance (r = 0.52, p < 0.05 and r = 0.49, p < 0.05, respectively). High-intensity shuffling distance resulted in being negatively related with agility (r = -0.68, p < 0.05). This study showed that basketball players experience fatigue as game time progresses and suggests the potential benefit of aerobic and agility conditioning in junior basketball. PMID:20802281

  9. Rice roots select for type I methanotrophs in rice field soil.

    PubMed

    Wu, Liqin; Ma, Ke; Lu, Yahai

    2009-09-01

    Methanotrophs are an important regulator for reducing methane (CH(4)) emissions from rice field soils. The type I group of the proteobacterial methanotrophs are generally favored at low CH(4) concentration and high O(2) availability, while the type II group lives better under high CH(4) and limiting O(2) conditions. Such physiological differences are possibly reflected in their ecological preferences. In the present study, methanotrophic compositions were compared between rice-planted soil and non-planted soil and between the rhizosphere and rice roots by using terminal restriction fragment length polymorphism (T-RFLP) analysis of particulate methane monooxygenase (pmoA) genes. In addition, the effects of rice variety and nitrogen fertilizer were evaluated. The results showed that the terminal restriction fragments (T-RFs), which were characteristic for type I methanotrophs, substantially increased in the rhizosphere and on the roots compared with non-planted soils. Furthermore, the relative abundances of the type I methanotroph T-RFs were greater on roots than in the rhizosphere. Of type I methanotrophs, the 79bp T-RF, which was characteristic for an unknown group or Methylococcus/Methylocaldum, markedly increased in field samples, while the 437bp, which possibly represented Methylomonas, dominated in microcosm samples. These results suggested that type I methanotrophs were enriched or selected for by rice roots compared to type II methanotrophs. However, the members of type I methanotrophs are dynamic and sensitive to environmental change. Rice planting appeared to increase the copy number of pmoA genes relative to the non-planted soils. However, neither the rice variety nor the N fertilizer significantly influenced the dynamics of the methanotrophic community. PMID:19481894

  10. Comparative In Vitro Activities of ABT-773 against Aerobic and Anaerobic Pathogens Isolated from Skin and Soft-Tissue Animal and Human Bite Wound Infections

    PubMed Central

    Goldstein, Ellie J. C.; Citron, Diane M.; Merriam, C. Vreni; Warren, Yumi; Tyrrell, Kerin

    2000-01-01

    We studied the comparative in vitro activities of ABT-773, a new ketolide, against 268 aerobic and 148 anaerobic recent isolates from clinical bites using an agar dilution method and inocula of 104 CFU/spot for aerobes and 105 CFU for anaerobes. The following are the MIC ranges and MICs at which 90% of isolates are inhibited (MIC90s) of ABT-773 for various isolates, respectively: Pasteurella multocida and Pasteurella septica, 0.125 to 2 and 1 μg/ml; other Pasteurella species, 0.125 to 1 and 0.5 μg/ml; Corynebacterium spp., 0.015 to 0.06 and 0.015 μg/ml; Staphylococcus aureus, 0.03 to 0.06 and 0.06 μg/ml; coagulase-negative staphylococci, 0.015 to >32 and 32 μg/ml; streptococci, 0.015 to 0.03 and 0.03 μg/ml; Eikenella corrodens, 0.25 to 1 and 1 μg/ml; and Bergeyella zoohelcum, 0.03 to 0.25 and 0.06 μg/ml. For anaerobes the MIC ranges and MIC90s of ABT-773 were as follows, respectively: Prevotella heparinolytica, 0.06 to 0.125 and 0.125 μg/ml; Prevotella spp., 0.015 to 0.125 and 0.06 μg/ml; Porphyromonas spp., 0.015 to 0.03 and 0.015 μg/ml; Fusobacterium nucleatum, 0.5 to 8 and 8 μg/ml; other Fusobacterium spp., 0.015 to 8 and 0.5 μg/ml; Bacteroides tectum, 0.015 to 0.5 and 0.06 μg/ml; and Peptostreptococcus spp., 0.015 to 0.25 and 0.03 μg/ml. ABT-773 was more active than all macrolides tested against S. aureus, E. corrodens, and anaerobes, but all compounds were poorly active against F. nucleatum. The activity of ABT-773 was within 1 dilution of that of azithromycin against Pasteurella spp., and ABT-773 was four- to eightfold more active than clarithromycin against Pasteurella spp. ABT-773 may offer a therapeutic alternative for bite wound infections. PMID:10952607

  11. The biogeography of methanotrophs: field studies and meta-analysis

    NASA Astrophysics Data System (ADS)

    Lüke, Claudia; Frenzel, Peter

    2010-05-01

    Methane emission from an environment depends not only on production, but also on methane oxidation. The pmoA gene encoding a subunit of the methane monooxygenase is a suitable functional and phylogenetic marker gene for the methanotrophic bacteria (MOB) responsible for this process in terrestrial habitats. On the regional scale, we designed a factorial experiment in the rice growing area around Vercelli (Italy) including three different locations, two rice varieties, and two habitats (soil and roots). Multivariate analysis of fingerprints (T-RFLP) revealed different community patterns at the three sites located 10 to 20 kilometers apart. Root samples were characterized by a high abundance of type I MOB whereas the rice variety had no effect. With the current agronomical practice being nearly identical, historical contingencies might be responsible for the site differences. Considering a large reservoir of viable yet inactive MOB cells acting as a microbial seed bank, past management practice may have shaped the communities. A meta-analysis of the environmental distribution patterns of pmoA genotypes was performed using approximately 3400 high-quality environmental sequences from public databases. It showed a distinct clustering of upland soil sequences and sequences retrieved from halophilic environments, respectively. Furthermore, wetland rice and freshwater sequences dominate different type Ib clusters that are only distantly related to any cultivated MOB. Genotypes specifically correlated with paddy fields showed a wide geographical distribution ranging from Japan through China and the Subcontinent to the Mediterranean. In summary, the rice field environment selects for particular methanotrophs, but still allows some variation that may be visible even decades after the effect was generated. Linking structure of the community to its performance and controls remains challenging, because characterized isolates represent only poorly the methanotrophic diversity.

  12. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  13. Neuromodulation of Aerobic Exercise—A Review

    PubMed Central

    Heijnen, Saskia; Hommel, Bernhard; Kibele, Armin; Colzato, Lorenza S.

    2016-01-01

    Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors. PMID:26779053

  14. Aerobic Conditioning Class.

    ERIC Educational Resources Information Center

    Johnson, Neil R.

    1980-01-01

    An aerobic exercise class that focuses on the conditioning of the cardiovascular and muscular systems is presented. Students complete data cards on heart rate, pulse, and exercises to be completed during the forty minute course. (CJ)

  15. [Research advances in aerobic denitrifiers].

    PubMed

    Wang, Wei; Cai, Zu-cong; Zhong, Wen-hui; Wang, Guo-xiang

    2007-11-01

    This paper reviewed the varieties and characteristics of aerobic denitrifiers, their action mechanisms, and the factors affecting aerobic denitrification. Aerobic denitrifiers mainly include Pseudomonas, Alcaligenes, Paracoccus and Bacillus, which are either aerobic or facultative aerobic, and heterotrophic. They can denitrify under aerobic conditions, with the main product being N2O. They can also convert NH4+ -N to gas product. The nitrate reductase which catalyzes the denitrification is periplasmic nitrate reductase rather than membrane-bound nitrate reductase. Dissolved oxygen concentration and C/N ratio are the main factors affecting aerobic denitrification. The main methods for screening aerobic denitrifiers, such as intermittent aeration and selected culture, were also introduced. The research advances in the application of aerobic denitrifiers in aquaculture, waste water processing, and bio-degradation of organic pollutants, as well as the contributions of aerobic denitrifiers to soil nitrogen emission were summarized. PMID:18260473

  16. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    PubMed Central

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels. PMID:26902345

  17. Bioconversion of methane to lactate by an obligate methanotrophic bacterium.

    PubMed

    Henard, Calvin A; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G; Pienkos, Philip T; Guarnieri, Michael T

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to "green" chemicals and fuels. PMID:26902345

  18. Stability of Trifluoromethane in Forest Soils and Methanotrophic Cultures

    NASA Technical Reports Server (NTRS)

    King, Gary M.

    1997-01-01

    Trifluoromethane (TFM) has been reported as an endproduct of trifluoroacetate degradation under oxic conditions. Although other halomethanes, such as chloroform, methyl bromide, and methyl fluoride, inhibit methane oxidation or are degraded by methanotrophs, the fate of TFM is unknown. TFM had no affect on atmospheric methane consumption when added to forest soils at either 10 ppm or 10,000 ppm. No degradation of TFM was observed at either concentration for incubations of 6 days. Cultures of Methylobacter albus BG8 and Methylosinus trichosporium OB3b grown With and without added copper were also used to assay TFM degradation at 10 10000 ppm levels. TFM did not inhibit methane oxidation under any growth conditions, including those inducing expression of soluble methane monooxygenase, nor was it degraded at measurable rates. In contrast, parallel assays showed that both methyl fluoride and chloroform inhibited methane oxidation in M. trichosporium OB3b. Our results suggest that TFM may be relatively inert with respect to methanotrophic degradition. Although TFM has a negligible ozone depletion potential, it absorbs infrared radiation and has a relatively long atmospheric residence time. Thus, accumulation of TFM in the atmosphere as a consequence of the decomposition of hydrochlorofluorocarbons may have significant unpredicted climate impacts.

  19. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    DOE PAGESBeta

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-02-23

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resultedmore » in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels.« less

  20. Involvement of Pyruvate Oxidase Activity and Acetate Production in the Survival of Lactobacillus plantarum during the Stationary Phase of Aerobic Growth▿ †

    PubMed Central

    Goffin, Philippe; Muscariello, Lidia; Lorquet, Frederique; Stukkens, Aline; Prozzi, Deborah; Sacco, Margherita; Kleerebezem, Michiel; Hols, Pascal

    2006-01-01

    In addition to the previously characterized pyruvate oxidase PoxB, the Lactobacillus plantarum genome encodes four predicted pyruvate oxidases (PoxC, PoxD, PoxE, and PoxF). Each pyruvate oxidase gene was individually inactivated, and only the knockout of poxF resulted in a decrease in pyruvate oxidase activity under the tested conditions. We show here that L. plantarum has two major pyruvate oxidases: PoxB and PoxF. Both are involved in lactate-to-acetate conversion in the early stationary phase of aerobic growth and are regulated by carbon catabolite repression. A strain devoid of pyruvate oxidase activity was constructed by knocking out the poxB and poxF genes. In this mutant, acetate production was strongly affected, with lactate remaining the major end product of either glucose or maltose fermentation. Notably, survival during the stationary phase appeared to be dramatically improved in the poxB poxF double mutant. PMID:17012588

  1. Q(10) of heterotrophic activity during aerobic decomposition of Utricularia breviscapa and its effect on carbon cycling in a tropical lagoon.

    PubMed

    Cunha-Santino, M B; Bianchini Júnior, I

    2010-05-01

    In this study the Q10 coefficients of heterotrophic activities were measured during aerobic decomposition of Utricularia breviscapa Wright ex Griseb from Oleo lagoon (21 degrees 36' S and 49 degrees 47' W), Luiz Antonio, SP. The bioassays were set up with fragments of U. breviscapa and incubated with lagoon water at distinct temperatures (15.3, 20.8, 25.7 and 30.3 degrees C). Periodically for 95 days, the concentrations of dissolved oxygen were determined in the bioassays. The results of the temporal variation of dissolved oxygen were fitted to a first-order kinetic model. The stoichiometric relations were calculated on the basis of these fittings. In general, the results allowed us to conclude: i) the oxygen/carbon stoichiometric relations (O/C) varied in function of temperature and time. The temporal variations of the O/C observed in the decomposition of U. breviscapa, suggest that, in the initial phases of the process, low organic carbon concentrations were enough to generate great demands of oxygen, ii) the oxygen consumption coefficients (k d) presented low variation in function of increasing temperature, iii) the increment of the temperature induced a higher consumption of oxygen (COmax) and iv) the simulations indicate that during summer, temperature activates the metabolism of decomposing microbiota. PMID:20549063

  2. Aerobic Training Modulates the Effects of Exercise-Induced Oxidative Stress on PON1 Activity: A Preliminary Study

    PubMed Central

    Otocka-Kmiecik, Aneta; Lewandowski, Marek; Szkudlarek, Urszula; Nowak, Dariusz; Orlowska-Majdak, Monika

    2014-01-01

    The aim of the study was to compare the effect of maximal exercise (ME) on paraoxonase (PON) and arylesterase (ARE) activity depending on lifestyle in respect to physical activity. The study was performed on 46 young men divided into two groups: sedentary (S) and physically active (PA). All participants performed ME on a treadmill. PON1 activities, FRAP, uric acid, bilirubin, TBARS, and lipid profile were determined in their blood before, at the bout of, and after ME. No significant differences in PON1 activities were found between S and PA subjects at baseline. Nearly all biochemicals increased at ME in both groups. Both PON and ARE activity increased at the bout of ME in PA subjects and only ARE activity in S subjects. ARE/HDL-C ratio increased at the bout of ME in PA and S subjects. The difference in PON1 activity response to ME between study groups may be a result of adaptation of PA subjects to regular physical activity. We suggest that PON1 activity may be a marker of antioxidant protection at ME and an indicator of adaptation to exercise. PMID:25379522

  3. ENZYME ACTIVITY PROBE AND GEOCHEMICAL ASSESSMENT FOR POTENTIAL AEROBIC COMETABOLISM OF TRICHLOROETHENE IN GROUNDWATER OF THE NORTHWEST PLUME, PADUCAH GASEOUS DIFFUSION PLANT, KENTUCKY

    SciTech Connect

    Looney, B; M. Hope Lee, M; S. K. Hampson, S

    2008-06-27

    The overarching objective of the Paducah Gaseous Diffusion Plant (PGDP) enzyme activity probe (EAP) effort is to determine if aerobic cometabolism is contributing to the attenuation of trichloroethene (TCE) and other chlorinated solvents in the contaminated groundwater beneath PGDP. The site-specific objective for the EAP assessment is to identify if key metabolic pathways are present and expressed in the microbial community--namely the pathways that are responsible for degradation of methane and aromatic (e.g. toluene, benzene, phenol) substrates. The enzymes produced to degrade methane and aromatic compounds also break down TCE through a process known as cometabolism. EAPs directly measure if methane and/or aromatic enzyme production pathways are operating and, for the aromatic pathways, provide an estimate of the number of active organisms in the sampled groundwater. This study in the groundwater plumes at PGDP is a major part of a larger scientific effort being conducted by Interstate Technology and Regulatory Council (ITRC), U.S. Department of Energy (DOE) Office of Environmental Management (EM), Savannah River National Laboratory (SRNL), and North Wind Inc. in which EAPs are being applied to contaminated groundwater from diverse hydrogeologic and plume settings throughout the U.S. to help standardize their application as well as their interpretation. While EAP data provide key information to support the site specific objective for PGDP, several additional lines of evidence are being evaluated to increase confidence in the determination of the occurrence of biodegradation and the rate and sustainability of aerobic cometabolism. These complementary efforts include: (1) Examination of plume flowpaths and comparison of TCE behavior to 'conservative' tracers in the plume (e.g., {sup 99}Tc); (2) Evaluation of geochemical conditions throughout the plume; and (3) Evaluation of stable isotopes in the contaminants and their daughter products throughout the plume. If

  4. Sludge Retention Time as a Suitable Operational Parameter to Remove Both Estrogen and Nutrients in an Anaerobic–Anoxic–Aerobic Activated Sludge System

    PubMed Central

    Zeng, Qingling; Li, Yongmei; Yang, Shijia

    2013-01-01

    Abstract Estrogen in wastewater are responsible for a significant part of the endocrine-disrupting effects observed in the aquatic environment. The effect of sludge retention time (SRT) on the removal and fate of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in an anaerobic–anoxic–oxic activated sludge system designed for nutrient removal was investigated by laboratory-scale experiments using synthetic wastewater. With a hydraulic retention time of 8 h, when SRT ranged 10–25 days, E2 was almost completely removed from water, and EE2 removal efficiency was 65%–81%. Both estrogens were easily sorbed onto activated sludge. Distribution coefficients (Kd) of estrogens on anaerobic sludge were greater than those on anoxic and aerobic sludges. Mass balance calculation indicated that 99% of influent E2 was degraded by the activated sludge process, and 1% remained in excess sludge; of influent EE2, 62.0%–80.1% was biodegraded; 18.9%–34.7% was released in effluent; and 0.88%–3.31% remained in excess sludge. Optimal SRT was 20 days for both estrogen and nutrient removal. E2 was almost completely degraded, and EE2 was only partly degraded in the activated sludge process. Residual estrogen on excess sludge must be considered in the sludge treatment and disposal processes. The originality of the work is that removal of nutrients and estrogens were linked, and optimal SRT for both estrogen and nutrient removal in an enhanced biological phosphorus removal system was determined. This has an important implication for the design and operation of full-scale wastewater treatment plants. PMID:23633892

  5. Sludge Retention Time as a Suitable Operational Parameter to Remove Both Estrogen and Nutrients in an Anaerobic-Anoxic-Aerobic Activated Sludge System.

    PubMed

    Zeng, Qingling; Li, Yongmei; Yang, Shijia

    2013-04-01

    Estrogen in wastewater are responsible for a significant part of the endocrine-disrupting effects observed in the aquatic environment. The effect of sludge retention time (SRT) on the removal and fate of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in an anaerobic-anoxic-oxic activated sludge system designed for nutrient removal was investigated by laboratory-scale experiments using synthetic wastewater. With a hydraulic retention time of 8 h, when SRT ranged 10-25 days, E2 was almost completely removed from water, and EE2 removal efficiency was 65%-81%. Both estrogens were easily sorbed onto activated sludge. Distribution coefficients (K d) of estrogens on anaerobic sludge were greater than those on anoxic and aerobic sludges. Mass balance calculation indicated that 99% of influent E2 was degraded by the activated sludge process, and 1% remained in excess sludge; of influent EE2, 62.0%-80.1% was biodegraded; 18.9%-34.7% was released in effluent; and 0.88%-3.31% remained in excess sludge. Optimal SRT was 20 days for both estrogen and nutrient removal. E2 was almost completely degraded, and EE2 was only partly degraded in the activated sludge process. Residual estrogen on excess sludge must be considered in the sludge treatment and disposal processes. The originality of the work is that removal of nutrients and estrogens were linked, and optimal SRT for both estrogen and nutrient removal in an enhanced biological phosphorus removal system was determined. This has an important implication for the design and operation of full-scale wastewater treatment plants. PMID:23633892

  6. Ceftolozane/tazobactam activity tested against aerobic Gram-negative organisms isolated from intra-abdominal and urinary tract infections in European and United States hospitals (2012).

    PubMed

    Sader, Helio S; Farrell, David J; Flamm, Robert K; Jones, Ronald N

    2014-09-01

    Ceftolozane/tazobactam is under clinical development for treatment of complicated intra-abdominal infections (IAI), complicated urinary tract infections (UTI) and ventilator-associated pneumonia. We evaluated the in vitro activity of ceftolozane/tazobactam and comparator agents tested against Gram-negative aerobic bacteria causing IAI and healthcare-associated UTI (HCA-UTI). The organisms were consecutively collected from January to December 2012 from 59 medical centers located in the United States (USA) and 15 European countries by the Program to Assess Ceftolozane/Tazobactam Susceptibility (PACTS). The collection included 809 organisms from IAI and 2474 organisms from HCA-UTI, and susceptibility testing was performed by reference broth microdilution methods as described by the Clinical and Laboratory Standards Institute (CLSI) M07-A9 document. Overall, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa were the most frequently isolated pathogens from both infection types. Ceftolozane/tazobactam was very active against E. coli (MIC50/90, 0.25/0.5 mg/L; 98.5-99.9% inhibited at an MIC of ≤8 mg/L) and retained activity against many of the multidrug-resistant (MDR; MIC50/90, 0.5/2->32 mg/L) and ESBL-phenotype strains (MIC50/90, 0.5/2-32 mg/L). Ceftolozane/tazobactam was active against most K. pneumoniae strains (MIC50/90, 0.25/16 mg/L, 88.9-89.6% inhibited at an MIC of ≤8 mg/L), but some ESBL-phenotype (MIC50/90, 4-8/>32 mg/L) and MDR (MIC50/90, 16/>32 mg/L) isolates exhibited elevated MIC values. Ceftolozane/tazobactam was the most active agent tested against P. aeruginosa (MIC50/90, 0.5/4 mg/L; 93.4-95.7% inhibited at ≤8 mg/L) and retained potency against many MDR (MIC50/90, 2-4/>32 mg/L), ceftazidime-nonsusceptible (MIC50/90, 2-4/>32 mg/L) and meropenem-nonsusceptible (MIC50/90, 2/>32 mg/L) strains. Ceftolozane/tazobactam was also active against Klebsiella oxytoca (MIC50/90, ≤0.12-0.25/0.5-1 mg/L), Enterobacter spp. (MIC50/90, 0

  7. Aerobic and anaerobic methane oxidation in terrestrial mud volcanoes in the Northern Apennines

    NASA Astrophysics Data System (ADS)

    Wrede, C.; Brady, S.; Rockstroh, S.; Dreier, A.; Kokoschka, S.; Heinzelmann, S. M.; Heller, C.; Reitner, J.; Taviani, M.; Daniel, R.; Hoppert, M.

    2012-07-01

    Methane oxidizing prokaryotes are ubiquitous in oxic and anoxic habitats wherever C1-compounds are present. Thus, methane saturated mud volcano fluids should be a preferred habitat of methane consuming prokaryotes, using the readily available electron donors. In order to understand the relevance of methane as a carbon and energy source in mud volcano communities, we investigate the diversity of prokaryotic organisms involved in oxidation of methane in fluid samples from the Salse di Nirano mud volcano field situated in the Northern Apennines. Cell counts were at approximately 0.7 × 106 microbial cells/ml. A fraction of the microbial biomass was identified as ANME (anaerobic methanotroph) archaea by fluorescence in situ hybridization (FISH) analysis. They are associated in densely colonized flakes, of some tens of μm in diameter, embedded in a hyaline matrix. Diversity analysis based on the 16S rDNA genes, retrieved from amplified and cloned environmental DNA, revealed a high proportion of archaea, involved in anaerobic oxidation of methane (AOM). Aerobic methane-oxidizing proteobacteria could be highly enriched from mud volcano fluids, indicating the presence of aerobic methanotrophic bacteria, which may contribute to methane oxidation, whenever oxygen is readily available. The results imply that biofilms, dominated by ANME archaea, colonize parts of the mud volcano venting system.

  8. The emission of volatile compounds during the aerobic and the combined anaerobic/aerobic composting of biowaste

    NASA Astrophysics Data System (ADS)

    Smet, Erik; Van Langenhove, Herman; De Bo, Inge

    Two different biowaste composting techniques were compared with regard to their overall emission of volatile compounds during the active composting period. In the aerobic composting process, the biowaste was aerated during a 12-week period, while the combined anaerobic/aerobic composting process consisted of a sequence of a 3-week anaerobic digestion (phase I) and a 2-week aeration period (phase II). While the emission of volatiles during phase I of the combined anaerobic/aerobic composting process was measured in a full-scale composting plant, the aerobic stages of both composting techniques were performed in pilot-scale composting bins. Similar groups of volatile compounds were analysed in the biogas and the aerobic composting waste gases, being alcohols, carbonyl compounds, terpenes, esters, sulphur compounds and ethers. Predominance of alcohols (38% wt/wt of the cumulative emission) was observed in the exhaust air of the aerobic composting process, while predominance of terpenes (87%) and ammonia (93%) was observed in phases I and II of the combined anaerobic/aerobic composting process, respectively. In the aerobic composting process, 2-propanol, ethanol, acetone, limonene and ethyl acetate made up about 82% of the total volatile organic compounds (VOC)-emission. Next to this, the gas analysis during the aerobic composting process revealed a strong difference in emission profile as a function of time between different groups of volatiles. The total emission of VOC, NH 3 and H 2S during the aerobic composting process was 742 g ton -1 biowaste, while the total emission during phases I and II of the combined anaerobic/aerobic composting process was 236 and 44 g ton -1 biowaste, respectively. Taking into consideration the 99% removal efficiency of volatiles upon combustion of the biogas of phase I in the electricity generator, the combined anaerobic/aerobic composting process can be considered as an attractive alternative for aerobic biowaste composting because of

  9. Enzyme activity and gene expression profiles of Xanthobacter autotrophicus GJ10 during aerobic biodegradation of 1,2-dichloroethane.

    PubMed

    Kumar, Ajit; Pillay, Balakrishna; Olaniran, Ademola O

    2015-08-01

    Xanthobacter autotrophicus GJ10 has been widely studied because of its ability to degrade halogenated compounds, especially 1,2-dichloroethane (1,2-DCA), which is achieved through chromosomal as well as plasmid pAUX1 encoded 1,2-DCA degrading genes. This work described the gene expression and enzyme activity profiles as well as the intermediates formed during the 1,2-DCA degradation by this organism. A correlation between gene expression, enzyme activity and metabolic intermediates, after the induction of GJ10 grown culture with 1,2-DCA, was established at different time intervals. Haloalkane dehalogenase (dhlA) and haloacid dehalogenase (dhlB) were constitutively expressed while the expression of alcohol dehydrogenase (max) and aldehyde dehydrogenase (ald) was found to be inducible. The DhlA and DhlB activities were relatively higher compared to that of the inducible enzymes, Max and Ald. To the best of our knowledge, this is the first study to correlate gene expression profiles with enzyme activity and metabolite formation during 1,2-DCA degradation process in GJ10. Findings from this study may assist in fully understanding the mechanism of 1,2-DCA degradation by GJ10. It could also assist in the design and implementation of appropriate bioaugmentation strategies for complete removal of 1,2-DCA from contaminated environment. PMID:25957483

  10. Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate.

    PubMed

    Sheets, Johnathon P; Ge, Xumeng; Li, Yueh-Fen; Yu, Zhongtang; Li, Yebo

    2016-02-01

    The aim of this work was to isolate methanotrophs (methane oxidizing bacteria) that can directly convert biogas produced at a commercial anaerobic digestion (AD) facility to methanol. A methanotrophic bacterium was isolated from solid-state anaerobic digestate. The isolate had characteristics comparable to obligate methanotrophs from the genus Methylocaldum. This newly isolated methanotroph grew on biogas or purified CH4 and successfully converted biogas from AD to methanol. Methanol production was achieved using several methanol dehydrogenase (MDH) inhibitors and formate as an electron donor. The isolate also produced methanol using phosphate with no electron donor or using formate with no MDH inhibitor. The maximum methanol concentration (0.43±0.00gL(-1)) and 48-h CH4 to methanol conversion (25.5±1.1%) were achieved using biogas as substrate and a growth medium containing 50mM phosphate and 80mM formate. PMID:26630583

  11. Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes via HIF-1α-mediated target gene activation.

    PubMed

    Brix, Britta; Mesters, Jeroen R; Pellerin, Luc; Jöhren, Olaf

    2012-07-11

    Astrocytes exhibit a prominent glycolytic activity, but whether such a metabolic profile is influenced by intercellular communication is unknown. Treatment of primary cultures of mouse cortical astrocytes with the nitric oxide (NO) donor DetaNONOate induced a time-dependent enhancement in the expression of genes encoding various glycolytic enzymes as well as transporters for glucose and lactate. Such an effect was shown to be dependent on the hypoxia-inducible factor HIF-1α, which is stabilized and translocated to the nucleus to exert its transcriptional regulation. NO action was dependent on both the PI3K/Akt/mTOR and MEK signaling pathways and required the activation of COX, but was independent of the soluble guanylate cyclase pathway. Furthermore, as a consequence of NO treatment, an enhanced lactate production and release by astrocytes was evidenced, which was prevented by downregulating HIF-1α. Several brain cell types represent possible sources of NO. It was found that endothelial cells, which express the endothelial NO synthase (eNOS) isoform, constitutively produced the largest amount of NO in culture. When astrocytes were cocultured with primary cultures of brain vascular endothelial cells, stabilization of HIF-1α and an enhancement in glucose transporter-1, hexokinase-2, and monocarboxylate transporter-4 expression as well as increased lactate production was found in astrocytes. This effect was inhibited by the NOS inhibitor l-NAME and was not seen when astrocytes were cocultured with primary cultures of cortical neurons. Our findings suggest that endothelial cell-derived NO participates to the maintenance of a high glycolytic activity in astrocytes mediated by astrocytic HIF-1α activation. PMID:22787058

  12. Several Genes Encoding Enzymes with the Same Activity Are Necessary for Aerobic Fungal Degradation of Cellulose in Nature

    PubMed Central

    Busk, Peter K.; Lange, Mette; Pilgaard, Bo; Lange, Lene

    2014-01-01

    The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases are hallmarks of cellulose-degrading fungi except brown rot fungi. Furthermore, a high number of AA9, endocellulase and β-glucosidase genes were identified, not in what are known to be the strongest, specialized lignocellulose degraders but in saprophytic fungi that can use a wide variety of substrates whereas only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based on their predicted enzymes indicated that Ascomycota and Basidiomycota use the same enzymatic activities to degrade plant cell walls. PMID:25461894

  13. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature.

    PubMed

    Busk, Peter K; Lange, Mette; Pilgaard, Bo; Lange, Lene

    2014-01-01

    The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases are hallmarks of cellulose-degrading fungi except brown rot fungi. Furthermore, a high number of AA9, endocellulase and β-glucosidase genes were identified, not in what are known to be the strongest, specialized lignocellulose degraders but in saprophytic fungi that can use a wide variety of substrates whereas only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based on their predicted enzymes indicated that Ascomycota and Basidiomycota use the same enzymatic activities to degrade plant cell walls. PMID:25461894

  14. A proposed aerobic granules size development scheme for aerobic granulation process.

    PubMed

    Dahalan, Farrah Aini; Abdullah, Norhayati; Yuzir, Ali; Olsson, Gustaf; Salmiati; Hamdzah, Myzairah; Din, Mohd Fadhil Mohd; Ahmad, Siti Aqlima; Khalil, Khalilah Abdul; Anuar, Aznah Nor; Noor, Zainura Zainon; Ujang, Zaini

    2015-04-01

    Aerobic granulation is increasingly used in wastewater treatment due to its unique physical properties and microbial functionalities. Granule size defines the physical properties of granules based on biomass accumulation. This study aims to determine the profile of size development under two physicochemical conditions. Two identical bioreactors namely Rnp and Rp were operated under non-phototrophic and phototrophic conditions, respectively. An illustrative scheme was developed to comprehend the mechanism of size development that delineates the granular size throughout the granulation. Observations on granules' size variation have shown that activated sludge revolutionised into the form of aerobic granules through the increase of biomass concentration in bioreactors which also determined the changes of granule size. Both reactors demonstrated that size transformed in a similar trend when tested with and without illumination. Thus, different types of aerobic granules may increase in size in the same way as recommended in the aerobic granule size development scheme. PMID:25661308

  15. Potential for Methanotroph-Mediated Natural Attenuation of TCE in a Basalt Aquifer

    NASA Astrophysics Data System (ADS)

    Colwell, F. S.; Newby, D. T.; Reed, D. W.; Igoe, A.; Petzke, L.; Delwiche, M. E.; McKinley, J. P.; Roberto, F. F.; Whiticar, M. J.

    2002-12-01

    Methanotrophic bacteria are one of the microbial communities believed to be responsible for natural attenuation of a trichloroethylene (TCE) plume in the Snake River Plain Aquifer (SRPA). To better understand the role that indigenous methanotrophs may have in TCE degradation in the aquifer, groundwater was collected from four SRPA wells and analyzed for geochemical properties and methanotroph diversity. Dissolved methane concentrations in the aquifer ranged from 1 to >1000 nM. Stable carbon isotope ratios for dissolved methane suggest a microbial source for the methane (del 13C values of ca. -61 per mil in three wells). The combination of 13C enriched methane and 13C depleted-dissolved inorganic carbon in one of the wells suggests that microbial oxidation of methane occurs. Filtered groundwater yielded microorganisms that were used as inocula for enrichments or were frozen and subsequently extracted for DNA. Primers that target taxonomic (type I and type II 16S rDNA) or functional (mmoX and pmoA methane monooxygenase subunits) genes were used to characterize the indigenous methanotrophs via PCR, cloning, and sequencing. DNA sequencing and alignment results suggest that clones with sequences most similar to Methylocystis sp. (a type II methanotroph) and Methylobacter sp. (a type I methanotroph) are frequently present in filtered groundwater with the former often represented in enrichment cultures as well. Methanotroph genes are detected in the aquifer even in wells having methane concentrations as low as 1 nM. Methanotroph presence and a microbial origin for the dissolved methane indicate that microbial cycling of this key gas may play a role in the destruction of TCE in the aquifer.

  16. The Acute Effect of Aerobic Exercise on Measures of Stress.

    ERIC Educational Resources Information Center

    Fort, Inza L.; And Others

    The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

  17. Aerobic Fitness Thresholds Associated with Fifth Grade Academic Achievement

    ERIC Educational Resources Information Center

    Wittberg, Richard; Cottrell, Lesley A.; Davis, Catherine L.; Northrup, Karen L.

    2010-01-01

    Background: Whereas effects of physical fitness and physical activity on cognitive function have been documented, little is known about how they are related. Purpose: This study assessed student aerobic fitness measured by FITNESSGRAM Mile times and/or Pacer circuits and whether the nature of the association between aerobic fitness and…

  18. Physical Activity Differentially Affects the Cecal Microbiota of Ovariectomized Female Rats Selectively Bred for High and Low Aerobic Capacity.

    PubMed

    Liu, Tzu-Wen; Park, Young-Min; Holscher, Hannah D; Padilla, Jaume; Scroggins, Rebecca J; Welly, Rebecca; Britton, Steven L; Koch, Lauren G; Vieira-Potter, Victoria J; Swanson, Kelly S

    2015-01-01

    The gut microbiota is considered a relevant factor in obesity and associated metabolic diseases, for which postmenopausal women are particularly at risk. Increasing physical activity has been recognized as an efficacious approach to prevent or treat obesity, yet the impact of physical activity on the microbiota remains under-investigated. We examined the impacts of voluntary exercise on host metabolism and gut microbiota in ovariectomized (OVX) high capacity (HCR) and low capacity running (LCR) rats. HCR and LCR rats (age = 27 wk) were OVX and fed a high-fat diet (45% kcal fat) ad libitum and housed in cages equipped with (exercise, EX) or without (sedentary, SED) running wheels for 11 wk (n = 7-8/group). We hypothesized that increased physical activity would hinder weight gain, increase metabolic health and shift the microbiota of LCR rats, resulting in populations more similar to that of HCR rats. Animals were compared for characteristic metabolic parameters including body composition, lipid profile and energy expenditure; whereas cecal digesta were collected for DNA extraction. 16S rRNA gene-based amplicon Illumina MiSeq sequencing was performed, followed by analysis using QIIME 1.8.0 to assess cecal microbiota. Voluntary exercise decreased body and fat mass, and normalized fasting NEFA concentrations of LCR rats, despite only running one-third the distance of HCR rats. Exercise, however, increased food intake, weight gain and fat mass of HCR rats. Exercise clustered the gut microbial community of LCR rats, which separated them from the other groups. Assessments of specific taxa revealed significant (p<0.05) line by exercise interactions including shifts in the abundances of Firmicutes, Proteobacteria, and Cyanobacteria. Relative abundance of Christensenellaceae family was higher (p = 0.026) in HCR than LCR rats, and positively correlated (p<0.05) with food intake, body weight and running distance. These findings demonstrate that exercise differentially impacts

  19. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  20. Aerobic Dance in Public Schools.

    ERIC Educational Resources Information Center

    Chiles, Barbara Ann; Moore, Suzanne

    1981-01-01

    Aerobic dance offers a challenging workout in a social atmosphere. Though some physical education instructors tend to exclude dance units from the curriculum, most could teach aerobic dance if they had a basic knowledge of aerobic routines. The outline for a unit to be used in the class is presented. (JN)

  1. Managing for Improved Aerobic Stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerobic deterioration or spoilage of silage is the result of aerobic microorganisms metabolizing components of the silage using oxygen. In the almost 40 years over which these silage conferences have been held, we have come to recognize the typical pattern of aerobic microbial development by which s...

  2. Methanotrophic community structure of aged refuse and its capability for methane bio-oxidation.

    PubMed

    Mei, Juan; Wang, Li; Han, Dan; Zhao, Youcai

    2011-01-01

    Aged refuse from waste landfills closed for eight years was examined and found to contain rich methanotrophs capable of biooxidation for methane. Specially, community structure and methane oxidation capability of methanotrophs in the aged refuse were studied. The amount of methanotrophs ranged 61.97 x 10(3)-632.91 x 10(3) cells/g (in dry basis) in aged refuse from Shanghai Laogang Landfill. Type I and II methanotrophs were found in the aged refuse in the presence of sterilized sewage sludge and only Type I methanotrophs were detected in the presence of nitrate minimal salt medium (NMS). The clone sequences of the pmoA gene obtained from the aged refuse were similar to the pmoA gene of Methylobacter Methylocaldum, and Methylocystis, and two clones were distinct with known genera of Type I methanotrophs according to phylogenetic analysis. Aged refuse enriched with NMS was used for methane biological oxidation and over 93% conversions were obtained. PMID:21790062

  3. Aging well: methanotrophic potential and community structure along a paddy soil chronosequence of 2000 years.

    NASA Astrophysics Data System (ADS)

    Ho, Adrian; Frenzel, Peter

    2010-05-01

    Given that rice paddies are anthropogenic methane sources and the inevitable need to increase rice production to sustain human population growth, it is pertinent to identify the effects of long term agriculture on the selection of methanotrophs. Methanotrophs play a crucial role in mitigating methane emission from rice paddies. Therefore, we analyzed the methanotroph community along a chronosequence of paddy soils from China covering recently reclaimed sites to paddies under permanent agriculture since 2000 years (Cheng et al., 2009; doi:10.1016/j.geoderma.2009.03.016). Maximum potential methane oxidation rate (PMOR) increased monotonically with age. Our results also showed that long-term agriculture imposes a selection pressure on different groups of methanotrophs. In contrast to younger soils, type Ib methanotrophs were observed to multiply in correspondence with increasing PMOR in ancient soils, while other groups showed a relatively stable community composition as revealed by pmoA-based fingerprints (T-RFLP) and quantitative PCR. Cloning and sequencing the pmoA (a key gene in methane oxidation), the soils were found to harbour known and putative methanotrophs, ammonium-oxidizing bacteria, and interestingly, sequences affiliated to Crenothrix, a methane oxidizer with an unusual pmoA (Stoecker et al., 2006; doi:10.1073/pnas.0506361103). In summary, long-term agriculture shapes the community and allows for an elevated level of potential methane oxidation.

  4. Soluble methane monooxygenase component B gene probe for identification of methanotrophs that rapidly degrade trichloroethylene

    SciTech Connect

    Hsienchyang Tsien; Hanson, R.S. )

    1992-03-01

    Restriction fragment length polymorphisms, Western blot (immunoblot) analysis, and fluorescence-labelled signature probes were used for the characterization of methanotrophic bacteria as well as for the identification of methanotrophs which contained the soluble methane monooxygenase (MMO) gene and were able to degrade trichloroethylene (TCE). The gene encoding a soluble MMO component B protein from Methylosinus trichosporium OB3b was cloned. It contained a 2.2-kb EcoRI fragment. With this cloned component B gene as probe, methanotroph types I, II, and X and environmental and bioreactor samples were screened for the presence of the gene encoding soluble MMO. Among twelve pure or mixed cultures, DNA fragments of seven methanotrophs hybridized with the soluble MMO B gene probe. When grown in media with limited copper, all of these bacteria degraded TCE. All of them are type II methanotrophs. The soluble MMO component B gene of the type X methanotroph, Methylococcus capsulatus Bath, did not hybridize to the M. trichosporium OB3b soluble MMO component B gene probe, although M. capsulatus Baath also produces a soluble MMO.

  5. Isolation of viable type I and II methanotrophs using cell-imprinted polyurethane thin films.

    PubMed

    Hu, Yufeng; Xie, Lin; Lu, Yahai; Ren, Xueqin

    2014-11-26

    Studies on methanotrophs utilizing methane as sole source of carbon and energy are meaningful for governing global warming; although, the isolation of methanotrophs from nature is challenging. Here, surface imprinted polyurethane films were fabricated to selectively capture living methanotrophs from paddy soil. Two tracks of molecularly imprinted film based on polyurethane (PU-MIF1 and PU-MIF2) were imprinted using type I or II methanotrophs as template, respectively, and then reacted with polyethylene glycol, castor oil, and hexamethylene diisocyanate. Results demonstrated these PU-MIFs hold low water absorption rate and superior biocompatibility, which was highly demanded for maintaining cell viability. Superior selectivity and affinity of PU-MIFs toward their cognate methanotroph cells was observed by fluorescent microscopy. Atomic force microscopy revealed the adhesion force of PU-MIFs with its cognate cells was much stronger in comparison with noncognate ones. Using the as-prepared PU-MIFs, within 30 min, methanotroph cells could be separated from rice paddy efficiently. Therefore, the PU-MIFs might be used as an efficient approach for cell sorting from environmental samples. PMID:25373718

  6. Soluble methane monooxygenase production and trichloroethylene degradation by a type I methanotroph, Methylomonas methanica 68-1

    SciTech Connect

    Sung-Cheol Koh; Bowman, J.P.; Sayler, G.S. )

    1993-04-01

    Soluble methane monooxygenase (sMMO), present in certain methanotrophic bacteria, can oxidize a wide range of carbon substrates including halogenated aliphatic compounds such as trichloroethylene (TCE), a significant ground water pollutant. This study reports the existence of sMMO activity in a type I methanotroph (Methylosinus trichosporium 68-1) isolated from a TCE-contaminated aquifer. The sMMO of 68-1 was compared with that of Methylosinus trichosporium OB3b in terms of TCE degradation kinetics and genetic homology. This study shows that a typical type I methanotrophy (68-1) has the ability to produce sMMO and rapidly degrade TCE, producing a relatively high biomass under the apparent nonoptimal state of copper limitation. As a result, this strain may have considerable bioremediation potential. Further studies will be necessary to determine exactly how the 68-1 sMMO differs from the sMMOs of OB3b and Methylococcus capsulatus both in terms of DNA and protein sequences. 48 refs., 4 figs., 2 tabs.

  7. Improving the performance of an aerobic membrane bioreactor (MBR) treating pharmaceutical wastewater with powdered activated carbon (PAC) addition.

    PubMed

    Kaya, Yasemin; Bacaksiz, A Murat; Golebatmaz, Ugur; Vergili, Ilda; Gönder, Z Beril; Yilmaz, Gulsum

    2016-04-01

    In this study, the effects of organic loading rate (OLR) and the addition of powdered activated carbon (PAC) on the performance and membrane fouling of MBR were conducted to treat real pharmaceutical process wastewater. Over 145 days of operation, the MBR system was operated at OLRs ranging from 1 to 2 kg COD m(-3) day(-1) without sludge wasting. The addition of PAC provided an improvement in the flux, despite an increase in the OLR:PAC ratio. The results demonstrated that the hybrid PAC-MBR system maintained a reduced amount of membrane fouling and steadily increased the removal performance of etodolac. PAC addition reduced the deposition of extracellular polymeric substance and organic matter on the membrane surface and resulted an increase in COD removal even at higher OLRs with low PAC addition. Membrane fouling mechanisms were investigated using combined adsorption fouling models. Modified fouling index values and normalized mass transfer coefficient values indicated that predominant fouling mechanism was cake adsorption. PMID:26846538

  8. A Randomized Trial Examining the Effects of Aerobic Physical Activity on Attention-Deficit/Hyperactivity Disorder Symptoms in Young Children

    PubMed Central

    Hoza, Betsy; Smith, Alan L.; Shoulberg, Erin K.; Linnea, Kate S.; Dorsch, Travis E.; Blazo, Jordan A.; Alerding, Caitlin M.; McCabe, George P.

    2014-01-01

    The goal of this study was to compare the effects of before school physical activity (PA) and sedentary classroom-based (SC) interventions on the symptoms, behavior, moodiness and peer functioning of young children (Mage = 6.83) at risk for attention-deficit/hyperactivity disorder (ADHD-risk; n = 94) and typically developing children (TD; n = 108). Children were randomly assigned to either PA or SC and participated in the assigned intervention 31 minutes per day, each school day, over the course of 12 weeks. Parent and teacher ratings of ADHD symptoms (inattention, hyperactivity/impulsivity), oppositional behavior, moodiness, behavior toward peers, and reputation with peers, were used as dependent variables. Primary analyses indicate that the PA intervention was more effective than the SC intervention at reducing inattention and moodiness in the home context. Less conservative follow-up analyses within ADHD status and intervention groups suggest that a PA intervention may reduce impairment associated with ADHD-risk in both home and school domains; interpretive caution is warranted, however, given the liberal approach to these analyses. Unexpectedly, these findings also indicate the potential utility of a before school SC intervention as a tool for managing ADHD symptoms. Inclusion of a no treatment control group in future studies will enable further understanding of PA as an alternative management strategy for ADHD symptoms. PMID:25201345

  9. Aerobic exercise and endurance: improving fitness for health benefits.

    PubMed

    Wilmore, Jack H

    2003-05-01

    Clinicians who understand how the body responds to exercise, how aerobic training improves cardiovascular fitness, and the benefits and principles of prescribing aerobic exercise can effectively encourage patients to become active and optimize programs for those already active. Patients who are active at an early age and who continue to enjoy active lifestyles as adults will attenuate the normal losses in cardiovascular endurance, strength, and flexibility that accompany aging and sedentary living, thereby maintaining greater independence throughout their life spans. PMID:20086470

  10. Novel [NiFe]- and [FeFe]-hydrogenase gene transcripts indicative of active facultative aerobes and obligate anaerobes in earthworm gut contents.

    PubMed

    Schmidt, Oliver; Wüst, Pia K; Hellmuth, Susanne; Borst, Katharina; Horn, Marcus A; Drake, Harold L

    2011-09-01

    The concomitant occurrence of molecular hydrogen (H(2)) and organic acids along the alimentary canal of the earthworm is indicative of ongoing fermentation during gut passage. Fermentative H(2) production is catalyzed by [FeFe]-hydrogenases and group 4 [NiFe]-hydrogenases in obligate anaerobes (e.g., Clostridiales) and facultative aerobes (e.g., Enterobacteriaceae), respectively, functional groups that might respond differently to contrasting redox conditions. Thus, the objectives of this study were to assess the redox potentials of the alimentary canal of Lumbricus terrestris and analyze the hydrogenase transcript diversities of H(2) producers in glucose-supplemented gut content microcosms. Although redox potentials in the core of the alimentary canal were variable on an individual worm basis, average redox potentials were similar. The lowest redox potentials occurred in the foregut and midgut regions, averaging 40 and 110 mV, respectively. Correlation plots between hydrogenase amino acid sequences and 16S rRNA gene sequences indicated that closely related hydrogenases belonged to closely related taxa, whereas distantly related hydrogenases did not necessarily belong to distantly related taxa. Of 178 [FeFe]-hydrogenase gene transcripts, 177 clustered in 12 Clostridiales-affiliated operational taxonomic units, the majority of which were indicative of heretofore unknown hydrogenases. Of 86 group 4 [NiFe]-hydrogenase gene transcripts, 79% and 21% were affiliated with organisms in the Enterobacteriaceae and Aeromonadaceae, respectively. The collective results (i) suggest that fermenters must cope with variable and moderately oxidative redox conditions along the alimentary canal, (ii) demonstrate that heretofore undetected hydrogenases are present in the earthworm gut, and (iii) corroborate previous findings implicating Clostridiaceae and Enterobacteriaceae as active fermentative taxa in earthworm gut content. PMID:21784904

  11. Novel [NiFe]- and [FeFe]-Hydrogenase Gene Transcripts Indicative of Active Facultative Aerobes and Obligate Anaerobes in Earthworm Gut Contents▿†

    PubMed Central

    Schmidt, Oliver; Wüst, Pia K.; Hellmuth, Susanne; Borst, Katharina; Horn, Marcus A.; Drake, Harold L.

    2011-01-01

    The concomitant occurrence of molecular hydrogen (H2) and organic acids along the alimentary canal of the earthworm is indicative of ongoing fermentation during gut passage. Fermentative H2 production is catalyzed by [FeFe]-hydrogenases and group 4 [NiFe]-hydrogenases in obligate anaerobes (e.g., Clostridiales) and facultative aerobes (e.g., Enterobacteriaceae), respectively, functional groups that might respond differently to contrasting redox conditions. Thus, the objectives of this study were to assess the redox potentials of the alimentary canal of Lumbricus terrestris and analyze the hydrogenase transcript diversities of H2 producers in glucose-supplemented gut content microcosms. Although redox potentials in the core of the alimentary canal were variable on an individual worm basis, average redox potentials were similar. The lowest redox potentials occurred in the foregut and midgut regions, averaging 40 and 110 mV, respectively. Correlation plots between hydrogenase amino acid sequences and 16S rRNA gene sequences indicated that closely related hydrogenases belonged to closely related taxa, whereas distantly related hydrogenases did not necessarily belong to distantly related taxa. Of 178 [FeFe]-hydrogenase gene transcripts, 177 clustered in 12 Clostridiales-affiliated operational taxonomic units, the majority of which were indicative of heretofore unknown hydrogenases. Of 86 group 4 [NiFe]-hydrogenase gene transcripts, 79% and 21% were affiliated with organisms in the Enterobacteriaceae and Aeromonadaceae, respectively. The collective results (i) suggest that fermenters must cope with variable and moderately oxidative redox conditions along the alimentary canal, (ii) demonstrate that heretofore undetected hydrogenases are present in the earthworm gut, and (iii) corroborate previous findings implicating Clostridiaceae and Enterobacteriaceae as active fermentative taxa in earthworm gut content. PMID:21784904

  12. Effects of ingesting JavaFit Energy Extreme functional coffee on aerobic and anaerobic fitness markers in recreationally-active coffee consumers.

    PubMed

    Roberts, Michael D; Taylor, Lemuel W; Wismann, Jennifer A; Wilborn, Colin D; Kreider, Richard B; Willoughby, Darryn S

    2007-01-01

    The purpose of this study was to examine the effects of ingesting JavaFittrade mark Energy Extreme (JEE) on aerobic and anaerobic performance measures in recreationally-active male and female coffee drinkers. Five male (27.6 +/- 4.2 yrs, 93.2 +/- 11.7 kg, 181.6 +/- 6.9 cm) and five female (29 +/- 4.6 yrs, 61.5 +/- 9.2 kg, 167.6 +/- 6.9 cm) regular coffee drinkers (i.e., 223.9 +/- 62.7 mg.d-1 of caffeine) participated in this study. In a cross-over, randomized design, participants performed a baseline (BASELINE) graded treadmill test (GXT) for peak VO2 assessment and a Wingate test for peak power. Approximately 3-4 d following BASELINE testing, participants returned to the lab for the first trial and ingested 354 ml of either JEE or decaffeinated coffee (DECAF), after which they performed a GXT and Wingate test. Criterion measures during the GXT included an assessment of peakVO2 at maximal exercise, as well as VO2 at 3 minutes and 10 minutes post-exercise. Additionally, time-to-exhaustion (TTE), maximal RPE, mean heart rate (HR), mean systolic pressure (SBP), and mean diastolic blood pressure (DBP) were measured during each condition. Criterion measures for the Wingate included mean HR, SBP, DBP, peak power, and time to peak power (TTP). Participants then returned to the lab approximately one week later to perform the second trial under the same conditions as the first, except consuming the remaining coffee. Data were analyzed using a one way ANOVA (p < 0.05). Our results indicate that JEE significantly increased VO2 at 3 minutes post-exercise when compared to BASELINE (p = 0.04) and DECAF (p = 0.02) values, which may be beneficial in enhancing post-exercise fat metabolism. PMID:18067677

  13. Factors associated with low levels of aerobic fitness among adolescents

    PubMed Central

    Gonçalves, Eliane Cristina de Andrade; Silva, Diego Augusto Santos

    2016-01-01

    Abstract Objective: To evaluate the prevalence of low aerobic fitness levels and to analyze the association with sociodemographic factors, lifestyle and excess body fatness among adolescents of southern Brazil. Methods: The study included 879 adolescents aged 14-19 years the city of São José/SC, Brazil. The aerobic fitness was assessed by Canadian modified test of aerobic fitness. Sociodemographic variables (skin color, age, sex, study turn, economic level), sexual maturation and lifestyle (eating habits, screen time, physical activity, consumption of alcohol and tobacco) were assessed by a self-administered questionnaire. Excess body fatness was evaluated by sum of skinfolds triceps and subscapular. We used logistic regression to estimate odds ratios and 95% confidence intervals. Results: Prevalence of low aerobic fitness level was 87.5%. The girls who spent two hours or more in front screen, consumed less than one glass of milk by day, did not smoke and had an excess of body fatness had a higher chance of having lower levels of aerobic fitness. White boys with low physical activity had had a higher chance of having lower levels of aerobic fitness. Conclusions: Eight out of ten adolescents were with low fitness levels aerobic. Modifiable lifestyle factors were associated with low levels of aerobic fitness. Interventions that emphasize behavior change are needed. PMID:26743851

  14. Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments.

    PubMed

    Sharp, Christine E; Smirnova, Angela V; Graham, Jaime M; Stott, Matthew B; Khadka, Roshan; Moore, Tim R; Grasby, Stephen E; Strack, Maria; Dunfield, Peter F

    2014-06-01

    Recently, methanotrophic members of the phylum Verrucomicrobia have been described, but little is known about their distribution in nature. We surveyed methanotrophic bacteria in geothermal springs and acidic wetlands via pyrosequencing of 16S rRNA gene amplicons. Putative methanotrophic Verrucomicrobia were found in samples covering a broad temperature range (22.5-81.6°C), but only in acidic conditions (pH 1.8-5.0) and only in geothermal environments, not in acidic bogs or fens. Phylogenetically, three 16S rRNA gene sequence clusters of putative methanotrophic Verrucomicrobia were observed. Those detected in high-temperature geothermal samples (44.1-81.6°C) grouped with known thermoacidiphilic 'Methylacidiphilum' isolates. A second group dominated in moderate-temperature geothermal samples (22.5-40.1°C) and a representative mesophilic methanotroph from this group was isolated (strain LP2A). Genome sequencing verified that strain LP2A possessed particulate methane monooxygenase, but its 16S rRNA gene sequence identity to 'Methylacidiphilum infernorum' strain V4 was only 90.6%. A third group clustered distantly with known methanotrophic Verrucomicrobia. Using pmoA-gene targeted quantitative polymerase chain reaction, two geothermal soil profiles showed a dominance of LP2A-like pmoA sequences in the cooler surface layers and 'Methylacidiphilum'-like pmoA sequences in deeper, hotter layers. Based on these results, there appears to be a thermophilic group and a mesophilic group of methanotrophic Verrucomicrobia. However, both were detected only in acidic geothermal environments. PMID:24650084

  15. Methylomagnum ishizawai gen. nov., sp. nov., a mesophilic type I methanotroph isolated from rice rhizosphere.

    PubMed

    Khalifa, Ashraf; Lee, Chol Gyu; Ogiso, Takuya; Ueno, Chihoko; Dianou, Dayéri; Demachi, Toyoko; Katayama, Arata; Asakawa, Susumu

    2015-10-01

    An aerobic, methane-oxidizing bacterium (strain RS11D-PrT) was isolated from rice rhizosphere. Cells of strain RS11D-PrT were Gram-stain-negative, motile rods with a single polar flagellum and contained an intracytoplasmic membrane system typical of type I methanotrophs. The strain utilized methane and methanol as sole carbon and energy sources. It could grow at 20–37 °C (optimum 31–33 °C), at pH 6.8–7.4 (range 5.5–9.0) and with 0–0.2 % (w/v) NaCl (there was no growth at above 0.5 % NaCl). pmoA and mmoX genes were present. The ribulose monophosphate and/or ribulose bisphosphate pathways were used for carbon assimilation. Results of sequence analysis of 16S rRNA genes showed that strain RS11D-PrT is related closely to the genera Methylococcus, Methylocaldum, Methyloparacoccus and Methylogaea in the family Methylococcaceae. The similarity was low (94.6 %) between strain RS11D-PrT and the most closely related type strain (Methyloparacoccus murrellii R-49797T). The DNA G+C content was 64.1 mol%. Results of phylogenetic analysis of the pmoA gene and chemotaxonomic data regarding the major cellular fatty acids (C16 : 1ω7c, C16 : 0 and C14 : 0) and the major respiratory quinone (MQ-8) also indicated the affiliation of strain RS11D-PrT to the Methylococcus–Methylocaldum–Methyloparacoccus–Methylogaea clade. On the basis of phenotypic, genotypic and phylogenetic characteristics, strain RS11D-PrT is considered to represent a novel genus and species within the family Methylococcaceae, for which the name Methylomagnum ishizawai gen. nov., sp. nov. is proposed. The type strain is RS11D-PrT ( = JCM 18894T = NBRC 109438T = DSM 29768T = KCTC 4681T). PMID:26297568

  16. Multiple roads lead to Rome: combined high-intensity aerobic and strength training vs. gross motor activities leads to equivalent improvement in executive functions in a cohort of healthy older adults.

    PubMed

    Berryman, Nicolas; Bherer, Louis; Nadeau, Sylvie; Lauzière, Séléna; Lehr, Lora; Bobeuf, Florian; Lussier, Maxime; Kergoat, Marie Jeanne; Vu, Thien Tuong Minh; Bosquet, Laurent

    2014-01-01

    The effects of physical activity on cognition in older adults have been extensively investigated in the last decade. Different interventions such as aerobic, strength, and gross motor training programs have resulted in improvements in cognitive functions. However, the mechanisms underlying the relationship between physical activity and cognition are still poorly understood. Recently, it was shown that acute bouts of exercise resulted in reduced executive control at higher relative exercise intensities. Considering that aging is characterized by a reduction in potential energy ([Formula: see text] max - energy cost of walking), which leads to higher relative walking intensity for the same absolute speed, it could be argued that any intervention aimed at reducing the relative intensity of the locomotive task would improve executive control while walking. The objective of the present study was to determine the effects of a short-term (8 weeks) high-intensity strength and aerobic training program on executive functions (single and dual task) in a cohort of healthy older adults. Fifty-one participants were included and 47 (age, 70.7 ± 5.6) completed the study which compared the effects of three interventions: lower body strength + aerobic training (LBS-A), upper body strength + aerobic training (UBS-A), and gross motor activities (GMA). Training sessions were held 3 times every week. Both physical fitness (aerobic, neuromuscular, and body composition) and cognitive functions (RNG) during a dual task were assessed before and after the intervention. Even though the LBS-A and UBS-A interventions increased potential energy to a higher level (Effect size: LBS-A-moderate, UBS-A-small, GMA-trivial), all groups showed equivalent improvement in cognitive function, with inhibition being more sensitive to the intervention. These findings suggest that different exercise programs targeting physical fitness and/or gross motor skills may lead to equivalent improvement in

  17. Cytochrome P460 Genes from the Methanotroph Methylococcus capsulatus Bath†

    PubMed Central

    Bergmann, David J.; Zahn, James A.; Hooper, Alan B.; DiSpirito, Alan A.

    1998-01-01

    P460 cytochromes catalyze the oxidation of hydroxylamine to nitrite. They have been isolated from the ammonia-oxidizing bacterium Nitrosomonas europaea (R. H. Erickson and A. B. Hooper, Biochim. Biophys. Acta 275:231–244, 1972) and the methane-oxidizing bacterium Methylococcus capsulatus Bath (J. A. Zahn et al., J. Bacteriol. 176:5879–5887, 1994). A degenerate oligonucleotide probe was synthesized based on the N-terminal amino acid sequence of cytochrome P460 and used to identify a DNA fragment from M. capsulatus Bath that contains cyp, the gene encoding cytochrome P460. cyp is part of a gene cluster that contains three open reading frames (ORFs), the first predicted to encode a 59,000-Da membrane-bound polypeptide, the second predicted to encode a 12,000-Da periplasmic protein, and the third (cyp) encoding cytochrome P460. The products of the first two ORFs have no apparent similarity to any proteins in the GenBank database. The overall sequence similarity of the P460 cytochromes from M. capsulatus Bath and N. europaea was low (24.3% of residues identical), although short regions of conserved residues are present in the two proteins. Both cytochromes have a C-terminal, c-heme binding motif (CXXCH) and a conserved lysine residue (K61) that may provide an additional covalent cross-link to the heme (D. M. Arciero and A. B. Hooper, FEBS Lett. 410:457–460, 1997). Gene probing using cyp indicated that a cytochrome P460 similar to that from M. capsulatus Bath may be present in the type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP but not in the type I methanotrophs Methylobacter marinus A45, Methylomicrobium albus BG8, and Methylomonas sp. strains MN and MM2. Immunoblot analysis with antibodies against cytochrome P460 from M. capsulatus Bath indicated that the expression level of cytochrome P460 was not affected either by expression of the two different methane monooxygenases or by addition of ammonia to the culture medium. PMID

  18. Cytochrome P460 genes from the methanotroph Methylococcus capsulatus bath.

    PubMed

    Bergmann, D J; Zahn, J A; Hooper, A B; DiSpirito, A A

    1998-12-01

    P460 cytochromes catalyze the oxidation of hydroxylamine to nitrite. They have been isolated from the ammonia-oxidizing bacterium Nitrosomonas europaea (R. H. Erickson and A. B. Hooper, Biochim. Biophys. Acta 275:231-244, 1972) and the methane-oxidizing bacterium Methylococcus capsulatus Bath (J. A. Zahn et al., J. Bacteriol. 176:5879-5887, 1994). A degenerate oligonucleotide probe was synthesized based on the N-terminal amino acid sequence of cytochrome P460 and used to identify a DNA fragment from M. capsulatus Bath that contains cyp, the gene encoding cytochrome P460. cyp is part of a gene cluster that contains three open reading frames (ORFs), the first predicted to encode a 59,000-Da membrane-bound polypeptide, the second predicted to encode a 12, 000-Da periplasmic protein, and the third (cyp) encoding cytochrome P460. The products of the first two ORFs have no apparent similarity to any proteins in the GenBank database. The overall sequence similarity of the P460 cytochromes from M. capsulatus Bath and N. europaea was low (24.3% of residues identical), although short regions of conserved residues are present in the two proteins. Both cytochromes have a C-terminal, c-heme binding motif (CXXCH) and a conserved lysine residue (K61) that may provide an additional covalent cross-link to the heme (D. M. Arciero and A. B. Hooper, FEBS Lett. 410:457-460, 1997). Gene probing using cyp indicated that a cytochrome P460 similar to that from M. capsulatus Bath may be present in the type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP but not in the type I methanotrophs Methylobacter marinus A45, Methylomicrobium albus BG8, and Methylomonas sp. strains MN and MM2. Immunoblot analysis with antibodies against cytochrome P460 from M. capsulatus Bath indicated that the expression level of cytochrome P460 was not affected either by expression of the two different methane monooxygenases or by addition of ammonia to the culture medium. PMID:9851984

  19. Diversity and distribution of methanotrophic archaea at cold seeps.

    PubMed

    Knittel, Katrin; Lösekann, Tina; Boetius, Antje; Kort, Renate; Amann, Rudolf

    2005-01-01

    In this study we investigated by using 16S rRNA-based methods the distribution and biomass of archaea in samples from (i) sediments above outcropping methane hydrate at Hydrate Ridge (Cascadia margin off Oregon) and (ii) massive microbial mats enclosing carbonate reefs (Crimea area, Black Sea). The archaeal diversity was low in both locations; there were only four (Hydrate Ridge) and five (Black Sea) different phylogenetic clusters of sequences, most of which belonged to the methanotrophic archaea (ANME). ANME group 2 (ANME-2) sequences were the most abundant and diverse sequences at Hydrate Ridge, whereas ANME-1 sequences dominated the Black Sea mats. Other seep-specific sequences belonged to the newly defined group ANME-3 (related to Methanococcoides spp.) and to the Crenarchaeota of marine benthic group B. Quantitative analysis of the samples by fluorescence in situ hybridization (FISH) showed that ANME-1 and ANME-2 co-occurred at the cold seep sites investigated. At Hydrate Ridge the surface sediments were dominated by aggregates consisting of ANME-2 and members of the Desulfosarcina-Desulfococcus branch (DSS) (ANME-2/DSS aggregates), which accounted for >90% of the total cell biomass. The numbers of ANME-1 cells increased strongly with depth; these cells accounted 1% of all single cells at the surface and more than 30% of all single cells (5% of the total cells) in 7- to 10-cm sediment horizons that were directly above layers of gas hydrate. In the Black Sea microbial mats ANME-1 accounted for about 50% of all cells. ANME-2/DSS aggregates occurred in microenvironments within the mat but accounted for only 1% of the total cells. FISH probes for the ANME-2a and ANME-2c subclusters were designed based on a comparative 16S rRNA analysis. In Hydrate Ridge sediments ANME-2a/DSS and ANME-2c/DSS aggregates differed significantly in morphology and abundance. The relative abundance values for these subgroups were remarkably different at Beggiatoa sites (80% ANME-2a, 20

  20. Inflammatory cytokine kinetics to single bouts of acute moderate and intense aerobic exercise in women with active and inactive systemic lupus erythematosus.

    PubMed

    Perandini, L A; Sales-de-Oliveira, D; Mello, Sbv; Camara, N O; Benatti, F B; Lima, F R; Borba, E; Bonfa, E; Roschel, H; Sá-Pinto, A L; Gualano, B

    2015-01-01

    the end of exercise and at the 30th minute of recovery (P<0.05). The SLE(ACTIVE) group also showed higher levels of TNF-α at all time points when compared with the HC group (P<0.05), (except after 90 min, 120 min and 24 hours of recovery) (P>0.05). Importantly, the levels of all cytokine and soluble TNF receptors returned to baseline 24 hours after the end of acute exercise, irrespective of its intensity, in all three groups (P>0.05). This study demonstrated that both the single bouts of acute moderate and intense exercise induced mild and transient changes in cytokine levels in both SLE(INACTIVE) and SLE(ACTIVE) women, providing novel evidence that acute aerobic exercise does not trigger inflammation in patients with this disease. PMID:25825870

  1. Methyloparacoccus murrellii gen. nov., sp. nov., a methanotroph isolated from pond water.

    PubMed

    Hoefman, Sven; van der Ha, David; Iguchi, Hiroyuki; Yurimoto, Hiroya; Sakai, Yasuyoshi; Boon, Nico; Vandamme, Peter; Heylen, Kim; De Vos, Paul

    2014-06-01

    Two novel methanotrophic strains, R-49797(T) and OS501, were isolated from pond water in South Africa and Japan, respectively. Strains R-49797(T) and OS501 shared 99.7% 16S rRNA gene sequence similarity. Cells were Gram-stain-negative, non-motile cocci with a diplococcoid tendency and contained type I methanotroph intracytoplasmic membranes. The pmoA gene encoding particulate methane monooxygenase was present. Soluble methane monoooxygenase (sMMO) activity, the mmoX gene encoding sMMO and the nifH gene encoding nitrogenase were not detected. Methane and methanol were utilized as sole carbon source. The strains grew optimally at 25-33 °C (range 20-37 °C) and at pH 6.3-6.8 (range 5.8-9.0). The strains did not support growth in media supplemented with 1% (w/v) NaCl. For both strains, the two major fatty acids were C(16 : 1)ω7c and C(16 : 0) and the DNA G+C content was 65.6 mol%. The isolates belong to the family Methylococcaceae of the class Gammaproteobacteria and cluster most closely among the genera Methylocaldum, Methylococcus and Methylogaea, with a 16S rRNA gene sequence similarity of 94.2% between strain R-49797(T) and its closest related type strain (Methylocaldum gracile VKM 14L(T)). Based on the low 16S rRNA gene sequence similarities with its nearest phylogenetic neighbouring genera, the formation of a separate lineage based on 16S rRNA and pmoA gene phylogenetic analysis, and the unique combination of phenotypic characteristics of the two isolated strains compared with the genera Methylocaldum, Methylococcus and Methylogaea, we propose to classify these strains as representing a novel species of a new genus, Methyloparacoccus murrellii gen. nov., sp. nov., within the family Methylococcaceae. The type strain of Methyloparacoccus murrellii is R-49797(T) ( = LMG 27482(T) = JCM 19379(T)). PMID:24676728

  2. NADPH:cytochrome c (P450) reductase activates tirapazamine (SR4233) to restore hypoxic and oxic cytotoxicity in an aerobic resistant derivative of the A549 lung cancer cell line

    PubMed Central

    Saunders, M P; Patterson, A V; Chinje, E C; Harris, A L; Stratford, I J

    2000-01-01

    Tirapazamine (TPZ, SR4233, WIN 59075) is a bioreductive drug that is activated in regions of low oxygen tension to a cytotoxic radical intermediate. This labile metabolite shows high selective toxicity towards hypoxic cells, such as those found in solid tumours. Under aerobic conditions, redox cycling occurs with subsequent generation of superoxide radicals, which are also cytotoxic. NADPH:cytochrome c (P450) reductase (P450R) is a one-electron reducing enzyme that efficiently activates TPZ. Recently a derivative of the A549 non-small cell lung cancer cell line (A549c50) was generated that showed substantially reduced P450R activity compared to its parental line (Elwell et al (1997) Biochem Pharmacol54: 249–257). Here, it is demonstrated that the A549c50 cells are markedly more resistant to TPZ under both aerobic and hypoxic conditions. In addition, these cells have a dramatically impaired ability to metabolize TPZ to its two-electron reduction product, SR4317, under hypoxic conditions when compared to wild-type cells. P450R activity in the A549c50 cells was reintroduced to similar levels as that seen in the parental A549 cells by transfection of the full-length cDNA for human P450R. These P450R over-expressing cells exhibit restored sensitivity to TPZ under both aerobic and hypoxic conditions, comparable to that found in the original parental A549 cells. Further, the ability of the transfected cells to metabolize TPZ to SR4317 under hypoxic conditions is also shown to be restored. This provides further evidence that P450R can play an important role in the activation, metabolism and toxicity of this lead bioreductive drug. © 2000 Cancer Research Campaign PMID:10682679

  3. Groundwater treatment in a field pilot methanotrophic rotating biological contactor

    SciTech Connect

    Belcher, D.M.; Vira, A.; Dooley, M.A.; Johnson, J.C.

    1995-12-31

    A pilot-scale rotating biological contactor (RBC) was operated under field conditions for approximately 1 month to remove chlorinated and nonchlorinated organic compounds from groundwater. Methanotrophic conditions were successfully established and maintained in the RBC during the field program. Results of the pilot program indicated that low concentrations of cis-1,2-dichloroethene (cis-DCE) and vinyl chloride could be treated to below the maximum contaminant levels (MCLs) of 70 ad 2 {micro}g/L, respectively. Maximum removal rates for cis-DCE and vinyl chloride measured during the pilot study were 2.14 {micro}g cis-DCE/ft{sup 2} disc media-minute (952 {micro}g cis-DCE/mg volatile solids [VS]-day) and 0.3 {micro}g vinyl chloride/ft{sup 2}-minute (143 {micro}g vinyl chloride/mg VS-day), respectively. Chlorinated ethene removal efficiencies decreased after the first 2 weeks of operation. Low concentrations of toluene, ethylbenzene, and total xylenes (TEX) were effectively removed from groundwater throughout the course of the pilot study. The maximum observed TEX removal rate was 3.0 {micro}g TEX/ft{sup 2}-minute.

  4. Windrow composting mitigated CH4 emissions: characterization of methanogenic and methanotrophic communities in manure management.

    PubMed

    Chen, Ruirui; Wang, Yiming; Wei, Shiping; Wang, Wei; Lin, Xiangui

    2014-12-01

    With increasing livestock breeding, methane (CH4 ) emissions from manure management will increasingly contribute more to atmospheric CH4 concentration. The dynamics of methanogens and methanotrophs have not yet been studied in the manure environment. The current study combines surface CH4 emissions with methanogenic and methanotrophic community analyses from two management practices, windrow composting (WCOM) and solid storage (SSTO). Our results showed that there was an c. 50% reduction of CH4 emissions with WCOM compared with SSTO over a 50-day period. A sharp decrease in the quantities of both methanogens and methanotrophs in WCOM suggested that CH4 mitigation was mainly due to decreased CH4 production rather than increased CH4 oxidation. Pyrosequencing analysis demonstrated that aeration caused a clear shift of dominant methanogens in the manure, with specifically a significant decrease in Methanosarcina and increase in Methanobrevibacter. The composition of methanogenic community was influenced by manure management and regulated CH4 production. A sharp increase in the quantity of methanotrophs in SSTO suggested that microbial CH4 oxidation is an important sink for the CH4 produced. The increased abundance of Methylococcaceae in SSTO suggested that Type I methanotrophs have an advantage in CH4 oxidation in occupying niches under low CH4 and high O2 conditions. PMID:25135448

  5. Substantial high-affinity methanotroph populations in Andisols effect high rates of atmospheric methane oxidation.

    PubMed

    Maxfield, Pete J; Hornibrook, Ed R C; Evershed, Richard P

    2009-10-01

    Methanotrophic bacteria in soils derived from volcanic ash (Andisols) were characterized via time series (13) C-phospholipid fatty acid (PLFA) labelling. Three Andisols were incubated under 2 ppmv (13) CH4 for up to 18 weeks, thus enabling high-affinity methanotrophs to be selectively characterized and quantified. PLFA profiles from all soils were broadly similar, but the magnitude of the high-affinity methanotrophic populations determined through (13) C-PLFA-stable isotope probing displayed sizeable differences. Substantial incorporation of (13) C indicated very large high-affinity methanotrophic populations in two of the soils. Such high values are far in excess (10×) of those observed for a range of mineral soils incubated under similar conditions (Bull et al., 2000; Maxfield et al., 2006; 2008a, b). Two of the three Andisols studied also displayed high but variable CH4 oxidation rates ranging from 0.03 to 1.58 nmol CH4 g(-1) d.wt. h(-1) . These findings suggest that Andisols, a previously unstudied soil class with respect to high-affinity methanotrophic bacteria, may oxidize significant amounts of atmospheric methane despite their low areal coverage globally. PMID:23765899

  6. Genomic insights into the metabolic potential and interactions between marine methanotrophic ANME archaea and associated bacteria

    NASA Astrophysics Data System (ADS)

    Orphan, V. J.; Skennerton, C.; Chadwick, G.; Haroon, F.; Tyson, G. W.; Leu, A.; Hatzenpichler, R.; Woyke, T.; Malmstrom, R.; Yu, H.; Scheller, S.

    2015-12-01

    Cooperative metabolic interactions between multiple groups of methanotrophic 'ANME' archaea and sulfate-reducing bacteria represent the primary sink for methane within continental margin sediments. These syntrophic associations are frequently observed as structured multi-celled consortia in methane seeps, often comprising a substantial proportion of the microbial biomass within near seafloor seep sediments. Since their discovery nearly 15 years ago, a number of distinct ANME groups and multiple sulfate-reducing bacterial partners have been described from seep environments worldwide. Attempts to reconstruct the genomes of some ANME organisms have been reported, however the ecological physiology and metabolic interactions of distinct ANME lineages and their bacterial partners remains poorly understood. Here, we used a fluorescence azide-alkyne click chemistry technique known as BONCAT combined with FAC sorting to examine patterns in microbial membership and the genomes of single, metabolically active ANME-bacterial consortia recovered from methane seep sediments. This targeted consortia-level sequencing approach revealed significant diversity in the ANME-bacterial associations in situ as well as insights into the potential syntrophic mechanisms underpinning these enigmatic methane-fueled partnerships.

  7. Methane turnover and methanotrophic communities in arctic aquatic ecosystems of the Lena Delta, Northeast Siberia.

    PubMed

    Osudar, Roman; Liebner, Susanne; Alawi, Mashal; Yang, Sizhong; Bussmann, Ingeborg; Wagner, Dirk

    2016-08-01

    Large amounts of organic carbon are stored in Arctic permafrost environments, and microbial activity can potentially mineralize this carbon into methane, a potent greenhouse gas. In this study, we assessed the methane budget, the bacterial methane oxidation (MOX) and the underlying environmental controls of arctic lake systems, which represent substantial sources of methane. Five lake systems located on Samoylov Island (Lena Delta, Siberia) and the connected river sites were analyzed using radiotracers to estimate the MOX rates, and molecular biology methods to characterize the abundance and the community composition of methane-oxidizing bacteria (MOB). In contrast to the river, the lake systems had high variation in the methane concentrations, the abundance and composition of the MOB communities, and consequently, the MOX rates. The highest methane concentrations and the highest MOX rates were detected in the lake outlets and in a lake complex in a flood plain area. Though, in all aquatic systems, we detected both, Type I and II MOB, in lake systems, we observed a higher diversity including MOB, typical of the soil environments. The inoculation of soil MOB into the aquatic systems, resulting from permafrost thawing, might be an additional factor controlling the MOB community composition and potentially methanotrophic capacity. PMID:27230921

  8. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment.

    PubMed

    Kampman, Christel; Hendrickx, Tim L G; Luesken, Francisca A; van Alen, Theo A; Op den Camp, Huub J M; Jetten, Mike S M; Zeeman, Grietje; Buisman, Cees J N; Temmink, Hardy

    2012-08-15

    Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to 'Candidatus Methylomirabilis oxyfera' were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO(2)(-)-N/Ld (using synthetic medium) and 37.8 mg NO(2)(-)-N/Ld (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass retention. PMID:22657102

  9. [Research of aerobic granule characteristics with different granule age].

    PubMed

    Zhou, Man; Yang, Chang-Zhu; Pu, Wen-Hong; Luo, Ying-Dong; Gong, Jian-Yu

    2012-03-01

    In the SBR reactor, we studied the different style, physicochemical characteristic, pollutants removal and microbial activity between the short age and long age aerobic granule, respectively. The short age aerobic granule was cultivated from activated floccules sludge and the other was gotten from aerobic granular sludge which was operated stably more than one year. The results indicated that the wet density, the specific gravity and integrated coefficient (IC) of the short age aerobic granule were 1.066 g x cm(-1), 1.013 g x cm(-3) and 98.7%, respectively. And that of long age were 1.026 g x cm(-3), 1.010 g x cm(-3) and 98.4%, respectively. All of them were higher than the long age aerobic granule. The mean diameters of them were 1.9 mm and 2.2 mm, respectively. The settling velocity of short age and long age aerobic granule were 0.005-0.032 m x s(-1) and 0.003-0.028 m x s(-1), respectively, and two kinds of aerobic granule settling velocity increased with the diameter increased. SVI of the former was lower. The COD removal rates of two aerobic granules were above 90%, and the NH4(+) -N removal rates of them were about 85%. The results of the COD effluent concentration, NH4(+) -N effluent concentration and the pollutants concentration in a typical cycle indicated that the short age aerobic granule had better pollutants removal efficiency. The TP removal rates of them were between 40% -90% and 32% -85%, respectively. The TN removal rates of them were about 80%. The SOUR(H) SOUR(NH4) and SOUR(NO2) of the short age aerobic granule were 26.4, 14.8 and 11.2 mg x (h x g)(-1), respectively. And that of long age were 25.2, 14.4 and 8.4 mg x (h x g)(-1), respectively. In summary, the aerobic granule had significantly different physical and chemical characteristics because of different granule age, and the short age aerobic granule exhibited better pollutants removal ability, higher microbial activity and more stability than the long age aerobic granule. PMID:22624385

  10. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  11. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  12. Diversity of soluble methane monooxygenase-containing methanotrophs isolated from polluted environments.

    PubMed

    McDonald, Ian R; Miguez, Carlos B; Rogge, Gerlinde; Bourque, Denis; Wendlandt, Karin D; Groleau, Denis; Murrell, J Colin

    2006-02-01

    Methanotrophs were enriched and isolated from polluted environments in Canada and Germany. Enrichments in low copper media were designed to specifically encourage growth of soluble methane monooxygenase (sMMO) containing organisms. The 10 isolates were characterized physiologically and genetically with one type I and nine type II methanotrophs being identified. Three key genes: 16S rRNA; pmoA and mmoX, encoding for the particulate and soluble methane monooxygenases respectively, were cloned from the isolates and sequenced. Phylogenetic analysis of these sequences identified strains, which were closely related to Methylococcus capsulatus, Methylocystis sp., Methylosinus sporium and Methylosinus trichosporium. Diversity of sMMO-containing methanotrophs detected in this and previous studies was rather narrow, both genetically and physiologically, suggesting possible constraints on genetic diversity of sMMO due to essential conservation of enzyme function. PMID:16448499

  13. In Vitro Activities of the Des-Fluoro(6) Quinolone BMS-284756 against Aerobic and Anaerobic Pathogens Isolated from Skin and Soft Tissue Animal and Human Bite Wound Infections

    PubMed Central

    Goldstein, Ellie J. C.; Citron, Diane M.; Merriam, C. Vreni; Warren, Yumi A.; Tyrrell, Kerin L.; Fernandez, Helen

    2002-01-01

    BMS-284756, a new des-fluoro(6) quinolone, was very active against 240 aerobic and 180 anaerobic isolates from bite victims. It inhibited 403 of 420 (96%) isolates, including those of Moraxella spp., CDC group EF-4, and Eikenella corrodens at ≤2 μg/ml and those of all Pasteurella spp. and Bergeyella zoohelcum at ≤0.015 μg/ml. Fusobacterium russii and 6 of 11 Fusobacterium nucleatum isolates of animal bite origin were resistant, but isolates of human bite origin were susceptible, which suggests that they were of a different subspecies. PMID:11850275

  14. Response of aerobic rice to Piriformospora indica.

    PubMed

    Das, Joy; Ramesh, K V; Maithri, U; Mutangana, D; Suresh, C K

    2014-03-01

    Rice cultivation under aerobic condition not only saves water but also opens up a splendid scope for effective application of beneficial root symbionts in rice crop unlike conventional puddled rice cultivation where water logged condition acts as constraint for easy proliferation of various beneficial soil microorganisms like arbuscular mycorrhizal (AM) fungi. Keeping these in view, an in silico investigation were carried out to explore the interaction of hydrogen phosphate with phosphate transporter protein (PTP) from P. indica. This was followed by greenhouse investigation to study the response of aerobic rice to Glomusfasciculatum, a conventional P biofertilizer and P. indica, an alternative to AM fungi. Computational studies using ClustalW tool revealed several conserved motifs between the phosphate transporters from Piriformospora indica and 8 other Glomus species. The 3D model of PTP from P. indica resembling "Mayan temple" was successfully docked onto hydrogen phosphate, indicating the affinity of this protein for inorganic phosphorus. Greenhouse studies revealed inoculation of aerobic rice either with P. indica, G. fasciculatum or both significantly enhanced the plant growth, biomass and yield with higher NPK, chlorophyll and sugar compared to uninoculated ones, P. indica inoculated plants being superior. A significantly enhanced activity of acid phosphatase and alkaline phosphatase were noticed in the rhizosphere soil of rice plants inoculated either with P. indica, G. fasciculatum or both, contributing to higher P uptake. Further, inoculation of aerobic rice plants with P. indica proved to be a better choice as a potential biofertilizer over mycorrhiza. PMID:24669667

  15. Gammaproteobacterial methanotrophs dominate cold methane seeps in floodplains of West Siberian rivers.

    PubMed

    Oshkin, Igor Y; Wegner, Carl-Eric; Lüke, Claudia; Glagolev, Mikhail V; Filippov, Illiya V; Pimenov, Nikolay V; Liesack, Werner; Dedysh, Svetlana N

    2014-10-01

    A complex system of muddy fluid-discharging and methane (CH4)-releasing seeps was discovered in a valley of the river Mukhrinskaya, one of the small rivers of the Irtysh Basin, West Siberia. CH4 flux from most (90%) of these gas ebullition sites did not exceed 1.45 g CH4 h(-1), while some seeps emitted up to 5.54 g CH4 h(-1). The δ(13)C value of methane released from these seeps varied between -71.1 and -71.3‰, suggesting its biogenic origin. Although the seeps were characterized by low in situ temperatures (3.5 to 5°C), relatively high rates of methane oxidation (15.5 to 15.9 nmol CH4 ml(-1) day(-1)) were measured in mud samples. Fluorescence in situ hybridization detected 10(7) methanotrophic bacteria (MB) per g of mud (dry weight), which accounted for up to 20.5% of total bacterial cell counts. Most (95.8 to 99.3%) methanotroph cells were type I (gammaproteobacterial) MB. The diversity of methanotrophs in this habitat was further assessed by pyrosequencing of pmoA genes, encoding particulate methane monooxygenase. A total of 53,828 pmoA gene sequences of seep-inhabiting methanotrophs were retrieved and analyzed. Nearly all of these sequences affiliated with type I MB, including the Methylobacter-Methylovulum-Methylosoma group, lake cluster 2, and several as-yet-uncharacterized methanotroph clades. Apparently, microbial communities attenuating methane fluxes from these local but strong CH4 sources in floodplains of high-latitude rivers have a large proportion of potentially novel, psychrotolerant methanotrophs, thereby providing a challenge for future isolation studies. PMID:25063667

  16. Gammaproteobacterial Methanotrophs Dominate Cold Methane Seeps in Floodplains of West Siberian Rivers

    PubMed Central

    Oshkin, Igor Y.; Wegner, Carl-Eric; Lüke, Claudia; Glagolev, Mikhail V.; Filippov, Illiya V.; Pimenov, Nikolay V.; Liesack, Werner

    2014-01-01

    A complex system of muddy fluid-discharging and methane (CH4)-releasing seeps was discovered in a valley of the river Mukhrinskaya, one of the small rivers of the Irtysh Basin, West Siberia. CH4 flux from most (90%) of these gas ebullition sites did not exceed 1.45 g CH4 h−1, while some seeps emitted up to 5.54 g CH4 h−1. The δ13C value of methane released from these seeps varied between −71.1 and −71.3‰, suggesting its biogenic origin. Although the seeps were characterized by low in situ temperatures (3.5 to 5°C), relatively high rates of methane oxidation (15.5 to 15.9 nmol CH4 ml−1 day−1) were measured in mud samples. Fluorescence in situ hybridization detected 107 methanotrophic bacteria (MB) per g of mud (dry weight), which accounted for up to 20.5% of total bacterial cell counts. Most (95.8 to 99.3%) methanotroph cells were type I (gammaproteobacterial) MB. The diversity of methanotrophs in this habitat was further assessed by pyrosequencing of pmoA genes, encoding particulate methane monooxygenase. A total of 53,828 pmoA gene sequences of seep-inhabiting methanotrophs were retrieved and analyzed. Nearly all of these sequences affiliated with type I MB, including the Methylobacter-Methylovulum-Methylosoma group, lake cluster 2, and several as-yet-uncharacterized methanotroph clades. Apparently, microbial communities attenuating methane fluxes from these local but strong CH4 sources in floodplains of high-latitude rivers have a large proportion of potentially novel, psychrotolerant methanotrophs, thereby providing a challenge for future isolation studies. PMID:25063667

  17. Aerobic and two-stage anaerobic-aerobic sludge digestion with pure oxygen and air aeration.

    PubMed

    Zupancic, Gregor D; Ros, Milenko

    2008-01-01

    The degradability of excess activated sludge from a wastewater treatment plant was studied. The objective was establishing the degree of degradation using either air or pure oxygen at different temperatures. Sludge treated with pure oxygen was degraded at temperatures from 22 degrees C to 50 degrees C while samples treated with air were degraded between 32 degrees C and 65 degrees C. Using air, sludge is efficiently degraded at 37 degrees C and at 50-55 degrees C. With oxygen, sludge was most effectively degraded at 38 degrees C or at 25-30 degrees C. Two-stage anaerobic-aerobic processes were studied. The first anaerobic stage was always operated for 5 days HRT, and the second stage involved aeration with pure oxygen and an HRT between 5 and 10 days. Under these conditions, there is 53.5% VSS removal and 55.4% COD degradation at 15 days HRT - 5 days anaerobic, 10 days aerobic. Sludge digested with pure oxygen at 25 degrees C in a batch reactor converted 48% of sludge total Kjeldahl nitrogen to nitrate. Addition of an aerobic stage with pure oxygen aeration to the anaerobic digestion enhances ammonium nitrogen removal. In a two-stage anaerobic-aerobic sludge digestion process within 8 days HRT of the aerobic stage, the removal of ammonium nitrogen was 85%. PMID:17251012

  18. Considerations in prescribing preflight aerobic exercise for astronauts

    NASA Technical Reports Server (NTRS)

    Frey, Mary Anne Bassett

    1987-01-01

    The physiological effects of prolonged exposure to weightlessness are discussed together with the effects of aerobic exercise on human characteristics affected by weightlessness. It is noted that, although early data on orthostatic intolerance after spaceflight led to a belief that a high level of aerobic fitness for astronauts was detrimental to orthostatic tolerance on return to earth, most of the data available today do not suport this contention. Aerobic fitness was found to be beneficial to cardiovascular function and to mental performance; therefore, it may be important in performing extravehicular activities during flight.

  19. Aerobic Fitness and School Children.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1997-01-01

    Provides school counselors with information on aerobic exercise (specifically running) and the psychological, behavioral, and physical benefits children obtained by participating in fitness programs. Recommends collaboration between school counselors and physical education teachers and gives a preliminary discussion of aerobic running and its…

  20. Aerobic Fitness and School Children.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1992-01-01

    Provides school counselors with information regarding aerobic exercise (specifically running), and the psychological, behavioral, and physical benefits children obtain by participating in fitness programs. Presents methods of collaboration between school counselors and physical education teachers. Offers preliminary discussion of aerobic running…

  1. Sludge minimization using aerobic/anoxic treatment technology

    SciTech Connect

    Mines, R.O. Jr.; Kalch, R.S.

    1999-07-01

    The objective of this investigation was to demonstrate through a bench-scale study that using an aerobic/anoxic sequence to treat wastewater and biosolids could significantly reduce the production of biosolids (sludge). A bench-scale activated sludge reactor and anoxic digester were operated for approximately three months. The process train consisted of a completely-mixed aerobic reactor with wasting of biosolids to an anoxic digester for stabilization. The system was operated such that biomass produced in the aerobic activated sludge process was wasted to the anoxic digester; and biomass produced in the anoxic digester was wasted back to the activated sludge process. A synthetic wastewater consisting of bacto-peptone nutrient broth was fed to the liquid process train. Influent and effluent to the aerobic biological process train were analytically tested, as were the contents of mixed liquor in the aerobic reactor and anoxic digester. Overall removal efficiencies for the activated sludge process with regard to COD, TKN, NH{sub 3}-N, and alkalinity averaged 91, 89, 98, and 38%, respectively. The overall average sludge production for the aerobic/anoxic process was 24% less than the overall average sludge production from a conventional activated sludge bench-scale system fed the same substrate and operated under similar mean cell residence times.

  2. Particle-Scale Modeling of Methane Emission during Pig Manure/Wheat Straw Aerobic Composting.

    PubMed

    Ge, Jinyi; Huang, Guangqun; Huang, Jing; Zeng, Jianfei; Han, Lujia

    2016-04-19

    Inefficient aerobic composting techniques significantly contribute to the atmospheric methane (CH4) levels. Macro-scale models assuming completely aerobic conditions cannot be used to analyze CH4 generation in strictly anaerobic environments. This study presents a particle-scale model for aerobic pig manure/wheat straw composting that incorporates CH4 generation and oxidation kinetics. Parameter estimation revealed that pig manure is characterized by high CH4 yield coefficient (0.6414 mol CH4 mol(-1) Cman) and maximum CH4 oxidation rate (0.0205 mol CH4 kg(-1) VSaero h(-1)). The model accurately predicted CH4 emissions (R(2) = 0.94, RMSE = 2888 ppmv, peak time deviation = 0 h), particularly in the self-heating and cooling phases. During mesophilic and thermophilic stages, a rapid increase of CH4 generation (0.0130 mol CH4 kg(-1) VS h(-1)) and methanotroph inactivation were simulated, implying that additional measures should be performed during these phases to mitigate CH4 emissions. Furthermore, CH4 oxidation efficiency was related to oxygen permeation through the composting particles. Reducing the ambient temperature and extending the aeration duration can decrease CH4 emission, but the threshold temperature is required to trigger the self-heating phase. These findings provide insights into CH4 emission during composting and may inform responsible strategies to counteract climate change. PMID:27045933

  3. Methane oxidation in a crude oil contaminated aquifer: Delineation of aerobic reactions at the plume fringes

    USGS Publications Warehouse

    Amos, R.T.; Bekins, B.A.; Delin, G.N.; Cozzarelli, I.M.; Blowes, D.W.; Kirshtein, J.D.

    2011-01-01

    High resolution direct-push profiling over short vertical distances was used to investigate CH4 attenuation in a petroleum contaminated aquifer near Bemidji, Minnesota. The contaminant plume was delineated using dissolved gases, redox sensitive components, major ions, carbon isotope ratios in CH4 and CO2, and the presence of methanotrophic bacteria. Sharp redox gradients were observed near the water table. Shifts in ??13CCH4 from an average of - 57.6??? (?? 1.7???) in the methanogenic zone to - 39.6??? (?? 8.7???) at 105 m downgradient, strongly suggest CH4 attenuation through microbially mediated degradation. In the downgradient zone the aerobic/anaerobic transition is up to 0.5 m below the water table suggesting that transport of O2 across the water table is leading to aerobic degradation of CH4 at this interface. Dissolved N2 concentrations that exceeded those expected for water in equilibrium with the atmosphere indicated bubble entrapment followed by preferential stripping of O2 through aerobic degradation of CH4 or other hydrocarbons. Multivariate and cluster analysis were used to distinguish between areas of significant bubble entrapment and areas where other processes such as the infiltration of O 2 rich recharge water were important O2 transport mechanisms. ?? 2011 Elsevier B.V. All rights reserved.

  4. Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells.

    PubMed Central

    Alvarez-Cohen, L; McCarty, P L

    1991-01-01

    The rate and capacity for chloroform (CF) and trichloroethylene (TCE) transformation by a mixed methanotrophic culture of resting cells (no exogenous energy source) and formate-fed cells were measured. As reported previously for TCE, formate addition resulted in an increased CF transformation rate (0.35 day-1 for resting cells and 1.5 day-1 for formate-fed cells) and transformation capacity (0.0065 mg of CF per mg of cells for resting cells and 0.015 mg of CF per mg of cells for formate-fed cells), suggesting that depletion of energy stores affects transformation behavior. The observed finite transformation capacity, even with an exogenous energy source, suggests that toxicity was also a factor. CF transformation capacity was significantly lower than that for TCE, suggesting a greater toxicity from CF transformation. The toxicity of CF, TCE, and their transformation products to whole cells was evaluated by comparing the formate oxidation activity of acetylene-treated cells to that of non-acetylene-treated cells with and without prior exposure to CF or TCE. Acetylene arrests the activity of methane monooxygenase in CF and TCE oxidation without halting cell activity toward formate. Significantly diminished formate oxidation by cells exposed to either CR or TCE without acetylene compared with that with acetylene suggests that the solvents themselves were not toxic under the experimental conditions but their transformation products were. The concurrent transformation of CF and TCE by resting cells was measured, and results were compared with predictions from a competitive-inhibition cometabolic transformation model. The reasonable fit between model predictions and experimental observations was supportive of model assumptions. PMID:1905516

  5. Sequential anaerobic/aerobic biotreatment of bark leachate.

    PubMed

    Frigon, J C; Cimpoia, R; Guiot, S R

    2003-01-01

    Bark leachate is generated from sawmill operations such as log storage sites and contains polymeric tannins, carbohydrates, organic acids, phenolic and resin compounds. The present study was aimed at assessing the performance of a sequential anaerobic and aerobic treatment, for both chemical oxygen demand (COD) and phenol removal, under various combinations of operational conditions, in the continuous mode. After anaerobic treatment in a five litres upflow anaerobic sludge bed (UASB) reactor, the leachate was directed into two parallel aerobic reactors, either an activated sludge unit or a fixed film submerged filter (packed with polyethylene Flexirings), both of a volume of one litre and oxygenated by air diffusion. For a leachate of 22 gCOD/l, an overall COD removal of 96-98% was achieved at an hydraulic residence time (HRT) of 4 days for the anaerobic reactor and one day for either aerobic systems. The phenol concentration generally increased after anaerobic treatment but was below the detection limit (50 ppb) after aerobic polishing. Radiorespirometric microcosms with 14C-labelled phenol confirmed that phenol was mineralized in the aerobic reactors. The performances of both aerobic systems were similar for COD and phenol removal. Thus, a sequential anaerobic/aerobic treatment was able to effectively address the contamination of a bark leachate discharge, including phenols. PMID:14640219

  6. The mechanistic basis of aerobic performance variation in red junglefowl.

    PubMed

    Hammond, K A; Chappell, M A; Cardullo, R A; Lin, R; Johnsen, T S

    2000-07-01

    We examined aerobic performance, organ and muscle mass and enzymatic activity in red junglefowl (Gallus gallus). We tested three models of performance limitation (central limits, peripheral limits, symmorphosis) and explored relationships between basal metabolic rate (BMR), aerobic capacity ( V (O2max)) and social rank. Males had a lower BMR, a higher V (O2max) and a greater aerobic scope than females. Females possessed larger peritoneal and reproductive organs, while males had larger hearts, lungs and leg muscles. In females, BMR was correlated with spleen mass and V (O2max) was correlated with hematocrit and large intestine mass. Male BMR was correlated with intestinal tract and lung mass, and V (O2max) was correlated with heart and pectoralis mass. Male citrate synthase activity averaged 57 % higher than that of females and was correlated with V (O2max) (this correlation was not significant in females). Female social status was not correlated with any variable, but male dominance was associated with higher aerobic scope, larger heart and lungs, smaller peritoneal organs and greater leg citrate synthase activity. We conclude that aerobic capacity is controlled by system-wide limitations (symmorphosis) in males, while in females it is controlled by central organs. In neither sex is elevated aerobic capacity associated with increased maintenance costs. PMID:10851122

  7. [Depth Profiles of Methane Oxidation Kinetics and the Related Methanotrophic Community in a Simulated Landfill Cover].

    PubMed

    Xing, Zhi-lin; Zhao, Tian-tao; Gao, Yan-hui; He, Zhi; Yang, Xu; Peng, Xu-ya

    2015-11-01

    Simulated landfill cover with real time online monitoring system was developed using cover soils. Then the system started and the concentrations of bio-gas in various depths were continuously monitored, and it was found that the system ran continually and stably after 2-3 h when methane flux changed. After that, the relationship between regularity of methane oxidation and methane flux in landfill cover was analyzed. The results indicated that concentration of oxygen decreased with increasing methane flux when the depth was deeper than 20 cm, and no obvious correlation between oxygen concentration in landfill cover surface and methane flux, however, methane oxidation rate showed positive correlation with methane flux in various depths (range of R2 was 0.851-0.999). Kinetics of CH4 oxidation in landfill cover was fitted by CH4 -O2 dual-substrate model (range of R2 was 0.902-0.955), the half-saturation constant K(m) increasing with depth was 0.157-0.729 in dynamic condition. Finally, methanotrophs community structure in original cover soil sample and that in simulated landfill cover were investigated by high-throughout sequencing technology, and the statistics indicated that the abundance and species of methanotrophs in simulated landfill cover significantly increased compared with those in original cover soil sample, and type I methanotrophs including Methylobacter and Methylophilaceae and type II methanotrophs Methylocystis were dominant species. PMID:26911022

  8. Aerobic workout and bone mass in females.

    PubMed

    Alfredson, H; Nordström, P; Lorentzon, R

    1997-12-01

    This cross-sectional study aimed to investigate bone mass in females participating in aerobic workout. Twenty-three females (age 24.1 +/- 2.7 years), participating in aerobic workout for about 3 hours/week, were compared with 23 age-, weight- and height-matched non-active females. Areal bone mineral density (BMD) was measured in total body, head, whole dominant humerus, lumbar spine, right femoral neck, Ward's triangle, trochanter femoris, in specific sites in right femur diaphysis, distal femur, proximal tibia and tibial diaphysis, and bone mineral content (BMC) was measured in the whole dominant arm and right leg, using dual energy X-ray absorptiometry. The aerobic workout group had significantly (P < 0.05-0.01) higher BMD in total body (3.7%), lumbar spine (7.8%), femoral neck (11.6%), Ward's triangle (11.7%), trochanter femoris (9.6%), proximal tibia (6.8%) and tibia diaphysis (5.9%) compared to the non-active controls. There were no differences between the groups concerning BMD of the whole dominant humerus, femoral diaphysis, distal femur and BMC and lean mass of the whole dominant arm and right leg. Leaness of the whole dominant arm and leg was correlated to BMC of the whole dominant arm and right leg in both groups. In young females, aerobic workout containing alternating high and low impact movements for the lower body is associated with a higher bone mass in clinically important sites like the lumbar spine and hip, but muscle strengthening exercises like push-ups and soft-glove boxing are not associated with a higher bone mass in the dominant humerus. It appears that there is a skeletal adaptation to the loads of the activity. PMID:9458499

  9. Physiological and functional diversity of phenol degraders isolated from phenol-grown aerobic granules: Phenol degradation kinetics and trichloroethylene co-metabolic activities.

    PubMed

    Zhang, Yi; Tay, Joo Hwa

    2016-03-15

    Aerobic granule is a novel form of microbial aggregate capable of degrading toxic and recalcitrant substances. Aerobic granules have been formed on phenol as the growth substrate, and used to co-metabolically degrade trichloroethylene (TCE), a synthetic solvent not supporting aerobic microbial growth. Granule formation process, rate limiting factors and the comprehensive toxic effects of phenol and TCE had been systematically studied. To further explore their potential at the level of microbial population and functions, phenol degraders were isolated and purified from mature granules in this study. Phenol and TCE degradation kinetics of 15 strains were determined, together with their TCE transformation capacities and other physiological characteristics. Isolation in the presence of phenol and TCE exerted stress on microbial populations, but the procedure was able to preserve their diversity. Wide variation was found with the isolates' kinetic behaviors, with the parameters often spanning 3 orders of magnitude. Haldane kinetics described phenol degradation well, and the isolates exhibited actual maximum phenol-dependent oxygen utilization rates of 9-449 mg DO g DW(-1) h(-1), in phenol concentration range of 4.8-406 mg L(-1). Both Michaelis-Menten and Haldane types were observed for TCE transformation, with the actual maximum rate of 1.04-21.1 mg TCE g DW(-1) h(-1) occurring between TCE concentrations of 0.42-4.90 mg L(-1). The TCE transformation capacities and growth yields on phenol ranged from 20-115 mg TCE g DW(-1) and 0.46-1.22 g DW g phenol(-1), respectively, resulting in TCE transformation yields of 10-70 mg TCE g phenol(-1). Contact angles of the isolates were between 34° and 82°, suggesting both hydrophobic and hydrophilic cell surface. The diversity in the isolates is a great advantage, as it enables granules to be versatile and adaptive under different operational conditions. PMID:26720328

  10. Test Plan for Methanotrophic Bioreactor at Savannah River Site-TNX

    SciTech Connect

    Berry, C.J.

    1994-10-04

    The primary purpose of this project is to demonstrate the feasibility and practicality of operating a methanotrophic mobile trickle filter bioreactor (MMB) unit to effectively reduce or eliminate trichloroethylene (TCE) and associated hydrocarbons from contaminated groundwater. The two-column trickle filter system can process 1.67 gallons per minute (gpm) of contaminated groundwater. During this project, the pilot system will evaluate, optimize, and demonstrate methanotrophic treatment technology (MTT). The mobile system will receive a 1--4% methane to air mixture for stimulating the methanotrophic TCE degrading bacteria, thereby increasing the rates of degradation of these contaminants. This project will also evaluate the efficacy of different bacteria for degrading TCE for use in the system at the laboratory-scale sample groundwater monitoring wells at TNX and set up the system for continued operation. The trickle filter system may be used to inexpensively treat other small-scale organic waste streams at SRS after the initial start-up. The MTT was demonstrated as an effective and efficient method of degrading TCE in the laboratory and during a field-scale in situ demonstration for degrading TCE in a groundwater plume at SRS. The methanotrophic bacteria increase significantly in population numbers and in the production of methane monooxygenase (MMO), an extremely powerful oxidizer. MMO was demonstrated as effective in oxidizing TCE and other recalcitrant compounds in laboratory studies. In the presence of MMO, TCE is oxidized to TCE-epoxide, which breaks down spontaneously into simple, easily degraded, daughter compounds. The system will receive a 1--4% methane to air mixture, which will effectively grow and maintain the methanotrophic bacteria that will degrade TCE. This demonstration will have broad applications to bioremediating contaminated groundwater systems where in situ bioremediation is not practical.

  11. Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge.

    PubMed

    Lv, Yuancai; Chen, Yuancai; Song, Wenzhe; Hu, Yongyou

    2014-09-15

    Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1-0.2 mgL(-1)) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH4/hg VSS) and aerobic activity (SOUR: 2.21 mMO2/hg VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro-aerobic condition and PCP on microbial community. Furthermore, nucleotide sequencing indicated that the main microorganisms for PCP degradation might be related to Actinobacterium and Sphingomonas. These results provided insights into situ bioremediation of environments contaminated by PCP and had practical implications for the strategies of PCP degradation. PMID:25151236

  12. Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems

    PubMed Central

    Crevecoeur, Sophie; Vincent, Warwick F.; Comte, Jérôme; Lovejoy, Connie

    2015-01-01

    Permafrost thawing leads to the formation of thermokarst ponds that potentially emit CO2 and CH4 to the atmosphere. In the Nunavik subarctic region (northern Québec, Canada), these numerous, shallow ponds become well-stratified during summer. This creates a physico-chemical gradient of temperature and oxygen, with an upper oxic layer and a bottom low oxygen or anoxic layer. Our objective was to determine the influence of stratification and related limnological and landscape properties on the community structure of potentially active bacteria in these waters. Samples for RNA analysis were taken from ponds in three contrasting valleys across a gradient of permafrost degradation. A total of 1296 operational taxonomic units were identified by high throughput amplicon sequencing, targeting bacterial 16S rRNA that was reverse transcribed to cDNA. β-proteobacteria were the dominant group in all ponds, with highest representation by the genera Variovorax and Polynucleobacter. Methanotrophs were also among the most abundant sequences at most sites. They accounted for up to 27% of the total sequences (median of 4.9% for all samples), indicating the importance of methane as a bacterial energy source in these waters. Both oxygenic (cyanobacteria) and anoxygenic (Chlorobi) phototrophs were also well-represented, the latter in the low oxygen bottom waters. Ordination analyses showed that the communities clustered according to valley and depth, with significant effects attributed to dissolved oxygen, pH, dissolved organic carbon, and total suspended solids. These results indicate that the bacterial assemblages of permafrost thaw ponds are filtered by environmental gradients, and are complex consortia of functionally diverse taxa that likely affect the composition as well as magnitude of greenhouse gas emissions from these abundant waters. PMID:25926816

  13. Genome Sequence of the Arctic Methanotroph Methylobacter tundripaludum SV96

    SciTech Connect

    Svenning, Mette M; Hestnes, Anne Grethe; Wartiainen, Ingvild; Stein, Lisa Y.; Klotz, Martin G; Kalyuzhnaya, Marina G.; Spang, Anja; Bringel, Francoise O.; Vuilleumier, Stephane; Lajus, Aurelie; Cheng, Jan-Fang; Goodwin, Lynne A.; Ivanova, N; Han, James; Han, Cliff; Hauser, Loren John; Held, Brittany; Land, Miriam L; Lapidus, Alla L.; Lucas, Susan; Nolan, Matt; Pitluck, Sam; Woyke, Tanja

    2011-01-01

    Methylobacter tundripaludum SV96(T) (ATCC BAA-1195) is a psychrotolerant aerobic methane-oxidizing gammaproteobacterium (Methylococcales, Methylococcaceae) living in High Arctic wetland soil. The strain was isolated from soil harvested in July 1996 close to the settlement Ny-Alesund, Svalbard, Norway (78 degrees 56'N, 11 degrees 53'E), and described as a novel species in 2006. The genome includes pmo and pxm operons encoding copper membrane monooxygenases (Cu-MMOs), genes required for nitrogen fixation, and the nirS gene implicated in dissimilatory nitrite reduction to NO but no identifiable inventory for further processing of nitrogen oxides. These genome data provide the basis to investigate M. tundripaludum SV96, identified as a major player in the biogeochemistry of Arctic environments.

  14. Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE

    SciTech Connect

    Hazen, Terry C.; Chakraborty, Romy; Fleming, James M.; Gregory, Ingrid R.; Bowman, John P.; Jimenez, Luis; Zhang, Dai; Pfiffner, Susan M.; Brockman, Fred J.; Sayler, Gary S.

    2009-03-15

    Gene probe hybridization was used to determine distribution and expression of co-metabolic genes at a contaminated site as it underwent in situ methanotrophic bioremediation of trichloroethylene (TCE). The bioremediation strategies tested included a series of air, air:methane, and air:methane:nutrient pulses of the test plot using horizontal injection wells. During the test period, the levels of TCE reduced drastically in almost all test samples. Sediment core samples (n = 367) taken from 0 m (surface)-43 m depth were probed for gene coding for methanotrophic soluble methane monooxygenase (sMMO) and heterotrophic toluene dioxygenase (TOD), which are known to co-metabolize TCE. The same sediment samples were also probed for genes coding for methanol dehydrogenase (MDH) (catalyzing the oxidation of methanol to formaldehyde) to assess specifically changes in methylotrophic bacterial populations in the site. Gene hybridization results showed that the frequency of detection of sMMO genes were stimulated approximately 250% following 1% methane:air (v/v) injection. Subsequent injection of 4% methane:air (v/v) resulted in an 85% decline probably due to nutrient limitations, since addition of nutrients (gaseous nitrogen and phosphorus) thereafter caused an increase in the frequency of detection of sMMO genes. Detection of TOD genes declined during the process, and eventually they were non-detectable by the final treatment, suggesting that methanotrophs displaced the TOD gene containing heterotrophs. Active transcription of sMMO and TOD was evidenced by hybridization to mRNA. These analyses combined with results showing the concomitant decline in TCE concentrations, increases in chloride concentration and increases in methanotroph viable counts, provide multiple lines of evidence that TCE remediation was caused specifically by methanotrophs. Our results suggest that sMMO genes are responsible for most, if not all, of the observed biodegradation of TCE. This study

  15. Low energy emulsion-based fermentation enabling accelerated methane mass transfer and growth of poly(3-hydroxybutyrate)-accumulating methanotrophs.

    PubMed

    Myung, Jaewook; Kim, Minkyu; Pan, Ming; Criddle, Craig S; Tang, Sindy K Y

    2016-05-01

    Methane is a low-cost feedstock for the production of polyhydroxyalkanoate biopolymers, but methanotroph fermentations are limited by the low solubility of methane in water. To enhance mass transfer of methane to water, vigorous mixing or agitation is typically used, which inevitably increases power demand and operational costs. This work presents a method for accelerating methane mass transfer without agitation by growing methanotrophs in water-in-oil emulsions, where the oil has a higher solubility for methane than water does. In systems without agitation, the growth rate of methanotrophs in emulsions is five to six times that of methanotrophs in the medium-alone incubations. Within seven days, cells within the emulsions accumulate up to 67 times more P3HB than cells in the medium-alone incubations. This is achieved due to the increased interfacial area of the aqueous phase, and accelerated methane diffusion through the oil phase. PMID:26896714

  16. Physical Activity (Exercise)

    MedlinePlus

    ... fitness. Your fitness routine should include aerobic and strength-training activities, and may also include stretching activities. Aerobic ... Examples include walking, jogging, bicycling, swimming, and tennis. Strength-training activities These activities increase the strength and endurance ...

  17. We Huff and Puff: The Parameters and the Program of Aerobics for Children under Five.

    ERIC Educational Resources Information Center

    Eastman, Wayne

    In today's society, young children have few experiences with aerobic activities, a pattern of exercise traditionally reserved for adults. This paper discusses how aerobic exercises can be used in a preschool environment, arguing that such activities are best presented using a thematic approach so that young children can form impressions about…

  18. Mood alterations in mindful versus aerobic exercise modes.

    PubMed

    Netz, Yael; Lidor, Ronnie

    2003-09-01

    The results of most recent studies have generally indicated an improvement in mood after participation in aerobic exercise. However, only a few researchers have compared mindful modes of exercise with aerobic exercise to examine the effect of 1 single session of exercise on mood. In the present study, the authors assessed state anxiety, depressive mood, and subjective well-being prior to and following 1 class of 1 of 4 exercise modes: yoga, Feldenkrais (awareness through movement), aerobic dance, and swimming; a computer class served as a control. Participants were 147 female general curriculum and physical education teachers (mean age = 40.15, SD = 0.2) voluntarily enrolled in a 1-year enrichment program at a physical education college. Analyses of variance for repeated measures revealed mood improvement following Feldenkrais, swimming, and yoga but not following aerobic dance and computer lessons. Mindful low-exertion activities as well as aerobic activities enhanced mood in 1 single session of exercise. The authors suggest that more studies assessing the mood-enhancing benefits of mindful activities such as Feldenkrais and yoga are needed. PMID:14629072

  19. Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with high hydroxyvalerate content.

    PubMed

    Cal, Andrew J; Sikkema, W Dirk; Ponce, Maria I; Franqui-Villanueva, Diana; Riiff, Timothy J; Orts, William J; Pieja, Allison J; Lee, Charles C

    2016-06-01

    Type II methanotrophic bacteria are a promising production platform for PHA biopolymers. These bacteria are known to produce pure poly-3-hydroxybutyrate homopolymer (PHB). We isolated a strain, Methylocystis sp. WRRC1, that was capable of producing a wide range of polyhydroxybutyrate-co-hydroxyvalerate copolymers (PHB-co-HV) when co-fed methane and valerate or n-pentanol. The ratio of HB to HV monomer was directly related to the concentration of valeric acid in the PHA accumulation media. We observed increased incorporation of HV and total polymer under copper-free growth conditions. The PHB-co-HV copolymers produced had decreased melting temperatures and crystallinity compared with methanotroph-produced PHB. PMID:26920242

  20. A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation.

    PubMed

    Strong, P J; Kalyuzhnaya, M; Silverman, J; Clarke, W P

    2016-09-01

    Methane, a carbon source for methanotrophic bacteria, is the principal component of natural gas and is produced during anaerobic digestion of organic matter (biogas). Methanotrophs are a viable source of single cell protein (feed supplement) and can produce various products, since they accumulate osmolytes (e.g. ectoine, sucrose), phospholipids (potential biofuels) and biopolymers (polyhydroxybutyrate, glycogen), among others. Other cell components, such as surface layers, metal chelating proteins (methanobactin), enzymes (methane monooxygenase) or heterologous proteins hold promise as future products. Here, scenarios are presented where ectoine, polyhydroxybutyrate or protein G are synthesised as the primary product, in conjunction with a variety of ancillary products that could enhance process viability. Single or dual-stage processes and volumetric requirements for bioreactors are discussed, in terms of an annual biomass output of 1000 tonnesyear(-1). Product yields are discussed in relation to methane and oxygen consumption and organic waste generation. PMID:27146469

  1. Deciphering Community Structure of Methanotrophs Dwelling in Rice Rhizospheres of an Indian Rice Field Using Cultivation and Cultivation-Independent Approaches.

    PubMed

    Pandit, Pranitha S; Rahalkar, Monali C; Dhakephalkar, Prashant K; Ranade, Dilip R; Pore, Soham; Arora, Preeti; Kapse, Neelam

    2016-04-01

    Methanotrophs play a crucial role in filtering out methane from habitats, such as flooded rice fields. India has the largest area under rice cultivation in the world; however, to the best of our knowledge, methanotrophs have not been isolated and characterized from Indian rice fields. A cultivation strategy composing of a modified medium, longer incubation time, and serial dilutions in microtiter plates was used to cultivate methanotrophs from a rice rhizosphere sample from a flooded rice field in Western India. We compared the cultured members with the uncultured community as revealed by three culture-independent methods. A novel type Ia methanotroph (Sn10-6), at the rank of a genus, and a putative novel species of a type II methanotroph (Sn-Cys) were cultivated from the terminal positive dilution (10(-6)). From lower dilution (10(-4)), a strain of Methylomonas spp. was cultivated. All the three culture-independent analyses, i.e., pmoA clone library, terminal restriction fragment length polymorphism (T-RFLP), and metagenomics approach, revealed the dominance of type I methanotrophs. Only metagenomic analysis showed significant presence of type II methanotrophs, albeit in lower proportion (37 %). All the three isolates showed relevance to the methanotrophic community as depicted by uncultured methods; however, the cultivated members might not be the most dominant ones. In conclusion, a combined cultivation and cultivation-independent strategy yielded us a broader picture of the methanotrophic community from rice rhizospheres of a flooded rice field in India. PMID:26547567

  2. Draft genome sequences of gammaproteobacterial methanotrophs isolated from lake washington sediment.

    PubMed

    Kalyuzhnaya, Marina G; Lamb, Andrew E; McTaggart, Tami L; Oshkin, Igor Y; Shapiro, Nicole; Woyke, Tanja; Chistoserdova, Ludmila

    2015-01-01

    The genomes of Methylosarcina lacus LW14(T) (=ATCC BAA-1047(T) = JCM 13284(T)), Methylobacter sp. strain 21/22, Methylobacter sp. strain 31/32, Methylomonas sp. strain LW13, Methylomonas sp. strain MK1, and Methylomonas sp. strain 11b were sequenced and are reported here. All the strains are obligately methanotrophic bacteria isolated from the sediment of Lake Washington. PMID:25767239

  3. Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Lake Washington Sediment

    PubMed Central

    Lamb, Andrew E.; McTaggart, Tami L.; Oshkin, Igor Y.; Shapiro, Nicole; Woyke, Tanja; Chistoserdova, Ludmila

    2015-01-01

    The genomes of Methylosarcina lacus LW14T (=ATCC BAA-1047T = JCM 13284T), Methylobacter sp. strain 21/22, Methylobacter sp. strain 31/32, Methylomonas sp. strain LW13, Methylomonas sp. strain MK1, and Methylomonas sp. strain 11b were sequenced and are reported here. All the strains are obligately methanotrophic bacteria isolated from the sediment of Lake Washington. PMID:25767239

  4. Expanding the Verrucomicrobial Methanotrophic World: Description of Three Novel Species of Methylacidimicrobium gen. nov.

    PubMed Central

    van Teeseling, Muriel C. F.; Pol, Arjan; Harhangi, Harry R.; van der Zwart, Sietse; Jetten, Mike S. M.; van Niftrik, Laura

    2014-01-01

    Methanotrophic Verrucomicrobia have been found in geothermal environments characterized by high temperatures and low pH values. However, it has recently been hypothesized that methanotrophic Verrucomicrobia could be present under a broader range of environmental conditions. Here we describe the isolation and characterization of three new species of mesophilic acidophilic verrucomicrobial methanotrophs from a volcanic soil in Italy. The three new species showed 97% to 98% 16S rRNA gene identity to each other but were related only distantly (89% to 90% on the 16S rRNA level) to the thermophilic genus Methylacidiphilum. We propose the new genus Methylacidimicrobium, including the novel species Methylacidimicrobium fagopyrum, Methylacidimicrobium tartarophylax, and Methylacidimicrobium cyclopophantes. These mesophilic Methylacidimicrobium spp. were more acid tolerant than their thermophilic relatives; the most tolerant species, M. tartarophylax, still grew at pH 0.5. The variation in growth temperature optima (35 to 44°C) and maximum growth rates (µmax; 0.013 to 0.040 h−1) suggested that all species were adapted to a specific niche within the geothermal environment. All three species grew autotrophically using the Calvin cycle. The cells of all species contained glycogen particles and electron-dense particles in their cytoplasm as visualized by electron microscopy. In addition, the cells of one of the species (M. fagopyrum) contained intracytoplasmic membrane stacks. The discovery of these three new species and their growth characteristics expands the known diversity of verrucomicrobial methanotrophs and shows that they are present in many more ecosystems than previously assumed. PMID:25172849

  5. Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov.

    PubMed

    van Teeseling, Muriel C F; Pol, Arjan; Harhangi, Harry R; van der Zwart, Sietse; Jetten, Mike S M; Op den Camp, Huub J M; van Niftrik, Laura

    2014-11-01

    Methanotrophic Verrucomicrobia have been found in geothermal environments characterized by high temperatures and low pH values. However, it has recently been hypothesized that methanotrophic Verrucomicrobia could be present under a broader range of environmental conditions. Here we describe the isolation and characterization of three new species of mesophilic acidophilic verrucomicrobial methanotrophs from a volcanic soil in Italy. The three new species showed 97% to 98% 16S rRNA gene identity to each other but were related only distantly (89% to 90% on the 16S rRNA level) to the thermophilic genus Methylacidiphilum. We propose the new genus Methylacidimicrobium, including the novel species Methylacidimicrobium fagopyrum, Methylacidimicrobium tartarophylax, and Methylacidimicrobium cyclopophantes. These mesophilic Methylacidimicrobium spp. were more acid tolerant than their thermophilic relatives; the most tolerant species, M. tartarophylax, still grew at pH 0.5. The variation in growth temperature optima (35 to 44°C) and maximum growth rates (µmax; 0.013 to 0.040 h(-1)) suggested that all species were adapted to a specific niche within the geothermal environment. All three species grew autotrophically using the Calvin cycle. The cells of all species contained glycogen particles and electron-dense particles in their cytoplasm as visualized by electron microscopy. In addition, the cells of one of the species (M. fagopyrum) contained intracytoplasmic membrane stacks. The discovery of these three new species and their growth characteristics expands the known diversity of verrucomicrobial methanotrophs and shows that they are present in many more ecosystems than previously assumed. PMID:25172849

  6. Relative importance of aerobic versus resistance training for healthy aging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review will focus on the importance of aerobic and resistance modes of physical activity for healthy aging as supported by findings in 2007. In line with public health recommendations, several studies in 2007 employed an exercise paradigm that combined both modes of physical activity. While a...

  7. Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil.

    PubMed

    Han, Ji-Sun; Ahn, Chang-Min; Mahanty, Biswanath; Kim, Chang-Gyun

    2013-11-01

    Using a methanotrophic consortium (that includes Methylosinus sporium NCIMB 11126, Methylosinus trichosporium OB3b, and Methylococcus capsulatus Bath) isolated from a landfill site, the potential for partial oxidation of methane into methanol through selective inhibition of methanol dehydrogenase (MDH) over soluble methane monooxygenase (sMMO) with some selected MDH inhibitors at varied concentration range, was evaluated in batch serum bottle and bioreactor experiments. Our result suggests that MDH activity could effectively be inhibited either at 40 mM of phosphate, 100 mM of NaCl, 40 mM of NH4Cl or 50 μM of EDTA with conversion ratios (moles of CH3OH produced per mole CH4 consumed) of 58, 80, 80, and 43 %, respectively. The difference between extent of inhibition in MDH activity and sMMO activity was significantly correlated (n = 6, p < 0.05) with resultant methane to methanol conversion ratio. In bioreactor study with 100 mM of NaCl, a maximum specific methanol production rate of 9 μmol/mg h was detected. A further insight with qPCR analysis of MDH and sMMO coding genes revealed that the gene copy number continued to increase along with biomass during reactor operation irrespective of presence or absence of inhibitor, and differential inhibition among two enzymes was rather the key for methanol production. PMID:23963715

  8. Are Symbiotic Methanotrophs Key Microbes for N Acquisition in Paddy Rice Root?

    PubMed

    Minamisawa, Kiwamu; Imaizumi-Anraku, Haruko; Bao, Zhihua; Shinoda, Ryo; Okubo, Takashi; Ikeda, Seishi

    2016-03-26

    The relationships between biogeochemical processes and microbial functions in rice (Oryza sativa) paddies have been the focus of a large number of studies. A mechanistic understanding of methane-nitrogen (CH4-N) cycle interactions is a key unresolved issue in research on rice paddies. This minireview is an opinion paper for highlighting the mechanisms underlying the interactions between biogeochemical processes and plant-associated microbes based on recent metagenomic, metaproteomic, and isotope analyses. A rice symbiotic gene, relevant to rhizobial nodulation and mycorrhization in plants, likely accommodates diazotrophic methanotrophs or the associated bacterial community in root tissues under low-N fertilizer management, which may permit rice plants to acquire N via N2 fixation. The amount of N fixed in rice roots was previously estimated to be approximately 12% of plant N based on measurements of (15)N natural abundance in a paddy field experiment. Community analyses also indicate that methanotroph populations in rice roots are susceptible to environmental conditions such as the microclimate of rice paddies. Therefore, CH4 oxidation by methanotrophs is a driving force in shaping bacterial communities in rice roots grown in CH4-rich environments. Based on these findings, we propose a hypothesis with unanswered questions to describe the interplay between rice plants, root microbiomes, and their biogeochemical functions (CH4 oxidation and N2 fixation). PMID:26960961

  9. Analyses of Methanobactin, a Novel Copper-Binding Compound, or Chalkophore, from Methanotrophs

    NASA Astrophysics Data System (ADS)

    Semrau, J. D.; Yoon, S.; Dispirito, A.; Kraemer, S.

    2009-12-01

    Methanotrophs, cells that utilize methane as their sole carbon and energy source are known to have high requirements for copper. Many of these cells are known to synthesize a copper-chelating agent, or chalkophore, termed methanobactin that appears integral to copper uptake. Structural analyses indicate that methanobactin is a small chromopeptide that binds copper utilizing two alkylidene oxazolone rings. Using a suite of spectrophotemetric and calorimetry analyses, it was discovered that methanobactin preferentially binds copper, but also binds other metals, including gold, forming gold nanoparticles. To screen methanobactin production by methanotrophs, as well as to determine if other cells make chalkophores, a plate assay developed from the Chromo Azurol S (CAS) assay for siderophore production, was modified. In the standard CAS assay, a color change in CAS plate is observed as iron (III) ion weakly bound to CAS is taken up by siderophores. In our modified assay, iron (III) chloride of the initial CAS solution was substituted with copper(II) chloride. Assay results indicated that of the four tested methanotrophs (Methylomicrobium album BG8, Methylosinus trichosporium OB3b, Methylococcus capsulatus Bath, and Methylocystis parvus OBBP), only M. album BG8, M. trichosporium OB3b, and M. capsulatus produced methanobactin, while M. parvus OBBP did not. The assay can be easily adopted for detection of chalkophores in other microorganisms and detection as well as for screening of putative mutants of chalkophore synthesis.

  10. Are Symbiotic Methanotrophs Key Microbes for N Acquisition in Paddy Rice Root?

    PubMed Central

    Minamisawa, Kiwamu; Imaizumi-Anraku, Haruko; Bao, Zhihua; Shinoda, Ryo; Okubo, Takashi; Ikeda, Seishi

    2016-01-01

    The relationships between biogeochemical processes and microbial functions in rice (Oryza sativa) paddies have been the focus of a large number of studies. A mechanistic understanding of methane–nitrogen (CH4–N) cycle interactions is a key unresolved issue in research on rice paddies. This minireview is an opinion paper for highlighting the mechanisms underlying the interactions between biogeochemical processes and plant-associated microbes based on recent metagenomic, metaproteomic, and isotope analyses. A rice symbiotic gene, relevant to rhizobial nodulation and mycorrhization in plants, likely accommodates diazotrophic methanotrophs or the associated bacterial community in root tissues under low-N fertilizer management, which may permit rice plants to acquire N via N2 fixation. The amount of N fixed in rice roots was previously estimated to be approximately 12% of plant N based on measurements of 15N natural abundance in a paddy field experiment. Community analyses also indicate that methanotroph populations in rice roots are susceptible to environmental conditions such as the microclimate of rice paddies. Therefore, CH4 oxidation by methanotrophs is a driving force in shaping bacterial communities in rice roots grown in CH4-rich environments. Based on these findings, we propose a hypothesis with unanswered questions to describe the interplay between rice plants, root microbiomes, and their biogeochemical functions (CH4 oxidation and N2 fixation). PMID:26960961

  11. Evaluation and update of cutoff values for methanotrophic pmoA gene sequences.

    PubMed

    Wen, Xi; Yang, Sizhong; Liebner, Susanne

    2016-09-01

    The functional pmoA gene is frequently used to probe the diversity and phylogeny of methane-oxidizing bacteria (MOB) in various environments. Here, we compared the similarities between the pmoA gene and the corresponding 16S rRNA gene sequences of 77 described species covering gamma- and alphaproteobacterial methanotrophs (type I and type II MOB, respectively) as well as methanotrophs from the phylum Verrucomicrobia. We updated and established the weighted mean pmoA gene cutoff values on the nucleotide level at 86, 82, and 71 % corresponding to the 97, 95, and 90 % similarity of the 16S rRNA gene. Based on these cutoffs, the functional gene fragments can be entirely processed at the nucleotide level throughout software platforms such as Mothur or QIIME which provide a user-friendly and command-based alternative to amino acid-based pipelines. Type II methanotrophs are less divergent than type I both with regard to ribosomal and functional gene sequence similarity and GC content. We suggest that this agrees with the theory of different life strategies proposed for type I and type II MOB. PMID:27098810

  12. Aerobic and anaerobic cellulase production by Cellulomonas uda.

    PubMed

    Poulsen, Henrik Vestergaard; Willink, Fillip Wolfgang; Ingvorsen, Kjeld

    2016-10-01

    Cellulomonas uda (DSM 20108/ATCC 21399) is one of the few described cellulolytic facultative anaerobes. Based on these characteristics, we initiated a physiological study of C. uda with the aim to exploit it for cellulase production in simple bioreactors with no or sporadic aeration. Growth, cellulase activity and fermentation product formation were evaluated in different media under both aerobic and anaerobic conditions and in experiments where C. uda was exposed to alternating aerobic/anaerobic growth conditions. Here we show that C. uda behaves as a true facultative anaerobe when cultivated on soluble substrates such as glucose and cellobiose, but for reasons unknown cellulase activity is only induced under aerobic conditions on insoluble cellulosic substrates and not under anaerobic conditions. These findings enhance knowledge on the limited number of described facultative cellulolytic anaerobes, and in addition it greatly limits the utility of C. uda as an 'easy to handle' cellulase producer with low aeration demands. PMID:27154570

  13. Effect of trichloroethylene and tetrachloroethylene on methane oxidation and community structure of methanotrophic consortium.

    PubMed

    Choi, Sun-Ah; Lee, Eun-Hee; Cho, Kyung-Suk

    2013-01-01

    The methane oxidation rate and community structure of a methanotrophic consortium were analyzed to determine the effects of trichloroethylene (TCE) and tetrachloroethylene (PCE) on methane oxidation. The maximum methane oxidation rate (Vmax ) of the consortium was 326.8 μmol·g-dry biomass(-1)·h(-1), and it had a half-saturation constant (Km ) of 143.8 μM. The addition of TCE or PCE resulted in decreased methane oxidation rates, which were decreased from 101.73 to 5.47-24.64 μmol·g-dry biomass(-1)·h(-1) with an increase in the TCE-to-methane ratio, and to 61.95-67.43 μmol·g-dry biomass(-1)·h(-1) with an increase in the PCE-to-methane ratio. TCE and PCE were non-competitive inhibitors for methane oxidation, and their inhibition constants (Ki ) were 33.4 and 132.0 μM, respectively. When the methanotrophic community was analyzed based on pmoA using quantitative real-time PCR (qRT-PCR), the pmoA gene copy numbers were shown to decrease from 7.3 ± 0.7 × 10(8) to 2.1-5.0 × 10(7) pmoA gene copy number · g-dry biomass(-1) with an increase in the TCE-to-methane ratio and to 2.5-7.0 × 10(7) pmoA gene copy number · g-dry biomass(-1) with an increase in the PCE-to-methane ratio. Community analysis by microarray demonstrated that Methylocystis (type II methanotrophs) were the most abundant in the methanotrophic community composition in the presence of TCE. These results suggest that toxic effects caused by TCE and PCE change not only methane oxidation rates but also the community structure of the methanotrophic consortium. PMID:23947712

  14. The effects of cadence, impact, and step on physiological responses to aerobic dance exercise.

    PubMed

    Darby, L A; Browder, K D; Reeves, B D

    1995-09-01

    The physiological responses to aerobic dance exercise of varied impact (high, low), step (less arm movement vs. more arm movement), and cadence (124 vs. 138 beats.min-1) were investigated. Experienced, female aerobic dancers (N = 16) performed activities that combined the levels of impact and step for 3 trials of 8-min each. Dependent variables included heart rate, percentage of maximal heart rate, oxygen consumption, percentage of maximal oxygen consumption, and respiratory exchange ratio. Repeated measures analyses of variance indicated a significant Impact x Step interaction whereby oxygen consumption was greater for the high impact-less arm movement activity (jog), while the low impact-more arm movement activity (power jack) was greater for heart rate. The interaction of aerobic dance characteristics (e.g., impact, arm movement) that may alter physiological responses to aerobic dance exercise should be identified in future aerobic dance routines and studies. PMID:7481084

  15. The symbiotic nitrogen fixation regulatory operon (fixRnifA) of Bradyrhizobium japonicum is expressed aerobically and is subject to a novel, nifA-independent type of activation.

    PubMed Central

    Thöny, B; Fischer, H M; Anthamatten, D; Bruderer, T; Hennecke, H

    1987-01-01

    The Bradyrhizobium japonicum N2 fixation regulatory gene, nifA, was sequenced and its transcription start site determined. Between the start of transcription and the nifA gene an open reading frame of 278 codons was found and named fixR. A deletion in fixR which allowed transcription into nifA resulted in a 50% reduced Fix activity. The fixRnifA operon was expressed in soybean root nodules, in cultures grown anaerobically with nitrate as terminal electron acceptor, in microaerobic cultures, and in aerobic cultures. The transcription start site (+1) was preceded by a characteristic nif(-24/-12)-type promoter consensus sequence. Double base-pair exchanges in the -12 but not in the -24 region resulted in a 'promoter-down' phenotype. A promoter-upstream DNA region between -50 and -148 was essential for maximal promoter activity. Expression from the promoter was not dependent on nifA. We conclude that the fixRnifA promoter is positively controlled, and that it requires a newly postulated transcriptional factor in order to become activated. Images PMID:3313281

  16. "Aerobic" Writing: A Writing Practice Model.

    ERIC Educational Resources Information Center

    Crisp, Sally Chandler

    "Aerobic writing" is a writing center strategy designed to keep students in writing "shape." Like aerobic exercise, aerobic writing is sustained for a certain length of time and done on a regular basis at prescribed time intervals. The program requires students to write at least two times a week for approximately an hour each time. Students write,…

  17. Dissimilatory perchlorate reduction linked to aerobic methane oxidation via chlorite dismutase

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.

    2013-12-01

    The presence of methane (CH4) in the atmosphere of Mars is controversial yet the evidence has aroused scientific interest, as CH4 could be a harbinger of extant or extinct microbial life. There are various oxidized compounds present on the surface of Mars that could serve as electron acceptors for the anaerobic oxidation of CH4, including perchlorate (ClO4-). We examined the role of perchlorate, chlorate (ClO3-) and chlorite (ClO2-) as oxidants linked to CH4 oxidation. Dissimilatory perchlorate reduction begins with reduction of ClO4- to ClO2- and ends with dismutation of chlorite to yield chloride (Cl-) and molecular oxygen (O2). We explored the potential for aerobic CH4 oxidizing bacteria to couple with oxygen derived from chlorite dismutation during dissimilatory perchlorate reduction. Methane (0.2 kPa) was completely removed within several days from the N2-flushed headspace above cell suspensions of methanotrophs (Methylobacter albus strain BG8) and perchlorate reducing bacteria (Dechloromonas agitata strain CKB) in the presence of 5 mM ClO2-. Similar rates of CH4 consumption were observed for these mixed cultures whether they were co-mingled or segregated under a common headspace, indicating that direct contact of cells was not required for methane consumption to occur. We also observed complete removal of 0.2 kPa CH4 in bottles containing dried soil (enriched in methanotrophs by CH4 additions over several weeks) and D. agitata CKB and in the presence of 10 mM ClO2-. This soil (seasonally exposed sediment) collected from the shoreline of a freshwater lake (Searsville Lake, CA) demonstrated endogenous CH4 uptake as well as perchlorate, chlorate and chlorite reduction/dismutation. However, these experiments required physical separation of soil from the aqueous bacterial culture to allow for the partitioning of O2 liberated from chlorite dismutation into the shared headspace. Although dissimilatory reduction of ClO4- and ClO3- could be inferred from the

  18. Effects of Long-Term CO2 Enrichment on Soil-Atmosphere CH4 Fluxes and the Spatial Micro-Distribution of Methanotrophic Bacteria

    PubMed Central

    Karbin, Saeed; Guillet, Cécile; Kammann, Claudia I.; Niklaus, Pascal A.

    2015-01-01

    Background Effects of elevated atmospheric CO2 concentrations on plant growth and associated C cycling have intensively been studied, but less is known about effects on the fluxes of radiatively active trace gases other than CO2. Net soil-atmosphere CH4 fluxes are determined by the balance of soil microbially-driven methane (CH4) oxidation and methanogenesis, and both might change under elevated CO2. Methods and Results Here, we studied CH4 dynamics in a permanent grassland exposed to elevated CO2 for 14 years. Soil-atmosphere fluxes of CH4 were measured using large static chambers, over a period of four years. The ecosystem was a net sink for atmospheric CH4 for most of the time except summer to fall when net CH4 emissions occurred. We did not detect any elevated CO2 effects on CH4 fluxes, but emissions were difficult to quantify due to their discontinuous nature, most likely because of ebullition from the saturated zone. Potential methanotrophic activity, determined by incubation of fresh sieved soil under standardized conditions, also did not reveal any effect of the CO2 treatment. Finally, we determined the spatial micro-distribution of methanotrophic activity at less than 5× atmospheric (10 ppm) and elevated (10000 ppm) CH4 concentrations, using a novel auto-radiographic technique. These analyses indicated that domains of net CH4 assimilation were distributed throughout the analyzed top 15 cm of soils, with no dependence on CH4 concentration or CO2 treatment. Conclusions Our investigations suggest that elevated CO2 exerts no or only minor effects on CH4 fluxes in the type of ecosystem we studied, at least as long as soil moisture differences are small or absent as was the case here. The autoradiographic analyses further indicate that the spatial niche of CH4 oxidation does not shift in response to CO2 enrichment or CH4 concentration, and that the same type of methanotrophs may oxidize CH4 from atmospheric and soil-internal sources. PMID:26147694

  19. Aerobic Denitrifying Bacteria That Produce Low Levels of Nitrous Oxide

    PubMed Central

    Takaya, Naoki; Catalan-Sakairi, Maria Antonina B.; Sakaguchi, Yasushi; Kato, Isao; Zhou, Zhemin; Shoun, Hirofumi

    2003-01-01

    Most denitrifiers produce nitrous oxide (N2O) instead of dinitrogen (N2) under aerobic conditions. We isolated and characterized novel aerobic denitrifiers that produce low levels of N2O under aerobic conditions. We monitored the denitrification activities of two of the isolates, strains TR2 and K50, in batch and continuous cultures. Both strains reduced nitrate (NO3−) to N2 at rates of 0.9 and 0.03 μmol min−1 unit of optical density at 540 nm−1 at dissolved oxygen (O2) (DO) concentrations of 39 and 38 μmol liter−1, respectively. At the same DO level, the typical denitrifier Pseudomonas stutzeri and the previously described aerobic denitrifier Paracoccus denitrificans did not produce N2 but evolved more than 10-fold more N2O than strains TR2 and K50 evolved. The isolates denitrified NO3− with concomitant consumption of O2. These results indicated that strains TR2 and K50 are aerobic denitrifiers. These two isolates were taxonomically placed in the β subclass of the class Proteobacteria and were identified as P. stutzeri TR2 and Pseudomonas sp. strain K50. These strains should be useful for future investigations of the mechanisms of denitrifying bacteria that regulate N2O emission, the single-stage process for nitrogen removal, and microbial N2O emission into the ecosystem. PMID:12788710

  20. Impact of brisk walking and aerobics in overweight women

    PubMed Central

    Melam, Ganeswara Rao; Alhusaini, Adel A; Buragadda, Syamala; Kaur, Taranpreet; Khan, Imran Ali

    2016-01-01

    [Purpose] Lack of physical activity and an uncontrolled diet cause excessive weight gain, which leads to obesity and other metabolic disorders. Studies have indicated that brisk walking and aerobics are the best methods for controlling and reducing weight and body mass composition. [Subjects and Methods] In this study, 45 overweight women were enrolled and divided into 3 groups. Women not involved in brisk walking or aerobics were included in group A (n = 15) as control subjects; women involved in brisk walking were in group B (n = 15); and those involved in aerobics were in group C (n = 15). [Results] This program was carried out 5 days/week for 10 weeks. Pre- and post-measurements of body mass index, waist and hip circumference, and skinfold thickness of the abdomen, subscapular area, biceps, and triceps were recorded for the women in all 3 groups. All values decreased in women who participated in brisk walking and aerobics for 10 weeks. [Conclusion] These results indicate that aerobics with diet therapy is a more effective intervention program for controlling and reducing body mass index and skinfold thickness than brisk walking with diet therapy in North Indian women. PMID:26957777

  1. Relating subsurface temperature changes to microbial activity at a crude oil-contaminated site.

    PubMed

    Warren, Ean; Bekins, Barbara A

    2015-11-01

    Crude oil at a spill site near Bemidji, Minnesota has been undergoing aerobic and anaerobic biodegradation for over 30 years, creating a 150-200 m plume of primary and secondary contaminants. Microbial degradation generates heat that should be measurable under the right conditions. To measure this heat, thermistors were installed in wells in the saturated zone and in water-filled monitoring tubes in the unsaturated zone. In the saturated zone, a thermal groundwater plume originates near the residual oil body with temperatures ranging from 2.9°C above background near the oil to 1.2°C down gradient. Temperatures in the unsaturated zone above the oil body were up to 2.7°C more than background temperatures. Previous work at this site has shown that methane produced from biodegradation of the oil migrates upward and is oxidized in a methanotrophic zone midway between the water table and the surface. Enthalpy calculations and observations demonstrate that the temperature increases primarily result from aerobic methane oxidation in the unsaturated zone above the oil. Methane oxidation rates at the site independently estimated from surface CO2 efflux data are comparable to rates estimated from the observed temperature increases. The results indicate that temperature may be useful as a low-cost measure of activity but care is required to account for the correct heat-generating reactions, other heat sources and the effects of focused recharge. PMID:26409188

  2. Relating subsurface temperature changes to microbial activity at a crude oil-contaminated site

    NASA Astrophysics Data System (ADS)

    Warren, Ean; Bekins, Barbara A.

    2015-11-01

    Crude oil at a spill site near Bemidji, Minnesota has been undergoing aerobic and anaerobic biodegradation for over 30 years, creating a 150-200 m plume of primary and secondary contaminants. Microbial degradation generates heat that should be measurable under the right conditions. To measure this heat, thermistors were installed in wells in the saturated zone and in water-filled monitoring tubes in the unsaturated zone. In the saturated zone, a thermal groundwater plume originates near the residual oil body with temperatures ranging from 2.9 °C above background near the oil to 1.2 °C down gradient. Temperatures in the unsaturated zone above the oil body were up to 2.7 °C more than background temperatures. Previous work at this site has shown that methane produced from biodegradation of the oil migrates upward and is oxidized in a methanotrophic zone midway between the water table and the surface. Enthalpy calculations and observations demonstrate that the temperature increases primarily result from aerobic methane oxidation in the unsaturated zone above the oil. Methane oxidation rates at the site independently estimated from surface CO2 efflux data are comparable to rates estimated from the observed temperature increases. The results indicate that temperature may be useful as a low-cost measure of activity but care is required to account for the correct heat-generating reactions, other heat sources and the effects of focused recharge.

  3. The relative contribution of methanotrophs to microbial communities and carbon cycling in soil overlying a coal-bed methane seep

    USGS Publications Warehouse

    Mills, Christopher T.; Slater, Gregory F.; Dias, Robert F.; Carr, Stephanie A.; Reddy, Christopher M.; Schmidt, Raleigh; Mandernack, Kevin W.

    2013-01-01

    Seepage of coal-bed methane (CBM) through soils is a potential source of atmospheric CH4 and also a likely source of ancient (i.e. 14C-dead) carbon to soil microbial communities. Natural abundance 13C and 14C compositions of bacterial membrane phospholipid fatty acids (PLFAs) and soil gas CO2 and CH4 were used to assess the incorporation of CBM-derived carbon into methanotrophs and other members of the soil microbial community. Concentrations of type I and type II methanotroph PLFA biomarkers (16:1ω8c and 18:1ω8c, respectively) were elevated in CBM-impacted soils compared with a control site. Comparison of PLFA and 16s rDNA data suggested type I and II methanotroph populations were well estimated and overestimated by their PLFA biomarkers, respectively. The δ13C values of PLFAs common in type I and II methanotrophs were as negative as −67‰ and consistent with the assimilation of CBM. PLFAs more indicative of nonmethanotrophic bacteria had δ13C values that were intermediate indicating assimilation of both plant- and CBM-derived carbon. Δ14C values of select PLFAs (−351 to −936‰) indicated similar patterns of CBM assimilation by methanotrophs and nonmethanotrophs and were used to estimate that 35–91% of carbon assimilated by nonmethanotrophs was derived from CBM depending on time of sampling and soil depth.

  4. Acute effects of aerobic exercise promote learning.

    PubMed

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-01-01

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity-induced plasticity with specific cognitive training-induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity. PMID:27146330

  5. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia.

    PubMed

    Reddy, M Venkateswar; Mohan, S Venkata

    2012-01-01

    The functional role of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production using food waste (UFW) and effluents from acidogenic biohydrogen production process (FFW) were studied employing aerobic mixed culture as biocatalyst. Anoxic microenvironment documented higher PHA production, while aerobic microenvironment showed higher substrate degradation. FFW showed higher PHA accumulation (39.6%) than UFW (35.6%) due to ready availability of precursors (fatty acids). Higher fraction of poly-3-hydroxy butyrate (PHB) was observed compared to poly-3-hydroxy valerate (PHV) in the accumulated PHA in the form of co-polymer [P3(HB-co-HV)]. Dehydrogenase, phosphatase and protease enzymatic activities were monitored during process operation. Integration with fermentative biohydrogen production yielded additional substrate degradation under both aerobic (78%) and anoxic (72%) microenvironments apart from PHA production. Microbial community analysis documented the presence of aerobic and facultative organisms capable of producing PHA. Integration strategy showed feasibility of producing hydrogen along with PHA by consuming fatty acids generated during acidogenic process in association with increased treatment efficiency. PMID:22055090

  6. Aerobic Capacities of Early College High School Students

    ERIC Educational Resources Information Center

    Loflin, Jerry W.

    2014-01-01

    The Early College High School Initiative (ECHSI) was introduced in 2002. Since 2002, limited data, especially student physical activity data, have been published pertaining to the ECHSI. The purpose of this study was to examine the aerobic capacities of early college students and compare them to state and national averages. Early college students…

  7. Acute effects of aerobic exercise promote learning

    PubMed Central

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-01-01

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity–induced plasticity with specific cognitive training–induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity. PMID:27146330

  8. Identification of Methanotrophic Lipid Biomarkers in Cold-Seep Mussel Gills: Chemical and Isotopic Analysis

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Summons, Roger E.; Dowling, Lesley M.; Zahiralis, Karen D.

    1995-01-01

    A lipid analysis of the tissues of a cold-seep mytilid mussel collected from the Louisiana slope of the Gulf of Mexico was used in conjunction with a compound-specific isotope analysis to demonstrate the presence of methanotrophic symbionts in the mussel gill tissue and to demonstrate the host's dependence on bacterially synthesized metabolic intermediates. The gill tissue contained large amounts of group-specific methanotrophic biomarkers, bacteriohopanoids, 4-methylsterols, lipopolysaccharide-associated hydroxy fatty acids, and type I-specific 16:1 fatty acid isomers with bond positions at delta-8, delta-10, and delta-ll. Only small amounts of these compounds were detected in the mantle or other tissues of the host animal. A variety of cholesterol and 4-methylsterol isomers were identified as both free and steryl esters, and the sterol double bond positions suggested that the major bacterially derived gill sterol(11.0% 4(alpha)-methyl-cholesta-8(14), 24-dien-3(beta)-ol) was converted to host cholesterol (64.2% of the gill sterol was cholest-5-en-3(beta)-ol). The stable carbon isotope values for gill and mantle preparations were, respectively, -59.0 and -60.4 per thousand for total tissue, -60.6 and -62.4 per thousand for total lipids, -60.2 and -63.9 per thousand for phospholipid fatty acids, and -71.8 and -73.8 per thousand for sterols. These stable carbon isotope values revealed that the relative fractionation pattern was similar to the patterns obtained in pure culture experiments with methanotrophic bacteria further supporting the conversion of the bacterial methyl-sterol pool.

  9. Bioreactor Performance Parameters for an Industrially-Promising Methanotroph Methylomicrobium buryatense 5GB1

    DOE PAGESBeta

    Gilman, Alexey; Laurens, Lieve M.; Puri, Aaron W.; Chu, Frances; Pienkos, Philip T.; Lidstrom, Mary E.

    2015-11-16

    Methane is a feedstock of interest for the future, both from natural gas and from renewable biogas sources. Methanotrophic bacteria have the potential to enable commercial methane bioconversion to value-added products such as fuels and chemicals. A strain of interest for such applications is Methylomicrobium buryatense 5GB1, due to its robust growth characteristics. But, to take advantage of the potential of this methanotroph, it is important to generate comprehensive bioreactor-based datasets for different growth conditions to compare bioprocess parameters. The datasets of growth parameters, gas utilization rates, and products (total biomass, extracted fatty acids, glycogen, excreted acids) were obtained formore » cultures of M. buryatense 5GB1 grown in continuous culture under methane limitation and O2 limitation conditions. Additionally, experiments were performed involving unrestricted batch growth conditions with both methane and methanol as substrate. All four growth conditions show significant differences. The most notable changes are the high glycogen content and high formate excretion for cells grown on methanol (batch), and high O2:CH4 utilization ratio for cells grown under methane limitation. The results presented here represent the most comprehensive published bioreactor datasets for a gamma-proteobacterial methanotroph. This information shows that metabolism by M. buryatense 5GB1 differs significantly for each of the four conditions tested. O2 limitation resulted in the lowest relative O2 demand and fed-batch growth on methane the highest. Future studies are needed to understand the metabolic basis of these differences. However, these results suggest that both batch and continuous culture conditions have specific advantages, depending on the product of interest.« less

  10. Bioreactor Performance Parameters for an Industrially-Promising Methanotroph Methylomicrobium buryatense 5GB1

    SciTech Connect

    Gilman, Alexey; Laurens, Lieve M.; Puri, Aaron W.; Chu, Frances; Pienkos, Philip T.; Lidstrom, Mary E.

    2015-11-16

    Methane is a feedstock of interest for the future, both from natural gas and from renewable biogas sources. Methanotrophic bacteria have the potential to enable commercial methane bioconversion to value-added products such as fuels and chemicals. A strain of interest for such applications is Methylomicrobium buryatense 5GB1, due to its robust growth characteristics. But, to take advantage of the potential of this methanotroph, it is important to generate comprehensive bioreactor-based datasets for different growth conditions to compare bioprocess parameters. The datasets of growth parameters, gas utilization rates, and products (total biomass, extracted fatty acids, glycogen, excreted acids) were obtained for cultures of M. buryatense 5GB1 grown in continuous culture under methane limitation and O2 limitation conditions. Additionally, experiments were performed involving unrestricted batch growth conditions with both methane and methanol as substrate. All four growth conditions show significant differences. The most notable changes are the high glycogen content and high formate excretion for cells grown on methanol (batch), and high O2:CH4 utilization ratio for cells grown under methane limitation. The results presented here represent the most comprehensive published bioreactor datasets for a gamma-proteobacterial methanotroph. This information shows that metabolism by M. buryatense 5GB1 differs significantly for each of the four conditions tested. O2 limitation resulted in the lowest relative O2 demand and fed-batch growth on methane the highest. Future studies are needed to understand the metabolic basis of these differences. However, these results suggest that both batch and continuous culture conditions have specific advantages, depending on the product of interest.

  11. Aerobic Glycolysis in Osteoblasts

    PubMed Central

    Esen, Emel; Long, Fanxin

    2014-01-01

    Osteoblasts, the chief bone-making cells in the body, are a focus of osteoporosis research. Although teriparatite, a synthetic fragment of the human parathyroid hormone (PTH), has been an effective bone anabolic drug, there remains a clinical need for additional therapeutics that safely stimulates osteoblast number and function. Work in the past several decades has provided unprecedented clarity about the roles of growth factors and transcription factors in regulating osteoblast differentiation and activity, but whether these factors may regulate cellular metabolism to influence cell fate and function has been largely unexplored. The past few years have witnessed a resurgence of interest in the cellular metabolism of osteoblasts, with the hope that elucidation of their metabolic profile may open new avenues for developing bone anabolic agents. Here we review the current understanding about glucose metabolism in osteoblasts. PMID:25200872

  12. Variants of the obligate methanotroph isolate 761M capable of growth on glucose in the absence of methane

    SciTech Connect

    Zhao, S.J.; Hanson, R.S.

    1984-10-01

    Isolate 761M is an unusual type I methanotroph that possess a complete tricarboxylic acid cycle. Variants of this methanotroph that were capable of growth with methanol (isolate 761AR) or glucose (isolate 761H) have been isolated. Cultures of isolate 761H grown with glucose and casein hydrolysate as the sole carbon and energy sources retained the ability to grow on methane, contained methane monooxygenase and 3-hexulose phosphate synthase, and possessed intracytoplasmic membranes similar to those found in thin sections of isolate 761M grown on methane. Methane monooxygenase was also present in cultures of isolate 761AR grown on methanol and casein hydrolysate. 18 references, 4 figures, 2 tables.

  13. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers.

    PubMed Central

    Bédard, C; Knowles, R

    1989-01-01

    Ammonia oxidizers (family Nitrobacteraceae) and methanotrophs (family Methylococcaceae) oxidize CO and CH4 to CO2 and NH4+ to NO2-. However, the relative contributions of the two groups of organisms to the metabolism of CO, CH4, and NH4+ in various environments are not known. In the ammonia oxidizers, ammonia monooxygenase, the enzyme responsible for the conversion of NH4+ to NH2OH, also catalyzes the oxidation of CH4 to CH3OH. Ammonia monooxygenase also mediates the transformation of CH3OH to CO2 and cell carbon, but the pathway by which this is done is not known. At least one species of ammonia oxidizer, Nitrosococcus oceanus, exhibits a Km for CH4 oxidation similar to that of methanotrophs. However, the highest rate of CH4 oxidation recorded in an ammonia oxidizer is still five times lower than rates in methanotrophs, and ammonia oxidizers are apparently unable to grow on CH4. Methanotrophs oxidize NH4+ to NH2OH via methane monooxygenase and NH4+ to NH2OH via methane monooxygenase and NH2OH to NO2- via an NH2OH oxidase which may resemble the enzyme found in ammonia oxidizers. Maximum rates of NH4+ oxidation are considerably lower than in ammonia oxidizers, and the affinity for NH4+ is generally lower than in ammonia oxidizers. NH4+ does not apparently support growth in methanotrophs. Both ammonia monooxygenase and methane monooxygenase oxidize CO to CO2, but CO cannot support growth in either ammonia oxidizers or methanotrophs. These organisms have affinities for CO which are comparable to those for their growth substrates and often higher than those in carboxydobacteria. The methane monooxygenases of methanotrophs exist in two forms: a soluble form and a particulate form. The soluble form is well characterized and appears unrelated to the particulate. Ammonia monooxygenase and the particulate methane monooxygenase share a number of similarities. Both enzymes contain copper and are membrane bound. They oxidize a variety of inorganic and organic compounds, and

  14. Methods to determine aerobic endurance.

    PubMed

    Bosquet, Laurent; Léger, Luc; Legros, Patrick

    2002-01-01

    Physiological testing of elite athletes requires the correct identification and assessment of sports-specific underlying factors. It is now recognised that performance in long-distance events is determined by maximal oxygen uptake (V(2 max)), energy cost of exercise and the maximal fractional utilisation of V(2 max) in any realised performance or as a corollary a set percentage of V(2 max) that could be endured as long as possible. This later ability is defined as endurance, and more precisely aerobic endurance, since V(2 max) sets the upper limit of aerobic pathway. It should be distinguished from endurance ability or endurance performance, which are synonymous with performance in long-distance events. The present review examines methods available in the literature to assess aerobic endurance. They are numerous and can be classified into two categories, namely direct and indirect methods. Direct methods bring together all indices that allow either a complete or a partial representation of the power-duration relationship, while indirect methods revolve around the determination of the so-called anaerobic threshold (AT). With regard to direct methods, performance in a series of tests provides a more complete and presumably more valid description of the power-duration relationship than performance in a single test, even if both approaches are well correlated with each other. However, the question remains open to determine which systems model should be employed among the several available in the literature, and how to use them in the prescription of training intensities. As for indirect methods, there is quantitative accumulation of data supporting the utilisation of the AT to assess aerobic endurance and to prescribe training intensities. However, it appears that: there is no unique intensity corresponding to the AT, since criteria available in the literature provide inconsistent results; and the non-invasive determination of the AT using ventilatory and heart rate

  15. Use of gene probes to assess the impact and effectiveness of aerobic In situ bioremediation of TCE.

    SciTech Connect

    Hazen, Terry C.; Chakraborty, Romy; Fleming, James M.; Gregory, Ingrid R.; Bowman, John P.; Jimenez, Luis; Zhang, Dai; Pfiffner, Susan M.; Brockman, Fred J.; Sayler, Gary S.

    2009-03-01

    Gene probe hybridization was used to determine distribution and expression of co-metabolic genes at a contaminated site as it underwent in situ methanotrophic bioremediation of trichloroethylene (TCE). The bioremediation strategies tested consisted of a series of air, air:methane, and air:methane:nutrient pulses using a horizontal injection well. Sediment core samples (n=367) taken from 0 (surface)-43m depth were probed for genes coding for soluble methane monooxygenase (sMMO) and toluene dioxygenase (TOD), which are known to cometabolize TCE. The same samples were also probed for genes coding for methanol dehydrogenase (MDH) to access changes in methylotrophic bacterial populations. Hybridization results showed that the frequency of detection of sMMO genes were stimulated approximately 250% following 1% methane:air (v/v) injection. Subsequent 4% methane:air (v/v) injection resulted in an 85% decline probably due to nutrient limitations, since subsequent addition of nutrients (gaseous nitrogen and phosphorus) caused an increase in the frequency of detection of sMMO genes. Detection of TOD genes declined during the process becoming non-detectable by the final treatment. These patterns indicate methanotrophs displaced heterotrophs containing TOD genes. Active transcription of sMMO and TOD was evidenced by hybridization to mRNA. These analyses combined with studies showing the concomitant decline in TCE concentrations, increases in methanotroph viable counts, increased mineralization rates of TCE, and increases in chloride inventories provide multiple lines of evidence that TCE remediation was caused specifically by methanotrophs. This work suggests that sMMO genes are responsible for most, if not all, of the biodegradation of TCE observed. This study demonstrated that the use of nucleic acid analytical methods provided a gene specific assessment of the effects of in situ treatment technologies.

  16. Little left in the tank: metabolic scaling in marine teleosts and its implications for aerobic scope

    PubMed Central

    Killen, Shaun S; Costa, Isabel; Brown, Joseph A; Gamperl, A. Kurt

    2006-01-01

    Fish larvae are the world's smallest vertebrates, and their high rates of mortality may be partially owing to a very limited aerobic scope. Unfortunately, however, no complete empirical dataset exists on the relationship between minimal and maximal metabolism (and thus aerobic scope) for any fish species throughout ontogeny, and thus such an association is hard to delineate. We measured standard and maximal metabolism in three marine fish species over their entire life history, and show that while aerobic scope depends greatly on body size and developmental trajectory, it is extremely small during the early life stages (factorial aerobic scope≤1.5). Our findings strongly suggest that limited scope for aerobic activity early in life is likely to constrain physiological function and ultimately impact behaviour and possibly survival. Furthermore, our results have important implications for ecological models that incorporate metabolic scaling, and provide additional evidence against the existence of ‘universal’ scaling exponents. PMID:17164208

  17. Oncogenic Stress Induced by Acute Hyper-Activation of Bcr-Abl Leads to Cell Death upon Induction of Excessive Aerobic Glycolysis

    PubMed Central

    Dengler, Michael A.; Staiger, Annette M.; Gutekunst, Matthias; Hofmann, Ute; Doszczak, Malgorzata; Scheurich, Peter; Schwab, Matthias; Aulitzky, Walter E.; van der Kuip, Heiko

    2011-01-01

    In response to deregulated oncogene activation, mammalian cells activate disposal programs such as programmed cell death. To investigate the mechanisms behind this oncogenic stress response we used Bcr-Abl over-expressing cells cultivated in presence of imatinib. Imatinib deprivation led to rapid induction of Bcr-Abl activity and over-stimulation of PI3K/Akt-, Ras/MAPK-, and JAK/STAT pathways. This resulted in a delayed necrosis-like cell death starting not before 48 hours after imatinib withdrawal. Cell death was preceded by enhanced glycolysis, glutaminolysis, and amino acid metabolism leading to elevated ATP and protein levels. This enhanced metabolism could be linked to induction of cell death as inhibition of glycolysis or glutaminolysis was sufficient to sustain cell viability. Therefore, these data provide first evidence that metabolic changes induced by Bcr-Abl hyper-activation are important mediators of oncogenic stress-induced cell death. During the first 30 hours after imatinib deprivation, Bcr-Abl hyper-activation did not affect proliferation but resulted in cellular swelling, vacuolization, and induction of eIF2α phosphorylation, CHOP expression, as well as alternative splicing of XPB, indicating endoplasmic reticulum stress response. Cell death was dependent on p38 and RIP1 signaling, whereas classical death effectors of ER stress, namely CHOP-BIM were antagonized by concomitant up-regulation of Bcl-xL. Screening of 1,120 compounds for their potential effects on oncogenic stress-induced cell death uncovered that corticosteroids antagonize cell death upon Bcr-Abl hyper-activation by normalizing cellular metabolism. This protective effect is further demonstrated by the finding that corticosteroids rendered lymphocytes permissive to the transforming activity of Bcr-Abl. As corticosteroids are used together with imatinib for treatment of Bcr-Abl positive acute lymphoblastic leukemia these data could have important implications for the design of

  18. Anaerobic-aerobic sequencing bioreactors improve energy efficiency for treatment of personal care product industry wastes.

    PubMed

    Ahammad, S Z; Bereslawski, J L; Dolfing, J; Mota, C; Graham, D W

    2013-07-01

    Personal care product (PCP) industry liquid wastes contain shampoo residues, which are usually treated by aerobic activated sludge (AS). Unfortunately, AS is expensive for PCP wastes because of high aeration and energy demands, whereas potentially energy-positive anaerobic designs cannot meet effluent targets. Therefore, combined anaerobic-aerobic systems may be the best solution. Seven treatment systems were assessed in terms of energy and treatment performance for shampoo wastes, including one aerobic, three anaerobic (HUASB, AHR and AnCSTR) and three anaerobic-aerobic reactor designs. COD removals were highest in the HUASB-aerobic (87.9 ± 0.4%) and AHR-aerobic (86.8±0.5%) systems, which used 69.2% and 62.5% less energy than aerobic AS. However, actual methane production rates were low relative to theoretical in the UASB and AHR units (∼10% methane/COD removed) compared with the AnCSTR unit (∼70%). Anaerobic-aerobic sequence reactors show promise for treating shampoo wastes, but optimal designs depend upon whether methane production or COD removal is most important to operations. PMID:23639409

  19. Effect of aerobic training and aerobic and resistance training on the inflammatory status of hypertensive older adults.

    PubMed

    Lima, Leandra G; Bonardi, José M T; Campos, Giulliard O; Bertani, Rodrigo F; Scher, Luria M L; Louzada-Junior, Paulo; Moriguti, Júlio C; Ferriolli, Eduardo; Lima, Nereida K C

    2015-08-01

    There is a relationship between high levels of inflammatory markers and low adhesion to the practice of physical activity in the older population. The objective of the present study was to compare the effect of two types of exercise programs, i.e., aerobic training and aerobic plus resistance training on the plasma levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) of elderly hypertensive subjects. Hypertensive older volunteers in use of antihypertensive drugs were randomized to three groups: aerobic group (AG), resistance and aerobic group (RAG) and control group (CG). Training lasted 10 weeks, with sessions held three times a week. Blood samples were collected before training and 24 h after completion of the 30 sessions for the determination of serum IL-6 and TNF-α levels. Body mass index was obtained before and after 10 weeks. After intervention, BMI values were lower in AG and RAG compared to CG (p < 0.001), IL-6 was reduced in AG compared to CG (p = 0.04), and TNF-α levels were lower only in RAG compared to CG (p = 0.01). Concluding, both types of training were effective in reducing BMI values in hypertensive older subjects. Aerobic exercise produced the reduction of plasma IL-6 levels. However, the combination of aerobic and resistance exercise, which would be more indicated for the prevention of loss of functionality with aging, showed lower TNF-α mediator after training than control group and a greater fall of TNF-α levels associated to higher BMI reduction. PMID:25567682

  20. Metal-free g-C{sub 3}N{sub 4} photocatalyst by sulfuric acid activation for selective aerobic oxidation of benzyl alcohol under visible light

    SciTech Connect

    Zhang, Ligang; Liu, Di; Guan, Jing; Chen, Xiufang; Guo, Xingcui; Zhao, Fuhua; Hou, Tonggang; Mu, Xindong

    2014-11-15

    Highlights: • A novel visible-light-driven acid-modified g-C{sub 3}N{sub 4} was prepared. • The texture, electronic and surface property were tuned by acid modification. • Acid-modified g-C{sub 3}N{sub 4} shows much higher activity for photocatalytic activity. • Acid sites on the surface of g-C{sub 3}N{sub 4} favor efficient charge separation. - Abstract: In this work, modification of graphitic carbon nitride photocatalyst with acid was accomplished with a facile method through reflux in different acidic substances. The g-C{sub 3}N{sub 4}-based material was found to be a metal-free photocatalyst useful for the selective oxidation of benzyl alcohol with dioxygen as the oxidant under visible light irradiation. Acid modification had a significant influence on the photocatalytic performance of g-C{sub 3}N{sub 4}. Among all acid tested, sulfuric acid-modified g-C{sub 3}N{sub 4} showed the highest catalytic activity and gave benzaldehyde in 23% yield for 4 h under visible light irradiation, which was about 2.5 times higher than that of g-C{sub 3}N{sub 4}. The acid modification effectively improved surface area, reduced structural size, enlarged band gap, enhanced surface chemical state, and facilitated photoinduced charge separation, contributing to the enhanced photocatalytic activity. It is hoped that our work can open promising prospects for the utilization of metal free g-C{sub 3}N{sub 4}-based semiconductor as visible-light photocatalyst for selective organic transformation.

  1. Aerobic granular processes: Current research trends.

    PubMed

    Zhang, Quanguo; Hu, Jianjun; Lee, Duu-Jong

    2016-06-01

    Aerobic granules are large biological aggregates with compact interiors that can be used in efficient wastewater treatment. This mini-review presents new researches on the development of aerobic granular processes, extended treatments for complicated pollutants, granulation mechanisms and enhancements of granule stability in long-term operation or storage, and the reuse of waste biomass as renewable resources. A discussion on the challenges of, and prospects for, the commercialization of aerobic granular process is provided. PMID:26873285

  2. Methane related changes in prokaryotic activity along geochemical profiles in sediments of Lake Kinneret (Israel)

    NASA Astrophysics Data System (ADS)

    Bar Or, I.; Ben-Dov, E.; Kushmaro, A.; Eckert, W.; Sivan, O.

    2014-06-01

    Microbial methane oxidation process (methanotrophy) is the primary control on the emission of the greenhouse gas methane (CH4) to the atmosphere. In terrestrial environments, aerobic methanotrophic bacteria are mainly responsible for oxidizing the methane. In marine sediments the coupling of the anaerobic oxidation of methane (AOM) with sulfate reduction, often by a consortium of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria, was found to consume almost all the upward diffusing methane. Recently, we showed geochemical evidence for AOM driven by iron reduction in Lake Kinneret (LK) (Israel) deep sediments and suggested that this process can be an important global methane sink. The goal of the present study was to link the geochemical gradients found in the porewater (chemical and isotope profiles) with possible changes in microbial community structure. Specifically, we examined the possible shift in the microbial community in the deep iron-driven AOM zone and its similarity to known sulfate driven AOM populations. Screening of archaeal 16S rRNA gene sequences revealed Thaumarchaeota and Euryarchaeota as the dominant phyla in the sediment. Thaumarchaeota, which belongs to the family of copper containing membrane-bound monooxgenases, increased with depth while Euryarchaeota decreased. This may indicate the involvement of Thaumarchaeota, which were discovered to be ammonia oxidizers but whose activity could also be linked to methane, in AOM in the deep sediment. ANMEs sequences were not found in the clone libraries, suggesting that iron-driven AOM is not through sulfate. Bacterial 16S rRNA sequences displayed shifts in community diversity with depth. Proteobacteria and Chloroflexi increased with depth, which could be connected with their different dissimilatory anaerobic processes. The observed changes in microbial community structure suggest possible direct and indirect mechanisms for iron-driven AOM in deep sediments.

  3. Carbon Isotope Fractionations Associated with Methanotrophic Growth with the Soluble and Particulate Methane Monooxygenases

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Summons, Roger E.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Growth experiments with the RuMP-type methanotroph, Methylococc