Science.gov

Sample records for active akt mutant

  1. Metastasis and AKT activation.

    PubMed

    Qiao, Meng; Sheng, Shijie; Pardee, Arthur B

    2008-10-01

    Metastasis is responsible for 90% of cancer patient deaths. More information is needed about the molecular basis for its potential detection and treatment. The activated AKT kinase is necessary for many events of the metastatic pathway including escape of cells from the tumor's environment, into and then out of the circulation, activation of proliferation, blockage of apoptosis, and activation of angiogenesis. A series of steps leading to metastatic properties can be initiated upon activation of AKT by phosphorylation on Ser-473. These findings lead to the question of how this activation is connected to metastasis. Activated AKT phosphorylates GSK-3beta causing its proteolytic removal. This increases stability of the negative transcription factor SNAIL, thereby decreasing transcription of the transmembrane protein E-cadherin that forms adhesions between adjacent cells, thereby permitting their detachment. How is AKT hyperactivated in metastatic cells? Increased PI3K or TORC2 kinase activity- or decreased PHLPP phosphatase could be responsible. Furthermore, a positive feedback mechanism is that the decrease of E-cadherin lowers PTEN and thereby increases PIP3, further activating AKT and metastasis.

  2. Reactivation of ERK and Akt confers resistance of mutant BRAF colon cancer cells to the HSP90 inhibitor AUY922.

    PubMed

    Wang, Chun Yan; Guo, Su Tang; Wang, Jia Yu; Yan, Xu Guang; Farrelly, Margaret; Zhang, Yuan Yuan; Liu, Fen; Yari, Hamed; La, Ting; Lei, Fu Xi; Jin, Lei; Zhang, Xu Dong; Jiang, Chen Chen

    2016-08-02

    Oncogenic mutations of BRAF occur in approximately 10% of colon cancers and are associated with their resistance to clinically available therapeutic drugs and poor prognosis of the patients. Here we report that colon cancer cells with mutant BRAF are also resistant to the heat shock protein 90 (HSP90) inhibitor AUY922, and that this is caused by rebound activation of ERK and Akt. Although AUY922 triggered rapid reduction in ERK and Akt activation in both wild-type and mutant BRAF colon cancer cells, activation of ERK and Akt rebounded shortly in the latter leading to resistance of the cells to AUY922-induced apoptosis. Reactivation of ERK was associated with the persistent expression of mutant BRAF, which, despite being a client of HSP90, was only partially degraded by AUY922, whereas reactivation of Akt was related to the activity of the HSP90 co-chaperone, cell division cycle 37 (CDC37), in that knockdown of CDC37 inhibited Akt reactivation in mutant colon cancer cells treated with AUY922. In support, as a HSP90 client protein, Akt was only diminished by AUY922 in wild-type but not mutant BRAF colon cancer cells. Collectively, these results reveal that reactivation of ERK and Akt associated respectively with the activity of mutant BRAF and CDC37 renders mutant BRAF colon cancer cells resistant to AUY922, with implications of co-targeting mutant BRAF and/or CDC37 and HSP90 in the treatment of mutant BRAF colon cancers.

  3. Akt mediated ROS-dependent selective targeting of mutant KRAS tumors.

    PubMed

    Iskandar, Kartini; Rezlan, Majidah; Pervaiz, Shazib

    2014-10-01

    Reactive oxygen species (ROS) play a critical role in a variety of cellular processes, ranging from cell survival and proliferation to cell death. Previously, we reported the ability of a small molecule compound, C1, to induce ROS dependent autophagy associated apoptosis in human cancer cell lines and primary tumor cells (Wong C. et al. 2010). Our ongoing investigations have unraveled a hitherto undefined novel signaling network involving hyper-phosphorylation of Akt and Akt-mediated ROS production in cancer cell lines. Interestingly, drug-induced Akt activation is selectively seen in cell lines that carry mutant KRAS; HCT116 cells that carry the V13D KRAS mutation respond favorably to C1 while HT29 cells expressing wild type KRAS are relatively resistant. Of note, not only does the compound target mutant KRAS expressing cells but also induces RAS activation as evidenced by the PAK pull down assay. Corroborating this, pharmacological inhibition as well as siRNA mediated silencing of KRAS or Akt, blocked C1-induced ROS production and rescued tumor colony forming ability in HCT116 cells. To further confirm the involvement of KRAS, we made use of mutant KRAS transformed RWPE-1 prostate epithelial cells. Notably, drug-induced ROS generation and death sensitivity was significantly higher in RWPE-1-KRAS cells than the RWPE-1-vector cells, thus confirming the results obtained with mutant KRAS colorectal carcinoma cell line. Lastly, we made use of HCT116 mutant KRAS knockout cells (KO) where the mutant KRAS allele had been deleted, thus expressing a single wild-type KRAS allele. Exposure of the KO cells to C1 failed to induce Akt activation and mitochondrial ROS production. Taken together, results show the involvement of activated Akt in ROS-mediated selective targeting of mutant KRAS expressing tumors, which could have therapeutic implications given the paucity of chemotherapeutic strategies specifically targeting KRAS mutant cancers.

  4. Metastasis and AKT activation.

    PubMed

    Sheng, Shijie; Qiao, Meng; Pardee, Arthur B

    2009-03-01

    Metastasis, responsible for 90% of cancer patient deaths, is an inefficient process because many tumor cells die. The survival of metastatic tumor cells should be considered as a critical therapeutic target. This review provides a new perspective regarding the role of AKT in tumor survival, and the rationale to target AKT in anti-metastasis therapies.

  5. Acquired resistance to BRAF inhibition induces epithelial-to-mesenchymal transition in BRAF (V600E) mutant thyroid cancer by c-Met-mediated AKT activation

    PubMed Central

    Byeon, Hyung Kwon; Na, Hwi Jung; Yang, Yeon Ju; Ko, Sooah; Yoon, Sun Och; Ku, Minhee; Yang, Jaemoon; Kim, Jae Wook; Ban, Myung Jin; Kim, Ji-Hoon; Kim, Da Hee; Kim, Jung Min; Choi, Eun Chang; Kim, Chang-Hoon; Yoon, Joo-Heon; Koh, Yoon Woo

    2017-01-01

    Previously, the authors have identified that c-Met mediates reactivation of the PI3K/AKT pathway following BRAF inhibitor treatment in BRAF (V600E) mutant anaplastic thyroid cancer, thereby contributing to the acquired drug resistance. Therefore dual inhibition of BRAF and c-Met led to sustained treatment response, thereby maximizing the specific anti-tumor effect of targeted therapy. The present study goes one step further and aims to investigate the effect of acquired resistance of BRAF inhibitor on epithelial-to-mesenchymal transition (EMT) in BRAF mutant thyroid cancer cells and the effect of dual inhibition from combinatorial therapy. Two thyroid cancer cell lines, 8505C and BCPAP were selected and treated with BRAF inhibitor, PLX4032 and its effect on EMT were examined and compared. Further investigation was carried out in orthotopic xenograft mouse models. Unlike BCPAP cells, the BRAF inhibitor resistant 8505C cells showed increased expressions of EMT related markers such as vimentin, β-catenin, and CD44. The combinatorial treatment of PLX4032 and PHA665752, a c-Met inhibitor reversed EMT. Similar results were confirmed in vivo. c-Met-mediated reactivation of the PI3K/AKT pathway contributes to the drug resistance to PLX4032 in BRAF (V600E) mutant anaplastic thyroid cancer cells and further promotes tumor cell migration and invasion by upregulated EMT mechanism. Dual inhibition of BRAF and c-Met leads to reversal of EMT, suggesting a maximal therapeutic response. PMID:27880942

  6. Reactivation of ERK and Akt confers resistance of mutant BRAF colon cancer cells to the HSP90 inhibitor AUY922

    PubMed Central

    Wang, Chun Yan; Guo, Su Tang; Wang, Jia Yu; Yan, Xu Guang; Farrelly, Margaret; Zhang, Yuan Yuan; Liu, Fen; Yari, Hamed; La, Ting; Lei, Fu Xi; Jin, Lei; Zhang, Xu Dong; Jiang, Chen Chen

    2016-01-01

    Oncogenic mutations of BRAF occur in approximately 10% of colon cancers and are associated with their resistance to clinically available therapeutic drugs and poor prognosis of the patients. Here we report that colon cancer cells with mutant BRAF are also resistant to the heat shock protein 90 (HSP90) inhibitor AUY922, and that this is caused by rebound activation of ERK and Akt. Although AUY922 triggered rapid reduction in ERK and Akt activation in both wild-type and mutant BRAF colon cancer cells, activation of ERK and Akt rebounded shortly in the latter leading to resistance of the cells to AUY922-induced apoptosis. Reactivation of ERK was associated with the persistent expression of mutant BRAF, which, despite being a client of HSP90, was only partially degraded by AUY922, whereas reactivation of Akt was related to the activity of the HSP90 co-chaperone, cell division cycle 37 (CDC37), in that knockdown of CDC37 inhibited Akt reactivation in mutant colon cancer cells treated with AUY922. In support, as a HSP90 client protein, Akt was only diminished by AUY922 in wild-type but not mutant BRAF colon cancer cells. Collectively, these results reveal that reactivation of ERK and Akt associated respectively with the activity of mutant BRAF and CDC37 renders mutant BRAF colon cancer cells resistant to AUY922, with implications of co-targeting mutant BRAF and/or CDC37 and HSP90 in the treatment of mutant BRAF colon cancers. PMID:27391062

  7. Mutant AKT1-E17K is oncogenic in lung epithelial cells

    PubMed Central

    De Marco, Carmela; Malanga, Donatella; Rinaldo, Nicola; De Vita, Fernanda; Scrima, Marianna; Lovisa, Sara; Fabris, Linda; Carriero, Maria Vincenza; Franco, Renato; Rizzuto, Antonia; Baldassarre, Gustavo; Viglietto, Giuseppe

    2015-01-01

    The hotspot E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6–2% of human lung cancers. In this manuscript, we sought to determine whether this AKT1 variant is a bona-fide activating mutation and plays a role in the development of lung cancer. Here we report that in immortalized human bronchial epithelial cells (BEAS-2B cells) mutant AKT1-E17K promotes anchorage-dependent and -independent proliferation, increases the ability to migrate, invade as well as to survive and duplicate in stressful conditions, leading to the emergency of cells endowed with the capability to form aggressive tumours at high efficiency. We provide also evidence that the molecular mechanism whereby AKT1-E17K is oncogenic in lung epithelial cells involves phosphorylation and consequent cytoplasmic delocalization of the cyclin-dependent kinase (cdk) inhibitor p27. In agreement with these results, cytoplasmic p27 is preferentially observed in primary NSCLCs with activated AKT and predicts poor survival. PMID:26053093

  8. Activating Akt1 mutations alter DNA double strand break repair and radiosensitivity.

    PubMed

    Oeck, S; Al-Refae, K; Riffkin, H; Wiel, G; Handrick, R; Klein, D; Iliakis, G; Jendrossek, V

    2017-02-17

    The survival kinase Akt has clinical relevance to radioresistance. However, its contributions to the DNA damage response, DNA double strand break (DSB) repair and apoptosis remain poorly defined and often contradictory. We used a genetic approach to explore the consequences of genetic alterations of Akt1 for the cellular radiation response. While two activation-associated mutants with prominent nuclear access, the phospho-mimicking Akt1-TDSD and the clinically relevant PH-domain mutation Akt1-E17K, accelerated DSB repair and improved survival of irradiated Tramp-C1 murine prostate cancer cells and Akt1-knockout murine embryonic fibroblasts in vitro, the classical constitutively active membrane-targeted myrAkt1 mutant had the opposite effects. Interestingly, DNA-PKcs directly phosphorylated Akt1 at S473 in an in vitro kinase assay but not vice-versa. Pharmacological inhibition of DNA-PKcs or Akt restored radiosensitivity in tumour cells expressing Akt1-E17K or Akt1-TDSD. In conclusion, Akt1-mediated radioresistance depends on its activation state and nuclear localization and is accessible to pharmacologic inhibition.

  9. Activating Akt1 mutations alter DNA double strand break repair and radiosensitivity

    PubMed Central

    Oeck, S.; Al-Refae, K.; Riffkin, H.; Wiel, G.; Handrick, R.; Klein, D.; Iliakis, G.; Jendrossek, V.

    2017-01-01

    The survival kinase Akt has clinical relevance to radioresistance. However, its contributions to the DNA damage response, DNA double strand break (DSB) repair and apoptosis remain poorly defined and often contradictory. We used a genetic approach to explore the consequences of genetic alterations of Akt1 for the cellular radiation response. While two activation-associated mutants with prominent nuclear access, the phospho-mimicking Akt1-TDSD and the clinically relevant PH-domain mutation Akt1-E17K, accelerated DSB repair and improved survival of irradiated Tramp-C1 murine prostate cancer cells and Akt1-knockout murine embryonic fibroblasts in vitro, the classical constitutively active membrane-targeted myrAkt1 mutant had the opposite effects. Interestingly, DNA-PKcs directly phosphorylated Akt1 at S473 in an in vitro kinase assay but not vice-versa. Pharmacological inhibition of DNA-PKcs or Akt restored radiosensitivity in tumour cells expressing Akt1-E17K or Akt1-TDSD. In conclusion, Akt1-mediated radioresistance depends on its activation state and nuclear localization and is accessible to pharmacologic inhibition. PMID:28209968

  10. Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells.

    PubMed

    Jeong, Soo-Jin; Pise-Masison, Cynthia A; Radonovich, Michael F; Park, Hyeon Ung; Brady, John N

    2005-10-06

    AKT activation enhances resistance to apoptosis and induces cell survival signaling through multiple downstream pathways. We now present evidence that AKT is activated in HTLV-1-transformed cells and that Tax activation of AKT is linked to NF-kappaB activation, p53 inhibition and cell survival. Overexpression of AKT wild type (WT), but not a kinase dead (KD) mutant, resulted in increased Tax-mediated NF-kappaB activation. Blocking AKT with the PI3K/AKT inhibitor LY294002 or AKT SiRNA prevented NF-kappaB activation and inhibition of p53. Treatment of C81 cells with LY294002 resulted in an increase in the p53-responsive gene MDM2, suggesting a role for AKT in the Tax-mediated regulation of p53 transcriptional activity. Further, we show that LY294002 treatment of C81 cells abrogates in vitro IKKbeta phosphorylation of p65 and causes a reduction of p65 Ser-536 phosphorylation in vivo, steps critical to p53 inhibition. Interestingly, blockage of AKT function did not affect IKKbeta phosphorylation of IkappaBalpha in vitro suggesting selective activity of AKT on the IKKbeta complex. Finally, AKT prosurvival function in HTLV-1-transformed cells is linked to expression of Bcl-xL. We suggest that AKT plays a role in the activation of prosurvival pathways in HTLV-1-transformed cells, possibly through NF-kappaB activation and inhibition of p53 transcription activity.

  11. Akt phosphorylates and regulates the osteogenic activity of Osterix.

    PubMed

    Choi, You Hee; Jeong, Hyung Min; Jin, Yun-Hye; Li, Hongyan; Yeo, Chang-Yeol; Lee, Kwang-Youl

    2011-08-05

    Osterix (Osx), a zinc-finger transcription factor is required for osteoblast differentiation and new bone formation during embryonic development. Akt is a member of the serine/threonine-specific protein kinase and plays important roles in osteoblast differentiation. The function of Osterix can be also modulated by post-translational modification. But, the precise molecular signaling mechanisms between Osterix and Akt are not known. In this study, we investigated the potential regulation of Osterix function by Akt in osteoblast differentiation. We found that Akt phosphorylates Osterix and that Akt activation increases protein stability, osteogenic activity and transcriptional activity of Osterix. We also found that BMP-2 increases the protein level of Osterix in an Akt activity-dependent manner. These results suggest that Akt activity enhances the osteogenic function of Osterix, at least in part, through protein stabilization and that BMP-2 regulates the osteogenic function of Osterix, at least in part, through Akt.

  12. Mutant p53 promotes ovarian cancer cell adhesion to mesothelial cells via integrin β4 and Akt signals.

    PubMed

    Lee, Jong-Gyu; Ahn, Ji-Hye; Jin Kim, Tae; Ho Lee, Jae; Choi, Jung-Hye

    2015-07-30

    Missense mutations in the TP53 gene resulting in the accumulation of mutant proteins are extremely common in advanced ovarian cancer, which is characterised by peritoneal metastasis. Attachment of cancer cells to the peritoneal mesothelium is regarded as an initial, key step for the metastatic spread of ovarian cancer. In the present study, we investigated the possible role of a p53 mutant in the mesothelial adhesion of ovarian cancer cells. We found that OVCAR-3 cells with the R248 TP53 mutation (p53(R248)) were more adhesive to mesothelial Met5A cells than were A2780 cells expressing wild-type p53. In addition, ectopic expression of p53(R248) in p53-null SKOV-3 cells significantly increased adhesion to Met5A cells. Knockdown of mutant p53 significantly compromised p53(R248)-induced cell adhesion to Met5A cells. Microarray analysis revealed that several adhesion-related genes, including integrin β4, were markedly up-regulated, and certain signalling pathways, including PI3K/Akt, were activated in p53(R248) transfectants of SKOV-3 cells. Inhibition of integrin β4 and Akt signalling using blocking antibody and the inhibitor LY294002, respectively, significantly attenuated p53(R248)-mediated ovarian cancer-mesothelial adhesion. These data suggest that the p53(R248) mutant endows ovarian cancer cells with increased adhesiveness and that integrin β4 and Akt signalling are associated with the mutation-enhanced ovarian cancer-mesothelial cell adhesion.

  13. Phosphatidylserine is a critical modulator for Akt activation

    PubMed Central

    Huang, Bill X.; Akbar, Mohammed; Kevala, Karl

    2011-01-01

    Akt activation relies on the binding of Akt to phosphatidylinositol-3,4,5-trisphosphate (PIP3) in the membrane. Here, we demonstrate that Akt activation requires not only PIP3 but also membrane phosphatidylserine (PS). The extent of insulin-like growth factor–induced Akt activation and downstream signaling as well as cell survival under serum starvation conditions positively correlates with plasma membrane PS levels in living cells. PS promotes Akt-PIP3 binding, participates in PIP3-induced Akt interdomain conformational changes for T308 phosphorylation, and causes an open conformation that allows for S473 phosphorylation by mTORC2. PS interacts with specific residues in the pleckstrin homology (PH) and regulatory (RD) domains of Akt. Disruption of PS–Akt interaction by mutation impairs Akt signaling and increases susceptibility to cell death. These data identify a critical function of PS for Akt activation and cell survival, particularly in conditions with limited PIP3 availability. The novel molecular interaction mechanism for Akt activation suggests potential new targets for controlling Akt-dependent cell survival and proliferation. PMID:21402788

  14. Potassium uptake supporting plant growth in the absence of AKT1 channel activity: Inhibition by ammonium and stimulation by sodium

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Hirsch, R. E.; Lewis, D. R.; Qi, Z.; Sussman, M. R.; Lewis, B. D.

    1999-01-01

    A transferred-DNA insertion mutant of Arabidopsis that lacks AKT1 inward-rectifying K+ channel activity in root cells was obtained previously by a reverse-genetic strategy, enabling a dissection of the K+-uptake apparatus of the root into AKT1 and non-AKT1 components. Membrane potential measurements in root cells demonstrated that the AKT1 component of the wild-type K+ permeability was between 55 and 63% when external [K+] was between 10 and 1,000 microM, and NH4+ was absent. NH4+ specifically inhibited the non-AKT1 component, apparently by competing for K+ binding sites on the transporter(s). This inhibition by NH4+ had significant consequences for akt1 plants: K+ permeability, 86Rb+ fluxes into roots, seed germination, and seedling growth rate of the mutant were each similarly inhibited by NH4+. Wild-type plants were much more resistant to NH4+. Thus, AKT1 channels conduct the K+ influx necessary for the growth of Arabidopsis embryos and seedlings in conditions that block the non-AKT1 mechanism. In contrast to the effects of NH4+, Na+ and H+ significantly stimulated the non-AKT1 portion of the K+ permeability. Stimulation of akt1 growth rate by Na+, a predicted consequence of the previous result, was observed when external [K+] was 10 microM. Collectively, these results indicate that the AKT1 channel is an important component of the K+ uptake apparatus supporting growth, even in the "high-affinity" range of K+ concentrations. In the absence of AKT1 channel activity, an NH4+-sensitive, Na+/H+-stimulated mechanism can suffice.

  15. FANCI is a negative regulator of Akt activation.

    PubMed

    Zhang, Xiaoshan; Lu, Xiaoyan; Akhter, Shamima; Georgescu, Maria-Magdalena; Legerski, Randy J

    2016-01-01

    Akt is a critical mediator of the oncogenic PI3K pathway, and its activation is regulated by kinases and phosphatases acting in opposition. We report here the existence of a novel protein complex that is composed minimally of Akt, PHLPP1, PHLPP2, FANCI, FANCD2, USP1 and UAF1. Our studies show that depletion of FANCI, but not FANCD2 or USP1, results in increased phosphorylation and activation of Akt. This activation is due to a reduction in the interaction between PHLPP1 and Akt in the absence of FANCI. In response to DNA damage or growth factor treatment, the interactions between Akt, PHLPP1 and FANCI are reduced consistent with the known phosphorylation of Akt in response to these stimuli. Furthermore, depletion of FANCI results in reduced apoptosis after DNA damage in accord with its role as a negative regular of Akt. Our findings describe an unexpected function for FANCI in the regulation of Akt and define a previously unrecognized intersection between the PI3K-Akt and FA pathways.

  16. AKT1 E17K in Colorectal Carcinoma Is Associated with BRAF V600E but Not MSI-H Status: A Clinicopathologic Comparison to PIK3CA Helical and Kinase Domain Mutants

    PubMed Central

    Hechtman, Jaclyn F.; Sadowska, Justyna; Huse, Jason T.; Borsu, Laetitia; Yaeger, Rona; Shia, Jinru; Vakiani, Efsevia; Ladanyi, Marc; Arcila, Maria E.

    2016-01-01

    The PI3K/AKT/mTOR pathway is activated through multiple mechanisms in colorectal carcinoma. Here, the clinicopathologic and molecular features of AKT1 E17K–mutated colorectal carcinoma in comparison with PIK3CA-mutated colorectal carcinoma are described in detail. Interestingly, in comparison with PIK3CA mutants, AKT1 E17K was significantly associated with mucinous morphology and concurrent BRAF V600E mutation. Among PIK3CA mutants, exon 21 mutations were significantly associated with BRAF V600E mutation, MSI-H status, and poor differentiation, while exon 10 mutations were associated with KRAS/NRAS mutations. Three of four AKT1 mutants with data from both primary and metastatic lesions had concordant AKT1 mutation status in both. Both AKT1-and PIK3CA-mutant colorectal carcinoma demonstrated frequent loss of PTEN expression (38% and 34%, respectively) and similar rates of p-PRAS 40 expression (63% and 50%, respectively). Both patients with AKT1 E17K alone had primary resistance to cetuximab, whereas 7 of 8 patients with PIK3CA mutation alone experienced tumor shrinkage or stability with anti-EGFR therapy. These results demonstrate that AKT1 E17K mutation in advanced colorectal carcinoma is associated with mucinous morphology, PIK3CA wild-type status, and concurrent RAS/RAF mutations with similar pattern to PIK3CA exon 21 mutants. Thus, AKT1 E17K mutations contribute to primary resistance to cetuximab and serve as an actionable alteration. PMID:25714871

  17. Akt phosphorylates Tal1 oncoprotein and inhibits its repressor activity.

    PubMed

    Palamarchuk, Alexey; Efanov, Alexey; Maximov, Vadim; Aqeilan, Rami I; Croce, Carlo M; Pekarsky, Yuri

    2005-06-01

    The helix-loop-helix transcription factor Tal1 is required for blood cell development and its activation is a frequent event in T-cell acute lymphoblastic leukemia. The Akt (protein kinase B) kinase is a key player in transduction of antiapoptotic and proliferative signals in T cells. Because Tal1 has a putative Akt phosphorylation site at Thr90, we investigated whether Akt regulates Tal1. Our results show that Akt specifically phosphorylates Thr90 of the Tal1 protein within its transactivation domain in vitro and in vivo. Coimmunoprecipitation experiments showed the presence of Tal1 in Akt immune complexes, suggesting that Tal1 and Akt physically interact. We further showed that phosphorylation of Tal1 by Akt causes redistribution of Tal1 within the nucleus. Using luciferase assay, we showed that phosphorylation of Tal1 by Akt decreased repressor activity of Tal1 on EpB42 (P4.2) promoter. Thus, these data indicate that Akt interacts with Tal1 and regulates Tal1 by phosphorylation at Thr90 in a phosphatidylinositol 3-kinase-dependent manner.

  18. Membrane Heterogeneity in Akt Activation in Prostate Cancer

    DTIC Science & Technology

    2009-11-01

    construct from the top, Fig. 1), proved to be incompatible with Akt1 activity. The prenylation signal derived from K- Ras rendered Akt1 catalytically...with either cyclo- dextrin (CD) or water-soluble cholesterol ( Chol ) or with CD followed by cholesterol treatment (CD Chol ). Cells incubated in serum

  19. Membrane Heterogeneity in Akt Activation in Prostate Cancer

    DTIC Science & Technology

    2009-07-01

    variant (third construct from the top, Fig. 1), proved to be incompatible with Akt1 activity. The prenylation signal derived from K- Ras rendered Akt1...water-soluble cholesterol ( Chol ) or with CD followed by cholesterol treatment (CD Chol ). Cells incubated in serum-free medium served as controls

  20. Andrographolide suppresses endothelial cell apoptosis via activation of phosphatidyl inositol-3-kinase/Akt pathway.

    PubMed

    Chen, Jiun-Han; Hsiao, George; Lee, An-Rong; Wu, Chin-Chen; Yen, Mao-Hsiung

    2004-04-01

    Andrographolide (Andro), an active component isolated from the Chinese official herbal Andrographis paniculata, which has been reported to prevent oxygen radical production and thus prevent inflammatory diseases. In this study, we investigated the molecular mechanisms and signaling pathways by which Andro protects human umbilical vein endothelial cells (HUVECs) from growth factor (GF) deprivation-induced apoptosis. Results demonstrated that HUVECs undergo apoptosis after 18 hr of GF deprivation but that this cell death was suppressed by the addition of Andro in a concentration-dependent manner (1-100 microM). Andro suppresses the mitochondrial pathway of apoptosis by inhibiting release of cytochrome c into the cytoplasm and dissipation of mitochondrial potential (Deltapsi(m)), as a consequence, prevented caspase-3 and -9 activation. Treatment of endothelial cells with Andro-induced activation of the protein kinase Akt, an anti-apoptotic signal, and phosphorylation of BAD, a down-stream target of Akt. Suppression of Akt activity by wortmannin, by LY-294002 and by using a dominant negative Akt mutant abolished the anti-apoptotic effect of Andro. In contrast, the ERK1/2 activities were not affected by Andro. The ERK1/2 inhibitor, PD98059 failed to antagonize the protective effect of Andro. In conclusion, Andro exerts its anti-apoptotic potential via activation of the Akt-BAD pathway in HUVECs and thus may represent a candidate of therapeutic agent for atherosclerosis.

  1. Akt Pathway Activation by Human T-cell Leukemia Virus Type 1 Tax Oncoprotein.

    PubMed

    Cherian, Mathew A; Baydoun, Hicham H; Al-Saleem, Jacob; Shkriabai, Nikoloz; Kvaratskhelia, Mamuka; Green, Patrick; Ratner, Lee

    2015-10-23

    Human T-cell leukemia virus (HTLV) type 1, the etiological agent of adult T-cell leukemia, expresses the viral oncoprotein Tax1. In contrast, HTLV-2, which expresses Tax2, is non-leukemogenic. One difference between these homologous proteins is the presence of a C-terminal PDZ domain-binding motif (PBM) in Tax1, previously reported to be important for non-canonical NFκB activation. In contrast, this study finds no defect in non-canonical NFκB activity by deletion of the Tax1 PBM. Instead, Tax1 PBM was found to be important for Akt activation. Tax1 attenuates the effects of negative regulators of the PI3K-Akt-mammalian target of rapamycin pathway, phosphatase and tensin homologue (PTEN), and PHLPP. Tax1 competes with PTEN for binding to DLG-1, unlike a PBM deletion mutant of Tax1. Forced membrane expression of PTEN or PHLPP overcame the effects of Tax1, as measured by levels of Akt phosphorylation, and rates of Akt dephosphorylation. The current findings suggest that Akt activation may explain the differences in transforming activity of HTLV-1 and -2.

  2. Subcutaneous adipocytes promote melanoma cell growth by activating the Akt signaling pathway: role of palmitic acid.

    PubMed

    Kwan, Hiu Yee; Fu, Xiuqiong; Liu, Bin; Chao, Xiaojuan; Chan, Chi Leung; Cao, Huihui; Su, Tao; Tse, Anfernee Kai Wing; Fong, Wang Fun; Yu, Zhi-Ling

    2014-10-31

    Tumorigenesis involves constant communication between tumor cells and neighboring normal cells such as adipocytes. The canonical function of adipocytes is to store triglyceride and release fatty acids for other tissues. This study was aimed to find out if adipocytes promoted melanoma cell growth and to investigate the underlying mechanism. Here we isolated adipocytes from inguinal adipose tissue in mice and co-cultured with melanoma cells. We found that the co-cultured melanoma had higher lipid accumulation compared with mono-cultured melanoma. In addition, fluorescently labeled fatty acid BODIPY® FLC16 signal was detected in melanoma co-cultured with the adipocytes that had been loaded with the fluorescent dye, suggesting that the adipocytes provide fatty acids to melanoma cells. Compared with mono-cultured melanoma, co-cultured melanoma cells had a higher proliferation and phospho-Akt (Ser-473 and Thr-450) expression. Overexpression of Akt mutants in melanoma cells reduced the co-culture-enhanced proliferation. A lipidomic study showed that the co-cultured melanoma had an elevated palmitic acid level. Interestingly, we found that palmitic acid stimulated melanoma cell proliferation, changed the cell cycle distribution, and increased phospho-Akt (Ser-473 and Thr-450) and PI3K but not phospho-PTEN (phosphophosphatase and tensin homolog) expressions. More importantly, the palmitic acid-stimulated proliferation was further enhanced in the Akt-overexpressed melanoma cells and was reduced by LY294002 or knockdown of endogenous Akt or overexpression of Akt mutants. We also found that palmitic acid-pretreated B16F10 cells were grown to a significantly larger tumor in mice compared with control cells. Taken together, we suggest that adipocytes may serve as an exogenous source of palmitic acid that promotes melanoma cell growth by activating Akt.

  3. Subcutaneous Adipocytes Promote Melanoma Cell Growth by Activating the Akt Signaling Pathway

    PubMed Central

    Kwan, Hiu Yee; Fu, Xiuqiong; Liu, Bin; Chao, Xiaojuan; Chan, Chi Leung; Cao, Huihui; Su, Tao; Tse, Anfernee Kai Wing; Fong, Wang Fun; Yu, Zhi-Ling

    2014-01-01

    Tumorigenesis involves constant communication between tumor cells and neighboring normal cells such as adipocytes. The canonical function of adipocytes is to store triglyceride and release fatty acids for other tissues. This study was aimed to find out if adipocytes promoted melanoma cell growth and to investigate the underlying mechanism. Here we isolated adipocytes from inguinal adipose tissue in mice and co-cultured with melanoma cells. We found that the co-cultured melanoma had higher lipid accumulation compared with mono-cultured melanoma. In addition, fluorescently labeled fatty acid BODIPY® FLC16 signal was detected in melanoma co-cultured with the adipocytes that had been loaded with the fluorescent dye, suggesting that the adipocytes provide fatty acids to melanoma cells. Compared with mono-cultured melanoma, co-cultured melanoma cells had a higher proliferation and phospho-Akt (Ser-473 and Thr-450) expression. Overexpression of Akt mutants in melanoma cells reduced the co-culture-enhanced proliferation. A lipidomic study showed that the co-cultured melanoma had an elevated palmitic acid level. Interestingly, we found that palmitic acid stimulated melanoma cell proliferation, changed the cell cycle distribution, and increased phospho-Akt (Ser-473 and Thr-450) and PI3K but not phospho-PTEN (phosphophosphatase and tensin homolog) expressions. More importantly, the palmitic acid-stimulated proliferation was further enhanced in the Akt-overexpressed melanoma cells and was reduced by LY294002 or knockdown of endogenous Akt or overexpression of Akt mutants. We also found that palmitic acid-pretreated B16F10 cells were grown to a significantly larger tumor in mice compared with control cells. Taken together, we suggest that adipocytes may serve as an exogenous source of palmitic acid that promotes melanoma cell growth by activating Akt. PMID:25228694

  4. LEOPARD-type SHP2 mutant Gln510Glu attenuates cardiomyocyte differentiation and promotes cardiac hypertrophy via dysregulation of Akt/GSK-3β/β-catenin signaling.

    PubMed

    Ishida, Hidekazu; Kogaki, Shigetoyo; Narita, Jun; Ichimori, Hiroaki; Nawa, Nobutoshi; Okada, Yoko; Takahashi, Kunihiko; Ozono, Keiichi

    2011-10-01

    LEOPARD syndrome (LS) is an autosomal dominant inherited multisystemic disorder. Most cases involve mutations in the PTPN11 gene, which encodes the protein tyrosine phosphatase Src homology 2-containing protein phosphatase 2 (SHP2). LS frequently causes severe hypertrophic cardiomyopathy (HCM), even from the fetal period. However, the molecular pathogenesis has not been clearly elucidated. Here, we analyzed the roles of the LS-type SHP2 mutant Gln510Glu (Q510E), which showed the most severe type of HCM in LS, in cardiomyocyte differentiation, and in morphological changes. We generated mutant P19CL6 cell lines, the most convenient cardiomyocyte differentiation model, which continuously expressed SHP2-Q510E, SHP2-D61N (Noonan-type mutant), wild-type SHP2, and green fluorescent protein (native SHP2 expression only). SHP2-Q510E mutant P19CL6 cells showed significant attenuation of myofibrillogenesis, with increased proliferative activity. Mature cardiomyocytes from the SHP2-Q510E mutant were significantly larger than those of controls and the other mutants. However, expression of cardiac-specific transcriptional factors (Gata4, Tbx5, and Nkx2.5) did not differ significantly between the LS-type SHP2-Q510E mutants and the other mutants and controls. Our results indicate that SHP2-Q510E mutants can differentiate into cardiac progenitors but are inhibited from undergoing terminal differentiation into mature cardiomyocytes. In contrast, Akt and glycogen synthase kinase (GSK)-3β phosphorylation were upregulated, and nuclear β-catenin at the late stage of differentiation was highly accumulated in SHP2-Q510E mutant P19CL6 cells. Supplementation with the phosphoinositide 3-kinase/Akt inhibitor LY-294002 during the late stage of differentiation was found to partially restore myofibrillogenesis while suppressing the increase in size of individual mature cardiomyocytes derived from the SHP2-Q510E mutants. Our findings suggest that dysregulation of the Akt/GSK-3

  5. Zinc induces cell death in immortalized embryonic hippocampal cells via activation of Akt-GSK-3beta signaling.

    PubMed

    Min, Young Kyu; Lee, Jong Eun; Chung, Kwang Chul

    2007-01-15

    Zinc is an essential catalytic and structural element of many proteins and a signaling messenger that is released by neuronal activity at many central excitatory synapses. Excessive synaptic release of zinc followed by entry into vulnerable neurons contributes severe neuronal cell death. We have previously observed that zinc-induced neuronal cell death is accompanied by Akt activation in embryonic hippocampal progenitor (H19-7) cells. In the present study, we examined the role of Akt activation and its downstream signaling events during extracellular zinc-induced neuronal cell death. Treatment of H19-7 cells with 10 microM of zinc plus zinc ionophore, pyrithione, led to increased phosphorylation of Akt at Ser-473/Thr-308 and increased Akt kinase activity. Zinc-induced Akt activation was accompanied by increased Tyr-phosphorylated GSK-3beta as well as increased GSK-3beta kinase activity. Transient overexpression of a kinase-deficient Akt mutant remarkably suppressed GSK-3beta activation and cell death. Furthermore, tau phosphorylation, but not the degradation of beta-catenin, was dependent upon zinc-induced GSK-3beta activation and contributed to cell death. The current data suggest that, following exposure to zinc, the sequential activation of Akt and GSK-3beta plays an important role directing hippocampal neural precursor cell death.

  6. Multiple host kinases contribute to Akt activation during Salmonella infection.

    PubMed

    Roppenser, Bernhard; Kwon, Hyunwoo; Canadien, Veronica; Xu, Risheng; Devreotes, Peter N; Grinstein, Sergio; Brumell, John H

    2013-01-01

    SopB is a type 3 secreted effector with phosphatase activity that Salmonella employs to manipulate host cellular processes, allowing the bacteria to establish their intracellular niche. One important function of SopB is activation of the pro-survival kinase Akt/protein kinase B in the infected host cell. Here, we examine the mechanism of Akt activation by SopB during Salmonella infection. We show that SopB-mediated Akt activation is only partially sensitive to PI3-kinase inhibitors LY294002 and wortmannin in HeLa cells, suggesting that Class I PI3-kinases play only a minor role in this process. However, depletion of PI(3,4) P2/PI(3-5) P3 by expression of the phosphoinositide 3-phosphatase PTEN inhibits Akt activation during Salmonella invasion. Therefore, production of PI(3,4) P2/PI(3-5) P3 appears to be a necessary event for Akt activation by SopB and suggests that non-canonical kinases mediate production of these phosphoinositides during Salmonella infection. We report that Class II PI3-kinase beta isoform, IPMK and other kinases identified from a kinase screen all contribute to Akt activation during Salmonella infection. In addition, the kinases required for SopB-mediated activation of Akt vary depending on the type of infected host cell. Together, our data suggest that Salmonella has evolved to use a single effector, SopB, to manipulate a remarkably large repertoire of host kinases to activate Akt for the purpose of optimizing bacterial replication in its host.

  7. Direct Regulation of Osteocytic Connexin 43 Hemichannels through AKT Kinase Activated by Mechanical Stimulation*

    PubMed Central

    Batra, Nidhi; Riquelme, Manuel A.; Burra, Sirisha; Kar, Rekha; Gu, Sumin; Jiang, Jean X.

    2014-01-01

    Connexin (Cx) 43 hemichannels in osteocytes are thought to play a critical role in releasing bone modulators in response to mechanical loading, a process important for bone formation and remodeling. However, the underlying mechanism that regulates the opening of mechanosensitive hemichannels is largely unknown. We have recently shown that Cx43 and integrin α5 interact directly with each other, and activation of PI3K appears to be required for Cx43 hemichannel opening by mechanical stimulation. Here, we show that mechanical loading through fluid flow shear stress (FFSS) increased the level of active AKT, a downstream effector of PI3K, which is correlated with the opening of hemichannels. Both Cx43 and integrin α5 are directly phosphorylated by AKT. Inhibition of AKT activation significantly reduced FFSS-induced opening of hemichannels and disrupted the interaction between Cx43 and integrin α5. Moreover, AKT phosphorylation on Cx43 and integrin α5 enhanced their interaction. In contrast to the C terminus of wild-type Cx43, overexpression of the C-terminal mutant containing S373A, a consensus site previously shown to be phosphorylated by AKT, failed to bind with α5 and hence could not inhibit hemichannel opening. Together, our results suggest that AKT activated by FFSS directly phosphorylates Cx43 and integrin α5, and Ser-373 of Cx43 plays a predominant role in mediating the interaction between these two proteins and Cx43 hemichannel opening, a crucial step to mediate the anabolic function of mechanical loading in the bone. PMID:24563481

  8. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress

    NASA Technical Reports Server (NTRS)

    Go, Y. M.; Boo, Y. C.; Park, H.; Maland, M. C.; Patel, R.; Pritchard, K. A. Jr; Fujio, Y.; Walsh, K.; Darley-Usmar, V.; Jo, H.

    2001-01-01

    Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.

  9. Impaired translocation and activation of mitochondrial Akt1 mitigated mitochondrial oxidative phosphorylation Complex V activity in diabetic myocardium.

    PubMed

    Yang, Jia-Ying; Deng, Wu; Chen, Yumay; Fan, Weiwei; Baldwin, Kenneth M; Jope, Richard S; Wallace, Douglas C; Wang, Ping H

    2013-06-01

    Insulin can translocate Akt to mitochondria in cardiac muscle. The goals of this study were to define sub-mitochondrial localization of the translocated Akt, to dissect the effects of insulin on Akt isoform translocation, and to determine the direct effect of mitochondrial Akt activation on Complex V activity in normal and diabetic myocardium. The translocated Akt sequentially localized to the mitochondrial intermembrane space, inner membrane, and matrix. To confirm Akt translocation, in vitro import assay showed rapid entry of Akt into mitochondria. Akt isoforms were differentially regulated by insulin stimulation, only Akt1 translocated into mitochondria. In the insulin-resistant Type 2 diabetes model, Akt1 translocation was blunted. Mitochondrial activation of Akt1 increased Complex V activity by 24% in normal myocardium in vivo and restored Complex V activity in diabetic myocardium. Basal mitochondrial Complex V activity was lower by 22% in the Akt1(-/-) myocardium. Insulin-stimulated Complex V activity was not impaired in the Akt1(-/-) myocardium, due to compensatory translocation of Akt2 to mitochondria. Akt1 is the primary isoform that relayed insulin signaling to mitochondria and modulated mitochondrial Complex V activity. Activation of mitochondrial Akt1 enhanced ATP production and increased phosphocreatine in cardiac muscle cells. Dysregulation of this signal pathway might impair mitochondrial bioenergetics in diabetic myocardium.

  10. A Gammaherpesvirus Complement Regulatory Protein Promotes Initiation of Infection by Activation of Protein Kinase Akt/PKB

    PubMed Central

    Steer, Beatrix; Adler, Barbara; Jonjic, Stipan; Stewart, James P.; Adler, Heiko

    2010-01-01

    Background Viruses have evolved to evade the host's complement system. The open reading frames 4 (ORF4) of gammaherpesviruses encode homologs of regulators of complement activation (RCA) proteins, which inhibit complement activation at the level of C3 and C4 deposition. Besides complement regulation, these proteins are involved in heparan sulfate and glycosaminoglycan binding, and in case of MHV-68, also in viral DNA synthesis in macrophages. Methodology/Principal Findings Here, we made use of MHV-68 to study the role of ORF4 during infection of fibroblasts. While attachment and penetration of virions lacking the RCA protein were not affected, we observed a delayed delivery of the viral genome to the nucleus of infected cells. Analysis of the phosphorylation status of a variety of kinases revealed a significant reduction in phosphorylation of the protein kinase Akt in cells infected with ORF4 mutant virus, when compared to cells infected with wt virus. Consistent with a role of Akt activation in initial stages of infection, inhibition of Akt signaling in wt virus infected cells resulted in a phenotype resembling the phenotype of the ORF4 mutant virus, and activation of Akt by addition of insulin partially reversed the phenotype of the ORF4 mutant virus. Importantly, the homologous ORF4 of KSHV was able to rescue the phenotype of the MHV-68 ORF4 mutant, indicating that ORF4 is functionally conserved and that ORF4 of KSHV might have a similar function in infection initiation. Conclusions/Significance In summary, our studies demonstrate that ORF4 contributes to efficient infection by activation of the protein kinase Akt and thus reveal a novel function of a gammaherpesvirus RCA protein. PMID:20657771

  11. Inhibition of constitutively activated phosphoinositide 3-kinase/AKT pathway enhances antitumor activity of chemotherapeutic agents in breast cancer susceptibility gene 1-defective breast cancer cells.

    PubMed

    Yi, Yong Weon; Kang, Hyo Jin; Kim, Hee Jeong; Hwang, Jae Seok; Wang, Antai; Bae, Insoo

    2013-09-01

    Loss or decrease of wild type BRCA1 function, by either mutation or reduced expression, has a role in hereditary and sporadic human breast and ovarian cancers. We report here that the PI3K/AKT pathway is constitutively active in BRCA1-defective human breast cancer cells. Levels of phospho-AKT are sustained even after serum starvation in breast cancer cells carrying deleterious BRCA1 mutations. Knockdown of BRCA1 in MCF7 cells increases the amount of phospho-AKT and sensitizes cells to small molecule protein kinase inhibitors (PKIs) targeting the PI3K/AKT pathway. Restoration of wild type BRCA1 inhibits the activated PI3K/AKT pathway and de-sensitizes cells to PKIs targeting this pathway in BRCA1 mutant breast cancer cells, regardless of PTEN mutations. In addition, clinical PI3K/mTOR inhibitors, PI-103, and BEZ235, showed anti-proliferative effects on BRCA1 mutant breast cancer cell lines and synergism in combination with chemotherapeutic drugs, cisplatin, doxorubicin, topotecan, and gemcitabine. BEZ235 synergizes with the anti-proliferative effects of gemcitabine by enhancing caspase-3/7 activity. Our results suggest that the PI3K/AKT pathway can be an important signaling pathway for the survival of BRCA1-defective breast cancer cells and pharmacological inhibition of this pathway is a plausible treatment for a subset of breast cancers.

  12. PI3K/Akt is involved in brown adipogenesis mediated by growth differentiation factor-5 in association with activation of the Smad pathway

    SciTech Connect

    Hinoi, Eiichi; Iezaki, Takashi; Fujita, Hiroyuki; Watanabe, Takumi; Odaka, Yoshiaki; Ozaki, Kakeru; Yoneda, Yukio

    2014-07-18

    Highlights: • Akt is preferentially phosphorylated in BAT and sWAT of aP2-GDF5 mice. • PI3K/Akt signaling is involved in GDF5-induced brown adipogenesis. • PI3K/Akt signaling regulates GDF5-induced Smad5 phosphorylation. - Abstract: We have previously demonstrated promotion by growth differentiation factor-5 (GDF5) of brown adipogenesis for systemic energy expenditure through a mechanism relevant to activating the bone morphological protein (BMP) receptor/mothers against decapentaplegic homolog (Smad)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathway. Here, we show the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in brown adipogenesis mediated by GDF5. Overexpression of GDF5 in cells expressing adipocyte protein-2 markedly accelerated the phosphorylation of Smad1/5/8 and Akt in white and brown adipose tissues. In brown adipose tissue from heterozygous GDF5{sup Rgsc451} mutant mice expressing a dominant-negative (DN) GDF5 under obesogenic conditions, the basal phosphorylation of Smad1/5/8 and Akt was significantly attenuated. Exposure to GDF5 not only promoted the phosphorylation of both Smad1/5/8 and Akt in cultured brown pre-adipocytes, but also up-regulated Pgc1a and uncoupling protein-1 expression in a manner sensitive to the PI3K/Akt inhibitor Ly294002 as well as retroviral infection with DN-Akt. GDF5 drastically promoted BMP-responsive luciferase reporter activity in a Ly294002-sensitive fashion. Both Ly294002 and DN-Akt markedly inhibited phosphorylation of Smad5 in the nuclei of brown pre-adipocytes. These results suggest that PI3K/Akt signals play a role in the GDF5-mediated brown adipogenesis through a mechanism related to activation of the Smad pathway.

  13. Juglanthraquinone C Induces Intracellular ROS Increase and Apoptosis by Activating the Akt/Foxo Signal Pathway in HCC Cells.

    PubMed

    Hou, Ya-Qin; Yao, Yao; Bao, Yong-Li; Song, Zhen-Bo; Yang, Cheng; Gao, Xiu-Li; Zhang, Wen-Jing; Sun, Lu-Guo; Yu, Chun-Lei; Huang, Yan-Xin; Wang, Guan-Nan; Li, Yu-Xin

    2016-01-01

    Juglanthraquinone C (JC), a naturally occurring anthraquinone extracted from Juglans mandshurica, could induce apoptosis of cancer cells. This study aims to investigate the detailed cytotoxicity mechanism of JC in HepG2 and BEL-7402 cells. The Affymetrix HG-U133 Plus 2.0 arrays were first used to analyze the mRNA expression exposed to JC or DMSO in HepG2 cells. Consistent with the previous results, the data indicated that JC could induce apoptosis and hyperactivated Akt. The Western blot analysis further revealed that Akt, a well-known survival protein, was strongly activated in HepG2 and BEL-7402 cells. Furthermore, an obvious inhibitory effect on JC-induced apoptosis was observed when the Akt levels were decreased, while the overexpression of constitutively active mutant Akt greatly accelerated JC-induced apoptosis. The subsequent results suggested that JC treatment suppressed nuclear localization and increased phosphorylated levels of Foxo3a, and the overexpression of Foxo3a abrogated JC-induced apoptosis. Most importantly, the inactivation of Foxo3a induced by JC further led to an increase of intracellular ROS levels by suppressing ROS scavenging enzymes, and the antioxidant N-acetyl-L-cysteine and catalase successfully decreased JC-induced apoptosis. Collectively, this study demonstrated that JC induced the apoptosis of hepatocellular carcinoma (HCC) cells by activating Akt/Foxo signaling pathway and increasing intracellular ROS levels.

  14. Akt phosphorylation is essential for nuclear translocation and retention in NGF-stimulated PC12 cells

    SciTech Connect

    Truong Le Xuan Nguyen; Choi, Joung Woo; Lee, Sang Bae; Ye, Keqiang; Woo, Soo-Dong; Lee, Kyung-Hoon; Ahn, Jee-Yin . E-mail: jyahn@med.skku.ac.kr

    2006-10-20

    Nerve growth factor (NGF) elicits Akt translocation into the nucleus, where it phosphorylates nuclear targets. Here, we describe that Akt phosphorylation can promote the nuclear translocation of Akt and is necessary for its nuclear retention. Overexpression of Akt-K179A, T308A, S473A-mutant failed to show either nuclear translocation or nuclear Akt phosphorylation, whereas expression of wild-type counterpart elicited profound Akt phosphorylation and induced nuclear translocation under NGF stimulation. Employing the PI3K inhibitor and a variety of mutants PI3K, we showed that nuclear translocation of Akt was mediated by activation of PI3K, and Akt phosphorylation status in the nucleus required PI3K activity. Thus the activity of PI3K might contribute to the nuclear translocation of Akt, and that Akt phosphorylation is essential for its nuclear retention under NGF stimulation conditions.

  15. DMH1 increases glucose metabolism through activating Akt in L6 rat skeletal muscle cells.

    PubMed

    Xie, Xin; Xu, Xiao-Ming; Li, Na; Zhang, Yong-Hui; Zhao, Yu; Ma, Chun-Yan; Dong, De-Li

    2014-01-01

    DMH1(4-[6-(4-Isopropoxyphenyl)pyrazolo [1,5-a]pyrimidin-3-yl] quinoline) is a compound C analogue with the structural modifications at the 3- and 6-positions in pyrazolo[1,5-a]pyrimidine backbone. Compound C was reported to inhibit both AMPK and Akt. Our preliminary work found that DMH1 activated Akt. Since Akt was involved in glucose metabolism, we aimed to identify the effects of DMH1 on glucose metabolism in L6 rat muscle cells and the potential mechanism. Results showed that DMH1 increased lactic acid release and glucose consumption in L6 rat muscle cells in a dose-dependent manner. DMH1 activated Akt in L6 cells. Akt inhibitor inhibited DMH1-induced Akt activation and DMH1-induced increases of glucose uptake and consumption. DMH1 had no cytotoxicity in L6 cells, but inhibited mitochondrial function and reduced ATP production. DMH1 showed no effect on AMPK, but in the presence of Akt inhibitor, DMH1 significantly activated AMPK. Compound C inhibited DMH1-induced Akt activation in L6 cells. Compound C inhibited DMH1-induced increase of glucose uptake, consumption and lactic acid release in L6 cells. DMH1 inhibited PP2A activity, and PP2A activator forskolin reversed DMH1-induced Akt activation. We concluded that DMH1 increased glucose metabolism through activating Akt and DMH1 activated Akt through inhibiting PP2A activity in L6 rat muscle cells. In view of the analogue structure of DMH1 and compound C and the contrasting effects of DMH1 and compound C on Akt, the present study provides a novel leading chemical structure targeting Akt with potential use for regulating glucose metabolism.

  16. Distinct roles of AKT isoforms in regulating β1-integrin activity, migration, and invasion in prostate cancer

    PubMed Central

    Virtakoivu, Reetta; Pellinen, Teijo; Rantala, Juha K.; Perälä, Merja; Ivaska, Johanna

    2012-01-01

    AKT1 and AKT2 kinases have been shown to play opposite roles in breast cancer migration and invasion. In this study, an RNA interference screen for integrin activity inhibitors identified AKT1 as an inhibitor of β1-integrin activity in prostate cancer. Validation experiments investigating all three AKT isoforms demonstrated that, unlike in breast cancer, both AKT1 and AKT2 function as negative regulators of cell migration and invasion in PC3 prostate cancer cells. Down-regulation of AKT1 and AKT2, but not AKT3, induced activation of cell surface β1-integrins and enhanced adhesion, migration, and invasion. Silencing of AKT1 and AKT2 also resulted in increased focal adhesion size. Importantly, the mechanisms involved in integrin activity regulation were distinct for the two AKT isoforms. Silencing of AKT1 relieved feedback suppression of the expression and activity of several receptor tyrosine kinases, including EGFR and MET, with established cross-talk with β1-integrins. Silencing of AKT2, on the other hand, induced up-regulation of the microRNA-200 (miR-200) family, and overexpression of miR-200 was sufficient to induce integrin activity and cell migration in PC3 cells. Taken together, these data define an inhibitory role for both AKT1 and AKT2 in prostate cancer migration and invasion and highlight the cell type–specific actions of AKT kinases in the regulation of cell motility. PMID:22809628

  17. Suppression of AKT expression by miR-153 produced anti-tumor activity in lung cancer.

    PubMed

    Yuan, Ye; Du, Weijie; Wang, Ying; Xu, Chaoqian; Wang, Jinghao; Zhang, Yang; Wang, Huimin; Ju, Jiaming; Zhao, Liang; Wang, Zhiguo; Lu, Yanjie; Cai, Benzhi; Pan, Zhenwei

    2015-03-15

    Lung cancer is one of the leading causes of cancer death worldwide. microRNAs have been shown to be a novel class of regulators in lung cancer. Here, we explored the role of miR-153 in the pathogenesis of lung cancer and its therapeutic potential. miR-153 was significantly decreased in lung cancer tissues than the adjacent tissues. The protein and mRNA levels of protein kinase B (AKT), which were shown to promote tumor growth, were both increased in lung cancer tissues than adjacent tissues. Overexpression of miR-153 significantly inhibited AKT protein expression, which were abrogated by co-transfection of AMO-153, the specific inhibitor of miR-153. Luciferase assay showed that transfection of miR-153 markedly suppressed the fluorescent intensity of chimeric vectors carrying the 3'UTR of AKT1, while produced no effect on the mutant construct, indicating that AKT is regulated by miR-153. Overexpression of miR-153 significantly inhibited the proliferation and migration, and promoted apoptosis of cultured lung cancer cells in vitro, and suppressed the growth of xenograft tumors in vivo. Interestingly, lung cancer cells with lower endogenous miR-153 expression are more sensitive to ectopic overexpressed miR-153. The IC50 of miR-153 on lung cancer cells is positive correlated with the endogenous miR-153 level, while negative correlated with AKT level. Knockdown of AKT expression suppressed lung cancer cell proliferation. In summary, miR-153 exerted anti-tumor activity in lung cancer by targeting on AKT. The sensitivity of lung cancer cells to miR-153 is determined by its endogenous miR-153 level.

  18. Upregulation of AKT1 protein expression in forskolin-stimulated macrophage: evidence from ChIP analysis that CREB binds to and activates the AKT1 promoter.

    PubMed

    Misra, Uma Kant; Pizzo, Salvatore Vincent

    2007-03-01

    Recently, we reported that silencing CREB gene expression by RNAi significantly attenuates forskolin-induced activation of Akt1. We now provide evidence that forskolin-treatment causes transcriptional and translational upregulation of Akt1 in macrophages. Akt synthesis was demonstrated by [(14)C]leucine or [(35)S] incorporation into newly synthesized Akt1 protein. Akt protein levels increased by approximately 1.5-fold after only a 5 min exposure of macrophages to forskolin. Akt1 levels thereafter rapidly returned to basal values (t(1/2) approximately 15 min). Maximal upregulation of Akt1 occurred in cells treated with 10 microM forskolin. Forskolin-dependent Akt1 synthesis was abolished by pretreating the cells with CREB-directed dsRNA as demonstrated at both the message and protein level, as well as by determining the synthesis of [(35)S]-labeled Akt1 protein. The PKA inhibitor H-89, greatly attenuated forskolin-induced Akt1 synthesis. Transcriptional and translational inhibitors also greatly reduced Akt1 synthesis in forskolin-stimulated [(14)C]leucine-labeled macrophages. Using a chromatin immunoprecipitation assay, we demonstrate that CREB binds to a CRE binding domain of the Akt1 gene promoter. In conclusion, we show here for the first time transcriptional upregulation of Akt1 by CREB, based upon Akt1 protein synthesis and its modulation by transitional and translational inhibitors in forskolin-stimulated cells, Akt1 protein. and mRNA levels upon silencing CREB gene expression, and binding of CREB to the Akt1 gene promoter.

  19. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    SciTech Connect

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  20. Phanerochaete mutants with enhanced ligninolytic activity

    SciTech Connect

    Kakar, S.N.; Perez, A.; Gonzales, J.

    1993-06-01

    In addition to lignin, the white rot fungus Phanerochaete chrysosporium has the ability to degrade a wide spectrum of recalcitrant organopollutants in soils and aqueous media. Although some of the organic compounds are degraded under nonligninolytic conditions, most are degraded under ligninolytic conditions with the involvement of the extracellular enzymes, lignin peroxidases, and manganese-dependent peroxidases, which are produced as secondary metabolites triggered by conditions of nutrient starvation (e.g., nitrogen limitation). The fungus and its enzymes can thus provide alternative technologies for bioremediation, biopulping, biobleaching, and other industrial applications. The efficiency and effectiveness of the fungus can be enhanced by increasing production and secretion of the important enzymes in large quantities and as primary metabolites under enriched conditions. One way this can be achieved is through isolation of mutants that are deregulated or are hyperproducers or supersecretors of key enzymes under enriched conditions. Through ultraviolet-light and gamma-rays mutagenesis we have isolated a variety of mutants, some of which produce key enzymes of the ligninolytic system under high-nitrogen growth conditions. One of the mutants produced 272 units (U) of lignin peroxidases enzyme activity per liter after nine days under high nitrogen. The mutant and the parent strains produced up to 54 U/L and 62 U/L, respectively, of the enzyme activity under low-nitrogen growth conditions during this period. In some experiments the mutant showed 281 U/L of enzyme activity under high nitrogen after 17 days.

  1. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response

    PubMed Central

    Chan, Tung O.; Zhang, Jin; Tiegs, Brian C.; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M.; Armen, Roger S.; Rodeck, Ulrich; Penn, Raymond B.

    2015-01-01

    The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr308 in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr308 dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser473) increased phosphatase resistance of the phosphorylated activation loop (pThr308) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr308 phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin. PMID:26201515

  2. SMYD3-mediated lysine methylation in the PH domain is critical for activation of AKT1

    PubMed Central

    Yoshioka, Yuichiro; Suzuki, Takehiro; Matsuo, Yo; Nakakido, Makoto; Tsurita, Giichiro; Simone, Cristiano; Watanabe, Toshiaki; Dohmae, Naoshi; Nakamura, Yusuke; Hamamoto, Ryuji

    2016-01-01

    AKT1 is a cytosolic serine/threonine kinase that is overexpressed in various types of cancer and has a central role in human tumorigenesis. Although it is known that AKT1 is post-translationally modified in various ways including phosphorylation and ubiquitination, methylation has not been reported so far. Here we demonstrate that the protein lysine methyltransferase SMYD3 methylates lysine 14 in the PH domain of AKT1 both in vitro and in vivo. Lysine 14-substituted AKT1 shows significantly lower levels of phosphorylation at threonine 308 than wild-type AKT1, and knockdown of SMYD3 as well as treatment with a SMYD3 inhibitor significantly attenuates this phosphorylation in cancer cells. Furthermore, substitution of lysine 14 diminishes the plasma membrane accumulation of AKT1, and cancer cells overexpressing lysine 14-substiuted AKT1 shows lower growth rate than those overexpressing wild-type AKT1. These results imply that SMYD3-mediated methylation of AKT1 at lysine 14 is essential for AKT1 activation and that SMYD3-mediated AKT1 methylation appears to be a good target for development of anti-cancer therapy. PMID:27626683

  3. PDGF inactivates forkhead family transcription factor by activation of Akt in glomerular mesangial cells.

    PubMed

    Ghosh Choudhury, Goutam; Lenin, Mahimainathan; Calhaun, Cheresa; Zhang, Jian-Hua; Abboud, Hanna E

    2003-02-01

    Regulation of the forkhead domain transcription factors by PDGF has not been studied. In this report, we investigated the role of PDGF-induced Akt in regulating forkhead domain protein FKHRL1 in glomerular mesangial cells. PDGF increased phosphorylation of FKHRL1 in a time- and PI 3 kinase-dependent manner. Expression of dominant negative Akt by adenovirus-mediated gene transfer blocked PDGF-induced FKHRL1 phosphorylation. PDGF inhibited transcription of a forkhead DNA binding element-driven reporter gene. This inhibition was mimicked by constitutively active myristoylated Akt. Moreover, FKHR1-mediated transcription of the reporter gene was completely attenuated by both PDGF and Myr-Akt. One of the targets of forkhead transcription factors is the proapoptotic Fas ligand (FasL) gene. PDGF, as well as Myr-Akt, inhibited transcription of FasL. In contrast, inhibition of PI 3 kinase and dominant negative Akt increased FasL gene transcription, suggesting that suppression of PI 3 kinase/Akt signalling may induce apoptosis in mesangial cells via upregulation of FasL expression. However, expression of dominant negative Akt by adenovirus did not induce apoptosis in mesangial cells, suggesting that Akt-independent antiapoptotic mechanisms also exist. Together, our data demonstrate for the first time that PDGF inactivates forkhead domain transcription factor by Akt-dependent phosphorylation and that suppression of Akt signalling is not sufficient to induce apoptosis in mesangial cells.

  4. Contactin-1 reduces E-cadherin expression via activating AKT in lung cancer.

    PubMed

    Yan, Judy; Wong, Nicholas; Hung, Claudia; Chen, Wendy Xin-Yi; Tang, Damu

    2013-01-01

    Contactin-1 has been shown to promote cancer metastasis. However, the underlying mechanisms remain unclear. We report here that knockdown of contactin-1 in A549 lung cancer cells reduced A549 cell invasion and the cell's ability to grow in soft agar without affecting cell proliferation. Reduction of contactin-1 resulted in upregulation of E-cadherin, consistent with E-cadherin being inhibitive of cancer cell invasion. In an effort to investigate the mechanisms whereby contactin-1 reduces E-cadherin expression, we observed that contactin-1 plays a role in AKT activation, as knockdown of contactin-1 attenuated AKT activation. Additionally, inhibition of AKT activation significantly enhanced E-cadherin expression, an observation that mimics the situation observed in contactin-1 knockdown, suggesting that activation of AKT plays a role in contactin-1-mediated downregulation of E-cadherin. In addition, we were able to show that knockdown of contactin-1 did not further reduce A549 cell's invasion ability, when AKT activation was inhibited by an AKT inhibitor. To further support our findings, we overexpressed CNTN-1 in two CNTN-1 null breast cancer cell lines expressing E-cadherin. Upon overexpression, CNTN-1 reduced E-cadherin levels in one cell line and increased AKT activation in the other. Furthermore, in our study of 63 primary lung cancers, we observed 65% of primary lung cancers being contactin-1 positive and in these carcinomas, 61% were E-cadherin negative. Collectively, we provide evidence that contactin-1 plays a role in the downregulation of E-cadherin in lung cancer and that AKT activation contributes to this process. In a study of mechanisms responsible for contactin-1 to activate AKT, we demonstrated that knockdown of CNTN-1 in A549 cells did not enhance PTEN expression but upregulated PHLPP2, a phosphatase that dephosphorylates AKT. These observations thus suggest that contactin-1 enhances AKT activation in part by preventing PHLPP2-mediated AKT

  5. Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung.

    PubMed

    Malanga, Donatella; Scrima, Marianna; De Marco, Carmela; Fabiani, Fernanda; De Rosa, Nicla; De Gisi, Silvia; Malara, Natalia; Savino, Rocco; Rocco, Gaetano; Chiappetta, Gennaro; Franco, Renato; Tirino, Virginia; Pirozzi, Giuseppe; Viglietto, Giuseppe

    2008-03-01

    Somatic mutation (E17K) that constitutively activates the protein kinase AKT1 has been found in human cancer patients. We determined the role of the E17K mutation of AKT1 in lung cancer, through sequencing of AKT1 exon 4 in 105 resected, clinically annotated non-small cell lung cancer specimens. We detected a missense mutations G-->A transition at nucleotide 49 (that results in the E17K substitution) in two squamous cell carcinoma (2/36) but not in adenocarcinoma (0/53). The activity of the endogenous kinase carrying the E17K mutation immunoprecipitated by tumour tissue was significantly higher compared with the wild-type kinase immunoprecipitated by the adjacent normal tissue as determined both by in vitro kinase assay using a consensus peptide as substrate and by in vivo analysis of the phosphorylation status of AKT1 itself (pT308, pS473) or of known downstream substrates such as GSK3 (pS9/S22) and p27 (T198). Immunostaining or immunoblot analysis on membrane-enriched extracts indicated that the enhanced membrane localization exhibited by the endogenous E17K-AKT1 may account for the observed increased activity of mutant E17K kinase in comparison with the wild-type AKT1 from adjacent normal tissue. In conclusion, this is the first report of AKT1 mutation in lung cancer. Our data provide evidence that, although AKT1 mutations are apparently rare in lung cancer (1.9%), the oncogenic properties of E17K-AKT1 may contribute to the development of a fraction of lung carcinoma with squamous histotype (5.5%).

  6. Gastrointestinal growth factors and hormones have divergent effects on Akt activation

    PubMed Central

    Berna, Marc J.; Tapia, Jose A.; Sancho, Veronica; Thill, Michelle; Pace, Andrea; Hoffmann, K. Martin; Gonzalez-Fernandez, Lauro; Jensen, Robert T.

    2009-01-01

    Akt is a central regulator of apoptosis, cell growth and survival. Growth factors and some G-protein-coupled receptors (GPCR) regulate Akt. Whereas growth-factor activation of Akt has been extensively studied, the regulation of Akt by GPCR's, especially gastrointestinal hormones/neurotransmitters, remains unclear. To address this area, in this study the effects of GI growth factors and hormones/neurotransmitters were investigate in rat pancreatic acinar cells which are high responsive to these agents. Pancreatic acini expressed Akt and 5 of 7 known pancreatic growth-factors stimulate Akt phosphorylation (T308, S473) and translocation. These effects are mediated by p85 phosphorylation and activation of PI3K. GI hormones increasing intracellular cAMP had similar effects. However, GI-hormones/neurotransmitters[CCK, bombesin,carbachol] activating phospholipase C (PLC) inhibited basal and growth-factor-stimulated Akt activation. Detailed studies with CCK, which has both physiological and pathophysiological effects on pancreatic acinar cells at different concentrations, demonstrated CCK has a biphasic effect: at low concentrations(pM) stimulating Akt by a Src-dependent mechanism and at higher concentrations(nM) inhibited basal and stimulated Akt translocation, phosphorylation and activation, by de-phosphorylating p85 resulting in decreasing PI3K activity. This effect required activation of both limbs of the PLC-pathway and a protein tyrosine phosphatase, but was not mediated by p44/42 MAPK, Src or activation of a serine phosphatase. Akt inhibition by CCK was also found in vivo and in Panc-1 cancer cells where it inhibited serum-mediated rescue from apoptosis. These results demonstrate that GI growth factors as well as gastrointestinal hormones/neurotransmitters with different cellular basis of action can all regulate Akt phosphorylation in pancreatic acinar cells. This regulation is complex with phospholipase C agents such as CCK, because both stimulatory and inhibitory

  7. Xenotransplantation elicits salient tumorigenicity of adult T-cell leukemia-derived cells via aberrant AKT activation.

    PubMed

    Yamaguchi, Kazunori; Takanashi, Tomoka; Nasu, Kentaro; Tamai, Keiichi; Mochizuki, Mai; Satoh, Ikuro; Ine, Shoji; Sasaki, Osamu; Satoh, Kennichi; Tanaka, Nobuyuki; Harigae, Hideo; Sugamura, Kazuo

    2016-05-01

    The transplantation of human cancer cells into immunodeficient NOD/SCID/IL-2Rγc(null) (NOG) mice often causes highly malignant cell populations like cancer stem cells to emerge. Here, by serial transplantation in NOG mice, we established two highly tumorigenic adult T-cell leukemia-derived cell lines, ST1-N6 and TL-Om1-N8. When transplanted s.c., these cells formed tumors significantly earlier and from fewer initial cells than their parental lines ST1 and TL-Om1. We found that protein kinase B (AKT) signaling was upregulated in ST1-N6 and TL-Om1-N8 cells, and that this upregulation was due to the decreased expression of a negative regulator, INPP5D. Furthermore, the introduction of a constitutively active AKT mutant expression vector into ST1 cells augmented the tumorigenicity of the cells, whereas treatment with the AKT inhibitor MK-2206 attenuated the progression of tumors induced by ST1-N6 cells. Collectively, our results reveal that the AKT signaling pathway plays a critical role in the malignancy of adult T-cell leukemia-derived cells.

  8. Akt phosphorylates and activates HSF-1 independent of heat shock, leading to Slug overexpression and epithelial-mesenchymal transition (EMT) of HER2-overexpressing breast cancer cells.

    PubMed

    Carpenter, R L; Paw, I; Dewhirst, M W; Lo, H-W

    2015-01-29

    Epithelial-mesenchymal transition (EMT) is an essential step for tumor progression, although the mechanisms driving EMT are still not fully understood. In an effort to investigate these mechanisms, we observed that heregulin (HRG)-mediated activation of HER2, or HER2 overexpression, resulted in EMT, which is accompanied with increased expression of a known EMT regulator Slug, but not TWIST or Snail. We then investigated how HER2 induced Slug expression and found, for the first time, that there are four consensus HSF sequence-binding elements (HSEs), the binding sites for heat shock factor-1 (HSF-1), located in the Slug promoter. HSF-1 bound to and transactivated the Slug promoter independent of heat shock, leading to Slug expression in breast cancer cells. Mutation of the putative HSEs ablated Slug transcriptional activation induced by HRG or HSF-1 overexpression. Knockdown of HSF-1 expression by siRNA reduced Slug expression and HRG-induced EMT. The positive association between HSF-1 and Slug was confirmed by immunohistochemical staining of a cohort of 100 invasive breast carcinoma specimens. While investigating how HER2 activated HSF-1 independent of heat shock, we observed that HER2 activation resulted in concurrent phosphorylation of Akt and HSF-1. We then observed, also for the first time, that Akt directly interacted with HSF-1 and phosphorylated HSF-1 at S326. Inhibition of Akt using siRNA, dominant-negative Akt mutant, or small molecule inhibitors prevented HRG-induced HSF-1 activation and Slug expression. Conversely, constitutively active Akt induced HSF-1 phosphorylation and Slug expression. HSF-1 knockdown reduced the ability of Akt to induce Slug expression, indicating an essential role that HSF-1 plays in Akt-induced Slug upregulation. Altogether, our study uncovered the existence of a novel Akt-HSF-1 signaling axis that leads to Slug upregulation and EMT, and potentially contributes to progression of HER2-positive breast cancer.

  9. Low-power laser irradiation inhibits Aβ25-35-induced cell apoptosis through Akt activation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhigang; Tang, Yonghong

    2009-08-01

    Low-power laser irradiation (LPLI) can modulate various cellular processes such as proliferation, differentiation and apoptosis. Recently, LPLI has been applied to moderate Alzheimer's disease (AD), but the underlying mechanism remains unknown. The protective role of LPLI against the amyloid beta peptide (Aβ), a major constituent of AD plaques, has not been studied. PI3K/Akt pathway is extremely important in protecting cells from apoptosis caused by diverse stress stimuli. However, whether LPLI can inhibit Aβ-induced apoptosis through Akt activation is still unclear. In current study, using FRET (fluorescence resonance energy transfer) technique, we investigated the activity of Akt in response to LPLI treatment. B kinase activity reporter (BKAR), a recombinant FRET probe of Akt, was utilized to dynamically detect the activation of Akt after LPLI treatment. The results show that LPLI promoted the activation of Akt. Moreover, LPLI inhibits apoptosis induced by Aβ25-35 and the apoptosis inhibition can be abolished by wortmannin, a specific inhibitor of PI3K/Akt. Taken together, these results suggest that LPLI can inhibit Aβ25-35-induced cell apoptosis through Akt activation.

  10. Nitric Oxide Synthase and Breast Cancer: Role of TIMP-1 in NO-mediated Akt Activation

    PubMed Central

    Ridnour, Lisa A.; Barasch, Kimberly M.; Windhausen, Alisha N.; Dorsey, Tiffany H.; Lizardo, Michael M.; Yfantis, Harris G.; Lee, Dong H.; Switzer, Christopher H.; Cheng, Robert Y. S.; Heinecke, Julie L.; Brueggemann, Ernst; Hines, Harry B.; Khanna, Chand; Glynn, Sharon A.; Ambs, Stefan; Wink, David A.

    2012-01-01

    Prediction of therapeutic response and cancer patient survival can be improved by the identification of molecular markers including tumor Akt status. A direct correlation between NOS2 expression and elevated Akt phosphorylation status has been observed in breast tumors. Tissue inhibitor matrix metalloproteinase-1 (TIMP-1) has been proposed to exert oncogenic properties through CD63 cell surface receptor pathway initiation of pro-survival PI3k/Akt signaling. We employed immunohistochemistry to examine the influence of TIMP-1 on the functional relationship between NOS2 and phosphorylated Akt in breast tumors and found that NOS2-associated Akt phosphorylation was significantly increased in tumors expressing high TIMP-1, indicating that TIMP-1 may further enhance NO-induced Akt pathway activation. Moreover, TIMP-1 silencing by antisense technology blocked NO-induced PI3k/Akt/BAD phosphorylation in cultured MDA-MB-231 human breast cancer cells. TIMP-1 protein nitration and TIMP-1/CD63 co-immunoprecipitation was observed at NO concentrations that induced PI3k/Akt/BAD pro-survival signaling. In the survival analysis, elevated tumor TIMP-1 predicted poor patient survival. This association appears to be mainly restricted to tumors with high NOS2 protein. In contrast, TIMP-1 did not predict poor survival in patient tumors with low NOS2 expression. In summary, our findings suggest that tumors with high TIMP-1 and NOS2 behave more aggressively by mechanisms that favor Akt pathway activation. PMID:22957045

  11. Prediabetes linked to excess glucagon in transgenic mice with pancreatic active AKT1.

    PubMed

    Albury-Warren, Toya M; Pandey, Veethika; Spinel, Lina P; Masternak, Michal M; Altomare, Deborah A

    2016-01-01

    Protein kinase B/AKT has three isoforms (AKT1-3) and is renowned for its central role in the regulation of cell growth and proliferation, due to its constitutive activation in various cancers. AKT2, which is highly expressed in insulin-responsive tissues, has been identified as a primary regulator of glucose metabolism as Akt2 knockout mice (Akt2(-/-)) are glucose-intolerant and insulin-resistant. However, the role of AKT1 in glucose metabolism is not as clearly defined. We previously showed that mice with myristoylated Akt1 (AKT1(Myr)) expressed through a bicistronic Pdx1-TetA and TetO-MyrAkt1 system were susceptible to islet cell carcinomas, and in this study we characterized an early onset, prediabetic phenotype. Beginning at weaning (3 weeks of age), the glucose-intolerant AKT1(Myr) mice exhibited non-fasted hyperglycemia, which progressed to fasted hyperglycemia by 5 months of age. The glucose intolerance was attributed to a fasted hyperglucagonemia, and hepatic insulin resistance detectable by reduced phosphorylation of the insulin receptor following insulin injection into the inferior vena cava. In contrast, treatment with doxycycline diet to turn off the transgene caused attenuation of the non-fasted and fasted hyperglycemia, thus affirming AKT1 hyperactivation as the trigger. Collectively, this model highlights a novel glucagon-mediated mechanism by which AKT1 hyperactivation affects glucose homeostasis and provides an avenue to better delineate the molecular mechanisms responsible for diabetes mellitus and the potential association with pancreatic cancer.

  12. The tumor suppressor protein menin inhibits AKT activation by regulating its cellular localization

    PubMed Central

    Wang, Yan; Ozawa, Atsushi; Zaman, Shadia; Prasad, Nijaguna B.; Chandrasekharappa, Settara C.; Agarwal, Sunita K.; Marx, Stephen J.

    2010-01-01

    Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder associated mainly with tumors of multiple endocrine organs. Mutations in the MEN1 gene that encodes for the menin protein are the predominant cause for hereditary MEN1 syndrome. Though menin is a tumor suppressor, its molecular mechanism of action has not been defined. Here we report that menin interacts with AKT1 in vitro and in vivo. Menin downregulates the level of active AKT and its kinase activity. Through interaction with AKT1, menin suppresses both AKT1 induced proliferation and anti-apoptosis in non-endocrine and endocrine cells. Confocal microscopy analysis revealed that menin regulates AKT1 in part by reducing the translocation of AKT1 from the cytoplasm to the plasma membrane during growth factor stimulation. Our findings may be generalizable to other cancers, insofar as we found that loss of menin expression was also associated with AKT activation in a mouse model of pancreatic islet adenoma. Together, our results suggest menin as an important novel negative regulator of AKT kinase activity. PMID:21127195

  13. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation

    SciTech Connect

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-07-18

    Highlights: • Lithium suppresses Akt activity by reducing PI3K-mediated Akt phosphorylation. • Lithium enhances GSK-3β activity by reducing Akt-mediated GSK-3β phosphorylation. • Lithium suppresses GSK-3β activity through its direct inhibition. - Abstract: Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li{sub 2}CO{sub 3} significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li{sub 2}CO{sub 3} did not affect PI3K-mediated PI(3,4,5)P{sub 3} production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li{sub 2}CO{sub 3} on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li{sub 2}CO{sub 3} significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li{sub 2}CO{sub 3} significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity.

  14. EGFR trans-activation mediates pleiotrophin-induced activation of Akt and Erk in cultured osteoblasts.

    PubMed

    Fan, Jian-Bo; Liu, Wei; Yuan, Kun; Zhu, Xin-Hui; Xu, Da-Wei; Chen, Jia-Jia; Cui, Zhi-Ming

    2014-05-09

    Pleiotrophin (Ptn) plays an important role in bone growth through regulating osteoblasts' functions. The underlying signaling mechanisms are not fully understood. In the current study, we found that Ptn induced heparin-binding epidermal growth factor (HB-EGF) release to trans-activate EGF-receptor (EGFR) in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, Ptn activated Akt and Erk signalings in cultured osteoblasts. The EGFR inhibitor AG1478 as well as the monoclonal antibody against HB-EGF (anti-HB-EGF) significantly inhibited Ptn-induced EGFR activation and Akt and Erk phosphorylations in MC3T3-E1 cells and primary osteoblasts. Further, EGFR siRNA depletion or dominant negative mutation suppressed also Akt and Erk activation in MC3T3-E1 cells. Finally, we observed that Ptn increased alkaline phosphatase (ALP) activity and inhibited dexamethasone (Dex)-induced cell death in both MC3T3-E1 cells and primary osteoblasts, such effects were alleviated by AG1478 or anti-HB-EGF. Together, these results suggest that Ptn-induced Akt/Erk activation and some of its pleiotropic functions are mediated by EGFR trans-activation in cultured osteoblasts.

  15. Erythropoietin alleviates hepatic insulin resistance via PPARγ-dependent AKT activation

    PubMed Central

    Ge, Zhijuan; Zhang, Pengzi; Hong, Ting; Tang, Sunyinyan; Meng, Ran; Bi, Yan; Zhu, Dalong

    2015-01-01

    Erythropoietin (EPO) has beneficial effects on glucose metabolism and insulin resistance. However, the mechanism underlying these effects has not yet been elucidated. This study aimed to investigate how EPO affects hepatic glucose metabolism. Here, we report that EPO administration promoted phosphatidylinositol 3-kinase (PI3K)/AKT pathway activation in palmitic acid (PA)-treated HepG2 cells and in the liver of high-fat diet (HFD)-fed mice, whereas adenovirus-mediated silencing of the erythropoietin receptor (EPOR) blocked EPO-induced AKT signalling in HepG2 cells. Importantly, a peroxisome proliferator-activated receptor γ (PPARγ) antagonist and PPARγ small interfering RNA (siRNA) abrogated the EPO-induced increase in p-AKT in HepG2 cells. Lentiviral vector-mediated hepatic PPARγ silencing in HFD-fed C57BL/6 mice impaired EPO-mediated increases in glucose tolerance, insulin sensitivity and hepatic AKT activation. Furthermore, EPO activated the AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signalling pathway, and AMPKα and SIRT1 knockdown each attenuated the EPO-induced PPARγ expression and deacetylation and PPARγ-dependent AKT activation in HepG2 cells. In summary, these findings suggest that PPARγ is involved in EPO/EPOR-induced AKT activation, and targeting the PPARγ/AKT pathway via EPO may have therapeutic implications for hepatic insulin resistance and type 2 diabetes. PMID:26643367

  16. Akt signaling leads to stem cell activation and promotes tumor development in epidermis.

    PubMed

    Segrelles, Carmen; García-Escudero, Ramón; Garín, Maria I; Aranda, Juan F; Hernández, Pilar; Ariza, José M; Santos, Mirentxu; Paramio, Jesús M; Lorz, Corina

    2014-07-01

    Hair follicle stem cells (HF-SCs) alternate between periods of quiescence and proliferation, to finally differentiate into all the cell types that constitute the hair follicle. Also, they have been recently identified as cells of origin in skin cancer. HF-SCs localize in a precise region of the hair follicle, the bulge, and molecular markers for this population have been established. Thus, HF-SCs are good model to study the potential role of oncogenic activations on SC physiology. Expression of a permanently active form of Akt (myrAkt) in basal cells leads to Akt hyperactivation specifically in the CD34(+)Itga6(H) population. This activation causes bulge stem cells to exit from quiescence increasing their response to proliferative stimuli and affecting some functions such as cell migration. HF-SC identity upon Akt activation is preserved; in this sense, increased proliferation does not result in stem cell exhaustion with age suggesting that Akt activation does not affect self-renewal an important aspect for normal tissue maintenance and cancer development. Genome-wide transcriptome analysis of HF-SC isolated from myrAkt and wild-type epidermis underscores changes in metabolic pathways characteristic of cancer cells. These differences manifest during a two-step carcinogenesis protocol in which Akt activation in HF-SCs results in increased tumor development and malignant transformation.

  17. Optogenetic activation reveals distinct roles of PIP3 and Akt in adipocyte insulin action.

    PubMed

    Xu, Yingke; Nan, Di; Fan, Jiannan; Bogan, Jonathan S; Toomre, Derek

    2016-05-15

    Glucose transporter 4 (GLUT4; also known as SLC2A4) resides on intracellular vesicles in muscle and adipose cells, and translocates to the plasma membrane in response to insulin. The phosphoinositide 3-kinase (PI3K)-Akt signaling pathway plays a major role in GLUT4 translocation; however, a challenge has been to unravel the potentially distinct contributions of PI3K and Akt (of which there are three isoforms, Akt1-Akt3) to overall insulin action. Here, we describe new optogenetic tools based on CRY2 and the N-terminus of CIB1 (CIBN). We used these 'Opto' modules to activate PI3K and Akt selectively in time and space in 3T3-L1 adipocytes. We validated these tools using biochemical assays and performed live-cell kinetic analyses of IRAP-pHluorin translocation (IRAP is also known as LNPEP and acts as a surrogate marker for GLUT4 here). Strikingly, Opto-PIP3 largely mimicked the maximal effects of insulin stimulation, whereas Opto-Akt only partially triggered translocation. Conversely, drug-mediated inhibition of Akt only partially dampened the translocation response of Opto-PIP3 In spatial optogenetic studies, focal targeting of Akt to a region of the cell marked the sites where IRAP-pHluorin vesicles fused, supporting the idea that local Akt-mediated signaling regulates exocytosis. Taken together, these results indicate that PI3K and Akt play distinct roles, and that PI3K stimulates Akt-independent pathways that are important for GLUT4 translocation.

  18. AKT activation controls cell survival in response to HDAC6 inhibition

    PubMed Central

    Kaliszczak, M; Trousil, S; Ali, T; Aboagye, E O

    2016-01-01

    HDAC6 is emerging as an important therapeutic target for cancer. We investigated mechanisms responsible for survival of tumor cells treated with a HDAC6 inhibitor. Expression of the 20 000 genes examined did not change following HDAC6 treatment in vivo. We found that HDAC6 inhibition led to an increase of AKT activation (P-AKT) in vitro, and genetic knockdown of HDAC6 phenocopied drug-induced AKT activation. The activation of AKT was not observed in PTEN null cells; otherwise, PTEN/PIK3CA expression per se did not predict HDAC6 inhibitor sensitivity. Interestingly, HDAC6 inhibitor treatment led to inactivating phosphorylation of PTEN (P-PTEN Ser380), which likely led to the increased P-AKT in cells that express PTEN. Synergy was observed with phosphatidylinositol 3'-kinases (PI3K) inhibitor treatment in vitro, accompanied by increased caspase 3/7 activity. Furthermore, combination of HDAC6 inhibitor with a PI3K inhibitor caused substantial tumor growth inhibition in vivo compared with either treatment alone, also detectable by Ki-67 immunostaining and 18F-FLT positron emission tomography (PET). In aggregate AKT activation appears to be a key survival mechanism for HDAC6 inhibitor treatment. Our findings indicate that dual inhibition of HDAC6 and P-AKT may be necessary to substantially inhibit growth of solid tumors. PMID:27362804

  19. Targeting AKT1-E17K and the PI3K/AKT Pathway with an Allosteric AKT Inhibitor, ARQ 092

    PubMed Central

    Yu, Yi; Savage, Ronald E.; Eathiraj, Sudharshan; Meade, Justin; Wick, Michael J.; Hall, Terence; Abbadessa, Giovanni; Schwartz, Brian

    2015-01-01

    As a critical component in the PI3K/AKT/mTOR pathway, AKT has become an attractive target for therapeutic intervention. ARQ 092 and a next generation AKT inhibitor, ARQ 751 are selective, allosteric, pan-AKT and AKT1-E17K mutant inhibitors that potently inhibit phosphorylation of AKT. Biochemical and cellular analysis showed that ARQ 092 and ARQ 751 inhibited AKT activation not only by dephosphorylating the membrane-associated active form, but also by preventing the inactive form from localizing into plasma membrane. In endometrial PDX models harboring mutant AKT1-E17K and other tumor models with an activated AKT pathway, both compounds exhibited strong anti-tumor activity. Combination studies conducted in in vivo breast tumor models demonstrated that ARQ 092 enhanced tumor inhibition of a common chemotherapeutic agent (paclitaxel). In a large panel of diverse cancer cell lines, ARQ 092 and ARQ 751 inhibited proliferation across multiple tumor types but were most potent in leukemia, breast, endometrial, and colorectal cancer cell lines. Moreover, inhibition by ARQ 092 and ARQ 751 was more prevalent in cancer cell lines containing PIK3CA/PIK3R1 mutations compared to those with wt-PIK3CA/PIK3R1 or PTEN mutations. For both ARQ 092 and ARQ 751, PIK3CA/PIK3R1 and AKT1-E17K mutations can potentially be used as predictive biomarkers for patient selection in clinical studies. PMID:26469692

  20. ROS-mediated Activation of AKT Induces Apoptosis Via pVHL in Prostate Cancer Cells

    PubMed Central

    Chetram, Mahandranauth A.; Bethea, Danaya A.; Jones, Kia J.; Don-Salu-Hewage, Ayesha S.; Odero-Marah, Valerie A.; Hinton, Cimona V.

    2013-01-01

    Reactive oxygen species (ROS) play a central role in oxidative stress, which leads to the onset of diseases, such as cancer. Furthermore, ROS contributes to the delicate balance between tumor cell survival and death. However, the mechanisms by which tumor cells decide to elicit survival or death signals during oxidative stress are not completely understood. We have previously reported that ROS enhanced tumorigenic functions in prostate cancer cells, such as transendothelial migration and invasion, which depended on CXCR4 and AKT signaling. Here, we report a novel mechanism by which ROS facilitated cell death through activation of AKT. We initially observed that ROS increased expression of phosphorylated AKT (p-AKT) in 22Rv1 human prostate cancer cells. The tumor suppressor PTEN, a negative regulator of AKT signaling, was rendered catalytically inactive through oxidation by ROS, although the expression levels remained consistent. Despite these events, cells still underwent apoptosis. Further investigation into apoptosis revealed that expression of the tumor suppressor pVHL increased, and contains a target site for p-AKT phosphorylation. pVHL and p-AKT associated in vitro, and knockdown of pVHL rescued HIF1α expression and the cells from apoptosis. Collectively, our study suggests that in the context of oxidative stress, p-AKT facilitated apoptosis by inducing pVHL function. PMID:23315288

  1. Src kinase integrates PI3K/Akt and MAPK/ERK1/2 pathways in T3-induced Na-K-ATPase activity in adult rat alveolar cells.

    PubMed

    Lei, Jianxun; Ingbar, David H

    2011-11-01

    We previously reported that the 3,5,3'-triiodo-L-thyronine (T3)-induced increase of Na-K-ATPase activity in rat alveolar epithelial cells (AECs) required activation of Src kinase, PI3K, and MAPK/ERK1/2. In the present study, we assessed the role of Akt in Na-K-ATPase activity and the interaction between the PI3K and MAPK in response to T3 by using MP48 cells, inhibitors, and constitutively active mutants in the MP48 (alveolar type II-like) cell line. The Akt inhibitor VIII blocked T3-induced increases in Na-K-ATPase activity and amount of plasma membrane Na-K-ATPase protein. The Akt inhibitor VIII also abolished the increase in Na-K-ATPase activity induced by constitutively active mutants of either Src kinase or PI3K. Moreover, constitutively active mutants of Akt increased Na-K-ATPase activity in the absence of T3. Thus activation of Akt was required for T3-induced Na-K-ATPase activity in AECs and is sufficient in the absence of T3. Inhibitors of Src kinase (PP1), PI3K (wortmannin), and ERK1/2 (U0126) all blocked the T3-induced Na-K-ATPase activity. PP1 blocked the activation of PI3K and also ERK1/2 by T3, whereas U0126 did not prevent T3 activation of Src kinase or PI3K activity. Wortmannin did not significantly alter T3-increased MAPK/ERK1/2 activity, suggesting that T3-activated PI3K/Akt and MAPK/ERK1/2 pathways acted downstream of the Src kinase. Furthermore, in the absence of T3, a constitutively active mutant of Src kinase increased activities of Na-K-ATPase, PI3K, and MAPK/ERK1/2. A constitutively active mutant of PI3K enhanced Na-K-ATPase activity but did not alter the MAPK/ERK1/2 activity significantly. In summary, in adult rat AECs T3-stimulated Src kinase activity can activate both PI3K/Akt and MAPK/ERK1/2, and activation of Akt is necessary for T3-induced Na-K-ATPase activity.

  2. Activation of Akt protects alveoli from neonatal oxygen-induced lung injury.

    PubMed

    Alphonse, Rajesh S; Vadivel, Arul; Coltan, Lavinia; Eaton, Farah; Barr, Amy J; Dyck, Jason R B; Thébaud, Bernard

    2011-02-01

    Bronchopulmonary dysplasia (BPD) is the main complication of extreme prematurity, resulting in part from mechanical ventilation and oxygen therapy. Currently, no specific treatment exists for BPD. BPD is characterized by an arrest in alveolar development and increased apoptosis of alveolar epithelial cells (AECs). Type 2 AECs are putative distal lung progenitor cells, capable of regenerating alveolar homeostasis after injury. We hypothesized that the protection of AEC2 death via the activation of the prosurvival Akt pathway prevents arrested alveolar development in experimental BPD. We show that the pharmacologic inhibition of the prosurvival factor Akt pathway with wortmannin during the critical period of alveolar development impairs alveolar development in newborn rats, resulting in larger and fewer alveoli, reminiscent of BPD. Conversely, in an experimental model of BPD induced by oxygen exposure of newborn rats, alveolar simplification is associated with a decreased activation of lung Akt. In vitro studies with rat lung epithelial (RLE) cells cultured in hyperoxia (95% O(2)) showed decreased apoptosis and improved cell survival after the forced expression of active Akt by adenovirus-mediated gene transfer. In vivo, adenovirus-mediated Akt gene transfer preserves alveolar architecture in the newborn rat model of hyperoxia-induced BPD. We conclude that inhibition of the prosurvival factor Akt disrupts normal lung development, whereas the expression of active Akt in experimental BPD preserves alveolar development. We speculate that the modulation of apoptosis may have therapeutic potential in lung diseases characterized by alveolar damage.

  3. Active form of AKT controls cell proliferation and response to apoptosis in hepatocellular carcinoma

    PubMed Central

    KUNTER, IMGE; ERDAL, ESRA; NART, DENIZ; YILMAZ, FUNDA; KARADEMIR, SEDAT; SAGOL, OZGUL; ATABEY, NESE

    2014-01-01

    Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality worldwide. Deregulation of the AKT signaling pathway has been found in HCC. However, the effect of AKT activation on the proliferation and apoptosis in HCC is not clear. Herein, expression of phosphorylated form of AKT (Ser 473) was investigated in HCC tumor (n=73), cirrhosis (n=17), normal liver (n=22) samples and in HCC cell lines (n=8). The results showed that expression of p-AKT was higher in tumor (53%) than in cirrhotic tissues (12%) while it was absent in normal liver (p<0.0001). p-AKT expression was also associated with number of tumor nodules and differentiation status (p<0.05). LY294002 induced cell cycle arrest at G0/G1 in SNU-449 and Mahlavu cells by decreasing expression of CDK2, CDK4, CycD1, CycD3, CycE, CycA and increasing expression of p21 and p27 as well; it also caused a decrease in the E2F1 transcriptional activity through declining phosphorylated Rb. LY294002 did not affect the basal level of apoptosis; however, it amplified cisplatin-induced apoptosis in SNU-449 cells. When the p-AKT level was decreased specifically after transfection with the DN-AKT plasmid, SNU-449 cells became more sensitive to cisplatin-induced apoptosis. HuH-7 cells with no basal p-AKT, were markedly affected by the treatment of doxorubicin. Thus, Akt signaling controls growth and chemical-induced apoptosis in HCC and p-AKT may be a potential target for therapeutic interventions in HCC patients. PMID:24337632

  4. Loss of Akt activity increases circulating soluble endoglin release in preeclampsia: identification of inter-dependency between Akt-1 and heme oxygenase-1

    PubMed Central

    Cudmore, Melissa J.; Ahmad, Shakil; Sissaoui, Samir; Ramma, Wenda; Ma, Bin; Fujisawa, Takeshi; Al-Ani, Bahjat; Wang, Keqing; Cai, Meng; Crispi, Fatima; Hewett, Peter W.; Gratacós, Eduard; Egginton, Stuart; Ahmed, Asif

    2012-01-01

    Aims Endothelial dysfunction is a hallmark of preeclampsia. Desensitization of the phosphoinositide 3-kinase (PI3K)/Akt pathway underlies endothelial dysfunction and haeme oxygenase-1 (HO-1) is decreased in preeclampsia. To identify therapeutic targets, we sought to assess whether these two regulators act to suppress soluble endoglin (sEng), an antagonist of transforming growth factor-β (TGF-β) signalling, which is known to be elevated in preeclampsia. Methods and results Vascular endothelial growth factor-A (VEGF-A), fibroblast growth factor (FGF-2), angiopoietin-1 (Ang-1), and insulin, which all activate the PI3K/Akt pathway, inhibited the release of sEng from endothelial cells. Inhibition of the PI3K/Akt pathway, by overexpression of phosphatase and tensin homolog (PTEN) or a dominant-negative isoform of Akt (Aktdn) induced sEng release from endothelial cells and prevented the inhibitory effect of VEGF-A. Conversely, overexpression of a constitutively active Akt (Aktmyr) inhibited PTEN and cytokine-induced sEng release. Systemic delivery of Aktmyr to mice significantly reduced circulating sEng, whereas Aktdn promoted sEng release. Phosphorylation of Akt was reduced in preeclamptic placenta and this correlated with the elevated level of circulating sEng. Knock-down of Akt using siRNA prevented HO-1-mediated inhibition of sEng release and reduced HO-1 expression. Furthermore, HO-1 null mice have reduced phosphorylated Akt in their organs and overexpression of Aktmyr failed to suppress the elevated levels of sEng detected in HO-1 null mice, indicating that HO-1 is required for the Akt-mediated inhibition of sEng. Conclusion The loss of PI3K/Akt and/or HO-1 activity promotes sEng release and positive manipulation of these pathways offers a strategy to circumvent endothelial dysfunction. PMID:21411816

  5. Activation of PI3Kγ/Akt pathway increases cardiomyocyte HMGB1 expression in diabetic environment

    PubMed Central

    Song, Jia; Liu, Qian; Tang, Han; Tao, Aibin; Wang, Hao; Kao, Raymond; Rui, Tao

    2016-01-01

    Background The high mobility group box 1 (HMGB1) protein mediates the cardiomyocyte–cardiac fibroblast interaction that contributes to induction of myocardial fibrosis in diabetes mellitus (DM). In the present study, we aim to investigate the intracellular signaling pathway that leads to cardiomyocyte HMGB1 expression under a diabetic environment. Results HMGB1 expression is increased in high concentration of glucose (HG)-conditioned cardiomyocytes. Challenging cardiomyocytes with HG also increased PI3Kγ and Akt phosphorylation. Inhibition of PI3Kγ (CRISPR/Cas9 knockout plasmid or AS605240) prevented HG-induced Akt phosphorylation and HMGB1 expression by the cardiomyocytes. In addition, inhibition of Akt (Akt1/2/3 siRNA or A6730) attenuated HG-induced HMGB1 production. Finally, challenging cardiomyocytes with HG resulted in increased reactive oxygen species (ROS) production. Treatment of cardiomyocytes with an antioxidant (Mitotempo) abolished HG-induced PI3Kγ and Akt activation, as well as HMGB1 production. Materials and Methods Isolated rat cardiomyocytes were cultured with a high concentration of glucose. Cardiomyocyte phosphatidylinositol 3-kinase gamma (PI3Kγ) and Akt activation were determined by Western blot. Cardiomyocyte HMGB1 production was evaluated with Western blot and enzyme-linked immunosorbent assay (ELISA), while cardiomyocyte oxidative stress was determined with a DCFDA fluorescence probe. Conclusions Our results suggest that the cardiomyocytes incur an oxidative stress under diabetic condition, which subsequently activates the PI3Kγ/Akt cell-signaling pathway and further increases HMGB1 expression. PMID:27821807

  6. Photoreceptor Neuroprotection: Regulation of Akt Activation Through Serine/Threonine Phosphatases, PHLPP and PHLPPL.

    PubMed

    Rajala, Raju V S; Kanan, Yogita; Anderson, Robert E

    2016-01-01

    Serine/threonine kinase Akt is a downstream effector of insulin receptor/PI3K pathway that is involved in many processes, including providing neuroprotection to stressed rod photoreceptor cells. Akt signaling is known to be regulated by the serine/threonine phosphatases, PHLPP (PH domain and leucine rich repeat protein phosphatase) and PHLPPL (PH domain and leucine rich repeat protein phosphatase-like). We previously reported that both phosphatases are expressed in the retina, as well as in photoreceptor cells. In this study, we examined the PHLPP and PHLPPL phosphatase activities towards non-physiological and physiological substrates. Our results suggest that PHLPP was more active than PHLPPL towards non-physiological substrates, whereas both PHLPP and PHLPP dephosphorylated the physiological substrates of Akt1 and Akt3 with similar efficiencies. Our results also suggest that knockdown of PHLPPL alone does not increase Akt phosphorylation, due to a compensatory increase of PHLPP, which results in the dephosphorylation of Akt. Therefore, PHLPP and PHLPPL regulate Akt activation together when both phosphatases are expressed.

  7. Gab3 overexpression in human glioma mediates Akt activation and tumor cell proliferation

    PubMed Central

    Gu, Weiting; Zhang, Weifeng

    2017-01-01

    This current study tested expression and potential biological functions of Gab3 in human glioma. Gab3 mRNA and protein expression was significantly elevated in human glioma tissues and glioma cells. Its level was however low in normal brain tissues and primary human astrocytes. In both established (U251MG cell line) and primary human glioma cells, Gab3 knockdown by shRNA/siRNA significantly inhibited Akt activation and cell proliferation. Reversely, forced Gab3 overexpression in U251MG cells promoted Akt activation and cell proliferation. In vivo, the growth of U251MG tumors in nude mice was inhibited following expressing Gab3 shRNA. Akt activation in cancer tissues was also suppressed by Gab3 shRNA. Together, we conclude that Gab3 overexpression in human glioma mediates Akt activation and cancer cell proliferation. PMID:28291820

  8. Akt and mTOR in B Cell Activation and Differentiation.

    PubMed

    Limon, Jose J; Fruman, David A

    2012-01-01

    Activation of phosphoinositide 3-kinase (PI3K) is required for B cell proliferation and survival. PI3K signaling also controls key aspects of B cell differentiation. Upon engagement of the B cell receptor (BCR), PI3K activation promotes Ca(2+) mobilization and activation of NFκB-dependent transcription, events which are essential for B cell proliferation. PI3K also initiates a distinct signaling pathway involving the Akt and mTOR serine/threonine kinases. It has been generally assumed that activation of Akt and mTOR downstream of PI3K is essential for B cell function. However, Akt and mTOR have complex roles in B cell fate decisions and suppression of this pathway can enhance certain B cell responses while repressing others. In this review we will discuss genetic and pharmacological studies of Akt and mTOR function in normal B cells, and in malignancies of B cell origin.

  9. δ-Tocopherol inhibits receptor tyrosine kinase-induced AKT activation in prostate cancer cells.

    PubMed

    Wang, Hong; Hong, Jungil; Yang, Chung S

    2016-11-01

    The cancer preventive activity of vitamin E is suggested by epidemiological studies and supported by animal studies with vitamin E forms, γ-tocopherol and δ-tocopherol (δ-T). Several recent large-scale cancer prevention trials with high dose of α-tocopherol, however, yielded disappointing results. Whether vitamin E prevents or promotes cancer is a serious concern. A better understanding of the molecular mechanisms of action of the different forms of tocopherols would enhance our understanding of this topic. In this study, we demonstrated that δ-T was the most effective tocopherol form in inhibiting prostate cancer cell growth, by inducing cell cycle arrest and apoptosis. By profiling the effects of δ-T on the cell signaling using the phospho-kinase array, we found that the most inhibited target was the phosphorylation of AKT on T308. Further study on the activation of AKT by EGFR and IGFR revealed that δ-T attenuated the EGF/IGF-induced activation of AKT (via the phosphorylation of AKT on T308 induced by the activation of PIK3). Expression of dominant active PIK3 and AKT in prostate cancer cell line DU145 in which PIK3, AKT, and PTEN are wild type caused the cells to be reflectory to the inhibition of δ-T, supporting that δ-T inhibits the PIK3-mediated activation of AKT. Our data also suggest that δ-T interferes with the EGF-induced EGFR internalization, which leads to the inhibition of the receptor tyrosine kinase-dependent activation of AKT. In summary, our results revealed a novel mechanism of δ-T in inhibiting prostate cancer cell growth, supporting the cancer preventive activity δ-T. © 2015 Wiley Periodicals, Inc.

  10. Constitutively expressed COX-2 in osteoblasts positively regulates Akt signal transduction via suppression of PTEN activity.

    PubMed

    Li, Ching-Ju; Chang, Je-Ken; Wang, Gwo-Jaw; Ho, Mei-Ling

    2011-02-01

    Cyclooxygenase-2 (COX-2) is thought to be an inducible enzyme, but increasing reports indicate that COX-2 is constitutively expressed in several organs. The status of COX-2 expression in bone and its physiological role remains undefined. Non-selective non-steroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors, which commonly suppress COX-2 activity, were reported to suppress osteoblast proliferation via Akt/FOXO3a/p27(Kip1) signaling, suggesting that COX-2 may be the key factor of the suppressive effects of NSAIDs on proliferation. Although Akt activation correlates with PTEN deficiency and cell viability, the role of COX-2 on PTEN/Akt regulation remains unclear. In this study, we hypothesized that COX-2 may be constitutively expressed in osteoblasts and regulate PTEN/Akt-related proliferation. We examined the localization and co-expression of COX-2 and p-Akt in normal mouse femurs and in cultured mouse (mOBs) and human osteoblasts (hOBs). Our results showed that osteoblasts adjacent to the trabeculae, periosteum and endosteum in mouse femurs constitutively expressed COX-2, while COX-2 co-expressed with p-Akt in osteoblasts sitting adjacent to trabeculae in vivo, and in mOBs and hOBs in vitro. We further used COX-2 siRNA to test the role of COX-2 in Akt signaling in hOBs; COX-2 silencing significantly inhibited PTEN phosphorylation, enhanced PTEN activity, and suppressed p-Akt level and proliferation. However, replenishment of the COX-2 enzymatic product, PGE2, failed to reverse COX-2-dependent Akt phosphorylation. Furthermore, transfection with recombinant human COX-2 (rhCOX-2) significantly reversed COX-2 siRNA-suppressed PTEN phosphorylation, but this effect was reduced when the enzymatic activity of rhCOX-2 was blocked. This finding indicated that the effect of COX-2 on PTEN/Akt signaling is not related to PGE2 but still dependent on COX-2 enzymatic activity. Conversely, COX-1 silencing did not affect PTEN/Akt signaling. Our findings provide

  11. Progestins Activate the AKT Pathway in Leiomyoma Cells and Promote Survival

    PubMed Central

    Hoekstra, Anna V.; Sefton, Elizabeth C.; Berry, Emily; Lu, Zhenxiao; Hardt, Jennifer; Marsh, Erica; Yin, Ping; Clardy, Jon; Chakravarti, Debabrata; Bulun, Serdar; Kim, J. Julie

    2009-01-01

    Context: Progesterone has been associated with promoting growth of uterine leiomyomas. The mechanisms involved remain unclear. Objective: In this study we investigated the activation of the AKT pathway and its downstream effectors, glycogen synthase kinase-3b and Forkhead box O (FOXO)-1 by progesterone as a mechanism of proliferation and survival of leiomyoma cells. Inhibitors of the AKT pathway were used to demonstrate the role of phosphatidylinositol 3-kinase, AKT, and FOXO1 in contributing to cell proliferation and apoptosis. Results: Treatment of leiomyoma cells with R5020 over a period of 72 h resulted in higher cell numbers compared with untreated cells. When cells were treated with 100 nm R5020 for 1 and 24 h, the levels of phospho(Ser 473)-AKT increased. This increase was inhibited when cells were cotreated with RU486. Treatment of leiomyoma cells with a phosphatidylinositol 3-kinase inhibitor, LY294 dramatically decreased levels of phospho(Ser 473)-AKT, despite R5020 treatment. In addition to increased phospho(Ser 473)-AKT levels, R5020 treatment resulted in an increase in phospho(Ser 256)-FOXO1 and phosphoglycogen synthase kinase-3b. Inhibition of AKT using API-59 decreased proliferation and cell viability even in the presence of R5020. Higher concentrations of API-59-induced apoptosis of leiomyoma cells, even in the presence of R5020. Psammaplysene A increased nuclear FOXO1 levels and did not affect cell proliferation but induced apoptosis of leiomyoma cells. Conclusions: The progestin, R5020, can rapidly activate the AKT pathway. Inhibition of the AKT pathway inhibits cell proliferation and promotes apoptosis of leiomyoma cells. PMID:19240153

  12. Dual fluorescent molecular substrates selectively report the activation, sustainability and reversibility of cellular PKB/Akt activity

    NASA Astrophysics Data System (ADS)

    Shen, Duanwen; Bai, Mingfeng; Tang, Rui; Xu, Baogang; Ju, Xiaoming; Pestell, Richard G.; Achilefu, Samuel

    2013-04-01

    Using a newly developed near-infrared (NIR) dye that fluoresces at two different wavelengths (dichromic fluorescence, DCF), we discovered a new fluorescent substrate for Akt, also known as protein kinase B, and a method to quantitatively report this enzyme's activity in real time. Upon insulin activation of cellular Akt, the enzyme multi-phosphorylated a single serine residue of a diserine DCF substrate in a time-dependent manner, culminating in monophospho- to triphospho-serine products. The NIR DCF probe was highly selective for the Akt1 isoform, which was demonstrated using Akt1 knockout cells derived from MMTV-ErbB2 transgenic mice. The DCF mechanism provides unparalleled potential to assess the stimulation, sustainability, and reversibility of Akt activation longitudinally. Importantly, NIR fluorescence provides a pathway to translate findings from cells to living organisms, a condition that could eventually facilitate the use of these probes in humans.

  13. Akt Regulates TNFα Synthesis Downstream of RIP1 Kinase Activation during Necroptosis

    PubMed Central

    McNamara, Colleen R.; Ahuja, Ruchita; Osafo-Addo, Awo D.; Barrows, Douglas; Kettenbach, Arminja; Skidan, Igor; Teng, Xin; Cuny, Gregory D.; Gerber, Scott; Degterev, Alexei

    2013-01-01

    Necroptosis is a regulated form of necrotic cell death that has been implicated in the pathogenesis of various diseases including intestinal inflammation and systemic inflammatory response syndrome (SIRS). In this work, we investigated the signaling mechanisms controlled by the necroptosis mediator receptor interacting protein-1 (RIP1) kinase. We show that Akt kinase activity is critical for necroptosis in L929 cells and plays a key role in TNFα production. During necroptosis, Akt is activated in a RIP1 dependent fashion through its phosphorylation on Thr308. In L929 cells, this activation requires independent signaling inputs from both growth factors and RIP1. Akt controls necroptosis through downstream targeting of mammalian Target of Rapamycin complex 1 (mTORC1). Akt activity, mediated in part through mTORC1, links RIP1 to JNK activation and autocrine production of TNFα. In other cell types, such as mouse lung fibroblasts and macrophages, Akt exhibited control over necroptosis-associated TNFα production without contributing to cell death. Overall, our results provide new insights into the mechanism of necroptosis and the role of Akt kinase in both cell death and inflammatory regulation. PMID:23469174

  14. Akt Regulates TNFα synthesis downstream of RIP1 kinase activation during necroptosis.

    PubMed

    McNamara, Colleen R; Ahuja, Ruchita; Osafo-Addo, Awo D; Barrows, Douglas; Kettenbach, Arminja; Skidan, Igor; Teng, Xin; Cuny, Gregory D; Gerber, Scott; Degterev, Alexei

    2013-01-01

    Necroptosis is a regulated form of necrotic cell death that has been implicated in the pathogenesis of various diseases including intestinal inflammation and systemic inflammatory response syndrome (SIRS). In this work, we investigated the signaling mechanisms controlled by the necroptosis mediator receptor interacting protein-1 (RIP1) kinase. We show that Akt kinase activity is critical for necroptosis in L929 cells and plays a key role in TNFα production. During necroptosis, Akt is activated in a RIP1 dependent fashion through its phosphorylation on Thr308. In L929 cells, this activation requires independent signaling inputs from both growth factors and RIP1. Akt controls necroptosis through downstream targeting of mammalian Target of Rapamycin complex 1 (mTORC1). Akt activity, mediated in part through mTORC1, links RIP1 to JNK activation and autocrine production of TNFα. In other cell types, such as mouse lung fibroblasts and macrophages, Akt exhibited control over necroptosis-associated TNFα production without contributing to cell death. Overall, our results provide new insights into the mechanism of necroptosis and the role of Akt kinase in both cell death and inflammatory regulation.

  15. Exercise regulates Akt and glycogen synthase kinase-3 activities in human skeletal muscle.

    PubMed

    Sakamoto, Kei; Arnolds, David E W; Ekberg, Ingvar; Thorell, Anders; Goodyear, Laurie J

    2004-06-25

    Activation of Akt and deactivation of GSK3 are critical signals regulating a number of cellular processes in multiple systems. Whether physical exercise alters Akt and GSK3 activity in human skeletal muscle is controversial. beta-Catenin, a GSK3 substrate and important Wnt signaling protein that alters gene transcription, has not been investigated in human skeletal muscle. In the present study, eight healthy human subjects performed 30min of cycling exercise at 75% of maximum workload (submaximal) followed by 6 bouts of 60s at 125% maximum workload (maximal). Biopsies of vastus lateralis muscle were taken at rest (basal), and within 15s following cessation of the submaximal and maximal exercise bouts. Exercise at both submaximal and maximal intensities significantly increased Akt activity (40% and 110%, respectively). Increases in Akt activity were accompanied by increases in Akt Thr(308) and Ser(473) phosphorylation, decreased GSK3alpha activity ( approximately 30% at both intensities), and increased phosphorylation of GSK3alpha Ser(21). Exercise at both intensities also decreased beta-catenin Ser(33/37)Thr(41) phosphorylation (50-60% at both intensities). These results demonstrate that Akt, GSK3, and beta-catenin signaling are regulated by exercise in human skeletal muscle, and as such identify them as possible molecular mediators of exercise's effect on metabolic and transcriptional processes in skeletal muscle.

  16. Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA.

    PubMed

    Nguyen, Le Xuan Truong; Mitchell, Beverly S

    2013-12-17

    Transcription initiation factor I (TIF-IA) plays an essential role in regulating ribosomal RNA (rRNA) synthesis by tethering RNA polymerase I (Pol I) to the rDNA promoter. We have found that activated Akt enhances rRNA synthesis through the phosphorylation of casein kinase IIα (CK2α) on a threonine residue near its N terminus. CK2 in turn phosphorylates TIF-IA, thereby increasing rDNA transcription. Activated Akt also stabilizes TIF-IA, induces its translocation to the nucleolus, and enhances its interaction with Pol I. Treatment with AZD8055, an inhibitor of both Akt and mammalian target of rapamycin phosphorylation, but not with rapamycin, disrupts Akt-mediated TIF-IA stability, translocation, and activity. These data support a model in which activated Akt enhances rRNA synthesis both by preventing TIF-IA degradation and phosphorylating CK2α, which in turn phosphorylates TIF-IA. This model provides an explanation for the ability of activated Akt to promote cell proliferation and, potentially, transformation.

  17. Akt activation prevents the force drop induced by eccentric contractions in dystrophin-deficient skeletal muscle.

    PubMed

    Blaauw, Bert; Mammucari, Cristina; Toniolo, Luana; Agatea, Lisa; Abraham, Reimar; Sandri, Marco; Reggiani, Carlo; Schiaffino, Stefano

    2008-12-01

    Skeletal muscles of the mdx mouse, a model of Duchenne Muscular Dystrophy, show an excessive reduction in the maximal tetanic force following eccentric contractions. This specific sign of the susceptibility of dystrophin-deficient muscles to mechanical stress can be used as a quantitative test to measure the efficacy of therapeutic interventions. Using inducible transgenesis in mice, we show that when Akt activity is increased the force drop induced by eccentric contractions in mdx mice becomes similar to that of wild-type mice. This effect is not correlated with muscle hypertrophy and is not blocked by rapamycin treatment. The force drop induced by eccentric contractions is similar in skinned muscle fibers from mdx and Akt-mdx mice when stretch is applied directly to skinned fibers. However, skinned fibers isolated from mdx muscles exposed to eccentric contractions in vivo develop less isometric force than wild-type fibers and this force depression is completely prevented by Akt activation. These experiments indicate that the myofibrillar-cytoskeletal system of dystrophin-deficient muscle is highly susceptible to a damage caused by eccentric contraction when elongation is applied in vivo, and this damage can be prevented by Akt activation. Microarray and PCR analyses indicate that Akt activation induces up-regulation of genes coding for proteins associated with Z-disks and costameres, and for proteins with anti-oxidant or chaperone function. The protein levels of utrophin and dysferlin are also increased by Akt activation.

  18. Human papillomavirus type 16 E7 up-regulates AKT activity through the retinoblastoma protein.

    PubMed

    Menges, Craig W; Baglia, Laurel A; Lapoint, Randi; McCance, Dennis J

    2006-06-01

    Human papillomaviruses (HPV) are small DNA tumor viruses causally associated with cervical cancer. The early gene product E7 from high-risk HPV is considered the major transforming protein expressed by the virus. Although many functions have been described for E7 in disrupting normal cellular processes, we describe in this study a new cellular target in primary human foreskin keratinocytes (HFK), the serine/threonine kinase AKT. Expression of HPV type 16 E7 in HFK caused inhibition of differentiation, hyperproliferation, and up-regulation of AKT activity in organotypic raft cultures. The ability of E7 to up-regulate AKT activity is dependent on its ability to bind to and inactivate the retinoblastoma (Rb) gene product family of proteins. Furthermore, we show that knocking down Rb alone, with short hairpin RNAs, was sufficient to up-regulate AKT activity in differentiated keratinocytes. Up-regulation of AKT activity and loss of Rb was also observed in HPV-positive cervical high-grade squamous intraepithelial lesions when compared with normal cervical tissue. Together, these data provide evidence linking inactivation of Rb by E7 in the up-regulation of AKT activity during cervical cancer progression.

  19. CARMA1 is required for Akt-mediated NF-kappaB activation in T cells.

    PubMed

    Narayan, Preeti; Holt, Brittany; Tosti, Richard; Kane, Lawrence P

    2006-03-01

    Many details of the generic pathway for induction of NF-kappaB have been delineated, but it is still not clear how multiple, diverse receptor systems are able to converge on this evolutionarily conserved family of transcription factors. Recent studies have shown that the CARMA1, Bcl10, and MALT1 proteins are critical for coupling the common elements of the NF-kappaB pathway to the T-cell receptor (TCR) and CD28. We previously demonstrated a role for the serine/threonine kinase Akt in CD28-mediated NF-kappaB induction. Using a CARMA1-deficient T-cell line, we have now found that the CARMA complex is required for induction of NF-kappaB by Akt, in cooperation with protein kinase C activation. Furthermore, using a novel selective inhibitor of Akt, we confirm that Akt plays a modulatory role in NF-kappaB induction by the TCR and CD28. Finally, we provide evidence for a physical and functional interaction between Akt and CARMA and for Akt-dependent phosphorylation of Bcl10. Therefore, in T cells, Akt impinges upon NF-kappaB signaling through at least two separate mechanisms.

  20. Membrane Heterogeneity in Akt Activation in Prostate Cancer

    DTIC Science & Technology

    2009-03-01

    prenylation signal derived from K- Ras rendered Akt1 catalytically inactive when fused to the N-terminal PH-domain (Fig. 1). Fusion of this motif to...were treated with either cyclo- dextrin (CD) or water-soluble cholesterol ( Chol ) or with CD followed by cholesterol treatment (CD Chol ). Cells

  1. ets-2 Is a Target for an Akt (Protein Kinase B)/Jun N-Terminal Kinase Signaling Pathway in Macrophages of motheaten-viable Mutant Mice

    PubMed Central

    Smith, James L.; Schaffner, Alicia E.; Hofmeister, Joseph K.; Hartman, Matthew; Wei, Guo; Forsthoefel, David; Hume, David A.; Ostrowski, Michael C.

    2000-01-01

    The transcription factor ets-2 was phosphorylated at residue threonine 72 in a colony-stimulating factor 1 (CSF-1)- and mitogen-activated protein kinase-independent manner in macrophages isolated from motheaten-viable (me-v) mice. The CSF-1 and ets-2 target genes coding for Bcl-x, urokinase plasminogen activator, and scavenger receptor were also expressed at high levels independent of CSF-1 addition to me-v cells. Akt (protein kinase B) was constitutively active in me-v macrophages, and an Akt immunoprecipitate catalyzed phosphorylation of ets-2 at threonine 72. The p54 isoform of c-jun N-terminal kinase–stress-activated kinase (JNK- SAPK) coimmunoprecipitated with Akt from me-v macrophages, and treatment of me-v cells with the specific phosphatidylinositol 3-kinase inhibitor LY294002 decreased cell survival, Akt and JNK kinase activities, ets-2 phosphorylation, and Bcl-x mRNA expression. Therefore, ets-2 is a target for phosphatidylinositol 3-kinase–Akt–JNK action, and the JNK p54 isoform is an ets-2 kinase in macrophages. Constitutive ets-2 activity may contribute to the pathology of me-v mice by increasing expression of genes like the Bcl-x gene that promote macrophage survival. PMID:11027273

  2. CKIP-1 regulates macrophage proliferation by inhibiting TRAF6-mediated Akt activation

    PubMed Central

    Zhang, Luo; Wang, Yiwu; Xiao, Fengjun; Wang, Shaoxia; Xing, Guichun; Li, Yang; Yin, Xiushan; Lu, Kefeng; Wei, Rongfei; Fan, Jiao; Chen, Yuhan; Li, Tao; Xie, Ping; Yuan, Lin; Song, Lei; Ma, Lanzhi; Ding, Lujing; He, Fuchu; Zhang, Lingqiang

    2014-01-01

    Macrophages play pivotal roles in development, homeostasis, tissue repair and immunity. Macrophage proliferation is promoted by macrophage colony-stimulating factor (M-CSF)-induced Akt signaling; yet, how this process is terminated remains unclear. Here, we identify casein kinase 2-interacting protein-1 (CKIP-1) as a novel inhibitor of macrophage proliferation. In resting macrophages, CKIP-1 was phosphorylated at Serine 342 by constitutively active GSK3β, the downstream target of Akt. This phosphorylation triggers the polyubiquitination and proteasomal degradation of CKIP-1. Upon M-CSF stimulation, Akt is activated by CSF-1R-PI3K and then inactivates GSK3β, leading to the stabilization of CKIP-1 and β-catenin proteins. β-catenin promotes the expression of proliferation genes including cyclin D and c-Myc. CKIP-1 interacts with TRAF6, a ubiquitin ligase required for K63-linked ubiquitination and plasma membrane recruitment of Akt, and terminates TRAF6-mediated Akt activation. By this means, CKIP-1 inhibits macrophage proliferation specifically at the late stage after M-CSF stimulation. Furthermore, CKIP-1 deficiency results in increased proliferation and decreased apoptosis of macrophages in vitro and CKIP-1−/− mice spontaneously develop a macrophage-dominated splenomegaly and myeloproliferation. Together, these data demonstrate that CKIP-1 plays a critical role in the regulation of macrophage homeostasis by inhibiting TRAF6-mediated Akt activation. PMID:24777252

  3. Molecular pharmacology and antitumor activity of PHT-427, a novel Akt/phosphatidylinositide-dependent protein kinase 1 pleckstrin homology domain inhibitor.

    PubMed

    Meuillet, Emmanuelle J; Zuohe, Song; Lemos, Robert; Ihle, Nathan; Kingston, John; Watkins, Ryan; Moses, Sylvestor A; Zhang, Shuxing; Du-Cuny, Lei; Herbst, Roy; Jacoby, Jörg J; Zhou, Li Li; Ahad, Ali M; Mash, Eugene A; Kirkpatrick, D Lynn; Powis, Garth

    2010-03-01

    Phosphatidylinositol 3-kinase/phosphatidylinositide-dependent protein kinase 1 (PDPK1)/Akt signaling plays a critical role in activating proliferation and survival pathways within cancer cells. We report the molecular pharmacology and antitumor activity of PHT-427, a compound designed to bind to the pleckstrin homology (PH) binding domain of signaling molecules important in cancer. Although originally designed to bind the PH domain of Akt, we now report that PHT-427 also binds to the PH domain of PDPK1. A series of PHT-427 analogues with variable C-4 to C-16 alkyl chain length were synthesized and tested. PHT-427 itself (C-12 chain) bound with the highest affinity to the PH domains of both PDPK1 and Akt. PHT-427 inhibited Akt and PDPK1 signaling and their downstream targets in sensitive but not resistant cells and tumor xenografts. When given orally, PHT-427 inhibited the growth of human tumor xenografts in immunodeficient mice, with up to 80% inhibition in the most sensitive tumors, and showed greater activity than analogues with C4, C6, or C8 alkyl chains. Inhibition of PDPK1 was more closely correlated to antitumor activity than Akt inhibition. Tumors with PIK3CA mutation were the most sensitive, and K-Ras mutant tumors were the least sensitive. Combination studies showed that PHT-427 has greater than additive antitumor activity with paclitaxel in breast cancer and with erlotinib in non-small cell lung cancer. When given >5 days, PHT-427 caused no weight loss or change in blood chemistry. Thus, we report a novel PH domain binding inhibitor of PDPK1/Akt signaling with significant in vivo antitumor activity and minimal toxicity.

  4. Triptolide has anticancer and chemosensitization effects by down-regulating Akt activation through the MDM2/REST pathway in human breast cancer.

    PubMed

    Xiong, Jing; Su, Tiefen; Qu, Zhiling; Yang, Qin; Wang, Yu; Li, Jiansha; Zhou, Sheng

    2016-04-26

    Triptolide has been shown to exhibit anticancer activity. However, its mechanism of action is not clearly defined. Herein we report a novel signaling pathway, MDM2/Akt, is involved in the anticancer mechanism of triptolide. We observed that triptolide inhibits MDM2 expression in human breast cancer cells with either wild-type or mutant p53. This MDM2 inhibition resulted in decreased Akt activation. More specifically, triptolide interfered with the interaction between MDM2 and the transcription factor REST to increase expression of the regulatory subunit of PI3-kinase p85 and consequently inhibit Akt activation. We further showed that, regardless of p53 status, triptolide inhibited proliferation, induced apoptosis, and caused G1 phase cell cycle arrest. Triptolide also enhanced the cytotoxic effect of doxorubicin. MDM2 inhibition plays a causative role in these effects. The inhibitory effect of triptolide on MDM2-mediated Akt activation was eliminated with MDM2 overexpression. MDM2-overexpressing tumor cells, in turn, were less susceptible to the anticancer and chemosensitization effects of triptolide than control cells. Triptolide also exhibited anticancer and chemosensitization effects in nude mouse xenograft model. When it was administered to tumor-bearing nude mice, triptolide inhibited tumor growth and enhanced the antitumor effects of doxorubicin. In summary, triptolide has anticancer and chemosensitization effects by down-regulating Akt activation through the MDM2/REST pathway in human breast cancer. Our study helps to elucidate the p53-independent regulatory function of MDM2 in Akt signaling, offering a novel view of the mechanism by which triptolide functions as an anticancer agent.

  5. Snail promotes cell migration through PI3K/AKT-dependent Rac1 activation as well as PI3K/AKT-independent pathways during prostate cancer progression

    PubMed Central

    Henderson, Veronica; Smith, Basil; Burton, Liza J; Randle, Diandra; Morris, Marisha; Odero-Marah, Valerie A

    2015-01-01

    Snail, a zinc-finger transcription factor, induces epithelial-mesenchymal transition (EMT), which is associated with increased cell migration and metastasis in cancer cells. Rac1 is a small G-protein which upon activation results in formation of lamellipodia, the first protrusions formed by migrating cells. We have previously shown that Snail promotes cell migration through down-regulation of maspin tumor suppressor. We hypothesized that Snail's regulation of cell migration may also involve Rac1 signaling regulated by PI3K/AKT and/or MAPK pathways. We found that Snail overexpression in LNCaP and 22Rv1 prostate cancer cells increased Rac1 activity associated with increased cell migration, and the Rac1 inhibitor, NSC23766, could inhibit Snail-mediated cell migration. Conversely, Snail downregulation using shRNA in the aggressive C4–2 prostate cancer cells decreased Rac1 activity and cell migration. Moreover, Snail overexpression increased ERK and PI3K/AKT activity in 22Rv1 prostate cancer cells. Treatment of Snail-overexpressing 22Rv1 cells with LY294002, PI3K/AKT inhibitor or U0126, MEK inhibitor, decreased cell migration significantly, but only LY294002 significantly reduced Rac1 activity, suggesting that Snail promotes Rac1 activation via the PI3K/AKT pathway. Furthermore, 22Rv1 cells overexpressing Snail displayed decreased maspin levels, while inhibition of maspin expression in 22Rv1 cells with siRNA, led to increased PI3K/AKT, Rac1 activity and cell migration, without affecting ERK activity, suggesting that maspin is upstream of PI3K/AKT. Overall, we have dissected signaling pathways by which Snail may promote cell migration through MAPK signaling or alternatively through PI3K/AKT-Rac1 signaling that involves Snail inhibition of maspin tumor suppressor. This may contribute to prostate cancer progression. PMID:26207671

  6. Antiapoptotic effects of erythropoietin in differentiated neuroblastoma SH-SY5Y cells require activation of both the STAT5 and AKT signaling pathways.

    PubMed

    Um, Moonkyoung; Lodish, Harvey F

    2006-03-03

    The hematopoietic cytokine erythropoietin (Epo) prevents neuronal death during ischemic events in the brain and in neurodegenerative diseases, presumably through its antiapoptotic effects. To explore the role of different signaling pathways in Epo-mediated antiapoptotic effects in differentiated human neuroblastoma SH-SY5Y cells, we employed a prolactin receptor (PrlR)/erythropoietin receptor (EpoR) chimera system, in which binding of prolactin (Prl) to the extracellular domain activates EpoR signaling in the cytosol. On induction of apoptosis by staurosporine, Prl supports survival of the SH-SY5Y cells expressing the wild-type PrlR/EpoR chimera. In these cells Prl treatment strongly activates the STAT5, AKT, and MAPK signaling pathways and induces weak activation of the p65 NF-kappaB factor. Selective mutation of the eight tyrosine residues of the EpoR cytoplasmic domain results in impaired or absent activation of either STAT5 (mutation of Tyr(343)) or AKT (mutation of Tyr(479)) or both (mutation of all eight tyrosine residues). Most interestingly, Prl treatment does not prevent apoptosis in cells expressing mutant PrlR/EpoR chimeras in which either the STAT5 or the AKT signaling pathways are not activated. In contrast, ERK 1/2 is fully activated by all mutant PrlR/EpoR chimeras, comparable with the level seen with the wild-type PrlR/EpoR chimera, implying that activation of the MAPK signaling pathway per se is not sufficient for antiapoptotic activity. Therefore, the antiapoptotic effects of Epo in neuronal cells require the combinatorial activation of multiple signaling pathways, including STAT5, AKT, and potentially MAPK as well, in a manner similar to that observed in hematopoietic cells.

  7. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms.

    PubMed

    Araki, Marito; Yang, Yinjie; Masubuchi, Nami; Hironaka, Yumi; Takei, Hiraku; Morishita, Soji; Mizukami, Yoshihisa; Kan, Shin; Shirane, Shuichi; Edahiro, Yoko; Sunami, Yoshitaka; Ohsaka, Akimichi; Komatsu, Norio

    2016-03-10

    Recurrent somatic mutations of calreticulin (CALR) have been identified in patients harboring myeloproliferative neoplasms; however, their role in tumorigenesis remains elusive. Here, we found that the expression of mutant but not wild-type CALR induces the thrombopoietin (TPO)-independent growth of UT-7/TPO cells. We demonstrated that c-MPL, the TPO receptor, is required for this cytokine-independent growth of UT-7/TPO cells. Mutant CALR preferentially associates with c-MPL that is bound to Janus kinase 2 (JAK2) over the wild-type protein. Furthermore, we demonstrated that the mutant-specific carboxyl terminus portion of CALR interferes with the P-domain of CALR to allow the N-domain to interact with c-MPL, providing an explanation for the gain-of-function property of mutant CALR. We showed that mutant CALR induces the phosphorylation of JAK2 and its downstream signaling molecules in UT-7/TPO cells and that this induction was blocked by JAK2 inhibitor treatment. Finally, we demonstrated that c-MPL is required for TPO-independent megakaryopoiesis in induced pluripotent stem cell-derived hematopoietic stem cells harboring the CALR mutation. These findings imply that mutant CALR activates the JAK2 downstream pathway via its association with c-MPL. Considering these results, we propose that mutant CALR promotes myeloproliferative neoplasm development by activating c-MPL and its downstream pathway.

  8. Rapid activation of ERK1/2 and AKT in human breast cancer cells by cadmium

    SciTech Connect

    Liu Zhiwei; Yu Xinyuan; Shaikh, Zahir A.

    2008-05-01

    Cadmium (Cd), an endocrine disruptor, can induce a variety of signaling events including the activation of ERK1/2 and AKT. In this study, the involvement of estrogen receptors (ER) in these events was evaluated in three human breast caner cell lines, MCF-7, MDA-MB-231, and SK-BR-3. The Cd-induced signal activation patterns in the three cell lines mimicked those exhibited in response to 17{beta}-estradiol. Specifically, treatment of MCF-7 cells, that express ER{alpha}, ER{beta} and GPR30, to 0.5-10 {mu}M Cd for only 2.5 min resulted in transient phosphorylation of ERK1/2. Cd also triggered a gradual increase and sustained activation of AKT during the 60 min treatment period. In SK-BR-3 cells, that express only GPR30, Cd also caused a transient activation of ERK1/2, but not of AKT. In contrast, in MDA-MB-231 cells, that express only ER{beta}, Cd was unable to cause rapid activation of either ERK1/2 or AKT. A transient phosphorylation of ER{alpha} was also observed within 2.5 min of Cd exposure in the MCF-7 cells. While the estrogen receptor antagonist, ICI 182,780, did not prevent the effect of Cd on these signals, specific siRNA against hER{alpha} significantly reduced Cd-induced activation of ERK1/2 and completely blocked the activation of AKT. It is concluded that Cd, like estradiol, can cause rapid activation of ERK1/2 and AKT and that these signaling events are mediated by possible interaction with membrane ER{alpha} and GPR30, but not ER{beta}.

  9. Interleukin 15 activates Akt to protect astrocytes from oxygen glucose deprivation-induced cell death.

    PubMed

    Lee, Gilbert Aaron; Lai, Yein-Gei; Chen, Ray-Jade; Liao, Nan-Shih

    2017-04-01

    Astrocytes play a pivotal role in neuronal survival under the condition of post-ischemic brain inflammation, but the relevant astrocyte-derived mediators of ischemic brain injury remain to be defined. IL-15 supports survival of multiple lymphocyte lineages in the peripheral immune system, but the role of IL-15 in inflammatory disease of the central nervous system is not well defined. Recent research has shown an increase of IL-15-expressing astrocytes in the ischemic brain. Since astrocytes promote neuron survival under cerebral ischemia by buffering excess extracellular glutamate and producing growth factors, recovery of astrocyte function could be of benefit for stroke therapy. Here, we report that IL-15 is the pro-survival cytokine that prevents astrocyte death from oxygen glucose deprivation (OGD)-induced damage. Astrocytes up-regulate expression of the IL-15/IL-15Rα complex under OGD, whereas OGD down-regulates the levels of pSTAT5 and pAkt in astrocytes. IL-15 treatment ameliorates the decline of pAkt, decreases the percentage of annexin V(+) cells, inhibits the activation of caspase-3, and activates the Akt pathway to promote astrocyte survival in response to OGD. We further identified that activation of Akt, but not PKCα/βI, is essential for astrocyte survival under OGD. Taken together, this study reveals the function of IL-15 in astrocyte survival via Akt phosphorylation in response to OGD-induced damage.

  10. Antitumor Effects of Fucoidan on Human Colon Cancer Cells via Activation of Akt Signaling.

    PubMed

    Han, Yong-Seok; Lee, Jun Hee; Lee, Sang Hun

    2015-05-01

    We identified a novel Akt signaling mechanism that mediates fucoidan-induced suppression of human colon cancer cell (HT29) proliferation and anticancer effects. Fucoidan treatment significantly inhibited growth, induced G1-phase-associated upregulation of p21WAF1 expression, and suppressed cyclin and cyclin-dependent kinase expression in HT29 colon cancer cells. Additionally, fucoidan treatment activated the Akt signaling pathway, which was inhibited by treatment with an Akt inhibitor. The inhibition of Akt activation reversed the fucoidan-induced decrease in cell proliferation, the induction of G1-phase-associated p21WAF1 expression, and the reduction in cell cycle regulatory protein expression. Intraperitoneal injection of fucoidan reduced tumor volume; this enhanced antitumor efficacy was associated with induction of apoptosis and decreased angiogenesis. These data suggest that the activation of Akt signaling is involved in the growth inhibition of colon cancer cells treated with fucoidan. Thus, fucoidan may serve as a potential therapeutic agent for colon cancer.

  11. Germline activating AKT3 mutation associated with megalencephaly, polymicrogyria, epilepsy and hypoglycemia.

    PubMed

    Nellist, Mark; Schot, Rachel; Hoogeveen-Westerveld, Marianne; Neuteboom, Rinze F; van der Louw, Elles J T M; Lequin, Maarten H; Bindels-de Heus, Karen; Sibbles, Barbara J; de Coo, René; Brooks, Alice; Mancini, Grazia M S

    2015-03-01

    Activating germ-line and somatic mutations in AKT3 (OMIM 611223) are associated with megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH; OMIM # 615937) and megalencephaly-capillary malformation (MCAP; OMIM # 602501). Here we report an individual with megalencephaly, polymicrogyria, refractory epilepsy, hypoglycemia and a germline AKT3 mutation. At birth, head circumference was 43 cm (5 standard deviations above the mean). No organomegaly was present, but there was generalized hypotonia, joint and skin laxity, developmental delay and failure to thrive. At 6 months of age the patient developed infantile spasms that were resistant to antiepileptic polytherapy. Recurrent hypoglycemia was noted during treatment with adrenocorticotropic hormone but stabilized upon introduction of continuous, enriched feeding. The infantile spasms responded to the introduction of a ketogenic diet, but the hypoglycemia recurred until the diet was adjusted for increased resting energy expenditure. A novel, de novo AKT3 missense variant (exon 5; c.548T>A, p.(V183D)) was identified and shown to activate AKT3 by in vitro functional testing. We hypothesize that the sustained hypoglycemia in this patient is caused by increased glucose utilization due to activation of AKT3 signaling. This might explain the efficacy of the ketogenic diet in this individual.

  12. Phosphatidylinositol 3-kinase/Akt signaling enhances nuclear localization and transcriptional activity of BRCA1

    SciTech Connect

    Hinton, Cimona V.; Fitzgerald, Latricia D.; Thompson, Marilyn E. . E-mail: methompson@mmc.edu

    2007-05-15

    Signaling pathways involved in regulating nuclear-cytoplasmic distribution of BRCA1 have not been previously reported. Here, we provide evidence that heregulin {beta}1-induced activation of the Akt pathway increases the nuclear content of BRCA1. First, treatment of T47D breast cancer cells with heregulin {beta}1 results in a two-fold increase in nuclear BRCA1 as assessed by FACS analysis, immunoblotting and immunofluorescence. This heregulin-induced increase in nuclear BRCA1 is blocked by siRNA-mediated down-regulation of Akt. Second, mutation of threonine 509 in BRCA1, the site of Akt phosphorylation, to an alanine, attenuates the ability of heregulin to induce BRCA1 nuclear accumulation. These data suggest that Akt-catalyzed phosphorylation of BRCA1 is required for the heregulin-regulated nuclear concentration of BRCA1. Because most functions ascribed to BRCA1 occur within the nucleus, we postulated that phosphorylation-dependent nuclear accumulation of BRCA1 would result in enhanced nuclear activity, specifically transcriptional activity, of BRCA1. This postulate is affirmed by our observation that the ability of BRCA1 to transactivate GADD45 promoter constructs was enhanced in T47D cells treated with heregulin {beta}1. Furthermore, the heterologous expression of BRCA1 in HCC1937 human breast cancer cells, which have constitutively active Akt, also induces GADD45 promoter activity, whereas the expression of BRCA1 in which threonine 509 has been mutated to an alanine is able to only minimally induce promoter activity. These findings implicate Akt in upstream events leading to BRCA1 nuclear localization and function.

  13. Synthesis and evaluation of indazole based analog sensitive Akt inhibitors.

    PubMed

    Okuzumi, Tatsuya; Ducker, Gregory S; Zhang, Chao; Aizenstein, Brian; Hoffman, Randy; Shokat, Kevan M

    2010-08-01

    The kinase Akt is a key signaling node in regulating cellular growth and survival. It is implicated in cancer by mutation and its role in the downstream transmission of aberrant PI3K signaling. For these reasons, Akt has become an increasingly important target of drug development efforts and several inhibitors are now reaching clinical trials. Paradoxically it has been observed that active site kinase inhibitors of Akt lead to hyperphosphorylation of Akt itself. To investigate this phenomenon we here describe the application of a chemical genetics strategy that replaces native Akt with a mutant version containing an active site substitution that allows for the binding of an engineered inhibitor. This analog sensitive strategy allows for the selective inhibition of a single kinase. In order to create the inhibitor selective for the analog sensitive kinase, a diversity of synthetic approaches was required, finally resulting in the compound PrINZ, a 7-substituted version of the Abbott Labs Akt inhibitor A-443654.

  14. Effects of nicorandil in neuroprotective activation of PI3K/AKT pathways in a cellular model of Alzheimer's disease.

    PubMed

    Kong, Jingjing; Ren, Guiru; Jia, Ning; Wang, Yanfu; Zhang, Hua; Zhang, Wei; Chen, Bingkun; Cao, Yunpeng

    2013-01-01

    Nicorandil, an ATP-sensitive potassium (KATP) channel opener, is known to have protective effects on ischemic injury in heart and brain. One of the most important protective mechanisms is the anti-apoptotic effect on cardiomyocytes and neurons. This study explored the anti-apoptotic effect of nicorandil against neurotoxicity in SH-SY5Y cells overexpressing the Swedish mutant APP (APPsw) and the possible mechanisms involved. We used SH-SY5Y cells transiently transfected with APPsw as a cellular model of Alzheimer's disease. Cells were treated with nicorandil (0.1, 0.5, 1 mM) for 24 h with and without glibenclamide (10 μM), a KATP channel inhibitor. The cells were then collected for MTT, apoptosis assay, and Western blot. In addition, we also investigated the potential involvement of the PI3K/Akt pathway in nicorandil-mediated neuroprotection of APPsw cells. Our results showed that nicorandil dose-dependently increased cell viability and reduced the rate of apoptosis as measured by MTT assay and annexin V/PI staining. Western blot showed that nicorandil could upregulate Bcl-2 levels and downregulate Bax and caspase-3 expression. Further studies showed that nicorandil increased the levels of phospho-Akt and upregulated element-binding protein activity by PI3K activation. Applying a PI3K inhibitor, LY294002 blocked the protection. All these findings suggest that nicorandil might be a potential treatment option for Alzheimer's disease.

  15. Physiological activation of Akt by PHLPP1 deletion protects against pathological hypertrophy

    PubMed Central

    Moc, Courtney; Taylor, Amy E.; Chesini, Gino P.; Zambrano, Cristina M.; Barlow, Melissa S.; Zhang, Xiaoxue; Gustafsson, Åsa B.; Purcell, Nicole H.

    2015-01-01

    Aims To examine the role of physiological Akt signalling in pathological hypertrophy through analysis of PHLPP1 (PH domain leucine-rich repeat protein phosphatase) knock-out (KO) mice. Methods and results To investigate the in vivo requirement for ‘physiological’ control of Akt activation in cardiac growth, we examined the effect of deleting the Akt phosphatase, PHLPP, on the induction of cardiac hypertrophy. Basal Akt phosphorylation increased nearly two-fold in the cardiomyocytes from PHLPP1 KO mice and physiological hypertrophy induced by swimming exercise was accentuated as assessed by increased heart size and myocyte cell area. In contrast, the development of pathophysiological hypertrophy induced by pressure overload and assessed by increases in heart size, myocyte cell area, and hypertrophic gene expression was attenuated. This attenuation coincided with decreased fibrosis and cell death in the KO mice. Cast moulding revealed increased capillary density basally in the KO hearts, which was further elevated relative to wild-type mouse hearts in response to pressure overload. In vitro studies with isolated myocytes in co-culture also demonstrated that PHLPP1 deletion in cardiomyocytes can enhance endothelial tube formation. Expression of the pro-angiogenic factor VEGF was also elevated basally and accentuated in response to transverse aortic constriction in hearts from KO mice. Conclusion Our data suggest that enhancing Akt activity by inhibiting its PHLPP1-mediated dephosphorylation promotes processes associated with physiological hypertrophy that may be beneficial in attenuating the development of pathological hypertrophy. PMID:25411382

  16. Inhibition of Rb Phosphorylation Leads to mTORC2-Mediated Activation of Akt.

    PubMed

    Zhang, Jinfang; Xu, Kai; Liu, Pengda; Geng, Yan; Wang, Bin; Gan, Wenjian; Guo, Jianping; Wu, Fei; Chin, Y Rebecca; Berrios, Christian; Lien, Evan C; Toker, Alex; DeCaprio, James A; Sicinski, Piotr; Wei, Wenyi

    2016-06-16

    The retinoblastoma (Rb) protein exerts its tumor suppressor function primarily by inhibiting the E2F family of transcription factors that govern cell-cycle progression. However, it remains largely elusive whether the hyper-phosphorylated, non-E2F1-interacting form of Rb has any physiological role. Here we report that hyper-phosphorylated Rb directly binds to and suppresses the function of mTORC2 but not mTORC1. Mechanistically, Rb, but not p107 or p130, interacts with Sin1 and blocks the access of Akt to mTORC2, leading to attenuated Akt activation and increased sensitivity to chemotherapeutic drugs. As such, inhibition of Rb phosphorylation by depleting cyclin D or using CDK4/6 inhibitors releases Rb-mediated mTORC2 suppression. This, in turn, leads to elevated Akt activation to confer resistance to chemotherapeutic drugs in Rb-proficient cells, which can be attenuated with Akt inhibitors. Therefore, our work provides a molecular basis for the synergistic usage of CDK4/6 and Akt inhibitors in treating Rb-proficient cancer.

  17. Mutant p53: Multiple Mechanisms Define Biologic Activity in Cancer

    PubMed Central

    Kim, Michael Paul; Zhang, Yun; Lozano, Guillermina

    2015-01-01

    The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of alterations involve p53 missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may concomitantly gain novel functions, often with deleterious effects. Here, we review characterized mechanisms of mutant p53 gain of function in various model systems. In addition, we review mutant p53 addiction as emerging evidence suggests that tumors may depend on sustained mutant p53 activity for continued growth. We also discuss the role of p53 in stromal elements and their contribution to tumor initiation and progression. Lastly, current genetic mouse models of mutant p53 in various organ systems are reviewed and their limitations discussed. PMID:26618142

  18. Mutant p53: Multiple Mechanisms Define Biologic Activity in Cancer.

    PubMed

    Kim, Michael Paul; Zhang, Yun; Lozano, Guillermina

    2015-01-01

    The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of alterations involve p53 missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may concomitantly gain novel functions, often with deleterious effects. Here, we review characterized mechanisms of mutant p53 gain of function in various model systems. In addition, we review mutant p53 addiction as emerging evidence suggests that tumors may depend on sustained mutant p53 activity for continued growth. We also discuss the role of p53 in stromal elements and their contribution to tumor initiation and progression. Lastly, current genetic mouse models of mutant p53 in various organ systems are reviewed and their limitations discussed.

  19. The PI3K-AKT-mTOR pathway activates recovery from general anesthesia

    PubMed Central

    Zhang, Yun-Hui; Zhang, Jin; Song, Jian-Nan; Xu, Xue; Cai, Jin-Song; Zhou, Yang; Gao, Jin-Gui

    2016-01-01

    We investigated roles of PI3K-AKT-mTOR pathway in recovery from general anesthesia. Sprague-Dawley rats divided into five groups: saline+artificial cerebrospinal fluid (ACSF; Group A), ketamine+ACSF (Group B), ketamine+IGF-1 (Group C), ketamine+PI3K inhibitor (Group D), and PI3K/Akt agonists (Group E). Proportion of δ waves on ECoGs was recorded. Rats were tested for duration of loss of righting reflex (LORR), ataxic period and behavior in Morris water maze. mRNA and protein expression of members of PI3K-AKT-mTOR pathway were measured by RT-qPCR and Western blots. Histopathologic changes in hippocampal tissues observed by HE staining. We found that the proportion of δ waves decreased in Group C, while increased in Group D compared with Group B; the durations of LORR and ataxic period were shorter in Group C, but longer in Group D. In Morris water maze, escape latency (EL) and duration and frequency of staying on platform was shorter in Group C and longer in Group D than in Group B. Group A exhibited low expression of proteins in PI3K-AKT-mTOR pathway, while p-AKT, p-mTOR and p-P70S6K expression increased in cerebral cortex, brain stem, and thalamus in Group C. By contrast, expression of those proteins was lower in Group D than Group B. Those proteins expressions were higher in Group E than in Group A. HE staining showed that anesthesia may induce cell apoptosis in rat hippocampal CA1 areas, and PI3K/Akt agonists could inhibit apoptosis. Our results suggest that activation of PI3K-AKT-mTOR pathway may promote recovery from general anesthesia and enhance spatial learning and memory. PMID:27340771

  20. TC21 mediates transformation and cell survival via activation of phosphatidylinositol 3-kinase/Akt and NF-kappaB signaling pathway.

    PubMed

    Rong, Rong; He, Qin; Liu, Yusen; Sheikh, M Saeed; Huang, Ying

    2002-02-07

    The signaling pathways of TC21-mediated transformation and cell survival are not well-established. In this study, we have investigated the role of PI3-K/Akt signaling pathway in oncogenic-TC21-mediated transformation and cell survival. We found that oncogenic-TC21 stimulated the PI3-K activity. This was associated with the activation of Akt, a key component of PI3-K signaling pathway. We also found that TC21 interacted and formed complex with PI3-K. Mutations in the GTP-binding region of TC21, which enhanced GTP-binding potential of this protein, also stimulated its association with PI3-K, suggesting that PI3-K may preferentially interact with the GTP-bound form. Suppression of PI3-K and Akt by specific inhibitors LY294002 and Wortmannin reversed TC21-induced transformation. Likewise, inhibition of PI3-K activity by the PI3-K phosphotase PTEN reduced TC21-mediated focus formation in NIH3T3 cells. Investigation of TC21's effect on cell survival revealed that mutant-TC21 expressing cells were more resistant to etoposide- and cisplatin-induced cell death, and this was associated with the activation of anti-apoptotic protein NF-kappaB, a downstream target of Akt. Treatment of PI3-K inhibitor LY294002 significantly suppressed TC21-mediated NF-kappaB activation. In conclusion, we have identified PI3-K as an effector of TC21 and demonstrated that the PI3-K/Akt signaling pathway plays important roles in TC21-mediated transformation and cell survival.

  1. [Pigment composition and photosynthetic activity of pea chlorophyll mutants].

    PubMed

    Ladygin, V G

    2003-01-01

    Pea chlorophyll mutants chlorotica 2004 and 2014 have been studied. The mutants differ from the initial form (pea cultivar Torsdag) in stem and leaf color (light green in the mutant 2004 and yellow-green in the mutant 2014), relative chlorophyll content (approximately 80 and 50%, respectively), and the composition of carotenoids: the mutant 2004 contains a significantly smaller amount of carotene but accumulates more lutein and violaxanthine; in the mutant 2014, the contents of all carotenoids are decreased proportionally to the decrease in chlorophyll content. It is shown that the rates of CO2 assimilation and oxygen production in the mutant chlorotica 2004 and 2014 plants are reduced. The quantum efficiency of photosynthesis in the mutants is 29-30% lower than in the control plants; in their hybrids, however, it is 1.5-2 higher. It is proposed that both the greater role of dark respiration in gas exchange and the reduced photosynthetic activity in chlorotica mutants are responsible for the decreased phytomass increment in these plants. On the basis of these results, the conclusion is drawn that the mutations chlorotica 2004 and 2014 affect the genes controlling the formation and functioning of various components of the photosynthetic apparatus.

  2. High constitutive Akt2 activity in U937 promonocytes: effective reduction of Akt2 phosphorylation by the histamine H2-receptor and the β2-adrenergic receptor.

    PubMed

    Werner, Kristin; Neumann, Detlef; Seifert, Roland

    2016-01-01

    Histamine (HA) is approved for the treatment of acute myeloid leukemia (AML). Its antileukemic activity is related to histamine H2-receptor (H2R)-mediated inhibition of reactive oxygen species (ROS) production in myeloid cells facilitating survival of antineoplastic lymphocytes. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, which plays a crucial role in cell survival and proliferation, is constitutively activated in leukemic cells of most AML patients resulting in poor survival prognosis. In a proof-of-principle experiment using a human phosphorylated mitogen-activated protein kinase (MAPK) array, we found high phosphorylation levels of Akt2 in U937 promonocytes that was abrogated by HA or selective H2R agonists. The H2R and the β2-adrenergic receptor (β2AR) are Gs-protein-coupled receptors. Stimulation results in adenylyl cyclase activation followed by generation of the second messenger adenosine 3′,5′-cyclic monophosphate (cAMP). In our present study, we evaluated the pharmacological profile of the H2R and the β2AR regarding Akt2 phosphorylation at Ser474 via western blot analysis and ELISA and cAMP accumulation via HPLC-MS/MS in U937 promonocytes. H2R and β2AR agonists concentration-dependently decreased Akt2 phosphorylation at Ser474. Deviations of potencies and efficacies of agonists in Akt2 phosphorylation and cAMP accumulation assays indicated participation of cAMP-independent signaling in GPCR-induced reduction of Akt2 phosphorylation. Accordingly, our study supports the concept of functional selectivity of the H2R and the β2AR in U937 promonocytes. In summary, we extended the antileukemic mechanism of HA via H2R and revealed the potential of β2AR agonists, which are already approved in the treatment of bronchial asthma and chronic obstructive pulmonary disease, as antileukemic drugs.

  3. Long-term effects of rapamycin treatment on insulin mediated phosphorylation of Akt/PKB and glycogen synthase activity

    SciTech Connect

    Varma, Shailly; Shrivastav, Anuraag; Changela, Sheena; Khandelwal, Ramji L.

    2008-04-01

    Protein kinase B (Akt/PKB) is a Ser/Thr kinase that is involved in the regulation of cell proliferation/survival through mammalian target of rapamycin (mTOR) and the regulation of glycogen metabolism through glycogen synthase kinase 3{beta} (GSK-3{beta}) and glycogen synthase (GS). Rapamycin is an inhibitor of mTOR. The objective of this study was to investigate the effects of rapamycin pretreatment on the insulin mediated phosphorylation of Akt/PKB phosphorylation and GS activity in parental HepG2 and HepG2 cells with overexpression of constitutively active Akt1/PKB-{alpha} (HepG2-CA-Akt/PKB). Rapamycin pretreatment resulted in a decrease (20-30%) in the insulin mediated phosphorylation of Akt1 (Ser 473) in parental HepG2 cells but showed an upregulation of phosphorylation in HepG2-CA-Akt/PKB cells. Rictor levels were decreased (20-50%) in parental HepG2 cells but were not significantly altered in the HepG2-CA-Akt/PKB cells. Furthermore, rictor knockdown decreased the phosphorylation of Akt (Ser 473) by 40-60% upon rapamycin pretreatment. GS activity followed similar trends as that of phosphorylated Akt and so with rictor levels in these cells pretreated with rapamycin; parental HepG2 cells showed a decrease in GS activity, whereas as HepG2-CA-Akt/PKB cells showed an increase in GS activity. The changes in the levels of phosphorylated Akt/PKB (Ser 473) correlated with GS and protein phoshatase-1 activity.

  4. Sustained Activation of Akt Elicits Mitochondrial Dysfunction to Block Plasmodium falciparum Infection in the Mosquito Host

    PubMed Central

    Drexler, Anna L.; Antonova-Koch, Yevgeniya; Sakaguchi, Danielle; Napoli, Eleonora; Wong, Sarah; Price, Mark S.; Eigenheer, Richard; Phinney, Brett S.; Pakpour, Nazzy; Pietri, Jose E.; Cheung, Kong; Georgis, Martha; Riehle, Michael

    2013-01-01

    The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS) rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d), energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3–5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial function in the

  5. Resveratrol rescues hyperglycemia-induced endothelial dysfunction via activation of Akt

    PubMed Central

    Li, Jin-yi; Huang, Wei-qiang; Tu, Rong-hui; Zhong, Guo-qiang; Luo, Bei-bei; He, Yan

    2017-01-01

    Resveratrol (RSV), a phytoalexin, has shown to prevent endothelial dysfunction and reduce diabetic vascular complications and the risk of cardiovascular diseases. The aim of this study was to investigate the signaling mechanisms underlying the protecting effects of RSV against endothelial dysfunction during hyperglycemia in vitro and in vivo. Human umbilical vein endothelial cells (HUVECs) were treated with RSV, and then exposed to high glucose (HG, 30 mmol/L). Akt-Ser473 phosphorylation, eNOS-Ser1177 phosphorylation, and PTEN protein levels in the cells were detected using Western blot. For in vivo studies, WT and Akt−/− mice were fed a normal diet containing RSV (400 mg·kg−1·d−1) for 2 weeks, then followed by injection of STZ to induce hyperglycemia (300 mg/dL). Endothelial function was evaluated using aortic rings by assessing ACh-induced vasorelaxation. RSV (5–20 μmol/L) dose-dependently increased Akt-Ser473 phosphorylation, accompanied by increased eNOS-Ser1177 phosphorylation in HUVECs; these effects were more prominent under HG stimulation. Transfection with Akt siRNA abolished RSV-enhanced eNOS phosphorylation and NO release. Furthermore, RSV (5–20 μmol/L) dose-dependently decreased the levels of PTEN, which was significantly increased under HG stimulation, and PTEN overexpression abolished RSV-stimulated Akt phosphorylation in HG-treated HUVECs. Moreover, RSV dramatically increased 26S proteasome activity, which induced degradation of PTEN. In in vivo studies, pretreatment with RSV significantly increased Akt and eNOS phosphorylation in aortic tissues and ACh-induced vasorelaxation, and improved diabetes-induced endothelial dysfunction in wild-type mice but not in Akt−/− mice. RSV attenuates endothelial function during hyperglycemia via activating proteasome-dependent degradation of PTEN, which increases Akt phosphorylation, and consequentially upregulation of eNOS-derived NO production. PMID:27941804

  6. Stem cell factor (SCF) protects osteoblasts from oxidative stress through activating c-Kit-Akt signaling

    SciTech Connect

    Yang, Lei; Wu, Zhong; Yin, Gang; Liu, Haifeng; Guan, Xiaojun; Zhao, Xiaoqiang; Wang, Jianguang; Zhu, Jianguo

    2014-12-12

    Highlights: • SCF receptor c-Kit is functionally expressed in primary and transformed osteoblasts. • SCF protects primary and transformed osteoblasts from H{sub 2}O{sub 2}. • SCF activation of c-Kit in osteoblasts, required for its cyto-protective effects. • c-Kit mediates SCF-induced Akt activation in cultured osteoblasts. • Akt activation is required for SCF-regulated cyto-protective effects in osteoblasts. - Abstract: Osteoblasts regulate bone formation and remodeling, and are main target cells of oxidative stress in the progression of osteonecrosis. The stem cell factor (SCF)-c-Kit pathway plays important roles in the proliferation, differentiation and survival in a range of cell types, but little is known about its functions in osteoblasts. In this study, we found that c-Kit is functionally expressed in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. Its ligand SCF exerted significant cyto-protective effects against hydrogen peroxide (H{sub 2}O{sub 2}). SCF activated its receptor c-Kit in osteoblasts, which was required for its cyto-protective effects against H{sub 2}O{sub 2}. Pharmacological inhibition (by Imatinib and Dasatinib) or shRNA-mediated knockdown of c-Kit thus inhibited SCF-mediated osteoblast protection. Further investigations showed that protection by SCF against H{sub 2}O{sub 2} was mediated via activation of c-Kit-dependent Akt pathway. Inhibition of Akt activation, through pharmacological or genetic means, suppressed SCF-mediated anti-H{sub 2}O{sub 2} activity in osteoblasts. In summary, we have identified a new SCF-c-Kit-Akt physiologic pathway that protects osteoblasts from H{sub 2}O{sub 2}-induced damages, and might minimize the risk of osteonecrosis caused by oxidative stress.

  7. Ribonuclease 5 facilitates corneal endothelial wound healing via activation of PI3-kinase/Akt pathway

    PubMed Central

    Kim, Kyoung Woo; Park, Soo Hyun; Lee, Soo Jin; Kim, Jae Chan

    2016-01-01

    To maintain corneal transparency, corneal endothelial cells (CECs) exert a pump function against aqueous inflow. However, human CECs are arrested in the G1-phase and non-proliferative in vivo. Thus, treatment of corneal endothelial decompensation is limited to corneal transplantation, and grafts are vulnerable to immune rejection. Here, we show that ribonuclease (RNase) 5 is more highly expressed in normal human CECs compared to decompensated tissues. Furthermore, RNase 5 up-regulated survival of CECs and accelerated corneal endothelial wound healing in an in vitro wound of human CECs and an in vivo cryo-damaged rabbit model. RNase 5 treatment rapidly induced accumulation of cytoplasmic RNase 5 into the nucleus, and activated PI3-kinase/Akt pathway in human CECs. Moreover, inhibition of nuclear translocation of RNase 5 using neomycin reversed RNase 5-induced Akt activation. As a potential strategy for proliferation enhancement, RNase 5 increased the population of 5-bromo-2′-deoxyuridine (BrdU)-incorporated proliferating CECs with concomitant PI3-kinase/Akt activation, especially in CECs deprived of contact-inhibition. Specifically, RNase 5 suppressed p27 and up-regulated cyclin D1, D3, and E by activating PI3-kinase/Akt in CECs to initiate cell cycle progression. Together, our data indicate that RNase 5 facilitates corneal endothelial wound healing, and identify RNase 5 as a novel target for therapeutic exploitation. PMID:27526633

  8. Annexin 2 Regulates Endothelial Morphogenesis by Controlling AKT Activation and Junctional Integrity*

    PubMed Central

    Su, Shih-Chi; Maxwell, Steve A.; Bayless, Kayla J.

    2010-01-01

    Sprouting angiogenesis is a multistep process that involves endothelial cell activation, basement membrane degradation, proliferation, lumen formation, and stabilization. In this study, we identified annexin 2 as a regulator of endothelial morphogenesis using a three-dimensional in vitro model where sprouting angiogenesis was driven by sphingosine 1-phosphate and angiogenic growth factors. We observed that sphingosine 1-phosphate triggered annexin 2 translocation from the cytosol to the plasma membrane and its association with vascular endothelial (VE)-cadherin. In addition, annexin 2 depletion attenuated Akt activation, which was associated with increased phosphorylation of VE-cadherin and endothelial barrier leakage. Disrupting homotypic VE-cadherin interactions with EGTA, antibodies to the extracellular domain of VE-cadherin, or gene silencing all resulted in decreased Akt (but not Erk1/2) activation. Furthermore, expression of constitutively active Akt restored reduced endothelial sprouting responses observed with annexin 2 and VE-cadherin knockdown. Collectively, we report that annexin 2 regulates endothelial morphogenesis through an adherens junction-mediated pathway upstream of Akt. PMID:20947498

  9. Activation of PI3K-Akt-GSK3{beta} pathway mediates hepatocyte growth factor inhibition of RANTES expression in renal tubular epithelial cells

    SciTech Connect

    Gong Rujun . E-mail: rgong@Brown.edu; Rifai, Abdalla; Dworkin, Lance D.

    2005-04-29

    Hepatocyte growth factor (HGF) was recently reported to ameliorate renal inflammation in a rat model of chronic renal failure. HGF exerted its action through suppression of RANTES expression in renal tubules. In the present study, we utilized an in vitro model of human kidney proximal tubule epithelial cells (HKC) to elucidate the mechanisms of RANTES suppression by HGF. HGF significantly suppressed basal and TNF-{alpha}-induced mRNA and protein expression of RANTES in a time and dose dependent fashion. HGF elicited PI3K-Akt activation and inhibited GSK3, a downstream transducer of PI3K-Akt, by inhibitory phosphorylation at Ser-9. When the PI3K-Akt pathway was blocked by wortmannin, HGF inhibition of RANTES was abrogated, demonstrating that the PI3K-Akt pathway is necessary for HGF action. In addition, specific inhibition of GSK3 activity by lithium ion suppressed basal and TNF-{alpha}-induced RANTES expression, reminiscent of the action of HGF. To further investigate the role of GSK3 in modulating RANTES expression, we examined the effect of forced expression of wild type GSK3{beta} or an uninhibitable mutant GSK3{beta}, in which the regulatory Ser-9 residue is changed to alanine (S9A-GSK3{beta}) in HKC. Overexpression of wild type GSK3{beta} did not alter the inhibitory action of HGF on RANTES. In contrast, expression of S9A-GSK3{beta} abolished HGF inhibition of basal and TNF-{alpha} stimulated RANTES expression. These findings suggest that PI3K-Akt activation and subsequent inhibitory phosphorylation of GSK3{beta} are required for HGF-induced suppression of RANTES in HKC.

  10. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals

    PubMed Central

    Kureishi, Yasuko; Luo, Zhengyu; Shiojima, Ichiro; Bialik, Ann; Fulton, David; Lefer, David J.; Sessa, William C.; Walsh, Kenneth

    2010-01-01

    Recent studies suggest that statins can function to protect the vasculature in a manner that is independent of their lipid-lowering activity. We show here that statins rapidly activate the protein kinase Akt/PKB in endothelial cells. Accordingly, simvastatin enhanced phosphorylation of the endogenous Akt substrate endothelial nitric oxide synthase (eNOS), inhibited apoptosis and accelerated vascular structure formation in vitro in an Akt-dependent manner. Similar to vascular endothelial growth factor (VEGF) treatment, both simvastatin administration and enhanced Akt signaling in the endothelium promoted angiogenesis in ischemic limbs of normocholesterolemic rabbits. Therefore, activation of Akt represents a mechanism that can account for some of the beneficial side effects of statins, including the promotion of new blood vessel growth. PMID:10973320

  11. Differential Phosphatidylinositol-3-Kinase-Akt-mTOR Activation by Semliki Forest and Chikungunya Viruses Is Dependent on nsP3 and Connected to Replication Complex Internalization

    PubMed Central

    Biasiotto, Roberta; Eng, Kai; Neuvonen, Maarit; Götte, Benjamin; Rheinemann, Lara; Mutso, Margit; Utt, Age; Varghese, Finny; Balistreri, Giuseppe; Merits, Andres; Ahola, Tero; McInerney, Gerald M.

    2015-01-01

    ABSTRACT Many viruses affect or exploit the phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway, a crucial prosurvival signaling cascade. We report that this pathway was strongly activated in cells upon infection with the Old World alphavirus Semliki Forest virus (SFV), even under conditions of complete nutrient starvation. We mapped this activation to the hyperphosphorylated/acidic domain in the C-terminal tail of SFV nonstructural protein nsP3. Viruses with a deletion of this domain (SFV-Δ50) but not of other regions in nsP3 displayed a clearly delayed and reduced capacity of Akt stimulation. Ectopic expression of the nsP3 of SFV wild type (nsP3-wt), but not nsP3-Δ50, equipped with a membrane anchor was sufficient to activate Akt. We linked PI3K-Akt-mTOR stimulation to the intracellular dynamics of viral replication complexes, which are formed at the plasma membrane and subsequently internalized in a process blocked by the PI3K inhibitor wortmannin. Replication complex internalization was observed upon infection of cells with SFV-wt and SFV mutants with deletions in nsP3 but not with SFV-Δ50, where replication complexes were typically accumulated at the cell periphery. In cells infected with the closely related chikungunya virus (CHIKV), the PI3K-Akt-mTOR pathway was only moderately activated. Replication complexes of CHIKV were predominantly located at the cell periphery. Exchanging the hypervariable C-terminal tail of nsP3 between SFV and CHIKV induced the phenotype of strong PI3K-Akt-mTOR activation and replication complex internalization in CHIKV. In conclusion, infection with SFV but not CHIKV boosts PI3K-Akt-mTOR through the hyperphosphorylated/acidic domain of nsP3 to drive replication complex internalization. IMPORTANCE SFV and CHIKV are very similar in terms of molecular and cell biology, e.g., regarding replication and molecular interactions, but are strikingly different regarding pathology: CHIKV is a relevant human

  12. Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-kinase/Akt pathway.

    PubMed

    Huang, Chuanshu; Li, Jingxia; Song, Lun; Zhang, Dongyun; Tong, Qiangsong; Ding, Min; Bowman, Linda; Aziz, Robeena; Stoner, Gary D

    2006-01-01

    Previous studies have shown that freeze-dried black raspberry extract fractions inhibit benzo(a)pyrene [B(a)P]-induced transformation of Syrian hamster embryo cells and benzo(a)pyrene diol-epoxide [B(a)PDE]-induced activator protein-1 (AP-1) activity in mouse epidermal Cl 41 cells. The phosphotidylinositol 3-kinase (PI-3K)/Akt pathway is critical for B(a)PDE-induced AP-1 activation in mouse epidermal Cl 41 cells. In the present study, we determined the potential involvement of PI-3K and its downstream kinases on the inhibition of AP-1 activation by black raspberry fractions, RO-FOO3, RO-FOO4, RO-ME, and RO-DM. In addition, we investigated the effects of these fractions on the expression of the AP-1 target genes, vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). Pretreatment of Cl 41 cells with fractions RO-F003 and RO-ME reduced activation of AP-1 and the expression of VEGF, but not iNOS. In contrast, fractions RO-F004 and RO-DM had no effect on AP-1 activation or the expression of either VEGF or iNOS. Consistent with inhibition of AP-1 activation, the RO-ME fraction markedly inhibited activation of PI-3K, Akt, and p70 S6 kinase (p70(S6k)). In addition, overexpression of the dominant negative PI-3K mutant delta p85 reduced the induction of VEGF by B(a)PDE. It is likely that the inhibitory effects of fractions RO-FOO3 and RO-ME on B(a)PDE-induced AP-1 activation and VEGF expression are mediated by inhibition of the PI-3K/Akt pathway. In view of the important roles of AP-1 and VEGF in tumor development, one mechanism for the chemopreventive activity of black raspberries may be inhibition of the PI-3K/Akt/AP-1/VEGF pathway.

  13. Carbohydrate-binding motif in Chitinase 3-like 1 (CHI3L1/YKL-40) specifically activates Akt signaling pathway in colonic epithelial cells

    PubMed Central

    Chen, Chun-Chuan; Llado, Victoria; Eurich, Katrin; Tran, Hoa T.; Mizoguchi, Emiko

    2011-01-01

    Host-microbial interactions play a key role during the development of colitis. We have previously shown that chinase 3-like 1 (CHI3L1) is an inducible molecule overexpressed in colonic epithelial cells (CECs) under inflammatory conditions. In this study, we found that chitin-binding motif (CBM) of CHI3L1 is specifically associated with the CHI3L1-mediated activation of the Akt-signaling in CEC by transfecting the CBM-mutant CHI3L1 vectors in SW480 CECs. Downstream, CHI3L1 enhanced the secretion of IL-8 and TNFα in a dose-dependent manner. We previously show that 325 through 339 amino-acids in CBM are crucial for the biological function of CHI3L1. Here we demonstrated that 325th–339th residues of CBM in CHI3L1 is a critical region for the activation of Akt, IL-8 production, and for a specific cellular localization of CHI3L1. In conclusion, CBM region of CHI3L1 is critical in activating Akt signaling in CECs, and the activation may be associated with the development of chronic colitis. PMID:21546314

  14. Studies on Arabidopsis athak5, atakt1 double mutants disclose the range of concentrations at which AtHAK5, AtAKT1 and unknown systems mediate K uptake.

    PubMed

    Rubio, Francisco; Alemán, Fernando; Nieves-Cordones, Manuel; Martínez, Vicente

    2010-06-01

    The high-affinity K(+) transporter AtHAK5 and the inward-rectifier K(+) channel AtAKT1 have been described to contribute to K(+) uptake in Arabidopsis thaliana. Studies with T-DNA insertion lines showed that both systems participate in the high-affinity range of concentrations and only AtAKT1 in the low-affinity range. However the contribution of other systems could not be excluded with the information and plant material available. The results presented here with a double knock-out athak5, atakt1 mutant show that AtHAK5 is the only system mediating K(+) uptake at concentrations below 0.01 mM. In the range between 0.01 and 0.05 mM K(+) AtHAK5 and AtAKT1 are the only contributors to K(+) acquisition. At higher K(+) concentrations, unknown systems come into operation and participate together with AtAKT1 in low-affinity K(+) uptake. These systems can supply sufficient K(+) to promote plant growth even in the absence of AtAKT1 or in the presence of 10 mM K(+) where AtAKT1 is not essential.

  15. Antibiotic drug tigecycline reduces neuroblastoma cells proliferation by inhibiting Akt activation in vitro and in vivo.

    PubMed

    Zhong, Xiaoxia; Zhao, Erhu; Tang, Chunling; Zhang, Weibo; Tan, Juan; Dong, Zhen; Ding, Han-Fei; Cui, Hongjuan

    2016-06-01

    As the first member of glycylcycline bacteriostatic agents, tigecycline is approved as a novel expanded-spectrum antibiotic, which is clinically available. However, accumulating evidence indicated that tigecycline was provided with the potential application in cancer therapy. In this paper, tigecycline was shown to exert an anti-proliferative effect on neuroblastoma cell lines. Furthermore, it was found that tigecycline induced G1-phase cell cycle arrest instead of apoptosis by means of Akt pathway inhibition. In neuroblastoma cell lines, the Akt activator insulin-like growth factor-1 (hereafter referred to as IGF-1) reversed tigecycline-induced cell cycle arrest. Besides, tigecycline inhibited colony formation and suppressed neuroblastoma cells xenograft formation and growth. After tigecycline treatment in vivo, the Akt pathway inhibition was confirmed as well. Collectively, our data provided strong evidences that tigecycline inhibited neuroblastoma cells growth and proliferation through the Akt pathway inhibition in vitro and in vivo. In addition, these results were supported by previous studies concerning the application of tigecycline in human tumors treatment, suggesting that tigecycline might act as a potential candidate agent for neuroblastoma treatment.

  16. Myostatin signaling regulates Akt activity via the regulation of miR-486 expression.

    PubMed

    Hitachi, Keisuke; Nakatani, Masashi; Tsuchida, Kunihiro

    2014-02-01

    Myostatin, also known as growth and differentiation factor-8, is a pivotal negative regulator of skeletal muscle mass and reduces muscle protein synthesis by inhibiting the insulin-like growth factor-1 (IGF-1)/Akt/mammalian target of rapamycin (mTOR) pathway. However, the precise mechanism by which myostatin inhibits the IGF-1/Akt/mTOR pathway remains unclear. In this study, we investigated the global microRNA expression profile in myostatin knockout mice and identified miR-486, a positive regulator of the IGF-1/Akt pathway, as a novel target of myostatin signaling. In myostatin knockout mice, the expression level of miR-486 in skeletal muscle was significantly increased. In addition, we observed increased expression of the primary transcript of miR-486 (pri-miR-486) and Ankyrin 1.5 (Ank1.5), the host gene of miR-486, in myostatin knockout mice. In C2C12 cells, myostatin negatively regulated the expression of Ank1.5. Moreover, canonical myostatin signaling repressed the skeletal muscle-specific promoter activity of miR-486/Ank1.5. This repression was partially mediated by the E-box elements in the proximal region of the promoter. We also show that overexpression of miR-486 induced myotube hypertrophy in vitro and that miR-486 was essential to maintain skeletal muscle size both in vitro and in vivo. In addition, inhibition of miR-486 led to a decrease in Akt activity in C2C12 myotubes. Our findings indicate that miR-486 is one of the intermediary molecules connecting myostatin signaling and the IGF-1/Akt/mTOR pathway in the regulation of skeletal muscle size.

  17. SC79 protects retinal pigment epithelium cells from UV radiation via activating Akt-Nrf2 signaling

    PubMed Central

    Cao, Guo-fan; Cao, Cong; Jiang, Qin

    2016-01-01

    Excessive Ultra-violet (UV) radiation causes oxidative damages and apoptosis in retinal pigment epithelium (RPE) cells. Here we tested the potential activity of SC79, a novel small molecule activator of Akt, against the process. We showed that SC79 activated Akt in primary and established (ARPE-19 line) RPE cells. It protected RPE cells from UV damages possibly via inhibiting cell apoptosis. Akt inhibition, via an Akt specific inhibitor (MK-2206) or Akt1 shRNA silence, almost abolished SC79-induced RPE cytoprotection. Further studies showed that SC79 activated Akt-dependent NF-E2-related factor 2 (Nrf2) signaling and inhibited UV-induced oxidative stress in RPE cells. Reversely, Nrf2 shRNA knockdown or S40T mutation attenuated SC79-induced anti-UV activity. For the in vivo studies, we showed that intravitreal injection of SC79 significantly protected mouse retina from light damages. Based on these results, we suggest that SC79 protects RPE cells from UV damages possibly via activating Akt-Nrf2 signaling axis. PMID:27517753

  18. SC79 protects retinal pigment epithelium cells from UV radiation via activating Akt-Nrf2 signaling.

    PubMed

    Gong, Yi-Qing; Huang, Wei; Li, Ke-Ran; Liu, Yuan-Yuan; Cao, Guo-Fan; Cao, Cong; Jiang, Qin

    2016-09-13

    Excessive Ultra-violet (UV) radiation causes oxidative damages and apoptosis in retinal pigment epithelium (RPE) cells. Here we tested the potential activity of SC79, a novel small molecule activator of Akt, against the process. We showed that SC79 activated Akt in primary and established (ARPE-19 line) RPE cells. It protected RPE cells from UV damages possibly via inhibiting cell apoptosis. Akt inhibition, via an Akt specific inhibitor (MK-2206) or Akt1 shRNA silence, almost abolished SC79-induced RPE cytoprotection. Further studies showed that SC79 activated Akt-dependent NF-E2-related factor 2 (Nrf2) signaling and inhibited UV-induced oxidative stress in RPE cells. Reversely, Nrf2 shRNA knockdown or S40T mutation attenuated SC79-induced anti-UV activity. For the in vivo studies, we showed that intravitreal injection of SC79 significantly protected mouse retina from light damages. Based on these results, we suggest that SC79 protects RPE cells from UV damages possibly via activating Akt-Nrf2 signaling axis.

  19. Activation of PI3K/Akt pathway limits JNK-mediated apoptosis during EV71 infection.

    PubMed

    Zhang, Hua; Li, Fengqi; Pan, Ziye; Wu, Zhijun; Wang, Yanhong; Cui, Yudong

    2014-11-04

    Apoptosis is frequently induced to inhibit virus replication during infection of Enterovirus 71 (EV71). On the contrary, anti-apoptotic pathway, such as PI3K/Akt pathway, is simultaneously exploited by EV71 to accomplish the viral life cycle. The relationship by which EV71-induced apoptosis and PI3K/Akt signaling pathway remains to be elucidated. In this study, we demonstrated that EV71 infection altered Bax conformation and triggered its redistribution from the cytosol to mitochondria in RD cells. Subsequently, cytochrome c was released from mitochondria to cytosol. We also found that c-Jun NH2-terminal kinase (JNK) was activated during EV71 infection. The JNK specific inhibitor significantly inhibited Bax activation and cytochrome c release, suggesting that EV71-induced apoptosis was involved into a JNK-dependent manner. Meanwhile, EV71-induced Akt phosphorylation involved a PI3K-dependent mechanism. Inhibition of the PI3K/Akt pathway enhanced JNK phosphorylation and the JNK-mediated apoptosis upon EV71 infection. Moreover, PI3K/Akt pathway phosphorylated apoptosis signal-regulating kinase 1 (ASK1) and negatively regulated the ASK1 activity. Knockdown of ASK1 significantly decreased JNK phosphorylation, which implied that ASK1 phosphorylation by Akt inhibited ASK1-mediated JNK activation. Collectively, these data reveal that activation of the PI3K/Akt pathway limits JNK-mediated apoptosis by phosphorylating and inactivating ASK1 during EV71 infection.

  20. Deoxycholyltaurine Rescues Human Colon Cancer Cells From Apoptosis by Activating EGFR-Dependent PI3K/Akt Signaling

    PubMed Central

    Raufman, Jean-Pierre; Shant, Jasleen; Guo, Chang Yue; Roy, Sanjit; Cheng, Kunrong

    2010-01-01

    Recent studies indicate that secondary bile acids promote colon cancer cell proliferation but their role in maintaining cell survival has not been explored. We found that deoxycholyltaurine (DCT) markedly attenuated both unstimulated and TNF-α-stimulated programmed cell death in colon cancer cells by a phosphatidylinositol 3-kinase (PI3K)-dependent mechanism. To examine the role of bile acids and PI3K signaling in maintaining colon cancer cell survival, we explored the role of signaling downstream of bile acid-induced activation of the epidermal growth factor receptor (EGFR) in regulating both apoptosis and proliferation of HT-29 and H508 human colon cancer cells. DCT caused dose- and time-dependent Akt (Ser473) phosphorylation, a commonly used marker of activated PI3K/Akt signaling. Both EGFR kinase and PI3K inhibitors attenuated DCT-induced Akt phosphorylation and Akt activation, as demonstrated by reduced phosphorylation of a GSK-3-paramyosin substrate. Transfection of HT-29 cells with kinase-dead EGFR (K721M) reduced DCT-induced Akt phosphorylation. In HT-29 cells, EGFR and PI3K inhibitors as well as transfection with dominant negative AKT attenuated DCT-induced cell proliferation. DCT-induced PI3K/Akt activation resulted in downstream phosphorylation of GSK-3 (Ser21/9) and BAD (Ser136), and nuclear translocation (activation) of NF-κB, thereby confirming that DCT-induced activation of PI3K/Akt signaling regulates both proproliferative and prosurvival signals. Collectively, these results indicate that DCT-induced activation of post-EGFR PI3K/Akt signaling stimulates both colon cancer cell survival and proliferation. PMID:18064605

  1. Hepatic stellate cell is activated by microRNA-181b via PTEN/Akt pathway.

    PubMed

    Zheng, Jianjian; Wu, Cunzao; Xu, Ziqiang; Xia, Peng; Dong, Peihong; Chen, Bicheng; Yu, Fujun

    2015-01-01

    Activation of hepatic stellate cells (HSCs) is an essential event in the initiation and progression of liver fibrosis. MicroRNAs have been shown to play a pivotal role in regulating HSC functions such as cell proliferation, differentiation, and apoptosis. Recently, miR-181b has been reported to promote HSCs proliferation by targeting p27. But whether alpha-smooth muscle actin (α-SMA) or collagens could be promoted by miR-181b in activated HSCs is still not clear. Therefore, the understanding of the role of miR-181b in liver fibrosis remains limited. Our results showed that miR-181b expression was increased much higher than miR-181a expression in vitro in transforming growth factor-β1-induced HSC activation as well as in vivo in carbon tetrachloride-induced rat liver fibrosis. Of note, overexpression of miR-181b significantly increased the expressions level of α-SMA and type I collagen, and further promoted HSCs proliferation. Furthermore, phosphatase and tensin homologs deleted on chromosome 10 (PTEN), a negative regulator of PI3K/Akt pathway, were confirmed as a direct target of miR-181b. We demonstrated that miR-181b could suppress PTEN expression and increase Akt phosphorylation in HSCs. Interestingly, the effects of miR-181b on the activation of HSCs were blocked down by Akt inhibitor LY294002. Our results revealed a profibrotic role of miR-181b in HSC activation and demonstrated that miR-181b could activate HSCs, at least in part, via PTEN/Akt pathway.

  2. Labdane diterpenes protect against anoxia/reperfusion injury in cardiomyocytes: involvement of AKT activation

    PubMed Central

    Cuadrado, I; Fernández-Velasco, M; Boscá, L; de las Heras, B

    2011-01-01

    Several labdane diterpenes exert anti-inflammatory and cytoprotective actions; therefore, we have investigated whether these molecules protect cardiomyocytes in an anoxia/reperfusion (A/R) model, establishing the molecular mechanisms involved in the process. The cardioprotective activity of three diterpenes (T1, T2 and T3) was studied in the H9c2 cell line and in isolated rat cardiomyocyte subjected to A/R injury. In both cases, treatment with diterpenes T1 and T2 protected from A/R-induced apoptosis, as deduced by a decrease in the percentage of apoptotic and caspase-3 active positive cells, a decrease in the Bcl-2/Bax ratio and an increase in the expression of antiapoptotic proteins. Analysis of cell survival signaling pathways showed that diterpenes T1 and T2 added after A/R increased phospho-AKT and phospho-ERK 1/2 levels. These cardioprotective effects were lost when AKT activity was pharmacologically inhibited. Moreover, the labdane-induced cardioprotection involves activation of AMPK, suggesting a role for energy homeostasis in their mechanism of action. Labdane diterpenes (T1 and T2) also exerted cardioprotective effects against A/R-induced injury in isolated cardiomyocytes and the mechanisms involved activation of specific survival signals (PI3K/AKT pathways, ERK1/2 and AMPK) and inhibition of apoptosis. PMID:22071634

  3. Activation of spinal chemokine receptor CXCR3 mediates bone cancer pain through an Akt-ERK crosstalk pathway in rats.

    PubMed

    Guan, Xue-Hai; Fu, Qiao-Chu; Shi, Dai; Bu, Hui-Lian; Song, Zhen-Peng; Xiong, Bing-Rui; Shu, Bin; Xiang, Hong-Bing; Xu, Bing; Manyande, Anne; Cao, Fei; Tian, Yu-Ke

    2015-01-01

    Previously, we showed that activation of the spinal CXCL9, 10/CXCR3 pathway mediated bone cancer pain (BCP) in rats. However, the cellular mechanism involved is poorly understood. Here, we found that the activated CXCR3 was co-localized with either neurons, microglia, and astrocytes in the spinal cord, or non-peptidergic-, peptidergic-, and A-type neurons in the dorsal root ganglion. The inoculation of Walker-256 mammary gland carcinoma cells into the rat's tibia induced a time-dependent phosphorylation of Akt and extracellular signal-regulated kinase (ERK1/2) in the spinal cord, and CXCR3 was necessary for the phosphorylation of Akt and ERK 1/2. Meanwhile, CXCR3 was co-localized with either pAkt or pERK1/2. Blockage of either Akt or ERK1/2 prevented or reversed the mechanical allodynia in BCP rats. Furthermore, there was cross-activation between PI3K/Akt and Raf/MEK/ERK pathway under the BCP condition. Our results demonstrated that the activation of spinal chemokine receptor CXCR3 mediated BCP through Akt and ERK 1/2 kinase, and also indicated a crosstalk between PI3K/Akt and Raf/MEK/ERK signaling pathways under the BCP condition.

  4. AKT activation promotes PTEN hamartoma tumor syndrome–associated cataract development

    PubMed Central

    Sellitto, Caterina; Li, Leping; Gao, Junyuan; Robinson, Michael L.; Lin, Richard Z.; Mathias, Richard T.; White, Thomas W.

    2013-01-01

    Mutations in the human phosphatase and tensin homolog (PTEN) gene cause PTEN hamartoma tumor syndrome (PHTS), which includes cataract development among its diverse clinical pathologies. Currently, it is not known whether cataract formation in PHTS patients is secondary to other systemic problems, or the result of the loss of a critical function of PTEN within the lens. We generated a mouse line with a lens-specific deletion of Pten (PTEN KO) and identified a regulatory function for PTEN in lens ion transport. Specific loss of PTEN in the lens resulted in cataract. PTEN KO lenses exhibited a progressive age-related increase in intracellular hydrostatic pressure, along with, increased intracellular sodium concentrations, and reduced Na+/K+-ATPase activity. Collectively, these defects lead to lens swelling, opacities and ultimately organ rupture. Activation of AKT was highly elevated in PTEN KO lenses compared to WT mice. Additionally, pharmacological inhibition of AKT restored normal Na+/K+-ATPase activity in primary cultured lens cells and reduced lens pressure in intact lenses from PTEN KO animals. These findings identify a direct role for PTEN in the regulation of lens ion transport through an AKT-dependent modulation of Na+/K+-ATPase activity, and provide a new animal model to investigate cataract development in PHTS patients. PMID:24270425

  5. EGFR-AKT-mTOR activation mediates epiregulin-induced pleiotropic functions in cultured osteoblasts.

    PubMed

    Fan, Jian-Bo; Liu, Wei; Zhu, Xin-Hui; Yuan, Kun; Xu, Da-Wei; Chen, Jia-Jia; Cui, Zhi-Ming

    2015-01-01

    Epidermal growth factor (EGF) receptor (EGFR) emerges as an essential molecule for the regulating of osteoblast cellular functions. In the current study, we explored the effect of epiregulin, a new EGFR ligand, on osteoblast functions in vitro, and studied the underlying mechanisms. We found that epiregulin-induced EGFR activation in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, epiregulin activated AKT-mammalian target of rapamycin (mTOR) and Erk-mitogen-activated protein kinase (MAPK) signalings in cultured osteoblasts, which were blocked by EGFR inhibitor AG1478 or monoclonal antibody against EGFR (anti-EGFR). Further, in primary and MC3T3-E1 osteoblasts, epiregulin promoted cell proliferation and increased alkaline phosphatase activity, while inhibiting dexamethasone (Dex)-induced cell death. Such effects by epiregulin were largely inhibited by AG1478 or anti-EGFR. Notably, AKT-mTOR inhibitors, but not Erk inhibitors, alleviated epiregulin-induced above pleiotropic functions in osteoblasts. Meanwhile, siRNA depletion of Sin1, a key component of mTOR complex 2 (mTORC2), also suppressed epiregulin-exerted effects in MC3T3-E1 cells. Together, these results suggest that epiregulin-induced pleiotropic functions in cultured osteoblasts are mediated through EGFR-AKT-mTOR signalings.

  6. Stem cell factor (SCF) protects osteoblasts from oxidative stress through activating c-Kit-Akt signaling.

    PubMed

    Yang, Lei; Wu, Zhong; Yin, Gang; Liu, Haifeng; Guan, Xiaojun; Zhao, Xiaoqiang; Wang, Jianguang; Zhu, Jianguo

    2014-12-12

    Osteoblasts regulate bone formation and remodeling, and are main target cells of oxidative stress in the progression of osteonecrosis. The stem cell factor (SCF)-c-Kit pathway plays important roles in the proliferation, differentiation and survival in a range of cell types, but little is known about its functions in osteoblasts. In this study, we found that c-Kit is functionally expressed in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. Its ligand SCF exerted significant cyto-protective effects against hydrogen peroxide (H₂O₂). SCF activated its receptor c-Kit in osteoblasts, which was required for its cyto-protective effects against H₂O₂. Pharmacological inhibition (by Imatinib and Dasatinib) or shRNA-mediated knockdown of c-Kit thus inhibited SCF-mediated osteoblast protection. Further investigations showed that protection by SCF against H₂O₂ was mediated via activation of c-Kit-dependent Akt pathway. Inhibition of Akt activation, through pharmacological or genetic means, suppressed SCF-mediated anti-H₂O₂ activity in osteoblasts. In summary, we have identified a new SCF-c-Kit-Akt physiologic pathway that protects osteoblasts from H₂O₂-induced damages, and might minimize the risk of osteonecrosis caused by oxidative stress.

  7. Akt1 signaling coordinates BMP signaling and β-catenin activity to regulate second heart field progenitor development.

    PubMed

    Luo, Wen; Zhao, Xia; Jin, Hengwei; Tao, Lichan; Zhu, Jingai; Wang, Huijuan; Hemmings, Brian A; Yang, Zhongzhou

    2015-02-15

    Second heart field (SHF) progenitors exhibit continued proliferation and delayed differentiation, which are modulated by FGF4/8/10, BMP and canonical Wnt/β-catenin signaling. PTEN-Akt signaling regulates the stem cell/progenitor cell homeostasis in several systems, such as hematopoietic stem cells, intestinal stem cells and neural progenitor cells. To address whether PTEN-Akt signaling is involved in regulating cardiac progenitors, we deleted Pten in SHF progenitors. Deletion of Pten caused SHF expansion and increased the size of the SHF derivatives, the right ventricle and the outflow tract. Cell proliferation of cardiac progenitors was enhanced, whereas cardiac differentiation was unaffected by Pten deletion. Removal of Akt1 rescued the phenotype and early lethality of Pten deletion mice, suggesting that Akt1 was the key downstream target that was negatively regulated by PTEN in cardiac progenitors. Furthermore, we found that inhibition of FOXO by Akt1 suppressed the expression of the gene encoding the BMP ligand (BMP7), leading to dampened BMP signaling in the hearts of Pten deletion mice. Cardiac activation of Akt also increased the Ser552 phosphorylation of β-catenin, thus enhancing its activity. Reducing β-catenin levels could partially rescue heart defects of Pten deletion mice. We conclude that Akt signaling regulates the cell proliferation of SHF progenitors through coordination of BMP signaling and β-catenin activity.

  8. Calorie restriction leads to greater Akt2 activity and glucose uptake by insulin-stimulated skeletal muscle from old rats

    PubMed Central

    Wang, Haiyan; Arias, Edward B.

    2016-01-01

    Skeletal muscle insulin resistance is associated with many common age-related diseases, but moderate calorie restriction (CR) can substantially elevate glucose uptake by insulin-stimulated skeletal muscle from both young and old rats. The current study evaluated the isolated epitrochlearis muscle from ∼24.5-mo-old rats that were either fed ad libitum (AL) or subjected to CR (consuming ∼65% of ad libitum, AL, intake beginning at ∼22.5 mo old). Some muscles were also incubated with MK-2206, a potent and selective Akt inhibitor. The most important results were that in isolated muscles, CR vs. AL resulted in 1) greater insulin-stimulated glucose uptake 2) that was accompanied by significantly increased insulin-mediated activation of Akt2, as indicated by greater phosphorylation on both Thr309 and Ser474 along with greater Akt2 activity, 3) concomitant with enhanced phosphorylation of several Akt substrates, including an Akt substrate of 160 kDa on Thr642 and Ser588, filamin C on Ser2213 and proline-rich Akt substrate of 40 kDa on Thr246, but not TBC1D1 on Thr596; and 4) each of the CR effects was eliminated by MK-2206. These data provide compelling new evidence linking greater Akt2 activation to the CR-induced elevation of insulin-stimulated glucose uptake by muscle from old animals. PMID:26739650

  9. Effects of AFP-activated PI3K/Akt signaling pathway on cell proliferation of liver cancer.

    PubMed

    Zheng, Lu; Gong, Wei; Liang, Ping; Huang, XiaoBing; You, Nan; Han, Ke Qiang; Li, Yu Ming; Li, Jing

    2014-05-01

    This study aims to investigate effects of alpha-fetoprotein (AFP)-activated phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway on hepatocellular carcinoma cell proliferation. Active cirrhosis patients after hepatitis B infection (n = 20) and viral hepatitis patients with hepatocellular carcinoma (HCC) (n = 20) were selected as the subjects of the present study. Another 20 healthy subjects were selected as the control group. The serum AFP expression and liver tissue PI3K and Akt gene mRNA expression were detected. The hepatoma cell model HepG2 which had a stable expression of AFP gene was used. Real-time quantitative PCR and Western blot and other methods were used to analyze the intracellular PI3K and Akt protein levels. Compared with control group and cirrhosis group, the serum AFP levels in HCC group significantly increased, and the tissue PI3K and Akt mRNA expression also significantly increased. HepG2 cells were intervened using AFP, in which the PIK and Akt protein expression significantly increased. After intervention by use of AFP monoclonal antibodies or LY294002 inhibitor, the PIK and Akt protein expression in HepG2 cell was significantly decreased (P < 0.05). AFP can promote the proliferation of hepatoma cells via activation of PI3K/Akt signaling pathway.

  10. Activation of AKT pathway by Nrf2/PDGFA feedback loop contributes to HCC progression.

    PubMed

    Liu, Danyang; Zhang, Yonglong; Wei, Yingze; Liu, Guoyuan; Liu, Yufeng; Gao, Qiongmei; Zou, Liping; Zeng, Wenjiao; Zhang, Nong

    2016-10-04

    Nuclear factor erythroid-2-related factor 2 (Nrf2), a master transcription factor in the antioxidant response, has been found to be ubiquitously expressed in various cancer cells and in the regulation tumor proliferation, invasion, and chemoresistance activities. The regulatory roles of Nrf2 in controlling Hepatocellular carcinoma (HCC) progression remain unclear. In this study, we demonstrated that Nrf2 was significantly elevated in HCC cells and tissues and was correlated with poor prognosis of HCCs. Consistently, Nrf2 significantly promoted HCC cell growth both in vitro and in vivo. Further investigation suggested a novel association of Nrf2 with Platelet-Derived Growth Factor-A (PDGFA). Nrf2 promoted PDGFA transcription by recruiting specificity protein 1 (Sp1) to its promoter, resulting in increased activation of the AKT/p21 pathway and cell cycle progression of HCC cells. As a feedback loop, PDGFA enhanced Nrf2 expression and activation in an AKT dependent manner. In line with these findings, expression of Nrf2 and PDGFA were positively correlated in HCC tissues. Taken together, this study uncovers a novel mechanism of the Nrf2/PDGFA regulatory loop that is crucial for AKT-dependent HCC progression, and thereby provides potential targets for HCC therapy.

  11. Activation of AKT pathway by Nrf2/PDGFA feedback loop contributes to HCC progression

    PubMed Central

    Wei, Yingze; Liu, Guoyuan; Liu, Yufeng; Gao, Qiongmei; Zou, Liping; Zeng, Wenjiao; Zhang, Nong

    2016-01-01

    Nuclear factor erythroid-2-related factor 2 (Nrf2), a master transcription factor in the antioxidant response, has been found to be ubiquitously expressed in various cancer cells and in the regulation tumor proliferation, invasion, and chemoresistance activities. The regulatory roles of Nrf2 in controlling Hepatocellular carcinoma (HCC) progression remain unclear. In this study, we demonstrated that Nrf2 was significantly elevated in HCC cells and tissues and was correlated with poor prognosis of HCCs. Consistently, Nrf2 significantly promoted HCC cell growth both in vitro and in vivo. Further investigation suggested a novel association of Nrf2 with Platelet-Derived Growth Factor-A (PDGFA). Nrf2 promoted PDGFA transcription by recruiting specificity protein 1 (Sp1) to its promoter, resulting in increased activation of the AKT/p21 pathway and cell cycle progression of HCC cells. As a feedback loop, PDGFA enhanced Nrf2 expression and activation in an AKT dependent manner. In line with these findings, expression of Nrf2 and PDGFA were positively correlated in HCC tissues. Taken together, this study uncovers a novel mechanism of the Nrf2/PDGFA regulatory loop that is crucial for AKT-dependent HCC progression, and thereby provides potential targets for HCC therapy. PMID:27588483

  12. Activation of the EGFR/Akt/NF-κB/cyclinD1 survival signaling pathway in human cholesteatoma epithelium.

    PubMed

    Liu, Wei; Yin, Tuanfang; Ren, Jihao; Li, Lihua; Xiao, Zian; Chen, Xing; Xie, Dinghua

    2014-02-01

    Cholesteatoma is a benign keratinizing squamous epithelial lesion characterized by the hyper-proliferation of keratinocytes with abundant production of keratin debris in the middle ear. The epidermal growth factor receptor (EGFR)/Akt/nuclear factor-kappa B (NF-κB)/cyclinD1 signaling pathway is one of the most important pathways in regulating cell survival and proliferation. We hypothesized that the EGFR/Akt/NF-κB/cyclinD1 signaling pathway may be activated and involved in the cellular hyperplasia mechanism in acquired cholesteatoma epithelium. Immunohistochemical staining of phosphorylated EGFR (p-EGFR), phosphorylated Akt (p-Akt), activated NF-κB and cyclinD1 protein was performed in 40 cholesteatoma samples and 20 samples of normal external auditory canal (EAC) epithelium. Protein expression of p-EGFR, p-Akt, activated NF-κB and cyclinD1 in cholesteatoma epithelium was significantly increased when compared with normal EAC epithelium (p < 0.01). In cholesteatoma epithelium, a significant positive association was observed between p-EGFR and p-Akt expression and between the expressions of p-Akt and NF-κB, NF-κB and cyclinD1, respectively (p < 0.01). No significant relationships were observed between the levels of investigated proteins and the degree of bone destruction (p > 0.05). The increased protein expression of p-EGFR, p-Akt, NF-κB and cyclinD1 and their associations in cholesteatoma epithelium suggest that the EGFR/Akt/NF-κB/cyclinD1 survival signaling pathway is active and may be involved in the regulatory mechanisms of cellular hyperplasia in cholesteatoma epithelium.

  13. AKT-phosphorylated FOXO1 suppresses ERK activation and chemoresistance by disrupting IQGAP1-MAPK interaction.

    PubMed

    Pan, Chun-Wu; Jin, Xin; Zhao, Yu; Pan, Yunqian; Yang, Jing; Karnes, R Jeffrey; Zhang, Jun; Wang, Liguo; Huang, Haojie

    2017-03-09

    Nuclear FOXO proteins act as tumor suppressors by transcriptionally activating genes involved in apoptosis and cell cycle arrest, and these anticancer functions are inhibited by AKT-induced phosphorylation and cytoplasmic sequestration of FOXOs. We found that, after AKT-mediated phosphorylation at serine 319, FOXO1 binds to IQGAP1, a hub for activation of the MAPK pathway, and impedes IQGAP1-dependent phosphorylation of ERK1/2 (pERK1/2). Conversely, decreased FOXO1 expression increases pERK1/2 in cancer cell lines and correlates with increased pERK1/2 levels in patient specimens and disease progression. Treatment of cancer cells with PI3K inhibitors or taxane causes FOXO1 localization in the nucleus, increased expression of pERK1/2, and drug resistance. These effects are reversed by administering a small FOXO1-derived phospho-mimicking peptide inhibitor in vitro and in mice. Our results show a tumor suppressor role of AKT-phosphorylated FOXO1 in the cytoplasm and suggest that this function of FOXO1 can be harnessed to overcome chemoresistance in cancer.

  14. Akt isoforms in vascular disease

    PubMed Central

    Yu, Haixiang; Littlewood, Trevor; Bennett, Martin

    2015-01-01

    The mammalian serine/threonine Akt kinases comprise three closely related isoforms: Akt1, Akt2 and Akt3. Akt activation has been implicated in both normal and disease processes, including in development and metabolism, as well as cancer and cardiovascular disease. Although Akt signalling has been identified as a promising therapeutic target in cancer, its role in cardiovascular disease is less clear. Importantly, accumulating evidence suggests that the three Akt isoforms exhibit distinct tissue expression profiles, localise to different subcellular compartments, and have unique modes of activation. Consistent with in vitro findings, genetic studies in mice show distinct effects of individual Akt isoforms on the pathophysiology of cardiovascular disease. This review summarises recent studies of individual Akt isoforms in atherosclerosis, vascular remodelling and aneurysm formation, to provide a comprehensive overview of Akt function in vascular disease. PMID:25929188

  15. Editing VEGFR2 Blocks VEGF-Induced Activation of Akt and Tube Formation

    PubMed Central

    Huang, Xionggao; Zhou, Guohong; Wu, Wenyi; Ma, Gaoen; D'Amore, Patricia A.; Mukai, Shizuo; Lei, Hetian

    2017-01-01

    Purpose Vascular endothelial growth factor receptor 2 (VEGFR2) plays a key role in VEGF-induced angiogenesis. The goal of this project was to test the hypothesis that editing genomic VEGFR2 loci using the technology of clustered regularly interspaced palindromic repeats (CRISPR)-associated DNA endonuclease (Cas)9 in Streptococcus pyogenes (SpCas9) was able to block VEGF-induced activation of Akt and tube formation. Methods Four 20 nucleotides for synthesizing single-guide RNAs based on human genomic VEGFR2 exon 3 loci were selected and cloned into a lentiCRISPR v2 vector, respectively. The DNA fragments from the genomic VEGFR2 exon 3 of transduced primary human retinal microvascular endothelial cells (HRECs) were analyzed by Sanger DNA sequencing, surveyor nuclease assay, and next-generation sequencing (NGS). In the transduced cells, expression of VEGFR2 and VEGF-stimulated signaling events (e.g., Akt phosphorylation) were determined by Western blot analyses; VEGF-induced cellular responses (proliferation, migration, and tube formation) were examined. Results In the VEGFR2-sgRNA/SpCas9–transduced HRECs, Sanger DNA sequencing indicated that there were mutations, and NGS demonstrated that there were 83.57% insertion and deletions in the genomic VEGFR2 locus; expression of VEGFR2 was depleted in the VEGFR2-sgRNA/SpCas9–transduced HRECs. In addition, there were lower levels of Akt phosphorylation in HRECs with VEGFR2-sgRNA/SpCas9 than those with LacZ-sgRNA/SpCas9, and there was less VEGF-stimulated Akt activation, proliferation, migration, or tube formation in the VEGFR2-depleted HRECs than those treated with aflibercept or ranibizumab. Conclusions The CRISPR-SpCas9 technology is a potential novel approach to prevention of pathologic angiogenesis. PMID:28241310

  16. ADP stimulates the respiratory burst without activation of ERK and AKT in rat alveolar macrophages.

    PubMed

    Gozal, E; Forman, H J; Torres, M

    2001-09-01

    Alveolar macrophages (AM) are the first line of defense against infection in the lungs. We previously showed that the production of superoxide and hydrogen peroxide, i.e., the respiratory burst, is stimulated by adenine nucleotides (ADP > ATP) in rat AM through signaling pathways involving calcium and protein kinase C. Here, we further show that ADP induces a rapid increase in the tyrosine phosphorylation of several proteins that was reduced by the tyrosine kinase inhibitor genistein, which also inhibited the respiratory burst. Interestingly, ADP did not trigger the activation of the mitogen-activated protein kinases ERK1 and ERK2, or that of protein kinase B/AKT, a downstream target of the phosphatidylinositol 3-kinase (PI3K) pathway. This is in contrast to another stimulus of the respiratory burst, zymosan-activated serum (ZAS), which activates both the ERK and PI3K pathways. Thus, this study demonstrates that the receptor for ADP in rat AM is not coupled to the ERK and AKT pathways and, that neither the ERK pathway nor AKT is essential to induce the activation of the NAPDH oxidase by ADP in rat AM while tyrosine kinases appeared to be required. The rate and amount of hydrogen peroxide released by the ADP-stimulated respiratory burst was similar to that produced by ZAS stimulation. The absence of ERK activation after ADP stimulation therefore suggests that hydrogen peroxide is not sufficient to activate the ERK pathway in rat AM. Nonetheless, as hydrogen peroxide was necessary for ERK activation by ZAS, this indicates that, in contrast to ADP, ZAS stimulates a pathway that is targeted by hydrogen peroxide and leads to ERK activation.

  17. Transcriptional activation of peroxisome proliferator-activated receptor-{gamma} requires activation of both protein kinase A and Akt during adipocyte differentiation

    SciTech Connect

    Kim, Sang-pil; Ha, Jung Min; Yun, Sung Ji; Kim, Eun Kyoung; Chung, Sung Woon; Hong, Ki Whan; Kim, Chi Dae; Bae, Sun Sik

    2010-08-13

    Research highlights: {yields} Elevated cAMP activates both PKA and Epac. {yields} PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. {yields} Akt modulates PPAR-{gamma} transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-{gamma} is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-{gamma}. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by a Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-{gamma} was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-{gamma} transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-{gamma} transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-{gamma}, suggesting post-translational activation of PPAR-{gamma} might be critical step for adipogenic gene expression.

  18. Regulation of cellular growth, apoptosis, and Akt activity in human U251 glioma cells by a combination of cisplatin with CRM197.

    PubMed

    Wang, Lifei; Wang, Ping; Liu, Yunhui; Xue, Yixue

    2012-01-01

    The aberrantly activated antiapoptotic phospatidyl-3-inositol-kinase (PI3K)/Akt signaling induced by cisplatin limits the effectiveness of chemotherapy; inhibition of this pathway may augment the sensitivity of tumor cells to cisplatin-induced toxicity and promote apoptosis. Cross-reacting material 197 (CRM197), the nontoxic mutant of diphtheria toxin, could act as an heparin-binding epidermal growth factor inhibitor and has been shown to have some anticancer effects, but the effect of CRM197 on glioma cells remains unclear. The aim of this study was to investigate the effects of a combination of cisplatin with CRM197 on the growth and apoptosis of human U251 glioma cells and the possible mechanism. In this study, we demonstrated that cisplatin or CRM197 induced a dose-dependent growth inhibition in U251 cells, but cisplatin at 5 µg/ml and CRM197 at 1 µg/ml did not affect the viability of human astrocytes. Cisplatin induced a time-dependent growth inhibition in U251 cells, whereas the growth-inhibitory effects induced by CRM197 alone or combined with cisplatin reached a peak at 24 h after treatment. Compared with the administration of cisplatin or CRM197 alone, CRM197 combined with cisplatin significantly enhanced U251 cell growth inhibition and apoptosis. Cisplatin induced sustained activation of Akt, whereas CRM197 markedly suppressed the Akt phosphorylation induced by cisplatin. The effects of growth inhibition and apoptosis were markedly enhanced after a combination of cisplatin with CRM197 plus the PI3K inhibitor LY294002 or wortmannin. Therefore, CRM197 combined with cisplatin could enhance growth inhibition and apoptosis of glioma cells by inhibiting the cisplatin-induced PI3K/Akt pathway.

  19. Synthesis and SAR study of modulators inhibiting tRXRα-dependent AKT activation

    PubMed Central

    Wang, Zhi-Gang; Chen, Liqun; Chen, Jiebo; Zheng, Jian-Feng; Gao, Weiwei; Zeng, Zhiping; Zhou, Hu; Zhang, Xiao-kun; Huang, Pei-Qiang; Su, Ying

    2013-01-01

    RXRα represents an intriguing and unique target for pharmacologic interventions. We recently showed that Sulindac and a designed analog could bind to RXRα and modulate its biological activity, including inhibition of the interaction of an N-terminally truncated RXRα (tRXRα) with the p85α regulatory subunit of phosphatidylinositol-3-OH kinase (PI3K). Here we report the synthesis, testing and SAR of a series of novel analogs of Sulindac as potential modulators for inhibiting tRXRα-dependent AKT activation. A new compound 30 was identified to have improved biological activity. PMID:23434637

  20. Stat5 Promotes Survival of Mammary Epithelial Cells through Transcriptional Activation of a Distinct Promoter in Akt1▿

    PubMed Central

    Creamer, Bradley A.; Sakamoto, Kazuhito; Schmidt, Jeffrey W.; Triplett, Aleata A.; Moriggl, Richard; Wagner, Kay-Uwe

    2010-01-01

    The signal transducer and activator of transcription 5 (Stat5) plays a pivotal role in the proliferation, secretory differentiation, and survival of mammary epithelial cells. However, there is little information about Stat5 target genes that facilitate these biological processes. We provide here experimental evidence that the prolactin-mediated phosphorylation of Stat5 regulates the transcriptional activation of the Akt1 gene. Stat5 binds to consensus sequences within the Akt1 locus in a growth factor-dependent manner to initiate transcription of a unique Akt1 mRNA from a distinct promoter, which is only active in the mammary gland. Elevating the levels of active Akt1 restores the expression of cyclin D1 and proliferation of Jak2-deficient mammary epithelial cells, which provides evidence that Akt1 acts downstream of Jak/Stat signaling. The ligand-inducible expression of Stat5 in transgenic females mediates a sustained upregulation of Akt1 in mammary epithelial cells during the onset of postlactational involution. Stat5-expressing mammary glands exhibit a delay in involution despite induction of proapoptotic signaling events. Collectively, the results of the present study elucidate an underlying mechanism by which active Stat5 mediates evasion from apoptosis and self-sufficiency in growth signals. PMID:20385773

  1. Sea urchin akt activity is Runx-dependent and required for post-cleavage stage cell division.

    PubMed

    Robertson, Anthony J; Coluccio, Alison; Jensen, Sarah; Rydlizky, Katarina; Coffman, James A

    2013-05-15

    In animal development following the initial cleavage stage of embryogenesis, the cell cycle becomes dependent on intercellular signaling and controlled by the genomically encoded ontogenetic program. Runx transcription factors are critical regulators of metazoan developmental signaling, and we have shown that the sea urchin Runx gene runt-1, which is globally expressed during early embryogenesis, functions in support of blastula stage cell proliferation and expression of the mitogenic genes pkc1, cyclinD, and several wnts. To obtain a more comprehensive list of early runt-1 regulatory targets, we screened a Strongylocentrotus purpuratus microarray to identify genes mis-expressed in mid-blastula stage runt-1 morphants. This analysis showed that loss of Runx function perturbs the expression of multiple genes involved in cell division, including the pro-growth and survival kinase Akt (PKB), which is significantly underexpressed in runt-1 morphants. Further genomic analysis revealed that Akt is encoded by two genes in the S. purpuratus genome, akt-1 and akt-2, both of which contain numerous canonical Runx target sequences. The transcripts of both genes accumulate several fold during blastula stage, contingent on runt-1 expression. Inhibiting Akt expression or activity causes blastula stage cell cycle arrest, whereas overexpression of akt-1 mRNA rescues cell proliferation in runt-1 morphants. These results indicate that post-cleavage stage cell division requires Runx-dependent expression of akt.

  2. Restoration of Akt activity by the bisperoxovanadium compound bpV(pic) attenuates hippocampal apoptosis in experimental neonatal pneumococcal meningitis.

    PubMed

    Sury, Matthias D; Vorlet-Fawer, Lorianne; Agarinis, Claudia; Yousefi, Shida; Grandgirard, Denis; Leib, Stephen L; Christen, Stephan

    2011-01-01

    Pneumococcal meningitis causes apoptosis of developing neurons in the dentate gyrus of the hippocampus. The death of these cells is accompanied with long-term learning and memory deficits in meningitis survivors. Here, we studied the role of the PI3K/Akt (protein kinase B) survival pathway in hippocampal apoptosis in a well-characterized infant rat model of pneumococcal meningitis. Meningitis was accompanied by a significant decrease of the PI3K product phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) and of phosphorylated (i.e., activated) Akt in the hippocampus. At the cellular level, phosphorylated Akt was decreased in both the granular layer and the subgranular zone of the dentate gyrus, the region where the developing neurons undergo apoptosis. Protein levels and activity of PTEN, the major antagonist of PI3K, were unaltered by infection, suggesting that the observed decrease in PIP(3) and Akt phosphorylation is a result of decreased PI3K signaling. Treatment with the PTEN inhibitor bpV(pic) restored Akt activity and significantly attenuated hippocampal apoptosis. Co-treatment with the specific PI3K inhibitor LY294002 reversed the restoration of Akt activity and attenuation of hippocampal apoptosis, while it had no significant effect on these parameters on its own. These results indicate that the inhibitory effect of bpV(pic) on apoptosis was mediated by PI3K-dependent activation of Akt, strongly suggesting that bpV(pic) acted on PTEN. Treatment with bpV(pic) also partially inhibited the concentration of bacteria and cytokines in the CSF, but this effect was not reversed by LY294002, indicating that the effect of bpV(pic) on apoptosis was independent of its effect on CSF bacterial burden and cytokine levels. These results indicate that the PI3K/Akt pathway plays an important role in the death and survival of developing hippocampal neurons during the acute phase of pneumococcal meningitis.

  3. Berberine ameliorates hyperglycemia in alloxan-induced diabetic C57BL/6 mice through activation of Akt signaling pathway.

    PubMed

    Xie, Xi; Li, Wenyuan; Lan, Tian; Liu, Weihua; Peng, Jing; Huang, Kaipeng; Huang, Juan; Shen, Xiaoyan; Liu, Peiqing; Huang, Heqing

    2011-01-01

    Recently, it is implicated that the abnormality of Akt signaling pathway is involved in the diabetic pathology. Previous studies have demonstrated that berberine could decrease blood glucose by elevating liver glycogen synthesis. However, the underlying mechanism is still unclear. In the present study, we investigated the effects of berberine on fasting blood glucose, liver glycogen, Akt, Glycogen synthase kinase-3, glucokinase and insulin receptor substrate (IRS) in alloxan-induced diabetic mice, exploring its possible hypoglycemic mechanism. We found that in alloxan-induced diabetic mice, the high blood glucose was significantly lowered by berberine treatment. Liver glycogen content, the expression and activity of glucokinase and the phosphorylated Akt and IRS were all significantly reduced in diabetic mice whereas berberine blocked these changes. Berberine also depressed the increasing of phosphorylated GSK-3β in diabetic mice. Collectively, Berberine upregulates the activity of Akt possibly via insulin signaling pathway, eventually lowering high blood glucose in alloxan-induced diabetic mice.

  4. NTRK2 activation cooperates with PTEN deficiency in T-ALL through activation of both the PI3K–AKT and JAK–STAT3 pathways

    PubMed Central

    Yuzugullu, Haluk; Von, Thanh; Thorpe, Lauren M; Walker, Sarah R; Roberts, Thomas M; Frank, David A; Zhao, Jean J

    2016-01-01

    Loss of PTEN, a negative regulator of the phosphoinositide 3-kinase signaling pathway, is a frequent event in T-cell acute lymphoblastic leukemia, suggesting the importance of phosphoinositide 3-kinase activity in this disease. Indeed, hyperactivation of the phosphoinositide 3-kinase pathway is associated with the disease aggressiveness, poor prognosis and resistance to current therapies. To identify a molecular pathway capable of cooperating with PTEN deficiency to drive oncogenic transformation of leukocytes, we performed an unbiased transformation screen with a library of tyrosine kinases. We found that activation of NTRK2 is able to confer a full growth phenotype of Ba/F3 cells in an IL3-independent manner in the PTEN-null setting. NTRK2 activation cooperates with PTEN deficiency through engaging both phosphoinositide3-kinase/AKT and JAK/STAT3 pathway activation in leukocytes. Notably, pharmacological inhibition demonstrated that p110α and p110δ are the major isoforms mediating the phosphoinositide 3-kinase/AKT signaling driven by NTRK2 activation in PTEN-deficient leukemia cells. Furthermore, combined inhibition of phosphoinositide 3-kinase and STAT3 significantly suppressed proliferation of PTEN-mutant T-cell acute lymphoblastic leukemia both in culture and in mouse xenografts. Together, our data suggest that a unique conjunction of PTEN deficiency and NTRK2 activation in T-cell acute lymphoblastic leukemia, and combined pharmacologic inhibition of phosphoinositide 3-kinase and STAT3 signaling may serve as an effective and durable therapeutic strategy for T-cell acute lymphoblastic leukemia. PMID:27672444

  5. Activation of Akt/protein kinase B mediates the protective effects of mechanical stretching against myocardial ischemia-reperfusion injury

    PubMed Central

    Hao, Jia; Ahn, Hee-Yul

    2012-01-01

    Akt/protein kinase B is a well-known cell survival factor and activated by many stimuli including mechanical stretching. Therefore, we evaluated the cardioprotective effect of a brief mechanical stretching of rat hearts and determined whether activation of Akt through phosphatidylinositol 3-kinase (PI3K) is involved in stretch-induced cardioprotection (SIC). Stretch preconditioning reduced infarct size and improved post-ischemic cardiac function compared to the control group. Phosphorylation of Akt and its downstream substrate, GSK-3β, was increased by mechanical stretching and completely blocked by wortmannin, a PI3K inhibitor. Treatment with lithium or SB216763 (GSK-3β inhibitors) before ischemia induction mimicked the protective effects of SIC on rat heart. Gadolinium (Gd3+), a blocker of stretch-activated ion channels (SACs), inhibited the stretch-induced phosphorylation of Akt and GSK-3β. Furthermore, SIC was abrogated by wortmannin and Gd3+. In vivo stretching induced by an aorto-caval shunt increased Akt phosphorylation and reduced myocardial infarction; these effects were diminished by wortmannin and Gd3+ pretreatment. Our results showed that mechanical stretching can provide cardioprotection against ischemia-reperfusion injury. Additionally, the activation of Akt, which might be regulated by SACs and the PI3K pathway, plays an important role in SIC. PMID:23000580

  6. Activation of Akt/protein kinase B mediates the protective effects of mechanical stretching against myocardial ischemia-reperfusion injury.

    PubMed

    Kim, Chan-Hyung; Hao, Jia; Ahn, Hee-Yul; Kim, Si Wook

    2012-09-01

    Akt/protein kinase B is a well-known cell survival factor and activated by many stimuli including mechanical stretching. Therefore, we evaluated the cardioprotective effect of a brief mechanical stretching of rat hearts and determined whether activation of Akt through phosphatidylinositol 3-kinase(PI3K) is involved in stretch-induced cardioprotection (SIC). Stretch preconditioning reduced infarct size and improved postischemic cardiac function compared to the control group. Phosphorylation of Akt and its downstream substrate, GSK-3β, was increased by mechanical stretching and completely blocked by wortmannin, a PI3K inhibitor. Treatment with lithium or SB216763 (GSK-3β inhibitors) before ischemia induction mimicked the protective effects of SIC on rat heart. Gadolinium (Gd3(+)), a blocker of stretch-activated ion channels (SACs), inhibited the stretch-induced phosphorylation of Akt and GSK-3β. Furthermore, SIC was abrogated by wortmannin and Gd3(+). In vivo stretching induced by an aorto-caval shunt increased Akt phosphorylation and reduced myocardial infarction; these effects were diminished by wortmannin and Gd3(+) pretreatment. Our results showed that mechanical stretching can provide cardioprotection against ischemia-reperfusion injury. Additionally, the activation of Akt, which might be regulated by SACs and the PI3K pathway, plays an important role in SIC.

  7. Modulation in Activation and Expression of PTEN, Akt1, and PDK1: Further Evidence Demonstrating Altered Phosphoinositide 3-kinase Signaling in Postmortem Brain of Suicide Subjects

    PubMed Central

    Dwivedi, Yogesh; Rizavi, Hooriyah S.; Zhang, Hui; Roberts, Rosalinda C.; Conley, Robert R.; Pandey, Ghanshyam N.

    2010-01-01

    Background Phosphoinositide 3-kinase (PI 3-K) signaling plays a crucial role in neuronal growth and plasticity. Recently, we demonstrated that suicide brain is associated with decreased activation and expression of selective catalytic and regulatory subunits of PI 3-K. The present investigation examined the regulation and functional significance of compromised PI 3-K in suicide brain at the level of upstream phosphatase and tensin homolog on chromosome ten (PTEN) and downstream substrates 3-phosphoinositide-dependent kinase 1 (PDK1) and Akt. Method mRNA expression of Akt1, Akt3, PTEN, and PDK1 by competitive RT-PCR; protein expression of Akt1, Akt3, PTEN, PDK1, phosphorylated-Akt1 (Ser473), phosphorylated-Akt1(Thr308), phosphorylated-PDK1, and phosphorylated-PTEN by Western blot; and catalytic activities of Akt1, Akt3, and PDK1 by enzymatic assays were determined in prefrontal cortex (PFC) and hippocampus obtained from suicide subjects and nonpsychiatric controls. Results No significant changes in the expression of Akt1 or Akt3 were observed; however, catalytic activity of Akt1, but not of Akt3, was decreased in PFC and hippocampus of suicide subjects, which was associated with decreased phosphorylation of Akt1 at Ser473 and Thr308. The catalytic activity of PDK1 and the level of phosphorylated-PDK1 were also decreased in both brain areas without any change in expression levels of PDK1. On the other hand, mRNA and protein expression of PTEN was increased, whereas the level of phosphorylated-PTEN was decreased. Conclusion Our study demonstrates abnormalities in PI 3-K signaling at several levels in brain of suicide subjects and suggests the possible involvement of aberrant PI 3-K/Akt signaling in the pathogenic mechanisms of suicide. PMID:20163786

  8. Modulation of p47PHOX activity by site-specific phosphorylation: Akt-dependent activation of the NADPH oxidase

    PubMed Central

    Hoyal, Carolyn R.; Gutierrez, Abel; Young, Brandon M.; Catz, Sergio D.; Lin, Jun-Hsiang; Tsichlis, Philip N.; Babior, Bernard M.

    2003-01-01

    The leukocyte NADPH oxidase catalyzes the reduction of oxygen to O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{2}^{-}}}\\end{equation*}\\end{document} at the expense of NADPH. Extensive phosphorylation of the oxidase subunit p47PHOX occurs during the activation of the enzyme in intact cells. p47PHOX carrying certain serine-to-alanine mutations fails to support NADPH oxidase activity in intact cells, suggesting that the phosphorylation of specific serines on p47PHOX is required for the activation of the oxidase. Earlier studies with both intact cells and a kinase-dependent, cell-free system have suggested that protein kinase C can phosphorylate those serines of p47PHOX whose phosphorylation is necessary for its activity. Work with inhibitors suggested that a phosphatidylinositol 3-kinase-dependent pathway also can activate the oxidase. Phosphorylation of p47PHOX by Akt (protein kinase B), whose activation depends on phosphatidylinositol 3-kinase, could be the final step in such a pathway. We now find that Akt activates the oxidase in vitro by phosphorylating serines S304 and S328 of p47PHOX. These results suggest that Akt could participate in the activation of the leukocyte NADPH oxidase. PMID:12704229

  9. Testosterone and Voluntary Exercise, Alone or Together Increase Cardiac Activation of AKT and ERK1/2 in Diabetic Rats

    PubMed Central

    Chodari, Leila; Mohammadi, Mustafa; Mohaddes, Gisou; Alipour, Mohammad Reza; Ghorbanzade, Vajiheh; Dariushnejad, Hassan; Mohammadi, Shima

    2016-01-01

    Background Impaired angiogenesis in cardiac tissue is a major complication of diabetes. Protein kinase B (AKT) and extracellular signal regulated kinase (ERK) signaling pathways play important role during capillary-like network formation in angiogenesis process. Objectives To determine the effects of testosterone and voluntary exercise on levels of vascularity, phosphorylated Akt (P- AKT) and phosphorylated ERK (P-ERK) in heart tissue of diabetic and castrated diabetic rats. Methods Type I diabetes was induced by i.p injection of 50 mg/kg of streptozotocin in animals. After 42 days of treatment with testosterone (2mg/kg/day) or voluntary exercise alone or in combination, heart tissue samples were collected and used for histological evaluation and determination of P-AKT and P-ERK levels by ELISA method. Results Our results showed that either testosterone or exercise increased capillarity, P-AKT, and P-ERK levels in the heart of diabetic rats. Treatment of diabetic rats with testosterone and exercise had a synergistic effect on capillarity, P-AKT, and P-ERK levels in heart. Furthermore, in the castrated diabetes group, capillarity, P-AKT, and P-ERK levels significantly decreased in the heart, whereas either testosterone treatment or exercise training reversed these effects. Also, simultaneous treatment of castrated diabetic rats with testosterone and exercise had an additive effect on P-AKT and P-ERK levels. Conclusion Our findings suggest that testosterone and exercise alone or together can increase angiogenesis in the heart of diabetic and castrated diabetic rats. The proangiogenesis effects of testosterone and exercise are associated with the enhanced activation of AKT and ERK1/2 in heart tissue.

  10. Protein kinase B/Akt binds and phosphorylates PED/PEA-15, stabilizing its antiapoptotic action.

    PubMed

    Trencia, Alessandra; Perfetti, Anna; Cassese, Angela; Vigliotta, Giovanni; Miele, Claudia; Oriente, Francesco; Santopietro, Stefania; Giacco, Ferdinando; Condorelli, Gerolama; Formisano, Pietro; Beguinot, Francesco

    2003-07-01

    The antiapoptotic protein PED/PEA-15 features an Akt phosphorylation motif upstream from Ser(116). In vitro, recombinant PED/PEA-15 was phosphorylated by Akt with a stoichiometry close to 1. Based on Western blotting with specific phospho-Ser(116) PED/PEA-15 antibodies, Akt phosphorylation of PED/PEA-15 occurred mainly at Ser(116). In addition, a mutant of PED/PEA-15 featuring the substitution of Ser(116)-->Gly (PED(S116-->G)) showed 10-fold-decreased phosphorylation by Akt. In intact 293 cells, Akt also induced phosphorylation of PED/PEA-15 at Ser(116). Based on pull-down and coprecipitation assays, PED/PEA-15 specifically bound Akt, independently of Akt activity. Serum activation of Akt as well as BAD phosphorylation by Akt showed no difference in 293 cells transfected with PED/PEA-15 and in untransfected cells (which express no endogenous PED/PEA-15). However, the antiapoptotic action of PED/PEA-15 was almost twofold reduced in PED(S116-->G) compared to that in PED/PEA-15(WT) cells. PED/PEA-15 stability closely paralleled Akt activation by serum in 293 cells. In these cells, the nonphosphorylatable PED(S116-->G) mutant exhibited a degradation rate threefold greater than that observed with wild-type PED/PEA-15. In the U373MG glioma cells, blocking Akt also reduced PED/PEA-15 levels and induced sensitivity to tumor necrosis factor-related apoptosis-inducing ligand apoptosis. Thus, phosphorylation by Akt regulates the antiapoptotic function of PED/PEA-15 at least in part by controlling the stability of PED/PEA-15. In part, Akt survival signaling may be mediated by PED/PEA-15.

  11. Subunit interface mutants of rabbit muscle aldolase form active dimers.

    PubMed Central

    Beernink, P. T.; Tolan, D. R.

    1994-01-01

    We report the construction of subunit interface mutants of rabbit muscle aldolase A with altered quaternary structure. A mutation has been described that causes nonspherocytic hemolytic anemia and produces a thermolabile aldolase (Kishi H et al., 1987, Proc Natl Acad Sci USA 84:8623-8627). The disease arises from substitution of Gly for Asp-128, a residue at the subunit interface of human aldolase A. To elucidate the role of this residue in the highly homologous rabbit aldolase A, site-directed mutagenesis is used to replace Asp-128 with Gly, Ala, Asn, Gln, or Val. Rabbit aldolase D128G purified from Escherichia coli is found to be similar to human D128G by kinetic analysis, CD, and thermal inactivation assays. All of the mutant rabbit aldolases are similar to the wild-type rabbit enzyme in secondary structure and kinetic properties. In contrast, whereas the wild-type enzyme is a tetramer, chemical crosslinking and gel filtration indicate that a new dimeric species exists for the mutants. In sedimentation velocity experiments, the mutant enzymes as mixtures of dimer and tetramer at 4 degrees C. Sedimentation at 20 degrees C shows that the mutant enzymes are > 99.5% dimeric and, in the presence of substrate, that the dimeric species is active. Differential scanning calorimetry demonstrates that Tm values of the mutant enzymes are decreased by 12 degrees C compared to wild-type enzyme. The results indicate that Asp-128 is important for interface stability and suggest that 1 role of the quaternary structure of aldolase is to provide thermostability. PMID:7833800

  12. Nucleophosmin leukemogenic mutant activates Wnt signaling during zebrafish development

    PubMed Central

    Barbieri, Elisa; Deflorian, Gianluca; Pezzimenti, Federica; Valli, Debora; Saia, Marco; Meani, Natalia

    2016-01-01

    Nucleophosmin (NPM1) is a ubiquitous multifunctional phosphoprotein with both oncogenic and tumor suppressor functions. Mutations of the NPM1 gene are the most frequent genetic alterations in acute myeloid leukemia (AML) and result in the expression of a mutant protein with aberrant cytoplasmic localization, NPMc+. Although NPMc+ causes myeloproliferation and AML in animal models, its mechanism of action remains largely unknown. Here we report that NPMc+ activates canonical Wnt signaling during the early phases of zebrafish development and determines a Wnt-dependent increase in the number of progenitor cells during primitive hematopoiesis. Coherently, the canonical Wnt pathway is active in AML blasts bearing NPMc+ and depletion of the mutant protein in the patient derived OCI-AML3 cell line leads to a decrease in the levels of active β-catenin and of Wnt target genes. Our results reveal a novel function of NPMc+ and provide insight into the molecular pathogenesis of AML bearing NPM1 mutations. PMID:27486814

  13. BCL-3 expression promotes colorectal tumorigenesis through activation of AKT signalling

    PubMed Central

    Urban, Bettina C; Collard, Tracey J; Eagle, Catherine J; Southern, Samantha L; Greenhough, Alexander; Hamdollah-Zadeh, Maryam; Ghosh, Anil; Paraskeva, Christos; Silver, Andrew; Williams, Ann C

    2016-01-01

    Objective Colorectal cancer remains the fourth most common cause of cancer-related mortality worldwide. Here we investigate the role of nuclear factor-κB (NF-κB) co-factor B-cell CLL/lymphoma 3 (BCL-3) in promoting colorectal tumour cell survival. Design Immunohistochemistry was carried out on 47 tumour samples and normal tissue from resection margins. The role of BCL-3/NF-κB complexes on cell growth was studied in vivo and in vitro using an siRNA approach and exogenous BCL-3 expression in colorectal adenoma and carcinoma cells. The question whether BCL-3 activated the AKT/protein kinase B (PKB) pathway in colorectal tumour cells was addressed by western blotting and confocal microscopy, and the ability of 5-aminosalicylic acid (5-ASA) to suppress BCL-3 expression was also investigated. Results We report increased BCL-3 expression in human colorectal cancers and demonstrate that BCL-3 expression promotes tumour cell survival in vitro and tumour growth in mouse xenografts in vivo, dependent on interaction with NF-κB p50 or p52 homodimers. We show that BCL-3 promotes cell survival under conditions relevant to the tumour microenvironment, protecting both colorectal adenoma and carcinoma cells from apoptosis via activation of the AKT survival pathway: AKT activation is mediated via both PI3K and mammalian target of rapamycin (mTOR) pathways, leading to phosphorylation of downstream targets GSK-3β and FoxO1/3a. Treatment with 5-ASA suppressed BCL-3 expression in colorectal cancer cells. Conclusions Our study helps to unravel the mechanism by which BCL-3 is linked to poor prognosis in colorectal cancer; we suggest that targeting BCL-3 activity represents an exciting therapeutic opportunity potentially increasing the sensitivity of tumour cells to conventional therapy. PMID:26033966

  14. Withaferin A inhibits matrix metalloproteinase-9 activity by suppressing the Akt signaling pathway.

    PubMed

    Lee, Dae Hyung; Lim, In-Hye; Sung, Eon-Gi; Kim, Joo-Young; Song, In-Hwan; Park, Yoon Ki; Lee, Tae-Jin

    2013-08-01

    Withaferin A (Wit A), a steroidal lactone isolated from Withania somnifera, exhibits anti-inflammatory, immuno-modulatory and anti-angiogenic properties and antitumor activities. In the present study, we investigated the effects of Wit A on protease-mediated invasiveness of the human metastatic cancer cell lines Caski and SK-Hep1. We found that treatment with Wit A resulted in marked inhibition of the TGF‑β‑induced increase in expression and activity of matrix metalloproteinase (MMP)‑9 in Caski cell line. These effects of Wit A were dose-dependent and showed a correlation with suppression of MMP‑9 mRNA expression levels. Treatment with Wit A resulted in an ~1.6-fold induction of MMP-9 promoter activity, which was also suppressed by treatment with Wit A in Caski cells. We found that treatment with Wit A resulted in inhibition of TGF‑β‑induced phosphorylation of Akt, which was involved in the downregulation of expression of MMP-9 at the protein level. Introduction with constitutively active (CA)‑Akt resulted in a partial increase in the secretion of TGF-β-induced MMP-9 blocked by treatment with Wit A in Caski cells. According to these results, Wit A may inhibit the invasive and migratory abilities of Caski cells through a reduction in MMP-9 expression through suppression of the pAkt signaling pathway. These findings indicate that use of Wit A may be an effective strategy for control of metastasis and invasiveness of tumors.

  15. Association of HOTAIR expression with PI3K/Akt pathway activation in adenocarcinoma of esophagogastric junction

    PubMed Central

    Hui, Zhang

    2016-01-01

    Abstract Objectives Although the Hox transcript antisense intergenic RNA (HOTAIR), a vital long non-coding RNA, is known to participate in the development and progression of a wide range of carcinomas, there are still no published reports regarding its expression in adenocarcinoma of esophagogastric junction (AEJ). The aims of this study were to investigate the expression of HOTAIR, and to analyze the association of its expression with PI3K/Akt pathway activation in clinical AEJ patients. Methods Nine normal epithelial tissues and 41 samples of AEJ were studied comparably. The expression of HOTAIR was detected by real-time PCR according to the different tumor grades in these AEJ tissues. Western blot was performed to reveal the Ser473-phosphorylated Akt and total Akt levels. Results: HOTAIR was found to be up-regulated in higher grades of AEJ tissues compared to low grades and/or noncancerous tissues. pAkt expression was also found to be up-regulated in tissues of higher tumor stages. We found that the overexpression of HOTAIR finely correlated with elevated Ser473-phosphorylated Akt levels. Conclusion: Upregulated HOTAIR was associated with abnormal activated PI3K/Akt pathway, which might serve as a promising therapeutic strategy for AEJ treatment.

  16. A Hot-spot of In-frame Duplications Activates the Oncoprotein AKT1 in Juvenile Granulosa Cell Tumors

    PubMed Central

    Bessière, Laurianne; Todeschini, Anne-Laure; Auguste, Aurélie; Sarnacki, Sabine; Flatters, Delphine; Legois, Bérangère; Sultan, Charles; Kalfa, Nicolas; Galmiche, Louise; Veitia, Reiner A.

    2015-01-01

    Background Ovarian granulosa cell tumors are the most common sex-cord stromal tumors and have juvenile (JGCTs) and adult forms. In a previous study we reported the occurrence of activating somatic mutations of Gαs, which transduces mitogenic signals, in 30% of the analyzed JGCTs. Methods We have searched for alterations in other proteins involved in ovarian mitogenic signaling. We focused on the PI3K–AKT axis. As we found mutations in AKT1, we analyzed the subcellular localization of the mutated proteins and performed functional explorations using Western-blot and luciferase assays. Findings We detected in-frame duplications affecting the pleckstrin-homology domain of AKT1 in more than 60% of the tumors occurring in girls under 15 years of age. The somatic status of the mutations was confirmed when peritumoral DNA was available. The JGCTs without duplications carried point mutations affecting highly conserved residues. Several of these substitutions were somatic lesions. The mutated proteins carrying the duplications had a non-wild-type subcellular distribution, with a marked enrichment at the plasma membrane. This led to a striking degree of AKT1 activation demonstrated by a strong phosphorylation level and by reporter assays. Interpretation Our study incriminates somatic mutations of AKT1 as a major event in the pathogenesis of JGCTs. The existence of AKT inhibitors currently tested in clinical trials opens new perspectives for targeted therapies for these tumors, which are currently treated with standard non-specific chemotherapy protocols. PMID:26137586

  17. Holo-APP and G-protein-mediated signaling are required for sAPPα-induced activation of the Akt survival pathway

    PubMed Central

    Milosch, N; Tanriöver, G; Kundu, A; Rami, A; François, J-C; Baumkötter, F; Weyer, S W; Samanta, A; Jäschke, A; Brod, F; Buchholz, C J; Kins, S; Behl, C; Müller, U C; Kögel, D

    2014-01-01

    Accumulating evidence indicates that loss of physiologic amyloid precursor protein (APP) function leads to reduced neuronal plasticity, diminished synaptic signaling and enhanced susceptibility of neurons to cellular stress during brain aging. Here we investigated the neuroprotective function of the soluble APP ectodomain sAPPα (soluble APPα), which is generated by cleavage of APP by α-secretase along the non-amyloidogenic pathway. Recombinant sAPPα protected primary hippocampal neurons and SH-SY5Y neuroblastoma cells from cell death induced by trophic factor deprivation. We show that this protective effect is abrogated in neurons from APP-knockout animals and APP-depleted SH-SY5Y cells, but not in APP-like protein 1- and 2- (APLP1 and APLP2) depleted cells, indicating that expression of membrane-bound holo-APP is required for sAPPα-dependent neuroprotection. Trophic factor deprivation diminished the activity of the Akt survival pathway. Strikingly, both recombinant sAPPα and the APP-E1 domain were able to stimulate Akt activity in wild-type (wt) fibroblasts, SH-SY5Y cells and neurons, but failed to rescue in APP-deficient neurons or fibroblasts. The ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) inhibitor GI254023X exacerbated neuron death in organotypic (hippocampal) slice cultures of wt mice subjected to trophic factor and glucose deprivation. This cell death-enhancing effect of GI254023X could be completely rescued by applying exogenous sAPPα. Interestingly, sAPPα-dependent Akt induction was unaffected in neurons of APP-ΔCT15 mice that lack the C-terminal YENPTY motif of the APP intracellular region. In contrast, sAPPα-dependent rescue of Akt activation was completely abolished in APP mutant cells lacking the G-protein interaction motif located in the APP C-terminus and by blocking G-protein-dependent signaling with pertussis toxin. Collectively, our data provide new mechanistic insights into the physiologic role of APP in

  18. Holo-APP and G-protein-mediated signaling are required for sAPPα-induced activation of the Akt survival pathway.

    PubMed

    Milosch, N; Tanriöver, G; Kundu, A; Rami, A; François, J-C; Baumkötter, F; Weyer, S W; Samanta, A; Jäschke, A; Brod, F; Buchholz, C J; Kins, S; Behl, C; Müller, U C; Kögel, D

    2014-08-28

    Accumulating evidence indicates that loss of physiologic amyloid precursor protein (APP) function leads to reduced neuronal plasticity, diminished synaptic signaling and enhanced susceptibility of neurons to cellular stress during brain aging. Here we investigated the neuroprotective function of the soluble APP ectodomain sAPPα (soluble APPα), which is generated by cleavage of APP by α-secretase along the non-amyloidogenic pathway. Recombinant sAPPα protected primary hippocampal neurons and SH-SY5Y neuroblastoma cells from cell death induced by trophic factor deprivation. We show that this protective effect is abrogated in neurons from APP-knockout animals and APP-depleted SH-SY5Y cells, but not in APP-like protein 1- and 2- (APLP1 and APLP2) depleted cells, indicating that expression of membrane-bound holo-APP is required for sAPPα-dependent neuroprotection. Trophic factor deprivation diminished the activity of the Akt survival pathway. Strikingly, both recombinant sAPPα and the APP-E1 domain were able to stimulate Akt activity in wild-type (wt) fibroblasts, SH-SY5Y cells and neurons, but failed to rescue in APP-deficient neurons or fibroblasts. The ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) inhibitor GI254023X exacerbated neuron death in organotypic (hippocampal) slice cultures of wt mice subjected to trophic factor and glucose deprivation. This cell death-enhancing effect of GI254023X could be completely rescued by applying exogenous sAPPα. Interestingly, sAPPα-dependent Akt induction was unaffected in neurons of APP-ΔCT15 mice that lack the C-terminal YENPTY motif of the APP intracellular region. In contrast, sAPPα-dependent rescue of Akt activation was completely abolished in APP mutant cells lacking the G-protein interaction motif located in the APP C-terminus and by blocking G-protein-dependent signaling with pertussis toxin. Collectively, our data provide new mechanistic insights into the physiologic role of APP in

  19. Insulator dysfunction and oncogene activation in IDH mutant gliomas.

    PubMed

    Flavahan, William A; Drier, Yotam; Liau, Brian B; Gillespie, Shawn M; Venteicher, Andrew S; Stemmer-Rachamimov, Anat O; Suvà, Mario L; Bernstein, Bradley E

    2016-01-07

    Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas. Mutant IDH protein produces a new onco-metabolite, 2-hydroxyglutarate, which interferes with iron-dependent hydroxylases, including the TET family of 5'-methylcytosine hydroxylases. TET enzymes catalyse a key step in the removal of DNA methylation. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP), although the functional importance of this altered epigenetic state remains unclear. Here we show that human IDH mutant gliomas exhibit hypermethylation at cohesin and CCCTC-binding factor (CTCF)-binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to interact aberrantly with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with a demethylating agent partially restores insulator function and downregulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wild-type gliomaspheres upregulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression.

  20. Abnormal grooming activity in Dab1(scm) (scrambler) mutant mice.

    PubMed

    Strazielle, C; Lefevre, A; Jacquelin, C; Lalonde, R

    2012-07-15

    Dab1(scm) mutant mice, characterized by cell ectopias and degeneration in cerebellum, hippocampus, and neocortex, were compared to non-ataxic controls for different facets of grooming caused by brief water immersions, as well as some non-grooming behaviors. Dab1(scm) mutants were strongly affected in their quantitative functional parameters, exhibiting higher starting latencies before grooming relative to non-ataxic littermates of the A/A strain, fewer grooming bouts, and grooming components of shorter duration, with an unequal regional distribution targeting almost totally the rostral part (head washing and forelimb licking) of the animal. Only bouts of a single grooming element were preserved. The cephalocaudal order of grooming elements appeared less disorganized, mutant and control mice initiating the grooming with head washing and forelimb licking prior to licking posterior parts. However, mutants differed from controls in that all their bouts were incomplete but uninterrupted, although intergroup difference for percentage of the incorrect transitions was not significant. In contrast to grooming, Dab1(scm) mice ambulated for a longer time. During walking episodes, they exhibited more body scratching than controls, possibly to compensate for the lack of licking different body parts. In conjunction with studies with other ataxic mice, these results indicate that the cerebellar cortex affects grooming activity and is consequently involved in executing various components, but not in its sequential organization, which requires other brain regions such as cerebral cortices or basal ganglia.

  1. Targeting the Akt/mTOR pathway in Brca1-deficient cancers.

    PubMed

    Xiang, T; Jia, Y; Sherris, D; Li, S; Wang, H; Lu, D; Yang, Q

    2011-05-26

    The breast cancer susceptibility gene 1 (Brca1) has a key role in both hereditary and sporadic mammary tumorigenesis. However, the reasons why Brca1-deficiency leads to the development of cancer are not clearly understood. Activation of Akt kinase is one of the most common molecular alterations associated with human malignancy. Increased Akt kinase activity has been reported in most breast cancers. We previously found that downregulation of Brca1 expression or mutations of the Brca1 gene activate the Akt oncogenic pathway. To further investigate the role of Brca1/Akt in tumorigenesis, we analyzed Brca1/Akt expression in human breast cancer samples and found that reduced expression of Brca1 was highly correlated with increased phosphorylation of Akt. Consistent with the clinical data, knockdown of Akt1 by short-hairpin RNA inhibited cellular proliferation of Brca1 mutant cells. Importantly, depletion of Akt1 significantly reduced tumor formation induced by Brca1-deficiency in mice. The third generation inhibitor of mammalian target of rapamycin (mTOR), Palomid 529, significantly suppressed Brca1-deficient tumor growth in mice through inhibition of both Akt and mTOR signaling. Our results indicate that activation of Akt is involved in Brca1-deficiency mediated tumorigenesis and that the mTOR pathway can be used as a novel target for treatment of Brca1-deficient cancers.

  2. Targeting the Akt/mTOR pathway in Brca1-deficient cancers

    PubMed Central

    Xiang, T; Jia, Y; Sherris, D; Li, S; Wang, H; Lu, D; Yang, Q

    2011-01-01

    The breast cancer susceptibility gene 1 (Brca1) has a key role in both hereditary and sporadic mammary tumorigenesis. However, the reasons why Brca1-deficiency leads to the development of cancer are not clearly understood. Activation of Akt kinase is one of the most common molecular alterations associated with human malignancy. Increased Akt kinase activity has been reported in most breast cancers. We previously found that downregulation of Brca1 expression or mutations of the Brca1 gene activate the Akt oncogenic pathway. To further investigate the role of Brca1/Akt in tumorigenesis, we analyzed Brca1/Akt expression in human breast cancer samples and found that reduced expression of Brca1 was highly correlated with increased phosphorylation of Akt. Consistent with the clinical data, knockdown of Akt1 by short-hairpin RNA inhibited cellular proliferation of Brca1 mutant cells. Importantly, depletion of Akt1 significantly reduced tumor formation induced by Brca1-deficiency in mice. The third generation inhibitor of mammalian target of rapamycin (mTOR), Palomid 529, significantly suppressed Brca1-deficient tumor growth in mice through inhibition of both Akt and mTOR signaling. Our results indicate that activation of Akt is involved in Brca1-deficiency mediated tumorigenesis and that the mTOR pathway can be used as a novel target for treatment of Brca1-deficient cancers. PMID:21242970

  3. Heregulin-dependent activation of phosphoinositide 3-kinase and Akt via the ErbB2/ErbB3 co-receptor.

    PubMed

    Hellyer, N J; Kim, M S; Koland, J G

    2001-11-09

    The ErbB2/ErbB3 heregulin co-receptor has been shown to couple to phosphoinositide (PI) 3-kinase in a heregulin-dependent manner. The recruitment and activation of PI 3-kinase by this co-receptor is presumed to occur via its interaction with phosphorylated Tyr-Xaa-Xaa-Met (YXXM) motifs occurring in the ErbB3 C terminus. In this study, mutant ErbB3 receptor proteins expressed in COS7 cells were used to investigate PI 3-kinase-dependent signaling pathways activated by the ErbB2/ErbB3 co-receptor. We observed that a mutant ErbB3 protein with each of its six YXXM motifs containing a Tyr --> Phe substitution was unable to bind either the p85 regulatory or p110 catalytic subunit of PI 3-kinase. However, restoration of a single YXXM motif was sufficient to mediate association with the PI 3-kinase holoenzyme, although at a lower level than wild-type ErbB3. When ErbB3 YXXM motifs were restored in pairs, evidence for cooperativity between two, those incorporating Tyr-1273 and Tyr-1286, was observed. Interestingly, we have shown that an apparent association of PI 3-kinase activity with ErbB2/Neu was due to the residual presence of ErbB3 in ErbB2 immunoprecipitates. The necessity of ErbB3 association with PI 3-kinase for downstream signaling to the effector kinase Akt was also investigated. Here, the heregulin-dependent translocation of Akt to the plasma membrane and its subsequent activation was observed in intact NIH-3T3 fibroblasts. Recruitment of PI 3-kinase to ErbB3 was required for both activities, and it appeared that ErbB2 activation alone was not sufficient to activate PI 3-kinase signaling in these cells.

  4. Real-time imaging nuclear translocation of Akt1 in HCC cells

    SciTech Connect

    Zhu, Li; Li, Jinjun; He, Xianghuo

    2007-05-18

    Akt is one of the critical mediators in cellular signaling, and overactivation of Akt related pathway frequently occurs in hepatocellular carcinoma (HCC). In this study, we presented that Akt was upregulated in HCC cell lines, and its active phosphorylated form was mainly located in the nucleus. Employing the laser confocal techniques for imaging intracellular protein dynamics, we monitored the transnuclear movement of GFP-tagged wild-type Akt1 (Akt1-WT-GFP) and its inactive mutant (Akt1-T308A/S473A-GFP) in live SMMC-7721 HCC cells, and both of fusion proteins were found to distribute over the cytoplasm and nucleus. Moreover, it was found that platelet derived growth factor (PDGF) was able to accelerate the nuclear translocation of wild-type Akt1 in HCC cells but failed to speed up the motion of the mutant. It was demonstrated that activation of phosphatidylinositol 3-kinase (PI3K) and Akt1 facilitated the nuclear translocation of Akt1, but the phosphorylation at threonine 308 and serine 473 was not prerequisite.

  5. Bamboo leaf extract ameliorates diabetic nephropathy through activating the AKT signaling pathway in rats.

    PubMed

    Ying, Changjiang; Mao, Yizhen; Chen, Lei; Wang, Shanshan; Ling, Hongwei; Li, Wei; Zhou, Xiaoyan

    2017-03-27

    Diabetic nephropathy (DN) is one of the most severe diabetic complication and it is becoming become a worldwide epidemic, accounting for approximately one-third of all case of end-stage renal disease. However, the underlying mechanism and strategy to alleviate renal injury remain unclear. In the present study, we assessed the protective effect of bamboo leaf extract on the DN, and investigated the underlying mechanism by which bamboo leaf extract ameliorating DN. Diabetic rats were induced by 4 weeks high sugar and high fat diet, and then injected a single dose of STZ (35mg/kg) into abdominal cavity. Different dose of bamboo extract (50mg/kg, 100mg/kg and 200mg/kg) were orally administered every day for a period of 12 weeks. Body weight, blood glucose, glycosylated hemoglobin A1c (HbAlc), blood urea nitrogen (BUN), serum creatinine (Scr), and 24-hour urinary protein (24 h-UP) were assessed. Total superoxide dismutase (T-SOD) activity and MDA (methane dicarboxylic aldehyde, MDA) level were tested by assay kit. Microstructural changes were observed by hematoxylin-eosin (HE) staining and electron microscopy. Expression of phosphorylated ser/thr protein kinase (P-AKT), phosphorylated glycogen synthase kinase-3 beta (P-GSK-3β), B cell lymphoma/leukemia 2-associated X protein (BAX) and cleaved-cysteinyl aspartate-specific proteinase-3 (Cleaved Caspase-3) were measured by Western-Blotting (WB). Results showed that diabetic rats had weight loss, high blood glucose, HbAlc, BUN, Scr and 24-UP and T-SOD activity were increased and MDA level was decreased in diabetic rats. Moreover, hyperglycemia could injury renal tissue ultrastructure, inhibit P-AKT level and increase P-GSK-3β, BAX and Cleaved Caspase-3 levels in rats. However, bamboo leaf extract treatment could reduce body weight loss, BUN, Scr, 24 h-UP and MDA level, improve T-SOD activity and alleviate renal injury in diabetic rats. Furthermore, bamboo leaf extract increased P-AKT level, decreased P-GSK-3β, BAX and

  6. Vasopressin activates Akt/mTOR pathway in smooth muscle cells cultured in high glucose concentration

    SciTech Connect

    Montes, Daniela K.; Brenet, Marianne; Muñoz, Vanessa C.; Burgos, Patricia V.; Villanueva, Carolina I.; Figueroa, Carlos D.; González, Carlos B.

    2013-11-29

    Highlights: •AVP induces mTOR phosphorylation in A-10 cells cultured in high glucose concentration. •The mTOR phosphorylation is mediated by the PI3K/Akt pathway activation. •The AVP-induced mTOR phosphorylation inhibited autophagy and stimulated cell proliferation. -- Abstract: Mammalian target of rapamycin (mTOR) complex is a key regulator of autophagy, cell growth and proliferation. Here, we studied the effects of arginine vasopressin (AVP) on mTOR activation in vascular smooth muscle cells cultured in high glucose concentration. AVP induced the mTOR phosphorylation in A-10 cells grown in high glucose, in contrast to cells cultured in normal glucose; wherein, only basal phosphorylation was observed. The AVP-induced mTOR phosphorylation was inhibited by a PI3K inhibitor. Moreover, the AVP-induced mTOR activation inhibited autophagy and increased thymidine incorporation in cells grown in high glucose. This increase was abolished by rapamycin which inhibits the mTORC1 complex formation. Our results suggest that AVP stimulates mTOR phosphorylation by activating the PI3K/Akt signaling pathway and, subsequently, inhibits autophagy and raises cell proliferation in A-10 cells maintained in high glucose concentration.

  7. OSU-T315: a novel targeted therapeutic that antagonizes AKT membrane localization and activation of chronic lymphocytic leukemia cells

    PubMed Central

    Liu, Ta-Ming; Ling, Yonghua; Woyach, Jennifer A.; Beckwith, Kyle; Yeh, Yuh-Ying; Hertlein, Erin; Zhang, Xiaoli; Lehman, Amy; Awan, Farrukh; Jones, Jeffrey A.; Andritsos, Leslie A.; Maddocks, Kami; MacMurray, Jessica; Salunke, Santosh B.; Chen, Ching-Shih; Phelps, Mitch A.; Byrd, John C.

    2015-01-01

    Aberrant regulation of endogenous survival pathways plays a major role in progression of chronic lymphocytic leukemia (CLL). Signaling via conjugation of surface receptors within the tumor environmental niche activates survival and proliferation pathways in CLL. Of these, the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway appears to be pivotal to support CLL pathogenesis, and pharmacologic inhibitors targeting this axis have shown clinical activity. Here we investigate OSU-T315, a compound that disrupts the PI3K/AKT pathway in a novel manner. Dose-dependent selective cytotoxicity by OSU-T315 is noted in both CLL-derived cell lines and primary CLL cells relative to normal lymphocytes. In contrast to the highly successful Bruton's tyrosine kinase and PI3K inhibitors that inhibit B-cell receptor (BCR) signaling pathway at proximal kinases, OSU-T315 directly abrogates AKT activation by preventing translocation of AKT into lipid rafts without altering the activation of receptor-associated kinases. Through this mechanism, the agent triggers caspase-dependent apoptosis in CLL by suppressing BCR, CD49d, CD40, and Toll-like receptor 9-mediated AKT activation in an integrin-linked kinase-independent manner. In vivo, OSU-T315 attains pharmacologically active drug levels and significantly prolongs survival in the TCL1 mouse model. Together, our findings indicate a novel mechanism of action of OSU-T315 with potential therapeutic application in CLL. PMID:25293770

  8. OSU-T315: a novel targeted therapeutic that antagonizes AKT membrane localization and activation of chronic lymphocytic leukemia cells.

    PubMed

    Liu, Ta-Ming; Ling, Yonghua; Woyach, Jennifer A; Beckwith, Kyle; Yeh, Yuh-Ying; Hertlein, Erin; Zhang, Xiaoli; Lehman, Amy; Awan, Farrukh; Jones, Jeffrey A; Andritsos, Leslie A; Maddocks, Kami; MacMurray, Jessica; Salunke, Santosh B; Chen, Ching-Shih; Phelps, Mitch A; Byrd, John C; Johnson, Amy J

    2015-01-08

    Aberrant regulation of endogenous survival pathways plays a major role in progression of chronic lymphocytic leukemia (CLL). Signaling via conjugation of surface receptors within the tumor environmental niche activates survival and proliferation pathways in CLL. Of these, the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway appears to be pivotal to support CLL pathogenesis, and pharmacologic inhibitors targeting this axis have shown clinical activity. Here we investigate OSU-T315, a compound that disrupts the PI3K/AKT pathway in a novel manner. Dose-dependent selective cytotoxicity by OSU-T315 is noted in both CLL-derived cell lines and primary CLL cells relative to normal lymphocytes. In contrast to the highly successful Bruton's tyrosine kinase and PI3K inhibitors that inhibit B-cell receptor (BCR) signaling pathway at proximal kinases, OSU-T315 directly abrogates AKT activation by preventing translocation of AKT into lipid rafts without altering the activation of receptor-associated kinases. Through this mechanism, the agent triggers caspase-dependent apoptosis in CLL by suppressing BCR, CD49d, CD40, and Toll-like receptor 9-mediated AKT activation in an integrin-linked kinase-independent manner. In vivo, OSU-T315 attains pharmacologically active drug levels and significantly prolongs survival in the TCL1 mouse model. Together, our findings indicate a novel mechanism of action of OSU-T315 with potential therapeutic application in CLL.

  9. Novel mutants of NAB corepressors enhance activation by Egr transactivators.

    PubMed Central

    Svaren, J; Sevetson, B R; Golda, T; Stanton, J J; Swirnoff, A H; Milbrandt, J

    1998-01-01

    The NGFI-A binding corepressors NAB1 and NAB2 interact with a conserved domain (R1 domain) within the Egr1/NGFI-A and Egr2/Krox20 transactivators, and repress the transcription of Egr target promoters. Using a novel adaptation of the yeast two-hybrid screen, we have identified several point mutations in NAB corepressors that interfere with their ability to bind to the Egr1 R1 domain. Surprisingly, NAB proteins bearing some of these mutations increased Egr1 activity dramatically. The mechanism underlying the unexpected behavior of these mutants was elucidated by the discovery that NAB conserved domain 1 (NCD1) not only binds to Egr proteins but also mediates multimerization of NAB molecules. The activating mutants exert a dominant negative effect on NAB repression by multimerizing with native NAB proteins and preventing binding of endogenous NAB proteins with Egr transactivators. To examine NAB repression of a native Egr target gene, we show that NAB2 represses Egr2/Krox20-mediated activation of the bFGF/FGF-2 promoter, and that repression is reversed by coexpression of dominant negative NAB2. Because of their specific ability to alleviate NAB repression of Egr target genes, the dominant negative NAB mutants will be useful in elucidating the mechanism and function of NAB corepressors. PMID:9774344

  10. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation

    PubMed Central

    Covarrubias, Anthony J; Aksoylar, Halil Ibrahim; Yu, Jiujiu; Snyder, Nathaniel W; Worth, Andrew J; Iyer, Shankar S; Wang, Jiawei; Ben-Sahra, Issam; Byles, Vanessa; Polynne-Stapornkul, Tiffany; Espinosa, Erika C; Lamming, Dudley; Manning, Brendan D; Zhang, Yijing; Blair, Ian A; Horng, Tiffany

    2016-01-01

    Macrophage activation/polarization to distinct functional states is critically supported by metabolic shifts. How polarizing signals coordinate metabolic and functional reprogramming, and the potential implications for control of macrophage activation, remains poorly understood. Here we show that IL-4 signaling co-opts the Akt-mTORC1 pathway to regulate Acly, a key enzyme in Ac-CoA synthesis, leading to increased histone acetylation and M2 gene induction. Only a subset of M2 genes is controlled in this way, including those regulating cellular proliferation and chemokine production. Moreover, metabolic signals impinge on the Akt-mTORC1 axis for such control of M2 activation. We propose that Akt-mTORC1 signaling calibrates metabolic state to energetically demanding aspects of M2 activation, which may define a new role for metabolism in supporting macrophage activation. DOI: http://dx.doi.org/10.7554/eLife.11612.001 PMID:26894960

  11. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation.

    PubMed

    Covarrubias, Anthony J; Aksoylar, Halil Ibrahim; Yu, Jiujiu; Snyder, Nathaniel W; Worth, Andrew J; Iyer, Shankar S; Wang, Jiawei; Ben-Sahra, Issam; Byles, Vanessa; Polynne-Stapornkul, Tiffany; Espinosa, Erika C; Lamming, Dudley; Manning, Brendan D; Zhang, Yijing; Blair, Ian A; Horng, Tiffany

    2016-02-19

    Macrophage activation/polarization to distinct functional states is critically supported by metabolic shifts. How polarizing signals coordinate metabolic and functional reprogramming, and the potential implications for control of macrophage activation, remains poorly understood. Here we show that IL-4 signaling co-opts the Akt-mTORC1 pathway to regulate Acly, a key enzyme in Ac-CoA synthesis, leading to increased histone acetylation and M2 gene induction. Only a subset of M2 genes is controlled in this way, including those regulating cellular proliferation and chemokine production. Moreover, metabolic signals impinge on the Akt-mTORC1 axis for such control of M2 activation. We propose that Akt-mTORC1 signaling calibrates metabolic state to energetically demanding aspects of M2 activation, which may define a new role for metabolism in supporting macrophage activation.

  12. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation.

    PubMed Central

    King, W G; Mattaliano, M D; Chan, T O; Tsichlis, P N; Brugge, J S

    1997-01-01

    Cell attachment to fibronectin stimulates the integrin-dependent interaction of p85-associated phosphatidylinositol (PI) 3-kinase with integrin-dependent focal adhesion kinase (FAK) as well as activation of the Ras/mitogen-activated protein (MAP) kinase pathway. However, it is not known if this PI 3-kinase-FAK interaction increases the synthesis of the 3-phosphorylated phosphoinositides (3-PPIs) or what role, if any, is played by activated PI 3-kinase in integrin signaling. We demonstrate here the integrin-dependent accumulation of the PI 3-kinase products, PI 3,4-bisphosphate [PI(3,4)P2] and PI(3,4,5)P3, as well as activation of AKT kinase, a serine/threonine kinase that can be stimulated by binding of PI(3,4)P2. The PI 3-kinase inhibitors wortmannin and LY294002 significantly decreased the integrin-induced accumulation of the 3-PPIs and activation of AKT kinase, without having significant effects on the levels of PI(4,5)P2 or tyrosine phosphorylation of paxillin. These inhibitors also reduced cell adhesion/spreading onto fibronectin but had no effect on attachment to polylysine. Interestingly, integrin-mediated Erk-2, Mek-1, and Raf-1 activation, but not Ras-GTP loading, was inhibited at least 80% by wortmannin and LY294002. In support of the pharmacologic results, fibronectin activation of Erk-2 and AKT kinases was completely inhibited by overexpression of a dominant interfering p85 subunit of PI 3-kinase. We conclude that integrin-mediated adhesion to fibronectin results in the accumulation of the PI 3-kinase products PI(3,4)P2 and PI(3,4,5)P3 as well as the PI 3-kinase-dependent activation of the kinases Raf-1, Mek-1, Erk-2, and AKT and that PI 3-kinase may function upstream of Raf-1 but downstream of Ras in integrin activation of Erk-2 MAP and AKT kinases. PMID:9234699

  13. TGF-{beta}2 inhibits AKT activation and FGF-2-induced corneal endothelial cell proliferation

    SciTech Connect

    Lu Jiawei; Lu Zhenyu; Reinach, Peter

    2006-11-01

    The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-{beta}2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-{beta}2 suppresses the mitogenic response to FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-{beta}2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-{beta}2 and FGF-2 oppositely affect BCE cell proliferation and TGF-{beta}2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-{beta}2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-{beta}2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-{beta}2-induced suppression of the PI3-kinase/AKT signaling pathway.

  14. Oxidative stress induces proliferation of colorectal cancer cells by inhibiting RUNX3 and activating the Akt signaling pathway.

    PubMed

    Kang, Kyoung Ah; Kim, Ki Cheon; Bae, Suk Chul; Hyun, Jin Won

    2013-11-01

    We recently reported that the tumor suppressor Runt-related transcription factor 3 (RUNX3) is silenced in colorectal cancer cells via oxidative stress-induced hypermethylation of its promoter. The resulting downregulation of RUNX3 expression influences cell proliferation. Activation of the Akt signaling pathway is also associated with cell survival and proliferation; however, the effects of oxidative stress on the relationship between RUNX3 and Akt signaling are largely unknown. Therefore, this study investigated the mechanisms involved in cell proliferation caused by oxidative stress-induced silencing of RUNX3. The levels of RUNX3 mRNA and protein were downregulated in response to treatment of the human colorectal cancer cell line SNU-407 with H2O2. Treatment of the cells with H2O2 also upregulated Akt mRNA and protein expression, and inhibited the binding of RUNX3 to the Akt promoter. The inverse correlation between the expression levels of RUNX3 and Akt in H2O2-treated cells was also associated with nuclear translocation of β-catenin and upregulation of cyclin D1 expression, which induced cell proliferation. H2O2 treatment also increased the binding of β-catenin to the cyclin D1 promoter. The results presented here demonstrate that reactive oxygen species silence the tumor suppressor RUNX3, enhance the Akt-mediated signaling pathway, and promote the proliferation of colorectal cancer cells.

  15. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells

    SciTech Connect

    Lorenzato, Annalisa; Biolatti, Marta; Delogu, Giuseppe; Capobianco, Giampiero; Farace, Cristiano; Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco; Madeddu, Roberto; Olivero, Martina; Di Renzo, Maria Flavia

    2013-10-15

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. - highlights: • CSE1L is a key player in nucleocytoplasmic traffic by forming complex with Ran. • AKT phosphorylates RanBP3 that regulates the nucleocytoplasmic gradient of Ran. • The activated oncogenic AKT drives the nuclear accumulation of CSE1L. • CSE1L in the nucleus up-regulates genes conveying pro-oncogenic signals. • CSE1L might contribute to tumor progression driven by the activated oncogenic AKT.

  16. Autophagy and Akt promote survival in glioma.

    PubMed

    Fan, Qi-Wen; Weiss, William A

    2011-05-01

    Signaling through phosphatidylinositol 3-kinase (PtdIns3K)-Akt-mTOR is frequently activated in cancers including glioblastoma multiforme (GBM), where this kinase network regulates survival. It is thus surprising that inhibitors of these pathways induce minimal cell death in glioma. We showed that the dual PtdIns3K-mTOR inhibitor PI-103 induces autophagy in therapy-resistant, PTEN-mutant glioma, with blockade of mTOR complex 1 (mTORC1) and complex 2 (mTORC2) contributing independently to autophagy. Inhibition of autophagosome maturation synergizes with PI-103 to induce apoptosis through the Bax-dependent intrinsic mitochondrial pathway, indicating that PI-103 induces autophagy as a survival pathway in this setting. Not all inhibitors of PtdIns3K-Akt-mTOR signaling synergize with inhibitors of autophagy. The allosteric mTORC1 inhibitor rapamycin fails to induce apoptosis in conjunction with blockade of autophagy, due to feedback-activation of Akt. Apoptosis in the setting of rapamycin therapy requires concurrent inhibition of both autophagy and of PtdIns3K-Akt. Moreover, the clinical PtdIns3K-mTOR inhibitor NVP-BEZ235 cooperates with the clinical lysosomotropic autophagy inhibitor chloroquine to induce apoptosis in PTEN-mutant glioma xenografts in vivo, offering a therapeutic approach translatable to patients.

  17. Obesity Increases Vascular Senescence and Susceptibility to Ischemic Injury Through Chronic Activation of Akt and mTOR

    PubMed Central

    Wang, Chao-Yung; Kim, Hyung-Hwan; Hiroi, Yukio; Sawada, Naoki; Salomone, Salvatore; Benjamin, Laura E.; Walsh, Kenneth; Moskowitz, Michael A.; Liao, James K.

    2009-01-01

    Obesity and age are important risk factors for cardiovascular disease. However, the signaling mechanism linking obesity with age-related vascular senescence is unknown. Here we show that mice fed a high-fat diet show increased vascular senescence and vascular dysfunction compared to mice fed standard chow and are more prone to peripheral and cerebral ischemia. All of these changes involve long-term activation of the protein kinase Akt. In contrast, mice with diet-induced obesity that lack Akt1 are resistant to vascular senescence. Rapamycin treatment of diet-induced obese mice or of transgenic mice with long-term activation of endothelial Akt inhibits activation of mammalian target of rapamycin (mTOR)–rictor complex 2 and Akt, prevents vascular senescence without altering body weight, and reduces the severity of limb necrosis and ischemic stroke. These findings indicate that long-term activation of Akt-mTOR signaling links diet-induced obesity with vascular senescence and cardiovascular disease. PMID:19293429

  18. Endomembrane PtdIns(3,4,5)P3 activates the PI3K-Akt pathway.

    PubMed

    Jethwa, Nirmal; Chung, Gary H C; Lete, Marta G; Alonso, Alicia; Byrne, Richard D; Calleja, Véronique; Larijani, Banafshé

    2015-09-15

    PKB/Akt activation is a common step in tumour growth, proliferation and survival. Akt activation is understood to occur at the plasma membrane of cells in response to growth factor stimulation and local production of the phosphoinositide lipid phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] following phosphoinositide 3-kinase (PI3K) activation. The metabolism and turnover of phosphoinositides is complex--they act as signalling molecules as well as structural components of biological membranes. The localisation and significance of internal pools of PtdIns(3,4,5)P3 has long been speculated upon. By using transfected and recombinant protein probes for PtdIns(3,4,5)P3, we show that PtdIns(3,4,5)P3 is enriched in the nuclear envelope and early endosomes. By exploiting an inducible dimerisation device to recruit Akt to these compartments, we demonstrate that Akt can be locally activated in a PtdIns(3,4,5)P3-dependent manner and has the potential to phosphorylate compartmentally localised downstream substrates. This could be an important mechanism to regulate Akt isoform substrate specificity or influence the timing and duration of PI3K pathway signalling. Defects in phosphoinositide metabolism and localisation are known to contribute to cancer, suggesting that interactions at subcellular compartments might be worthwhile targets for therapeutic intervention.

  19. Acinus integrates AKT1 and subapoptotic caspase activities to regulate basal autophagy.

    PubMed

    Nandi, Nilay; Tyra, Lauren K; Stenesen, Drew; Krämer, Helmut

    2014-10-27

    How cellular stresses up-regulate autophagy is not fully understood. One potential regulator is the Drosophila melanogaster protein Acinus (Acn), which is necessary for autophagy induction and triggers excess autophagy when overexpressed. We show that cell type-specific regulation of Acn depends on proteolysis by the caspase Dcp-1. Basal Dcp-1 activity in developing photoreceptors is sufficient for this cleavage without a need for apoptosis to elevate caspase activity. On the other hand, Acn was stabilized by loss of Dcp-1 function or by the presence of a mutation in Acn that eliminates its conserved caspase cleavage site. Acn stability also was regulated by AKT1-mediated phosphorylation. Flies that expressed stabilized forms of Acn, either the phosphomimetic Acn(S641,731D) or the caspase-resistant Acn(D527A), exhibited enhanced basal autophagy. Physiologically, these flies showed improvements in processes known to be autophagy dependent, including increased starvation resistance, reduced Huntingtin-induced neurodegeneration, and prolonged life span. These data indicate that AKT1 and caspase-dependent regulation of Acn stability adjusts basal autophagy levels.

  20. In vitro and in vivo activity of novel small-molecule inhibitors targeting the pleckstrin homology domain of protein kinase B/AKT.

    PubMed

    Moses, Sylvestor A; Ali, M Ahad; Zuohe, Song; Du-Cuny, Lei; Zhou, Li Li; Lemos, Robert; Ihle, Nathan; Skillman, A Geoffrey; Zhang, Shuxing; Mash, Eugene A; Powis, Garth; Meuillet, Emmanuelle J

    2009-06-15

    The phosphatidylinositol 3-kinase/AKT signaling pathway plays a critical role in activating survival and antiapoptotic pathways within cancer cells. Several studies have shown that this pathway is constitutively activated in many different cancer types. The goal of this study was to discover novel compounds that bind to the pleckstrin homology (PH) domain of AKT, thereby inhibiting AKT activation. Using proprietary docking software, 22 potential PH domain inhibitors were identified. Surface plasmon resonance spectroscopy was used to measure the binding of the compounds to the expressed PH domain of AKT followed by an in vitro activity screen in Panc-1 and MiaPaCa-2 pancreatic cancer cell lines. We identified a novel chemical scaffold in several of the compounds that binds selectively to the PH domain of AKT, inducing a decrease in AKT activation and causing apoptosis at low micromolar concentrations. Structural modifications of the scaffold led to compounds with enhanced inhibitory activity in cells. One compound, 4-dodecyl-N-(1,3,4-thiadiazol-2-yl)benzenesulfonamide, inhibited AKT and its downstream targets in cells as well as in pancreatic cancer cell xenografts in immunocompromised mice; it also exhibited good antitumor activity. In summary, a pharmacophore for PH domain inhibitors targeting AKT function was developed. Computer-aided modeling, synthesis, and testing produced novel AKT PH domain inhibitors that exhibit promising preclinical properties.

  1. Preclinical pharmacology of AZD5363, an inhibitor of AKT: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background.

    PubMed

    Davies, Barry R; Greenwood, Hannah; Dudley, Phillippa; Crafter, Claire; Yu, De-Hua; Zhang, Jingchuan; Li, Jing; Gao, Beirong; Ji, Qunsheng; Maynard, Juliana; Ricketts, Sally-Ann; Cross, Darren; Cosulich, Sabina; Chresta, Christine C; Page, Ken; Yates, James; Lane, Clare; Watson, Rebecca; Luke, Richard; Ogilvie, Donald; Pass, Martin

    2012-04-01

    AKT is a key node in the most frequently deregulated signaling network in human cancer. AZD5363, a novel pyrrolopyrimidine-derived compound, inhibited all AKT isoforms with a potency of 10 nmol/L or less and inhibited phosphorylation of AKT substrates in cells with a potency of approximately 0.3 to 0.8 μmol/L. AZD5363 monotherapy inhibited the proliferation of 41 of 182 solid and hematologic tumor cell lines with a potency of 3 μmol/L or less. Cell lines derived from breast cancers showed the highest frequency of sensitivity. There was a significant relationship between the presence of PIK3CA and/or PTEN mutations and sensitivity to AZD5363 and between RAS mutations and resistance. Oral dosing of AZD5363 to nude mice caused dose- and time-dependent reduction of PRAS40, GSK3β, and S6 phosphorylation in BT474c xenografts (PRAS40 phosphorylation EC(50) ~ 0.1 μmol/L total plasma exposure), reversible increases in blood glucose concentrations, and dose-dependent decreases in 2[18F]fluoro-2-deoxy-D-glucose ((18)F-FDG) uptake in U87-MG xenografts. Chronic oral dosing of AZD5363 caused dose-dependent growth inhibition of xenografts derived from various tumor types, including HER2(+) breast cancer models that are resistant to trastuzumab. AZD5363 also significantly enhanced the antitumor activity of docetaxel, lapatinib, and trastuzumab in breast cancer xenografts. It is concluded that AZD5363 is a potent inhibitor of AKT with pharmacodynamic activity in vivo, has potential to treat a range of solid and hematologic tumors as monotherapy or a combinatorial agent, and has potential for personalized medicine based on the genetic status of PIK3CA, PTEN, and RAS. AZD5363 is currently in phase I clinical trials.

  2. N-methylhemeanthidine chloride, a novel Amaryllidaceae alkaloid, inhibits pancreatic cancer cell proliferation via down-regulating AKT activation

    SciTech Connect

    Guo, Guoli; Yao, Guangmin; Zhan, Guanqun; Hu, Yufeng; Yue, Ming; Cheng, Ling; Liu, Yaping; Ye, Qi; Qing, Guoliang; Zhang, Yonghui; Liu, Hudan

    2014-11-01

    We previously reported the isolation of a novel Amaryllidaceae alkaloid, N-methylhemeanthidine chloride (NMHC), from Zephyranthes candida, which exhibits potent cytotoxicity in a spectrum of tumor cells. However, the mechanism of action remains unclear. Using multiple cell lines derived from human pancreatic cancer, one of the most mortal and refractory human malignancies, we further studied the NMHC-mediated cytotoxicity and found that it induced drastic cytotoxicity in pancreatic cancer cells whereas an insignificant effect on a noncancerous cell line. The NMHC-mediated growth inhibition was more severe than the first-line chemotherapeutic agent gemcitabine, leading to cell cycle arrest, apoptotic death and decreased glycolysis. NMHC exerted its function through down-regulating AKT activation, and the ectopic expression of activated AKT rescued the growth inhibition. Consistently, NMHC injections in a pancreatic cancer xenograft model manifested the anti-tumor effect in vivo. Engrafted tumor cells underwent AKT attenuation and apoptotic death upon treatments. As such, we here demonstrate the AKT inhibition may be one of the mechanisms by which NMHC decreases tumor cell survival rate in vitro and in vivo. Our data thereby suggest that NMHC holds great promise as a potent chemotherapeutic agent against pancreatic cancer and sheds new light on obtaining such agents from natural products toward therapeutic purposes. - Highlights: • N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid. • NMHC exhibits potent anti-neoplastic activity. • NMHC leads to cell cycle arrest, apoptotic death and decreased metabolism. • NMHC down-regulates the AKT signaling pathway.

  3. Di2-ethylhexyl phthalate disrupts thyroid hormone homeostasis through activating the Ras/Akt/TRHr pathway and inducing hepatic enzymes

    PubMed Central

    Ye, Hanfeng; Ha, Mei; Yang, Min; Yue, Ping; Xie, Zhengyuan; Liu, Changjiang

    2017-01-01

    Di(2-ethylhexyl) phthalate (DEHP), as a widespread environmental pollutant and an endocrine disruptor, can disturb the homeostasis of thyroid hormones (THs). In order to elucidate roles of the MAPK and PI3K/Akt pathways and hepatic enzymes in thyroid-disrupting effects of DEHP, Sprague-Dawley rats were dosed with DEHP by gavage for 30 consecutive days; Nthy-ori 3-1 cells were treated with DEHP with NAC, k-Ras siRNA or inhibitors (U0126 and wortmannin). Results showed that DEHP led to histopathologic changes in rat thyroid and liver, such as the decrease in thyroid follicular cavity diameter, hepatocyte edema. Triiodothyronine (T3), thyroxine (T4) and thyrotropin releasing hormone (TRH) were reduced. DEHP caused ROS production, oxidative stress and k-Ras upregulation, thereby activating the ERK and Akt pathways in vivo and in vitro. Moreover, TRH receptor (TRHr) level was elevated after the activation of the Akt pathway and was downregulated after the inhibition of the Akt pathway. However, TRHr was not modulated by the ERK pathway. Additionally, hepatic enzymes, including Ugt1a1, CYP2b1, Sult1e1, and Sult2b1, were significantly induced after DEHP exposure. Taken together, DEHP can perturb TH homeostasis and reduce TH levels. The activated Ras/Akt/TRHr pathway and induced hepatic enzymes play vital roles in thyroid-disrupting effects of DEHP. PMID:28065941

  4. Di2-ethylhexyl phthalate disrupts thyroid hormone homeostasis through activating the Ras/Akt/TRHr pathway and inducing hepatic enzymes.

    PubMed

    Ye, Hanfeng; Ha, Mei; Yang, Min; Yue, Ping; Xie, Zhengyuan; Liu, Changjiang

    2017-01-09

    Di(2-ethylhexyl) phthalate (DEHP), as a widespread environmental pollutant and an endocrine disruptor, can disturb the homeostasis of thyroid hormones (THs). In order to elucidate roles of the MAPK and PI3K/Akt pathways and hepatic enzymes in thyroid-disrupting effects of DEHP, Sprague-Dawley rats were dosed with DEHP by gavage for 30 consecutive days; Nthy-ori 3-1 cells were treated with DEHP with NAC, k-Ras siRNA or inhibitors (U0126 and wortmannin). Results showed that DEHP led to histopathologic changes in rat thyroid and liver, such as the decrease in thyroid follicular cavity diameter, hepatocyte edema. Triiodothyronine (T3), thyroxine (T4) and thyrotropin releasing hormone (TRH) were reduced. DEHP caused ROS production, oxidative stress and k-Ras upregulation, thereby activating the ERK and Akt pathways in vivo and in vitro. Moreover, TRH receptor (TRHr) level was elevated after the activation of the Akt pathway and was downregulated after the inhibition of the Akt pathway. However, TRHr was not modulated by the ERK pathway. Additionally, hepatic enzymes, including Ugt1a1, CYP2b1, Sult1e1, and Sult2b1, were significantly induced after DEHP exposure. Taken together, DEHP can perturb TH homeostasis and reduce TH levels. The activated Ras/Akt/TRHr pathway and induced hepatic enzymes play vital roles in thyroid-disrupting effects of DEHP.

  5. Integrin αIIb-Mediated PI3K/Akt Activation in Platelets

    PubMed Central

    Niu, Haixia; Chen, Xue; Gruppo, Ralph A.; Li, Ding; Wang, Yanhua; Zhang, Lin; Wang, Kemin; Chai, Weiran; Sun, Yueping; Ding, Zhongren; Gartner, T. Kent; Liu, Junling

    2012-01-01

    Integrin αIIbβ3 mediated bidirectional signaling plays a critical role in thrombosis and haemostasis. Signaling mediated by the β3 subunit has been extensively studied, but αIIb mediated signaling has not been characterized. Previously, we reported that platelet granule secretion and TxA2 production induced by αIIb mediated outside-in signaling is negatively regulated by the β3 cytoplasmic domain residues R724KEFAKFEEER734. In this study, we identified part of the signaling pathway utilized by αIIb mediated outside-in signaling. Platelets from humans and gene deficient mice, and genetically modified CHO cells as well as a variety of kinase inhibitors were used for this work. We found that aggregation of TxA2 production and granule secretion by β3Δ724 human platelets initiated by αIIb mediated outside-in signaling was inhibited by the Src family kinase inhibitor PP2 and the PI3K inhibitor wortmannin, respectively, but not by the MAPK inhibitor U0126. Also, PP2 and wortmannin, and the palmitoylated β3 peptide R724KEFAKFEEER734, each inhibited the phosphorylation of Akt residue Ser473 and prevented TxA2 production and storage granule secretion. Similarly, Akt phosphorylation in mouse platelets stimulated by the PAR4 agonist peptide AYPGKF was αIIbβ3-dependent, and blocked by PP2, wortmannin and the palmitoylated peptide p-RKEFAKFEEER. Akt was also phosphorylated in response to mAb D3 plus Fg treatment of CHO cells in suspension expressing αIIbβ3-Δ724 or αIIbβ3E724AERKFERKFE734, but not in cells expressing wild type αIIbβ3. In summary, SFK(s) and PI3K/Akt signaling is utilized by αIIb-mediated outside-in signaling to activate platelets even in the absence of all but 8 membrane proximal residues of the β3 cytoplasmic domain. Our results provide new insight into the signaling pathway used by αIIb-mediated outside-in signaling in platelets. PMID:23082158

  6. Intracellular calcium promotes radioresistance of non-small cell lung cancer A549 cells through activating Akt signaling.

    PubMed

    Wang, Yiling; He, Jiantao; Zhang, Shenghui; Yang, Qingbo

    2017-03-01

    Radiotherapy is a major therapeutic approach in non-small cell lung cancer but is restricted by radioresistance. Although Akt signaling promotes radioresistance in non-small cell lung cancer, it is not well understood how Akt signaling is activated. Since intracellular calcium (Ca(2+)) could activate Akt in A549 cells, we investigated the relationship between intracellular calcium (Ca(2+)) and Akt signaling in radioresistant A549 cells by establishing radioresistant non-small cell lung cancer A549 cells. The radioresistant cell line A549 was generated by dose-gradient irradiation of the parental A549 cells. The cell viability, proliferation, and apoptosis were, respectively, assessed using the cell counting kit-8, EdU labeling, and flow cytometry analysis. The phosphorylation of Akt was evaluated by Western blotting, and the intracellular Ca(2+) concentration was assessed by Fluo 4-AM. The radioresistant A549 cells displayed mesenchymal morphology. After additional irradiation, the radioresistant A549 cells showed decreased cell viability and proliferation but increased apoptosis. Moreover, the intracellular Ca(2+) concentration and the phosphorylation level on the Akt473 site in radioresistant A549 cells were higher than those in original cells, whereas the percentage of apoptosis in radioresistant A549 cells was less. All these results could be reversed by verapamil. In conclusion, our study found that intracellular Ca(2+) could promote radioresistance of non-small cell lung cancer cells through phosphorylating of Akt on the 473 site, which contributes to a better understanding on the non-small cell lung cancer radioresistance, and may provide a new target for radioresistance management.

  7. Leukemia-associated mutations in SHIP1 inhibit its enzymatic activity, interaction with the GM-CSF receptor and Grb2, and its ability to inactivate PI3K/AKT signaling.

    PubMed

    Brauer, Helena; Strauss, Julia; Wegner, Wiebke; Müller-Tidow, Carsten; Horstmann, Martin; Jücker, Manfred

    2012-11-01

    The inositol 5-phosphatase SHIP1 is a negative regulator of the PI3K/AKT pathway, which is constitutively activated in 50-70% of acute myeloid leukemias (AML). Ten different missense mutations in SHIP1 have been described in 3% of AML patients suggesting a functional role of SHIP1 in AML. Here, we report the identification of two new SHIP1 mutations T162P and R225W that were detected in 2 and 1 out of 96 AML patients, respectively. The functional analysis of all 12 AML-associated SHIP1 mutations, one ALL-associated SHIP1 mutation (Q1076X) and a missense SNP (H1168Y) revealed that two mutations i.e. Y643H and P1039S abrogated the ability of SHIP1 to reduce constitutive PI3K/AKT signaling in Jurkat cells. The loss of function of SHIP1 mutant Y643H which is localized in the inositol phosphatase domain was due to a reduction of the specific activity by 84%. Because all other SHIP1 mutants had a normal enzymatic activity, we assumed that these SHIP1 mutants may be functionally impaired due to a loss of interaction with plasma membrane receptors or adapter proteins. In agreement with this model, we found that the SHIP1 mutant F28L located in the FLVR motif of the SH2 domain was incapable of binding tyrosine-phosphorylated proteins including the GM-CSF receptor and that the SHIP1 mutant Q1076X lost its ability to bind to the C-terminal SH3 domain of the adapter protein Grb2. In addition, SHIP1 mutant P1039S which does not reduce PI3K/AKT signaling anymore is located in a PXXP SH3 domain consensus binding motif suggesting that mutation of the conserved proline residue interferes with binding of SHIP1 to a so far unidentified SH3 domain containing protein. In summary, our data indicate that SHIP1 mutations detected in human leukemia patients impair the negative regulatory function of SHIP1 on PI3K/AKT signaling in leukemia cells either directly by reduced enzymatic activity or indirectly by disturbed protein interaction with tyrosine-phosphorylated membrane receptors or

  8. Activation of the phosphatidylinositol 3-kinase/Akt pathway is involved in lipocalin-2-promoted human pulmonary artery smooth muscle cell proliferation.

    PubMed

    Wang, Guoliang; Ma, Ning; Meng, Liukun; Wei, Yingjie; Gui, Jingang

    2015-12-01

    Over-activated PI3K/Akt signaling, a pathway strongly related to cancer survival and proliferation, has been reported recently to be involved in pulmonary artery smooth muscle cell apoptosis and proliferation in pulmonary hypertension (PH). In this study, we observed greatly increased lipocalin-2 (Lcn2) expression accompanied with over-activated PI3K/Akt signaling in a standard rat model of PH induced by monocrotaline. In view of the close relationship between Lcn2 and PI3K/Akt pathway, we hypothesized that the up-regulated Lcn2 might be a trigger of over-activated PI3K/Akt signaling in PH. Our results showed that Lcn2 significantly activated the PI3K/Akt pathway (determined by augmented Akt phosphorylation and up-regulated Mdm2) and significantly promoted proliferation (assessed by Ki67 staining) in cultured human pulmonary artery smooth muscle cells. Furthermore, we demonstrated that inhibition of Akt phosphorylation (LY294002) abrogated the Lcn2-promoted proliferation in cultured human pulmonary artery smooth muscle cells. In conclusion, Lcn2 significantly promoted human pulmonary artery smooth muscle cell proliferation by activating PI3K/Akt pathway. Further study on the role and mechanism of Lcn2 will help explore novel therapeutic strategies based on attenuating over-activated PI3K/Akt signaling in PH.

  9. Dysfunctional MnSOD leads to redox dysregulation and activation of prosurvival AKT signaling in uterine leiomyomas

    PubMed Central

    Vidimar, Vania; Gius, David; Chakravarti, Debabrata; Bulun, Serdar E.; Wei, Jian-Jun; Kim, J. Julie

    2016-01-01

    AKT signaling promotes cell growth and survival and is often dysregulated via multiple mechanisms in different types of cancer, including uterine leiomyomas (ULMs). ULMs are highly prevalent fibrotic tumors that arise from the smooth muscular layer of the uterus, the myometrium (MM). ULMs pose a major public health issue because they can cause severe morbidity and poor pregnancy outcomes. ‬We investigate the mechanisms driving ULM growth and survival via aberrant activation of AKT. We demonstrate that an acetylation-mediated impairment of the manganese superoxide dismutase (MnSOD) activity is prevalent in ULM cells compared to the normal-matched MM from the same patients. This impairment increases the levels of superoxide and oxidative stress, which activate AKT via oxidative inactivation of the phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Redox activation of AKT promotes ULM cell survival under conditions of moderate but persistent oxidative stress that are compatible with ULM’s prooxidative microenvironment. Moreover, because of impaired MnSOD activity, ULM cells are sensitive to high levels of reactive oxygen species (ROS) and superoxide-generating compounds, resulting in decreased ULM cell viability. On the contrary, MM cells with functional MnSOD are more resistant to high levels of oxidants. This study demonstrates a causative role of acetylation-mediated MnSOD dysfunction in activating prosurvival AKT signaling in ULMs. The specific AKT and redox states of ULM cells provide a potential novel therapeutic rationale to selectively target ULM cells because of their defective ROS-scavenging system.‬‬‬‬‬‬‬‬ PMID:27847869

  10. Epigenetic silencing mediated through activated PI3K/AKT signaling in breast cancer.

    PubMed

    Zuo, Tao; Liu, Ta-Ming; Lan, Xun; Weng, Yu-I; Shen, Rulong; Gu, Fei; Huang, Yi-Wen; Liyanarachchi, Sandya; Deatherage, Daniel E; Hsu, Pei-Yin; Taslim, Cenny; Ramaswamy, Bhuvaneswari; Shapiro, Charles L; Lin, Huey-Jen L; Cheng, Alfred S L; Jin, Victor X; Huang, Tim H-M

    2011-03-01

    Trimethylation of histone 3 lysine 27 (H3K27me3) is a critical epigenetic mark for the maintenance of gene silencing. Additional accumulation of DNA methylation in target loci is thought to cooperatively support this epigenetic silencing during tumorigenesis. However, molecular mechanisms underlying the complex interplay between the two marks remain to be explored. Here we show that activation of PI3K/AKT signaling can be a trigger of this epigenetic processing at many downstream target genes. We also find that DNA methylation can be acquired at the same loci in cancer cells, thereby reinforcing permanent repression in those losing the H3K27me3 mark. Because of a link between PI3K/AKT signaling and epigenetic alterations, we conducted epigenetic therapies in conjunction with the signaling-targeted treatment. These combined treatments synergistically relieve gene silencing and suppress cancer cell growth in vitro and in xenografts. The new finding has important implications for improving targeted cancer therapies in the future.

  11. Epigenetic Silencing Mediated Through Activated PI3K/AKT Signaling in Breast Cancer

    PubMed Central

    Zuo, Tao; Liu, Ta-Ming; Lan, Xun; Weng, Yu-I; Shen, Rulong; Gu, Fei; Huang, Yi-Wen; Liyanarachchi, Sandya; Deatherage, Daniel E.; Hsu, Pei-Yin; Taslim, Cenny; Ramaswamy, Bhuvaneswari; Shapiro, Charles L.; Lin, Huey-Jen L.; Cheng, Alfred S.L.; Jin, Victor X.; Huang, Tim H.-M.

    2011-01-01

    Trimethylation of histone 3 lysine 27 (H3K27me3) is a critical epigenetic mark for the maintenance of gene silencing. Additional accumulation of DNA methylation in target loci is thought to cooperatively support this epigenetic silencing during tumorigenesis. However, molecular mechanisms underlying the complex interplay between the two marks remain to be explored. Here we demonstrate that activation of PI3K/AKT signaling can be a trigger of this epigenetic processing at many downstream target genes. We also find that DNA methylation can be acquired at the same loci in cancer cells, thereby reinforcing permanent repression in those losing the H3K27me3 mark. Because of a link between PI3K/AKT signaling and epigenetic alterations, we conducted epigenetic therapies in conjunction with the signaling-targeted treatment. These combined treatments synergistically relieve gene silencing and suppress cancer cell growth in vitro and in xenografts. The new finding has important implications for improving targeted cancer therapies in the future. PMID:21216892

  12. Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma

    SciTech Connect

    Watanabe, Tadashi; Nakamura, Shigeo; Ono, Toshiya; Ui, Sadaharu; Yagi, Syota; Kagawa, Hiroki; Watanabe, Hisami; Ohe, Tomoyuki; Mashino, Tadahiko; Fujimuro, Masahiro

    2014-08-15

    Highlights: • Seven fullerenes were evaluated in terms of their cytotoxic effects on B-lymphomas. • Pyrrolidinium fullerene induced apoptosis of KSHV-infected B-lymphoma PEL cells. • The activation of Akt is essential for PEL cell survival. • Pyrrolidinium fullerene activated caspase-9 by inactivating Akt in PEL cells. • Pyrrolidinium fullerene have potential as novel drugs for the treatment of PEL. - Abstract: Primary effusion lymphoma (PEL) is a subtype of non-Hodgkin’s B-cell lymphoma and is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients. In general, PEL cells are derived from post-germinal center B-cells and are infected with KSHV. To evaluate potential novel anti-tumor compounds against KSHV-associated PEL, seven water-soluble fullerene derivatives were evaluated as potential drug candidates for the treatment of PEL. Herein, we discovered a pyrrolidinium fullerene derivative, 1,1,1′,1′-tetramethyl [60]fullerenodipyrrolidinium diiodide, which induced apoptosis of PEL cells via a novel mechanism, the caspase-9 activation by suppressing the caspase-9 phosphorylation, causing caspase-9 inactivation. Pyrrolidinium fullerene treatment reduced significantly the viability of PEL cells compared with KSHV-uninfected lymphoma cells, and induced the apoptosis of PEL cells by activating caspase-9 via procaspase-9 cleavage. Pyrrolidinium fullerene additionally reduced the Ser473 phosphorylation of Akt and Ser196 of procaspase-9. Ser473-phosphorylated Akt (i.e., activated Akt) phosphorylates Ser196 in procaspase-9, causing inactivation of procaspase-9. We also demonstrated that Akt inhibitors suppressed the proliferation of PEL cells compared with KSHV-uninfected cells. Our data therefore suggest that Akt activation is essential for cell survival in PEL and a pyrrolidinium fullerene derivative induced apoptosis by activating caspase-9 via suppression of Akt in PEL cells. In addition, we evaluated

  13. Modification of Caffeic Acid with Pyrrolidine Enhances Antioxidant Ability by Activating AKT/HO-1 Pathway in Heart

    PubMed Central

    Ku, Hui-Chun; Lee, Shih-Yi; Yang, Kai-Chien; Kuo, Yueh-Hsiung; Su, Ming-Jai

    2016-01-01

    Overproduction of free radicals during ischemia/reperfusion (I/R) injury leads to an interest in using antioxidant therapy. Activating an endogenous antioxidant signaling pathway is more important due to the fact that the free radical scavenging behavior in vitro does not always correlate with a cytoprotection effect in vivo. Caffeic acid (CA), an antioxidant, is a major phenolic constituent in nature. Pyrrolidinyl caffeamide (PLCA), a derivative of CA, was compared with CA for their antioxidant and cytoprotective effects. Our results indicate that CA and PLCA exert the same ability to scavenge DPPH in vitro. In response to myocardial I/R stress, PLCA was shown to attenuate lipid peroxydation and troponin release more than CA. These responses were accompanied with a prominent elevation in AKT and HO-1 expression and a preservation of mnSOD expression and catalase activity. PLCA also improved cell viability and alleviated the intracellular ROS level more than CA in cardiomyocytes exposed to H2O2. When inhibiting the AKT or HO-1 pathways, PLCA lost its ability to recover mnSOD expression and catalase activity to counteract with oxidative stress, suggesting AKT/HO-1 pathway activation by PLCA plays an important role. In addition, inhibition of AKT signaling further abolished HO-1 activity, while inhibition of HO-1 signaling attenuated AKT expression, indicating cross-talk between the AKT and HO-1 pathways. These protective effects may contribute to the cardiac function improvement by PLCA. These findings provide new insight into therapeutic approaches using a modified natural compound against oxidative stress from myocardial injuries. PMID:26845693

  14. Dystrophin glycoprotein complex-associated Gbetagamma subunits activate phosphatidylinositol-3-kinase/Akt signaling in skeletal muscle in a laminin-dependent manner.

    PubMed

    Xiong, Yongmin; Zhou, Yanwen; Jarrett, Harry W

    2009-05-01

    Previously, we showed that laminin-binding to the dystrophin glycoprotein complex (DGC) of skeletal muscle causes a heterotrimeric G-protein (Galphabetagamma) to bind, changing the activation state of the Gsalpha subunit. Others have shown that laminin-binding to the DGC also leads to Akt activation. Gbetagamma, released when Gsalpha is activated, is known to bind phosphatidylinositol-3-kinase (PI3K), which activates Akt in other cells. Here, we investigate whether muscle Akt activation results from Gbetagamma, using immunoprecipitation and immunoblotting, and purified Gbetagamma. In the presence of laminin, PI3K-binding to the DGC increases and Akt becomes phosphorylated and activated (pAkt), and glycogen synthase kinase is phosphorylated. Antibodies, which specifically block laminin-binding to alpha-dystroglycan, prevent PI3K-binding to the DGC. Purified bovine brain Gbetagamma also caused PI3K and Akt activation. These results show that DGC-Gbetagamma is binding PI3K and activating pAkt in a laminin-dependent manner. Mdx mice, which have greatly diminished amounts of DGC proteins, display elevated pAkt signaling and increased expression of integrin beta1 compared to normal muscle. This integrin binds laminin, Gbetagamma, and PI3K. Collectively, these suggest that PI3K is an important target for the Gbetagamma, which normally binds to DGC syntrophin, and activates PI3K/Akt signaling. Disruption of the DGC in mdx mouse is causing dis-regulation of the laminin-DGC-Gbetagamma-PI3K-Akt signaling and is likely to be important to the pathogenesis of muscular dystrophy. Upregulating integrin beta1 expression and activating the PI3K/Akt pathway in muscular dystrophy may partially compensate for the loss of the DGC. The results suggest new therapeutic approaches to muscle disease.

  15. Control of macrophage metabolism and activation by mTOR and Akt signaling

    PubMed Central

    Covarrubias, Anthony J.; Aksoylar, H. Ibrahim; Horng, Tiffany

    2015-01-01

    Macrophages are pleiotropic cells that assume a variety of functions depending on their tissue of residence and tissue state. They maintain homeostasis as well as coordinate responses to stresses such as infection and metabolic challenge. The ability of macrophages to acquire diverse, context-dependent activities requires their activation (or polarization) to distinct functional states. While macrophage activation is well understood at the level of signal transduction and transcriptional regulation, the metabolic underpinnings are poorly understood. Importantly, emerging studies indicate that metabolic shifts play a pivotal role in control of macrophage activation and acquisition of context-dependent effector activities. The signals that drive macrophage activation impinge on metabolic pathways, allowing for coordinate control of macrophage activation and metabolism. Here we discuss how mTOR and Akt, major metabolic regulators and targets of such activation signals, control macrophage metabolism and activation. Dysregulated macrophage activities contribute to many diseases, including infectious, inflammatory, and metabolic diseases and cancer, thus a better understanding of metabolic control of macrophage activation could pave the way to the development of new therapeutic strategies. PMID:26360589

  16. Control of macrophage metabolism and activation by mTOR and Akt signaling.

    PubMed

    Covarrubias, Anthony J; Aksoylar, H Ibrahim; Horng, Tiffany

    2015-08-01

    Macrophages are pleiotropic cells that assume a variety of functions depending on their tissue of residence and tissue state. They maintain homeostasis as well as coordinate responses to stresses such as infection and metabolic challenge. The ability of macrophages to acquire diverse, context-dependent activities requires their activation (or polarization) to distinct functional states. While macrophage activation is well understood at the level of signal transduction and transcriptional regulation, the metabolic underpinnings are poorly understood. Importantly, emerging studies indicate that metabolic shifts play a pivotal role in control of macrophage activation and acquisition of context-dependent effector activities. The signals that drive macrophage activation impinge on metabolic pathways, allowing for coordinate control of macrophage activation and metabolism. Here we discuss how mTOR and Akt, major metabolic regulators and targets of such activation signals, control macrophage metabolism and activation. Dysregulated macrophage activities contribute to many diseases, including infectious, inflammatory, and metabolic diseases and cancer, thus a better understanding of metabolic control of macrophage activation could pave the way to the development of new therapeutic strategies.

  17. Dissecting signalling by individual Akt/PKB isoforms, three steps at once.

    PubMed

    Osorio-Fuentealba, Cesar; Klip, Amira

    2015-09-01

    The serine/threonine kinase Akt/PKB (protein kinase B) is key for mammalian cell growth, survival, metabolism and oncogenic transformation. The diverse level and tissue expression of its three isoforms, Akt1/PKBα, Akt2/PKBβ and Akt3/PKBγ, make it daunting to identify isoform-specific actions in vivo and even in isolated tissues/cells. To date, isoform-specific knockout and knockdown have been the best strategies to dissect their individual overall functions. In a recent article in the Biochemical Journal, Kajno et al. reported a new strategy to study isoform selectivity in cell lines. Individual Akt/PKB isoforms in 3T3-L1 pre-adipocytes are first silenced via shRNA and stable cellular clones lacking one or the other isoform are selected. The stably silenced isoform is then replaced by a mutant engineered to be refractory to inhibition by MK-2206 (Akt1(W80A) or Akt2(W80A)). Akt1(W80A) or Akt2(W80A) are functional and effectively recruited to the plasma membrane in response to insulin. The system affords the opportunity to acutely control the activity of the endogenous non-silenced isoform through timely addition of MK-2206. Using this approach, it is confirmed that Akt1/PKBα is the preferred isoform sustaining adipocyte differentiation, but both Akt1/PKBα and Akt2/PKBβ can indistinctly support insulin-dependent FoxO1 (forkhead box O1) nuclear exclusion. Surprisingly, either isoform can also support insulin-dependent glucose transporter (GLUT) 4 translocation to the membrane, in contrast with the preferential role of Akt2/PKBβ assessed by knockdown studies. The new strategy should allow analysis of the plurality of Akt/PKB functions in other cells and in response to other stimuli. It should also be amenable to high-throughput studies to speed up advances in signal transmission by this pivotal kinase.

  18. Bacillus pumilus Cyanide Dihydratase Mutants with Higher Catalytic Activity

    PubMed Central

    Crum, Mary A.; Sewell, B. Trevor; Benedik, Michael J.

    2016-01-01

    Cyanide degrading nitrilases are noted for their potential to detoxify industrial wastewater contaminated with cyanide. However, such application would benefit from an improvement to characteristics such as their catalytic activity and stability. Following error-prone PCR for random mutagenesis, several cyanide dihydratase mutants from Bacillus pumilus were isolated based on improved catalysis. Four point mutations, K93R, D172N, A202T, and E327K were characterized and their effects on kinetics, thermostability and pH tolerance were studied. K93R and D172N increased the enzyme’s thermostability whereas E327K mutation had a less pronounced effect on stability. The D172N mutation also increased the affinity of the enzyme for its substrate at pH 7.7 but lowered its kcat. However, the A202T mutation, located in the dimerization or the A surface, destabilized the protein and abolished its activity. No significant effect on activity at alkaline pH was observed for any of the purified mutants. These mutations help confirm the model of CynD and are discussed in the context of the protein–protein interfaces leading to the protein quaternary structure. PMID:27570524

  19. Ischemic post-conditioning facilitates brain recovery after stroke by promoting Akt/mTOR activity in nude rats.

    PubMed

    Xie, Rong; Wang, Peng; Ji, Xunming; Zhao, Heng

    2013-12-01

    While pre-conditioning is induced before stroke onset, ischemic post-conditioning (IPostC) is performed after reperfusion, which typically refers to a series of mechanical interruption of blood reperfusion after stroke. IPostC is known to reduce infarction in wild-type animals. We investigated if IPostC protects against brain injury induced by focal ischemia in Tcell-deficient nude rats and to examine its effects on Akt and the mammalian target of rapamycin (mTOR) pathway. Although IPostC reduced infarct size at 2 days post-stroke in wild-type rats, it did not attenuate infarction in nude rats. Despite the unaltered infarct size in nude rats, IPostC increased levels of phosphorylated Akt (p-Akt) and Akt isoforms (Akt1, Akt2, Akt3), and p-mTOR, p-S6K and p-4EBP1 in the mTOR pathway, as well as growth associated Protein 43 (GAP43), both in the peri-infarct area and core, 24 h after stroke. IPostC improved neurological function in nude rats 1-30 days after stroke and reduced the extent of brain damage 30 days after stroke. The mTOR inhibitor rapamycin abolished the long-term protective effects of IPostC. We determined that IPostC did not inhibit acute infarction in nude rats but did provide long-term protection by enhancing Akt and mTOR activity during the acute post-stroke phase. Post-conditioning did not attenuate infarction in nude rats measured 2 days post-stroke, but improved neurological function in nude rats and reduced brain damage 30 days after stroke. It resulted in increased-activities of Akt and mTOR, S6K and p-4EBP1. The mTOR inhibitor rapamycin abolished the long-term protective effects of IPostC.

  20. EGFR inhibition evokes innate drug resistance in lung cancer cells by preventing Akt activity and thus inactivating Ets-1 function.

    PubMed

    Phuchareon, Janyaporn; McCormick, Frank; Eisele, David W; Tetsu, Osamu

    2015-07-21

    Nonsmall cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. About 14% of NSCLCs harbor mutations in epidermal growth factor receptor (EGFR). Despite remarkable progress in treatment with tyrosine kinase inhibitors (TKIs), only 5% of patients achieve tumor reduction >90%. The limited primary responses are attributed partly to drug resistance inherent in the tumor cells before therapy begins. Recent reports showed that activation of receptor tyrosine kinases (RTKs) is an important determinant of this innate drug resistance. In contrast, we demonstrate that EGFR inhibition promotes innate drug resistance despite blockade of RTK activity in NSCLC cells. EGFR TKIs decrease both the mitogen-activated protein kinase (MAPK) and Akt protein kinase pathways for a short time, after which the Ras/MAPK pathway becomes reactivated. Akt inhibition selectively blocks the transcriptional activation of Ets-1, which inhibits its target gene, dual specificity phosphatase 6 (DUSP6), a negative regulator specific for ERK1/2. As a result, ERK1/2 is activated. Furthermore, elevated c-Src stimulates Ras GTP-loading and activates Raf and MEK kinases. These observations suggest that not only ERK1/2 but also Akt activity is essential to maintain Ets-1 in an active state. Therefore, despite high levels of ERK1/2, Ets-1 target genes including DUSP6 and cyclins D1, D3, and E2 remain suppressed by Akt inhibition. Reduction of DUSP6 in combination with elevated c-Src renews activation of the Ras/MAPK pathway, which enhances cell survival by accelerating Bim protein turnover. Thus, EGFR TKIs evoke innate drug resistance by preventing Akt activity and inactivating Ets-1 function in NSCLC cells.

  1. Lysophosphatidic acid induces cell migration through the selective activation of Akt1

    PubMed Central

    Kim, Eun Kyoung; Yun, Sung Ji; Do, Kee Hun; Kim, Min Sung; Cho, Mong; Suh, Dong-Soo; Kim, Chi Dae; Kim, Jae Ho; Birnbaum, Morris J.

    2008-01-01

    Akt plays pivotal roles in many physiological responses including growth, proliferation, survival, metabolism, and migration. In the current studies, we have evaluated the isoform-specific role of akt in lysophosphatidic acid (LPA)-induced cell migration. Ascites from ovarian cancer patients (AOCP) induced mouse embryo fibroblast (MEF) cell migration in a dose-dependent manner. On the other hand, ascites from liver cirrhosis patients (ALCP) did not induce MEF cell migration. AOCP-induced MEF cell migration was completely blocked by pre-treatment of cells with LPA receptor antagonist, Ki16425. Both LPA- and AOCP-induced MEF cell migration was completely attenuated by PI3K inhibitor, LY294002. Furthermore, cells lacking Akt1 displayed defect in LPA-induced cell migration. Re-expression of Akt1 in DKO (Akt1-/-Akt2-/-) cells restored LPA-induced cell migration, whereas re-expression of Akt2 in DKO cells could not restore the LPA-induced cell migration. Finally, Akt1 was selectively phosphorylated by LPA and AOCP stimulation. These results suggest that LPA is a major factor responsible for AOCP-induced cell migration and signaling specificity of Akt1 may dictate LPA-induced cell migration. PMID:18779657

  2. Active-site mutants of beta-lactamase: use of an inactive double mutant to study requirements for catalysis.

    PubMed

    Dalbadie-McFarland, G; Neitzel, J J; Richards, J H

    1986-01-28

    We have studied the catalytic activity and some other properties of mutants of Escherichia coli plasmid-encoded RTEM beta-lactamase (EC 3.5.2.6) with all combinations of serine and threonine residues at the active-site positions 70 and 71. (All natural beta-lactamases have conserved serine-70 and threonine-71.) From the inactive double mutant Ser-70----Thr, Thr-71----Ser [Dalbadie-McFarland, G., Cohen, L. W., Riggs, A. D., Morin, C., Itakura, K., & Richards, J. H. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 6409-6413], an active revertant, Thr-71----Ser (i.e., residue 70 in the double mutant had changed from threonine to the serine conserved at position 70 in the wild-type enzyme), was isolated by an approach that allows identification of active revertants in the absence of a background of wild-type enzyme. This mutant (Thr-71----Ser) has about 15% of the catalytic activity of wild-type beta-lactamase. The other possible mutant involving serine and threonine residues at positions 70 and 71 (Ser-70----Thr) shows no catalytic activity. The primary nucleophiles of a serine or a cysteine residue [Sigal, I. S., Harwood, B. G., & Arentzen, R. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 7157-7160] at position 70 thus seem essential for enzymatic activity. Compared to wild-type enzyme, all three mutants show significantly reduced resistance to proteolysis; for the active revertant (Thr-71----Ser), we have also observed reduced thermal stability and reduced resistance to denaturation by urea.

  3. SG2NA enhances cancer cell survival by stabilizing DJ-1 and thus activating Akt

    SciTech Connect

    Tanti, Goutam Kumar Pandey, Shweta; Goswami, Shyamal K.

    2015-08-07

    SG2NA in association with striatin and zinedin forms a striatin family of WD-40 repeat proteins. This family of proteins functions as scaffold in different signal transduction pathways. They also act as a regulatory subunit of protein phosphatase 2A. We have shown that SG2NA which evolved first in the metazoan evolution among the striatin family members expresses different isoforms generated out of alternative splicing. We have also shown that SG2NA protects cells from oxidative stress by recruiting DJ-1 and Akt to mitochondria and membrane in the post-mitotic neuronal cells. DJ-1 is both cancer and Parkinson's disease related protein. In the present study we have shown that SG2NA protects DJ-1 from proteasomal degradation in cancer cells. Hence, downregulation of SG2NA reduces DJ-1/Akt colocalization in cancer cells resulting in the reduction of anchorage dependent and independent growth. Thus SG2NA enhances cancer cell survival. Reactive oxygen species enhances SG2NA, DJ-1 and Akt trimerization. Removal of the reactive oxygen species by N-acetyl-cysteine thus reduces cancer cell growth. - Highlights: • Reactive oxygen species (ROS) play potential role in cancer cell proliferation. • It enhances the association between DJ-1 and Akt mediated by SG2NA. • In cancer cells SG2NA stabilizes DJ-1 by inhibiting it from proteosomal degradation. • DJ-1 then activates Akt and cancer cells get their property of enhanced proliferation by sustained activation of Akt. • Further study on this field could lead to new target for cancer therapy.

  4. Aspirin enhances the cytotoxic activity of bortezomib against myeloma cells via suppression of Bcl-2, survivin and phosphorylation of AKT

    PubMed Central

    Ding, Jiang-Hua; Yuan, Li-Ya; Chen, Guo-An

    2017-01-01

    In our previous study, it was found that aspirin (ASA) exerted antimyeloma actions in vivo and in vitro. The resistance to bortezomib (BTZ) in multiple myeloma (MM) is partly due to AKT activation and the upregulation of survivin induced by BTZ, which are the targets of ASA in gastric and ovarian cancer, respectively. Thus, the present study investigated the interaction between ASA and BTZ in MM and further clarified the underlying mechanisms. MM1.S and RPMI-8226 cell lines harboring the N- and K-Ras mutations, respectively, were treated with 2.5 mM ASA, 10 nM BTZ and ASA+BTZ for different durations. The proliferation and apoptosis of the cells were determined, and the underlying mechanisms governing the interaction of ASA and BTZ were examined in the MM cells. Treatment with ASA+BTZ caused higher rates of proliferative inhibition and apoptosis in the MM1.S and RPMI-8226 cells in time-dependent manner, compared with either agent alone. A drug interaction assay revealed the additive effect of ASA and BTZ on the myeloma cells. ASA alone inhibited the levels of phosphorylated AKT (p-AKT) and survivin, whereas BTZ alone augmented the levels of p-AKT and survivin. Of note, ASA markedly decreased the upregulation of p-AKT and survivin induced by BTZ. Treatment with ASA+BTZ significantly suppressed the level of Bcl-2, compared with either agent alone. ASA may potentiate the antimyeloma activity of BTZ against myeloma cells via suppression of AKT phosphorylation, survivin and Bcl-2, indicating the potential of ASA+BTZ in treating MM, particularly for cases of BTZ-refractory/relapsed MM. PMID:28356941

  5. Selumetinib Attenuates Skeletal Muscle Wasting in Murine Cachexia Model through ERK Inhibition and AKT Activation.

    PubMed

    Quan-Jun, Yang; Yan, Huo; Yong-Long, Han; Li-Li, Wan; Jie, Li; Jin-Lu, Huang; Jin, Lu; Peng-Guo, Chen; Run, Gan; Cheng, Guo

    2017-02-01

    Cancer cachexia is a multifactorial syndrome affecting the skeletal muscle. Previous clinical trials showed that treatment with MEK inhibitor selumetinib resulted in skeletal muscle anabolism. However, it is conflicting that MAPK/ERK pathway controls the mass of the skeletal muscle. The current study investigated the therapeutic effect and mechanisms of selumetinib in amelioration of cancer cachexia. The classical cancer cachexia model was established via transplantation of CT26 colon adenocarcinoma cells into BALB/c mice. The effect of selumetinib on body weight, tumor growth, skeletal muscle, food intake, serum proinflammatory cytokines, E3 ligases, and MEK/ERK-related pathways was analyzed. Two independent experiments showed that 30 mg/kg/d selumetinib prevented the loss of body weight in murine cachexia mice. Muscle wasting was attenuated and the expression of E3 ligases, MuRF1 and Fbx32, was inhibited following selumetinib treatment of the gastrocnemius muscle. Furthermore, selumetinib efficiently reduced tumor burden without influencing the cancer cell proliferation, cumulative food intake, and serum cytokines. These results indicated that the role of selumetinib in attenuating muscle wasting was independent of cancer burden. Detailed analysis of the mechanism revealed AKT and mTOR were activated, while ERK, FoxO3a, and GSK3β were inhibited in the selumetinib -treated cachexia group. These indicated that selumetinib effectively prevented skeletal muscle wasting in cancer cachexia model through ERK inhibition and AKT activation in gastrocnemius muscle via cross-inhibition. The study not only elucidated the mechanism of MEK/ERK inhibition in skeletal muscle anabolism, but also validated selumetinib therapy as an effective intervention against cancer cachexia. Mol Cancer Ther; 16(2); 334-43. ©2016 AACR.

  6. FAM83B-mediated activation of PI3K/AKT and MAPK signaling cooperates to promote epithelial cell transformation and resistance to targeted therapies

    PubMed Central

    Cipriano, Rocky; Miskimen, Kristy L.S.; Bryson, Benjamin L.; Foy, Chase R.; Bartel, Courtney A.; Jackson, Mark W.

    2013-01-01

    Therapies targeting MAPK and AKT/mTOR signaling are currently being evaluated in clinical trials for several tumor types. However, recent studies suggest that these therapies may be limited due to acquired cancer cell resistance and a small therapeutic index between normal and cancer cells. The identification of novel proteins that are involved in MAPK or AKT/mTOR signaling and differentially expressed between normal and cancer cells will provide mechanistically distinct therapeutic targets with the potential to inhibit these key cancer-associated pathways. We recently identified FAM83B as a novel, previously uncharacterized oncogene capable of hyperactivating MAPK and mTOR signaling and driving the tumorigenicity of immortalized human mammary epithelial cells (HMEC). We show here that elevated FAM83B expression also activates the PI3K/AKT signaling pathway and confers a decreased sensitivity to PI3K, AKT, and mTOR inhibitors. FAM83B co-precipitated with the p85α and p110α subunits of PI3K, as well as AKT, and increased p110α and AKT membrane localization, consistent with elevated PI3K/AKT signaling. In tumor-derived cells harboring elevated FAM83B expression, ablation of FAM83B decreased p110α and AKT membrane localization, suppressed AKT phosphorylation, and diminished proliferation, AIG, and tumorigenicity in vivo. We propose that the level of FAM83B expression may be an important factor to consider when combined therapies targeting MAPK and AKT/mTOR signaling are used. Moreover, the identification of FAM83B as a novel oncogene and its integral involvement in activating PI3K/AKT and MAPK provides a foundation for future therapies aimed at targeting FAM83B in order to suppress the growth of PI3K/AKT- and MAPK-driven cancers. PMID:23676467

  7. Galectin-3 protects keratinocytes from UVB-induced apoptosis by enhancing AKT activation and suppressing ERK activation

    PubMed Central

    Saegusa, Jun; Hsu, Daniel K.; Liu, Wei; Kuwabara, Ichiro; Kuwabara, Yasuko; Yu, Lan; Liu, Fu-Tong

    2009-01-01

    Keratinocytes undergo apoptosis in a variety of physiological and pathological conditions. Galectin-3 is a member of a family of β-galactoside-binding animal lectins expressed abundantly in keratinocytes and other epithelial cells. Here we have studied the regulatory role of galectin-3 in keratinocyte apoptosis by using cells from gene-targeted galectin-3 null (gal3−/−) mice. We showed that galectin-3 mRNA was transiently upregulated in ultraviolet-B (UVB)-irradiated wild-type keratinocytes. We found that gal3−/− keratinocytes were significantly more sensitive to apoptosis induced by UVB as well as various other stimuli, both in vitro and in vivo, than wild-type cells. Moreover, we demonstrated that increased apoptosis in gal3−/− keratinocytes was attributable to higher extracellular signal-regulated kinase (ERK) activation and lower AKT activation after UVB irradiation. We conclude that endogenous galectin-3 is an anti-apoptotic molecule in keratinocytes functioning by suppressing ERK activation and enhancing AKT activation and may play a role in the development of apoptosis-related skin diseases. PMID:18463681

  8. Establishment of a luciferase assay-based screening system: Fumitremorgin C selectively inhibits cellular proliferation of immortalized astrocytes expressing an active form of AKT

    SciTech Connect

    Wang Lei; Sasai, Ken Akagi, Tsuyoshi; Tanaka, Shinya

    2008-08-29

    The AKT pathway is frequently activated in glioblastoma, and as such, inhibitors of this pathway could prove very useful as anti-glioblastoma therapies. Here we established immortalized astrocytes expressing Renilla luciferase as well as those expressing both an active form of AKT and firefly luciferase. Since both luciferase activities represent the numbers of corresponding cell lines, novel inhibitors of the AKT pathway can be identified by treating co-cultures containing the two types of luciferase-expressing cells with individual compounds. Indeed, such a screening system succeeded in identifying fumitremorgin C as an efficient inhibitor of the AKT pathway, which was further confirmed by the ability of fumitremorgin C to selectively inhibit the growth of immortalized astrocytes expressing an active form of AKT. The present study proposes a broadly applicable approach for identifying therapeutic agents that target the pathways and/or molecules responsible for cancer development.

  9. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells

    PubMed Central

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-01-01

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC. PMID:26486080

  10. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells.

    PubMed

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-12-15

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC.

  11. The PI3K/Akt signal hyperactivates Eya1 via the SUMOylation pathway

    PubMed Central

    Sun, Ye; Kaneko, Satoshi; Li, Xiaokun; Li, Xue

    2014-01-01

    Eya1 is a conserved critical regulator of organ-specific stem cells. Ectopic Eya1 activities, however, promote transformation of mammary epithelial cells. Signals that instigate Eya1 oncogenic activities remain to be determined. Here, we show that Akt1 kinase physically interacts with Eya1 and phosphorylates a conserved consensus site of the Akt kinase. PI3K/Akt signaling enhances Eya1 transcription activity, which largely attributes to the phosphorylation-induced reduction of Eya1 SUMOylation. Indeed, SUMOylation inhibits Eya1 transcription activity; and pharmacologic and genetic activation of PI3K/Akt robustly reduces Eya1 SUMOylation. Wild type but not Akt phosphorylation site mutant Eya1 variant rescues the cell migratory phenotype of EYA1-silenced breast cancer cells, highlighting the importance of Eya1 phosphorylation. Furthermore, knockdown EYA1 sensitizes breast cancer cells to the PI3K/Akt1 inhibitor and irradiation treatments. Thus, the PI3K/Akt signal pathway activates Eya1. These findings further suggest that regulation of SUMOylation by PI3K/Akt signaling is likely an important aspect of tumorigenesis. PMID:24954506

  12. AKT/SGK-sensitive phosphorylation of GSK3 in the regulation of L-selectin and perforin expression as well as activation induced cell death of T-lymphocytes

    SciTech Connect

    Bhavsar, Shefalee K.; Merches, Katja; Bobbala, Diwakar; Lang, Florian

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Akt/SGK dependent phosphorylation of GSK3{alpha},{beta} regulates T lymphocytes. Black-Right-Pointing-Pointer T cells from mice expressing Akt/SGK insensitive GSK3{alpha},{beta} (gsk3{sup KI}) release less IL-2. Black-Right-Pointing-Pointer CD4{sup +} cells from gsk3{sup KI} mice express less CD62L. Black-Right-Pointing-Pointer CD8{sup +} cells from gsk3{sup KI} mice are relatively resistant to activation induced cell death. Black-Right-Pointing-Pointer Perforin expression is enhanced in gsk3{sup KI} T cells. -- Abstract: Survival and function of T-lymphocytes critically depends on phosphoinositide (PI) 3 kinase. PI3 kinase signaling includes the PKB/Akt and SGK dependent phosphorylation and thus inhibition of glycogen synthase kinase GSK3{alpha},{beta}. Lithium, a known unspecific GSK3 inhibitor protects against experimental autoimmune encephalomyelitis. The present study explored, whether Akt/SGK-dependent regulation of GSK3 activity is a determinant of T cell survival and function. Experiments were performed in mutant mice in which Akt/SGK-dependent GSK3{alpha},{beta} inhibition was disrupted by replacement of the serine residue in the respective SGK/Akt-phosphorylation consensus sequence by alanine (gsk3{sup KI}). T cells from gsk3{sup KI} mice were compared to T cells from corresponding wild type mice (gsk3{sup WT}). As a result, in gsk3{sup KI} CD4{sup +} cells surface CD62L (L-selectin) was significantly less abundant than in gsk3{sup WT} CD4{sup +} cells. Upon activation in vitro T cells from gsk3{sup KI} mice reacted with enhanced perforin production and reduced activation induced cell death. Cytokine production was rather reduced in gsk3{sup KI} T cells, suggesting that GSK3 induces effector function in CD8{sup +} T cells. In conclusion, PKB/Akt and SGK sensitive phosphorylation of GSK3{alpha},{beta} is a potent regulator of perforin expression and activation induced cell death in T lymphocytes.

  13. Modification of Akt by SUMO conjugation regulates alternative splicing and cell cycle

    PubMed Central

    Risso, Guillermo; Pelisch, Federico; Pozzi, Berta; Mammi, Pablo; Blaustein, Matías; Colman-Lerner, Alejandro; Srebrow, Anabella

    2013-01-01

    Akt/PKB is a key signaling molecule in higher eukaryotes and a crucial protein kinase in human health and disease. Phosphorylation, acetylation, and ubiquitylation have been reported as important regulatory post-translational modifications of this kinase. We describe here that Akt is modified by SUMO conjugation, and show that lysine residues 276 and 301 are the major SUMO attachment sites within this protein. We found that phosphorylation and SUMOylation of Akt appear as independent events. However, decreasing Akt SUMOylation levels severely affects the role of this kinase as a regulator of fibronectin and Bcl-x alternative splicing. Moreover, we observed that the Akt mutant (Akt E17K) found in several human tumors displays increased levels of SUMOylation and also an enhanced capacity to regulate fibronectin splicing patterns. This splicing regulatory activity is completely abolished by decreasing Akt E17K SUMO conjugation levels. Additionally, we found that SUMOylation controls Akt regulatory function at G₁/S transition during cell cycle progression. These findings reveal SUMO conjugation as a novel level of regulation for Akt activity, opening new areas of exploration related to the molecular mechanisms involved in the diverse cellular functions of this kinase. PMID:24013425

  14. Promotion of ovarian follicle growth following mTOR activation: synergistic effects of AKT stimulators.

    PubMed

    Cheng, Yuan; Kim, Jaehong; Li, Xiao Xiao; Hsueh, Aaron J

    2015-01-01

    Mammalian target of rapamycin (mTOR) is a serine/threonine kinase and mTOR signaling is important in regulating cell growth and proliferation. Recent studies using oocyte- and granulosa cell-specific deletion of mTOR inhibitor genes TSC1 or TSC2 demonstrated the important role of mTOR signaling in the promotion of ovarian follicle development. We now report that treatment of ovaries from juvenile mice with an mTOR activator MHY1485 stimulated mTOR, S6K1 and rpS6 phosphorylation. Culturing ovaries for 4 days with MHY1485 increased ovarian explant weights and follicle development. In vivo studies further demonstrated that pre-incubation of these ovaries with MHY1485 for 2 days, followed by allo-grafting into kidney capsules of adult ovariectomized hosts for 5 days, led to marked increases in graft weights and promotion of follicle development. Mature oocytes derived from MHY1485-activated ovarian grafts could be successfully fertilized, leading the delivery of healthy pups. We further treated ovaries with the mTOR activator together with AKT activators (PTEN inhibitor and phosphoinositol-3-kinase stimulator) before grafting and found additive enhancement of follicle growth. Our studies demonstrate the ability of an mTOR activator in promoting follicle growth, leading to a potential strategy to stimulate preantral follicle growth in infertile patients.

  15. Promotion of Ovarian Follicle Growth following mTOR Activation: Synergistic Effects of AKT Stimulators

    PubMed Central

    Cheng, Yuan; Kim, Jaehong; Li, Xiao Xiao; Hsueh, Aaron J.

    2015-01-01

    Mammalian target of rapamycin (mTOR) is a serine/threonine kinase and mTOR signaling is important in regulating cell growth and proliferation. Recent studies using oocyte- and granulosa cell-specific deletion of mTOR inhibitor genes TSC1 or TSC2 demonstrated the important role of mTOR signaling in the promotion of ovarian follicle development. We now report that treatment of ovaries from juvenile mice with an mTOR activator MHY1485 stimulated mTOR, S6K1 and rpS6 phosphorylation. Culturing ovaries for 4 days with MHY1485 increased ovarian explant weights and follicle development. In vivo studies further demonstrated that pre-incubation of these ovaries with MHY1485 for 2 days, followed by allo-grafting into kidney capsules of adult ovariectomized hosts for 5 days, led to marked increases in graft weights and promotion of follicle development. Mature oocytes derived from MHY1485-activated ovarian grafts could be successfully fertilized, leading the delivery of healthy pups. We further treated ovaries with the mTOR activator together with AKT activators (PTEN inhibitor and phosphoinositol-3-kinase stimulator) before grafting and found additive enhancement of follicle growth. Our studies demonstrate the ability of an mTOR activator in promoting follicle growth, leading to a potential strategy to stimulate preantral follicle growth in infertile patients. PMID:25710488

  16. A critical role of the small GTPase Rac1 in Akt2-mediated GLUT4 translocation in mouse skeletal muscle.

    PubMed

    Takenaka, Nobuyuki; Izawa, Rumi; Wu, Junyuan; Kitagawa, Kaho; Nihata, Yuma; Hosooka, Tetsuya; Noguchi, Tetsuya; Ogawa, Wataru; Aiba, Atsu; Satoh, Takaya

    2014-03-01

    Insulin promotes glucose uptake in skeletal muscle by inducing the translocation of the glucose transporter GLUT4 to the plasma membrane. The serine/threonine kinase Akt2 has been implicated as a key regulator of this insulin action. However, the mechanisms whereby Akt2 regulates multiple steps of GLUT4 translocation remain incompletely understood. Recently, the small GTPase Rac1 has been identified as a skeletal muscle-specific regulator of insulin-stimulated glucose uptake. Here, we show that Rac1 is a critical downstream component of the Akt2 pathway in mouse skeletal muscle as well as cultured myocytes. GLUT4 translocation induced by constitutively activated Akt2 was totally dependent on the expression of Rac1 in L6 myocytes. Moreover, we observed the activation of Rac1 when constitutively activated Akt2 was ectopically expressed. Constitutively activated Akt2-triggered Rac1 activation was diminished by knockdown of FLJ00068, a guanine nucleotide exchange factor for Rac1. Knockdown of Akt2, on the other hand, markedly reduced Rac1 activation by a constitutively activated mutant of phosphoinositide 3-kinase. In mouse skeletal muscle, constitutively activated mutants of Akt2 and phosphoinositide 3-kinase, when ectopically expressed, induced GLUT4 translocation. Muscle-specific rac1 knockout markedly diminished Akt2- or phosphoinositide 3-kinase-induced GLUT4 translocation, highlighting a crucial role of Rac1 downstream of Akt2. Taken together, these results strongly suggest a novel regulatory link between Akt2 and Rac1 in insulin-dependent signal transduction leading to glucose uptake in skeletal muscle.

  17. DNA synthesis and DNA polymerase activity of herpes simplex virus type 1 temperature-sensitive mutants.

    PubMed Central

    Aron, G M; Purifoy, D J; Schaffer, P A

    1975-01-01

    Fifteen temperature-sensitive mutants of herpes simplex virus type 1 were studied with regard to the relationship between their ability to synthesize viral DNA and to induce viral DNA polymerase (DP) activity at permissive (34 C) and nonpermissive (39 C) temperatures. At 34 C, all mutants synthesized viral DNA, while at 39 C four mutants demonstrated a DNA+ phenotype, three were DNA+/-, and eight were DNA-. DNA+ mutants induced levels of DP activity similar to thhose of the wild-type virus at both temperatures, and DNA+/- mutants induced reduced levels of DP activity at 39 C but not at 34 C. Among the DNA- mutants three were DP+, two were DP+/-, and three showed reduced DP activity at 34 C with no DP activity at 39 C. DNA-, DP- mutants induced the synthesis of a temperature-sensitive DP as determined by in vivo studies. PMID:169388

  18. Angiotensin II-induced Akt activation through the epidermal growth factor receptor in vascular smooth muscle cells is mediated by phospholipid metabolites derived by activation of phospholipase D.

    PubMed

    Li, Fang; Malik, Kafait U

    2005-03-01

    Angiotensin II (Ang II) activates cytosolic Ca(2+)-dependent phospholipase A(2) (cPLA(2)), phospholipase D (PLD), p38 mitogen-activated protein kinase (MAPK), epidermal growth factor receptor (EGFR) and Akt in vascular smooth muscle cells (VSMC). This study was conducted to investigate the relationship between Akt activation by Ang II and other signaling molecules in rat VSMC. Ang II-induced Akt phosphorylation was significantly reduced by the PLD inhibitor 1-butanol, but not by its inactive analog 2-butanol, and by brefeldin A, an inhibitor of the PLD cofactor ADP-ribosylation factor, and in cells infected with retrovirus containing PLD(2) siRNA or transfected with PLD(2) antisense but not control LacZ or sense oligonucleotide. Diacylglycerol kinase inhibitor II diminished Ang II-induced and diC8-phosphatidic acid (PA)-increased Akt phosphorylation, suggesting that PLD-dependent Akt activation is mediated by PA. Ang II-induced EGFR phosphorylation was inhibited by 1-butanol and PLD(2) siRNA and also by cPLA(2) siRNA. In addition, the inhibitor of arachidonic acid (AA) metabolism 5,8,11,14-eicosatetraynoic acid (ETYA) reduced both Ang II- and AA-induced EGFR transactivation. Furthermore, ETYA, cPLA(2) antisense, and cPLA(2) siRNA attenuated Ang II-elicited PLD activation. p38 MAPK inhibitor SB202190 [4-(4-flurophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole] reduced PLD activity and EGFR and Akt phosphorylation elicited by Ang II. Pyrrolidine-1, a cPLA(2) inhibitor, and cPLA(2) siRNA decreased p38 MAPK activity. These data indicate that Ang II-stimulated Akt activity is mediated by cPLA(2)-dependent, p38 MAPK regulated PLD(2) activation and EGFR transactivation. We propose the following scheme of the sequence of events leading to activation of Akt in VSMC by Ang II: Ang II-->cPLA(2)-->AA-->p38 MAPK-->PLD(2)-->PA-->EGFR-->Akt.

  19. TRIB2 confers resistance to anti-cancer therapy by activating the serine/threonine protein kinase AKT

    PubMed Central

    Hill, Richard; Madureira, Patricia A.; Ferreira, Bibiana; Baptista, Inês; Machado, Susana; Colaço, Laura; dos Santos, Marta; Liu, Ningshu; Dopazo, Ana; Ugurel, Selma; Adrienn, Angyal; Kiss-Toth, Endre; Isbilen, Murat; Gure, Ali O.; Link, Wolfgang

    2017-01-01

    Intrinsic and acquired resistance to chemotherapy is the fundamental reason for treatment failure for many cancer patients. The identification of molecular mechanisms involved in drug resistance or sensitization is imperative. Here we report that tribbles homologue 2 (TRIB2) ablates forkhead box O activation and disrupts the p53/MDM2 regulatory axis, conferring resistance to various chemotherapeutics. TRIB2 suppression is exerted via direct interaction with AKT a key signalling protein in cell proliferation, survival and metabolism pathways. Ectopic or intrinsic high expression of TRIB2 induces drug resistance by promoting phospho-AKT (at Ser473) via its COP1 domain. TRIB2 expression is significantly increased in tumour tissues from patients correlating with an increased phosphorylation of AKT, FOXO3a, MDM2 and an impaired therapeutic response. This culminates in an extremely poor clinical outcome. Our study reveals a novel regulatory mechanism underlying drug resistance and suggests that TRIB2 functions as a regulatory component of the PI3K network, activating AKT in cancer cells. PMID:28276427

  20. N-methylhemeanthidine chloride, a novel Amaryllidaceae alkaloid, inhibits pancreatic cancer cell proliferation via down-regulating AKT activation.

    PubMed

    Guo, Guoli; Yao, Guangmin; Zhan, Guanqun; Hu, Yufeng; Yue, Ming; Cheng, Ling; Liu, Yaping; Ye, Qi; Qing, Guoliang; Zhang, Yonghui; Liu, Hudan

    2014-11-01

    We previously reported the isolation of a novel Amaryllidaceae alkaloid, N-methylhemeanthidine chloride (NMHC), from Zephyranthes candida, which exhibits potent cytotoxicity in a spectrum of tumor cells. However, the mechanism of action remains unclear. Using multiple cell lines derived from human pancreatic cancer, one of the most mortal and refractory human malignancies, we further studied the NMHC-mediated cytotoxicity and found that it induced drastic cytotoxicity in pancreatic cancer cells whereas an insignificant effect on a noncancerous cell line. The NMHC-mediated growth inhibition was more severe than the first-line chemotherapeutic agent gemcitabine, leading to cell cycle arrest, apoptotic death and decreased glycolysis. NMHC exerted its function through down-regulating AKT activation, and the ectopic expression of activated AKT rescued the growth inhibition. Consistently, NMHC injections in a pancreatic cancer xenograft model manifested the anti-tumor effect in vivo. Engrafted tumor cells underwent AKT attenuation and apoptotic death upon treatments. As such, we here demonstrate the AKT inhibition may be one of the mechanisms by which NMHC decreases tumor cell survival rate in vitro and in vivo. Our data thereby suggest that NMHC holds great promise as a potent chemotherapeutic agent against pancreatic cancer and sheds new light on obtaining such agents from natural products toward therapeutic purposes.

  1. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases

    PubMed Central

    Palmieri, Michela; Pal, Rituraj; Nelvagal, Hemanth R.; Lotfi, Parisa; Stinnett, Gary R.; Seymour, Michelle L.; Chaudhury, Arindam; Bajaj, Lakshya; Bondar, Vitaliy V.; Bremner, Laura; Saleem, Usama; Tse, Dennis Y.; Sanagasetti, Deepthi; Wu, Samuel M.; Neilson, Joel R.; Pereira, Fred A.; Pautler, Robia G.; Rodney, George G.; Cooper, Jonathan D.; Sardiello, Marco

    2017-01-01

    Neurodegenerative diseases characterized by aberrant accumulation of undigested cellular components represent unmet medical conditions for which the identification of actionable targets is urgently needed. Here we identify a pharmacologically actionable pathway that controls cellular clearance via Akt modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathways. We show that Akt phosphorylates TFEB at Ser467 and represses TFEB nuclear translocation independently of mechanistic target of rapamycin complex 1 (mTORC1), a known TFEB inhibitor. The autophagy enhancer trehalose activates TFEB by diminishing Akt activity. Administration of trehalose to a mouse model of Batten disease, a prototypical neurodegenerative disease presenting with intralysosomal storage, enhances clearance of proteolipid aggregates, reduces neuropathology and prolongs survival of diseased mice. Pharmacological inhibition of Akt promotes cellular clearance in cells from patients with a variety of lysosomal diseases, thus suggesting broad applicability of this approach. These findings open new perspectives for the clinical translation of TFEB-mediated enhancement of cellular clearance in neurodegenerative storage diseases. PMID:28165011

  2. Erbin loss promotes cancer cell proliferation through feedback activation of Akt-Skp2-p27 signaling

    SciTech Connect

    Huang, Hao; Song, Yuhua; Wu, Yan; Guo, Ning; Ma, Yuanfang; Qian, Lu

    2015-07-31

    Erbin localizes at the basolateral membrane to regulate cell junctions and polarity in epithelial cells. Dysregulation of Erbin has been implicated in tumorigenesis, and yet it is still unclear if and how disrupted Erbin regulates the biological behavior of cancer cells. We report here that depletion of Erbin leads to cancer cell excessive proliferation in vitro and in vivo. Erbin deficiency accelerates S-phase entry by down-regulating CDK inhibitors p21 and p27 via two independent mechanisms. Mechanistically, Erbin loss promotes p27 degradation by enhancing E3 ligase Skp2 activity though augmenting Akt signaling. Interestingly, we also show that Erbin is an unstable protein when the Akt-Skp2 signaling is aberrantly activated, which can be specifically destructed by SCF-Skp2 ligase. Erbin loss facilitates cell proliferation and migration in Skp2-dependent manner. Thus, our finding illustrates a novel negative feedback loop between Erbin and Akt-Skp2 signaling. It suggests disrupted Erbin links polarity loss, hyperproliferation and tumorigenesis. - Highlights: • Erbin loss leads to cancer cell excessive proliferation in vitro and in vivo. • Erbin loss accelerates cell cycle though down-regulating p21 and p27 expression. • Erbin is a novel negative modulator of Akt1-Skp2-p27 signaling pathway. • Our study suggests that Erbin loss contributes to Skp2 oncogenic function.

  3. Hyperforin Inhibits Akt1 Kinase Activity and Promotes Caspase-Mediated Apoptosis Involving Bad and Noxa Activation in Human Myeloid Tumor Cells

    PubMed Central

    Merhi, Faten; Tang, Ruoping; Piedfer, Marion; Mathieu, Julie; Bombarda, Isabelle; Zaher, Murhaf; Kolb, Jean-Pierre; Billard, Christian; Bauvois, Brigitte

    2011-01-01

    Background The natural phloroglucinol hyperforin HF displays anti-inflammatory and anti-tumoral properties of potential pharmacological interest. Acute myeloid leukemia (AML) cells abnormally proliferate and escape apoptosis. Herein, the effects and mechanisms of purified HF on AML cell dysfunction were investigated in AML cell lines defining distinct AML subfamilies and primary AML cells cultured ex vivo. Methodology and Results HF inhibited in a time- and concentration-dependent manner the growth of AML cell lines (U937, OCI-AML3, NB4, HL-60) by inducing apoptosis as evidenced by accumulation of sub-G1 population, phosphatidylserine externalization and DNA fragmentation. HF also induced apoptosis in primary AML blasts, whereas normal blood cells were not affected. The apoptotic process in U937 cells was accompanied by downregulation of anti-apoptotic Bcl-2, upregulation of pro-apoptotic Noxa, mitochondrial membrane depolarization, activation of procaspases and cleavage of the caspase substrate PARP-1. The general caspase inhibitor Z-VAD-fmk and the caspase-9- and -3-specific inhibitors, but not caspase-8 inhibitor, significantly attenuated apoptosis. HF-mediated apoptosis was associated with dephosphorylation of active Akt1 (at Ser473) and Akt1 substrate Bad (at Ser136) which activates Bad pro-apoptotic function. HF supppressed the kinase activity of Akt1, and combined treatment with the allosteric Akt1 inhibitor Akt-I-VIII significantly enhanced apoptosis of U937 cells. Significance Our data provide new evidence that HF's pro-apoptotic effect in AML cells involved inhibition of Akt1 signaling, mitochondria and Bcl-2 members dysfunctions, and activation of procaspases -9/-3. Combined interruption of mitochondrial and Akt1 pathways by HF may have implications for AML treatment. PMID:21998731

  4. Synergistic activity of vorinostat combined with gefitinib but not with sorafenib in mutant KRAS human non-small cell lung cancers and hepatocarcinoma

    PubMed Central

    Jeannot, Victor; Busser, Benoit; Vanwonterghem, Laetitia; Michallet, Sophie; Ferroudj, Sana; Cokol, Murat; Coll, Jean-Luc; Ozturk, Mehmet; Hurbin, Amandine

    2016-01-01

    Development of drug resistance limits the efficacy of targeted therapies. Alternative approaches using different combinations of therapeutic agents to inhibit several pathways could be a more effective strategy for treating cancer. The effects of the approved epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (gefitinib) or a multi-targeted kinase inhibitor (sorafenib) in combination with a histone deacetylase inhibitor (vorinostat) on cell proliferation, cell cycle distribution, apoptosis, and signaling pathway activation in human lung adenocarcinoma and hepatocarcinoma cells with wild-type EGFR and mutant KRAS were investigated. The effects of the synergistic drug combinations were also studied in human lung adenocarcinoma and hepatocarcinoma cells in vivo. The combination of gefitinib and vorinostat synergistically reduced cell growth and strongly induced apoptosis through inhibition of the insulin-like growth factor-1 receptor/protein kinase B (IGF-1R/AKT)-dependent signaling pathway. Moreover, the gefitinib and vorinostat combination strongly inhibited tumor growth in mice with lung adenocarcinoma or hepatocarcinoma tumor xenografts. In contrast, the combination of sorafenib and vorinostat did not inhibit cell proliferation compared to a single treatment and induced G2/M cell cycle arrest without apoptosis. The sorafenib and vorinostat combination sustained the IGF-1R-, AKT-, and mitogen-activated protein kinase-dependent signaling pathways. These results showed that there was synergistic cytotoxicity when vorinostat was combined with gefitinib for both lung adenocarcinoma and hepatocarcinoma with mutant KRAS in vitro and in vivo but that the combination of vorinostat with sorafenib did not show any benefit. These findings highlight the important role of the IGF-1R/AKT pathway in the resistance to targeted therapies and support the use of histone deacetylase inhibitors in combination with EGFR-tyrosine kinase inhibitors, especially for treating

  5. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    SciTech Connect

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-08-08

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  6. Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms.

    PubMed

    Tang, Qiong-Yao; Zhang, Fei-Fei; Xu, Jie; Wang, Ran; Chen, Jian; Logothetis, Diomedes E; Zhang, Zhe

    2016-01-05

    Twelve sodium-activated potassium channel (KCNT1, Slack) genetic mutants have been identified from severe early-onset epilepsy patients. The changes in biophysical properties of these mutants and the underlying mechanisms causing disease remain elusive. Here, we report that seven of the 12 mutations increase, whereas one mutation decreases, the channel's sodium sensitivity. Two of the mutants exhibit channel over-activity only when the intracellular Na(+) ([Na(+)]i) concentration is ∼80 mM. In contrast, single-channel data reveal that all 12 mutants increase the maximal open probability (Po). We conclude that these mutant channels lead to channel over-activity predominantly by increasing the ability of sodium binding to activate the channel, which is indicated by its maximal Po. The sodium sensitivity of these epilepsy causing mutants probably determines the [Na(+)]i concentration at which these mutants exert their pathological effects.

  7. A Low-Level Carbon Dioxide Laser Promotes Fibroblast Proliferation and Migration through Activation of Akt, ERK, and JNK

    PubMed Central

    Shingyochi, Yoshiaki; Kanazawa, Shigeyuki; Tajima, Satoshi; Tanaka, Rica; Mizuno, Hiroshi; Tobita, Morikuni

    2017-01-01

    Background Low-level laser therapy (LLLT) with various types of lasers promotes fibroblast proliferation and migration during the process of wound healing. Although LLLT with a carbon dioxide (CO2) laser was also reported to promote wound healing, the underlying mechanisms at the cellular level have not been previously described. Herein, we investigated the effect of LLLT with a CO2 laser on fibroblast proliferation and migration. Materials and Methods Cultured human dermal fibroblasts were prepared. MTS and cell migration assays were performed with fibroblasts after LLLT with a CO2 laser at various doses (0.1, 0.5, 1.0, 2.0, or 5.0 J/cm2) to observe the effects of LLLT with a CO2 laser on the proliferation and migration of fibroblasts. The non-irradiated group served as the control. Moreover, western blot analysis was performed using fibroblasts after LLLT with a CO2 laser to analyze changes in the activities of Akt, extracellular signal-regulated kinase (ERK), and Jun N-terminal kinase (JNK), which are signaling molecules associated with cell proliferation and migration. Finally, the MTS assay, a cell migration assay, and western blot analysis were performed using fibroblasts treated with inhibitors of Akt, ERK, or JNK before LLLT with a CO2 laser. Results In MTS and cell migration assays, fibroblast proliferation and migration were promoted after LLLT with a CO2 laser at 1.0 J/cm2. Western blot analysis revealed that Akt, ERK, and JNK activities were promoted in fibroblasts after LLLT with a CO2 laser at 1.0 J/cm2. Moreover, inhibition of Akt, ERK, or JNK significantly blocked fibroblast proliferation and migration. Conclusions These findings suggested that LLLT with a CO2 laser would accelerate wound healing by promoting the proliferation and migration of fibroblasts. Activation of Akt, ERK, and JNK was essential for CO2 laser-induced proliferation and migration of fibroblasts. PMID:28045948

  8. Luteolin enhances cholinergic activities in PC12 cells through ERK1/2 and PI3K/Akt pathways.

    PubMed

    El Omri, Abdelfatteh; Han, Junkyu; Kawada, Kiyokazu; Ben Abdrabbah, Manef; Isoda, Hiroko

    2012-02-09

    Luteolin, a 3', 4', 5, 7-tetrahydroxyflavone, is an active compound in Rosmarinus officinalis (Lamiacea), and has been reported to exert several benefits in neuronal cells. However cholinergic-induced activities of luteolin still remain unknown. Neuronal differentiation encompasses an elaborate developmental program which plays a key role in the development of the nervous system. The advent of several cell lines, like PC12 cells, able to differentiate in culture proved to be the turning point for gaining and understanding of molecular neuroscience. In this work, we investigated the ability of luteolin to induce PC12 cell differentiation and its effect on cholinergic activities. Our findings showed that luteolin treatment significantly induced neurite outgrowth extension, enhanced acetylcholinesterase (AChE) activity, known as neuronal differentiation marker, and increased the level of total choline and acetylcholine in PC12 cells. In addition, luteolin persistently, activated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt; while the addition of pharmacological MEK/ERK1/2 inhibitor (U0126) and PI3k/Akt inhibitor (LY294002) attenuated luteolin-induced AChE activity and neurite outgrowth in PC12 cells. The above findings suggest that luteolin induces neurite outgrowth and enhanced cholinergic activities, at least in part, through the activation of ERK1/2 and Akt signaling.

  9. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    SciTech Connect

    Ohashi, Kazuya; Nagata, Yosuke; Wada, Eiji; Zammit, Peter S.; Shiozuka, Masataka; Matsuda, Ryoichi

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.

  10. Galectin-1 induces hepatocellular carcinoma EMT and sorafenib resistance by activating FAK/PI3K/AKT signaling

    PubMed Central

    Zhang, P-F; Li, K-S; Shen, Y-h; Gao, P-T; Dong, Z-R; Cai, J-B; Zhang, C; Huang, X-Y; Tian, M-X; Hu, Z-Q; Gao, D-M; Fan, J; Ke, A-W; Shi, G-M

    2016-01-01

    Galectin-1 (Gal-1) is involved in several pathological activities associated with tumor progression and chemoresistance, however, the role and molecular mechanism of Gal-1 activity in hepatocellular carcinoma (HCC) epithelial–mesenchymal transition (EMT) and sorafenib resistance remain enigmatic. In the present study, forced Gal-1 expression promoted HCC progression and sorafenib resistance. Gal-1 elevated αvβ3-integrin expression, leading to AKT activation. Moreover, Gal-1 overexpression induced HCC cell EMT via PI3K/AKT cascade activation. Clinically, our data revealed that Gal-1 overexpression is correlated with poor HCC survival outcomes and sorafenib response. These data suggest that Gal-1 may be a potential therapeutic target for HCC and a biomarker for predicting response to sorafenib treatment. PMID:27100895

  11. B Cell Receptor Activation Predominantly Regulates AKT-mTORC1/2 Substrates Functionally Related to RNA Processing

    PubMed Central

    Mohammad, Dara K.; Ali, Raja H.; Turunen, Janne J.; Nore, Beston F.; Smith, C. I. Edvard

    2016-01-01

    Protein kinase B (AKT) phosphorylates numerous substrates on the consensus motif RXRXXpS/T, a docking site for 14-3-3 interactions. To identify novel AKT-induced phosphorylation events following B cell receptor (BCR) activation, we performed proteomics, biochemical and bioinformatics analyses. Phosphorylated consensus motif-specific antibody enrichment, followed by tandem mass spectrometry, identified 446 proteins, containing 186 novel phosphorylation events. Moreover, we found 85 proteins with up regulated phosphorylation, while in 277 it was down regulated following stimulation. Up regulation was mainly in proteins involved in ribosomal and translational regulation, DNA binding and transcription regulation. Conversely, down regulation was preferentially in RNA binding, mRNA splicing and mRNP export proteins. Immunoblotting of two identified RNA regulatory proteins, RBM25 and MEF-2D, confirmed the proteomics data. Consistent with these findings, the AKT-inhibitor (MK-2206) dramatically reduced, while the mTORC-inhibitor PP242 totally blocked phosphorylation on the RXRXXpS/T motif. This demonstrates that this motif, previously suggested as an AKT target sequence, also is a substrate for mTORC1/2. Proteins with PDZ, PH and/or SH3 domains contained the consensus motif, whereas in those with an HMG-box, H15 domains and/or NF-X1-zinc-fingers, the motif was absent. Proteins carrying the consensus motif were found in all eukaryotic clades indicating that they regulate a phylogenetically conserved set of proteins. PMID:27487157

  12. Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF

    PubMed Central

    Wang, Xusheng; Chen, Haiyan; Tian, Ruiyun; Zhang, Yiling; Drutskaya, Marina S.; Wang, Chengmei; Ge, Jianfeng; Fan, Zhimeng; Kong, Deqiang; Wang, Xiaoxiao; Cai, Ting; Zhou, Ying; Wang, Jingwen; Wang, Jinmei; Wang, Shan; Qin, Zhihai; Jia, Huanhuan; Wu, Yue; Liu, Jia; Nedospasov, Sergei A.; Tredget, Edward E.; Lin, Mei; Liu, Jianjun; Jiang, Yuyang; Wu, Yaojiong

    2017-01-01

    Skin stem cells can regenerate epidermal appendages; however, hair follicles (HF) lost as a result of injury are barely regenerated. Here we show that macrophages in wounds activate HF stem cells, leading to telogen–anagen transition (TAT) around the wound and de novo HF regeneration, mostly through TNF signalling. Both TNF knockout and overexpression attenuate HF neogenesis in wounds, suggesting dose-dependent induction of HF neogenesis by TNF, which is consistent with TNF-induced AKT signalling in epidermal stem cells in vitro. TNF-induced β-catenin accumulation is dependent on AKT but not Wnt signalling. Inhibition of PI3K/AKT blocks depilation-induced HF TAT. Notably, Pten loss in Lgr5+ HF stem cells results in HF TAT independent of injury and promotes HF neogenesis after wounding. Thus, our results suggest that macrophage-TNF-induced AKT/β-catenin signalling in Lgr5+ HF stem cells has a crucial role in promoting HF cycling and neogenesis after wounding. PMID:28345588

  13. AG and UAG induce β-casein expression via activation of ERK1/2 and AKT pathways

    PubMed Central

    Li, Sunan; Liu, Juxiong; Lv, Qingkang; Zhang, Chuan; Xu, Shiyao; Yang, Dongxue; Huang, Bingxu; Zeng, Yalong; Gao, Yingjie

    2016-01-01

    Abstract The ghrelin peptides were found to circulate in two major forms: acylated ghrelin (AG) and unacylated ghrelin (UAG). Previous studies showed that AG regulates β-casein (CSN2) expression in mammary epithelial cells. However, little is known about the mechanisms by which AG regulates CSN2 gene and protein expression. Evidence suggests that UAG has biological activity through GHSR1a-independent mechanisms. Here, we investigated the possible GHSR1a-mediated effect of UAG on the expression of CSN2 in primary bovine mammary epithelial cells (pbMECs) isolated from lactating cow. We found that both AG and UAG increase the expression of CSN2 in a dose-dependent manner in pbMECs in comparison with the control group. Increased expression of CSN2 was blocked by [D-Lys3]-GHRP-6 (an antagonist of the GHSR1a) and NF449 (a Gs-α subunit inhibitor) in pbMECs. In addition, both AG and UAG activated AKT/protein kinase B (AKT) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways, whereas [D-Lys3]-GHRP-6 and NF449 inhibited the phosphorylation of AKT and ERK1/2 in pbMECs respectively. Blockade of ERK1/2 and AKT signaling pathways prevented the expression of CSN2 induced by AG or UAG. Finally, we found that both AG and UAG cause cell proliferation through identical signaling pathways. Taken together, these results demonstrate that both AG and UAG act on ERK1/2 and AKT signaling pathways to facilitate the expression of CSN2 in a GHSR1a-dependent manner. PMID:26873999

  14. Somatic mutations in PIK3CA and activation of AKT in intraductal tubulopapillary neoplasms of the pancreas.

    PubMed

    Yamaguchi, Hiroshi; Kuboki, Yuko; Hatori, Takashi; Yamamoto, Masakazu; Shiratori, Keiko; Kawamura, Shunji; Kobayashi, Makio; Shimizu, Michio; Ban, Shinichi; Koyama, Isamu; Higashi, Morihiro; Shin, Nobuhiro; Ishida, Kazuyuki; Morikawa, Takanori; Motoi, Fuyuhiko; Unno, Michiaki; Kanno, Atsushi; Satoh, Kennichi; Shimosegawa, Tooru; Orikasa, Hideki; Watanabe, Tomoo; Nishimura, Kazuhiko; Harada, Youji; Furukawa, Toru

    2011-12-01

    Intraductal tubulopapillary neoplasm (ITPN) is a recently recognized rare variant of intraductal neoplasms of the pancreas. Molecular aberrations underlying the neoplasm remain unknown. We investigated somatic mutations in PIK3CA, PTEN, AKT1, KRAS, and BRAF. We also investigated aberrant expressions of phosphorylated AKT, phosphatase and tensin homolog (PTEN), tumor protein 53 (TP53), SMAD4, and CTNNB1 in 11 cases of ITPNs and compared these data with those of 50 cases of intraductal papillary mucinous neoplasm (IPMN), another distinct variant of pancreatic intraductal neoplasms. Mutations in PIK3CA were found in 3 of 11 ITPNs but not in IPMNs (P = 0.005; Fisher exact test). In contrast, mutations in KRAS were found in none of the ITPNs but were found in 26 of the 50 IPMNs (P = 0.001; Fisher exact test). PIK3CA mutations were associated with strong expression of phosphorylated AKT (P < 0.001; the Mann-Whitney U test). Moreover, the expression of phosphorylated AKT was apparent in most ITPNs but only in a few IPMNs (P < 0.001; the Mann-Whitney U test). Aberrant expressions of TP53, SMAD4, and CTNNB1 were not statistically different between these neoplasms. Mutations in PIK3CA and the expression of phosphorylated AKT were not associated with age, sex, tissue invasion, and patients' prognosis in ITPNs. These results indicate that activation of the phosphatidylinositol 3-kinase pathway may play a crucial role in ITPNs but not in IPMNs. In contrast, the mutation in KRAS seems to play a major role in IPMNs but not in ITPNs. The activated phosphatidylinositol 3-kinase pathway may be a potential target for molecular diagnosis and therapy of ITPNs.

  15. Cyclophilin A as a downstream effector of PI3K/Akt signalling pathway in multiple myeloma cells.

    PubMed

    Lin, Zuo-Lin; Wu, Hsin-Jou; Chen, Jin-An; Lin, Kuo-Chih; Hsu, Jung-Hsin

    2015-12-01

    Cyclophilin A (Cyp A), a member of the peptidyl-prolyl isomerase (PPI) family, may function as a molecular signalling switch. Comparative proteomic studies have identified Cyp A as a potential downstream target of protein kinase B (Akt). This study confirmed that Cyp A is a downstream effector of the phosphatidylinositide 3-kinase (PI3K)/Akt signalling pathway. Cyp A was highly phosphorylated in response to interleukin-6 treatment, which was consistent with the accumulation of phosphorylated Akt, suggesting that Cyp A is a phosphorylation target of Akt and downstream effector of the PI3K/Akt pathway. Cyclosporine A (CsA), a PPI inhibitor, inhibited the growth of multiple myeloma (MM) U266 cells. Moreover, CsA treatment inhibited the activation of the signal transducer and activator of transcription 3 (STAT3) in MM U266 cells. Several Cyp A mutants were generated. Mutants with mutated AKT phosphorylation sites increased the G1 phase arrest in MM U266 cells. The other mutants that mimicked the phosphorylated state of Cyp A decreased the percentage of G1 phase. These results demonstrated that the states of phosphorylation of Cyp A by Akt can influence the progress of the cell cycle in MM U266 cells and that this effect is probably mediated through the Janus-activated kinase 2/STAT3 signalling pathway.

  16. FoxM1 promotes breast tumorigenesis by activating PDGF-A and forming a positive feedback loop with the PDGF/AKT signaling pathway.

    PubMed

    Yu, Guanzhen; Zhou, Aidong; Xue, Jianfei; Huang, Chen; Zhang, Xia; Kang, Shin-Hyuk; Chiu, Wen-Tai; Tan, Christina; Xie, Keping; Wang, Jiejun; Huang, Suyun

    2015-05-10

    The autocrine platelet-derived growth factor (PDGF)/PDGF receptor (PDGFR) signaling pathway promotes breast cancer tumorigenesis, but the mechanisms for its dysregulation in breast cancer are largely unknown. In the study, we identified PDGF-A as a novel transcriptional target of FoxM1. FoxM1 directly binds to two sites in the promoter of PDGF-A and activates its transcription. Mutation of these FoxM1-binding sites diminished PDGF-A promoter activity. Increased FoxM1 resulted in the upregulation of PDGF-A, which led to activation of the AKT pathway and increased breast cancer cell proliferation and tumorigenesis, whereas knockdown of FoxM1 does the opposite. Blocking AKT activation with a phosphoinositide 3-kinase/AKT inhibitor decreased FoxM1-induced cell proliferation. Moreover, PDGF/AKT pathway upregulates the expression of FoxM1 in breast cancer cells. Knockdown of PDGF-A or blockade of AKT activation inhibited the expression of FoxM1 in breast cancer cells. Furthermore, expression of FoxM1 significantly correlated with the expression of PDGF-A and the activated AKT signaling pathway in human breast cancer specimens. Our study demonstrates a novel positive regulatory feedback loop between FoxM1 and the PDGF/AKT signaling pathway; this loop contributes to breast cancer cell growth and tumorigenesis.

  17. Akt activation suppresses Chk2-mediated, methylating agent-induced G2 arrest and protects from temozolomide-induced mitotic catastrophe and cellular senescence.

    PubMed

    Hirose, Yuchi; Katayama, Makoto; Mirzoeva, Olga K; Berger, Mitchel S; Pieper, Russell O

    2005-06-01

    Pharmacologic inhibition of the DNA signal transducers Chk1 and p38 blocks G2 arrest and sensitizes glioblastoma cells to chemotherapeutic methylating agent-induced cytotoxicity. Because Akt pathway activation has been suggested to also block G2 arrest induced by DNA-damaging agents and because glioma cells frequently have high levels of Akt activation, we examined the contribution of the Akt pathway to methylating agent-induced G2 arrest and toxicity. U87MG human glioma cells containing an inducible Akt expression construct were incubated with inducing agent or vehicle, after which the cells were exposed to temozolomide and assayed for activation of the components of the G2 arrest pathway and survival. Temozolomide-treated control cells activated the DNA damage signal transducers Chk1, Chk2, and p38, leading to Cdc25C and Cdc2 inactivation, prolonged G2 arrest, and loss of clonagenicity by a combination of senescence and mitotic catastrophe. Temozolomide-treated cells induced to overexpress Akt, however, exhibited significantly less drug-induced Cdc25C/Cdc2 inactivation and less G2 arrest. Akt-mediated suppression of G2 arrest was associated not with alterations in Chk1 or p38 activation but rather with suppression of Chk2 activation and reduced recruitment of Chk2 to sites of damage in chromatin. Unlike bypass of the G2 checkpoint induced by pharmacologic inhibitors of Chk1 or p38, however, Akt-induced bypass of G2 arrest suppressed, rather than enhanced, temozolomide-induced senescence and mitotic catastrophe. These results show that whereas Akt activation suppresses temozolomide-induced Chk2 activation and G2 arrest, the overriding effect is protection from temozolomide-induced cytotoxicity. The Akt pathway therefore represents a new target for the sensitization of gliomas to chemotherapeutic methylating agents such as temozolomide.

  18. Pharmacological Inhibition of PERK Attenuates Early Brain Injury After Subarachnoid Hemorrhage in Rats Through the Activation of Akt.

    PubMed

    Yan, Feng; Cao, Shenglong; Li, Jianru; Dixon, Brandon; Yu, Xiaobo; Chen, Jingyin; Gu, Chi; Lin, Wang; Chen, Gao

    2017-04-01

    Neuronal apoptosis is a central pathological process in subarachnoid hemorrhage (SAH)-induced early brain injury. Endoplasmic reticulum (ER) stress was reported to have a vital role in the pathophysiology of neuronal apoptosis in the brain. The present study was designed to investigate the potential effects of ER stress and its downstream signals in early brain injury after SAH. One hundred thirty-four rats were subjected to an endovascular perforation model of SAH. The RNA-activated protein kinase-like ER kinase (PERK) inhibitor GSK2606414 and the Akt inhibitor MK2206 were injected intracerebroventricularly. SAH grade, neurologic scores, and brain water content were measured 72 h after subarachnoid hemorrhage. Expression of PERK and its downstream signals, Akt, Bcl-2, Bax, and cleaved caspase-3, were examined using Western blot analysis. Specific cell types that expressed PERK were detected with double immunofluorescence staining. Neuronal cell death was demonstrated with terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL). Our results showed that the expression of p-PERK and its downstream targets, p-eIF2α and ATF4, increased after SAH and peaked at 72 h after SAH. PERK was expressed mostly in neurons. The inhibition of PERK with GSK2606414 reduced p-PERK, p-eIF2α, and ATF4 expression. Furthermore, GSK2606414 treatment increased p-Akt levels and the Bcl-2/Bax ratio as well as decreased cleaved caspase-3 expression and neuronal death, thereby improving neurological deficits at 72 h after SAH. The selective Akt inhibitor MK2206 abolished the beneficial effects of GSK2606414. PERK, the major transducer of ER stress, is involved in neuronal apoptosis after SAH. The inhibition of PERK reduces early brain injury via Akt-related anti-apoptosis pathways. PERK may serve as a promising target for future therapeutic intervention.

  19. IDH1 R132H Mutation Enhances Cell Migration by Activating AKT-mTOR Signaling Pathway, but Sensitizes Cells to 5-FU Treatment as NADPH and GSH Are Reduced

    PubMed Central

    Qiu, Jiangdong; Huang, Keting; Wu, Mindan; Xia, Chunlin

    2017-01-01

    Aim of study Mutations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) gene were recently discovered in vast majority of World Health Organization (WHO) grade II/III gliomas. This study is to understand the effects of IDH1 R132H mutation in gliomagenesis and to develop new strategies to treat glioma with IDH1 R132H mutation. Materials and methods Over expression of IDH1 R132H in U87MG cells was done by transfecting cells with IDH1 R132H plasmid. MTT assay, scratch repair assay and western blot were performed to study effects of IDH1 R132H mutation on cell proliferation, migration, regulating AKT-mTOR signaling pathway and cell death respectively. NADP+/NADPH and GSH quantification assays were performed to evaluate effects of IDH1 R132H mutation on the production of antioxidant NADPH and GSH. Results We found that over expression of IDH1 R132H mutation decreased cell proliferation consistent with previous reports; however, it increased cell migration and enhanced AKT-mTOR signaling pathway activation. Mutations in isocitrate dehydrogenase (IDH) 1 also change the function of the enzymes and cause them to produce 2-hydroxyglutarate and not produce NADPH. We tested the level of NADPH and GSH and demonstrated that IDH1 R132H mutant stable cells had significantly low NADPH and GSH level compared to control or IDH1 wild type stable cells. The reduced antioxidants (NADPH and GSH) sensitized U87MG cells with IDH R132H mutant to 5-FU treatment. Conclusion Our study highlights the important role of IHD1 R132H mutant in up- regulating AKT-mTOR signaling pathway and enhancing cell migration. Furthermore, we demonstrate that IDH1 R132H mutation affects cellular redox status and sensitizes gliomas cells with IDH1 R132H mutation to 5FU treatment. PMID:28052098

  20. Activated ClC-2 Inhibits p-Akt to Repress Myelination in GDM Newborn Rats.

    PubMed

    He, Feixiang; Peng, Yuchen; Yang, Zhi; Ge, Zilu; Tian, Yanping; Ma, Teng; Li, Hongli

    2017-01-01

    This study aims to investigate the effect and mechanism of type 2 voltage-gated chloride channel (ClC-2) on myelin development of newborn rats' cerebral white matter with gestational diabetes mellitus (GDM). In this study, GDM model was induced in late pregnant rat model. The alteration of ClC-2 expression in various developmental stages of cerebral white matter with/without being exposed to high glucose was analyzed using RT-PCR, active oxygen detection, TUNEL staining, Western Blot as well as immuno-histochemical staining. Our results showed that ClC-2 mRNA and protein expressions in GDM group were significantly increased in white matter of fetal rats after E18 stage, and elevated the level of TNF-α and iNOS in white matter at P0 and P3 stage of newborn rats. Meanwhile, In GDM group, reactive oxygen species (ROS) levels of the white matter at E18, P0, and P3 stage were significantly higher than control group. Furthermore, the expression level of myelin transcription factor Olig2 at P0 stage and CNPase at P3 stage were strikingly lower than that of the control group. In GDM group, ClC-2 expression in the corpus callosum (CC) and cingulate gyrus (CG) regains, and TUNEL positive cell number were increased at P0 and P3 stage. However, PDGFα positive cell number at P0 stage and CNPase expression at P3 stage were significantly decreased. Caspase-3 was also increased in those white matter regions in GDM group, but p-Akt expression was inhibited. While DIDS (a chloride channel blocker) can reverse these changes. In conclusion, ClC-2 and caspase-3 were induced by GDM, which resulted in apoptosis and myelination inhibition. The effect was caused by repressing PI3K-Akt signaling pathway. Application of ClC-2 inhibitor DIDS showed protective effects on cerebral white matter damage stimulated by high glucose concentration.

  1. Activated ClC-2 Inhibits p-Akt to Repress Myelination in GDM Newborn Rats

    PubMed Central

    He, Feixiang; Peng, Yuchen; Yang, Zhi; Ge, Zilu; Tian, Yanping; Ma, Teng; Li, Hongli

    2017-01-01

    This study aims to investigate the effect and mechanism of type 2 voltage-gated chloride channel (ClC-2) on myelin development of newborn rats' cerebral white matter with gestational diabetes mellitus (GDM). In this study, GDM model was induced in late pregnant rat model. The alteration of ClC-2 expression in various developmental stages of cerebral white matter with/without being exposed to high glucose was analyzed using RT-PCR, active oxygen detection, TUNEL staining, Western Blot as well as immuno-histochemical staining. Our results showed that ClC-2 mRNA and protein expressions in GDM group were significantly increased in white matter of fetal rats after E18 stage, and elevated the level of TNF-α and iNOS in white matter at P0 and P3 stage of newborn rats. Meanwhile, In GDM group, reactive oxygen species (ROS) levels of the white matter at E18, P0, and P3 stage were significantly higher than control group. Furthermore, the expression level of myelin transcription factor Olig2 at P0 stage and CNPase at P3 stage were strikingly lower than that of the control group. In GDM group, ClC-2 expression in the corpus callosum (CC) and cingulate gyrus (CG) regains, and TUNEL positive cell number were increased at P0 and P3 stage. However, PDGFα positive cell number at P0 stage and CNPase expression at P3 stage were significantly decreased. Caspase-3 was also increased in those white matter regions in GDM group, but p-Akt expression was inhibited. While DIDS (a chloride channel blocker) can reverse these changes. In conclusion, ClC-2 and caspase-3 were induced by GDM, which resulted in apoptosis and myelination inhibition. The effect was caused by repressing PI3K-Akt signaling pathway. Application of ClC-2 inhibitor DIDS showed protective effects on cerebral white matter damage stimulated by high glucose concentration. PMID:28255270

  2. Indoor air pollution from biomass burning activates Akt in airway cells and peripheral blood lymphocytes: a study among premenopausal women in rural India.

    PubMed

    Mondal, Nandan K; Roy, Amrita; Mukherjee, Bidisha; Das, Debangshu; Ray, Manas R

    2010-12-01

    Biomass burning is a major source of indoor air pollution in rural India. The authors investigated in this study whether cumulative exposures to biomass smoke cause activation of the serine/threonine kinase Akt in airway cells and peripheral blood lymphocytes (PBL). For this, the authors enrolled 87 premenopausal (median age 34 years), nonsmoking women who used to cook with biomass (wood, dung, crop wastes) and 85 age-matched control women who cooked with cleaner fuel liquefied petroleum gas. Immunocytochemical and immunoblotting assays revealed significantly higher levels of phosphorylated forms of Akt protein (p-Akt(ser473) and p-Akt(thr308)) in PBL, airway epithelial cells, alveolar macrophages, and neutrophils in sputum of biomass-using women than control. Akt activation in biomass users was associated with marked rise in generation of reactive oxygen species and concomitant depletion of superoxide dismutase. Measurement of particulate matter having a diameter of less than 10 and 2.5 µm in indoor air by real-time aerosol monitor showed 2 to 4 times more particulate pollution in biomass-using households, and Akt activation was positively associated with particulate pollution after controlling potential confounders. The findings suggest that chronic exposure to biomass smoke activates Akt, possibly via generation of oxidative stress.

  3. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling.

    PubMed

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-08-08

    Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and AKT. MMP-2 activation was also significantly increased. Specific inhibitors of p38 (SB203580) and JNK (SP600125) inhibited tube formation and wound healing, while an ERK inhibitor (PD98059) did not. MMP-2 activation and AKT phosphorylation were also attenuated and associated with the suppression of p38 and JNK phosphorylation, but not with that of ERK. These results indicate that fucoidan, in the presence of FGF-2, induces angiogenesis through AKT/MMP-2 signalling by activating p38 and JNK. These findings provide basic molecular information on the effect of fucoidan on angiogenesis in the presence of FGF-2.

  4. Xanthine Dehydrogenase (XDH) cross-reacting material in mutants of Drosophila melanogaster deficient in XDH activity.

    PubMed

    Browder, L W; Tucker, L; Wilkes, J

    1982-02-01

    Rocket immunoelectrophoresis was used to estimate xanthine dehydrogenase cross-reacting material (XDH-CRM) in strains containing the cin and cin mutant genes, which are deficient in XDH enzymatic activity. CRM levels were determined as percentages of CRM in the Oregon-R wild-type strain. The mutant strains contain 72 and 76% of Oregon-R CRM, respectively. CRM levels in strains containing the XDH-deficient mutant genes lxd and mal are 93 and 105%, respectively. The high levels of CRM in these four mutant strains indicate that the primary effects of the mutant genes are on the function of XDH protein rather than its accumulation.

  5. Inhibition of phosphorylated Ser473-Akt from translocating into the nucleus contributes to 2-cell arrest and defective zygotic genome activation in mouse preimplantation embryogenesis.

    PubMed

    Chen, Junming; Lian, Xiuli; Du, Juan; Xu, Songhua; Wei, Jianen; Pang, Lili; Song, Chanchan; He, Lin; Wang, Shie

    2016-04-01

    Phosphorylated Ser473-Akt (p-Ser473-Akt) is extensively studied as a correlate for the activity of Akt, which plays an important role in mouse oogenesis and preimplantation embryogenesis. However, little progress has been made about its effect on the mouse zygotic genome activation (ZGA) of 2-cell stage in mouse preimplantation embryos. In this study, we confirmed its localization in the pronuclei of 1-cell embryos and found that p-Ser473-Akt acquired prominent nucleus localization in 2-cell embryos physiologically. Akt specific inhibitors API-2 and MK2206 could inhibit the development of mouse preimplantation embryos in vitro, and induce 2-cell arrest at certain concentrations. 2-cell embryos exposed to 2.0 μmol/L API-2 or 30 μmol/L MK2206 displayed attenuated immunofluorescence intensity of p-Ser473-Akt in the nucleus. Simultaneously, qRT-PCR results revealed that 2.0 μmol/L API-2 treatment significantly downregulated the mRNA pattern of MuERV-L and eIF-1A, two marker genes of ZGA, suggesting a defect in ZGA compared with that of control group. Collectively, our work demonstrated the nuclear localization of p-Ser473-Akt during major ZGA, and Akt specific inhibitors API-2 and MK2206 which led to 2-cell arrest inhibited p-Ser473-Akt from translocating into the nucleus of 2-cell embryos with defective ZGA as well, implying p-Ser473-Akt may be a potential player in the major ZGA of 2-cell mouse embryos.

  6. PPAR-γ agonist stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination

    SciTech Connect

    Sun, Yan; Zheng, Bin; Zhang, Xin-hua; He, Ming; Guo, Zong-wei; Wen, Jin-kun

    2014-01-10

    Highlights: •PPAR-γ increases KLF4 protein level but does not influence KLF4 gene transcription. •The increase of KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. •Pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination. -- Abstract: Peroxisome proliferator activated receptor γ (PPAR-γ) plays important roles in cell cycle regulation, differentiation and apoptosis. Krüppel-like factor 4 (KLF4) modulates vascular smooth muscle cell (VSMC) phenotype. Both KLF4 and PPAR-γ are involved in VSMC proliferation and differentiation. However, the actual relationship between KLF4 and PPAR-γ in VSMCs is not clear. In this study, we found that PPAR-γ agonist pioglitazone increases KLF4 protein levels but does not influence KLF4 gene transcription. PPAR-γ overexpression increases, while PPAR-γ knockdown reduces KLF4 expression, suggesting that the increase in KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. Further study showed that pioglitazone enhances KLF4 protein stability through reducing KLF4 ubiquitination. Furthermore, we demonstrated that stabilization of KLF4 by pioglitazone was related to the activation of Akt signaling pathway. Taken together, we revealed that PPAR-γ agonist pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination, providing further insights into PPAR-γ and KLF4 in regulating each other’s expression in VSMCs.

  7. Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade

    PubMed Central

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-01-01

    Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536] PMID:26246284

  8. Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade.

    PubMed

    Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong

    2015-09-01

    Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536].

  9. Alpha-fetoprotein activates AKT/mTOR signaling to promote CXCR4 expression and migration of hepatoma cells.

    PubMed

    Zhu, Mingyue; Guo, Junli; Xia, Hua; Li, Wei; Lu, Yan; Dong, Xu; Chen, Yi; Xie, Xieju; Fu, Shigan; Li, Mengsen

    2015-01-01

    CXCR4, stromal cell-derived factor-1α(SDF 1α) receptor, stimulates growth and metastasis of hepatocellular carcinoma (HCC). Alpha-fetoprotein(AFP) governs the expression of some metastasis-related genes. Here we report that AFP and CXCR4 levels correlated in HCC tissues. AFP-expressing vectors induced CXCR4. In agreement, AFP depletion by siRNA decreased CXCR4. AFP co-localized and interacted with PTEN, thus inducing CXCR4 by activating AKT(Ser473) phosphorylation. In turn, phospho-mTOR(Ser2448) entered the nucleus and bound the CXCR4 gene promoter. Thus, AFP promoted migration of HCC cells. In concusion, AFP induced CXCR4 by activating the AKT/mTOR signal pathway.

  10. Alpha-fetoprotein activates AKT/mTOR signaling to promote CXCR4 expression and migration of hepatoma cells

    PubMed Central

    Li, Wei; Lu, Yan; Dong, Xu; Chen, Yi; Xie, Xieju; Fu, Shigan; Li, Mengsen

    2015-01-01

    CXCR4, stromal cell-derived factor-1α(SDF 1α) receptor, stimulates growth and metastasis of hepatocellular carcinoma (HCC). Alpha-fetoprotein(AFP) governs the expression of some metastasis-related genes. Here we report that AFP and CXCR4 levels correlated in HCC tissues. AFP-expressing vectors induced CXCR4. In agreement, AFP depletion by siRNA decreased CXCR4. AFP co-localized and interacted with PTEN, thus inducing CXCR4 by activating AKT(Ser473) phosphorylation. In turn, phospho-mTOR(Ser2448) entered the nucleus and bound the CXCR4 gene promoter. Thus, AFP promoted migration of HCC cells. In concusion, AFP induced CXCR4 by activating the AKT/mTOR signal pathway. PMID:25815363

  11. DYRK1B blocks canonical and promotes non-canonical Hedgehog signaling through activation of the mTOR/AKT pathway

    PubMed Central

    Singh, Rajeev; Dhanyamraju, Pavan Kumar; Lauth, Matthias

    2017-01-01

    Hedgehog (Hh) signaling plays important roles in embryonic development and in tumor formation. Apart from the well-established stimulation of the GLI family of transcription factors, Hh ligands promote the phosphorylation and activation of mTOR and AKT kinases, yet the molecular mechanism underlying these processes are unknown. Here, we identify the DYRK1B kinase as a mediator between Hh signaling and mTOR/AKT activation. In fibroblasts, Hh signaling induces DYRK1B protein expression, resulting in activation of the mTOR/AKT kinase signaling arm. Furthermore, DYRK1B exerts positive and negative feedback regulation on the Hh pathway itself: It negatively interferes with SMO-elicited canonical Hh signaling, while at the same time it provides positive feed-forward functions by promoting AKT-mediated GLI stability. Due to the fact that the mTOR/AKT pathway is itself subject to strong negative feedback regulation, pharmacological inhibition of DYRK1B results in initial upregulation followed by downregulation of AKT phosphorylation and GLI stabilization. Addressing this issue therapeutically, we show that a pharmacological approach combining a DYRK1B antagonist with an mTOR/AKT inhibitor results in strong GLI1 targeting and in pronounced cytotoxicity in human pancreatic and ovarian cancer cells. PMID:27903983

  12. Activation of mTor Signaling by Gene Transduction to Induce Axon Regeneration in the Central Nervous System Following Neural Injury (Addendum)

    DTIC Science & Technology

    2016-03-01

    the surviving dopamine neurons by use of an AAV1 vector with either a constitutively active mutant of the Akt kinase (myristoylated-Akt (MYR-Akt...4) or hRheb(S16H), a constitutively active mutant of the Rheb GTPase (5, 6). Rheb GTPase is activated by Akt and it is a direct activator of the...YEAR 01: To determine whether p70S6K or a constitutively active mutant , or both, are mediators of axon growth in the dopaminergic nigro-striatal

  13. PARK2 Depletion Connects Energy and Oxidative Stress to PI3K/Akt Activation via PTEN S-Nitrosylation.

    PubMed

    Gupta, Amit; Anjomani-Virmouni, Sara; Koundouros, Nikos; Dimitriadi, Maria; Choo-Wing, Rayman; Valle, Adamo; Zheng, Yuxiang; Chiu, Yu-Hsin; Agnihotri, Sameer; Zadeh, Gelareh; Asara, John M; Anastasiou, Dimitrios; Arends, Mark J; Cantley, Lewis C; Poulogiannis, George

    2017-03-16

    PARK2 is a gene implicated in disease states with opposing responses in cell fate determination, yet its contribution in pro-survival signaling is largely unknown. Here we show that PARK2 is altered in over a third of all human cancers, and its depletion results in enhanced phosphatidylinositol 3-kinase/Akt (PI3K/Akt) activation and increased vulnerability to PI3K/Akt/mTOR inhibitors. PARK2 depletion contributes to AMPK-mediated activation of endothelial nitric oxide synthase (eNOS), enhanced levels of reactive oxygen species, and a concomitant increase in oxidized nitric oxide levels, thereby promoting the inhibition of PTEN by S-nitrosylation and ubiquitination. Notably, AMPK activation alone is sufficient to induce PTEN S-nitrosylation in the absence of PARK2 depletion. Park2 loss and Pten loss also display striking cooperativity to promote tumorigenesis in vivo. Together, our findings reveal an important missing mechanism that might account for PTEN suppression in PARK2-deficient tumors, and they highlight the importance of PTEN S-nitrosylation in supporting cell survival and proliferation under conditions of energy deprivation.

  14. 8-Prenylnaringenin promotes recovery from immobilization-induced disuse muscle atrophy through activation of the Akt phosphorylation pathway in mice.

    PubMed

    Mukai, Rie; Horikawa, Hitomi; Lin, Pei-Yi; Tsukumo, Nao; Nikawa, Takeshi; Kawamura, Tomoyuki; Nemoto, Hisao; Terao, Junji

    2016-12-01

    8-Prenylnaringenin (8-PN) is a prenylflavonoid that originates from hop extracts and is thought to help prevent disuse muscle atrophy. We hypothesized that 8-PN affects muscle plasticity by promoting muscle recovery under disuse muscle atrophy. To test the promoting effect of 8-PN on muscle recovery, we administered an 8-PN mixed diet to mice that had been immobilized with a cast to one leg for 14 days. Intake of the 8-PN mixed diet accelerated recovery from muscle atrophy, and prevented reductions in Akt phosphorylation. Studies on cell cultures of mouse myotubes in vitro demonstrated that 8-PN activated the PI3K/Akt/P70S6K1 pathway at physiological concentrations. A cell-culture study using an inhibitor of estrogen receptors and an in vivo experiment with ovariectomized mice suggested that the estrogenic activity of 8-PN contributed to recovery from disuse muscle atrophy through activation of an Akt phosphorylation pathway. These data strongly suggest that 8-PN is a naturally occurring compound that could be used as a nutritional supplement to aid recovery from disuse muscle atrophy.

  15. Oncogenic activation of the PI3K/Akt pathway promotes cellular glucose uptake by downregulating the expression of thioredoxin-interacting protein.

    PubMed

    Hong, Shin Yee; Yu, Fa-Xing; Luo, Yan; Hagen, Thilo

    2016-05-01

    Oncogenic activation of the PI3K/Akt pathway is known to play an important role to promote glucose metabolism in cancer cells. However, the molecular mechanism through which the PI3K/Akt signalling pathway promotes glucose utilisation in cancer cells is still not well understood. It has recently been shown that the oncogenic activation of the PI3K/Akt/mTOR signalling in lung adenocarcinoma is important in promoting the localisation of glucose transporter 1 (GLUT1) at the plasma membrane. We thus hypothesised that the effect of constitutive activation of the PI3K/AKT signalling on glucose metabolism is mediated by thioredoxin interacting protein (TXNIP), a known regulator of the GLUT1 plasma membrane localisation. Consistent with previous studies, inhibition of the PI3K/Akt pathway decreased cellular glucose uptake. Furthermore, inhibition of PI3K/Akt signalling in non-small cell lung cancer (NSCLC) cell lines using clinically used tyrosine kinase inhibitors (TKIs) resulted in a decrease in GLUT1 membrane localisation. We also observed that inhibition of the PI3K/Akt pathway in various cell lines, including NSCLC cells, resulted in an increase in TXNIP expression. Importantly, knockdown of TXNIP using siRNA in the NSCLC cells promoted GLUT1 to be localised at the plasma membrane and reversed the effect of PI3K/Akt inhibitors. Together, our results suggest that the oncogenic activation of PI3K/Akt signalling promotes cellular glucose uptake, at least in part, through the regulation of TXNIP expression. This mechanism may contribute to the Warburg effect in cancer cells.

  16. Akt Activation Correlates with Snail Expression and Potentially Determines the Recurrence of Prostate Cancer in Patients at Stage T2 after a Radical Prostatectomy

    PubMed Central

    Chen, Wei-Yu; Hua, Kuo-Tai; Lee, Wei-Jiunn; Lin, Yung-Wei; Liu, Yen-Nien; Chen, Chi-Long; Wen, Yu-Ching; Chien, Ming-Hsien

    2016-01-01

    Our previous work demonstrated the epithelial-mesenchymal transition factor, Snail, is a potential marker for predicting the recurrence of localized prostate cancer (PCa). Akt activation is important for Snail stabilization and transcription in PCa. The purpose of this study was to retrospectively investigate the relationship between the phosphorylated level of Akt (p-Akt) in radical prostatectomy (RP) specimens and cancer biochemical recurrence (BCR). Using a tissue microarray and immunohistochemistry, the expression of p-Akt was measured in benign and neoplastic tissues from RP specimens in 53 patients whose cancer was pathologically defined as T2 without positive margins. Herein, we observed that the p-Akt level was higher in PCa than in benign tissues and was significantly associated with the Snail level. A high p-Akt image score (≥8) was significantly correlated with a higher histological Gleason sum, Snail image score, and preoperative prostate-specific antigen (PSA) value. Moreover, the high p-Akt image score and Gleason score sum (≥7) showed similar discriminatory abilities for BCR according to a receiver-operator characteristic curve analysis and were correlated with worse recurrence-free survival according to a log-rank test (p < 0.05). To further determine whether a high p-Akt image score could predict the risk of BCR, a Cox proportional hazard model showed that only a high p-Akt image score (hazard ratio (HR): 3.12, p = 0.05) and a high Gleason score sum (≥7) (HR: 1.18, p = 0.05) but not a high preoperative PSA value (HR: 0.62, p = 0.57) were significantly associated with a higher risk of developing BCR. Our data indicate that, for localized PCa patients after an RP, p-Akt can serve as a potential prognostic marker that improves predictions of BCR-free survival. PMID:27455254

  17. A novel AKT inhibitor, AZD5363, inhibits phosphorylation of AKT downstream molecules, and activates phosphorylation of mTOR and SMG-1 dependent on the liver cancer cell type

    PubMed Central

    ZHANG, YUNCHENG; ZHENG, YUANWEN; FAHEEM, ALI; SUN, TIANTONG; LI, CHUNYOU; LI, ZHE; ZHAO, DIANTANG; WU, CHAO; LIU, JUN

    2016-01-01

    Due to frequent phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway dysregulation, AKT is typically accepted as a promising anticancer therapeutic target. mTOR, in particular, represents a suitable therapeutic target for hepatocellular carcinoma, whilst suppressor with morphogenetic effect on genitalia family member-1 (SMG-1) is believed to serve a potential tumor suppressor role in human cancer. Despite SMG-1 and mTOR belonging to the same PI3K-related kinase family, the interactions between them are not yet fully understood. In the present study, a novel pyrrolopyrimidine-derived compound, AZD5363, was observed to suppress proliferation in liver cancer Hep-G2 and Huh-7 cells by inhibiting the phosphorylation of downstream molecules in the AKT signal pathway, in a dose- and time-dependent manner. AZD5363 activated the phosphorylation of mTOR, dependent on the liver cancer cell type, as it may have differing effects in various liver cancer cell lines. Additionally, AZD5363 also activated SMG-1 within the same liver cancer cells types, which subsequently activated the phosphorylation of mTOR. In conclusion, the present study indicates that AZD5363 inhibited phosphorylation of AKT downstream molecules, and activated phosphorylation of mTOR and SMG-1, dependent on the liver cancer type. PMID:26998062

  18. {delta}-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    SciTech Connect

    Heiss, Anika; Ammer, Hermann; Eisinger, Daniela A.

    2009-07-15

    {delta}-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen{sup 2,5}]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G{sub i/o} proteins, because pre-treatment with pertussis toxin, but not over-expression of the G{sub q/11} scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the G{beta}{gamma} scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  19. Akt finds its new path to regulate cell cycle through modulating Skp2 activity and its destruction by APC/Cdh1

    PubMed Central

    Gao, Daming; Inuzuka, Hiroyuki; Tseng, Alan; Wei, Wenyi

    2009-01-01

    Skp2 over-expression has been observed in many human cancers. However, the mechanisms underlying elevated Skp2 expression have remained elusive. We recently reported that Akt1, but not Akt2, directly controls Skp2 stability by interfering with its association with APC/Cdh1. As a result, Skp2 degradation is protected in cancer cells with elevated Akt activity. This finding expands our knowledge of how specific kinase cascades influence proteolysis governed by APC/Cdh1 complexes. However, it awaits further investigation to elucidate whether the PI3K/Akt circuit affects other APC/Cdh1 substrates. Our results further strengthen the argument that different Akt isoforms might have distinct, even opposing functions in the regulation of cell growth or migration. In addition, we noticed that Ser72 is localized in a putative Nuclear Localization Sequence (NLS), and that phosphorylation of Ser72 disrupts the NLS and thus promotes Skp2 cytoplasmic translocation. This finding links elevated Akt activity with the observed cytoplasmic Skp2 staining in aggressive breast and prostate cancer patients. Furthermore, it provides the rationale for the development of specific Akt1 inhibitors as efficient anti-cancer therapeutic agents. PMID:19549334

  20. AKT1 Activation is Obligatory for Spontaneous BCC Tumor Growth in a Murine Model that Mimics Some Features of Basal Cell Nevus Syndrome.

    PubMed

    Kim, Arianna L; Back, Jung Ho; Zhu, Yucui; Tang, Xiuwei; Yardley, Nathan P; Kim, Katherine J; Athar, Mohammad; Bickers, David R

    2016-10-01

    Patients with basal cell nevus syndrome (BCNS), also known as Gorlin syndrome, develop numerous basal cell carcinomas (BCC) due to germline mutations in the tumor suppressor PTCH1 and aberrant activation of Hedgehog (Hh) signaling. Therapies targeted at components of the Hh pathway, including the smoothened (SMO) inhibitor vismodegib, can ablate these tumors clinically, but tumors recur upon drug discontinuation. Using SKH1-Ptch1(+/-) as a model that closely mimics the spontaneous and accelerated growth pattern of BCCs in patients with BCNS, we show that AKT1, a serine/threonine protein kinase, is intrinsically activated in keratinocytes derived from the skin of newborn Ptch1(+/-) mice in the absence of carcinogenic stimuli. Introducing Akt1 haplodeficiency in Ptch1(+/-) mice (Akt1(+/-) Ptch1(+/-)) significantly abrogated BCC growth. Similarly, pharmacological inhibition of AKT with perifosine, an alkyl phospholipid AKT inhibitor, diminished the growth of spontaneous and UV-induced BCCs. Our data demonstrate an obligatory role for AKT1 in BCC growth, and targeting AKT may help reduce BCC tumor burden in BCNS patients. Cancer Prev Res; 9(10); 794-802. ©2016 AACR.

  1. Immunohistochemical Analysis of the Activation Status of the Akt/mTOR/pS6 Signaling Pathway in Oral Lichen Planus

    PubMed Central

    Prodromidis, Georgios; Nikitakis, Nikolaos G.; Sklavounou, Alexandra

    2013-01-01

    Introduction. Aberrations of the Akt/mTOR/pS6 pathway have been linked to various types of human cancer, including oral squamous cell carcinoma (OSCC). The purpose of this study was to evaluate the activation status of Akt, mTOR, and pS6 in oral lichen planus (OLP) in comparison with oral premalignant and malignant lesions and normal oral mucosa (NM). Materials and Methods. Immunohistochemistry for p-Akt, p-mTOR, and phospho-pS6 was performed in 40 OLP, 20 oral leukoplakias (OL), 10 OSCC, and 10 control samples of NM. Results. Nuclear p-Akt expression was detected in the vast majority of cases in all categories, being significantly higher in OL. Cytoplasmic p-Akt and p-mTOR staining was present only in a minority of OLP cases, being significantly lower compared to OL and OSCC. Phospho-pS6 showed cytoplasmic positivity in most OLP cases, which however was significantly lower compared to OL and OSCC. Conclusions. Overall, cytoplasmic p-Akt, p-mTOR, and phospho-pS6 levels appear to be significantly lower in OLP compared to OL and OSCC. However, the expression of these molecules in a subset of OLP cases suggests that activation of Akt/mTOR/pS6 may occur in the context of OLP, possibly contributing to the premalignant potential of individual cases. PMID:24228033

  2. Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice.

    PubMed

    Vergadi, Eleni; Vaporidi, Katerina; Theodorakis, Emmanuel E; Doxaki, Christina; Lagoudaki, Eleni; Ieronymaki, Eleftheria; Alexaki, Vassilia I; Helms, Mike; Kondili, Eumorfia; Soennichsen, Birte; Stathopoulos, Efstathios N; Margioris, Andrew N; Georgopoulos, Dimitrios; Tsatsanis, Christos

    2014-01-01

    Acute respiratory distress syndrome (ARDS) is a major cause of respiratory failure, with limited effective treatments available. Alveolar macrophages participate in the pathogenesis of ARDS. To investigate the role of macrophage activation in aseptic lung injury and identify molecular mediators with therapeutic potential, lung injury was induced in wild-type (WT) and Akt2(-/-) mice by hydrochloric acid aspiration. Acid-induced lung injury in WT mice was characterized by decreased lung compliance and increased protein and cytokine concentration in bronchoalveolar lavage fluid. Alveolar macrophages acquired a classical activation (M1) phenotype. Acid-induced lung injury was less severe in Akt2(-/-) mice compared with WT mice. Alveolar macrophages from acid-injured Akt2(-/-) mice demonstrated the alternative activation phenotype (M2). Although M2 polarization suppressed aseptic lung injury, it resulted in increased lung bacterial load when Akt2(-/-) mice were infected with Pseudomonas aeruginosa. miR-146a, an anti-inflammatory microRNA targeting TLR4 signaling, was induced during the late phase of lung injury in WT mice, whereas it was increased early in Akt2(-/-) mice. Indeed, miR-146a overexpression in WT macrophages suppressed LPS-induced inducible NO synthase (iNOS) and promoted M2 polarization, whereas miR-146a inhibition in Akt2(-/-) macrophages restored iNOS expression. Furthermore, miR-146a delivery or Akt2 silencing in WT mice exposed to acid resulted in suppression of iNOS in alveolar macrophages. In conclusion, Akt2 suppression and miR-146a induction promote the M2 macrophage phenotype, resulting in amelioration of acid-induced lung injury. In vivo modulation of macrophage phenotype through Akt2 or miR-146a could provide a potential therapeutic approach for aseptic ARDS; however, it may be deleterious in septic ARDS because of impaired bacterial clearance.

  3. EBV Latent Membrane Protein 1 Activates Akt, NFκB, and Stat3 in B Cell Lymphomas

    PubMed Central

    Shair, Kathy H. Y; Bendt, Katherine M; Edwards, Rachel H; Bedford, Elisabeth C; Nielsen, Judith N; Raab-Traub, Nancy

    2007-01-01

    Latent membrane protein 1 (LMP1) is the major oncoprotein of Epstein-Barr virus (EBV). In transgenic mice, LMP1 promotes increased lymphoma development by 12 mo of age. This study reveals that lymphoma develops in B-1a lymphocytes, a population that is associated with transformation in older mice. The lymphoma cells have deregulated cell cycle markers, and inhibitors of Akt, NFκB, and Stat3 block the enhanced viability of LMP1 transgenic lymphocytes and lymphoma cells in vitro. Lymphoma cells are independent of IL4/Stat6 signaling for survival and proliferation, but have constitutively activated Stat3 signaling. These same targets are also deregulated in wild-type B-1a lymphomas that arise spontaneously through age predisposition. These results suggest that Akt, NFκB, and Stat3 pathways may serve as effective targets in the treatment of EBV-associated B cell lymphomas. PMID:17997602

  4. Prohibitin 2 represents a novel nuclear AKT substrate during all-trans retinoic acid-induced differentiation of acute promyelocytic leukemia cells.

    PubMed

    Bavelloni, Alberto; Piazzi, Manuela; Faenza, Irene; Raffini, Mirco; D'Angelo, Antonietta; Cattini, Luca; Cocco, Lucio; Blalock, William L

    2014-05-01

    The AKT/PKB kinase is essential for cell survival, proliferation, and differentiation; however, aberrant AKT activation leads to the aggressiveness and drug resistance of many human neoplasias. In the human acute promyelocytic leukemia cell line NB4, nuclear AKT activity increases during all-trans retinoic acid (ATRA)-mediated differentiation. As nuclear AKT activity is associated with differentiation, we sought to identify the nuclear substrates of AKT that were phosphorylated after ATRA treatment. A proteomics-based search for nuclear substrates of AKT in ATRA-treated NB4 cells was undertaken by using 2D-electrophoresis/mass spectrometry (MS) in combination with an anti-AKT phospho-substrate antibody. Western blot analysis, an in vitro kinase assay, and/or site-directed mutagenesis were performed to further characterize the MS findings. MS analysis revealed prohibitin (PHB)-2, a multifunctional protein involved in cell cycle progression and the suppression of oxidative stress, to be a putative nuclear substrate of AKT. Follow-up studies confirmed that AKT phosphorylates PHB2 on Ser-91 and that forced expression of the PHB2(S91A) mutant results in a rapid loss of viability and apoptotic cell death. Activation of nuclear AKT during ATRA-mediated differentiation results in the phosphorylation of several proteins, including PHB2, which may serve to coordinate nuclear-mitochondrial events during differentiation.

  5. β-Caryophyllene Pretreatment Alleviates Focal Cerebral Ischemia-Reperfusion Injury by Activating PI3K/Akt Signaling Pathway.

    PubMed

    Zhang, Qian; An, Ruidi; Tian, Xiaocui; Yang, Mei; Li, Minghang; Lou, Jie; Xu, Lu; Dong, Zhi

    2017-02-24

    β-Caryophyllene (BCP) has been reported to be protective against focal cerebral ischemia-reperfusion (I/R) injury by its anti-oxidative and anti-inflammatory features. Recent study demonstrates that the BCP exhibits potential neuroprotection against I/R injury induced apoptosis, however, the mechanism remains unknown. Therefore, we investigate the underlying anti-apoptotic mechanism of BCP pretreatment in I/R injury. Sprague-Dawley rats (pretreated with BCP suspensions or solvent orally for 7 days) were subjected to transient Middle Cerebral Artery Occlusion (MCAO) for 90 min, followed by 24 h reperfusion. Results showed that BCP pretreatment improved the neurologic deficit score, lowered the infarct volume and decreased number of apoptotic cells in the hippocampus. Moreover, in western blot and RT-qPCR detections, BCP pretreatment down-regulated the expressions of Bax and p53, up-regulated the expression of Bcl-2, and enhanced the phosphorylation of Akt on Ser473. Blockage of PI3K activity by wortmannin not only abolished the BCP-induced decreases in infarct volume and neurologic deficit score, but also dramatically abrogated the enhancement of AKt phosphorylation. Our results suggested that BCP pre-treatment protects against I/R injury partly by suppressing apoptosis via PI3K/AKt signaling pathway activation.

  6. Acadesine Inhibits Tissue Factor Induction and Thrombus Formation by Activating the Phosphoinositide 3-Kinase/Akt Signaling Pathway

    PubMed Central

    Zhang, Weiyu; Wang, Jianguo; Wang, Huan; Tang, Rong; Belcher, John D.; Viollet, Benoit; Geng, Jian-Guo; Zhang, Chunxiang; Wu, Chaodong; Slungaard, Arne; Zhu, Chuhong; Huo, Yuqing

    2013-01-01

    Objective Acadesine, an adenosine-regulating agent and activator of AMP-activated protein kinase, has been shown to possess antiinflammatory activity. This study investigated whether and how acadesine inhibits tissue factor (TF) expression and thrombus formation. Methods and Results Human umbilical vein endothelial cells and human peripheral blood monocytes were stimulated with lipopolysaccharide to induce TF expression. Pretreatment with acadesine dramatically suppressed the clotting activity and expression of TF (protein and mRNA). These inhibitory effects of acadesine were unchanged for endothelial cells treated with ZM241385 (a specific adenosine A2A receptor antagonist) or AMP-activated protein kinase inhibitor compound C, and in macrophages lacking adenosine A2A receptor or α1–AMP-activated protein kinase. In endothelial cells and macrophages, acadesine activated the phosphoinositide 3-kinase/Akt signaling pathway, reduced the activity of mitogen-activated protein kinases, and consequently suppressed TF expression by inhibiting the activator protein-1 and NF-κB pathways. In mice, acadesine suppressed lipopolysaccharide-mediated increases in blood coagulation, decreased TF expression in atherosclerotic lesions, and reduced deep vein thrombus formation. Conclusion Acadesine inhibits TF expression and thrombus formation by activating the phosphoinositide 3-kinase/Akt pathway. This novel finding implicates acadesine as a potentially useful treatment for many disorders associated with thrombotic pathology, such as angina pain, deep vein thrombosis, and sepsis. PMID:20185792

  7. Regulator of G protein signaling 1 suppresses CXCL12-mediated migration and AKT activation in RPMI 8226 human plasmacytoma cells and plasmablasts.

    PubMed

    Pak, Hyo-Kyung; Gil, Minchan; Lee, Yoonkyung; Lee, Hyunji; Lee, A-Neum; Roh, Jin; Park, Chan-Sik

    2015-01-01

    Migration of plasma cells to the bone marrow is critical factor to humoral immunity and controlled by chemokines. Regulator of G protein signaling 1 (RGS1) is a GTPase-activating protein that controls various crucial functions such as migration. Here, we show that RGS1 controls the chemotactic migration of RPMI 8226 human plasmacytoma cells and human plasmablasts. LPS strongly increased RGS1 expression and retarded the migration of RPMI 8226 cells by suppressing CXCL12-mediated AKT activation. RGS1 knockdown by siRNA abolished the retardation of migration and AKT suppression by LPS. RGS1-dependent regulation of migration via AKT is also observed in cultured plasmablasts. We propose novel functions of RGS1 that suppress AKT activation and the migration of RPMI 8226 cells and plasmablasts in CXCL12-mediated chemotaxis.

  8. Prostaglandin E2 reduces radiation-induced epithelial apoptosis through a mechanism involving AKT activation and bax translocation.

    PubMed

    Tessner, Teresa G; Muhale, Filipe; Riehl, Terrence E; Anant, Shrikant; Stenson, William F

    2004-12-01

    Prostaglandin E2 (PGE2) synthesis modulates the response to radiation injury in the mouse intestinal epithelium through effects on crypt survival and apoptosis; however, the downstream signaling events have not been elucidated. WT mice receiving 16,16-dimethyl PGE2 (dmPGE2) had fewer apoptotic cells per crypt than untreated mice. Apoptosis in Bax(-/-) mice receiving 12 Gy was approximately 50% less than in WT mice, and the ability of dmPGE2 to attenuate apoptosis was lost in Bax(-/-) mice. Positional analysis revealed that apoptosis in the Bax(-/-) mice was diminished only in the bax-expressing cells of the lower crypts and that in WT mice, dmPGE2 decreased apoptosis only in the bax-expressing cells. The HCT-116 intestinal cell line and Bax(-/-) HCT-116 recapitulated the apoptotic response of the mouse small intestine with regard to irradiation and dmPGE2. Irradiation of HCT-116 cells resulted in phosphorylation of AKT that was enhanced by dmPGE2 through transactivation of the EGFR. Inhibition of AKT phosphorylation prevented the reduction of apoptosis by dmPGE2 following radiation. Transfection of HCT-116 cells with a constitutively active AKT reduced apoptosis in irradiated cells to the same extent as in nontransfected cells treated with dmPGE2. Treatment with dmPGE2 did not alter bax or bcl-x expression but suppressed bax translocation to the mitochondrial membrane. Our in vivo studies indicate that there are bax-dependent and bax-independent radiation-induced apoptosis in the intestine but that only the bax-dependent apoptosis is reduced by dmPGE2. The in vitro studies indicate that dmPGE2, most likely by signaling through the E prostaglandin receptor EP2, reduces radiation-induced apoptosis through transactivation of the EGFR and enhanced activation of AKT and that this results in reduced bax translocation to the mitochondria.

  9. Olprinone and colforsin daropate alleviate septic lung inflammation and apoptosis through CREB-independent activation of the Akt pathway.

    PubMed

    Oishi, Hirofumi; Takano, Ken-ichi; Tomita, Kengo; Takebe, Mariko; Yokoo, Hiroki; Yamazaki, Mitsuaki; Hattori, Yuichi

    2012-07-01

    Olprinone, a specific phosphodiesterase III inhibitor, and corforsin daropate, a direct adenylate cyclase activator, are now being used in critical conditions. We investigated whether their therapeutic use provides protection against septic acute lung injury (ALI) and mortality. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) in BALB/c mice. Olprinone or colforsin daropate was continuously given through an osmotic pump that was implanted into the peritoneal cavity immediately following CLP. These treatments prevented the ALI development in CLP mice, as indicated by the findings that severe hypoxemia, increased pulmonary vascular permeability, and histological lung damage were strikingly remedied. Furthermore, continued administration of olprinone or colforsin daropate suppressed apoptosis induction in septic lungs and improved the survival of CLP mice. Olprinone and corforsin daropate enhanced Akt phosphorylation in septic lungs. Wortmannin, which inhibits the Akt upstream regulator phosphatidylinositol 3-kinase, abrogated the protective effects of olprinone and corforsin daropate on sepsis-associated lung inflammation and apoptosis. In vivo transfection of cyclic AMP response element binding protein (CREB) decoy oligodeoxynucleotide failed to negate the abilities of these agents to increase Akt phosphorylation and to inhibit IκBα degradation in septic lungs. These results demonstrate for the first time that CREB-independent Akt-mediated signaling is a critical mechanism contributing to the therapeutic effects of olprinone and corforsin daropate on septic ALI. Moreover, our data also suggest that these cyclic AMP-related agents, by blocking both nuclear factor-κB activation and apoptosis induction, may represent an effective therapeutic approach to the treatment of the septic syndrome.

  10. Isolation and characterization of a Saccharomyces cerevisiae mutant with impaired glutamate synthase activity.

    PubMed

    Folch, J L; Antaramián, A; Rodríguez, L; Bravo, A; Brunner, A; González, A

    1989-12-01

    A mutant of Saccharomyces cerevisiae that lacks glutamate synthase (GOGAT) activity has been isolated. This mutant was obtained after chemical mutagenesis of a NADP-glutamate dehydrogenase-less mutant strain. The gdh gus mutant is a glutamate auxotroph. The genetic analysis of the gus mutant showed that the GOGAT-less phenotype is due to the presence of two loosely linked mutations. Evidence is presented which suggests the possibility that S. cerevisiae has two GOGAT activities, designated GOGAT A and GOGAT B. These activities can be distinguished by their pH optima and by their regulation by glutamate. Furthermore, one of the mutations responsible for the GOGAT-less phenotype affected GOGAT A activity, while the other mutation affected GOGAT B activity.

  11. Isolation and characterization of a Saccharomyces cerevisiae mutant with impaired glutamate synthase activity.

    PubMed Central

    Folch, J L; Antaramián, A; Rodríguez, L; Bravo, A; Brunner, A; González, A

    1989-01-01

    A mutant of Saccharomyces cerevisiae that lacks glutamate synthase (GOGAT) activity has been isolated. This mutant was obtained after chemical mutagenesis of a NADP-glutamate dehydrogenase-less mutant strain. The gdh gus mutant is a glutamate auxotroph. The genetic analysis of the gus mutant showed that the GOGAT-less phenotype is due to the presence of two loosely linked mutations. Evidence is presented which suggests the possibility that S. cerevisiae has two GOGAT activities, designated GOGAT A and GOGAT B. These activities can be distinguished by their pH optima and by their regulation by glutamate. Furthermore, one of the mutations responsible for the GOGAT-less phenotype affected GOGAT A activity, while the other mutation affected GOGAT B activity. PMID:2687252

  12. AKT Regulates BRCA1 Stability in Response to Hormone Signaling

    PubMed Central

    Nelson, Andrew C.; Lyons, Traci R.; Young, Christian D.; Hansen, Kirk C.; Anderson, Steven M.; Holt, Jeffrey T.

    2015-01-01

    BRCA1, with its binding partner BARD1, regulates the cellular response to DNA damage in multiple tissues, yet inherited mutations within BRCA1 result specifically in breast and ovarian cancers. This observation, along with several other lines of evidence, suggests a functional relationship may exist between hormone signaling and BRCA1 function. Our data demonstrates that AKT activation promotes the expression of BRCA1 in response to estrogen and IGF-1 receptor signaling. Further, we have identified a novel AKT phosphorylation site in BRCA1 at S694 which is responsive to activation of these signaling pathways. This rapid increase in BRCA1 protein levels appears to occur independently of new protein synthesis and treatment with the clinically utilized proteasome inhibitor bortezomib similarly leads to a rapid increase in BRCA1 protein levels. Together, these data suggest that AKT phosphorylation of BRCA1 increases total protein expression by preventing proteasomal degradation. AKT activation also appears to support nuclear localization of BRCA1, and co-expression of activated AKT with BRCA1 decreases radiation sensitivity, suggesting this interaction has functional consequences for BRCA1's role in DNA repair. We conclude that AKT regulates BRCA1 protein stability and function through direct phosphorylation of BRCA1. Further, the responsiveness of the AKT-BRCA1 regulatory pathway to hormone signaling may, in part, underlie the tissue specificity of BRCA1 mutant cancers. Pharmacological targets within this pathway could provide strategies for modulation of BRCA1 protein, which may prove therapeutically beneficial for the treatment of breast and ovarian cancers. PMID:20085797

  13. Reperfusion Therapy with Rapamycin Attenuates Myocardial Infarction through Activation of AKT and ERK

    PubMed Central

    Filippone, Scott M.; Samidurai, Arun; Roh, Sean K.; Cain, Chad K.; He, Jun; Salloum, Fadi N.; Kukreja, Rakesh C.

    2017-01-01

    Prompt coronary reperfusion is the gold standard for minimizing injury following acute myocardial infarction. Rapamycin, mammalian target of Rapamycin (mTOR) inhibitor, exerts preconditioning-like cardioprotective effects against ischemia/reperfusion (I/R) injury. We hypothesized that Rapamycin, given at the onset of reperfusion, reduces myocardial infarct size through modulation of mTOR complexes. Adult C57 male mice were subjected to 30 min of myocardial ischemia followed by reperfusion for 1 hour/24 hours. Rapamycin (0.25 mg/kg) or DMSO (7.5%) was injected intracardially at the onset of reperfusion. Post-I/R survival (87%) and cardiac function (fractional shortening, FS: 28.63 ± 3.01%) were improved in Rapamycin-treated mice compared to DMSO (survival: 63%, FS: 17.4 ± 2.6%). Rapamycin caused significant reduction in myocardial infarct size (IS: 26.2 ± 2.2%) and apoptosis (2.87 ± 0.64%) as compared to DMSO-treated mice (IS: 47.0 ± 2.3%; apoptosis: 7.39 ± 0.81%). Rapamycin induced phosphorylation of AKT S473 (target of mTORC2) but abolished ribosomal protein S6 phosphorylation (target of mTORC1) after I/R. Rapamycin induced phosphorylation of ERK1/2 but inhibited p38 phosphorylation. Infarct-limiting effect of Rapamycin was abolished with ERK inhibitor, PD98059. Rapamycin also attenuated Bax and increased Bcl-2/Bax ratio. These results suggest that reperfusion therapy with Rapamycin protects the heart against I/R injury by selective activation of mTORC2 and ERK with concurrent inhibition of mTORC1 and p38. PMID:28373901

  14. Small molecule inhibition of PAX3-FOXO1 through AKT activation suppresses malignant phenotypes of alveolar rhabdomyosarcoma

    PubMed Central

    Jothi, Mathivanan; Mal, Munmun; Keller, Charles; Mal, Asoke K.

    2013-01-01

    Alveolar rhabdomyosarcoma (ARMS) comprises a rare highly malignant tumor presumed to be associated with skeletal muscle lineage in children. The hallmark of the majority of ARMS is a chromosomal translocation that generates the PAX3-FOXO1 fusion protein, which is an oncogenic transcription factor responsible for the development of the malignant phenotype of this tumor. ARMS cells are dependent to the oncogenic activity of PAX3-FOXO1 and its expression status in ARMS tumors correlates with worst patient outcome, suggesting that blocking this activity of PAX3-FOXO1 may be an attractive therapeutic strategy against this fusion-positive disease. In this study, we screened small-molecule chemical libraries for inhibitors of PAX3-FOXO1 transcriptional activity using a cell-based readout system. We identified the Sarco/Endoplasmic Reticulum Ca2+-ATPases (SERCA) inhibitor thapsigargin as an effective inhibitor of PAX3-FOXO1. Subsequent experiments in ARMS cells demonstrated that activation of AKT by thapsigargin inhibited PAX3-FOXO1 activity via phosphorylation. Moreover, this AKT activation appears to be associated with the effects of thapsigargin on intracellular calcium levels. Furthermore, thapsigargin inhibited the binding of PAX3-FOXO1 to target genes and subsequently promoted its proteosomal degradation. In addition, thapsigargin treatment decreases the growth and invasive capacity of ARMS cells while inducing apoptosis in vitro. Finally, thapsigargin can suppress the growth of an ARMS xenograft tumor in vivo. These data reveal that thapsigargin-induced activation of AKT is an effective mechanism to inhibit PAX3-FOXO1 and a potential agent for targeted therapy against ARMS. PMID:24107448

  15. Lowered Expression of Tumor Suppressor Candidate MYO1C Stimulates Cell Proliferation, Suppresses Cell Adhesion and Activates AKT

    PubMed Central

    Visuttijai, Kittichate; Pettersson, Jennifer; Mehrbani Azar, Yashar; van den Bout, Iman; Örndal, Charlotte; Marcickiewicz, Janusz; Nilsson, Staffan; Hörnquist, Michael; Olsson, Björn; Ejeskär, Katarina

    2016-01-01

    Myosin-1C (MYO1C) is a tumor suppressor candidate located in a region of recurrent losses distal to TP53. Myo1c can tightly and specifically bind to PIP2, the substrate of Phosphoinositide 3-kinase (PI3K), and to Rictor, suggesting a role for MYO1C in the PI3K pathway. This study was designed to examine MYO1C expression status in a panel of well-stratified endometrial carcinomas as well as to assess the biological significance of MYO1C as a tumor suppressor in vitro. We found a significant correlation between the tumor stage and lowered expression of MYO1C in endometrial carcinoma samples. In cell transfection experiments, we found a negative correlation between MYO1C expression and cell proliferation, and MYO1C silencing resulted in diminished cell migration and adhesion. Cells expressing excess of MYO1C had low basal level of phosphorylated protein kinase B (PKB, a.k.a. AKT) and cells with knocked down MYO1C expression showed a quicker phosphorylated AKT (pAKT) response in reaction to serum stimulation. Taken together the present study gives further evidence for tumor suppressor activity of MYO1C and suggests MYO1C mediates its tumor suppressor function through inhibition of PI3K pathway and its involvement in loss of contact inhibition. PMID:27716847

  16. Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells

    SciTech Connect

    Kim, Hye-Mi; Kang, Dong-Ku; Kim, Hak Yong; Kang, Sang Sun; Chang, Soo-Ik . E-mail: sichang@cbnu.ac.kr

    2007-01-12

    Angiogenin, a potent angiogenic factor, binds to endothelial cells and is endocytosed and rapidly translocated to and concentrated in the nucleolus where it binds to DNA. In this study, we report that angiogenin induces transient phosphorylation of protein kinase B/Akt in cultured human umbilical vein endothelial (HUVE) cells. LY294002 inhibits the angiogenin-induced protein kinase B/Akt activation and also angiogenin-induced cell migration in vitro as well as angiogenesis in chick embryo chorioallantoic membrane in vivo without affecting nuclear translocation of angiogenin in HUVE cells. These results suggest that cross-talk between angiogenin and protein kinase B/Akt signaling pathways is essential for angiogenin-induced angiogenesis in vitro and in vivo, and that angiogenin-induced PKB/Akt activation is independent of nuclear translocation of angiogenin in HUVE cells.

  17. Cell cycle regulation of breast cancer cells through estrogen-induced activities of ERK and Akt protein kinases.

    PubMed

    Geffroy, Nancy; Guédin, Aurore; Dacquet, Catherine; Lefebvre, Philippe

    2005-06-15

    The proliferative effect of estrogens on breast cancer cell (BCC) is mainly mediated through estrogen receptors (ER). Non-transcriptional effects of estrogens, exerted through activation of several protein kinases, may also contribute to BCC proliferation. However, the relative contribution of these two responses to BCC proliferation is not known. We characterized a novel estrogenic receptor ligand which possess Akt and ERK activating properties distinct from that of 17beta-estradiol. Early and delayed waves of activation of these kinases were detected upon estrogenic challenge of BCC, but only molecules able to promote a significant, delayed activation of ERK-induced BCC proliferation. Estrogen-induced cell cycle progression was not sensitive to the inhibition of ERK-regulating kinases MEK1 and 2. ERalpha was found to be necessary, but not sufficient for kinases activation. Thus, estrogens elicit a distinct pattern of early and delayed activation of ERK and Akt, and early protein kinase activation is probably not involved in BCC proliferation. Structural variations in the estrogen molecule may confer novel biological properties unrelated to estrogen-dependent transcriptional activation.

  18. Tanshinone IIA Prevents Leu27IGF-II-Induced Cardiomyocyte Hypertrophy Mediated by Estrogen Receptor and Subsequent Akt Activation.

    PubMed

    Weng, Yueh-Shan; Wang, Hsueh-Fang; Pai, Pei-Ying; Jong, Gwo-Ping; Lai, Chao-Hung; Chung, Li-Chin; Hsieh, Dennis Jine-Yuan; HsuanDay, Cecilia; Kuo, Wei-Wen; Huang, Chih-Yang

    2015-01-01

    IGF-IIR plays important roles as a key regulator in myocardial pathological hypertrophy and apoptosis, which subsequently lead to heart failure. Salvia miltiorrhiza Bunge (Danshen) is a traditional Chinese medicinal herb used to treat cardiovascular diseases. Tanshinone IIA is an active compound in Danshen and is structurally similar to 17[Formula: see text]-estradiol (E[Formula: see text]. However, whether tanshinone IIA improves cardiomyocyte survival in pathological hypertrophy through estrogen receptor (ER) regulation remains unclear. This study investigates the role of ER signaling in mediating the protective effects of tanshinone IIA on IGF-IIR-induced myocardial hypertrophy. Leu27IGF-II (IGF-II analog) was shown in this study to specifically activate IGF-IIR expression and ICI 182,780 (ICI), an ER antagonist used to investigate tanshinone IIA estrogenic activity. We demonstrated that tanshinone IIA significantly enhanced Akt phosphorylation through ER activation to inhibit Leu27IGF-II-induced calcineurin expression and subsequent NFATc3 nuclear translocation to suppress myocardial hypertrophy. Tanshinone IIA reduced the cell size and suppressed ANP and BNP, inhibiting antihypertrophic effects induced by Leu27IGF-II. The cardioprotective properties of tanshinone IIA that inhibit Leu27IGF-II-induced cell hypertrophy and promote cell survival were reversed by ICI. Furthermore, ICI significantly reduced phospho-Akt, Ly294002 (PI3K inhibitor), and PI3K siRNA significantly reduced the tanshinone IIA-induced protective effect. The above results suggest that tanshinone IIA inhibited cardiomyocyte hypertrophy, which was mediated through ER, by activating the PI3K/Akt pathway and inhibiting Leu27IGF-II-induced calcineurin and NFATC3. Tanshinone IIA exerted strong estrogenic activity and therefore represented a novel selective ER modulator that inhibits IGF-IIR signaling to block cardiac hypertrophy.

  19. Ikaros 6 protects acute lymphoblastic leukemia cells against daunorubicin-induced apoptosis by activating the Akt-FoxO1 pathway.

    PubMed

    Han, Juan; Jin, Runming; Zhang, Meiling; Guo, Qing; Zhou, Fen

    2017-03-01

    Ikaros isoform 6 (Ik6) is associated with a poor prognosis for children with acute lymphoblastic leukemia (ALL). Our previous study demonstrated that overexpression of Ik6 enhances proliferation and chemoresistance of leukemia cells, with a possible underlying mechanism that involves antiapoptosis. In the present study, we investigated whether Ik6 protects against apoptosis by regulating the Akt-FoxO1 pathway. Bone marrow samples from children with ALL were collected and evaluated. In Ik6(+) patients, the Akt-FoxO1 pathway was activated such that expression of phosphorylated Akt and FoxO1 was significantly increased, but that of Bim and p27 decreased. In vitro experiments in this study were performed by using human ALL Nalm-6 cells that were stably transfected with Ik6 (Nalm-6/Ik6) or Sup-B15 and Ik6 shRNA (Sup-B15/Ik6 shRNA). Upon treatment with daunorubicin, Nalm-6/Ik6 cells exhibited a statistically significant reduction in apoptosis, with increased expression of p-Akt and p-FoxO1. In contrast, an increase in apoptosis with decreased expression of p-Akt and p-FoxO1 was observed in Sup-B15/Ik6 shRNA cells. This protection was dependent on activation of caspase-3 cleavage. By using an activator and an inhibitor of Akt or FoxO1, we demonstrated that Akt or FoxO1 activation had no effect on Ik6 expression. In conclusion, Ik6, the upstream factor of Akt-FoxO1 pathway, can protect ALL cells against daunorubicin-induced apoptosis and can potentially be explored as a therapeutic target in the treatment of patients with ALL.

  20. Increased riboflavin production from activated bleaching earth by a mutant strain of Ashbya gossypii.

    PubMed

    Tajima, Satoshi; Itoh, Yoko; Sugimoto, Takashi; Kato, Tatsuya; Park, Enoch Y

    2009-10-01

    The production of riboflavin from vegetable oil was increased using a mutant strain of Ashbya gossypii. This mutant was generated by treating the wild-type strain with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Riboflavin production was 10-fold higher in the mutant compared to the wild-type strain. The specific intracellular catalase activity after 3 d of culture was 6-fold higher in the mutant than in the wild-type strain. For the mutant, riboflavin production in the presence of 40 mM hydrogen peroxide was 16% less than that in the absence of hydrogen peroxide, whereas it was 56% less for the wild-type strain. The isocitrate lyase (ICL) activity of the mutant was 0.26 mU/mg of protein during the active riboflavin production phase, which was 2.6-fold higher than the wild-type strain. These data indicate that the mutant utilizes the carbon flux from the TCA cycle to the glyoxylate cycle more efficiently than the wild-type strain, resulting in enhanced riboflavin production. This novel mutant has the potential to be of use for industrial-scale riboflavin production from waste-activated bleaching earth (ABE), thereby transforming a useless material into a valuable bioproduct.

  1. Akt phosphorylates myc-associated zinc finger protein (MAZ), releases P-MAZ from the p53 promoter, and activates p53 transcription.

    PubMed

    Lee, Wei-Ping; Lan, Keng-Hsin; Li, Chung-Pin; Chao, Yee; Lin, Han-Chieh; Lee, Shou-Dong

    2016-05-28

    The p53 protein is a cell cycle regulator. When the cell cycle progresses, p53 plays an important role in putting a brake on the G1 phase to prevent unwanted errors during cell division. Akt is a downstream kinase of receptor tyrosine kinase. Upon activation, Akt phorphorylates IKK that then phosphorylates IκB and releases NF-κB, leading to transcriptional activation of Dmp1. Dmp1 is a transcriptional activator of Arf. It has been known that oncogene activation stabilizes p53 through transcriptional activation of Arf, which then binds and inhibits Mdm2. In the current study, we show that myc-associated zinc finger protein (MAZ) is a transcriptional repressor of the p53 promoter. Akt phosphorylates MAZ at Thr385, and the phosphorylated MAZ is released from the p53 promoter, leading to transcriptional activation of p53, a new mechanism that contributes to increased p53 protein pool during oncogene activation.

  2. Autophagy activation protects shock wave induced renal tubular epithelial cell apoptosis may through modulation of Akt/ GSK-3β pathway

    PubMed Central

    Long, Qingzhi; Li, Xiang; He, Hui; He, Dalin

    2016-01-01

    Purpose: Extracorporeal shock wave lithotripsy (ESWL) is well documented to exert destructive effect to renal cells and its mechanism is not clear. Autophagy is one of cell basic response for stressful conditions and it is important to determine cell's fate. The aim of this study is to elucidate the role of autophagy in the process of shock wave-induced renal cells injury. Methods: NRK-52E cell, a rat renal tubular epithelial cell, was exposed to shock wave at the voltage of 14KV. GFP-LC3 puncta was used to monitor Autophagy flux in the process of shock wave injury. Autophagic relative proteins, such as light chain 3 (LC3), beclin-1 and p62, were also examined. Cell variability and apoptosis were detected when inhibition autophagy with 3-methyladenine (3MA) or stimulating its activity with rapamycin during the process of shock wave injury. The role of Akt/ GSK-3β and its connection with autophagy in the process of shock wave injury were also investigated. Results: Shock wave was confirmed to activate autophagy in renal cells, which was manifested in LC3-II turnover, beclin-1 induction and degradation of p62. Inhibition autophagy enhanced cell damage or apoptosis, whereas its stimulating was able to exert protection from shock wave injury. Akt/ GSK-3β, a cell-survival signaling pathway, can also be activated during the process. And its activation could be suppressed by blockade autophagy. Conclusion: Autophagy is a self-protective response for renal cells from shock wave injury. The cyto-protection of autophagy may be connected with modulation Akt/ GSK-3β pathway. PMID:27994511

  3. Dissociation between the translocation and the activation of Akt in fMLP-stimulated human neutrophils--effect of prostaglandin E2.

    PubMed

    Burelout, Chantal; Naccache, Paul H; Bourgoin, Sylvain G

    2007-06-01

    PGE(2) and other cAMP-elevating agents are known to down-regulate most functions stimulated by fMLP in human polymorphonuclear neutrophils. We reported previously that the inhibitory potential of PGE(2) resides in its capacity to suppress fMLP-stimulated PI-3Kgamma activation via the PGE(2) receptor EP(2) and hence, to decrease phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P(3)] formation. Akt activity is stimulated by fMLP through phosphorylation on threonine 308 (Thr308) and serine 473 (Ser473) by 3-phosphoinositide-dependent kinase 1 (PDK1) and MAPK-AP kinase (APK)-APK-2 (MAPKAPK-2), respectively, in a PI-3K-dependent manner. Despite the suppression of fMLP-induced PI-3Kgamma activation observed in the presence of PGE(2), we show that Akt is fully phosphorylated on Thr308 and Ser473. However, fMLP-induced Akt translocation is decreased markedly in this context. PGE(2) does not affect the phosphorylation of MAPKAPK-2 but decreases the translocation of PDK1 induced by fMLP. Other cAMP-elevating agents such as adenosine (Ado) similarly block the fMLP-induced PI-3Kgamma activation process but do not inhibit Akt phosphorylation. However, Akt activity stimulated by fMLP is down-regulated slightly by agonists that elevate cAMP levels. Whereas protein kinase A is not involved in the maintenance of Akt phosphorylation, it is required for the inhibition of Akt translocation by PGE(2). Moreover, inhibition of fMLP-stimulated PI-3Kdelta activity by the selective inhibitor IC87114 only partially affects the late phase of Akt phosphorylation in the presence of PGE(2). Taken together, these results suggest that cAMP-elevating agents, such as PGE(2) or Ado, are able to induce an alternative mechanism of Akt activation by fMLP in which the translocation of Akt to PI(3,4,5)P(3)-enriched membranes is not required prior to its phosphorylation.

  4. Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancer.

    PubMed

    Bao, Guo-Qing; Shen, Bai-Yong; Pan, Chun-Peng; Zhang, Ya-Jing; Shi, Min-Min; Peng, Cheng-Hong

    2013-09-12

    Gemcitabine is a first-line drug utilised in the chemotherapy of pancreatic cancer; however, this drug induces chemo-resistance and toxicity to normal tissue during treatment. Here, we firstly report that andrographolide (ANDRO) alone not only has anti-pancreatic cancer activity, but it also potentiates the anti-tumour activity of gemcitabine. Treatment with ANDRO alone inhibits proliferation of the pancreatic cancer cell lines in a dose- and time-dependent manner in vitro. Interestingly, ANDRO induces cell cycle arrest and apoptosis of pancreatic cancer cells by inhibiting STAT3 and Akt activation, upregulating the expression of p21(WAF1) and Bax, and downregulating the expression of cyclinD1, cyclinE, survivin, X-IAP and Bcl-2. Additionally, ANDRO combined with gemcitabine significantly induce stronger cell cycle arrest and more obvious apoptosis than each single treatment. The mechanistic study demonstrates that this synergistic effect is also dependent on the inhibition of STAT3 and Akt activations which subsequently regulates the pathways involved in the apoptosis and cell cycle arrest. Furthermore, both ANDRO alone and the combination treatments exhibit efficacious anti-tumour activity in vivo. Overall, our results provide solid evidence supporting that ANDRO alone or its combination with gemcitabine is a potential chemotherapeutic approach for treating human pancreatic cancer in clinical practice.

  5. CB2 cannabinoid receptor activation promotes colon cancer progression via AKT/GSK3β signaling pathway

    PubMed Central

    Martínez-Martínez, Esther; Martín-Ruiz, Asunción; Martín, Paloma; Calvo, Virginia; Provencio, Mariano; García, José M.

    2016-01-01

    The pharmacological activation of the cannabinoid receptor type 2, CB2, has been shown to elicit anti-tumoral mechanisms in different cancer types. However, little is known about its endogenous role in tumor pathophysiology, and different studies have attributed pro-tumorigenic properties to this receptor. In a previous work, we showed that CB2 expression is a poor prognostic factor in colon cancer patients. Here we report that activation of CB2 with low doses of specific agonists induce cell proliferation and favor the acquisition of aggressive molecular features in colon cancer cells. We show that sub-micromolar concentrations of CB2-specific agonists, JWH-133 and HU-308, promote an increase in cell proliferation rate through the activation of AKT/PKB pathway in colon cancer in vitro and in vivo. AKT activation promotes GSK3β inhibition and thus, a more aggressive cell phenotype with the subsequent elevation of SNAIL levels, E-cadherin degradation and β-catenin delocalization from cell membrane. Taken together, our data show that CB2 activation with sub-micromolar doses of agonists, which could be more similar to endogenous levels of cannabinoids, promote colon cancer progression, implicating that CB2 could have a pro-tumorigenic endogenous role in colon cancer. PMID:27634891

  6. Activation of PI3K/Akt/mTOR signaling in the tumor stroma drives endocrine therapy-dependent breast tumor regression

    PubMed Central

    Polo, María Laura; Riggio, Marina; May, María; Rodríguez, María Jimena; Perrone, María Cecilia; Stallings-Mann, Melody; Kaen, Diego; Frost, Marlene; Goetz, Matthew; Boughey, Judy; Lanari, Claudia; Radisky, Derek; Novaro, Virginia

    2015-01-01

    Improved efficacy of neoadjuvant endocrine-targeting therapies in luminal breast carcinomas could be achieved with optimal use of pathway targeting agents. In a mouse model of ductal breast carcinoma we identify a tumor regressive stromal reaction that is induced by neoadjuvant endocrine therapy. This reparative reaction is characterized by tumor neovascularization accompanied by infiltration of immune cells and carcinoma-associated fibroblasts that stain for phosphorylated ribosomal protein S6 (pS6), downstream the PI3K/Akt/mTOR pathway. While tumor variants with higher PI3K/Akt/mTOR activity respond well to a combination of endocrine and PI3K/Akt/mTOR inhibitors, tumor variants with lower PI3K/Akt/mTOR activity respond more poorly to the combination therapy than to the endocrine therapy alone, associated with inhibition of stromal pS6 and the reparative reaction. In human breast cancer xenografts we confirm that such differential sensitivity to therapy is primarily determined by the level of PI3K/Akt/mTOR in tumor cells. We further show that the clinical response of breast cancer patients undergoing neoadjuvant endocrine therapy is associated with the reparative stromal reaction. We conclude that tumor level and localization of pS6 are associated with therapeutic response in breast cancer and represent biomarkers to distinguish which tumors will benefit from the incorporation of PI3K/Akt/mTOR inhibitors with neoadjuvant endocrine therapy. PMID:26098779

  7. Hydrogen sulfide promotes cell proliferation of oral cancer through activation of the COX2/AKT/ERK1/2 axis.

    PubMed

    Zhang, Shuai; Bian, Huan; Li, Xiaoxu; Wu, Huanhuan; Bi, Qingwei; Yan, Yingbin; Wang, Yixiang

    2016-05-01

    Hydrogen sulfide, the third gaseous transmitter, is one of the main causes of halitosis in the oral cavity. It is generally considered as playing a deleterious role in many oral diseases including oral cancer. However, the regulatory mechanisms involved in the effects of hydrogen sulfide on oral cancer growth remain largely unknown. In the present study, we investigated the underlying mechanisms through CCK-8 assay, EdU incorporation, real-time PCR, western blot and pathway blockade assays. Our results showed that hydrogen sulfide promoted oral cancer cell proliferation through activation of the COX2, AKT and ERK1/2 pathways in a dose-dependent manner. Blocking any of the three above pathways inhibited hydrogen sulfide-induced oral cancer cell proliferation. Meanwhile, blockade of COX2 by niflumic acid downregulated NaHS-induced p-ERK and p-AKT expression. Inactivation of the AKT pathway by GSK690693 significantly decreased NaHS‑induced p-ERK1/2 expression, and inhibition of the ERK1/2 pathway by U0126 markedly increased NaHS-induced p-AKT expression. Either the AKT or ERK1/2 inhibitor did not significantly alter the COX2 expression level. Our data revealed, for the first time, that hydrogen sulfide promotes oral cancer cell proliferation through activation of the COX2/AKT/ERK1/2 axis, suggesting new potential targets to eliminate the effect of hydrogen sulfide on the development of oral cancer.

  8. Activation of GRs-Akt-nNOs-NR2B signaling pathway by second dose GR agonist contributes to exacerbated hyperalgesia in a rat model of radicular pain.

    PubMed

    Zhang, Jing; Zhang, Wei; Sun, Yu'e; Liu, Yue; Song, Lihua; Ma, Zhengliang; Gu, Xiaoping

    2014-06-01

    Central Akt, neuronal nitric oxide synthase (nNOS) and N-methyl-D-aspartate receptor subunit 2B (NR2B) play key roles in the development of neuropathic pain. Here we investigate the effects of glucocorticoid receptors (GRs) on the expression and activation of spinal Akt, nNOS and NR2B after chronic compression of dorsal root ganglia (CCD). Thermal hyperalgesia test and mechanical allodynia test were used to measure rats after intrathecal injection of GR antagonist mifepristone or GR agonist dexamethasone for 21 days postoperatively. Expression of spinal Akt, nNOS, NR2B and their phosphorylation state after CCD was examined by western blot. The effects of intrathecal treatment with dexamethasone or mifepristone on nociceptive behaviors and the corresponding expression of Akt, nNOS and NR2B in spinal cord were also investigated. Intrathecal injection of mifepristone or dexamethasone inhibited PWMT and PWTL in CCD rats. However, hyperalgesia was induced by intrathecal injection of dexamethasone on days 12 to 14 after surgery. Treatment of dexamethasone increased the expression and phosphorylation levels of spinal Akt, nNOS, GR and NR2B time dependently, whereas administration of mifepristone downregulated the expression of these proteins significantly. GRs activated spinal Akt-nNOS/NR2B pathway play important roles in the development of neuropathic pain in a time-dependent manner.

  9. Methylmercury, an environmental electrophile capable of activation and disruption of the Akt/CREB/Bcl-2 signal transduction pathway in SH-SY5Y cells

    PubMed Central

    Unoki, Takamitsu; Abiko, Yumi; Toyama, Takashi; Uehara, Takashi; Tsuboi, Koji; Nishida, Motohiro; Kaji, Toshiyuki; Kumagai, Yoshito

    2016-01-01

    Methylmercury (MeHg) modifies cellular proteins via their thiol groups in a process referred to as “S-mercuration”, potentially resulting in modulation of the cellular signal transduction pathway. We examined whether low-dose MeHg could affect Akt signaling involved in cell survival. Exposure of human neuroblastoma SH-SY5Y cells of up to 2 μM MeHg phosphorylated Akt and its downstream signal molecule CREB, presumably due to inactivation of PTEN through S-mercuration. As a result, the anti-apoptotic protein Bcl-2 was up-regulated by MeHg. The activation of Akt/CREB/Bcl-2 signaling mediated by MeHg was, at least in part, linked to cellular defence because either pretreatment with wortmannin to block PI3K/Akt signaling or knockdown of Bcl-2 enhanced MeHg-mediated cytotoxicity. In contrast, increasing concentrations of MeHg disrupted Akt/CREB/Bcl-2 signaling. This phenomenon was attributed to S-mercuration of CREB through Cys286 rather than Akt. These results suggest that although MeHg is an apoptosis-inducing toxicant, this environmental electrophile is able to activate the cell survival signal transduction pathway at lower concentrations prior to apoptotic cell death. PMID:27357941

  10. Computational Model of Gab1/2-Dependent VEGFR2 Pathway to Akt Activation

    PubMed Central

    Tan, Wan Hua; Popel, Aleksander S.; Mac Gabhann, Feilim

    2013-01-01

    Vascular endothelial growth factor (VEGF) signal transduction is central to angiogenesis in development and in pathological conditions such as cancer, retinopathy and ischemic diseases. However, no detailed mass-action models of VEGF receptor signaling have been developed. We constructed and validated the first computational model of VEGFR2 trafficking and signaling, to study the opposing roles of Gab1 and Gab2 in regulation of Akt phosphorylation in VEGF-stimulated endothelial cells. Trafficking parameters were optimized against 5 previously published in vitro experiments, and the model was validated against six independent published datasets. The model showed agreement at several key nodes, involving scaffolding proteins Gab1, Gab2 and their complexes with Shp2. VEGFR2 recruitment of Gab1 is greater in magnitude, slower, and more sustained than that of Gab2. As Gab2 binds VEGFR2 complexes more transiently than Gab1, VEGFR2 complexes can recycle and continue to participate in other signaling pathways. Correspondingly, the simulation results show a log-linear relationship between a decrease in Akt phosphorylation and Gab1 knockdown while a linear relationship was observed between an increase in Akt phosphorylation and Gab2 knockdown. Global sensitivity analysis demonstrated the importance of initial-concentration ratios of antagonistic molecular species (Gab1/Gab2 and PI3K/Shp2) in determining Akt phosphorylation profiles. It also showed that kinetic parameters responsible for transient Gab2 binding affect the system at specific nodes. This model can be expanded to study multiple signaling contexts and receptor crosstalk and can form a basis for investigation of therapeutic approaches, such as tyrosine kinase inhibitors (TKIs), overexpression of key signaling proteins or knockdown experiments. PMID:23805312

  11. Increase in reactive oxygen species and activation of Akt signaling pathway in neuropathic pain.

    PubMed

    Guedes, Renata P; Araújo, Alex S R; Janner, Daiane; Belló-Klein, Adriane; Ribeiro, Maria Flávia M; Partata, Wania A

    2008-12-01

    Neuropathic pain occurs as a result of peripheral or central nervous system injury. Its pathophysiology involves mainly a central sensitization mechanism that may be correlated to many molecules acting in regions involved in pain processing, such as the spinal cord. It has been demonstrated that reactive oxygen species (ROS) and signaling molecules, such as the serine/threonine protein kinase Akt, are involved in neuropathic pain mechanisms. Thus, the aim of this study was to provide evidence of this relationship. Sciatic nerve transection (SNT) was used to induce neuropathic pain in rats. Western blot analysis of Akt and 4-hydroxy-2-nonenal (HNE)-Michael adducts, and measurement of hydrogen peroxide (H(2)O(2)) in the lumbosacral spinal cord were performed. The main findings were found seven days after SNT, when there was an increase in HNE-Michael adducts formation, total and p-Akt expression, and H(2)O(2) concentration. However, one and 15 days after SNT, H(2)O(2) concentration was raised in both sham (animals that were submitted to surgery without nerve injury) and SNT groups, showing the high sensibility of this ROS to nociceptive afferent stimuli, not only to neuropathic pain. p-Akt also increased in sham and SNT groups one day post injury, but at 3 and 7 days the increase occurred exclusively in SNT animals. Thus, there is crosstalk between intracellular signaling pathways and ROS, and these molecules can act as protective agents in acute pain situations or play a role in the development of chronic pain states.

  12. Erythropoietin pretreatment suppresses inflammation by activating the PI3K/Akt signaling pathway in myocardial ischemia-reperfusion injury

    PubMed Central

    RONG, REN; XIJUN, XIAO

    2015-01-01

    Erythropoietin (EPO), a glycoprotein originally known for its important role in the stimulation of erythropoiesis, has recently been shown to have significant protective effects in animal models of kidney and intestinal ischemia-reperfusion injury (IRI). However, the mechanism underlying these protective effects remains unclear. The aim of the current study was to evaluate the effects of EPO on myocardial IRI and to investigate the mechanism underlying these effects. A total of 18 male Sprague Dawley rats were randomly divided into three groups, namely the sham, IRI-saline and IRI-EPO groups. Rats in the IRI-EPO group were administered 5,000 U/kg EPO intraperitoneally 24 h prior to the induction of IRI. IRI was induced by ligating the left descending coronary artery for 30 min, followed by reperfusion for 3 h. Pathological changes in the myocardial tissue were observed and scored. The levels of the proinflammatory cytokines, interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α, were evaluated in the serum and myocardial tissue. Furthermore, the effects of EPO on phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling and EPO receptor (EPOR) phosphorylation were measured. Pathological changes in the myocardial tissue, increased expression levels of TNF-α, IL-6 and IL-1β in the myocardium, and increased serum levels of these mediators, as a result of IRI, were significantly decreased by EPO pretreatment. The effects of EPO were found to be associated with the activation of PI3K/Akt signaling, which suppressed the inflammatory responses, following the initiation of EPOR activation by EPO. Therefore, EPO pretreatment was demonstrated to decrease myocardial IRI, which was associated with activation of EPOR, subsequently increasing PI3K/Akt signaling to inhibit the production and release of inflammatory mediators. Thus, the results of the present study indicated that EPO may be useful for preventing myocardial IRI. PMID:26622330

  13. Isorhamnetin Attenuates Atherosclerosis by Inhibiting Macrophage Apoptosis via PI3K/AKT Activation and HO-1 Induction

    PubMed Central

    Luo, Yun; Sun, Guibo; Dong, Xi; Wang, Min; Qin, Meng; Yu, Yingli; Sun, Xiaobo

    2015-01-01

    Background and Purpose Isorhamnetin (Iso) is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L. Previous studies have revealed its anti-cancer, anti-inflammatory, and anti-oxidant activities. This study investigated the ability of Iso to inhibit oxidized low-density lipoprotein (ox-LDL)-induced cell apoptosis in THP-1-derived macrophages. The effects of Iso on atherosclerosis in vivo were also evaluated in apolipoprotein E knockout (ApoE-/-) mice fed a high fat diet. Methods and Results Iso showed significant inhibitory effects on ox-LDL-induced THP-1-derived macrophage injuries via decreasing reactive oxygen species levels, lipid deposition, and caspase-3 activation, restoring mitochondrial membrane potential, reducing the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells, and regulating apoptosis-related proteins. We also determined the protective effects of Iso by PI3K/AKT activation and HO-1 induction. Iso reduced the atherosclerotic plaque size in vivo in ApoE-/- mice as assessed by oil red O, Sudan IV staining, and CD68-positive cells, and reduced macrophage apoptosis as assessed by caspase-3 and TUNEL assays in lesions. Conclusion In conclusion, our results show that Iso inhibited atherosclerotic plaque development in ApoE-/- mice by PI3K/AKT activation and HO-1 induction. PMID:25799286

  14. YB-1 overexpression promotes a TGF-β1-induced epithelial–mesenchymal transition via Akt activation

    SciTech Connect

    Ha, Bin; Lee, Eun Byul; Cui, Jun; Kim, Yosup; Jang, Ho Hee

    2015-03-06

    The Y-box binding protein-1 (YB-1) is a transcription/translation regulatory protein, and the expression thereof is associated with cancer aggressiveness. In the present study, we explored the regulatory effects of YB-1 during the transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma cells. Downregulation of YB-1 increased E-cadherin promoter activity, and upregulation of YB-1 decreased promoter activity, suggesting that the YB-1 level may be correlated with the EMT. TGF-β1 induced YB-1 expression, and TGF-β1 translocated cytosolic YB-1 into the nucleus. YB-1 overexpression promoted TGF-β1-induced downregulation of epithelial markers, upregulation of mesenchymal markers, and cell migration. Moreover, YB-1 overexpression enhanced the expression of E-cadherin transcriptional repressors via TGF-β1-induced Akt activation. Our findings afford new insights into the role played by YB-1 in the TGF-β1 signaling pathway. - Highlights: • YB-1 regulates E-cadherin expression in A549 cells. • TGF-β1 induces upregulating and nuclear localization of YB-1. • YB-1 overexpression accelerates TGF-β1-induced EMT and cell migration. • YB-1 regulates Snail and Slug expression via Akt activation.

  15. Regulation of NF-κB Activation through a Novel PI-3K-Independent and PKA/Akt-Dependent Pathway in Human Umbilical Vein Endothelial Cells

    PubMed Central

    Balwani, Sakshi; Chaudhuri, Rituparna; Nandi, Debkumar; Jaisankar, Parasuraman; Agrawal, Anurag; Ghosh, Balaram

    2012-01-01

    The transcription factor NF-κB regulates numerous inflammatory diseases, and proteins involved in the NF-κB-activating signaling pathway are important therapeutic targets. In human umbilical vein endothelial cells (HUVECs), TNF-α-induced IκBα degradation and p65/RelA phosphorylation regulate NF-κB activation. These are mediated by IKKs (IκB kinases) viz. IKKα, β and γ which receive activating signals from upstream kinases such as Akt. Akt is known to be positively regulated by PI-3K (phosphoinositide-3-kinase) and differentially regulated via Protein kinase A (PKA) in various cell types. However, the involvement of PKA/Akt cross talk in regulating NF-κB in HUVECs has not been explored yet. Here, we examined the involvement of PKA/Akt cross-talk in HUVECs using a novel compound, 2-methyl-pyran-4-one-3-O-β-D-2′,3′,4′,6′-tetra-O-acetyl glucopyranoside (MPTAG). We observed that MPTAG does not directly inhibit IKK-β but prevents TNF-α-induced activation of IKK-β by blocking its association with Akt and thereby inhibits NF-κB activation. Interestingly, our results also revealed that inhibitory effect of MPTAG on Akt and NF-κB activation was unaffected by wortmannin, and was completely abolished by H-89 treatment in these cells. Thus, MPTAG-mediated inhibition of TNF-α-induced Akt activation was independent of PI-3K and dependent on PKA. Most importantly, MPTAG restores the otherwise repressed activity of PKA and inhibits the TNF-α-induced Akt phosphorylation at both Thr308 and Ser473 residues. Thus, we demonstrate for the first time the involvement of PKA/Akt cross talk in NF-κB activation in HUVECs. Also, MPTAG could be useful as a lead molecule for developing potent therapeutic molecules for diseases where NF-κB activation plays a key role. PMID:23071583

  16. IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival.

    PubMed

    Wofford, Jessica A; Wieman, Heather L; Jacobs, Sarah R; Zhao, Yuxing; Rathmell, Jeffrey C

    2008-02-15

    Lymphocyte homeostasis requires coordination of metabolic processes with cellular energetic and biosynthetic demands but mechanisms that regulate T-cell metabolism are uncertain. We show that interleukin-7 (IL-7) is a key regulator of glucose uptake in T lymphocytes. To determine how IL-7 affects glucose uptake, we analyzed IL-7 signaling mechanisms and regulation of the glucose transporter, Glut1. The IL-7 receptor (IL-7R) stimulated glucose uptake and cell-surface localization of Glut1 in a manner that required IL-7R Y449, which promoted rapid signal transducer and activator of transcription 5 (STAT5) activation and a delayed yet sustained activation of Akt. Each pathway was necessary for IL-7 to promote glucose uptake, as Akt1(-/-) T cells or PI3-kinase inhibition and RNAi of STAT5 led to defective glucose uptake in response to IL-7. STAT5 and Akt acted in a linear pathway, with STAT5-mediated transcription leading to Akt activation, which was necessary for STAT5 and IL-7 to promote glucose uptake and prevent cell death. Importantly, IL-7 required glucose uptake to promote cell survival. These data demonstrate that IL-7 promotes glucose uptake via a novel signaling mechanism in which STAT5 transcriptional activity promotes Akt activation to regulate Glut1 trafficking and glucose uptake that is critical for IL-7 to prevent T-cell death and maintain homeostasis.

  17. Seabuckthorn Pulp Oil Protects against Myocardial Ischemia-Reperfusion Injury in Rats through Activation of Akt/eNOS.

    PubMed

    Suchal, Kapil; Bhatia, Jagriti; Malik, Salma; Malhotra, Rajiv Kumar; Gamad, Nanda; Goyal, Sameer; Nag, Tapas C; Arya, Dharamvir S; Ojha, Shreesh

    2016-01-01

    Seabuckthorn (SBT) pulp oil obtained from the fruits of seabuckthorn [Hippophae rhamnoides L. (Elaeagnaceae)] has been used traditionally for its medicinal and nutritional properties. However, its role in ischemia-reperfusion (IR) injury of myocardium in rats has not been elucidated so far. The present study reports the cardioprotective effect of SBT pulp oil in IR-induced model of myocardial infarction in rats and underlying mechanism mediating activation of Akt/eNOS signaling pathway. Male albino Wistar rats were orally administered SBT pulp oil (5, 10, and 20 ml/kg/day) or saline for 30 days. On the day 31, ischemia was induced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. SBT pulp oil pretreatment at the dose of 20 ml/kg observed to stabilize cardiac function and myocardial antioxidants such as glutathione, superoxide dismutase, catalase, and inhibited lipid peroxidation evidenced by reduced malondialdehyde levels as compared to IR-control group. SBT pulp oil also improved hemodynamic and contractile function and decreased tumor necrosis factor and activities of myocyte injury marker enzymes; lactate dehydrogenase and creatine kinase-MB. Additionally, a remarkable rise in expression of pAkt-eNOS, Bcl-2 and decline in expression of IKKβ/NF-κB and Bax was observed in the myocardium. The histopathological and ultrastructural salvage of cardiomyocytes further supports the cardioprotective effect of SBT pulp oil. Based on findings, it can be concluded that SBT pulp oil protects against myocardial IR injury mediating favorable modulation of Akt-eNOS and IKKβ/NF-κB expression.

  18. Hyaluronan Activates Cell Motility of v-Src-transformed Cells via Ras-Mitogen–activated Protein Kinase and Phosphoinositide 3-Kinase-Akt in a Tumor-specific Manner

    PubMed Central

    Sohara, Yasuyoshi; Ishiguro, Naoki; Machida, Kazuya; Kurata, Hisashi; Thant, Aye Aye; Senga, Takeshi; Matsuda, Satoru; Kimata, Koji; Iwata, Hisashi; Hamaguchi, Michinari

    2001-01-01

    We investigated the production of hyaluronan (HA) and its effect on cell motility in cells expressing the v-src mutants. Transformation of 3Y1 by v-src virtually activated HA secretion, whereas G2A v-src, a nonmyristoylated form of v-src defective in cell transformation, had no effect. In cells expressing the temperature-sensitive mutant of v-Src, HA secretion was temperature dependent. In addition, HA as small as 1 nM, on the other side, activated cell motility in a tumor-specific manner. HA treatment strongly activated the motility of v-Src–transformed 3Y1, whereas it showed no effect on 3Y1- and 3Y1-expressing G2A v-src. HA-dependent cell locomotion was strongly blocked by either expression of dominant-negative Ras or treatment with a Ras farnesyltransferase inhibitor. Similarly, both the MEK1 inhibitor and the kinase inhibitor clearly inhibited HA-dependent cell locomotion. In contrast, cells transformed with an active MEK1 did not respond to the HA. Finally, an anti-CD44–neutralizing antibody could block the activation of cell motility by HA as well as the HA-dependent phosphorylation of mitogen-activated protein kinase and Akt. Taken together, these results suggest that simultaneous activation of the Ras-mitogen-activated protein kinase pathway and the phosphoinositide 3-kinase pathway by the HA-CD44 interaction is required for the activation of HA-dependent cell locomotion in v-Src–transformed cells. PMID:11408591

  19. DNA–PKcs–SIN1 complexation mediates low-dose X-ray irradiation (LDI)-induced Akt activation and osteoblast differentiation

    SciTech Connect

    Xu, Yong; Fang, Shi-ji; Zhu, Li-juan; Zhu, Lun-qing; Zhou, Xiao-zhong

    2014-10-24

    Highlights: • LDI increases ALP activity, promotes type I collagen (Col I)/Runx2 mRNA expression. • LDI induces DNA–PKcs activation, which is required for osteoblast differentiation. • Akt activation mediates LDI-induced ALP activity and Col I/Runx2 mRNA increase. • DNA–PKcs–SIN1 complexation mediates LDI-induced Akt Ser-473 phosphorylation. • DNA–PKcs–SIN1 complexation is important for osteoblast differentiation. - Abstract: Low-dose irradiation (LDI) induces osteoblast differentiation, however the underlying mechanisms are not fully understood. In this study, we explored the potential role of DNA-dependent protein kinase catalytic subunit (DNA–PKcs)–Akt signaling in LDI-induced osteoblast differentiation. We confirmed that LDI promoted mouse calvarial osteoblast differentiation, which was detected by increased alkaline phosphatase (ALP) activity as well as mRNA expression of type I collagen (Col I) and runt-related transcription factor 2 (Runx2). In mouse osteoblasts, LDI (1 Gy) induced phosphorylation of DNA–PKcs and Akt (mainly at Ser-473). The kinase inhibitors against DNA–PKcs (NU-7026 and NU-7441) or Akt (LY294002, perifosine and MK-2206), as well as partial depletion of DNA–PKcs or Akt1 by targeted-shRNA, dramatically inhibited LDI-induced Akt activation and mouse osteoblast differentiation. Further, siRNA-knockdown of SIN1, a key component of mTOR complex 2 (mTORC2), also inhibited LDI-induced Akt Ser-473 phosphorylation as well as ALP activity increase and Col I/Runx2 expression in mouse osteoblasts. Co-immunoprecipitation (Co-IP) assay results demonstrated that LDI-induced DNA–PKcs–SIN1 complexation, which was inhibited by NU-7441 or SIN1 siRNA-knockdown in mouse osteoblasts. In summary, our data suggest that DNA–PKcs–SIN1 complexation-mediated Akt activation (Ser-473 phosphorylation) is required for mouse osteoblast differentiation.

  20. The small GTPase Rap1b negatively regulates neutrophil chemotaxis and transcellular diapedesis by inhibiting Akt activation.

    PubMed

    Kumar, Sachin; Xu, Juying; Kumar, Rupali Sani; Lakshmikanthan, Sribalaji; Kapur, Reuben; Kofron, Matthew; Chrzanowska-Wodnicka, Magdalena; Filippi, Marie-Dominique

    2014-08-25

    Neutrophils are the first line of cellular defense in response to infections and inflammatory injuries. However, neutrophil activation and accumulation into tissues trigger tissue damage due to release of a plethora of toxic oxidants and proteases, a cause of acute lung injury (ALI). Despite its clinical importance, the molecular regulation of neutrophil migration is poorly understood. The small GTPase Rap1b is generally viewed as a positive regulator of immune cell functions by controlling bidirectional integrin signaling. However, we found that Rap1b-deficient mice exhibited enhanced neutrophil recruitment to inflamed lungs and enhanced susceptibility to endotoxin shock. Unexpectedly, Rap1b deficiency promoted the transcellular route of diapedesis through endothelial cell. Increased transcellular migration of Rap1b-deficient neutrophils in vitro was selectively mediated by enhanced PI3K-Akt activation and invadopodia-like protrusions. Akt inhibition in vivo suppressed excessive Rap1b-deficient neutrophil migration and associated endotoxin shock. The inhibitory action of Rap1b on PI3K signaling may be mediated by activation of phosphatase SHP-1. Thus, this study reveals an unexpected role for Rap1b as a key suppressor of neutrophil migration and lung inflammation.

  1. Dodeca-2(E),4(E)-dienoic acid isobutylamide enhances glucose uptake in 3T3-L1 cells via activation of Akt signaling.

    PubMed

    Choi, Kyeong-Mi; Kim, Wonkyun; Hong, Jin Tae; Yoo, Hwan-Soo

    2017-02-01

    Dodeca-2(E),4(E)-dienoic acid isobutylamide (DDI), an alkamide derived from the plant Echinacea purpurea, promotes adipocyte differentiation and activates peroxisome proliferator-activated receptor γ, which is associated with enhanced insulin sensitivity. In the present study, we investigated whether DDI may increase glucose uptake through activation of the insulin signaling pathway in 3T3-L1 adipocytes. DDI increased insulin-stimulated glucose uptake, and expression and translocation of glucose transporter 4 in adipocytes treated with sub-optimal levels of insulin. Additionally, DDI enhanced Akt phosphorylation, whereas phosphoinositide 3-kinase/Akt inhibitors suppressed DDI-induced glucose uptake. These results suggest that DDI may improve insulin sensitivity through the activation of Akt signaling, which leads to enhanced glucose uptake.

  2. Activity of KB-5246 against outer membrane mutants of Escherichia coli and Salmonella typhimurium.

    PubMed Central

    Kotera, Y; Inoue, M; Mitsuhashi, S

    1990-01-01

    The inhibitory activity of KB-5246 against Escherichia coli DNA gyrase and the antibacterial activity and apparent uptake in E. coli and Salmonella typhimurium outer membrane mutants of KB-5246 were measured. The 50% inhibitory concentrations of KB-5246, ciprofloxacin, oflaxacin, and norfloxacin for E. coli KL-16 DNA gyrase were 0.72, 0.62, 0.84, and 1.16 micrograms/ml, respectively. The activity of KB-5246 was twofold lower against an OmpF-deficient mutant and twofold higher against a mutant which produced OmpF constitutively than against the parent with osmoregulated OmpF production. KB-5246 had twofold-higher activity against a deep rough mutant of S. typhimurium than against the parent. The apparent uptake of KB-5246 in the OmpF-deficient mutant was decreased and its uptake in the deep rough mutant was increased when compared with those in the parents. These results suggest that KB-5246 is taken up by porin and nonporin pathways and has strong inhibitory activity against DNA gyrase, resulting in potent antibacterial activity. PMID:2167038

  3. Analysis of crystal structure of Arabidopsis MPK6 and generation of its mutants with higher activity.

    PubMed

    Wang, Bo; Qin, Xinghua; Wu, Juan; Deng, Hongying; Li, Yuan; Yang, Hailian; Chen, Zhongzhou; Liu, Guoqin; Ren, Dongtao

    2016-05-10

    Mitogen-activated protein kinase (MAPK) cascades, which are the highly conserved signalling modules in eukaryotic organisms, have been shown to play important roles in regulating growth, development, and stress responses. The structures of various MAPKs from yeast and animal have been solved, and structure-based mutants were generated for their function analyses, however, the structures of plant MAPKs remain unsolved. Here, we report the crystal structure of Arabidopsis MPK6 at a 3.0 Å resolution. Although MPK6 is topologically similar to ERK2 and p38, the structures of the glycine-rich loop, MAPK insert, substrate binding sites, and L16 loop in MPK6 show notable differences from those of ERK2 and p38. Based on the structural comparison, we constructed MPK6 mutants and analyzed their kinase activity both in vitro and in planta. MPK6(F364L) and MPK6(F368L) mutants, in which Phe364 and Phe368 in the L16 loop were changed to Leu, respectively, acquired higher intrinsic kinase activity and retained the normal MAPKK activation property. The expression of MPK6 mutants with basal activity is sufficient to induce camalexin biosynthesis; however, to induce ethylene and leaf senescence, the expression of MPK6 mutants with higher activity is required. The results suggest that these mutants can be used to analyze the specific biological functions of MPK6.

  4. PI3 kinase/Akt activation mediates estrogen and IGF-1 nigral DA neuronal neuroprotection against a unilateral rat model of Parkinson's disease.

    PubMed

    Quesada, Arnulfo; Lee, Becky Y; Micevych, Paul E

    2008-04-01

    Recently, using the medial forebrain bundle (MFB) 6-hydroxydopmaine (6-OHDA) lesion rat model of Parkinson's disease (PD), we have demonstrated that blockade of central IGF-1 receptors (IGF-1R) attenuated estrogen neuroprotection of substantia nigra pars compacta (SNpc) DA neurons, but exacerbated 6-OHDA lesions in IGF-1 only treated rats (Quesada and Micevych [2004]: J Neurosci Res 75:107-116). This suggested that the IGF-1 system is a central mechanism through which estrogen acts to protect the nigrostriatal DA system. Moreover, these results also suggest that IGF-1R-induced intracellular signaling pathways are involved in the estrogen mechanism that promotes neuronal survival. In vitro, two convergent intracellular signaling pathways used by estrogen and IGF-1, the mitogen-activated protein kinase (MAPK/ERK), and phosphatidyl-inositol-3-kinase/Akt (PI3K/Akt), have been demonstrated to be neuroprotective. Continuous central infusions of MAPK/ERK and PI3K/Akt inhibitors were used to test the hypothesis that one or both of these signal transduction pathways mediates estrogen and/or IGF-1 neuroprotection of SNpc DA neurons after a unilateral administration of 6-OHDA into the MFB of rats. Motor behavior tests and tyrosine hydroxylase immunoreactivity revealed that the inhibitor of the PI3K/Akt pathway (LY294002) blocked the survival effects of both estrogen and IGF-1, while an inhibitor of the MAPK/ERK signaling (PD98059) was ineffective. Western blot analyses showed that estrogen and IGF-1 treatments increased PI3K/Akt activation in the SN; however, MAPK/ERK activation was decreased in the SN. Indeed, continuous infusions of inhibitors blocked phosphorylation of PI3K/Akt and MAPK/ERK. These findings indicate that estrogen and IGF-1-mediated SNpc DA neuronal protection is dependent on PI3K/Akt signaling, but not on the MAPK/ERK pathway.

  5. A novel 7-bromoindirubin with potent anticancer activity suppresses survival of human melanoma cells associated with inhibition of STAT3 and Akt signaling.

    PubMed

    Liu, Lucy; Kritsanida, Marina; Magiatis, Prokopios; Gaboriaud, Nicolas; Wang, Yan; Wu, Jun; Buettner, Ralf; Yang, Fan; Nam, Sangkil; Skaltsounis, Leandros; Jove, Richard

    2012-11-01

    STAT3 and Akt signaling have been validated as potential molecular targets for treatment of cancers including melanoma. These small molecule inhibitors of STAT3 or Akt signaling are promising for developing anti-melanoma therapeutic agents. MLS-2438, a novel 7-bromoindirubin, a derivative of the natural product indirubin, was synthesized with a bromo-group at the 7-position on one indole ring and a hydrophilic group at the 3'-position on the other indole ring. We tested the anticancer activity of MLS-2438 and investigated its mechanism of action in human melanoma cell lines. Here, we show that MLS-2438 inhibits viability and induces apoptosis of human melanoma cells associated with inhibition of STAT3 and Akt signaling. Several pro-apoptotic Bcl-2 family proteins are involved in the MLS-2438 mediated apoptosis. MLS-2438 inhibits Src kinase activity in vitro and phosphorylation of JAK2, Src, STAT3 and Akt in cultured cancer cells. In contrast to the decreased phosphorylation levels of JAK2, Src, STAT3 and Akt, phosphorylation levels of the MAPK (Erk1/2) signaling protein were not reduced in cells treated with MLS-2438. These results demonstrate that MLS-2438, a novel natural product derivative, is a Src inhibitor and potentially regulates kinase activity of JAK2 and Akt in cancer cells. Importantly, MLS-2438 suppressed tumor growth with low toxicity in a mouse xenograft model of human melanoma. Our findings support further development of MLS-2438 as a potential small-molecule therapeutic agent that targets both STAT3 and Akt signaling in human melanoma cells.

  6. The pro-angiogenic cytokine pleiotrophin potentiates cardiomyocyte apoptosis through inhibition of endogenous AKT/PKB activity.

    PubMed

    Li, Jinliang; Wei, Hong; Chesley, Alan; Moon, Chanil; Krawczyk, Melissa; Volkova, Maria; Ziman, Bruce; Margulies, Kenneth B; Talan, Mark; Crow, Michael T; Boheler, Kenneth R

    2007-11-30

    Pleiotrophin is a development-regulated cytokine and growth factor that can promote angiogenesis, cell proliferation, or differentiation, and it has been reported to have neovasculogenic effects in damaged heart. Developmentally, it is prominently expressed in fetal and neonatal hearts, but it is minimally expressed in normal adult heart. Conversely, we show in a rat model of myocardial infarction and in human dilated cardiomyopathy that pleiotrophin is markedly up-regulated. To elucidate the effects of pleiotrophin on cardiac contractile cells, we employed primary cultures of rat neonatal and adult cardiomyocytes. We show that pleiotrophin is released from cardiomyocytes in vitro in response to hypoxia and that the addition of recombinant pleiotrophin promotes caspase-mediated genomic DNA fragmentation in a dose- and time-dependent manner. Functionally, it potentiates the apoptotic response of neonatal cardiomyocytes to hypoxic stress and to ultraviolet irradiation and of adult cardiomyocytes to hypoxia-reoxygenation. Moreover, UV-induced apoptosis in neonatal cardiomyocytes can be partially inhibited by small interfering RNA-mediated knockdown of endogenous pleiotrophin. Mechanistically, pleiotrophin antagonizes IGF-1 associated Ser-473 phosphorylation of AKT/PKB, and it concomitantly decreases both BAD and GSK3beta phosphorylation. Adenoviral expression of constitutively active AKT and lithium chloride-mediated inhibition of GSK3beta reduce the potentiated programmed cell death elicited by pleiotrophin. These latter data indicate that pleiotrophin potentiates cardiomyocyte cell death, at least partially, through inhibition of AKT signaling. In conclusion, we have uncovered a novel function for pleiotrophin on heart cells following injury. It fosters cardiomyocyte programmed cell death in response to pro-apoptotic stress, which may be critical to myocardial injury repair.

  7. Pseudolaric acid B exerts antitumor activity via suppression of the Akt signaling pathway in HeLa cervical cancer cells.

    PubMed

    Li, Mingqun; Hong, Li

    2015-08-01

    Pseudolaric acid B (PAB) is a diterpene acid isolated from the bark of the root and trunk of Pseudolarix kaempferi Gordon (Pinaceae), which has demonstrated cytotoxic effects against various types of cancer. However, the mechanisms underlying the anticancer effects of PAB have remained to be elucidated. In the present study, the effects of PAB on the viability and apoptosis of HeLa cells were investigated by MTT assay, flow cytometric analysis of Annexin V-fluorescein isothiocyanate/propidium iodide staining, Rhodamine 123 staining and western blot analysis. The results demonstrated that PAB had antiproliferative and apoptosis-inducing effects on HeLa cells. PAB markedly inhibited HeLa cell viability in a time- and concentration-dependent manner. Flow cytometric analysis indicated that PAB induced apoptosis in HeLa cells in a dose-dependent manner. Treatment with PAB suppressed the expression of anti-apoptotic factor B cell lymphoma-2, and promoted the expression of pro-apoptotic factor Bcl-2-associated X protein. In addition, PAB induced an increase in Caspase-3 activity and loss of mitochondrial membrane potential, suggesting that this apoptosis may be mediated by mitochondrial pathways. Furthermore, the results of western blot analysis indicated that PAB was able to reduce Akt phosphorylation, thereby inhibiting the Akt pathway. These results suggested that PAB inhibited cell proliferation and induced apoptosis in HeLa cells, and that the anti-tumor effects of PAB were associated with inhibition of the Akt pathway. In conclusion, the results of the present study suggested that PAB may represent a novel therapeutic strategy for the treatment of human cervical cancer. However, additional studies are required to investigate the underlying apoptotic mechanisms.

  8. The sonic hedgehog signaling pathway stimulates anaplastic thyroid cancer cell motility and invasiveness by activating Akt and c-Met.

    PubMed

    Williamson, Ashley J; Doscas, Michelle E; Ye, Jin; Heiden, Katherine B; Xing, Mingzhao; Li, Yi; Prinz, Richard A; Xu, Xiulong

    2016-03-01

    The sonic hedgehog (Shh) pathway is highly activated in thyroid neoplasms and promotes thyroid cancer stem-like cell phenotype, but whether the Shh pathway regulates thyroid tumor cell motility and invasiveness remains unknown. Here, we report that the motility and invasiveness of two anaplastic thyroid tumor cell lines, KAT-18 and SW1736, were inhibited by two inhibitors of the Shh pathway (cyclopamine and GANT61). Consistently, the cell motility and invasiveness was decreased by Shh and Gli1 knockdown, and was increased by Gli1 overexpression in KAT-18 cells. Mechanistic studies revealed that Akt and c-Met phosphorylation was decreased by a Gli1 inhibitor and by Shh and Gli1 knockdown, but was increased by Gli1 overexpression. LY294002, a PI-3 kinase inhibitor, and a c-Met inhibitor inhibited the motility and invasiveness of Gli1-transfected KAT-18 cells more effectively than the vector-transfected cells. Knockdown of Snail, a transcription factor regulated by the Shh pathway, led to decreased cell motility and invasiveness in KAT-18 and SW1736 cells. However, key epithelial-to-mesenchymal transition (EMT) markers including E-cadherin and vimentin as well as Slug were not affected by cyclopamine and GANT61 in either SW1736 or WRO82, a well differentiated follicular thyroid carcinoma cell line. Our data suggest that the Shh pathway-stimulated thyroid tumor cell motility and invasiveness is largely mediated by AKT and c-Met activation with little involvement of EMT.

  9. The mRNA-edited form of GABRA3 suppresses GABRA3-mediated Akt activation and breast cancer metastasis.

    PubMed

    Gumireddy, Kiranmai; Li, Anping; Kossenkov, Andrew V; Sakurai, Masayuki; Yan, Jinchun; Li, Yan; Xu, Hua; Wang, Jian; Zhang, Paul J; Zhang, Lin; Showe, Louise C; Nishikura, Kazuko; Huang, Qihong

    2016-02-12

    Metastasis is a critical event affecting breast cancer patient survival. To identify molecules contributing to the metastatic process, we analysed The Cancer Genome Atlas (TCGA) breast cancer data and identified 41 genes whose expression is inversely correlated with survival. Here we show that GABAA receptor alpha3 (Gabra3), normally exclusively expressed in adult brain, is also expressed in breast cancer, with high expression of Gabra3 being inversely correlated with breast cancer survival. We demonstrate that Gabra3 activates the AKT pathway to promote breast cancer cell migration, invasion and metastasis. Importantly, we find an A-to-I RNA-edited form of Gabra3 only in non-invasive breast cancers and show that edited Gabra3 suppresses breast cancer cell invasion and metastasis. A-to-I-edited Gabra3 has reduced cell surface expression and suppresses the activation of AKT required for cell migration and invasion. Our study demonstrates a significant role for mRNA-edited Gabra3 in breast cancer metastasis.

  10. Betulinic acid protects against cerebral ischemia/reperfusion injury by activating the PI3K/Akt signaling pathway.

    PubMed

    Jiao, Shujie; Zhu, Hongcan; He, Ping; Teng, Junfang

    2016-12-01

    Betulinic acid (BA), a naturally occurring pentacyclic lupane group triterpenoid, has been demonstrated to protect against ischemia/reperfusion-induced renal damage. However, the effects of BA on cerebral ischemia/reperfusion (I/R) injury remain unclear. Hence, this study was to investigate the effects of BA on oxygen and glucose deprivation/reperfusion (OGD/R) induced neuronal injury in rat hippocampal neurons. Our results showed that BA pretreatment greatly attenuated OGD/R-induced neuronal injury. BA also inhibited OGD/R-induced intracellular ROS production and MDA level in rat hippocampal neurons. Furthermore, the down-regulation of Bcl-2, up-regulation of Bax and the consequent activation of caspase-3 induced by OGD/R were reversed by BA pretreatment. Mechanistic studies demonstrated that BA pretreatment up-regulated the expression levels of p-PI3K and p-Akt in hippocampal neurons induced by OGD/R. Taken together, these data suggested that BA inhibits OGD/R-induced neuronal injury in rat hippocampal neurons through the activation of PI3K/Akt signaling pathway.

  11. Cruciferous vegetable phytochemical sulforaphane affects phase II enzyme expression and activity in rat cardiomyocytes through modulation of Akt signaling pathway.

    PubMed

    Leoncini, Emanuela; Malaguti, Marco; Angeloni, Cristina; Motori, Elisa; Fabbri, Daniele; Hrelia, Silvana

    2011-09-01

    The isothiocyanate sulforaphane (SF), abundant in Cruciferous vegetables, is known to induce antioxidant/detoxification enzymes in many cancer cell lines, but studies focused on its cytoprotective action in nontransformed cells are just at the beginning. Since we previously demonstrated that SF elicits cardioprotection through an indirect antioxidative mechanism, the aim of this study was to analyze the signaling pathways through which SF exerts its protective effects. Using cultured rat cardiomyocytes, we investigated the ability of SF to activate Akt/protein kinase B (PKB) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathways, which are implicated in cardiac cell survival, and to increase the phosphorylation of Nuclear factor E2-related factor 2 (Nrf2) and its binding to the antioxidant response element. By means of specific inhibitors, we demonstrated that the Phosphatidylinositol 3-kinase (PI3K)/Akt pathway represents a mechanism through which SF influences both expression and activity of glutathione reductase, glutathione-S-transferase, thioredoxin reductase, and NAD(P)H:quinone oxidoreductase-1, analyzed by western immunoblotting and spectrophotometric assay, respectively, and modulates Nrf2 binding and phosphorylation resulting in a cytoprotective action against oxidative damage. Results of this study confirm the importance of phase II enzymes modulation as cytoprotective mechanism and support the nutritional assumption of Cruciferous vegetables as source of nutraceutical cardioprotective agents.

  12. The mRNA-edited form of GABRA3 suppresses GABRA3-mediated Akt activation and breast cancer metastasis

    PubMed Central

    Gumireddy, Kiranmai; Li, Anping; Kossenkov, Andrew V.; Sakurai, Masayuki; Yan, Jinchun; Li, Yan; Xu, Hua; Wang, Jian; Zhang, Paul J.; Zhang, Lin; Showe, Louise C.; Nishikura, Kazuko; Huang, Qihong

    2016-01-01

    Metastasis is a critical event affecting breast cancer patient survival. To identify molecules contributing to the metastatic process, we analysed The Cancer Genome Atlas (TCGA) breast cancer data and identified 41 genes whose expression is inversely correlated with survival. Here we show that GABAA receptor alpha3 (Gabra3), normally exclusively expressed in adult brain, is also expressed in breast cancer, with high expression of Gabra3 being inversely correlated with breast cancer survival. We demonstrate that Gabra3 activates the AKT pathway to promote breast cancer cell migration, invasion and metastasis. Importantly, we find an A-to-I RNA-edited form of Gabra3 only in non-invasive breast cancers and show that edited Gabra3 suppresses breast cancer cell invasion and metastasis. A-to-I-edited Gabra3 has reduced cell surface expression and suppresses the activation of AKT required for cell migration and invasion. Our study demonstrates a significant role for mRNA-edited Gabra3 in breast cancer metastasis. PMID:26869349

  13. Regulation of Matrix Metalloproteinase-2 Activity by COX-2-PGE2-pAKT Axis Promotes Angiogenesis in Endometriosis

    PubMed Central

    Ray, Amlan K.; DasMahapatra, Pramathes; Swarnakar, Snehasikta

    2016-01-01

    Endometriosis is characterized by the ectopic development of the endometrium which relies on angiogenesis. Although studies have identified the involvement of different matrix metalloproteinases (MMPs) in endometriosis, no study has yet investigated the role of MMP-2 in endometriosis-associated angiogenesis. The present study aims to understand the regulation of MMP-2 activity in endothelial cells and on angiogenesis during progression of ovarian endometriosis. Histological and biochemical data showed increased expressions of vascular endothelial growth factor (VEGF), VEGF receptor-2, cycloxygenase (COX)-2, von Willebrand factor along with angiogenesis during endometriosis progression. Women with endometriosis showed decreased MMP-2 activity in eutopic endometrium as compared to women without endometriosis. However, ectopic ovarian endometrioma showed significantly elevated MMP-2 activity with disease severity. In addition, increased MT1MMP and decreased tissue inhibitors of metalloproteinases (TIMP)-2 expressions were found in the late stages of endometriosis indicating more MMP-2 activation with disease progression. In vitro study using human endothelial cells showed that prostaglandin E2 (PGE2) significantly increased MMP-2 activity as well as tube formation. Inhibition of COX-2 and/or phosphorylated AKT suppressed MMP-2 activity and endothelial tube formation suggesting involvement of PGE2 in regulation of MMP-2 activity during angiogenesis. Moreover, specific inhibition of MMP-2 by chemical inhibitor significantly reduced cellular migration, invasion and tube formation. In ovo assay showed decreased angiogenic branching upon MMP-2 inhibition. Furthermore, a significant reduction of lesion numbers was observed upon inhibition of MMP-2 and COX-2 in mouse model of endometriosis. In conclusion, our study establishes the involvement of MMP-2 activity via COX-2-PGE2-pAKT axis in promoting angiogenesis during endometriosis progression. PMID:27695098

  14. Phosphorylation of GSK3α/β correlates with activation of AKT and is prognostic for poor overall survival in acute myeloid leukemia patients

    PubMed Central

    Ruvolo, Peter P.; Qiu, YiHua; Coombes, Kevin R.; Zhang, Nianxiang; Neeley, E. Shannon; Ruvolo, Vivian R.; Hail, Numsen; Borthakur, Gautam; Konopleva, Marina; Andreeff, Michael; Kornblau, Steven M.

    2015-01-01

    Background Acute myeloid leukemia (AML) patients with highly active AKT tend to do poorly. Cell cycle arrest and apoptosis are tightly regulated by AKT via phosphorylation of GSK3α and β isoforms which inactivates these kinases. In the current study we examine the prognostic role of AKT mediated GSK3 phosphorylation in AML. Methods We analyzed GSK3α/β phosphorylation by reverse phase protein analysis (RPPA) in a cohort of 511 acute myeloid leukemia (AML) patients. Levels of phosphorylated GSK3 were correlated with patient characteristics including survival and with expression of other proteins important in AML cell survival. Results High levels of p-GSK3α/β correlated with adverse overall survival and a lower incidence of complete remission duration in patients with intermediate cytogenetics, but not in those with unfavorable cytogenetics. Intermediate cytogenetic patients with FLT3 mutation also fared better respectively when p-GSK3α/β levels were lower. Phosphorylated GSK3α/β expression was compared and contrasted with that of 229 related cell cycle arrest and/or apoptosis proteins. Consistent with p-GSK3α/β as an indicator of AKT activation, RPPA revealed that p-GSK3α/β positively correlated with phosphorylation of AKT, BAD, and P70S6K, and negatively correlated with β-catenin and FOXO3A. PKCδ also positively correlated with p-GSK3α/β expression, suggesting crosstalk between the AKT and PKC signaling pathways in AML cells. Conclusions These findings suggest that AKT-mediated phosphorylation of GSK3α/β may be beneficial to AML cell survival, and hence detrimental to the overall survival of AML patients. Intrinsically, p-GSK3α/β may serve as an important adverse prognostic factor for a subset of AML patients. PMID:26674329

  15. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Sorescu, George; Boyd, Nolan; Shiojima, Ichiro; Walsh, Kenneth; Du, Jie; Jo, Hanjoong

    2002-01-01

    Recently, we have shown that shear stress stimulates NO(*) production by the protein kinase B/Akt (Akt)-dependent mechanisms in bovine aortic endothelial cells (BAEC) (Go, Y. M., Boo, Y. C., Park, H., Maland, M. C., Patel, R., Pritchard, K. A., Jr., Fujio, Y., Walsh, K., Darley-Usmar, V., and Jo, H. (2001) J. Appl. Physiol. 91, 1574-1581). Akt has been believed to regulate shear-dependent production of NO(*) by directly phosphorylating endothelial nitric-oxide synthase (eNOS) at the Ser(1179) residue (eNOS-S(1179)), but a critical evaluation using specific inhibitors or dominant negative mutants (Akt(AA) or Akt(AAA)) has not been reported. In addition, other kinases, including protein kinase A (PKA) and AMP kinase have also shown to phosphorylate eNOS-S(1179). Here, we show that shear-dependent phosphorylation of eNOS-S(1179) is mediated by an Akt-independent, but a PKA-dependent, mechanism. Expression of Akt(AA) or Akt(AAA) in BAEC by using recombinant adenoviral constructs inhibited phosphorylation of eNOS-S(1179) if cells were stimulated by vascular endothelial growth factor (VEGF), but not by shear stress. As shown before, expression of Akt(AA) inhibited shear-dependent NO(*) production, suggesting that Akt is still an important regulator in NO production. Further studies showed that a selective inhibitor of PKA, H89, inhibited shear-dependent phosphorylation of eNOS-S(1179) and NO(*) production. In contrast, H89 did not inhibit phosphorylation of eNOS-S(1179) induced by expressing a constitutively active Akt mutant (Akt(Myr)) in BAEC, showing that the inhibitor did not affect the Akt pathway. 8-Bromo-cAMP alone phosphorylated eNOS-S(1179) within 5 min without activating Akt, in an H89-sensitive manner. Collectively, these results demonstrate that shear stimulates phosphorylation of eNOS-S(1179) in a PKA-dependent, but Aktindependent manner, whereas the NO(*) production is regulated by the mechanisms dependent on both PKA and Akt. A coordinated interaction

  16. Amuvatinib has cytotoxic effects against NRAS-mutant melanoma but not BRAF-mutant melanoma.

    PubMed

    Fedorenko, Inna V; Fang, Bin; Koomen, John M; Gibney, Geoffrey T; Smalley, Keiran S M

    2014-10-01

    Effective targeted therapy strategies are still lacking for the 15-20% of melanoma patients whose melanomas are driven by oncogenic NRAS. Here, we report on the NRAS-specific behavior of amuvatinib, a kinase inhibitor with activity against c-KIT, Axl, PDGFRα, and Rad51. An analysis of BRAF-mutant and NRAS-mutant melanoma cell lines showed the NRAS-mutant cohort to be enriched for targets of amuvatinib, including Axl, c-KIT, and the Axl ligand Gas6. Increasing concentrations of amuvatinib selectively inhibited the growth of NRAS-mutant, but not BRAF-mutant melanoma cell lines, an effect associated with induction of S-phase and G2/M-phase cell cycle arrest and induction of apoptosis. Mechanistically, amuvatinib was noted to either inhibit Axl, AKT, and MAPK signaling or Axl and AKT signaling and to induce a DNA damage response. In three-dimensional cell culture experiments, amuvatinib was cytotoxic against NRAS-mutant melanoma cell lines. Thus, we show for the first time that amuvatinib has proapoptotic activity against melanoma cell lines, with selectivity observed for those harboring oncogenic NRAS.

  17. Expression of constitutively active Akt/protein kinase B signals GLUT4 translocation in the absence of an intact actin cytoskeleton.

    PubMed

    Eyster, Craig A; Duggins, Quwanza S; Olson, Ann Louise

    2005-05-06

    The actin cytoskeleton has been shown to be required for insulin-dependent GLUT4 translocation; however, the role that the actin network plays is unknown. Actin may play a role in formation of an active signaling complex, or actin may be required for movement of vesicles to the plasma membrane surface. To distinguish between these possibilities, we examined the ability of myr-Akt, a constitutively active form of Akt that signals GLUT4 translocation to the plasma membrane in the absence of insulin, to signal translocation of an HA-GLUT4-GFP reporter protein in the presence or absence of an intact cytoskeleton in 3T3-L1 adipocytes. Expression of myr-Akt signaled the redistribution of the GLUT4 reporter protein to the cell surface in the absence or presence of 10 microm latrunculin B, a concentration sufficient to completely inhibit insulin-dependent redistribution of the GLUT4 reporter to the cell surface. These data suggest that the actin network plays a primary role in organization of the insulin-signaling complex. To further support this conclusion, we measured the activation of known signaling proteins using a saturating concentration of insulin in cells pretreated without or with 10 microm latrunculin B. We found that latrunculin treatment did not affect insulin-dependent tyrosine phosphorylation of the insulin receptor beta-subunit and IRS-1 but completely inhibited activation of Akt/PKB enzymatic activity. Phosphorylation of Akt/PKB at Ser-473 and Thr-308 was inhibited by latrunculin B treatment, indicating that the defect in signaling lies prior to Akt/PKB activation. In summary, our data support the hypothesis that the actin network plays a role in organization of the insulin-signaling complex but is not required for vesicle trafficking and/or fusion.

  18. Calcium oxalate crystals induces tight junction disruption in distal renal tubular epithelial cells by activating ROS/Akt/p38 MAPK signaling pathway.

    PubMed

    Yu, Lei; Gan, Xiuguo; Liu, Xukun; An, Ruihua

    2017-11-01

    Tight junction plays important roles in regulating paracellular transports and maintaining cell polarity. Calcium oxalate monohydrate (COM) crystals, the major crystalline composition of kidney stones, have been demonstrated to be able to cause tight junction disruption to accelerate renal cell injury. However, the cellular signaling involved in COM crystal-induced tight junction disruption remains largely to be investigated. In the present study, we proved that COM crystals induced tight junction disruption by activating ROS/Akt/p38 MAPK pathway. Treating Madin-Darby canine kidney (MDCK) cells with COM crystals induced a substantial increasing of ROS generation and activation of Akt that triggered subsequential activation of ASK1 and p38 mitogen-activated protein kinase (MAPK). Western blot revealed a significantly decreased expression of ZO-1 and occludin, two important structural proteins of tight junction. Besides, redistribution and dissociation of ZO-1 were observed by COM crystals treatment. Inhibition of ROS by N-acetyl-l-cysteine (NAC) attenuated the activation of Akt, ASK1, p38 MAPK, and down-regulation of ZO-1 and occludin. The redistribution and dissociation of ZO-1 were also alleviated by NAC treatment. These results indicated that ROS were involved in the regulation of tight junction disruption induced by COM crystals. In addition, the down-regulation of ZO-1 and occludin, the phosphorylation of ASK1 and p38 MAPK were also attenuated by MK-2206, an inhibitor of Akt kinase, implying Akt was involved in the disruption of tight junction upstream of p38 MAPK. Thus, these results suggested that ROS-Akt-p38 MAPK signaling pathway was activated in COM crystal-induced disruption of tight junction in MDCK cells.

  19. Genetic Screening for Bacterial Mutants in Liquid Growth Media By Fluorescence-Activated Cell Sorting

    PubMed Central

    Abuaita, Basel H.; Withey, Jeffrey H.

    2010-01-01

    Many bacterial pathogens have defined in vitro virulence inducing conditions in liquid media which lead to production of virulence factors important during an infection. Identifying mutants that no longer respond to virulence inducing conditions will increase our understanding of bacterial pathogenesis. However, traditional genetic screens require growth on solid media. Bacteria in a single colony are in every phase of the growth curve, which complicates the analysis and make screens for growth phase-specific mutants problematic. Here, we utilize fluorescence-activated cell sorting in conjunction with random transposon mutagenesis to isolate bacteria grown in liquid media that are defective in virulence activation. This method permits analysis of an entire bacterial population in real time and selection of individual bacterial mutants with the desired gene expression profile at any time point after induction. We have used this method to identify Vibrio cholerae mutants defective in virulence induction. PMID:21094189

  20. Carvacrol attenuates acute kidney injury induced by cisplatin through suppression of ERK and PI3K/Akt activation.

    PubMed

    Potočnjak, Iva; Domitrović, Robert

    2016-12-01

    We investigated the mechanisms of renoprotective effects of carvacrol, a monoterpenoid compound, against cisplatin (CP)-induced kidney injury. Male BALB/cN mice were orally administered 1, 3, and 10 mg carvacrol/kg body weight for two days, 48 h after intraperitoneal injection of CP (13 mg/kg). Four days after CP administration, renal oxidative stress was evidenced by increased expression of 4-hydroxynonenal (4-HNE), 3-nitrotyrosine (3-NT), cytochrome P450 E1 (CYP2E1), and heme oxygenase-1 (HO-1). CP treatment increased the expression of phosphorylated nuclear factor-kappaB (p-NF-κB) p65 and tumor necrosis factor-alpha (TNF-α) in kidneys, suggesting inflammatory response. CP intoxication induced apoptosis and inhibition of the cell cycle in kidneys by increasing the expression of p53 and Bax and suppressing Bcl-2 and cyclin D1 expression. Concomitant increase in p21 and proliferating cell nuclear antigen (PCNA) expression suggested enhanced DNA repair process. CP administration also resulted in activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) with concomitant induction of phosphorylated Akt and suppression of phosphatase and tensin homolog (PTEN) expression. All these changes were dose-dependently restored by carvacrol. The results of the current study suggest that carvacrol could attenuate CP-induced acute renal injury by suppressing oxidative stress, apoptosis, and inflammation through modulation of the ERK and PI3K/Akt pathways.

  1. Liraglutide reduces lipogenetic signals in visceral adipose of db/db mice with AMPK activation and Akt suppression.

    PubMed

    Shao, Yimin; Yuan, Geheng; Zhang, Junqing; Guo, Xiaohui

    2015-01-01

    Liraglutide, a glucagon-like peptide-1 analog, has been proved to reduce body weight and visceral adipose tissue (VAT) in human studies. In this study, we aimed at examining lipogenetic signal changes in VAT after weight-loss with liraglutide in db/db mice. The mice were divided into two groups: liraglutide-treated group (n=14, 8-week-old, fasting glucose. >10 mmol/L, liraglutide 300 μg/kg twice a day for 4 weeks) and control group (n=14, saline). We found body weight gain and food intake were reduced after liraglutide treatment (P<0.05). Compared to the control group, the VAT weights were significantly lower in the treated group (2.32±0.37 g versus 3.20±0.30 g, P<0.01) than that in control group. In VAT, compared with control group, the lipogenetic transcription factors PPARγ and C/EBPα expressions were both reduced with pAMPK and pACC increased 3.5-fold and 2.31-fold respectively, while pAkt and pP38MAPK were reduced 0.38-fold and 0.62-fold respectively (P<0.01). In conclusion, VAT was reduced after weight loss with AMPK activation and Akt suppression with liraglutide treatment, which was associated with reduction of lipogenetic process in VAT.

  2. IL-8 induces the epithelial-mesenchymal transition of renal cell carcinoma cells through the activation of AKT signaling

    PubMed Central

    Zhou, Nan; Lu, Fuding; Liu, Cheng; Xu, Kewei; Huang, Jian; Yu, Dexin; Bi, Liangkuan

    2016-01-01

    The epithelial-mesenchymal transition (EMT) process has increasingly been examined due to its role in the progression of human tumors. Renal cell carcinoma (RCC) is one of the most common urological tumors that results in patient mortality. Previous studies have demonstrated that the EMT process is closely associated with the metastasis of RCC; however, the underlying molecular mechanism has not been determined yet. The present study revealed that interleukin (IL)-8 was highly expressed in metastatic RCC. IL-8 could induce the EMT of an RCC cell line by enhancing N-cadherin expression and decreasing E-cadherin expression. Furthermore, IL-8 could induce AKT phosphorylation, and the phosphatidylinositol-4,5-bisphosphate 3-kinase inhibitor LY294002 could inhibit the EMT of RCC cells that was induced by IL-8. Therefore, these results suggest that IL-8 is able to promote the EMT of RCC through the activation of the AKT signal transduction pathway, and this may provide a possible molecular mechanism for RCC metastasis. PMID:27588140

  3. Curcumin activates autophagy and attenuates oxidative damage in EA.hy926 cells via the Akt/mTOR pathway.

    PubMed

    Guo, Shouyu; Long, Mingzhi; Li, Xiuzhen; Zhu, Shushu; Zhang, Min; Yang, Zhijian

    2016-03-01

    Curcumin, which is the effective component of turmeric (Curcuma longa), has previously been shown to exert potent antioxidant, antitumor and anti‑inflammatory activities in vitro and in vivo. However, the mechanism underlying the protective effects of curcumin against oxidative damage in endothelial cells remains unclear. The present study aimed to examine the effects of curcumin on hydrogen peroxide (H2O2)‑induced apoptosis and autophagy in EA.hy926 cells, and to determine the underlying molecular mechanism. Cultured EA.hy926 cells were treated with curcumin (5‑20 µmol/l) 4 h prior to and for 4 h during exposure to H2O2 (200 µmol/l). Oxidative stress resulted in a significant increase in the rate of cell apoptosis, which was accompanied by an increase in the expression levels of caspase‑3 and B‑cell lymphoma 2 (Bcl‑2)‑associated X protein (Bax), and a decrease in the expression levels of Bcl‑2. Treatment with curcumin (5 or 20 µmol/l) significantly inhibited apoptosis, and reversed the alterations in caspase‑3, Bcl‑2 and Bax expression. Furthermore, curcumin induced autophagy and microtubule‑associated protein 1A/1B‑light chain 3‑Ⅱ expression, and suppressed the phosphorylation of Akt and mammalian target of rapamycin (mTOR). These results indicated that curcumin may protect cells against oxidative stress‑induced damage through inhibiting apoptosis and inducing autophagy via the Akt/mTOR pathway.

  4. miR-221/222 confers radioresistance in glioblastoma cells through activating Akt independent of PTEN status.

    PubMed

    Li, W; Guo, F; Wang, P; Hong, S; Zhang, C

    2014-01-01

    Glioblastoma is highly resistant to radiation therapy. The underlying molecular mechanism is not completely understood. The DNA damage response (DDR) pathway plays a crucial role in radioresistance of glioablastoma cells. Growing evidence has demonstrated that radiation induces alterations in microRNA (miR) profiles. However, how radiation induces specific miRs and how they might regulate the DDR remain elusive. In our study, we found that radiation induced c-jun transcription of miR-221 and miR-222. miR-221 and miR- 222 modulated DNA-PKcs expression to affect DNA damage repair by activating Akt independent of PTEN status. Knocking down of miR-221/222 significantly increased radiosensitivity of glioblastoma cells. Inhibition of Akt by RNAi or LY294002 treatment may overcome miR-221/222 induced radioresistance. Notably, combined anti-miR-221/222 and radiotherapy has remarkably inhibited tumor growth compared with anti-miR-221/222 or radiotherapy alone in a subcutaneous mouse model. Our results suggest that radio-induced c-jun promotes transcription of miR-221/222, which mediates DNA damage repair of glioblastoma cells independent of PTEN. These data indicate for the first time that miR-221/222 play an important role in mediating radio-induced DNA damage repair and that miR-221/222 could serve as potential therapeutic targets for increasing radiosensitivity of glioblastoma cells.

  5. Melatonin acts through MT1/MT2 receptors to activate hypothalamic Akt and suppress hepatic gluconeogenesis in rats.

    PubMed

    Faria, Juliana A; Kinote, Andrezza; Ignacio-Souza, Letícia M; de Araújo, Thiago M; Razolli, Daniela S; Doneda, Diego L; Paschoal, Lívia B; Lellis-Santos, Camilo; Bertolini, Gisele L; Velloso, Lício A; Bordin, Silvana; Anhê, Gabriel F

    2013-07-15

    Melatonin can contribute to glucose homeostasis either by decreasing gluconeogenesis or by counteracting insulin resistance in distinct models of obesity. However, the precise mechanism through which melatonin controls glucose homeostasis is not completely understood. Male Wistar rats were administered an intracerebroventricular (icv) injection of melatonin and one of following: an icv injection of a phosphatidylinositol 3-kinase (PI3K) inhibitor, an icv injection of a melatonin receptor (MT) antagonist, or an intraperitoneal (ip) injection of a muscarinic receptor antagonist. Anesthetized rats were subjected to pyruvate tolerance test to estimate in vivo glucose clearance after pyruvate load and in situ liver perfusion to assess hepatic gluconeogenesis. The hypothalamus was removed to determine Akt phosphorylation. Melatonin injections in the central nervous system suppressed hepatic gluconeogenesis and increased hypothalamic Akt phosphorylation. These effects of melatonin were suppressed either by icv injections of PI3K inhibitors and MT antagonists and by ip injection of a muscarinic receptor antagonist. We conclude that melatonin activates hypothalamus-liver communication that may contribute to circadian adjustments of gluconeogenesis. These data further suggest a physiopathological relationship between the circadian disruptions in metabolism and reduced levels of melatonin found in type 2 diabetes patients.

  6. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen-activated protein kinase kinase signaling pathways

    PubMed Central

    HU, SHAN; HUANG, LIMING; MENG, LIWEI; SUN, HE; ZHANG, WEI; XU, YINGCHUN

    2015-01-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK) signaling cascades, which are two important signaling pathways for endocrine therapy resistance in breast cancer. The results of the present study indicate that isorhamnetin inhibits cell proliferation and induces cell apoptosis. In addition, isorhamnetin was observed to inhibit the Akt/mTOR and the MEK/extracellular signal-regulated kinase phosphorylation cascades. The inhibition of these two signaling pathways was attenuated by the two Akt and MEK1 inhibitors, but not by the nuclear factor-κB inhibitor. Furthermore, epidermal growth factor inhibited the effects of isorhamnetin via activation of the Akt and MEK signaling pathways. These results indicate that isorhamnetin exhibits antitumor effects in breast cancer, which are mediated by the Akt and MEK signaling pathways. PMID:26502751

  7. Apocynin inhibits Toll-like receptor-4-mediated activation of NF-κB by suppressing the Akt and mTOR pathways.

    PubMed

    Nam, Yoon Jeong; Kim, Arum; Sohn, Dong Suep; Lee, Chung Soo

    2016-12-01

    Microbial product lipopolysaccharide has been shown to be involved in the pathogenesis of inflammatory skin diseases. Apocynin has demonstrated to have an anti-inflammatory effect. However, the effect of apocynin on the Toll-like receptor-4-dependent activation of Akt, mammalian target of rapamycin (mTOR), and nuclear factor (NF)-κB pathway, which is involved in productions of inflammatory mediators in keratinocytes, has not been studied. Using human keratinocytes, we investigated the effect of apocynin on the inflammatory mediator production in relation to the Toll-like receptor-4-mediated-Akt/mTOR and NF-κB pathways, which regulates the transcription genes involved in immune and inflammatory responses. Apocynin, Akt inhibitor SH-5, Bay 11-7085 and N-acetylcysteine each attenuated the lipopolysaccharide-induced production of cytokines, PGE2, and chemokines, changes in the levels of Toll-like receptor-4, p-Akt, mTOR, and NF-κB, and production of reactive oxygen species in keratinocytes. The results show that apocynin appears to attenuate the lipopolysaccharide-stimulated production of inflammatory mediators in keratinocytes by suppressing the Toll-like receptor-4-mediated activation of the Akt, mTOR, and NF-κB pathways. The effect of apocynin appears to be attributed to its inhibitory effect on the production of reactive oxygen species. Apocynin appears to attenuate the microbial product-mediated inflammatory skin diseases.

  8. Epigenetic downregulation of RUNX3 by DNA methylation induces docetaxel chemoresistance in human lung adenocarcinoma cells by activation of the AKT pathway.

    PubMed

    Zheng, Yun; Wang, Rui; Song, Hai-Zhu; Pan, Ban-Zhou; Zhang, You-Wei; Chen, Long-Bang

    2013-11-01

    The RUNX3 gene has been shown to function as a tumor suppressor gene implicated in various cancers, but its association with tumor chemoresistance has not been fully understood. Here, we investigated the effect of epigenetic downregulation of RUNX3 in docetaxel resistance of human lung adenocarcinoma and its possible molecular mechanisms. RUNX3 was found to be downregulated by hypermethylation in docetaxel-resistant lung adenocarcinoma cells. Its overexpression could resensitize cells to docetaxel both in vitro and in vivo by growth inhibition, enhancement of apoptosis and G1 phase arrest. Conversely, knockdown of RUNX3 could lead to the decreased sensitivity of parental human lung adenocarcinoma cells to docetaxel by enhancing proliferative capacity. Furthermore, we showed that overexpression of RUNX3 could inactivate the AKT/GSK3β/β-catenin signaling pathway in the docetaxel-resistant cells. Importantly, co-transfection of RUNX3 and constitutively active Akt1 could reverse the effects of RUNX3 overexpression, while treatment with the MK-2206 (AKT inhibitor) mimicked the effects of RUNX3 overexpression in docetaxel-resistant human lung adenocarcinoma cells. Immunohistochemical analysis revealed that decreased RUNX3 expression was correlated with high expression of Akt1 and decreased sensitivity of patients to docetaxel-based chemotherapy. Taken together, our results suggest that epigenetic downregulation of RUNX3 can induce docetaxel resistance in human lung adenocarcinoma cells by activating AKT signaling and increasing expression of RUNX3 may represent a promising strategy for reversing docetaxel resistance in the future.

  9. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen‑activated protein kinase kinase signaling pathways.

    PubMed

    Hu, Shan; Huang, Liming; Meng, Liwei; Sun, He; Zhang, Wei; Xu, Yingchun

    2015-11-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK) signaling cascades, which are two important signaling pathways for endocrine therapy resistance in breast cancer. The results of the present study indicate that isorhamnetin inhibits cell proliferation and induces cell apoptosis. In addition, isorhamnetin was observed to inhibit the Akt/mTOR and the MEK/extracellular signal-regulated kinase phosphorylation cascades. The inhibition of these two signaling pathways was attenuated by the two Akt and MEK1 inhibitors, but not by the nuclear factor-κB inhibitor. Furthermore, epidermal growth factor inhibited the effects of isorhamnetin via activation of the Akt and MEK signaling pathways. These results indicate that isorhamnetin exhibits antitumor effects in breast cancer, which are mediated by the Akt and MEK signaling pathways.

  10. Complement membrane attack complexes activate noncanonical NF-κB by forming an Akt+NIK+ signalosome on Rab5+ endosomes

    PubMed Central

    Jane-wit, Dan; Surovtseva, Yulia V.; Qin, Lingfeng; Li, Guangxin; Liu, Rebecca; Clark, Pamela; Manes, Thomas D.; Wang, Chen; Kashgarian, Michael; Kirkiles-Smith, Nancy C.; Tellides, George; Pober, Jordan S.

    2015-01-01

    Complement membrane attack complexes (MACs) promote inflammatory functions in endothelial cells (ECs) by stabilizing NF-κB–inducing kinase (NIK) and activating noncanonical NF-κB signaling. Here we report a novel endosome-based signaling complex induced by MACs to stabilize NIK. We found that, in contrast to cytokine-mediated activation, NIK stabilization by MACs did not involve cIAP2 or TRAF3. Informed by a genome-wide siRNA screen, instead this response required internalization of MACs in a clathrin-, AP2-, and dynamin-dependent manner into Rab5+endosomes, which recruited activated Akt, stabilized NIK, and led to phosphorylation of IκB kinase (IKK)-α. Active Rab5 was required for recruitment of activated Akt to MAC+ endosomes, but not for MAC internalization or for Akt activation. Consistent with these in vitro observations, MAC internalization occurred in human coronary ECs in vivo and was similarly required for NIK stabilization and EC activation. We conclude that MACs activate noncanonical NF-κB by forming a novel Akt+NIK+ signalosome on Rab5+ endosomes. PMID:26195760

  11. A sex- and region-specific role of Akt1 in the modulation of methamphetamine-induced hyperlocomotion and striatal neuronal activity: implications in schizophrenia and methamphetamine-induced psychosis.

    PubMed

    Chen, Yi-Wen; Kao, Hui-Yun; Min, Ming-Yuan; Lai, Wen-Sung

    2014-03-01

    AKT1 (also known as protein kinase B, α), a serine/threonine kinase of AKT family, has been implicated in both schizophrenia and methamphetamine (Meth) use disorders. AKT1 or its protein also has epistatic effects on the regulation of dopamine-dependent behaviors or drug effects, especially in the striatum. The aim of this study is to investigate the sex-specific role of Akt1 in the regulation of Meth-induced behavioral sensitization and the alterations of striatal neurons using Akt1(-/-) mice and wild-type littermates as a model. A series of 4 Experiments were conducted. Meth-induced hyperlocomotion and Meth-related alterations of brain activity were measured. The neural properties of striatal medium spiny neurons (MSNs) were also characterized. Further, 17β-estradiol was applied to examine its protective effect in Meth-sensitized male mice. Our findings indicate that (1) Akt1(-/-) males were less sensitive to Meth-induced hyperlocomotion during Meth challenge compared with wild-type controls and Akt1(-/-) females, (2) further sex differences were revealed by coinjection of Meth with raclopride but not SCH23390 in Meth-sensitized Akt1(-/-) males, (3) Meth-induced alterations of striatal activity were confirmed in Akt1(-/-) males using microPET scan with (18)F-flurodeoxyglucose, (4) Akt1 deficiency had a significant impact on the electrophysiological and neuromorphological properties of striatal MSNs in male mice, and (5) subchronic injections of 17β-estradiol prevented the reduction of Meth-induced hyperactivity in Meth-sensitized Akt1(-/-) male mice. This study highlights a sex- and region-specific effect of Akt1 in the regulation of dopamine-dependent behaviors and implies the importance of AKT1 in the modulation of sex differences in Meth sensitivity and schizophrenia.

  12. NADP+-dependent glutamate dehydrogenase activity is impaired in mutants of Saccharomyces cerevisiae that lack aconitase.

    PubMed

    González, A; Rodríguez, L; Olivera, H; Soberón, M

    1985-10-01

    A mutant of Saccharomyces cerevisiae lacking aconitase did not grow on minimal medium (MM) and had five- to tenfold less NADP+-dependent glutamate dehydrogenase (GDH) activity than the wild-type, although its glutamine synthetase (GS) activity was still inducible. When this mutant was incubated with glutamate as the sole nitrogen source, the 2-oxoglutarate content rose, and the NADP+-dependent GDH activity increased. Furthermore, carbon-limited cultures showed a direct relation between NADP+-dependent GDH activity and the intracellular 2-oxoglutarate content. We propose that the low NADP+-dependent GDH activity found in the mutant was due to the lack of 2-oxoglutarate or some other intermediate of the tricarboxylic acid cycle.

  13. Static magnetic field enhances the viability and proliferation rate of adipose tissue-derived mesenchymal stem cells potentially through activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway.

    PubMed

    Marędziak, Monika; Tomaszewski, Krzysztof; Polinceusz, Paulina; Lewandowski, Daniel; Marycz, Krzysztof

    2017-01-01

    The aim of this work was to investigate the effects of 0.5T static magnetic field (sMF) on the viability and proliferation rate of human adipose-derived mesenchymal stromal stem cells (hASCs) via activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) signaling pathway. In a 7-d culture we examined cell growth kinetic and population doubling time (PDT). We also examined cell morphology and the cellular senescence markers level. Exposure to sMF enhanced the viability of these cells. However, the effect was blocked by treating the cells with LY294002, a P13K inhibitor. We compared this effect by Western Blot analysis of Akt protein expression. We also examined whether the cell response on sMF stimulation is dependent on integrin engagement and we measured integrin gene expression. Our results suggest that stimulation using sMF is a viable method to improve hASC viability. sMF is involved in mechanisms associated with controlling cell proliferative potential signaling events.

  14. Evaluation of Acid Ceramidase Overexpression-Induced Activation of the Oncogenic Akt Pathway in Prostate Cancer

    DTIC Science & Technology

    2014-01-01

    with 10% fetal bovine serum and incubated in 5% CO2 at 37 1C. DU145-AC-EGFP/DU145-EGFP and PPC1-AC-V5/PPC1-LacZ-V5 have been described.3,5 PPC1 pLKO.1...immunostained as described below. Immunohistochemistry Formalin-fixed paraffin-embedded sections were deparaffinized in xylene, rehydrated in alcohol and...hamartomarous condition Cowden Syndrome , in which patients inherit a mutant PTEN allele and are susceptible to cancer, is Lysine289. This mutant form retains

  15. Acidic Fibroblast Growth Factor Promotes Endothelial Progenitor Cells Function via Akt/FOXO3a Pathway

    PubMed Central

    Wang, Yuqiang; Cao, Qing; Sang, Tiantian; Liu, Fang; Chen, Shuyan

    2015-01-01

    Acidic fibroblast growth factor (FGF1) has been suggested to enhance the functional activities of endothelial progenitor cells (EPCs). The Forkhead homeobox type O transcription factors (FOXOs), a key substrate of the survival kinase Akt, play important roles in regulation of various cellular processes. We previously have shown that FOXO3a is the main subtype of FOXOs expressed in EPCs. Here, we aim to determine whether FGF1 promotes EPC function through Akt/FOXO3a pathway. Human peripheral blood derived EPCs were transduced with adenoviral vectors either expressing a non-phosphorylable, constitutively active triple mutant of FOXO3a (Ad-TM-FOXO3a) or a GFP control (Ad-GFP). FGF1 treatment improved functional activities of Ad-GFP transduced EPCs, including cell viability, proliferation, antiapoptosis, migration and tube formation, whereas these beneficial effects disappeared by Akt inhibitor pretreatment. Moreover, EPC function was declined by Ad-TM-FOXO3a transduction and failed to be attenuated even with FGF1 treatment. FGF1 upregulated phosphorylation levels of Akt and FOXO3a in Ad-GFP transduced EPCs, which were repressed by Akt inhibitor pretreatment. However, FGF1 failed to recover Ad-TM-FOXO3a transduced EPCs from dysfunction. These data indicate that FGF1 promoting EPC function is at least in part mediated through Akt/FOXO3a pathway. Our study may provide novel ideas for enhancing EPC angiogenic ability and optimizing EPC transplantation therapy in the future. PMID:26061278

  16. Coactivation of the PI3K/Akt and ERK signaling pathways in PCB153-induced NF-κB activation and caspase inhibition

    SciTech Connect

    Liu, Changjiang; Yang, Jixin; Fu, Wenjuan; Qi, Suqin; Wang, Chenmin; Quan, Chao; Yang, Kedi

    2014-06-15

    Polychlorinated biphenyls (PCBs) are a group of persistent and widely distributed environmental pollutants that have various deleterious effects, e.g., neurotoxicity, endocrine disruption and reproductive abnormalities. In order to verify the hypothesis that the PI3K/Akt and MAPK pathways play important roles in hepatotoxicity induced by PCBs, Sprague–Dawley (SD) rats were dosed with PCB153 intraperitoneally at 0, 4, 16 and 32 mg/kg for five consecutive days; BRL cells (rat liver cell line) were treated with PCB153 (0, 1, 5, and 10 μM) for 24 h. Results indicated that the PI3K/Akt and ERK pathways were activated in vivo and in vitro after exposure to PCB153, and protein levels of phospho-Akt and phospho-ERK were significantly increased. Nuclear factor-κB (NF-κB) activation and caspase-3, -8 and -9 inhibition caused by PCB153 were also observed. Inhibiting the ERK pathway significantly attenuated PCB153-induced NF-κB activation, whereas inhibiting the PI3K/Akt pathway hardly influenced phospho-NF-κB level. However, inhibiting the PI3K/Akt pathway significantly elevated caspase-3, -8 and -9 activities, while the ERK pathway only synergistically regulated caspase-9. Proliferating cell nuclear antigen (PCNA), a reliable indicator of cell proliferation, was also induced. Moreover, PCB153 led to hepatocellular hypertrophy and elevated liver weight. Taken together, PCB153 leads to aberrant proliferation and apoptosis of hepatocytes through NF-κB activation and caspase inhibition, and coactivated PI3K/Akt and ERK pathways play critical roles in PCB153-induced hepatotoxicity. - Highlights: • PCB153 led to hepatotoxicity through NF-κB activation and caspase inhibition. • The PI3K/Akt and ERK pathways were coactivated in vivo and in vitro by PCB153. • The ERK pathway regulated levels of phospho-NF-κB and caspase-9. • The PI3K/Akt pathway regulated levels of caspase-3, -8 and -9.

  17. Abnormal Protein Glycosylation and Activated PI3K/Akt/mTOR Pathway: Role in Bladder Cancer Prognosis and Targeted Therapeutics.

    PubMed

    Costa, Céu; Pereira, Sofia; Lima, Luís; Peixoto, Andreia; Fernandes, Elisabete; Neves, Diogo; Neves, Manuel; Gaiteiro, Cristiana; Tavares, Ana; Gil da Costa, Rui M; Cruz, Ricardo; Amaro, Teresina; Oliveira, Paula A; Ferreira, José Alexandre; Santos, Lúcio L

    2015-01-01

    Muscle invasive bladder cancer (MIBC, stage ≥T2) is generally associated with poor prognosis, constituting the second most common cause of death among genitourinary tumours. Due to high molecular heterogeneity significant variations in the natural history and disease outcome have been observed. This has also delayed the introduction of personalized therapeutics, making advanced stage bladder cancer almost an orphan disease in terms of treatment. Altered protein glycosylation translated by the expression of the sialyl-Tn antigen (STn) and its precursor Tn as well as the activation of the PI3K/Akt/mTOR pathway are cancer-associated events that may hold potential for patient stratification and guided therapy. Therefore, a retrospective design, 96 bladder tumours of different stages (Ta, T1-T4) was screened for STn and phosphorylated forms of Akt (pAkt), mTOR (pmTOR), S6 (pS6) and PTEN, related with the activation of the PI3K/Akt/mTOR pathway. In our series the expression of Tn was residual and was not linked to stage or outcome, while STn was statically higher in MIBC when compared to non-muscle invasive tumours (p = 0.001) and associated decreased cancer-specific survival (log rank p = 0.024). Conversely, PI3K/Akt/mTOR pathway intermediates showed an equal distribution between non-muscle invasive bladder cancer (NMIBC) and MIBC and did not associate with cancer-specif survival (CSS) in any of these groups. However, the overexpression of pAKT, pmTOR and/or pS6 allowed discriminating STn-positive advanced stage bladder tumours facing worst CSS (p = 0.027). Furthermore, multivariate Cox regression analysis revealed that overexpression of PI3K/Akt/mTOR pathway proteins in STn+ MIBC was independently associated with approximately 6-fold risk of death by cancer (p = 0.039). Mice bearing advanced stage chemically-induced bladder tumours mimicking the histological and molecular nature of human tumours were then administrated with mTOR-pathway inhibitor sirolimus (rapamycin

  18. Abnormal Protein Glycosylation and Activated PI3K/Akt/mTOR Pathway: Role in Bladder Cancer Prognosis and Targeted Therapeutics

    PubMed Central

    Lima, Luís; Peixoto, Andreia; Fernandes, Elisabete; Neves, Diogo; Neves, Manuel; Gaiteiro, Cristiana; Tavares, Ana; Gil da Costa, Rui M.; Cruz, Ricardo; Amaro, Teresina; Oliveira, Paula A.; Ferreira, José Alexandre; Santos, Lúcio L.

    2015-01-01

    Muscle invasive bladder cancer (MIBC, stage ≥T2) is generally associated with poor prognosis, constituting the second most common cause of death among genitourinary tumours. Due to high molecular heterogeneity significant variations in the natural history and disease outcome have been observed. This has also delayed the introduction of personalized therapeutics, making advanced stage bladder cancer almost an orphan disease in terms of treatment. Altered protein glycosylation translated by the expression of the sialyl-Tn antigen (STn) and its precursor Tn as well as the activation of the PI3K/Akt/mTOR pathway are cancer-associated events that may hold potential for patient stratification and guided therapy. Therefore, a retrospective design, 96 bladder tumours of different stages (Ta, T1-T4) was screened for STn and phosphorylated forms of Akt (pAkt), mTOR (pmTOR), S6 (pS6) and PTEN, related with the activation of the PI3K/Akt/mTOR pathway. In our series the expression of Tn was residual and was not linked to stage or outcome, while STn was statically higher in MIBC when compared to non-muscle invasive tumours (p = 0.001) and associated decreased cancer-specific survival (log rank p = 0.024). Conversely, PI3K/Akt/mTOR pathway intermediates showed an equal distribution between non-muscle invasive bladder cancer (NMIBC) and MIBC and did not associate with cancer-specif survival (CSS) in any of these groups. However, the overexpression of pAKT, pmTOR and/or pS6 allowed discriminating STn-positive advanced stage bladder tumours facing worst CSS (p = 0.027). Furthermore, multivariate Cox regression analysis revealed that overexpression of PI3K/Akt/mTOR pathway proteins in STn+ MIBC was independently associated with approximately 6-fold risk of death by cancer (p = 0.039). Mice bearing advanced stage chemically-induced bladder tumours mimicking the histological and molecular nature of human tumours were then administrated with mTOR-pathway inhibitor sirolimus (rapamycin

  19. AKT/PKB Signaling: Navigating Downstream

    PubMed Central

    Manning, Brendan D.; Cantley, Lewis C.

    2009-01-01

    The serine/threonine kinase Akt, also known as protein kinase B (PKB), is a central node in cell signaling downstream of growth factors, cytokines, and other cellular stimuli. Aberrant loss or gain of Akt activation underlies the pathophysiological properties of a variety of complex diseases, including type-2 diabetes and cancer. Here, we review the molecular properties of Akt and the approaches used to characterize its true cellular targets. In addition, we discuss those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. PMID:17604717

  20. Baicalin against obesity and insulin resistance through activation of AKT/AS160/GLUT4 pathway.

    PubMed

    Fang, Penghua; Yu, Mei; Zhang, Lei; Wan, Dan; Shi, Mingyi; Zhu, Yan; Bo, Ping; Zhang, Zhenwen

    2017-03-27

    Obesity may cause several metabolic complications, including insulin resistance and type 2 diabetes mellitus. Despite great advances in medicine, people still keep exploring novel and effective drugs for treatment of obesity and insulin resistance. The aim of this study was to survey if baicalin might ameliorate obesity-induced insulin resistance and to explore its signal mechanisms in skeletal muscles of mice. Diet-induced obese (DIO) mice were given 50 mg/kg baicalin intraperitoneally (i.p.) once a day for 21 days, and C2C12 myotubes were treated with 100, 200, 400 μM baicalin for 12 h in this study. Then insulin resistance indexes and insulin signal protein levels in skeletal muscles were examined. We discovered that administration of baicalin decreased food intake, body weight, HOMA-IR and NT-PGC-1α levels, but enhanced GLUT4, PGC-1α, pP38MAPK, pAKT and pAS160 contents, as well as GLUT4 mRNA, PGC-1α mRNA, PPARγ mRNA, GLUT1 mRNA expression in skeletal muscles of obese mice and myotubes of C2C12 cells, and reversed high fat diet-induced glucose and insulin intolerance, hyperglycemia and insulin resistance in the mice. These results suggest that baicalin is a powerful and promising agent for treatment of obesity and insulin resistance via Akt/AS160/GLUT4 and P38MAPK/PGC1α/GLUT4 pathway.

  1. Statins upregulate cystathionine γ-lyase transcription and H2S generation via activating Akt signaling in macrophage.

    PubMed

    Xu, Yuan; Du, Hua-Ping; Li, Jiaojiao; Xu, Ran; Wang, Ya-Li; You, Shou-Jiang; Liu, Huihui; Wang, Fen; Cao, Yong-Jun; Liu, Chun-Feng; Hu, Li-Fang

    2014-09-01

    Hydrogen sulfide (H2S), the third gaseous transmitter, is implicated in various pathophysiologic processes. In the cardiovascular system, H2S exerts effects of cardioprotection, vascular tone regulation, and atherogenesis inhibition. Recent studies demonstrated that atorvastatin, the inhibitor of 3-hydroxyl-3-methyl coenzyme A reductase, affected H2S formation in kidney and other organs. However, the underlying mechanisms are not fully understood. In this study, we examined the effects of three different statins (fluvastatin, atorvastatin and pravastatin) on H2S formation in raw264.7 macrophages. There was a remarkable rise in H2S level in fluvastatin- and atorvastatin-stimulated macrophages, while pravastatin failed to show any significant effect on it. Moreover, fluvastatin and atorvastatin enhanced the mRNA and protein expression of cystathionine γ-lyase (CSE) in dose- and time-dependent manners. Fluvastatin also markedly enhanced the CSE activity. However, fluvastatin did not alter the mRNA or protein expression of another H2S-producing enzyme 3-mercaptopyruvate sulfurtransferase. Blockade of CSE with its inhibitor dl-propargylglycine (PAG) or siRNA markedly reduced the H2S level in fluvastatin-stimulated macrophages. In addition, fluvastatin elevated Akt phosphorylation, which occurred as early as 15 min after treatment, peaked at 1h, and lasted at least 3h. Both PI3K inhibitor LY294002 (10 μM) and Akt inhibitor perifosine (10μM) were able to reverse the increases of CSE mRNA and H2S production in fluvastatin-stimulated macrophages. Last, we showed that fluvastatin reduced the mRNA levels of pro-inflammatory molecules such as IL-1β and MCP-1 in LPS-treated macrophages, which were completely reversed by CSE inhibitor PAG. Taken together, the findings demonstrate that statins may up-regulate CSE expression/activity and subsequently elevate H2S generation by activating Akt signaling pathway and also imply that CSE-H2S pathway plays a critical role in the anti

  2. Highly-substrate active isoenzyme acetylcholinesterase-II, in rosy eye mutant of Aedes aegypti mosquito.

    PubMed

    Mourya, D T; Gokhale, M D; Barde, P V; Deobagkar, D N

    2001-08-01

    Insecticide bioassays were carried out on larvae and adults of rosy eye mutant and wildtype strains of A. aegypti. Both the strains were equally susceptible to DDT, malathion and deltamethrin. Biochemical assays showed an increase in acetylcholinesterase enzyme (AChE) activity in all the stages of mutant strain with both the substrates i.e. acetylthiocholine iodide and S-butyrylthiocholine iodide. However, there was no difference in the percent inhibition of enzyme activity with propoxur in these two strains. Polyacrylamide gel electrophoresis performed in native conditions on the homogenates of adults of rosy eye mosquitoes showed that AChE-II allele was highly active with the substrate acetylthiocholine iodide as compared to wildtype strain. Frequency of the highly active AChE-II allele in the mutant strain was about 68%, whereas it was about 5% in the wildtype strain.

  3. [High throughput screening atrazine chlorohydrolase mutants with enhanced activity through Haematococcus pluvialis expression system].

    PubMed

    Wang, Huizhuan; Chen, Xiwen; Hao, Xiaohua; Chen, Defu

    2011-04-01

    Developing a high-throughput screening method is of great importance for directed evolution of atrazine chlorohydrolase. A mutagenesis library of atzA from Pseudomonas sp. ADP and Arthrobacter sp. AD1 was constructed using error-prone PCR and DNA shuffling. Candidate mutants were screened through Haematococcus pluvialis expression system, using atrazine as selection pressure. Sequence analysis showed that mutations in the obtained 12 mutants with enhanced activity were all point-substitutions and scattered throughout the gene. Enzymatic activity analysis showed that the mutants all had higher activities than that of the wild type. The activities were 1.8-3.6 fold of the wild-type enzyme when cultured in BBM medium with 1 mg/L atrazine, whereas 1.8-2.6 fold with 2 mg/L atrazine. These results indicated that Haematococcus pluvialis expression system is an ideal high throughput screening system for directed evolution of atrazine chlorohydrolase.

  4. Relative activities and stabilities of mutant Escherichia coli tryptophan synthase alpha subunits.

    PubMed Central

    Lim, W K; Shin, H J; Milton, D L; Hardman, J K

    1991-01-01

    In vitro mutagenesis of the Escherichia coli trpA gene has yielded 66 mutant tryptophan synthase alpha subunits containing single amino acid substitutions at 49 different residue sites and 29 double and triple amino acid substitutions at 16 additional sites, all within the first 121 residues of the protein. The 66 singly altered mutant alpha subunits encoded from overexpression vectors have been examined for their ability to support growth in trpA mutant host strains and for their enzymatic and stability properties in crude extracts. With the exception of mutant alpha subunits altered at catalytic residue sites Glu-49 and Asp-60, all support growth; this includes those (48 of 66) that have no enzymatic defects and those (18 of 66) that do. The majority of the enzymatically defective mutant alpha subunits have decreased capacities for substrate (indole-3-glycerol phosphate) utilization, typical of the early trpA missense mutants isolated by in vivo selection methods. These defects vary in severity from complete loss of activity for mutant alpha subunits altered at residue positions 49 and 60 to those, altered elsewhere, that are partially (up to 40 to 50%) defective. The complete inactivation of the proteins altered at the two catalytic residue sites suggest that, as found via in vitro site-specific mutagenesis of the Salmonella typhimurium tryptophan synthetase alpha subunit, both residues probably also participate in a push-pull general acid-base catalysis of indole-3-glycerol phosphate breakdown for the E. coli enzyme as well. Other classes of mutant alpha subunits include some novel types that are defective in their functional interaction with the other tryptophan synthetase component, the beta 2 subunit. Also among the mutant alpha subunits, 19 were found altered at one or another of the 34 conserved residue sites in this portion of the alpha polypeptide sequence; surprisingly, 10 of these have wild-type enzymatic activity, and 16 of these can satisfy growth

  5. Putative Phosphatidylinositol 3-Kinase (PI3K) Binding Motifs in Ovine Betaretrovirus Env Proteins Are Not Essential for Rodent Fibroblast Transformation and PI3K/Akt Activation

    PubMed Central

    Liu, Shan-Lu; Lerman, Michael I.; Miller, A. Dusty

    2003-01-01

    Jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV) are simple betaretroviruses that cause epithelial cell tumors in the lower and upper airways of sheep and goats. The envelope (Env) glycoproteins of both viruses can transform rodent and chicken fibroblasts, indicating that they play an essential role in oncogenesis. Previous studies found that a YXXM motif in the Env cytoplasmic tail, a putative docking site for phosphatidylinositol 3-kinase (PI3K) after tyrosine phosphorylation, was necessary for rodent cell transformation but was not required for transformation of DF-1 chicken fibroblasts. Here we show that JSRV and ENTV Env proteins with tyrosine or methionine mutations in the YXXM motif can still transform rodent fibroblasts, albeit with reduced efficiency. Akt was activated in cells transformed by JSRV or ENTV Env proteins and in cells transformed by the proteins with tyrosine mutations. Furthermore, the PI3K-specific inhibitor LY294002 could inhibit Akt activation and cell transformation in all cases, indicating that Akt activation and transformation is PI3K dependent. However, we could not detect tyrosine phosphorylation of JSRV or ENTV Env proteins or an interaction between the Env proteins and PI3K in the transformed cells. We found no evidence for mitogen-activated protein kinase activation in cells that were transformed by the JSRV or ENTV Env proteins. We conclude that ovine betaretrovirus Env proteins transform the rodent fibroblasts by indirectly activating the PI3K/Akt pathway. PMID:12829832

  6. ID4 regulates transcriptional activity of wild type and mutant p53 via K373 acetylation.

    PubMed

    Morton, Derrick J; Patel, Divya; Joshi, Jugal; Hunt, Aisha; Knowell, Ashley E; Chaudhary, Jaideep

    2017-01-10

    Given that mutated p53 (50% of all human cancers) is over-expressed in many cancers, restoration of mutant p53 to its wild type biological function has been sought after as cancer therapy. The conformational flexibility has allowed to restore the normal biological function of mutant p53 by short peptides and small molecule compounds. Recently, studies have focused on physiological mechanisms such as acetylation of lysine residues to rescue the wild type activity of mutant p53. Using p53 null prostate cancer cell line we show that ID4 dependent acetylation promotes mutant p53 DNA-binding capabilities to its wild type consensus sequence, thus regulating p53-dependent target genes leading to subsequent cell cycle arrest and apoptosis. Specifically, by using wild type, mutant (P223L, V274F, R175H, R273H), acetylation mimics (K320Q and K373Q) and non-acetylation mimics (K320R and K373R) of p53, we identify that ID4 promotes acetylation of K373 and to a lesser extent K320, in turn restoring p53-dependent biological activities. Together, our data provides a molecular understanding of ID4 dependent acetylation that suggests a strategy of enhancing p53 acetylation at sites K373 and K320 that may serve as a viable mechanism of physiological restoration of mutant p53 to its wild type biological function.

  7. Salvianolic Acid A Attenuates Cell Apoptosis, Oxidative Stress, Akt and NF-κB Activation in Angiotensin-II Induced Murine Peritoneal Macrophages.

    PubMed

    Li, Ling; Xu, Tongda; Du, Yinping; Pan, Defeng; Wu, Wanling; Zhu, Hong; Zhang, Yanbin; Li, Dongye

    2016-01-01

    We discuss the role of Salvianolic acid A(SAA), one of the main effective components in Salvia Miltiorrhiza (known as 'Danshen' in traditional Chinese medicine), in apoptotic factors, the production of oxidative products, and the expression of Akt and NF-κB in angiotensin II (Ang II)-mediated murine macrophages. In the present study, Ang II was added to mice abdominal macrophages with or without addition of SAA. After cell identification, apoptosis was measured by DNA strand break level with TdT-mediated dUTP nick-end labeling (TUNEL) staining, and the expression of Bcl-2 and Bax. Intracellular concentrations of superoxide dismutase (SOD) and malondialdehyde (MDA) were also measured. Western blotting determined the expression of Akt, p-Akt, NF-κB and p-NF-κB. Ly294002 (the inhibitor of PI3K) was used to determine the mechanism of SAA. Ang II (1 µM) significantly increased the number of TUNEL-positive cells and Bax expression, but reduced Bcl-2 expression. These effects were antagonized when the cells were pretreated with SAA. SAA decreased MDA, but increased SOD in the cell lysis solution treated with Ang II. It markedly reduced the level of p-NF-κB, as also p-Akt, which was partly blocked by Ly294002. SAA prevents Ang IIinduced apoptosis, oxidative stress and related protein expression in the macrophages. It also inhibits the activation of Akt.

  8. MYOCARDIAL AKT: THE OMNIPRESENT NEXUS

    PubMed Central

    Sussman, Mark A.; Völkers, Mirko; Fischer, Kimberlee; Bailey, Brandi; Cottage, Christopher T.; Din, Shabana; Gude, Natalie; Avitabile, Daniele; Alvarez, Roberto; Sundararaman, Balaji; Quijada, Pearl; Mason, Matt; Konstandin, Mathias H.; Malhowski, Amy; Cheng, Zhaokang; Khan, Mohsin; McGregor, Michael

    2013-01-01

    One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses. PMID:21742795

  9. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways.

    PubMed

    Xia, Wenle; Mullin, Robert J; Keith, Barry R; Liu, Lei-Hua; Ma, Hong; Rusnak, David W; Owens, Gary; Alligood, Krystal J; Spector, Neil L

    2002-09-12

    Dual EGFR/erbB2 inhibition is an attractive therapeutic strategy for epithelial tumors, as ligand-induced erbB2/EGFR heterodimerization triggers potent proliferative and survival signals. Here we show that a small molecule, GW572016, potently inhibits both EGFR and erbB2 tyrosine kinases leading to growth arrest and/or apoptosis in EGFR and erbB2-dependent tumor cell lines. GW572016 markedly reduced tyrosine phosphorylation of EGFR and erbB2, and inhibited activation of Erk1/2 and AKT, downstream effectors of proliferation and cell survival, respectively. Complete inhibition of activated AKT in erbB2 overexpressing cells correlated with a 23-fold increase in apoptosis compared with vehicle controls. EGF, often elevated in cancer patients, did not reverse the inhibitory effects of GW572016. These observations were reproduced in vivo, where GW572016 treatment inhibited activation of EGFR, erbB2, Erk1/2 and AKT in human tumor xenografts. Erk1/2 and AKT represent potential biomarkers to assess the clinical activity of GW572016. Inhibition of activated AKT in EGFR or erbB2-dependent tumors by GW572016 may lead to tumor regressions when used as a monotherapy, or may enhance the anti-tumor activity of chemotherapeutics, since constitutive activation of AKT has been linked to chemo-resistance.

  10. Crude Preparations of Helicobacter pylori Outer Membrane Vesicles Induce Upregulation of Heme Oxygenase-1 via Activating Akt-Nrf2 and mTOR–IκB Kinase–NF-κB Pathways in Dendritic Cells

    PubMed Central

    Ko, Su Hyuk; Rho, Da Jeong; Jeon, Jong Ik; Kim, Young-Jeon; Woo, Hyun Ae; Kim, Nayoung

    2016-01-01

    Helicobacter pylori sheds outer membrane vesicles (OMVs) that contain many surface elements of bacteria. Dendritic cells (DCs) play a major role in directing the nature of adaptive immune responses against H. pylori, and heme oxygenase-1 (HO-1) has been implicated in regulating function of DCs. In addition, HO-1 is important for adaptive immunity and the stress response. Although H. pylori-derived OMVs may contribute to the pathogenesis of H. pylori infection, responses of DCs to OMVs have not been elucidated. In the present study, we investigated the role of H. pylori-derived crude OMVs in modulating the expression of HO-1 in DCs. Exposure of DCs to crude H. pylori OMVs upregulated HO-1 expression. Crude OMVs obtained from a cagA-negative isogenic mutant strain induced less HO-1 expression than OMVs obtained from a wild-type strain. Crude H. pylori OMVs activated signals of transcription factors such as NF-κB, AP-1, and Nrf2. Suppression of NF-κB or Nrf2 resulted in significant attenuation of crude OMV-induced HO-1 expression. Crude OMVs increased the phosphorylation of Akt and downstream target molecules of mammalian target of rapamycin (mTOR), such as S6 kinase 1 (S6K1). Suppression of Akt resulted in inhibition of crude OMV-induced Nrf2-dependent HO-1 expression. Furthermore, suppression of mTOR was associated with inhibition of IκB kinase (IKK), NF-κB, and HO-1 expression in crude OMV-exposed DCs. These results suggest that H. pylori-derived OMVs regulate HO-1 expression through two different pathways in DCs, Akt-Nrf2 and mTOR–IKK–NF-κB signaling. Following this induction, increased HO-1 expression in DCs may modulate inflammatory responses in H. pylori infection. PMID:27185786

  11. VHL-deficient renal cancer cells gain resistance to mitochondria-activating apoptosis inducers by activating AKT through the IGF1R-PI3K pathway.

    PubMed

    Yamaguchi, Ryuji; Harada, Hiroshi; Hirota, Kiichi

    2016-10-01

    We previously developed (2-deoxyglucose)-(ABT-263) combination therapy (2DG-ABT), which induces apoptosis by activating Bak in the mitochondria of highly glycolytic cells with varied genetic backgrounds. However, the rates of apoptosis induced by 2DG-ABT were lower in von Hippel-Lindau (VHL)-deficient cancer cells. The re-expression of VHL protein in these cells lowered IGF1R expression in a manner independent of oxygen concentration. Lowering IGF1R expression via small interfering RNA (siRNA) sensitized the cells to 2DG-ABT, suggesting that IGF1R interfered with the activation of apoptosis by the mitochondria. To determine which of the two pathways activated by IGF1R, the Ras-ERK pathway or the PI3K-AKT pathway, was involved in the impairment of mitochondria activation, the cells were treated with a specific inhibitor of either PI3K or ERK, and 2DG-ABT was added to activate the mitochondria. The apoptotic rates resulting from 2DG-ABT treatment were higher in the cells treated with the PI3K inhibitor, while the rates remained approximately the same in the cells treated with the ERK inhibitor. In 2DG-ABT-sensitive cells, a 4-h 2DG treatment caused the dissociation of Mcl-1 from Bak, while ABT treatment alone caused the dissociation of Bcl-xL from Bak without substantially reducing Mcl-1 levels. In 2DG-ABT-resistant cells, Mcl-1 dissociated from Bak only when AKT activity was inhibited during the 4-h 2DG treatment. Thus, in VHL-deficient cells, IGF1R activated AKT and stabilized the Bak-Mcl-1 complex, thereby conferring cell resistance to apoptosis.

  12. Icariin stimulates angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways in human endothelial cells

    SciTech Connect

    Chung, Byung-Hee; Kim, Jong-Dai; Kim, Chun-Ki; Kim, Jung Huan; Won, Moo-Ho; Lee, Han-Soo; Dong, Mi-Sook; Ha, Kwon-Soo; Kwon, Young-Geun; Kim, Young-Myeong

    2008-11-14

    We investigated the molecular effect and signal pathway of icariin, a major flavonoid of Epimedium koreanum Nakai, on angiogenesis. Icariin stimulated in vitro endothelial cell proliferation, migration, and tubulogenesis, which are typical phenomena of angiogenesis, as well as increased in vivo angiogenesis. Icariin activated the angiogenic signal modulators, ERK, phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric oxide synthase (eNOS), and increased NO production, without affecting VEGF expression, indicating that icariin may directly stimulate angiogenesis. Icariin-induced ERK activation and angiogenic events were significantly inhibited by the MEK inhibitor PD98059, without affecting Akt and eNOS phosphorylation. The PI3K inhibitor Wortmannin suppressed icariin-mediated angiogenesis and Akt and eNOS activation without affecting ERK phosphorylation. Moreover, the NOS inhibitor NMA partially reduced the angiogenic activity of icariin. These results suggest that icariin stimulated angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways and may be a useful drug for angiogenic therapy.

  13. The underlying mechanism of proinflammatory NF-κB activation by the mTORC2/Akt/IKKα pathway during skin aging

    PubMed Central

    Choi, Yeon Ja; Moon, Kyoung Mi; Chung, Ki Wung; Jeong, Ji Won; Park, Daeui; Kim, Dae Hyun; Yu, Byung Pal; Chung, Hae Young

    2016-01-01

    Mammalian target of rapamycin complex 2 (mTORC2), one of two different enzymatic complexes of mTOR, regulates a diverse set of substrates including Akt. mTOR pathway is one of well-known mediators of aging process, however, its role in skin aging has not been determined. Skin aging can be induced by physical age and ultraviolet (UV) irradiation which are intrinsic and extrinsic factors, respectively. Here, we report increased mTORC2 pathway in intrinsic and photo-induced skin aging, which is implicated in the activation of nuclear factor-κB (NF-κB). UVB-irradiated or aged mice skin revealed that mTORC2 activity and its component, rictor were significantly upregulated which in turn increased Akt activation and Akt-dependent IκB kinase α (IKKα) phosphorylation at Thr23 in vivo. We also confirmed that UVB induced the mTORC2/Akt/IKKα signaling pathway with HaCaT human normal keratinocytes. The increased mTORC2 signaling pathway during skin aging were associated to NF-κB activation. Suppression of mTORC2 activity by the treatment of a mTOR small inhibitor or knockdown of RICTOR partially rescued UVB-induced NF-κB activation through the downregulation of Akt/IKKα activity. Our data demonstrated the upregulation of mTORC2 pathway in intrinsic and photo-induced skin aging and its role in IKKα/NF-κB activation. These data not only expanded the functions of mTOR to skin aging but also revealed the therapeutic potential of inhibiting mTORC2 in ameliorating both intrinsic skin aging and photoaging. PMID:27486771

  14. Cholesteryl Ester Accumulation Induced by PTEN Loss and PI3K/AKT Activation Underlies Human Prostate Cancer Aggressiveness

    PubMed Central

    Yue, Shuhua; Li, Junjie; Lee, Seung-Young; Lee, Hyeon Jeong; Shao, Tian; Song, Bing; Cheng, Liang; Masterson, Timothy A.; Liu, Xiaoqi; Ratliff, Timothy L.; Cheng, Ji-Xin

    2014-01-01

    Summary Altered lipid metabolism is increasingly recognized as a signature of cancer cells. Enabled by label-free Raman spectromicroscopy, we performed quantitative analysis of lipogenesis at single cell level in human patient cancerous tissues. Our imaging data revealed an unexpected, aberrant accumulation of esterified cholesterol in lipid droplets of high-grade prostate cancer and metastases. Biochemical study showed that such cholesteryl ester accumulation was a consequence of loss of tumor suppressor PTEN and subsequent activation of PI3K/AKT pathway in prostate cancer cells. Furthermore, we found that such accumulation arose from significantly enhanced uptake of exogenous lipoproteins and required cholesterol esterification. Depletion of cholesteryl ester storage significantly reduced cancer proliferation, impaired cancer invasion capability, and suppressed tumor growth in mouse xenograft models with negligible toxicity. These findings open opportunities for diagnosing and treating prostate cancer by targeting the altered cholesterol metabolism. PMID:24606897

  15. Seabuckthorn Pulp Oil Protects against Myocardial Ischemia–Reperfusion Injury in Rats through Activation of Akt/eNOS

    PubMed Central

    Suchal, Kapil; Bhatia, Jagriti; Malik, Salma; Malhotra, Rajiv Kumar; Gamad, Nanda; Goyal, Sameer; Nag, Tapas C.; Arya, Dharamvir S.; Ojha, Shreesh

    2016-01-01

    Seabuckthorn (SBT) pulp oil obtained from the fruits of seabuckthorn [Hippophae rhamnoides L. (Elaeagnaceae)] has been used traditionally for its medicinal and nutritional properties. However, its role in ischemia–reperfusion (IR) injury of myocardium in rats has not been elucidated so far. The present study reports the cardioprotective effect of SBT pulp oil in IR-induced model of myocardial infarction in rats and underlying mechanism mediating activation of Akt/eNOS signaling pathway. Male albino Wistar rats were orally administered SBT pulp oil (5, 10, and 20 ml/kg/day) or saline for 30 days. On the day 31, ischemia was induced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. SBT pulp oil pretreatment at the dose of 20 ml/kg observed to stabilize cardiac function and myocardial antioxidants such as glutathione, superoxide dismutase, catalase, and inhibited lipid peroxidation evidenced by reduced malondialdehyde levels as compared to IR-control group. SBT pulp oil also improved hemodynamic and contractile function and decreased tumor necrosis factor and activities of myocyte injury marker enzymes; lactate dehydrogenase and creatine kinase-MB. Additionally, a remarkable rise in expression of pAkt–eNOS, Bcl-2 and decline in expression of IKKβ/NF-κB and Bax was observed in the myocardium. The histopathological and ultrastructural salvage of cardiomyocytes further supports the cardioprotective effect of SBT pulp oil. Based on findings, it can be concluded that SBT pulp oil protects against myocardial IR injury mediating favorable modulation of Akt-eNOS and IKKβ/NF-κB expression. PMID:27445803

  16. Interleukin-18 directly protects cortical neurons by activating PI3K/AKT/NF-κB/CREB pathways.

    PubMed

    Zhou, Jia; Ping, Feng-feng; Lv, Wen-ting; Feng, Jun-yi; Shang, Jing

    2014-09-01

    Interleukin-18 (IL-18), a member of the IL-1 family of cytokines, was initially identified as an interferon (IFN)-γ-inducing factor. IL-18 is expressed in both immune and non-immune cells and participates in the adjustment of multitude cellular functions. Nonetheless, the effects of IL-18 on cortical neurons have not been explored. The present study was conducted to investigate the influence of IL-18 on rat primary cortical neurons and elucidate the underlying mechanisms. We proved that rrIL-18 increased the brain-derived neurotrophic factor (BDNF) expression in a time-dependent manner. Treatment with rrIL-18 (50 ng/ml) deactivated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) by facilitating its phosphorylation, enhanced the expression of Phosphoinositide 3-OH kinase (PI3K) and p-Akt, standing for the activation of the PI3K/Akt pathway. As its pivotal downstream pathways, nuclear factor-kappa B (NF-κB), cAMP-responsive element binding protein (CREB)/Bcl-2 and glycogen synthase kinase-3β (GSK-3β) were examined in further steps. Our data revealed that rrIL-18 stimulated NF-κB activation, improved p-CREB and anti-apoptotic Bcl-2 expression levels. But rrIL-18 had little or no effect on GSK-3β pathway. Besides, rrIL-18 increased levels of BDNF and Bcl-2/Bax ratio and decreased cleaved caspase-3 expression to protect cortical neurons from damage induced by oxygen-glucose deprivation (OGD). These results in vitro showed the protection of IL-18 on cortical neurons. And this direct neuroprotective effect of IL-18 is crippled by PI3K inhibitor wortmannin.

  17. Expansion and long-term culture of human spermatogonial stem cells via the activation of SMAD3 and AKT pathways.

    PubMed

    Guo, Ying; Liu, Linhong; Sun, Min; Hai, Yanan; Li, Zheng; He, Zuping

    2015-08-01

    Spermatogonial stem cells (SSCs) can differentiate into spermatids, reflecting that they could be used in reproductive medicine for treating male infertility. SSCs are able to become embryonic stem-like cells with the potentials of differentiating into numerous cell types of the three germ layers and they can transdifferentiate to mature and functional cells of other lineages, highlighting significant applications of human SSCs for treating human diseases. However, human SSCs are very rare and a long-term culture system of human SSCs has not yet established. This aim of study was to isolate, identify and culture human SSCs for a long period. We isolated GPR125-positive spermatogonia with high purity and viability from adult human testicular tissues utilizing the two-step enzymatic digestion and magnetic-activated cell sorting with antibody against GPR125. These freshly isolated cells expressed a number of markers for SSCs, including GPR125, PLZF, GFRA1, RET, THY1, UCHL1 and MAGEA4, but not the hallmarks for spermatocytes and spermatozoa, e.g. SYCP1, SYCP3, PRM1, and TNP1. The isolated human SSCs could be cultured for two months with a significant increase of cell number with the defined medium containing growth factors and hydrogel. Notably, the expression of numerous SSC markers was maintained during the cultivation of human SSCs. Furthermore, SMAD3 and AKT phosphorylation was enhanced during the culture of human SSCs. Collectively, these results suggest that human SSCs can be cultivated for a long period and expanded whilst retaining an undifferentiated status via the activation of SMAD3 and AKT pathways. This study could provide sufficient cells of SSCs for their basic research and clinic applications in reproductive and regenerative medicine.

  18. Characterization of antimicrobial activity against Listeria and cytotoxicity of native melittin and its mutant variants.

    PubMed

    Wu, Xi; Singh, Atul K; Wu, Xiaoyu; Lyu, Yuan; Bhunia, Arun K; Narsimhan, Ganesan

    2016-07-01

    Antimicrobial peptides (AMPs) are relatively short peptides that have the ability to penetrate the cell membrane, form pores leading to cell death. This study compares both antimicrobial activity and cytotoxicity of native melittin and its two mutants, namely, melittin I17K (GIGAVLKVLTTGLPALKSWIKRKRQQ) with a higher charge and lower hydrophobicity and mutant G1I (IIGAVLKVLTTGLPALISWIKRKRQQ) of higher hydrophobicity. The antimicrobial activity against different strains of Listeria was investigated by bioassay, viability studies, fluorescence and transmission electron microscopy. Cytotoxicity was examined by lactate dehydrogenase (LDH) assay on mammalian Caco-2 cells. The minimum inhibitory concentration of native, mutant I17K, mutant G1I against Listeria monocytogenes F4244 was 0.315±0.008, 0.814±0.006 and 0.494±0.037μg/ml respectively, whereas the minimum bactericidal concentration values were 3.263±0.0034, 7.412±0.017 and 5.366±0.019μg/ml respectively. Lag time for inactivation of L. monocytogenes F4244 was observed at concentrations below 0.20 and 0.78μg/ml for native and mutant melittin I17K respectively. The antimicrobial activity against L. monocytogenes F4244 was in the order native>G1I>I17K. Native melittin was cytotoxic to mammalian Caco-2 cells above concentration of 2μg/ml, whereas the two mutants exhibited negligible cytotoxicity up to a concentration of 8μg/ml. Pore formation in cell wall/membrane was observed by transmission electron microscopy. Molecular dynamics (MD) simulation of native and its mutants indicated that (i) surface native melittin and G1I exhibited higher tendency to penetrate a mimic of bacterial cell membrane and (ii) transmembrane native and I17K formed water channel in mimics of bacterial and mammalian cell membranes.

  19. Cisplatin triggers atrophy of skeletal C2C12 myotubes via impairment of Akt signalling pathway and subsequent increment activity of proteasome and autophagy systems

    SciTech Connect

    Fanzani, Alessandro Zanola, Alessandra; Rovetta, Francesca; Rossi, Stefania; Aleo, Maria Francesca

    2011-02-01

    Cisplatin (cisPt) is an antineoplastic drug which causes an array of adverse effects on different organs and tissues, including skeletal muscle. In this work we show that cisPt behaves as a potent trigger to activate protein hypercatabolism in skeletal C2C12 myotubes. Within 24 h of 50 {mu}M cisPt administration, C2C12 myotubes displayed unchanged cell viability but showed a subset of hallmark signs typically recognized during atrophy, including severe reduction in body size, repression of Akt phosphorylation, transcriptional up-regulation of atrophy-related genes, such as atrogin-1, gabarap, beclin-1 and bnip-3, and loss of myogenic markers. As a consequence, proteasomal activity and formation of autophagosomes were remarkably increased in cisPt-treated myotubes, but forced stimulation of Akt pathway, as obtained through insulin administration or delivery of a constitutively activated Akt form, was sufficient to counter the cisPt-induced protein breakdown, leading to rescue of atrophic size. Overall, these results indicate that cisPt induces atrophy of C2C12 myotubes via activation of proteasome and autophagy systems, suggesting that the Akt pathway represents one sensitive target of cisPt molecular action in skeletal muscle.

  20. Inositol hexaphosphate represses telomerase activity and translocates TERT from the nucleus in mouse and human prostate cancer cells via the deactivation of Akt and PKC{alpha}

    SciTech Connect

    Jagadeesh, Shankar; Banerjee, Partha P. . E-mail: ppb@georgetown.edu

    2006-11-03

    Inositol hexaphosphate (IP6) has anti-proliferative effects on a variety of cancer cells, including prostate cancer. However, the molecular mechanism of anti-proliferative effects of IP6 is not entirely understood. Since the activation of telomerase is crucial for cells to gain immortality and proliferation ability, we examined the role of IP6 in the regulation of telomerase activity in prostate cancer cells. Here, we show that IP6 represses telomerase activity in mouse and human prostate cancer cells dose-dependently. In addition, IP6 prevents the translocation of TERT to the nucleus. Since phosphorylation of TERT by Akt and/or PKC{alpha} is necessary for nuclear translocation, we examined phosphorylation of Akt and PKC{alpha} after IP6 treatments. Our results show that IP6 inhibits phosphorylation of Akt and PKC{alpha}. These results show for the first time that IP6 represses telomerase activity in prostate cancer cells by posttranslational modification of TERT via the deactivation of Akt and PKC{alpha}.

  1. AT7867 Inhibits Human Colorectal Cancer Cells via AKT-Dependent and AKT-Independent Mechanisms

    PubMed Central

    Yao, Chen; Huang, Ping; Zhang, Yi; Cao, Shibing; Li, Xiangcheng

    2017-01-01

    AKT is often hyper-activated in human colorectal cancers (CRC). This current study evaluated the potential anti-CRC activity by AT7867, a novel AKT and p70S6K1 (S6K1) dual inhibitor. We showed that AT7867 inhibited survival and proliferation of established (HT-29, HCT116 and DLD-1 lines) and primary human CRC cells. Meanwhile, it provoked caspase-dependent apoptosis in the CRC cells. Molecularly, AT7867 blocked AKT-S6K1 activation in CRC cells. Restoring AKT-S6K1 activation, via expression of a constitutively-active AKT1 (“ca-AKT1”), only partially attenuated AT7867-induced HT-29 cell death. Further studies demonstrated that AT7867 inhibited sphingosine kinase 1 (SphK1) activity to promote pro-apoptotic ceramide production in HT-29 cells. Such effects by AT7867 were independent of AKT inhibition. AT7867-indued ceramide production and subsequent HT-29 cell apoptosis were attenuated by co-treatment of sphingosine-1-phosphate (S1P), but were potentiated with the glucosylceramide synthase (GCS) inhibitor PDMP. In vivo, intraperitoneal injection of AT7867 inhibited HT-29 xenograft tumor growth in nude mice. AKT activation was also inhibited in AT7867-treated HT-29 tumors. Together, the preclinical results suggest that AT7867 inhibits CRC cells via AKT-dependent and -independent mechanisms. PMID:28081222

  2. Isolation and characterization of a starchless mutant of Arabidopsis thaliana (L. ) Heynh lacking ADPglucose pyrophosphorylase activity

    SciTech Connect

    Lin, Tsanpiao; Caspar, T.; Somerville, C.; Preiss, J. )

    1988-04-01

    A mutant of Arabidopsis thaliana lacking ADPglucose pyrophosphorylase activity (EC 2.7.7.27) was isolated (from a mutagenized population of plants) by screening for the absence of leaf starch. The mutant grows as vigorously as the wild type in continuous light but more slowly than the wild type in a 12 hours light/12 hours dark photoperiod. Genetic analysis showed that the deficiency of both starch and ADPglucose pyrophosphorylase activity were attributable to a single, nuclear, recessive mutation at a locus designated adg1. The absence of starch in the mutant demonstrates that starch synthesis in the chloroplast is entirely dependent on a pathway involving ADPglucose pyrophosphorylase. Analysis of leaf extracts by two-dimensional polyacrylamide gel electrophoresis followed by Western blotting experiments using antibodies specific for spinach ADPglucose pyrophosphorylase showed that two proteins, present in the wild type, were absent from the mutant. The heterozygous F{sub 1} progeny of a cross between the mutant and wild type had a specific activity of ADP-glucose pyrophosphorylase indistinguishable from the wild type. These observations suggest that the mutation in the adg1 gene in TL25 might affect a regulatory locus.

  3. Reduced activity of glutamine synthetase in Rhodospirillum rubrum mutants lacking the adenylyltransferase GlnE.

    PubMed

    Jonsson, Anders; Nordlund, Stefan; Teixeira, Pedro Filipe

    2009-10-01

    In the nitrogen-fixing bacterium Rhodospirillum rubrum, the GlnE adenylyltransferase (encoded by glnE) catalyzes reversible adenylylation of glutamine synthetase, thereby regulating nitrogen assimilation. We have generated glnE mutant strains that are unable to adenylylate glutamine synthetase (GS). Surprisingly, the activity of GS was lower in the mutants than in the wild type, even when grown in nitrogen-fixing conditions. Our results support the proposal that R. rubrum can only cope with the absence of an adenylylation system in the presence of lowered GS expression or activity. In general terms, this report also provides further support for the central role of GS in bacterial metabolism.

  4. TNF-{alpha} promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    SciTech Connect

    Wang, Cheng-hu; Cao, Guo-Fan; Jiang, Qin; Yao, Jin

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} induces MMP-9 expression and secretion to promote RPE cell migration. Black-Right-Pointing-Pointer MAPK activation is not critical for TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer Akt and mTORC1 signaling mediate TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-{alpha}. -- Abstract: Tumor necrosis factor-alpha (TNF-{alpha}) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-{alpha} promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-{alpha}-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-{alpha}-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-{alpha} promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  5. ON01210.Na (Ex-RAD®) mitigates radiation damage through activation of the AKT pathway.

    PubMed

    Kang, Anthony D; Cosenza, Stephen C; Bonagura, Marie; Manair, Manoj; Reddy, M V Ramana; Reddy, E Premkumar

    2013-01-01

    Development of radio-protective agents that are non-toxic is critical in light of ever increasing threats associated with proliferation of nuclear materials, terrorism and occupational risks associated with medical and space exploration. In this communication, we describe the discovery, characterization and mechanism of action of ON01210.Na, which effectively protects mouse and human bone marrow cells from radiation-induced damage both in vitro and in vivo. Our results show that treatment of normal fibroblasts with ON01210.Na before and after exposure to ionizing radiation provides dose dependent protection against radiation-induced damage. Treatment of mice with ON01210.Na prior to radiation exposure was found to result in a more rapid recovery of their hematopoietic system. The mechanistic studies described here show that ON01210.Na manifests its protective effects through the up-regulation of PI3-Kinase/AKT pathways in cells exposed to radiation. These results suggest that ON 01210.Na is a safe and effective radioprotectant and could be a novel agent for use in radiobiological disasters.

  6. ON01210.Na (Ex-RAD®) Mitigates Radiation Damage through Activation of the AKT Pathway

    PubMed Central

    Bonagura, Marie; Manair, Manoj; Reddy, M. V. Ramana; Reddy, E. Premkumar

    2013-01-01

    Development of radio-protective agents that are non-toxic is critical in light of ever increasing threats associated with proliferation of nuclear materials, terrorism and occupational risks associated with medical and space exploration. In this communication, we describe the discovery, characterization and mechanism of action of ON01210.Na, which effectively protects mouse and human bone marrow cells from radiation-induced damage both in vitro and in vivo. Our results show that treatment of normal fibroblasts with ON01210.Na before and after exposure to ionizing radiation provides dose dependent protection against radiation-induced damage. Treatment of mice with ON01210.Na prior to radiation exposure was found to result in a more rapid recovery of their hematopoietic system. The mechanistic studies described here show that ON01210.Na manifests its protective effects through the up-regulation of PI3-Kinase/AKT pathways in cells exposed to radiation. These results suggest that ON 01210.Na is a safe and effective radioprotectant and could be a novel agent for use in radiobiological disasters. PMID:23505494

  7. Protein kinase C promotes apoptosis in LNCaP prostate cancer cells through activation of p38 MAPK and inhibition of the Akt survival pathway.

    PubMed

    Tanaka, Yuichi; Gavrielides, M Veronica; Mitsuuchi, Yasuhiro; Fujii, Teruhiko; Kazanietz, Marcelo G

    2003-09-05

    Activation of protein kinase C (PKC) by phorbol esters or diacylglycerol mimetics induces apoptosis in androgen-dependent prostate cancer cells, an effect that involves both the activation of the classic PKC alpha and the novel PKC delta isozymes (Fujii, T., García-Bermejo, M. L., Bernabó, J. L., Caamaño, J., Ohba, M., Kuroki, T., Li, L., Yuspa, S. H., and Kazanietz, M. G. (2000) J. Biol. Chem. 275, 7574-7582 and Garcia-Bermejo, M. L., Leskow, F. C., Fujii, T., Wang, Q., Blumberg, P. M., Ohba, M., Kuroki, T., Han, K. C., Lee, J., Marquez, V. E., and Kazanietz, M. G. (2002) J. Biol. Chem. 277, 645-655). In the present study we explored the signaling events involved in this PKC-mediated effect, using the androgen-dependent LNCaP cell line as a model. Stimulation of PKC by phorbol 12-myristate 13-acetate (PMA) leads to the activation of ERK1/2, p38 MAPK, and JNK in LNCaP cells. Here we present evidence that p38 MAPK, but not JNK, mediates PKC-induced apoptosis. Because LNCaP cells have hyperactivated Akt function due to PTEN inactivation, we examined whether this survival pathway could be affected by PKC activation. Interestingly, activation of PKC leads to a rapid and reversible dephosphorylation of Akt, an effect that was prevented by the pan-PKC inhibitor GF109302X and the cPKC inhibitor Gö6976. In addition, the diacylglycerol mimetic agent HK654, which selectively stimulates PKC alpha in LNCaP cells, also induced the dephosphorylation of Akt in LNCaP cells. Inactivation of Akt function by PKC does not involve the inhibition of PI3K, and it is prevented by okadaic acid, suggesting the involvement of a phosphatase 2A in PMA-induced Akt dephosphorylation. Finally, we show that, when an activated form of Akt is delivered into LNCaP cells by either transient transfection or adenoviral infection, the apoptotic effect of PMA is significantly reduced. Our results highlight a complex array of signaling pathways regulated by PKC isozymes in LNCaP prostate cancer cells

  8. Beam sensorimotor learning and habituation to motor activity in lurcher mutant mice.

    PubMed

    Lalonde, R; Joyal, C C; Thifault, S

    1996-01-01

    Lurcher mutant mice lose cerebellar granule cells and Purkinje cells. The mutants were compared to normal mice in a beam-walking task. Normal mice were placed on a slippery bridge while lurchers, because of their severe ataxia, were placed on a bridge with the same diameter, but enveloped with surgical tape to improve traction. The performance of both groups improved with repeated trials. In an activity box, lurcher mutants were as active as normal mice, showed normal intrasession habituation, and emerged from a toy object as easily as normal mice. These results indicate that the cerebellar damage in lurchers does not prevent the acquisition of a motor skill task requiring balance in an immobile apparatus. Ataxia was not accompanied by hypoactivity, inhibition or disturbances in intrasession habituation.

  9. Simvastatin inhibits glucose uptake activity and GLUT4 translocation through suppression of the IR/IRS-1/Akt signaling in C2C12 myotubes.

    PubMed

    Li, Weihua; Liang, Xiaojing; Zeng, Zhipeng; Yu, Kaizhen; Zhan, Shaopeng; Su, Qiang; Yan, Yinzhi; Mansai, Huseen; Qiao, Weitong; Yang, Qi; Qi, Zhongquan; Huang, Zhengrong

    2016-10-01

    Simvastatin,a 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitor, is clinically used in the prevention and treatment of cardiovascular diseases. Numerous studies demonstrate that statins increase the risk of new-onset diabetes in long-term therapy, but mechanisms underpinning this effect are still unclear. Here, we investigated whether simvastatin inhibited the glucose uptake activity and the underlying mechanisms in C2C12 myotubes. Our studies showed that simvastatin significantly inhibited glucose uptake activity and GLUT4 translocation, whereas the effect was reversible with mevalonolactone (ML), which acts as an intermediate of cholesterol synthesis pathway. Mechanistically, the inhibition of glucose uptake and GLUT4 translocation elicited by simvastatin were associated with the suppression of the insulin receptor (IR)/IR substrate (IRS)/Akt signaling cascade. Simvastatin suppressed the phosphorylation of IR, IRS-1 and Akt, and total expression of IR or IRS-1, but did not affect Akt. Furthermore, simvastatin decreased Rac1 GTP binding. In conclusion, our findings indicate that simvastatin suppresses glucose uptake activity and GLUT4 translocation via IR-dependent IRS-1/PI3K/Akt pathway. These results provide an important new insight into the mechanism of statins on insulin sensitivity which may be associated with new-onset diabetes.

  10. Protection afforded by quercetin against H2O2-induced apoptosis on PC12 cells via activating PI3K/Akt signal pathway.

    PubMed

    Chen, Liang; Sun, Lejin; Liu, Zhene; Wang, Hongxia; Xu, Cunli

    2016-01-01

    Cell damage and apoptosis induced by oxidative stress have been involved in various neurodegenerative diseases. This study aims to explore the neuro-protective effects of quercetin on PC12 cells apoptosis induced by hydrogen peroxide (H(2)O(2)) and the underlying mechanisms. The cell viability was detected, as well as the production of reactive oxygen species (ROS), lactate dehydrogenase (LDH) leakage, and the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and malondialdehyde (MDA) of the cells in control, H(2)O(2) and quercetin groups. It finally turned out that quercetin might protect PC12 cells against the negative effect of H(2)O(2) by decreasing of LDH release, ROS concentration and MDA level and regaining the GSH-Px and SOD activities. To investigate the mechanism, LY294002 was introduced, the phosphatidylinositol-3-kinase (PI3K) inhibitor. Bax/Bcl-2 ratio and Akt phosphorylation (p-Akt) were examined by Western blot analysis. The data showed that LY294002 almost had the same effects with H(2)O(2), which was also significantly reversed by quercetin could enhance Bax/Bcl-2 ratio and adjust the p-Akt expression, which indicated quercetin might protect PC12 cells against the negative effect of H(2)O(2) via activating the PI3K/Akt signal pathway.

  11. Resistance after Chronic Application of the HDAC-Inhibitor Valproic Acid Is Associated with Elevated Akt Activation in Renal Cell Carcinoma In Vivo

    PubMed Central

    Juengel, Eva; Makarević, Jasmina; Tsaur, Igor; Bartsch, Georg; Nelson, Karen; Haferkamp, Axel; Blaheta, Roman A.

    2013-01-01

    Targeted drugs have significantly improved the therapeutic options for advanced renal cell carcinoma (RCC). However, resistance often develops, negating the benefit of these agents. In the present study, the molecular mechanisms of acquired resistance towards the histone deacetylase (HDAC) inhibitor valproic acid (VPA) in a RCC in vivo model were investigated. NMRI:nu/nu mice were transplanted with Caki-1 RCC cells and then treated with VPA (200 mg/kg/day). Controls remained untreated. Based on tumor growth dynamics, the mice were divided into “responders” and “non-responders” to VPA. Histone H3 and H4 acetylation and expression of cell signaling and cell cycle regulating proteins in the RCC mouse tumors were evaluated by Western blotting. Tumor growth of VPA responders was significantly diminished, whereas that of VPA non-responders even exceeded control values. Cdk1, 2 and 4 proteins were strongly enhanced in the non-responders. Importantly, Akt expression and activity were massively up-regulated in the tumors of the VPA non-responders. Chronic application (12 weeks) of VPA to Caki-1 cells in vitro evoked a distinct elevation of Akt activity and cancer cells no longer responded with cell growth reduction, compared to the short 2 week treatment. We assume that chronic use of an HDAC-inhibitor is associated with (re)-activation of Akt, which may be involved in resistance development. Consequently, combined blockade of both HDAC and Akt may delay or prevent drug resistance in RCC. PMID:23372654

  12. AKT is a therapeutic target in myeloproliferative neoplasms

    PubMed Central

    Khan, Irum; Huang, Zan; Wen, Qiang; Stankiewicz, Monika J.; Gilles, Laure; Goldenson, Benjamin; Schultz, Rachael; Diebold, Lauren; Gurbuxani, Sandeep; Finke, Christy M.; Lasho, Terra L.; Koppikar, Priya; Pardanani, Animesh; Stein, Brady; Altman, Jessica K.; Levine, Ross L.; Tefferi, Ayalew; Crispino, John D.

    2014-01-01

    The majority of patients with BCR-ABL1-negative myeloproliferative neoplasms (MPN) harbor mutations in JAK2 or MPL, which lead to constitutive activation of the JAK/STAT, PI3K, and ERK signaling pathways. JAK inhibitors by themselves are inadequate in producing selective clonal suppression in MPN and are associated with hematopoietic toxicities. MK-2206 is a potent allosteric AKT inhibitor that was well tolerated, including no evidence of myelosuppression, in a phase I study of solid tumors. Herein, we show that inhibition of PI3K/AKT signaling by MK-2206 affected the growth of both JAK2V617F or MPLW515L-expressing cells via reduced phosphorylation of AKT and inhibition of its downstream signaling molecules. Moreover, we demonstrate that MK-2206 synergizes with Ruxolitinib in suppressing the growth of JAK2V617F mutant SET2 cells. Importantly MK-2206 suppressed colony formation from hematopoietic progenitor cells in patients with primary myelofibrosis (PMF) and alleviated hepatosplenomegaly and reduced megakaryocyte burden in the bone marrows, livers and spleens of mice with MPLW515L-induced MPN. Together, these findings establish AKT as a rational therapeutic target in the MPNs. PMID:23748344

  13. Angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis activates Akt signaling to ameliorate hepatic steatosis

    PubMed Central

    Cao, Xi; Yang, Fangyuan; Shi, Tingting; Yuan, Mingxia; Xin, Zhong; Xie, Rongrong; Li, Sen; Li, Hongbing; Yang, Jin-Kui

    2016-01-01

    The classical axis of renin-angiotensin system (RAS), angiotensin (Ang)-converting enzyme (ACE)/Ang II/AT1, contributes to the development of non-alcoholic fatty liver disease (NAFLD). However, the role of bypass axis of RAS (Angiotensin-converting enzyme 2 (ACE2)/Ang-(1–7)/Mas) in hepatic steatosis is still unclear. Here we showed that deletion of ACE2 aggravates liver steatosis, which is correlated with the increased expression of hepatic lipogenic genes and the decreased expression of fatty acid oxidation-related genes in the liver of ACE2 knockout (ACE2−/y) mice. Meanwhile, oxidative stress and inflammation were also aggravated in ACE2−/y mice. On the contrary, overexpression of ACE2 improved fatty liver in db/db mice, and the mRNA levels of fatty acid oxidation-related genes were up-regulated. In vitro, Ang-(1–7)/ACE2 ameliorated hepatic steatosis, oxidative stress and inflammation in free fatty acid (FFA)-induced HepG2 cells, and what’s more, Akt inhibitors reduced ACE2-mediated lipid metabolism. Furthermore, ACE2-mediated Akt activation could be attenuated by blockade of ATP/P2 receptor/Calmodulin (CaM) pathway. These results indicated that Ang-(1–7)/ACE2/Mas axis may reduce liver lipid accumulation partly by regulating lipid-metabolizing genes through ATP/P2 receptor/CaM signaling pathway. Our findings support the potential role of ACE2/Ang-(1–7)/Mas axis in prevention and treatment of hepatic lipid metabolism. PMID:26883384

  14. PTH-related protein upregulates integrin {alpha}6{beta}4 expression and activates Akt in breast cancer cells

    SciTech Connect

    Shen Xiaoli; Falzon, Miriam . E-mail: mfalzon@utmb.edu

    2006-11-15

    Breast cancer is the most common carcinoma that metastasizes to bone. Tumor-produced parathyroid hormone-related protein (PTHrP), a known stimulator of osteoclastic bone resorption, is a major mediator of the osteolytic process in breast cancer. We have previously shown that PTHrP increases breast cancer cell proliferation, survival, migration, and pro-invasive integrin {alpha}6{beta}4 expression. To determine the role of integrin {alpha}6{beta}4 in these PTHrP-mediated effects, we utilized two strategies to modulate expression of the {alpha}6 and {beta}4 subunits in parental and PTHrP-overexpressing MDA-MB-231 and MCF-7 cells: overexpression of {alpha}6{beta}4 by transfection with constructs encoding the {alpha}6 and {beta}4 subunits, and suppression of endogenous {alpha}6{beta}4 expression by transfection with siRNAs targeting these subunits. We now show that the effects of PTHrP are mediated via upregulation of integrin {alpha}6{beta}4 expression. We also show that integrin {alpha}6{beta}4 expression is modulated at the mRNA level, indicating a transcriptional and/or post-transcriptional mechanism of action for PTHrP. PTHrP expression also increased the levels of phosphorylated Akt, with a consequent increase in the levels of phosphorylated (inactive) glycogen synthase kinase-3 (GSK-3). The role of PTHrP in breast cancer growth and metastasis may thus be mediated via upregulation of integrin {alpha}6{beta}4 expression and Akt activation, with consequent inactivation of GSK-3.

  15. Vitamin A (retinol) up-regulates the receptor for advanced glycation endproducts (RAGE) through p38 and Akt oxidant-dependent activation.

    PubMed

    Gelain, Daniel Pens; de Bittencourt Pasquali, Matheus Augusto; Caregnato, Fernanda Freitas; Moreira, José Claudio Fonseca

    2011-10-28

    Retinol (vitamin A) is believed to exert preventive/protective effects against malignant, neurodegenerative and cardiovascular diseases by acting as an antioxidant. However, later clinical and experimental data show a pro-oxidant action of retinol and other retinoids at specific conditions. The receptor for advanced glycation endproducts (RAGE) is a pattern recognition receptor, being activated by different ligands such as S100 proteins, HMGB1 (amphoterin), β-amyloid peptide and advanced glycation endproducts (AGE). RAGE activation influences a wide range of pathological conditions such as diabetes, pro-inflammatory states and neurodegenerative processes. Here, we investigated the involvement of different mitogen-activated protein kinases (MAPK: ERK1/2, p38 and JNK), PKC, PKA and Akt in the up-regulation of RAGE by retinol. As previously reported, we observed that the increase in RAGE immunocontent by retinol is reversed by antioxidant co-treatment, indicating the involvement of oxidative stress in this process. Furthermore, the p38 inhibitor SB203580 and the Akt inhibitor LY294002 also decreased the effect of retinol on RAGE levels, suggesting the involvement of these protein kinases in such effect. Both p38 and Akt phosphorylation were increased by treatment with pro-oxidant concentrations of retinol, and the antioxidant co-treatment blocked this effect, indicating that activation of p38 and Akt during retinol treatment is dependent on reactive species production. The 2',7'-dichlorohydrofluorescein diacetate (DCFH) assay also indicated that retinol treatment enhances cellular reactive species production. Altogether, these data indicate that RAGE up-regulation by retinol is mediated by the free radical-dependent activation of p38 and Akt.

  16. The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway

    SciTech Connect

    Zhang Qi; Shen Mi; Ding Mei; Shen Dingding; Ding Fei

    2011-04-01

    Pyrroloquinoline quinone (PQQ), a cofactor in several enzyme-catalyzed redox reactions, possesses a potential capability of scavenging reactive oxygen species (ROS) and inhibiting cell apoptosis. In this study, we investigated the effects of PQQ on glutamate-induced cell death in primary cultured hippocampal neurons and the possible underlying mechanisms. We found that glutamate-induced apoptosis in cultured hippocampal neurons was significantly attenuated by the ensuing PQQ treatment, which also inhibited the glutamate-induced increase in Ca2+ influx, caspase-3 activity, and ROS production, and reversed the glutamate-induced decrease in Bcl-2/Bax ratio. The examination of signaling pathways revealed that PQQ treatment activated the phosphorylation of Akt and suppressed the glutamate-induced phosphorylation of c-Jun N-terminal protein kinase (JNK). And inhibition of phosphatidylinositol-3-kinase (PI3K)/Akt cascade by LY294002 and wortmannin significantly blocked the protective effects of PQQ, and alleviated the increase in Bcl-2/Bax ratio. Taken together, our results indicated that PQQ could protect primary cultured hippocampal neurons against glutamate-induced cell damage by scavenging ROS, reducing Ca2+ influx, and caspase-3 activity, and suggested that PQQ-activated PI3K/Akt signaling might be responsible for its neuroprotective action through modulation of glutamate-induced imbalance between Bcl-2 and Bax. - Research Highlights: >PQQ attenuated glutamate-induced cell apoptosis of cultured hippocampal neurons. >PQQ inhibited glutamate-induced Ca{sup 2+} influx and caspase-3 activity. >PQQ reduced glutamate-induced increase in ROS production. >PQQ affected phosphorylation of Akt and JNK signalings after glutamate injury. >PI3K/Akt was required for neuroprotection of PQQ by modulating Bcl-2/Bax ratio.

  17. The critical role of Akt in cardiovascular function.

    PubMed

    Abeyrathna, Prasanna; Su, Yunchao

    2015-11-01

    Akt kinase, a member of AGC kinases, is important in many cellular functions including proliferation, migration, cell growth and metabolism. There are three known Akt isoforms which play critical and diverse roles in the cardiovascular system. Akt activity is regulated by its upstream regulatory pathways at transcriptional and post-translational levels. Beta-catenin/Tcf-4, GLI1 and Stat-3 are some of few known transcriptional regulators of AKT gene. Threonine 308 and serine 473 are the two critical phosphorylation sites of Akt1. Translocation of Akt to the cell membrane facilitates PDK1 phosphorylation of the threonine site. The serine site is phosphorylated by mTORC2. Ack1, Src, PTK6, TBK1, IKBKE and IKKε are some of the non-canonical pathways which affect the Akt activity. Protein-protein interactions of Akt to actin and Hsp90 increase the Akt activity while Akt binding to other proteins such as CTMP and TRB3 reduces the Akt activity. The action of Akt on its downstream targets determines its function in cardiovascular processes such as cell survival, growth, proliferation, angiogenesis, vasorelaxation, and cell metabolism. Akt promotes cell survival via caspase-9, YAP, Bcl-2, and Bcl-x activities. Inhibition of FoxO proteins by Akt also increases cell survival by transcriptional mechanisms. Akt stimulates cell growth and proliferation through mTORC1. Akt also increases VEGF secretion and mediates eNOS phosphorylation, vasorelaxation and angiogenesis. Akt can increase cellular metabolism through its downstream targets GSK3 and GLUT4. The alterations of Akt signaling play an important role in many cardiovascular pathological processes such as atherosclerosis, cardiac hypertrophy, and vascular remodeling. Several Akt inhibitors have been developed and tested as anti-tumor agents. They could be potential novel therapeutics for the cardiovascular diseases.

  18. Activation of PI3K/Akt signaling in rostral ventrolateral medulla impairs brain stem cardiovascular regulation that underpins circulatory depression during mevinphos intoxication.

    PubMed

    Tsai, Ching-Yi; Chang, Alice Y W; Chan, Julie Y H; Chan, Samuel H H

    2014-03-01

    As the most widely used pesticides in the globe, the organophosphate compounds are understandably linked with the highest incidence of suicidal poisoning. Whereas the elicited toxicity is often associated with circulatory depression, the underlying mechanisms require further delineation. Employing the pesticide mevinphos as our experimental tool, we evaluated the hypothesis that transcriptional upregulation of nitric oxide synthase II (NOS II) by NF-κB on activation of the PI3K/Akt cascade in the rostral ventrolateral medulla (RVLM), the brain stem site that maintains blood pressure and sympathetic vasomotor tone, underpins the circulatory depressive effects of organophosphate poisons. Microinjection of mevinphos (10 nmol) bilaterally into the RVLM of anesthetized Sprague-Dawley rats induced a progressive hypotension that was accompanied sequentially by an increase (Phase I) and a decrease (Phase II) of an experimental index for the baroreflex-mediated sympathetic vasomotor tone. There were also progressive augmentations in PI3K or Akt enzyme activity and phosphorylation of p85 or Akt(Thr308) subunit in the RVLM that were causally related to an increase in NF-κB transcription activity and elevation in NOS II or peroxynitrite expression. Loss-of-function manipulations of PI3K or Akt in the RVLM significantly antagonized the reduced baroreflex-mediated sympathetic vasomotor tone and hypotension during Phase II mevinphos intoxication, and blunted the increase in NF-κB/NOS II/peroxynitrite signaling. We conclude that activation of the PI3K/Akt cascade, leading to upregulation of NF-κB/NOS II/peroxynitrite signaling in the RVLM, elicits impairment of brain stem cardiovascular regulation that underpins circulatory depression during mevinphos intoxication.

  19. Mechanical Stimulation and IGF-1 Enhance mRNA Translation Rate in Osteoblasts Via Activation of the AKT-mTOR Pathway.

    PubMed

    Bakker, Astrid D; Gakes, Tom; Hogervorst, Jolanda M A; de Wit, Gerard M J; Klein-Nulend, Jenneke; Jaspers, Richard T

    2016-06-01

    Insulin-like growth factor-1 (IGF-1) is anabolic for muscle by enhancing the rate of mRNA translation via activation of AKT and subsequent activation of the mammalian target of rapamycin complex 1 (mTOR), thereby increasing cellular protein production. IGF-1 is also anabolic for bone, but whether the mTOR pathway plays a role in the rate of bone matrix protein production by osteoblasts is unknown. We hypothesized that anabolic stimuli such as mechanical loading and IGF-1 stimulate protein synthesis in osteoblasts via activation of the AKT-mTOR pathway. MC3T3-E1 osteoblasts were either or not subjected for 1 h to mechanical loading by pulsating fluid flow (PFF) or treated with or without human recombinant IGF-1 (1-100 ng/ml) for 0.5-6 h, to determine phosphorylation of AKT and p70S6K (downstream of mTOR) by Western blot. After 4 days of culture with or without the mTOR inhibitor rapamycin, total protein, DNA, and gene expression were quantified. IGF-1 (100 ng/ml) reduced IGF-1 gene expression, although PFF enhanced IGF-1 expression. IGF-1 did not affect collagen-I gene expression. IGF-1 dose-dependently enhanced AKT and p70S6K phosphorylation at 2 and 6 h. PFF enhanced phosphorylation of AKT and p70S6K already within 1 h. Both IGF-1 and PFF enhanced total protein per cell by ∼30%, but not in the presence of rapamycin. Our results show that IGF-1 and PFF activate mTOR, thereby stimulating the rate of mRNA translation in osteoblasts. The known anabolic effect of mechanical loading and IGF-1 on bone may thus be partly explained by mTOR-mediated enhanced protein synthesis in osteoblasts.

  20. G protein-coupled receptors (GPCRs) That Signal via Protein Kinase A (PKA) Cross-talk at Insulin Receptor Substrate 1 (IRS1) to Activate the phosphatidylinositol 3-kinase (PI3K)/AKT Pathway.

    PubMed

    Law, Nathan C; White, Morris F; Hunzicker-Dunn, Mary E

    2016-12-30

    G protein-coupled receptors (GPCRs) activate PI3K/v-AKT thymoma viral oncoprotein (AKT) to regulate many cellular functions that promote cell survival, proliferation, and growth. However, the mechanism by which GPCRs activate PI3K/AKT remains poorly understood. We used ovarian preantral granulosa cells (GCs) to elucidate the mechanism by which the GPCR agonist FSH via PKA activates the PI3K/AKT cascade. Insulin-like growth factor 1 (IGF1) is secreted in an autocrine/paracrine manner by GCs and activates the IGF1 receptor (IGF1R) but, in the absence of FSH, fails to stimulate YXXM phosphorylation of IRS1 (insulin receptor substrate 1) required for PI3K/AKT activation. We show that PKA directly phosphorylates the protein phosphatase 1 (PP1) regulatory subunit myosin phosphatase targeting subunit 1 (MYPT1) to activate PP1 associated with the IGF1R-IRS1 complex. Activated PP1 is sufficient to dephosphorylate at least four IRS1 Ser residues, Ser(318), Ser(346), Ser(612), and Ser(789), and promotes IRS1 YXXM phosphorylation by the IGF1R to activate the PI3K/AKT cascade. Additional experiments indicate that this mechanism also occurs in breast cancer, thyroid, and preovulatory granulosa cells, suggesting that the PKA-dependent dephosphorylation of IRS1 Ser/Thr residues is a conserved mechanism by which GPCRs signal to activate the PI3K/AKT pathway downstream of the IGF1R.

  1. SMND-309 promotes neuron survival through the activation of the PI3K/Akt/CREB-signalling pathway.

    PubMed

    Wang, Youlei; Zhang, Jinjin; Han, Meng; Liu, Bo; Gao, Yulin; Ma, Peng; Zhang, Songzi; Zheng, Qingyin; Song, Xiaodong

    2016-10-01

    Context In clinical practice, the promotion of neuron survival is necessary to recover neurological functions after the onset of stroke. Objective This study aimed to investigate the post-ischaemic neuroprotective effect of SMND-309, a novel metabolite of salvianolic acid, on differentiated SH-SY5Y cells. Materials and methods SH-SY5Y cells were differentiated by pre-treating with 5 μM all-trans-retinoic acid for 6 d. The differentiated SH-SY5Y cells were exposed to oxygen-glucose deprivation (OGD) for 2 h and reperfusion (R) for 24 h to induce OGD/R injury. After OGD injury, differentiated SH-SY5Y cells were treated with or without SMND-309 (5, 10, 20 μM) for another 24 h. Cell viability was detected through Cell counting kit-8 assay and lactate dehydrogenase leakage assay. Apoptosis was evaluated through flow cytometry, caspase-3 activity assay. Changes in protein levels were assessed through Western blot. Results SMND-309 ameliorated the degree of injury in the differentiated SH-SY5Y cells by increasing cell viabilities (5 μM, 65.4% ± 4.1%; 10 μM, 69.8% ± 3.7%; 20 μM, 75.3% ± 5.1%) and by reducing LDH activity (20 μM, 2.5 fold) upon OGD/R stimulation. Annexin V-fluorescein isothiocyanate/propidium iodide staining results suggested that apoptotic rate of differentiated SH-SY5Y cells decreased from 43.8% induced by OGD/R injury to 19.2% when the cells were treated with 20 μM SMND-309. SMND-309 significantly increased the Bcl-2 level of the injured differentiated SH-SY5Y cells but decreased the caspase-3 activity of these cells by 1.6-fold. In contrast, SMND-309 did not affect the Bax level of these cells. SMND-309 evidently increased the protein expression of BDNF when Akt and CREB were activated. This function was antagonized by the addition of LY294002. Conclusion SMND-309 can prevent neuronal cell death in vitro. This process may be related to the activation of the PI3K/Akt/CREB-signalling pathway.

  2. The cleaved FAS ligand activates the Na(+)/H(+) exchanger NHE1 through Akt/ROCK1 to stimulate cell motility.

    PubMed

    Monet, Michael; Poët, Mallorie; Tauzin, Sébastien; Fouqué, Amélie; Cophignon, Auréa; Lagadic-Gossmann, Dominique; Vacher, Pierre; Legembre, Patrick; Counillon, Laurent

    2016-06-15

    Transmembrane CD95L (Fas ligand) can be cleaved to release a promigratory soluble ligand, cl-CD95L, which can contribute to chronic inflammation and cancer cell dissemination. The motility signaling pathway elicited by cl-CD95L remains poorly defined. Here, we show that in the presence of cl-CD95L, CD95 activates the Akt and RhoA signaling pathways, which together orchestrate an allosteric activation of the Na(+)/H(+) exchanger NHE1. Pharmacologic inhibition of Akt or ROCK1 independently blocks the cl-CD95L-induced migration. Confirming these pharmacologic data, disruption of the Akt and ROCK1 phosphorylation sites on NHE1 decreases cell migration in cells exposed to cl-CD95L. Together, these findings demonstrate that NHE1 is a novel molecular actor in the CD95 signaling pathway that drives the cl-CD95L-induced cell migration through both the Akt and RhoA signaling pathways.

  3. Rac1b enhances cell survival through activation of the JNK2/c-JUN/Cyclin-D1 and AKT2/MCL1 pathways

    PubMed Central

    Wang, Hong; Wei, Si-Si; Chen, Jie; Chen, Yi-He; Xu, Wei-Ping; Jie, Qi-Qiang; Zhou, Qing; Li, Yi-Gang; Wei, Yi-Dong; Wang, Yue-Peng

    2016-01-01

    Rac1b is a constitutively activated, alternatively spliced form of the small GTPase Rac1. Previous studies showed that Rac1b promotes cell proliferation and inhibits apoptosis. In the present study, we used microarray analysis to detect genes differentially expressed in HEK293T cells and SW480 human colon cancer cells stably overexpressing Rac1b. We found that the pro-proliferation genes JNK2, c-JUN and cyclin-D1 as well as anti-apoptotic AKT2 and MCL1 were all upregulated in both lines. Rac1b promoted cell proliferation and inhibited apoptosis by activating the JNK2/c-JUN/cyclin-D1 and AKT2/MCL1 pathways, respectively. Very low Rac1b levels were detected in the colonic epithelium of wild-type Sprague-Dawley rats. Knockout of the rat Rac1 gene exon-3b or knockdown of endogenous Rac1b in HT29 human colon cancer cells downregulated only the AKT2/MCL1 pathway. Our study revealed that very low levels of endogenous Rac1b inhibit apoptosis, while Rac1b upregulation both promotes cell proliferation and inhibits apoptosis. It is likely the AKT2/MCL1 pathway is more sensitive to Rac1b regulation. PMID:26918455

  4. Isoflurane Promotes Non-Small Cell Lung Cancer Malignancy by Activating the Akt-Mammalian Target of Rapamycin (mTOR) Signaling Pathway

    PubMed Central

    Zhang, Wenhua; Shao, Xueqian

    2016-01-01

    Background Lung cancer is one of the leading causes of cancer mortalities worldwide, and non-small cell lung cancer (NSCLC) accounts for the majority of all lung cancer cases. Surgery remains one of the front-line treatment options for NSCLC, but events within the perioperative period were found to affect cancer prognosis, such as anesthesia procedures. Isoflurane, a commonly used volatile anesthetic, enhances the malignant potential of renal, prostate, and ovarian cancer cells, but its effects on NSCLC development have not been previously reported. Material/Methods CCK-8 and MTT cell proliferation assays were used to analyze NSCLC cell proliferation. Metastatic ability was examined by wound healing and transwell assays. We used Western blot analysis to study the mechanism of effect of Isoflurane in NSCLC development. Results We demonstrated that isoflurane promotes proliferation, migration and invasiveness of NSCLC cells, as well as upregulation of the Akt-mTOR signaling pathway in NSCLC cells. Pharmacological inhibition of Akt-mTOR signaling abolished the ability of isoflurane to promote proliferation, migration, and invasion of NSCLC cells, indicating that isoflurane promotes NSCLC cell malignancy by activating the Akt-mTOR signaling pathway. Conclusions Isoflurane promotes NSCLC proliferation, migration and invasion by activating the Akt-mTOR signaling pathway. PMID:27897153

  5. Olesoxime suppresses calpain activation and mutant huntingtin fragmentation in the BACHD rat.

    PubMed

    Clemens, Laura E; Weber, Jonasz J; Wlodkowski, Tanja T; Yu-Taeger, Libo; Michaud, Magali; Calaminus, Carsten; Eckert, Schamim H; Gaca, Janett; Weiss, Andreas; Magg, Janine C D; Jansson, Erik K H; Eckert, Gunter P; Pichler, Bernd J; Bordet, Thierry; Pruss, Rebecca M; Riess, Olaf; Nguyen, Huu P

    2015-12-01

    Huntington's disease is a fatal human neurodegenerative disorder caused by a CAG repeat expansion in the HTT gene, which translates into a mutant huntingtin protein. A key event in the molecular pathogenesis of Huntington's disease is the proteolytic cleavage of mutant huntingtin, leading to the accumulation of toxic protein fragments. Mutant huntingtin cleavage has been linked to the overactivation of proteases due to mitochondrial dysfunction and calcium derangements. Here, we investigated the therapeutic potential of olesoxime, a mitochondria-targeting, neuroprotective compound, in the BACHD rat model of Huntington's disease. BACHD rats were treated with olesoxime via the food for 12 months. In vivo analysis covered motor impairments, cognitive deficits, mood disturbances and brain atrophy. Ex vivo analyses addressed olesoxime's effect on mutant huntingtin aggregation and cleavage, as well as brain mitochondria function. Olesoxime improved cognitive and psychiatric phenotypes, and ameliorated cortical thinning in the BACHD rat. The treatment reduced cerebral mutant huntingtin aggregates and nuclear accumulation. Further analysis revealed a cortex-specific overactivation of calpain in untreated BACHD rats. Treated BACHD rats instead showed significantly reduced levels of mutant huntingtin fragments due to the suppression of calpain-mediated cleavage. In addition, olesoxime reduced the amount of mutant huntingtin fragments associated with mitochondria, restored a respiration deficit, and enhanced the expression of fusion and outer-membrane transport proteins. In conclusion, we discovered the calpain proteolytic system, a key player in Huntington's disease and other neurodegenerative disorders, as a target of olesoxime. Our findings suggest that olesoxime exerts its beneficial effects by improving mitochondrial function, which results in reduced calpain activation. The observed alleviation of behavioural and neuropathological phenotypes encourages further

  6. Acetaldehyde Induces Cytotoxicity of SH-SY5Y Cells via Inhibition of Akt Activation and Induction of Oxidative Stress.

    PubMed

    Yan, Tingting; Zhao, Yan; Zhang, Xia

    2016-01-01

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. It has been shown that heavy drinking is associated with an earlier onset of neurodegenerative diseases such as Alzheimer's disease. Acetaldehyde, the most toxic metabolite of ethanol, is speculated to mediate the brain tissue damage and cognitive dysfunction induced by the chronic excessive consumption of alcohol. However, the exact mechanisms by which acetaldehyde induces neurotoxicity are not totally understood. In this study, we investigated the cytotoxic effects of acetaldehyde in SH-SY5Y cells and found that acetaldehyde induced apoptosis of SH-SY5Y cells by downregulating the expression of antiapoptotic Bcl-2 and Bcl-xL and upregulating the expression of proapoptotic Bax. Acetaldehyde treatment led to a significant decrease in the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). In addition, acetaldehyde induced the activation of p38 mitogen-activated protein kinase (MAPK) while inhibiting the activation of extracellular signal-regulated kinases (ERKs, p44/p42MAPK). Meanwhile, acetaldehyde treatment caused an increase in the production of reactive oxygen species and elevated the oxidative stress in SH-SY5Y cells. Therefore, acetaldehyde induces cytotoxicity of SH-SY5Y cells via promotion of apoptotic signaling, inhibition of cell survival pathway, and induction of oxidative stress.

  7. Impact of the PI3-kinase/Akt pathway on ITAM and hemITAM receptors: haemostasis, platelet activation and antithrombotic therapy.

    PubMed

    Moroi, Alyssa J; Watson, Steve P

    2015-04-01

    Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that are activated in response to various stimulants, and they regulate many processes including inflammation; the stress response; gene transcription; and cell proliferation, differentiation, and death. Increasing reports have shown that the PI3Ks and their downstream effector Akt are activated by several platelet receptors that regulate platelet activation and haemostasis. Platelets express two immunoreceptor tyrosine based activation motif (ITAM) receptors, collagen receptor glycoprotein VI (GPVI) and Fcγ receptor IIA (FcγRIIA), which are characterized by two YxxL sequences separated by 6-12 amino acids. Activation of an ITAM receptor initiates a reaction cascade via its YxxL sequence in which signaling molecules such as spleen tyrosine kinase (Syk), linker for activation of T cells (LAT) and phospholipase C γ2 (PLCγ2) become activated, leading to platelet activation. Platelets also express another receptor, C-type lectin 2 (CLEC-2), which has a single YxxL sequence, so it is appropriately called a hemITAM receptor. ITAM receptors and the hemITAM receptor share many signaling features. Here we will summarize our current knowledge about how the PI3K/Akt pathway regulates (hem)ITAM receptor-mediated platelet activation and haemostasis and discuss the possible benefits of targeting PI3K/Akt as an antithrombotic therapy.

  8. A cytochrome c mutant with high electron transfer and antioxidant activities but devoid of apoptogenic effect.

    PubMed Central

    Abdullaev, Ziedulla Kh; Bodrova, Marina E; Chernyak, Boris V; Dolgikh, Dmitry A; Kluck, Ruth M; Pereverzev, Mikhail O; Arseniev, Alexander S; Efremov, Roman G; Kirpichnikov, Mikhail P; Mokhova, Elena N; Newmeyer, Donald D; Roder, Heinrich; Skulachev, Vladimir P

    2002-01-01

    A cytochrome c mutant lacking apoptogenic function but competent in electron transfer and antioxidant activities has been constructed. To this end, mutant species of horse and yeast cytochromes c with substitutions in the N-terminal alpha-helix or position 72 were obtained. It was found that yeast cytochrome c was much less effective than the horse protein in activating respiration of rat liver mitoplasts deficient in endogenous cytochrome c as well as in inhibition of H(2)O(2) production by the initial segment of the respiratory chain of intact rat heart mitochondria. The major role in the difference between the horse and yeast proteins was shown to be played by the amino acid residue in position 4 (glutamate in horse, and lysine in yeast; horse protein numbering). A mutant of the yeast cytochrome c containing K4E and some other "horse" modifications in the N-terminal alpha-helix, proved to be (i) much more active in electron transfer and antioxidant activity than the wild-type yeast cytochrome c and (ii), like the yeast cytochrome c, inactive in caspase stimulation, even if added in 400-fold excess compared with the horse protein. Thus this mutant seems to be a good candidate for knock-in studies of the role of cytochrome c-mediated apoptosis, in contrast with the horse K72R, K72G, K72L and K72A mutant cytochromes that at low concentrations were less active in apoptosis than the wild-type, but were quite active when the concentrations were increased by a factor of 2-12. PMID:11879204

  9. l-carnitine protects human hepatocytes from oxidative stress-induced toxicity through Akt-mediated activation of Nrf2 signaling pathway.

    PubMed

    Li, Jinlian; Zhang, Yanli; Luan, Haiyun; Chen, Xuehong; Han, Yantao; Wang, Chunbo

    2016-05-01

    In our previous study, l-carnitine was shown to have cytoprotective effect against hydrogen peroxide (H2O2)-induced injury in human normal HL7702 hepatocytes. The aim of this study was to investigate whether the protective effect of l-carnitine was associated with the nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) pathway. Our results showed that pretreatment with l-carnitine augmented Nrf2 nuclear translocation, DNA binding activity and heme oxygenase-1 (HO-1) expression in H2O2-treated HL7702 cells, although l-carnitine treatment alone had no effect on them. Analysis using Nrf2 siRNA demonstrated that Nrf2 activation was involved in l-carnitine-induced HO-1 expression. In addition, l-carnitine-mediated protection against H2O2 toxicity was abrogated by Nrf2 siRNA, indicating the important role of Nrf2 in l-carnitine-induced cytoprotection. Further experiments revealed that l-carnitine pretreatment enhanced the phosphorylation of Akt in H2O2-treated cells. Blocking Akt pathway with inhibitor partly abrogated the protective effect of l-carnitine. Moreover, our finding demonstrated that the induction of Nrf2 translocation and HO-1 expression by l-carnitine directly correlated with the Akt pathway because Akt inhibitor showed inhibitory effects on the Nrf2 translocation and HO-1 expression. Altogether, these results demonstrate that l-carnitine protects HL7702 cells against H2O2-induced cell damage through Akt-mediated activation of Nrf2 signaling pathway.

  10. MiR-20a Induces Cell Radioresistance by Activating the PTEN/PI3K/Akt Signaling Pathway in Hepatocellular Carcinoma

    SciTech Connect

    Zhang, Yuqin; Zheng, Lin; Ding, Yi; Li, Qi; Wang, Rong; Liu, Tongxin; Sun, Quanquan; Yang, Hua; Peng, Shunli; Wang, Wei; Chen, Longhua

    2015-08-01

    Purpose: To investigate the role of miR-20a in hepatocellular carcinoma (HCC) cell radioresistance, which may reveal potential strategies to improve treatment. Methods and Materials: The expression of miR-20a and PTEN were detected in HCC cell lines and paired primary tissues by quantitative real-time polymerase chain reaction. Cell radiation combined with colony formation assays was administrated to discover the effect of miR-20a on radiosensitivity. Bioinformatics prediction and luciferase assay were used to identify the target of miR-20a. The phosphatidylinositol 3-kinase inhibitor LY294002 was used to inhibit phosphorylation of Akt, to verify whether miR-20a affects HCC cell radioresistance through activating the PTEN/PI3K/Akt pathway. Results: MiR-20a levels were increased in HCC cell lines and tissues, whereas PTEN was inversely correlated with it. Overexpression of miR-20a in Bel-7402 and SMMC-7721 cells enhances their resistance to the effect of ionizing radiation, and the inhibition of miR-20a in HCCLM3 and QGY-7701 cells sensitizes them to it. PTEN was identified as a direct functional target of miR-20a for the induction of radioresistance. Overexpression of miR-20a activated the PTEN/PI3K/Akt signaling pathway. Additionally, the kinase inhibitor LY294002 could reverse the effect of miR-20a–induced radioresistance. Conclusion: MiR-20a induces HCC cell radioresistance by activating the PTEN/PI3K/Akt pathway, which suggests that miR-20a/PTEN/PI3K/Akt might represent a target of investigation for developing effective therapeutic strategies against HCC.

  11. Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells.

    PubMed

    Fleming, Ingrid; Fisslthaler, Beate; Dixit, Madhulika; Busse, Rudi

    2005-09-15

    The application of fluid shear stress to endothelial cells elicits the formation of nitric oxide (NO) and phosphorylation of the endothelial NO synthase (eNOS). Shear stress also elicits the enhanced tyrosine phosphorylation of endothelial proteins, especially of those situated in the vicinity of cell-cell contacts. Since a major constituent of these endothelial cell-cell contacts is the platelet endothelial cell adhesion molecule-1 (PECAM-1) we assessed the role of PECAM-1 in the activation of eNOS. In human endothelial cells, shear stress induced the tyrosine phosphorylation of PECAM-1 and enhanced the association of PECAM-1 with eNOS. Endothelial cell stimulation with shear stress elicited the phosphorylation of Akt and eNOS as well as of the AMP-activated protein kinase (AMPK). While the shear-stress-induced tyrosine phosphorylation of PECAM-1 as well as the serine phosphorylation of Akt and eNOS were abolished by the pre-treatment of cells with the tyrosine kinase inhibitor PP1 the phosphorylation of AMPK was unaffected. Down-regulation of PECAM-1 using a siRNA approach attenuated the shear-stress-induced phosphorylation of Akt and eNOS, as well as the shear-stress-induced accumulation of cyclic GMP levels while the shear-stress-induced phosphorylation of AMPK remained intact. A comparable attenuation of Akt and eNOS (but not AMPK) phosphorylation and NO production was also observed in endothelial cells generated from PECAM-1-deficient mice. These data indicate that the shear-stress-induced activation of Akt and eNOS in endothelial cells is modulated by the tyrosine phosphorylation of PECAM-1 whereas the shear-stress-induced phosphorylation of AMPK is controlled by an alternative signaling pathway.

  12. High-throughput fluorescence-activated cell sorting for lipid hyperaccumulating Chlamydomonas reinhardtii mutants.

    PubMed

    Xie, Bo; Stessman, Dan; Hart, Jason H; Dong, Haili; Wang, Yingjun; Wright, David A; Nikolau, Basil J; Spalding, Martin H; Halverson, Larry J

    2014-09-01

    The genetically tractable microalga Chlamydomonas reinhardtii has many advantages as a model for renewable bioproducts and/or biofuels production. However, one limitation of C. reinhardtii is its relatively low-lipid content compared with some other algal species. To overcome this limitation, we combined ethane methyl sulfonate mutagenesis with fluorescence-activated cell sorting (FACS) of cells stained with the lipophilic stain Nile Red to isolate lipid hyperaccumulating mutants of C. reinhardtii. By manipulating the FACS gates, we sorted mutagenized cells with extremely high Nile Red fluorescence signals that were rarely detected in nonmutagenized populations. This strategy successfully isolated several putative lipid hyperaccumulating mutants exhibiting 23% to 58% (dry weight basis) higher fatty acid contents than their progenitor strains. Significantly, for most mutants, nitrogen starvation was not required to attain high-lipid content nor was there a requirement for a deficiency in starch accumulation. Microscopy of Nile Red stained cells revealed that some mutants exhibit an increase in the number of lipid bodies, which correlated with TLC analysis of triacyglycerol content. Increased lipid content could also arise through increased biomass production. Collectively, our findings highlight the ability to enhance intracellular lipid accumulation in algae using random mutagenesis in conjunction with a robust FACS and lipid yield verification regime. Our lipid hyperaccumulating mutants could serve as a genetic resource for stacking additional desirable traits to further increase lipid production and for identifying genes contributing to lipid hyperaccumulation, without lengthy lipid-induction periods.

  13. Activation of protein kinase B (PKB/Akt) and risk of lung cancer among rural women in India who cook with biomass fuel

    SciTech Connect

    Roychoudhury, Sanghita; Mondal, Nandan Kumar; Mukherjee, Sayali; Dutta, Anindita; Siddique, Shabana; Ray, Manas Ranjan

    2012-02-15

    The impact of indoor air pollution (IAP) from biomass fuel burning on the risk of carcinogenesis in the airways has been investigated in 187 pre-menopausal women (median age 34 years) from eastern India who cooked exclusively with biomass and 155 age-matched control women from same locality who cooked with cleaner fuel liquefied petroleum gas. Compared with control, Papanicolau-stained sputum samples showed 3-times higher prevalence of metaplasia and 7-times higher prevalence of dysplasia in airway epithelial cell (AEC) of biomass users. Immunocytochemistry showed up-regulation of phosphorylated Akt (p-Akt{sup ser473} and p-Akt{sup thr308}) proteins in AEC of biomass users, especially in metaplastic and dysplastic cells. Compared with LPG users, biomass-using women showed marked rise in reactive oxygen species (ROS) generation and depletion of antioxidant enzyme, superoxide dismutase (SOD) indicating oxidative stress. There were 2–5 times more particulate pollutants (PM{sub 10} and PM{sub 2.5}), 72% more nitrogen dioxide and 4-times more particulate-laden benzo(a)pyrene, but no change in sulfur dioxide in indoor air of biomass-using households, and high performance liquid chromatography estimated 6-fold rise in the concentration of benzene metabolite trans,trans-muconic acid (t,t-MA) in urine of biomass users. Metaplasia and dysplasia, p-Akt expression and ROS generation were positively associated with PM and t,t-MA levels. It appears that cumulative exposure to biomass smoke increases the risk of lung carcinogenesis via oxidative stress-mediated activation of Akt signal transduction pathway. -- Highlights: ► Carcinogenesis in airway cells was examined in biomass and LPG using women. ► Metaplasia and dysplasia of epithelial cells were more prevalent in biomass users. ► Change in airway cytology was associated with oxidative stress and Akt activation. ► Biomass users had greater exposure to respirable PM, B(a)P and benzene. ► Cooking with biomass

  14. Bis(hinokitiolato)zinc complex ([Zn(hkt)2]) activates Akt/protein kinase B independent of insulin signal transduction.

    PubMed

    Naito, Yuki; Yoshikawa, Yutaka; Masuda, Kazufumi; Yasui, Hiroyuki

    2016-07-01

    Since many Zn complexes have been developed to enhance the insulin-like activity and increase the exposure and residence of Zn in the animal body, these complexes are recognized as one of the new candidates with action mechanism different from existing anti-diabetic drugs. However, the molecular mechanism by which Zn complexes exert an anti-DM effect is unknown. Therefore, we evaluated the activity of Zn complexes, especially related to the phosphorylation of insulin signaling pathway components. We focused on the insulin-like effects of the bis(hinokitiolato)zinc complex, [Zn(hkt)2], using 3T3-L1 adipocytes. [Zn(hkt)2] was taken up by cells and induced Akt phosphorylation in a time-dependent manner. Additionally, it showed inhibitory activity against PTP1B and PTEN, which are major negative regulators of insulin signaling. It did not promote the phosphorylation of IR (insulin receptor)-β or IRS (insulin receptor substrate)-1 by itself, but in combination with insulin, it enhanced the phosphorylation of IRβ. We conclude that [Zn(hkt)2] has effects on the proteins of insulin signaling pathway without insulin receptor mediation, and [Zn(hkt)2] promotes insulin function and shows the anti-DM effects. Thus, [Zn(hkt)2] may be the basis for improved DM treatments.

  15. Structural features and activity of Brazzein and its mutants upon substitution of a surfaced exposed alanine.

    PubMed

    Ghanavatian, Parisa; Khalifeh, Khosrow; Jafarian, Vahab

    2016-12-01

    Brazzein (Brz) is a member of sweet-tasting protein containing four disulfide bonds. It was reported as a compact and heat-resistant protein. Here, we have used site-directed mutagenesis and replaced a surface-exposed alanine with aspartic acid (A19D mutant), lysine (A19K mutant) and glycine (A19G mutant). Activity comparisons of wild-type (WT) and mutants using taste panel test procedure showed that A19G variant has the same activity as WT protein. However, introduction of a positive charge in A19K mutant led to significant increase in Brz's sweetness, while A19D has reduced sweetness compared to WT protein. Docking studies showed that mutation at position 19 results in slight chain mobility of protein at the binding surface and changing the patterns of interactions toward more effective binding of E9K variant in the concave surface of sweet taste receptor. Far-UV CD data spectra have a characteristic shape of beta structure for all variants, however different magnitudes of spectra suggest that beta-sheet structure in WT and A19G is more stable than that of A19D and A19K. Equilibrium unfolding studies with fluorescence spectroscopy and using urea and dithiothritol (DTT) as chemical denaturants indicates that A19G mutant gains more stability against urea denaturation; while conformational stability of A19D and A19K decreases when compared with WT and A19G variants. We concluded that the positive charge at the surface of protein is important factor responsible for the interaction of protein with the human sweet receptor and Ala(19) can be considered as a key region for investigating the mechanism of the interaction of Brz with corresponding receptor.

  16. Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1.

    PubMed

    Arczewska, Katarzyna D; Tomazella, Gisele G; Lindvall, Jessica M; Kassahun, Henok; Maglioni, Silvia; Torgovnick, Alessandro; Henriksson, Johan; Matilainen, Olli; Marquis, Bryce J; Nelson, Bryant C; Jaruga, Pawel; Babaie, Eshrat; Holmberg, Carina I; Bürglin, Thomas R; Ventura, Natascia; Thiede, Bernd; Nilsen, Hilde

    2013-05-01

    Transcription-blocking oxidative DNA damage is believed to contribute to aging and to underlie activation of oxidative stress responses and down-regulation of insulin-like signaling (ILS) in Nucleotide Excision Repair (NER) deficient mice. Here, we present the first quantitative proteomic description of the Caenorhabditis elegans NER-defective xpa-1 mutant and compare the proteome and transcriptome signatures. Both methods indicated activation of oxidative stress responses, which was substantiated biochemically by a bioenergetic shift involving increased steady-state reactive oxygen species (ROS) and Adenosine triphosphate (ATP) levels. We identify the lesion-detection enzymes of Base Excision Repair (NTH-1) and global genome NER (XPC-1 and DDB-1) as upstream requirements for transcriptomic reprogramming as RNA-interference mediated depletion of these enzymes prevented up-regulation of genes over-expressed in the xpa-1 mutant. The transcription factors SKN-1 and SLR-2, but not DAF-16, were identified as effectors of reprogramming. As shown in human XPA cells, the levels of transcription-blocking 8,5'-cyclo-2'-deoxyadenosine lesions were reduced in the xpa-1 mutant compared to the wild type. Hence, accumulation of cyclopurines is unlikely to be sufficient for reprogramming. Instead, our data support a model where the lesion-detection enzymes NTH-1, XPC-1 and DDB-1 play active roles to generate a genomic stress signal sufficiently strong to result in transcriptomic reprogramming in the xpa-1 mutant.

  17. Staphylococcal enterotoxin type A internal deletion mutants: serological activity and induction of T-cell proliferation.

    PubMed Central

    Harris, T O; Hufnagle, W O; Betley, M J

    1993-01-01

    Previous findings indicate that the N-terminal region of staphylococcal enterotoxin type A (SEA) is required for its ability to induce T-cell proliferation. To better localize internal peptides of SEA that are important for induction of murine T-cell proliferation, SEA mutants that had internal deletions in their N-terminal third were constructed. A series of unique restriction enzyme sites were first engineered into sea; only one of these changes resulted in an amino acid substitution (the aspartic acid residue at position 60 of mature SEA was changed to a glycine [D60G]). Because the D60G substitution had no discernible effect on serological or biological activity, the sea allele encoding this mutant SEA was used to construct a panel of mutant SEAs lacking residues 3 to 17, 19 to 23, 24 to 28, 29 to 49, 50 to 55, 56 to 59, 61 to 73, 68 to 74, or 74 to 85. Recombinant plasmids with the desired mutations were constructed in Escherichia coli and transferred to Staphylococcus aureus. Staphylococcal culture supernatants containing the mutant SEAs were examined. Western immunoblot analysis with polyclonal anti-SEA antiserum revealed that each of the recombinant S. aureus strains produced a mutant SEA of the predicted size. All the mutant SEAs exhibited increased sensitivity to monkey stomach lavage fluid in vitro, which is consistent with these mutants having conformations unlike that of wild-type SEA or the SEA D60G mutant. In general, deletion of internal peptides had a deleterious effect on the ability to induce T-cell proliferation; only SEA mutants lacking either residues 3 to 17 or 56 to 59 consistently produced a statistically significant increase in the incorporation of [3H]thymidine. In the course of this work, two monoclonal antibodies that had different requirements for binding to SEA in Western blots were identified. The epitope for one monoclonal antibody was contained within residues 108 to 230 of mature SEA. Binding of the other monoclonal antibody to

  18. MiR-221 promotes IgE-mediated activation of mast cells degranulation by PI3K/Akt/PLCγ/Ca(2+) pathway.

    PubMed

    Xu, Hong; Gu, Li-Na; Yang, Qian-Yuan; Zhao, De-Yu; Liu, Feng

    2016-06-01

    Mast cells play a pivotal role in the immediate reaction in asthma. In a previous study, it was found that MicroRNA-221 (miR-221) was associated with asthma. Hence, in the present study, the role and the potential mechanisms of miR-221 on immunoglobulin E (IgE)-mediated activation of mast cells degranulation were investigated. MiR-221 expression was first quantified by qRT-PCR in IgE-mediated activation of mast cells. RBL-2H3 cells were then transfected with miR-221 mimic or miR-221 inhibitor, the IgE-mediated degranulation was detected in mast cells. The influence of miR-221 on expression of phospholipase C gamma (PLCγ1), p-PLCγ1, protein kinase B (Akt), phospho-Akt (p-Akt), inhibitor of kappa B (IκB-α), and phospho-IκB-α (p-IκB-α) were examined by Western blot, whereas free calcium ion (Ca(2+)) level was measured by flow cytometry and NF-κB expression was determined by EMSA. Phosphoinositide 3-kinase (PI3K)-inhibitor (LY294002) and NF-κB-inhibitor [pyrrolidine dithiocarbamate (PDTC)] were used to investigate the role of PI3K/Akt pathway and NF-κB in miR-221 promoting IgE-mediated activation of mast cells degranulation. The expression of miR-221 was upregulated in IgE-mediated activation of mast cells, and it was overexpressed in miR-221 mimic transfected cells. The degranulation was found to be significantly increased in miR-221 overexpressed cells while it was found to be significantly decreased in miR-221 downregulated cells. The expression of p-PLCγ1, p-Akt, p-IκB-α as well as NF-κB and Ca(2+) release were increased in miR-221 overexpressed cells. PI3K-inhibitor (LY294002) could rescue the promotion of degranulation caused by miR-221 in IgE-mediated activation of mast cells. However, NF-κB-inhibitor (PDTC) could not rescue the promotion of degranulation caused by miR-221 in IgE-mediated activation of mast cells. MiR-221 promotes IgE-mediated activation of mast cells degranulation by PI3K/Akt/PLCγ/Ca(2+) signaling pathway, in a non

  19. SKF-96365 activates cytoprotective autophagy to delay apoptosis in colorectal cancer cells through inhibition of the calcium/CaMKIIγ/AKT-mediated pathway.

    PubMed

    Jing, Zhao; Sui, Xinbing; Yao, Junlin; Xie, Jiansheng; Jiang, Liming; Zhou, Yubin; Pan, Hongming; Han, Weidong

    2016-03-28

    Store-operated Ca(2+) entry (SOCE) inhibitors are emerging as an attractive new generation of anti-cancer drugs. Here, we report that SKF-96365, an SOCE inhibitor, exhibits potent anti-neoplastic activity by inducing cell-cycle arrest and apoptosis in colorectal cancer cells. In the meantime, SKF-96365 also induces cytoprotective autophagy to delay apoptosis by preventing the release of cytochrome c (cyt c) from the mitochondria into the cytoplasm. Mechanistically, SKF-96365 treatment inhibited the calcium/calmodulin-dependent protein kinase IIγ (CaMKIIγ)/AKT signaling cascade in vitro and in vivo. Overexpression of CaMKIIγ or AKT abolished the effects of SKF-96365 on cancer cells, suggesting a critical role of the CaMKIIγ/AKT signaling pathway in SFK-96365-induced biological effects. Moreover, Hydroxychloroquine (HCQ), an FDA-approved drug used to inhibit autophagy, could significantly augment the anti-cancer effect of SFK-96365 in a mouse xenograft model. To our best knowledge, this is the first report to demonstrate that calcium/CaMKIIγ/AKT signaling can regulate apoptosis and autophagy simultaneously in cancer cells, and the combination of the SOCE inhibitor SKF-96365 with autophagy inhibitors represents a promising strategy for treating patients with colorectal cancer.

  20. The nuclear protein Sam68 is redistributed to the cytoplasm and is involved in PI3K/Akt activation during EV71 infection.

    PubMed

    Zhang, Hua; Cong, Haolong; Song, Lei; Tien, Po

    2014-02-13

    Nuclear proteins can be triggered to be redistributed to the cytoplasm to assist with EV71 virus replication. This process is frequently involved in cellular signal transduction upon virus infection. In this study, we have demonstrated that a new nuclear protein, 68-kDa Src-associated in mitosis protein (Sam68), was translocated to the cytoplasm and was co-localized with EV71 during virus infection. Confocal microscopy and subcellular fractionation assay confirmed that virus 3C protease triggered the redistribution of Sam68 to the cytoplasm. Knockdown of Sam68 expression using ShRNA significantly inhibited virus replication, suggesting that Sam68 may be a host factor involved in EV71 life cycle. In addition, EV71-induced Akt phosphorylation involved a PI3K-dependent mechanism. Sam68 is known to be an upstream regulator of PI3K and our immunoprecipitation studies confirmed that Sam68 interacted directly with the p85 regulatory subunit of PI3K and mediated PI3K/Akt activation during EV71 infection. On the contrary, silencing of Sam68 dramatically abrogated Akt phosphorylation. These data, plus the fact that Sam68 is known to be a signaling adaptor protein, indicated that Sam68 is a signal molecule with a functional role in the PI3K/Akt signal pathway during EV71 infection.

  1. Relaxin attenuates aristolochic acid induced human tubular epithelial cell apoptosis in vitro by activation of the PI3K/Akt signaling pathway.

    PubMed

    Xie, Xiang-Cheng; Zhao, Ning; Xu, Qun-Hong; Yang, Xiu; Xia, Wen-Kai; Chen, Qi; Wang, Ming; Fei, Xiao

    2017-04-06

    Aristolochic acid nephropathy remains a leading cause of chronic kidney disease (CKD), however few treatment strategies exist. Emerging evidence has shown that H2 relaxin (RLX) possesses powerful antifibrosis and anti-apoptotic properties, therefore we aimed to investigate whether H2 relaxin can be employed to reduce AA-induced cell apoptosis. Human proximal tubular epithelial (HK-2) cells exposed to AA-I were treated with or without administration of H2 RLX. Cell viability was examined using the WST-8 assay. Apoptotic morphologic alterations were observed using the Hoechst 33342 staining method. Apoptosis was detected using flow cytometry. The expression of caspase 3, caspase 8, caspase 9, ERK1/2, Bax, Bcl-2, and Akt proteins was determined by Western blot. Co-treatment with RLX reversed the increased apoptosis observed in the AA-I only treated group. RLX restored expression of phosphorylated Akt which found to be decreased in the AA-I only treated cells. RLX co-treatment led to a decrease in the Bax/Bcl-2 ratio as well as the cleaved form of caspase-3 compared to the AA-I only treated cells. This anti-apoptotic effect of RLX was attenuated by co-administration of the Akt inhibitor LY294002. The present study demonstrated H2 RLX can decrease AA-I induced apoptosis through activation of the PI3K/Akt signaling pathway.

  2. The Prolyl Peptidases PRCP/PREP Regulate IRS-1 Stability Critical for Rapamycin-induced Feedback Activation of PI3K and AKT*

    PubMed Central

    Duan, Lei; Ying, Guoguang; Danzer, Brian; Perez, Ricardo E.; Shariat-Madar, Zia; Levenson, Victor V.; Maki, Carl G.

    2014-01-01

    The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT)/mammalian target of rapamycin (mTOR) pathway conveys signals from receptor tyrosine kinases (RTKs) to regulate cell metabolism, proliferation, survival, and motility. Previously we found that prolylcarboxypeptidase (PRCP) regulate proliferation and survival in breast cancer cells. In this study, we found that PRCP and the related family member prolylendopeptidase (PREP) are essential for proliferation and survival of pancreatic cancer cells. Depletion/inhibition of PRCP and PREP-induced serine phosphorylation and degradation of IRS-1, leading to inactivation of the cellular PI3K and AKT. Notably, depletion/inhibition of PRCP/PREP destabilized IRS-1 in the cells treated with rapamycin, blocking the feedback activation PI3K/AKT. Consequently, inhibition of PRCP/PREP enhanced rapamycin-induced cytotoxicity. Thus, we have identified PRCP and PREP as a stabilizer of IRS-1 which is critical for PI3K/AKT/mTOR signaling in pancreatic cancer cells. PMID:24936056

  3. Effects of different intensities of physical exercise on insulin sensitivity and protein kinase B/Akt activity in skeletal muscle of obese mice

    PubMed Central

    Marinho, Rodolfo; de Moura, Leandro Pereira; Rodrigues, Bárbara de Almeida; Pauli, Luciana Santos Souza; da Silva, Adelino Sanchez Ramos; Ropelle, Eloize Cristina Chiarreotto; de Souza, Claudio Teodoro; Cintra, Dennys Esper Corrêa; Ropelle, Eduardo Rochete; Pauli, José Rodrigo

    2014-01-01

    ABSTRACT Objective: To investigate the effects of different intensities of acute exercise on insulin sensitivity and protein kinase B/Akt activity in skeletal muscle of obese mice. Methods: Swiss mice were randomly divided into four groups, and fed either a standard diet (control group) or high fat diet (obese sedentary group and obese exercise group 1 and 2) for 12 weeks. Two different exercise protocols were used: swimming for 1 hour with or without an overload of 5% body weight. The insulin tolerance test was performed to estimate whole-body sensitivity. Western blot technique was used to determine protein levels of protein kinase B/Akt and phosphorylation by protein Kinase B/Akt in mice skeletal muscle. Results: A single bout of exercise inhibited the high fat diet-induced insulin resistance. There was increase in phosphorylation by protein kinase B/Akt serine, improve in insulin signaling and reduce of fasting glucose in mice that swam for 1 hour without overload and mice that swan for 1 hour with overload of 5%. However, no significant differences were seen between exercised groups. Conclusion: Regardless of intensity, aerobic exercise was able to improve insulin sensitivity and phosphorylation by protein kinase B/Ak, and proved to be a good form of treatment and prevention of type 2 diabetes. PMID:24728251

  4. Exogenous hydrogen sulfide exerts proliferation, anti-apoptosis, migration effects and accelerates cell cycle progression in multiple myeloma cells via activating the Akt pathway.

    PubMed

    Zheng, Dong; Chen, Ziang; Chen, Jingfu; Zhuang, Xiaomin; Feng, Jianqiang; Li, Juan

    2016-10-01

    Hydrogen sulfide (H2S), regarded as the third gaseous transmitter, mediates and induces various biological effects. The present study investigated the effects of H2S on multiple myeloma cell progression via amplifying the activation of Akt pathway in multiple myeloma cells. The level of H2S produced in multiple myeloma (MM) patients and healthy subjects was measured using enzyme-linked immunosorbent assay (ELISA). MM cells were treated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of phosphorylated-Akt (p-Akt), Bcl-2 and caspase-3 were measured by western blot assay. Cell viability was detected by Cell Counting Kit 8 (CCK-8). The cell cycle was analyzed by flow cytometry. Our results show that the concentration of H2S was higher in MM patients and that it increased in parallel with disease progression. Treating MM cells with 500 µmol/l NaHS for 24 h markedly increased the expression level of Bcl-2 and the activation of p-Akt, however, the expression level of caspase-3 was decreased, cell viability was increased, and cell cycle progression was accelerated in MM cells. NaHS also induced migration in MM cells in transwell migration assay. Furthermore, co-treatment of MM cells with 500 µmol/l NaHS and 50 µmol/l LY294002 for 24 h significantly overset these effects. In conclusion, our findings demonstrate that the Akt pathway contributes to NaHS-induced cell proliferation, migration and acceleration of cell cycle progression in MM cells.

  5. Asiatic acid enhances Nrf2 signaling to protect HepG2 cells from oxidative damage through Akt and ERK activation.

    PubMed

    Qi, Zhimin; Ci, Xinxin; Huang, Jingbo; Liu, Qinmei; Yu, Qinlei; Zhou, Junfeng; Deng, Xuming

    2017-04-01

    Asiatic acid (AA), a natural triterpene isolated from the plant Centella asiatica, have antioxidative potential, but the molecular mechanism of AA against oxidative stress remains unclear. Our study was performed to investigate the antioxidative effect of AA against oxidative stress and the antioxidative mechanism in tert-butyl hydroperoxide (t-BHP) -stimulated the HepG2 cells. The results showed that AA suppressed t-BHP-induced cytotoxicity, apoptosis, and reactive oxygen species (ROS) generation. Additionally, AA activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signal, which was closely related to induction Nrf2 nuclear translocation, reduction the expression of Keap1 and up-regulation the activity of the antioxidant response element (ARE). Meanwhile, activation of Nrf2 signal upregulated the protein expressions of antioxidant genes, including heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidase (NQO-1), and glutamyl cysteine ligase catalytic subunit (GCLC). Excitingly, Knockout of Nrf2 almost abolished AA-mediated antioxidant activity and cytoprotection against t-BHP. Further studies showed the mechanism underlying that AA induced Nrf2 activation in HepG2 cells via Akt and ERK signal activation. We found Akt and ERK inhibitors treatment attenuated AA-mediated Nrf2 nuclear translocation. Furthermore, treatment with either Akt or ERK inhibitor also decreased AA-mediated cytoprotection against t-BHP-induced cellular damage. Collectively, these results presented in this study indicate that AA has the protective effect against t-BHP-induced cellular damage and oxidative stress by modulating Nrf2 signaling through activating the signals of Akt and ERK.

  6. A senescence secretory switch mediated by PI3K/AKT/mTOR activation controls chemoprotective endothelial secretory responses

    PubMed Central

    Bent, Eric H.; Gilbert, Luke A.; Hemann, Michael T.

    2016-01-01

    Cancer therapy targets malignant cells that are surrounded by a diverse complement of nonmalignant stromal cells. Therapy-induced damage of normal cells can alter the tumor microenvironment, causing cellular senescence and activating cancer-promoting inflammation. However, how these damage responses are regulated (both induced and resolved) to preserve tissue homeostasis and prevent chronic inflammation is poorly understood. Here, we detail an acute chemotherapy-induced secretory response that is self-limiting in vitro and in vivo despite the induction of cellular senescence. We used tissue-specific knockout mice to demonstrate that endothelial production of the proinflammatory cytokine IL-6 promotes chemoresistance and show that the chemotherapeutic doxorubicin induces acute IL-6 release through reactive oxygen species-mediated p38 activation in vitro. Doxorubicin causes endothelial senescence but, surprisingly, without a typical senescence secretory response. We found that endothelial cells repress senescence-associated inflammation through the down-regulation of PI3K/AKT/mTOR signaling and that reactivation of this pathway restores senescence-associated inflammation. Thus, we describe a mechanism by which damage-associated paracrine secretory responses are restrained to preserve tissue homeostasis and prevent chronic inflammation. PMID:27566778

  7. miR-18a counteracts AKT and ERK activation to inhibit the proliferation of pancreatic progenitor cells

    PubMed Central

    Li, Xuyan; Zhang, Zhenwu; Li, Yunchao; Zhao, Yicheng; Zhai, Wenjun; Yang, Lin; Kong, Delin; Wu, Chunyan; Chen, Zhenbao; Teng, Chun-Bo

    2017-01-01

    Activation of endogenous stem/progenitor cells to repair injured tissues is an ideal option for disease treatment. However, adult pancreatic progenitor cells remain in a quiescent state in vivo. Thus, it is difficult to stimulate proliferation and differentiation in these progenitor cells, and the cause remains elusive. miR-17-92 cluster miRNAs are highly conserved in mammals and are expressed in multiple tissue stem/progenitor cells, but their role in pancreatic progenitor cells are less well known. In the present study, we demonstrate that miR-18a, but not the other members of the miR-17-92 gene cluster, inhibits the proliferation of pancreatic progenitor cells in vitro and ex vivo. miR-18a inhibits proliferation of adult pancreatic progenitor cells through arresting the cell cycle at G1 stage, indicating that miR-18a plays a role in keeping the adult pancreatic progenitor cells in quiescence. miR-18a inhibits pancreatic progenitor proliferation by targeting the gene expressions of connective tissue growth factor (CTGF), neural precursor cell expressed, developmentally down-regulated 9 (Nedd9), and cyclin dependent kinase 19 (CDK19), as well as by suppressing activation of the proliferation-related signaling pathways phosphatidylinositol 3-kinase–protein kinase B (PI3K/AKT) and extracellular signal-regulated kinase (ERK). PMID:28332553

  8. Mefloquine exerts anticancer activity in prostate cancer cells via ROS-mediated modulation of Akt, ERK, JNK and AMPK signaling

    PubMed Central

    YAN, KUN-HUANG; YAO, CHIH-JUNG; HSIAO, CHI-HAO; LIN, KE-HSUN; LIN, YUNG-WEI; WEN, YU-CHING; LIU, CHUNG-CHI; YAN, MING-DE; CHUANG, SHUANG-EN; LAI, GI-MING; LEE, LIANG-MING

    2013-01-01

    Mefloquine (MQ) is a prophylactic anti-malarial drug. Previous studies have shown that MQ induces oxidative stress in vitro. Evidence indicates that reactive oxygen species (ROS) may be used as a therapeutic modality to kill cancer cells. This study investigated whether MQ also inhibits prostate cancer (PCa) cell growth. We used sulforhodamine B (SRB) staining to determine cell viability. MQ has a highly selective cytotoxicity that inhibits PCa cell growth. The antitumor effect was most significant when examined using a colony formation assay. MQ also induces hyperpolarization of the mitochondrial membrane potential (MMP), as well as ROS generation. The blockade of MQ-induced anticancer effects by N-acetyl cysteine (NAC) pre-treatment confirmed the role of ROS. This indicates that the MQ-induced anticancer effects are caused primarily by increased ROS generation. Moreover, we observed that MQ-mediated ROS simultaneously downregulated Akt phosphorylation and activated extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and adenosine monophosphate-activated protein kinase (AMPK) signaling in PC3 cells. These findings provide insights for further anticancer therapeutic options. PMID:23760395

  9. Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets.

    PubMed

    Albini, Adriana; Dell'Eva, Raffaella; Vené, Roberta; Ferrari, Nicoletta; Buhler, Donald R; Noonan, Douglas M; Fassina, Gianfranco

    2006-03-01

    Xanthohumol (XN), the principal flavonoid of the hop plant (Humulus lupulus L.) and a constituent of beer, has been suggested to have potential cancer chemopreventive activities. We have observed that most cancer chemopreventive agents show antiangiogenic properties in vitro and in vivo, a concept we termed "angioprevention." Here we show for the first time that XN can inhibit growth of a vascular tumor in vivo. Histopathology and in vivo angiogenesis assays indicated that tumor angiogenesis inhibition was involved. Further, we show the mechanisms for its inhibition of angiogenesis in vivo and related endothelial cell activities in vitro. XN repressed both the NF-kappaB and Akt pathways in endothelial cells, indicating that components of these pathways are major targets in the molecular mechanism of XN. Moreover, using in vitro analyses, we show that XN interferes with several points in the angiogenic process, including inhibition of endothelial cell invasion and migration, growth, and formation of a network of tubular-like structures. Our results suggest that XN can be added to the expanding list of antiangiogenic chemopreventive drugs whose potential in cancer prevention and therapy should be evaluated.